
SPECIFICATION AND VERIFICATION
OF SHARED-MEMORY

CONCURRENT PROGRAMS

LE DUY KHANH
(B.Eng.(Hons.), Ho Chi Minh City University of Technology)

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48808374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Le Duy Khanh

8 December 2014

Acknowledgements

I am deeply grateful to my advisors, Professors Teo Yong Meng and Chin Wei Ngan.

Without their invaluable technical and personal insight, guidance, and encourage-

ment, none of the work presented in this thesis would have been possible. I am very

grateful to Professors Wong Weng Fai, Roland Yap, and Peter Müller for being my

thesis examiners and for giving me many insightful feedback. I am also thankful to

Professor Dong Jin Song for his comments and feedback in the course of this thesis. I

highly appreciate Professor Shengchao Qin for his critical comments on this thesis. I

also would like to express my gratitude to Professor Thoai Nam for his guidance dur-

ing my days as an undergraduate student at HCMUT and for his constant supports

during my PhD journey at NUS.

I would like to thank my colleagues in the Systems & Networking Lab and Pro-

gramming Languages & Software Engineering Lab, where I worked on this research.

Many have contributed to the completion of this thesis, both academically and per-

sonally. Here I can only mention several (in no specific order): Verdi, Claudia, Mar-

ian, Saeid, Bogdan, Cristina, Xuyan, Seth, Dumi, Lavanya, An, Linh, Trang, Loc,

Chanh, Trung, Thai, Andreea, Asankhaya, Cristian, Cristina, Yamilet. Many have

graduated from the labs, but their presence made my PhD experience memorable.

Other colleagues such as Khanh, Hiep, Mano (NUS), Hung (HCMUT), and Granville

(HP Labs) helped me a lot during my research. I also appreciate all my friends in

Singapore who made my PhD life fruitful.

Last but not least, I am indebted to my parents, my sister, and especially my

wife, Thanh, who have always been by my side sharing my joys and sadness. I could

not have finished this thesis without them.

i

ABSTRACT

The recent adoption of multi-core processors has accelerated the importance of

formal verification for shared-memory concurrent programs. Understanding and rea-

soning about concurrent programs are more challenging than sequential programs be-

cause of the notoriously non-deterministic interleavings of concurrent threads. These

interleavings may lead to violations of functional correctness, data-race freedom, and

synchronization properties such as deadlock freedom. This results in low confidence

in the reliability of software systems. Although recent advances in specification and

verification have shown promise in increasing the reliability of shared-memory con-

current programs, they mainly focus on partial correctness and data-race freedom,

and often ignore the verification of synchronization properties.

In shared-memory concurrent programs, threads, locks, and barriers are among

the most commonly-used constructs and the most well-known sources of software

bugs. The aim of this thesis is to develop methodologies for advancing verification

of shared-memory concurrent programs, in particular to ensure partial correctness,

data-race freedom, and synchronization properties of programs with these constructs.

First, we propose “threads as resource” to enable verification of first-class threads.

Threads are first-class in existing programming languages, but current verification

approaches do not fully consider threads as first-class. Reasoning about first-class

threads is challenging because threads are dynamic and non-lexically-scoped in na-

ture. Our approach considers threads as first-class citizens and allows the ownership

of a thread (and its resource) to be flexibly split, combined, and (partially) trans-

ferred across procedure and thread boundaries. The approach also allows thread

liveness to be precisely tracked. This enables verification of partial correctness and

data-race freedom of intricate fork/join behaviors, including the multi-join pattern

and threadpool idiom. The notion of “threads as resource” has recently inspired us

to propose “flow-aware resource predicate” for more expressive verification of various

concurrency mechanisms.

Second, threads and locks are widely-used, and their interactions could potentially

lead to deadlocks that are not easy to verify. Therefore, we develop a framework for

iii

ensuring deadlock freedom of shared-memory programs using fork/join concurrency

and non-recursive locks. Our framework advocates the use of precise locksets, intro-

duces delayed lockset checking technique, and integrates with the well-known concept

of locklevel to form a unified formalism for verifying deadlock freedom of various

scenarios, some of which are not fully studied in the literature. Experimental evalu-

ation shows that, compared to the state-of-the-art deadlock verification system, our

approach ensures deadlock freedom of programs with intricate interactions between

thread and lock operations.

Lastly, we propose the use of bounded permissions for verifying correct synchro-

nization of static and dynamic barriers in fork/join programs. Barriers are commonly-

used in practice; hence, verifying correct synchronization of barriers is desirable be-

cause it can help improve the precision of compilers and analysers for their analyses

and optimizations. However, static verification of barrier synchronization in fork/join

programs is a hard problem and has mostly been neglected in the literature. This

is because programmers must not only keep track of (possibly dynamic) number of

participating threads, but also ensure that all participants proceed in correctly syn-

chronized phases. To the best of our knowledge, ours is the first approach for verifying

both static and dynamic barrier synchronization in fork/join programs. The approach

has been applied to verify barrier synchronization in the SPLASH-2 benchmark suite.

List of Publications

1. Threads as Resource for Concurrency Verification

Duy-Khanh Le, Wei-Ngan Chin, Yong-Meng Teo

24th ACM SIGPLAN Symposium/Workshop on Partial Evaluation and Pro-

gram (PEPM), Mumbai, India, Jan 13–14, 2015.

2. An Expressive Framework for Verifying Deadlock Freedom

Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo

11th International Symposium on Automated Technology for Verification and

Analysis (ATVA), pp. 287–302, Springer LNCS 8172, Hanoi, Vietnam, Oct

15–18, 2013.

3. Verification of Static and Dynamic Barrier Synchronization using

Bounded Permissions

Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo

15th International Conference on Formal Engineering Methods (ICFEM), pp.

232–249, Springer LNCS 8144, Queenstown, New Zealand, Oct 29 – Nov 1,

2013.

4. Variable Permissions for Concurrency Verification

Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo

14th International Conference on Formal Engineering Methods (ICFEM), pp.

5–21, Springer LNCS 7635, Kyoto, Japan, Nov 12–16, 2012.

v

Table of Contents

Acknowledgements i

Abstract iii

List of Publications v

Table of Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Formal Methods . 1

1.2 Shared-Memory Concurrency in Multi-core Era 3

1.3 Verification of Shared-Memory Concurrent Programs 4

1.4 Objective and Contributions . 8

1.5 Organization of the Thesis . 12

2 Related Work 13

2.1 Reasoning about Independence among Threads 13

2.1.1 Owicki-Gries Logic . 13

2.1.2 Concurrent Separation Logic 15

2.1.3 Fractional and Counting Permissions 17

2.1.4 Other Variants of Concurrent Separation Logic 19

2.2 Reasoning about Interference among Threads 19

vii

2.2.1 Rely/Guarantee Reasoning . 20

2.2.2 Other Variants . 21

2.3 Automatic Verification Systems . 21

2.3.1 Smalfoot . 22

2.3.2 Chalice . 22

2.3.3 Verifast . 23

2.4 Open Issues . 23

2.4.1 Reasoning about First-class Threads 24

2.4.2 Reasoning about Synchronization Properties 24

2.4.2.1 Verifying Deadlock Freedom 25

2.4.2.2 Verifying Barrier Synchronization 25

2.5 Summary . 26

3 Threads as Resource 29

3.1 A Motivating Example . 31

3.2 Proposed Approach . 34

3.2.1 Programming Language . 34

3.2.2 Specification Language . 35

3.2.3 Forward Verification Rules . 36

3.2.4 Manipulating “Threads as Resource” 39

3.2.5 Applications . 40

3.3 Experiments . 45

3.4 Flow-Aware Resource Predicates . 47

3.5 Discussion . 52

3.6 Summary . 54

4 Verification of Deadlock Freedom 55

4.1 Motivation and Proposed Approach 58

4.1.1 Lockset as an Abstraction . 58

4.1.2 Precise Lockset Reasoning . 58

4.1.3 Delayed Lockset Checking . 60

4.1.4 Combining Lockset and Locklevel 62

4.2 Formalism . 64

4.2.1 Programming Language . 64

4.2.2 Integrating Specification with Locklevels 65

4.2.3 Specification Language . 66

4.2.4 Verification Rules . 69

4.2.5 Supports for Recursive Locks 72

4.3 Evaluation . 73

4.4 Discussion . 76

4.5 Summary . 77

5 Verification of Barrier Synchronization 79

5.1 A Fork/Join Programming Language with Barriers 81

5.2 Proposed Approach . 82

5.2.1 Bounded Permissions . 82

5.2.2 Verification of Static Barriers 85

5.2.3 Verification of Dynamic Barriers 90

5.3 Experiments . 98

5.4 Discussion . 100

5.5 Summary . 102

6 Conclusions and Future Work 105

6.1 Thesis Summary . 105

6.2 Future Directions . 109

References 113

A Variable Permissions 127

A.1 Motivating Example . 129

A.2 Proposed Approach . 132

A.2.1 Programming and Specification Languages 132

A.2.2 Verification Rules . 133

A.2.3 Inferring Variable Permissions 136

A.2.4 Eliminating Variable Aliasing 140

A.2.5 Discussion . 144

A.3 Comparative Remarks . 146

A.4 Summary . 147

B Soundness Proof for Threads as Resource 149

C Soundness Proof for Verification of Deadlock Freedom 155

D Soundness Proof for Verification of Barrier Synchronization 161

List of Figures

3-1 A Motivating Example . 32

3-2 Core Programming Language with First-Class Threads 35

3-3 Grammar for Core Specification Language 36

3-4 Selected Verification Rules . 37

3-5 Sub-structural Rules . 39

3-6 Map/Reduce using Multi-join . 41

3-7 Verification of a Program with Threads using Inductive Predicates . . 43

4-1 A Program with Interactions between Thread and Lock Operations . 56

4-2 Deadlock due to Double Acquisition of a Non-recursive Lock 59

4-3 Examples of Programs Exposing Interactions between Thread and Lock

Operations . 61

4-4 A Potential Deadlock due to Unordered Locking 63

4-5 Programming Constructs for (Mutex) Locks 64

4-6 Grammar for Specification Language with LS and waitlevel 66

4-7 Added Sub-structural Rules for Delayed Lockset Checking 68

4-8 Forward Verification Rules for Concurrency 69

5-1 Typical Usage of Barriers . 79

5-2 Programming Constructs for Barriers 81

5-3 Bounded Permission System . 83

5-4 Example of Using Bounded Permissions 84

5-5 Barrier Synchronization . 85

5-6 Verification of Static Barriers . 87

xi

5-7 More Complex Example . 89

5-8 Verification of a Program with Static Barriers and Nested Fork/Join . 90

5-9 Verification of Dynamic Barriers . 92

5-10 An Example of Verifying Synchronization of Dynamic Barriers 94

5-11 Dynamic Behaviors of Dynamic Barriers 96

5-12 Potential Deadlocks due to Inter-thread Addition/Removal of Partici-

pants . 97

6-1 A Fragment of radiosity . 110

6-2 Deadlock due to Multiple Barriers . 110

A-1 A Motivating Example . 130

A-2 Programming Language with Pass-by-Reference 132

A-3 Specification Language with Variable Permissions 132

A-4 Entailment Rules on Variable Permissions 133

A-5 Forward Verification Rules for Manipulating Variables 134

A-6 An Example of Eliminating Variable Aliasing 141

A-7 Translation Rules for Eliminating Variable Aliasing 143

B-1 Selected Small-step Operational Semantics of Well-formed Programs

with First-class Threads . 151

C-1 Small-step Operational Semantics for Well-formed Programs with Threads

and Locks . 158

D-1 Small-step Operational Semantics of Programs with Barriers 167

List of Tables

3.1 Experimental Results . 46

4.1 A Comparison between Chalice and ParaHIP 74

5.1 Annotation Overhead and Verification Time of SPLASH-2 Suite . . . 99

A.1 Inferring Variable Permissions for Procedure creator in Figure A-1 . 138

xiii

Chapter 1

Introduction

1.1 Formal Methods

Modern software is often large, complex, and error-prone. A recent study at Cam-

bridge University research showed that the global cost of software bugs is approxi-

mately $312 billion annually [3]. This is a tremendous loss for companies and national

economies. A software bug is used to describe an error, mistake or fault in a computer

program’s source code or design that produces unexpected results or causes the pro-

gram to behave in unintended ways. Bugs make software systems less reliable. There-

fore, ensuring reliability of software to reduce development and maintenance cost is

of global interest and is also a grand challenge as pointed out by Tony Hoare [59].

Type checking is one of the very first techniques to ensure that a program only

performs valid operations. An operation such as adding an integer to a string is

invalid. Type-safe languages, such as Java and C] have greatly improved the reliability

of software. Type systems in these high-level programming languages ensure that

certain classes of errors never occur. Although type checking is completely automatic,

it provides a low level of confidence because a type-checked program often does not

imply its functional correctness.

Currently, in order to detect software bugs, the majority of software developers

depend on testing; however, testing can only help show the presence of bugs, but

hardly can prove the absence of them. In software testing, developers write input-

output specifications in terms of unit tests and then execute this suite of tests to

1

CHAPTER 1. INTRODUCTION

check whether, with the given input, the program results in the desired output. The

problem with this approach is that it may not discover all errors because it is difficult

to write unit tests that foresee all possible execution paths [122]. Therefore, passing

a test suite does not necessarily mean a program is error-free.

Formal methods are approaches to producing more reliable software systems. For-

mal methods, fundamentally, traverse all possible execution paths in a software pro-

gram; therefore, they provide higher reliability by ensuring the absence of bugs. The

essence of formal methods is to apply formal mathematical-based techniques for spec-

ification and verification of software systems. Cliff Jones, Peter O’Hearn, and Jim

Woodcock [72] pointed out the importance of formal methods:

“Given the right computer-based tools, the use of formal methods could

become widespread and transform software engineering.”

In their study, they showed that formal methods are popularly used in safety-critical

domains such as banking and aviation. Big companies such as Microsoft [7, 28],

Intel [75] and Compaq (now part of HP) [42] develop their own static verifiers to

ensure the safety of their products.

Formal methods are divided into two main approaches: analysis and verification.

Program analysis is designed for pre-defined properties that may not meet program-

mers’ intentions. Program verification is directed towards users’ needs. Users use a

specification language to express their intention (a specification), a program verifier

then checks if a program conforms to its specification. Given an annotated program

as an input, a program verifier outputs proof obligations which are then discharged

by theorem provers. This provides strong guarantee for correctness with respect to

users’ specifications.

Tony Hoare proposed the foundational use of logic for verification of sequential

programs [57]. In Hoare logic, each program is associated with a triple {p}C{q}

which is interpreted as follows: given a program C beginning in state satisfying the

pre-condition p, if it terminates, it will do so in a state satisfying q. This is called

partial correctness. Total correctness additionally requires program termination, i.e.

2

1.2. SHARED-MEMORY CONCURRENCY IN MULTI-CORE ERA

it ensures that the program finally terminates. Hoare provided a complete set of ax-

ioms and rules for each sequential primitive which formed the foundation of program

verification [57]. With the proliferation of shared-memory programs in the current

multi-core era, new specification and verification methodologies are needed for ensur-

ing the reliability of shared-memory concurrent programs.

1.2 Shared-Memory Concurrency in Multi-core Era

Historically, Moore’s law [116] observed that the transistor density doubles roughly

every two years. Nonetheless, due to the limit on the amount of heat a micro-processor

chip could reasonably dissipate (which is known as the “power wall” [113]), increasing

density is no longer used to increase clock rate. Instead, it is used to put multiple

cores in a die. As a result, most computers and mobile devices today are “multi-core”.

Multi-threading is a widespread programming model for concurrency. A concur-

rent program consists of multiple threads that can be created statically at compile

time or dynamically at run time. These threads share the same address space and

communicate with each other via shared memory. With the advent of multi-core

systems, multi-threading is advantageous because well-written multi-threaded pro-

grams can run faster by exploiting parallelism on computer systems that have more

cores. This is because a thread is a unit of execution, which can be scheduled to

run on a processing core. Therefore, the more cores a system has, the more threads

can be executed concurrently, and the more performance gains. In order to exploit

parallelism, programmers use threading constructs (such as fork/join) for creating

concurrent threads, and use synchronization constructs (such as locks and barriers)

for synchronizing and coordinating concurrent accesses to shared resources.

Unfortunately, writing a correct concurrent program is generally difficult. Most

programmers are used to thinking sequentially; however, concurrent programming

forces them to consider interleavings among concurrent threads. Multiple interleav-

ings can produce different results across different runs. Even worse, incorrectly-

3

CHAPTER 1. INTRODUCTION

synchronized programs could potentially incur concurrency bugs such as data races

and deadlocks, which seriously reduce the reliability of concurrent programs. As

pointed out by computer scientist Edward A. Lee [88] , threads are the culprit which

discards the most essential and appealing properties of sequential computation such

as understandability, predictability, and determinism. As a result, compared with

sequential programs, concurrent programs are much harder to write.

1.3 Verification of Shared-Memory Concurrent Pro-

grams

Concurrent programs are difficult to write and it is even more difficult to check

for their correctness [94]. The major challenge is that threads are notoriously non-

deterministic; therefore, they may interleave with each other in an unexpected man-

ner [14, 88]. As a result, in order to verify concurrent programs, we have to take

into account an exponential number of different interleavings which causes a “state

explosion” in both testing and model checking.

Fortunately, theoretical advances in program verification show promise when rea-

soning about shared-memory concurrent programs. In 1975, in her PhD thesis [109],

Susan Owicki and her advisor, David Gries, came up with the very first tractable

proof method for concurrent programs using Hoare-style parallel composition and

conditional critical regions [58]. Owicki-Gries logic relies on the fact that concurrent

threads are independent and they are allowed to communicate in critical regions to

ensure mutual exclusion. The most complicated part of the logic is to check that

each thread does not modify variables belonging to other threads. This requires

global knowledge about the entire system. Another difficulty of this Hoare-style logic

is aliasing. Aliasing arises if a memory location (e.g. a heap object or a stack vari-

able) can be accessed through different symbolic names. This problem is even worse

in the presence of arrays and other dynamically allocated data structures. More

importantly, Owicki-Gries logic gears towards partial correctness and ignores other

4

1.3. VERIFICATION OF SHARED-MEMORY CONCURRENT PROGRAMS

properties such as data-race freedom and deadlock freedom.

Rely/Guarantee reasoning (RG) is another well-known approach to reasoning

about concurrent programs proposed by Jones [69] in 1983. In contrast to Owicki-

Gries logic which focuses on independence of threads, RG aims to specify possible

interference among them. Each atomic step in a thread has to be captured in the

rely and guarantee conditions to ensure that threads do not interfere with each other.

The disadvantage of this approach is that it is difficult to capture all possible inter-

ference among threads because this requires global knowledge about all threads in

the system. Additionally, RG is less memory-modular because it considers the entire

memory as shared resources; therefore, it is usually hard to define global invariants

for all these shared resources.

In the last decade, separation logic [64, 115, 132] has been proposed to advo-

cate modular and local reasoning. The beauty of separation logic is the ability to

exploit separation of resources in heap-manipulating programs using the separation

connective * . A separation conjunction p1 * p2 states that a thread owns resources

described by p1 and at the same time but separately resources described by p2. The

local reasoning principle of separation logic is captured by the following frame rule:

{p} C {q}

{p * r} C {q * r}

This rule states that if we are able to verify a program C in a smaller memory

state (described by {p} C {q}), it is safe for C to execute in a larger state as long as

the extra state r does not interfere with the execution of C. This rule implicitly says

that a thread only needs to care for its own business, which is described by p and q,

and its specification can be attached to any specification r without redoing the proof.

Local reasoning is an important property for verifying shared-memory concurrent

programs. It greatly improved modularity and motivated O’Hearn to propose Con-

current Separation Logic (CSL) [106]. CSL can be considered as a combination of

Owicki-Gries logic and separation logic. CSL enables local reasoning principle by

allowing threads to “mind their own business” [105]. In CSL, threads execute con-

5

CHAPTER 1. INTRODUCTION

currently using Hoare’s parallel composition and communicate with each other only

in conditional critical regions (CCRs) [58]. In the parallel composition, threads are

independent from each other and no interference is allowed except in critical regions.

Shared resources are captured by resource invariants. A thread entering a critical

region obtains the invariant of the resource protected in the critical region. When

it is inside the critical region, a thread views the shared resource as local without

considering other threads. CSL was originally designed to handle heap resources

and allow limited forms of concurrency in terms of parallel composition and CCR.

Recent developments have extended CSL to deal with stack variables [16], dynamic

locks and threads [45, 51, 52, 61], static barriers [62]. Although CSL and its variants

[16, 45, 51, 52, 61, 62] guarantee partial correctness and race-freedom, they often

ignore other synchronization properties such as deadlock freedom.

Because of local reasoning in separation logic, many works (RG+) have applied

it to rely/guarantee reasoning [35, 38, 39, 126]. The key idea is to split program

states into shared states and private states. Shared states are treated in the same

way with RG while private states are reasoned locally using the separation conjunc-

tion. This greatly reduces efforts to describe interference in shared states. RG+

is considered more general than CSL because it is able to reason about concurrent

programs with both disciplined concurrency and ad hoc synchronizations. However,

it is still complicated to be adopted popularly compared with CSL because, besides

pre- and post-conditions, RG+ also requires interference specifications in terms of

rely and guarantee conditions. Recently, Deny/Guarantee (DG) [35] is proposed to

mitigate this drawback. In DG, deny and guarantee conditions become a part of pre-

and post-conditions. Although DG and other RG+ methods are expressive to reason

about concurrent programs with dynamic creation of locks and threads, it is unclear

how to extend them to verify other concurrency constructs such as barriers as well as

to verify properties such as deadlock freedom and correct barrier synchronization.

Reasoning about program code is a very difficult task due to many different special

exceptions and assumptions to ensure desired program behaviors. The proof can be

6

1.3. VERIFICATION OF SHARED-MEMORY CONCURRENT PROGRAMS

done by hand by abstracting the core algorithm of the program, writing its specifica-

tion, and checking that the algorithm meets the specification. An apparent problem

of this approach is that the core algorithm may interact with other components in

unexpected ways. This indicates that the correctness of the core algorithm does not

imply the correctness of the entire program. Besides, in case of large programs, it

is not easy to extract their core algorithm. Especially, in the context of concurrent

programs, threads may interleave non-deterministically. Therefore, it becomes much

harder to abstract the core algorithm precisely and it is even more tedious to write

proofs which account for all possible interleavings. As a result, computerized proofs

(e.g. proofs generated by an automatic program verifier) are desirable.

Although fully automatic generation of verification proofs appears too difficult to

achieve, programmers can help by annotating their intentions to guide the program

verifiers. Therefore, a program verifier should come with an expressive specification

logic allowing users to fully express their intention. However, expressiveness of the

specification logic does not mean that it can be automated. The more expressive the

logic is, the harder it is to automate the logic [71]. Often, a high degree of automation

is a desirable property of program verifiers [59].

Though many program verifiers have implemented the above-mentioned logics in

the last decade, they are of limited expressiveness or automation. Smallfoot [9]

is among the very first CSL-based verifiers for concurrent programs. It comes with

a complete decision procedure as well as excellent automation, but it only supports

simplistic concurrency constructs such as parallel composition and conditional critical

regions. Although Chalice [90] and Verifast [67] are expressive to reason about

concurrent programs with fork/join and locks, they are of limited automation and

require a lot of user annotations. For example, Verifast reported an annotation

overhead which is in the order of 10 to 20 lines of annotation per line of code [65].

Furthermore, among existing verification systems, Chalice is the only system that

could help prevent certain types of deadlocks. None of the above systems support

verification of barrier synchronization.

7

CHAPTER 1. INTRODUCTION

In summary, although the literature has shown promise in specifying and verifying

correctness of shared-memory programs, they mostly focus on partial correctness and

data-race freedom, and often ignore the verification of synchronization properties

such as deadlock freedom and correct barrier synchronization. Hence, in order to

further improve the reliability of shared-memory concurrent software, methodologies

are needed not only for reasoning about partial correctness and data-race freedom,

but also for ensuring the synchronization properties.

1.4 Objective and Contributions

In view of the above review, it is worth noting that although existing works on

specification and verification of shared-memory concurrent programs have achieved

many promising advances, there remain the following research challenges:

• In mainstream languages, threads are first-class in that they can be dynamically

created, stored in data structures, passed as parameters, and returned from pro-

cedures. However, current verification systems support reasoning about threads

in a restricted way because threads are often represented by unique tokens that

can neither be split nor shared. As such, the verification of first-class threads

has not been fully investigated. Reasoning about first-class threads is challeng-

ing because threads are dynamic and non-lexically-scoped in nature. A thread

can be dynamically created in a procedure (or a thread), but shared and joined

in other procedures (or threads). Therefore, there is a need for expressive veri-

fication of first-class threads.

• Deadlock freedom is among the most desirable properties for concurrent pro-

grams. However, among existing specification and verification systems, only

Chalice [89, 90] could prevent certain types of deadlocks such as those due

to double lock acquisition and unordered locking. There are still other types

of deadlocks that have almost been neglected in the literature such as those

8

1.4. OBJECTIVE AND CONTRIBUTIONS

due to the interactions between thread fork/join and lock acquire/release op-

erations. With the profound use of threads and locks in large programs with

many (possibly non-deterministic) execution branches, these interactions are

not easy to follow [88]. These types of deadlocks are hard to verify by cur-

rent approaches since the current pre-condition checking at the fork point is

insufficient to prevent the deadlocks from happening. Therefore, it is desirable

to have an expressive framework capable of verifying different deadlock sce-

narios, especially those due to the intricate interactions between fork/join and

acquire/release operations

• Existing works focus mainly on concurrent programs manipulating (mutex)

locks. Besides locks, barriers are among the most commonly-used synchro-

nization constructs [13, 107]. Static verification of barrier synchronization is

challenging because programmers must not only keep track of (possibly dy-

namic) number of participating threads, but also ensure that all participants

proceed in correctly synchronized phases. As barriers are commonly used in

practice [13, 107], correct barrier synchronization is a desirable property since

it can provide compilers and analysers with important information for improving

the precision of their analyses and optimizations such as reducing false shar-

ing [68], may-happen-in-parallel analysis [93, 134], and data race detection [76].

However, verification of barrier synchronization has almost been neglected in

the context of shared-memory fork/join programs.

The main objective of this thesis is to design a set of methodologies for reasoning

about shared-memory programs, in terms of verifying partial correctness, data-race

freedom, and synchronization properties such as deadlock freedom and correct barrier

synchronization. Our expressive program logics, based on separation logic, are de-

signed to reason about programs with first-class threads, locks, and barriers that are

commonly used in shared-memory programming. The logics have been implemented

into prototype tools and experimental evaluations demonstrate their capabilities for

verifying many intricate programs. In particular, many of the programs implement

9

CHAPTER 1. INTRODUCTION

the multi-join pattern, intricate interactions between thread and lock operations, and

dynamic barrier synchronization, which could not be verified by current verification

approaches.

Specifically, towards automated verification of shared-memory programs, we make

the following contributions:

• For reasoning about first-class threads, we propose “threads as resource” ap-

proach, allowing the ownership of a thread to be flexibly split, combined, and

(partially) transferred across procedure and thread boundaries. We also al-

low thread liveness to be precisely tracked. This enables verification of par-

tial correctness and data-race freedom of intricate fork/join behaviors such as

multi-join pattern and threadpool idiom. The idea of “threads as resource” has

also inspired our recently-proposed “flow-aware resource predicate” for more ex-

pressive verification of various concurrency mechanisms, including and beyond

first-class threads.

• For ensuring deadlock-freedom of shared-memory programs manipulating fork/join

concurrency and non-recursive locks, we develop an expressive framework that

advocates the use of precise locksets, introduces delayed lockset checking tech-

nique, and integrates with the well-known notion of locklevel to form a unified

formalism for verifying deadlock-freedom of various scenarios, including double

lock acquisition, interactions between thread fork/join and lock acquire/release,

and unordered locking. Specifically, compared to the state-of-the-art deadlock

verification system, our approach ensures deadlock freedom of programs with

intricate interactions between thread fork/join and lock acquire/release opera-

tions, which are not fully studied in the literature.

• Lastly, we present an approach for verifying correct synchronization of static

and dynamic barriers in fork/join programs using bounded permissions. For ver-

ifying static barriers, the approach uses bounded permissions and phase numbers

to keep track of the number of participants and barrier phases respectively. For

10

1.4. OBJECTIVE AND CONTRIBUTIONS

verifying dynamic barriers, the approach introduces dynamic bounded permis-

sions to additionally keep track of the additions and/or removals of participants.

Our approach has been proven sound, and a prototype of it has been applied

to verify barrier synchronization in the SPLASH-2 benchmark suite.

Our methodologies proposed in this study advance the verification of shared-

memory concurrent programs in multiple dimensions. First, we address different

commonly-used concurrency constructs including fork/join, locks, and barriers. Our

“threads as resource” approach enables reasoning about intricate fork/join concur-

rency and provides an infrastructure for reasoning about concurrent programs with

locks and barriers. Based on “threads as resource”, we advocate the use of precise lock-

sets, introduce delayed lockset checking technique for reasoning about deadlock-free

programs with locks. We also propose approaches for verifying correct synchroniza-

tion of static and dynamic barriers. Second, we verify different program properties

such as partial correctness, data-race freedom, deadlock freedom, and correct barrier

synchronization. The proposed methodologies have been implemented into integrated

tools for verifying concurrent programs.

We also addressed the issue of ensuring race-free accesses to program variables in

the course of this research. Existing works often focus on ensuring safe (or race-free)

concurrent accesses to heap data structures, but reasoning about concurrent accesses

to program variables is not fully addressed. One solution is to apply the same permis-

sion system (e.g. fractional permissions [18]), designed for heap memory, to variables.

“Variables as resource” [112] is such an approach. However, it is, in most cases, overly

heavy [71]. We propose a new permission system, called variable permissions, which

is simpler than existing permission systems in the literature. Therefore, it simplifies

the verification and automatic inference of permissions. This contribution is not the

major focus of this thesis, thus it is left in Appendix A.

This thesis focuses on methodologies for specifying and verifying shared-memory

concurrent programs. Methods for program testing are not discussed in this thesis as

testing is generally incomplete, i.e. it can show the presence of concurrency bugs, but

11

CHAPTER 1. INTRODUCTION

hardly can prove the absence of them. Similarly, techniques using model checking are

not central to this study as they generally suffer from the “state explosion” problem.

Furthermore, static analyses such as those based on type systems are only discussed

briefly as they tend to be less expressive than specification logics. Comparative

remarks between our work and these approaches will be presented in each chapter.

1.5 Organization of the Thesis

The organization of the thesis is as follows.

Chapter 2 discusses related theoretical advances in reasoning about shared-memory

concurrent programs. The chapter also discusses open issues that motivate this thesis.

Chapter 3 introduces our “threads as resource” approach for reasoning about first-

class threads. The main contribution is an expressive treatment of first-class threads

to enable verification of more intricate fork/join behaviors. The chapter also presents

“flow-aware resource predicate” for verifying various concurrency mechanisms.

Chapter 4 presents an expressive framework for verifying deadlock freedom. The

main contributions of the framework are the use of precise locksets, the inroduction

of delayed lockset checking technique, and the capability to verify various deadlock

scenarios, some of which have not been adequately studied in the literature.

Chapter 5 presents our approach to verifying correct synchronization of both static

and dynamic barriers in fork/join programs. The main contributions are the new per-

mission system, called bounded permissions, and the use of this system for verifying

synchronization of static and dynamic barriers.

Chapter 6 concludes the thesis and discusses future works.

12

Chapter 2

Related Work

In this chapter, we discuss theoretical advances and open issues in reasoning about

shared-memory concurrent programs. More comprehensive comparisions between re-

lated works and our work will be presented in respective chapters.

Logics for specification and verification of shared-memory programs focus on two

aspects of concurrent threads: independence and interference. Threads are indepen-

dent if they access disjoint resources. Independence, therefore, enables local reasoning

for each individual thread. Nonetheless, threads could interfere with each other in

complicated ways, and hence require methodologies to describe their interference.

Beside theoretical advances, automating the verification process is desirable as it re-

duces the manual (human) efforts for specification. We will also discuss some existing

automatic verification systems in this chapter. Last but not least, we conclude this

chapter with challenging open issues.

2.1 Reasoning about Independence among Threads

2.1.1 Owicki-Gries Logic

In 1969, Hoare [57] introduced an axiomatic approach for proving correctness of se-

quential programs. Hoare’s triples are the basis of program verification. A triple

{p} C {q} states that given an execution of a program C beginning in a state sat-

13

CHAPTER 2. RELATED WORK

isfying the pre-condition p, then if the execution terminates, it will do so in a state

satisfying the post-condition q. Afterward, in [58], Hoare formalized concurrent exe-

cution of threads as a parallel composition with a resource r:

resource r : C1 || . . . || Cn

Here, all threads C1, . . . , Cn are executed in parallel. In order to cope with different

interleavings among threads, Hoare proposed to protect shared resources in condi-

tional critical regions (CCR):

with r when B do C

where r denotes a shared resource (i.e. a list of variables), B denotes the guard

condition, and C denotes a piece of code that uses the resource r. Generally, a

thread is allowed to test the state of the resource r by trying to acquire a semaphore

associated with r. After successfully acquiring the semaphore, the thread checks

condition B. If B is not satisfied, the thread will be placed on the queue of threads

waiting for r and release the semaphore. If B is satisfied, it will enter the critical

region, execute, and on completion invoke all processes in the waiting queue. The

conditional critical region ensures that only one thread at a time has access to the

shared resource r.

Following the work of Hoare, Owicki and Gries introduced the concept of non-

interference among proofs of concurrent threads, which is known as Owicki-Gries

Logic [110, 111, 109]. The logic assumes that a resource invariant I(r) has been

defined for each resource r. The proof rule of parallel composition is described as

follows:

{p1} C1 {q1} . . . {pn} Cn {qn} (†)

{p1 ∧ . . . ∧ pn ∧ I(r)} resource r : C1 || . . . || Cn {q1 ∧ . . . ∧ qn ∧ I(r)}
(2.1)

14

2.1. REASONING ABOUT INDEPENDENCE AMONG THREADS

where the side condition (†) states that no thread Ci will interfere with the proof of

thread Cj (i 6= j) and vice versa. More precisely, any intermediate assertions between

atomic actions in the proof outline of Cj must be preserved by all atomic actions of

Ci and vice versa. This ensures that threads do not interfere with each other during

the execution.

The rule for conditional critical regions (CCRs) is formulated as follows:

{I(r) ∧ p ∧B} C {I(r) ∧ q} ∀ Cj 6=C : FV (p, q) ∩ modifies(Cj)=φ

{p} with r when B do C {q}

where the side condition says that no variable in p or q is modified by other threads.

As pointed out by Owicki and Gries [111], the two above rules are inadequate

even for simple programs. Therefore, they introduce auxiliary (or ghost) variables to

capture additional information about concurrent threads. An auxiliary variable is a

logical variable; it does not exist in the program but rather is to support proving the

program’s correctness. Auxiliary statements using auxiliary variables do not affect

the control flow of the programs. Indeed, Owicki and Gries proved that auxiliary

variables and their statements do not affect the correctness of verified programs.

Although elegant and easy to understand, Owicki-Gries logic has important limi-

tations. The most important limitation is due to the side conditions mentioned in the

two above rules for parallel composition and conditional critical region. As aforemen-

tioned, the side conditions require that a thread has to know the code of other threads

in order to check for non-interference. This makes the method less compositional. Be-

sides, in order to capture interference, the logic requires resource invariants and many

auxiliary variables. These elements sometimes are difficult to specify precisely [126].

2.1.2 Concurrent Separation Logic

Separation logic (SL) [64, 115, 132] is an extension of Hoare’s logic to support local

reasoning of heap-manipulating programs. The strength of separation logic lies under

the separation connective * . The separation conjunction p1 * p2 in an assertion

15

CHAPTER 2. RELATED WORK

specifies heap states which can be split into two disjoint parts: the first part satisfies

p1 and the second part satisfies p2. The most important benefit of separation logic is

to allow local reasoning via the following frame rule:

{p} C {q} FV (r) ∩ modifies(C)=φ

{p * r} C {q * r}

The idea of local reasoning is that the specifications p and q of a module C only

need to mention heap states accessed locally by C. This leads to clean verification

of sequential heap-manipulating programs. The side condition is necessary to ensure

that C does not modify stack variables mentioned in r. Separation logic is composi-

tional in the sense that C can be composed with other modules in different contexts

(i.e. different r) without re-doing the proof of C.

Discovering the strength of separation logic, O’Hearn [105, 106] proposed Con-

current Separation Logic (CSL) which extends separation logic to reason about con-

currency. The parallel composition rule comes in naturally because of the separation

nature of resources:

{p1} C1 {q1} . . . {pn} Cn {qn} ∀ i 6=j : FV (pi, qi) ∩ modifies(Cj)=φ

{p1 * . . . * pn} C1 || . . . || Cn {q1 * . . . * qn}

The rule states that a heap state can be split into multiple disjoint parts in such

a way that threads only access their own part without interfering with the others.

Verification of each individual thread is similar to that of a sequential program. In

contrast to Owicki-Gries logic which always needs the side condition to ensure non-

interference among threads (Equation 2.1), CSL by nature ensures non-interference

in the heap. The side condition in this rule is to guarantee that stack variables

mentioned in pi and qi of a thread Ci are not modified by other threads Cj (i 6= j).

To support sharing of resources among concurrent threads, CSL adopts Hoare’s

conditional critical regions (CCRs) for mutual exclusion:

16

2.1. REASONING ABOUT INDEPENDENCE AMONG THREADS

{(I(r) * p) ∧B} C {I(r) * q} ∀ Cj 6=C : FV (p, q) ∩ modifies(Cj)=φ

{p} with r when B do C {q}
(2.2)

The rule is basically similar to that of Owicki-Gries except that it uses separation

connective * instead of conjunction ∧ to ensure separation of heap resources. The

side condition is to ensure that no stack variables mentioned in p and q is modified

by other threads. A thread has full control over resource r when it is in the critical

region C. The rule shows an important property of CSL: ownership transfer. Outside

the critical region, the resource r is in a shared state and is owned by the invariant

I(r). The ownership of r is transferred to a thread when it acquires the semaphore

to enter the critical region C. Upon leaving the critical region, the thread transfers

the ownership of r back to the resource invariant I(r). The ownership of the resource

r later can be transferred to another thread entering the critical region C.

Though a powerful rule, the conditional critical region rule (Equation 2.2) is too

restrictive in the sense that it does not allow concurrent reads of threads. Bornat et

al. [15] incorporated fractional permissions [18] into CSL to overcome the restriction

and allow more expressive sharing among threads, as elaborated in the following.

2.1.3 Fractional and Counting Permissions

Permissions are fundamental to specification and verification of concurrent programs.

In concurrent separation logic, the basic heap node x 7−→ E, pronounced x points to

E, asserts that it consists of a single cell with integer address x and integer content E.

Heaps are connected together to form larger heaps by using the separation connective

* . In order to reason about race-free sharing of resources among concurrent threads,

heaps are enhanced with permissions π [15, 18]. A heap node x
π7−→ E indicates a

permission to access the content E at the address x. A permission can be partial

or full indicating read or write permission respectively. A permission (either full or

17

CHAPTER 2. RELATED WORK

partial) can be split into multiple partial permissions which can be shared among

threads. Partial permissions can also be gathered back into a single full permission

for accounting. Two most popular permission systems are fractional permissions [18]

and counting permissions [15].

In fractional permission system, permission is represented by a fractional number

f . f=1 indicates a full permission while 0<f<1 indicates a partial permission for

read accesses. Given any fractional permission f where 0<f≤1, it is always possible

to split f into two fractions f1 and f2 where f1+f2=f and f1, f2>0, as follows:

x
f7−→ E ∧ f=f1+f2 ∧ f1>0 ∧ f2>0 =⇒ x

f17−→ E ∗ x f27−→ E

This allows permissions to be split among concurrent threads. Threads having 0<f<1

can safely read a shared location, while a thread having f=1 has exclusive access

(either read or write) of the shared location. Permissions can also be combined to

form an exclusive access, as follows:

x
f17−→ E ∗ x f27−→ E =⇒ x

f1+f27−−−→ E

Similarly, in counting permission system, a total permission is written x
07−→ E while

a read permission is written x
−17−→ E. Given a central permission authority holding

a source permission n, it is always possible to split off into a new source permission

n+1 (held by the central authority) and a read permission −1 for sharing:

x
n7−→ E ∧ n≥0 ⇐⇒ x

n−17−−→ E ∗ x −17−→ E

Fractional and counting permissions hence provide a means for permission accounting

in concurrent separation logics, enable reasoning about race-free sharing of resources

among concurrent threads. Recently, various permission systems such as binary tree

share model [34], Plaid’s permission system [11], and borrowing permissions [101] have

been proposed. In a nutshell, they are akin to fractional and counting permissions.

18

2.2. REASONING ABOUT INTERFERENCE AMONG THREADS

2.1.4 Other Variants of Concurrent Separation Logic

Recent works have further improved concurrent separation logic (CSL). Brookes [20]

showed that CSL is sound. The side conditions of parallel composition and conditional

critical region rules can be removed if we treat stack variables as resource [16, 112].

Brookes showed that CSL with permissions and “variables as resource” is sound [19].

Additionally, there are many attempts to handle dynamic allocation of locks [51],

dynamic creation of threads [51, 61], re-entrant locks [45, 52], and static barriers [62].

Although powerful, CSL and its variants have several limitations. First of all, it is

only suitable for reasoning about well-synchronized concurrency. In well-synchronized

programs, mutual exclusion is ensured in the critical regions. Therefore, it is unclear

how to use CSL to reason about programs with ad hoc synchronizations [131]. In these

programs, instead of using synchronization primitives, programmers use variables to

synchronize in an ad hoc way. Second, similar to Owicki-Gries logic, CSL logic

uses invariants to encode shared states; therefore, it also suffers from the preciseness

of invariants as well as from the excessive use of auxiliary variables. Additionally,

although CSL and its variants [16, 51, 52, 62] can guarantee race-freedom, they often

ignore other properties such as deadlock freedom and correct barrier synchronization.

In summary, Owicki-Gries logic, CSL, and its variants focus on the assumption

that threads are independent and hence they allow for local reasoning where threads

can be verified independently from each other. Although the above logics are well-

suited for verifying partial correctness and data-race freedom of shared-memory pro-

grams, they pay little attention to verification of other synchronization properties

such as deadlock freedom and correct barrier synchronization.

2.2 Reasoning about Interference among Threads

In contrast to Owicki-Gries logic and CSL, which focus on independence among

threads, Rely/Guarantee and its variants focus on specifying and verifying inter-

ference among threads.

19

CHAPTER 2. RELATED WORK

2.2.1 Rely/Guarantee Reasoning

Rely/Guarantee reasoning (RG), proposed by Jones [69], is a well-established ver-

ification method for shared-memory concurrent programs. It is also known as As-

sume/Guarantee [39]. RG method uses binary relations of states (specifying state

transitions) to describe interference among threads. A thread views all other threads

in a program as its environment. The rely (or assume) condition specifies state tran-

sitions made by the environment; the guarantee condition specifies state transitions

made by the current thread. A RG specification of a thread is formalized as follows:

R,G ` {p} C {q}

The specification states that given an execution of a thread C begins in a state

satisfying the pre-condition p and an environment whose behaviors satisfy the rely

condition R, then if any state transitions performed by the thread satisfy the guaran-

tee condition G and the execution terminates, it will terminate in a state satisfying

the post-condition q. Non-interference is guaranteed as long as the guarantee condi-

tion of each thread satisfies the rely conditions of all other threads, as described in

the following rule for parallel composition C1||C2 :

R ∨G2, G1 ` {p} C1 {q1} R ∨G1, G2 ` {p} C2 {q2}

R,G1 ∨G2 ` {p} C1 || C2 {q1 ∧ q2}

The rely and guarantee conditions of two threads ensure non-interference because

they are compatible (the guarantee condition of thread C1 satisfies the rely condition

of thread C2 and vice versa: G1 ⇒ R ∨ G1 and G2 ⇒ R ∨ G2). At the beginning,

two threads begin in an initialized state satisfying the pre-condition p; at the end, if

both threads terminate, both post-conditions hold. The total guarantee condition is

G1∨G2 because the state transition belongs to either threads. RG method, therefore,

is compositional in the sense that a thread is verified based on its own specification

without knowing the code of other threads.

20

2.3. AUTOMATIC VERIFICATION SYSTEMS

In contrast to CSL (Section 2.1.2) which is suitable for well-synchronized pro-

grams, RG reasoning is more general because it does not require specific language

constructs for synchronization, which can be expressed in terms of rely and guarantee

conditions. Therefore, it is capable of verifying programs using ad hoc synchroniza-

tions. However, RG is more complex because for each individual transition, we need

to check that the state transition satisfies the guarantee condition. Additionally, RG

is less memory-modular because it considers the entire memory as shared resources;

therefore, it is usually hard to define global invariants for all these shared resources.

2.2.2 Other Variants

Due to the aforementioned limitations of Rely/Guarantee reasoning, Jones wanted a

more compositional approach to verifying concurrent programs [70]. In response to

Jones, RGSep [126], SAGL [39], LRG [38] and Deny/Guarantee reasoning [35], Con-

current Abstract Predicates [32], and Views [31], aim to achieve memory-modularity

of separation logic without sacrificing RG’s expressiveness. These approaches could

achieve good modularity but are still limited to reasoning about partial correctness

and data-race freedom, and mostly neglected the verification of synchronization prop-

erties such as deadlock freedom.

2.3 Automatic Verification Systems

In this section, we discuss state-of-the-art automated program verifiers which are

based on the above-mentioned logics. While program logics attempt to reason locally

and modularly, automatic verifiers are more concentrated on automation and expres-

siveness. Automation is a desirable feature to reduce human efforts, i.e. annotations.

Expressiveness describes abilities of a verifier to capture various constructs used in

real-world programs (such as concurrency and synchronization constructs) and to

ensure properties of programs (e.g. data-race freedom and deadlock freedom).

21

CHAPTER 2. RELATED WORK

2.3.1 Smalfoot

Smallfoot [9] is among the first verification tools based on concurrent separation

logic (CSL). It has a symbolic execution engine [10] designed for a fixed set of shape

predicates, including singly-, doubly-, and xor-linked lists and trees which are hard-

wired into the system. It uses a complete decision procedure based on a collection of

axioms (a.k.a lemmas) which are also hardwired into the system. Smallfoot uses

CSL’s parallel composition to enable concurrency and uses conditional critical regions

(CCRs) for mutual exclusion among threads. Extending Smallfoot, Vafeiadis de-

veloped SmallfootRG [25] to support Rely/Guarantee reasoning based on RGSep.

Smallfoot is a very powerful verifier and requires less annotations; however, it

can only operate on a fixed set of predicates. It does not support user-defined pred-

icates which are essential to express users’s intentions. Concurrency in Smallfoot

is at the simplest form which is not popularly used in real world. Smallfoot does

not support dynamical thread creation (e.g. via fork/join) as well as other synchro-

nization constructs such as locks and barriers. In Smallfoot, every access to shared

resources has to be done in critical regions, it limits concurrency in case of concurrent

reads without any write (which can be handled using fractional permissions [18]).

Although SmallfootRG can rely on the rely/guarantee conditions to allow con-

current reads, it is unclear how SmallfootRG can reason about dynamic creation

of threads and resources. Additionally, by relying on separation logic, Smallfoot

ensures data-race freedom in the presence of concurrent accesses to heap locations.

For program variables, Smallfoot imposes side-conditions to prevent conflicting

accesses to variables. However, these conditions are subtle and hard for compilers to

check because it involves examining the entire program [16, 114].

2.3.2 Chalice

Chalice [4, 89, 90] is a program verifier for multi-threaded object-oriented programs

developed at Microsoft. Its methodology is centered around implicit dynamic frame

[119] (a variant of separation logic) and fractional permissions to express sharing and

22

2.4. OPEN ISSUES

non-sharing of objects and concurrent reads. Threads are created dynamically using

fork/join primitives. Accesses to shared objects are synchronized via acquisition and

release of monitors. Among existing verification systems, Chalice is the only system

that supports verification of deadlock freedom. Chalice prevents certain types of

deadlocks by allowing users to annotate a locking order associated with each monitor.

Unfortunately, there are other types of deadlocks that Chalice is not designed to

handle (as we will elaborate more in Chapter 4). Additionally, similar to Smallfoot,

Chalice does not support other synchronization constructs such as barriers.

2.3.3 Verifast

Verifast [67] is a verifier for C-like and Java programs. It is based on separation

logic; it focuses on error detection capability and expressiveness rather than on au-

tomation. Verifast is able to report illegal memory accesses as well as data races.

Verifast allows users to define deep data structures via shape predicates. Veri-

fast also supports lemma functions to prove properties of data structures as well as

provide alternative ways to traverse data structures. In order to verify concurrent

programs, Verifast adopts programming language and logic of Gotsman et al. [51],

a variant of concurrent separation logic which supports verification of dynamic cre-

ation of locks and threads. The main disadvantage of Verifast is its high overhead

for annotations, reportedly in the order of 10 to 20 lines of annotation per line of code

[65]. In addition, similar to Smallfoot, Verifast focuses on verifying partial cor-

rectness and data-race freedom, and almost ignores synchronization properties such

as deadlock freedom and correct barrier synchronization.

2.4 Open Issues

In previous sections, we discussed recent advances in reasoning about shared-memory

concurrent programs. Despite those recent advances, there remain challenging open

issues. This section introduces briefly the issues that are important and which will

be addressed in subsequent chapters of this thesis.

23

CHAPTER 2. RELATED WORK

2.4.1 Reasoning about First-class Threads

Most of the above existing works often focus on the theoretical parallel composi-

tion. However, in practice, mainstream languages such as Java, C#, and C/C++

provide fork/join constructs [98] for dynamic creation and termination of threads. In

these languages, threads are considered as first-class citizens in that threads can be

treated like objects of any other type: they can be dynamically created, stored in data

structures, shared among different threads, passed as parameters, and returned from

procedures. Therefore, it is desirable for verification systems to support reasoning

about first-class threads.

There exist approaches that can handle dynamically-allocated threads using fork/join,

e.g. [51, 60, 65, 91]. Hobor [60] allows threads to be dynamically created using

fork but does not support join. Gotsman et al. [51] use thread handles to represent

threads, while Chalice [91] uses tokens, and Verifast [65] uses thread permissions.

A fork operation returns a unique handle/token/permission (collectively referred to

as thread token) and a join operation on a thread token causes the joining thread to

wait for the completion of the thread corresponding to the token. However, these cur-

rent works [51, 60, 65, 91] support reasoning about threads in a limited way: unique

tokens (representing threads) are not allowed to be split and shared among different

threads. As such, they are unable to verify more complicated programs, e.g. those

where threads are shared and joined in different threads. In other words, existing

works do not fully consider threads as first-class. Therefore, there is a need for more

expressive reasoning about partial correctness of programs with first-class threads.

2.4.2 Reasoning about Synchronization Properties

Beside partial correctness, it is also important to be able to reason about other desir-

able properties of concurrent programs. In the context of shared-memory programs,

the desirable properties include synchronization properties such as deadlock freedom

of programs with locks, and correct synchronization of programs with barriers.

24

2.4. OPEN ISSUES

2.4.2.1 Verifying Deadlock Freedom

Deadlocks are defined as states in which each thread in a set of threads blocks waiting

for another thread in the set to release a lock or complete its execution and neither

ever do so [27]. Deadlocks are common defects in software systems. Specifically, in

Sun’s bug report database at http://bugs.sun.com/, there are approximately 6,500

bug reports out of 198,000 (∼ 3%) containing the keyword “deadlock” [102]. Hence,

it is desirable to be able to verify that programs are deadlock-free.

There exist current works that are able to reason about programs with non-

recursive locks and dynamically-created threads [51, 61], recursive locks [45, 52], and

low-level languages [45]. However, they focus on verifying partial correctness and

ignore the presence of deadlocks. Haack et al. [52] use lockbags when verifying par-

tial correctness of concurrent programs manipulating Java recursive locks. However,

their approach in [52] as well as their subsequent work in VerCors project [12] do

not ensure deadlock freedom. Verifast [65] also ignores deadlocks when verifying

correctness of concurrent programs. Chalice [90, 91] is the only verifier that is able

to verify some types of deadlock freedom. Unfortunately, it is still limited since it

is not designed to verify deadlock freedom of programs with intricate interactions

between thread operations (e.g. fork/join) and lock operations (e.g. acquire/release).

The desire for a comprehensive framework for verifying deadlock freedom remains.

2.4.2.2 Verifying Barrier Synchronization

Beside locks, barriers are commonly used in practice [13, 107]. Threads synchronizing

on a barrier proceed in phases. When a thread issues a barrier wait, it waits until

a pre-defined number of threads (all threads or just a group of threads) have also

issued a barrier wait; after that, all participating threads proceed to the next phase.

In Pthreads [2], barriers are static, i.e. the number of participants is fixed. In .NET

framework [43], barriers are dynamic as the number of participants can vary during

a program’s execution. The java.util.concurrent library [49] supports both static and

dynamic barriers (i.e. CyclicBarrier and Phaser respectively). On the one hand,

25

CHAPTER 2. RELATED WORK

incorrect synchronization on a barrier could lead to blocking states (a.k.a deadlocks).

On the other hand, verifying correct synchronization of barriers can provide compilers

and analysers with important phasing information for improving the precision of their

analyses and optimizations such as reducing false sharing [68], may-happen-in-parallel

analysis [93, 134], and data race detection [76].

Many works have been proposed to verify correct synchronization of barriers. How-

ever, most of them focus on SPMD programs [5, 68, 76, 77, 93, 133, 134]. Threads

in SPMD programs execute the same code hence, the verification is more tractable.

Threads in SMPD programs also assume that barriers are global and all threads need

to participate in barrier operations. As such, existing techniques for SPMD programs

cannot be directly applied to fork/join programs where threads are dynamically-

created and non-lexically-scoped. In the context of fork/join programs, we are only

aware of the work by Hobor and Gherghina [63]. In this work, they propose a specifi-

cation logic focusing on verifying partial correctness of programs with static barriers.

Nonetheless, they are unable to verify correct synchronization of programs with dy-

namic barriers. Given the importance of barriers in practice, it is tempting to be able

to verify correct synchronization of programs using both static and dynamic barriers.

2.5 Summary

This chapter presented an overview of existing approaches and systems for specifying

and verifying shared-memory concurrent programs. Challenging open issues were also

discussed. This chapter is by no means a complete reference to all existing works, but

it aims to motivate the fact that existing works mostly focus on partial correctness

and data-race freedom of programs with simplistic concurrency constructs (such as

the theoretical parallel composition and conditional critical regions), and often ignore

the verification of synchronization properties such as deadlock freedom and barrier

synchronization. As we believe verifying partial correctness and data-race freedom,

and ensuring the synchronization properties are of equal importance, this thesis aims

26

2.5. SUMMARY

to propose methodologies not only to verify partial correctness and data-race freedom

of concurrent programs with realistic concurrency constructs such as fork/join, locks,

and barriers, but also to ensure their synchronization properties. Our methodologies

will be presented in the following chapters.

27

CHAPTER 2. RELATED WORK

28

Chapter 3

Threads as Resource

Overview. Threads are considered as first-class in mainstream languages such as

Java, C#, and C/C++ in that threads can be treated like objects of any other type:

they can be dynamically created, stored in data structures, shared among different

threads, passed as parameters, and returned from procedures. Hence, it is desirable

for verification systems to support reasoning about first-class threads.

One of the most popular techniques for reasoning about concurrent programs

is separation logic [105, 115]. Originally, separation logic was used to verify heap-

manipulating sequential programs, with the ability to express non-aliasing in the

heap [115]. Separation logic was extended to verify shared-memory concurrent pro-

grams, e.g. concurrent separation logic [105], where ownerships of heap objects

are considered as resource, which can be shared and transferred among concurrent

threads. Using fractional permissions [18], one can express full ownerships for exclu-

sive write accesses and partial ownerships for concurrent read accesses. Ownerships

of stack variables can also be considered as resource and treated in the same way as

heap objects [16].

Separation logic was traditionally extended to verify concurrent programs with

parallel composition [105]. Recent works also extended separation logic to handle

dynamically-created threads [51, 60, 65, 91]. Hobor [60] allows threads to be dynam-

ically created using fork but does not support join. Gotsman et al. [51] use thread

29

CHAPTER 3. THREADS AS RESOURCE

handles to represent threads, while Chalice [91] uses tokens, and Verifast [65] uses

thread permissions for the same purpose. A fork operation returns a unique handle/-

token/permission (collectively referred to as thread token) and a join operation on a

thread token causes the joining thread (joiner) to wait for the completion of the thread

corresponding to the token (joinee). However, existing works [51, 60, 65, 91] support

reasoning about threads in a limited way: unique tokens (representing threads) are

not allowed to be split and shared among different threads. As such, existing works

do not fully consider threads as first-class.

Reasoning about first-class threads is challenging because threads are dynamic and

non-lexically-scoped in nature. A thread can be dynamically created in a procedure

(or a thread), but shared and joined in other procedures (or threads). In this chapter,

we propose an expressive treatment of first-class threads, called “threads as resource”.

Our approach enables threads’ ownerships to be reasoned about in a similar way

to other types of resource. A thread’s ownership is created when it is forked, and

destroyed when it is joined. In contrast to ownership of a normal heap object which

specifies values of its fields, ownership of a thread carries resource that can be obtained

by the joiner when the thread is joined. This is to cater for the intuition that when

a joiner joins with a joinee, the joiner expects to obtain (in order to later read or

write) certain resource transferred from the joinee. As threads in fork/join programs

are typically non-lexically-scoped, we allow threads’ ownerships to be soundly split,

combined, and (possibly partially) transferred among procedures and threads.

Our approach elegantly solves at least three verification problems that were not

properly supported. First, threads can now be passed as arguments, shared, and

joined by different threads. This enables verification of intricate fork/join behaviors

such as multi-join pattern where a thread is shared and joined in multiple threads.

Using our approach, the ownership of the joinee (and its resource) can be split and

transferred (or shared) among the multiple joiners, so that they can respectively join

with the joinee and get their corresponding portions of the joinee’s resource. Second,

by treating threads in a similar way to heap objects, we can apply current advances in

30

3.1. A MOTIVATING EXAMPLE

separation logic for heap objects to threads. For example, by combining “threads as

resource” with inductive predicates, we can naturally capture a programming idiom

called threadpool where threads are stored in data structures. Lastly, we can formally

reason about the “liveness” of a thread. We achieve this by adding a special predicate

that explicitly indicates when a thread is dead (i.e. after it is joined). Our approach

has been implemented in a tool, and experimental results showed reasonable verifica-

tion performance. Lastly, the notion of “threads as resource” has recently inspired us

to propose “flow-aware resource predicate”, a variant of Concurrent Abstract Pred-

icates (CAP) [33, 36, 121], for more expressive verification of not only first-class

threads but also other concurrency mechanisms such as countDownLatch and copyless

multicast communication.

The rest of this chapter is organized as follows. Section 3.1 motivates our idea

of “threads as resource”. Section 3.2 introduces our proposed approach. Section 3.3

presents our prototype implementation and experimental results. Section 3.4 dis-

cusses the use of flow-aware resource predicates. Section 3.5 summarizes related

work. Section 3.6 concludes this chapter.

3.1 A Motivating Example

This section illustrates our treatment of “threads as resource” for reasoning about

programs with first-class threads. Fig. 3-1 shows a C-like program posing challenges

to existing verification systems. In the program, the main thread executing the

procedure main (called main thread) forks a new thread t1 executing the procedure

thread1 (line 22). thread1 will swap the values of the cells x and y. main then

forks another thread t2 executing the procedure thread2 with t1 passed as one of its

arguments (line 25). Afterward, t2 will join with t1 (line 12) and manipulate the cell

y, while main will also join with t1 (line 27) but manipulate the cell x. In separation

logic, a heap node x 7−→ cell(vx) represents the ownership of an object of type cell

pointed to by x and having the field val of vx (called ownership of x for short).

31

CHAPTER 3. THREADS AS RESOURCE

data cell { int val; }1

2

void thread1(cell x, cell y)3

requires x 7−→ cell(vx) * y 7−→ cell(vy)4

ensures x 7−→ cell(vy) * y 7−→ cell(vx);5

{ int tmp = x.val; x.val = y.val; y.val = tmp; }6

7

void thread2(thrd t1, cell y)8

requires t1 7−→ thrd〈y 7−→ cell(vy)〉9

ensures y 7−→ cell(vy + 2) ∧ dead(t1);10

{ // {t1 7−→ thrd〈y 7−→ cell(vy)〉}11

join(t1);12

// {y 7−→ cell(vy) ∧ dead(t1)}13

y.val = y.val+2;14

// {y 7−→ cell(vy + 2) ∧ dead(t1)}15

}16

17

void main()18

requires emp ensures emp;19

{ cell x = new cell(1); cell y = new cell(2);20

// {x 7−→ cell(1) * y 7−→ cell(2)}21

thrd t1 = fork(thread1,x,y);22

// {t1 7−→ thrd〈x 7−→ cell(2) * y 7−→ cell(1)〉}23

// {t1 7−→ thrd〈x 7−→ cell(2)〉 * t1 7−→ thrd〈y 7−→ cell(1)〉}24

thrd t2 = fork(thread2,t1,y);25

// {t1 7−→ thrd〈x 7−→ cell(2)〉 * t2 7−→ thrd〈y 7−→ cell(3) ∧ dead(t1)〉}26

join(t1);27

// {x 7−→ cell(2) * t2 7−→ thrd〈y 7−→ cell(3) ∧ dead(t1)〉 ∧ dead(t1)}28

x.val = x.val+1;29

// {x 7−→ cell(3) * t2 7−→ thrd〈y 7−→ cell(3) ∧ dead(t1)〉 ∧ dead(t1)}30

join(t2);31

// {x 7−→ cell(3) * y 7−→ cell(3) ∧ dead(t1) ∧ dead(t2)}32

assert(x 7−→ cell(3) * y 7−→ cell(3)); /*valid*/33

destroy(x); destroy(y);34

// {emp ∧ dead(t1) ∧ dead(t2)}35

}36

Figure 3-1: A Motivating Example

32

3.1. A MOTIVATING EXAMPLE

The program is challenging to verify because (1) fork and join operations on t1

are non-lexically scoped (i.e. t1 is forked in main but joined in thread t2), and (2)

t1 is shared and joined in both t2 and main (i.e. a multi-join). In this program,

the ownerships of x and y are flexibly transferred across thread boundaries, between

main, t1 and t2, via fork/join calls. To the best of our knowledge, we are not aware

of any existing approaches capable of verifying this program. We propose “threads as

resource” to verify such programs soundly and modularly. The key points to handle

this program are (1) considering t1 as resource, and (2) allowing it to be split and

transferred between main and t2 via fork/join calls.

Our approach is based on the following observation: when a thread (joiner) joins

with another thread (joinee), the joiner expects to receive (in order to later read or

write) certain resource transferred from the joinee. In the example program, main

joins with t1 and expects the ownership of x transferred from t1, while t2 joins with

t1 and expects the ownership of y. Hence, the verification of the program in Fig. 3-1 is

achieved by introducing the thread ownership v 7−→ thrd〈Φ〉 indicating that v points to

a live thread (as resource) carrying certain resource Φ. A thread having the ownership

v 7−→ thrd〈Φ〉 can perform a join(v), and yield the resource Φ and a pure predicate

dead(v) after joining. This special predicate dead(v) explicitly indicates that thread v

is no longer alive. In Fig. 3-1, when t1 is forked (line 22), its pre-condition is consumed

and exchanged for the thread’s ownership t1 7−→ thrd〈x 7−→ cell(2) * y 7−→ cell(1)〉 carry-

ing the post-state of thread1 (i.e. t1’s state after it has finished its execution). This

is sound and modular as other threads can only observe the post-state of thread1

when they join with t1. Our approach enables the thread’s ownership to be split into

t1 7−→ thrd〈x 7−→ cell(2)〉 and t1 7−→ thrd〈y 7−→ cell(1)〉 (from line 23 to line 24). This

allows the latter to be transferred to t2 while the former remains with main. Con-

sequently, having the ownerships of t1, both t2 and main can perform join(t1) and

get the corresponding resource: t2 obtains the ownership of y to write to it, while

main obtains and writes to x (i.e. t2 and main write-share the resource transferred

from t1). Using our “threads as resource” approach, the program can be verified as

33

CHAPTER 3. THREADS AS RESOURCE

both data-race-free and partially correct.

Our treatment of “threads as resource” allows the ownership of a thread to be

flexibly split and transferred. For example, in a program similar to Fig. 3-1, instead

of writing to cells x and y, both main and t2 may want to concurrently read the value

of the cells. Using fractional permissions [18], we could now split the ownership of t1

from t1 7−→ thrd〈x 7−→ cell(2) * y 7−→ cell(1)〉, into t1 7−→ thrd〈x 0.67−→ cell(2) * y
0.67−→ cell(1)〉

and t1 7−→ thrd〈x 0.47−→ cell(2) * y
0.47−→ cell(1)〉, and transfer them into the correspond-

ing codes for main and t2. This allows main and t2 to be able to read concurrently

cells x and y after joining with the t1 thread.

In summary, we propose to treat threads as resource, thus allowing threads’ own-

erships to be soundly split and transferred across procedure and thread boundaries.

This supports first-class threads and enables modular reasoning of intricate concur-

rent programs with non-lexically-scoped fork/join and multi-join. We will give more

details in the rest of this chapter.

3.2 Proposed Approach

3.2.1 Programming Language

We use the core programming language in Fig. 3-2 to convey our idea. A program

consists of data declarations (data decl∗), global variable declarations (global decl∗),

and procedure declarations (proc decl∗). Each procedure declaration is annotated with

pairs of pre/post-conditions (Φpr/Φpo). New objects of type C can be dynamically

created and destroyed using new and destroy. A fork receives a procedure name

pn and a list of parameters v∗, creates a new thread executing the procedure pn,

and returns an object of thrd type representing the newly-created thread. join(v)

waits for the thread that is pointed to by v to finish its execution. Note that a joinee

could be joined in multiple joiners. At run-time, the joiners wait for the joinee to

complete its execution. If a joiner waits for an already-completed (or dead) thread,

it proceeds immediately without waiting (i.e. the join operation becomes no-op). We

34

3.2. PROPOSED APPROACH

P ::= data decl∗ global decl∗ proc decl∗ Program
data decl ::= data C { field decl∗ } Data declaration
field decl ::= type f; Field declaration

global decl ::= global type v Global variable declaration
proc decl ::= type pn(param∗) spec∗ { s } Procedure declaration

spec ::= requires Φpr ensures Φpo; Pre/Post-conditions
param ::= type v Parameter

type ::= int | bool | void | thrd | C Type
e ::= v | v.f | k | e1+e2 | e1=e2 | e1 6=e2 Var/field/const/expr

s ::=

v = newC(v∗) | destroy(v)
| v = fork(pn,v∗) | join(v)
| if e then s1 else s2

| s1; s2 | pn(v∗) | . . .

Statement

Figure 3-2: Core Programming Language with First-Class Threads

do not allow canceling a thread. A thread is dead after it is joined or when the entire

program has finished its execution. The semantics of other program statements (such

as procedure calls pn(v∗), conditionals, loops, assignments) are standard as can be

found in the mainstream languages.

3.2.2 Specification Language

Fig. 3-3 shows our specification language for concurrent programs manipulating “threads

as resource”. A classical separation logic formula Φ is in disjunctive normal form.

Each disjunct in Φ consists of a heap formula κ and a pure formula π. Furthermore,

∆ denotes a composite formula which could always be translated into the Φ form. A

pure formula π includes standard equality/inequality, Presburger arithmetic, and a

pure predicate dead(v) indicating that the thread v has completed its execution. π

could also be extended to include other constraints such as set constraints. A heap

formula κ consists of multiple atomic heap formulae ι connected with each other via

the separation connective * . An atomic heap formula v
ε7−→ C(v∗) (or heap node)

represents the fact that the current thread has a certain fractional permission ε to

35

CHAPTER 3. THREADS AS RESOURCE

Separation formula Φ ::=
∨

(∃v∗ · κ ∧ π)
Composite formula ∆ ::= Φ | ∆1 ∨∆2 | ∆1 ∧ π | ∆1 * ∆2 | ∃v ·∆

Heap formula κ ::= emp | ι | κ1 * κ2

Atomic heap formula ι ::= v
ε7−→ C(v∗) | v 7−→ thrd〈Φ〉

Pure formula π ::= α | π1 ∧ π2 | π1 ∨ π2 | ¬π
| ∃v · π | ∀v · π | dead(v)

Arithmetic formula α ::= αt1 = αt2 | αt1 6= αt2 | αt1 < αt2 | αt1 ≤ αt2
Arithmetic term αt ::= k | v | k× αt | αt1 + αt2 | −αt

Fractional permission variable ε ∈ (0,1] v ∈ Variables
k ∈ Integer or fractional constants C ∈ Data names

Figure 3-3: Grammar for Core Specification Language

access an object of type C pointed to by v. v∗ captures a list of variables representing

the fields of the object v.

The atomic heap formula v 7−→ thrd〈Φ〉 (or thread node) captures our idea of

“threads as resource”: v points to a thread carrying certain resource Φ, which is

available after the thread is joined. By representing threads as heap resource, we

allow them to be flexibly split and transferred in a similar way to other types of

resource such as heap nodes. Note that thread nodes themselves are non-fractional,

but their resources can already be flexibly split. Furthermore, no resource leakage

from threads is possible since we explicitly track when each thread becomes dead.

Our approach allows for expressive reasoning about threads and their liveness. For

example, a formula t 7−→ thrd〈Φ〉
∨
dead(t) specifies the fact that the thread t could be

either alive or dead. On the other hand, a formula with t 7−→ thrd〈Φ〉∧dead(t) indicates

the fact that t is already dead and hence the resource Φ can be safely released.

3.2.3 Forward Verification Rules

Our verification system is built on top of entailment checking:

∆A ` ∆C ; ∆R

36

3.2. PROPOSED APPROACH

This entailment checks if antecedent ∆A is precise enough to imply consequent ∆C ,

and computes the residue ∆R for the next program state. For example:

x
0.67−→ cell(1) * y

0.67−→ cell(2) ` x 0.67−→ cell(1) ; y
0.67−→ cell(2)

Fig. 3-4 presents our forward verification rules. Here we only focus on three

key constructs affecting threads’ resource: procedure call, fork, and join. Forward

verification is formalized using Hoare’s triple for partial correctness: {Φpr}P{Φpo}.

Given a program P starting in a state satisfying the pre-condition Φpr, if the program

terminates, it will do so in a state satisfying the post-condition Φpo. For simplicity,

in this thesis, we describe the verification rules with one pair of pre/post condition.

Multiple pre/post specifications can be handled in the same way as [26]. We also omit

the treatment of pass-by-reference parameters whose side-effects can be captured by

applying permissions to program variables (see Appendix A for such a mechanism).

In order to perform a procedure call (CALL), the caller should be in a state ∆ that

can entail the pre-condition Φpr of the callee (i.e the procedure pn). spec(pn) denotes

the specification of the procedure pn. For conciseness, we omit the substitutions that

link actual and formal parameters of the procedure prior to the entailment. After the

spec(pn) := pn(w∗) requires Φpr ensures Φpo; { s }
∆ ` Φpr ; ∆1 ∆2

def
= ∆1 * Φpo

{∆} pn(w∗) {∆2}
CALL

spec(pn) := pn(w∗) requires Φpr ensures Φpo; { s }
∆ ` Φpr ; ∆1 ∆2

def
= ∆1 * v 7−→ thrd〈Φpo〉

{∆} v := fork(pn,w∗) {∆2}
FORK

∆2
def
= ∆ * Φpo ∧ dead(v)

{∆ * v 7−→ thrd〈Φpo〉} join(v) {∆2}
JOIN−1

{∆ ∧ dead(v)} join(v) {∆ ∧ dead(v)} JOIN−2

Figure 3-4: Selected Verification Rules

37

CHAPTER 3. THREADS AS RESOURCE

entailment, the caller subsumes the post-condition Φpo of the callee with the residue

∆1 to form a new state ∆2. Ownerships are transferred across procedure boundaries,

from the caller to the callee via the entailment of the pre-condition and from the

callee to the caller via the spatial conjunction on the post-condition.

Similarly, when performing a fork (FORK), the forker should be in a state ∆ that

can entail the pre-condition Φpr of the forkee (i.e the newly-created thread executing

the procedure pn). Afterward, a new thread node v 7−→ thrd〈Φpo〉 carrying the post-

condition Φpo of the forkee is created. The thread node is then combined with the

residue ∆1 to form a new state ∆2. The thread node is considered as resource in ∆2;

hence, it can be flexibly split and transferred in subsequent parts of the program.

The FORK rule is sound since other threads can only observe the post-state of the

forkee when joining with it. It also ensures modularity as the forker only knows the

pre/post-conditions of the forkee.

When joining a thread (JOIN−1), the joiner simply exchanges the thread node,

which carries a resource Φpo, with the resource itself. Each joinee could be joined

by multiple joiners. Our verification rules are based on the observation that when a

joiner joins with a joinee, the joiner is expecting to receive certain resource transferred

to it from the joinee. Hence, each joiner will receive the current resource carried by

the thread node. After a thread has been joined, it becomes dead (indicated by the

pure dead predicate). Joining a dead thread is equivalent to a no-op (JOIN−2).

Using our verification rules, a CALL can be modeled as a FORK immediately fol-

lowed by a JOIN. As threads are considered as resource, fork and join operations can

be in different lexical scopes and thread nodes can be transferred across procedure and

thread boundaries. Furthermore, if there is a recursive fork call in a procedure (also

called nested fork) such as the parallel Fibonacci program1, the verification proceeds

normally: a new thread node corresponding to the newly-created thread executing

the procedure is created. Therefore, in our system, a nested fork is handled in the

same way as a normal fork.

1Available on http://loris-7.ddns.comp.nus.edu.sg/˜project/threadhip/

38

3.2. PROPOSED APPROACH

Φ1 ⇐⇒ Φ
′
1 Φ2 ⇐⇒ Φ

′
2

Φ1

∨
Φ2 ⇐⇒ Φ

′
1

∨
Φ
′
2

R−DISJ

κ⇐⇒ κ
′

κ ∧ π ⇐⇒ κ
′ ∧ π

R−CONJ

κ1 ⇐⇒ κ
′
1 κ2 ⇐⇒ κ

′
2

κ1 * κ2 ⇐⇒ κ
′
1 * κ

′
2

R−SCONJ

κ1 * κ2 ⇐⇒ κ2 * κ1 R−COM

κ * emp⇐⇒ κ R−EMP

v
ε1+ε27−−−→ C(v∗)⇐⇒ v

ε17−→ C(v∗) * v
ε27−→ C(v∗) R−FRAC

v 7−→ thrd〈Φ1 * Φ2〉 ⇐⇒ v 7−→ thrd〈Φ1〉 * v 7−→ thrd〈Φ2〉 R−THRD1

v 7−→ thrd〈Φ〉 ∧ dead(v) =⇒ Φ R−THRD2

Figure 3-5: Sub-structural Rules

3.2.4 Manipulating “Threads as Resource”

The notion of “threads as resource” plays a critical role in our approach as it enables

threads to be treated in a similar way to other objects: a thread node can be created,

stored, split, and transferred (or shared) among multiple threads, allowing them to

join and to receive suitable resource after joining.

Our sub-structural rules for manipulating resource are presented in Fig. 3-5. The

rules rearrange resource in a separation logic formula into equivalent forms. We denote

resource equivalence as⇐⇒. By resource equivalence, we mean that the total resource

on the left and the right sides of⇐⇒ are the same. Our approach allows resource to be

split, combined, and transferred across procedures and threads, while it guarantees

that the total resource remains unchanged. The rules R−DISJ, R−CONJ, R−SCONJ,

R−COM, and R−EMP are straightforward. With fractional permissions ε, heap nodes

can be split and combined in a standard way (R−FRAC). The left-to-right direction

indicates permission splitting while the right-to-left indicates permission combining.

39

CHAPTER 3. THREADS AS RESOURCE

We also allow thread nodes to be split and combined (R−THRD1). Splitting a thread

node (left-to-right) will split the resource carried by the node while combining thread

nodes (right-to-left) will combine the resource of the constituent nodes. Finally, when

a thread is dead, its carried resource can be safely released (R−THRD2).

Soundness. Our “threads as resource” approach allows for sound resource transfer

among threads. Furthermore, the soundness of a permission-based resource logic must

ensure that the total number of permissions on each heap object never exceeds the

full permission (i.e. 1 in the fractional permission system [18]). At any time, at most

one thread can write to a heap object, and when a thread has a read permission to

a heap object, all other threads similarly hold read permissions as well. This ensures

that verified programs are data-race free. To guarantee soundness, we show that our

approach neither invents new resource nor destroys existing resource. Moreover, it

guarantees that the total resource of the program is not changed by our verification

rules. We now state the main soundness lemma, details are given in Appendix B.

Lemma 1 (Soundness of Threads as Resource). Given a program with a set of pro-

cedures P i together with their corresponding pre/post-conditions (Φi
pr/Φi

po), if our

verifier derives a proof for every procedure P i, i.e. {Φi
pr}P i{Φi

po} is valid, then the

program is race-free and partially correct.

3.2.5 Applications

Verifying the Multi-join Pattern

A program with multi-join pattern allows a thread (joinee) to be shared and joined

in multiple threads (joiners). During the program’s execution, the joiners wait for

the joinee to finish its execution. If joiners wait for an already-completed joinee, they

proceed immediately without waiting. By joining with the joinee, the joiners expect

to receive certain resource transferred from the joinee. The program in Fig. 3-1 is

an example of such a multi-join pattern. As we have shown in previous sections,

our approach handles the multi-join pattern naturally. Our approach allows the

40

3.2. PROPOSED APPROACH

data node { int val; node next; }1

data list { node head; }2

data count { int val; }3

self 7−→ ll(n)
def
= self=null ∧ n=04 ∨

∃q · self 7−→ node(, q) * q 7−→ ll(n−1)5

inv n≥0 ;67

void countList(list l)8

requires l 7−→ list(h) * h 7−→ ll(n) ∧ n≥0
ensures l 7−→ list(h) * h 7−→ ll(n) ∧ res=n;

9

10

{ ...}1112

list createList(int n)13

requires n≥0
ensures res 7−→ list(h) * h 7−→ ll(n);

14

15

{ ...}1617

list destroyList(list l)18

requires l 7−→ list(h) * h 7−→ ll(n)
ensures emp;

19

20

{ ...}2122

void mapper(list l, list o, list e)23

requires l 7−→ list(h) * h 7−→ ll(n) * o 7−→ list(null) * e 7−→ list(null)
ensures o 7−→ list(oh) * oh 7−→ ll(n1) * e 7−→ list(eh) * eh 7−→ ll(n2) ∧ n=n1+n2 ;

24

25

{ ...}2627

void reducer(thrd m, list l, count c)28

requires m 7−→ thrd〈l 7−→ list(h) * h 7−→ ll(n)∧n≥0 〉 * c 7−→count()
ensures l 7−→ list(h) * h 7−→ ll(n) * c 7−→ count(n) ∧ dead(m);

29

30

{ join(m); /*multi-joined by the two reducers*/31

c.val = countList(l); }3233

void main()34

requires emp ensures emp;35

{ int n = 10000; list l = createList(n);36

list ol = new list(null); list el = new list(null);37

count c1 = new count(0); count c2 = new count(0);38

/*fork mapper/reducer threads*/39

thrd m = fork(mapper,l,ol,el);40

thrd r1 = fork(reducer,m,ol,c1);41

thrd r2 = fork(reducer,m,el,c2);42

/*wait for them to finish*/43

join(r1); join(r2);44

assert(c1.val + c2.val = n); /*valid*/45

destroyList(ol); destroyList(el);46

destroy(c1); destroy(c2);47

}

Figure 3-6: Map/Reduce using Multi-join

41

CHAPTER 3. THREADS AS RESOURCE

ownership of the joinee to be split, shared, and joined by multiple joiners, where each

joiner obtains their corresponding part of the joinee’s resource upon join.

We now illustrate another example of multi-join concurrency pattern in Fig. 3-6,

based on the map/reduce paradigm. In this program, the main thread concurrently

forks three threads: a mapper m to produce two lists, and two reducers r1 and r2

to process a list each. Both the reducers each take m as a parameter and joins it

at an appropriate place to recover their respective lists from m. The main thread

subsequently joins up the two reducers before completing its execution. This multi-

join program is challenging to verify because (i) fork and join operations on the

mapper m are non-lexically scoped (i.e. m is forked in main but joined in threads

r1 and r2), and (2) part of the computed resources from m is made available to r1,

while another part is made available to r2. In this program, the ownerships of two

lists produced by the mapper must be flexibly transferred across thread boundaries,

via fork/join calls. The key points to handle this program are (1) considering the

executing thread of m as resource, and (2) allowing it to be split and transferred

between main, r1 and r2 via fork/join calls. Using our approach, the program can be

verified as both data-race-free and partially correct.

Inductive Predicates and Threads as Resource

Modeling threads as resource open opportunities for applying current advances in

separation logic, which were originally designed for heap objects, to threads. In this

section, we describe how “threads as resource” together with inductive predicates [48,

103] can be used to naturally capture a simple threadpool, where threads are stored

in data structures.

An example program is presented in Fig. 3-7. The program receives an input n,

and then invokes forkThreads to create n concurrent threads executing the procedure

thread. For simplicity, we assume each thread will have a read permission of the cell

x in the pre-condition and will return the read permission in the post-condition. The

program will wait for all threads to finish their execution by invoking joinThreads.

42

3.2. PROPOSED APPROACH

data cell { int val; }1

data item { thrd t; item next; }2

3

int input() requires emp ensures res>0 ;4

5

void thread(cell x,int M)6

requires x
1/M7−−→ cell() ∧M>0 ensures x

1/M7−−→ cell();7

8

item forkHelper(cell x, int n, int M)9

case { n = 0 → requires emp ensures emp ∧ res = null ;10

n > 0 → requires x
n/M7−−→ cell() ∧M≥n11

ensures res 7−→ pool(x , n,M); }12

{ if (n==0){ return null;} else {13

thrd t = fork(thread,x,M);14

item p = forkHelper(x,n-1,M);15

item i = new item(t,p);16

return i; }17

18

item forkThreads(cell x, int n)19

requires x 7−→ cell() ∧ n>020

ensures res 7−→ pool(x , n, n);21

{ return forkHelper(x,n,n); }22

23

void joinHelper(item tp, cell x, int n, int M)24

requires tp 7−→ pool(x , n,M) ∧M≥n ∧ n>=025

ensures x
n/M7−−→ cell() ∧ n>0

∨
emp ∧ n = 0 ;26

{ if (tp==null){ return;} else {27

joinHelper(tp.next,x,n-1,M);28

join(tp.t); destroy(tp); }29

30

void joinThreads(item tp, cell x, int n)31

requires tp 7−→ pool(x , n, n) ∧ n>0 ;32

ensures x 7−→ cell();33

{ return joinHelper(tp,x,n,n); }34

35

void main() requires emp ensures emp;36

{ cell x = new cell(1); int n = input();37

item tp = forkThreads(x,n);38

joinThreads(tp,x,n);39

destroy(x); }40

Figure 3-7: Verification of a Program with Threads using Inductive Predicates

43

CHAPTER 3. THREADS AS RESOURCE

At the end, as threads already finished, it is safe to destroy the cell x. In this program,

each item in the threadpool is a data structure of type item. Each item will store a

thread in its field t and a pointer next to the next item in the pool. The forkThreads

returns the first item in the pool, while the joinThreads receives the item and joins

with all threads in the pool. In the program’s specifications, “res” is used to denote

the returned result of a procedure and “ ” represents an unknown value.

The key idea to verify this program is to use an inductively defined predicate,

called pool to abstract the threadpool. As threads are modeled as resource, they can

be naturally captured inside the predicate in the same way as other heap resource,

as follows:

self 7−→ pool(x , n,M)
def
= self =null ∧ n=0 ∧M>0∨

∃t , p · self 7−→ item(t , p) * t 7−→ thrd〈x 1/M7−−→ cell()〉 * p 7−→ pool(x , n−1 ,M)

inv n≥0 ∧M>0 ;

The above predicate definition asserts that a pool can be empty (the base case

self =null) or consists of a head item (specified by self 7−→ item(t , p)), a thread node

(t 7−→ thrd〈x 1/M7−−→ cell()〉) and a tail data structure which is also a pool. The in-

variant n≥0 ∧ M>0 must hold for all instances of the predicate. Using the above

definition and case analysis [48], the program can be verified as partially correct and

data-race-free. Although we use linked lists here, our approach easily adapts to other

data structures, such as arrays.

Thread Liveness and Resource Leakage

Using our approach, threads’ liveness can be precisely tracked. For example, we

could modify the program in Fig. 3-7 to additionally keep track of already-completed

(or dead) threads. In the procedure joinHelper, after a thread is joined, instead of

destroying the corresponding item (line 29), we could capture all items and their dead

threads in a deadpool 2, inductively defined as follows:

2We refer interested readers to deadpool program in our project webpage for more details.

44

3.3. EXPERIMENTS

self 7−→ deadpool(n)
def
= self =null ∧ n=0∨

∃t , p · self 7−→ item(t , p) * p 7−→ deadpool(n−1) ∧ dead(t)

inv n≥0 ;

Our approach is also able to keep track of threads’ resource in a precise manner.

This is important for avoiding leakages of thread resource. As an example, consider

the use of a resource split, prior to a join operation.

// {t 7−→ thrd〈Φ1 * Φ2 〉}

// {t 7−→ thrd〈Φ1 〉 * t 7−→ thrd〈Φ2 〉}

join(t);

// {Φ1 * t 7−→ thrd〈Φ2 〉 ∧ dead(t)}

This split causes the join operation to release only resource Φ1, whilst Φ2 remains

trapped as resource inside a thread node. This results in a resource leakage if the

scenario is not properly considered. However, our verification system handles such

scenarios by releasing the trapped resource using the R−THRD2 rule in Fig. 3-5, thus

ours avoids the leakages of thread resource.

3.3 Experiments

We demonstrate the feasibility of our “threads as resource” approach by implementing

it into a tool for separation logic reasoning. We use our tool to verify partial correct-

ness and data-race freedom of concurrent programs with first-class threads against

user-given specifications. The verification is performed modularly for each method,

and loops are transformed to recursive methods. Proof obligations generated by our

tool will be discharged by external provers such as Redlog [37], Z3 [99], Omega [78],

and Mona [79].

The expressiveness of “threads as resource” is beyond that of other verification

systems for fork/join programs. However, due to the lack of commonly accepted

benchmarks in the literature, we cannot easily compare our tool with other systems.

45

CHAPTER 3. THREADS AS RESOURCE

Table 3.1: Experimental Results. The second column indicates types of a program,
i.e. whether it uses fork/join (F), locks (L), non-lexical fork/join (N), multi-join (M),
and inductive predicates (P); verification times are average of the 10 runs (in seconds);

Program Types Verification Time (s)
fibonacci [85] F 0.08
parallel-mergesort [85] F 1.24
oracle [60] F/L 1.65
owicki-gries [65] F/L 1.24
multi-join1 F/N/M 0.08
multi-join2 F/N/M 0.22
mapreduce F/N/M 0.52
threadpool F/N/P 0.20
deadpool F/N/P 0.26
multicast [51] F/L/N/P 1.06

In order to give readers an idea of the applicability of our approach, we did an

experiment on a benchmark consisting of small but intricate programs of various

types inspired by the literature. 3 Besides the theoretical contributions, the empirical

questions we investigate are (1) whether “threads as resource” is capable of verifying

more challenging programs, and (2) how well our tool performs. All experiments were

conducted on a machine with Ubuntu 14.04, 3.20GHz Intel Core i7-960 processor, and

12GB memory.

The experimental results are presented in Table 3.1. The programs are classified

based on whether they use fork/join (F), locks (L), non-lexical fork/join (N), multi-

join (M), and inductive predicates (P). Table 3.1 shows that our tool is able to verify

programs of various types. For these programs, the verification time is reasonable

(less than three seconds). We believe that existing verifiers for verifying concurrent

programs can easily integrate our “threads as resource” approach into their systems,

and benefit from its greater expressiveness and reasonable verification performance.

3Our tool and all experimental programs are available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/threadhip/.

46

3.4. FLOW-AWARE RESOURCE PREDICATES

3.4 Flow-Aware Resource Predicates

The notion of “threads as resource” has recently inspired us to propose “flow-aware

resource predicate”, a variant of Concurrent Abstract Predicates (CAP) [33, 36, 121].

Although our proposal for flow-aware resource predicate was originally motivated

to handle first-class threads, the proposal is general and can handle other popular

concurrency mechanisms such as countDownLatch and copyless multicast communica-

tion. In the scope of this thesis, we discuss how flow-aware predicates can be used to

succinctly model first-class threads. More details on how they are applied to other

concurrency mechanisms can be found in our companion technical report [84].

Recall that a newly-spawn thread’s pre-condition is consumed at its fork point

while its post-condition is carried by thread node(s) and is released at join point(s).

In other words, the pre-condition flows into the newly-spawn thread’s abstraction

at its fork point, and the post-condition flows out of joinee’s abstraction at its join

point. Our “flow-aware resource predicate” is proposed to explicitly track resources

that flow into and out of its shared abstraction. Resources of such a predicate can be

more flexibly split and transferred across procedure and thread boundaries.

In contrast to fork and join operations discussed in previous sections which adopt

the C-style fork/join concurrency, in this section, we adopt the Java-style concurrency

by additionally introducing a create thread operation to create (but not yet execute)

a thread. The newly-created thread will then be forked using fork. The new approach

is more general since the old fork operation can be encoded using the create thread

operation immediately followed by the new fork operation.

In our framework for flow-aware resource predicate, each thread is first created

from a method f(v∗) that requires precondition P and ensures postcondition Q, as

specified below:

thrd create thread(f) with P, Q

requires emp

ensures Thrd[w∗](res,	P,⊕Q, v∗);

47

CHAPTER 3. THREADS AS RESOURCE

For simplicity, we require pre/post to be explicitly declared, though this could be

inferred from the specification of f itself. This method explicitly builds a resource

predicate instance Thrd[w∗](t,	P,⊕Q, v∗) where w∗ denotes logically bound variables

that link precondition P with postcondition Q. 4 We use the flow annotation 	 to

denote an inflow (from the current thread) into the resource predicate, while annota-

tion ⊕ will denote an outflow from the resource predicate (into the current thread).

Resource predicates with both inflow and outflow resources are effectively predicate

transformers, used to model methods. Once such a thread has been created, the fork

operation can be used to start the thread, as denoted by the specification:

void fork(thrd t,v∗)

requires Thrd[w∗](t,	P,⊕Q, v∗) * P

ensures Thrd2(t,⊕Q);

which consumes the thread’s precondition, and yields another resource predicate

Thrd2(t,⊕Q). This new predicate denotes a thread under execution, whose post-

condition Q is only made available after its thread has finished execution (or joined).

The specification of the join operation is itself captured below, which would mark its

thread as having completed execution, through a dead(t) predicate.

void join(thrd t)

requires Thrd2(t,⊕Q)

ensures Q * dead(t);

requires dead(t)

ensures dead(t);

If the thread is already dead at the point of joining, its state remains unchanged,

as captured by the second pair of pre/post specification. Prior approaches, e.g. [36],

that use concurrent abstract predicate for reasoning have only considered the property

of data-race freedom, but have not considered resource-preservation and deadlock-

freedom. We present our solution to these problems, initially in the context of mod-

elling for first-class threads.
4In this section, we slightly abuse the notation t 7→ pred〈...〉 by instead using the predicate

instance pred(t,...) where t is the root pointer of the predicate pred.

48

3.4. FLOW-AWARE RESOURCE PREDICATES

Ensuring Resource-Preservation

We intend to track all concurrency resources accurately and flexibly. We shall do it

in three ways with classical separation logic.

Firstly, the flow annotations are important for ensuring the soundness of our

resource predicates, since it can help ensure that all resources are being tracked

precisely, by the resource-preserving concurrency primitives. With this property,

we can easily show that every concurrency primitive always tracks its resources in a

precise manner. In the case of threads, both the fork and join primitives are resource-

neutral since the number of incoming and outgoing resources are perfectly balanced.

This classification is not possible if flow-annotations are not suitably marked for our

resource predicates. However, the create thread primitive has a net resource of

{	P,⊕Q} since the thread’s execution acts as a predicate transformer. Note that

the concept of resource preservation is not contradicted by the presence of predicate

transformer. Resource preservation requires us to account for every resource created,

destroyed and transferred through communication channels (or global memory). We

can do so in our specification logic by disallowing ambiguous disjunction with different

net resources. Two formulas (from a disjunction) are ambiguous if their conjunction

is satisfiable. (This concept is related to the notion of precise predicates.)

Secondly, we permit that incoming and outgoing resources to be flexibly split,

where possible. This will allow us to support more complex concurrency patterns.

For example, to support multi-join pattern where a thread may be joined at multiple

locations; we shall achieve it using a split lemma that is resource-preserving:

Thrd2(t,⊕(Q1 * Q2)) −→ Thrd2(t,⊕Q1) * Thrd2(t,⊕Q2)

Lemmas for splitting resources have been proposed before for concurrency rea-

soning. For example, [36] uses P --* (Q * R) to denote the ability for resource P to

be split into two resources Q and R. We clarify the importance of flow-aware resource

splitting, and provide support to enable splitting in scenarios that permit aggregated

commands. A list of commands e1, . . . , en can be aggregated into a single command

e if the former e1, . . . , en can be replaced by the latter e, without any change in its

49

CHAPTER 3. THREADS AS RESOURCE

observable meaning. For example, two joins on the same thread in a concurrent pro-

gram can always be replaced by a single join at an earlier forking point. Due to this

aggregation property, we allow split to occur for Thrd2(t,⊕(Q1 * Q2)) whose resources

are needed for pre-conditions of multi-join operations.

Lastly, with the help of classical separation logic, we shall further classify our

resources into the following categories:

Definition 1 (Resource-Loaded). A resource-loaded predicate is a predicate which

definitely captures some resource. Each of its occurrences must be tracked precisely to

avoid resource leakage. Two examples of resource-loaded predicates are Thrd2(t,⊕Q)

and Thrd[w∗](t,	P,⊕Q, v∗).

Definition 2 (Resource-Less). A resource-less predicate is a predicate which no longer

captures any resources. An example of this predicate is dead(t) which denotes a thread

that has expired (finished execution). Such a predicate is also a pure predicate.

This classification can help ensure that each resource-loaded predicate is never lost

by our classical reasoning system. In contrast, resource-less predicates, like dead(t),

can be lost as they are classified as pure predicates, with the following idempotent

lemma:

dead(t) ←→ dead(t) * dead(t)

For each dead thread, we allow its resource-loaded predicate with only outgoing

resource to be automatically released, thus:

Thrd2(t,⊕Q) * dead(t) −→ dead(t) * Q

This is to help with resource-preservation when a resource is known to have termi-

nated. We ensure that each lemma used is resource-preserving, and the specification

of each method used be resource-precise with no ambiguous disjunction.

Ensuring Deadlock Freedom

We now consider how (intra-resource) deadlock errors (from a single resource) are

detected in our approach through the use of synchronization lemmas. In particular,

50

3.4. FLOW-AWARE RESOURCE PREDICATES

each resource-loaded predicate with an incoming resource cannot co-exist with its

resource-less predicate state, as highlighted below, for each thread.

Thrd[w∗](t,	P,⊕Q, v∗) * dead(t) −→ ERROR

Note that ERROR is distinct from false, since each of its occurrences would be

flagged by our verification, while false simply denotes unreachability. Furthermore,

we refer to these as synchronization lemmas, since these errors are meant to capture

single-resource deadlock scenarios. In this example, it is a deadlock caused by a

join operation being invoked before the fork operation. It is wrong to terminate a

thread before it has even started. Nevertheless, this synchronization scenario never

arises in our current modelling for threads, since the resource predicates are being

created in the following orders (based on usage protocol specified via its pre/post):

Thrd[w∗](t,	P,⊕Q, v∗) → Thrd2(t,⊕Q) → dead(t), where the third dead(t) could

not have co-existed with the first uninitiated Thrd[w∗](t,	P,⊕Q, v∗) for any thread t.

Any such deadlock errors would have been detected as a pre-condition failure for join

which requires a fork to occur before hand.

Inter-resource deadlocks may also have occurred, as illustrated by our next exam-

ple on two threads:

t1 = create thread(f1) with P1, Q1;

t2 = create thread(f2) with P2, Q2;

// { Thrd(t1,	P1,⊕Q1) * Thrd(t2,	P2,⊕Q2) }
// { Thrd(t2,	P2,⊕Q2) } // { Thrd(t1,	P1,⊕Q1) }

join(t2); /*pre-cond fails*/ join(t1); /*pre-cond fails*/

fork(t1); fork(t2);

 ;

Here, waiting could only have occurred for join commands. Inter-thread dead-

lock would have occurred in this scenario, since each of the two join commands is

waiting for the other thread to initiate the fork operation. However, due to strict

order of the three resource predicates, such a scenario would have been detected as

a pre-condition failure for the join commands. Hence, synchronization lemma is not

51

CHAPTER 3. THREADS AS RESOURCE

required for preventing deadlocks amongst multiple threads due to its usage protocol.

Once verified, we guarantee our thread resources to be deadlock-free.

In this section, we have shown how flow-aware resource predicates can be used to

reason about first-class threads. Our flow-aware resource predicate is general and can

handle other popular concurrency mechanisms such as countDownLatch and copyless

multicast communication. More details can be found in our technical report [84].

3.5 Discussion

This section discusses related works on reasoning about shared-memory concurrent

programs. Our approach currently supports only partial correctness. Proving (non-

)termination is an orthogonal issue and could be separately supported.

Traditional works on concurrency verification such as Owicki-Gries [111] and Re-

ly/Guarantee reasoning [69] often focused on simple parallel composition, rather than

fork/join. Fork/join concurrency is more general than the parallel composition for

two main reasons. First, fork/join supports dynamic thread creation and termina-

tion. Second, while threads in a parallel composition are lexically scoped, threads in

fork/join programs can be non-lexically scoped. Therefore, fork/join programs are

more challenging for verification. Even recent approaches such as CSL [105], RGSep

[126], LRG [38], and Views [31], omit fork/join concurrency from their languages.

Our “threads as resource” is complementary to the above approaches and could be

integrated into them.

There also exist approaches that can handle fork/join operations. Both Hobor [60]

and Feng and Shao [40] support fork and omit join with the claim that thread join

can be implemented using synchronization. However, without join, the former allows

threads to leak resource upon termination while the latter requires global specifica-

tions of inter-thread interference. Approaches that can handle both fork and join

often use tokens [51, 65, 91] to represent the post-states of forked threads. However,

they offer limited support for first-class threads: the tokens are not allowed to be

52

3.5. DISCUSSION

split and shared among concurrent threads. As such, they are not expressive enough

to verify programs with more intricate fork/join behaviors such as the multi-join pat-

tern where threads are shared and joined in multiple threads. Existing works could

encode the multi-join pattern by using synchronization primitives such as channels

or locks. However, the encoding requires additional support for the primitives and

could complicate reasoning (i.e. we have to reason about channels or locks instead of

just focusing on threads). Our approach is more elegant and natural. Inspired by the

key notation of resource in separation logic [16, 105], we propose to model threads as

resource, thus allow ownerships of threads to be flexibly split and distributed among

multiple joiners. This enables verification of the multi-join pattern. In addition, un-

like ours, none of related works that we are aware of support explicit reasoning about

thread liveness. To the best of our knowledge, only Haack et al. [53, 54] can reason

about some multi-join scenarios. In their approach, a thread token can be associated

with a fraction and this allows multiple joiners to join with the same joinee in order

to read-share the joinee’s resource. However, this simple multiplicative treatment of

thread tokens is not expressive enough as it is unable to verify programs that require

the joiners to write-share the resource of the joinee (e.g. the program in Fig 3-1).

In order to cater to a more flexible treatment of joinees and their resource, modeling

threads as resource is essential.

Our flow-aware resource predicates are variants of Concurrent Abstract Predicates

(CAP) [33, 36, 121]. The basic idea behind CAP [33] was to provide an abstraction

of possible interferences from concurrently running threads, by partitioning the state

into regions with protocols governing how the state in each region is allowed to evolve.

Dodds et al. [36] introduced a higher-order variant of CAP to give a generic specifi-

cation for a library for deterministic parallelism, making explicit use of nested region

assertions and higher-order protocols. Despite being powerful, their specifications

may render the reasoning to be unsound in certain corner cases. More recently,

Svendsen et al. [121] presented a new logic, Higher Order Concurrent Abstract Pred-

icates (HOCAP), allowing clients to refine the generic specifications of concurrent

53

CHAPTER 3. THREADS AS RESOURCE

data structures. HOCAP was developed based on Jacobs and Piessens’ idea of pa-

rameterizing specifications of concurrent methods with ghost code, to be executed in

synchrnonization points [65]. Our flow-aware resource predicates explicitly track re-

sources that flow into and out of their abstractions and allow resources to be flexibly

split and transferred across procedure and thread boundaries. Our proposed specifi-

cation and verification mechanism is rather general as it not only supports first-class

threads, but is also capable of handling other popular concurrency patterns such as

countDownLatch and copyless message passing [91, 127].

3.6 Summary

We proposed to model first-class threads as resource to enable expressive treatment

of threads’ ownerships. Our approach allows resources of threads to be flexibly split,

combined, and transferred across procedure boundaries. This enables verification

of multi-join pattern, where multiple joiners can share and join the same joinee in

order to manipulate (read or write) the resource of the joinee after join. In addition,

we demonstrated how threads as resource is combined with inductive predicates to

capture the commonly-used threadpool idiom. Using a special dead predicate, we

showed that thread liveness can be precisely tracked. We have implemented our

approach in a tool, and experimental results showed reasonable verification time. We

also discussed our newly-proposed “flow-aware resource predicate”, which was inspired

by “threads as resource”, for verifying various concurrency mechanisms, including and

beyond first-class threads.

This chapter provides an infrastructure for addressing other open issues in rea-

soning about programs with first-class threads via fork/join. Specifically, in the next

chapter, we present an expressive verification framework for ensuring deadlock free-

dom of shared-memory programs with fork/join concurrency and (mutex) locks.

54

Chapter 4

Verification of Deadlock Freedom

Overview. Understanding and reasoning about the correctness of concurrent pro-

grams is rather complicated due to non-deterministic interleavings of concurrent

threads [88]. These interleavings may result in deadlocks [27], i.e. states in which each

thread in a set blocks waiting for another thread in the set to release a lock or com-

plete its execution. Deadlocks are common defects in software systems. Specifically,

in Sun’s bug report database at http://bugs.sun.com/, there are approximately

6,500 bug reports out of 198,000 (∼ 3%) containing the keyword “deadlock” [102]. In

this chapter, we propose an expressive framework for reasoning about the correctness

of concurrent programs with a focus on eliminating deadlocks.

Existing verification systems [51, 61, 90, 91] often use abstract predicates to repre-

sent states of locks. For example, Gotsman et al. [51] use abstract predicate Locked(x)

to specify that the lock x is owned by the current thread. Hobor et al. [61] use the

predicate hold x R and Chalice [90, 91] uses holds(x) for the same purpose. Intu-

itively, a lock is owned by a thread if it is in the set of locks already acquired by the

thread, i.e. the thread’s lockset. Interestingly, although using predicates, previous

works [51, 61, 90, 91] formulate their soundness proof using the notion of lockset.

Additionally, Haack et al. [52] show that lockset (or rather lockbag) is necessary to

reason about Java recursive locks. In retrospect, one can say that lockset has proven

to be an important abstraction for verifying concurrent programs that manipulate

55

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

locks.1 In this chapter, we advocate the use of precise locksets for explicitly reason-

ing about the presence or absence of locks, empowering a more expressive framework

for verifying deadlock freedom even in the presence of interactions between thread

operations (e.g. fork/join) and lock operations (e.g. acquire/release). Due to the

dynamic nature of threads, sound reasoning of the interactions between thread and

lock operations is non-trivial.

int running;1

pthread t thread;2

mutex t mutex;3

4

void* timer(){5

int state;6

do{7

mutex lock(&mutex);8

state=running;9

mutex unlock(&mutex);10

.../*timing*/11

}while(state);12

}13

void main(){14

running = 0;/*init timer*/15

mutex lock(&mutex);16

running = 1;/*start timer*/17

pthread create(&thread,&timer);18

mutex unlock(&mutex);19

/*begin timed computation*/20

...21

/*end computation*/22

mutex lock(&mutex);23

running = 0;/*stop timer*/24

mutex unlock(&mutex);25

pthread join(thread);26

}27

Figure 4-1: A Program with Interactions between Thread and Lock Operations

Fig. 4-1 outlines a simplified2 C implementation of a timer used in NetBSD op-

erating system’s report database [1]. Though rather intricate due to the interactions

between lock and thread operations, the program is deadlock-free because the two

threads never wait for each other. However, if the programmer does not release the

lock before joining (e.g. line 25 is missing or line 25 and 26 are swapped), the inter-

actions will cause a deadlock when the main thread blocks waiting to join the child

thread and the child thread also blocks waiting to acquire the mutex being held by the

1See Section 4.1.1 for detailed comparison between abstract predicates and locksets.
2In the original implementation, there is a conditional variable associated with the mutex to more

efficiently signal the timer thread to start and stop timing. As verifying conditional variables is an
orthogonal issue, we have omitted them for simplicity.

56

main thread. For larger programs with many (possibly non-deterministic) execution

branches, these interactions are not easy to follow [88]. With concurrent programs

becoming mainstream in this multi-core era, we will increasingly require a more com-

prehensive solution for constructing and verifying these intricate interactions.

In this chapter, we propose an expressive verification framework to guarantee

deadlock freedom in the presence of such interactions. Our framework has the follow-

ing innovations:

• Delayed lockset checking to help reason about the interactions between thread

and lock operations. Unlike the traditional verification approaches [51, 52, 61,

65, 90] that check pre-conditions of procedures entirely at fork points, this

technique allows lockset constraints in the pre-conditions to be delayed and

checked at join points instead. This prevents deadlocks due to the interactions

and also permits more programs to be declared as deadlock-free.

• Precise lockset reasoning, as opposed to ones based on abstract predicates or

approximated locksets, to ensure that deadlock-free pre-conditions on lock ac-

quisition and release can be guaranteed. Any uncertainty from static program

analysis is simply captured through the use of explicit disjunction.

• Combining lockset with the concept of locklevels, which has been used popularly

in the literature [17, 90, 120], to form an expressive framework for ensuring

deadlock freedom, covering various scenarios such as double lock acquisition,

interactions between thread and lock operations, and unordered locking.

• A prototype specification and verification system, called ParaHIP, to show

that the proposed framework has been successfully integrated with separation

logic [115] for reasoning about concurrent programs.

The rest of this chapter is organized as follows. Section 4.1 gives concrete examples

that motivate our delayed lockset checking technique and show how precise lockset

reasoning can be systematically supported. Section 4.2 presents our framework in

57

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

details. Section 4.3 discusses the implementation and experimental results of our

prototype tool. Section 4.4 summarizes related work. Section 4.5 concludes our work

in this chapter.

4.1 Motivation and Proposed Approach

4.1.1 Lockset as an Abstraction

While most previous works [51, 61, 90] use abstract predicates for reasoning about

concurrent programs manipulating locks, we advocate the use of explicit locksets.

Though monadic predicates are logically equivalent to sets, they are not always re-

alised as such for several reasons. Firstly, while Locked(x) only captures the concrete

presence of the lock x in the current thread’s lockset, the notion of lockset can cap-

ture a symbolic set of locks. Secondly, the application of frame rule [115] makes it

more difficult to reason about the absence of a given predicate. Thus it is harder

to reason about absence of locks using predicates, e.g. to avoid deadlocks due to

double acquisition. Lastly, we often avoid the use of negation for predicates, such

as ¬Locked(x), since such operator may be difficult to implement. In contrast, with

lockset, if a callee is going to acquire a non-recursive lock x, it is simpler to check that

a given lock is not in the current thread’s lockset (denoted by LS), by using x/∈LS in

the pre-condition of the callee. Nevertheless, such check can be considered as sound

only if the given lockset is precise and not an approximation, as explained next.

4.1.2 Precise Lockset Reasoning

In our verification framework, LS is a thread-local ghost variable3 capturing the set of

locks held by a thread. Lockset is a verification concept rather than a programming

language concept. Using lockset, verification rules for acquire and release operations

on non-recursive (mutex) locks4 can be defined as follows:

3Ghost variables are variables used for verification purpose. They do not affect program correct-
ness.

4Cannot be acquired more than once; also called non-reentrant locks

58

4.1. MOTIVATION AND PROPOSED APPROACH

acquire(lock x)

requires x /∈LS

ensures LS′=LS∪{x};

release(lock x)

requires x∈LS

ensures LS′=LS−{x};

Note that we use primed notation to denote updates to variables. The primed

version LS′ of the variable LS denotes its latest value; the unprimed version LS

denotes its old value at the start of the respective procedure call. Using lockset, it is

straightforward to prevent the deadlock due to acquiring a non-recursive lock twice

in the thread code of Fig. 4-2. In this sequential setting, our verification reports an

error because the pre-condition of the callee func (l1 /∈LS) cannot be satisfied by the

current lockset of the caller (LS′={l1}). Additionally, the release rule excludes the

possibility of releasing a lock more than once.

void thread()

requires LS={} ensures LS′={};
{
lock l1 = new lock();

//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
func(l1); /*Error*/
release(l1);

}

void func(lock l1)

requires l1 /∈LS ensures LS′=LS;
{

//{ l1 /∈LS ∧ LS′=LS }
acquire(l1);

//{ l1 /∈LS ∧ LS′=LS∪{l1} }
release(l1);

//{ l1 /∈LS ∧ LS′=LS∪{l1}−{l1} }
//{ l1 /∈LS ∧ LS′=LS }
}

Figure 4-2: Deadlock due to Double Acquisition of a Non-recursive Lock

In each given program, there can be many locking scenarios across different execu-

tion branches. Each branch could potentially have a different lockset. The following

code fragment shows a simple example where locksets at two branches are LS′={x}

and LS′={}, which are clearly different:

//{ LS′={} }

if (b) { acquire(x);//{ LS′={x} } } else { //{ LS′={} } }

59

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

For static analysis, we often perform some approximation. For example, one may

over-approximate on the lockset, by using LS′={x} as the post-state of the above

code fragment. However, this approach would fail to detect the definite presence of

the lock x for safe release. Another approach is to under-approximate on the lockset

by using LS′={}, but this approach fails to detect the definite absence of the lock for

safe acquisition. Thus, one plausible solution is to combine the two approximations

by capturing both may-hold and must-hold locksets, simultaneously. However, this

approach would be more complex due to the use of two locksets. In this chapter,

we propose a simpler solution that would mandate the use of precise locksets in our

verification/analysis. For approximation, we propose to use disjunctive formulae to

capture uncertainty and also allow program states, other than lockset, to be over-

approximated. In the above example, we can ensure precise lockset by using either

b∧LS′={x} ∨ ¬b∧LS′={} or even LS′={x} ∨ LS′={} as its post-state, but never

LS′={x}, since we always ensure that each lockset is precisely captured and never

approximated. This principle allows us to support precise reasoning on locksets for

verifying deadlock freedom.

4.1.3 Delayed Lockset Checking

Fig. 4-3 shows two programs that are challenging for existing verification systems,

because they express rich interactions between fork/join concurrency and lock oper-

ations. The traditional way of verification [51, 52, 61, 65] cannot sufficiently handle

these scenarios because it performs the check for the pre-condition of the forkee only

at the fork point. This could incorrectly verify the program in Fig. 4-3(a) as deadlock-

free and reject the deadlock-free program in Fig. 4-3(b). The well-known technique

[17, 90, 120] which requires threads to acquire multiple locks in a specific order to

avoid deadlocks could not directly handle complications due to fork/join concurrency.

In this work, we propose delayed lockset checking technique that is capable of pre-

venting deadlock scenarios (such as that presented in Fig. 4-3(a)) and proving more

programs (such as that described in Fig. 4-3(b)) to be deadlock-free.

60

4.1. MOTIVATION AND PROPOSED APPROACH

void func(lock l1)

requires l1 /∈LS ensures LS′=LS;
{ acquire(l1); release(l1); }

void main()

requires LS={} ensures LS′={};
{
lock l1 = new lock();

//{ LS′={} }
int id = fork(func,l1);/*DELAY*/
//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
/*Potentially deadlocked when join*/
join(id); /*CHECK, error*/
release(l1);

}

(a) Potentially deadlocked

void func(lock l1)

requires l1 /∈LS ensures LS′=LS;
{ acquire(l1); release(l1); }

void main()

requires LS={} ensures LS′={};
{lock l1 = new lock();

//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
int id = fork(func,l1);/*DELAY*/
//{ LS′={l1} }
release(l1);

//{ LS′={} }
join(id);/*CHECK, ok*/
//{ LS′={} }
}

(b) Deadlock-free

Figure 4-3: Examples of Programs Exposing Interactions between Thread and Lock
Operations

This technique is based on the following observation. At a fork point, a verifier

is unaware of future operations performed by a main (or parent) thread; the only

information it knows of is future locking operations executed by a child thread thanks

to the use of lockset. For example, a constraint l1 /∈LS in the pre-condition of a child

thread implies that the child thread is going to acquire the lock l1. Therefore, in

order to ensure that the child thread will finally be able to acquire the lock (and thus

avoid deadlocks), the main thread should not be holding the lock while waiting for

the child thread at its join point. In other words, when forking a child thread, lockset

constraints in its pre-condition are not checked at the fork point but are delayed to be

checked at its join point instead.

The deadlock in Fig. 4-3(a) can be prevented by deferring the lockset constraint

l1 /∈LS of the child thread to its join point. At the join point, the constraint is

checked and the verification reports an error because the constraint is unsatisfiable

61

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

(LS′={l1} at the join point). Similarly, the program in Fig. 4-3(b) is ensured as being

deadlock free because the lockset constraint l1 /∈LS is delayed from the fork point

and is satisfiable at the join point (LS′={}). Note that, although main and child

threads have different locksets, a constraint l1 /∈LS in pre-conditions of a child thread

indicates its intention to acquire the lock l1, hence this constraint can be soundly

checked against the lockset of the main thread to prevent deadlocks. Besides, it is

unsound to check lockset constraints at any satisfiable points in the middle of the

fork point and the join point. For example, in a scenario similar to Fig. 4-3(b), after

forking a child thread, the main thread releases the lock. At this point, the lockset

constraint is satisfiable. However, the main thread could later acquire the lock again

and wait for the child thread to join. This scenario still suffers a potential deadlock.

As a result, it is only sound to check delayed lockset constraints at just the join points.

In summary, the main benefit of our delayed lockset checking technique is to

facilitate more expressive deadlock verification in the presence of interactions between

parent/child threads and lock operations.

4.1.4 Combining Lockset and Locklevel

Another type of deadlocks occurs when threads attempt to acquire the same set of

locks in different orders (unordered locking). An example of such a scenario is shown

in Fig. 4-4. Locklevel is well-known for preventing deadlocks due to unordered

locking [17, 90, 120]. For example, in Chalice, each lock in a program is associated

with a ghost field mu representing the lock’s level, e.g. l1 .mu denotes the locklevel

of lock l1. With it, deadlocks can be prevented indirectly by ensuring that locks are

acquired in a strictly increasing order of locklevels. To check that locks are acquired

in the specified order, a ghost variable waitlevel is used to capture the maximum

level currently acquired by a thread, i.e. waitlevel is the maximum level among

locklevels of all locks in current thread’s lockset LS. A thread can acquire a lock only

if its current waitlevel waitlevel′ is lower than the lock’s level. Using locklevels, the

deadlock in Fig. 4-4 can be prevented. The verification system reports an error when

62

4.1. MOTIVATION AND PROPOSED APPROACH

the child thread attempts to acquire lock l1 whose locklevel is lower than the current

waitlevel of the child thread.

In the pre-condition of the func procedure (Fig. 4-4), we use the specification

[ω#ψ] to capture the fact that the waitlevel constraint ω and the lockset constraint ψ

are mutually exclusive, i.e. the former is checked in accordance with sequential settings

(at the points of normal procedure calls or fork operations), while the latter is a check

needed to be delayed in concurrent settings (at the points of fork operations) and

will be check at join points instead. This provides a single mechanism for procedure

declarations so that each procedure could be either forked as a child thread or invoked

as a normal procedure call.

In summary, precise lockset, delayed lockset checking, and locklevel are comple-

mentary and combining them is essential to form an expressive framework for verifying

void main()

requires LS={} ensures . . . ;
{lock l1,l2 = new lock();

assume(l1 .mu<l2 .mu);

//

{
LS′={}∧l1 .mu<l2 .mu
∧waitlevel′=0

}
thrd id = fork(func,l1,l2);

//

{
LS′={}∧l1 .mu<l2 .mu
∧waitlevel′=0

}
acquire(l1);

//

{
LS′={l1}∧l1 .mu<l2 .mu
∧waitlevel′=l1 .mu

}
acquire(l2);

//

{
LS′={l1 , l2}∧l1 .mu<l2 .mu
∧waitlevel′=l2 .mu

}
...}

void func(lock l1,lock l2)

requires [waitlevel<l1 .mu # l1 /∈LS∧
l2 /∈LS] ∧ l1 .mu<l2 .mu

ensures . . . ;
{

//

{
waitlevel′<l1 .mu ∧ l1 .mu<l2 .mu
∧ LS′=LS }

}
acquire(l2);

//

{
waitlevel′=l2 .mu ∧ l1 .mu<l2 .mu
∧ LS′=LS ∪ {l2} }

}
acquire(l1); /*Error*/
. . .
}

Figure 4-4: A Potential Deadlock due to Unordered Locking

63

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

various deadlock scenarios such as double acquisition, interactions between fork/join

and acquire/release, and unordered locking.

4.2 Formalism

In this section, we present a specification logic that can be used to verify deadlock

freedom. We show how our approach, based on precise lockset abstraction, can be

integrated with the locklevel idea from Chalice [90]. We also present a specification

formalism to unify constraints on lockset, locklevel and waitlevel into a single speci-

fication and to allow each procedure to be used internally or as the entry point of a

newly-forked thread.

4.2.1 Programming Language

t ::= . . . | lock Type

s ::=
lock v = new lock(v)
| acquire(v) | release(v)
| . . .

Statement

Figure 4-5: Programming Constructs for (Mutex) Locks

We enhance the programming language described in previous chapter (Section 3.2.1)

with constructs for non-recursive (mutex) locks. lock v = new lock(v) creates a new

lock with a ghost argument representing its locklevel. acquire(v) and release(v)

attempt to acquire and respectively release the lock v.

Ensuring Ownership Semantics. Locks in programming languages such as Pthreads

provide the notion of ownership (see §10.1.2 of [21]) whereby each lock has to be re-

leased only by the thread which acquired (or owned) it. Conforming to this semantics

is important to avoid undefined behaviors which could potentially cause unexpected

errors [21]. To ensure this semantics, when verifying a forked procedure, our ver-

ifier additionally checks if locksets in pre/post-conditions of the forked procedure

64

4.2. FORMALISM

are empty. An empty lockset in pre-condition of a forked procedure ensures that a

child thread does not inherit any locks from its main thread when being forked and

hence prevents the child thread from releasing a lock acquired by the main thread.

An empty lockset in post-condition of a forked procedure prevents deadlocks in case

other threads try to acquire or release a lock held by a terminated child thread. Note

that this requirement on empty locksets is not applicable to normal procedure calls.

4.2.2 Integrating Specification with Locklevels

In our specification logic, a lockset variable LS captures a set of locks held by the

current thread. Like Chalice [90], each lock in a program has an immutable ghost

field mu representing the lock’s level. Locklevels are implemented as natural numbers

and operator op ∈ {=, <,>} is used over locklevels. The lowest (bottom) locklevel is

denoted as 0. A waitlevel variable can be derived from the lockset and locklevels.

As a reminder, waitlevel is the maximum level among locklevels of all locks in current

thread’s lockset LS. Levels of locks in a program are strictly positive while a bottom

locklevel denotes the waitlevel in case of empty lockset. Using lockset as an abstrac-

tion, constraints on waitlevel can be expressed in terms of constraints on lockset

and locklevels as follows:

maxLL(S)
def
= if S = {} then 0 else max{v.mu | v ∈ S}

waitlevel op x
def
= maxLL(LS) op x

waitlevel′ op x
def
= maxLL(LS′) op x

where op ∈ {=, <,>}, and maxLL(S) returns the maximum locklevel of the locks in the

set S and returns the bottom locklevel (i.e. 0) if S is empty. In our implementation,

the constraints on waitlevel are translated into the following boolean expressions,

which are discharged by Mona prover [79].

waitlevel<x
def
= (LS={} ⇒ 0<x) ∧ (LS 6={} ⇒ ∀v∈LS · v.mu<x)

waitlevel>x
def
= (LS={} ⇒ 0>x) ∧ (LS 6={} ⇒ ∃v∈LS · v.mu>x)

waitlevel=x
def
= (LS={} ⇒ 0=x)∧

(LS 6={} ⇒ ∀v∈LS · v.mu≤x ∧ ∃u∈LS · u.mu=x)

65

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

The following procedure illustrates the use of the above constraints on waitlevel:

void acquire both(lock l1,lock l2)

requires [waitlevel<l1 .mu # l1 /∈LS∧l2 /∈LS] ∧ l1 .mu<l2 .mu

ensures waitlevel′=l2 .mu ∧ LS′=LS ∪ {l1 , l2};

{ acquire(l1);

assert(waitlevel′<l2 .mu); /*valid*/

acquire(l2);

assert(waitlevel′>l1 .mu); /*valid*/

}

4.2.3 Specification Language

Logic formula Φ ::=
∨

(∃v∗ · κ ∧ ` ∧ π)
Heap formula κ ::= emp | ι | κ1 * κ2

Atomic heap formula ι ::= v 7−→ thrd〈γ → Φ〉 | . . .
Lock formula ` ::= [

∧
ω #

∧
ψ]

Delayed formula γ ::=
∨

(
∧
ψ ∧ π)

Waitlevel formula ω ::= waitlevel=αt | waitlevel<αt | waitlevel>αt

Lockset formula ψ ::= v ∈ LS | v /∈ LS
Pure formula π ::= α | β | π1 ∧ π2 | π1 ∨ π2 | ¬π | ∃v · π | ∀v · π | true

Set term βt ::= LS | {} | {v} | βt1 ∪ βt2 | βt1 ∩ βt2 | βt1−βt2
Set formula β ::= βt1 < βt2 | βt1 = βt2

Arithmetic term αt ::= k | v | v.mu | k× αt | αt1 + αt2 | −αt
Arithmetic formula α ::= αt1 = αt2 | αt1 6= αt2 | αt1 < αt2 | αt1 ≤ αt2

v,w ∈ Variables k ∈ Integer constants

Figure 4-6: Grammar for Specification Language with LS and waitlevel

Fig. 4-6 shows our specification logic. In the specification, Φ is a logic formula in

disjunctive normal form. Each disjunct in Φ consists of a heap formula κ for “threads

as resource”, a lock formula `, and a pure formula π. Each thread node in κ captures

a child thread. A lock formula ` consists of waitlevel formulae ω, and lockset formulae

ψ. ω and ψ are self-explanatory.

66

4.2. FORMALISM

A lock formula [
∧
ω #

∧
ψ] presents our mechanism for each procedure’s dual

use, namely for both sequential and concurrent execution. The formula captures

both waitlevel formula
∧
ω and lockset formula

∧
ψ that are mutually exclusive. The

former is checked for sequential procedural calls, while the latter must be delayed and

checked at join points of forked threads. We provide both specifications in a unified

format to cater to the differences in semantics for both sequential and concurrent

computations. In sequential settings, e.g. when invoking a normal procedure call, the

pre-condition of a procedure is an assertion that has to be fulfilled by the caller. If

one or more constraints about lockset and waitlevel in the pre-condition are not met,

verification fails. In concurrent settings and due to the ownership semantics of locks,

each new child thread does not inherit any locks from its parent thread. Hence, it

has empty lockset and bottom waitlevel. Thus, constraints on waitlevel need not be

checked here. Nevertheless, the constraints on lockset indicate the intention of the

child thread and must be “delayed for checking” at its join point instead.

A thread node represents the final state of a child thread. It consists of a de-

layed formula γ (for delayed lockset checking), and a logic formula Φ capturing the

thread’s post-state (i.e. its effects after finishing its execution). The thread node

v 7−→ thrd〈γ → Φ〉 denotes the fact that when the thread is joined and its delayed

formula γ is satisfied, then its effects Φ will be visible to the calling thread. The sub-

structural rules for handling “threads as resource” in the presence of delayed lockset

constraints are presented in Fig. 4-7. The rules manipulate post-states Φ of threads

and leave delayed lockset constraints γ intact.

v 7−→ thrd〈γ → Φ1 * Φ2〉 ⇐⇒
v 7−→ thrd〈γ → Φ1〉 * v 7−→ thrd〈γ → Φ2〉

R−THRD3

v 7−→ thrd〈γ → Φ〉 ∧ dead(v) =⇒ Φ R−THRD4

Figure 4-7: Added Sub-structural Rules for Delayed Lockset Checking

67

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

The formula γ illustrates our support for delayed lockset checking. Each disjunct in

γ consists of delayed lockset constraints
∧
ψ and a pure formula π to more precisely

capture additional constraints for the corresponding delayed lockset constraints to

hold. At each join point, only disjuncts whose pure formula is satisfied are candidates

for delayed lockset checking.

Lastly, a pure formula π consists of standard equality/inequality, Presburger arith-

metic, and set constraints. Additionally, it is straightforward to enhance our spec-

ification logic to ensure data-race freedom. However, for simplicity of presentation,

this chapter focuses on just the framework for deadlock freedom and ignores all issues

pertaining to data-races.

For illustration, consider the following logic formula:

v 7−→ thrd〈(l1 /∈LS′ ∧ b ∧ l1 6=null) ∨ (l2 /∈LS′ ∧ ¬b ∧ l2 6=null)→emp〉∧

l1 6=null ∧ l1 .mu>0 ∧ l2 6=null ∧ l2 .mu>0 ∧ LS′={l2} ∧ b

The formula represents a program state where there are two concurrent threads: a

main thread currently holding the lock l2 (i.e. LS′={l2}) and a child thread captured

by a thread node. The child thread has a disjunctive delayed formula which precisely

captures two locking scenarios: the child thread either acquires the lock l1 if the

boolean condition on variable b holds or acquires the lock l2 if the condition does

not hold. Suppose that the main thread is going to join the child thread. The main

thread, knowing that b holds, can exclude the deadlock scenario that the child thread

potentially attempts to acquire the lock l2. Hence it is deadlock-free to join the child

thread. Note that due to our assumption on data-race freedom, the boolean condition

on variable b is consistent in both threads.

4.2.4 Verification Rules

Proof rules for forward verification are presented in Fig. 4-8. They are formalized

using Hoare’s triples of the form {Φpr}P{Φpo}: given a program P beginning in a state

satisfying the pre-condition Φpr, if it terminates, it will do so in a state satisfying the

68

4.2. FORMALISM

post-condition Φpo. In the figure, we only focus on key statements that are related to

concurrency and lockset: procedure call, fork, join, conditional, and lock operations.

In our framework, each program state ∆ could consist of thread nodes that capture

the final states of child threads. Here final states of child threads refer to post-states

of child threads after they finish execution and their delayed formulae that need to be

checked at join points. When joined, the post-state of a child thread will be visible

and merged into the state of the main thread if its delayed formula is satisfied.

partLS(κ ∧ [
∧
ω #

∧
ψ] ∧ π)

def
= (
∧
ψ ∧ π1, κ ∧ π1)

where π1 := removeLS(π)

partLS(Φ1 ∨ Φ2)
def
= (γ1 ∨ γ2,Φ3 ∨ Φ4)

where (γ1,Φ3) := partLS(Φ1) and (γ2,Φ4) := partLS(Φ2)

AUX

def(pn) := pn(w∗) requires Φpr ensures Φpo; { s }
∆ ` Φpr ; ∆1 ∆2

def
= ∆1 *{LS,waitlevel} Φpo

{∆} pn(w∗) {∆2}
L−CALL

spec(pn) := pn(w∗) requires Φpr ensures Φpo; { s }
(γpr,Φ

′
pr) := partLS(Φpr) (,Φ

′
po) := partLS(Φpo)

∆ ` Φ
′
pr ; ∆1 ∆2

def
= ∆1 * v 7−→ thrd〈γpr → Φ

′
po〉

SAT(Φpr ∧ LS={}) Φpo ∧ LS={} ` LS′={}
{∆} v := fork(pn,w∗) {∆2}

L−FORK

∆ ` γpr ∆2
def
= ∆ * Φ

′
po ∧ dead(v)

{∆ * v 7−→ thrd〈γpr → Φ
′
po〉} join(v) {∆2}

L−JOIN−1

{∆ ∧ dead(v)} join(v) {∆ ∧ dead(v)} JOIN−2

{∆ ∧ b} s1 {∆1} {∆ ∧ ¬b} s2 {∆2}
{∆} if b then s1 else s2 {∆1 ∨∆2}

COND

{∆} lock l = new lock(v) {∆ ∧ l 6=null ∧ l .mu=v ∧ l /∈ LS} NEWLOCK

Figure 4-8: Forward Verification Rules for Concurrency

69

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

In order to invoke a procedure call (L−CALL) in a sequential setting, a main thread

should be in a state ∆ that can entail the pre-condition Φpr of the procedure pn.

For brevity, we omit the substitutions that link actual and formal parameters of

the procedure prior to the entailment. We also omit the treatment of pass-by-ref

parameters which can be handled by applying permissions on variables [85, 112]. After

the entailment, the main thread subsumes the post-condition Φpo of the procedure

into its state. Note that the operator *{LS,waitlevel} is a “composition with update”

operator [103] to capture effects of executing the procedure on LS and waitlevel.

The auxiliary function partLS is used in concurrent settings to partition a for-

mula into a delayed formula γ (which will be “delayed for checking”) and a formula

Φ. In case of a disjunctive formula, the corresponding delayed formula is also in a dis-

junctive form. This is to ensure that deadlock-free pre-conditions on lock acquisition

can be more precisely guaranteed when “delayed checking”. The auxiliary function

removeLS removes constraints that are related to lockset and waitlevel because they

are irrelevant in concurrent settings. The semantics of removeLS is straightforward,

hence it is not presented.

The rules for fork and join demonstrate the delayed lockset checking technique. A

fork creates a new thread executing concurrently with the main thread. When forking

a new child thread (L−FORK), because lockset and waitlevel are local to each thread,

the state of the main thread needs not entail constraints related to waitlevel and

lockset in the pre-condition Φpr of the child thread. However, the main thread should

be in a state that can entail the formula Φ′pr. The delayed formula γpr is delayed for

checking at a join point. Afterwards, a new thread node carrying the delayed formula

γpr and the post-state Φ
′
po of the corresponding forked procedure is created. The

thread node is then combined with the residue ∆1 to form a new state ∆2. Note that

constraints related to lockset and waitlevel in the post-condition Φpo are also omitted

(resulted in Φ
′
po) because they are only local to the child thread and are irrelevant to

the context of the main thread after the child thread is joined. Lastly, to guarantee

the ownership semantics of locks, the L−FORK rule checks if the forked procedure with

70

4.2. FORMALISM

an empty lockset in its pre-condition (i.e. Φpr ∧LS={} is satisfiable) will finally end

up with an empty lockset in its post-condition (i.e. Φpo ∧ LS={} ` LS′={}).

Joining a child thread with an identifier v (L−JOIN−1) requires that the state ∆ of

the main thread must entail the child thread’s delayed formula γpr. The main thread

then merges the post-state of the child thread Φ′po into its state and the child thread

disappears from the program state after joined. After a thread has been joined,

it becomes dead (indicated by the pure dead predicate). Joining a dead thread is

equivalent to a no-op, thus it does not incur delayed lockset checking (JOIN−2).

The rule for conditionals (COND) illustrates our support for precise lockset rea-

soning. We capture precise lockset by using disjunction in the post-state of the

conditional statement. Together with disjunctive delayed formulae supported by the

function partLS in L−FORK rule, the use of explicit disjunction in this rule enables

more precise reasoning on locksets to ensure deadlock freedom.

Other verification rules are relatively straightforward. The NEWLOCK rule creates

a new lock l with a locklevel v. Without specifying a locklevel, a lock is assumed to

have an arbitrary non-zero locklevel. We assume that locklevel is immutable during

a lock’s lifetime. We currently implement acquire/release operations as the following

primitives which can be uniformly handled by L−CALL.

void acquire(lock l)

requires [waitlevel<l .mu # l /∈LS]

ensures LS′=LS∪{l};

void release(lock l)

requires l∈LS

ensures LS′=LS−{l};

The acquire primitive requires that locks are acquired in an increasing order

of locklevels (waitlevel<l.mu). This additionally implies that l/∈LS (but not vice

versa). After acquiring the lock l, it is added to the thread’s lockset LS. Reversely,

a thread must hold a lock (l∈LS) in order to release it using the release primitive.

71

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

After releasing the lock l, it is removed from the thread’s lockset LS. The acquire

and release primitives respectively ensure that a lock is not acquired or released

more than once. The rest of verification rules used in our framework only operate in

sequential settings, therefore they are standard as described in [103].

Soundness. We now state the main soundness theorem of our framework; detailed

proofs are presented in Appendix C. Intuitively, for each program state, there is a

wait-for graph corresponding to it. We prove that a program that has been success-

fully verified by our framework will never get stuck due to deadlocks, i.e. there does

not exist a state whose wait-for graph contains a cycle.

Theorem 1 (Soundness). Given a program with a set of procedures P i and their

corresponding pre/post-conditions (Φi
pr/Φi

po), if our verifier derives a proof for every

procedure P i, i.e. {Φi
pr}P i{Φi

po} is valid, the program is deadlock-free.

4.2.5 Supports for Recursive Locks

Our framework currently supports non-recursive locks. Nonetheless, precise lockbags

could be integrated into our framework to support recursive locks (e.g. Java’s Reen-

trantLock). In contrast to precise lockset LS, precise lockbag (denoted as LB) could

include multiple occurrences of locks. The specifications for acquire/release opera-

tions for recursive locks are as follows:

void acquire(lock l)

requires [waitlevel<l .mu # l /∈LB]

ensures LB′=LB∪{l};

requires l∈LB

ensures LB′=LB∪{l};

void release(lock l)

requires l∈LB

ensures LB′=LB−{l};

For verifying deadlock freedom, acquiring an unheld lock l (l /∈ LB) should ensure

the increasing order of locklevels (waitlevel<l.mu). Afterward, l is added into LB.

72

4.3. EVALUATION

If the current thread is holding the lock (l ∈ LB), it simply adds another occurrence

of l into LB without incurring the waitlevel check. Releasing the lock l removes

an occurrence of l from LB. The rest of our framework remain unchanged. Note

that, for simplicity, Fig. 4-8 includes the verification rules with one pair of pre/post

condition. Multiple pre/post specifications can be handled in the same way as [26].

The notation of lockbags has also been used by Haack et al. [52] for reasoning

about partial correctness of concurrent programs manipulating Java’s reentrant locks.

Fu et al. [45] rely on reentrant level (i.e. the number of times a lock has been acquired)

for reasoning about reentrant locks in concurrent assembly code. However, in contrast

to our framework which verifies deadlock freedom of concurrent programs, the above

approaches only focus on partial correctness and do not ensure deadlock freedom.

4.3 Evaluation

We have integrated our framework into separation logic [115] and implemented it

into a prototype tool, called ParaHIP5, for verifying deadlock freedom and partial

correctness of programs with fork/join concurrency and non-recursive locks against

user-given specifications. To demonstrate the expressiveness of our framework, we

did a comparison with Chalice [4, 90, 91], the state-of-the-art framework for verify-

ing deadlock freedom, in terms of deadlock/deadlock-freedom scenarios that can be

proven by the respective frameworks. The benchmark programs cover various scenar-

ios such as double lock acquisition, interactions between thread and lock operations,

and unordered locking. One scenario (e.g. double acquisition) is representative of

many real-world programs. For example, the classical dining philosophers problem

can be considered as instances of ordered-locking and unordered-locking. There-

fore, although the scenarios are small, they can be considered as a core benchmark

for evaluating expressiveness of deadlock verification systems. The sets of benchmark

programs written for both Chalice and ParaHIP are available for online testing in

our project website.

5The tool is available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/parahip/.

73

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

Table 4.1: A Comparison between Chalice and ParaHIP. A tick (3) indicates that
the corresponding scenario can be verified correctly by the respective verification framework.
A cross (7) indicates otherwise. A prefix “disj” indicates that the corresponding scenario
requires disjunctive formulae to precisely capture different execution branches. The third
column Prop indicates properties of a program, i.e. whether it is prone to deadlock due
to double lock acquisition (D1), interactions between thread and lock operations (D2), or
unordered locking (D3).

No Scenario Prop Chalice ParaHIP Comments

1 double-acquire D1 3 3
Chalice can handle D1 and D32 ordered-locking

D3
3 3

3 unordered-locking 3 3
4 no-deadlock1

D2
7 3 Chalice cannot prove that these programs

are deadlock-free5 no-deadlock3 7 3
6 deadlock1

D2
7 3 False alarms: Chalice verifies these

deadlocked scenarios as deadlock-free7 disj-deadlock 7 3
8 deadlock2

D2

3 3

Chalice verifies these programs correctly9 deadlock3 3 3
10 disj-no-deadlock 3 3
11 no-deadlock2 3 3

The comparison results are presented in Table 4.1. Compared with Chalice,

ParaHIP allows more deadlocks to be prevented and also permits more programs to

be declared as deadlock-free. Specifically, Chalice is unable to correctly verify 4 out

of 11 scenarios that express intricate interactions between thread and lock operations.

The last column in the table briefly explains the reason behind.

The verification results of Chalice on D2-type programs are of interest. It con-

firms our observation that Chalice is not designed for verifying programs with inter-

actions between fork/join and acquire/release. Chalice is unable to verify deadlock-

free programs (such as no-deadlock1 and no-deadlock3) while it incorrectly verifies

deadlocked programs (such as deadlock1 and disj-deadlock) as deadlock-free. Fur-

thermore, since Chalice does pre-condition checking at the fork points, it is some-

times able to correctly verify D2-type programs such as deadlock2 and deadlock3.

The experimental results were very surprising because Chalice appears unsound.

We communicated this issue with Chalice’ developers and confirmed that Chal-

ice’s technical framework is indeed sound but its implementation does not consider

programs with interactions between thread and lock operations [100]. Hence, the

74

4.4. DISCUSSION

question to investigate is whether Chalice could be extended to handle those sce-

narios. To the best of our knowledge, Chalice technical framework could, under the

hood, encode fork/join as send/receive over channels, assign levels to the channels,

and require that threads acquire locks and wait on channels in a strictly increasing or-

der of (locks’ and channels’) levels (Section 4.4 of [91]). With this encoding, Chalice

becomes sound and it can automatically eliminate the false negatives in the programs

deadlock1 and disj-deadlock. However, it still does not correctly verify the pro-

grams no-deadlock1 and no-deadlock3 as deadlock-free. To be more expressive,

Chalice could be extended to allow programmers to explicitly annotate appropriate

levels to thread identifiers and require that threads acquire locks and join threads in a

strictly increasing order of (locks’ and thread identifiers’) levels. With this extended

help from programmers, Chalice could correctly verify all programs in Table 4.1.

However, there are still programs (such as the program fork-join-as-send-recv

in our project website) where it is impossible to find appropriate levels to assign to

the thread identifiers for proving deadlock freedom. That program can be verified as

deadlock-free in our framework without requiring extended help from programmers.

Last but not least, while Chalice is unable to verify programs that involve the multi-

join pattern, ParaHIP is capable of handling the multi-join (thank to our “threads

as resource” approach proposed in Chapter 3). In summary, compared with Chal-

ice, our framework is more expressive in handling interactions between fork/join and

lock operations. It advocates the use of precise locksets and introduces the delayed

lockset checking technique to more expressively prove deadlock freedom.

4.4 Discussion

This section discusses related works on specification and verification of deadlock free-

dom in shared-memory concurrency. Note that we do not consider non-termination

due to infinite loops or recursion. Proving (non-)termination [6, 29, 87] and livelock

freedom [108] is orthogonal to our framework, and could be separately extended.

75

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

In the context of concurrency verification, several recent frameworks have been

proposed to reason about programs with non-recursive locks and dynamically-created

threads [51, 61], recursive locks [45, 52], and low-level languages [45], all based on sep-

aration logic [115]. However, they focus on verifying partial correctness and ignore

the presence of deadlocks. Verifast [65] also ignores deadlocks when verifying cor-

rectness of concurrent programs. Chalice [90, 91], a verification framework based on

implicit dynamic frames [119], is capable of preventing deadlocks. Initially, Chalice

uses locklevels and is able to prevent deadlocks due to double acquisition and un-

ordered locking [90]. Later development on Chalice [91] has proposed a technique

to prevent deadlocks in programs that use both message passing via channels, and

locking. Although it could encode join operations as send/receive over channels, there

are programs (such as the program fork-join-as-send-recv in our website) where it

is impossible for the encoding to find proper levels assigned to the channels for proving

deadlock freedom. Our delayed lockset checking technique can enable proving dead-

lock freedom in the presence of interactions between fork/join and acquire/release

based on precise lockset as an abstraction. Using the technique, we are able to prove

more programs deadlock-free than previous work. We also showed how to incorporate

our technique with the locklevel idea from Chalice to form an expressive framework

for specifying and verifying deadlock freedom of concurrent programs.

Besides verification frameworks, there are other approaches to detecting or pre-

venting deadlocks in concurrent programs. They can be classified into dynamic and

static approaches. There are many systems that detect deadlocks dynamically -

see [22, 73, 95] to name just a few recent works on this topic. Dynamic systems

have the advantage that they can check unannotated programs. However, they can-

not guarantee the absence of deadlocks due to possibly insufficient test coverage.

Static approaches such as those based on static analysis [102, 128] and type systems

[17, 46, 50, 120] can ensure the absence of certain types of deadlocks. These systems

have the advantage that fewer annotations are required. However, they tend to be less

expressive than specification logics. Type systems such as [17, 120] use locklevels to

76

4.5. SUMMARY

enforce a locking order while others use lock capabilities [50] and continuation effects

[46] to verify programs with no natural ordering on the locks acquired. Nevertheless,

existing systems [17, 46, 50, 120] do not ensure the absence of deadlocks due to in-

teractions between thread and lock operations. It is interesting to apply our delayed

lockset checking technique to enhance the capability of these type systems.

Deadlock-freedom has also been studied in other contexts, and notably in the

setting of message-passing process algebra [80, 81, 82]. The notion of locklevels in our

approach is similar to obligation and capability levels in these type systems [80, 81, 82].

However, they have only been applied in the context of π-calculus while our framework

ensures deadlock freedom for a shared-memory concurrent language with dynamic

creation of threads and locks. Although fork/join/acquire/release operations and

shared variables could be encoded as send/receive operations over channels, such an

encoding would be non-trivial [80, 129].

4.5 Summary

In this chapter, we presented an expressive deadlock-freedom verification framework

for concurrent programs. A novel delayed lockset checking technique was introduced

to cover deadlock scenarios due to interactions between thread and lock operations.

We described an abstraction based on precise lockset to support verification for dead-

lock freedom. We then showed how our technique can be integrated with locklevels to

form a formalism for verifying different deadlock scenarios such as those due to double

acquisition, interactions between thread and lock operations, and unordered locking.

Lastly, we implemented the proposed framework into ParaHIP, a prototype verifier

based on separation logic reasoning, for specifying and verifying deadlock freedom

and partial correctness of concurrent programs.

The presented framework provides a foundation towards more comprehensive ver-

ification of deadlock freedom. Currently, the framework is capable of reasoning about

programs with fork/join and locks. However, besides locks, barriers are among

77

CHAPTER 4. VERIFICATION OF DEADLOCK FREEDOM

commonly-used concurrency constructs. In the next chapter, we will present our

approach to verify correct synchronization of programs with barriers. Correct barrier

synchronization is a weaker property than deadlock-freedom (i.e. it is deadlock free-

dom in the presence of a single barrier) and it serves as a starting point for our future

work on more comprehensive verification of deadlock-free barrier synchronization.

78

Chapter 5

Verification of Barrier

Synchronization

Overview. Software barriers are a kind of collective operations available in Pthreads,

Java, .NET, OpenMP, and others. Threads participating in a barrier proceed in

phases. A typical usage of barriers is presented in Fig. 5-1.

//b has two participants

b = new barrier(2);

//Thread 1 //Thread 2

//Phase 0 //Phase 0

wait(b); wait(b);

//Phase 1 //Phase 1

Figure 5-1: Typical Usage of Barriers

When a thread issues a barrier wait, it

waits until a pre-defined number of threads

(all threads or just a group of threads) have

also issued a barrier wait; after that, all

participating threads proceed to the next

phase. SPMD (Single Program, Multiple

Data) programs, such as those written in

OpenMP, typically have a single barrier to

coordinate all threads in the programs. On

the other hand, fork/join programs writ-

ten in Pthreads, Java, and .NET could use

more than one barrier to coordinate different (possibly non-disjoint) groups of threads.

In Pthreads [2], barriers are static, i.e. the number of participants is fixed. In .NET

framework [43], barriers are dynamic as the number of participants can vary during

79

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

a program’s execution. The java.util.concurrent library [49] supports both static and

dynamic barriers (i.e. CyclicBarrier and Phaser respectively).

Barriers are commonly used in practice. For example, all twelve programs in

SPLASH-2 benchmark suite [130] use at least one barrier and four out of twelve

programs use more than one barrier for synchronization, covering numerous ap-

plication domains such as computer graphics (volrend), water molecule simulation

(water-spatial), and engineering (radix) among others. Therefore, verifying correct

synchronization of barriers is desirable because it can provide compilers and analy-

sers with important phasing information for improving the precision of their analyses

and optimizations such as reducing false sharing [68], may-happen-in-parallel analy-

sis [93, 134], and data race detection [76]. For example, given the information that

a program is verified as correctly synchronized on a barrier, concurrency analysers

[76, 93, 134] could significantly improve their analyses by exploiting the fact that two

statements in different barrier phases cannot be executed in parallel. However, static

verification of barrier synchronization in fork/join programs is hard because program-

mers must not only keep track of (possibly dynamic) number of participating threads,

but also ensure that all participants proceed in correctly synchronized phases.

Verification approaches such as those based on separation logic [115] and implicit

dynamic frames [119] often use an access permission system, such as fractional per-

missions [18] or counting permissions [15], as the basis for reasoning about race-free

sharing of resources. There are bounded resources (e.g. barriers) which are typically

shared among a bounded number (or a group) of concurrent threads. Unfortunately,

when using existing permission systems [15, 18], a resource could be split off an

unbounded number of times and hence unintentionally shared among an unbounded

number of concurrent threads. Therefore, existing permission systems are not suitable

for reasoning about bounded resources.

In this chapter, we first introduce a new permission system, called bounded per-

missions, to enable reasoning for bounded resources. We then present a logical ap-

proach for statically verifying correct synchronization of static and dynamic barriers

80

5.1. A FORK/JOIN PROGRAMMING LANGUAGE WITH BARRIERS

in fork/join programs. For verifying static barriers, the approach uses bounded per-

missions and phase numbers to keep track of the number of participants and barrier

phases respectively. For verifying dynamic barriers, the approach introduces dynamic

bounded permissions to additionally keep track of the additions and/or removals of

participants. To the best of our knowledge, our work is the first effort to verify

synchronization of both static and dynamic barriers in fork/join programs.

This chapter is organized as follows. Section 5.1 presents our fork/join program-

ming language with barriers. Section 5.2 presents our approach. Specifically, Sec-

tion 5.2.1 presents our bounded permission system. Section 5.2.2 shows an applica-

tion of bounded permissions to verification of static barriers. Section 5.2.3 introduces

dynamic bounded permissions and highlights our approach for verification of dynamic

barriers. Section 5.2.3 presents our soundness arguments. Section 5.3 discusses our

prototype implementation and its application to programs in SPLASH-2 suite. Sec-

tion 5.4 summarizes related work. Section 5.5 concludes our work in this chapter.

5.1 A Fork/Join Programming Language with

Barriers

t ::= . . . | barrier Type

s ::=

barrier b = new barrier(n)
| destroy(b) | wait(b)
| add(b,m) | remove(b,m)
| . . .

Statement

Figure 5-2: Programming Constructs for Barriers

Mainstream languages such as C/C++ (with Pthreads), Java, and .NET provide

their own barrier constructs for synchronizing a group of threads. As our approach is

language-independent, we use core programming constructs for barriers as presented

81

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

in Fig. 5-2. For brevity of presentation, in this chapter, we often use the parallel

composition (s1||s2); as an abbreviation for creating concurrent threads (we sometimes

omit (); due to space limit). The parallel composition is just syntactic sugar which

can easily be encoded via fork and join. barrier b = new barrier(n) creates a new

barrier b with the number of participants n. destroy(b) destroys the barrier b. A

thread issues a barrier wait by calling wait(b). For dynamic barriers, add(b,m) and

remove(b,m) adds and respectively removes m participants from the existing total

number of participants.

5.2 Proposed Approach

5.2.1 Bounded Permissions

In this section, we present our bounded permission system for reasoning about

bounded resources. Although we place our bounded permissions in the context of

separation logic, bounded permissions can be generally applied to other logics such

as implicit dynamic frames [119].

A permission system should distinguish full permission for total control (read,

write, and destroy) from partial permission for shared access (read only: no thread

can write or destroy) [18]. Permission accounting (e.g. the ability to split a per-

mission into multiple partial permissions for shared access and to combine partial

permissions into a full permission for exclusive write) is critical for reasoning about

fork/join programs [15]. Besides the above properties, our bounded permission sys-

tem additionally provides the notion of “boundedness” as the guarantee for reasoning

about bounded resources.

Fig. 5-3 summarizes our bounded permission system. An assertion x
c,t7−→ E repre-

sents a bounded permission to access the content E at the address x. A permission

quantity is a pair of integers (c, t) where 0<c≤t; c=t indicates a full permission while

c<t indicates a partial permission. Permissions with c=1 are called unit permissions.

A permission can be split into two permissions (reading from left to right of the rule

82

5.2. PROPOSED APPROACH

Bounded permission: x
c,t7−→ E

Permission count: c
Permission total: t
Permission invariant: 0 < c ≤ t

Full permission: c = t
Partial permission: c < t
Unit permission: c = 1

Permission rules:

[SPLIT/COMBINE] x
c,t7−→ E ∧ c=c1+c2 ∧ c1>0 ∧ c2>0 ⇐⇒ x

c1,t7−−→ E ∗ x c2,t7−−→ E

[SEP] x1
c1,t17−−→ E * x2

c2,t27−−→ E ∧ (t1 6=t2 ∨ c1+c2>t1) =⇒ x1 6=x2

Figure 5-3: Bounded Permission System

[SPLIT/COMBINE]). In the other direction, heap nodes can be combined using * iff

their addresses coincide, they agree on their contents and their permissions can be

combined arithmetically. Note that due to the invariant 0<c≤t, a unit permission

cannot be split off. Besides the ability to split/combine permissions, the notion of

separation ([SEP]) is important for reasoning about separation of resources [15, 115].

Two heaps agreeing on their contents are separated (x1 6=x2) if their permission totals

are different or the sum of their permission counts is higher than the permission total.

We can create a new bounded-permission resource (with n being assigned to the

permission total) and destroy it only in full permissions:

{ n > 0 } x = new(n); { x
n,n7−−→ }

{ x
n,n7−−→ } destroy(x); { emp }

(5.1)

Given a full permission, we are sure that no other thread can access the shared

resource. Therefore, we can safely destroy it. In languages with automatic garbage

collection, such a destroy operation is not necessary, but the full permission is still

useful in guiding the garbage collector for safe collection.

Similarly, we need a full permission for writing and any permission (full or partial)

for reading:

{ x
n,n7−−→ } [x] = E; { x

n,n7−−→ E }

{ x
c,t7−→ E } y = [x]; { x

c,t7−→ E ∧ y = E }
(5.2)

83

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

{ emp }
x = new(2);

{ x
2 ,27−→ }

[x] = 5;

{ x
2 ,27−→ 5 }

//[SPLIT] { x
1 ,27−→ 5 } { x

1 ,27−→ 5 } { emp }
y=[x]+1; z=[x]-1; t=10;

{ x
1 ,27−→ 5 ∧ y = 6 } { x

1 ,27−→ 5 ∧ z = 4 } { t = 10 }

 ;

//[COMBINE]

{ x
2 ,27−→ 5 ∧ y = 6 ∧ z = 4 ∧ t = 10 }

destroy(x);

{ emp ∧ y = 6 ∧ z = 4 ∧ t = 10 }

Figure 5-4: Example of Using Bounded Permissions

[x] is an abbreviation for accessing the content located at the address x. In the last

rule, there is a side condition that y is not free in E.

Now, it is straightforward to verify the correctness of the program in Fig. 5-4, in

which only two threads are intended to concurrently read the content at the location

x. As a brief comparison, when using existing permission systems [15, 18], there is

nothing to prevent x from being split off into more than two partial permissions and

hence unintentionally accessed by more than two threads.

The following lemma states our guarantee on boundedness property.

Lemma 2 (Boundedness). Given a resource x with a full permission x
n,n7−−→ (n>0),

there are at most n concurrent accesses to x, i.e. x is shared among at most n

concurrent threads at a given time.

Proof. A thread needs at least a unit permission x
1,n7−→ to access x and there are at

most n such unit permissions.

84

5.2. PROPOSED APPROACH

5.2.2 Verification of Static Barriers

In this section, we present our approach to verifying correct synchronization of static

barriers. We first define what it means for a program to be correctly synchronized.

Definition 3 (Correct Synchronization). A program is correctly synchronized with

respect to a static barrier b iff:

• There are exactly a predefined number of threads participating in the barrier b’s

wait operations.

• Participating threads operate on b in the same numbers of phases.

{ emp }
barrier b = new barrier(2);

{ b
2 ,27−→ barrier(0) }

{b 1 ,27−→ barrier(0)} {b 1 ,27−→ barrier(0)}
//phase 0; //phase 0;

wait(b); wait(b);

//phase 1; //phase 1;

{b 1 ,27−→ barrier(1)} {b 1 ,27−→ barrier(1)}

{b 2 ,27−→ barrier(1)}
destroy(b);

{emp}

(a) Correctly synchronized

{emp}
barrier b = new barrier(2);

{b 2 ,27−→ barrier(0)}

{b 1 ,27−→ barrier(0)} {b 1 ,27−→ barrier(0)}
//phase 0; //phase 0;

wait(b); //no-op;

//phase 1;

{b 1 ,27−→ barrier(1)} {b 1 ,27−→ barrier(0)}

//FAIL
...

(b) Incorrectly synchronized

Figure 5-5: Barrier Synchronization

For illustration, the program in Fig. 5-5(a) is correctly synchronized while the

program in Fig. 5-5(b) is not because the two threads in Fig. 5-5(b) operate in different

numbers of phases. As shown in Section 5.2.1, bounded permissions can be used to

85

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

ensure that at most a predefined number of threads can access a resource at a given

time. However, verification of barrier synchronization requires a stronger guarantee:

exactly a predefined number of threads participate in a barrier wait. We enforce such

a guarantee by requiring that a participating thread must hold a unit permission to

perform a barrier wait. If a participant has more than a unit permission, it prohibits

other participants from participating. An analogy is a meeting room with n keys

distributed among n participants; a meeting takes place only when all participants

have come. If a participant has more than one key, when he/she enters the room, at

least one other participant will not be able to get in and the meeting cannot take place.

We capture barrier phasing by using phase numbers, which increase by one after each

barrier wait, and require that all participants end up with the same phase numbers.

If participants have different phase numbers when completing their execution, some

of them must have lost phasing and the program is not correctly synchronized.

A summary of our approach is presented in Fig. 5-6. An assertion b
c,t7−→ barrier(p)

indicates a bounded permission (c, t) to access the barrier b which is at phase p.

When creating a new barrier with the number of participants n, a full permission (i.e.

c=t=n) of barrier b is created. We can safely destroy a barrier in its full permission.

Waiting on a barrier b requires a unit permission (1, n). This is a contributing factor to

certify that there is exactly a predefined number of threads participating in the barrier

b. After finishing waiting, the phase number p is increased by 1 and threads proceed to

the next phase. The permission rules for split/combine ([S−SPLIT] and [S−COMBINE])

and separation [S−SEP] are similar to those of standard bounded permissions.

Our approach allows for local reasoning where each thread (more precisely each

procedure) is verified separately. Intuitively, if threads participate in a barrier b, when

they join together, their states must agree on the barrier b. Therefore, we enforce the

requirement that concurrent threads must maintain a program in barrier-consistent

(or b-consistent) states:

86

5.2. PROPOSED APPROACH

Bounded permission: b
c,t7−→ barrier(p)

Permission count: c
Permission total: t
Phase number: p

Permission invariant: 0 < c ≤ t
Full permission: c = t
Partial permission: c < t
Unit permission: c = 1

Verification rules:

{ n>0 } barrier b = new barrier(n); { b
n,n7−−→ barrier(0) }

{ b
n,n7−−→ barrier() } destroy(b); { emp }

{ b
1 ,n7−→ barrier(p) } wait(b); { b

1 ,n7−→ barrier(p + 1) }

Permission rules:
[S−SPLIT]

b
c,t7−→ barrier(p) ∧ c=c1+c2 ∧ c1>0 ∧ c2>0 =⇒ b

c1,t7−−→ barrier(p) ∗ b c2,t7−−→ barrier(p)

[S−COMBINE]

b
c1,t7−−→ barrier(p) ∗ b c2,t7−−→ barrier(p) =⇒ b

c,t7−→ barrier(p) ∧ c=c1+c2

[S−SEP]

b1
c1,t17−−→ barrier(p) * b2

c2,t27−−→ barrier(p) ∧ (t1 6=t2 ∨ c1+c2>t1) =⇒ b1 6=b2

Figure 5-6: Verification of Static Barriers

{Φ1} s1 {Φ
′
1} modifies(s1) ∩ FV (Φ2,Φ

′
2)=∅

{Φ2} s2 {Φ
′
2} modifies(s2) ∩ FV (Φ1,Φ

′
1)=∅

Φ1 * Φ2 is b−consistent Φ
′
1 * Φ

′
2 is b−consistent

{Φ1 * Φ2} s1||s2 {Φ
′
1 * Φ

′
2}

(5.3)

Compared with the original parallel composition rule discussed in Section 2.1.2, our

parallel composition rule (5.3) additionally requires that concurrent threads begin

and end in b-consistent states. That is, starting from a consistent state with respect

to barriers in the program, threads concurrently operate on the barriers; if they

terminate, they do so in a consistent state with respect to the barriers. Informally, a

memory state is b-consistent if its barrier nodes agree on the phase numbers. After

completing their execution, if the threads end up in a joined state Φ
′
1 * Φ

′
2 which is

not b-consistent, the program is rejected as it is incorrectly synchronized. A similar

consistency check is also required for the frame rule, which is omitted here since it

can be derived from the parallel composition rule (i.e. s is equivalent to s||no-op).

87

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

Definition 4 (Combined State). A combined state Φc of a memory state Φ is achieved

by repeatedly applying the [S−COMBINE] rule until a fixpoint is reached.

Such a fixpoint always exists as the [S−COMBINE] rule can only reduce the number of

heap nodes.

Lemma 3. A memory state Φ and its combined state Φc are equivalent.

Proof. Φc is derived from Φ using [S−COMBINE] rule and Φ can be derived from Φc

using [S−SPLIT] rule.

Definition 5 (b-consistency). A combined state Φc is b-consistent iff for every pair of

barrier nodes b1
c1,t17−−→ barrier(p1) and b2

c2,t27−−→ barrier(p2) in Φc, b1=b2 =⇒ p1=p2 holds.

Corollary 2. A memory state Φ is b-consistent iff its combined state Φc is b-

consistent.

Proof. It directly follows from Lemma 3 since Φ and Φc are equivalent.

Example. The memory state b1
1,27−→ barrier(p1) * b2

1,27−→ barrier(p1) is b-consistent.

However, the memory state b1
1,27−→ barrier(p1) * b2

1,27−→ barrier(p1+1) is not since, intu-

itively, it is possible for b1 and b2 to be aliased and thus the two aliased barrier nodes

have inconsistent phase numbers on the same barrier.

We apply our approach to verification of the programs presented in Fig. 5-5. The

program in Fig. 5-5(a) can be proven correctly synchronized. When verifying the

program in Fig. 5-5(b), our verification system reports a failure when joining the two

threads because the joined state is not b-consistent (i.e. the two barrier nodes have

different phase numbers).

Fig. 5-7 shows another example which is rather complex due to intricate phasing.

Our bounded permissions ensure that there are exactly two threads participating in

the barrier b while the phase numbers capture exact phasing. Although the two

threads operate in different while loops, our notion of phase numbers can certify that

the two threads participate in the same numbers of phases. Therefore, the program

is correctly synchronized.

88

5.2. PROPOSED APPROACH

{ emp }
barrier b = new barrier(2);

{ b
2 ,27−→ barrier(0) }

{ b
1 ,27−→ barrier(0) } { b

1 ,27−→ barrier(0) }
int i=0; int j=0;

{ b
1 ,27−→ barrier(0) ∧ i = 0 } { b

1 ,27−→ barrier(0) ∧ j = 0 }
while (i<10){ wait(b);i++;} while (j<20){wait(b); j++; }
i=0;

while (i<10){ wait(b);i++;}
{ b

1 ,27−→ barrier(20) ∧ i = 10 } { b
1 ,27−→ barrier(20) ∧ j = 20 }

;

{ b
2 ,27−→ barrier(20)}

Figure 5-7: More Complex Example

Our approach is also capable of verifying programs with more intricate sharing

and nested fork/join, as illustrated in Fig. 5-8. Inside main, the main thread creates

two child threads executing the procedure group on two different barriers b1 and b2.

These two threads do not directly operate on their respective barrier but they create

two grand-child threads to participate instead. Consequently, permissions of barrier

b1 and b2 are transferred from the main thread to child threads and finally to the

grand-child threads to create two different groups of grand-child threads participating

on two different barriers. Based on the phase numbers, we can verify that threads

participate in the same numbers of phases. Note that after joining back the child

threads, the main thread gets back the full permissions for b1 and b2. Programmers

need not indicate the fact that b1 and b2 are different barriers. Verifiers can use

our [S−SEP] rule to infer that information automatically. In the figure, for brevity of

presentation, we focus on barrier nodes while ignoring thread nodes which can be

easily added using our “threads as resource” approach (described in Chapter 3).

89

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

void main()

requires emp

ensures emp;
{
{ emp }
barrier b1= new barrier(2);

barrier b2= new barrier(2);

{ b1
2 ,27−→ barrier(0) * b2

2 ,27−→ barrier(0) }
thrd idg1=fork(group,b1);

{ b2
2 ,27−→ barrier(0) . . . }

thrd idg2=fork(group,b2);

{ . . . }
join(idg1);

join(idg2);

{ b1
2 ,27−→ barrier(1) * b2

2 ,27−→ barrier(1) }
destroy(b1);destroy(b2);

{ emp }
}

void participant(barrier b)

requires b
1 ,n7−→ barrier(0)

ensures b
1 ,n7−→ barrier(1);

{ wait(b); }

void group(barrier b)

requires b
2 ,27−→ barrier(0)

ensures b
2 ,27−→ barrier(1);

{
{ b

2 ,27−→ barrier(0) }
thrd id1=fork(participant,b);

{ b
1 ,27−→ barrier(0) . . . }

thrd id2=fork(participant,b);

{ . . . }
join(id1);join(id2);

{ b
2 ,27−→ barrier(1) }

}

Figure 5-8: Verification of a Program with Static Barriers and Nested Fork/Join

5.2.3 Verification of Dynamic Barriers

Formalism

This section presents our approach to verifying correct synchronization of dynamic

barriers. In contrast to static barriers whose number of participants are fixed, dynamic

barriers allow the number of participants to be changed during a program’s execution.

For example, .NET framework allows threads to add and remove m participants

to/from a barrier b dynamically via add(b,m) and remove(b,m).1 We first present

a variant of bounded permissions (called dynamic bounded permissions) to keep track

of the additions and/or removals of barrier participants of each thread. We then

introduce a set of verification and permission rules to reason about dynamic behaviors

of dynamic barriers.

A summary of our approach is presented in Fig. 5-9. Compared to the

1.NET indeed uses AddParticipants() and RemoveParticipants(); we write add() and remove()
for brevity.

90

5.2. PROPOSED APPROACH

bounded permission in Section 5.2.1, a dynamic bounded permission of a barrier

b
c,t,a7−−→ barrier(p) adds an additional component a, called permission addition, to keep

track of the additions and/or removals of barrier participants issued by each thread.

Permission addition a is a rational number since when splitting a dynamic bounded

permission, we require that the split-off permissions have proportional shares of a

(details to be presented soon). We also introduce the notion of zero permission to

capture the fact that a thread has dropped its participation to a barrier (c=0) but

still retained its information about the addition and/or removals of participants. Our

approach guarantees that zero permission can only be achieved by a thread deliber-

ately removing its participation and cannot be produced by a permission split. A

permission quantity (c, t, a) captures the local view of a thread on the barrier. With

the presence of permission addition a, the full permission is achieved when c = t+ a.

Intuitively, the current number of participants is equal to the original number of par-

ticipants plus the number of participants added or removed. One could recognize

that dynamic bounded permission and bounded permission coincide when a=0.

The verification rules in Fig. 5-9 capture dynamic behaviors of dynamic barriers.

Creating a new barrier results in a full permission of the barrier with a=0. Destroying

a barrier requires a full permission (c=t+a). Waiting at a barrier requires a unit

permission (c=1). Adding and removing m participants add and respectively subtract

m from the permission count and the permission addition. The permission total t

remains unchanged; it acts as a pivot for combining permissions when threads join

together. A thread can only remove up to the permission count it has (c≥m). If

c=m, after removing, a thread is considered dropping its participation to the barrier.

Adding participants requires c>0 to ensure that a drop-out thread could not re-

participate in a barrier. This is necessary because when dropping out, a thread has

lost phasing with other participants; therefore, it is unsafe to allow it to re-participate.

An example program is presented in Fig. 5-10.

Due to the nature of dynamic barriers, a thread could either fully participate in

a barrier or drop its participation in the middle of its execution. Permission rules

91

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

Dynamic bounded permission: b
c,t,a7−−→ barrier(p)

Permission count: c
Permission total: t
Permission addition: a
Phase number: p

Permission invariant: 0 ≤ c ≤ t+ a
Full permission: c = t+ a
Partial permission: 0 < c < t+ a
Unit permission: c = 1
Zero permission: c = 0

Verification rules:

{n>0} b = new barrier(n); {b n,n,07−−−→ barrier(0)}
{b c,t ,a7−−→ barrier() ∧ c=t+a} destroy(b); {emp}

{b 1 ,t ,a7−−→ barrier(p)} wait(b); {b 1 ,t ,a7−−→ barrier(p + 1)}
{b c,t ,a7−−→ barrier(p) ∧ c>0 ∧m>0} add(b,m); {b c+m,t ,a+m7−−−−−−→ barrier(p)}
{b c,t ,a7−−→ barrier(p) ∧ c≥m ∧m>0} remove(b,m); {b c−m,t ,a−m7−−−−−−→ barrier(p)}

Permission rules:
[D−SPLIT]

b
c,t,a7−−→ barrier(p) ∧ 0<c≤t+a ∧ 0<c1<t+a1 ∧ 0<c2<t+a2 ∧ c=c1+c2 ∧ a=a1+a2

∧ a1= c1
c
·a ∧ a2= c2

c
·a =⇒ b

c1,t,a17−−−→ barrier(p) ∗ b c2,t,a27−−−→ barrier(p)

[D−COMBINE−1]

b
c1,t,a17−−−→ barrier(p) ∗ b c2,t,a27−−−→ barrier(p) ∧ c1 6=0 ∧ c2 6=0

=⇒ b
c,t,a7−−→ barrier(p) ∧ c=c1+c2 ∧ a=a1+a2

[D−COMBINE−2]

b
c1,t,a17−−−→ barrier(p1) ∗ b c2,t,a27−−−→ barrier(p2) ∧ c1=0

=⇒ b
c,t,a7−−→ barrier(p1) ∧ c=c1+c2 ∧ a=a1+a2 ∧ p=max(p1, p2)

[D−FULL]

b
c,t,a7−−→ barrier(p) ∧ c=t+a ∧ a 6=0 ∧ c>0 =⇒ b

c,t+a,07−−−−→ barrier(p)

[D−SEP]

b1
c1,t1,a17−−−−→ barrier(p1) * b2

c2,t2,a27−−−−→ barrier(p2) ∧ (t1 6=t2 ∨ c1+c2>t1+a1+a2)
=⇒ b1 6=b2

Figure 5-9: Verification of Dynamic Barriers

in Fig. 5-9 capture those dynamic behaviors. The rule [D−SPLIT] never splits into

zero permissions; therefore, it ensures that a zero permission only appears due to

a thread’s drop-out. The rule also ensures that a full permission is never created

by splitting a partial permission since it requires that the two split-off permissions

92

5.2. PROPOSED APPROACH

have proportional shares of a; that is a1= c1
c
·a and a2= c2

c
·a. We provide the proof

for this claim in Appendix D. When multiple threads join, some of them have fully

participated in the barrier b while others might drop out midway. Therefore, the

combine rules have to take into consideration several situations. First, combining

two fully participating threads (c1 6=0 and c2 6=0) adds up their permission counts

and permission additions ([D−COMBINE−1]). Because of their full participation, their

phase numbers should be equal (both are p). Second, combining two threads while at

least one of them dropped out (c1=0) will pick up the maximum between their phase

numbers ([D−COMBINE−2]). Intuitively, if a thread has dropped its participation in

the middle of an execution, it did not participate in some later phases; therefore,

its phase number is at most that of a fully-participating thread. The rule [D−FULL]

reshuffles the full permission into an equivalent form. The rule [D−SEP] introduces the

notion of separation in the context of dynamic bounded permissions.

Similar to static barriers, in order to ensure correct synchronization of dynamic

barriers and to support local reasoning, our approach also requires that concur-

rent threads maintain a program in dynamic-barrier-consistent (db-consistent) states.

However, the check for db-consistency is slightly more complex than that of b-

consistency because in case of dynamic barriers the phase numbers of different barrier

nodes of the same barrier need not be the same (due to the addition and removal of

participants). Note that since dynamic barriers subsume static barriers (i.e. when

a = 0), the definition of db-consistency also subsumes that of b-consistency

Definition 6 (Combined State). A combined state Φc of a memory state Φ is achieved

by repeatedly applying the [D−COMBINE−1] and [D−COMBINE−2] rules until a fixpoint

is reached.

Lemma 4. A memory state Φ and its combined state Φc are equivalent.

Proof. Φc is derived from Φ using [D−COMBINE−1] and [D−COMBINE−2] rules. Φ can be

derived from Φc using [D−SPLIT] and the following [D−SPLIT2] rule, which is modified

from [D−SPLIT] rule to additionally allow splitting off zero permissions:

93

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

{ emp }1

barrier b = new barrier(2);2

{ b
2 ,2 ,07−−→ barrier(0) }3

//[D−SPLIT]4

{ b
1 ,2 ,07−−→ barrier(0) }5

wait(b);6

{ b
1 ,2 ,07−−→ barrier(1) }7

8

9

10

11

wait(b);12

{ b
1 ,2 ,07−−→ barrier(2) }13

14

wait(b);15

{ b
1 ,2 ,07−−→ barrier(3) }16

17

{ b
1 ,2 ,07−−→ barrier(0) }
wait(b);

{ b
1 ,2 ,07−−→ barrier(1) }
add(b,1);

{ b
2 ,2 ,17−−→ barrier(1) }
//[D−SPLIT]

{ b
1 ,2 , 1

27−−−→ barrier(1) } { b
1 ,2 , 1

27−−−→ barrier(1) }
wait(b); remove(b,1);

{ b
1 ,2 , 1

27−−−→ barrier(2) }
remove(b,1);

{ b
0 ,2 ,−1

27−−−→ barrier(2) } { b
0 ,2 ,−1

27−−−→ barrier(1) }

//[D−COMBINE−2]

{ b
0 ,2 ,−17−−−→ barrier(2) }

//[D−COMBINE−2]18

{ b
1 ,2 ,−17−−−→ barrier(3) }19

destroy(b);20

{ emp }21

Figure 5-10: An Example of Verifying Synchronization of Dynamic Barriers

[D−SPLIT2]

b
c,t,a7−−→ barrier(p) ∧ 0<c≤t+a ∧ 0<c≤t+a1 ∧ 0<t+a2 ∧a=a1+a2 ∧ p=max(p1, p2)

=⇒ b
c,t,a17−−−→ barrier(p1) ∗ b 0,t,a27−−−→ barrier(p2)

Definition 7 (db-consistency). A combined state Φc is db-consistent iff for every pair

of dynamic barrier nodes b1
c1,t1,a17−−−−→ barrier(p1) and b2

c2,t2,a27−−−−→ barrier(p2) in Φc, the

94

5.2. PROPOSED APPROACH

following assertion holds:

b1=b2 =⇒ ((c1 6=0 ∧ c2 6=0 ∧ p1=p2) ∨ (c1=0 ∧ p1≤p2) ∨ (c2=0 ∧ p2≤p1))

Corollary 3. A memory state Φ is db-consistent iff its combined state Φc is db-

consistent.

Proof. It directly follows from Lemma 4 since Φ and Φc are equivalent.

Fig. 5-10 presents the proof outline of a program with dynamic barriers. The

leftmost thread fully participates in b while the right thread participates in one phase,

then adds another participant (line 8), and creates two child threads operating on b.

The left child thread drops out after one phase while the right child thread drops

out without participation. At the end of the parallel compositions, the permissions

are combined together into a full permission. In our approach, for local reasoning,

each thread is verified separately and is unaware of operations (such as add/remove)

performed by other threads until they join together. Although sound, our approach

is incomplete since it could reject programs that are correct at run-time. However,

we believe that our static verification is generally a good practice for programmers to

follow in order to avoid unexpected run-time behaviors, as pointed out next.

Static Verification as Good Practice

Our approach can statically verify that a program is correctly synchronized in the

presence of static and dynamic barriers. For local reasoning, each thread is verified

separately and has its own view on a barrier b (reflected in the bounded permission

of b that it owns). Thus, a thread is unaware of operations (such as add/remove)

performed by other threads until they join together. Although sound, our approach

is incomplete since it could reject programs that are correct at run-time. For example,

our static verification (with local reasoning) does not allow the program in Fig. 5-

11(a) where the left thread is intended to remove the participation of the right thread.

However, we believe that a more desirable way to implement this program is to let

95

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

{emp}
barrier b = new barrier(2);

{b 2 ,2 ,07−−→ barrier(0)}

{b 1 ,2 ,07−−→ barrier(0)} {b 1 ,2 ,07−−→ barrier(0)}
wait(b); wait(b);

{b 1 ,2 ,07−−→ barrier(1)} {b 1 ,2 ,07−−→ barrier(1)}
remove(b,1); //no longer

{b 0 ,2 ,−17−−−→ barrier(1)} //participate

wait(b); //FAIL

...

(a) Rejected

{emp}
barrier b = new barrier(2);

{b 2 ,2 ,07−−→ barrier(0)}

{b 1 ,2 ,07−−→ barrier(0)} {b 1 ,2 ,07−−→ barrier(0)}
wait(b); wait(b);

{b 1 ,2 ,07−−→ barrier(1)} {b 1 ,2 ,07−−→ barrier(1)}
wait(b); remove(b,1);

{b 1 ,2 ,07−−→ barrier(2)} {b 0 ,2 ,−17−−−→ barrier(1)}

{b 1 ,2 ,−17−−−→ barrier(2)}
...

(b) Verified

Figure 5-11: Dynamic Behaviors of Dynamic Barriers

the right thread deliberately drop its participation (as depicted in Fig. 5-11(b)). This

more intuitive coding style is readily captured by our approach.

In many cases, our static verification is helpful for preventing harmful behaviors

at run-time such as deadlocks due to inter-thread addition/removal of participants.

One example is the program presented in Fig. 5-12(a) where the left thread adds one

participant to the barrier b while the right thread creates one more thread partici-

pating in b. The programmer’s intention is that, after adding one more participant,

there will be three threads concurrently operating on the barrier. Unfortunately, the

program is potentially deadlocked due to the following interleaving: 1 7→ 4 7→ 5 7→ 6

7→ 2 7→ 3. In this interleaving, the left thread waits forever at statement 3 because

it has to wait for two other participants to issue a barrier wait, though they have

already completed their execution. Another example is the program in Fig. 5-12(b)

where the left thread removes one participant while the right thread concurrently

adds one participant. Although the total number of participants remains unchanged,

the program is potentially deadlocked due to the interleaving 1 7→ 4 7→ 2 7→ 3 7→ 5

7→ 6. Fortunately, such error-prone programs with inter-thread addition/removal of

96

5.2. PROPOSED APPROACH

barrier b = new barrier(2); 1: wait(b); 4: wait(b);

2: add(b,1);

3: wait(b); 5: wait(b); 6: wait(b);

1 7→ 4 7→ 5 7→ 6 7→ 2 7→ 3 (Deadlocked)

(a)

barrier b = new barrier(2); 1: wait(b); 4: wait(b);

2: remove(b,1); 5: add(b,1);

3: wait(b); 6: wait(b);

1 7→ 4 7→ 2 7→ 3 7→ 5 7→ 6 (Deadlocked)

(b)

Figure 5-12: Potential Deadlocks due to Inter-thread Addition/Removal of Partici-
pants

participants are rejected by our approach. In summary, we believe that our static

verification is generally a good practice for programmers to follow in order to avoid

unexpected run-time behaviors.

Soundness

We show that our proposed approach guarantees correct synchronization of dynamic

barriers. As dynamic barriers are more general than static barriers, the soundness

also implies correct synchronization of static barriers. We first present an encoding of

join operations in terms of barrier operations. This encoding simplifies the proof rules

and soundness arguments to only focusing on barrier operations. We then proceed to

the main soundness arguments of our approach. We now state the main soundness

lemma; detailed definitions and proofs can be found in Appendix D.

97

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

Lemma 5 (Soundness of Verifying Barrier Synchronization). Given a program with

a barrier b and a set of procedures P i together with their corresponding pre/post-

conditions (Φi
pr/Φi

po), if our verifier derives a proof for every procedure P i, i.e.

{Φi
pr}P i{Φi

po} is valid, then the program is correctly synchronized with respect to the

barrier b.

5.3 Experiments

We implemented our approach into our prototype verifier 2 for separation logic reason-

ing. We applied it to verifying static3 barrier synchronization of all twelve simplified4

programs in SPLASH-2 suite [130] against user-given specifications. SPLASH-2 suite

is one of the most widely-used benchmarks for evaluating shared-memory systems.

The suite consists of twelve realistic programs covering numerous application domains

such as computer graphics (volrend), signal processing (fft), water molecule simu-

lation (water-spatial), and general engineering (radix) among others. Besides the

theoretical contributions, the empirical question we investigate is how well our ap-

proach handles intricate barrier synchronization. The results were promising as our

approach was able to verify all but one program in SPLASH-2 suite with modest an-

notation. All experiments were done on a 3.20GHz Intel Core i7-960 processor with

12GB memory running Ubuntu Linux 14.04. The suite of benchmark programs and

other examples are provided in our project website.

The experimental results are presented in Table 5.1. The column #Bar shows

the number of barriers used in the corresponding program. The column LOC shows

2The tool is available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/veribsync/.

3As dynamic barriers have just been available recently since .NET 4.0 (April 2010) and Java
7 (July 2011), we are not aware of existing concurrency benchmarks that use dynamic barriers.
Nonetheless, we applied our prototype on a set of textbook programs which represent typical usage
of dynamic barriers. The programs are available in our project website.

4As verifying full functional correctness of these programs is beyond the scope of this chapter,
our experiments were conducted on a set of simplified programs where parts of programs that are
not related to barriers were omitted. All related parts such as branching conditions and loops were
retained to ensure that barrier synchronizations in the simplified programs are similar to those of
the original programs.

98

5.3. EXPERIMENTS

Table 5.1: Annotation Overhead and Verification Time of SPLASH-2 Suite

Program Description #Bar LOC LOAnn Overhead Time
ocean large-scale ocean simulation 1 60 5 8% 1.53
radix integer radix sort 2 68 7 10% 13.56
lu blocked LU decomposition 1 79 12 15% 8.60
barnes Barnes-Hut for N-body problem 1 84 12 14% 1.63
raytrace optimized ray tracing 1 94 7 7% 0.74
fft complex 1D FFT 1 101 8 8% 1.55
water-nsquared water simulation w/o spatial structure 3 113 16 14% 11.66
water-spatial water simulation w/ spatial structure 3 117 18 15% 11.65
cholesky blocked sparse cholesky factorization 1 131 10 8% 0.70
fmm adaptive fast multipole for N-body 1 175 20 11% 1.66
volrend optimized ray casting 2 232 36 16% 17.86

radiosity hierarchical diffuse radiosity method 1 83 - - -

Average - - - - 11% 6.47

the total number of non-blank, non-comment, non-annotation lines of source code,

counted by sloccount (v2.26). The column LOAnn shows the total number lines of

annotation. Annotation overhead is computed as LOAnn
LOC

(the lower, the better). Veri-

fication times are in seconds. Our verifier was able to verify barrier synchronization of

all but one program in SPLASH-2 suite with the verification time of several seconds.

We discuss the reason why our verifier was not able to verify radiosity program in

Section 6.2. The verification time and annotation overhead depend on characteris-

tics of the programs. Programs that have complicated non-linear constraints and/or

use multiple barriers in many execution branches (such as radix, lu, water-*, and

volrend) require higher verification time and annotation overhead. On average, our

verifier requires annotation overhead of 11%, which is modest compared with that of

100% reported in the literature [63].5 Much of the annotation and verification time

are dedicated for functional correctness properties of the programs such as branching

conditions and loops. As annotation efforts for these properties are also necessary

for verifying functional correctness of concurrent programs, we believe that existing

logics for verifying functional correctness can easily integrate our approach into their

logics and benefit from our guarantee of correct barrier synchronization.

5To be precise, the annotation overhead in [63] also includes the specification for functional
correctness. Although verifying functional correctness is not our main goal, we also need to specify
them for verifying barrier synchronization.

99

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

5.4 Discussion

This section discusses related works regarding access permission systems and static

verification of barrier synchronization. We also discuss related works regarding other

advanced forms of barriers such as X10’s clocks and phasers [117, 118] which have

recently been introduced in the context of async/finish programs.

Access Permissions

Boyland first introduced fractional permissions for reasoning about non-interference of

concurrent programs [18]. Bornat et. al. added counting permissions [15]. Recently,

various permission systems such as binary tree share model [34], Plaid’s permission

system [11], and borrowing permissions [101] have been proposed. In a nutshell, they

are akin to fractional and counting permissions.

Importantly, not every program is suitable for fractional permissions and counting

permissions. Programs that allow sharing resources among only a bounded number

of threads need another alternative treatment. Fractional and counting permissions

could not reason about those programs because, when using these permission systems,

there is nothing to prevent a resource from being split off an unbounded number of

times and shared among an unbounded number of threads. Given any fractional

permission f where 0<f≤1, it is always possible to split f into two fractions f1 and

f2 where f1+f2=f and f1, f2>0. Similarly, in counting permissions, given a central

permission authority holding a source permission n, it is always possible to split

off into a new source permission n+1 (held by the central authority) and a read

permission −1 for sharing. On the other hand, in our bounded permission system,

any non-unit permission (c, t) where 1<c≤t (either partial or full permissions) can

be split off without the presence of a central authority, and a bounded permission

can only be split off a bounded number of times (up to unit permissions). Therefore,

bounded permissions enable reasoning about bounded resources such as barriers.

Verification of Barrier Synchronization

Most existing works on verifying barrier synchronization focus on SPMD programs

[5, 68, 76, 77, 93, 133, 134]. In SPMD programs, the fact that threads execute the

100

5.4. DISCUSSION

same code makes verification more tractable. SMPD programs also assume that bar-

riers are global and all threads need to participate in barrier operations. Hence,

existing techniques for SPMD programs cannot be directly applied to fork/join pro-

grams. This work fills in the gap and addresses barriers in the context of fork/join

concurrency where concurrent threads could execute different pieces of code while

participating in barrier operations. Furthermore, we do not restrict that all threads

should participate, i.e. a group of threads can participate in a certain barrier. We

also support verification of dynamic barriers whose number of participants can vary

during a program’s execution. We are not aware of any related works capable of

verifying dynamic barriers in fork/join programs.

To the best of our knowledge, the most closely related work is by Hobor and

Gherghina [63]: they propose a specification logic for verifying partial correctness of

programs with static barriers. Based on the global phase transition specification of

a barrier, they can also verify that participants proceed in correct phases. However,

there are several critical differences. First, they do not handle dynamic barriers. Sec-

ond, they require a global specification of each barrier, whereby programmers have

to specify pre-state and post-state for each thread for every phase transition over

the barrier. However, there are programs (such as that in Fig. 5-7) where our ap-

proach using phase numbers can verify, but it is not possible to capture a global

specification for its barrier [47]. Though the global specification of each barrier is

an extra annotation burden, they can facilitate resource re-distribution at synchro-

nization points to ensure functional partial correctness. Our current approach using

phase numbers is considerably simpler, but has not yet been designed to support

resource re-distribution. This may be important for more complex usage of barrier

synchronization.

Advanced Forms of Barriers

There are various implementations of barriers [56], and several implementations have

been verified in [96]. Our specification in Fig. 5-6 and 5-9 can serve as a common

interface for verifying different implementations. Besides traditional barriers, other

101

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

advanced forms of barriers such as X10’s clocks and phasers [117, 118] are also used

in the context of async/finish programs. Note that Java 7’s Phaser [49] only includes

a subset of capabilities of the phasers proposed in [118], i.e. Java 7’s Phaser is similar

to dynamic barriers used in .NET [43] (which are the main topic of Section 5.2.3).

Compared with traditional barriers, clocks and phasers are more dynamic in nature

and are only applied to the more tractable context of async/finish programs.

Barrier synchronization in async/finish programs is generally more tractable than

that in fork/join programs for two main reasons. First, thread creation and join in

async/finish programs are lexically-scoped while those in fork/join are non-lexically-

scoped, i.e. fork and join operations can be invoked in different program scopes.

Second, there are restrictions on the usage of clocks and phasers in async/finish

programs [117, 118]. For example, in X10 programs, a newly-spawn thread has to

explicitly register and directly operate on a clock, and it can only register to the

clock that its parent has already registered to. These restrictions reject many useful

programs such as those with nested and/or non-lexical fork/join concurrency. On the

other hand, in fork/join programs written in mainstream languages such as C/C++

(with Pthreads), Java, and .NET, there aren’t such restrictions. A new thread does

not need to register but can still freely own or pass a barrier to other threads. Because

of these reasons, one could not directly apply analyses and verification techniques of

clocks in async/finish programs (e.g. those in [74, 97]) to traditional barriers in

fork/join programs. In contrast, we conjecture that one could adapt our proposed

approach to statically verifying correct synchronization of clocks and phasers.

5.5 Summary

We described a specification and verification approach for ensuring correct synchro-

nization of software barriers. Barriers, provided by many mainstream languages such

as C/C++ (with Pthreads), Java, and .NET, are hard to handle in fork/join programs

because programmers must not only pay special attention to the (possibly dynamic)

number of participating threads, but also ensure that threads proceed in correctly

102

5.5. SUMMARY

synchronized phases. To our knowledge, this is the first work that statically ensures

the correct synchronization of both static and dynamic barriers in fork/join programs.

The keys of our approach are the bounded permissions and phase numbers to keep

track of the number of participating threads and barrier phases respectively. Not re-

stricted to only barriers, bounded permissions can be generally used to reason about

any resources that are shared among a bounded number of concurrent threads. Our

approach has been proven sound, and a prototype of it has been implemented for ver-

ifying barrier synchronization of all but one of the simplified programs in SPLASH-2

benchmark suite within several seconds.

103

CHAPTER 5. VERIFICATION OF BARRIER SYNCHRONIZATION

104

Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

In today’s multi-cores era, verification of shared-memory concurrent programs has

become an important research challenge to improve reliability of software systems.

In this thesis, we addressed key aspects of verifying concurrent programs, namely

verifying partial correctness, data-race freedom, and synchronization properties (i.e.

deadlock freedom and correct barrier synchronization) of shared-memory concurrent

programs manipulating commonly-used constructs such as fork/join, locks, and barri-

ers. This thesis makes the following three major contributions. First, we proposed the

threads as resource approach for verifying partial correctness and data-race freedom of

programs with first-class threads using fork/join concurrency. The approach enables

flexible treatment of threads and allows for threads’ liveness to be explicitly tracked.

The “threads as resource” approach provided an infrastructure for our subsequent

contributions on verification of deadlock freedom and barrier synchronization. Sec-

ond, we developed an expressive framework for verifying different deadlock-freedom

scenarios including double lock acquisition, interactions between thread fork/join and

lock acquire/release, and unordered locking. In particular, our framework guaranteed

deadlock freedom of programs with interactions between thread fork/join and lock

acquire/release operations, which have not been fully studied. Third, we introduced

105

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

an approach using bounded permissions for verifying both static and dynamic barrier

synchronization in fork/join programs. Static verification of barrier synchronization

is desirable but hard and has almost been neglected in the context of fork/join pro-

grams. In this thesis, we provided the first approach for verifying both static and

dynamic barrier synchronization in fork/join programs.

Our main contributions are detailed below.

1. Threads as Resource: In mainstream languages, threads are first-class in

that they can be dynamically created, stored in data structures, passed as pa-

rameters, and returned from procedures. Reasoning about first-class threads

is challenging because threads are dynamic and non-lexically-scoped in nature.

A thread can be dynamically created in a procedure (or a thread), but shared

and joined in other procedures (or threads). There exist approaches that can

support threads in fork/join programs, e.g. [51, 60, 65, 91]. These approaches

support reasoning about threads in a restricted way where threads are often

represented by unique tokens that can neither be split nor shared. As such,

they do not fully consider threads as first-class and are incapable of verifying

intricate fork/join behaviors such as the multi-join pattern.

In Chapter 3, we proposed “threads as resource” to support more expressive

treatment of first-class threads. Our approach allows the ownership of a thread

(and its resource) to be flexibly split, combined, and (partially) transferred

across procedure and thread boundaries. We illustrated the utility of our ap-

proach in handling three problems. First, we verified the multi-join pattern

where threads are shared among concurrent threads and are joined multiple

times in different threads. Second, using inductive predicates, we showed how

our approach naturally captures the threadpool idiom where threads are stored

in data structures. Lastly, we presented how thread liveness is precisely tracked.

To demonstrate the feasibility of the approach, we implemented it in a tool.

Experimental results demonstrated its expressiveness while achieving reason-

able verification performance. The tool was able to verify a set of small-sized

106

6.1. THESIS SUMMARY

but intricate concurrent programs in less than three seconds. The “threads

as resource” approach provided an infrastructure for our subsequent works on

verifying deadlock freedom and barrier synchronization. Last but not least,

inspired by the notion of “threads as resource”, we presented our proposed

“flow-aware resource predicate”, a variant of Concurrent Abstract Predicates

(CAP) [33, 36, 121]. Flow-aware resource predicates explicitly track resources

that flow into and out of their shared abstraction. Resources of such a predicate

can be more flexibly split and transferred across procedure and thread bound-

aries, in a similar way to “threads as resource”. This allows for verification of

various concurrency mechanisms, including and beyond first-class threads.

2. Verification of Deadlock Freedom: Several recent verification frameworks

have been proposed to reason about concurrent programs with dynamically-

created threads and locks [45, 51, 52, 61]. Most are designed to ensure pro-

gram correctness but make no explicit mention of potential deadlock problems.

This is a kind of partial correctness consideration whereby non-termination and

deadlock problems are ignored. Chalice [90, 91], the state-of-the-art deadlock

verification framework, uses locklevels as a handle to prevent deadlocks that

arise from double acquisition and unordered locking. However, Chalice does

not fully guarantee deadlock freedom, as it is not designed to handle deadlocks

due to the interactions between thread and lock operations.

In Chapter 4, we proposed an expressive specification and verification framework

for ensuring deadlock freedom of programs that manipulate non-recursive locks.

We introduced a novel delayed lockset checking technique to guarantee deadlock

freedom of programs with interactions between thread and lock operations.

With disjunctive formulae, we highlighted how an abstraction based on precise

lockset can be supported in our framework. By combining our technique with

locklevels, we proposed a unified formalism for ensuring deadlock freedom from

(1) double lock acquisition, (2) interactions between thread fork/join and lock

acquire/release, and (3) unordered locking. We conducted an experimental

107

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

comparison with Chalice on a set of hand-crafted programs covering various

scenarios such as double lock acquisition, interactions between thread and lock

operations, and unordered locking. Experimental evaluation showed that, our

approach correctly verifies all programs while Chalice is unable to correctly

verify 4 out of 11 programs with intricate interactions between thread fork/join

and lock acquire/release. Currently, our framework only supports non-recursive

locks. Lockbags could be incorporated into the framework to verify programs

with recursive locks as well.

3. Verification of Barrier Synchronization: Besides locks, barriers are among

the most commonly-used concurrency constructs. Verifying correct synchro-

nization of barriers has been shown to be desirable at least in the context of

SPMD programs [68, 76, 93, 134], as this can provide compilers and analy-

sers with important phasing information for improving the precision of their

analyses and optimizations such as reducing false sharing [68], may-happen-in-

parallel analysis [93, 134], and data race detection [76]. However, in the context

of fork/join programs, verification of barrier synchronization has almost been

neglected. Static verification of barrier synchronization in fork/join programs

is hard because programmers not only must keep track of (possibly dynamic)

number of participating threads, but also have to ensure that all participants

progress in correctly synchronized phases.

In Chapter 5, we proposed an approach for verifying correct synchronization

of static and dynamic barriers in fork/join programs. This is achieved by a

new permission system, called bounded permissions, to enable reasoning about

bounded resources (which are typically shared among only a bounded num-

ber (or a group) of concurrent threads). For verifying static barriers, bounded

permissions and phase numbers are used to keep track of the number of par-

ticipants and barrier phases respectively. For verifying dynamic barriers, we

introduced dynamic bounded permissions to further keep track of the additions

and/or removals of participants. To the best of our knowledge, our work is the

108

6.2. FUTURE DIRECTIONS

first to verify synchronization of both static and dynamic barriers in fork/join

programs. This approach has proven to be sound, and a prototype of it has

been applied to verify barrier synchronization of all but one of the simplified

programs in SPLASH-2 benchmark suite within several seconds. The expres-

sivity of our approach can be enhanced to allow for resource re-distribution to

verify more complex barrier synchronization usage. Automatically discovery

of barrier specification while still ensuring deadlock freedom in the presence of

multiple barriers is another possible enhancement. Reasoning about programs

with both barriers and locks is beyond the capabilities of current state-of-the-art

systems, and is a challenging topic to pursue.

6.2 Future Directions

Our above works offer two main directions for future investigation: (1) more expressive

verification of software barriers, and (2) specification and verification of concurrent

programs under C/C++11 relaxed memory model.

More Expressive Verification of Software Barriers

A closely related future work is to increase the expressiveness of our approach for

verification of barrier synchronization. Although the experiment in Section 5.3 showed

that the approach could handle many intricate programs, there are still challenging

open problems that we list below.

Functional Correctness vs. Barrier Synchronization

In our approach, threads are correctly synchronized on a barrier if they end up

with the same (determinable) phase numbers. However, there are programs (such

as radiosity program in SPLASH-2 suite [130]) where the phase numbers are tightly

coupled with functional correctness, and are difficult or unable to be determined

statically. A fragment of radiosity program is shown in Fig. 6-1. The bar-

109

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

rier barrier is used within the while loop which terminates only when the solu-

tion converges (by calling the procedure init ray tasks to check for convergence).

/* ... perform ray-gathering till

the solution converges */

while(init ray tasks(...)) {

wait(barrier);

process tasks(...);

}

Figure 6-1: A Fragment of radiosity

The init ray tasks procedure only al-

lows one thread (the first thread en-

tering) to check for convergence and

to update a global variable while other

threads only read that variable. Such

barrier phasing, therefore, is deeply cor-

related with functional correctness of the

program (i.e. the convergence) which

could not be captured by our existing

approach. However, the approach could

be extended to verify this type of programs by considering the use of existential phase

numbers, and resource re-distribution for capturing the complex exchange of resource

across barrier phases. This could potentially allow us to reason about resource dis-

tribution and deadlock freedom of programs with both barriers and locks.

Deadlock-free Multiple Barriers

b1 = new barrier(2);

b2 = new barrier(2);

//thread1 //thread2

wait(b1); wait(b2);

wait(b2); wait(b1);

Figure 6-2: Deadlock due to Multiple

Barriers

Correct synchronization is a property

weaker than deadlock freedom (or termi-

nation): it ensures deadlock freedom in

case of a single barrier. When using multi-

ple barriers, their synchronization patterns

could potentially lead to deadlocks. For

example, the program in Fig. 6-2 dead-

locks because thread1 blocks at barrier b1

waiting for thread2 to participate while

thread2 also blocks at barrier b2 waiting for thread1 to participate. We plan to

extend our existing approach with barrier expressions to capture patterns of par-

110

6.2. FUTURE DIRECTIONS

ticipating in multiple barriers. Together with the phase numbers, by proving that

the barrier expressions of different participants are compatible, we could guarantee

deadlock freedom. Patterns of participating in multiple barriers have been used in

verification of SPMD programs with static barriers [5, 77, 134]. However, adapting

them to verification of fork/join programs with dynamic barriers is non-trivial. This

is not only because we need to address the unstructured nature of fork/join programs

(in SPMD programs, threads execute the same code while, in fork/join programs,

they execute different pieces of code), but also because we need to handle dynamic

allocation/deallocation and addition/removals of participants in a modular way.

Inferring Barrier Specification

Specifications are important for verifying shared-memory programs. Nonetheless,

manually writing specifications is laborious and tedious. Hence, it is often desirable

to infer the specifications automatically [23, 24, 86, 92]. However, no existing work

is able to infer barrier specifications. Our goal is to precisely infer the number of

threads participating in a barrier and the current barrier phase. In the presence of

multiple barriers, our approach will also discover whether the synchronization pattern

could potentially deadlock. Furthermore, since concurrent threads progress in phases,

threads could access different resources in different phases, i.e. the resources are

differently distributed among threads in different phases. Previous work [63] deals

with program verification in the presence of resource re-distribution, but it does not

provide any inference support. We could identify the set of resources used by each

thread in each barrier phase and automatically discover the global barrier specification

that describes the resource re-distribution, even in the presence of varying number of

synchronized threads, while still ensuring deadlock freedom.

Verification of C/C++11 Concurrent Programs

In this thesis, we assumed a sequentially consistent memory model. However, current

multi-processor architectures such as ARM and Power use relaxed memory models.

111

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

To exploit these multi-processors efficiently, modern programming languages pro-

vide weak guarantees on the ordering of concurrent memory accesses, i.e. different

threads observe memory operations in different orders. The relaxed memory model

presented in the new C/C++ language standards (ISO/IEC 9899:2011 and ISO/IEC

14882:2011) is a case in point. The memory model allows for atomic memory opera-

tions – such as relaxed atomic, consume atomic, acquire atomic, release atomic, and

sequentially consistent atomic – with weaker semantics than sequential consistency.

However, using these atomic operations is very challenging because programmers

have to reason about all these subtle semantics to ensure correctness. Hence, there is

growing interest in specifying and verifying concurrent programs under the C/C++11

relaxed memory model [8, 104, 125]. Our ambition is to apply our experience in speci-

fication and verification of concurrent programs to verify the correctness of C/C++11

programs with the new relaxed memory model.

Specifically, while most current works focus on the release-acquire fragment of

C/C++ [8, 124, 125], the release-consume fragment is still very challenging for ver-

ification. In the fragment, only dependent ownerships are allowed to be transferred

via an atomic (release) write and an atomic (consume) read. Our idea is to record

dependencies using dependency specifications and allow data dependencies to be ex-

plicitly captured and transferred (i.e. “dependencies as resource”). We then use the

dependency specifications to enable the transfer of dependent ownerships, and conse-

quently allow reasoning about programs written under the release-consume fragment

of C/C++11.

112

References

[1] NetBSD Problem Report 42900. http://gnats.netbsd.org/42900.

[2] The Open Group Base Specifications Issue 7 IEEE Std 1003.1-2008.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html.

[3] Cambridge University Study States Software Bugs Cost Econ-

omy $312 Billion Per Year, (retrieved on 26 Nov 2013).

http://www.prweb.com/releases/2013/1/prweb10298185.htm.

[4] Chalice @ rise4fun from Microsoft, (retrieved on 29 July 2014).

http://rise4fun.com/Chalice/.

[5] A. Aiken and D. Gay. Barrier Inference. In ACM Symposium on Principles of

Programming Languages, pages 342–354, 1998.

[6] M. F. Atig, A. Bouajjani, M. Emmi, and A. Lal. Detecting Fair Non-termination

in Multithreaded Programs. In International Conference on Computer-Aided

Verification, pages 210–226, 2012.

[7] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg. The Static

Driver Verifier Research Platform. In International Conference on Computer-

Aided Verification, pages 119–122, 2010.

[8] M. Batty, M. Doddsm, and A. Gotsman. Library Abstraction for C/C++

Concurrency. In ACM Symposium on Principles of Programming Languages,

pages 235–248, 2013.

113

REFERENCES

[9] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular Automatic

Assertion Checking with Separation Logic. In Formal Methods for Components

and Objects, pages 115–137, 2005.

[10] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with Sepa-

ration Logic. In Asian Symposium on Programming Languages And Systems,

pages 52–68, 2005.

[11] K. Bierhoff and J. Aldrich. Modular Typestate Checking of Aliased Objects.

In ACM Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 301–320, 2007.

[12] S. Blom and M. Huisman. The VerCors Tool for Verification of Concurrent

Programs. In International Symposium on Formal Methods, pages 127–131,

2014.

[13] S. Blom, J. Kiniry, and M. Huisman. How Do Developers Use APIs? A Case

Study in Concurrency. In IEEE International Conference on Engineering of

Complex Computer Systems, pages 212–221, 2013.

[14] H.-J. Boehm. Threads Cannot Be Implemented as a Library. In ACM SIGPLAN

Conf. on Programming Language Design and Implementation, pages 261–268,

2005.

[15] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission Account-

ing in Separation Logic. In ACM Symposium on Principles of Programming

Languages, pages 259–270, 2005.

[16] R. Bornat, C. Calcagno, and H. Yang. Variables as Resource in Separation

Logic. Electronic Notes in Theoretical Computer Science, 155:247–276, 2006.

[17] C. Boyapati, R. Lee, and M. C. Rinard. Ownership Types for Safe Program-

ming: Preventing Data Races and Deadlocks. In ACM Conference on Object-

114

REFERENCES

Oriented Programming Systems, Languages, and Applications, pages 211–230,

2002.

[18] J. Boyland. Checking Interference with Fractional Permissions. In International

Static Analysis Symposium, pages 55–72, 2003.

[19] S. Brookes. Variables as Resource for Shared-Memory Programs: Semantics

and Soundness. Electronic Notes in Theoretical Computer Science, 158:123–

150, 2006.

[20] S. Brookes. A Semantics for Concurrent Separation Logic. Theoretical Computer

Science, 375:227–270, 2007.

[21] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Profes-

sional, 1997.

[22] Y. Cai and W. K. Chan. MagicFuzzer: Scalable Deadlock Detection for Large-

scale Applications. In International Conference on Software Engineering, pages

606–616, 2012.

[23] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional Shape

Analysis by Means of Bi-Abduction. Journal of ACM, 58(6):26, 2011.

[24] C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive Resource Invariant

Synthesis. In Asian Symposium on Programming Languages And Systems, pages

259–274, 2009.

[25] C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular Safety Checking for

Fine-Grained Concurrency. In International Static Analysis Symposium, pages

233–248, 2007.

[26] W.N. Chin, C. David, H.H. Nguyen, and S. Qin. Multiple Pre/Post Speci-

fications for Heap-Manipulating Methods. In IEEE High Assurance Systems

Engineering Symposium, pages 357–364, 2007.

115

REFERENCES

[27] E. G. Coffman, M. J. Elphick, and A. Shoshani. System Deadlocks. ACM

Computing Surveys, 3(2):67–78, 1971.

[28] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond Safety. In

International Conference on Computer-Aided Verification, pages 415–418, 2006.

[29] B. Cook, A. Podelski, and A. Rybalchenko. Proving Program Termination.

Communications of the ACM, 54(5):88–98, 2011.

[30] E. D. Demaine. C to Java: Converting Pointers into References. Concurrency

- Practice and Experience, 10(11–13):851–861, 1998.

[31] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang. Views:

Compositional Reasoning for Concurrent programs. In ACM Symposium on

Principles of Programming Languages, pages 287–300, 2013.

[32] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis.

Concurrent Abstract Predicates. In European Conference on Object-Oriented

Programming, pages 504–528, 2010.

[33] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis.

Concurrent Abstract Predicates. In European Conference on Object-Oriented

Programming, pages 504–528, 2010.

[34] R. Dockins, A. Hobor, and A. W. Appel. A Fresh Look at Separation Algebras

and Share Accounting. In Asian Symposium on Programming Languages And

Systems, pages 161–177, 2009.

[35] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-Guarantee Reason-

ing. In European Symposium on Programming, pages 363–377, 2009.

[36] M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular Reasoning for De-

terministic Parallelism. In ACM Symposium on Principles of Programming

Languages, pages 259–270, 2011.

116

REFERENCES

[37] A. Dolzmann, A. Seidl, and T. Sturm. Redlog User Manual - Edition 3.1, for

REDLOG Version 3.06. 2006.

[38] X. Feng. Local Rely-Guarantee Reasoning. In ACM Symposium on Principles

of Programming Languages, pages 315–327, 2009.

[39] X. Feng, R. Ferreira, and Z. Shao. On the Relationship between Concurrent

Separation Logic and Assume-Guarantee Reasoning. In European Symposium

on Programming, pages 173–188, 2007.

[40] X. Feng and Z. Shao. Modular Verification of Concurrent Assembly Code with

Dynamic Thread Creation and Termination. In ACM SIGPLAN International

Conference on Functional Programming, pages 254–267, 2005.

[41] P. Ferrara and P. Müller. Automatic Inference of Access Permissions. In In-

ternational on Verification, Model Checking, and Abstract Interpretation, pages

202–218, 2012.

[42] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.

Extended Static Checking for Java. In ACM SIGPLAN Conf. on Programming

Language Design and Implementation, pages 234–245, 2002.

[43] A. Freeman. Pro .NET 4 Parallel Programming in C#. Apress, 2010.

[44] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5

Multithreaded Language. In ACM SIGPLAN Conf. on Programming Language

Design and Implementation, pages 212–223, 1998.

[45] M. Fu, Y. Zhang, and Y. Li. Formal Reasoning about Concurrent Assembly

Code with Reentrant Locks. In IEEE International Symposium on Theoretical

Aspects of Software Engineering, pages 233–240, 2009.

[46] P. Gerakios, N. Papaspyrou, and K. F. Sagonas. A Type and Effect System

for Deadlock Avoidance in Low-level Languages. In Workshop on Types in

Languages Design and Implementation, pages 15–28, 2011.

117

REFERENCES

[47] C. Gherghina. Personal communication, 2013.

[48] C. Gherghina, C. David, S. Qin, and W.N. Chin. Structured Specifications for

Better Verification of Heap-Manipulating Programs. In International Sympo-

sium on Formal Methods, pages 386–401, 2011.

[49] J. F. González. Java 7 Concurrency Cookbook. Packt Pub Limited, 2012.

[50] C. S. Gordon, M. D. Ernst, and D. Grossman. Static Lock Capabilities for

Deadlock Freedom. In Workshop on Types in Languages Design and Imple-

mentation, pages 67–78, 2012.

[51] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local Reason-

ing for Storable Locks and Threads. In Asian Symposium on Programming

Languages And Systems, pages 19–37, 2007.

[52] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s Reentrant

Locks. In Asian Symposium on Programming Languages And Systems, pages

171–187, 2008.

[53] C. Haack, M. Huisman, and C. Hurlin. Permission-Based Separation Logic for

Multithreaded Java Programs. Newsletter of the NVTI, 2011.

[54] C. Haack and C. Hurlin. Separation Logic Contracts for a Java-Like Language

with Fork/Join. In International Conference on Algebraic Methodology and

Software Technology, pages 199–215, 2008.

[55] S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers. Fractional Permissions

Without the Fractions. In International Workshop on Formal Techniques for

Java-like Programs, 2011.

[56] J. M. D. Hill and D. B. Skillicorn. Practical Barrier Synchronisation. In Eu-

romicro International Conference on Parallel, Distributed, and Network-Based

Processing, pages 438–444, 1998.

118

REFERENCES

[57] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communi-

cations of the ACM, 12(10):576–580, 1969.

[58] C. A. R. Hoare. Towards a Theory of Parallel Programming, pages 61–71.

Academic Press, 1972.

[59] C. A. R. Hoare. The Verifying Compiler: A Grand Challenge for Computing

Research. Journal of ACM, 50:63–69, 2003.

[60] A. Hobor. Oracle Semantics. PhD thesis, Princeton University, 2008.

[61] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle Semantics for Concurrent

Separation Logic. In European Symposium on Programming, pages 353–367,

2008.

[62] A. Hobor and C. Gherghina. Barriers in Concurrent Separation Logic. In

European Symposium on Programming, pages 276–296, 2011.

[63] A. Hobor and C. Gherghina. Barriers in Concurrent Separation Logic: Now

With Tool Support! Logical Methods in Computer Science, 8(2), 2012.

[64] S. Ishtiaq and P. W. O’Hearn. BI as an Assertion Language for Mutable Data

Structures. In ACM Symposium on Principles of Programming Languages,

pages 14–26, 2001.

[65] B. Jacobs and F. Piessens. Expressive Modular Fine-grained Concurrency Spec-

ification. In ACM Symposium on Principles of Programming Languages, pages

271–282, 2011.

[66] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.

VeriFast: a Powerful, Sound, Predictable, Fast Verifier for C and Java. In

International Conference on NASA Formal Methods, pages 41–55, 2011.

119

REFERENCES

[67] B. Jacobs, J. Smans, and F. Piessens. A Quick Tour of the VeriFast Program

Verifier. In Asian Symposium on Programming Languages And Systems, pages

304–311, 2010.

[68] T. E. Jeremiassen and S. J. Eggers. Static Analysis of Barrier Synchroniza-

tion in Explicitly Parallel Programs. In International Conference on Parallel

Architecture and Compilation Techniques, pages 171–180, 1994.

[69] C. B. Jones. Specification and Design of (Parallel) Programs. In IFIP Congress,

pages 321–332, 1983.

[70] C. B. Jones. Wanted: a Compositional Approach to Concurrency, pages 5–15.

2003.

[71] C. B. Jones. Balancing Expressiveness in Formal Approaches to Concurrency.

Technical report, Newcastle University, 2013.

[72] C. B. Jones, P. W. O’Hearn, and J. Woodcock. Verified Software: A Grand

Challenge. IEEE Computer, 39(4):93–95, 2006.

[73] P. Joshi, M. Naik, K. Sen, and D. Gay. An Effective Dynamic Analysis for

Detecting Generalized Deadlocks. In International Symposium on Foundations

of Software Engineering, pages 327–336, 2010.

[74] S. Joshi, R. K. Shyamasundar, and S. K. Aggarwal. A New Method of MHP

Analysis for Languages with Dynamic Barriers. In IEEE International Parallel

and Distributed Processing Symposium Workshops, pages 519–528, 2012.

[75] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav,

A. Slobodov, C. Taylor, V. Frolov, E. Reeber, and A. Naik. Replacing Test-

ing with Formal Verification in Intel CoreTM i7 Processor Execution Engine

Validation. In International Conference on Computer-Aided Verification, pages

414–429, 2009.

120

REFERENCES

[76] A. Kamil and K. A. Yelick. Concurrency Analysis for Parallel Programs with

Textually Aligned Barriers. In International Workshop on Languages and Com-

pilers for Parallel Computing, pages 185–199, 2005.

[77] A. Kamil and K. A. Yelick. Enforcing Textual Alignment of Collectives Using

Dynamic Checks. In International Workshop on Languages and Compilers for

Parallel Computing, pages 368–382, 2009.

[78] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott.

The Omega Library Version 1.1.0 Interface Guide, November 1996.

[79] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS, Depart-

ment of Computer Science, Aarhus University, 2001.

[80] N. Kobayashi. Type-based Information Flow Analysis for the Pi-calculus. Acta

Informatica, 42(4–5):291–347, 2005.

[81] N. Kobayashi. A New Type System for Deadlock-Free Processes. In Interna-

tional Conference on Concurrency Theory, pages 233–247, 2006.

[82] N. Kobayashi and D. Sangiorgi. A Hybrid Type System for Lock-Freedom of

Mobile Processes. ACM Transactions on Programming Languages and Systems,

32(5), 2010.

[83] C. Laffra. A C++ to Java Translator. In Advanced Java: Idioms, Pitfalls,

Styles and Programming Tips, chapter 4. Prentice Hall Computer Books, 1996.

[84] D.K. Le, W.N. Chin, S. Qin, and Y.M. Teo. Flow-Aware Resource Predicates for

Concurrency Verification. Technical report, National University of Singapore,

2014.

[85] D.K. Le, W.N. Chin, and Y.M. Teo. Variable Permissions for Concurrency

Verification. In International Conference on Formal Engineering Methods, pages

5–21, 2012.

121

REFERENCES

[86] Q.L. Le, C. Gherghina, S. Qin, and W.N. Chin. Shape Analysis via Second-

Order Bi-Abduction. In International Conference on Computer-Aided Verifica-

tion.

[87] T.C. Le, C. Gherghina, A. Hobor, and W.N. Chin. A Resource-Based Logic

for Termination and Non-termination Proofs. In International Conference on

Formal Engineering Methods, pages 267–283, 2014.

[88] E. A. Lee. The Problem with Threads. Computer, 39:33–42, 2006.

[89] K. R. Leino, P. Müller, and J. Smans. Verification of Concurrent Programs

with Chalice. In Foundations of Security Analysis and Design V, pages 195–

222. 2009.

[90] K. R. M. Leino and P. Müller. A Basis for Verifying Multi-threaded Programs.

In European Symposium on Programming, pages 378–393, 2009.

[91] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-Free Channels and Locks.

In European Symposium on Programming, pages 407–426, 2010.

[92] B. Li, I. Dillig, T. Dillig, K. L. McMillan, and M. Sagiv. Synthesis of Circular

Compositional Program Proofs via Abduction. In Tools and Algorithms for

Construction and Analysis of Systems, pages 370–384, 2013.

[93] Y. Lin. Static Nonconcurrency Analysis of OpenMP Programs. In International

Workshop on OpenMP, 2005.

[94] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: a Comprehen-

sive Study on Real World Concurrency Bug Characteristics. In International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 329–339, 2008.

[95] Z. D. Luo, R. Das, and Y. Qi. Multicore SDK: A Practical and Efficient Dead-

lock Detector for Real-World Applications. In International Conference on

Software Testing, Verification and Validation, pages 309–318, 2011.

122

REFERENCES

[96] A. Malkis and A. Banerjee. Verification of Software Barriers. In ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 313–314,

2012.

[97] F. Martins, V. T. Vasconcelos, and T. Cogumbreiro. Types for X10 Clocks.

In Workshop on Programming Language Approaches to Concurrency and

Communication-centric Software, pages 111–129, 2010.

[98] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming.

Addison-Wesley Professional, first edition, 2004.

[99] L. Mendonça de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools

and Algorithms for Construction and Analysis of Systems, pages 337–340, 2008.

[100] P. Müller. Personal communication, 2013.

[101] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A Type System for Borrow-

ing Permissions. In ACM Symposium on Principles of Programming Languages,

pages 557–570, 2012.

[102] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective Static Deadlock Detection.

In International Conference on Software Engineering, pages 386–396, 2009.

[103] H.H. Nguyen, C. David, S. Qin, and W.N. Chin. Automated Verification of

Shape and Size Properties via Separation Logic. In International on Verifica-

tion, Model Checking, and Abstract Interpretation, pages 251–266, 2007.

[104] B. Norris and B. Demsky. CDSChecker: Checking Concurrent Data Struc-

tures Written with C/C++ Atomics. In ACM Conference on Object-Oriented

Programming Systems, Languages, and Applications, pages 131–150, 2013.

[105] P. W. O’Hearn. Resources, Concurrency and Local Reasoning. In International

Conference on Concurrency Theory, pages 49–67, 2004.

123

REFERENCES

[106] P. W. O’Hearn. Resources, Concurrency, and Local Reasoning. Theoretical

Computer Science, 375:271–307, 2007.

[107] S. Okur and D. Dig. How Do Developers Use Parallel Libraries? In International

Symposium on Foundations of Software Engineering, page 54, 2012.

[108] J. Ouaknine, H. Palikareva, A. W. Roscoe, and J. Worrell. Static Livelock

Analysis in CSP. In International Conference on Concurrency Theory, pages

389–403, 2011.

[109] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, 1975.

[110] S. Owicki and D. Gries. An Axiomatic Proof Technique for Parallel Programs

I. Acta Informatica, 6:319–340, 1976.

[111] S. Owicki and D. Gries. Verifying Properties of Parallel Programs: an Axiomatic

Approach. Communications of the ACM, 19:279–285, 1976.

[112] M. Parkinson, R. Bornat, and C. Calcagno. Variables as Resource in Hoare

Logics. In IEEE Logic In Computer Science, pages 137–146, 2006.

[113] D. Patterson. The Trouble with Multi-core. IEEE Spectrum, 47:28–32, 2010.

[114] U. S. Reddy and J. C. Reynolds. Syntactic Control of Interference for Separation

Logic. In ACM Symposium on Principles of Programming Languages, pages

323–336, 2012.

[115] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.

In IEEE Logic In Computer Science, pages 55–74, 2002.

[116] L.G. Roberts. Beyond Moore’s Law: Internet Growth Trends. IEEE Computer,

33:117–119, 2000.

[117] V. A. Saraswat and R. Jagadeesan. Concurrent Clustered Programming. In

International Conference on Concurrency Theory, pages 353–367, 2005.

124

REFERENCES

[118] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer III. Phasers: a Unified

Deadlock-free Construct for Collective and Point-to-point Synchronization. In

International Conference on Supercomputing, pages 277–288, 2008.

[119] J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames. ACM Trans-

actions on Programming Languages and Systems, 34(1):2, 2012.

[120] K. Suenaga. Type-Based Deadlock-Freedom Verification for Non-Block-

Structured Lock Primitives and Mutable References. In Asian Symposium on

Programming Languages And Systems, pages 155–170, 2008.

[121] K. Svendsen, L. Birkedal, and M. J. Parkinson. Modular Reasoning about

Separation of Concurrent Data Structures. In ESOP, pages 169–188, 2013.

[122] N. Tillmann and J. De Halleux. Pex: White Box Test Generation for .NET. In

International Conference on Tests and Proofs, pages 134–153, 2008.

[123] T. Tuerk. A Separation Logic Framework for HOL. PhD thesis, University of

Cambridge, 2011.

[124] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating Weak Memory with

Ghosts, Protocols, and Separation. In ACM Conference on Object-Oriented

Programming Systems, Languages, and Applications, pages 691–707, 2014.

[125] V. Vafeiadis and C. Narayan. Relaxed Separation Logic: A Program Logic

for C11 Concurrency. In ACM Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 867–884, 2013.

[126] V. Vafeiadis and M. Parkinson. A Marriage of Rely/Guarantee and Separation

Logic. In International Conference on Concurrency Theory, pages 256–271,

2007.

[127] J. Villard, É Lozes, and C. Calcagno. Proving Copyless Message Passing. In

Asian Symposium on Programming Languages And Systems, pages 194–209,

2009.

125

REFERENCES

[128] A. Williams, W. Thies, and M. D. Ernst. Static Deadlock Detection for Java

Libraries. In European Conference on Object-Oriented Programming, pages 602–

629, 2005.

[129] J. M. Wing. FAQ on Pi-calculus. In Microsoft Internal Memo, 2002.

[130] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Pro-

grams: Characterization and Methodological Considerations. In International

Symposium on Computer Architecture, 1995.

[131] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad Hoc Synchronization

Considered Harmful. In USENIX Conference on Operating Systems Design and

Implementation, pages 1–8, 2010.

[132] H. Yang and P. W. O’Hearn. A Semantic Basis for Local Reasoning. In Foun-

dations of Software Science and Computation Structures, pages 402–416, 2002.

[133] Y. Zhang and E. Duesterwald. Barrier Matching for Programs with Textually

Unaligned Barriers. In ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, pages 194–204, 2007.

[134] Y. Zhang, E. Duesterwald, and G. R. Gao. Concurrency Analysis for Shared

Memory Programs with Textually Unaligned Barriers. In International Work-

shop on Languages and Compilers for Parallel Computing, 2007.

126

Appendix A

Variable Permissions

Overview. Access permissions have recently attracted much attention for reasoning

about heap-manipulating concurrent programs [15, 18, 41, 51, 55, 61, 65]. Each heap

location is associated with a permission and a thread can access a location if and

only if it has the access permission for that location. Permissions can be flexibly

transferred among callers and callees of the same threads or among different threads.

A thread needs a certain fraction of a permission to read a location, but it has to own

the full permission in order to perform a write. This guarantees data-race freedom in

the presence of concurrent accesses to heap locations.

Program variables1 can also be shared among threads and are prone to data races.

Therefore, one may adopt a similar scheme, designed for heap locations, to reason

about variables. “Variables as resource” [16, 112] indeed uses such a permission

scheme for variables. Each variable x is augmented with a predicate Own(x, π) where

π denotes the permission to access x. The permission domain is either (0,1] for frac-

tional permissions [18] or [0,∞) for counting permissions [15]. This allows variables

to be treated in the same way as heap locations. However, this permission scheme is

more complex and places higher burden on programmers to figure out the fraction to

be associated to a variable and how to perform permission accounting properly [15].

To the best of our knowledge, we are not aware of any existing verifiers that have

1We mean either global variables or local variables; as distinct from heap locations.

127

APPENDIX A. VARIABLE PERMISSIONS

fully implemented the idea. Smallfoot [9] uses side-conditions to outlaw conflict-

ing accesses to variables. This, however, requires subtle, global, and hard-to-check

conditions that a compiler should ensure [16, 114]. Similarly, Chalice [89, 90], a

program verifier developed for concurrency verification, does not support permissions

for variables in method bodies. Even Verifast [65, 66], the state-of-the-art veri-

fier, still does not naturally support concurrency reasoning using variables, though

it has support for variables by simulating them as heap locations. Consequently, ex-

isting verification systems narrow the programmers’ choice to heap locations instead

of variables for shared accesses by concurrent threads at the expense of losing the

expressivity and simplicity that variables provide.

In this appendix, we argue that variables with their own characteristics could be

treated in a much simpler way than heap locations. Firstly, each variable is distinct;

therefore, aliasing issue required for heap locations can be ignored for variables in

most cases. Secondly, if several threads need to concurrently read a variable, the main

thread holding the full permission of the variable can just give each child thread a copy

of the variable through pass-by-value mechanism. If concurrent threads require write

access to the same variable, this shared variable can be protected by a mutex lock

whose invariant holds the full permission of the variable. Lastly, if only one thread

requires a write access to a given variable, we can simply pass the full permission

of the variable into the thread (through pass-by-reference) whose permission is only

returned when the child thread joins the main thread. This scheme allows concurrent

but race-free accesses to variables.

Nonetheless, there are two scenarios where the above scheme is inadequate. The

first scenario occurs in languages such as C/C++ when some variables can be aliased

through the use of the address-of operator &. The second scenario occurs when con-

current threads require phased accesses to shared variables, e.g. concurrent threads

safely read prior to writing to shared variables. In both scenarios, we propose to au-

tomatically translate the affected variables into pseudo-heap locations where a more

complex heap permission scheme is utilized.

128

A.1. MOTIVATING EXAMPLE

Because of the above observations, we propose to simply assign a permission of

either full or zero to a variable. We can utilize heap (or pseudo-heap) locations to

complement our concurrent programming model, where necessary, and also readily

use variables, where sufficient. The net result is a rich but still verifiable program-

ming paradigm for concurrent threads. We shall show that our treatment of variable

permissions is sound and expressive to capture programming models such as POSIX

threads [21] and Cilk [44]. To relieve programmers from annotation efforts, we shall

demonstrate an algorithm to automatically infer variable permissions by only looking

at procedure specifications. We shall also provide a translation scheme to handle the

variable aliasing (that can also be used for variables requiring phased accesses) and

thus complement our treatment of variable permissions.

Contributions. In this appendix, we make the following contributions:

• A simpler treatment of variable permissions to ensure safe concurrent accesses

to program variables, as distinct from heap locations (Section A.1 and A.2.2).

We also demonstrate the applicability of our scheme to popular programming

models such as POSIX threads and Cilk (Section A.2.5).

• An algorithm to automatically infer variable permissions from procedure spec-

ifications. This helps to reduce program annotations (Section A.2.3).

• A translation scheme to eliminate variable aliasing for the purpose of program

verification (Section A.2.4). We present how to translate programs with pointers

and address-of operator (&) into our core language (Section A.2.1).

A.1 Motivating Example

This section illustrates our treatment of variable permissions to reason about con-

current programs. Figure A-1 shows an example illustrating the widely-used task-

decomposition pattern in concurrent programming. The main procedure invokes the

creator procedure to create a concurrent task and later performs a join to collect its

129

APPENDIX A. VARIABLE PERMISSIONS

result. In this example, the main procedure creates two local variables x and y, and

passes them to the creator. The creator forks a child thread that increases x by 1,

and itself increases y by 2. The identifier tid of the child thread is returned to the

main procedure which will later perform a join.

void inc(ref int i,int j)

requires @full [i] ∧@value[j]

ensures @full [i] ∧ i ′=i+j ;

{ i=i+j; }

thrd creator(ref int x,ref int y)

requires @full [x , y]

ensures res 7−→ thrd〈@full [x]∧x ′=x+1 〉

∧@full [y] ∧ y ′=y+2

{ thrd tid = fork(inc,x,1);

inc(y,2);

return tid;

}

void main()

requires emp ensures emp;

{ thrd id;

int x=0,y=0;

id = creator(x,y);

...

join(id);

assert (x’+y’=3);

}

Figure A-1: A Motivating Example

This example shows a fairly compli-

cated inter-procedural passing of vari-

ables between the main thread and the

child thread. It poses two challenges:

(i) how to describe the fact that any ac-

cesses to x after forking the child thread

and before joining it are unsafe, and (ii)

how to propagate this fact across pro-

cedure boundaries. These issues can be

resolved soundly and modularly by our

proposed variable permissions.

Modular reasoning is achieved by

augmenting the program’s specifications

with variable permissions: @full [...] and

@value[...]. In pre-conditions (speci-

fied after requires keyword), @full [v∗]

and @value[v∗] denote lists of pass-by-

reference and pass-by-value parameters.

If a variable is passed by reference, the

caller transfers the full permission of

that variable to the callee. If a vari-

able is passed by value, only a copy of

that variable is passed to the callee and

the caller still has the full permission of

that variable. In post-conditions (after

130

A.1. MOTIVATING EXAMPLE

ensures keyword), @full [v∗] specifies the transfer of full permissions from the callee

back to the caller via pass-by-reference parameters. Note that callers and callees can

be in a single thread in case of normal procedure calls or in different threads in case

of asynchronous calls via fork/join.

In this example, the main procedure transfers the full permissions of x and y to the

creator (specified in its precondition as @full [x, y]). When forking a new child thread

executing the inc procedure, the main thread transfers the full permission of x to the

child thread (using pass-by-reference mechanism). This effect can be seen in the post-

condition of the creator where we have two concurrent threads: after giving up the

full permission of x, the main thread retains the full permission of y (@full [y]) while

the child thread (represented by the thread node res 7−→ thrd〈@full [x] ∧ x′=x+1〉)

holds the full permission of x (@full [x]). Thus, prior to invoking a join to merge

back the child thread, the main thread has zero permission of x and is not allowed

to access it (neither read nor write). This ensures data-race freedom since only one

thread at a time can have the full permission of x.

In the specification, we use a thread node (i.e. “threads as resource”) to capture

the child thread and the keyword res to represent the return value of a procedure call

(in case of creator, the return value is the thread identifier tid of the child thread).

Additionally, we use primed notation to handle updates to variables. The primed

version x′ of a variable x denotes its latest value; the unprimed version x denotes its

initial value (i.e. its value at the beginning of the procedure). Note that a variable x

and its primed version x′ can be related but are two different logical variables.

One may think that this treatment of variable permissions can be easily captured

through parameter passing, e.g. for each reference parameter v, just add an @full [v]

in the main thread of both pre- and post-conditions. However, this simple assumption

may not hold in the context of concurrency. The key question is which thread holds

full permission of a given variable. The full permission can belong to the main thread

in the pre-condition but later it is transferred to a child thread in the post-condition

and vice versa. For example, in the creator, the main thread has @full [x] in the

131

APPENDIX A. VARIABLE PERMISSIONS

pre-condition but this permission is later transferred to the child thread in the post-

condition. In summary, the goal of our scheme is to succinctly manage the transfer

of variable permissions among threads in a sound and modular manner.

A.2 Proposed Approach

A.2.1 Programming and Specification Languages

proc decl ::= ret type pn(param∗) spec∗ { s } Procedure declaration

param ::= type v | ref type v Parameter

Figure A-2: Programming Language with Pass-by-Reference

We enhance our core programming language in Section 3.2.1 with the abilities to

pass parameters both by reference (ref) and by value (Fig. A-2).

Separation formula Φ ::=
∨

(∃v∗ · κ ∧ ν ∧ π)
Heap formula κ ::= emp | ι | κ1 * κ2

Atomic heap formula ι ::= v
ε7−→ C(v∗) | v 7−→ thrd〈Φ〉

Vperm formula ν ::= @zero[v∗] | @full [v∗] | @value[v∗]
| ν1 ∧ ν2 | ν1 ∨ ν2

Pure formula π ::= ...

Fractional permission variable ε ∈ (0,1] C ∈ Data names v ∈ Variables

Figure A-3: Specification Language with Variable Permissions

Figure A-3 shows our rich specification language for concurrent programs ma-

nipulating variables and heap locations. For variables, we use variable permissions.

For heap locations, we support fractional permissions ε [18]. Most of the language

features are similar to those explained in previous chapters. The newly added com-

132

A.2. PROPOSED APPROACH

ponent is the vperm formula ν describing permissions of variables. We will elaborate

more about ν in Section A.2.2.

A.2.2 Verification Rules

Formalism.

In order to ensure safe concurrent accesses to variables, we use two key annotations

for variable permissions:

• @full [v∗] specifies the full permissions of a list of variables v∗. In pre-conditions,

it means that v∗ is a list of pass-by-reference parameters. In post-conditions, it

captures the return of permissions to callers.

• @value[v∗] only appears in pre-conditions to specify a list of pass-by-value pa-

rameters v∗.

@full [S] ∧ v 6∈S ` @full [v] ; fail FAIL−1

@full [S] ∧ v 6∈S ` @value[v] ; fail FAIL−2

v ∈ S

@full [S] ` @full [v] ; @full [S−{v}] P−REF

v ∈ S

@full [S] ` @value[v] ; @full [S]
P−VAL

@full [S1] ∧@full [S2] ; @full [S1 ∪ S2] NORM−1

@full [S1] ∨@full [S2] ; @full [S1 ∩ S2] NORM−2

@full [S1] ∧@value[S2] ; @full [S1 ∪ S2] BEGIN

Figure A-4: Entailment Rules on Variable Permissions

Variable permissions can be transferred among callers and callees of the same

thread, and among distinct threads. The entailment rules for variable permissions

are shown in Figure A-4. A main thread (or a caller) that does not have full per-

mission of a variable cannot pass that full permission to another thread (or a callee)

133

APPENDIX A. VARIABLE PERMISSIONS

either by reference or by value (FAIL−1 and FAIL−2). After passing a variable by ref-

erence, a main thread (or a caller) loses the full permission of that variable (P−REF).

However, for a pass-by-value variable, it will still retain the full permission (P−VAL).

The normalization rules NORM−1 and NORM−2 soundly approximate sets of full per-

missions. At the beginning of a procedure, a main thread has full permissions of

its pass-by-reference and pass-by-value parameters (BEGIN). Since @value[v∗] only

appears in pre-conditions, the rule BEGIN indicates that a callee will have the full per-

missions of both pass-by-reference arguments and copies of pass-by-value arguments.

The rules presented are simple, and this is precisely how we would like the readers to

feel. Simplicity has its virtue and we hope that this would encourage safer concurrent

programs to be written.

In our implementation, we also support @zero[· · ·] as a dual to @full [· · ·] annota-

tion. The former denotes a set of variables that possibly have zero permission. This is

useful for more concise representation since only a small fraction of variables typically

lose their permissions temporarily.

∆ ` @full [v]

{∆} ... = ... v ... {∆} VAR−READ

∆ ` @full [v]

{∆} v = ... {∆} VAR−WRITE

Figure A-5: Forward Verification Rules for Manipulating Variables

Most verification rules in the presence of variable permissions remain unchanged

compared with those described in Fig. 3-4 of Chapter 3. Note that the transfer of

variable permissions across procedures and threads is performed during fork, join,

and procedure calls. The rules in Fig. A-5 additionally require that a thread needs

to hold a full permission to manipulate (either read or write) a program variable.

134

A.2. PROPOSED APPROACH

Soundness Proof: We sketch how our variable permission scheme (Section A.2.2)

ensures safe concurrency (data-race freedom). We prove that our scheme maintains

the invariant that the full permission of each variable belongs to at most one thread

at any time.

Definition 8 (Data-race Freedom). A program is data-race free if there do not exist

a state ∆ = ∆t1 * ∆t2 and a variable x such that ∆t1 ` @full [x] and ∆t2 ` @full [x].

Definition 9 (Permission Invariant). For every variable x, its full permission belongs

to at most one thread at any time.

Theorem 4 (Non-duplicable Permissions). For every variable x, its full permission

cannot be duplicated.

Proof. By induction on entailment rules in Figure A-4.

Lemma 6 (Soundness of Variable Permission Scheme). Given a program with a set

of procedures P i and their corresponding pre/post-conditions (Φi
pr/Φi

po) enhanced with

variable permissions, if our verification system derives a proof for every procedure P i,

i.e. {Φi
pr} P i {Φi

po} is valid, then the program is free from data races.

Proof. It follows from Theorem 4. Using our variable permission scheme, the full

permission of each variable in a program belongs to at most one thread at any time;

therefore, the program is data-race-free.

We prove the soundness of our variable permission scheme by contradiction.

Hypothesis: There are data races, i.e. there are two threads that have full permis-

sion of the same variable x at the same time.

The two threads can be: a main thread and a child thread (Case 1), or both

child threads (Case 2).

Case 1: A main thread and a child thread have the full permission of the same

variable.

Case 1.1: The child thread obtains the full permission after being forked by

the main thread. Therefore, the variable x has to be passed by reference to the

135

APPENDIX A. VARIABLE PERMISSIONS

child thread (P−REF rule in Figure A-4). Afterwards, the main thread loses the

full permission because the permission is non-duplicable. This contradicts to the

hypothesis.

Case 1.2: The child thread obtains the full permission from the lock invariant after

acquiring a mutex lock. In our scheme, if a variable is protected by a mutex lock,

the lock’s invariant holds the full permission of the variable. Therefore, if the main

thread has the full permission of x, it also has to acquire the full permission from the

lock invariant. This leads to contradiction because two threads are not allowed to

successfully acquire a lock at the same time.

Case 2: Two child threads have the full permission of the same variable.

Case 2.1: Child threads obtains the full permissions after being forked by another

main thread. This is impossible because once the firstly-forked thread have acquired

the full permission of the variable, the full permission is no longer available to be

transferred to the second thread.

Case 2.2: Child threads obtain the full permission of x from the lock invariant

after acquiring a mutex lock. This is impossible because two threads are not allowed

to successfully acquire a lock at the same time.

A.2.3 Inferring Variable Permissions

In this section, we investigate inference for variable permissions. Approaches in per-

mission inference for variables [114] and heap locations [41, 55] require entire program

code and/or its specifications for their global analysis. The simplicity of our variable

permission scheme offers opportunities for automatically and modularly inferring vari-

able permissions by only looking at procedure specifications.

Our inference is based on following key observations. Firstly, local variables of

a procedure cannot escape from their lexical scope; therefore, they are not allowed

to appear in post-conditions. Secondly, scopes of pass-by-value parameters are only

within their procedures; therefore, @value[...] only exists in pre-conditions and up-

136

A.2. PROPOSED APPROACH

dates to these parameters need not be specified in post-conditions. Thirdly, for each

procedure with its R-complete pre/post-conditions, updates to its reference param-

eters must be specified in its post-condition via primed notations. Lastly, because

child threads carry the post-conditions of their corresponding forked procedures, their

states include information about updates to variables that were passed by reference

to their forked procedures.

Definition 10 (Primed Notations and R-complete Specifications). Primed notations

represent the latest values of program variables; unprimed notations denote either

logical variables or initial values of program variables. A procedure specification is R-

complete if all updates to its pass-by-reference parameters are specified in the pre/post

conditions using primed notations.

Algorithm 1 Inferring variable permissions from procedure specifications
Input: Φpr, Φpo: pre/post-conditions of a procedure without variable permissions
Input: Vref , Vval : sets of pass-by-reference and pass-by-value parameters
Output: Pre/post-conditions with inferred variable permissions
1: Vpost:=Vref
2: /*Infer @full [...] annotations for post-condition*/
3: for each thread ∆ in Φpo do
4: /*Set of free variables that are updated in ∆ using primed notations*/
5: Vm:={v : v ∈ FV (∆) ∧ isPrimed(v)}
6: if (Vm−Vpost) 6= φ then Error
7: else
8: ∆:=∆ ∧@full [Vm]
9: Vpost:=Vpost−Vm

10: end if
11: end for
12: /*excluding reference parameters not updated in post-condition*/
13: Vpre:=Vref−Vpost
14: /*Infer @full [...] annotations for pre-condition’s child threads*/
15: /*in the same way as with those in post-condition but replace Vpost by Vpre*/
16: for each child thread ∆t in Φpr do
17: ...
18: end for
19: For the main thread ∆ in Φpr: ∆ := ∆ ∧@full [Vpre] ∧@value[Vval]
20: return Φpr,Φpo

We present our inference in Algorithm 1. For each procedure, the algorithm starts

inference for the post-condition first. For each thread in the post-condition (either

137

APPENDIX A. VARIABLE PERMISSIONS

Table A.1: Inferring Variable Permissions for Procedure creator in Figure A-1

Input Intermediate values Inferred
Vref :={x, y}, Vval:={}

Φpo:=
y ′=y+2 Vpost:={x, y}, Vm:={y} @full [y]
res 7−→ thrd〈x ′=x+1 〉 Vpost:={x}, Vm:={x} @full [x]

Φpr := true Vpre:={x, y} @full [x, y]

main thread or child thread), the full permissions are inferred by computing the pass-

by-reference parameters that are updated in each thread’s specification via primed

notations. The if statement in line 6 detects an error if there are some primed

variables that (1) are not reference parameters or (2) belonged to other threads in

the previous iterations. The subtraction in line 9 removes from the set of reference

parameters Vpost those variables whose inferred full permissions already belonged to

the current thread. This ensures that only one thread in the specification holds the full

permission of a variable. Because child threads in the pre-condition carry the post-

conditions of their corresponding forked procedures, we infer variable permissions for

these child threads in the same way as with those in the post-condition. Note that the

main thread is the currently active execution thread; therefore, its state in the pre-

condition does not include primed variables. The main thread of the pre-condition

holds full permissions of variables whose are updated (specified in the post-condition)

and do not belong to any child threads. The subtraction in line 13 is necessary because

there are certain variables that are passed by reference but their full permissions do

not belong to any threads (see Section A.2.5 for more discussions). Finally, permission

annotation @value[...] of pass-by-value parameters is added into the main thread of

the pre-condition. In the algorithm, the main thread indicates the main executing

threads while the child thread(s) are represented by thread nodes. For illustration,

we present a running example in Table A.1.

Soundness Proof: We give the soundness sketch of our inference algorithm. We first

prove that the inferred full permission of each variable belongs to at most one thread

in a procedure’s R-complete specification. Then, we prove that with the inferred

138

A.2. PROPOSED APPROACH

variable permissions, the procedure is free from data races.

Theorem 5 (Precise Inference). The inferred full permission of each parameter be-

longs to at most one thread in a procedure’s R-complete specification.

Proof. We prove by contradiction.

Hypothesis: There exists a parameter x whose inferred full permission belongs to

more than one thread in the procedure’s pre/post-conditions.

Case 1: The parameter x is passed by reference.

Case 1.1: The parameter x is not protected by any mutex lock. Because the speci-

fication is R-complete, by Definition 10, updates to x are specified in the specification

using primed notation.

Case 1.1.1: Inferring the permission of x in the post-condition.

Without lost of generosity, assuming that the full permission of x belongs to two

threads in the post-condition, i.e. @full [x] is in the state of the two threads. Because

the algorithm iterates over each thread in a sequential manner (line 3-11), assuming

that the two threads are visited in iterations i and j respectively (i<j). Let V i
post and

V i
m denote the value of Vpost and Vm after i-th iteration. Therefore, we have x ∈ V i

m

and x ∈ V j
m with i<j. As a consequence, we have x ∈ V j−1

post (because Vm−Vpost=φ).

By induction on the value of j, we have x ∈ V i
post. This is impossible because of the

subtraction in line 9.

Case 1.1.2: Inferring the permission of x in the pre-condition.

Similar to Case 1.1.1 but replace Vpost by Vpre.

Case 1.2: The parameter x is protected by some mutex lock.

In our scheme, if a variable x is protected by a mutex lock, only the lock’s invariant

holds the full permissions of x. This contradicts to the hypothesis. Note that in

this case, updates to variable x are captured in the lock invariant. Therefore, neither

threads hold the full permission of x. Formally, for every iteration i, x /∈ V i
m.

Case 2: The parameter x is passed by value.

Because the main thread is the main execution thread, the permission @value[...]

of pass-by-value parameters is added to the main thread of the precondition (line 19).

139

APPENDIX A. VARIABLE PERMISSIONS

This contradicts to the hypothesis. Note that @value[...] does not exist in the post-

condition and updates to pass-by-value parameters are not allowed to be specified in

the post-condition (to prevent them from escaping from their lexical scope).

Theorem 6 (Soundness). With the inferred variable permissions, the procedure is

free from data races.

Proof. This follows from the preciseness of our inference algorithm (Theorem 5) and

the soundness of our underlying permission scheme (Lemma 6).

Corollary 7 (Soundness of Inference and Verification). Given a procedure P with

its R-complete pre/post-conditions (Φpr/Φpo) without variable permissions, and our

inference algorithm results in new pre/post-conditions (Φ′pr/Φ′po) with inferred variable

permissions, if our verification system derives a proof, i.e. {Φ′pr} P {Φ′po} is valid,

then the procedure P is free from data races.

Proof. It follows from Theorem 6.

A.2.4 Eliminating Variable Aliasing

In this section, we investigate the problem of variable aliasing. Aliasing occurs when a

data location can be accessed through different symbolic names (i.e. variable names).

For example in C/C++, variables can be aliased by the use of address-of operator (&).

This poses challenges to program verification in general and concurrency verification

in particular. Figure A-6(a) shows a problematic example where p and x are aliased

due to the assignment p=&x. After passing x by reference to a child thread, although

the main thread does not have permission to access x, it can still access the value of

x via its alias *p and therefore incurs possible data races. Our goal is to ensure safe

concurrent accesses to variables even in the presence of aliasing, e.g. to outlaw racy

accesses to the value of x.

We propose a translation scheme to eliminating variable aliasing by unifying point-

ers to program variables and pointers to heap locations. The translation is automatic

140

A.2. PROPOSED APPROACH

void inc(ref int i,int j)

requires @full [i] ∧@value[j]
ensures @full [i] ∧ i ′=i+j ;
{ i=i+j; }

void main()

requires emp ensures emp;
{
int x=0;

int* p=&x;

thrd id = fork(inc,x,1);

/*accesses to *p are racy*/
...

join(id);

}

(a) Original Program

void inc(int ptr i,int j)

requires i 7−→ int ptr(old i) ∧@value[i , j]
ensures i 7−→ int ptr(new i)∧new i=old i + j ;
{ i.val=i.val+j; }

void main()

requires emp ensures emp;
{
int ptr x = new int ptr(0);

int ptr p=x;

thrd id = fork(inc,x,1);

/*accesses to p.val or x.val are illegal*/
...

join(id);

delete(x);

}

(b) Translated Program

Figure A-6: An Example of Eliminating Variable Aliasing

and transparent to programmers. We refer to each variable (or parameter) whose &x

appears in the program as an addressable variable. Intuitively, for each addressable

variable, our translation scheme transforms it into a pointer to a pseudo-heap lo-

cation by the following substitution ρ=[int 7→ int ptr,&x 7→ x, x 7→ x.val]. Our

approach covers values of any type (including primitive and data types). For each

type t, there is a corresponding type t ptr to represent the type of pointers to pseudo-

heap locations holding a value of type t. The value located at a pseudo-heap location

is accessed via its val field (e.g. x.val).

Definition 11 (Pseudo-heap Locations). Pseudo-heap locations are heap-allocated

locations used for verification purpose only. Each pseudo-heap location represents a

transformed program variable and captures the original value of the variable in its val

field.

141

APPENDIX A. VARIABLE PERMISSIONS

Our scheme also translates program pointers into pointers to heap-allocated loca-

tions by the following substitution ρ=[int* 7→ int ptr, *p 7→ p.val]. For pointers

that point to another pointer, our translation is also applicable, e.g. int∗∗ is translated

into int ptr ptr. The translation scheme ensures that the semantics of the translated

program is equivalent to that of the original program. By transforming addressable

variables into pseudo-heap locations, reasoning about aliased variables has been trans-

lated to reasoning about aliased heap locations which is easier to handle (e.g. using

separation logic [115]).

Our translation rules are presented in Figure A-7. As a part of the translation, we

first transform the program to ensure that variables are of distinct names. Afterwards,

we analyze the program to identify a set V of addressable variables that are passed

by reference. Our translation starts with such a set of variables and gradually adds

more addressable variables in. We use the notation V |= e1↪→e2 to indicate that given

the aforementioned set V, the translation rules transform a program code e1 with

pointers and & operators into a new program e2 expressible in our core language

(Section A.2.1). Most of the rules are straightforward. The most difficult part is

to translate addressable variables that are passed by reference. Because scopes of

reference parameters are beyond their procedures, we have to ensure that all instances

of these variables are transformed into pseudo-heap locations. This is to ensure that

any possible effects on the original variables can be entirely captured in the pseudo-

heap locations.

An example translation is shown in Figure A-6(b). The addressable variable x of

type int is transformed into a pointer to a pseudo-heap location of type int ptr. The

program pointer p becomes a pointer to the location which x refers to. Variable x

will then be passed to a child thread. The procedure inc is also translated to reflect

the fact that its reference parameter i has been transformed. In the specification,

i::int ptr〈old i〉 represents the fact that i is a variable of type int ptr pointing to a

pseudo-heap location containing certain value old i. The original value of x is indeed

captured in the value of the pseudo-heap location. In the translated program, when

142

A.2. PROPOSED APPROACH

[TRANS−EXP]

not(isProcCall(e1)) v ∈ FV (e1) ∩ V
ρ=[&v 7→ v, v 7→ v.val] e′1=ρ e1

V |= { e2} ↪→ {e′2}
V |= {e1; e2} ↪→ {e′1; e′2}

[TRANS−POINTER]

ρ=[∗p 7→ p.val] e1=ρ e

V |= {t∗ p; e} ↪→ {t ptr p; e1}

[TRANS−VAR−DECL]

(&v ∈ e ∨ v ∈ V) V1=V ∪ {v} V1 |= e ↪→ e1

V |= {t v; e} ↪→ {t ptr v = new t ptr(0); e1; delete(v)}

[TRANS−PARAM−VAL]

&v ∈ e p fresh ρ=[v 7→ p] e1=ρ e
V1=ρ V V2=V1 ∪ {p} V2 |= e1 ↪→ e2

V |= t pn(t v, ...){e} ↪→ t pn(t v, ...){t ptr p = new t ptr(v); e2; delete(p)}

[TRANS−PARAM−REF]

v ∈ V V |= e ↪→ e1 (Φ′pr,Φ
′
po)=transSpec(v : t,Φpr,Φpo)

V |= t pn(ref t v, ...) requires Φpr ensures Φpo{e}
↪→ t pn(t ptr v, ...) requires Φ′pr ensures Φ′po{e1}

[TRANS−SPEC]

fresh old v, new v ρ=[v 7→ old v, v′ 7→ new v]
Φpr1=ρ Φpr Φ′pr=v::t ptr〈old v〉 * Φpr1

Φpo1=ρ Φpo Φ′po=v::t ptr〈new v〉 * Φpo

transSpec(v : t,Φpr,Φpo):=(Φ′pr,Φ
′
po)

[TRANS−CALL]

V |= t pn(..., t v, ..., ref t u, ...) requires Φpr ensures Φpo{e} ↪→
t pn(..., t v, ..., ref t u, ...) requires Φ′pr ensures Φ′po{e1}

v ∈ V ρ=[&v 7→ v, v 7→ v.val] v′=ρ v

V |= pn(..., v, ..., u, ...) ↪→ pn(..., v′, ..., u....)

Figure A-7: Translation Rules for Eliminating Variable Aliasing

the main thread passes variable x to the child thread, the pseudo-heap location that

x points to is also passed to the child thread. Therefore, before the child thread joins,

143

APPENDIX A. VARIABLE PERMISSIONS

the main thread cannot access the pseudo-heap location (e.g. via p.val) because it

no longer owns that location. Note that the pseudo-heap location is deleted at the

end to prevent memory leak.

We propose this translation for verification purpose only and do not recommend it

for compilation use due to performance deficiency since accessing heap-allocated loca-

tions is typically more costly than accessing program variables. Variable aliasing may

also occur via parameter-passing when two reference parameters of a procedure refer

to the same actual variable. Our variable permission scheme (as presented in Sec-

tion A.2.2) disallows the possibility because a caller cannot have two full permissions

of a variable to pass it by reference twice.

A.2.5 Discussion

Applicability of the Proposed Variable Permissions

In this section, we discuss the application of our variable permission scheme to popular

concurrent programming models such as POSIX threads and Cilk.

Pthreads is considered one of the most popular concurrent programming models for

C/C++ [21]. In Pthreads, when creating a new child thread, a main thread passes a

pointer to a heap location to the child thread. We model this argument passing by

giving a copy of that pointer to the child thread. Furthermore, Pthreads uses global

variables to facilitate sharing among threads. If several threads need to concurrently

read a shared global variable, the main thread holding the full permission of that

variable can just give each child thread a copy of that variable through pass-by-value

mechanism. If concurrent threads require write access to the same variables, these

variables can be protected by mutex locks whose invariants hold full permissions of

the variables. This allows concurrent but race-free accesses to shared global variables.

In our system, mutable global variables are automatically converted into pseudo refer-

ence parameters for each procedure (that uses them) prior to verification. For shared

global variables that are protected by mutex locks, although they are converted into

144

A.2. PROPOSED APPROACH

pseudo reference parameters, none of concurrent threads have the variables’ full per-

missions. It is the locks’ invariants that capture the full permissions. Permission

annotations for these variables in each procedure are automatically inferred as shown

in Section A.2.3.

Cilk is a well-known concurrent programming model originally developed at MIT

and recently adopted by Intel [44]. In Cilk, the spawn keyword is used to create a new

thread and to return the value of the procedure call instead of a thread identifier.

Before the child thread ends, any accesses to that return value are unsafe. Our fork

can have the same effect by passing an additional variable by reference to capture

the return value. This guarantees data-race freedom because only the child thread

has the full permission of that variable. More importantly, compared with Pthreads,

Cilk provides more flexible parameter passing when creating a child thread. Multiple

variables can be passed to a child thread either by value or by reference. This flexible

passing can be naturally handled by our pass-by-value and pass-by-reference scheme.

Phased Accesses to Shared Variables

Our variable permission is designed as a simpler permission scheme that can be used

where sufficient. For immutable variables that are shared by concurrent threads,

the general guideline is to pass copies of those variables to the threads to enjoy safe

accesses to those copies. Mutable variables can be shared but should be protected

by mutex locks to ensure race-freedom because there are some threads mutating the

variables. However, there is still a class of complex sharing patterns that cannot be

directly handled by our scheme. For example, a thread holds a certain permission

to read a shared variable and is guaranteed that no other threads can modify the

variable (read phase). Later, it acquires additional permissions from other threads

and/or lock invariants, and combines them into a full permission to modify the shared

variable (write phase). This kind of phased accesses to shared variables cannot be

verified without splitting a full permission into smaller partial permissions. In this

case, the thread can hold a partial permission while the rest of permissions belong to

other threads and/or lock invariants.

145

APPENDIX A. VARIABLE PERMISSIONS

Under this circumstance, we propose to detect those variables that are accessed in

a phased way, and transform them into pseudo-heap locations where a more complex

reasoning scheme is utilized [51, 61, 65]. The translation is done in a similar way as

shown in Section A.2.4. As a result, our general guideline is to readily use variables

in most cases where the proposed variable permission scheme is sufficient, and to

automatically and uniformly transform variables into pseudo-heap locations where

necessary, i.e. in complex scenarios such as aliasing and phased accesses.

A.3 Comparative Remarks

In 1970s, Owicki-Gries [111] came up with the very first tractable proof method

for concurrent programs that prevents conflicting accesses to variables using side-

conditions. However, these conditions are subtle and hard for compilers to check be-

cause they involve examining the entire program [16, 114]. Recently, concurrent sepa-

ration logic (CSL) [105] has been proposed to nicely reason about heap-manipulating

concurrent programs but CSL still relies on side-conditions for dealing with variables.

Smallfoot verifier [9] uses CSL as its underlying logic and therefore suffers from the

same limitation. In contrast, our scheme brings variable permissions into the logic

and therefore makes it easier to check for conflicting accesses to variables. “Variables

as resource” [16, 112] has proposed to apply permission systems [15, 18], originally

designed for heap locations, to variables. Recently, Reddy et. al. [114] reformulate

the treatment of variables using the system of syntactic control of interference. They

share the same idea of applying fractional permissions [18] to variables. However,

these more complex permission schemes place higher burden on programmers to fig-

ure out the permission fractions used to associate to variables. To the best of our

knowledge, we are not aware of any existing verifiers that have fully implemented the

idea. Chalice [89, 90] ignores the treatment of variables in method bodies while

Verifast [65, 66] simulates variables as heap locations. Although the underlying

semantics of Holfoot [123] formalizes “variables as resource”, its automatic ver-

ification system, which is based on Smallfoot, does not allow sharing variables

146

A.4. SUMMARY

using fractional permissions. In contrast, our variable permission scheme is simpler,

using either full or zero permissions, but is expressive enough to support popular pro-

gramming models such as Pthreads [21] and Cilk [44]. Furthermore, while previous

approaches assume theoretical programming languages without dynamic thread cre-

ation [16, 112, 123] and procedure [114], our variable permission scheme is integrated

into a practical language with fork/join concurrency. We also presented an algorithm

to automatically infer variable permissions and therefore reduce programmers’ efforts

for annotations. There is some work on automatic inference of access permissions in

the literature [41, 55] but they only address permissions for heap locations. Reddy

et. al. [114] is the very first work on inferring permissions for variables. However,

their approach is different from ours. Firstly, while their approach is a two-pass algo-

rithm over entire program syntax tree and proof outline, our approach can infer vari-

able permissions directly from procedure specifications. Secondly, their work targets

programs written in a theoretical language without procedures and dynamic thread

creation while our approach supports more realistic programs with procedures and

fork/join concurrency. Lastly, most work on verification has often disallowed variable

aliasing by using side-conditions [105, 111] or via assertions [16, 51]. Therefore, our

presented translation scheme to eliminate variable aliasing is orthogonal to their work

since we provide a way to transform addressable variables into pointers to pseudo-

heap locations, and thus enable reasoning about their behaviors in the same way as

heap locations [51, 105]. In contrast to several informal translation tools [30, 83]

which attempt to translate C/C++ programs with pointers into Java, we present a

translation scheme with its formal semantics. Another difference is that while they

focus on language translation, we aim towards facilitating program verification.

A.4 Summary

We have proposed a new permission system to ensure data-race freedom when access-

ing variables. Our scheme is simple but expressive to capture programming models

such as POSIX threads and Cilk. Through a simple permission scheme for variables,

147

APPENDIX A. VARIABLE PERMISSIONS

we have extended formal reasoning to popular concurrent programming paradigms

that rely on variables. We have provided an algorithm to automatically infer variable

permissions and thus reduced program annotations. We have also shown a translation

scheme to eliminate variable aliasing and to facilitate verification of programs with

aliases on variables. By intergrating our variable permission system into concurrent

separation logic, we form a comprehensive reasoning framework capable of reasoning

about race-free accesses to both heap-based data structures and stack-based program

variables.

148

Appendix B

Soundness Proof for Threads as

Resource

In this appendix, we discuss the soundness of our “threads as resource” approach. We

first present the interleaving operational semantics of the language. We then prove

the soundness of our approach with respect to the operational semantics.

Operational Semantics.

We define the interleaving operational semantics of programs with fork/join concur-

rency.

Definition 12 (Well-formedness). A program is well-formed if the following condi-

tions hold:

• In the program text, there exists a procedure called main, which indicates the

entry point of the program.

• Procedure names are unique within a program. Procedure parameters are unique

within a procedure. Free variables in the body of a procedure are the procedure

parameters.

• A normal procedure call or a fork statement mentions only procedure names

149

APPENDIX B. SOUNDNESS PROOF FOR THREADS AS RESOURCE

defined in the program text. The number of actual parameters and formal pa-

rameters are equal.

A thread can be in one of three states: running, dead, and aborted. Our verification

framework ensures that no thread ends up in an aborted state. A program state is

non-aborting if no thread is in an aborted state. A program state is final if all threads

are in a dead state.

Definition 13 (Thread State). A thread state σ is one of the following states:

• run(s,Γ) stating that the thread is running with remaining statement s and

environment Γ. For brevity, Γ is assumed to be a partial function from object

names to object references and from stack variables to values. Environment Γ

resembles stack and heap in a program. An update at v with o in Γ is denoted

as Γ[v 7→ o].

• dead stating that a thread has completed its execution.

• aborted stating a thread has performed an illegal operation, such as null-pointer

dereference.

Definition 14 (Program State). A program state Ψ consists of a thread specification

pool Θ and a set of threads T . Θ maps from a thread identifier to its aggregate resource

(which is book-kept when the thread is forked). Each thread in T is a pair of (τ, σ)

representing thread identifier τ and thread state σ. The thread identifier τ is of type

thrd while the thread state σ is defined above.

We use m to indicate the identifier of the main thread, i.e. the thread executing

the main procedure of the program. We denote Θm as a thread specification pool

containing only information of the main thread. In other words, Θm(i) = emp if τ=m,

and Θm(τ) is undefined otherwise.

Definition 15 (Execution). Execution of a program starts in the initial program

state: (Θm, {(m, run(s, ∅))}), where s is the code fragment of the main procedure.

150

(Θ, {(τ, run(if true then s1 else s2; s,Γ))} ∪ T)→
(Θ, {(τ, run(s1; s,Γ))} ∪ T)

(Θ, {(τ, run(if false then s1 else s2; s,Γ))} ∪ T)→
(Θ, {(τ, run(s2; s,Γ))} ∪ T)

eval(e,Γ) = b

(Θ, {(τ, run(if e then s1 else s2; s,Γ))} ∪ T)→
(Θ, {(τ, run(if b then s1 else s2; s,Γ))} ∪ T)

spec(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
s′1 = [v1/w1, . . . , vn/wn]s1

(Θ, {(τ, run(pn(v1, . . . , vn); s,Γ))} ∪ T)→
(Θ, {(τ, run(s′1; s,Γ))} ∪ T)

spec(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
∀i ∈ {1, . . . , n} • Γ(vi) = oi fresh(τ1) Γ′ = Γ[v 7→ τ1]

Γ1 = [w1 7→ o1, . . . , wn 7→ on] typeof(τ1) = thrd

Θ1 = Θ[τ1 7→ Φpo]

(Θ, {(τ, run(v = fork(pn,v1, . . . , vn); s,Γ))} ∪ T)→
(Θ1, {(τ, run(s,Γ′))} ∪ {(τ1, run(s1; halt,Γ1))} ∪ T)

(Θ, {(τ, run(halt,Γ))} ∪ T)→ (Θ, {(τ,dead)} ∪ T)

∃(τ1,dead) ∈ T • Γ(v) = τ1

(Θ, {(τ, run(join(v); s,Γ))} ∪ T)→ (Θ, {(τ, run(s,Γ))} ∪ T)

Figure B-1: Selected Small-step Operational Semantics of Well-formed Pro-
grams with First-class Threads

Fig. B-1 shows the small-step operational semantics. A premise marked with box

denotes the fact that threads must block and wait for the premise to become true. For

example, joining with a thread blocks until the thread is dead. In Fig. B-1, spec(pn)

denotes the specification of the procedure pn in the program, eval(e,Γ) denotes the

evaluation of the expression e in the environment Γ. The rules for fork and join are

of special interest. In the fork rule, a new thread is spawned and the return value

151

APPENDIX B. SOUNDNESS PROOF FOR THREADS AS RESOURCE

v points to its identifier τ1 of type thrd. The resource carried by τ1 is book-kept in

Θ1. We explicitly add a halt statement to signify the end of each newly spawned

thread. As a quick observation, a thread identifier corresponds to a thread node in

our logic. Any threads (joiners) knowing the identifier can perform a join operation

to join with the newly-created thread (joinee). In the join rule, if the joinee has not

yet finished its execution (i.e. it is not in a dead state), the joiners have to wait for

the joinee to finish its execution. Note that when a joinee is joined, it will not be

removed from the set of threads. This allows for the multi-join pattern and enables

the joiners to immediately proceed without waiting in case the joinee has already

finished its execution. There is a direct relation between the dead state of a thread

during run-time and its dead predicate during verification-time.

Semantics

An separation formula is interpreted with respect to a thread identifier k of the

active thread and the program state (Θ, T). The interpretation of most parts of our

separation logic formulae is standard and can be found elsewhere [51]. Here we focus

on the most interesting part. The interpretations of the thread node t 7−→ thrd〈Φ〉 and

the dead(t) predicate are as follows:

(Θ, {(k, run(s,Γ))} ∪ T) |=k t 7−→ thrd〈Φ〉 ⇐⇒ ∃τ · Γ(t)=τ ∧Θ(τ)=Φ1 ∧ ΦvΦ1

(Θ, {(k, run(s,Γ))} ∪ T) |=k dead(t) ⇐⇒ ∃(τ,dead) ∈ T · Γ(t)=τ

Intuitively, Φ=Φ1 when there is only one thread node of the thread t in the

program. Φ<Φ1 indicates the presence of multiple nodes of the same thread t. Our

approach is sound due to two main arguments. First, our approach respects separation

property, i.e. the resources carried by two thread nodes of the same thread are well-

separated (Lemma 7). Second, our approach ensures that the total resource carried

by all thread nodes of the same thread t is equal to the aggregate resource Φ1 captured

in Θ. The resource Φ1 is book-kept when the thread t is forked and is flexibly split off

and combined by our approach. To prove the above claim, we show that our “threads

as resource” approach neither invents new resource nor destroys existing resource.

152

Therefore, it guarantees that the total resource of the program is not changed by

our verification rules (Lemma 8). Note that our verification-time dead(t) predicate

resembles the dead state of a thread during run-time.

Lemma 7 (Separation of Resources). If there exist two thread nodes t 7−→ thrd〈Φ1〉

and t 7−→ thrd〈Φ2〉 of the same thread t, Φ1 and Φ2 are well-separated. In other words,

Φ1 * Φ2 is a valid separation logic formula.

Proof. Splitting and combining thread nodes resort to splitting and combining their

carried resources (described in the rule R−THRD1 of Fig. 3-5). The splitting and

combining of the resources follow the standard fractional permission accounting [15,

18]. Therefore, this lemma could be proven by induction on the structure of separation

formulae (Fig. 3-3).

Lemma 8 (Conservation of Total Resource). The total resource of a program is

unchanged under “threads as resource” verification approach.

Proof. Except for fork and join, the verification rules in Fig. 3-4 and sub-structural

rules in Fig. 3-5 neither invent new resource nor destroy existing resource. Fork and

join create and respectively consume thread nodes. Thread nodes can be considered

as placeholders for the resources that they carry. Hence, this lemma can be proven

by induction on the sub-structural rules (Fig. 3-5).

Lemma 9 (Soundness of Threads as Resource). Given a program with a set of pro-

cedures P i together with their corresponding pre/post-conditions (Φi
pr/Φi

po), if our

verifier derives a proof for every procedure P i, i.e. {Φi
pr}P i{Φi

po} is valid, then the

program is race-free and partially correct.

Proof. Data-race freedom is ensured due to the use of separation logic and fractional

permissions, and the fact that resources carried in thread nodes are well-separated

(Lemma 7). Partial correctness directly follows from Lemma 7, Lemma 8, and induc-

tion on the derivation of {Φi
pr}P i{Φi

po}.

153

APPENDIX B. SOUNDNESS PROOF FOR THREADS AS RESOURCE

154

Appendix C

Soundness Proof for Verification of

Deadlock Freedom

In this appendix, we prove that our framework proposed in Chapter 4 guarantees

deadlock freedom with respect to the language described in Fig. 4-5. The deadlock

problem is well-known, and one of the most cited definitions of deadlocks is by Coff-

man et al. [27]. Four conditions must hold for a deadlock to occur: (1) “mutual

exclusion”, (2) “no preemption”, (3) “wait for”, and (4) “circular wait”. In our

framework, the first three deadlock conditions hold: use of (mutex) locks (condition

1), a lock cannot be preempted until it is released (condition 2), threads may have

to wait when acquiring a lock or joining another thread (condition 3), and we ensure

deadlock freedom by breaking the “circular wait” (condition 4).

Our proof is inspired by the proof for deadlock freedom made by Leino et al. [91].

In contrast to their proof which focuses on lock operations and channel send/receive,

our proof focuses on lock operations and thread fork/join instead. As a reminder,

there is a wait-for graph corresponding to each program state. We prove that for each

program that has been successfully verified by our framework, there does not exist a

state whose wait-for graph contains a cycle.

A thread can be in one of three states: running, dead, and aborted. Our verification

framework ensures that no thread ends up in an aborted state. A program state is

155

APPENDIX C. SOUNDNESS PROOF FOR DEADLOCK FREEDOM

non-aborting if no thread is in an aborted state. A program state is final if all threads

are in a dead state.

Definition 16 (Thread State). A thread state σ is one of the following states:

• run(s,Γ) stating that the thread is running with remaining statement s and

environment Γ. For brevity, Γ is assumed to be a partial function from object

names to object references and from stack variables to values. Environment Γ

resembles stack and heap in programs. An update at v with o in Γ is denoted as

Γ[v 7→ o].

• dead stating that a thread has completed its execution.

• aborted stating a thread has performed an illegal operation, such as null-pointer

dereference.

Definition 17 (Program State). In the presence of (mutex) locks, a program state Ψ

consists of:

• L representing a partial function from locks to locklevels. Thus, L(o) denotes

the locklevel of lock o. A lock is already allocated if o ∈ dom(L).

• T representing a set of threads. Each thread is a tuple (τ, σ, %, ls) consisting

of thread identifier τ , thread state σ, set of locks % which the thread intends to

acquire since the beginning of its execution, and set of locks ls currently held by

the thread.

For simplicity, we omit the thread specification pool Θ from the program state.

Θ is used to capture resource belonged to a thread and can be handled in the same

way as described in the soundness proof of “threads as resource” (Appendix B). We

use m to denote the identifier of the main thread executing the main procedure of

the program.

Definition 18 (Execution). Execution of a program starts in the initial program

state: (∅, { (m, run(s, ∅), ∅, ∅) }), where s is the code of the main procedure.

156

Fig. C-1 shows the small-step operational semantics. A premise marked with box

denotes the fact that threads must block and wait for the premise to become true.

For example, a thread can only acquire a lock which is not held by any thread. A

premise marked with light grey indicates conditions that need to hold, otherwise the

thread has performed an illegal operation and it transitions to an aborted state. For

example, a thread will abort if it attempts to release a lock without holding it. Our

framework ensures that the premises in light grey hold, i.e. threads cannot transition

to aborted states. The rules presented require that a thread starts and completes its

execution with an empty lockset.

In Fig. C-1, def(pn) denotes the definition of the procedure pn in the pro-

gram, eval(e,Γ) denotes the evaluation of the expression e in the environment Γ,

delayed(Φ,Γ) denotes the set of locks that a thread intends to acquire since the

beginning of its execution (i.e. the delayed lockset). delayed(Φ,Γ) is defined in

Definition 19 based on the thread’s pre-condition Φ and an environment Γ.

Definition 19 (Delayed Lockset). Let Φ be a specification (described in Section 4.2.3)

whose free variables are in dom(Γ). The delayed lockset of Φ is defined as follows:

delayed(Φ1 ∨ Φ2,Γ) = delayed(Φ1,Γ) ∪ delayed(Φ2,Γ)

delayed([
∧
ω #

∧
ψ] ∧ π,Γ) = delayed(

∧
ψ,Γ)

delayed(ψ1 ∧ ψ2,Γ) = delayed(ψ1,Γ) ∪ delayed(ψ2,Γ)

delayed(x ∈ LS,Γ) = {Γ(x)}

Definition 20 (Wait-for Graph). Each program state (L, { (τ1, σ1, %1, ls1), . . . ,

(τn, σn, %n, lsn) }) forms a directed wait-for graph whose nodes are the threads in

the program state. This graph contains an arc from thread (τt1 , σt1 , %t1 , lst1) to thread

(τt2 , σt2 , %t2 , lst2) if one of the following conditions holds:

• Thread t1 blocks waiting for thread t2 to release a lock. In other words, σt1

is run(acquire(x); s,Γt1) ,Γt1(x) ∈ lst2, and σt1 cannot go to an aborted state.

• Thread t1 blocks waiting for thread t2 to terminate. In other words, σt1 is

run(join(τt2); s,Γt1), and σt1 cannot go to an aborted state.

157

APPENDIX C. SOUNDNESS PROOF FOR DEADLOCK FREEDOM

o /∈ dom(L) typeof(o) = lock Γ(w) = level

level>0 Γ′ = Γ[v 7→ o] L′ = L[o 7→ level]

(L, {(τ, run(v = new lock(w); s,Γ), %, ls)} ∪ T)→
(L′, {(τ, run(s,Γ′), %, ls)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
s′1 = [v1/w1, . . . , vn/wn]s1

(L, {(τ, run(pn(v1, . . . , vn); s,Γ), %, ls)} ∪ T)→
(L, {(τ, run(s′1; s,Γ), %, ls)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
∀i ∈ {1, . . . , n} • Γ(vi) = oi fresh(τ1) typeof(τ1) = thrd

Γ1 = [w1 7→ o1, . . . , wn 7→ on] %1 = delayed(Φpr,Γ
′) Γ′ = Γ[v 7→ τ1]

(L, {(τ, run(v = fork(pn,v1, . . . , vn); s,Γ), %, ls)} ∪ T)→
(L, {(τ, run(s,Γ′), %, ls)} ∪ {(τ1, run(s1,Γ1), %1, ∅)} ∪ T)

∃(τ1, (dead,Γ), ,) ∈ T • Γ(v) = τ1

(L, {(τ, run(join(v); s,Γ), %, ls)} ∪ T)→ (L, {(τ, run(s,Γ), %, ls)} ∪ T)

Γ(x) = o ∀(, , , lst) ∈ T • o /∈ lst ls′ = ls ∪ {o}
o /∈ ls ∀l ∈ dom(L) • l ∈ ls⇒ L(l) < L(o)

(L, {(τ, run(acquire(x); s,Γ), %, ls)} ∪ T)→ (L, {(τ, run(s,Γ), %, ls′)} ∪ T)

Γ(x) = o o ∈ ls ls′ = ls− {o}
(L, {(τ, run(release(x); s,Γ), %, ls)} ∪ T)→ (L, {(τ, run(s,Γ), %, ls′)} ∪ T)

ls = ∅
(L, {(τ, run(skip,Γ), %, ls)} ∪ T)→ (L, {(τ,dead, %, ∅)} ∪ T)

Figure C-1: Small-step Operational Semantics for Well-formed Programs with
Threads and Locks

Each program state Ψ has a corresponding directed wait-for graph. A deadlock

occurs if the wait-for graph contains a cycle. Theorem 8 states that an arc in the

graph between t1 and t2 implies that t1’s waitlevel is smaller than t2’s waitlevel or

lockset ls1 of t1 does not contain the lock that t2 is waiting to acquire while t1 is

waiting for t2 at a join point. Theorem 9 states that, for each program state, there is

158

always a thread that is able to make progress. Following from Theorem 9, Theorem 10

states the main soundness theorem for deadlock-freedom.

Theorem 8 (Arc in Wait-for Graph). If the wait-for graph corresponding to a non-

aborting program state has an arc from (τt1 , σt1 , %t1 , lst1) to

(τt2 , σt2 , %t2 , lst2), then one of the following properties holds:

• max{L(o) | o ∈ lst1} < max{L(o) | o ∈ lst2}

• σt1 equals run(join(τt2); s,Γt1), and lst1 ∩ %t2 = ∅

Proof. Since there is an arc from t1 to t2, t1 cannot go into an aborted state. We

consider two cases:

• Acquire. If the first statement of t1 is acquire(x) and Γ is t1’s environment

with Γ(x) = o, then it follows from the premise that

∀l ∈ dom(L) • l ∈ lst1 ⇒ L(l) < L(o) or max{L(l) | l ∈ lst1} < L(o)

Because o ∈ lst2 , this implies L(o) ≤ max{L(l) | l ∈ lst2}. The first property

holds.

• Join. The delayed lockset checking ensures that t1 is not holding any locks that

t2 is going to acquire, that is, lst1 ∩ %t2 = ∅. The second property holds.

Theorem 9 (Deadlock Freedom). If a program state Ψ is non-final and non-aborting,

then Ψ is not stuck.

Proof. By proving that there is always a thread that is able to make progress, i.e. the

graph corresponding to Ψ contains a non-final thread t that has no outgoing arc. If

the first statement s1 of t is neither acquire nor join, then t can make progress. If

s1 is an acquire(x), then no other thread holds the lock x (otherwise t would have

an outgoing arc). Hence, t can acquire x. If s1 is join(id), the thread with identifier

id has completed its execution (otherwise t would have an outgoing arc). Therefore,

t can make progress.

159

APPENDIX C. SOUNDNESS PROOF FOR DEADLOCK FREEDOM

Theorem 10 (Soundness). Given a program with a set of procedures P i and their

corresponding pre/post-conditions (Φi
pr/Φi

po), if our verifier derives a proof for every

procedure P i, i.e. {Φi
pr}P i{Φi

po} is valid, the program is deadlock-free.

Proof. It follows from Theorem 9 that each program that has been successully verified

by our framework never gets stuck due to deadlocks.

160

Appendix D

Soundness Proof for Verification of

Barrier Synchronization

In this appendix, we show that our approach proposed in Chapter 5 guarantees correct

synchronization of dynamic barriers. As dynamic barriers are more general than

static barriers, the soundness also implies correct synchronization of static barriers.

We first present an encoding of join operations in terms of barrier operations. This

encoding simplifies the proof rules and soundness arguments to only focusing on

barrier operations. We then proceed to the soundness arguments of our verification

approach. Note that our approach currently does not consider non-termination due

to infinite loops/recursion or deadlocks.

Encoding of Join Operations

Join operations can be encoded via barriers. Intuitively, each forked procedure re-

ceives an extra parameter b of type barrier and a unit permission to wait on that

barrier. Before forking a child thread, a new barrier with two participants is created

and passed to the child thread. The child thread will wait on that barrier before it

terminates. A thread can join another thread by waiting on the corresponding barrier

of the latter.

We present details of the encoding. Given a forked procedure pn which is defined

161

APPENDIX D. SOUNDNESS PROOF FOR BARRIER SYNCHRONIZATION

as pn(w1, . . . , wn) requires Φpr ensures Φpo; { s }, we (1) create a clone pn clone of

pn, (2) add one more parameter b of type barrier to its list of its parameters, (3) add

a barrier wait at the end of the procedure, and (4) modify its specification as follows:

pn clone(w1, . . . , wn, b)

requires Φpr * b
1,27−→ barrier(0)

ensures Φpo * b
1,27−→ barrier(1);

{ s; wait(b); }

Then, we encode thrd id=fork(pn,w1, ..., wn); as barrier b = new barrier(2);

thrd id=fork(pn clone,w1, ..., wn,b); and encode join(id) as wait(b). It is easy

to see that the encoding results in correct synchronization of the newly added barrier

b: two threads (the forker and the forkee) have unit permissions to access b and they

both wait on b just once.

Soundness of Dynamic Bounded Permissions

We prove that, besides boundedness, our dynamic bounded permission system exer-

cises properties of a standard access permission system: it allows concurrent reads and

exclusive write. That is, we prove that, when using our verification and permission

rules in Fig. 5-9, splitting and combining from any partial permissions never result in

a full permission unless all partial permissions of b are combined. In this section, for

brevity, we often refer to a permission b
c,t,a7−−→ barrier(p) by its quantity (c, t, a).

Let Sb and tb denote the set of all partial permissions and respectively the per-

mission total of a barrier b.

Corollary 11 (Full Permission). Combining all partial permissions of a barrier b

results in a full permission of b.

Proof. First, the permission total tb of a barrier b can only be safely changed by the

rule [D−FULL]. Otherwise, tb remains unchanged under the rest of permission rules

and verification rules in Fig. 5-9. Hence, we would like to prove that
∑

(ci, ,)∈Sb
ci =

tb +
∑

(, ,ai)∈Sb
ai holds. We prove it by induction on the verification and permission

162

rules. The equality trivially holds when the barrier b is created. Destroy and wait

operations does not affect the quantity of permissions. Add and remove operations

add and respectively subtract the same amount to/from c and a of a barrier node,

hence the equality holds under the operations. All permission rules also maintain the

equality.

Corollary 12 (Permission Invariant). ∀(c, tb, a) ∈ Sb , c>a.

Proof. The invariant c>a trivially holds when a barrier b is created. Destroy and wait

operations does not affect the quantity of permissions. Add and remove operations

add and respectively subtract the same amount to/from c and a of a barrier node,

hence the invariant holds under the operations.

We prove that split/combine rules also maintain the invariant.

For the rule [D−SPLIT], we have:

• c>a or a
c
<1

• a1= c1
c
·a and a2= c2

c
·a

Hence, we conclude that c1>a1 and c2>a2.

For the combine rules [D−COMBINE−1] and [D−COMBINE−2], we have:

• c1>a1 and c2>a2

• c=c1+c2 and a=a1+a2

Hence, we conclude that c>a.

Lemma 10 (Soundness of Dynamic Bounded Permission). Given a barrier b, our

approach ensures that splitting and combining from any partial permissions of b never

result in a full permission unless all partial permissions of b are combined.

Proof. First, it follows from Corollary 11 that combining all partial permissions in Sb

resulting in a full permission of b. We then show that it is impossible to combine a

strict subset of Sb into a full permission of b.

163

APPENDIX D. SOUNDNESS PROOF FOR BARRIER SYNCHRONIZATION

Assume there exists a strict subset S of all partial permissions of b such at com-

bining partial permissions in S results in a full permission of b. We have S ⊂ Sb. We

define S̄ the set of partial permissions of b not in S, that is Sb = S ∪ S̄.

Combining all permissions in Sb results in a full permission:∑
(ci, ,)∈Sb

ci = tb +
∑

(, ,ai)∈S

ai (D.1)

As Sb = S ∪ S̄ and (D.1), we have:

∑
(ck, ,)∈S

ck +
∑

(cj , ,)∈S̄

cj = tb +
∑

(, ,ak)∈S

ak +
∑

(, ,aj)∈S̄

aj (D.2)

Combining permissions in S also results in a full permission:∑
(ck, ,)∈S

ck = tb +
∑

(, ,ak)∈S

ak (D.3)

From (D.2) and (D.3), we have the equality:∑
(cj , ,)∈S̄

cj =
∑

(, ,aj)∈S̄

aj (D.4)

This contradicts to Corollary 12 as c>a forall (c, tb, a); hence∑
(cj , ,)∈S̄ cj >

∑
(, ,aj)∈S̄ aj.

Soundness of Verifying Barrier Synchronization

We first define what it means for a program to be correctly synchronized with respect

to a dynamic barrier.

Definition 21 (Compatible Phasing). Given a dynamic barrier b with the last phase

p (also called final phase), a thread is said to operate on b in a compatible number of

phases p1 iff:

• If it fully participates in b (i.e. it does not drop out), then p1=p.

• If it drops out, then p1≤p.

164

Definition 22 (Correct Dynamic Synchronization). A program is correctly synchro-

nized with respect to a dynamic barrier b iff:

• There are exactly a predefined number of threads participating in the barrier b’s

wait operations.

• Participating threads operate on b in compatible numbers of phases.

Note that in case of static barriers, threads are not allowed to drop out. Therefore,

compatible phasing implies that all participants fully participate and operate in the

same numbers of phases.

In a program with barriers, a thread can be in one of four states: running, waiting,

dead, and aborted. Our verification approach ensures that no thread reaches an aborted

state. A program state is non-aborting if neither of threads are in an aborted state.

A program state is final if all threads are in a dead state.

Definition 23 (Thread State). A thread state σ is one of the following states:

• run(s,Γ) stating that the thread is running with remaining statement s and

environment Γ. For brevity, Γ is assumed to be a partial function from object

names to object references and from stack variables to values. Environment Γ

resembles stack and heap in programs.

• wait(o, s,Γ) stating that the thread is waiting at barrier object o with remaining

statement s and environment Γ.

• dead stating that a thread has completed its execution.

• aborted stating a thread has performed an illegal operation.

Threads in a program wait at barrier points and proceed in phases. We distinguish

between local phase and global phase of a barrier. When a participant reaches a

barrier point, it increments its local phase. When all participants have reached that

point, the global phase will be incremented. If a thread still participates in a barrier,

165

APPENDIX D. SOUNDNESS PROOF FOR BARRIER SYNCHRONIZATION

its local phase is at most one ahead of the global phase. Intuitively, after reaching a

barrier point and incrementing its local phase, a participant can only proceed if its

local phase is equal to the global phase. This semantics has the advantage that a

participant only needs to know its local phase and the global phase without worrying

about the phases of other participants.

Definition 24 (Program State). A program state Ψ consists of:

• G representing a partial function from barrier objects to tuples (i, t, p) where i

is the number of participants that have been suspended (i.e. waiting to proceed

to the next phase), t is the total number of participants, and p is the current

global phase of barrier object o. We write Gi(o), Gt(o), and Gp(o) denote i, t,

and p respectively. A barrier object o is already allocated if o ∈ dom(G).

• T representing a set of threads. Each thread is a tuple (τ, σ, L) consisting of

thread identifier τ , thread state σ, and a local barrier map L. L maps barriers

to their corresponding local phases.

For simplicity, we omit the thread specification pool Θ from the program state.

Θ is used to capture resource belonged to a thread and can be handled in the same

way as described in the soundness proof of “threads as resource” (Appendix B). We

use m to denote the identifier of the main thread executing the main procedure of

the program.

Definition 25 (Execution). Execution of a program starts in the initial program

state: (∅, {(m, run(s, ∅), ∅)}), where s is the code of the main procedure.

Small-step operational semantics is presented in Fig. D-1. In the figure, def(pn)

denotes the definition of the procedure pn in the program, eval(e,Γ) denotes the eval-

uation of the expression e in the environment Γ. A premise marked with light grey

indicates conditions that need to hold, otherwise the thread has performed an ille-

gal operation and it transitions to an aborted state. For example, a thread adds or

removes to/from a barrier a negative number of participants. Our verification rules

166

ensure that the premises in light grey hold, i.e. threads cannot transition to aborted

states.

o /∈ dom(G) typeof(o) = barrier Γ(n) = num num>0
Γ′ = Γ[b 7→ o] G′ = G[o 7→ (0, num, 0)] L′ = L[o 7→ 0]

(G, {(τ, b = new barrier(n);s,Γ), L)} ∪ T)→
(G′, {(τ, run(s,Γ′), L′)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
s′1 = [v1/w1, . . . , vn/wn]s1

(G, {(τ, run(pn(v1, . . . , vn); s,Γ), L)} ∪ T)→
(G, {(τ, run(s′1; s,Γ), L)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
∀i ∈ {1, . . . , n} • Γ(vi) = oi fresh(τ1) typeof(τ1) = thrd

Γ1 = [w1 7→ o1, . . . , wn 7→ on] Γ′ = Γ[v 7→ τ1]
L1 = [(oi, Gp(oi)) | Γ(vi) = oi ∧ typeof(oi) = barrier]

(G, {(τ, run(v = fork(pn, v1, . . . , vn); s,Γ), L)} ∪ T)→
(G, {(τ, run(s,Γ′), L)} ∪ {(τ1, run(s1,Γ1), L1)} ∪ T)

Γ(b) = o G(o) = (i, t, p) i<t−1
G′ = G[o 7→ (i+1, t, p)] L′ = L[o 7→ L(o)+1]

(G, {(τ, run(wait(b); s,Γ), L)} ∪ T)→ (G′, {(τ,wait(o, s,Γ), L′)} ∪ T)

Γ(b) = o G(o) = (i, t, p) i=t−1
G′ = G[o 7→ (0, t, p+1)] L′ = L[o 7→ L(o)+1]

(G, {(τ, run(wait(b); s,Γ), L)} ∪ T)→ (G′, {(τ,wait(o, s,Γ), L′)} ∪ T)

L(o) = Gp(o)

(G, {(τ,wait(o, s,Γ),Γ), L)} ∪ T)→ (G, {(τ, run(s,Γ), L)} ∪ T)

Γ(b) = o Γ(m) = a a>0 G(o) = (i, t, p) G′ = G[o 7→ (i, t+ a, p)]

(G, {(τ, run(add(b, m); s,Γ), L)} ∪ T)→ (G′, {(τ, run(s,Γ), L)} ∪ T)

Γ(b) = o Γ(m) = a G(o) = (i, t, p) t≥a>0 t−a>i G′ = G[o 7→ (i, t−a, p)]
(G, {(τ, run(remove(b, m); s,Γ), L)} ∪ T)→ (G′, {(τ, run(s,Γ), L)} ∪ T)

Γ(b) = o Γ(m) = a G(o) = (i, t, p) t≥a>0 t−a≤i
G′ = G[o 7→ (0, t−a, p+1)]

(G, {(τ, run(remove(b, m); s,Γ), L)} ∪ T)→ (G′, {(τ, run(s,Γ), L)} ∪ T)

(G, {(τ, run(skip,Γ), L)} ∪ T)→ (G, {(τ,dead, L)} ∪ T)

Figure D-1: Small-step Operational Semantics of Programs with Barriers

167

APPENDIX D. SOUNDNESS PROOF FOR BARRIER SYNCHRONIZATION

Most of the rules in Fig. D-1 are straightforward. When forking a new child thread,

the main thread passes the global phase to the child thread. The treatment of loops

is similar to that of if-then-else and is omitted. When issuing a barrier wait, a thread

transitions to a waiting state. The final thread issuing a barrier wait increments the

global phase p by 1 and resets the counter i to 0. Threads transition back to a running

state when all participants have issued a barrier wait, i.e. the global phase is equal

to threads’ local phases.

Lemma 11 (Correct Participation). Given a program with a barrier b and a set of

procedures P i together with their corresponding pre/post-conditions (Φi
pr/Φi

po), if our

verifier derives a proof for every procedure P i, i.e. {Φi
pr}P i{Φi

po} is valid, then there

are exactly a predefined number of threads participating in b’s wait operations.

Proof. Our verification rules rely on bounded permissions to handle concurrent ac-

cesses to barrier b. Given n is the predefined number of participants, it follows from

Lemma 2 that there are at most n threads concurrently operating on barrier b. In

order to perform a wait on barrier b, threads must have unit permissions of bar-

rier b. Additionally, adding and removing participants correspond to the addition

and subtraction of the total number of participants t in operational semantics, i.e.

tb +
∑

(ci,tb,ai)∈Sb
ai = t where tb is the original number of participants declared at b’s

creation point. Hence, there are exactly n threads participating in barrier b.

Lemma 12 (Correct Phasing). Given a program with a barrier b and a set of proce-

dures P i together with their corresponding pre/post-conditions (Φi
pr/Φi

po), if our ver-

ifier derives a proof for every procedure P i, i.e. {Φi
pr}P i{Φi

po} is valid, then threads

participating in barrier b operate in compatible numbers of phases.

Proof. The phase number used in our barrier specification corresponds to the local

phase in the operational semantics. The final phase of b corresponds to the global

phase of b after all participants have completed their execution. First, if a thread

fully participates in barrier b (it does not drop out), then it ends up in a local phase

which is equal to the global phase. Second, if a participant drops out, it ends up

168

in a local phase which is at most equal to the global phase. Third, if a thread does

not fully participate in barrier b, does not drop out, and ends up in a phase which

is not the final phase, it will be rejected by the db-consistency check (described in

Section 5.2.3). Hence, all participants end up in compatible numbers of phases.

Lemma 13 (Soundness of Verifying Barrier Synchronization). Given a program with

a barrier b and a set of procedures P i together with their corresponding pre/post-

conditions (Φi
pr/Φi

po), if our verifier derives a proof for every procedure P i, i.e.

{Φi
pr}P i{Φi

po} is valid, then the program is correctly synchronized with respect to the

barrier b.

Proof. It directly follows from Lemma 11, Lemma 12, and Definition 22.

169

