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Summary 

The efficient and accurate numerical simulations of ubiquitously observed 

fluid – solid interactions have motivated the present thesis study and 

development of a hybrid numerical tool. The distinguish features of immersed 

boundary method (IBM) are adopted in this work, where the entire simulations 

is carried out on a Cartesian grid, which does not conform to the geometry of 

the immersed solid. Although the principles of IBM remove the burdens of 

body conformal meshing schemes such as grid transformations and time 

dependent mesh regeneration, but IBM suffers from certain numerical defects. 

One of such defects is improper/approximate satisfaction of the 

velocity/temperature boundary conditions, which leads to generation of non-

physical streamline/isotherm penetration into the solid boundary. Looking into 

the literature, we observed that the ideas proposed to remove afore mentioned 

defects are either mathematically complex to implement or demands higher 

computational resources. Therefore, an attempt has been made here to 

formulate a simplified and efficient version of IBM, coupled together with 

lattice Boltzmann fluid solver. 

At first, we have proposed a 2D version of flexible forcing immersed 

boundary – lattice Boltzmann method (IB – LBM), where an implicit 

formulation of velocity and body force correction is followed, that resolve the 

issues of improper satisfaction of boundary condition as seen in the 

conventional IB – LBM schemes. Here, use of a single Lagrangian velocity 

correction formulation simplifies the complex mathematics and reduces the 

computational memory and resource requirement. The numerical accuracy of 
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the proposed scheme has been evaluated by simulating several benchmark 

flow cases that involves stationary as well as moving solid boundaries, and the 

obtained results are validated by suitable comparisons with literatures.  

We further studied the implementation of thermal boundary effects where an 

additional energy equation is solved for temperature evolution. In this case, 

the improper temperature boundary condition may leads to similar non-

physical isotherm penetration into the solid boundary. Therefore, a single 

Lagrangian temperature correction is followed along with the previous 

velocity correction step for satisfying both temperature and velocity boundary 

conditions. Validation of the proposed scheme is done with natural and forced 

convection flow cases. 

With suitable implications of flexible forcing IB – LBM in 2D cases, we have 

extended the studies to 3D and more practical flow scenarios. A modified 

version of coupled IB – LBM scheme is proposed here that accommodates 3D 

calculations in the basic frameworks of flexible forcing algorithm. Several 

benchmark flow simulations are performed to verify the accuracy and 

capabilities of the scheme, where the results are found to be in excellent 

agreement with the literature. 

Now that we have gained confidence on the proposed IB – LBM scheme 

performance, we have tried to addresses some practical flow problems in 

relates to thermal and non-thermal conditions. In the present scope of study, 

only the applications involving natural convection flows and particulate flows 

are identified and assessed. Many significant findings are presented here with 
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different parametric studies. Also in case of particulate flows we have 

conducted in-house experiments to cross verify the numerical observations.        
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1 Chapter 1 

Introduction and Literature 

Review 

1.1 Background 

Numerical investigations of complex fluid flow problems using computational 

fluid dynamics (CFD) have become significantly important in both scientific 

researches and engineering applications. Although CFD simulations are 

considered as the cost-effective solutions over the experimental studies 

however, performing an accurate and efficient numerical analysis remains a 

primary issue in CFD.  

A number of computational methods such as finite volume (FV), finite 

element (FE) and finite difference (FD) (Mavriplis (1997) and references 

therein) have been developed and deployed to understand the flow physics 

behind complex flow situations. These numerical schemes have advantages for 

direct implementation of the boundary conditions on a body-fitted mesh while 

their shortcomings are: 1) the grid transformations to generate the body-fitted 

meshing for realistic and complex geometries and 2) the time dependent re-

meshing to solve the moving boundary problems. Although the modern 
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computational resources have evolved for high speed computation, but in 

these body fitted meshing schemes a significant amount of computational time 

is devoted in mesh constructions which subsequently enhances the overall 

simulation time by many folds. Therefore, it is necessary to look for an 

alternative in a non-body-fitted mesh technique where the complex boundary 

mesh is decoupled from the flow domain mesh.    

  

       (a)             (b) 

Fig.1.1. Computational domain with (a) body-fitted and (b) non-body-fitted 

Cartesian mesh.  

As shown in Fig.1.1 to generate a body-fitted mesh, the boundary is defined at 

first then correspondingly the surface and volume mesh is generated in the 

computational domain whereas in case of a non-body-fitted mesh a simple 

Cartesian mesh is adhered in the computational domain and the effects of 

boundary is imposed in solution steps. In the decoupled/non-body-fitted mesh 

the flow field is solved on a fixed Cartesian/Eulerian mesh whereas the 

boundary evolution is solved in a moving Lagrangian mesh. Here, one may 

clearly identify the advantages of non-body-fitted meshing schemes for the 

moving boundary problems where the initially generated Cartesian mesh can 
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be used at all time steps unlike to the body-fitted meshing scheme, where the 

mesh is regenerated and the solution is projected onto the new mesh points 

(Tezduyar (2001)) at every time step.  

The concept of non-body-fitted meshing schemes additionally requires an 

interface capturing technique as the boundary mesh may not coincide with the 

fluid domain mesh. Thus the non-body-fitted meshing schemes are 

subcategorised with the size of the captured interface thickness as 1) Sharp 

interface scheme and 2) Diffuse interface scheme.  

In the case of sharp interface schemes, the thin/sharp boundary is traced by 

modifying the computational stencils around the boundary. The popular 

variants of the sharp interface schemes are, immersed interface method (IIM) 

(Leveque and Li (1997); Lee and Leveque (2003); Le et al. ( 2006); Shirokoff 

and Nave (2014)), ghost fluid method (GFM) (Fedkiw et al. (1999); Liu et al. 

(2000); Liu and Khoo (2007)), and Cartesian/cut cell method (CCM) 

(Udaykumar et al. (1997); Tucker and Pan (2000); Ingram et al. (2003)). The 

commonality between these variants is that the immersed solid boundary is cut 

out off the underlying Cartesian fluid mesh with negligible boundary 

thickness. The boundary conditions are then directly applied by incorporating 

the pressure and velocity jump conditions into the finite difference 

approximation of the governing equations near the boundary, or by using the 

reflection principles for the normal and tangential velocity components in the 

cut off portion of the Cartesian fluid cells. Also the sharp interface schemes 

require the reconstruction of the control volumes near the region of interface, 

where the integration of weak form governing equations are modified. One of 
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the severe limitations of the sharp interface schemes is the involved numerical 

instabilities while capturing the moving boundaries. In this case, the local 

stencil near the boundary changes too abruptly with minimal movement of the 

boundary which consequently generates substantial oscillations in the 

computed fluid force and may leads to a diverge solution (Kempe and Fröhlich 

(2012)). 

On the other hand diffused interface schemes traces the boundary/interface 

with finite thickness which is smeared across some surrounding Cartesian 

mesh points. Here, the boundary conditions are easily implemented by 

introducing an additional body force density term into the governing equation, 

unlike to the tedious jump condition in the sharp interface schemes. The most 

common diffuse interface schemes are distributed Lagrange 

multiplier/fictitious domain algorithm (DLM/FD) (Glowinski et al. (1994); 

Glowinski et al. (1999); Glowinski et al. (2001)) and immersed boundary 

method (IBM) (Peskin (1977); Lai and Peskin (2000)). In the DLM/FD 

scheme a fictitious domain is utilised to represent the immersed solid 

boundary in a regular Cartesian grids. Using the distributed Lagrangian 

multiplier, the constraints of rigid body motion is imposed on the fictitious 

fluid inside the immersed solid boundary. But the form of Lagrange multiplier 

makes these schemes mathematically complex for practical implementations.  

Alternatively, a simple non-Lagrangian multiplier based fictitious domain or 

immersed boundary method (IBM) is suggested. In the present study, the 

primary motivation is to develop an efficient IBM scheme to capture 

accurately different flow scenarios such as, athermal/thermal flows with 
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stationary/moving immersed solid objects. In the following, a brief literature 

review on existing IBM schemes and their defects are highlighted which will 

help to identify the scope and development for the present research work. In 

this study, we have used lattice Boltzmann method (LBM) to solve the flow 

field evolutions in various practical applications. Hence, corresponding 

literature reviews on LBM and selective applications are also outlined here.      

1.2 Immersed boundary method  

The pioneering work on IBM was proposed by Peskin (1977) to model the 

blood flow in the heart arteries. Such flow is regularised by the heart valves, 

which are moving boundaries in the fluid (blood) stream. In IBM, the flow 

field was discretised over a fixed Cartesian/Eulerain mesh whereas the 

boundaries are represented by a set of Lagrangian points that may be advected 

with the flow field interaction. The basic idea of IBM is that the boundary is 

considered to be deformable, but with high stiffness. The boundary 

deformation is thus model using elements with elastic (spring) links, where a 

restoring force as functions of deformation and elasticity is generated that 

revert back the deformed boundary to its original shape. Using Dirac delta 

functions the restoring force at the Lagrangian boundary points is distributed 

to the Eulerian fluid mesh and then the Navier-Stokes (NS) equations with 

added body force are solved in whole Eulerian domain to incorporate the 

effects of the solid boundary.  

Hence, the imposition of solid boundary condition in IBM entirely depends on 

determination of the singular restoring force/body force term, which further 
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classifies IBM into two major groups 1) Continuous forcing and 2) Discrete 

forcing.  

In the first method, the body force term is included in non-disctretised form of 

NS equations and solved in the entire computational domain (solid + fluid). 

This is also called as continuous forcing IBM. A number of variants of 

continuous forcing IBM have been proposed in literature to simulate different 

flow scenarios. Peskin (1977) has used a feedback forcing principle to 

simulate the blood flow in an elastic heart valve where the boundary force was 

computed from Hooke’s law with surface deformation and spring constant. 

Lai and Peskin (2000) applied the method for the rigid boundary problem such 

as flow past a circular cylinder with higher spring constant and stiffness. 

Goldstein et al. (1993) and Saiki and Biringen (1996) have developed a virtual 

boundary method that uses the feedback forcing in conjunction with the finite 

difference and spectral method. The virtual boundary method has two free 

parameters those need to be tuned according to the flow conditions. Zhu and 

Peskin (2003) have applied the continuous forcing IBM to simulate flapping 

filament in a flowing soap film. 

Although the continuous forcing schemes are suitable for simulating 

interaction between the fluid flow and elastic immersed structures (Fauci and 

McDonald (1995); Zhu and Peskin (2002); Zhu and Peskin (2003)) but in case 

of a rigid body interaction this scheme poses severe numerical instabilities 

where one or more free parameters are involved. The improper selection of the 

free parameters (Goldstein et al. (1993); Mittal and Iaccarino (2005)) may 

leads to spurious elastic effects such as excessive deviation from the 
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equilibrium location. Again to derive an analytically integrable body force 

function that enforces a specific boundary condition is a tedious task and may 

not be always feasible for the NS equations.  

In the second method, discrete forcing IBM, the governing equation is 

discretised on a Cartesian mesh without considering the presence of the 

immersed boundary. Then the cells near the immersed boundary are adjusted 

to account for its presence. This method differs from the continuous forcing 

scheme with respect to the introduction of the forcing function, where the 

body force term is incorporated after the NS equations are discretised. Hence, 

the followed spatial discretisation signifies the overall accuracy of the 

solution. Mohd-Yusof (1997) and Verzicc et al. (1998) have developed a 

direct forcing scheme where the forcing term is determined from the error 

between the calculated velocity and desired IB velocity. The direct forcing 

method does not depend on the free parameters and avoid the corresponding 

numerical instability issues. Fadlun et al. (2000) have applied the direct 

forcing method in the frame of FDM where the forcing point was located at 

the interior fluid node closest to the boundary. Kim et al. (2001) extended the 

direct forcing scheme for the FVM, where they have introduced a mass 

source/sink term to satisfy not only the no-slip condition but also the 

continuity for the cells encompassing the immersed boundary. Uhlmann 

(2005) had developed an improved direct forcing IBM using finite difference 

and fractional stepping to suppress the force oscillations in case of moving 

boundary problems such as particle sedimentation. Another variant of discrete 

forcing scheme was proposed by Niu et al. (2006), where the body force 

density on the Lagrangian points are calculated from Newton’s second laws of 
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motion, i.e. the conservation of momentum. In this algorithm, by using simple 

momentum exchange the restoring force at the boundary point is computed 

and redistributed to Eulerian nodes.     

In the context of applications, IBM have been well applied for diverse flow 

situations such as, compressible flow (De Palma et al. (2006); Ghias et al. 

(2007); Tran and Plourde (2014)), particulate flow (Feng and Michaelides 

(2004); Feng and Michaelides (2005); Uhlmann (2005); Kempe and Fröhlich 

(2012)), interaction of solid bodies (Fadlun et al. (2000); Gilmanov and 

Sotiropoulos (2005); Chen et al. (2007); Hu et al (2014)), multiphase flow (Li 

et al. (2012); Shao et al. (2013)), conjugate heat transfer (Jeong et al. (2010); 

Kang and Hassan (2011); Ren et al. (2012); Mark et al. (2013)), bio flow 

mechanics (Fauci and McDonald (1995); Tseng and Huang (2014)) etc. 

Although IBM has been promisingly implemented and many theoretical 

improvements have been suggested, still several issues are unaddressed.  

1.2.1 Defects in immersed boundary method 

In the conventional IBM, the body force is applied near the immersed 

boundary to enforce the no-slip condition that creates a discontinuity in the 

velocity gradient. This discontinuity reduces the local accuracy of the flow to 

first order. Suzuki and Inamuro (2013) have proposed a higher order IBM to 

smoothly expand the velocity field into the body domain across the boundary. 

The basic idea of this scheme is to keep the velocity discontinuity away from 

the boundary such that the velocity gradient is continuous near the boundary. 

Following this technique, the accuracy across the boundary is improved but 
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the velocity gradient discontinuity still prevails (rather shifted spatially) in the 

computational domain that reduces the overall order of accuracy of the 

scheme. Further, use of the lower order discrete delta function interpolation 

for Lagrangian, Eulerian velocity and body force transfer, the accuracy of the 

numerical scheme reduces. Wang and Liu (2004) have proposed an extended 

IBM namely immersed finite element method (IFEM). Here, both fluid and 

solid domain are modelled with FEM, where the boundary is detected by using 

Reproducing Kernel Particle Method (RPKM) with a higher order delta 

function. This enhances the order of accuracy of the numerical scheme.           

Another defect of IBM is that the no-slip condition is only approximately 

satisfied at the converged solution state that may leads to non-physical 

streamline penetration into the immersed solid (Luo et al. (2007); Kang and 

Hassan (2011)). Shu et al. (2007) have suggested that the improper no-slip 

condition is formed because of the pre-calculated force density term. They 

have applied the fractional step technique to show that adding a body force 

density term into the governing equations in order to satisfy the no-slip 

condition is same as making a velocity correction. Therefore to enforce the no-

slip boundary condition, the velocity correction is consider as unknown 

(implicit correction) and it would be determine such that the velocity at the 

boundary, interpolated from the corrected velocity field satisfies the accurate 

no-slip boundary condition. But the suggested implicit correction by Wu and 

Shu (Wu and Shu (2009); Wu and Shu (2010); Wu and Shu (2012), demands 

very complicated matrix operations along with significant computational 

memory usage and sequential coding pattern for the velocity correction 

coefficients. To avoid the complicated matrix operations an alternative multi-



Chapter 1 Introduction and Literature Review 

 

 

10 
 

direct-forcing scheme was proposed (Luo et al. (2007); Wang et al. (2008); 

Kang and Hassan (2011)), which uses iterative procedure to find out the body 

force density term. However, use of fixed number of iteration steps (Luo et al. 

(2007); Wang et al. (2008); Kang and Hassan (2011)) may not satisfy the no-

slip condition accurately. In particular, for the unsteady and moving boundary 

flow cases the force and torque calculated with improper no-slip condition 

may produce significant error in the motion calculation of the moving objects. 

In addition, the sub iteration scheme enhances the computational time and 

cost.  

To avoid the matrix calculation and reduce the iteration/computational cost, 

the present study is motivated for developing an efficient algorithm which 

satisfies the no-slip boundary condition and evaluates the accurate body force 

acting on the solid boundary at several flow situations.  

1.3 Lattice Boltzmann method 

In recent years, LBM has been a promising alternative over the traditional NS 

equations based fluid solvers and successfully applied to number of 

hydrodynamic problems. Unlike to the conventional CFD schemes that solves 

the macroscopic variables such as density, velocity and pressure using the 

Navier-Stokes equations, LBM solves the evolution of particle density 

distribution function with global streaming and local collision processes, using 

the microscopic kinetic equation (Boltzmann equation). The macroscopic fluid 

variables are then derived through moment integration of the distribution 

function at the lattice nodes. The kinetic nature of the LBM provides four 
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distinct advantageous over the traditional CFD schemes. First, the linear 

convection operator (or streaming process) of LBM in phase space (or velocity 

space) greatly reduces the computational effort compare to its nonlinear 

counterpart in NS equations. The simple linear convection in combination 

with a relaxation process (or collision process) recovers the nonlinear 

macroscopic advection through the multi-scale expansion. Second, in LBM 

the pressure is obtained from simple equation of states, whereas in the 

incompressible NS equations, pressure is derived using the Poisson equation 

with velocity strains which involves additional numerical difficulties and 

requires special treatment such as iterations or relaxation methods. Third, 

LBM follows minimum set of particle velocities in phase space in comparison 

to the traditional kinetic theory with the Maxwell equilibrium distribution, 

where the statistical averaging process requires information from the whole 

velocity phase space. Four, the algebraic form of the governing lattice 

Boltzmann equation (LBE) simplifies the computational effort in numerical 

code development and allows parallelisation for faster computation (Chen et 

al. (1996)). 

The LBM was initially developed to address the drawbacks of the primitive 

gas kinetic scheme, lattice gas cellular automata (LGCA) (Frisch et al. 

(1986)), which suffers large statistical noise, non-Galilean invariance, 

unphysical velocity dependent pressure and large numerical viscosity. Unlike 

the Boolean particle variables in LGCA, a continuous single particle density 

distribution function with Maxwell Boltzmann equilibrium distribution 

function was proposed in LBM (McNamara and Zanetti (1988); Higuera and 

Jiménez (1989)), which neglects: the individual particle motion and particle-
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particle correlation in the kinetic equations. This improved process removes 

the statistical noise and preserves the Galilean invariance. Later, Koelman 

(2007) and Qian et al. (1992), have also suggested that the particle distribution 

is close to the local equilibrium state and shifted by Bhatnagar-Gross-Krook 

(BGK) relaxation process. The linear collision BGK operator simplifies the 

computational process and enhances the numerical efficiency. Due to its 

simplicity, over the last few decades LBM has been widely applied to 

simulated incompressible flows (Succi et al. (1991); Hou et al. (1995); Mei et 

al. (2000); Wang et al. (2014)), compressible flows (Sun (2000); Hinton et al. 

(2001); Yan et al. (2006); Chen et al. (2014)), multi-component/multi-phase 

flows (He et al. (1999); Luo and Girimaji (2002); Lee and Lin (2005); Zheng 

et al. (2006); Huang et al. (2014)), particulate flows (Ladd (1993); Ladd 

(1994a); Ladd (1994b)), flows through porous media (Tölke et al. (2002); Pan 

et al. (2004); Ginzburg (2008); Taghilou and Rahimian (2014)), turbulent 

flows (Benzi and Succi (1990); Teixeira (1998); Yu et al. (2006); Touil and 

Ricot (2014)), electro-kinetic flows for colloids (Ladd and Verberg (2001); 

Cates et al. (2004); Adhikari et al. (2005)), magneto hydrodynamics (Chen and 

Shi (2005); Pattison et al. (2008)), viscoelastic flows (Boger (1987); 

Malaspinas et al. (2010)) and micro channel flows (Lim et al. (2002); Chen 

and Tian (2009); Verhaeghe et al. (2009); Shi and Tang (2014)).        

In the standard LBM, the discretization of the phase space is coupled with the 

discretization of the momentum space, such that the minimal advection 

distance of the density distributions in the single time step must be equal to the 

minimal lattice separation. This limits LBM applicability to only uniform 

Cartesian mesh, which makes LBM not so efficient (in case of uniform fine 
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grid) or accurate (in case of uniform coarse grid) to attain the high resolution 

solutions. One of the alternatives for this defect is to decouple the 

computational mesh from the discretization of momentum space and use an 

interpolation-supplemented LBM (ISLBM) (He et al. (1996)) to determine the 

steaming of the density distribution in the new time level. Shu et al. (2003) 

have proposed an improved interpolation technique using Taylor series 

expansion in spatial direction with least square optimisation LBM (TLLBM). 

Although the expansion coefficients only depends on the mesh coordinates 

and lattice velocities, but the storage memory required is enhanced 

significantly in TLLBM. Recently, a second order accurate Lagrangian 

interpolation based LBM (LILBM) was introduced by Wu and Shu (2010) that 

simplifies the TLLBM interpolation technique to algebraic form and reduces 

the number of stored coefficient. We have followed LILBM in the present 

numerical simulations for the case of non-uniform meshed computational 

domain. 

1.4 Thermal lattice Boltzmann method  

Although LBM has been explicitly employed for number of isothermal fluid 

flow simulations but it has not gain similar attention in thermal flow cases. 

This is because, incorporating the temperature condition into the lattice 

equilibrium is not straightforward while using the standard lattice framework 

and simultaneously satisfying the multi scale moment integrals to recover the 

NS equations. At present, two distinct constructive approaches are available to 

model thermal lattice Boltzmann (LB) scheme. In the first approach, (also 

known as multispeed approach) (Chen et al. (1994); Watari and Tsutahara 
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(2004)) the local energy conservation and isotropy is satisfied together with 

higher number of discrete lattice velocities/off-lattice velocity sets and higher 

order velocity terms in the equilibrium distribution functions. The basic idea 

behind the multispeed thermal LB model is reasonably simple but it is onerous 

to define the parameters in the equilibrium distribution functions. Also the 

model experiences severe numerical instabilities and only suitable for low 

temperature range (McNamara et al. (1995); Pavlo et al. (1998)). In the second 

approach, (also known as double population approach) (He et al. (1998); Guo 

et al. (2002); Li et al. (2008)) instead of the original single particle distribution 

function that describes the evolution of the density, momentum and 

temperature field simultaneously, a separate distribution function is followed 

to describe the temperature/energy, which produces a better numerical 

stability. A sub-variant of the double population approach is passive scalar 

approach (Peng et al. (2003); Li et al. (2008)), where the temperature is 

governed by an advection-diffusion equation under the condition that both 

compression work and viscous heat dissipation are negligible. This assumption 

is only valid in the incompressible limit with low Prandtl/Eckert number. 

Among other thermal LB model, a thermal lattice Boltzmann flux solver 

(Wang et al. (2014)), a Taylor series expansion based thermal LBM (Shim and 

Gatignol (2011)) and a consistent energy conservation based LBM (Ansumali 

and Karlin (2005)) are proposed in recent years, but due to mathematical 

complexity these thermal LB schemes (Ansumali and Karlin (2005); Shim and 

Gatignol (2011); Wang et al. (2014)) are difficult to implement. In our present 

simulation studies we have utilised the modified double population based 

thermal LBM (Peng et al. (2003)).  
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1.5 Coupled immersed boundary – lattice 

Boltzmann method 

The first coupled immersed boundary – lattice Boltzmann method (IB – LBM) 

was introduced by Feng and Michaelides (2004) to simulate the rigid particle 

motion. The profound key similarities between LBM and IBM have initiated 

this coupling process where instead of re-meshing the fluid domain, both the 

methods use a fixed Cartesian mesh. Here, the lattice grids represent the flow 

field and the boundary points represent particle surface. This IB – LBM 

scheme (Feng and Michaelides (2004)) is similar to the feedback forcing IBM 

(Lai and Peskin (2000)) where LB equations are solved instead of NS 

equations. Later, they have proposed an explicit diffuse interface scheme 

(Feng and Michaelides (2005)) to simulate 3D particulate flow. However, in 

their direct forcing IB – LBM, additional NS equations are solved for 

evaluation of the boundary forces. Dupuis et al. (2008) have proposed a pure 

direct forcing IB – LBM scheme where only LB equations are utilised to 

evaluate the boundary force density as well as to solve the fluid flow. To 

enhance the mesh resolution and numerical accuracy, a multi-block IB – LBM 

was developed by Peng et al. (2006) and Sui et al. (2007) and they have 

simulated the flow past aerofoil and deformable moving blood cells 

respectively. Niu et al. (2006) have proposed a momentum exchange based IB 

– LBM to simulate the incompressible flow where the body force is 

determined using Newton’s laws of momentum conservation. 
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However, in the direct forcing IB – LBM (Feng and Michaelides (2005); Peng 

et al. (2006); Sui et al. (2007); Dupuis et al. (2008)) the kinetic nature of the 

LBM is neglected where the used lumped forcing LB equation does not 

recover the NS equation with second order accuracy. In contrast, the split 

forcing/implicit velocity correction based IB – LBM (Guo et al. (2002); Wu 

and Shu (2009); Kang and Hassan (2011)) removes the additional force 

divergence and time derivative terms and suitably recovers the NS equation 

with second order accuracy. But as discussed in section 1.2.1, the proposed 

implicit velocity correction IB – LBM (Wu and Shu (2009); Wu and Shu 

(2010); Wu and Shu (2012)) may demands for complex matrix operations that 

inhibits the computational performance and restrict the applicability to simple 

2D problems, at the same time the alternative multi-direct forcing IBM (Luo et 

al. (2007); Wang et al. (2008)) requires higher computational resources and 

time. Therefore, in this study we focused on development of an efficient and 

accurate alternative IB – LBM approach.                 

In comparison to the athermal coupled IB – LBM schemes, very limited work 

is found in the literature for the thermal flow problems. Among these the 

notable ones are (Jeong et al. (2010); Kang and Hassan (2011); Seta (2013)). 

Similar to the introduction of the forcing term in the momentum equations, a 

heat source term is incorporated in the energy equation to satisfy the no-jump 

temperature boundary condition. The difference between the given 

temperature and the computed one at the Lagrangian boundary point is 

mapped back to the Eulerian mesh using the same idea as traditional feedback 

forcing IBM (Peskin (1977)). The explicit computation of the heat source term 

may create the similar defects as athermal IBM (see in section 1.2.1), where 
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the possibilities of non-physical solutions and isotherm penetration arose with 

unsatisfied boundary conditions. This further motivate us to propose an 

efficient implicit IB – LBM scheme for thermal flow problems such that both 

velocity and temperature boundary conditions are accurately satisfied.      

1.6 Applications in thermal and moving 

boundary problems using immersed 

boundary – lattice Boltzmann method 

1.6.1 Natural convection in a complex cavity 

Natural convection has been a topic of research since the last century. The 

motivation of these researches was the desire and need to understand the 

fundamentals of physics and their wide industrial applications, such as in 

building insulation, cooling of electronic instruments, solar panel collector-

receivers and cooling systems of nuclear reactors etc. The natural convection 

process can be broadly categorised into three major groups which are the 

convection processes from: 1) a heat source exposed to infinitely large cold 

surroundings (Alansary et al. (2012)), 2) differentially heated walls of an 

enclosed cavity (De Vahl Davis and Jones (1983); Raji et al. (2013)) and 3) a 

heat source in an enclosure (Deng (2008); Kalyana Raman et al. (2012)). In 

the present study, we have focused on the natural convection process in an 

enclosure with an eccentric discrete heat source where only limited works are 

available in the literature. This complex cavity situation has importance in 

engineering implications, particularly in the electronic PCB cooling and 
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microelectronic fabrication industries. The predominant factors driving this 

natural convection process are the Rayleigh number (Ra), Prandtl number (Pr) 

and aspect/blockage ratio (η) of the discrete heat source width to enclosure 

face length.  

Kim et al. (2008) have investigated the natural convection from an eccentric 

hot circular cylinder placed inside a cold enclosure at different Ra. When the 

hot cylinder is displaced along the vertical centreline of the enclosure, the flow 

pattern and heat transfer rate is altered with formation of additional thermal 

cells. A similar study is performed by Hussain and Hussein (2010) for an 

eccentric circular cylinder with constant heat flux boundary condition and later 

Lee et al. (2010) have extended the work by reporting the thermal plumes and 

Nusselt number (Nu) variations for a horizontal and diagonal eccentric 

displacement of a hot circular cylinder. Among other studies Ghaddar (1992), 

Cesini et al. (1999) and Shu et al. (2001) have discussed the natural 

convection process in an air (Pr = 0.71) filled square enclosure with 

concentric/eccentric circular heat sources. In their studies, the 

qualitative/quantitative heat transfer rate and fluid flow pattern are depicted as 

functions of Ra (in the range 10
3
 – 10

6
) and η (in the range 0.06 – 0.48). But in 

practice, the discrete heat source may not be only limited to a circular shape. 

Recently, Bararnia et al. (2011) and Nabavizadeh et al. (2012) have extended 

the natural convection studies for elliptical (η = 0.6 and Ra between 10
3 

– 10
6
) 

and sinusoidal (η = 0.4 and Ra between 10
3
 – 10

6
) shaped heat sources. 

Alternatively, the heat source may have sharp edges with a square/rectangular 

shape. The geometrical difference between a circular and square-shaped heat 
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source alters the flow separation point (corners in the square shape), and hence 

a change of flow regime and heat transfer rate is expected. 

Among the previous study reports on the square shaped heat source (or square 

cylinder), Asan (2000) has described the 2D natural convection process 

between two concentric isothermal square cylinders for Pr = 0.7 and Ra in the 

range 10
3
 – 10

6
. Observed results in his study suggest that isotherms and flow 

patterns are greatly influenced by the dimensional ratio (η) of the square 

cylinders (1/5, 3/10 and 3/5) and Ra. Ha et al. (2002) studied the natural 

convective heat transfer from an adiabatic and isothermal square cylinder (η = 

1/π). They performed steady and unsteady simulation for Pr = 0.7 and Ra in 

the range 10
3 

– 10
6
. The flow pattern was observed to change from a steady 

symmetrical regime to an unsteady non-symmetrical regime with an increase 

in Ra. Mahapatra et al. (2013) have extended Ha et al. (2002) work, to 

determine the heat transfer enhancement and entropy generation in the 

enclosure with multiple square heat sources and Ra. Kumar De and Dalal 

(2006) have considered the natural convection around a hot tilted (inclination 

angle = 45 deg) square cylinder for Ra between 10
3 

– 10
6
 and air (Pr = 0.7) as 

working fluid. The flow and heat transfer features for different enclosure 

aspect ratios (i.e. height/length between 0.5 – 2.0) and different boundary 

conditions on the hot square cylinder are presented in their study. They have 

shown that the uniform wall temperature is quantitatively different from the 

uniform heat flux condition.  

 Existing literature suggests that a systematic investigation of the natural 

convection process from an inclined or eccentric square heat source has not 
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made. These situations are of practical importance where the flow and heat 

transfer rates are expected to alter with Ra, inclination angle (θ) and 

eccentricity (χ). Therefore, in this study we have used the developed IB – 

LBM coupled scheme to characterise the natural convection process with 

above mentioned parameters in an enclosure that contains an inner square heat 

source.  

1.6.2 Particle sedimentation  

Fluid-particle interactions occur in many practical applications, such as 

chemical, environmental, geological, aerospace, nuclear, oil and gas 

engineering and biological science. Dispersion of pollutants in rivers, seas or 

in atmospheres, fluidized bed reactor, colloidal suspension, cell transport in 

arteries, processing mineral ores and transportation of settling slurries in a 

pipeline are few examples of this branch of physics. The inclusion of the solid 

particle suspension in the fluid domain is difficult to analyze in either 

theoretical or experimental techniques, where the hydrodynamic interactions 

of the fluid phase are complexly coupled with the Newtonian dynamics of the 

moving particle. One of the earliest theoretical works on the sedimentation 

behaviour of a pair of spherical particles through a viscous fluid was carried 

out by Smoluchowski (Smoluchowski (1911); Smoluchowski (1912)) for 

small Reynolds number and small ratio of the sphere radius to separation 

distance between their centres. The limitation of the theoretical analysis at 

high Reynolds number leads numerous researchers to conduct experimental 

and CFD investigations to better understand the sedimentation phenomena of 

the particles. 
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In recent years, experimental investigations on sedimentation of small clusters 

of spherical particles at low Re (10
-4

 to 10) were performed by Jayaweera et 

al. (1964). They found that as Re increases (Re > 0.05), the two spheres falling 

side by side may rotate inwards and separate. When the equal-sized spheres of 

Re > 1 fall vertically with one behind the other, the rear one accelerated into 

the wake of the leader, rotates around it and separates. Fortes et al. (1987) had 

extended the work for high Re (Re > 500) by conducting experiments on two 

spherical particles sedimentation in both two and three dimension fluidisation 

bed. They have characterised the non-linear wake interactions between the 

spherical particles as Drafting – Kissing – Tumbling (DKT) where the trailing 

sphere is “drag” into the wake of the leading sphere (also known as drafting) 

which subsequently leads to them touching momentarily (also known as 

kissing) before tumbling to break the unstable kissing equilibrium state and 

then separates away. This observation has raised two important questions: 1) 

What are the driving hydrodynamic forces or couples that are responsible for 

the tumbling mechanism?  2) How do the separated settling spheres behave 

after the tumbling action?  

In an attempt to answer the first question, Hu et al. (1992) compared the 

tumbling mechanism of the spheres with that of settling of a long body in a 

Newtonian fluid.  They reasoned that the fall of the long body experiences a 

turning couple induced by pressure distributions, stagnation and separation 

points, that puts its broad side perpendicularly to the stream, which and has 

close similarity to the tumbling of the kissing spheres. Although these two 

cases may qualitatively exhibit some degree of similarities, they differ in the 

magnitude of the forces and turning couple on the spheres due to the fact that 
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tumbled spheres may separate from each other, which is distinctly different 

from the fixed mass or geometry of the long body.  In the later years, Joseph et 

al (Joseph et al. (1992); Joseph et al. (1994)) have attributed the tumbling 

action in Newtonian and viscoelastic fluids to the competition between inertia 

and normal stress terms that leads to the production of repulsive or attractive 

force among the spheres. They believed that the nature of this force, repulsive 

or otherwise, defines their tumbling action. To better understand how these 

forces are generated in Newtonian fluid, numerous researchers like Kim et al. 

(1993), Folkersma et al. (2000), Schouveiler et al. (2004) have performed 

numerical simulations on three dimensional flow past two identical stationary 

spheres held fixed relative to each other and with their connecting centre line 

normal to uniform stream. They observed that the wake structures for small 

centre spacing differ significantly from that for large centre spacing, and 

postulated that this generates lift, drag and moment that led to repulsion or 

attraction among the spheres. Although the study of fixed sphere wake 

interaction is useful in the characterisation of particle-laden flow, the analogy 

is incomplete without taking into consideration the additional inertia effects 

experienced by freely falling spheres. Moreover, the unsteady nature of the 

hydrodynamic forces during tumbling action may not be clearly identified by 

the simple flow past the tandem stationary spheres (Kim et al. (1993); 

Schouveiler et al. (2004)). We believe that a deeper of the understanding of 

DKT action can be made if we can identify temporal evolution of the unsteady 

hydrodynamic force on the settling spheres which motivated us to carry out 

the present study.  
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Another motivation is related to the second question regarding the behaviour 

of separated settling spheres after the tumbling action.  Hu et al. (1992) have 

observed that tumbled spheres attain a steady equilibrium position when the 

trailing sphere locks itself in the wake of the leading one, and thereafter move 

together with certain centre alignment analogous to the flying bird flock.  In a 

separate numerical study, Singh et al. (1989) have investigated the stable 

arrangement of two dimensional particles in periodic arrays subjected to a 

cross flow and noted that the arrays of the particles are stable only when they 

have equal centre spacing and arranging a line normal to the flow direction. 

They further identified that all other particle positions are prone to wake 

interactions and drafting.  Although they qualitatively compare their two 

dimensional results with the three-dimensional regimes, we believe that the 

comparison may not reveal the whole story about three-dimensional spheres 

interaction. The desire to address this issue motivated us to conduct the 

present 3D studies.  

Among numerical studies the fluid-particle interactions has been simulated 

using either finite volume method (FVM) or finite element method (FEM) (Hu 

(1996); Hu et al. (2001); Prosperetti and Og̃uz (2001)) where the fluid phase is 

described by Navier-Stokes (NS) equations, while the description of the 

particle phase such as position and velocity are traced in Lagrangian frame. 

However, in generating geometrically adaptive mesh and projection of the 

fluid variables from the old to new mesh at every time step makes these 

methods computationally expensive. Alternatively, in LBM platform Ladd 

(1994a; 1994b), Behrend (1995), Aidun and Lu (1995), Qi (1999) have 

implemented the interactions between fluid and particle through momentum 
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exchange (bounce back rule). However, in the momentum exchange schemes 

the force curve as a function of time is not smooth and may oscillate 

dramatically. To overcome the drawbacks, the newly developed coupled IB – 

LBM scheme is utilised for the present 2D and 3D particle sedimentation 

studies. 

1.7 Objective of the thesis 

The primary objective of this thesis is to develop a new version of the IB – 

LBM scheme that overcomes the shortcomings of the existing/conventional IB 

– LBM solver to simulate the fluid flow problems including stationary and 

moving boundary problems. The work is also aimed to develop an efficient IB 

– LBM solver for thermal flow scenarios and later extension of the algorithm 

for studying 3D flow cases. The more specific aims are specified below. 

1) To develop a novel flexible forcing IB – LBM scheme for fluid – 

solid interactions that avoids the numerical defects such as non-

physical streamline penetrations into the solid boundary; 

improper hydrodynamic force and torque calculations. In contrast 

to the conventional IB – LBM scheme where the body force 

density term is explicitly defined, we proposed a simplified 

algorithm where the mathematical formulations keep the benefits 

of the implicit velocity corrections and avoid the complicated 

matrix operations. 

2) To apply the developed flexible forcing IB – LBM scheme to 

investigate for the first time the single and two particle 



Chapter 1 Introduction and Literature Review 

 

 

25 
 

sedimentation process in a constricted channel with semicircular 

constrictions. Further extensions of the parametric studies are 

performed by varying density of the solid particles, viscosity of 

the fluid, shape and size of the constriction.    

3) To develop a new version of flexible forcing IB – thermal LBM 

scheme which uniquely combines the non-body-fitted IBM 

technique with the mesoscopic thermal LBM solver. While 

applying IBM to thermal flow case, apart from momentum 

equation an extra energy equation is solved where the improper 

temperature boundary condition may leads to non-physical 

isotherm penetration into the solid boundary. The proposed 

scheme accurately satisfies the temperature boundary condition 

with implicit definition of the heat source/sink density term.  

4) To apply the developed flexible forcing IB – thermal LBM 

scheme to investigate the natural convection in complex cavities 

formed by an eccentric/inclined square heat source and a 

surrounding enclosure. Parametric studies are also performed for 

different Rayleigh number, eccentricity and inclination angle.  

5) To apply the proposed flexible forcing IB – LBM for solving 

three dimensional flow cases and to study the stationary and 

moving boundary problems. After validating the solver, the 

classical physics relating the dynamics of two spheres settling in 

a viscous liquid column has been studied. To have concrete 

comparisons further experimental verifications are conducted.   
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1.8 Outline of the thesis 

The organisation of the thesis is outlined below. 

In Chapter 2, the standard LBM and IBM are introduced together with the 

coupled IB – LBM schemes for two dimensional flows. A novel flexible 

forcing IB – LBM scheme is presented to overcome the defects of the 

conventional IB – LBM scheme. The algorithm is developed to solve the 

stationary as well as moving boundary flow problem. The numerical accuracy 

of the proposed scheme is evaluated by performing test case simulations: 1) 

Taylor – Green decaying vortex and 2) Lid driven cavity. To further validate 

the present solver benchmark test cases such as, flow past circular cylinder, 

motion of a neutral buoyant particle in a linear shear flow and particle 

sedimentation are simulated.    

In Chapter 3, the proposed flexible forcing IB – LBM scheme is extended to 

study the particulate flow in a constricted channel. In this numerical study, it is 

the first time we have characterized the sedimentation of single and two 

particles in a 2D channel with symmetric semicircular constriction walls. The 

effects of density of the solid particles, viscosity of the fluid, shape and size of 

the constriction are investigated and the observations and results are discussed 

in detail. 

In Chapter 4, a novel flexible forcing IB – LBM scheme is proposed for 

modelling the fluid – structure interactions in the incompressible, viscous flow 

domain where the thermal effects are accounted. The detail description of the 
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numerical model is provided and the numerical accuracy/validations are 

checked by performing a number of benchmark flow case simulations.   

In Chapter 5, the developed flexible forcing IB – thermal LBM is applied to 

study the natural convection process in complex cavity scenarios, where an 

eccentric or inclined square heat source and a surrounding enclosure together 

form the complex cavity. The flow pattern and heat transfer rate in the annulus 

of the enclosure are determined as functions of Rayleigh number (Ra), 

eccentricity and inclination angle of the inner square heat source and are 

discussed in details here.    

In Chapter 6, the proposed flexible forcing IB – LBM scheme is extended for 

simulation of 3D flows. In particular stationary and moving boundary flow 

problems such as flow past a stationary sphere and sedimentation of single and 

two spheres are simulated and presented in this chapter. The obtained results 

are found in good agreement with the previous published data.  

In Chapter 7, the 3D, IB – LBM code is applied to simulate the dynamics of 

two spherical particles sedimentation. In details, Drafting–Kissing–Tumbling 

(DKT) of the spheres and their trajectories are discussed. Experimental 

investigations are also performed to further validate the numerical 

observations.  

In Chapter 8, we have concluded the present work with 

suggestions/recommendations for future extensions.   
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2 Chapter 2  

A 2D Flexible Forcing Immersed 

Boundary and Lattice Boltzmann 

Method
1
 

In this chapter a two dimensional hybrid numerical scheme is introduced for 

modelling of fluid – solid interactions in an incompressible, viscous flow 

domain with stationary and moving solid boundaries. The developed scheme 

describes a unique way of coupling the immersed boundary (Peskin (1977)) 

concept in the framework of the lattice Boltzmann method (Succi et al. 

(1991)). As discussed in the previous Chapter 1, the conventional IB – LBM 

schemes often suffer from the numerical defects such as non-physical 

streamline penetration into the solid boundary; improper hydrodynamic force 

and torque calculations, where the body force density term is explicitly 

defined. In order to address these drawbacks Wu and Shu (2009) have 

discussed an implicit velocity correction based IB – LBM, where the 

mathematical formulation demands: a significant computational memory 

                                                           
1
 Part of this work has been published as:  

Dash SM, Lee TS and Huang H. (2014)."A novel flexible forcing hybrid IB-LBM scheme to 
simulate flow past circular cylinder." International Journal of Modern Physics C 25(01): 
1340014. 
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usage and formation/inversion of a complex matrix. In contrast, our proposed 

flexible forcing algorithm simplifies the formulation while keeping the 

benefits of the implicit velocity corrections and at the same time avoids the 

complicated matrix operations. The detail mathematical formulations are 

outlined in the followings. The numerical accuracy and validation of the 

present scheme are checked by performing a number of benchmark flow case 

simulations.  

2.1 Numerical methodology 

2.1.1 Lattice Boltzmann method 

As a successor of lattice gas cellular automata (LGCA), lattice Boltzmann 

method (LBM) retains the advantages of kinetic – based approach for the fluid 

flow simulations and removes the shortcomings of LGCA such as statistical 

noise and non-Galilean invariance. The LBM decomposes the continuum flow 

field into pockets of fluid particles which can only stay at rest or propagate to 

the neighbouring lattice sites in accordance with certain lattice velocity models 

and then exhibit local collision to conserve the mass, momentum and energy 

of the flow. To better understand LBM, at first we briefly introduced the 

continuous Boltzmann equation.  

The Boltzmann equation is a well accepted mathematical model for describing 

the fluid in microscopic level. The evolution of single particle density 

distribution function  , ,f tx   in the phase space  ,x   is governed by an 

integro – differential Boltzmann equation (ref. Eq.(2.1)). 
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  ,
f f f

Q f
t

  
  

  
F

x



               (2.1) 

where x is the position, ξ is the particle velocity and F is the body force. 

 Q f  is the integral collision model as shown in Eq.(2.2), which describes the 

collision between two particles and the transformation of the incoming 

velocities 
1
 ,

2
 to outgoing ones 

'
1
 ,

'
2

 respectively. 

            ' '
1 2 2 1 2 1 2 1 2
, .Q f f f d f f f f d  

 
           

                           (2.2) 

Due to the complex integral form of  Q f , the collision operator is usually 

approximated by an alternate single relaxation time Bhatnagar–Gross–Krook 

(BGK) model (Bhatnagar et al. (1954); Qian et al. (1992); Koelman (2007)).      

  ,
eq

BGK

f f
Q f




                   (2.3) 

where   is the relaxtion time assosiated with collision relaxation period to 

attain a local equillibrium. The notion of local equillibrium is important for 

recovering the hydrodynamic behaviour from the continuous Boltzmann 

equation where the equillibrium distribution function follows the Maxwellian 

form,  

    
 

2
/2

, , 2 exp .
2

Deqf t RT
RT

 


 
 
 
 


 

u
x


              (2.4) 
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R is the gas constant, T is the temperature, D is the spatial dimension. ρ and u 

are the macroscopic density and velocity, respectively. 

Now, if we discretise the continuous Boltzmann equation without the body 

force term (as in Eq.(2.1)) and with BGK approximation over a finite sets of 

lattice velocities i
e , then Eq.(2.1) can be simplified to, 

       , , , ,
,

eq
i i i i

i

f t f t f t f t

t 

  
 

 

x x x x

x
e   0,1,2,...i N ,      (2.5) 

where i represents the different lattice directions up to N, and the 

corresponding lattice velocities are i
e . Integrating Eq.(2.5) from t  to t + δt, 

with second order accuracy we get,  

   
   , ,

, , ,
eq

i i
i i i

f t f t
f t t t f t 




  

x x
x+ xe  0,1,2,...i N ,  (2.6) 

where t    is the non-dimensional relaxation parameter. The above 

equation is also referred as lattice Boltzmann equation (LBE). The equilibrium 

distribution function in LBE is obtained by expanding the Maxwell-

Boltzmann distribution function (ref. Eq.(2.4)) using Taylor series expansion 

of u up to second order accurate, as shown in the following. 
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With the discrete lattice velocities i
e

 
and definition of sound speed as 

2
sc RT , the Eq.(2.7) can be rewritten as,  
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where  
2

/2

2
2 exp ,

2

D i
i

s

W RT
c

 
  

  
  

e
 is the weighting factor.   

The discrete lattice velocity models are usually represented as DnQm, where n 

is the spatial dimension and m is the number of lattice directions/velocities. A 

square lattice D2Q9 model (Qian, D'Humières et al. (1992)) (ref.Fig.2.1) is 

utilised in the present study where the corresponding lattice velocities and 

weighting factors are shown in Eq.(2.9).  
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Fig.2.1. D2Q9 lattice model with respective lattice velocity directions. 

The LBE recovers incompressible NS equation by multi-scale Chapman – 

Enskog expansion (Succi et al. (1991)) where the relaxation time is related 

with the kinematic viscosity as   20.5 sc t    . For evolution of the density 

distribution function i
f , the above LBE (Eq.(2.6)) can be implemented in two 

basic steps, collision and streaming.  

   , ,neq eq
i i i

f f t f t x x ,                (2.10) 

   
1

, , 1eq neq
i i i

f t f t f


  
 
 

  x x ,            (2.11) 

where 
neq

i
f  is the non-equilibrium part of the density distribution function i

f  

and 
i

f  is the post-collision density distribution function. In the streaming step 

i
f   propagates to the neighbouring lattice node following the respective 

lattice velocity model. 

   , , .
i i i

f t t t f t   x+ xe                 (2.12) 

After the collision and propagation steps the macroscopic density, momentum 

and pressure are calculated from the updated density distribution functions as 

shown below. 
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sp c .              (2.13) 

2.1.2 Immersed Boundary method 

In the immersed boundary method (IBM) (Peskin (1977); Lai and Peskin 

(2000)), the solid boundary and fluid domain are independently discretised in 

a moving Lagrangian and a stationary Eulerian mesh respectively. In this 

decoupled mesh framework, the effects of the boundary are imposed in the 

fluid domain by a restoring force. The governing equations with such a force 

are solved in the whole computational domain. For a 2D, incompressible, 

viscous flow in the domain   which includes a closed loop
 

immersed 

boundary  , (ref.  Fig.2.2) the governing equations are,  

0,
t








u =                  (2.14) 

      ,
T

p
t
    

  


       


u uu u + u f             (2.15) 

      , , , ,
B B

t s t δ s t ds


 f x x XF               (2.16) 
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,
, , , , ,B

B B

s t
s t t t δ s t d

t 


  



X
u X u x x X x            (2.17) 

where the variables: , , ,p u  
 represent density, flow velocity, pressure and 

kinematic viscosity of the fluid respectively. x  and BX  are Eulerian and 

Lagrangian mesh coordinates, f and BF are the force density acting on the 

fluid and immersed boundary respectively.   ,Bδ s tx X
 
is a Dirac delta 
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function. The above Eqs.(2.14) – (2.15) represent traditional NS equations 

with the force density f  that incorporates the solid boundary effects. Eq.(2.16) 

and (2.17) relates the immersed solid boundary   and fluid domain   by 

distributing the boundary force to the nearby fluid points and relating the 

boundary velocity with the fluid velocity. The boundary force  ,B s tF on the 

segment  ,B s tX  is determined from the boundary configuration at time t as 

shown in Eq.(2.18), where S satisfies the generalised Hooke’s law. 

     , , ,
B B

s t s t t XF S                    (2.18) 

In summary the solution procedure of IBM can be realised as, 

1. Use Eq.(2.18) to compute the Lagrangian boundary force density 

 ,B s tF . 

2. Obtain the Eulerian force density f using Eq.(2.16). 

3. Solve Eqs.(2.14) – (2.15) with the force density f to determine the 

updated Eulerian velocity field. 

4. Using the Dirac delta function interpolation (Eq.(2.17)) transfer the 

Eulerian velocity to Lagrangian points. 

5. Repeat the above steps (1) – (4) until the convergence achieved. 



Chapter 2 A 2D Flexible Forcing Immersed Boundary and Lattice Boltzmann 

Method 

 

 

36 
 

 

Fig.2.2. A two dimensional domain   containing an immersed boundary  . 

2.1.3 Flexible forcing immersed boundary – lattice 

Boltzmann method 

Due to similar computational implications of IBM and LBM with uniform 

Cartesian mesh in a flow domain, researchers have coupled these two methods 

together for solving fluid-structure interactions, and one of the earliest notable 

work in this direction is done by Feng and Michaelides (2004). When IBM is 

combined in the LBM framework, the governing Eqs.(2.14) – (2.15) change to 

Eq.(2.19).      

        
1

, , , , ,eq
i i i i i i

f δt t δt f t f t f t Fδt


     x x x xe

 
 0,1,2,...8i  ,                     (2.19)  

The above equation is a modified form of LBE (ref. Eq.2.6) where extra 

discrete body forces Fi are included along the lattice directions ‘i’ 

Eulerian Domain Ω 

Lagrangian Curve Γ 
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(ref.Fig.2.1), so as to incorporate the immersed boundary effect in the fluid 

domain. 

To recover NS equation accurately, the correct definition of Fi is important. 

Various formulations of Fi was previously investigated by Huang et al. (2011) 

and Mohamad and Kuzmin (2010). They have showed that in case of single 

phase fluid problems the deviation of results was negligible with different 

formulation of Fi. In the present study, as we are only concerned about single 

phase fluid, hence a formula suggested by Guo et al. (2002) is adopted here. 

This definition retrieves the unsteady, second order NS equation accurately 

without any extra velocity – force divergence tensor terms (Kang and Hassan 

(2011)), when multi-scale Chapman – Enskog expansion is performed. 

2 4

1
1 ,

2
i i

i i i
s s

F W
c c

  
       

 
   

u u
f

e e
e                (2.20) 

where f  in Eq.(2.20) is the force density at Eulerian fluid nodes, which is 

distributed from the force density of Lagrangian boundary points. This force 

density term can either be solved by an explicit or implicit time marching 

schemes. Ahlrichs and Dünweg (1999) and Nash et al. (2008) have followed 

the explicit computation to simulate the suspension of colloids. Also Kang and 

Hassan (2011) used the explicit approach to study flow past a circular 

cylinder. One of the drawbacks of the explicit time advancement scheme is 

that the boundary force density term is not explicitly involved in the actual 

calculation rather the velocity at the forcing node is directly replaced by the 

desired boundary velocity. As discussed in the previous section.1.2.1, this may 
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produce non-physical streamline penetration into the solid boundary with 

unsatisfied no-slip condition.     

In contrast, in the implicit approach the force density term is calculated from 

the velocity correction in the predictor step and is later updated with the 

corrected velocity field such that the exact no-slip condition is satisfied. 

Therefore, in this study we have used the implicit approach where the 

descriptions are provided in the followings.   

With the above definition of Fi  in the Eq.(2.20), the macroscopic velocity 

field get shifted (Mohamad and Kuzmin (2010)) and is defined as,  

8

0

1
.

2i i
i

f δt


 u fe                (2.21) 

By defining, 
8*

0
i i

i
f 


 u e

 
an intermediate Eulerian velocity and 

 1 2 δt u = f
 

an Eulerian velocity correction term; we can rewrite the 

Eq.(2.21) as, 
*  u u u . Here, to perform implicit computation, the Eulerian 

velocity correction u  is kept unknown and is calculated such that the exact 

no-slip boundary condition is satisfied. Following the Dirac delta function 

interpolation the unknown Eulerian velocity correction u  can be derived 

from the unknown Lagrangian boundary velocity correction BU  using 

Eq.(2.22). 

     , , ,
B B B

δ t δ t δ ds


 u x U X x X              (2.22) 
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where the immerse boundary is represented using a set of Lagrangian 

coordinates  ,B k
s tX . 

k
s  1,2,3....k n  are the positions of the Lagrangian 

co-ordinates.  B
δ x X  is smoothly approximated by continuous Kernel 

distribution  B
D x X ,   

    2

1
,

k k
k k B B
B B

x X y Y
δ D δ δ

h hh

   
   
   
   

 
   x X x X           (2.23)

 

where  r is approximated using 2 point Dirac delta function (Peskin 

(1977)). 

  
1,1 ,

1.0,

rr
r

r










              (2.24) 

Here, h is the Eulerian mesh spacing. Substituting the Eq.(2.23) into the 

Eq.(2.22), the velocity correction expression simplifies to an algebraic form, 

     , , ,k k k
B B B k

k
δ t δ t D s  u x U X x X            (2.25) 

where 
k

s is the arc length of the Lagrangian boundary element.  

In the view of mathematics, the no-slip boundary condition implies that the 

fluid velocity at the boundary point must be equal to the desired boundary 

velocity kd
B

U at the same location. Using the concept of interpolation, the no-

slip condition can be written as, 

     
,

, , ,kd k k
B B Bx y

t t D x y   U X u x x X             (2.26) 
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where are x  and y
 

are the mesh sizes in the horizontal and vertical 

direction of the computational domain. Substituting the intermediate velocity 

and Eulerian velocity correction in the Eq.(2.26) gives,  

     

     

*

,

,

, ,

, .

kd k k
B B Bx y

k k k k
B B B Bkx y k

t t D x y

δ t D s D x y

   

      

U X u x x X

U X x X x X

                  (2.27) 

In the above equation, k
B

δU  is kept unknown for an implicit forcing 

formulation and is obtained by solving Eq.(2.27). As we can see the evaluation 

of k
B

δU  demands a formulation of coefficient matrix and its inversion (Wu 

and Shu (2009)). This requires a higher amount of memory usage as well as 

computational effort for sequential coding pattern. Further in case of moving 

boundary problems the formation/inversion of the coefficient matrix consumes 

a significant amount of computational time. These limitations make the 

scheme inefficient for 3D problems where the memory requirement and 

computational effort are enhanced by many fold.   

To address the above issues, here we have proposed a simple solution for 2D 

flow case, whose extension to 3D domain will be discussed in the later 

chapter. If we analyse the Eq.(2.26), in most of the cases the desired boundary 

velocity kd
B

U
 
is known to us (i.e. equals to zero for stationary object or a value 

calculated using Newton’s laws of motion for a moving object). Hence, the 

interpolated Eulerian velocity field (RHS of Eq.(2.26)) must match with kd
B

U
 

when the exact no-slip condition is satisfied. In case of IBM auto-satisfaction 
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of the no-slip condition is impractical, because the immersed boundary is 

defined on a moving Lagrangian mesh whereas the flow field is defined on a 

stationary Eulerian mesh, and the node points do not necessarily match. This 

creates a difference between LHS and RHS of Eq.(2.26), and the amount of 

deviation (otherwise called as velocity correction) must be accounted to satisfy 

the no-slip condition.   

In the proposed flexible forcing algorithm a single Lagrangian velocity 

correction term  ,
mk k

B Bδ tU X  is included in Eq.(2.26) to satisfy the desired 

velocity boundary condition (ref. Eq.(2.28)) where the amount of Lagrangian 

velocity correction required is given in Eq.(2.29).     

       
,

, , , ,
m

kd k k k k
B B B B Bx y

t t D x y δ t    U X u x x X U X          (2.28) 

       
,

, , , ,
m

k k kd k k
B B B B Bx y

δ t t t D x y    U X U X u x x X          (2.29) 

This formulation retains the idea of implicit velocity correction (Wu and Shu 

(2009)) and is mathematically much simpler than Eq.(2.27), that reduces the 

computational efforts for the new code development and memory storage 

demand.  

Following the above correction measures, one may not ensure the no-slip 

condition at all the boundary points in a single turn as the boundary velocity 

correction is linked with the Eulerian velocity correction (shown in Eq.(2.25)). 

Hence, an additional sub-iteration update scheme is imposed to satisfy the no-

slip condition within a convergence limit. This further ensures that when 
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Eulerian velocities are interpolated back to the Lagrangian boundary nodes, 

they will satisfy the no-slip condition within a tolerance of the  k
BO δU . The 

convergence criterion (CC) is set in Eq.(2.30), where m is the sub-iteration 

number until the CC is satisfied. 

  6, 10 .
m

k k
B B

δ t U X                (2.30) 

It is worth to note that the CC is a case dependent term which can be adjusted 

to any higher/lower order tolerance based on complexity of the problem, 

required accuracy of the final result and available computational resources. 

This approach has certain similarities with the multiple forcing schemes (Luo 

et al. (2007); Wang et al. (2008); Kang and Hassan (2011)) where fixed 

number of sub-iterations is adopted. The differences in our scheme are: the 

sub-iteration dependents on CC and its number can be varied till the exact no-

slip boundary condition is satisfied. This makes the scheme flexible and 

computationally efficient by restricting the unnecessary sub-iteration. Again in 

the case of unsteady and moving boundary problems, use of the fixed sub-

iteration may not yield the correct no-slip condition at each time step. Then the 

force and torque calculations are questionable. To overcome these defects, the 

proposed flexible sub-iteration scheme is a suitable alternative. This approach 

also reduces computational effort and storage demand by avoiding the matrix 

calculation and ensures the order of accuracy to  k
BO δU . 

We further tried to reduce the number of sub-iterations in the proposed 

flexible forcing scheme by introducing a successive relaxation parameter 
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(SRP), ‘ ’ as shown in Eq.(2.31).  is set in the range of 0 – 1. The effects of 

SRP and CC selection will be discussed in the subsequent sections. 

       
1

, 1 , , .
m m m

k k k k k k
B B B B B B

δ t δ t δ t 


  U X U X U X
 

        (2.31) 

After calculating the velocity corrections, the force density at the Lagrangian 

and Eulerian grid points is derived using Eq.(2.32).  

   , 2 , / ,
m

k k k k
B B B Bm

t δ t δtX U XF    , 2 , / .
m

m
t δ t δtf x u x  (2.32) 

Other microscopic variables: density, pressure and kinematic viscosity are 

calculated using the following formula. 

8

0
i

i
f


  ,   2

sp c ,  21
.

2 sc δt 
 
 
 

 
   

         (2.33) 

In summary, the numerical implementation steps of the proposed scheme are 

provided in the following flow chart. 
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No;   m=m+1 

Start 

Define the initial velocity u ; calculate
if and eq

if . 

Perform streaming and find out  ,i i
f δt t δt x e using Eq.(2.19) with the initial setting 0iF  . 

Calculate the macroscopic variables *u  using
8

*

0

i i

i

f


u e . 

Define the desired boundary velocity kd
B

U  and calculate the boundary correction, 

 
 

     
0

.

,

, ,
m

kk k kd k
B B B BB

x y

t Dδ t t x y


    * , XU X U X u x x  

Calculate Eulerian velocity correction as,  

 
   

 

 
11

,, ,
mm k k k

B B B k
k

δ t δ t D s


  u x U X x X and update 

Eulerian velocity,  
 

 
 

 
 1 1

., , ,
m m m

t t δ t
 

 u x u x u x
 

 
Calculate the new boundary correction,

 
 

   
    .

,

, ,
m mkk k kd k

B B B BB
x y

t Dδ t t x y    , XU X U X u x x  

 , 10U X
m

pk k
B B

δ t  

B 

Yes 
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2.1.4 Kinematics of particulate flow 

To extend the applicability of the proposed flexible forcing IB – LBM scheme 

for the moving boundary flow problems, we have studied the particulate flow. 

In this flow problem, the translational and angular motion of the particles is 

governed by the active hydrodynamic forces and torques. From Newton’s laws 

of motion, the net force on the particle is calculated by combining the effects 

of the gravity, buoyancy, hydrodynamic and collision forces. 

 1 ,
fnet k k coll

B Bl l k l
kp

M s




 
 
 
 

     XF g F F
   

        (2.34) 

where l
M  is the mass of the particle, 

f
 and p  are the densities of fluid and 

particle respectively. The hydrodynamic force  k k
B B kk

s  XF , is calculated 

using the Eq.(2.32) which can be considered as a reaction force.  

Compute the forcing term at Lagrangian and Eulerian co-ordinate as, 

   
 

,, 2 , /
m

k k k k
B B B B

m

F t δ t δtX U X

        

   
 

., 2 , /
m

m

t δ t δtf x u x  

Calculate the new 
i

eqf  and forcing term iF . Repeat the steps from streaming operation till 

steady converged solution has reached.   

End 

B 
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Similarly, the torque acting on the particle can be computed as, 
 

   x , ,net k k k
B R B Bl k

k
t s   X X XT F                (2.35) 

where 
R

X  is the centre of mass of the particle. 

To calculate the collision force between the particle-wall or particle-particle, a 

lubrication forcing mechanism is followed (Glowinski et al. (1999); Glowinski 

et al. (2001)). This force is repulsive in nature and acts only when the distance 

between the particle and nearest wall or another particle is less than  . In our 

present study, we set 2 x  .  

  

,

2

, ,

0
,

1
,

i j i j

coll
i

i j i j i j i j i j
p

d R R

R R d d R R



 











  



     X X

F    (2.36) 

where 
i

R
 
and 

j
R  are the radius of the colliding particles. In case of collision 

with a wall, this force calculation is done by assuming an imaginary particle of 

same size on the other side of wall. 
,i j

d is the distance between centres of i
th 

and j
th

 particles with their corresponding centre location at 
i

X  and 
j

X
 

respectively. p  is a small positive stiffness parameter followed from the 

work of Glowinski et al. (1999). 

In IBM simulation, the fluid phase is assumed to present at outside as well as 

inside of the solid boundary. This internal fluid does not affect the flow field 

and pressure outside the boundary once the no-slip condition is accurately 
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satisfied. However, a part of the body force term is utilized to move the 

internal fluids, therefore the net force and torque calculation on the particle is 

compromised. To include this internal loss effect we have followed Feng and 

Michaelides (2005) formulation for rigid body approximation. The 

corresponding translational velocity RU  and angular velocity   calculation is 

done with added mass effect terms.     

1

,

n n
fnetR R

l l l
p

d d
M M

dt dt






 
 
 
 

 
U U

F                (2.37) 

1

,
n n

fnet
l l l

p

d d

dt dt





  
 
 
 

 I T I
 

                (2.38) 

where 
l

I  is the moment of inertia tensor of the particle. ‘n’ is the time step.  

In summary the solution procedures for the particulate flow using the 

proposed flexible forcing IB – LBM scheme are outlined below. 

1. Set the initial flow field and calculate 
i

f
 
and 

eq
i

f . 

2. Perform streaming using Eq.(2.19) with initial setting , 0
i

F δ u  and 

calculate intermediate velocity 
8*

0
i i

i
f 


 u e .  

3. From the desired boundary velocity (follow Newton’s laws of motion 

and ref. Eq.(2.37)) calculate the velocity correction  
0

,
m

k k
B B

δ t


U X . 
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4. Update the Eulerian velocityu with updated δu and calculate new 

 ,
m

k k
B B

δ tU X  using both the Eq.(2.29) and (2.31). Repeat this step 

with a sub-iteration loop until the CC in Eq.(2.30) is satisfied.  

5. Calculate f and 
eq

i
f using Eq.(2.8) and (2.32). Update the net force 

and torque on the particle and calculate its new position and velocity 

using Eqs.(2.34) – (2.38).  

6. Repeat the above steps (2) – (5) for time evolution.   

2.2 Accuracy test and Validations  

The numerical accuracy of the proposed flexible forcing IB – LBM scheme 

was initially evaluated by performing two benchmark test case simulations: 1) 

Taylor Green decaying vortex and 2) Lid driven cavity. A set of two 

dimensional stationary (laminar flow past circular cylinder) and moving 

boundary (movement of neutral buoyant particle in linear shear flow, 

sedimentation of the single and two particles) flow problems are simulated to 

validate the present numerical algorithm.  

2.2.1 Taylor – Green decaying vortex 

To determine the numerical accuracy of the proposed flexible forcing IB – 

LBM scheme, at first the simulation of unsteady Taylor – Green vortex flow is 

carried out in a square box. This problem has analytical solutions for the 

velocity (u,v) and pressure (p) as shown in Eqs.(2.39) – (2.41). The test case 

environment is set similar to Chen et al. (2007), where a circle of radius 0.5L 



Chapter 2 A 2D Flexible Forcing Immersed Boundary and Lattice Boltzmann 

Method 

 

 

49 
 

is embedded at the centre of the square box [-L,L]×[-L,L] with L = 1.0. The 

exact solution is used to provide the initial condition at t = 0 and the boundary 

condition on the outer boundary and on the surface of the immersed body.  

2

2
2

0
( , , ) cos( / )sin( / ) ,

t
Lu x y t u x L y L e



 

 
 
  
 



                      (2.39) 

2

2
2

0
( , , ) sin( / )cos( / ) ,

t
Lv x y t u x L y L e



 

 
 
 
 



                      (2.40) 

2

2
2 4
0

0
( , , ) cos(2 / ) sin(2 / ) ,

4

t
Lu

p x y t p x L y L e



 

 
 
 
 



              (2.41) 

The simulation is carried out using four sets of mesh resolutions: 21×21, 

41×41, 81×81 and 161×161, with ‘h’ as mesh step size. The Reynolds number 

is defined same as in Chen et al. (2007) with the free stream velocity u0, i.e. 

0
Re / 10u L    and the dimensionless relaxation time is set to 0.65  . The 

solutions at time t = 1.0 are obtained, and the numerical error of the velocity is 

quantified using L2 norm as defined in Eq.(2.42).  

 
2

2

analyticalnumerical

N

mesh

u u
L error

N


                                   (2.42) 

In Eq.(2.42), 
numericalu and 

analytical
u  are the numerical velocity and 

analytical solution respectively, 
mesh

N  is the total number of Eulerian points 

in the computational domain. The L2 error vs mesh spacing is plotted in log 

scale as shown in Fig.2.3. The slope of the plotted line is the measure of the 
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overall accuracy of the numerical of the scheme (Chen et al. (2007)), which is 

1.85, slightly less than the second order accuracy.    

LBM is known to be second-order accurate in space and time. However, the 

coupled IB – LBM scheme may produce slightly lower order overall accuracy. 

This is because, the Dirac delta function interpolation and the smoothing 

kernel needed to get the velocity correction at Eulerian and Lagrangian points 

has only first-order accuracy. Although it is only applicable in the region 

nearby the boundary, but it may have an effect on the global accuracy of 

solution in the whole domain. Therefore, the reduction of overall accuracy of 

the present scheme to 1.85 is attributed to the use of the first-order smoothing 

delta function interpolation. 

 

Fig.2.3. Overall accuracy test of the proposed flexible forcing IB-LBM 

scheme using the Taylor–Green vortex. 

The stability of the proposed coupled IB – LBM scheme is found to have 

similar limits as that of the LBM scheme (Brownlee et al. (2007)), We have 
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simulated the Taylor – Green vortex problem for different dimensionless 

relaxation parameter (τ) and observe that the scheme is stable, if the 

incompressibility limit is valid i.e. Mach no < 0.15 and τ > 0.5.    

2.2.2 Lid – driven cavity 

To further evaluate the numerical accuracy on a solid bounded flow domain, a 

lid driven cavity flow is simulated. The incompressible laminar flow in the 

square cavity is generated by supplying a uniform motion on the top wall of 

the square cavity. Fig.2.4(a) shows the schematic layout of the 45 deg inclined 

lid-driven cavity within a square domain [- 2 L, 2 L]×[- 2 L, 2 L], where 

L is the width and height of the inclined square cavity. To compare the 

accuracy, three different uniform Eulerian grids are followed (N×N, N = 121, 

240, 480) in discretising the computational domain, where the corresponding 

Lagrangian nodes are (NL = 4×30, 4×60, 4×120), respectively. We have set 

the Eulerian grid spacing as Δx = Δy = 1/40, Lagrangian node spacing Δs = 

2 Δx, the time step size as Δt = Δx and Reynolds number as 

Re UL / 100  . The lid velocity U is defined such that the Mach number 

(Ma = U/cs < 0.2) lies in the incompressible limit. Periodic boundary 

condition is prescribed on the external square boundary and proposed flexible 

forcing IB – LBM is adopted to define the no-slip and moving wall boundary 

condition on the internal cavity. The simulation is performed until the steady 
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convergence criterion is satisfied as shown in Eq.(2.43). 
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           (2.43) 

                 

 

   (a)     (b) 

Fig.2.4(a). The schematic diagram of the lid driven cavity in the computational 

domain and (b) the streamline plots inside the cavity at steady state condition 

for Re = 100, background colour code represent the pressure distribution.   

Fig.2.4(b) depicts the streamlines inside the cavity. Fig.2.5(a) and 2.5(b) show 

the normalised steady velocity component Ux/U and Uy/U inside the cavity 

along the line y = x and y = -x respectively, where the coordinates Y = 0 and 

X = 0, represent the point of intersection of the lines y = x and y = -x with 

respective edges of the cavity. We have compared our computed results with 

those of Ghia et al. (1982), and they are in good agreement, thus further 

validating the accuracy of our numerical scheme.    
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We have also checked the CPU time required for the converged steady state 

solution (ref. Eq.2.43) using the implicit matrix velocity correction (Wu and 

Shu (2009)) and the proposed flexible forcing IB-LBM schemes, and the 

comparisons are shown in Table 2.1.  

Table 2.1 Comparison of CPU time and memory usage for lid-driven cavity 

flow at Re = 100 using two different IB-LBM schemes where the CC is 10
-4

. 

 

 

         (a)                       (b) 

Fig.2.5. The steady velocity components Ux/U and Uy/Ualong the centre lines 

(a) y = x and (b) y = -x respectively with different grid sizes. 

Although there is no significant computational time savings from our proposed 

numerical model for this particular 2D, stationary problem, the mathematical 

IB-LBM scheme CPU Time Max Memory 

Wu and Shu (2009) 2575 sec 456 MB 

Present 2526 sec 219 MB 
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simplicity of the flexible forcing algorithm has reduced the memory storage 

demand and computational effort for the code development. 

2.2.3 Laminar flow past circular cylinder 

To validate the proposed flexible forcing scheme on a stationary boundary 

flow domain, the laminar flow past a stationary circular cylinder is simulated. 

Extensive numerical, experimental and analytical studies on this benchmark 

flow problem have been reported in the literature (Dennis and Chang (1970); 

Fornberg (1980); Braza et al. (1986); Williamson (1996); Ding et al. (2004); 

Shukla et al. (2007)) where the flow behaviour is characterised with respect to 

the Reynolds number. The Re is defined as, Re U D  , where U is the 

free stream velocity, D is the diameter of the cylinder and   is the kinematic 

viscosity of the fluid. 

At low Re (Recritical < 46), the flow pattern remain steady where two 

recirculation vortices are developed behind the rear end of the cylinder. The 

recirculation vortices length is a function of Re and increases with the increase 

in Re (Dennis and Chang (1970); Fornberg (1980)). When the Re > Recritical, 

the flow shifts to unsteady regime where the periodic Von-Karman vortex 

shedding is observed (Williamson (1996)).  

To make a quantitative comparison of the performance of present scheme, the 

drag and lift force coefficients experienced on the cylinder are calculated 

which are defined in the following equations. 
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where  ,k k
BX B

tXF ,  ,k k
BY B

tXF  are the X and Y components of the boundary 

force in the Eq.(2.32) and 
k

s is the arc length of the circular boundary 

element. It is worth to note that the cylinder will experience the lift force when 

the flow regime contains the alternate Von-Karman vortex sheet. We have 

represented the non-dimensional vortex shedding frequency with Strouhal 

number qSt f D U , where qf  is the vortex shedding frequency.     

In the present study the fluid density and the free stream velocity are fixed as, 

1.0  , 0.1,U   respectively. To alter Re of the flow, the kinematic 

viscosity   is modified and correspondingly the relaxation parameter   is 

adjusted in LBM (ref. Eq.(2.33)).  

A rectangular computational domain of size 40D×40D and 50D×40D is used 

for the steady and unsteady flow cases, with the mesh sizes: 401×401 and 

501×401, respectively. A non-uniform grid system with finer grids near the 

cylinder is adhered using the Lagrangian interpolation based LBM (LILBM) 

(Wu and Shu (2009)). The cylinder centre is located at (20D,20D) where the 

fine uniform mesh of size 97×97 is used near the region of the cylinder 

1.2D×1.2D. 120 Lagrangian marker points are utilised to represent the 

circumference of the cylinder.  
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      (a)              (b) 

Fig.2.6. The streamlines and vorticity contours at (a) Re= 40 and (b) Re= 100.   

Table 2.2 Comparison of force coefficients, recirculation length and Strouhal 

number for steady and unsteady flow past circular cylinder. 

 Re = 20 Re = 40 Re = 100 

Reference Cd Lw Cd Lw Cd Cl St 

Kang and 

Hassan 

(2011) 

2.075 0.95 1.555 2.34 1.368 0.346 0.163 

Shu et al. 

(2007) 

2.13 0.9 1.59 2.2 1.383 0.35 0.165 

Wu and Shu 

(2009) 

2.091 0.93 1.565 2.31 1.364 0.344 0.163 

Present 2.119 0.937 1.586 2.32 1.362 0.341 0.162 

     

In Fig.2.6, the streamlines and vorticity contours are shown for steady (Re = 

40) and unsteady (Re = 100) flow where the no-slip condition is accurately 

satisfied without any streamline penetration. The Cd, Cl, St and the 
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recirculation wake length (Lw) are quantitatively compared with the literature 

as shown in Table 2.2. The results are found in excellent agreement.    

 Table 2.3 Variation of number of sub-iterations with CC and SRP for steady 

flow past circular cylinder. 

CC 10
-4

 10
-5

 10
-6

 

SRP NF 

Cd 

(Re=40) 

NF 

Cd 

(Re=40) 

NF 

Cd 

(Re=40) 

0.2 15 1.5868 23 1.5866 32 1.5866 

0.4 13 1.5867 21 1.5866 29 1.5865 

0.6 6 1.5867 16 1.5866 24 1.5865 

0.8 7 1.5866 18 1.5867 26 1.5865 

1.0 11 1.5867 20 1.5867 28 1.5865 

 

  Table 2.4 Effects of CC variation for unsteady flow past cylinder (Re = 100). 

CC 10
-4

 10
-5

 10
-6

 

Cd 1.369 1.362 1.361 

Cd 0.349 0.341 0.341 

St 0.164 0.162 0.162 

 

As mentioned previously in our proposed scheme the CC and SRP are user 

dependent as shown in Eqs.(2.30) – (2.31), respectively. In Table 2.3, a 

comparison is made to find out the dependency of number of forcing/sub-
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iteration on different CC and SRP. It is found that number of sub-iteration 

(NF) required for any CC strongly dependents on SRP. For the present 

simulation ‘ε’ in the range 0.6 – 0.7 gives least number of sub-iteration and 

hence correspondingly reduces the overall computation time and expenses. 

This makes our scheme comparatively faster than the other similar fixed 

iteration schemes (Luo et al. (2007); Wang et al. (2008); Kang and Hassan 

(2011)). In Table 2.4, effects of CC variation on Cd, Cl and St is shown for Re 

= 100. It is observed that with the decrease in CC or better approximation of 

the no-slip condition, enhances the accuracy of the final result. Again it is 

worth to note that higher accuracy demands higher number of forcing or sub-

iteration.      

2.2.4 A motion of the neutral buoyant particle in the 

linear shear flow 

To investigate the capabilities of the proposed flexible forcing IB – LBM 

scheme in handling the moving boundary problems, the motion of the single 

neutral buoyant circular particle is simulated in a linear shear flow regime. 

The numerical study of the problem was previously reported in the literature 

using FEM Feng et al. (1994) and conventional IB – LBM (Feng and 

Michaelides (2004); Niu et al. (2006); Wu and Shu (2010)) schemes. They 

observed that the circular particle always transfers towards the centre of the 

channel irrespective of its initial position and release velocity.       
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Fig.2.7. Schematic diagram of neutrally buoyant particle in the linear shear 

flow 

The schematic diagram of the computational domain for this problem is shown 

in Fig.2.7. The other parameters used in our simulations are maintained as 

follows, the radius of the particle a = 10; the gap between the plates H = 80; 

the plate width L = 2000; the relaxation time τ = 0.6 that makes the fluid 

kinematic viscosity in lattice units υ = 1/30. A uniform mesh of size 2001×81 

is followed in the domain. Periodic boundary condition is prescribed at the 

inlet and outlet of the channel. 

Both the top and bottom plate of the channel moves with equal velocity Uw/2 

= 120 in opposite directions which produce a shear rate of γ = 1/4800. The 

corresponding bulk Re of the flow is Re 40wU H   . The neutral buoyant 

particle was released at the position Y0 = 0.25H above the bottom plate (in the 

vertical halfway) towards the centre of the channel, with zero initial velocity. 

Y 

X 

UW/2 

-UW/2 

8a 

2a 
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This initial position results in a local slip velocity between the particle and 

fluid equals to 0.25Uw, which induce the movement of the particle.   

 

Fig.2.8. Comparisons of lateral migration of the neutral buoyant particle, 

where time is dimensionless. 

 

 

Fig.2.9. Comparison of the neutral buoyant particle translational velocities 

along X and Y directions, where time is dimensionless.   
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The vertical migration of the particle is shown in Fig.2.8 and compared with 

the results by Wu and Shu (2010). The particle has moved to the centre of the 

channel which is consistent with the previous observation (Feng et al. (1994); 

Niu et al. (2006); Wu and Shu (2010). We have also calculate the translational 

velocities of the particle along X and Y directions as shown in Fig.2.9 and the 

magnitudes are in good agreement with the Wu and Shu (2010).   

2.2.5 Single particle sedimentation  

As another validation case we have simulated the single particle sedimentation 

problem, which has been extensively studied in the literature (Wan and Turek 

(2006); Wang, Fan et al. (2008); Wu and Shu (2010)). Here, an identical case 

as that in (Wan and Turek (2006); Wu and Shu (2010)) is simulated. A fluid 

filled two dimensional rectangular box of 2 cm wide and 6 cm high is selected. 

The fluid properties: density 
f  

and viscosity 
f  

are set to 1.0 g/cm
3
 and 0.1 

g/cm.s, respectively. A circular particle of diameter pd = 0.25 cm and density 

p = 1.25 g/cm
3
 is initially kept in the rectangular box with its centre located 

at (1 cm, 4 cm). Initially both the fluid and particle are at rest. The 

computational domain is discretised with uniform Eulerian mesh of size 

201×601, which is followed same as Wu and Shu (2010). To represent the 

surface of the circular particle, 50 Lagrangian mesh points are used. 
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Fig.2.10. Instantaneous vorticity contours of single particle sedimentation at 

different time steps, where X and Y are in cms. 

The particle starts falling under the effects of gravity once it is released from 

its initial position. The particle keeps accelerating until it reaches a 

steady/terminal velocity where the net upward force (drag + buoyancy) is 

balanced with the net downward force (weight). Thereafter, it settles with 

terminal velocity.  

 

X 

t=0.2s t=0.5 s t=0.8 s t=0.9 s 
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          (a)       (b) 

 

          (c)       (d) 

Fig.2.11. Temporal evolution of (a) Y centre co-ordinate (Yp), (b) Vertical 

velocity (Vp), (c) Reynolds number (Rep) and (d) Translational kinetic energy 

(Et) for the single circular particle sedimentation. 

The temporal evolution of the vorticity contours are shown in Fig.2.10, at 

different time steps. The longitudinal centre coordinate py , longitudinal 

velocity pv , Reynolds number Rep  and translational kinetic energy tE  of the 

particle as functions of time are shown in Fig.2.11(a) – (d), respectively where 

the definition of Rep  and tE  are used as in Eqs.(2.46) – (2.47).  
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2 2

Re ,
p p p p

p
f

d u v




                                    (2.46) 

 2 2 ,0.5 p ptE M u v                          (2.47) 

where M is the mass of the particle. The flow regimes and quantitative 

comparisons are found in good agreement with those in Wu and Shu (2010).  

Table 2.5 Variation of sub-iteration/number of forcing (NF) with respect to 

CC and SRP 

CC 10
-4

 10
-5

 10
-6

 

SRP NF Re NF Re NF Re 

0.2 8 17.17 11 17.11 17 17.08 

0.4 6 17.16 8 17.11 15 17.07 

0.6 4 17.15 6 17.10 10 17.07 

0.8 4 17.15 6 17.10 10 17.07 

1.0 5 17.16 7 17.10 12 17.07 

 

The effects of CC and SRP in the simulations are also investigated. In Table 

2.5, the variation of averaged forcing/sub-iteration numbers with change in CC 

and SRP are shown. As expected, with increase in accuracy or reduction in 

CC, the number of forcing/sub-iteration increases. We also observed that by 

suitably tuning SRP, overall computational time can be significantly reduced. 

If SRP is chosen in the range 0.6 – 0.8, the average forcing/sub-iteration 

number is almost reduced by half in comparison to other SRP values. Hence, 
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SPR plays an important role to improve the computational efficiency. It is also 

found that different CC (from 10
-4

 to 10
-6

) has little effect on the maximum 

Reynolds number. The reason of this change is associated with the error 

allowed in the no-slip boundary convergence. When CC is set as 10
-5

, the 

maximum Reynolds number 17.10 is comparable to that provided by Wu and 

Shu (2010), 17.08 and by Wan and Turek (2006), 17.15. Therefore, CC is 

followed as 10
-5

 for rest of our simulations.   

2.2.6 Two particles sedimentation  

To further validate the proposed algorithm, two particles sedimentation in a 

rectangular box is simulated. The working parameters are identical as those in 

(Wang et al. (2008)). Here the box dimension is selected as 2cm width and 

6cm height. Same as Wang et al. (2008), a uniform mesh of size 201×601 is 

utilized to discretise the computational domain. Two circular particles of same 

diameter pd  = 0.25 cm and density p  = 1.5 g/cm
3
, are kept in the 

rectangular box with their initial centre located at (1–0.001 cm, 4.5 cm) and 

(1+0.001 cm, 5.0 cm). Surface of the particles are represented by 50 

Lagrangian points. The horizontal offset distance between the particles centres 

acts as a perturbation to breakdown the later equilibrium states as mentioned 

by Wang et al. (2008). It is expected that the particles will reproduce the 

Drafting – Kissing – Tumbling (DKT) phenomena Fortes et al. (1987). The 

fluid properties are set as: density 
f


 
= 1.0 g/cm

3
 and viscosity 

f


 
= 0.01 

g/cm.s. 
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In Fig.2.12 the instantaneous vorticity contours of the settling particles are 

shown. Two particles are initially at rest and start to settle under the effects of 

gravity. During the fall, the leading particle (particle-2) leaves a low pressure 

wake behind where the trailing particle (particle-1) is caught. Due to the 

reduction in the drag force on the trailing particle, it settles faster than the 

leading one. With the increased speed of the trailing particle, it drafts towards 

the leading particle. Later the two particles momentarily contact each other, 

which is also referred as kissing. The kissing of particles is an unstable 

equilibrium state and with the supplied initial perturbation these particles get 

separated (also known as tumbling).  

 

Fig.2.12. Instantaneous vorticity contours of two particles performing DKT 

phenomena where X and Y are in cms. 

As mentioned by Fortes et al. (1987), the tumbling phenomena is breakdown 

of the unstable equilibrium state and with different numerical perturbation 

t=0.1 s t=0.2 s t=0.28 s t=0.35 s 

Drafting Kissing Tumbling 
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schemes the results may differ after kissing. There are some discrepancies also 

observed in our comparisons. 

Quantitative comparisons of the trajectory of the vertical centre co-ordinate 

pY  and vertical velocity pV of the particles as functions of time are made with 

those in (Wang et al. (2008)). Our results as plotted in Fig.2.13, are found 

highly consistent with those published data by Wang et al. (2008). These 

validation studies demonstrate the capabilities of the proposed scheme for 

accurate numerical simulation of the fluid-particle interactions. 

 

           (a)                 (b)  

Fig.2.13. Temporal evolutions of (a) Y centre co-ordinate (b) Vertical velocity 

for two circular particles sedimentation. 

2.3 Concluding remarks  

In this chapter, we have discussed a novel flexible forcing hybrid IB – LBM 

scheme to simulate fluid flow problems that includes 2D stationary and 

moving solid boundary. Following the implicit type forcing term calculation, 
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an unknown single Lagrangian velocity correction is introduced for suitable 

satisfaction of the no-slip boundary condition within a convergence limit. Use 

of flexible forcing principle not only avoids the complex mathematics 

involved in matrix inversion but also satisfy the boundary condition 

consistently at every time step with same order of accuracy. This is 

advantageous for unsteady and moving boundary flow problems. Also the 

algorithm suggested here is simple for new computational code development. 

The accuracy of the proposed numerical algorithm is tested by simulating 1) 

Taylor Green decaying vortex and 2) lid driven cavity. The overall accuracy is 

found to be 1.85, slightly less than the second order. Although the LBM is 

known to be second-order accurate in space and time, the coupled IB – LBM 

scheme may produce slightly lower order overall accuracy. This is because, 

the Dirac delta function interpolation and the smoothing kernel needed to get 

the velocity correction at Eulerian and Lagrangian points has only first-order 

accuracy. Further the solver validation is done by simulating a set of two 

dimensional stationary (laminar flow past circular cylinder) and moving 

boundary (movement of neutral buoyant particle in linear shear flow, 

sedimentation of the single and two particles) flow problems. The results are 

found to be in excellent agreement with previous published article.   
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3 Chapter 3  

Application of 2D Flexible Forcing 

IB –LBM for Particulate Flow in a 

Constricted Channel
2
 

In this chapter, the developed 2D moving boundary flexible forcing IB – LBM 

scheme is applied for the particulate flow in a constricted channel. The aim of 

the present study is to investigate the fluid – particle interactions where the 

surrounding wall effects are significant. In practice one may encounter a 

number of such flow situations and to name a few, sedimentation of the sand 

particles or rising of the bubbles in an hourglass, transport of the blood cells in 

an constricted arteries, granular flow in a hopper, multiphase mixed flow in a 

separator etc. Although several numerical and experimental studies (Fortes et 

al. (1987); Hu et al. (1992); Feng and Michaelides (2004); Feng and 

Michaelides (2005); Niu et al. (2006); Wang et al. (2008); Wu and Shu 

(2010)) on the particle sedimentation are reported in the literature where the 

                                                           
2
 Part of this work has been published as: 

Dash SM, Lee TS and Huang H. (2014). "Particle sedimentation in aconstricted passage using 
a novel flexible forcing IB-LBM scheme." International Journal of Computational Methods 
11(05): 1350095 
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wall effects are absent or minimal, the settling particles behaviour and the 

associate flow regime in a constricted channel are not yet addressed. To the 

best of our knowledge, it is the first time we have characterized the 

sedimentation of single and two particles in a 2D channel in presence of 

symmetric semicircular constriction walls. The effects of parameters such as, 

density of the solid particles, viscosity of the fluid, shape and size of the 

constriction are investigated in this chapter. 

3.1 Problem definition  

 

     (a)                (b)            (c)    (d) 

Fig.3.1. Schematic of particle sedimentation in a constricted channel where the 

sub-figures are, (a) single particle case, (b) two particle case, (c) divisions of 

the channel region, and (d) surrounding spatial domain near the particle. 

A rectangular domain of width ‘W’ and height ‘H’ is selected to simulate the 

particle sedimentation in a constricted channel. Two symmetrical semicircular 

walls of radius ‘R’ are placed at the mid section of the domain to produce the 

constricted passage. The schematic of the problem is shown in Fig.3.1.  
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The radius of the semicircles can be adjusted to alter the constriction gap size. 

In the present study, the settling circular particle has diameter ‘D’ and density

p . In case of two particles sedimentation, identical diameters and densities 

of the particles are selected. To make the results independent of the 

computational domain size, we have performed test case simulations by 

varying the aspect ratio (W/H) of the channel until the size/wall effects are 

minimized. We choose maximum retardation velocity (VR) of the particle in 

the constriction zone as a parameter to check the size/wall effects. From the 

plot in Fig.3.2, the size/wall effects found reducing with the increase in aspect 

ratio. For our present study, we have chosen the aspect ratio of the channel as 

1:9, where the other parameters used in the simulations are set as follows. 

Width of the channel W = 8D 

Height of the channel H = 72D 

Constriction gap size S = 1.25D – 2.0D 

Diameter of the particle D = 0.0025 m 

Density of the fluid 
f  

= 1000.0 Kg/m
3
 

Viscosity of the fluid 
f  

= 0.01 Kg/m.sec 

Density of the particle 
p = 1250 – 2000 Kg/m

3
 

Grid independence test is also performed to confirm that the results are 

invariable with grid resolutions. Table 3.1 shows the change in maximum 

retardation velocity (VR) with different grid size for a constant particle density 
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and constriction gap size. From the grid independence results we have selected 

uniform grid of size 201×1801 to discretise the computational domain. 50 

Lagrangian node points are used to represent the surface of the particle. In the 

present simulation, IBM is also employed to satisfy the no-slip boundary 

condition on the stationary semicircular constriction walls. The number of 

Lagrangian forcing points on the surface of semicircular constriction is 

uniformly distributed with their spacing 1.4 x
k

s   .   

 

Fig.3.2. Study of the wall effects with increasing aspect ratio of the channel. 

Table 3.1 Grid independence test of the particle sedimentation in the 

constricted channel. 

Mesh size VR 

% Error = 

x100
Newgrid Oldgrid

R R

Oldgrid

R

V V

V
 

100×900 3.75 -- 

150×1350 3.72 0.8 

200×1800 3.714 0.16 

250×2250 3.708 0.16 
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3.2 Results and Discussion 

The results presented in the following section correspond to the observed flow 

regimes for single and two particles sedimentation cases, as functions of 

particle density and constriction gap size. 

3.2.1 Single particle sedimentation   

For simulation of single particle sedimentation, the circular particle is kept at 

initial height of 22D from centre of the semicircular constriction and along the 

vertical centreline of the rectangular box. The density of the particle is varied 

between 1.25 – 2.0 gm/cm
3 

to achieve different Reynolds number of the flow. 

Also to find the effects of different constriction gap size the radius of 

semicircular constrictions is adjusted. We restrict our focus to the constriction 

gap size in the range of 1.25D – 2.0D.  

3.2.1.1 Flow regime 

To better illustrate the obtained results, we have divided the whole 

computational domain into three different zones as shown in Fig.3.1(c). 

Zone-1 

This zone corresponds to the region of the box above the constriction walls. 

Initially the particle is at rest. With time the particle starts to accelerate by 

gravity force. From Fig.3.3(b), it can be observed that the velocity magnitude 

increases until the particle attains a steady state/constant terminal velocity 

condition (– ve because of sign convention). At this moment, the net upward 
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force (drag and buoyancy forces) on the particle gets balanced with the net 

downward force (weight of the particle). Corresponding to the velocity plot, 

similar behaviour is observed for Reynolds number Re and translational 

kinetic energy Et of the particle. The definition of Re and Et are followed from 

Eqs.(2.46) – (2.47). Once the particle attains the constant terminal velocity, it 

continues to move with that magnitude till it encounters the constrictions or 

zone-2.  

 

             (a)                          (b) 

 

             (c)                        (d)          

    (Continued....) 
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Fig.3.3. Temporal evolution of (a) Y centre coordinate (b) Vertical velocity (c) 

Reynolds number (d) Translational kinetic energy of the settling particle of 

density 1.25 g/cm
3
 where the constriction gap size 1.25D. 

 

      (a)                (b) 

Fig.3.4. Instantaneous pressure and vorticity contours at different time steps of 

the settling particle of density 1.25 g/cm
3
, while travelling in Zone-1. 

In Fig.3.4(a), the pressure contours around the particle are shown where the 

reference pressure is 
2

0 sc . We can observe that the pressure distributions 

below and above the particle are different. The pressure near the front face of 

the particle is comparatively higher than the rear end of the particle. This is 

because the fluid encounters the particle at the front face first and hence leads 

to formation of the stagnation point or the maximum positive pressure zone. 

While at the rear end of the particle, there is development of wake separation 

which leads to low pressure. The rear end pressure contours spread over time 

that implies increase in the wake length. This growth of the wake region is 

also observed in the vorticity contour plot, as shown in Fig.3.4(b). The 

t = 0.1 s t = 0.2 s t = 0.4 s t = 0.1 s t = 0.2 s t = 0.4 s 
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vorticity growth is associated with the continuous transfer of kinetic energy 

from the moving particle to the fluid (Ten Cate et al. (2002)).             

Zone-2                

This is the region of the channel that contains the constriction walls. The 

particle has attained the terminal velocity in zone-1 before moving to zone-2. 

At the entrance of zone-2, the velocity plot in Fig.3.3(b), suggests that the 

particle starts to decelerate with reduction in its velocity magnitude as well as 

Re and Et values. In the zone-2, presence of the constriction walls significantly 

reduces the available space for the particle movement. In literatures (Ten Cate 

et al. (2002); Feng and Michaelides (2004); Wang et al. (2013)), it was 

reported that the drag force exerted on the moving particle is a complex 

inverse function of the channel size. In our present study the channel width in 

zone-2 is less than other zones. Hence, the drag force on the particle due to the 

small gap will be higher in zone-2.  

 

 

 

t = 0.6 s t = 0.7 s t = 0.8 s t = 1.0 s 

t = 0.6 s t = 0.7 s t = 0.8 s t = 1.0 s 

(a) 

(b) 

(Continued.....) 
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Fig.3.5. Instantaneous pressure and vorticity contours at different time steps 

while the particle of density 1.25 g/cm
3
 is travelling in Zone-2. 

In Fig.3.5(a) – (b), the pressure and vorticity contours are plotted, while the 

particle is settling in zone-2, respectively. In this zone, lateral pressure 

contours are present due to the constriction walls. While the particle tries to 

move further down in the constricted section, it squeezes out the surrounding 

fluid along the sides of the constriction walls. The followed 

semicircular/convex shaped constriction creates an adverse pressure gradient 

for this squeezed flow field, which leads to a boundary layer separation as 

shown in Fig.3.5(b) (t = 0.7 s). This separated flow field forms two 

recirculation vortices above the constriction walls. At t = 0.7 s, there is a low 

pressure band formed above the constriction walls that includes the two 

attached vortices on the particle. In the view of flow physics, the low pressure 

band will attracts the surrounding fluid and spreads its area of influence. 

Hence, the circulation of the vortices increases as shown in Fig.3.5(b) (t = 0.8 

s). When the attached vortices on the particle are sufficiently large in size, 

they will shed from the particle. As the particle further settles, the drag force 

on the particle keeps increasing in the converging section of the constriction 

gap. Hence, the minimum particle velocity will be noticed at the narrowest 

gap, which is referred as the maximum retarding velocity (VR). Beyond the 

narrowest gap, in the diverging profile of the constriction, the particle again 

starts accelerating as shown in Fig.3.3(b). It is worth to mention that the 

retarding and accelerating part of the velocity plot in the constriction zone are 

not symmetric, which may be due to the presence of lateral pressure contours 



Chapter 3 Application of 2D Flexible Forcing IB – LBM for Particulate Flow 

in a Constricted Channel 

 

 

78 
 

in the convergence section and change of the available spatial gap in the 

divergence section as shown in Fig.3.1(d).  

Zone-3                

After leaving zone-2, the particle enters to zone-3 which is the bottom section 

of the channel. The particle keeps accelerating similar to the zone-1 till the 

steady state/terminal velocity condition is attained. Thereafter particle 

continues to move with the constant terminal velocity until it settles on the 

bottom of the channel. As the particle approaches the channel bottom, the 

kinetic energy of the particle decays and it starts decelerating by squeezing out 

the fluid between the particle and the bottom wall. This also generates outward 

flow as shown in the vorticity plot Fig.3.6(b) (t = 4.0 s).  

In Fig.3.6(a) – (b), the pressure and vorticity contours are plotted while the 

particle is travelling in zone-3. The plots are similar to that of the zone-1. To 

realize the collision between the particle and the bottom wall, the lubrication 

force (Glowinski et al. (2001)) as described in Eq.(2.36) is followed.  

           

 

(a)           (b) 

Fig.3.6. Instantaneous pressure and vorticity contours at different time steps 

while the particle of density 1.25 g/cm
3
 is travelling in Zone-3. 

t = 2.6 s t = 3.0 s t = 4.0 s t = 2.6 s t = 3.0 s t = 4.0 s 
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3.2.1.2 Effects of constriction gap size 

      

       (a)                (b) 

      

        (c)               (d) 

Fig.3.7. Temporal evolution of (a) Y centre co-ordinate (b) Vertical velocity 

(c) Reynolds number (d) Translational kinetic energy for different constriction 

gap size, where the settling particle has density 1.25 g/cm
3
. 

In order to find out the effects of the constriction gap size, the radius of the 

semicircular constriction walls are varied. In the present study, we focused the 

gap size in the range of 1.25D – 2.0D, between the two constriction walls 
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along the horizontal centreline. In Fig.3.7 vertical velocity, trajectory, Re and 

Et of the particle are plotted for various constriction gaps.  

 

 

 (a)         (b)       (c)           (d) 

 

             (a)                 (b) 

 

          (c)                 (d)  

        (Continued....) 

φ φ 

φ φ 
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Fig.3.8. Instantaneous pressure contours on the particle at the centreline of the 

constriction with gap size (a) 1.25D, (b) 1.5D, (c) 1.75D and (d) 2.0D and 

corresponding Cp distribution for particle density 1.25 g/cm
3
. 

It is found that with the decrease in the constriction gap size the maximum 

retardation velocity (VR) increases and corresponding changes in Re and Et are 

also produced. This behaviour is associated with the drag force in the narrow 

gap. In Fig.3.8, the pressure contours and the instantaneous coefficient of 

pressure (CP) are shown for different constriction gap sizes, when the particle 

reaches the centreline of the constriction. In the lower array of Fig.3.8, the 

distribution of Cp as a function of Φ is shown. For the cases of gap size 1.25D 

and 1.5D, there are two stagnation points. But for the larger constriction gap 

there is only one stagnation point. With increase in number of stagnation 

points, the pressure recovery for the gap size 1.25D is less than that of 2.0D. 

Hence, the drag force on the particle will be higher in case of gap size 1.25D.  

3.2.1.3 Effects of density of the particle 

Density of the particle is varied to generate different Reynolds number. For 

higher density, particle’s terminal velocity increases. As the drag force on the 

particle is an inverse function of the flow velocity, therefore the drag force on 

the denser particle will be less compare to the lighter particle for a constant 

constriction gap size. Hence, the magnitude of VR increases with decrease of 

particle density. In Fig.3.9(a), VR as a function of density of the particle is 

plotted for various channel gaps. It is also found that for a particular particle 

density, magnitude of VR decreases with the increase in constriction gap.  
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        (a)       (b) 

Fig.3.9. Comparisons of (a) maximum retardation velocity (VR) and (b) 

sedimentation time for different constriction gap size and density of the 

particle. 

As we know, with increase in the particle density the velocity of the particle 

increases and thus the sedimentation time gets reduced to reach the channel 

bottom. The variation in sedimentation time with different constriction gap 

sizes and densities of the particle are plotted in Fig.3.9(b). It is also observed 

that with the increase in particle density, the constriction wall effects become 

insignificant and variation of the sedimentation time is negligible.     

Another interesting finding in the constricted passage sedimentation problem 

is that there may be formation of a ‘virtual stationary state’. The particle 

attains this state with both near zero kinetic energy and slope of the particle 

trajectory as shown in Fig.3.3(a) – (d). This occurs for certain combination of 

the particle density and the constriction gap size. 
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3.2.2 Two particles sedimentation   

Two circular particles of same density and diameter are used to study the 

present sedimentation problem. We named the particles as per their initial 

order of arrangement: particle-2 and particle-1 for the leading and trailing 

particles respectively. The initial gap between two particles is 6D. The initial 

positions of the particles are 18D and 12D for particle-2 and particle-1 

respectively, which is measured above the center of the semicircular 

constriction and along the vertical centerline of the channel. In the following, 

the effects of different constriction gap size (1.25D – 2.0D) and different 

particle density (1.25 – 2.0 g/cm
3
) on the flow regime will be analyzed.  

3.2.2.1 Flow regime  

Zone-1 

This is the region above the constriction walls of the channel. At time t = 0, 

both the particles are at rest and start to fall with gravity effect. In Fig.3.10, 

velocity and trajectory of the particles is plotted. During the accelerating stage 

the velocity increases over time and the particle-2 follows the trend of the 

particle-1 during the initial time steps. But deviation is noticed at the later time 

steps, which may be due to the interaction between the trailing particle with 

the wake of the leading one.  
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      (a)           (b) 

Fig.3.10. Temporal evolution of (a) Vertical velocity (b) Y centre co-ordinate 

of the particles with density 1.25 g/cm
3
 and the constriction gap size 1.5D. 

 

    
(a)     (b) 

Fig.3.11. Instantaneous pressure and vorticity contours at different time steps 

while the particles of density 1.25 g/cm
3
 is travelling in Zone-1. 

t = 0.1 s t = 0.2 s t = 0.3 s t = 0.1 s t = 0.2 s t = 0.3 s 
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At the initial time step the two particles sedimentation resembles closely as an 

impulsively started flow over tandem circular cylinders. As shown by Sumner, 

Price et al. (1999) the temporal development of the flow regime is dependent 

on the cylinders’ centre distance. For the centre distance less than 2D, 

separated shear layers from the upstream cylinder reattach on the surface of 

the downstream cylinder. But for the higher centre distance this reattachment 

is avoided. In the present simulation, we set the initial gap as 4D and as the 

initial Re of the flow is low, which also avoids the streamline reattachment. 

This can be verified from the vorticity plot in Fig.3.11(b) where the vortices of 

the two particles do not interact. Again from the pressure contours as shown in 

Fig.3.11(a), the force exerted on two particles will be different that produce 

different settling velocities.  

Zone-2 

This is the region of the channel that contains the constriction walls. For two 

particles sedimentation, it is found that while particle-2 is travelling in zone-1, 

particle-1 has already entered zone-2. The behaviour of the particle-1 is 

similar to that discussed in single particle sedimentation section 3.2.1. Here 

only the behaviour of the particle-2 will be discussed.  

As previously reported a low pressure band will be formed above the 

constriction wall, once the particle-1cross zone-2. When the particle-2 enters 

this low pressure zone with lesser drag force, it accelerates faster and attains 

higher velocity magnitude than the particle-1 as shown in Fig.3.10(a). With 

further settling of the particle-2, it encounters narrowing portion of the 
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constriction zone and the particle-2 starts decelerating due to increase of drag 

force. From Fig.3.10(a), it is found that the velocity of the particle-2 may 

reduce to zero and reverse its direction. This means, the particle-2 may have 

moved upward in zone-2 for certain time before it again starts falling.  

The interesting upward movement may be due to the wake region of the 

particle-1. When the particle-1 crosses the centreline of the constriction it 

starts accelerating, while from Fig.3.12 we can see that the particle-2 is still 

decelerating. With forward movements of the particle-1 in the diverging part 

of the constriction, squeezes out the surrounding fluid through its converging 

part. This squeezed fluid moves in the opposite direction relative to the motion 

of the particle-2 thus helping in its velocity deceleration. With the combined 

effects of the upward drag force and the oppositely moving squeezed fluid 

may be sufficient to balance the weight of the particle and makes the particle 

move upward. Using the vector plots (Fig.3.13) of the fluid velocity this 

motion can be verified. To further verify this flow regime, pressure contours 

are plotted. It is noticed that there is a critical point in the wake of the particle-

1 where streamlines are discontinuous. From the definition of Perry and 

Chong (1987), this discontinuity is associated with formation of a 

‘node/critical point’. Again the critical point is linked with a pressure gradient 

(Perry and Chong (1987)) and hence leads to a force generation. We noticed 

that the pressure gradient reduces with further downward movement of the 

particle-1. With the reduction in drag force and under the effects of gravity, 

the particle-2 again starts falling downward and reaches the zone-3. The 

corresponding vorticity plots are shown in Fig.3.12(b).  
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Fig.3.12. Instantaneous pressure and vorticity contours at different time steps 

while the particles of density 1.25 g/cm
3
 is travelling in Zone-2. 

 

 

t = 0.4s t = 0.6s t = 0.7s t = 0.8s t = 1.0s 

t = 0.4s t = 1.4s 

t = 1.4s 

t = 0.6s t = 0.7s t = 0.8s t = 1.0s 

(a) 

(b) 
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Fig.3.13. Velocity vector plot at different time step for the particle of density 

1.25 g/cm
3
 near zone-2 where the constriction gap size is 1.75D. 

           

   

   (a)         (b) 

Fig.3.14. Instantaneous pressure and vorticity contours at different time steps 

while the particles of density 1.25 g/cm
3
 is travelling in Zone-3. 

 

 

t = 0.8 s t = 0.9 s t = 1.3 s 

t = 1.6s t = 1.8s t = 2.1s t = 1.6s t = 1.8s t = 2.1s 
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Zone-3 

This is the region of the channel below the constriction walls. The flow 

regimes behind the particles are much similar to the zone-3 of the single 

particle sedimentation case. The particles attain the terminal velocity before 

resting on the channel base. Here one thing should be noticed that the terminal 

velocity of the particle-2 is less than the terminal velocity of the particle-1. 

This is because with movement of the particle-1, the fluid in its wake gains 

kinetic energy and as mentioned by ten Cate, Nieuwstad et al. (2002), the 

momentum diffusive time scale of the fluid is larger than the particle 

advection time scale. Therefore, when the particle-2 moves in the wakes of the 

particle-1 the surrounding flow field still retains certain relative velocity. Thus 

the terminal velocity is smaller for the particle-2. The pressure and vorticity 

plots for this zone are shown in Fig.3.14(a) – (b). 

 

   (a)     (b) 

Fig.3.15. Comparisons of maximum retardation velocity (VR) for different 

constriction gap size and density of the particles; (a) Particle-2 (b) particle-1. 
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3.2.2.2 Effects of constriction gap   

Constriction gap effects are studied by comparing the maximum retarding 

velocities (VR) of the particles. With the decrease of the constriction gap, the 

retardation velocity increases for a constant particle density. Again by 

increasing the density of the particle, the retardation velocity is found 

decreasing. A comparison plot is shown in Fig.3.15 for particle-1 and particle-

2. We have also compared the sedimentation time lag between two particles as 

shown in Table 3.2. It is found that with reduction in the constriction gap size, 

the time lag increases significantly. Also with the increase in particle density, 

the time lag decreases. 

Table 3.2 Sedimentation time lag (in sec) between particle-2 and particle-1 for 

different constriction gap size and density of the particle. 

Density 

(g/cm
3
) 

Gap size = 

1.25D 

Gap size = 

1.5D 

Gap size = 

1.75D 

Gap size = 

2.0D 

1.25 3.0 2.4 1.6 1.5 

1.5 1.8 1.2 1.1 0.98 

1.75 1.3 1.0 0.7 0.5 

2.0 0.3 0.2 0.15 0.1 

 

3.3 Concluding remarks  

In this chapter, we have utilized the developed 2D flexible forcing hybrid IB – 

LBM scheme to simulate the particulate flow in presence of surrounding wall 

effects where minimal study reports are available in literature. Therefore, in 
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this numerical study, it is the first time we have characterized the 

sedimentation of single and two particles in a 2D channel with two symmetric 

semicircular constriction walls. The effects of density of the solid particles, 

viscosity of the fluid, shape and size of the constriction are investigated 

separately for single and two particle sedimentation cases. In this study only 

the circular shaped constrictions are used where other shapes (like rectangular 

or triangular) are under the scope of future investigation.   
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4 Chapter 4  

A 2D Flexible Forcing Immersed 

Boundary and Thermal Lattice 

Boltzmann Method
3
 

In this chapter a two dimensional hybrid numerical scheme is introduced for 

modelling fluid – solid interactions in an incompressible, viscous flow domain 

where the thermal effects are accounted. As discussed previously, IBM have 

been extensively utilised to simulate various fluid – solid coupled problems 

without thermal effects (Peskin (1977); Lai and Peskin (2000); Zhu and Peskin 

(2002); Feng and Michaelides (2004); Feng and Michaelides (2005); Wu and 

Shu (2009); Wu and Shu (2010); Wu and Shu (2010)) whereas only limited 

works were reported for thermal flow cases (Pacheco et al. (2005); Wang et al. 

                                                           
3
 Part of this work has been published as: 

Dash SM, Lee TS and Huang H. (2013). "Natural Convection from an Eccentric Square Cylinder 
Using a Novel Flexible Forcing IB-LBM Method." Numerical Heat Transfer, Part A: 
Applications 65(6): 531-555 
Dash SM and Lee TS (2014). "Natural Convection from Inclined Square Cylinder Using Novel 
Flexible Forcing IB-LBM Approach." Engineering Applications of Computational Fluid 
Mechanics 8(1): 91-103 
Dash SM, Lee TS and Huang H. (2013). "A Novel Flexible Forcing Hybrid Ib-Thermal Lb Model 
for Natural Convection from a Circular Cylinder." International Journal of Dynamics of Fluids 
9(1): 1-15 
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(2009); Jeong et al. (2010); Ren et al. (2012)). In the conventional IBM, the 

unsatisfied velocity boundary condition may produce non-physical streamline 

penetration into the solid boundary. While applying IBM to the thermal flow 

case, apart from momentum equation an extra energy equation is solved where 

the improper temperature boundary condition may leads to similar non-

physical isotherm penetration into the solid boundary. In Chapter 2, we have 

discussed a flexible forcing IB – LBM model for isothermal flow case that 

removes these defects, at the same time the simplified mathematical 

formulation lessen the computational effort and resource requirement. Here, 

the developed scheme has uniquely combined the non-body-fitted IBM 

techniques with the mesoscopic thermal LBM solver. The details of the 

mathematical formulations are outlined in the followings. The numerical 

accuracy and validation of the present scheme are checked by performing a 

number of benchmark flow case simulations.   

4.1 Numerical methodology 

4.1.1 Thermal lattice Boltzmann method 

The thermal lattice Boltzmann model (TLBM) are presently categorised into 

three major groups: 1) Multispeed approach, 2) Passive scalar approach and 3) 

Thermal energy distribution approach (also referred as double density 

population approach). We have highlighted the shortcomings such as 

numerical instabilities and restriction on Prandtl number (Pr) selection, of the 

multispeed model (Chen et al. (1994); Watari and Tsutahara (2004)) and 
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passive scalar model (Li et al. (2008)) in previous introduction section (ref. 

Chapter 1). Alternatively, He et al. (1998) have proposed a thermal energy 

distribution/double population TLBM, that uses two distinct density 

distribution functions for evolution of the momentum and temperature field. 

Although this model is able to solve complex thermal problems, but the 

drawbacks like complicated gradient term and involvement of viscosity in the 

momentum as well as energy equations raises numerical difficulty for practical 

implementation and produces inconsistency while applying the boundary 

condition. Peng et al. (2003) have suggested a simplified model where the 

viscosity definition is consistent in both the evolution LBEs and removed the 

complicated gradient term by omitting the viscous heat dissipation and 

compression work due to the pressure. In the present study, we have followed 

this modified double distribution function model (DDF) (Peng et al. (2003) to 

describe the temperature field evolution. The relevant derivations of DDF 

model are provided in the followings.     

From the kinetic theory, the evolution of the single particle density distribution 

function obeys continuous Boltzmann equation.  

   .t f
f f f F    e                (4.1) 

where f is the single particle density distribution function, e  is the 

microscopic particle velocity,  
eq

f f
f




    is the collision operator, 

eq
f  is the equilibrium distribution function and   is the relaxation time. 
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. ef
F f G  is a term due to the external force G that acts on per unit fluid 

mass.  

Here, the fluid variables i.e. density  , velocity u  and temperature T can be 

defined as the moments of f in D dimensional space.  

 
2

.

2 2

f d

f d

D RT
f d







 
   
 

 
 

 
 

 
 

 
 

  
  
 



 




u

u

e

e e

e
e

               (4.2) 

In the above although the BGK model retains the main features of the original 

Boltzmann collision operator, it limits the applicability to a fixed Pr (Jehring 

(1992). To avoid this defect He et al. (1998) have introduced another 

relaxation time into the non-equilibrium distribution function after noticing 

that the momentum and energy should have different transport time scale 

during the collision process. They have defined a new variable as, an internal 

energy distribution function which is shown in Eq.(4.3),  

 
2

.
2

g f



ue

                     (4.3) 

A BGK type kinetic equation for g  can be constructed based on the 

Boltzmann equation (Eq.(4.1)), which allows for the internal energy having a 

relaxation time scale different from that of the momentum transport.  

 
 

     
2

. .. .
2t tg g f f    


        
u

u u u
e

e e e            (4.4) 
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We can simplify the Eq.(4.4) to Eq.(4.5) by defining 

 
 

2

2

eq

c

g g
f



 
  

ue
, 

     . ,. .
eq

t t
c

g g
g g f


   


       u u ue e e             (4.5) 

where 

   
 

 
2 2 2

/2
2 exp .

2 2 2

Deq eq
g f RT

RT
 

 
  

 
 

  
 

u u ue e e
       (4.6) 

With above modifications, the macroscopic density and velocity are still 

determine from the moments of the density distribution function f  as 

presented in Eq.(4.2), but the internal energy 2DRT  is now defined with 

the new internal energy distribution function g .   

g d  e                       (4.7) 

The above continuous Boltzmann evolution equations (Eq.(4.1) and Eq.(4.5)) 

should be descretised in the temporal, spatial and velocity (phase) space so as 

to recover the correct macroscopic equations. In isothermal LBM, this is done 

by integrating the Eq.(4.1) using the first order scheme, where the second-

order truncation error is absorbed into the physical viscous term. The effect is 

that the viscosity value changes from vRT to  0.5v RT t  . However, in 

the thermal models, the viscosity is not only involved in the momentum 

equations but also in the energy equation. As shown by He et al. (1998), the 



Chapter 4 A 2D Flexible Forcing Immersed Boundary and Thermal Lattice 

Boltzmann Method 

 

 

97 
 

second order term is no longer trivial, and the viscous heat dissipation term 

comes from the non-equilibrium part of the density distribution function. This 

term is not affected by the second order truncation error and only arises from 

the second order Chapman – Enskog expansion. Hence, the viscosity in the 

viscous heat dissipation can retain the value vRT . To eliminate the above 

identified inconsistency, we have followed Peng et al. (2003) second order 

discretisation process neglecting the viscous heat dissipation and compression 

work by pressure where the descretised governing equations for the simplified 

thermal energy distribution model are, 

   
   , ,

, , ,
eq

i i
i i i i

v

f t f t
f t t t f t tF  




   

x x
x+ xe

  0,1,2,...i N ,                    (4.8) 

   
   , ,

, , ,
eq

i i
i i i

c

g t g t
g t t t g t 




  

x x
x + xe              

  0,1,2,...i N ,                      (4.9) 

When D2Q9 lattice model is employed, the lattice velocities 
i

e  and weighting 

coefficients iW  are defined as,  

 

   

 

0,0 , 0,

1,0 , 0, 1 , 1 4 ,

1, 1 , 5 8.

i

i

c i

i









    

   

e

4 9, 0,

1 9, 1 4,

1 36, 5 8.

i

i

W i

i









  

 

     (4.10) 

For this lattice model, the equilibrium density distribution functions of 

momentum and thermal energy (
eq

i
f ,

eq
i

g ) are defined as, 
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 
 

2
2

2 4 2
, , 1 ,

2 2

eq ii
i i i

s s s

f t W
c c c


 
 
 
 
 

   
uu u

x
 ee

e   0,1,2,...8i  ,     (4.11) 

 
2

0 2

2
, , ,

3
eq

ig t
c




u
x e                      (4.12) 

 
 

2 2

1,2,3,4 2 4 2

3 3 9 3
, , ,

9 2 2 2 2
eq ii

ig t
c c c


 
 
 
  


   

u uu
x

ee
e          (4.13) 

 
 

2 2

5,6,7,8 2 4 2

9 3
, , 3 6 .

36 2 2
eq ii

ig t
c c c


 
 
 
  


   

u uu
x

ee
e           (4.14) 

The macroscopic density, velocity and temperature are then calculated as: 

8

0
i

i
f


  , 

8

0
i i

i
f


 u e  , 

8

0
i

i
g


   .              (4.15) 

When Chapman – Enskog expansion is performed, Eq.(4.8) will recover the 

continuity and momentum equations (Eq.(2.14) – (2 .15)) where the viscosity 

  is defined as  0.5v RT t  . Similarly, Eq.(4.9) will recover the energy 

equation (Eq.(4.16)) where the thermal diffusivity   is defined as 

 2 0.5c RT t   (Peng, Shu et al. (2003).      

     2.t          u              (4.16) 
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4.1.2 Flexible forcing immersed boundary – thermal 

lattice Boltzmann method 

To formulate this coupled scheme, let us consider an incompressible viscous 

thermal flow of Newtonian fluid in a two-dimensional domain Ω, which 

contain a heated closed immersed boundary curve Γ as shown in Fig.4.1. By 

extending the original idea of Peskin (1977), the heated boundary condition on 

Γ can be modelled as a set of heat sources at each of the boundary segments 

(represented with Lagrangian Marker points). Hence, the effects of the 

immersed boundary Γ can be realised on the surrounding fluid domain Ω by 

introducing the forcing term into the momentum equations and incorporating 

the heat source/sink term in the energy equation. The modified governing 

equations in primitive variable form are:  

0,
t








u =                  (4.17) 

      ,
T

p
t
    

  


       


u uu u + u f           (4.18a) 

        1 ,
T

meanp g T T j
t
      

  


          


u uu u + u f

                 
(4.18b) 

  2 ,
P

T
C T k T q

t


 
 
 


   


u                (4.19) 

      , , , ,
B B

t s t δ s t ds


 f x x XF               (4.20) 
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      , , , ,
B B

q t Q s t δ s t ds


 x x X               (4.21) 

together with the boundary conditions Eqs.(4.22) – (4.23) on Γ. 

          , , , , , , ,
B B B B

s t t s t t t δ s t d


  U X u X u x x X x   (4.22) 

          , , , , , , ,
B B B B

T s t t T s t t T t δ s t d


  X X x x X x    (4.23) 

where the variables: , , , , , , Pp T k C u   represent density, flow velocity, 

pressure, kinematic viscosity, temperature, thermal conductivity and constant 

pressure specific heat of the working fluid respectively. x  and BX  are 

Eulerian and Lagrangian mesh co-ordinates, f and BF are the force density 

acting on the fluid and immersed boundary respectively. q and BQ are the heat 

source/sink  density acting on the fluid and immersed boundary respectively. 

  ,Bδ s tx X
 
is the Dirac delta function. j  is the unit vector in positive Y 

direction. The above Eq.(4.17) is the continuity equation which together will 

be solved with momentum equations (Eq.(4.18a) for forced convection and 

Eq.(4.18b) for natural convection). Eqs.(4.20) – (4.21) relates the immersed 

solid boundary Γ and fluid domain Ω by distributing the boundary force to the 

nearby fluid points and relating the boundary velocity/temperature with the 

fluid velocity/temperature. 

The above flow governing equations (Eqs.(4.17) – (4.19)), are solved using 

the developed flexible forcing IB – TLBM scheme, where the corresponding 

lattice Boltzmann equations (LBEs) are: 



Chapter 4 A 2D Flexible Forcing Immersed Boundary and Thermal Lattice 

Boltzmann Method 

 

 

101 
 

       1
, , , , ,

eq T
i i i ii ii

v

f δt t δt f t f t f t Fδt F δt


 
 
 

      x x x xe

                        (4.24) 

       1
, , , , .

eq

i i ii ii
c

g δt t δt g t g t g t Qδt


 
 
 

     x x x xe          (4.25) 

Here, if  
and ig

 
are the density distribution functions for fluid flow and 

internal energy respectively, along the discrete lattice direction i. eq
if  

and 

eq
ig  are the corresponding equilibrium distribution function which are derived 

from Taylor series expansion of Maxwell Boltzmann distribution as shown in 

Eqs.(4.11) – (4.14). 
v
 and 

c
  are the non-dimensional relaxation parameters 

in the BGK approximation. 

 

Fig.4.1. A two dimensional domain Ω containing a heated immersed boundary 

Γ. 

In IBM with decoupled fluid and solid mesh additional body force/heat source 

density terms, , qf  are included in the flow equations to satisfy the no-slip 

Eulerian Domain Ω 

Lagrangian Curve Γ 
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velocity/no-jump temperature boundary conditions on the immersed cylinder. 

In LBM framework these source terms, iF , iQ  are represented in the discrete 

lattice directions as (Guo et al. (2002)), 

42

1
1 ,

2
i i

i i i
ssv

F W
cc

   
   

  
  

 
   

u u
f

e e
e             (4.26)

 

.
i i

Q W q                 (4.27) 

To simulate the natural convection where buoyancy is the only source of flow 

generation, we have followed Boussinesq approximation of a temperature 

dependent density term G and correspondingly additional discrete forcing T
iF  

(Luo (1998)) is included in LBE Eq.(4.24).  

  ,meang T T j  G                   (4.28) 

 
,eqiT

i iF f
RT

 


G ue
               (4.29) 

where g is the acceleration due to gravity along the vertical direction j (unit 

vector). With above definitions, the macroscopic velocity and temperature are 

calculated as (Guo et al. (2002)),   

1
,

2i i
i

f δt  u fe                   (4.30) 

1
.

2i
i

g q t                     (4.31) 
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Now defining, 
8

0

*
i i

i
f 


 u e , 

8*

0
i

i
T g R


   intermediate Eulerian 

velocity and temperature;  1 2 δt u = f ,  1 2T R qδt =  Eulerian 

velocity and temperature correction term respectively, we can rewrite the 

Eqs.(4.30) – (4.31) as, *  u u u , *T T T  . Here, to perform implicit 

computation, the Eulerian velocity and temperature correction (u , T ) are 

kept unknown and are calculated such that the exact no-slip velocity and no-

jump temperature boundary conditions are satisfied. Following the Dirac delta 

function interpolation the unknown Eulerian velocity and temperature 

correction can be derived from the unknown Lagrangian boundary velocity 

and temperature correction (
B

δU
 
and 

B
δT ).   

     , , ,
B B B

δ t δ t δ ds


 u x U X x X              (4.32) 

     , , ,
B B B

δT t δT t δ ds


 x X x X              (4.33) 

where the immerse boundary is represented using a set of Lagrangian co-

ordinates  ,
B k

s tX . 
k

s  1,2,3....k n  is the position in the Lagrangian co-

ordinates.  B
δ x X  is smoothly approximated by continuous Kernel 

distribution  B
D x X ,   

    2

1
,

k k
k k B B
B B

x X y Y
δ D δ δ

h hh

   
   
   
   

 
   x X x X           (4.34) 

where  r is approximated using 2 point Dirac delta function   
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 
1,1 ,

1.0,

rr
r

r










              (4.35) 

Here, h is the Eulerian mesh spacing. Substituting the Eq.(4.34) into the 

Eqs.(4.32) – (4.33), the velocity and temperature correction expressions can be 

simplified to algebraic forms, 

     , , ,k k k
B B B k

k
δ t δ t D s  u x U X x X            (4.36) 

     , , ,k k k
B B B k

k
δT t δT t D s  x X x X             (4.37) 

where 
k

s is the arc length of the Lagrangian boundary element.  

The next task is to calculate the no-slip velocity/no-jump temperature 

boundary conditions. Mathematically, these boundary conditions imply that 

the fluid velocity/temperature at the boundary point must be equal to the 

desired boundary velocity/temperature ( kd
B

U , kd
B

T ) at the same position. 

These can be expressed as, 

     
,

, , ,kd k k
B B Bx y

t t D x y   U X u x x X             (4.38) 

     
,

, , ,kd k k
B B Bx y

T t T t D x y   X x x X             (4.39) 

where x  and y are the mesh sizes in horizontal and vertical direction. 

Substituting the intermediate velocity/temperature and Eulerian 

velocity/temperature correction in the Eqs.(4.38) – (4.39) we get,  
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     

     

*

,

,

, ,

, .

kd k k
B B Bx y

k k k k
B B B Bkx y k

t t D x y

δ t D s D x y

   

      

U X u x x X

U X x X x X

                      (4.40) 

     

     

*

,

,

, ,

, .

kd k k
B B Bx y

k k k k
B B B Bkx y k

T t T t D x y

δT t D s D x y

   

      

X x x X

X x X x X

                     (4.41) 

The implicit computation involves the unknowns 
k
B

δU  and 
k
B

δT . To evaluate 

these correction terms complex matrices inversion are required. For the flow 

problems with larger Lagrangian boundary points such as, 3D or complex 

geometries, inversion of matrix is computationally tedious and expensive. 

Also the coefficients of 
k
B

δU  and 
k
B

δT  in Eqs.(4.40) – (4.41) need a 

sequential computational code, which also demands higher memory usage 

even for a simple 2D problem. To avoid these difficulties a simple 

modification is proposed here. In RHS of Eqs.(4.40) – (4.41), the second term 

is responsible for making the form of equation complex. Instead of above 

formulation single Lagrangian velocity/temperature correction is followed as 

shown in Eqs.(4.42) – (4.43), that makes the corrected boundary 

velocity/temperature equals to the desired boundary velocity/temperature (
k
B

U  

or
 

k
B

T ). 

       
,

, , , ,
mkd k k k k

B B B B Bx y
t t D x y δ t    U X u x x X U X            (4.42) 
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       
,

, , , ,
m

kd k k k k
B B B B Bx y

T t T t D x y δT t    X x x X X          (4.43) 

       
,

, , , ,
mk k kd k k

B B B B Bx y
δ t t t D x y    U X U X u x x X          (4.44) 

       
,

, , , ,
m

k k kd k k
B B B B Bx y

δT t T t T t D x y    X X x x X          (4.45) 

where the amount of boundary velocity/temperature correction (
k
B

δU or 
k
B

δT ), 

can be obtained using Eqs.(4.44) – (4.45). The above correction principle may 

not ensure the exact boundary conditions at all the boundary points in single 

turn as the boundary velocity/temperature correction are linked with the 

Eulerian velocity/temperature correction (Eq.(4.36) – (4.37)). Hence, an 

additional sub-iteration update scheme is imposed to satisfy the boundary 

conditions within a convergence limit. The convergence criteria (CC) are set 

in Eqs.(4.46) – (4.47), where m is the sub-iteration number until CC is 

satisfied.  

 , 10 .
m

pk k
B B

δ t U X                  (4.46) 

 , 10 .
m

pk k
B B

δT t X                  (4.47) 

It is worth to mention here, the CC is a case dependent term, which allows 

flexibility to the user in selection of ‘p’ values. With available computational 

resources and required accuracy of the final results, ‘p’ value can be suitably 

chosen.  
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We have tried to reduce the number of sub-iterations in the proposed flexible 

forcing scheme by introducing a successive relaxation parameter (SRP), ‘ ’ 

as shown in Eqs.(4.48) – (4.49).   is set in the range of 0 – 1. The effects of 

SRP and CC selection will be discussed in the subsequent sections. 

       
1

, 1 , , .
m m m

k k k k k k
B B B B B B

δ t δ t δ t 


  U X U X U X
           

(4.48) 

       
1

, 1 , , .
m m m

k k k k k k
B B B B B B

δT t δT t δT t 


  X X X
                      

(4.49) 

After calculating the velocity and temperature corrections, the force/heat 

source density at the Lagrangian and Eulerian grid points are derived using 

Eqs.(4.50) – (4.51).  

   , 2 , / ,
m

k k k k
B B B Bm

t δ t δtX U XF
 

   , 2 , / .
m

m
t δ t δtf x u x               (4.50) 

   2, 2 , / ,mean

m
k k k k

sB B B Bm
Q t c δT t δtTX X

 

   2, 2 , / .mean

m
s

m
q t c δT t δtTx x               (4.51) 

Other microscopic variables: density, pressure and kinematic viscosity and 

thermal diffusivity are calculated using the following formula. 

8

0
i

i
f


  ,   2

sp c ,  21
,

2v sc δt 
 
 
 

 
  

21
2

2c s
c δt 

 
 
 

  .      (4.52) 
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In summary, the solution procedure for the proposed algorithm is outlined 

below:  

1. Set the initial flow field and calculate
i

f ,
i

g ,
eq

i
f  and 

eq
i

g . 

2. Perform streaming using Eqs.(4.24) – (4.25) with initial setting 

, , 0T
i i iF F Q  and calculate the intermediate velocity and temperature 

8

0

*
i i

i
f 


 u e ,

8*

0
i

i
T g R


  . 

3. From the desired boundary velocity/temperature, calculate the 

velocity/temperature correction    
0 0

, , ,
m m

k k k k
B B B B

δ t δT t
 

U X X  

using Eqs.(4.44) – (4.45).  

4. Update the Eulerian velocity and temperature, with the updated δu and 

δT . Calculate new    , , ,
m m

k k k k
B B B B

δ t δT tU X X  using Eqs.(4.44) – 

(4.45). Repeat this step with sub-iteration loops until the CC in 

Eqs.(4.46) – (4.47) are satisfied. 

5. Calculate f , q , 
eq

i
f and 

eq
i

g using Eqs.(4.50), (4.51), (4.11) – (4.14) 

respectively.  

6. Repeat the steps (2) – (5) above until the converged solution has 

reached.   

4.2 Accuracy test and Validations  

The numerical accuracy of the proposed flexible forcing IB – TLBM scheme 

was evaluated by performing benchmark test case simulations: natural 
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convection in a square enclosure with a circular heat source at different Ra 

(10
3
-10

6
). To further validate the proposed scheme, we have simulated the 

forced convection flow over a square heat source (cylinder). 

4.2.1 Natural convection in a square enclosure with a 

circular heat source 

At first to check the accuracy of the proposed algorithm we have simulated the 

natural convection process. A schematic diagram of the computational domain 

in 2D plane is shown in Fig.4.2(a). The system consists of a square enclosure 

with side of length L and a stationary circular cylinder of diameter D = 0.4L, 

which is located at the centre of the enclosure (x = 0, y = 0). The walls of the 

enclosure were kept at a constant lower temperature TC  = 0.0, whereas the 

cylinder surface is maintained at a constant higher temperature TH  = 1.0. All 

the fluid properties are assumed to be constant, except for the density in the 

buoyancy term, which follows the Boussinesq approximation (ref. Eqs.(4.28) 

– (4.29)). The gravitational force acts along the negative Y direction. The grid 

independence test is performed as shown in Table 4.1. A uniform grid of size 

201×201 is found sufficient to determine the accurate solution where the 

circumference of the cylinder is discretised with 240 Lagrangian marker 

points.  

Ra and Pr are two significant parameters that describe the mode and heat 

transfer rate. From theory (Kang and Hassan (2011)) Ra and Pr can be defined 

as, 
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3

Ra
g TL






, .Pr





                  (4.53) 

     

(a)               (b) 

Fig.4.2 Computational domain for Natural convection process from a hot 

circular cylinder; (b) additional circles at one and two mesh distance for 

calculation of normal direction gradient. 

Table 4.1 Grid independence test by computing NuA on the hot circular 

cylinder at Ra = 10
5
. 

Mesh size NuA  % Error = 

x100


Newmesh Oldmesh

A A

Oldmesh

A

Nu Nu

Nu
 

101×101 7.81 -- 

151×151 7.78 0.38 

201×201 7.77 0.12 

251×251 7.76 0.12 
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Using the relation of Ra and Pr , the relaxation coefficients (
v
 , c ), non-

dimensional viscosity    ( ) and thermal diffusivity ( ) are expressed as,   

Pr
Ra cU  , / RaPrcU L ,  

Pr 1
3

Ra 2cv
U L   ,

2

3 1
2RaPr

c
c

U L
   ,                       (4.54) 

where cU  is the characteristics velocity and defined as, 
C

U g TL  . The 

value cU  should be chosen to ensure the incompressible limit of the flow. 

Here, cU is specified as 0.1.  

The temperature and velocity boundary condition on the immersed cylinder is 

satisfied using proposed flexible forcing IB – TLBM scheme. Non-equilibrium 

density distribution function bounce back scheme (Peng et al. (2003)) is used 

on the enclosure walls for no-slip velocity/no-jump temperature boundary 

condition, as shown in Eq.(4.55).  

neq neqf f 
 
, 

neq neqg g   ,             (4.55) 

where 
neq

f  and 
neq

g  are the non-equilibrium parts of density distribution 

functions f  
and g  respectively.   and   are the lattice directions 

opposite to each other. Pr is set as 0.71. The simulations are performed till the 

steady state is achieved where the convergence criteria are followed from the 

previous works (Peng et al. (2003); Kang and Hassan (2011)),  
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       
2 2 2 21 1 6max 10 ,n n n nu v u v  

 
 
 
 

              (4.56) 

 1 7max 10 .n nT T                 (4.57) 

Here, n+1 and n represents the current and previous time step values 

respectively.  

To perform quantitative comparisons we have calculated local ( LNu ) and 

average Nusselt number (
A

Nu ), which are defined in the following, 

'

'L

wall

T
Nu

n

 
 
 
 





,   

0

1
,

W

LA
Nu Nu ds

W
               (4.58) 

where 
'

n  is the normal direction with respect to the wall and W is the average 

surface area of the wall where the temperature is non-dimensionalised as, 

   ' - / -HC C
T T T T T . For calculation of NuL on the hot cylinder surface 

special treatment is done. Additional two circular cylinders with respective 

diameters ‘0.4L+2δx’ and ‘0.4L+4δx’ are considered, as shown in Fig.4.2(b). 

The Lagrangian nodes on these two cylinders are kept same to ensure the 

normal direction. The temperature gradient is then calculated using the second 

order forward difference scheme, as shown in Eq.(4.59).  

,2 ,3 ,1
,1

4
,

2

i i i
i

T T TT

n x

  



             (4.59) 

where 1, 2 and 3 are the circles’ in order, and i, is Lagrangian node point.  As 

mentioned before, in our proposed scheme number of sub-iteration is variable 
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and depends on the CC. In Table 4.2, a comparison is made to check this 

dependency. We have simulated the natural convection flow for Ra = 10
5
. 

 
It is 

found that the number of sub-iteration required, is strongly dependent on the 

CC. This means the overall computational time dependence on the CC and by 

removing the unnecessary sub-iteration loops the computational cost can be 

significantly saved.  

Table 4.2 Variation of number of forcing (NF) and CC while calculating NuA 

on the hot cylinder at Ra = 10
5
. 

CC NF NuA 

10
-4

 11 7.771 

10
-5

 20 7.770 

10
-6

 31 7.769 

 

 

Fig.4.3. NuL distribution along the enclosure walls at different Ra compared 

and with Kim et al. (2008).   
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Table 4.3 Comparisons of NuA on the hot circular cylinder at different Ra. 

 

The distribution of NuL on the enclosure boundary wall as a function of Ra, 

are compared with the results obtained by Kim et al. (2008) and plotted in 

Fig.4.3. Further NuA on the hot cylinder surface is compared in Table 4.3. The 

observed results from the proposed numerical scheme are found in excellent 

agreement with the literature.  

The streamline and isotherm contours are plotted for various Ra in Fig.4.4. At 

low Ra = 10
3
 –10

4
, isotherms are symmetrical and regularly distributed. 

Streamlines at this Ra contains two primary and secondary vortices in the 

annulus of the enclosure. With increase in Ra to 10
5 

– 10
6
 merging of vortices 

are noticed and flow regime changes from bi-cellular mode to single cellular 

Case Reference NuA 

Ra=10
3
 

Lee et al. (2010) 5.107 

Kim et al. (2008) 5.093 

Present 5.065 

Ra=10
4
 

Lee et al. (2010) 5.109 

Kim et al. (2008) 5.108 

Present 5.112 

Ra=10
5
 

Lee et al. (2010) 7.761 

Kim et al. (2008) 7.767 

Present 7.771 

Ra=10
6
 

Lee et al. (2010) 14.064 

Kim et al. (2008) 14.11 

Present 14.086 
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mode. Thermal plumes are also visible at these Ra. The observed streamlines 

and isotherms are in well match with literature.  

   

 (a)          (b)    (c)           (d) 

 

 (e)          (f)    (g)           (h) 

Fig.4.4. Isotherms (a-d) and Streamlines (e-h) for circular cylinder with 

increase in Ra 10
3
, 10

4
, 10

5
 and 10

6
 (from left to right) (Contour of levels 1-10 

is shown for Isotherm and Streamline respectively). 

4.2.2 Forced convection from a square heat source 

The coupled fluid flow and heat transfer over bluff cylinder have been studied 

over last few decades and are considered to be benchmark test problem for the 

numerical schemes. To further validate our proposed IB – TLBM algorithm, 

we have simulated forced convection from a hot square cylinder subjected to 

an external flow of Re varying in the range 10 – 40. For this Re, flow and 

thermal fields are found to be steady and separated without the superimposed 

thermal buoyancy (i.e. for pure forced convection). It is worth to mention here 
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that the flow patterns and wake structures for the case of flow over square 

cylinder are considerably different than a circular cylinder, because unlike the 

circular cylinder the square counterpart tends to fix the separation point, 

causing differences in the critical flow regimes. Also, the separation 

mechanisms and the aerodynamic forces differ significantly for these two 

geometries. 

 

 

 

    

 

 

 

Fig.4.5. Schematic diagram of computational domain for flow over the heated 

square cylinder.  

The selected flow configuration is shown in Fig.4.5. A stationary 2D square 

cylinder with sides d, heated to a temperature Tw is exposed to a free stream 

velocity UF and temperature TF (< Tw). The computational domain is selected 

in such a way that the blockage effects are minimal (Sohankar, Norberg et al. 

(1998)). Here, the upstream and downstream of the computational domain is 

fixed at Lu = 15d and Ld = 30d   respectively. Similarly, the far field boundary 

H 

UF 
H/2 

d 

L 

Ld Lu 

TF TW 
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are selected as H/2 = 15d. Re of the flow is defined using side length of the 

square. Pr is set as 0.71. Using the definition in Eq.(4.54), the flow governing 

equations (Eq.(4.17),(4.18a) and (4.19)) are solved with proposed IB – TLBM 

scheme. The uniform flow condition is specified at the inlet and far field 

boundaries and outflow boundary condition is specified at the exit of the 

domain.  

A non-uniform mesh system is followed where finer mesh is specified near the 

square cylinder and coarser mesh otherwise in the domain. A Lagrangian 

interpolation based LBM (Wu and Shu (2009)) is utilised to solve the flow 

field evolution in the non-uniform mesh.  

We have also performed grid independence study as shown in Table 4.4. From 

the observations in the Table 4.4, a total mesh size of 820×560 with fine mesh 

200×200 near the square cylinder is followed for the present simulation study. 

Here, the square cylinder surface is discretised with 128 Lagrangian points.             

Table 4.4 Grid independence test of flow past a square cylinder at Re = 20. 

Mesh size Cd  

% Error = 
Newgrid Oldgrid

d d

Oldgrid

d

C C
x100

C


 

574×392 2.395 -- 

697×476 2.391 0.16 

820×560 2.388 0.12 

1025×700 2.386 0.10 
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The streamline and isotherm contours are plotted in Fig.4.6. At low Re, the 

flow separates from the upstream corners of the square cylinder and forms a 

steady recirculation zone behind the trailing edge. The length of the 

recirculation zone found increasing with the increase in Re. The observed 

contours from our proposed scheme are found to be in excellent agreement 

with previous published results by Chatterjee and Mondal (2011) and Sharma 

and Eswaran (2004). We have also compared the drag coefficients on the 

square cylinder using the Cd definition as in Eq.(2.44). The results are plotted 

in Fig.4.7 for different Re, which are in good match with Chatterjee and 

Mondal (2011).  

  

(a) Re=10 

  

         (b) Re=20   (Continued.......) 
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(c) Re=40 

Fig.4.6. Isotherms (left) and Streamlines (right) around the square cylinder for 

different Re.  

 

 

Fig.4.7. Variation of drag coefficients with Re.  
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4.3 Concluding remarks  

In this chapter, we have discussed a novel flexible forcing hybrid IB – thermal 

LBM scheme to simulate 2D thermal fluid flow problems with an immersed 

solid boundary. Following the implicit type forcing term calculation, unknown 

single Lagrangian velocity/temperature corrections are introduced for suitable 

satisfaction of the no-slip velocity boundary condition and no-jump 

temperature boundary condition within a convergence limit. Use of flexible 

forcing principle not only avoids the complex mathematics involved in matrix 

inversion but also satisfy the boundary condition consistently at every time 

step with same order of accuracy. Also the algorithm suggested here is simple 

for new computational code development.   

Validation of the developed solver is done by simulating a set of two 

dimensional flow problems: natural convection past circular cylinder and 

forced convection over a square cylinder. The results are found to be in 

excellent agreement with previous published articles.  
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5 Chapter 5  

Application of 2D Flexible Forcing 

IB–TLBM for Natural Convection 

in Complex Cavities
4
 

In this chapter, the developed 2D flexible forcing IB – TLBM scheme is 

applied for the natural convection process in complex cavity situations. 

Natural convection plays an important role in diverse engineering applications 

starting from, building insulation, electronic cooling, solar panel heating, 

furnace design to nuclear reactor where the convection process can be broadly 

categorised into three groups: the convection processes from (i) a heat source 

exposed to infinitely large cold surroundings, (ii) differentially heated walls of 

an enclosed cavity and (iii) a heat source in an enclosure. In the present study, 

                                                           
4
 Part of this work has been published as: 

Dash SM, Lee TS and Huang H. (2013). "Natural Convection from an Eccentric Square Cylinder 
Using a Novel Flexible Forcing IB-LBM Method." Numerical Heat Transfer, Part A: 
Applications 65(6): 531-555 
Dash SM and Lee TS (2014). "Natural Convection from Inclined Square Cylinder Using Novel 
Flexible Forcing IB-LBM Approach." Engineering Applications of Computational Fluid 
Mechanics 8(1): 91-103 
Dash SM, Lee TS and Huang H. (2013). "A Novel Flexible Forcing Hybrid Ib-Thermal Lb Model 
for Natural Convection from a Circular Cylinder." International Journal of Dynamics of Fluids 
9(1): 1-15 

 



Chapter 5 Application of 2D Flexible Forcing IB – TLBM for Natural 

Convection in Complex Cavities  

 

 

122 
 

we have focused on the natural convection in the complex cavities that 

consists of an enclosure and an eccentric/inclined square heat source. This 

convective heat transfer process is analogous to many practical situations such 

as, electronic chips in CPU or TV cabinet, microelectronic fabrication. 

Existing literature suggests (ref. Chapter 1) that most of the previous studies 

on the natural convection in an enclosure are limited to circular or elliptical 

shaped inner heat source whereas the natural convection process from an 

eccentric/inclined square shaped heat source in an enclosure is not yet 

addressed. The objective of the present study is to determine the flow pattern 

and heat transfer rate in the annulus of the enclosure, as functions of Ra, 

eccentricity and inclination of the inner square cylinder (heat source). That 

may find useful in the industrial applications and future studies.   

5.1 Problem definition  

The schematic diagrams of the computational domain are shown in Fig.5.1. 

An outer square enclosure with side length L and an inner square cylinder with 

side length 0.4L together define the computational domain. Isothermal 

boundary conditions are adopted on the enclosure and inner cylinder walls 

where the maintained temperatures are, TC = 0 (cold) and TH = 1 (hot) 

respectively. We have considered two complex cavity scenarios with, 1) an 

inclined square heat source and 2) an eccentric square heat source as shown in 

Fig.5.1. In the first case the inclination of angle of the inner square is varied 

between 0 < θ < 45 deg. In the second case the inner square cylinder is 

displaced along the vertical centreline of the enclosure in a range, 0.25L   χ 
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  -0.25L at a spatial interval of 0.05L. All the fluid properties are assumed 

constant, except for the density associated with the buoyancy term that follows 

the Boussinesq approximation.  

To make the numerical results independent of grid resolution, uniform 

Cartesian mesh of sizes 101×101, 151×151, 201×201, and 251×251 were 

tested. It was found that the mesh size 201×201 is sufficient to produce the 

accurate result. This mesh size is followed for rest of the simulations in the 

present study. The definition of Ra and Pr are followed from Eq.(4.53). For 

both the cases simulations are performed for Ra in the range 10
3 

– 10
6
, and Pr 

= 0.71. The no-slip velocity and no-jump temperature boundary conditions are 

satisfied on the enclosure walls and on the inner square cylinder surface by 

bounce back scheme (Peng et al. (2003)) and proposed flexible forcing IB-

TLBM, respectively. The rate of heat transfer is calculated by measuring the 

local and average Nusselt number (NuL, NuA) where the definitions are given 

in Eq.(4.58). The simulations are performed till steady converged criteria 

(Eqs.(4.56) – (4.57)) are satisfied. Here, we have selected the steady state 

solver after noticing that the flow pattern and heat transfer eventually reaches 

to a time independent solution irrespective selected Ra (10
3 

– 10
6
). Sample 

transient studies of NuA variations for different Ra are shown in Fig.5.2 that 

further supports the steady state condition. 

The followed IB-Thermal LBM numerical scheme is well validated in the 

previous chapter; hence in the following section only the results will be 

discussed for the considered natural convection problem and some 
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comparisons are highlighted wherever similar observations are made in the 

literature.   

 

 

 

 

 

 

 

 

 

         Case 1             Case 2 

Fig.5.1. Schematic of the computational domain for the proposed natural 

convection studies. ‘S’ is the direction used while calculating Nusselt number. 

5.2 Results and Discussions 

The results presented in this section correspond to the observed flow regime 

and heat transfer as functions of inclination angle, eccentricity, Ra. Two cases 

as shown in Fig.5.1 are separately discussed in the followings.   

5.2.1 Case-1 Natural convection from an inclined 

square cylinder   

(0.5L,0.5L) 
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In this section, a complex cavity thermal flow problem is addressed, in which 

the orientation (inclination angle) of the hot square cylinder has significant 

effects. Alteration of the inclination angle (θ) not only changes the annular 

space, but also affects the flow and heat transfer rate in the enclosure. For 

better interpretation of the observed results, the inclination of the hot cylinder 

is studied at three different angle ranges: small (0 < θ < 20 deg), intermediate 

(20 < θ < 30 deg) and high (30 < θ < 45 deg). 

 

 

Fig.5.2. Temporal evolution of NuA on the enclosure for different Ra, when the 

inclined square cylinder is at θ=30deg. 

The natural convection process in the present problem involves the uplift of 

the lighter fluid along the hot surface of the inner square cylinder. The hot 
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fluid continues to move upward until it encounters the cold enclosure walls. In 

contact with the cold walls, the fluid gets cooler and denser and starts to 

descend. The denser fluid when reaches the bottom of the enclosure, it may 

have lost all its kinetic energy, and forms a stagnant stratified zone. This cycle 

of natural convection is influenced by the square cylinder inclination angle 

and Ra. 

5.2.1.1 Streamlines and Isotherms    

Ra = 10
3
 

At Ra = 10
3
,
 
the conductive mode of heat transfer is pronounced in the 

annulus, with smooth and regular isotherm distributions. The isotherm pattern 

is found to be similar for all the inclination angles, as shown in Fig.5.3(a) – 

5.7(a), while changes in the fluid flow pattern is observed (Fig.5.3(e) – 5.7(e)). 

At small inclination angles, when θ = 0 deg, two counter rotating primary 

vortices are noticed, with their vortex eyes at the mid-plane of the enclosure, 

as shown in Fig.5.3(e). When θ is increased further, asymmetry in the 

orientation of the cylinder initiates the formation of secondary vortices and 

modifies the circulation pattern from single vortex to double vortex mode 

(Fig.5.4(e)). For intermediate and high inclination angles, the double vortex 

mode prevails and the size of the secondary vortex increases. This growth of 

the secondary vortex is because of spatial alterations of the annular space in 

the enclosure. At θ = 45 deg, the square cylinder attains another symmetric 

orientation, and therefore both the primary and secondary vortex are of equal 

strength and size (Fig.5.7(e)).     
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Ra = 10
4
 

As Ra increases to 10
4
, the convective heat transfer mode appears. The 

isotherms and streamlines at small inclination angles are similar to Ra = 10
3
, 

but with careful observation it can be noticed that, as shown in (Fig.5.3(f)), the 

primary vortex eyes have moved above the mid-plane of the enclosure. The 

convective flow at the upper region produces this shift. Distorted isotherms are 

also visible at intermediate and high inclination angles.  

Ra = 10
5
 

A further increase in Ra to 10
5
 augments the convective heat transfer. At Ra = 

10
5
, isotherms are closer near the inner cylinder walls and thermal plumes are 

developed. The closer isotherms indicate the presence of a thermal boundary 

layer that gets separated from the upper corners of the inner square cylinder. 

This boundary layer separation forms a thermal plume. At small inclinations, 

three distinct plumes are noticed. When θ = 0 deg, two symmetrical upwelling 

plumes rise from the upper corners of the inner cylinder. A third downwelling 

plume appears with thermal inversion. These multiple thermal plumes change 

the flow field by forming additional tertiary vortices on the upper surface of 

the inner cylinder, as shown in Fig.5.3(g). A similar phenomenon was also 

noticed by Asan (2000). With the increase in inclination angle and change in 

the annular space, the shapes and sizes of the two tertiary vortices differs from 

each other (Fig.5.4(g)). When θ is further increased to the intermediate range, 

geometrical asymmetry shifts the thermal boundary layer separation points. 

The shift of the separation points can be qualitatively seen, and compared, in 
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Fig.5.4(c) – 5.5(c). Thus the combined effects of the shift of the separation 

points and the change in annular space may lead to different isotherm 

distribution, which further avoids the formation of the multiple plumes and 

tertiary vortices. When θ is changed to a high inclination range, only one 

thermal plume is formed (Fig.5.6(g) – 5.7(g)) without any tertiary vortices. 

Also we have observed distant isotherm contours near the bottom of the 

enclosure for all θ, which implies presence of a colder fluid regime.     

Ra = 10
6
 

The heat transfer is primarily governed by the convective mode at Ra = 10
6
. 

The thermal boundary layer separates from the upper corners of the inner 

cylinder, which results in strong thermal plumes. For θ in the range of small 

and intermediate angles, upwelling thermal plumes strongly impinge on the 

cold top wall of the enclosure, forming a thinner thermal boundary layer near 

the impinged region. The subsequent thermal inversion forms a downwelling 

plume, which leads to formation of the tertiary vortices as shown in 

Fig.(5.3(h) – 5.4(h)). The strength of these tertiary vortices is comparatively 

(compared with circulation contour levels) higher than Ra = 10
5
. At the 

intermediate inclination angle apart from the tertiary vortices, tiny secondary 

vortices are formed. A further increase in θ to high inclination range shifts the 

thermal boundary layer separation point, and single upwelling thermal plume 

is observed. Because of higher convection current at the upper portion of the 

enclosure, the isotherms are highly distorted, while a stagnant stratified fluid 

zone is noticed at the bottom portion of the enclosure for all inclination angles.   
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5.2.1.2 Local Nusselt number (NuL)    

Small Inclination Angle (0 – 20 deg) 

NuL distributions along the enclosure walls are computed using Eq.(4.58). The 

plot of the NuL distribution as a function of Ra is shown in Fig.5.8(a) – (b), for 

θ = 0 and 10 deg. At low Rayleigh numbers (10
3
 – 10

4
), the heat transfer is 

governed by conduction. Smooth and regular distributions of isotherms in the 

conduction mode produce systematic NuL distribution along the enclosure 

walls. With reference to Fig.5.8(a), when moved from corner point 0 in the 

direction of the arrow head (as in Fig.5.1), NuL increases to a local maximum 

near the midpoint of the wall 01, and then decreases to a local minimum at 

corner 1. Similar NuL distribution may be observed on the other walls of the 

enclosure. As asymmetry increases with θ, secondary vortices are initiated. 

This shifts the local maxima from the midpoints, as shown in Fig.5.8(b).  

When Ra is increased to a higher range (10
5 

– 10
6
), enhanced convection rate 

and the presence of tertiary vortices alters the NuL distribution. Local maxima 

are moved nearer to corners 0 and 3 for the walls 01 and 23. Again, formation 

of upwelling and downwelling plumes leads to double peak NuL distribution 

on the wall 34. With an increase in θ, the shape and strength of the plumes are 

changed, which in turn changes the peak values, as shown in Fig.5.8(b). Due 

to presence of flow stratification and stagnation, NuL variation on the bottom 

edge 12 is negligible.         

 



Chapter 5 Application of 2D Flexible Forcing IB – TLBM for Natural 

Convection in Complex Cavities  

 

 

130 
 

Intermediate Inclination Angle (20 – 30 deg) 

The distribution of NuL is similar to the small inclination range, with the 

presence of local maxima and minima at low Ra (10
3 

– 10
4
). But the position 

of the local maxima is shifted from the mid-point of the wall with increased 

geometrical asymmetry, as shown in Fig.5.8(c). When Ra = 10
5
, the local 

maxima of NuL is increased with a higher convection rate. At this Ra, NuL 

distribution on the wall 34 is different from the small angle case, where double 

peaks are absent. With further increase in Ra to 10
6
, distinct upwelling and 

downwelling plumes are formed, which reverts the double peak type NuL 

distribution on the top wall 34. On the side walls 01 and 23, NuL varies with 

formation of local maxima and minima. Again, flow stagnation at the lower 

portion of the enclosure brings the heat transfer rate close to zero.  

High Inclination Angle (30 – 45 deg) 

NuL distributions on the enclosure walls are plotted in Fig.5.8(d) – (e) for θ = 

30 and 45 deg. At lower Ra (10
3 

– 10
4
), NuL variation is very similar to the 

previous two ranges. With an increase in Ra to 10
5
 or 10

6
, the local maxima 

value is increased and the highest peak is observed on the top wall 34. As 

shown in Fig.5.6(c) – (d) and Fig.5.7(c) – (d), isotherms contain only one 

upwelling plume, and therefore the NuL variation on the top wall contains a 

single peak. When the inclination angle is increased to 45 deg, the variation of 

NuL on the top wall 34 is symmetrical with the local maxima exactly at the 

midpoint of the wall. With the flow stratification, the NuL on the bottom wall 

is found close to zero.    
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5.2.1.3 Average Nusselt number (NuA)    

In Fig.5.8.(f), the NuA on the enclosure walls is plotted as functions of Ra and 

θ. It is found that with an increase in Ra, the convective heat transfer rate 

increases, which in turn increases the NuA. As can be seen in Fig.5.8(a) – (e), 

the NuL distribution varies with different θ, but the overall variation of the NuA 

is negligible at any particular Ra. Again, from Table 5.1, it can be concluded 

that the inclination angle has the least effect on the NuA variation. 

 

 
               (a)                        (b)                     (c)                  (d)  

 

               (e)                        (f)                     (g)                  (h) 

Fig.5.3. Isotherms (a-d) and Streamlines (e-h) for square cylinder at 0 deg 

inclination with increase in Ra value as 10
3
, 10

4
, 10

5
 and 10

6
 (from left to 

right). (Dashed line represents opposite direction of circulation). 
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               (a)                        (b)                          (c)                          (d)

 

               (e)                        (f)                     (g)                  (h) 

Fig.5.4. Isotherms (a-d) and Streamlines (e-h) for square cylinder at 10 deg 

inclination with increase in Ra value as 10
3
, 10

4
, 10

5
 and 10

6
 (from left to 

right). (Dashed line represents opposite direction of circulation). 

 

 
 (a)                        (b)                     (c)                  (d)

 

                   (e)                        (f)                  (g)                (h) 

  (Continued....) 
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Fig.5.5. Isotherms (a-d) and Streamlines (e-h) for square cylinder at 20 deg 

inclination with increase in Ra value as 10
3
, 10

4
, 10

5
 and 10

6
 (from left to 

right). (Dashed line represents opposite direction of circulation). 

 

 
            (a)                        (b)                          (c)                     (d) 

 

                   (e)                        (f)                  (g)                (h) 

Fig.5.6. Isotherms (a-d) and Streamlines (e-h) for square cylinder at 30 deg 

inclination with increase in Ra value as 10
3
, 10

4
, 10

5
 and 10

6
 (from left to 

right). (Dashed line represents opposite direction of circulation). 

 

 
            (a)                        (b)                          (c)                     (d) 

  (Continued....) 
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                   (e)                        (f)                  (g)                (h) 

Fig.5.7. Isotherms (a-d) and Streamlines (e-h) for square cylinder at 45 deg 

inclination with increase in Ra value as 10
3
, 10

4
, 10

5
 and 10

6
 (from left to 

right). (Dashed line represents opposite direction of circulation). 

 

      (a)             (b) 

 

        (c)             (d) 

     (Continued.....) 
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       (e)                      (f) 

Fig.5.8. NuL and NuA distribution along the walls of the enclosure, at different 

Ra and inclination angles (a) θ = 0 deg, (b) θ = 10 deg, (c) θ = 20 deg, (d) θ = 

30 deg, (e) θ = 45 deg, (f) NuA vs Ra, where S is the direction used for 

calculation (ref. Fig.5.1). 

 

Table 5.1 NuA on the enclosure surface as functions of Ra and θ. 

 10
3
 10

4
 10

5
 10

6
 

0 deg 1.860 1.910 2.715 4.281 

10 deg 1.885 1.925 2.648 4.415 

20 deg 1.891 1.935 2.515 4.352 

30 deg 1.901 1.953 2.618 4.072 

45 deg 1.903 1.959 2.679 4.027 

 

 

Ra 
θ 
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5.2.2 Case-2 Natural convection from an eccentric 

square cylinder   

In this section, a complex cavity thermal flow problem is addressed, in which 

the vertical eccentricity (χ) of the hot square cylinder has significant effects. 

Alteration of the eccentricity not only changes the annular space, but also 

affects the flow and heat transfer rate in the enclosure.  

5.2.2.1 Streamlines and Isotherms when χ = 0   

In the following, the natural convection process is discussed when the inner 

cylinder is at centre of the enclosure (χ = 0).     

At Ra = 10
3
, conduction is the dominant mode of heat transfer where 

isotherms and streamlines are symmetrically distributed as shown in 

Fig.5.9(a),(e). Two counter rotating primary vortices (or primary cells) are 

found in the flow field. Increase of Ra to 10
4
, the isotherms on the cylinder 

surface get closer with inception of the thermal boundary layer.  

At Ra = 10
5
, the convective heat transfer becomes significant, that forms 

distinct thermal plumes. The two upwelling plumes that are developed from 

the upper corners of the hot cylinder impinge on the enclosure top wall. 

Subsequently, thermal inversion forms a down welling plume as shown in 

Fig.5.9(c). These thermal plumes alter the flow pattern by forming the 

additional cells (tertiary cells) in the annulus (Here, it is advised to take a note 

on the nomenclature, that we have defined tertiary cells first instead of 
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secondary cells). Near the bottom of the enclosure isotherms are found distant 

which further suggests a stratified flow regime.  

 

  (a)          (b)     (c)   (d)  

 

  (e)          (f)              (g)             (h)  

Fig.5.9. Isotherms (a-d) and streamlines (e-h) for square cylinder at χ=0 with 

increasing Ra value as 10
3
, 10

4
, 10

5
 and 10

6
 (Contour levels of 1-9 and 1-14 

are shown for isotherms and streamlines respectively). 

At Ra = 10
6
, the heat transfer is primarily governed by convection mode. 

Distorted mushroom shaped isotherms are observed in the annulus as shown in 

Fig.5.9(d). Similar to Ra = 10
5
, two upwelling and one down welling thermal 

plumes along with tertiary cells are formed in the flow field.  

5.2.2.2 Streamlines and Isotherms when χ  ≠  0 

In the following, the flow structure and heat transfer in the enclosure are 

discussed for the eccentric (χ ≠ 0) inner cylinder as a function of Ra. 
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 Ra = 10
3
 

In Fig.5.10(a) – (j), the distribution of streamlines and isotherms are showed at 

different χs. When the inner cylinder is moved in downward direction at χ = -

0.05, the flow field is found uni-cellular in presence of the primary cells. 

Further increase of the eccentricity initiates the flow bifurcation, and the flow 

field changes to bi-cellular with formation of the secondary cells. When χ = -

0.2 or -0.25, the flow field turns to uni-cellular, while the secondary cells 

merge with the primary ones. 

When the inner cylinder is moved in upward direction at χ = 0.05, the flow 

field is found uni-cellular type. The flow field is altered to bi-cellular at higher 

χs. Increased gap between the inner cylinder and bottom wall of the enclosure 

allows merging of the primary and secondary cells, which reverts the flow 

field to unicellular type at χ = 0.25.  

As conduction is the dominant mode of heat transfer at this Ra, the isotherms 

are primarily regular shaped and symmetrically distributed about the vertical 

centreline of the enclosure. The isotherm distribution changes with the 

eccentricity. Denser isotherms are found in the region where the proximity 

between the inner cylinder and enclosure wall (either top or bottom wall) is 

small, while distant isotherms are observed on the opposite side of the inner 

cylinder.  

Ra = 10
4
 

In Fig.5.11(a) – (j), the distribution of streamlines and isotherms are showed at 

different χs. With the increase in Ra to 10
4
, the convective mode of heat 
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transfer is initiated. When the inner cylinder is moved downward, the flow 

field remains unicellular at all χs. When the inner cylinder is moved upward, 

the flow field is unicellular at χ = 0.05.  Further increase in the eccentricity 

alters the flow field to bi-cellular type with formation of the secondary cells.  

The isotherms are found similar to that of Ra = 10
3
, except for the case of χ = -

0.20 or -0.25, where upwelling thermal plumes are observed.   

Ra = 10
5
  

In Fig.5.12(a) – (j), the distribution of streamlines and isotherms are showed at 

different χs. At this Ra, the convection heat transfer is augmented and multiple 

thermal plumes are developed in the annulus. For downward movement of the 

inner cylinder till χ = -0.15, three distinct plumes (two upwelling and one 

down welling) are formed. The flow field also contains tertiary cells. When 

the inner cylinder is further displaced down, with the increased spatial gap and 

dominant convective flow in the upper region of the enclosure, the direction 

and the number of thermal plumes are altered. Instead of three plumes only a 

single upwelling plume is observed as shown in Fig.5.12(i) – (j), which also 

changed the flow field to uni-cellular type. When the inner cylinder is moved 

upward, tertiary cells are formed and the size of the cells are decreased till the 

χ = 0.15. With further increase in the eccentricity, conduction becomes locally 

dominant, that makes isotherms regularized/straight and avoids tertiary cells 

formation in the annulus as shown in Fig.5.12(d) – (e).     
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 Ra = 10
6 

In Fig.5.13(a) – (j), the distribution of streamlines and isotherms are showed at 

different χs. As the convection is primary mode of heat transfer at this Ra, 

higher thermal gradient forms distorted mushroom shaped isotherms. The 

thermal boundary layer on the inner cylinder surface becomes thinner. When 

the inner cylinder is moved downward, two upwelling thermal plumes are 

raised from the upper corners of the cylinder, which forms a third down 

welling plume with a subsequent thermal inversion. The isotherms are 

strongly distorted in presence of mushroom shaped contours. When the 

eccentricity is further increased, two small vortices are noticed near the upper 

corners of the enclosure. These vortices are formed because the thermal 

plumes impinge on the cold side walls, that subsequently leads to the 

boundary layer separation and give rises to the recirculation regime. Also the 

sizes of tertiary vortices grow with the increase in eccentricity.  
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  (a) χ = 0.05            (f) χ = -0.05  

               
  (b) χ = 0.10                              (g) χ = -0.10  

               
  (c) χ = 0.15                              (h) χ = -0.15 

                  

  (d) χ = 0.20                              (i) χ = -0.20 

                 

  (d) χ = 0.25                              (i) χ = -0.25 

 

Fig.5.10. Isotherm and streamline plots at different  displacement (χ) of inner 

cylinder for Ra=10
3
 (Contour levels of 1-10 and 1-12 are shown for isotherms 

and streamlines respectively). 

Secondary cell 

Primary cell 
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  (a) χ = 0.05          (f) χ = -0.05  

                 

  (b) χ = 0.10          (g) χ = -0.10 

                

  (c) χ = 0.15    (h) χ = -0.15  

                 

  (d) χ = 0.20          (i) χ = -0.20  

                

  (e) χ = 0.25    (j) χ = -0.25  

 

Fig.5.11. Isotherm and streamline plots at different  displacement (χ) of inner 

cylinder for Ra=10
4
 (Contour levels of 1-10 and 1-12 are shown for isotherms 

and streamlines respectively). 
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  (a) χ = 0.05          (f) χ = -0.05 

                

  (b) χ = 0.10         (g) χ = -0.10  

                 

  (c) χ = 0.15         (h) χ = -0.15 

                 

  (d) χ = 0.20          (i) χ = -0.20 

                 

  (e) χ = 0.25         (j) χ = -0.25 

 

Fig.5.12. Isotherm and streamline plots at different  displacement (χ) of inner 

cylinder for Ra=10
5
 (Contour levels of 1-10 and 1-12 are shown for isotherms 

and streamlines respectively). 

Tertiary cell 
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  (a) χ = 0.05    (f) χ = -0.05  

                 

  (b) χ = 0.10        (g) χ = -0.10 

                 

  (c) χ = 0.15        (h) χ = -0.15 

                 

  (d) χ = 0.20         (i) χ = -0.20 

                 

  (e) χ = 0.25         (j) χ = -0.25 

 

Fig.5.13. Isotherm and streamline plots at different  displacement (χ) of inner 

cylinder for Ra=10
6
 (Contour levels of 1-10 and 1-12 are shown for isotherms 

and streamlines respectively). 

Rayleigh Bernard cell  

Quaternary cell 
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When the inner cylinder is moved upward, the produced flow pattern is similar 

to the downward movement case. The flow field contains tertiary cells and 

thermal plumes. With further increase in the eccentricity at χ = 0.15, multiple 

thermal plumes are formed that leads to formation of Rayleigh Bernard (RB) 

cells. Also two additional circulations (Quaternary cells) are formed near the 

bottom of the enclosure as shown in Fig.5.13(c). The formation of the 

quaternary cells is associated with loss of the kinetic energy of the moving 

fluid. As the uprising hot fluid strikes the cold walls of the enclosure, it loses 

heat and becomes denser and colder, and gradually reaches to the bottom wall 

of the enclosure. By this time the fluid has almost lost its kinetic energy. 

Hence, the flow gets separated near the vertical mid-plane of the enclosure 

with formation of quaternary cells. When χ is increased to 0.2, the size of RB 

cells are reduced due to local dominance of conduction and lesser annular gap. 

When χ = 0.25, RB cells disappear and quaternary cells grow in size. The 

isotherms as shown in Fig.5.13(e), are mostly concentrated in the upper half of 

the enclosure, and are coarser and distant in the bottom half (implying the 

stratified fluid zone).   

5.2.2.3 Local Nusselt number (NuL)    

Ra = 10
3
 

At Ra = 10
3
, conduction is the mode of heat transfer. Therefore, isotherms are 

symmetrically distributed at χ = 0.0. This further produces similar NuL profile 

on all the walls of the enclosure, as shown in Fig.5.14(a). The vertical 

movements of the inner cylinder change the distribution of NuL. If the inner 
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cylinder approaches bottom (12) or top (34) wall of the enclosure, 

corresponding increase in the thermal gradient near the wall enhances the heat 

transfer and NuL. Shift in NuL on the enclosure side walls (01 or 23) are also 

noticed with the change in eccentricity.       

Ra = 10
4
 

At Ra = 10
4
, the heat transfer mode is still consider to be conduction 

dominance with regular isotherm distribution, as shown in Fig.5.11(a) – (j). 

Therefore, NuL variation is qualitatively found similar to Ra = 10
3
, but 

comparatively higher values. Again initiation of the convection, makes the 

distribution of NuL asymmetric on the enclosure wall, unlike at Ra = 10
3
. The 

change in the eccentricity of the inner cylinder also shifts NuL distribution.  

Ra=10
5
 

At Ra = 10
5
, convective heat transfer is stronger than Ra = 10

3
 and 10

4
. Hence, 

increase in NuL is observed. As the convective flow is primarily occupied in 

the upper region of the enclosure, therefore irrespective of the inner cylinder 

movements, local maxima always stays near the upper corners for the side 

walls (01 and 23).  

When the inner cylinder is moved downward, NuL distribution on the bottom 

wall (12) of the enclosure increases and attains maximum at χ = -0.25. NuL is 

varied with multiple peaks on the upper wall (34) till χ = -0.15, beyond which 

single peak NuL variation is observed. The change of the flow regime with 

eccentricity may have produced this change in NuL distribution.    
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When the inner cylinder is moved upward, NuL distribution on the upper wall 

(34) of the enclosure increases and attains maximum at χ = 0.25. Also NuL 

distribution has shown multiple peaks, when χ < 0.15. Further increase in χ, 

forms concentrated isotherms with the local dominance of conduction. This 

avoids the formation of multiple peaks in NuL distribution on the wall 34, and 

enhances the local heat transfer rate as shown in Fig.5.14(c).  

Ra = 10
6 

When the inner cylinder is moved downward, NuL distribution on the bottom 

wall (12) is increased. On the side walls (01 and 23), NuL distribution contains 

two peaks with different maximum. This can be correlated to the formation of 

tiny vortices near the upper corners of the enclosure as shown in Fig.5.13(g) – 

(j). In presence of both upwelling and down welling plumes, multiple peaks 

type NuL distribution is found on the upper wall (34).  

When the inner cylinder is moved upward, NuL distribution is altered with the 

eccentricity.  At χ < 0.15, NuL is distributed with two peaks and a valley on the 

upper wall (34). When χ is increased further, additional peaks and valleys are 

found in NuL distribution with the formation of RB cells. At χ = 0.25, due to 

local dominance of conduction the distribution of NuL on the wall 34 changes 

to single peak type.  
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                (a)           (b) 

 

      (c)           (d) 

Fig.5.14. NuL distribution on the enclosure walls at different location of inner 

cylinder and for Ra equals to (a) 10
3
 (b) 10

4
 (c) 10

5
 and (d) 10

6
. The direction 

used for ‘S’ can be referred from Fig.5.1. 

5.2.2.4 Surface average Nusselt number (NuA)    

In Fig.5.15(a), NuA on the top wall of the enclosure is plotted with χ for Ra in 

the range 10
3 

– 10
6
. At Ra = 10

3
, NuAT increases with the increase in χ. The 

rate of increase of NuAT is slow at χ < 0, but when χ > 0, rapid increment is 

noticed. This may be linked with the proximity difference between enclosure 

top wall and the inner cylinder. The variation of NuAT at Ra = 10
4
, is similar to 
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the case of Ra = 10
3
. At Ra = 10

5
, the trend of NuAT is different because of the 

increased convection rate. When χ < -0.15, NuAT shows increasing trend but a 

sudden fall is noticed at χ = -0.15. The change in the flow pattern as shown in 

Fig.5.12(h) – (i), may be responsible for this fall. With further increase in χ, 

NuAT increases and reaches to maximum at χ = 0.25. The variation of NuAT at 

Ra = 10
6
, also shows continuous increase. When χ = 0.1, the formation of RB 

cells reduces the heat transfer and hence, NuAT shows a decreasing slope for 

0.1 < χ < 0.2. Again with the disappearance of RB cells, increase in NuAT is 

observed for χ > 0.2.   

In Fig.5.15(b), NuA variation on the bottom wall of the enclosure is shown. 

Almost similar trend of variation is observed for all Ra. Maximum NuAB is 

found while the inner cylinder is at χ = -0.25. When the inner cylinder moves 

upward, the proximity between the inner cylinder and bottom wall of the 

enclosure increases, which reduces the thermal gradient near the bottom wall. 

Thus, decrease in NuAB is noticed.   

In Fig.5.15(c), NuA on the side wall of the enclosure is shown. The variation of 

NuAS is comparatively less than other walls of the enclosure. At Ra = 10
3
 and 

10
4
, NuAS has shown negligible variation with χ. At higher Ra or higher 

convection rate, NuAS values are enhanced.   

In Fig.5.15(d), NuAen is plotted as a function of χ at different Ra. At Ra = 10
3
 

or 10
4
, NuAen variation shows a parabolic profile with maximum at the extreme 

eccentricity of the inner cylinder, i.e. χ = -0.25 and 0.25, and minimum when 

the cylinder is at the centre, i.e. χ = 0.0. At Ra = 10
5
, the symmetric 



Chapter 5 Application of 2D Flexible Forcing IB – TLBM for Natural 

Convection in Complex Cavities  

 

 

150 
 

distribution of NuAen is broken. Minimum location of NuAen is shifted to χ = 

0.1, in presence of the secondary cells. When Ra increases to 10
6
, NuAen starts 

from a maximum and shows a deceasing trend. At χ = 0.2, concentrated 

isotherms and without RB cells, enhancement in the heat transfer is observed 

that rises NuAen distribution.         

5.3 Concluding remarks  

In this chapter, we have utilized the developed 2D flexible forcing hybrid IB – 

thermal LBM scheme to study the complex cavity natural convection flow 

with 1) an inclined and 2) a vertical eccentric square heat source (cylinder). 

Although these flow conditions have many practical implications but they are 

not thoroughly analysed in the literature. Here, we have made an attempt to 

study the flow regime and heat transfer pattern by looking into the detail 

distributions of streamlines and isotherms contours at different Ra, in the 

range 10
3 

– 10
6
. Further investigations on local Nusselt number and surface 

average Nusselt number on different walls of the enclosure are made by 

varying Ra, eccentricity and inclination angle. 
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        (a)             (b)

 

       (c)            (d) 

Fig.5.15. Surface average Nusselt Number on (a) top wall, (b) bottom wall, (c) 

side wall and (d) combined all walls of the enclosure vs χ at different Ra. 
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6 Chapter 6  

Extension of Flexible Forcing IB–

LBM for 3D Flows around 

Stationary and Moving Boundary 

Problems
5
 

In the previous chapters 2, 3, 4 and 5 a flexible forcing IB – LBM scheme is 

introduced that have been successfully implemented for 2D flow scenarios 

with or without thermal effects. In this chapter we have extended the proposed 

numerical model to simulate 3D flows that contain stationary as well as 

moving immersed solid boundaries.  The proposed new version of IB – LBM 

model is validated with three-dimension flow past stationary and moving 

spheres, and the results are found in excellent agreement with the data 

obtained from previous literatures. The detail mathematical formulations are 

                                                           
5
 Part of this work has been published as: 

Dash SM, Lee TS, Lim TT and Huang H. (2014). "A flexible forcing threee dimensional IB-LBM 
scheme for flow past stationary and moving sphere." Computers and Fluids 95(0): 159-170 
Dash SM, Lim TT and Lee TS. (2014). "Two spheres sedimentation dynamics in a viscous liqud 
column." Physics of Fluids: (Under Review) 
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outlined in the followings. We have also validated the 3D numerical scheme 

by simulating many benchmark flow cases.    

6.1 Flexible forcing IB-LBM scheme 

In this section, we will briefly describe the extension of the flexible forcing IB 

– LBM scheme for 3D implementation. The governing equations of a three 

dimensional, incompressible, unsteady flow with an immersed boundary are 

(Wu and Shu (2010)), 

0,
t








u =                    (6.1) 

      ,
T

P
t
    

  


       


u uu u + u f               (6.2) 

      , , , ,B Bt s t δ s t ds


 f x x XF                 (6.3) 

 
       

,
, , , , .B

B B

s t
s t t t δ s t d

t 


  



X
u X u x x X x              (6.4) 

where the variables: , , ,P u   represent density, flow velocity, pressure, and 

kinematic viscosity of the fluid, respectively. x  and BX are Eulerian and 

Lagrangian mesh co-ordinates, f  and BF  are the force density acting on the 

fluid and immersed boundary, respectively.   ,Bδ s tx X
 
is Dirac delta 

function.  
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In the above, Eqs.(6.1) – (6.2) represent the traditional NS equations with the 

force density f . Eqs.(6.3) – (6.4) relate the immersed solid boundary ( ) and 

fluid domain ( ) by distributing the boundary force to nearby fluid points 

and computing the boundary velocity from the fluid velocity.     

From the multi-scale Chapman-Enskog expansion, the lattice Boltzmann 

equations (LBE) (Wu and Shu (2010)) with discrete body force term F , that 

recovers Eqs.(6.1) – (6.2) can be written as,  

        1
, , , , ,

eq
f δt t δt f t f t f t F δt    

     x x x xe       (6.5) 

2 4

1
1 ,

2 s s

F W
c c
 

  

  
       

 
   

u u
f

e e
e              (6.6) 

1
.

2
f δt 


  u fe                 (6.7) 

 ,f t x  and  ,
eq

f t x  are the density distribution functions and its 

corresponding equilibrium part along the discrete lattice directions  .   is a 

non-dimensional relaxation parameter in the BGK approximation. The discrete 

lattice velocities e  
are selected such that their directions match with a 

standard D3Q15, three dimensional lattice model (Wu and Shu (2010)). Here, 

D3Q15 model is chosen to achieve faster computation rate (Usman (2009)) 

compare to other three dimensional lattice models D3Q19 and D3Q27. 

Although D3Q15 model is least isotropic (Mei et al. (2000)) but for low Re 

flow the model is not prone to numerical instabilities, which have been 
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verified for stationary and moving boundary flow scenarios (Feng and 

Michaelides (2005); Wu and Shu (2010); Wu and Shu (2012)). 

 ,
eq

f t x  in Eq.(6.5) is obtained from Taylor series expansion of Maxwell 

Boltzmann distribution function where W is the weighting coefficient. 

 
   

22

2 4
, 1 ,

2

seq

s s

c
f t W

c c


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 
 
 
  

 
  

u uu
x

ee
            (6.8) 
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1,0,0 , 0, 1,0 , 0,0, 1 , 1 6,
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c








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
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



     

    

e            (6.9) 

2 9, 0,

1 9, 1 6,

1 72, 7 14.

W















  

 

            (6.10) 

The sound speed is defined as, / 3sc c , where / ,c x t  is the lattice 

speed. x  and t  are the mesh and time step size, respectively.  

In Eq.(6.7) the macroscopic velocity u  is derived from the density distribution 

and the force density. If we define an intermediate velocity * ,f 


 u e  

and a velocity correction  1 2 ,δ δtu = f
 
then Eq.(6.7) can be rewritten as, 

.* δ u u u                 (6.11) 
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In the IBM, Eulerian velocity correction δu  is usually distributed from 

Lagrangian boundary velocity correction BδU  as shown in Eq.(6.12) (Wu and 

Shu (2010)).   

     , , ,
B B B

δ t δ t δ ds


 u x U X x X             (6.12) 

where the immerse boundary is represented using a set of Lagrangian co-

ordinates  ,pB s tX . ps  1,2,3....p n  are the co-ordinates.  B
δ x X is 

smoothly approximated with continuous Kernel distribution  p
BD x X  

(Peskin (1977)) using 4 point discrete delta function. 

 

1
1 , 2,

4 2
2.

0,

r
cos r

r
r





   
      
   



 



            (6.13) 

  3

1
,

p p p
p B B B
B

x X y Y z Z
D δ δ δ

h h hh

     
     
     
     

  
 x X           (6.14) 

where h is the Eulerian mesh size. Using Eqs.(6.13) – (6.14), we can  simplify 

Eq.(6.12) to an algebraic equation (Eq.(6.15)). 

     , , ,p p p
pB B B

p
δ t δ t D s  u x U X x X            (6.15) 

where ps is area of the boundary element. In the present 3D simulations, the 

sphere surface is discretized with triangular boundary elements as shown in 

Fig.6.1. Once Eulerian velocity correction is obtained, the corrected Eulerian 

velocity can be computed using Eq.(6.11). 
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Now, the next step is to satisfy the no-slip boundary condition on the 

immersed sphere. From mathematics, the no-slip condition implies that the 

fluid velocity at the boundary point must be equal to the boundary velocity at 

the same position. Using the concept of interpolation, we can write the no-slip 

condition equation as, 

     
, ,

, , ,
pp p

B BB
i j k

t t D x y z    U X u x x X            (6.16) 

where Δx, Δy and Δz are Eulerian mesh sizes along Cartesian coordinate 

directions. Substituting Eqs.(6.11) and (6.15) in Eq.(6.16) gives rise to a 

complex equation (Eq.(6.17)),  

     

     
, ,

, ,

, ,

, ,

pp p
B BB

i j k

p p p p
pB B B B

pi j k

t t D x y z

δ t D s D x y z

    

       

*U X u x x X

U X x X x X
 

                        (6.17) 

which demands a matrix inversion (Wu and Shu (2010)) to obtain the 

boundary velocity correction 
p
BδU . In the case of moving boundary problem, 

repeating the matrix inversion consumes a significant computational time. 

Again, the proposed scheme (Wu and Shu (2010)) requires higher 

computational memory space in the case of a three dimensional problem, 

along with trouble of the sequential code generation for the coefficient of 

p
BδU .  
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Fig.6.1 Triangular surface elements used for discretising the sphere surface.  

To address the above issues, we have proposed a simple solution for two 

dimensional flow cases in Chapter 2. Here, the extension of the work is made 

to three dimensional problems. If we analyse the Eq.(6.16), the desired 

boundary velocity 
p
BU

 
in most of the cases is known to us (i.e. equals to zero 

for stationary sphere or calculated using Newton’s laws of motion for a 

moving sphere). Hence, the interpolated Eulerian velocity field (RHS of 

Eq.(6.16)) must match with 
p
BU

 
when the no-slip condition is satisfied. In 

case of IBM auto-satisfaction of the no-slip condition is impractical, because 

the immersed boundary is defined on a Lagrangian frame whereas the flow 

field is defined on an Eulerian frame, and the node points do not necessarily 

matches. This creates a difference between LHS and RHS of Eq.(6.16), and 

the amount of deviation (otherwise called as velocity correction) must be 

accounted to satisfy the exact no-slip condition.  
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Therefore, in our previously proposed two dimensional model (ref. Chapter 2), 

this velocity correction is accounted for in the Lagrangian frame and can also 

be applied in three dimensional case as shown in Eq.(6.18). 

       
, ,

, , , ,
mppd p p p

B B B BB
i j k

t t D x y z δ t     U X u x x X U X         (6.18) 

       
, ,

, , , ,
m pp p p pd

B B B B B
i j k

δ t t D x y z t    U X = u x x X U X         (6.19) 

where 
pd
B

U  is the desired boundary velocity and 
p
BδU

 
is the amount of 

boundary velocity correction. Following the above correction measures, one 

may not ensure the no-slip condition at all the boundary points in single turn 

as the boundary velocity correction is linked with the Eulerian velocity 

correction (shown in Eq.(6.15)). Hence, an additional sub-iteration update 

scheme is imposed to satisfy the no-slip condition within a convergence limit. 

This further ensures that when Eulerian velocities are interpolated back to the 

Lagrangian boundary nodes, they will satisfy the no-slip condition with an 

accuracy of the order 
p
BδU . The convergence criterion (CC) is set in 

Eq.(6.20), where m is the sub-iteration number until the CC is satisfied.  

  6, 10 .
m

p p
B B

δ t U X               (6.20) 

This formulation retains the basic idea of implicit velocity correction (Wu and 

Shu (2010)) and mathematically much simpler as it reduces the computational 

efforts and storage demands. It is worth mentioning that the CC is a case 

dependent term, which may be adjusted to a higher/lower order tolerance 
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depending on complexity of the problem with required accuracy of the final 

result and available computational resources. Compare to the multiple direct 

forcing schemes (Wang et al. (2008); Kang and Hassan (2011)) where fixed 

number of sub-iterations is adopted, our present proposed scheme is 

advantageous. As in case of unsteady and moving boundary problems, use of 

fixed forcing/sub-iteration scheme (Wang et al. (2008); Kang and Hassan 

(2011)) may not yield the correct no-slip condition at each time step. The force 

and torque calculations then become questionable. To overcome these defects, 

the proposed flexible sub-iteration scheme is a suitable alternative. 

Further, the proposed scheme is computationally efficient because the defined 

convergence criterion in Eq.(6.20) discards all the unnecessary sub-iterations 

in the single time-step marching once the no-slip condition is accurately 

satisfied. This saves significant computational time unlike the fixed forcing 

scheme (Wang et al. (2008); Kang and Hassan (2011)).  

Again, to minimise the number of sub-iteration in the proposed scheme, a 

successive relaxation parameter (SRP),   is prescribed to update the velocity 

correction. By suitably selecting the   between 0 – 1, the computational time 

can be significantly reduced.   

       
1

, 1 , , .
m m m

p p p p p p
B B B B B B

δ t δ t δ t 


  U X U X U X           (6.21) 

The effects of SRP and CC selection will be discussed in the following 

section. 
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After calculating the velocity corrections, the force density at the Lagrangian 

and Eulerian grid points is derived using Eq.(6.22).  

   
 

, 2 , / ,
m

p p p p
B B B B

m

t δ t δtX U XF
 

   
 

, 2 , / .
m

m

t δ t δt f x u x
             

(6.22) 

6.1.1 Kinematics of the moving Sphere 

Using Newton’s laws of motion, net force net
iF on the moving sphere can be 

calculated as the combined effects of the gravity, buoyancy, hydrodynamic 

and collision forces. 

 1 ,
f p pnet coll

pi i iB B
pp

M s




 
 
 
 

     XF g F F           (6.23) 

where iM  is the mass of the sphere, 
f

 and p  are densities of the fluid and 

solid sphere, respectively. To calculate the collision force 
coll

iF
 
between 

sphere-wall/sphere-sphere, a lubrication forcing mechanism is followed (Singh 

et al. (2000)). This force is repulsive in nature and acts only when the distance 

between the sphere and nearest wall or another sphere is less than  . In our 

present study, we set 2 x  .  

  

,

2

,Ri Rj ,

0
,

1
,

i j i j

coll
i

i j i j i j i j
p

d R R

R R d d R R



 










  



      X X

F

    

(6.24) 
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where iR  and jR  are the radius of the colliding spheres. In case of collision 

with a wall, this force calculation is done by assuming an imaginary sphere of 

same size on the other side of wall. ,i jd is the distance between the centre of  

i
th 

 and j
th

 spheres’ with their corresponding centre location at 
Ri

X  and 
Rj

X  

respectively. p  is a small positive stiffness parameter followed from Singh et 

al. (2000). 

Similarly, from the hydrodynamic force, the torque net
iT acting on the moving 

sphere can be computed as,  

   R x , ,p p pnet
pi B B B

p
t s    X X XT F            (6.25) 

where 
RX  is the centre of mass of the sphere. Using the concept of the 

conservation of translational  T tL
 
and angular momentum  A

tL we can 

write, 

   
,netiT

i

t M t

t t

 
 

 

L v
F              (6.26) 

     
,netA

i

t t t

t t

 
 

 

L I
T


                        (6.27) 

where  tv  and  t  are the linear and angular velocities of the moving 

sphere.  tI  is the inertia tensor at the current coordinate system. For a 

symmetrical object like sphere,  tI is independent of rotation and coordinate 

system (Glowinski et al. (2001)). Hence, we have used a constant moment of 
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inertia     2
0

2 5 i it M RI I =  for the moving sphere. To represent the 

displacement of any surface point  p
B tX  on the sphere at time t, Eq.(6.28) 

can be used, 

       R 0 ,p p
cB Bt t R t X X X                     (6.28) 

where  cR t
 
is a 33 rotational matrix that describes the rotation/orientation 

of the sphere about its centre of mass  R tX . The  R tX
 
and  cR t

 
in 

Eq.(6.28) are time updated using the following equations. 

 
 R ,

t
t

t






X
v                                    (6.29) 
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 

 

 




  




           (6.30) 

Now, the next step is to solve the Eqs.(6.26) – (6.30), to update the position 

and velocities of the moving sphere with time advancement. Crank – Nicolson 

– type method with implicit time discretisation is used for Eqs.(6.26) – (6.27) 

and (6.29) – (6.30). This can be written in matrix form as,   

 
1

1Y Y 1
,

2

n n
n n

t
 




 


             (6.31) 

where        RY , , ,
T

c T A
t R t t t 

  X L L and 

     , x , ,
Tnet net

c i it t R t  
  v F T . n is the time step. Following a 
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predictor-corrector (Patankar et al. (2000)) approach, Eq.(6.31) is iteratively 

solved.  

The other fluid variables: density, pressure and kinematic viscosity are 

calculated using Eq.(6.32). 

0
,

N
f





   2,

s
P c  

21
.

2 s
c δt 

 
 
 

                        (6.32) 

In summary, the solution procedure of the proposed numerical scheme is 

outlined below.    

1. Set the initial flow field and calculate  ,f t x  and  ,
eq

f t x . 

2. Perform streaming using Eq.(6.5) with initial setting , 0F δ u  and 

calculate intermediate velocity f 



*

u e .  

3. From the desired boundary velocity, calculate Lagrangian velocity 

correction  
m=0

, .
p p
B B

δ tU X  

4. Update Eulerian velocity u  as in Eq.(11) with updated δu and 

calculate the new  
m

,
p p
B B

δ tU X using both the Eqs.(6.19) and (6.21). 

Repeat this step with a sub-iteration loop until the CC in Eq.(6.21) is 

satisfied.  

5. Calculate the new f and  ,
eq

f t x
 
using Eqs.(6.22) and (6.8). Update 

the net force and torque acting on the moving sphere as shown in 
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Eqs.(6.23) and (6.25).  Then the new position and velocity of the 

sphere can be calculated using Eq.(6.31).  

6. Repeat the above steps (2) – (5) for time evolution.    

6.2 Numerical validations  

The numerical accuracy of the proposed flexible forcing IB – LBM scheme 

was evaluated by performing a set simulations on three dimensional stationary 

(laminar flow past sphere) and moving boundary (freely falling spheres) flow 

problems. In the followings, we compare the results obtained from the flexible 

forcing IB – LBM scheme with those reported in the literature. 

6.2.1 Flow past a stationary sphere 

This problem has been extensively studied by researchers (Gilmanov et al. 

(2003); Wu and Shu (2010)) to validate new three dimension algorithms. In 

our first validation test case, we considered the flow over a stationary sphere 

in the laminar flow regime (Re < 300). The Re is defined as,  

Re ,
U D


                                  (6.33) 

where U  is the free stream velocity, and D is the diameter of the sphere. The 

flow regime of this problem is Re dependent. The flow pattern is found steady 

axisymmetric when Re < 200, and becomes steady non-axisymmetric when 

210 < Re < 270.  For higher Re, the flow exhibits an unsteady behaviour.  
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In the present simulation, the computational domain is selected as 

25D×20D×20D, along the X, Y and Z coordinate axis, respectively. The 

sphere centre is located at (10D, 10D, 10D). Grid independence study is 

performed to ensure the results are independent of mesh resolutions as shown 

in Table 6.1. Based on the results in Table 6.1, we have adopted a non-uniform 

Cartesian mesh of size, 141×121×121, which is sufficient to ensure the mesh 

independent results. A Lagrangian interpolation based LBM (Wu and Shu 

(2010)) is utilised to solve the fluid flow evolution in the non-uniform 

Cartesian mesh.   

 Table 6.1 Grid independence test of flow past a stationary sphere at Re = 100. 

Mesh size Cd  

% Error = 
Newgrid Oldgrid

d d

Oldgrid

d

C C
x100

C


 

99×85×85 1.162 -- 

113×97×97 1.151 0.94 

141×121×121 1.147 0.34 

161×139×139 1.145 0.17 

 

To simulate the steady axisymmetric flow, Re is selected between 50 to 200. 

The fluid density ρ and the free stream velocity U  are used as, ρ = 1.0 and 

0.1U  . To change the Re, only the kinematic viscosity   is changed. The 

surface of the sphere is discretised with 915 triangular elements. Since the 

flow is axisymmetric, only the streamlines on XY symmetric plane is shown 

in Fig.6.2. A recirculation region is formed behind the sphere. The length of 
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the recirculation zone (Ls) is found to increase with Re and is compared in 

Fig.6.3. We also compare the drag coefficient (Cd) as shown in Table 6.2. The 

Cd is defined as, 

 
2

8
,D

d

F
C

U D 
                                     (6.34) 

,B
xDF f d



                                                (6.35) 

where B
xf

 
is the X component of the boundary force on the sphere (from 

Eq.(6.22)). The numerical results from the present scheme agree very well 

with the published data.  

 

   (a)     (b) 

Fig.6.2 Streamlines and velocity contours for the steady axis-symmetric flow 

past the sphere on XY plane at (a) Re = 50, (b) Re = 150. 
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Fig.6.3 Recirculation region (Ls) behind the sphere at different Re. 

In the previous section, we have mentioned that the number of sub-

iteration/forcing (NF) to achieve the no-slip boundary condition is CC 

dependent and the NF values can be reduced by suitably selecting SRP. In 

Table 6.3, effects of CC and SRP selection on the NF and Cd are shown at Re 

= 100. It can be observed that NF requirement increases with decreasing CC 

value. Again, minimum NF is observed when SRP value lies between 0.6 – 

0.8. So, it can be concluded that higher accuracy (i.e. lower CC and better Cd 

values) demands higher number of forcing (NF), and use of SRP can 

significantly reduce the overall computational time. In the rest of our 

simulations, CC is selected as 10
-6

 and SRP as 0.6. 
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  Table 6.2 Comparison of drag coefficient (Cd) at Re = 100, 200. 

Flow Case Co-efficient of Drag  Cd 

Gilmanov, 

Sotiropoulos 

et al. (2003) 

Wu and 

Shu (2010) 

 

Johnson 

and Patel 

(1999) 

Present 

Re = 100 1.153 1.128 1.16 1.147 

Re = 200 -- 0.8 0.85 0.82 

 

Table 6.3 Variation of number of forcing (NF) with CC and SRP at Re = 100. 

 10
-4

 10
-5

 10
-6

 

NF Cd NF Cd NF Cd 

0.2 25 1.152 29 1.149 34 1.146 

0.4 23 1.151 28 1.148 32 1.147 

0.6 16 1.152 21 1.148 26 1.147 

0.8 17 1.153 22 1.148 28 1.147 

1.0 21 1.154 25 1.149 31 1.147 

 

We have also simulated the steady non-axisymmetric flow case by increasing 

Re to 250. The streamlines plotted in Fig.6.4 that clearly indicates the loss of 

symmetry in the XZ plane and the flow is no longer axisymmetric. Similar 

results are also observed in the literature (Gilmanov et al. (2003); Wu and Shu 

(2010)) and they are found to be in good agreement.   

CC 

SRP 
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(a)        (b) 

Fig.6.4 Streamlines and velocity contours for the steady non axis-symmetric 

flow past the sphere at Re = 250 on (a) XZ and (b) XY plane. 

6.2.2 Single sphere sedimentation 

Next, we have considered the settling of a sphere under the effects of gravity 

in a fluid filled rectangular box. The schematic of the problem is shown in 

Fig.6.5. This problem was experimentally studied by Ten Cate et al. (2002) for 

different fluid density ρf  and viscosity μf as shown in Table 6.4. The falling 

sphere initially accelerates and later moves with a uniform/terminal velocity as 

the force (Weight, Drag and Buoyancy) balance condition is attained. The 

terminal Reynolds number (ReT) of the falling sphere was derived from its 

terminal velocity UT. 

 ,
pTf

T
f

U d
Re




                          (6.36) 

where dp = 15 mm is the diameter of the sphere and its density is ρb = 1120 

kg/m
3
.  
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Fig.6.5 Schematic diagram of the computational domain (100×160×100 mm
3
) 

followed for the single sphere sedimentation. 

In the present numerical simulation, we set the fluid and solid sphere 

parameters as those used by Ten Cate et al. (2002) in order to compare the 

accuracy/capabilities of the proposed flexible forcing scheme. 

Table 6.4 Fluid properties used in the experiments by Ten Cate et al. (2002), 

and parameters used in the present simulations. 

 ReT ρf (Kg/m
3
) μf (10

-3
 

Ns/m
2
) 

τ Δt (10
-4

 s) 

Case E1 11.6 962 113 0.8 8.51 

Case E2 32.2 960 58 0.65 8.28 

 

X 

Y 
Z 

g 

120 mm 
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Similar to the experimental set up, the size of the computational domain is 

chosen as 100×160×100 mm
3
. We have performed grid independence study to 

ensure that the results are independent of the mesh resolutions as shown in 

Table 6.5. A sufficiently resolved uniform mesh of size 101×161×101 is 

adopted for this study. The sphere was initially kept at rest at an initial height 

of 120 mm from the bottom of the box. The sphere starts falling under the 

effects of gravity, g = 9.8m
2
/s. The force and torque acting on the moving 

sphere is calculated after the no-slip boundary condition is accurately satisfied. 

Here, it is worth noting that the use of proposed flexible forcing IB – LBM 

scheme alters the number of forcing/sub-iteration at each time step such that 

the exact no-slip condition on the moving sphere is satisfied. Also, the no-slip 

boundary conditions prescribed on the walls of the rectangular box are 

attained using bounce back scheme (Suzuki and Inamuro (2013)).  

Table 6.5 Grid independence test of single sphere sedimentation at ReT  = 

11.6. 

Mesh size UT (m/s) 

% Error = 

x100
Newgrid Oldgrid

T T

Oldgrid

T

U U

U


 

61×97×61 0.087 -- 

81×129×81 0.089 2.3 

101×161×101 0.090 1.1 

121×193×121 0.0902 0.2 

 

We have compared the trajectory and vertical velocity evolution of the moving 

sphere at two distinct ReT, i.e. 11.6 and 32.2. The results are plotted in Fig.6.6. 
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and found to be in excellent agreement with the experimental data of Ten Cate 

et al. (2002). 

In addition, we have fabricated an apparatus to perform in-house experiments 

on single sphere sedimentation with Derlin spheres of different diameters. The 

details about the experimental setup will be discussed in the next chapter. The 

sphere is allowed to fall freely in a mixture of glycerine-water. The time 

evolution of sphere trajectories is shown in Fig.6.7. The parameters used in the 

experiments are provided in Table 6.6. A set up numerical simulations are also 

performed with parameters similar to the experimental conditions. A 

quantitative comparison of the terminal velocities obtained from the 

experiments and flexible forcing IB-LBM schemes are shown in Table 6.6, 

and they are in good agreement. This further implicates that the proposed IB – 

LBM scheme is capable of simulating unsteady, moving boundary problems.   

Table 6.6 Parameters used in the present experimental studies along with the 

comparisons of data from experiments and flexible forcing IB-LBM scheme 

(UT  is terminal velocity, ReT   is corresponding Reynolds number).    

 Sphere 

diameter 

(m) 

ρb 

(Kg/m
3
) 

ρf 

(Kg/m
3
) 

μf (10
-3

 

Ns/m
2
) 

UT 

(Exp) 

(m/s) 

UT 

(IB-

LBM) 

(m/s) 

ReT 

(Exp) 

ReT 

(IB-

LBM) 

Case 

1 

0.0127 1350 1195 30.5 0.101 0.098 50.25 48.76 

Case 

2 

0.0095 1350 1195 30.5 0.083 0.084 30.89 31.26 

Case 

3 

0.0079 1350 1195 30.5 0.073 0.072 22.59 22.28 

Case 

4 

0.0063 1350 1195 30.5 0.061 0.060 15.06 14.81 
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       (a)             (b) 

Fig.6.6 Comparison of the settling spheres’ (a) trajectories and (b) vertical 

velocities at different terminal Re, where H is the instantaneous vertical sphere 

centre height and dp is the diameter of sphere. 

 

 

 

Fig.6.7 Experiment performed on single sphere sedimentation in glycerine-

water mixture with the Derlin sphere of diameter, 12.7 mm and ReT = 50.25. 

The instantaneous positions of falling sphere are shown.   

 

 

t=0.85 sec t=1.1 sec t=1.3 sec 
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6.2.3 Two sphere sedimentation 

Finally, we have considered the sedimentation of two spheres of same size and 

density in a fluid filled rectangular box. This is a classical fluid-solid 

interaction problem that involves a unique DKT (Fortes et al. (1987); Qi 

(1999)) phenomenon. When two inline spherical particles are allowed to fall 

freely; the leading sphere leaves a wake behind and the trailing sphere gets 

trap in the wake. The trailing one accelerated in the wake/low pressure region 

(otherwise known as Drafting) and touches the leading sphere (otherwise 

known as Kissing). This long body formation by two kissing spheres (with 

long axis parallel to the streamlines of the flow) is an unstable equilibrium 

situation. With inception of slight angular displacement, a destabilising couple 

is created that breaks the unstable equilibrium state and brings the sphere to a 

stable cross stream configuration (otherwise known as Tumbling). The 

tumbling mechanism is basically the cross stream rearrangement of the sphere 

centres, which is again similar to the settling of a long body in a Newtonian 

fluid, where its broad side becomes perpendicular to the stream in action of a 

turning couple. The generation of turning couple for the long body is related to 

the pressure distribution, stagnation and separation points (Hu et al. (1992)). 

From the literature, we found that the experiments on the two sphere 

sedimentation were only done by Fortes et al. (1987). To further check the 

validity of their findings we have also conducted in-house experiments and 

studied the DKT phenomenon for two same diameter Derlin spheres, settling 

in the glycerine-water mixture. The sphere and fluid parameters are tabulated 
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in Table 6.6. We observed that irrespective of the change in diameters (that 

alters the ReT), the spheres undergo DKT phenomenon. In Fig.6.8, 

visualisation of the trajectory of the spheres while exhibiting DKT is shown. 

Also, a set of numerical simulations are performed to check the capabilities of 

the proposed IB – LBM scheme with parameters similar to those in the 

experiments. In Fig.6.9, the numerical simulation results are shown that 

qualitatively match our experimental visualisation.      

Table 6.7 Grid independence test for two equal spheres sedimentation case, by 

comparing the terminal velocity when only one sphere is released in the 

computational domain. 

Mesh size UT (m/s) 

% Error = 

x100
Newgrid Oldgrid

T T

Oldgrid

T

U U

U


 

63×252×63 0.0498 -- 

81×324×81 0.0511 2.6 

90×360×90 0.0521 1.9 

99×396×99 0.0524 0.5 

      

To make quantitative comparison, the computational domain and other 

parameters are set from the previous simulation study by Glowinski et al. 

(2001). The computational domain shown in Fig.6.10 is selected as, 10×40×10 

mm
3
. Two spheres of same size 1.67 mm, are initially positioned at (5.0, 35.0, 

5.0) (sphere-1 or trailing sphere) and (5.0, 31.6, 5.0) (sphere-2 or leading 

sphere). The initial translational and angular velocity of the sphere and fluid 

are set to zero. The numerical simulations are performed for density ratio of 
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solid sphere to fluid as 1.14 /1.0  b f  and the kinematic viscosity set as, 

0.01  cm
2
/s. After conducting the mesh independence test as shown in 

Table 6.7, a uniform Cartesian mesh of size 90×360×90 is adopted for the 

Eulerian domain. Lagrangian spheres surface is discretised with 303 triangular 

boundary elements. The comparisons are made for temporal evolution of X, Y, 

Z centre coordinates and the vertical velocity of the spheres with that of 

Glowinski et al. (2001). The results obtained from the present scheme are 

found to be in excellent agreement and shown in Fig.6.11.      

The above set of simulations verify  the capabilities of the proposed numerical 

scheme that can suitably capture the flow physics of complex three dimension 

fluid-solid interactions. 

 

 

          (Continued.....) 

t=0.66 sec t=1.08 sec t=1.58 sec 

t=1.79 sec t=2.17 sec t=2.45 sec 
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Fig.6.8 Experiments performed on two spheres sedimentation in glycerine-

water mixture with the Derlin spheres of same diameter, 9.5 mm. The 

instantaneous positions of the falling spheres are shown while they exhibits 

Drafting – Kissing – Tumbling (DKT) phenomenon. 

 

 

 

Fig.6.9 Instantaneous positions of the spheres undergoing Drafting – Kissing – 

Tumbling (DKT) phenomenon as obtained from flexible forcing IB – LBM 

simulation.   
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Fig.6.10 Schematic diagram of the computational domain (10×40×10 mm
3
) 

followed for the two sphere sedimentation mechanisms. 

 

           (a)     (b) 

(Continued....) 

X 

Y 
Z 

g 

31.60 mm 

3.40 mm 
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            (c)     (d) 

Fig.6.11 Comparison of the two settling spheres trajectories along (a) X, (b) Z 

and (c) Y directions as well as their (d) vertical velocities. 

6.3 Concluding remarks  

In this chapter, we have discussed a flexible forcing IB – LBM scheme to 

simulate three dimensional flow problems. Following an implicit type forcing 

term calculation, a single Lagrangian velocity correction term is introduced to 

satisfy the boundary condition within a convergence limit. The proposed 

flexible forcing concept not only avoids the complex mathematics involved in 

the matrix inversion, but also satisfy the boundary condition consistently at 

every time step with same order of convergence. This formulation is 

particularly advantageous for unsteady and moving boundary flow problems. 

Additionally, the algorithm proposed here is simple for computational code 

development.  

The proposed algorithm is validated against a number benchmark three 

dimensional flows such as, flow past a stationary sphere, settling of a single 
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sphere and DKT phenomenon of two sphere sedimentation. The obtained 

results from flexible forcing IB-LBM scheme are in excellent agreement with 

literatures and with our in-house experimental data.     
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7 Chapter 7  

Two Sphere Sedimentation 

Dynamics in a Viscous Liquid 

Column
6
 

In this chapter results of three-dimensional numerical simulation and limited 

experimental study on the sedimentation of two inline spheres in a Newtonian 

fluid at a Reynolds number (Re) range of 10 to 60 are presented.  Experiments 

were conducted in a vertical tank containing glycerine-water mixture of a 

predetermined viscosity and numerical study was carried out using the 

proposed 3D flexible forcing immersed boundary – lattice Boltzmann 

numerical scheme. This study is motivated by the earlier experiment of Fortes, 

Joseph et al. (1987), which shows that two settling spheres uniquely 

experience a non-linear wake interaction that captures the trailing sphere in the 

low pressure wake of the leading one and accelerates its motion to form a pair 

of kissing spheres.  The spheres subsequently tumble before splitting and 

travel with the same velocity. The present study aims to take the investigation 

                                                           
6
 Part of this work has been published as: 

Dash SM, Lee TS, Lim TT and Huang H. (2014). "A flexible forcing threee dimensional IB-LBM 
scheme for flow past stationary and moving sphere." Computers and Fluids 95(0): 159-170 
Dash SM, Lim TT and Lee TS. (2014). "Two spheres sedimentation dynamics in a viscous liqud 
column." Physics of Fluids: (Under Review) 
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further and examine the influence of hydrodynamic forces and induced turning 

couples acting on the settling spheres during the process of Drafting – Kissing 

– Tumbling (henceforth refer to as DKT).  Our numerical results indicate that 

the tumbling mechanism is influenced by the turning couple, which together 

with repulsive hydrodynamic forces causes vertical and lateral migrations of 

the spheres until they acquire a steady state alignment.  The sense of the 

turning couple dictates whether the spheres would exhibit normal or inverse 

tumbling mechanism.   Our result further show that normalised trajectories, 

velocity and the hydrodynamics force coefficients of the falling spheres are 

independent of the Reynolds number, at least for the range of values 

considered here. 

In the following, at first we have presented the experimental setup utilised in 

this research work. Subsequently, we have shown validation of the solver by 

performing a set of experiments. The details of the numerical model won’t be 

discussed here as those are reported in Chapter 6. Lastly, results and 

discussions are outlined at the end of the chapter. 

7.1 Experimental setup and Procedure 

The experiments were conducted in a vertical plexi-glass cylindrical tank with 

dimensions 100 mm (diameter)  1000 mm (high). The cylindrical tank is 

surrounded by a rectangular tank of the same height but with the cross-section 

of 200 mm  200 mm (see schematic drawing of the setup in Fig.7.1). The 

outer rectangular tank is filled with water while the inner cylindrical tank 

contains the working fluid which is a homogenous mixture of glycerine and 
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water with predetermined density (ρf) 1195 kg/m
3
 and dynamic viscosity (μf) 

0.0305 Ns/m
2
.  The purpose of the rectangular is to prevent distortion of the 

captured flow images due to the curvature of the cylinder. The fluid density 

was determined using specific gravity bottle and the viscosity was measured 

using HAAKE MARS rheometer with the measurement uncertainties estimated 

to be of less than 0.1% .  

The settling spheres used in the present study were precision Delrin bearing 

balls of constant density ρb. Table 7.1 shows the diameter of the four different 

sized spheres along with other physical parameters used in the present 

experiments. Mounted on the top of the tank is a release mechanism that 

allows the sphere to be released into the centre of the tank.  The mechanism is 

designed such as it allows multiple spheres to be held on top of each other 

with predefined centre distances. Here, we focus on a single and two spheres 

sedimentation only.  

The sphere(s), upon released from the mechanism, travelled vertically in the 

working fluid and their visual images were captured (in video mode) using a 

Nikon D90 at framing rate of 48 fps for subsequent analysis. The sphere was 

illuminated using a diffused fluorescent light source located perpendicular to 

camera lens axis.  Each experimental condition was repeated 20 times to check 

for repeatability of the results. A release valve located at the bottom of the 

tank was used to remove the settled spheres from the tank (see Fig.7.1(b)). In 

all cases, the cross-section of the tank is significantly larger than the diameter 

of the sphere such that the wall effects are negligible. A MATLAB code was 

written for image processing and to analyse the trajectories, sedimentation 
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speeds and steady state alignment of the spheres. The experimental results are 

used to further validate the solver.   
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(c) Real time image 

 

(d) Releasing mechanism 

Fig.7.1. Schematic drawing of the experimental setup (a) Top view, (b) Side 

view, (c) Real time image of the setup and (d) releasing mechanism.   



Chapter 7 Two Sphere Sedimentation Dynamics in a Viscous Liquid Column 

 

 

187 
 

Table 7.1 Parameters used in the present experiments (UT is terminal velocity, 

U pT Tf f
Re d   is the corresponding Reynolds number). 

 dp 

(m) 

ρb 

(Kg/m
3
) 

ρf 

(Kg/m
3
) 

μf (x10
-

3
 

Ns/m
2
) 

UT 

(Exp) 

(m/s) 

ReT 

(Exp) 

Case 1 0.0127 1350 1195 30.5 0.101 50.25 

Case 2 0.0095 1350 1195 30.5 0.083 30.89 

Case 3 0.0079 1350 1195 30.5 0.073 22.59 

Case 4 0.0063 1350 1195 30.5 0.061 15.06 

 

7.2 Validation of the numerical solver 

The numerical model is validated using the present experimental results of the 

single sphere.  The selected computational domain size is 7.8dp (wide; 

W)7.8dp (depth; D)17.8dp (height; H) that suitably mimics the experimental 

apparatus with negligible wall effects. A comparison study is made to 

determine the wall effect on the terminal velocity of the settling sphere and the 

results are presented in Fig.7.2.  Here, the aspect ratio along the horizontal 

axis is defined as ratio of the cross section of the tank and the diameter of 

sphere.  The results show that as long as the aspect ratio is greater than 7.0, the 

variation of the terminal velocity is negligible suggesting that the wall effect in 

the present setup is also negligible.         
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Fig.7.2. Wall effects study by comparing the terminal velocity of the sphere 

(dp = 12.7 mm) with respect to varied aspect ratio (i.e. cross section width or 

depth of the computational domain to diameter of the sphere) of the fixed 

height computational domain. 

The diameter dp of the sphere and the physical properties of the fluid are 

selected from Table 7.1 and adopted in the numerical simulation. The 

computational domain is discretized with uniform physical mesh size of 1 mm 

along the three Cartesian coordinate directions after the grid independence 

check has been performed. The physical simulation time step is fixed as 

0.00065 sec. When the proposed flexible forcing IB – LBM solver was used, 

the physical mesh size and time step are converted to lattice scales (Feng and 

Michaelides (2005)).  

As the initial condition, the centre of the sphere was kept at (3.9dp, 3.9dp, 

16.15dp) and the no-slip boundary condition was prescribed on the surface of 

the moving sphere by flexible forcing IB – LBM. The no-slip boundary 

conditions on the walls of the rectangular tank were satisfied using bounce 



Chapter 7 Two Sphere Sedimentation Dynamics in a Viscous Liquid Column 

 

 

189 
 

back rules of the lattice velocities (Wu and Shu (2010)).  The initial flow field 

was kept stationary with zero Cartesian velocity components.     

The sphere starts falling through the fluid due to gravity until it reaches the 

tank base. In all cases (i.e. 10 < Remax < 60) the sphere travelled along the 

vertical centreline of the tank as shown in Fig.7.3.  Here, Re is defined as,  

 
U

Re .
pf

f

d


                  (7.1) 

where U is the settling velocity of the sphere. Previous study by Jenny, 

Bouchet et al. (2003) has shown that for the Galileo number less than 156, the 

sphere fall or ascend in the Newtonian fluid along a straight vertical path due 

to the existence of an axisymmetric wake behind the sphere. The Galileo 

number G for our present experiments is defined as,    

31

.

b
p

f

gd

G









                     (7.2) 

 

Fig.7.3. Experiments on single sphere sedimentation (dp = 12.7 mm). 

t = 0.7s t = 0.9s t = 1.1s 
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The maximum Galileo number encountered in the present study is 57, which is 

well below the critical Galileo number of 156. This is consistent with our 

experimental observation of a straight vertical trajectory of the sphere. 

 

           (a)            (b)  

Fig.7.4. Single sphere sedimentation using flexible forcing IB – LBM for 

different diameters where (a) non-dimensional vertical centre trajectory and 

(b) non-dimensional vertical centre velocity of the spheres. 

Before embarking on the simulation of two-sphere sedimentation, the 

numerical solver is first validated against the experimental results of single 

sphere sedimentation.  Fig.7.4(a) shows the numerical results of the vertical 

centre trajectory of the spheres as a function of time for different sphere 

diameters and Fig.7.4(b) shows their corresponding vertical centre velocity.  

Note that time on the horizontal axis is normalised by tc and settling velocity 

of the sphere is normalised by Uc; they are defined as, 

t 1c p b fd g   
 

        ,   U = 1c pb f
gd               (7.3) 
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where 1c b f
a g    within the square root is the characteristic 

acceleration after taking into consideration of the buoyancy effect. 

The results clearly show that regardless of the spheres diameter, the 

normalised vertical trajectories of all the sphere collapse on a single curve.  

The same applies to the normalised settling velocity.  It is obvious from 

Fig.7.4(b) that the sphere initially accelerated (only the magnitude is shown 

and the negative sign is due to sign convention) before settling to a 

steady/terminal velocity UT.  

 

           (a)     (b) 

Fig.7.5. Comparisons of (a) instantaneous vertical settling velocity and (b) 

terminal velocity UT  as obtained from Experiments and IB – LBM 

observations. 

To validate the numerical solver, computed terminal velocities UT of the 

spheres are compared to the corresponding experimental results. Fig 7.5 

clearly shows the numerical results are in good agreement with the experiment 

thus validating the accuracy of the numerical solver.  It is worth noting that UT 
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is determined experimentally using the MATLAB image processing code, 

where the uncertainty error in the measurement is 1  pixel.  

Here, the conversion of the physical quantities to lattice scale has been 

followed from Feng et al (2005). In the followings an example of such 

conversion is shown, 

Lattice velocity   

Lattice viscosity  

Lattice gravity  

where u, ν, g, Δx and Δt are in respective physical units. For the physical mesh 

size of 1 mm, we have set time step size 0.00065 sec. The kinematic viscosity 

of the glycerine/water mixture used in the present study is 30.510
-3

/1195 = 

2.55210
-5

 m
2
/s. Hence, Δx=0.001, Δt=0.00065, νr = 2.552 x 10

-5
. 

Using the scaling by Feng et al (2005), we can compute lattice scale viscosity 

and the corresponding relaxation time as,  

 

 
2

*
0.01658

r
t

x





 


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2


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
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7.3 Results and Discussions 

The primary objective of the present research is to address the two questions 

raised in the introduction section regarding sedimentation phenomenon of the 
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two inline spheres. In the following, we first discuss the problem setup in 

experiment and in computation, followed by detail analyses of the results.     

7.3.1 Problem setup descriptions 

7.3.1.1 Experiment 

The experimental studies were conducted using the same vertical tank 

discussed above (see Fig.7.1).  Two spheres of identical weights and diameters 

dp were initially placed in the release mechanism with their centres 2dp apart. 

The uncertainties in the diameters and the weights of the settling spheres are 

0.01 mm and 0.01 gm, respectively.  The spheres were released at the 

centre of the tank inside the working liquid column, and their motions were 

captured by Nikon D90 camera operating in video mode at 48 fps with the 

resolution of 7201080 pixels. The captured images were subsequently 

analysed using MATLAB image processing code to determine the trajectories 

of the spheres, where the uncertainty in measurement is 1 pixel. In total, four 

different sized spheres with same centre spacing (2dp). The working 

parameters can be referred from Table 7.1.  

7.3.1.2 Numerical simulation 

Here, a long enough computational domain is selected such that the drafting – 

kissing – tumbling actions of the two settling spheres are suitably captured. 

With reference to Fig.7.2, the computational domain size is fixed to 7.8dp 

(wide; W)  7.8dp (depth; D)  40dp (height; H) such that the wall effects are 

negligible.          
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Fig.7.6. Two sphere sedimentation with their initial spacing 2dp. The box 

dimension is (X, Z, Y) = (7.8dp, 7.8dp, 40dp). 

Similar to the experimental condition, the spheres are initially aligned along 

the vertical direction with their centre spacing 2dp (ref. Fig.7.6). The initial 

sphere centre co-ordinates are respectively: (leading sphere) sphere-1 (3.9dp, 

3.9dp, 35dp), (trailing sphere) sphere-2 (3.9dp, 3.9dp, 37dp). The computational 

mesh and time step size is followed the same as in section.7.2. The sphere 

surface is discretised with uniform triangular boundary elements where the 

number of elements varies between 591 – 1161, with respect to diameter of the 

spheres. At the beginning, the flow field and sphere velocities were initialised 

to zero along all Cartesian directions. The spheres start to move with gravity 

and its kinematics is calculated using the description provided in Chapter 6 
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(ref. section 6.1.1). The no-slip boundary conditions are prescribed on the 

walls of the computational domain with bounce back scheme (Wu and Shu 

(2010)) and on the moving sphere surface using flexible forcing IB – LBM. 

OPENMP principles are adhered to write the parallel computational code so as 

to perform faster computation. 

7.3.2 DKT and Inverse DKT  

When two inline spheres were allowed to settle freely, the leading sphere 

leaves behind a low pressure wake. If the initial gap between the leading and 

trailing spheres is small enough (<6dp) (Fortes et al. (1987)) the trailing sphere 

becomes trapped in the wake regime, and both the spheres subsequently 

display a unique DKT mechanism as discussed previously (see Chapter 1). 

The visualisation of this phenomenon from our own experiments is shown in 

Fig.7.7 where kissing spheres may experience either tumbling or inverse 

tumbling so as to break the unstable equilibrium state. As suggested by Joseph 

et al. (1992), the settling long-body always tries to put its broadside 

perpendicular to the oncoming stream to attain a stable configuration.  The 

direction of rotation is determined by the sense of turning couple. In the same 

manner, the tumbling action of the kissing spheres depends on the sense of the 

destabilizing couple. Detailed discussion of the destabilizing couple will be 

presented in the next section. 
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  t = 0.000 s     t = 0.325 s    t = 0.960 s    t = 1.250 s      t = 1.500 s  

 

     

  t = 0.000 s     t = 0.325 s    t = 0.960 s    t = 1.250 s      t = 1.500 s  

 

Fig.7.7. Experimental visualization of two sphere sedimentation with (a) 

Drafting-Kissing-Tumbling and (b) Drafting – Kissing – Inverse Tumbling 

mechanism. (dp = 12.7 mm) 

In order to capture DKT and Inverse DKT (Drafting – Kissing – Inverse 

Tumbling) mechanism of the spheres in the present numerical simulations, we 

introduced a small spatial perturbation as a function of the rotational sense of 

the destabilizing couple. The centres of the two spheres were initially offset 

slightly from the vertical mid-plane of the computational domain such that the 

(a) 

(b) 
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direction of the offset will change the direction of moment arm and hence the 

rotational sense of the destabilizing couple. Thus, the initial offset centre 

coordinates are, (leading sphere) sphere-1 (3.9dp+Δx, 3.9dp+Δz, 35dp), 

(trailing sphere) sphere-2 (3.9dp, 3.9dp, 37dp) and sphere-1 (3.9dp-Δx, 3.9dp-

Δz, 35dp), sphere-2 (3.9dp, 3.9dp, 37dp), respectively for DKT and Inverse 

DKT.   

 

                  (a)        (b) 

Fig.7.8. Numerical simulations on two sphere sedimentation using IB – LBM 

showing DKT and Inverse DKT. (dp = 12.7 mm) where (a) Top view, (b) 

Front view of the 3D trajectory. 

This technique has been formerly implemented (Uhlmann (2005) and Wang et 

al. (2008)) to study symmetry breakdown of two colliding particles. The 

selection of the offset distance also affects the time require to breakdown the 

equilibrium. Since we are focused only on the qualitative results for DKT and 

Inverse DKT, only one offset distance is used and equal to one mesh spacing 

along X and Z direction, i.e. Δx and Δz from the vertical centre plane. 

Fig.7.8 shows the computed results of the sphere centre trajectories during 

DKT and Inverse DKT, and the results are in good agreement with the 
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experiments.  Due to initial symmetric offsetting of the sphere centres along 

the vertical centre plane, the trajectories for DKT are the mirror image of 

Inverse DKT.         

7.3.3 Forces acting on the settling spheres 

The DKT mechanisms of two settling spheres were initially reported as wake 

induced anisotropy by Joseph et al. (1992), where they attributed the tumbling 

action as a competition between inertia and normal stress.  The formation of 

the wake and boundary layer separation is a complex function of fluid 

viscosity and shear stress components, and to the date is still not fully 

understood.  Although various attempts have been made to provide possible 

explanation on tumbling of the spheres, there were limitations in these studies 

(ref. Chapter 1) and much of the hydrodynamic forces during the interaction 

remain unclear.       

In this research we adopt a convenient approach based on Newtonian 

dynamics to study the forces acting on the moving spheres. Following 

Newton’s laws of motion, the state of the moving spheres and their 

interactions can be governed by determining the active hydrodynamic forces 

on them. The present numerical scheme using IBM has advantages in direct 

determination of the hydrodynamic force and torque exerted on the moving 

spheres. In Eq.(6.22), the force density term represents the hydrodynamic 

force exerted on the fluid by the moving sphere (Wu and Shu (2010)), and by 

applying Newton’s third law of motion the reaction force acting on the moving 

sphere can be derived.  Hence, the Cartesian force components on the moving 
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spheres are: FX, FY, FZ along X, Y and Z directions respectively. These forces 

are normalised with 
21 2 cU S  as shown in Eq.(7.4),  

2 2

8
,X

dX
p cf

F
C

d U
  

2 2

8
,Y

dY
p cf

F
C

d U
  

2 2

8
,Z

dZ
p cf

F
C

d U
            (7.4) 

where Uc is the characteristic velocity and S is the projected surface area of the 

sphere along the respective planes.  In Fig.7.9, the non-dimensional 

hydrodynamic force coefficients (CdX, CdY and CdZ) on the two settling spheres 

are plotted as a function of non-dimensional time. Outside the time-interval of 

11.0 < t/tc < 19.0 where kissing and tumbling occur, the CdX and CdZ are zero 

and CdY has negative value because of sign convention.  This obviously 

suggests that the spheres experience only vertical downward force without X 

or Z direction force components.  Thus, the spheres are restricted to move 

along Y direction only outside the time-interval indicated above. The CdY  plot 

in Fig. 7.10 indicates that while the trailing sphere (Sphere-2) drafts towards 

the leading sphere (Sphere-1), the vertical force on the sphere-2 increases in 

the low pressure wake regime, causing sphere-2 to accelerate towards sphere-

1. Then after, the spheres momentarily kiss and tumble away according to the 

force profiles CdX, CdY and CdZ as shown in the non-dimensional time region 

11.0 < t/tc < 19.0, in Fig.7.9.  
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Fig.7.9. The hydrodynamic force coefficients CdX, CdY and CdZ on the (trailing) 

sphere-1 and (leading) sphere-2. 

. 

Fig.7.10. The CdY variation on the (trailing) sphere-1 and (leading) sphere-2 

while performing drafting (dp = 12.7 mm). 
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The instantaneous spikes at t/tc = 11.0, represent the instantaneous lubrication 

forcing (Glowinski et al. (1999)) , that avoids the solid wall penetrations when 

the spheres collide among themselves. The equal and opposite variation of 

CdX, CdY and CdZ on the two settling spheres produce corresponding repulsive 

sphere motions as they separates away. 

   

              

 

 

 

 

Fig.7.11. Schematic of the hydrodynamic forces acting on the spheres to 

generate vertical and lateral migrations. 

 A pictorial representation of such X, Y and Z direction forces are shown in 

Fig.7.11 at t/tc = 12.0 and t/tc = 22.0. The resultant forces Ftotal1, Ftotal2 will act 

on the two kissing spheres whose line of action vector gives rise to a turning 

moment Mc (same as destabilizing couple in section 7.3.2). The spheres in 

action of the repulsive forces and turning moment tumble and migrate to align 

themselves such that their interactions stop and they attain a steady fall 

condition. Here, it is worth noting that the sense of the turning couple defines 

the direction of tumbling action and dictates whether the spheres will undergo 

Tumbling or Inverse Tumbling. 

Fy2 = Ftotal2=Fy1 

Fy1 = Ftotal1=Fy2 

Fy1 

Fy2 

Fz2 

Ftotal2 

Fx2 

Fz1 

Fx1 

Ftotal1 

Mc 
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Fig.7.12 The functions of maximum force coefficient CdX, CdY and CdZ vs 

diameter of the spheres. 

Further, the magnitudes of the resultant repulsive forces dictate the separation 

distance among the tumbling spheres. To quantify the maximum forces, we 

have plotted in Fig.7.12 CdXUc
2
dp

2
, CdY Uc

2
dp

2
 and CdZ Uc

2
dp

2
 based on the 

maximum peak values in the CdX, CdY and CdZ profiles in Fig 7.9. Here, it can 

be seen that the force magnitude decreases with decreasing sphere diameter.  

Thus, smaller the repulsive force, the smaller will be the separation distance.  

This also agrees with our experimental observations as will discussed in the 

next section and shown in Fig.7.13.  
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7.3.4 Migration of the tumbling spheres  

After DKT or Inverse DKT, as the tumbled spheres further settle down, a 

lateral and vertical migration is observed before they attain a steady fall 

alignment. The force calculation in section 7.3.3, clearly suggests that the 

settling spheres only experience limited zone of variation (11.0 < t/tc < 19.0, 

ref. Fig.7.9) where the opposite varying parabolic-like trends are responsible 

for the generation of lateral and vertical migration of the tumbled spheres.  

   

        (a) t = 2.850 s    (b) t = 3.420 s  (c) t = 5.540 s  

Fig.7.13. Steady state alignment of the settling spheres after DKT and 

migration. The sphere sizes are, (a) dp = 12.7 mm, (b) dp = 9.5 mm and (c) dp = 

7.9 mm. 

Fig.7.13 shows the experimental observations of the steady fall alignment of 

the migrated spheres, where the same alignment continues until the spheres 

reach the bottom of the tank.  We have also observed that the migrations of the 

S 
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spheres during Inverse DKT mechanisms are equal and in opposite directions 

to the DKT mechanism. 

 

 

        (a)            (b) 

 

 

     (c) 

 

Expanded view 
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        (d)  

Fig.7.14. Two spheres performing DKT mechanism with different diameters 

where Non-dimensional (a) X centre trajectories, (b) Z centre trajectories, (c) 

Y centre trajectory and (d) Vertical velocity of the spheres are shown. 

Further, our numerical simulation in Fig 7.14 shows that the normalised lateral 

and vertical migrating distance, and the normalised vertical velocities are 

independent of Reynolds number of the settling spheres.  The two spheres: 

leading sphere (sphere-1) and trailing sphere (sphere-2), initially move with 

same vertical velocities and closely follow their centre trajectories, until the 

trailing sphere interacts with the wake of leading one (see Fig.7.14(a)-(d)). In 

the wake, the trailing sphere accelerates faster and reduces the Y centre gap 

between them.  This subsequently leads to collision (kissing mechanism) and 

follows by tumbling.  These events cause the sphere trajectories and velocities 

to change.  As shown in Fig.7.14(d), the two tumbled spheres experience 

different retardation in velocities, which are functions of the magnitude of the 

generated repulsive force and the diameter of the spheres.  In the case of the 

larger spheres, the generated repulsive force is comparatively higher (ref. 

Fig.7.12) and produces higher migration among the tumbled spheres.  This 
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observation is consistent with the experimental observation displayed in Fig 

7.13.   

We have further quantified the amount of vertical and lateral migration by 

comparing the Y, X and Z centre coordinates of the spheres. The centre 

differences: (Yc1 – Yc2), (Xc1 – Xc2) and (Zc1 – Zc2) are normalised with the 

sphere diameter dp and plotted in Fig.7.15, where the subscript C1 and C2 

corresponds to centre coordinates of Sphere-1 and Sphere-2, respectively.  

 

 

Fig.7.15. Y, X and Z centre migration of the two settling spheres with 

different diameter while undergoing DKT. 

The results show that the initial centre gap (2dp) along Y direction decreases 

overtime and attains a steady state negative migration. The negative gap 
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indicates that the spheres have altered their initial arrangement and the trailing 

sphere becomes the leading one and vice versa (see also Fig 7.14(c)). In all 

cases, the X and Z centres of the spheres were the same initially (starts with 

zero centre difference, ref. Fig.7.15), but proceeds to a near constant gap after 

the DKT actions.    

The experimental observations on vertical migration of the spheres are post-

processed and compared with numerical simulations as shown in Fig 7.16. 

They are found to be in good agreement.  It should be stressed that we are 

comparing the vertical migration only because the camera axis is 

perpendicular to the sphere sedimentation direction (ref. Fig.7.1), which 

restrict our observation of the lateral migration.  

    

Fig.7.16. Experimental and IB – LBM comparisons of the vertical migration 

of different diameter spheres during steady fall after DKT actions. 

On the DKT phenomenon in a broader and narrower channel, it was 

previously reported by Glowinski et al. (2008) that the two settling spheres in 

a narrow channel undergo multiple DKT before they reach the bottom of the 
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channel.  However, we do not observe multiple DKT in our studies.  Close 

examination shows that our numerical and experimental domain size is 

comparatively broader than that of Glowinski et al. (2008).   It is most likely 

that the broader domain in our study allows the spheres to migrate more freely.  

Specifically, when the spheres fall steadily with certain spatial alignment 

between their centres, the wake interaction between them is minimal and this 

may have avoided multiple DKT observed in the narrower domain of 

Glowinski, Dean et al. (2008).  The CdX, CdY and CdZ plots in Fig.7.9 further 

supports our claim.  

7.4 Concluding remarks  

In this chapter, 3D numerical simulations and experiments have been 

conducted to study the sedimentation dynamics of two in-line falling spheres 

in the Reynolds number (Re) range of 10 to 60. Our results show that the 

trajectories of the falling spheres are highly three-dimensional and not 

confined in a plane as was assumed in the previous studies.  In all cases, the 

trailing sphere initially falls with the same velocity as the leading sphere, but 

subsequently increases due to the low pressure region created in the leeside of 

the leading sphere.  The ensuing interaction that leads to DKT produces 

complex sedimentation velocity profiles, before two spheres split and travel 

with the same velocity. On the hydrodynamic forces, our results indicate that 

the tumbling mechanism is influenced by the turning couple, which together 

with repulsive hydrodynamic forces causes vertical and lateral migrations of 

the spheres until they acquire a steady state alignment.  The sense of the 

turning couple dictates whether the spheres would exhibit normal or inverse 



Chapter 7 Two Sphere Sedimentation Dynamics in a Viscous Liquid Column 

 

 

209 
 

tumbling mechanism. Regardless of the sphere size, the non-dimensionalised 

trajectories, velocity and hydrodynamics force coefficients are independent of 

the Reynolds number, at least for the range of values considered here.  Further, 

we did not observe multiple DKT as was reported previously in a narrow 

channel.   
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8 Chapter 8  

Conclusions and Future 

Recommendations 

At first, conclusions are drawn for the present thesis work and thereafter, 

recommendations are made to extend this work in future.     

8.1 Conclusions 

In this thesis, a novel flexible forcing IB – LBM scheme is introduced for fluid 

– solid interaction in an incompressible, viscous flow domain with stationary 

and moving solid boundaries. The developed scheme uniquely combines the 

immersed boundary concept in the framework of the lattice Boltzmann method 

that removes the numerical defects often suffered by convectional IB – LBM 

schemes, such as non-physical streamline penetration into the solid boundary; 

improper hydrodynamic force and torque calculations. Afore identified defects 

may be avoided by an improved implicit velocity correction based IB – LBM 

(Wu and Shu (2009)) which demands a significant computational memory 

usage for formation/inversion of a complex matrix. In contrast, our proposed 

flexible forcing algorithm simplifies the formulation while keeping the 
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benefits of the implicit velocity corrections and at same time avoids the 

complicated matrix operations.   

The numerical accuracy of the proposed IB – LBM scheme is assessed by 

performing simulation of Taylor-Green decaying vortex and lid-driven cavity 

flow. The obtained results show that the overall accuracy of the scheme is 

slightly less than second-order, which is attributed to utilisation of the first-

order Dirac delta function interpolation near the boundary. 

The proposed IB – LBM scheme is validated with a number of benchmark 

flow cases such as, steady/unsteady flow past a stationary circular cylinder, 

motion of a neutral buoyant circular particle in a linear shear flow, single and 

two particles sedimentation in a vertical channel. We observed that the 

quantitative numerical results obtained from our present scheme are in good 

agreement with data in literature. Unlike to the conventional IB – LBM 

scheme, the non-physical penetration of streamline into the solid boundary is 

absent in flexible forcing IB – LBM, where the no-slip velocity boundary 

condition is exactly satisfied.   

After verifying the capabilities and accuracy of the proposed scheme, we have 

applied it to simulate particulate flow where the wall effects dominate. We 

have studied the settling of the circular particle in a semicircular constricted 

channel for the first time, to showcase the wall effects on the flow regime. 

Several flow configurations have been identified, also detail analysis of 

sedimentation process are presented as functions of density of the particle, 

constriction shape and size. We have also extended the study for multi particle 
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(two particles) case where interesting momentary upward movement of the 

trailing particle is observed at certain constriction gap size. 

With suitable implication of the flexible forcing IB – LBM in 2D flows 

without accounting the temperature variations, we subsequently tried to 

explore the fluid-solid interaction problems that include the temperature 

effects. A new flexible forcing IB – thermal LBM numerical scheme is 

developed that satisfies the two Dirichlet boundary conditions (velocity, 

temperature) on the immersed solid surface accurately. Compare to the 

conventional IB – LBM scheme, the proposed scheme avoids the non-physical 

streamline and isotherm penetration into the solid boundary. The numerical 

accuracy is verified by performing a benchmark flow cases such as, natural 

and forced convection flow problems from a heat source. 

The developed thermal IB – LBM model is then applied for studying the 

natural convection process in the complex cavity situations. Due to its 

practical applications, the natural convection has got lot of attentions over last 

decades, where only limited studies are found for the complex cavity 

scenarios. In our present study we have consider few complex cavity situations 

formed by an outer cold square enclosure and inner hot square heat source 

(cylinder). Here, for the first time we have discussed the flow regime and heat 

transfer pattern in the annulus of the enclosure, as functions of Ra, eccentricity 

and inclination of the inner square cylinder (heat source). The quantitative 

comparison of the heat transfer rates are also discussed by computing the local 

and average Nusselt number.     
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After successful implications of the 2D flexible forcing IB – LBM model, 

finally we have extended the study for 3D flow regime. Both presence of 

stationary and moving solid boundary in the flow domain is considered here. 

The scheme is validated with stationary flow past a sphere, single and two 

spherical particles sedimentation in a viscous liquid medium. We have 

investigated the unique mechanism Drafting – Kissing – Tumbling (DKT) of 

the two inline settling spheres. Active hydrodynamic force and turning couple 

experienced by the settling spheres are identified which will help to define the 

exact sphere movement over time. Further we have characterised the 

sedimentation process with Re of the flow.  

8.2 Future recommendations 

This thesis has demonstrated a unique way to combine the immersed boundary 

and lattice Boltzmann principle to simulate fluid-structure interaction 

problems including thermal effects in either 2D or 3D flow cases. 

Nevertheless, there are still scopes for future extensions for improvement of 

the algorithm as well as applications to complex flow scenarios. In the 

followings some recommendations and suggestions are highlighted. 

1. The present simulations are either performed in uniform or non-

uniform structured Cartesian mesh. For a high resolution solution in 

case of complex 3D problems this may require much finer grids and 

hence necessitate higher computational resources, which may also 

limits its applicability. Alternatively, an adaptive mesh refinement 
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technique may be developed that maintains a balance between the 

mesh resolutions and computational effort.  

2. The developed thermal IB – LBM model with single relaxation time 

(SRT), may be extended to study the moving boundary and 3D flow 

cases using multi relaxation time (MRT) collision model where the 

numerical stability can be enhanced by removing the limitation of 

fixed ratio between kinematic and bulk viscosity.   

3. The immersed solid material properties such as, elasticity, bending 

moment, stiffness may be included in the coupled flexible forcing IB – 

LBM scheme so as to model the fluid and deformable/flexible structure 

interactions.      

4. The studied problem, particle sedimentation in the constricted channel 

may further extended to various shapes of particles and constrictions 

with inclusion of elasticity/deformable effects. 

5. The developed 3D IB – LBM scheme may be extended to study more 

complex flow problems for example particle sedimentation in a 3D 

constricted channel, aerodynamics of flapping wings.   
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