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Summary

Summary

Multi-agent systems coordination and control problem has been extensively studied by

the control community as it has wide applications in practice. For example, the for-

mation control problem, search and rescue by multiple aerial vehicles, synchronization,

sensor fusion, distributed optimization, economic dispatch problem in power systems,

etc. Meanwhile, many industry processes require both repetitive executions and coordi-

nation among several independent entities. This observation motivates the research of

multi-agent coordination from iterative learning control (ILC) perspective.

To study multi-agent coordination by ILC, an extra dimension, the iteration domain, is

introduced to the problem. In addition, the inherent nature of multi-agent systems such

as heterogeneity, information sharing, sparse and intermittent communication, imper-

fect initial conditions increases the complexity of the problem. Due to these factors, the

controller design becomes a challenging problem. This thesis aims at designing learn-

ing controllers under various coordination conditions and analyzing the convergence

properties. It follows the two main frameworks of ILC, namely contraction-mapping

(CM) and composite energy function (CEF) approaches. In the first part, assuming a

fixed communication topology and perfect initial conditions, CM based iterative learn-

ing controller is developed for multi-agent consensus tracking problem. By using the

concept of a graph dependent matrix norm, the convergence conditions are given at the

agent level, which depend on a set of eigenvalues that are associated with the commu-

nication topology. Next, optimal controller gain design methods are proposed in the

sense that the λ -norm of the tracking error converges at the fastest rate, which imposes

a tightest bounding function for the actual tracking error in the λ -norm analysis. As the
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Summary

communication is one of the indispensable components of multi-agent coordination,

robustness against communication variation is desirable. By utilizing the properties of

substochastic matrix, it is shown that under very weak interactions among agents such

as uniformly strongly connected graph in the iteration domain, controller convergence

can be preserved. Furthermore, in the multi-agent systems each agent is an independent

entity. Hence it is difficult to guarantee the perfect initial conditions for all agents in

the system. Therefore, it is crucial for the learning algorithm to work under imperfect

initial conditions. In this thesis, a PD-type learning rule is developed for the multi-agent

setup. The new learning rule facilitates two degree of freedom in the controller design.

On the one hand, it ensures the convergence of the controller; on the other hand, it can

improve the final tracking control performance. In the second part, the applicability

of P-type learning rule to local Lipschitz continuous systems is explored since it is be-

lieved that CM based ILC is only applicable to global Lipschitz continuous systems,

which restricts its application to limited systems. By combining Lyapunov method and

the advantages of CM analysis method, several sufficient conditions in the form of Lya-

punov function criteria are developed for ILC convergence, which greatly complements

the existing literature. To deal with the general local Lipschitz systems which can be

linearly parameterized, CEF based learning rules are developed for multi-agent synchro-

nization problem. The results are first derived for SISO systems, and then generalized

to high-order systems. Imperfect initial conditions are considered as well. Finally, a set

of distributed learning rules are developed to synchronize networked Lagrangian sys-

tems under directed acyclic graph. The inherent properties of Lagrangian systems such

as positive definiteness, skew symmetric, and linear in parameter properties, are fully

utilized in the controller design to enhance the performance.
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Chapter 1

Introduction

1.1 Introduction to Iterative Learning Control

Iterative learning control (ILC) is a memory based intelligent control strategy, which

is developed to deal with repeatable control tasks defined on fixed and finite-time inter-

vals. The underlying philosophy mimics the human learning process that practice makes

perfect. By synthesizing the control input from the previous control input and tracking

error, the controller is able to learn from the past experience and improve the current

tracking performance. ILC was initially developed by Arimoto et al. (1984), and has

been widely explored by the control community since then (Moore, 1993; Longman,

2000; Norrlof and Gunnarsson, 2002; Xu and Tan, 2003; Bristow et al., 2006; Moore

et al., 2006; Wang et al., 2009; Ahn et al., 2007).

Generally speaking there are two main frameworks for ILC, namely contraction-

mapping (CM) and composite energy function (CEF) based approaches. CM based

iterative learning controller has a very simple structure and it is extremely easy to im-

plement. A correction term in the controller is constructed by the output tracking error.

To ensure convergence, an appropriate learning gain can be selected based on the system
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gradient information instead of accurate dynamic model. As it is a partial model-free

control method, CM based ILC is applicable to non-affine in input systems. These fea-

tures are highly desirable in practice as there are plenty of data available in the industry

processes but are lack of accurate system models. CM based ILC has been adopted in

many applications, for example X-Y table, chemical batch reactors, laser cutting sys-

tem, motor control, water heating system, freeway traffic control, wafer manufacturing,

and etc (Ahn et al., 2007). Whereas, CM based ILC is only applicable to global Lips-

chitz continuous (GLC) systems. On the one hand, it is because CM based ILC is an

open loop system in the time domain and a closed loop system in the iteration domain.

GLC is required by the learning controller in order to rule out the finite escape time

phenomenon. On the other hand, GLC is a key assumption to construct a contraction-

mapping such that the controller convergence can be proven. In comparison, CEF based

ILC, a complementary part of CM based ILC, applies Lyapunov method to design learn-

ing rules. It is an effective method to handle local Lipschitz continuous (LLC) systems.

However, the system dynamics must be in linear in parameter form and full state infor-

mation must be available for feedback or nonlinear compensation. As the current state

tracking error is used in the feedback, the transient performance is usually better than

CM based ILC. CEF based ILC has been applied in satellite trajectory keeping (Ahn

et al., 2010) and robotics manipulators control (Tayebi, 2004; Tayebi and Islam, 2006;

Sun et al., 2006).

This thesis follows the two main frameworks and investigates the multi-agent coor-

dination problem by ILC.

2
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1.2 Introduction to Multi-agent Systems Coordination

In the past several decades, multi-agent systems coordination and control problems

have attracted considerable attention from many researchers of various backgrounds

due to their potential applications and cross-disciplinary nature. In particular consensus

is an important class of multi-agent systems coordination and control problems (Cao

et al., 2013). According to Olfati-Saber et al. (2007), in networks of agents (or dynamic

systems), consensus means to reach an agreement regarding certain quantities of inter-

est that are associated with the agents. Depending on the specific applications these

quantities could be velocity, position, temperature, orientation, and etc. In a consensus

realization, the control action of an agent is generated based on the information re-

ceived or measured from its neighborhood. Since the control law is a kind of distributed

algorithm, it is more robust and scalable compared to centralized control algorithms.

Consensus algorithm is a very simple local coordination rule which can result in

very complex and useful behaviors at the group level. For instance, it is widely observed

that by adopting such a strategy, a school of fish can improve the chance of survival un-

der the sea (Moyle and Cech, 2003). Many interesting coordination problems have

been formulated and solved under the framework of consensus, e.g., distributed sensor

fusion (Olfati-Saber et al., 2007), satellite alignment problem (Ren and Beard, 2008),

multi-agent formation (Ren et al., 2007), synchronization of coupled oscillators (Ren,

2008a), and optimal dispatch in power systems (Yang et al., 2013). Consensus problem

is usually studied in the infinite time horizon, that is the consensus is reached when

time tends to infinity. Meanwhile some finite-time convergence algorithms are avail-

able (Cortex, 2006; Wang and Hong, 2008; Khoo et al., 2009; Wang and Xiao, 2010;

Li et al., 2011). In the existing literature, most consensus algorithms are model-based

3
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algorithms. The agent models range from simple single integrator model to complex

nonlinear models. Consensus results on single integrators are reported by Jadbabaie

et al. (2003); Olfati-Saber and Murray (2004); Moreau (2005); Ren et al. (2007); Olfati-

Saber et al. (2007). Double integrators are investigated in Xie and Wang (2005); Hong

et al. (2006); Ren (2008b); Zhang and Tian (2009). Results on linear agent models can

be found in Xiang et al. (2009); Ma and Zhang (2010); Li et al. (2010); Huang (2011);

Wieland et al. (2011). Since the Euler-Lagrangian system can be used to model many

practical systems, consensus has been extensively studied by Euler-Lagrangian system.

Some representative works are reported by Hou et al. (2009b); Chen and Lewis (2011);

Mei et al. (2011); Zhang et al. (2012). Information sharing among agents is one of

the indispensable components for consensus seeking. Information sharing can be real-

ized by direct measurement from on board sensors or communication through wireless

networks. The information sharing mechanism is usually modeled by graph. For sim-

plicity in the early stage, the communication graph is assumed to be fixed. However, a

consensus algorithm, which is insensitive to topology variations, is more desired since

many practical conditions can be modeled as time-varying communication, for example,

asynchronous updating, communication link failures and creations. As communication

among agents is an important topic in multi-agent systems literature, various commu-

nication assumptions and consensus results are investigated by researchers (Moreau,

2005; Hatano and Mesbahi, 2005; Tahbaz-Salehi and Jadbabaie, 2008; Zhang and Tian,

2009). An excellent survey paper can be found in Fang and Antsaklis (2006)

4
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1.3 Motivation and Contribution

In practice, there are many tasks requiring both repetitive executions and coordi-

nations among several independent entities. For example, it is useful for a group of

satellites to orbit the earth in formation for positioning or monitoring purposes (Ahn

et al., 2010). Each satellite orbiting the earth is a periodic task, and the formation task

fits perfectly in the ILC framework. Another example is the cooperative transportation

of a heavy load by multiple mobile robots (Bai and Wen, 2010; Yufka et al., 2010). In

such kind of task implementations, the robots have to maneuver in formation from the

very beginning to the destination. Besides, the economic dispatch problem in power

systems (Xu and Yang, 2013; Yang et al., 2013) and the formation control for ground

vehicles with nonholonomic constraints (Xu et al., 2011) also fall in this category. These

observations motivate the study of multi-agent coordination control from the perspec-

tive of ILC.

The objective of the thesis is to design and analyze iterative learning controllers for

multi-agent systems which perform collaborative tracking tasks repetitively. The main

contributions are summarized below.

1. In Chapter 2, a general consensus tracking problem is formulated for a group of

global Lipschitz continuous systems. It is assumed that the communication is

fixed and connected, and the perfect identical initialization condition is satisfied

as well. D-type ILC rule is proposed for the systems to achieve perfect consensus

tracking. By adoption of a graph dependent matrix norm, a local convergence

condition is devised at the agent level. In addition, optimal learning gain design

methods are developed for both directed and undirected graphs such that the λ -

norm of tracking error converges at the fastest rate.

5
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2. In Chapter 3, we investigate the robustness of D-type learning rule against com-

munication variations. It turns out that the controller is insensitive to iteration-

varying topology. In the most general case that the learning controller is still

convergent when the communication topology is uniformly strongly connected

over the iteration domain.

3. In Chapter 4, PD-type learning rule is proposed to deal with imperfect initializa-

tion condition as it is difficult to ensure perfect initial conditions for all agents due

to sparse information communication that only a few of the follower agents know

the desired initial state. The new learning rule offers two main features. On the

one hand, it can ensure controller convergence; one the other hand, the learning

gain can be used to tune the final tracking performance.

4. In Chapter 5, by combining the Lyapunov analysis method and contraction-mapping

analysis, we explore the applicability of P-type learning rule to several classes of

local Lipschitz nonlinear systems. Several sufficient convergence conditions in

terms of Lyapunov criteria are derived. In particular, the P-type learning rule can

be applied to Lyapunov stable system with quadratic Lyapunov functions, expo-

nentially stable system, system with bounded drift terms, and uniformly bounded

energy bounded state system under control saturation. The results greatly com-

plement to the existing literature.

5. In Chapter 6, composite energy function method is utilized to design adaptive

learning rule to deal with local Lipschitz systems that can be modeled by linear in

parameter form. With the help of a special parameterization method, the leader’s

trajectory can be treated as an iteration-invariant parameter that all the followers

can learn from local measurements. Besides, the initial rectifying action is ap-

6
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plied to reduce the effect of imperfect initialization condition. The method works

for high-order systems as well.

6. Lagrangian systems have wide applications in practice. For example, industry

robotic manipulators can be modeled by Lagrangian system. In Chapter 7, we

develop a set of distributed learning rules to synchronize networked Lagrangian

systems. In the controller design, we fully utilize the inherent features of La-

grangian systems, and the controller works under directed acyclic graph.

7



Chapter 2

Optimal Iterative Learning Control

for Multi-agent Consensus

Tracking

2.1 Background

The idea of using ILC for multi-agent coordination first appears in Ahn and Chen

(2009), where multi-agent formation control problem is studied for a group of global

Lipschitz nonlinear systems, in which the communication graph is identical to the for-

mation structure. When the tree-like formation is considered, the perfect formation

control can be achieved. In Xu et al. (2011), by incorporating with high-order inter-

nal model ILC (Liu et al., 2010), an iteratively switching formation problem is formu-

lated and solved in the same framework. The communication graphs are supposed to

be direct spanning trees as well. Liu and Jia (2012) improve the control performance

in Ahn et al. (2010). The formation structure can be independent of the communication

8
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topology, and time-varying communication is assumed in Liu and Jia (2012). The con-

vergence condition is specified at the group level by a matrix norm inequality, and the

learning gain can be designed by solving a set of linear matrix inequalities (LMIs). It

is not clear under what condition the set of LMIs admit a solution, and it is lack of in-

sight how the communication topologies relate to the convergence condition. In Meng

and Jia (2012), the idea of terminal ILC (Xu et al., 1999) is brought into consensus

problem. A finite-time consensus problem is formulated for discrete-time linear sys-

tems in ILC framework. It is shown that all the agents reach consensus at the terminal

time as iteration number goes to infinity. In Meng et al. (2012), the authors extend the

terminal consensus problem in their previous work to track a time-varying reference

trajectory over the entire finite-time interval. A unified ILC algorithm is developed for

both discrete-time and continuous-time linear agents. Necessary and sufficient condi-

tions in the form of spectral radius are derived to ensure the convergence properties.

Shi et al. (2014) develop a learning controller for second-order multi-agent systems to

perform formation control by using the similar approach.

In this chapter, we study the consensus tracking problem for a group of time-varying

nonlinear dynamic agents, where the nonlinear terms satisfy the global Lipschitz contin-

uous condition. The communication graph is assumed to be fixed. In comparison with

the current literature, the main challenges and contributions are summarized below: (1)

in Meng et al. (2012), the convergence condition for continuous-time agents is derived

based on the result of 2-dimensional system theory (Chow and Fang, 1998), which is

only valid for linear systems. By adoption of a graph dependent matrix norm and λ -

norm analysis, we are able to obtain the results for global Lipschitz nonlinear systems;

(2) in Liu and Jia (2012), the convergence condition is specified at the group level in the

9
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form of a matrix norm inequality, and learning gain is designed by solving a set of LMIs.

Nevertheless, owing to the graph dependent matrix norm, the convergence condition is

expressed at the individual agent level in the form of spectral radius inequalities in our

work, which are related to the eigenvalues associated with the communication graph. It

shows that these eigenvalues play crucial roles in the convergence condition. In addi-

tion, the results are less conservative than the matrix norm inequality since the spectral

radius of a matrix is less or equal to its matrix norm; (3) by using the graph dependent

matrix norm and λ -norm analysis, the learning controller design can be extended to het-

erogeneous systems; (4) the obtained convergence condition motivates us to consider

optimal learning gain designs which can impose the tightest bounding functions for the

actual tracking errors.

The rest of this chapter is organized as follows. In Section 2.2, notations and some

useful results are introduced. Next, the consensus tracking problem for heterogeneous

agents is formulated. Then, learning control laws are developed in Section 2.3, for both

homogeneous and heterogeneous agents. Next, optimal learning design methods are

proposed in Section 2.4, where optimal designs for undirected and directed graphs are

explored respectively. Then, an illustrative example for heterogeneous agents under

fixed directed graph is given in Section 2.5 to demonstrate the efficacy of the proposed

algorithms. Finally, we conclude this chapter in Section 2.6.

2.2 Preliminaries and Problem Description

2.2.1 Preliminaries

The set of real numbers is denoted by R, and the set of complex numbers is denoted

by Z. The set of integers is denoted by N, and i ∈ N≥0 is the number of iteration. For

10
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any z ∈ Z, ℜ(z) denotes its real part. For a given vector x = [x1,x2, · · · ,xn]
T ∈ Rn, |x|

denotes any lp vector norm, where 1≤ p≤∞. In particular, |x|1 =
n

∑
k=1
|xk|, |x|2 =

√
xT x,

and |x|∞ = max
k=1,...,n

|xk|. For any matrix A ∈ Rn×n, |A| is the induced matrix norm. ρ(A)

is its spectral radius. Moreover, ⊗ denotes the Kronecker product, and Im is the m×m

identity matrix.

Let C m[0,T ] denote a set consisting of all functions whose mth derivatives are con-

tinuous on the finite-time interval [0,T ]. For any function f(·) ∈ C [0,T ], the supremum

norm is defined as ‖f‖ = sup
t∈[0,T ]

|f(t)|. Let λ be a positive constant, the time weighted

norm (λ -norm) is defined as ‖f‖λ = sup
t∈[0,T ]

e−λ t |f(t)| .

Graph theory (Biggs, 1994) is an instrumental tool to describe the communication

topology among agents in the multi-agent systems, the basic terminologies and some

properties of algebraic graph theory are revisited in Appendix A. Please go through

Appendix A as the vertex set V represents the agent index and the edge set E describes

the information flow among agents.

For simplicity, 0-1 weighting is adopted in the graph adjacency matrix A . However,

any positive weighted adjacency matrix preserves the convergence results. The strength

of the weights can be interpreted as the reliability of information in the communication

channels. In addition, positive weights can represent the collaboration among agents.

Whereas, negative weights can represent the competition among agents. For example,

Altafini (2013) shows that the consensus can be reached on signed networks but the

consensus values have opposite signs. If the controller designer has the freedom to

select the weightings in the adjacency matrix, Xiao and Boyd (2004) demonstrate that

some of the edges may take negative weights in order to achieve the fastest convergence

rate in linear average algorithm. Although interesting, negative weighting is outside the

11
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scope of this thesis.

The following propositions and lemma lay the foundations for the convergence anal-

ysis in the main results.

Proposition 2.1 For any given matrix M ∈ Rn×n satisfying ρ(M) < 1, there exists at

least one matrix norm | · |S such that lim
k→∞

(|M|S)k = 0.

Proposition 2.1 is an extension of Lemma 5.6.10 in Horn and Johnson (1985). The proof

is given in Appendix B.1 as the idea in the proof will be used to prove Theorem 2.1 and

illustrate the graph dependent matrix norm.

Proposition 2.2 (Horn and Johnson, 1985, pp. 297) For any matrix norm | · |S, there

exists at least one compatible vector norm | · |s, and for any M ∈ Rn×n and x ∈ Rn,

|Mx|s ≤ |M|S|x|s.

The following Proposition 2.3, 2.4, and Lemma 2.1 will be utilized in the optimal

learning gain designs.

Proposition 2.3 (Xu and Tan, 2002b) Denoting the compact set I = [α1,α2], where

0 < α1 < α2 <+∞, the index

J = min
γ∈R

max
d∈I
|1−dγ|

reaches its minimum value α2−α1
α2+α1

when γ∗ = 2
α2+α1

.

Proposition 2.4 (maximum modulus theorem) (Zhou and Doyle, 1998) Let f (z) be a

continuous complex-value function defined on a compact set Z , and analytic on the

interior of Z , then | f (z)| cannot attain the maximum in the interior of Z unless f (z)

is a constant.

By using Proposition 2.4, Lemma 2.1 is proven in Appendix B.2.

12
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Lemma 2.1 When γ∗ = α1/α2
2 , the following min-max problem reaches its optimal

value

min
γ∈R

max
α1<a<

√
a2+b2<α2

|1− γ(a+ jb)|=

√
α2

2 −α2
1

α2
.

2.2.2 Problem Description

Consider a group of N heterogeneous time-varying dynamic agents who work in a

repeatable control environment. Their interaction topology is depicted by graph G =

(V ,E ,A ), which is iteration-invariant. At the ith iteration, the dynamics of the jth

agent take the following form:
ẋi, j(t) = f j(t,xi, j(t))+B j(t)ui, j(t)

yi, j(t) =C j(t)xi, j(t)
,∀t ∈ [0,T ], ∀ j ∈ V , (2.1)

with initial condition xi, j(0). Here xi, j(t) ∈ Rn j is the state vector, yi, j(t) ∈ Rm is the

output vector, ui, j(t) ∈ Rp j is the control input. For any j = 1,2, . . . ,N, the unknown

nonlinear function f j(·, ·) satisfies the global Lipschitz continuous condition with re-

spect to x uniformly in t,∀t ∈ [0,T ]. In addition, the time-varying matrices B j(t) and

C j(t) satisfy that B j(t) ∈ C 1[0,T ] and C j(t) ∈ C 1[0,T ].

The desired consensus tracking trajectory is denoted by yd(t) ∈ C 1[0,T ]. Mean-

while, the state of each agent is not measurable. The only information available is the

output signal of each agent.

Instead of a traditional tracking problem in ILC, in which each agent should know

the desired trajectory, yd(t) is only accessible to a subset of agents. We can think

of the desired trajectory as a (virtual) leader, and index it by vertex 0 in the graph

representation. Thus, the complete information flow can be described by another graph

Ḡ = (V ∪{0}, Ē , ¯A ), where Ē is the edge set and ¯A is the weighted adjacency matrix

of Ḡ .

13
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Let ξ i, j(t) denote the distributed information measured or received by the jth agent

at the ith iteration. More specifically,

ξ i, j(t)= ∑
k∈N j

a j,k(yi,k(t)−yi, j(t))+d j(yd(t)−yi, j(t)), (2.2)

where a j,k is the ( j,k)th entry in the adjacency matrix A , N j is the neighborhood

set of the jth agent, yi, j(t) is the output of the jth agent at the ith iteration, d j = 1 if

agent j can access the desired trajectory, i.e., there is an edge from the virtual leader

to the jth agent or (0, j) ∈ Ē , and d j = 0 otherwise. The tracking error is defined as

ei, j(t), yd(t)−yi, j(t).

The control objective is to design an appropriate iterative learning law such that the

output from each agent converges to the desired trajectory yd(t) when only some of the

agents know the desired trajectory.

To simplify the analysis, the following assumptions are used.

Assumption 2.1 For any j = 1,2, . . . ,N, the unknown nonlinear term f j(t,x) satisfies

|f j(t,z1)− f j(t,z2)| ≤ l j|z1− z2|, for any z1,z2 ∈ Rn j ,

where l j is a positive constant.

Remark 2.1 In the existing literature, contraction-mapping (CM) based ILC is only

applicable to global Lipschitz systems. Extension to local Lipschitz systems remains

open. Two possible research directions are available. If the nonlinear terms can be

linearly parameterized, composite energy function (CEF) based ILC (Xu and Tan, 2003)

can be applied to overcome the global Lipschitz assumption. The other method makes

use of the stability properties of system dynamics. By combining Lyapunov and CM

analysis methods, it is possible to extend CM based ILC to certain classes of local

Lipschitz continuous systems. This kind of methodology will be explored in Chapter 5.
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Assumption 2.2 C j(t)B j(t) is of full row rank for all t ∈ [0,T ].

Remark 2.2 The requirement that C j(t)B j(t) is of full row rank for any j = 1,2, . . . ,N

and any t ∈ [0,T ] can be relaxed if using the higher order derivatives of ξ i, j(t) (if they

do exist) in the learning updating law. The proof technique will be very similar. If the

higher order derivatives do not exist, some smooth approximations of these higher order

derivatives can be applied.

Assumption 2.3 The communication graph Ḡ contains a spanning tree with the (vir-

tual) leader being the root.

Remark 2.3 Assumption 2.3 is a necessary communication requirement for the solv-

ability of the consensus tracking problem. If there is an isolated agent, it is impossible

for that agent to follow the leader’s trajectory as it does not even know the control

objective. It is noted that the original communication graph G does not necessarily

contain a spanning tree. By selecting a (virtue) leader and its communication carefully,

under such a situation, the proposed updating law can still work.

Furthermore, the following identical initialization condition (i.i.c.) is needed.

Assumption 2.4 The systems are reset to the same initial state after each execution,

and ei, j(0) = 0 for any j = 1,2, . . . ,N, i ∈ N≥0.

Remark 2.4 The i.i.c. is a standard assumption in ILC design to ensure the perfect

tracking performance. It is possible to remove this condition with a sacrifice in track-

ing performance, but they require either extra system information or additional control

mechanisms, for instance, the initial state learning rule (Chen et al., 1999) and initial

rectifying action (Sun and Wang, 2002). Note that without perfect initial condition, per-

fect tracking can never be achieved. More discussions on various initial conditions in
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the learning context can be found in Park et al. (1999); Xu and Yan (2005); Chi et al.

(2008) and references therein. It is highlighted that only the output of each agent is

required to start from the same initial value as yd(0). For example, in many applica-

tions, the state of the system includes the position and velocity where the output is just

the velocity information. Under such a situation, it is very natural to assume that the

output has zero initial velocity as the desired trajectory. The initial condition problem

will be further explored in Chapters 4 and 6.

2.3 Main Results

In the consensus literature, consensus problem is usually studied for a group of

identical agents. Whereas, the problem formulation presented in systems (2.1) is very

general, in which all the parameters are agent dependent.

For simplicity, the learning law is first designed for multi-agent systems with iden-

tical agents. Then the results will be extended to heterogeneous systems (2.1).

2.3.1 Controller Design for Homogeneous Agents

Assume that in (2.1), each agent has identical dynamics, that is, f j(t,x) = f(t,x),

C j(t) =C(t), and B j(t) = B(t) for all j = 1,2, . . . ,N.

The following D-type updating law is used to solve the consensus tracking problem,

ui+1, j(t) = ui, j(t)+Γ(t)ξ̇ i, j(t), u0, j(t)≡ 0, (2.3)

where Γ(t) ∈ C 1[0,T ] is a time-varying learning gain matrix to be designed.

Remark 2.5 The updating law (2.3) sets zero initial condition for u0, j(t) for simplicity.

Some feedback law can be used to construct u0, j(t) such that the systems are stable in
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the time domain, which may be helpful for the transient performance in the learning

process.

The distributed measurement in (2.2) can be rewritten in terms of the tracking errors

as

ξ i, j(t) = ∑
k∈N j

a j,k(ei, j(t)− ei,k(t))+d jei, j(t). (2.4)

Define three column stack vectors in the ith iteration xi(t)= [xi,1(t)T ,xi,2(t)T , . . . ,xi,N(t)T ]T ,

ei(t)= [ei,1(t)T ,ei,2(t)T , . . . ,ei,N(t)T ]T , and ξ i(t)= [ξ i,1(t)
T ,ξ i,2(t)

T , . . . ,ξ i,N(t)
T ]T . Con-

sequently, (2.4) can be written in a compact form

ξ i(t) = ((L+D)⊗ Im)ei(t), (2.5)

where L is the Laplacian matrix of graph G , and D, diag(d1,d2, . . . ,dN).

By using (2.5), the updating law (2.3) can be rewritten in terms of the tracking

errors.

ui+1(t) = ui(t)+((L+D)⊗Γ(t))ėi(t). (2.6)

For convenience, we define λ j, j = 1,2, . . . ,N as the jth eigenvalue of L+D.

The following theorem summarizes the convergence properties of the consensus

algorithms (2.6).

Theorem 2.1 Assume that Assumptions 2.1 – 2.4 hold for the time-varying nonlinear

systems (2.1) with the systems’ parameters being identical. If the learning gain matrix

Γ(t) satisfies the following condition,

max
j=1,2..N

max
t∈[0, T ]

ρ (Im−λ j ·C(t) ·B(t) ·Γ(t))≤ ρ < 1, (2.7)

for some ρ ∈ (0,1), then there exists a positive constant λ such that

‖ei+1‖λ
≤ ρ ‖ei‖λ

,∀ j = 1,2, . . . ,N, (2.8)
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which indicates that lim
i→∞

yi, j(t) = yd(t) for all t ∈ [0, T ], j = 1,2, . . . ,N.

Proof: The tracking error of the jth agent between two consecutive iterations can

be expressed as

ei+1, j(t) = yd(t)−yi+1, j(t)

= ei, j(t)− (yi+1, j(t)−yi, j(t)),

which can be written as the following compact form,

ei+1(t) = ei(t)− (IN⊗C(t))(xi+1(t)−xi(t)). (2.9)

The state difference xi+1(t)−xi(t) can be calculated by integrating the system dynamics

(2.1) along the time domain,

xi+1(t)−xi(t)

= xi+1(0)−xi(0)+
∫ t

0

(
f̄(τ,xi+1)− f̄(τ,xi)+(IN⊗B(t))(ui+1(τ)−ui(τ))

)
dτ

(2.10)

where f̄(t,xi), [f(t,xi,1)
T , f(t,xi,2)

T , ..., f(t,xi,N)
T ]T .

According to Assumption 2.4, and using the updating law (2.6), it yields

xi+1(t)−xi(t)

=
∫ t

0

(
f̄(τ,xi+1)− f̄(τ,xi)+(L+D)⊗ (B(τ)Γ(τ))ėi(τ)

)
dτ. (2.11)

Apply integration by parts to the last term in (2.11), noting Assumption 2.4, it has

∫ t

0
(L+D)⊗ (B(τ)Γ(τ))ėi(τ) dτ

= (L+D)⊗ (B(t)Γ(t))ei(t)+
∫ t

0
(L+D)⊗

(
d

dτ
B(τ)Γ(τ)

)
ei(τ) dτ. (2.12)
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Substituting (2.12) into (2.11), we can obtain

xi+1(t)−xi(t) = (L+D)⊗B(t)Γ(t)ei(t)+
∫ t

0
[f̄(τ,xi+1)− f̄(τ,xi)] dτ

+
∫ t

0

(
(L+D)⊗

(
d

dτ
B(τ)Γ(τ)

)
ei(τ)

)
dτ. (2.13)

Then, substituting (2.13) to (2.9) yields

ei+1(t) = (ImN− (L+D)⊗C(t)B(t)Γ(t))ei(t)− (IN⊗C(t))
(∫ t

0
[f̄(τ,xi+1)− f̄(τ,xi)] dτ+∫ t

0

(
(L+D)⊗

(
d

dτ
B(τ)Γ(τ)

)
ei(τ)

)
dτ

)
. (2.14)

For simple presentation, the following constants are used in the sequel.

b1 , ‖IN⊗C(t)‖,

b2 ,

∥∥∥∥(L+D)⊗
(

d
dt

B(t)Γ(t)
)∥∥∥∥ ,

b3 , ‖(L+D)⊗B(t)Γ(t)‖.

Taking norm on both sides of (2.14), and noticing the Lipschitz condition in Assumption

2.1, we have

|ei+1(t)| ≤ ‖ImN− (L+D)⊗C(t)B(t)Γ(t)‖|ei(t)|

+b1k̄ f

∫ t

0
|xi+1(τ)−xi(τ)| dτ +b1b2

∫ t

0
|ei(τ)| dτ, (2.15)

where k̄ f is the global Lipschitz constant of f̄(·, ·).

Furthermore, taking λ -norm on both sides of (2.15) yields

‖ei+1‖λ ≤ ‖ImN− (L+D)⊗C(t)B(t)Γ(t)‖‖ei‖λ

+b1k̄ f ‖xi+1−xi‖λ

1− e−λT

λ
+b1b2‖ei‖λ

1− e−λT

λ
. (2.16)

To derive the convergence property of ‖ei‖λ along the iteration axis, it suffices to ex-

plore the relation between ‖xi+1−xi‖λ and ‖ei‖λ .
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Taking norm on both sides of (2.13), and applying the Lipschitz condition for sys-

tem nonlinearity f̄(·, ·), it is shown that

|xi+1(t)−xi(t)| ≤ b3|ei(t)|+ k̄ f

∫ t

0
|xi+1(τ)−xi(τ)| dτ +b2

∫ t

0
|ei(τ)| dτ.(2.17)

Next, taking λ -norm on both sides of (2.17) yields

‖xi+1−xi‖λ ≤ b3‖ei‖λ + k̄ f
1− e−λT

λ
‖xi+1−xi‖λ +b2

1− e−λT

λ
‖ei‖λ .(2.18)

Rearrange ‖xi+1−xi‖λ and ‖ei‖λ in (2.18),

‖xi+1−xi‖λ ≤ (b3 +b2
1− e−λT

λ
)(1− k̄ f

1− e−λT

λ
)−1‖ei‖λ . (2.19)

Substituting (2.19) to (2.16), ‖ei+1‖λ becomes

‖ei+1‖λ ≤ ‖ImN− (L+D)⊗C(t)B(t)Γ(t)‖‖ei‖λ +O(λ−1)‖ei‖λ , (2.20)

where

O(λ−1) = b1k̄ f (b3 +b2
1− e−λT

λ
)(1− k̄ f

1− e−λT

λ
)−1 1− e−λT

λ
+b1b2

1− e−λT

λ
.

As O(λ−1) is in the same order with λ−1, hence, it can be made negligibly small by

choosing a sufficiently large λ . As a result if

‖ImN− (L+D)⊗C(t)B(t)Γ(t)‖ ≤ ρ < 1, (2.21)

then, there exists 0 < ρ < ρ1 < 1 such that ‖ei+1‖λ ≤ ρ1‖ei‖λ .

Define M(t) , ImN − (L+D)⊗C(t)B(t)Γ(t). Based on Proposition 2.1, it is suffi-

cient to design a suitable Γ(t) such that ρ(M(t))≤ ρ, for all t ∈ [0,T ], then the consen-

sus tracking is fulfilled by (2.6). This is because when ρ(M(t)) ≤ ρ for all t ∈ [0,T ],

we can always find an appropriate matrix norm such that ‖M‖ ≤ ρ .

Note that M(t) ∈ RmN×mN , and the condition ρ(M(t)) ≤ ρ,∀t ∈ [0,T ] is specified

at the group level since it contains all the agents’ dynamics and the complete communi-

cation topology. It does not make much difference in the homogeneous case. However,
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we will see later that it becomes more complex in the heterogeneous case. Next, let us

derive the convergence condition at the agent level. For simplicity in the sequel, the

time argument is dropped when no confusion arises.

Follow the concepts in Appendix A, L+D can be decomposed in the following

form

∆ =U∗(L+D)U,

where ∆ is an upper triangular matrix with diagonal entries being the eigenvalues of

L+D, U is an associated unitary matrix, and ∗ denotes the conjugate transpose.

Let the matrix norm operation in the above development be defined as below

|·|,
∣∣[(QU∗)⊗ Im] (·) [(UQ−1)⊗ Im]

∣∣ ,
where Q is a constant matrix defined in Appendix A. Based on Proposition 2.2, there

always exists a corresponding vector norm which is compatible to previously defined

matrix norm. Hence, all the derivations here remain valid.

Then, we have

|M|

=
∣∣[(QU∗)⊗ Im][ImN− (L+D)⊗CBΓ][(UQ−1)⊗ Im]

∣∣
=
∣∣ImN− [(QU∗)(L+D)(UQ−1)]⊗CBΓ

∣∣
=
∣∣ImN− (Q∆Q−1)⊗CBΓ

∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



Im−λ1CBΓ (?) (?) (?)

0 Im−λ2CBΓ (?) (?)

...
...

. . .
...

0 0 · · · Im−λNCBΓ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.22)
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where (?) can be made arbitrarily small by choosing sufficiently large α in Q.

By Assumption 2.3 the leader has a path to any follower agent, then L+D is nonsin-

gular and all the eigenvalues have positive real parts (Ren and Beard, 2008). Together

with (2.22), we can conclude that if

max
j=1,2..N

max
t∈[0,T ]

ρ (Im−λ jC(t)B(t)Γ(t))≤ ρ,

then equation (2.21) holds, i.e., the tracking error ei(t) converges to zero as i goes to

infinity. �

Remark 2.6 The matrix norm defined in the proof depends on the communication

graph Ḡ as U is calculated from L+D, that is why we call it the graph dependent

norm. Such a norm enables us to derive a simpler convergence condition, and reveals

the insight of relation between communication topology and convergence property.

The convergence condition (2.7) is specified at the agent level, and it has the same

form as the traditional D-type ILC convergence condition. The influence of communica-

tion to the convergence condition is reflected through the eigenvalues λ j, j = 1,2, . . . ,N,

which are associated with the graph Ḡ . Hence, the local controller design is decoupled

from other agents’ dynamics. This motivates us to consider the heterogeneous agents.

Surprisingly, similar convergence condition applies to heterogeneous agents as well.

Detailed treatment is discussed in Section 2.3.2.

Remark 2.7 In Assumption 2.2, CB is assumed to be of full row rank. We can select

Γ = γ(CB)T (CB(CB)T )−1, then convergence condition becomes much simpler,

max
j=1,2..N

|1− γλ j|< 1. (2.23)

This expression motivates us to consider the optimal learning gain design in the sense

that ‖ei‖λ converges at the fastest rate, which is explored in Section 2.4.
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2.3.2 Controller Design for Heterogeneous Agents

Heterogeneity is the nature of multi-agent systems. Even for the same type of

agents, they may have the similar structures, but it is unlikely that they share the identi-

cal parameters. Consensus tracking problem for heterogeneous agents is more practical,

but of course more challenging.

Consider the model in (2.1). Notice that unlike the homogeneous systems case, all

the agent dynamics are different from each other now. As the target is for output con-

sensus tracking, the outputs from all agents should have the same dimension. Whereas,

the state dimensions may not necessarily be the same.

Now we adopt the following learning rule,

ui+1, j = ui, j +Γ jξ̇ i, j, (2.24)

where Γ j is the agent dependent learning gain matrix to be designed. The controller (2.24)

is similar to (2.3) in the homogeneous case, except that the learning gain Γ j is agent de-

pendent.

Writing (2.24) in a compact form, we have

ui+1 = ui +Γ((L+D)⊗ Im)ėi(t), (2.25)

where Γ = diag(Γ1,Γ2, . . . ,ΓN). Due to the heterogeneity, the structure of (2.25) is

rather different from the one in homogeneous case. Follow the similar development in

the previous section, eventually, we have

‖ei+1‖λ ≤ ‖ImN−CBΓ((L+D)⊗ Im)‖‖ei‖λ +O(λ−1)‖ei‖λ , (2.26)

where B = diag(B1,B2, . . . ,BN), and C = diag(C1,C2, . . . ,CN). If the agent dynamics

are identical, i.e., C j, B j, and Γ j are identical for different j, then (2.26) degenerates
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to (2.20). That means the homogeneous case is a special case of heterogeneous case.

Let M = ImN −CBΓ((L+D)⊗ Im), of course, if ρ(M) ≤ ρ < 1, ∀t ∈ [0,T ], then the

consensus tracking erorr ei(t) converges to zero along the iteration axis. The result is

summarized in the following corollary.

Corollary 2.1 Assume that Assumptions 2.1 – 2.4 hold for the time-varying nonlinear

systems (2.1). Under the control law (2.24), if the learning gain matrix Γ satisfies the

following condition,

max
t∈[0, T ]

ρ (ImN−CBΓ((L+D)⊗ Im))≤ ρ < 1,

for some ρ ∈ (0,1), then we have that lim
i→∞

yi, j(t)= yd(t) for all t ∈ [0, T ], j = 1,2, . . . ,N.

However, such a convergence condition is specified at the group level, the one at

agent level is preferred. Since CBΓ and (L+D)⊗ Im do not commute in general, the

matrix norm defined in previous section cannot be directly applied. Let the learning

gain Γ j = γ(C jB j)
T (C jB j(C jB j)

T )−1, then

M = ImN− γ((L+D)⊗ Im).

By using the matrix norm defined previously, we can get the following corollary.

Corollary 2.2 Let the learning gains Γ j = γ(C jB j)
T (C jB j(C jB j)

T )−1. Under the it-

erative learning rule (2.24), the heterogeneous agent systems (2.1) can achieve perfect

consensus tracking along the iteration axis, i.e., lim
i→∞

yi, j(t) = yd(t) for t ∈ [0,T ], if

max
j=1,2,...,N

|1− γλ j|< 1, (2.27)

where λ j is an eigenvalue of L+D.

By setting the learning gains equal to Γ j = γ(C jB j)
T (C jB j(C jB j)

T )−1, the convergence

condition in the heterogeneous case renders the same condition as in the homogeneous

case. This can be seen from (2.23) and (2.27).
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2.4 Optimal Learning Gain Design

Most ILC controllers converge asymptotically along the iteration axis. Faster and

monotonic convergence is usually desired. In the continuous-time system, the conver-

gence analysis relies on the λ -norm, which is essentially an exponentially time weighted

norm. However, it is well known that the monotonic convergence of λ -norm of error

does not imply the monotonic convergence of actual error. In fact, the actual error may

increase to a huge magnitude, and then gradually settles down to zero. Designing con-

trollers that enable monotonic convergence of error is still open for continuous-time

systems.

In this section, we are not trying to solve the monotonic convergence problem. The

optimal learning gain is designed in the sense that the λ -norm of error converges at the

fastest rate, which indeed imposes a tightest bounding function for the actual tracking

error. From the time weighted norm definition, it is not difficult to see that the λ -norm

of error is equivalent to the norm of error, i.e.,

‖ei‖λ ≤ ‖ei‖ ≤ eλT‖ei‖λ ,

where λ is a positive constant. From the above inequality, we notice that ‖ei‖ is bounded

by a constant times ‖ei‖λ . We still do not know how exactly the error behaves, but a

faster decaying ‖ei‖λ does impose a tighter bounding function for ‖ei‖. This is the main

rational for the development here. The systems’ transient responses depend on not only

the controllers, but also the systems dynamics. However, the time-varying nonlinear

terms f j(t,x) are unknown. So ensuring the fastest convergence of ‖ei‖λ is the best one

can expect.

By setting Γ j = γ(C jB j)
T (C jB j(C jB j)

T )−1, it has been shown in the previous two

sections that both homogeneous and heterogeneous systems render the same conver-
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gence condition. Thus, the optimal designs for the two different cases can be unified.

The decaying rate of ‖ei‖λ is determined by

max
ω
|1−ωγ| , (2.28)

where ω ∈ Λ , {λ1,λ2, . . . ,λN}, is an eigenvalue of L+D. Depending on the com-

munication graph, if the graph is undirected, the eigenvalues of L+D are positive real

numbers. Whereas, for directed graph, the eigenvalues contain complex numbers in

general, and all the eigenvalues have positive real parts. Hence, optimal learning gain

designs for undirected and directed graphs have to be discussed separately.

To achieve the fastest convergence rate for ‖ei‖λ , (2.28) should be minimized by γ .

Subsequently, we can formulate the optimal learning gain design problem as a min-max

optimization problem, and the central task is to find an optimal γ∗ such that the objective

function given in (2.29) is minimized.

J = min
γ

max
ω∈Λ

|1−ωγ|. (2.29)

Theorem 2.2 gives the optimal solution to the optimization problem (2.29) when the

underlying communication graph is undirected.

Theorem 2.2 When the communication graph among followers is undirected, i.e., L+

D is symmetric, the solution to the optimization problem (2.29) is

γ
∗ =

2
λ1 +λN

, Jmin =
λN−λ1

λN +λ1
,

where λ1 = min(Λ), λN = max(Λ).

Theorem 2.2 is a direct application of Proposition 2.3, hence, the proof is omitted. In

Theorem 2.2, the minimum J can be written as

Jmin =
1−λ1/λN

1+λ1/λN
,
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where λ1
λN

is usually called the eigenratio (Altafini, 2013; Duan and Chen, 2012) in

consensus (synchronization) literature. So both the smallest and largest eigenvalues of

L+D together determine the optimal convergence rate. If the eigenratio is close to 1,

we can get a faster convergence rate. This is a unique feature of ILC based consensus

algorithm.

When the communication topology is directed, the eigenvalues of L +D can be

complex. It is difficult to derive a general solution for (2.29) because Λ is a set of

complex numbers. To find a suboptimal solution, define a compact region Ω, which

contains all the eigenvalues of L+D,

Ω = {z ∈ Z |ℜ(z)≥min
j
(ℜ(λ j)) = α1, |z| ≤max

j
(|λ j|) = α2}.

Obviously, Λ⊂Ω. Hence, the solution for

J = min
γ

max
ω∈Ω

|1−ωγ| (2.30)

is a suboptimal solution for (2.29). Now it is straightforward to extend the result to

directed graph by using Lemma 2.1.

Theorem 2.3 When the communication graph among followers is directed, i.e., L+D

is asymmetric, a suboptimal solution to the problem (2.29) is

γ
∗ =

α1

α2
2
, Jmin =

√
α2

2 −α2
1

α2
,

where α1 = min
j=1,2,...N

(ℜ(λ j)), α2 = max
j=1,2,...N

(|λ j|).

Remark 2.8 To find out the suboptimal solution, we purposely enlarge the search re-

gion from Λ to Ω, where Λ ⊂ Ω. Hence, the suboptimal solution may be conservative.

However, suboptimal solution has two advantages. On the one hand, the method can

be applied when the eigenvalues are not exactly known, but the region where they are
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located is known. On the other hand, the suboptimal solution is robust against small

variations in the communication graph. When the exact eigenvalues are known, numer-

ical methods should be adopted to minimize the objective function (2.29), which renders

a global optimal solution.

Remark 2.9 For the optimal learning gain designs, one needs the complete information

of the communication topology. This is the trade-off between systems information avail-

ability and performance. When the number of agents is huge, obtaining the eigenvalues

of L+D is computationally difficult. The analytical bounds of eigenvalues can be cal-

culated from the results in Zhang (2011). Alternatively, Gershgorin disk theorem (Horn

and Johnson, 1985) can be applied to estimate the eigenvalue region. When the detailed

information of the graph is unknown, we can simply set 0 < γ < 1/max j(l j j+d j). If the

leader agent has a path to any follower agent, this ensures that ρ(M)< 1 and consensus

tracking can be achieved along the iteration axis.
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2.5 Illustrative Example

To illustrate the efficacy of the proposed consensus schemes, consider a network

consisting of four heterogeneous follower agents. The agent models are governed by
ẋi,1 =

 0.5cos(xi,11)+0.2xi,12

−0.1sin(xi,12)

+
 1 1.5

1 −1

ui,1,

yi,1 =

[
1 1

]
xi,1;

ẋi,2 =

 −0.1xi,21 +0.2xi,22

sin(t)xi,21

+
 1 2

3 4

ui,2,

yi,2 =

[
2 3

]
xi,2;

ẋi,3 =


0.2sin(xi,31)

−0.2sin(xi,32)

−0.4cos(xi,33)

+


1 2

3 4

0.5 0.6

ui,3,

yi,3 =

[
1 1 0.5

]
xi,3;

ẋi,4 =


−0.2xi,41−0.1xi,42

sin(xi,42)

−0.3xi,43

+


1 −1

0.5 1

2 1

ui,4,

yi,4 =

[
0.5 0.7 0.3

]
xi,4.

The desired reference trajectory is

yd = t +2sin(t), t ∈ [0,5]. (2.31)

The information exchange among followers is assumed to be fixed and directed.

Figure. 2.1 shows the information flow among agents. The virtual leader is labeled

by vertex 0 in the communication graph, and it has edges (dash arrows) to agents 1 and

4. The communication among followers is depicted by solid arrows. Notice that the
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1 2

4 3

0

Figure 2.1: Communication topology among agents in the network.

communication graph among followers is not connected. However, the communication

graph including the leader contains a spanning tree with the leader being the root. We

adopt 0−1 weighting, thus, the Laplacian for follower agents is

L =



1 −1 0 0

0 1 −1 0

−1 −1 2 0

0 0 0 0


,

and D = diag(1,0,0,1). The eigenvalues of L +D are {0.16,1.00,2.42± j0.61} ( j

here denotes
√
−1). Since the eigenvalues are exactly known, we adopt a linear search

algorithm to find out the optimal γ∗ that minimizes objective function (2.29). It turns

out that γ∗ = 0.73. Let the learning gains

Γ j = γ
∗(C jB j)

T (C jB j(C jB j)
T )−1,

where j = 1,2,3,4. Check the convergence condition (2.27), we can obtain that

max
j=1,2,3,4

|1−λ jγ
∗|= 0.88 < 1.

Therefore, the convergence condition in Corollary 2.2 is satisfied, and the consensus

tracking is achievable by the ILC rule (2.24).
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Figure 2.2: Tracking errors of all agents at different iterations.
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Figure 2.3: Maximum tracking error vs. iteration number.

In the simulation example, the identical initial condition is assumed, i.e., ei(0) = 0,

and all the agents are reset to the same initial position after one iteration. The control
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signals at the zeroth iteration are set to zero, i.e., u0, j = 0, for all agents. Figure. 2.2

shows the agents’ output tracking errors yd(t)− yi, j(t) at the 1st, 15th, 30th, and 50th

iterations. At the 1st iteration, the trajectories of followers have very large deviations

from the desired one. As it can be seen from Figure. 2.2, the tracking errors are grad-

ually reduced by the learning controllers, and they are almost eliminated at the 50th

iteration. Figure. 2.3 shows the maximum error convergence profile versus iteration

number. As the iteration number increases, all agents’ outputs asymptotically converge

to the desired trajectory (2.31).

2.6 Conclusion

In this chapter, a consensus tracking problem is formulated for a group of global

Lipschitz nonlinear systems. A distributed D-type ILC control law is studied for the

consensus tracking problem for both homogeneous and heterogeneous systems. By

adoption of a graph dependent matrix norm, the convergence condition is specified at

the agent level, which makes the learning gain design decoupled from other agents’

dynamics. In addition, optimal learning gain design methods are developed for both

undirected and directed graphs, in the sense that the λ -norm of the tracking error decays

at the fastest rate, which imposes a tightest bounding function for the actual tracking

error. A consensus tracking example for heterogeneous agent systems under directed

graph is given to demonstrate the effectiveness of the developed design methods.
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Chapter 3

Iterative Learning Control for

Multi-agent Coordination Under

Iteration-varying Graph

3.1 Background

Multi-agent coordination and control problems are usually studied under fixed com-

munication topology. However, the fixed communication is restrictive and difficult to be

maintained by the multi-agent systems. The switching communication is more general

and has profound implications on implementation issues. If the developed controller

works under switching graph, that means the controller is more robust to communi-

cation variations such as link failure and creation. Thus it is important to study the

switching communication topology and its impact on the convergence results.

Consensus problem under switching graph has been investigated by many researchers

(Olfati-Saber and Murray, 2004; Hatano and Mesbahi, 2005; Moreau, 2005; Cao et al.,
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2005; Wu, 2006; Hong et al., 2006; Zhang and Tian, 2009). An excellent survey pa-

per on communication assumptions and convergence results is reported by Fang and

Antsaklis (2006). Many interesting results are explored in the literature, for example,

the consensus results under uniformly connected union graph or random graph. How-

ever, it is still unclear how the switching communication affects the stability and conver-

gence of ILC based controllers for multi-agent coordination. In the existing consensus

tracking by ILC works Ahn and Chen (2009); Xu et al. (2011); Yang et al. (2012); Yang

and Xu (2012); Meng et al. (2012); Liu and Jia (2012); Li and Li (2013), the commu-

nication topology is assumed to be fixed, except for Liu and Jia (2012) in which the

communication graph is time-varying but connected at every time instance. This chap-

ter focuses on analyzing the stability and convergence properties of the learning con-

troller under iteration-varying communication topology. First, the convergence property

is derived for fixed strongly connected graph. The analyzing method will be used to de-

rive more general results later. Next, the results are developed for iteration-varying

graph which is strongly connected in each iteration. Lastly, the results are generalized

to the uniformly strongly connected graph along the iteration axis. Very recently we

noticed some publications on switching graph by applying ILC. The authors in Meng

et al. (2013a,b, 2014) studied the similar problem and obtained some meaningful re-

sults. The fundamental difference is that they adopted 2D system theory approach to

analyze the controller convergence for discrete-time system models. Whereas, we are

applying λ -norm methods for continuous-time models.

This chapter is organized as follows. The consensus tracking problem under switch-

ing communication is formulated in Section 3.2. Next, the convergence results under

various communication assumptions are developed in Section 3.3. To verify the re-
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sults, a numerical example is presented in Section 3.4. Lastly, Section 3.5 draws the

conclusion.

3.2 Problem Description

Consider a group of N dynamic agents, and the jth agent is governed by the follow-

ing nonlinear model, 
ẋi, j(t) = f(xi, j(t))+Bui, j(t)

yi, j(t) =Cxi, j(t)
∀ j ∈ V , (3.1)

where i denotes the iteration number, xi, j ∈Rn is the state vector, yi, j ∈Rm is the output

vector, ui, j ∈ Rp is the control input, f(xi, j) is a global Lipschitz nonlinear function of

xi, j, and B, C are constant matrices of compatible dimensions. In particular, CB is of

full column rank, f(·) is unknown and satisfies

|f(z1)− f(z2)| ≤ L f |z1− z2|, for any z1,z2 ∈ Rn,

where L f is an unknown Lipschitz constant.

For simplicity, the time argument, t, is dropped when no confusion arises.

The desired trajectory yd(t) is defined on a finite-time interval [0,T ], which is gen-

erated by the following dynamics,
ẋd = f(xd)+Bud ,

yd =Cxd .

(3.2)

The communication topology among the agents is described by an iteration-varying

graph G (i) = (V ,E (i),A (i)). The desired trajectory can be treated as a virtual leader,

and denote it as vertex 0 in the graph representation. Assume that only a few of the

agents in the network know the desired trajectory. Therefore vertex 0 has directed edges
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to those follower agents who have the knowledge of yd in the graph representation.

Together with G (i), the complete information flow among the followers and the leader

can be depicted by a new graph Ḡ (i) = (V ∪{0}, Ē (i), ¯A (i)), where Ē (i) and ¯A (i) are

the corresponding edge set and adjacency matrix.

Based on the communication topology, let the extended tracking error for agent j at

the ith iteration be

ξ i, j = ∑
k∈N j(i)

a j,k(i)(yi,k−yi, j)+d j(i)(yd−yi, j), (3.3)

where a j,k(i) is the ( j,k)th entry of the adjacency matrix A (i), d j(i) = 1 if the jth agent

can access the virtual leader’s output at the ith iteration, and d j(i) = 0 otherwise. The

extended tracking error ξ i, j contains only local information. As such it can be used for

distributed controller design.

The commonly applied D-type ILC rule is adopted in this chapter,

ui+1, j = ui, j +Γiξ̇ i, j, (3.4)

where Γi is the learning gain to be designed.

Remark 3.1 The derivative term of ξ i, j is utilized in the learning rule (3.4). Note

that ξ i, j is only used in the (i+ 1)th iteration. Therefore, it is already available at

the (i+ 1)th iteration. As measured signals are usually contaminated by noise, some

sophisticated numerical method should be applied to obtain ξ̇ i, j without generating

large amount of noise. For example, the filtered differentiation method in (Slotine and

Li, 1991, pp.202) is a simple but effective candidate. In fact, such kind of non-causal

implementation is one distinct feature of ILC.

Before presenting the convergence properties of control law (3.4) under various com-

munication assumptions, the identical initialization condition (i.i.c.) is imposed.
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Assumption 3.1 The initial condition of each agent is reset to the desired initial con-

dition at every iteration, i.e., xi, j(0) = xd(0).

The i.i.c. is the most commonly used assumption in ILC literature. Remark 2.4 dis-

cusses the relaxation or removal of i.i.c. at the cost of imperfect tracking performance.

We will further investigate this issue in Chapter 4.

Initially we discuss the convergence properties under fixed communication topol-

ogy, but eventually we will investigate the most general communication graph as below.

Definition 3.1 Consider an iteration-varying graph G (i). The graph is said to be uni-

formly strongly connected along the iteration axis, if there exists a constant integer K

such that the union graph ∪r+K
s=r G (s) is strongly connected for all r.

3.3 Main Results

In this section, convergence properties of control law (3.4) are investigated under

three different communication assumptions. First, the convergence result is derived for

fixed strongly connected graph in Section 3.3.1. The proof is detailed here and it will

be referred by Subsections 3.3.2 and 3.3.3. Next the result is extended to iteration-

varying strongly connected graph in Subsection 3.3.2. Finally, generalization to uni-

formly strongly connected graph is presented in Subsection 3.3.3.

3.3.1 Fixed Strongly Connected Graph

In this subsection, assume the communication topology is a fixed strongly connected

graph, and at least one of the follower agents can access the leader’s trajectory. The

following two lemmas are introduced here as they will be utilized in the main proof.
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Lemma 3.1 For a given matrix M, if its spectral radius ρ(M) < 1, then there exist

positive constants c1 > 0, and 0 < ρ < 1, such that ‖Mk‖ ≤ c1ρk.

Proof: Since ρ(M) < 1, M is a stable matrix, i.e., Mk converges to zero exponentially

as k goes to infinity. Therefore, it is straightforward to conclude Lemma 3.1. �

In Lemma 3.1, c1 is a positive constant. For convenience, choose c1 ≥ 1 in the

following development, since when c1 < 1, Lemma 3.1 still holds by setting c1 = 1.

Lemma 3.2 Consider a positive sequence {ai} satisfying that

ai+1 = c1ρ
ia1 +

c2

λ −L f
(ρ i−1a1 +ρ

i−2a2 + · · ·+ai),

for i≥ 1, where L f , c1, and c2 are positive constants, 0 < ρ < 1. If λ > L f +
c2

1−ρ
, then

ai→ 0.

Proof: By hypothesis,

ai+1 = c1ρ
ia1 +

c2

λ −L f
(ρ i−1a1 +ρ

i−2a2 + · · ·+ai). (3.5)

Then, for i≥ 2, we have

ai = c1ρ
i−1a1 +

c2

λ −L f
(ρ i−2a1 +ρ

i−3a2 + · · ·+ai−1), (3.6)

From (3.5) and (3.6) we can obtain,

ai+1−ρai =
c2

λ −L f
ai,

ai+1 =

(
ρ +

c2

λ −L f

)
ai.

As λ > L f +
c2

1−ρ
, we have ρ + c2

λ−L f
< 1. Hence, ai→ 0. �

Let the learning gain be identical for all iterations since the communication graph

is fixed,

Γ =
1
q
[(CB)TCB]−1(CB)T , (3.7)
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where

q > max
j=1...N

N

∑
k=1

a j,k +d j.

To be more accurate, a j,k and d j in the inequality above are supposed to be a j,k(i)

are d j(i). As the graph is iteration-invariant, the iteration index i is omitted.

Now define the actual tracking error ei, j = yd−yi, j, together with (3.3), the control

law (3.4) can be rewritten in a compact form,

ui+1 = ui +(H⊗Γ)ėi, (3.8)

where ui and ei are the column stack vectors of ui, j and ei, j, H = L+D, L is the Lapla-

cian matrix of G , D = diag(d1,d2, . . . ,dN), and ⊗ denotes the Kronecker product.

Theorem 3.1 Consider the multi-agent systems (3.1) under Assumption 3.1, the learn-

ing gain (3.7), and control law (3.8). If the communication topology is a fixed strongly

connected graph, and at least one of the followers in the network has access to the vir-

tual leader’s trajectory, then the tracking error ei, j converges to zero along the iteration

axis, i.e., limi→∞ ei, j = 0.

Proof: Define δui, j = ud −ui, j, δxi, j = xd − xi, j, and δ f(xi, j) = f(xd)− f(xi, j). Sub-

tracting (3.1) from (3.2) yields

δ ẋi, j = δ f(xi, j)+Bδui, j. (3.9)

Let δui, δxi, and δ f(xi) be the column stack vectors of δui, j, δxi, j, and δ f(xi, j), respec-

tively. Then, (3.9) can be written as

δ ẋi = δ f(xi)+(IN⊗B)δui, (3.10)

where I is the identity matrix, and the subscript denotes its dimension.
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Let us investigate the variation of δui between two consecutive iterations. From the

learning rule (3.8), we have

δui+1 = δui− (H⊗Γ)ėi,

= δui− (H⊗Γ)(IN⊗C)δ ẋi. (3.11)

Substitute (3.10) to (3.11), and notice the learning gain (3.7), then we can obtain

δui+1 =

((
IN−

1
q

H
)
⊗ Ip

)
δui− (H⊗ΓC)δ f(xi). (3.12)

For simplicity, denote M =
(

IN− 1
q H
)
⊗ Ip, and F = H ⊗ΓC. From (3.12), we can

obtain the relation between δui+1 and δu1 below

δui+1 = Mi
δu1−Mi−1Fδ f(x1)−Mi−2Fδ f(x2)−·· ·−Fδ f(xi). (3.13)

Since the communication graph is strongly connected,
(

IN− 1
q H
)

must be an ir-

reducible matrix. Notice that q is larger than the greatest diagonal entry of H, and D

contains at least one positive entry, hence, at least one row sum of
(

IN− 1
q H
)

is strictly

less than one. Therefore,
(

IN− 1
q H
)

is a substochastic matrix. By using the Corollary

6.2.28 in (Horn and Johnson, 1985, pp.363), we can conclude that the spectral radius

ρ

(
IN− 1

q H
)
< 1. Note that M and

(
IN− 1

q H
)

have the same spectrum, except that

each eigenvalue of M has multiplicity of p. Therefore, ρ(M)< 1. Take infinity norm of

(3.13), and apply global Lipschitz condition on f(·) and Lemma 3.1, we have

|δui+1| ≤ c1ρ
i|δu1|+ c1L f ρ

i−1|F ||δx1|+ c1L f ρ
i−2|F ||δx2|+ · · ·+L f |F ||δxi|,

(3.14)

where 0 < ρ < 1 and satisfies the inequality in Lemma 3.1.

Integrating (3.10) together with Assumption 3.1 yields

δxi ≤
∫ t

0
(δ f(xi)+(IN⊗B)δui) dτ. (3.15)
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Taking norm operations on both sides of (3.15), and applying the Gronwall-Bellman’s

Lemma, we have

|δxi| ≤
∫ t

0
eL f (t−τ)|IN⊗B||δui|dτ. (3.16)

Taking λ -norm of (3.16) yields

‖δxi‖λ ≤
1

λ −L f
‖IN⊗B‖‖δui‖λ . (3.17)

Taking λ -norm of (3.14), together with (3.17), yields

‖δui+1‖λ

≤ c1ρ
i‖δu1‖λ + c1ρ

i−1 L f

λ −L f
‖IN⊗B‖‖F‖‖δu1‖λ

+c1ρ
i−2 L f

λ −L f
‖IN⊗B‖‖F‖‖δu2‖λ + · · ·+

L f

λ −L f
‖IN⊗B‖‖F‖‖δui‖λ .(3.18)

We can purposely choose c1 ≥ 1, and denote c2 = c1L f ‖IN⊗B‖‖F‖, thus, we have

‖δui+1‖λ

≤ c1ρ
i‖δu1‖λ +

c2

λ −L f
ρ

i−1‖δu1‖λ

+
c2

λ −L f
ρ

i−2‖δu2‖λ + · · ·+ c2

λ −L f
‖δui‖λ . (3.19)

Choose a λ > L f +
c2

1−ρ
. Applying Lemma 3.2 and comparison Lemma, it can be con-

cluded that δui, j→ 0 along the iteration axis, hence, limi→∞ ei, j = 0. �

Remark 3.2 From the proof to Lemma 3.2, the sequence {ai} converges to zero expo-

nentially. As Theorem 3.1 is proved by using Lemma 3.2, the λ -norm of δui, ‖δui‖λ ,

should also converge to zero exponentially. From the definition of λ -norm, it can be

shown that ‖δui‖ ≤ eλT‖δui‖λ . Note that eλT is a constant. Therefore, ‖δui‖ and the

tracking error ‖ei‖ both converge to zero exponentially as well.
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3.3.2 Iteration-varying Strongly Connected Graph

In this subsection, we assume the communication topology is iteration-varying, but

the graph is fixed and strongly connected in each iteration. Furthermore, at least one of

the followers has access to the leader’s trajectory in every iteration.

We adopt the following iteration-varying learning gain

Γ(i) =
1

q(i)

(
(CB)TCB

)−1
(CB)T , (3.20)

where Γ(i) depends on the iteration index i, and

q(i)> max
j=1...N

N

∑
k=1

a j,k(i)+d j(i).

ILC rule (3.8) becomes

ui+1 = ui +(H(i)⊗Γ(i))ėi. (3.21)

Since the communication topology is iteration-varying, the system matrix M in

(3.12) is iteration-varying as well, and Lemma 3.1 is no longer applicable to show the

convergence result. Therefore, we develop two preliminary results first before present-

ing the main convergence property.

Lemma 3.3 Let M ⊂ RN×N denote the set of all irreducible substochastic matrices

with positive diagonal entries, then we have

|M(N)M(N−1) · · ·M(1)|< 1,

where M(k), k = 1,2, . . . ,N, are N matrices arbitrarily selected from M .

Proof: We show the result by induction. Let 1(·) be a vector with all elements being 1.

The subscript (·) denotes its dimension, and the subscript is omitted when the dimension

is clear in the context.
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Since the M(k) is a substochastic matrix, therefore, at least one element in the vector

M(1)1 must be strictly less than 1.

Next, assume that multiplication of k matrices from M has k row sums less than 1.

Without loss of generality, assume the first k row sums less than 1, that is

M(k)M(k−1) · · ·M(1)1 =

 α

1N−k

 ,
where α ∈ Rk with all elements less than 1.

Then, investigate the multiplication of k+1 matrices from M . Set M11(k+1) M12(k+1)

M21(k+1) M22(k+1)


 α

1N−k

=

 β

γ

 .
Since the diagonal entries of M11(k+ 1) are positive, all the elements in β have to be

less than 1. If γ = 1N−k, it implies M21(k+1) is a zero block matrix, and it contradicts

to the fact M(k+ 1) is irreducible. So multiplication of k+ 1 matrices from M must

have at least k+1 row sums less than 1. This completes the proof. �

Lemma 3.4 Consider a positive sequence {ai} satisfying that

ai+1 = ρ
b i

N ca1 +
c2

λ −L f

(
ρ
b i−1

N ca1 +ρ
b i−2

N ca2 + · · ·+ρ
b i−i

N cai

)
,

for i ≥ 1, where b·c stands for the floor function, L f and c2 are positive constants,

0 < ρ < 1. If ρ +
(

1+ c2
λ−L f

)N
−1 < 1, then ai→ 0.

Proof: First we investigate how ai+1 evolves for i = 1,2, . . . ,N−1. By hypothesis, we

have

ai+1 = a1 +
c2

λ −L f
(a1 +a2 + · · ·+ai),

and

ai = a1 +
c2

λ −L f
(a1 +a2 + · · ·+ai−1).

43



Chapter 3. Iterative Learning Control for Multi-agent Coordination Under
Iteration-varying Graph

Therefore, we have

ai+1 =

(
1+

c2

λ −L f

)
ai, i = 1,2, . . . ,N−1.

Subsequently, we can find a general formula for ai+1,

ai+1 =

(
1+

c2

λ −L f

)i

a1, i = 1,2, . . . ,N−1. (3.22)

Next, let us study the relation between aN+1 and a1.

aN+1 = ρa1 +
c2

λ −L f
(a1 +a2 + · · ·+aN). (3.23)

Noticing (3.22), equation (3.23) can be simplified below

aN+1 = ρa1 +
c2

λ −L f

(
1+
(

1+
c2

λ −L f

)
+

(
1+

c2

λ −L f

)2

+ · · ·+
(

1+
c2

λ −L f

)N−1
)

a1

= ρa1 +
c2

λ −L f

(
1+ c2

λ−L f

)N
−1(

1+ c2
λ−L f

)
−1

a1

= (ρ +

(
1+

c2

λ −L f

)N

−1)a1.

By using the similar procedure above, eventually, we can obtain that

akN+1 =

(
ρ +

(
1+

c2

λ −L f

)N

−1

)k

a1.

Hence, if ρ +(1+ c2
λ−L f

)N−1 < 1, ai→ 0. �

The next theorem shows the convergence result for iteration-varying communica-

tion.

Theorem 3.2 Consider the multi-agent systems (3.1) under Assumption 3.1, the learn-

ing gain (3.20), and control law (3.21). If the communication graph is iteration-varying,

but in each iteration, the graph is fixed and strongly connected, and at least one of the

followers in the network has access to the virtual leader’s trajectory, then the tracking

error ei, j converges to zero along the iteration axis, i.e., limi→∞ ei, j = 0.
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Proof: Denote M(i) =
(

IN− 1
q(i)H(i)

)
⊗ Ip, and F(i) = H(i)⊗Γ(i)C. For notational

simplicity, define M(i,k) = M(i)M(i−1) · · ·M(k) for i≥ k.

Follow the analysis framework in the proof of Theorem 3.1, we can get

δui+1 = M(i,1)δu1−M(i−1,1)F(1)δ f(x1)

−M(i−2,2)F(2)δ f(x2)−·· ·−F(i)δ f(xi). (3.24)

From the definition of Γ(i) in (3.20), we can show that M(i) is a substochastic matrix

with positive diagonal entries. Take infinity norm on both sides of equation (3.24), we

can obtain

|δui+1| ≤ |M(i,1)||δu1|+L f |M(i−1,1)||F(1)||δx1|

+L f |M(i−2,2)||F(2)||δx2|+ · · ·+L f |F(i)||δxi|. (3.25)

Group every N matrices product together in (3.25), and apply Lemma 3.3, we have

|δui+1| ≤ ρ
b i

N c|δu1|+L f ρ
b i−1

N c|F(1)||δx1|

+L f ρ
b i−2

N c|F(2)||δx2|+ · · ·+L f |F(i)||δxi|. (3.26)

Taking λ -norm of (3.26), and substituting in equation (3.17) yield,

‖δui+1‖λ ≤ ρ
b i

N c‖δu1‖λ +
L f

λ −L f
‖IN⊗B‖ρb

i−1
N c‖F(1)‖‖δu1‖λ

+
L f

λ −L f
‖IN⊗B‖ρb

i−2
N c‖F(2)‖‖δu2‖λ

+ · · ·+
L f

λ −L f
‖IN⊗B‖‖F(i)‖‖δui‖λ . (3.27)

Let c2 = maxi
k=1 L f ‖F(k)‖‖IN⊗B‖, (3.27) becomes

‖δui+1‖λ ≤ ρ
b i

N c‖δu1‖λ +
c2

λ −L f

(
ρ
b i−1

N c‖δu1‖λ +ρ
b i−2

N c‖δu2‖λ + · · ·

+ρ
b i−i

N c‖δui‖λ

)
,

Based on the result in Lemma 3.4, we can conclude that δui, j→ 0 along the iteration

axis, hence, limi→∞ ei, j = 0 as well. �
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3.3.3 Uniformly Strongly Connected Graph

In this subsection, we further generalize the results in the previous two subsections.

Let the communication be the uniformly strongly connected graph as defined in Defini-

tion 3.1. Such a condition is much more flexible than the communication assumptions

in Theorem 3.1 and Theorem 3.2. The following Lemma is required to generalize our

results obtained previously.

Lemma 3.5 Let i≥ 2 be an integer and let Q1,Q2, . . . ,Qi ∈ RN×N be nonnegative ma-

trices. Suppose the diagonal entries of Qk (k = 1,2, . . . , i) are positive, then there exists

a γ > 0 such that

Q1Q2 · · ·Qi � γ (Q1 +Q2 + · · ·+Qi) ,

where � is defined entrywise.

The proof of Lemma 3.5 can be found in Jadbabaie et al. (2003).

The theorem below presents the most general convergence result in this chapter.

Theorem 3.3 Consider the multi-agent systems (3.1) under Assumption 3.1, the learn-

ing gain (3.20), and control law (3.21). If the communication graph is uniformly

strongly connected along the iteration axis with upper bound K, and in every K consec-

utive iterations, if there is at least one of the followers in the network having access to

the virtual leader’s trajectory, then the tracking error ei, j converges to zero along the

iteration axis, i.e., limi→∞ ei, j = 0.

Proof: Let M̃(i) = IN − 1
q(i)H(i). M̃(i) is a nonnegative matrix with positive diagonal

entries. Since the communication graph is uniformly strongly connected along the iter-

ation axis with upper bound K, and applying Lemma 3.5, we can get that M̃(i+K, i) is

an irreducible nonnegative matrix for any i. Furthermore, if there is at least one follower
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4 1i k �

4 4i k � 4 3i k �

4 2i k �

Figure 3.1: Communication topology among agents in the network.

in network having access to the leader’s trajectory within the iteration interval [i, i+K],

then M̃(i+K, i) is a substochastic matrix.

Now follow the same idea in the proof of Theorem 3.2, eventually, we can obtain

that

‖δui+1‖λ ≤ ρ
b i

NK c‖δu1‖λ +
c2

λ −L f

(
ρ
b i−1

NK c‖δu1‖λ +ρ
b i−2

NK c‖δu2‖λ + · · ·

+ρ
b i−i

NK c‖δui‖λ

)
.

Therefore, if ρ +(1+ c2
λ−L f

)NK−1 < 1, according to Lemma 3.4, we can conclude that

the tracking error ei, j converges to zero as iteration goes to infinity. �

Remark 3.3 Intuitively, the convergence rate will become slow when the communica-

tion is weak, for instance the uniformly strongly connected graph assumption. This

point can be verified in the proof of Theorem 3.3. If the upper bound K is large, the

worst convergence rate of ‖δui‖λ becomes slow.
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Figure 3.2: Maximum norm of error vs. iteration number.

3.4 Illustrative Example

The results in Theorems 3.1 and 3.2 are the special cases of Theorem 3.3. To test

the theorems, it is sufficient to verify the result in Theorem 3.3. Hence, a tracking

example under the uniformly strongly connected topology is provided here. Consider

four dynamic agents, and their system parameters are given by

f(x) =

 x2

cos(x1)− x2

 , B =

 0

1

 , C =

 1 0

2 1

 .
The leader’s input ud = t +4sin(2t), t ∈ [0,5]. ud is unknown to any of the follow-

ers.

The complete communication topology is depicted in Figure. 3.1, in which there

are four graphs. In each iteration, only one of the communication graph is activated,

and it is chosen by the selection function i = 4k+ j, j = 1,2,3,4, and k is a nonnega-

tive integer, for example, if i = 1, the graph on the left top corner is selected. In each

of the graph, the topology is not even connected. However, the union of all the four

graphs is indeed strongly connected. Therefore, the communication topology is uni-
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formly strongly connected along the iteration axis with upper bound K = 4. Thus, the

communication requirement in Theorem 3.3 is satisfied. To design the learning gain,

we need to investigate the matrices H(i) = L(i)+D(i), and the first four of them are

listed below.

H(1) =



1 0 0 0

0 0 0 0

0 −1 1 0

0 0 −1 1


,H(2) =



0 0 0 0

−1 1 0 0

0 0 1 0

−1 0 0 1



H(3) =



0 0 0 0

0 0 0 0

0 −1 1 0

0 0 0 0


,H(4) =



1 0 0 −1

0 0 0 0

0 0 0 0

0 0 0 0


The maximal diagonal entry of H(i) is 1, hence, we can choose the learning gain qs = 2

for switching topology.

Denote the union graph of the four subgraphs in Figure. 3.1 by Gu. The correspond-

ing graph Laplacian Lu and matrix Du are

Lu =



1 0 0 −1

−1 1 0 0

0 −1 1 0

−1 0 −1 2


and Du = diag(1, 0, 1, 0) respectively. As a comparative study, we also investigate the

convergence performance of the four agents under the fixed graph Gu. In this case, let

the learning gain q f = 3. Notice that qs and q f are slightly different. This is because we

choose the value such that the control performances are the best for two cases respec-

tively. Figure. 3.2 describes how the maximum error ‖ei‖∞ = maxt∈[0,T ] |ei(t)| evolves
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along the iteration axis for both switching and fixed graphs. The y-axis is plotted in

log-scale. That means the convergence rates in both cases are exponentially fast. It can

be seen from Figure. 3.2 that the dashed line is below the solid line. The observation

indicates that the intermittent communication slows down the convergence rate. This

also shows the simulation results match perfectly with our theoretical predictions.

3.5 Conclusion

In this chapter, a typical D-type ILC rule for consensus tracking is investigated un-

der iteration-varying graph. It is shown that if the iteration-varying graph is uniformly

strongly connected along the iteration axis, and at least one of the followers has access

to the leader’s trajectory, the proposed ILC rule can perfectly synchronize the output

trajectories of all follower agents. The developed results complement the existing lit-

erature by generalizing the fixed communication to iteration-varying graph. Simulation

study demonstrates that the learning controller is very robust to communication varia-

tions.
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Chapter 4

Iterative Learning Control for

Multi-agent Coordination with

Initial State Error

4.1 Background

In the discussions of Chapters 2 and 3, the perfect identical initial condition (i.i.c.)

is assumed. Similarly, most existing ILC for multi-agent systems coordination assume

this restrictive assumption, for example Ahn and Chen (2009); Xu et al. (2011); Yang

et al. (2012); Yang and Xu (2012); Liu and Jia (2012); Meng et al. (2012); Li and Li

(2013). Notice that the i.i.c. is one of the fundamental problems pertaining to ILC

literature and its applicability. It is required that the initial state is the same as the

desired initial state for perfect tracking to be achievable. However, the controllers in

the multi-agent systems are distributed in nature, and all the agents are independent

entities. The communication among agents may not be complete so that many agents
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are not aware of the desired initial state. It is difficult to ensure perfect i.i.c. for all

agents in general. Thus, the initial condition problem in multi-agent systems requires

further investigation.

There are many excellent ideas in ILC literature to deal with the imperfect initial

conditions. Many researchers have analyzed and developed algorithms that do not re-

quire the i.i.c. at the cost of imperfect tracking. The initial state learning method is

developed in Chen et al. (1999), which is applicable when the initial state is measur-

able and manipulatable. Some extra system knowledge is required by the learning rule.

When the learning gain is chosen correctly, the initial state converges to the desired one,

and the tracking error due to initial state error is bounded. The initial rectifying action

control is introduced by Sun and Wang (2002), which modifies the desired trajectory

such that the initial output of the new reference coincides with the actual initial output.

Because of the nature of this control method, the actual output converges to a modified

desired trajectory. These two approaches are adopted for multi-agent control with initial

state error, for example initial state learning is applied in Yang et al. (2012), and initial

rectifying action is utilized in Meng et al. (2012). Variable initial state for discrete-time

system is discussed in Fang and Chow (2003) via 2-D analysis. Park et al. (1999) study

the robustness of PID-type updating rule. In Park (2005) an average operator based PD-

type rule is developed to improve the control performance against variable initial state

error. Besides, Xu and Yan (2005) fully investigate five different initial conditions and

their convergence properties.

In this chapter, we investigate the initial state error and its impact on the control

performance in the multi-agent consensus tracking problem. At the beginning of a task

execution, the initial state of each agent is reset to a fixed position which is different
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from the desired one. Under sparse communication assumption, it is shown that the D-

type (Xu and Tan, 2003) ILC rule is still applicable and convergence can be guaranteed

when the communication graph contains a spanning tree with the leader being its root.

However, in terms of performance the final output of each agent has large deviations

from the desired reference. To improve the performance, PD-type (Park et al., 1999)

rule is motivated, and it turns out that the new updating rule gives the designer more

freedom to tune the final performance. The analysis method itself in this work is of

independent interest, and it contributes to the ILC literature on the initial state problem.

This chapter is organized as follows. The consensus tracking problem with initial

state error is formulated in Section 4.2. Next, the D-type, PD-type updating rules, and

convergence results are developed in Section 4.3. To demonstrate the effectiveness of

the results, two numerical examples are presented in Section 4.4. Lastly, Section 4.5

draws the conclusion.

4.2 Problem Description

Consider a group of N homogeneous dynamic agents, and the jth agent is governed

by the following linear time-invariant model,
ẋi, j(t) = Axi, j(t)+Bui, j(t)

yi, j(t) =Cxi, j(t)
∀ j ∈ V , (4.1)

where i denotes the iteration number, xi, j ∈ Rn, yi, j ∈ Rp, and ui, j ∈ Rm are the state

vector, output vector, and control input respectively, and A, B, C are constant matrices

of compatible dimensions. For simplicity, the time argument, t, is dropped when no

confusion arises.

The leader’s trajectory, or the desired consensus trajectory yd(t) is defined on a
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finite-time interval [0,T ], and it is generated by the following dynamics,
ẋd = Axd +Bud ,

yd =Cxd ,

(4.2)

where ud is the continuous and unique desired control input.

Due to communication or sensor limitations, the leader’s trajectory is only acces-

sible to a small portion of the followers. Let the communication among followers

be described by the graph G (V ,E ). If the leader is labeled by vertex 0, then the

complete information flow among all the agents can be characterized by a new graph

G = (0∪V ,E ), where E is the new edge set. The major task is to design a set of

distributed ILC rules such that each individual agent in the network is able to track the

leader’s trajectory under the sparse communication graph G .

To simplify the controller design and convergence analysis, the following two as-

sumptions are imposed.

Assumption 4.1 CB is of full column rank.

Remark 4.1 The full column rank assumption is a necessary condition to find out a

suitable learning gain such that ILC D-type learning rule satisfies the contraction-

mapping criterion. Assumption 4.1 implies that the relative degree of system (4.1) is

well defined and it is exactly 1. When CB is not of full rank, high-order derivative of the

tracking error can be utilized in the controller design.

Assumption 4.2 The initial state of an agent is reset to the same position at every

iteration, which is not equal to the desired state, i.e., xi, j(0) = x1, j(0) 6= xd(0) for all

i≥ 1.

Remark 4.2 Assumption 4.2 is referred as the resetting condition in ILC literature.

Since the initial state is different from the desired state, that is yi, j(0) 6= yd(0), it is im-
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possible to achieve the perfect tracking. The ILC rule should force the output trajectory

of each agent to be as close as possible to the leader’s trajectory.

4.3 Main Results

The main results contain two sections. In Section 4.3.1, the distributed D-type up-

dating rule and its convergence properties are fully analyzed. To improve the tracking

performance of learning rules, PD-type updating rule is proposed.

4.3.1 Distributed D-type Updating Rule

Let ξ i, j be the distributed measurement by agent j at the ith iteration over the graph

G , and it is defined as

ξ i, j = ∑
k∈N j

a j,k(yi,k−yi, j)+d j(yd−yi, j), (4.3)

where d j = 1 if (0, j) ∈ E , otherwise d j = 0.

Note that the actual tracking error ei, j = yd − yi, j cannot be utilized in the con-

troller design as only a small number of followers have access to the leader’s trajectory.

Therefore, ei, j is not available to many of the followers. It is natural to incorporate

the distributed measurement ξ i, j in the ILC design. Hence, the following D-type ILC

updating rule is adopted in this work,

ui+1, j = ui, j +Qξ̇ i, j, u0, j = 0, ∀ j ∈ V , (4.4)

where Q is the learning gain to be designed. For simplicity, the initial control input

u0, j is set to zero. However, in practical implementation, the initial control input can

be generated by certain feedback mechanism such that the system is stable. This may

improve the transient performance of the learning controller. Note that ξ i, j is already
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available at the (i+ 1)th iteration. Therefore, the derivative of ξ i, j can be obtained by

any sophisticated numerical differentiation that does not generate large amount of noise.

Let x̂v, j, ûv, j, and ŷv, j =Cx̂v, j satisfy the following virtual dynamics,

x̂v, j(t) = xi, j(0)+
∫ t

0
[Ax̂v, j(τ)+Bûv, j(τ)] dτ, (4.5)

and

Q(ẏd− ˙̂yv, j) = 0. (4.6)

Before investigating the existence and uniqueness of ûv, j, x̂v, j, and ŷv, j satisfying equa-

tions (4.5) and (4.6), we have the following convergence results.

Theorem 4.1 Consider the multi-agent systems (4.1), under Assumptions 4.1, 4.2, the

communication graph G , and distributed D-type updating rule (4.4). If the learning

gain Q is chosen such that

|ImN−H⊗QCB| ≤ µ < 1,

where I(·) is the identity matrix with the subscript denoting its dimension, µ is a con-

stant, H = L + D, L is the Laplacian matrix of G , D = diag(d1,d2, . . . ,dN), and ⊗

represents the Kronecker product, then the control input ui, j and output yi, j converge to

ûv, j and ŷv, j respectively as iteration goes to infinity.

Proof: From the definition of the distributed measurement ξ i, j in (4.3) and the equality

constraint (4.6), one obtains that

Qξ̇ i, j = Q

(
∑

k∈N j

a j,k(ẏi,k− ẏi, j)+d j(ẏd− ẏi, j)

)
= ∑

k∈N j

a j,k(Qẏi,k−Qẏi, j)+d j(Qẏd−Qẏi, j)

= ∑
k∈N j

a j,k(Qẏd−Qẏi, j−Qẏd +Qẏi,k)+d j(Qẏd−Qẏi, j)

= ∑
k∈N j

a j,k(Q ˙̂yv, j−Qẏi, j−Q ˙̂yv,k +Qẏi,k)+d j(Q ˙̂yv, j−Qẏi, j). (4.7)
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Define the virtual tracking error ε i, j = ŷv, j−yi, j, then (4.7) can be simplified as

Qξ̇ i, j = Q

(
∑

k∈N j

a j,k(ε̇ i, j− ε̇ i,k)+d jε̇ i, j

)
. (4.8)

Define the following notations δui, j = ûv, j−ui, j and δxi, j = x̂v, j−xi, j. Therefore, from

(4.4) and (4.8) we have

δui+1, j = δui, j−Q

(
∑

k∈N j

a j,k(ε̇ i, j− ε̇ i,k)+d jε̇ i, j

)
. (4.9)

Let δui and ε i be the column stack vectors of δui, j and ε i, j, thus, (4.9) can be written

in the following compact form,

δui+1 = δui− (H⊗Q)ε̇ i. (4.10)

Taking derivative from both sides of (4.5), and subtracting (4.1) yield

δ ẋi, j = Aδxi, j +Bδui, j. (4.11)

Rewriting (4.11) in the compact form yields

δ ẋi = (IN⊗A)δxi +(IN⊗B)δui, (4.12)

where δxi is the column stack vector of δxi, j.

Note that εi = (IN⊗C)δxi. Substituting (4.12) to (4.10) yields

δui+1

= δui− (H⊗Q)(IN⊗C)((IN⊗A)δxi +(IN⊗B)δui)

= (ImN−H⊗QCB)δui− (H⊗QCA)δxi. (4.13)

Taking λ -norm operation on (4.13) yields

‖δui+1‖λ ≤ µ‖δui‖λ +b1‖δxi‖λ , (4.14)

where b1 = |H⊗QCA|.
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It can be shown that x̂v, j(0) = xi, j(0) from (4.5), that is δxi, j(0) = 0. Therefore,

solving δxi, j from (4.12) we have

δxi =
∫ t

0
e(IN⊗A)(t−τ)Bδui(τ)dτ. (4.15)

Taking any generic norm on both sides of (4.15), we have

|δxi| ≤ |B|
∫ t

0
e|IN⊗A|(t−τ)|δui(τ)|dτ

e−λ t |δxi| ≤ e−λ t |B|
∫ t

0
e|IN⊗A|(t−τ)|δui(τ)|dτ

e−λ t |δxi| ≤ |B|
∫ t

0
e−(λ−|IN⊗A|)(t−τ)e−λτ |δui(τ)|dτ. (4.16)

Again taking λ -norm on (4.16) yields

‖δxi‖λ ≤
|B|

λ −a
|δui|λ , (4.17)

where a = |IN⊗A|. Substituting (4.17) to (4.14), we have

‖δui+1‖λ ≤
(

µ +
b1|B|
λ −a

)
‖δui‖λ = µ̃‖δui‖λ . (4.18)

If λ > b1|B|
µ

+a, then µ̃ < 1. Therefore, ‖δui‖λ converges to zero as the iteration number

increases, i.e., ui, j→ ûv, j and yi, j→ ŷv, j. �

By using the graph dependent matrix norm methods in Chapter 2, we can convert the

norm inequality convergence condition in Theorem 4.1 to the spectral radius condition.

Therefore, we have the following corollary.

Corollary 4.1 Consider the multi-agent systems (4.1), under Assumptions 4.1, 4.2, the

communication graph G , and distributed D-type updating rule (4.4). If the learning

gain Q is chosen such that

ρ(ImN−H⊗QCB)< 1,

where ρ(·) denotes the spectral radius of a matrix, then the control input ui, j and output

yi, j converge to ûv, j and ŷv, j respectively as iteration goes to infinity.
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As the spectral radius of any given matrix is infimum of any matrix norm (Horn and

Johnson, 1985), the spectral radius inequality in Corollary 4.1 is indeed more general

than the norm inequality condition in Theorem 4.1.

To satisfy either the norm inequality condition or the spectral radius condition, the

communication topology plays an important role for multi-agent coordination to be

realizable. When the communication assumption is not strong enough, the coordination

goal may not be achievable. For example, if there is an isolated agent or cluster of

agents, to which the leader’s information cannot be relayed, it is impossible for the

multi-agent system to achieve consensus tracking in general. The following Lemma

reveals a very useful algebraic property of the communication graph.

Lemma 4.1 (Ren and Beard, 2008) If the communication graph G contains a spanning

tree with the leader being the root, then all the eigenvalues of matrix H have positive

real parts.

With the help of Lemma 1, we have the following sufficient communication require-

ment for the coordination problem.

Lemma 4.2 If the communication graph G contains a spanning tree with the leader

being the root, there always exists a learning gain Q such that the convergence condition

in Corollary 4.1 holds, i.e.,

ρ(ImN−H⊗QCB)< 1.

Proof: Due to Assumption 4.1 that CB is of full column rank, let Q be the pseudoinverse

of CB times a positive scalar gain q > 0, i.e., Q = q
(
(CBT )CB

)−1
(CB)T . Denote M =

ImN−H⊗QCB, hence,

M = ImN−qH⊗ Im.
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Let σ(H) = {λ1,λ2, . . . ,λN} be the spectrum of H. Based on Lemma 4.1, all the eigen-

values have positive real parts. The spectrum of IN−qH is σ(IN−qH) = {1−qλ1,1−

qλ2, . . . ,1− qλN}. Therefore, choose q sufficiently small such that all the magnitudes

of σ(IN − qH) are strictly less than 1. Note the property of Kronecker product, the

spectrum of M is the same as σ(IN − qH) except that each eigenvalue has multiplicity

of m. Hence, ρ(M)< 1. �

The following result will be used to derive the existence and uniqueness of ûv, j and

ŷv, j.

Lemma 4.3 If ρ(ImN−H⊗QCB)< 1 holds, then QCB is nonsingular.

Proof: It can be shown by contradiction. Assume QCB is singular, that is, QCB has at

least one eigenvalue equal to zero. Therefore, ImN −H⊗QCB has at least one eigen-

value equal to one. Subsequently, we can obtain that ρ(ImN −H ⊗QCB) ≥ 1, which

contradicts to the hypothesis. This completes the proof. �

The results in Theorem 4.1 and Corollary 4.1 guarantee that the input and output

trajectories of each individual agent converge to the corresponding virtual dynamics. It

is appropriate time to investigate the properties of the virtual dynamics.

Theorem 4.2 If the D-type rule (4.4) converges, there exist unique ûv, j and ŷv, j satisfy-

ing the virtual dynamics (4.5) and (4.6), specifically,

ûv, j = ud +(QCB)−1QCAeFDt(xd(0)−xi, j(0)),

and

ŷv, j = yd−CeFDt(xd(0)−xi, j(0)),

where FD = (I−B(QCB)−1QC)A.
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Proof: From (4.6), the dynamics (4.5), and (4.2), we have

Qẏd = Q ˙̂yv, j

QCAxd +QCBud = QCAx̂v, j +QCBûv, j

QCB(ud− ûv, j) = −QCA(xd− x̂v, j) (4.19)

Define δ ûv, j = ud− ûv, j, and δ x̂v, j = xd− x̂v, j. Note that QCB is nonsingular, (4.19) can

be written as

δ ûv, j =−(QCB)−1QCAδ x̂v, j. (4.20)

Taking derivative on both sides of (4.5), and subtracting it from (4.2) yield

δ ˙̂xv, j = Aδ x̂v, j +Bδ ûv, j. (4.21)

With initial condition δ x̂v, j(0) = xd(0)−xi, j(0), substituting (4.20) to (4.21) yields

δ ˙̂xv, j = (In−B(QCB)−1QC)Aδ x̂v, j. (4.22)

As (4.22) is a linear differential equation, its solution exists and is unique. There-

fore, both ûv, j and ŷv, j exist and are unique.

Denote FD = (In−B(QCB)−1QC)A. Solve δ x̂v, j from (4.22), we have

δ x̂v, j = eFDt(xd(0)−xi, j(0)).

Therefore, from (4.20) we have

ûv, j = ud +(QCB)−1QCAeFDt(xd(0)−xi, j(0)),

and

ŷv, j = yd−CeFDt(xd(0)−xi, j(0)).

�
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The learning gain Q is designed independent of A. It is interesting to note that the

system matrix A does not affect the convergence property of ILC algorithm. However,

Theorem 4.2 says when there is a discrepancy between initial condition and the desired

one, the final output trajectory is decided by all the system parameters. In the D-type

ILC rule, we only have the freedom to tune one parameter, that is the learning gain Q. It

is hard to ensure both the ILC convergence condition and minimizing the effect of eFDt .

This motivates us to consider PD-type updating rule in the next section, which gives us

two degree of freedom to ensure both convergence and final performance.

Corollary 4.2 If Q is of full column rank, then

ŷv, j = yd−C(xd(0)−xi, j(0)).

Proof: If Q is of full column rank, it can be shown that ẏd− ˙̂yv, j has to be zero in order

to satisfy the equality constraint (4.6). Hence, by integration we have

yd(t)−yd(0) = ŷv, j(t)− ŷv, j(0)

ŷv, j(t) = yd(t)−yd(0)+ ŷv, j(0)

ŷv, j(t) = yd(t)−C(xd(0)−xi, j(0)).

�

Corollary 4.2 implies that when Q is of full column rank or just nonsingular, the final

output trajectory of each follower is identical to the leader trajectory with a constant

shift, and the discrepancy is simply the initial output difference C(xd(0)−xi, j(0)).

4.3.2 Distributed PD-type Updating Rule

Motivated by the previous section that D-type ILC rule has only one degree of free-

dom which ensures convergence. To improve the final performance as the iteration
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number gets large, we can apply the PD-type updating rule. Let the distributed mea-

surement be the same as the one in the D-type case. The proposed PD-type updating

rule for the jth agent is

ui+1, j = ui, j +Q(ξ̇ i, j +Rξ i, j), (4.23)

where R is another learning gain to be designed.

Comparing (4.23) with (4.4), PD-type rule has one extra term Rξ i, j compared with

the D-type rule. It will be shown that it is the extra term which enables us to tune the

final performance.

Theorem 4.3 Consider the multi-agent systems (4.1), under Assumptions 4.1, 4.2, the

communication graph G , and distributed PD-type updating rule (4.23). If the learning

gain Q is chosen such that

ρ(ImN−H⊗QCB)< 1,

then the ILC rule is stable and output trajectory of any follower converges, in particular

as the iteration number increases to infinity

ui, j = ud +(QCB)−1Q(CA+RC)eFPDt(xd(0)−xi, j(0)),

and

yi, j = yd−CeFPDt(xd(0)−xi, j(0)),

where FPD = A−B(QCB)−1Q(CA+RC).

The proof of Theorem 4.3 is omitted here as it can be derived analogously to Theo-

rem 4.1. In Theorem 4.3, Q can be tuned to make the ILC rule stable, and R is used

to modify the final performance as iteration number gets large. Hence, R should be

designed such that FPD is Hurwitz. Then, the final output trajectory of each individual

follower will converge exponentially to the leader’s trajectory.
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Figure 4.1: Communication topology among agents in the network.
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Figure 4.2: Output trajectories at the 150th iteration under D-type ILC learning rule.

Rewrite FPD as

FPD = (In−B(QCB)−1QC)A+B(QCB)−1Q(−R)C,

which can be interpreted as a static output feedback stabilization problem (Syrmos et al.,

1997) with system matrix (In−B(QCB)−1QC)A, input gain B(QCB)−1Q, and output

matrix C. R is the output feedback gain. R should be chosen such that the output

feedback system is stable.
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Figure 4.3: Output trajectories at the 50th iteration under PD-type ILC learning rule.

4.4 Illustrative Example

To verify the theoretical results in the previous section, two illustrative examples

are presented here. Consider a group of four followers with their dynamics governed by

the following model,

A =

 0 1

−6 −5

 , B =

 0

1

 , C =

 1 0

2 1

 .
The communication among all the agents in the network is depicted in Figure. 4.1.

Vertex 0 represents the leader agent. It has two direct edges (dashed lines) to agents 1

and 3, which means that the agents 1 and 3 are able to access to the leader’s information.

The communication among followers are represented by the solid lines. It is easy to

verify that the complete information flow graph G contains a spanning tree with the

leader being its root. From Figure. 4.1, we can write down the graph Laplacian for the
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Figure 4.4: Tracking error profiles at the 50th iteration under PD-type ILC learning rule.

followers below,

L =



1 0 −1 0

−1 1 0 0

0 −1 2 −1

0 −1 0 1


,

and D = diag(1,0,1,0) which represents the information flow from leader to followers.

The leader’s input is chosen as ud = t + 4sin(2t), t ∈ [0,5], and initial condition

xd(0) = [0, 0]T . The initial conditions for followers are xi,1(0) = [1, 0.8]T , xi,2(0) =

[−0.7, 1]T , xi,3(0) = [0.5, 0.6]T , and xi,4(0) = [−1, −1]T . Obviously, initial state errors

are nonzero. Note that only the output is accessible to agents 1 and 3. We apply the up-

dating rules (4.4) and (4.23) with learning gains Q= [0.0667, 0.333] and R= diag(5,5).

Check the convergence condition,

ρ(I4−H⊗QCB) = 0.7715 < 1,

which satisfies the convergence requirement in Corollary 4.1. Figure. 4.2 shows the

output profiles of all agents at the 150th iteration under D-type updating rule. The
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followers’ output can track the general trend of the leader, but large deviations exist.

Simple calculation shows that the spectrum of FD is σ(FD) = {0, −2.2}. It means that

one eigenmode converges to zero exponentially, the other one is a constant. It implies

that the discrepancies between leader’s trajectory and followers’ approach to a constant

when time is large. The theoretical prediction perfectly matches the observation in

simulation. Figures. 4.3 and 4.4 describe the trajectory and error profiles under the

PD-type rule. It can be seen that the tracking error converges exponentially to zero.

Calculate the spectrum of FPD, we have σ(FPD) = {−2.2, −5}, which are all stable.

This also matches the actual simulation.

4.5 Conclusion

This chapter investigates the initial state error problem in the multi-agent setup,

and each agent is able to be reset to a fixed initial position. Such an assumption is less

restrictive than the perfect initial condition. It has been shown under the imperfect initial

condition, the D-type learning rule is still convergent. However, the final trajectory has

deviations from the leader’s. To improve the performance, PD-type updating rule is

proposed, which gives the designer more freedom to tune the final control performance.

Numerical examples verify the obtained results. The obtained results can be easily

generalized to PID-type learning rules.
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Chapter 5

P-type Iterative Learning for

Non-parameterized Systems with

Uncertain Local Lipschitz Terms

5.1 Background

Traditional ILC has two fundamental postulates, namely system repeatability and

global Lipschitz condition (GLC). The system repeatability consists of three conditions

over the iteration axis: the identical initialization condition (i.i.c.), identical system

dynamics, and identical control task. Relaxation or removal of each repeatability con-

dition leads to the great advances in recent ILC research. Much effort has been devoted

to relaxing or even removing the i.i.c. (Xu and Qu, 1998; Chen et al., 1999; Sun and

Wang, 2002; Fang and Chow, 2003; Park, 2005; Xu and Yan, 2005). For detailed dis-

cussion on initial condition problem, please refer to Chapter 4. Relaxation or removal

of identical system dynamics and identical control task have relatively few results avail-

68



Chapter 5. P-type Iterative Learning for Non-parameterized Systems with Uncertain
Local Lipschitz Terms

able. The results in Saab (1994) show that if the fluctuations in system dynamics can

be modeled by bounded term, uniform convergence can be obtained. Chen et al. (1997)

show that if the variation of reference trajectories between two consecutive iterations

is bounded, the tracking error will converge to some bounded ball. Liu et al. (2010)

and Yin et al. (2010) successfully apply ILC learning rule to iteration-varying control

tasks and iteration-varying dynamic systems by introducing a high-order internal model

to the controller design.

Unlike the rich literature on system repeatability issues, it seems impossible to re-

move the GLC in the contraction-mapping (CM) based ILC. Up to date, it is not clear

whether the CM based ILC is applicable to local Lipschitz systems or not. Composite

energy function (CEF) based ILC (Xu and Tan, 2002a) is able to handle local Lipschitz

systems. However, system dynamics must be in linear in parameter form, and full state

information must be used for feedback or nonlinear compensation. When dealing with

real-life control problems we always consider CM based ILC in the first place because

of the following advantages: extremely simple algorithms, little knowledge requirement

of state dynamics, exponential convergence rate, and applicable to nonaffine-in-input

processes. Thus, it is very suitable and highly desired for practical control problems.

The major disadvantage is due to the requirement of GLC. Traditional CM based ILC,

is essentially a feedforward control, and only output information is used. There is no

feedback control for state dynamics. GLC is required for the drift term in the unforced

system, such that in the worst case when the unforced system is unstable, the finite

escape time phenomenon will not occur. From the practical point of view, most con-

trol engineering systems are inherently stable, for instance the mechanical systems with

friction, thermal systems with heat dissipation, and electrical systems with inner re-
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sistance. In traditional CM based ILC analysis, the drift term is always treated as an

unstable term by taking norm operation, even though the drift term could be originally

a stabilizing term. This limitation is innate in CM based analysis. To overcome this

limitation, in this chapter we introduce Lyapunov method into the CM based ILC anal-

ysis, aiming at fully making use of the inherent stability of the unforced system. In the

sequel, ILC can be applied to more generic systems with local Lipschitz nonlinearities.

Our objective is to retain the CM based ILC, meanwhile incorporate Lyapunov method

to facilitate the ILC convergence analysis, hence widen the applicability of CM based

ILC to more generic dynamic systems with nonlinearities beyond GLC.

The extension of ILC approach to local Lipschitz systems has great positive impact

on the multi-agent coordination problems. In the previous three chapters, all the agent

models are assumed to be global Lipschitz continuous. By using the results in this

chapter, it is possible to design distributed iterative learning rules for certain classes of

local Lipschitz system models.

The rest of this chapter is organized as follows. The motivation and problem for-

mulation are described in Section 5.2. Sections 5.3 and 5.4 present the main results.

Specifically, Section 5.3.1 introduces some preliminary results that will be used to prove

the main theorems. Section 5.3.2 develops the Lyapunov function based sufficient con-

vergence conditions. Section 5.3.3 studies the local Lipschitz system whose unstable

part is global Lipschitz continuous. Section 5.4.1 studies the system with bounded drift

term. Section 5.4.2 investigates the class of bounded energy bounded state systems

subject to control saturation. Finally, conclusions are drawn in Section 5.5.
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5.2 Motivation and Problem Description

This section discusses the motivation and problem description.

5.2.1 Motivation

ILC is a partially model-free control as the controller design does not require the

detailed information on system model. To illustrate the motivation of the research in

this work, consider the following first-order dynamics,

ẋ = f (x)+u

where f (x) is the drift term that determines the stability of the unforced system. f (x)

may contain both stable and unstable terms. In traditional ILC analysis, norm opera-

tions are taken on the system dynamics in order to find out the relation between the

magnitudes of system state and control input. As a result, both the stable and unstable

terms in f (x) are treated as if they were unstable. As such, the bounding function for

system state is too conservative, which makes the analysis method only applicable to

the system whose f (x) satisfies GLC. This restricts the application of ILC to a very

limited class of systems.

Up to date, it is not clear how the local Lipschitz terms in f (x) affect the conver-

gence property of ILC rule. However, it has been observed that many local Lipschitz

systems demonstrate convergence property under ILC in simulation studies. This mo-

tivates us to investigate to what kind of local Lipschitz system the ILC rule is appli-

cable. Three classes of local Lipschitz systems are studied in this chapter. First, we

distinguish the stable and unstable terms in the system dynamics, and develop several

sufficient conditions in the form of Lyapunov function based criteria. Next, we study

the bounded local Lipschitz terms. Finally, the convergence property of the uniformly
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bounded energy bounded state system under control saturation is analyzed.

5.2.2 Problem Description

Consider the system model in (5.1),

ẋ(t) = f(x(t))+g(x(t))u(t), (5.1a)

y(t) = h(x(t),u(t)), (5.1b)

where x ∈ Rn, u ∈ Rp, and y ∈ Rm are the system state, input and output vectors, f(x)

belongs to a class of local Lipschitz functions, g(x) is a continuously differentiable and

bounded function for all x ∈ Rn, and h(x,u) is a differentiable function. Furthermore,

∂h
∂u(x,u) is of full rank, and both ∂h

∂u(x,u) and ∂h
∂x (x,u) are bounded for all x ∈ Rn and

u ∈ Rp. For notional simplicity, the following three functional norms are defined,

‖g(x)‖ = sup
x∈Rn
|g(x)| ,∥∥∥∥∂h

∂u
(x,u)

∥∥∥∥ = sup
x∈Rn,u∈Rp

∣∣∣∣∂h
∂u

(x,u)
∣∣∣∣ ,∥∥∥∥∂h

∂x
(x,u)

∥∥∥∥ = sup
x∈Rn,u∈Rp

∣∣∣∣∂h
∂x

(x,u)
∣∣∣∣ .

The desired trajectory is yd ∈ C 1[0, T ]. For any given yd to be realizable, it is as-

sumed that there exist xd ∈C 1[0, T ] and ud ∈C [0, T ] such that the following dynamics

hold.

ẋd = f(xd)+g(xd)ud , (5.2a)

yd = h(xd ,ud). (5.2b)

Let ω i denote a variable at the ith iteration, where ω ∈ {x, y, u}. Define the tracking

error at the ith iteration as ei = yd − yi. The traditional P-type ILC law is constructed

below

ui+1 = ui +Γei, (5.3)
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where Γ is some suitable learning gain such that∥∥∥∥Im−Γ
∂h
∂u

∥∥∥∥= sup
x∈Rn,u∈Rp

∣∣∣∣Im−Γ
∂h
∂u

∣∣∣∣≤ ρ < 1, (5.4)

Im is the identity matrix, and the subscript m denotes its dimension.

We say the P-type learning rule is convergent if ui converges to ud as the learning

iteration approaches to infinity. Subsequently, the tracking error ei converges to zero as

well. It is a well established result that (5.3) is convergent if f(x) is global Lipschitz

continuous in x (Xu and Tan, 2003). The problem in this chapter is to explore to what

extent the learning rule (5.3) can be applied to local Lipschitz systems.

To restrict our discussion, the following assumptions are imposed.

Assumption 5.1 Let D be a compact subset of Rn. For any z1, z2 ∈ D , there exists a

continuous bounding function φ(z) such that

|f(z1)− f(z2)| ≤ φ(z)|z1− z2|,

where z = [zT
1 , zT

2 ]
T . Furthermore, if D → Rn, then lim

|z|→∞

φ(z)→ ∞.

Remark 5.1 If φ(z) has an upper bound for all z ∈ R2n, Assumption 5.1 degenerates

to the global Lipschitz condition. Thus, traditional λ -norm analysis can be applied

to prove ILC convergence. As φ(z) is unbounded in R2n, Assumption 5.1 represents a

class of local Lipschitz functions, e.g., high-order polynomials. Under Assumption 5.1,

if the system state xi is bounded along the iteration axis when controller (5.3) is applied,

then the local Lipschitz condition can be treated as global one in the learning context.

This observation motivates the two-step idea to prove ILC convergence. First, show

that the state is confined in certain compact set D under learning rule (5.3) by taking

advantages of system properties. Next, φ(z) is bounded on D as it is a continuous

function. Therefore, λ -norm can be utilized to construct a contraction-mapping.
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Assumption 5.2 The initial state is reset to the desired initial state at every iteration,

i.e., xi(0) = xd(0).

Assumption 5.2 is one of the most commonly used assumptions in ILC literature.

For simplicity we assume the perfect resetting condition since the initial condition prob-

lem is not the main topic in this chapter. As discussed in Chapters 2 and 4, there are

many alternatives to relax such a restrictive condition.

5.3 Convergence Properties with Lyapunov Stability Condi-

tions

In this section, we investigate several classes of local Lipschitz systems with the

help of Lyapunov analysis method, and study their P-type ILC convergence.

5.3.1 Preliminary Results

In this subsection, two useful lemmas are introduced. They will be utilized to prove

the main results in this chapter.

Lemma 5.1 If α ∈K∞
1 and convex, then for any r > 0 there exist some positive con-

stants k and b such that the following inequality holds

α
−1(r)≤ kr+b.

In Lemma 5.1, α ∈K∞ implies α is a one-to-one mapping from [0, ∞) to [0, ∞). Hence,

the inverse function α−1 exists. As α is a convex function, α−1 has to be concave.

Therefore, we can find a linear bounding function for α−1. The constants k and b

1K is a class of functions [0, ∞)→ [0, ∞) which are zeros at zero, strictly increasing, and continuous.

K∞ is a subset of K whose elements are unbounded (Khalil, 2002).
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depend on α . Lemma 5.1 will be used to establish the growth rate of system state as a

function of input.

Lemma 5.2 Consider system (5.1) under the P-type learning rule (5.3), Assumptions

5.1 and 5.2. If the system state satisfies the following inequality

|x(t)|< l
∫ t

0
|u(τ)|dτ +η(t), (5.5)

where l is a positive constant and η(t) is a bounded continuous function of time, then

the P-type learning rule (5.3) is convergent.

Proof : Substituting (5.1b) into the P-type learning rule (5.3) yields

ui+1 = ui +Γei

= ui +Γ(h(xd ,ud)−h(xi,ui))

= ui +Γ(h(xd ,ud)−h(xd ,ui))+Γ(h(xd ,ui)−h(xi,ui)). (5.6)

By using the Mean Value Theorem (Khalil, 2002), the last two terms in (5.6) can be

respectively written as

h(xd ,ud)−h(xd ,ui) =
∂h
∂u

(xd , ûi)(ud−ui),

h(xd ,ui)−h(xi,ui) =
∂h
∂x

(x̂i,ui)(xd−xi),

where ûi = ud +θ u
i (ui−ud), x̂i = xd +θ x

i (xi−xd), and θ u
i , θ x

i ∈ [0, 1]. Thus, (5.6) can

be simplified as

ui+1 =

(
Im−Γ

∂h
∂u

)
ui−Γ

∂h
∂x

xi +Γ
∂h
∂u

ud +Γ
∂h
∂x

xd . (5.7)
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Since ∂h
∂u and ∂h

∂x are bounded, denote d = ‖ ∂h
∂u‖ and c= ‖ ∂h

∂x‖. Noticing the convergence

condition (5.4) and inequality (5.5), taking norm on both sides of (5.7) yields

|ui+1| ≤
∣∣∣∣Im−Γ

∂h
∂u

∣∣∣∣ |ui|+ c|Γ|
(

l
∫ t

0
|ui(τ)|dτ +η(t)

)
+d|Γud |+ c|Γxd |

≤ ρ|ui|+ cl|Γ|
∫ t

0
|ui(τ)|dτ + c|Γ|η(t)+d|Γud |+ c|Γxd |︸ ︷︷ ︸

iteration-invariant

. (5.8)

Denote the supremum of the iteration-invariant term in (5.8) as ∆= c|Γ|‖η‖+d|Γ|‖ud‖+

c|Γ‖xd‖, which is a constant. Therefore, taking λ -norm on both sides of (5.8) yields

‖ui+1‖λ ≤
(

ρ +
cl|Γ|

λ

)
‖ui‖λ +∆. (5.9)

Choosing a sufficiently large λ such that ρ + cl|Γ|
λ

= ρ̄ < 1. Therefore, ‖ui‖λ is bounded

for any iteration i, and

‖ui‖λ ≤
∆

1− ρ̄
.

From the analysis above, ‖ui‖must be bounded for all iterations as the supremum norm

and λ -norm are equivalent. Based on the inequality (5.5), ‖xi‖ must belong to certain

compact set D for all iterations. Therefore, f(x) can be treated as a global Lipschitz

function in the learning context. Now utilizing Assumptions 5.1 and 5.2, the conver-

gence of P-type learning rule (5.3) can be proved by traditional λ -norm analysis (Xu

and Tan, 2003). �

The condition (5.5) is more general than the global Lipschitz condition in ILC litera-

ture. To demonstrate this point, assume that f(x) satisfies the global Lipschitz condition,

that is for any z1, z2 ∈ Rn,

|f(z1)− f(z2)| ≤ L|z1− z2|,

where L is the global Lipschitz constant.

From (5.1a) the solution of x(t) can be written as

x(t) = x(0)+
∫ t

0
(f(x(τ))+g(x(τ))u(τ))dτ
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Taking norm on both sides and applying global Lipschitz condition on f(x) yield

|x(t)| ≤ |x(0)|+
∫ t

0
(|f(x)|+ |g(x)u(τ)|)dτ

≤ |x(0)|+
∫ t

0
|f(0)|dτ +

∫ t

0
‖g(x)‖|u(τ)|dτ +

∫ t

0
L|x(τ)|dτ.

Therefore, applying Gronwall-Bellman’s Lemma (Khalil, 2002) yields

|x(t)| ≤ eLt |x(0)|+
∫ t

0
eL(t−τ)‖g(x)‖|u(τ)|dτ +

∫ t

0
eL(t−τ)|f(0)|dτ

≤ l
∫ t

0
|u(τ)|dτ +η(t),

where l = ‖g(x)‖
∫ T

0 eL(T−τ) dτ and η(t) = eLt |x(0)|+
∫ t

0 eL(t−τ)|f(0)|dτ . Therefore, we

can conclude that the global Lipschitz condition is a special case of (5.5).

5.3.2 Lyapunov Stable Systems

To explore the applicability of ILC to local Lipschitz systems, the first natural can-

didate is the Lyapunov stable system. Furthermore, many industry processes are stable

due to heat dissipation and frictions. This section focuses on Lyapunov stable systems.

Theorem 5.1 Consider system (5.1) under the P-type learning rule (5.3), Assumptions

5.1 and 5.2. If there exist α1, α2 ∈K∞, a continuously differentiable function W (x), a

positive semidefinite function α3(x), and a positive constant γ , such that

α1(|x|)≤W (x)≤ α2(|x|) (5.10)

∂W
∂x (f(x)+g(x)u)≤−α3(x)+ γ|u|. (5.11)

Furthermore, if α1 is convex, then the P-type learning rule (5.3) is convergent.

Proof : From the inequality (5.11), we have

W (x(t)) ≤ −
∫ t

0
α3(x(τ))dτ + γ

∫ t

0
|u(τ)|dτ +W (x(0))

≤ γ

∫ t

0
|u(τ)|dτ +W (x(0)). (5.12)
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By using the comparison function in (5.10), (5.12) can be written as

α1(|x|)≤ γ

∫ t

0
|u(τ)|dτ +W (x(0)). (5.13)

Notice that α1 is convex, from Lemma 5.1 we have the following inequality

|x| ≤ γk
∫ t

0
|u(τ)|dτ + kW (x(0))+b, (5.14)

where k and b are some constants. Hence, (5.14) satisfies the condition in (5.5). There-

fore, we can conclude that the P-type learning rule is convergent by using Lemma 5.2

�

Take a close look at equations (5.10) and (5.11), when input u is set to zero, the

unforced system of (5.1a) is Lyapunov stable. Theorem 5.1 provides a sufficient condi-

tion for P-type rule convergence. Next we will investigate what kind of systems satisfy

(5.10) and (5.11).

Lemma 5.3 If the unforced system of (5.1a) is Lyapunov stable, then there exist a con-

tinuously differentiable function W (x), comparison functions α1, α2 ∈K , and a posi-

tive semidefinite function α3(x), such that

α1(|x|)≤W (x)≤ α2(|x|),

∂W
∂x (f(x)+g(x)u)≤−α3(x)+ γ|u|.

Comparing Lemma 5.3 with Theorem 5.1, we can notice that in Lemma 5.3 α1 and

α2 belong to K functions instead of K∞ functions, and α1 is not necessarily a convex

function.

Proof : As the unforced system of (5.1a) is Lyapunov stable, by Converse Theo-

rem (Khalil, 2002) there exists a Lyapunov function V (x) such that

ᾱ1(|x|)≤V (x)≤ ᾱ2(|x|), (5.15)

∂V
∂x f(x)≤−ᾱ3(x), (5.16)
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where ᾱ1, ᾱ2 ∈K∞ and ᾱ3(x) is a positive semidefinite function.

Define a positive and non-decreasing function ᾱ4 and a class K function π as fol-

lows

ᾱ4(r) = sup
|x|≤r

∣∣∣∣∂V
∂x

∣∣∣∣ ,
and

π(r) =
∫ r

0

1
1+χ(s)

ds,

where χ(s) is a positive and non-decreasing function to be defined later.

Let W (x) = π(V (x)). Therefore,

∂W
∂x

ẋ =
∂π

∂V
∂V
∂x

f(x)+
∂π

∂V
∂V
∂x

g(x)u

≤ −ᾱ3(x)
1+χ(V (x))

+
ᾱ4(|x|)|g(x)| |u|

1+χ(V (x))
. (5.17)

Define χ(V (x)) = ᾱ4(ᾱ
−1
1 (V (x))), which is positive and non-decreasing.

From (5.15), we have |x| ≤ ᾱ
−1
1 (V (x)) and V (x)≤ ᾱ2(|x|). As ᾱ4 is a positive and

non-decreasing function, we have ᾱ4(|x|)≤ ᾱ4(ᾱ
−1
1 (V (x))). Similarly, ᾱ4(ᾱ

−1
1 (V (x)))≤

ᾱ4(ᾱ
−1
1 (ᾱ2(|x|))). With these inequalities, (5.17) can be written as

∂W
∂x

ẋ ≤ −ᾱ3(x)
1+ ᾱ4(ᾱ

−1
1 (V (x)))

+
ᾱ4(|x|)|g(x)| |u|

1+ ᾱ4(ᾱ
−1
1 (V (x))

≤ −ᾱ3(x)
1+ ᾱ4(ᾱ

−1
1 (ᾱ2(|x|)))

+
ᾱ4(|x|)|g(x)| |u|

1+ ᾱ4(|x|)

≤ −ᾱ3(x)
1+ ᾱ4(ᾱ

−1
1 (ᾱ2(|x|)))

+ |g(x)| |u|. (5.18)

Therefore, set α1 = π(ᾱ1), α2 = π(ᾱ2), α3 = −ᾱ3(x)
1+ᾱ4(ᾱ

−1
1 (ᾱ2(|x|)))

, and γ = ‖g(x)‖, this

completes the proof. �

The constructions of π(r) and W (x) are motivated by the techniques in Angeli et al.

(2000b).

Lemma 5.3 shows if the unforced system is Lyapunov stable, there exists a contin-

uously differentiable function W (x) satisfying the similar conditions (5.10) and (5.11)
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in Theorem 5.1. As Theorem 5.1 provides a sufficient condition for P-type learning

rule convergence, comparing the results in Lemma 5.3 and conditions in Theorem 5.1,

it shows that when α1 in Lemma 5.3 happens to be a K∞ function and convex, all the

conditions in Theorem 5.1 are fulfilled. Therefore, we have the following corollary.

Corollary 5.1 If α1 in Lemma 5.3 is a K∞ function and convex, then the P-type learning

rule (5.3) is convergent.

The proof of Lemma 5.3 and Corollary 5.1 provide a constructive method to check

if the P-type learning rule works for a Lyapunov stable system. Next, we demonstrate

the applications of Corollary 5.1 by two examples, namely, stable system with quadratic

Lyapunov function and globally exponentially stable system. As the results cannot be

obtained by existing analysis method in the literature, they are presented in the form of

corollaries.

Corollary 5.2 Consider system (5.1) under the P-type learning rule (5.3), Assumptions

5.1 and 5.2. If the unforced system of (5.1a) is Lyapunov stable, and admits a quadratic

Lyapunov function, that is V (x) = xT Px where P is a symmetric positive definite matrix,

then the P-type learning rule (5.3) is convergent.

Proof : As the unforced system of (5.1a) admits a quadratic Lyapunov function V (x) =

xT Px, we can construct two K∞ functions ᾱ1 and ᾱ2 such that

ᾱ1(|x|)≤V (x)≤ ᾱ2(|x|),

where ᾱ1(r) = c1r2, ᾱ2(r) = c2r2, c1 = λmin(P), and c2 = λmax(P).

ᾱ4 can be calculated as follows,

ᾱ4(r) = sup
|x|≤r

∣∣∣∣∂V (x)
∂x

∣∣∣∣= 2|P|r = c4r.
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Following the similar procedures in the proof of Lemma 5.3, W (x) can be con-

structed by π(V (x)). Therefore, α1 = π(ᾱ1). Utilizing Lemma 5.3 and Corollary 5.1,

it suffices to show α1 is a K∞ function and convex so as to conclude Corollary 5.2.

Calculating α1, we have

α1(r) =
∫

ᾱ(r)

0

1
1+ ᾱ4(ᾱ

−1
1 (s))

ds

=
∫ c1r2

0

1
1+ c4√

c1

√
s

ds. (5.19)

From (5.19), we can conclude that α1(r) is nonnegative, continuous, monotonically

increasing, and approaches to infinity as r→ ∞. Thus, α1 ∈K∞.

Differentiating α1 twice against r yields,

dα2
1

d2r
=

2c1

(1+ c4r)2 > 0.

Therefore, α1 is a convex function. This completes the proof. �

As a specific example, consider the dynamics below

ẋ=− x− x3 +u, (5.20a)

y=x+u, (5.20b)

The system (5.20) contains a local Lipschitz term −x3, all existing ILC theory does not

apply to this system. It is straightforward to verify that the unforced system of (5.20a)

admits the Lyapunov function V (x) = x2. Thus, by Corollary 5.2, P-type learning rule

is applicable to system (5.20).

Corollary 5.3 Consider system (5.1) under the P-type learning rule (5.3), Assumptions

5.1 and 5.2. If the unforced system of (5.1a) is globally exponentially stable, then the

P-type learning rule (5.3) is convergent.
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Proof : As the unforced system of (5.1a) is globally exponentially stable, by Converse

Theorem (Khalil, 2002), there exists a Lyapunov function V (x) such that

c1|x|2 ≤V (x)≤ c2|x|2,

∂V
∂x f(x)≤−c3|x|2,∣∣∣ ∂V

∂x

∣∣∣≤ c4|x|,

where c1, c2, c3, c4 are positive constants. Therefore, we can draw the conclusion by

using similar arguments in the proof of Corollary 5.2. �

It is easy to show that the unforced system of (5.20a) is globally exponentially

stable, Corollary 5.3 says P-type learning rule is applicable to system (5.20), which is

the same as predicted by Corollary 5.2. Corollary 5.3 can be regarded as a special case

of Corollary 5.2.

5.3.3 Systems with Stable Local Lipschitz Terms but Unstable Global Lip-

schitz Factors

All the results presented so far in this section assume Lyapunov stable unforced

systems. However, it is widely observed that ILC works for unstable systems as well,

especially the unstable system that are globally Lipschitz continuous. This motivates

us to further explore what kind of unstable system is applicable for ILC. The following

Lyapunov criterion renders the existing ILC for global Lipschitz system as a special

case.

Theorem 5.2 Consider system (5.1) under the P-type learning rule (5.3), Assumptions

5.1 and 5.2. If there exist α1, α2 ∈K∞, a continuously differentiable function W (x),
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and positive constants γ1, γ2, γ3, such that

α1(|x|)≤W (x)≤ α2(|x|) (5.21)

∂W
∂x (f(x)+g(x)u)≤ γ1|x|+ γ2|u|+ γ3. (5.22)

Furthermore, if α1 is convex, then the P-type learning rule (5.3) is convergent.

Proof : From (5.22) we have

W (x(t))≤ γ1

∫ t

0
|x(τ)|dτ + γ2

∫ t

0
|u(τ)|dτ + γ3t +W (x(0)). (5.23)

Noticing equation (5.21) and Lemma 5.1, we have following relation,

|x(t)| ≤ γ1k
∫ t

0
|x(τ)|dτ + γ2k

∫ t

0
|u(τ)|dτ + γ3kt +b, (5.24)

for t ∈ [0, T ], where k depends on α1, and b are positive constants that depend on α1

and W (x(0)).

Taking λ -norm on both sides of (5.24) yields

‖x‖λ ≤ γ1k
λ
‖x‖λ +

γ2k
λ
‖u‖λ + γ3kT +b.

Solving ‖x‖λ in the above equation yields

‖x‖λ ≤
(

1− γ1k
λ

)−1(
γ2k
λ
‖u‖λ + γ3kT +b

)
. (5.25)

The relation between ui+1 and ui has been derived in (5.7). Similarly, taking λ -norm

on both sides of (5.7) yields

‖ui+1‖λ ≤ ρ‖ui‖λ + c|Γ|‖xi‖λ +d|Γ|‖ud‖+ c|Γ|‖xd‖, (5.26)

where c and d are positive constants defined in the proof of Lemma 5.2.
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Substituting (5.25) to (5.26), we can obtain

‖ui+1‖λ ≤
(

ρ +
(

1− γ1k
λ

)−1 cγ2k|Γ|
λ

)
‖ui‖λ

+c|Γ|
(

1− γ1k
λ

)−1

(γ3kT +b)+d|Γ|‖ud‖+ c|Γ|‖xd‖︸ ︷︷ ︸
iteration-invariant

.

(5.27)

Choose a sufficiently large λ such that

ρ +

(
1− γ1k

λ

)−1 cγ2k|Γ|
λ

= ρ̄ < 1.

Hence, ui and xi are bounded for all iterations. Follow the similar idea in the proof of

Lemma 5.2, we can conclude Theorem 5.2. �

From Theorem 5.2 we can conclude that P-type learning rule is applicable to a sys-

tem whose local Lipschitz terms are stable and global Lipschitz terms can be unstable.

Next, we show that Theorem 5.2 includes global Lipschitz system as a special. Con-

sider system (5.1), and assume that f(x) satisfies the global Lipschitz condition with

Lipschitz constant L. Let π(r) =
∫ r

0
1

1+
√

s ds, V (x) = xT x, and W (x) = π(V (x)). Thus,

W (x) can be written as

W (x) =
∫ xT x

0

1
1+
√

s
ds.

In this case ᾱ1(r) = r2. Note that we have already shown that π(ᾱ1) is a K∞ function

and convex in the proof to Corollary 5.2.

Differentiating W (x) yields,

∂W
∂x

(f(x)+g(x)u) =
2xT f(x)+2xT g(x)u

1+ |x|

≤ 2L|x|+2‖g(x)‖|u|+2|f(0)|.

Set γ1 = 2L, γ2 = 2‖g(x)‖, and γ3 = 2|f(0)|. Hence, all global Lipschitz systems satisfy

the condition in Theorem 5.2.
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Figure 5.1: Tracking error profiles vs. iteration number for µ =−1 and µ = 0.

Consider the dynamics below

ẋ=2x+µx3 +u, (5.28a)

y=x+u, (5.28b)

The unforced system of (5.28a) has an unstable origin and contains a local Lipschitz

term µx3. It is easy to show that P-type learning rule is applicable to system (5.28)

by Theorem 5.2 when µ < 0. In contrast, all existing ILC theories cannot claim such

a conclusion unless µ = 0. To verify the theoretical prediction, the following P-type

controller is applied to system (5.28)

ui+1 = ui + ei,

where ei = yd − yi, and yd(t) = 0.1t + sin(t) for t ∈ [0, 5]. The initial state is set to

xi(0) = 0 for all iterations, and the control input in the first iteration ui(t) = 0. It can

be seen from Figure. 5.1 that the P-type learning rule converges for both systems, i.e.,

µ =−1 and µ = 0. A closer examination shows when µ = 0 the tracking error initially

increases up to the magnitude of 105, and then exponentially converges to zero. In
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contrast, the transient performance for the system when µ = −1 is much smoother.

This is because the local Lipschitz term −x3 is stable and it prevents the system state

from growing to a large magnitude. This observation also suggests that it may help

improve the transient performance by stabilizing a system before applying the ILC rule.

5.4 Convergence Properties in Presence of Bounding Condi-

tions

5.4.1 Systems with Bounded Drift Term

In addition to Assumption 5.1, we further assume that the drift term f(x) in system

(5.1) is bounded for all x ∈ Rn. Then, we have the following theorem.

Theorem 5.3 Consider system (5.1) under the P-type learning rule (5.3), Assumptions

5.1 and 5.2. If ‖f(x)‖= supx∈Rn |f(x)| ≤ b f and b f is a positive constant, then the P-type

learning rule (5.3) is convergent.

Proof : From the system dynamics (5.1a), the system state can be written as

x(t) = x(0)+
∫ t

0
(f(x(τ))+g(x(τ))u(τ))dτ. (5.29)

Taking norm on both sides of (5.29) and noticing the boundedness assumption on f(x),

a bounding function on |x(t)| can be obtained

|x(t)| ≤ ‖g(x)‖
∫ t

0
|u(τ)|dτ +b f t + |x(0)|. (5.30)

Note that the bounding function on |x(t)| in (5.30) has the same form as in (5.5). Thus,

we can conclude that the P-type learning rule (5.3) is convergent based on Lemma 5.2.

�
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Lipschitz term.

To verify the result in Theorem 5.3, consider the following system

ẋ=sin(x2)+u,

y=x+u.

Note that the local Lipschitz term sin(x2) is bounded for all x ∈ R. Let the desired

control input be ud(t) = 0.1t +1.5sin(2t), the initial state xi(0) = 0, and u1(t) = 0 for

t ∈ [0, 5]. Applying the P-type learning rule

ui+1 = ui + ei,

it can be seen from Figure. 5.2 that the tracking error increases slightly and then expo-

nentially converges to zero.

5.4.2 Systems with Bounded Control Input

In almost all practical systems, the inputs always have finite power due to physi-

cal limitations. In this subsection, we apply control saturation to a class of uniformly

87



Chapter 5. P-type Iterative Learning for Non-parameterized Systems with Uncertain
Local Lipschitz Terms

bounded energy bounded state (UBEBS) systems (Angeli et al., 2000a), and explore the

applicability of P-type ILC rule to UBEBS systems.

Definition 5.1 The system (5.1) is UBEBS if there exist class K∞ functions α1, α2, and

some positive constant a such that

|x(t)| ≤
∫ t

0
α1(|u(τ)|)dτ +α2(|x(0)|)+a,

for any t ∈ [0, T ].

The definition of UBEBS shares the similar but more general definitions than ISS (Jiang

and Wang, 2001; Khalil, 2002) and iISS (Angeli et al., 2000b; Sontag, 2006). The sys-

tem (5.1) is said to be ISS if the state satisfies

|x(t)| ≤ β (|x(0)|, t)+ γ‖u‖,

where β (|x(0)|, t) is a class K L function2, and γ is a positive constant.

The system (5.1) is said to be iISS if the state satisfies

α1(|x(t)|)≤ β (|x(0)|, t)+
∫ t

0
α2(|u(τ)|)dτ,

where α1 and α2 are class K functions.

Based on the definitions of UBEBS, ISS and iISS, we can conclude that UBEBS

systems include ISS and iISS systems as special cases. Both ISS and iISS require that

the system has a stable origin. However, UBEBS system does not require a stable

origin. Therefore, the results derived in this subsection can be applied to a large class

of systems when control saturation is imposed.

2β (s, t) is said to belong to class K L if for each fixed t, the mapping β (s, t) belongs to class K with

respect to s, and for each fixed s, the mapping β (s, t) is decreasing with respect to t and β (s, t)→ 0 as

t→ ∞.
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The P-type learning rule with control saturation is proposed as follows

vi+1 = ui +Γei, (5.32a)

ui+1 = sat(vi+1,u∗) (5.32b)

where Γ is chosen such that (5.4) is satisfied, the saturation function sat(·,u∗) is defined

component-wise, the saturation bound

u∗ =



u1, u1

u2, u2

...
...

up, up


,

and u j,u j denote the lower and upper limits of the jth input channel and 1≤ j ≤ p.

As the desired trajectory yd in (5.2) should be realizable, ud must not exceed the

saturation bound, that is ud = sat(ud ,u∗).

Applying the control saturation (5.32b), the input never exceeds the saturation bound.

Therefore, the upper bound on state |x(t)| can be obtained from Definition 5.1. Denote

the upper bound of |x(t)| by bx = bx(x(0),u∗,T ). As such, f(x) can be regarded as a

global Lipschitz function in x with Lipschitz constant L, and

L = sup
‖z1‖<bx,‖z2‖<bx

φ(z).

Theorem 5.4 Consider system (5.1) under the P-type learning rule (5.32), Assumptions

5.1 and 5.2. If the system (5.1) is UBEBS, then the P-type learning rule (5.32) with

control saturation is convergent.

Proof : As g(x) is a continuously differentiable function and ‖x‖ = bx, the following

inequality holds

|g(xd)−g(xi)| ≤ Lg|xd−xi|, (5.33)
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where Lg is a constant.

Let δxi = xd−xi and δui = ud−ui. Note that δxi(0) = 0 by Assumption 5.2, thus

δxi(t) =
∫ t

0
(f(xd)− f(xi)+g(xd)ud−g(xi)ui) dτ

=
∫ t

0
(f(xd)− f(xi)+g(xd)ud−g(xi)ud +g(xi)ud−g(xi)ui) dτ.(5.34)

Taking norm on both sides of (5.34) yields

|δxi(t)| ≤
∫ t

0
((L+Lg‖ud‖)|δxi|+‖g(xi)‖|δui|) dτ. (5.35)

Applying Gronwall-Bellman’s Lemma to (5.35) yields

|δxi(t)| ≤
∫ t

0
e(L+Lg‖ud‖)(t−τ)‖g(xi)‖|δui(τ)|dτ. (5.36)

Taking λ -norm on (5.36) we obtain

‖δxi‖λ ≤
bg

λ − l
‖δui‖λ , (5.37)

where l = L+Lg‖ud‖ and bg = ‖g(x)‖.

Next, calculate the relation between δui+1 and δui.

|δui+1| = |ud− sat(vi+1,u∗)|

≤ |ud−vi+1|

= |ud−ui−Γei|

=

∣∣∣∣(Im−Γ
∂h
∂u

)
δui +

∂h
∂x

δxi

∣∣∣∣
≤ ρ|δui|+ c|δxi|, (5.38)

where c is defined in the proof to Lemma 5.2.

Note that (5.7) is utilized in deriving (5.38). Taking λ -norm on (5.38) yields

‖δui+1‖λ ≤ ρ‖δui‖λ + c‖δxi‖λ . (5.39)
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Substituting (5.37) to (5.39), we obtain

‖δui+1‖λ ≤
(

ρ +
cbg

λ − l

)
‖δui‖λ . (5.40)

Choose λ sufficiently large such that (5.40) is a contraction-mapping. Therefore, ‖δui‖

converges to zero in the iteration domain. Consequently, ‖δxi‖ converges to zero as

well. This completes the proof. �

To demonstrate the application of Theorem 5.4, we consider the switched reluc-

tance motor (SRM) control problem, which is one of the benchmark problems in ILC

literature (Sahoo et al., 2004). In a SRM, the rotor is made of steel laminations without

conductors or permanent magnets, and only the stator presents windings. Due to the

simple mechanical structure, SRM is cheaper to manufacture compared with other ac

and dc motors. However, the presence of nonlinearity makes SRM a challenging control

problem.

According to Spong et al. (1987), an m-phase SRM can be modeled by the following

dynamics,

θ̇e = ωe,

ω̇e = J−1

(
m

∑
j=1

Tj(θe,η j)− f ωe

)
,

Tj =
ψs

h2
j(θe)

d h j(θe)

d θe

(
1− [1+η jh j(θe)]e−η jh j(θe)

)
,

η̇ j =

(
∂ψ j

∂η j

)−1(
−Rη j +u j−

∂ψ j

∂θe
ωe

)
,

ψ j = ψs

(
1− eη jh j(θe)

)
,

h j(θe) ≈ h0 +b1 sin(Nrθe−2π( j−1)/m),

where j = 1, . . . ,m denotes the phase, m = 3, θe is the electrical angular position of

rotor, ωe is the angular speed, Nr = 4 is the number of rotor poles, η j is the stator

current of phase j, u j is the voltage applied on phase j, ψ j is the flux-linkage of phase
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j, ψs = 1.2Wb is the flux constant, J = 0.0016kgm2 is the inertial of rotor, R = 4Ω is

resistance of phase j, f = 0.2 is the friction coefficient, h0 = 0.0545 and b1 = 0.0454

are two constants.

To illustrate the P-type learning rule, consider only the current to torque loop. Let

the desired torque profile be Td(t) ∈ C [0, 0.04] as follows,

Td(t) =



0 0≤ t < 0.05

3
τ2 (t−0.005)2− 2

τ3 (t−0.005)3 0.005≤ t < 0.015

1 0.015≤ t < 0.025

1− 3
τ2 (t−0.025)2 + 2

τ3 (t−0.025)3 0.025≤ t < 0.035

0 0.035≤ t ≤ 0.04

where τ = 0.01. Figure. 5.3 shows the desired torque profile.

Due to the symmetric structure, apply learning rule to the first phase only, and the

controller is chosen as

η1,i+1 = sat(η1,i + γei,η
∗),
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Figure 5.4: Tracking error profiles vs. iteration number under control saturation.

where i denotes the iteration number, learning gain γ = 2, tracking error ei = Td−T1,i,

and saturation bound η∗= [−20, 20]. The application of control saturation is reasonable

as in any electrical drives a current limiter is always incorporated to prevent the circuit

from current overflow or overheating.

In the simulation study, the initial conditions are chosen as θe = 0, ωe = 0, and

η1,0 = 0. Figure. 5.4 shows the tracking error profiles in the iteration domain. After 37

iterations of learning, the tracking error is reduced to 10−3.

5.5 Conclusion

This chapter explores the applicability of P-type ILC rule to local Lipschitz systems.

In the current ILC literature, contraction-mapping based ILC is only applicable to global

Lipschitz systems. In contrast, a number of sufficient conditions for local Lipschitz

systems in the form of Lyapunov criteria are developed in the current work. By using

the similar proof idea, it is further shown that P-type ILC can be applied to the systems

whose local Lipschitz terms are bounded, and UBEBS systems under control saturation.
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The new development complements to the existing literature. However, there are many

issues remaining unsolved. In particular, the applicability of D-type ILC rule to local

Lipschitz systems is still unknown, and is worth more investigation.
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Chapter 6

Synchronization for Nonlinear

Multi-agent Systems by Adaptive

Iterative Learning Control

6.1 Background

As we discussed before, there are two main frameworks for iterative learning con-

trol, namely contraction-mapping (CM) and composite energy function (CEF) based

approaches. CM based ILC is usually preferred due to its simplicity in implementation,

little system information requirement, and applicability to non-affine in input systems.

However, in the current literature, CM based ILC is only applicable to the global Lip-

schitz systems. In Chapter 5 CM based ILC is extended to several classes of local

Lipschitz systems by combining Lyapunov and CM analysis methods. Therefore, the

algorithms developed in Chapters 2, 3, and 4 can be applied to a large scale of systems.

In contrast, CEF based method uses full state information to design estimation rule and
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ILC controllers. This method can be applied if the system dynamics have the linear in

parameter form and full state information is available for feedback or nonlinear com-

pensation. As the current state information is utilized in the controller, the transient

performance is usually better than the CM based method.

Recently Yang and Xu (2012) demonstrate promising results of the CEF method

in consensus tracking problem for the first-order parametric agents. Li and Li (2013)

apply the similar approach to the second-order agents. The focus of this chapter is to

design ILC schemes for agents that have more general nonlinear dynamics. The CEF

framework is used to analyze the performance of synchronization algorithms. Compar-

ing to the existing literature, the non-parametric uncertainties in Li and Li (2013) are

assumed to be bounded and suppressed by sliding mode control. In this chapter, it is

assumed that the non-parametric uncertainties satisfy the local Lipschitz like condition

and could be unbounded. They are carefully handled by some robust terms. In Yang and

Xu (2012) and Li and Li (2013), the problem formulations assume constant and known

input gains. Whereas, the time-varying input gains with uncertainties are considered

in this chapter. Moreover, not restricted to the first-order or second-order systems, the

developed methods can be applied to any high-order systems.

In a traditional ILC setting (tracking problem), the desired trajectory is used to de-

sign updating laws. However, in the multi-agent coordination problem, it is very com-

mon that the desired trajectory is only available to a subset of followers. Hence, only

the local measurement (the extended error) can be utilized in the controller design. Al-

though there is a clear relationship between the extended error and the consensus track-

ing error, it is not straightforward to apply the CEF based design framework. In this

chapter, the desired trajectory is treated as unknown time-varying (iteration-invariant)
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parametric uncertainty so that each follower tries to learn. This desired trajectory is

combined with other parametric uncertainties that ILC can handle easily. On the other

hand, the nonlinear uncertainties that are not global Lipschitz continuous will be han-

dled by robust control. The proposed algorithm enables all the followers to learn the

parametric uncertainties and deal with lumped uncertainties based on local information

from their neighborhoods. The convergence analysis using an appropriate CEF shows

that the proposed ILC algorithms can achieve consensus tracking in the presence of

parametric and lumped uncertainties under some appropriate convergence conditions.

The rest of this chapter is organized as follows. Section 6.2 provides one prelim-

inary result in graph theory and the problem formulation. Next, ILC control laws are

designed for the first-order multi-agent systems in Section 6.3. Section 6.4 extends the

obtained results to the more general settings: high-order systems. Illustrative exam-

ples are presented in Section 6.5 to demonstrate efficacy of the proposed algorithms,

followed by conclusion in Section 6.6.

6.2 Preliminaries and Problem Description

6.2.1 Preliminaries

Graph theory is an instrumental tool to characterize the communication topology

in the multi-agent setting. Unlike the previous chapters, an undirected graph G (V ,E )

is adopted to model the communication among followers. That is the information flow

among followers is symmetric. The following lemma is a well-known result in multi-

agent coordination, and it is an important result to construct an appropriate CEF.

Lemma 6.1 (Hong et al., 2006) If the undirected graph G is connected, and D is any

nonnegative diagonal matrix with at least one of the diagonal entries being positive,
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then H = L+D is symmetric positive definite, where L is the Laplacian matrix of G .

6.2.2 Problem description for first-order systems

The problem formulation starts from simple first-order systems. This simplifies the

design of ILC updating law. Section 6.4 shows how to generalize the obtained results

to high-order systems.

Consider a group of N heterogeneous agents. At the ith iteration, the dynamics of

the jth agent, ( j = 1,2, . . . ,N), take the following form,

ẋi, j(t) = θ
0
j(t)ξ

0
j(t,xi, j)+η j(t,xi, j)+b j(t)ui, j(t), (6.1)

where xi, j ∈ R1 is the system state, ui, j ∈ R1 is the input, θ
0
j : [0,T ]→ R1×n j is an

unknown time-varying function, ξ
0
j : [0,T ]×R1 → Rn j is a state-dependent known

function, η j : [0,T ]×R1 → R1 represents the unknown lumped system uncertainties

or disturbances. The parameter b j ∈ R1 is the time-varying input gain, and it is either

positive or negative. Without loss of generality, it is assumed that 0 < b j ≤ b j ≤ b j.

In addition, θ
0
j(·), ξ

0
j(·, ·), η j(·, ·), and b j(·) are continuous functions with respect to

their arguments. For simplicity of the presentation, for a time-varying function f (t), the

argument t is dropped when no confusion arises.

The desired trajectory (virtual leader) satisfies xd ∈ C 1[0,T ], hence, ẋd is contin-

uous. Meanwhile, the virtual leader’s trajectory xd(t), for t ∈ (0,T ] is only accessible

to a small portion of the followers. Furthermore, we assume that the upper bound of

the desired trajectory xd and its initial condition x0 are known to each follower. The

supremum norm of xd is denoted as bd .

Remark 6.1 Under certain scenarios, the initial states of the agents are easily ob-

tainable compared with the states during the task execution. For example, a group of
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unmanned aerial vehicles (UAVs) take off simultaneously from an air base and perform

a formation task for surveillance. Before the UAVs take off, the relative geometric po-

sitions among them can be prescribed by human operators. Whereas, during the task

execution, the leader’s position and velocity are not available to some of the follow-

ers due to communication or sensor limitations. Therefore, it is emphasized here that

xd(t), for t ∈ (0,T ] is only accessible to a small portion of the followers.

Remark 6.2 For many practical systems, there are limitations due to physical con-

straints. For instance, the range space of an industry manipulator, the thrust on a

fixed-wing aircraft, and the speed of a vehicle are all limited. As the controller requires

the upper bound of xd , which is the global information, we shall minimize the usage of

the global information. Depending on the specific control task, the system’s operation

range may be used to estimate bd .

Denote the tracking error for the jth agent at the ith iteration as

ei, j = xd− xi, j. (6.2)

A follower can only measure or observe the state information within its neighbor-

hood (local information). This local information is called the extended tracking error

and it is defined as follows,

εi, j , ∑
k∈N j

a j,k(xi,k− xi, j)+d j(xd− xi, j), (6.3)

where d j = 1 if the jth agent knows the desired trajectory, and d j = 0 otherwise.

The control objective is to design a set of distributed controllers such that all the

followers can perfectly track the desired trajectory in the presence of parametric and

lumped uncertainties, i.e., lim
i→∞

ei, j = 0, for j = 1,2, . . . ,N.
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Noting the fact that L1 = 0 and using (6.2), the extended tracking error (6.3) can be

written in the stack vector form,

ε i = −Lxi +Dei = L(xd1−xi)+Dei

= (L+D)ei = Hei, (6.4)

where D = diag(d1, . . . ,dN), xi, ei, and ε i are the column stack vectors of xi, j, ei, j, and

εi, j. If Assumption 6.2 (introduced later) holds, Lemma 6.1 shows that H is symmetric

positive definite. This important feature will be used to construct an appropriate CEF.

Remark 6.3 The relationship (6.4) plays a crucial role to ensure the consensus track-

ing with local information. If ε i converges, the relationship (6.4) shows that the tracking

error ei will also converge as H is positive definite. This also supports the key idea of

multi-agent systems: by sharing information among the communication networks, each

agent does not have to equip a lot of sensors to measure needed signals.

To simplify the discussion, the following assumptions are imposed.

Assumption 6.1 For any j = 1,2, . . . ,N, the nonlinear function η j(t,x) satisfies the

following condition:

|η j(t,z1)−η j(t,z2)| ≤ φ j(z)|z1− z2|, t ∈ [0,T ], (6.5)

where z = [z1, z2]
T , and φ j : R2→R≥0 is a known continuous function and it is radially

unbounded1.

Remark 6.4 Assumption 6.1 is much weaker than the global Lipschitz condition as

φ j(·) might go to infinity when the state of the jth agent is unbounded. Thus the CM

based ILC design framework cannot be applied in general (see Chapter 5). Although

1A function V : Rn→ R1
≥0 is radially unbounded if |x| → ∞⇒V (x)→ ∞ (Khalil, 2002, Chapter 4).
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this condition is quite weak and many nonlinear functions satisfy this condition, it is

slightly stronger than local Lipschitz condition as the inequality (6.5) holds for all z ∈

R2.

Assumption 6.2 The communication graph G is undirected and connected, and at least

one of the followers can access to the leader’s trajectory.

Remark 6.5 Assumption 6.2 assumes that the leader is globally reachable from all

followers. This assumption is a necessary requirement for a leader-follower consensus

tracking problem. If there is an isolated agent, it is not possible that the agent can track

the leader’s trajectory as there is no information to correct its control action.

Assumption 6.3 The initial state of all followers are reset to be at x0 at every iteration,

i.e., xi, j(0) = xd(0).

Remark 6.6 Assumption 6.3 is the well-known identical initialization condition (i.i.c.),

which is one of the fundamental problems in the ILC literature. It has been used in

many multi-agent coordination problems, for example the formation problems consid-

ered in Ahn and Chen (2009) and Liu and Jia (2012). Without i.i.c., no matter how

ILC repeats, perfect tracking can never be achieved. Many modifications have been

dedicated to the relaxation of i.i.c., but they require either extra system information,

or additional control mechanisms. For example the initial state learning in Yang et al.

(2012). This fundamental issue has been exploited over the past 30 years without much

progress. In fact, i.i.c. problem is essentially the initial condition problem in ordinary

differential equation (ODE). The solution trajectory of an ODE is determined by its

initial condition. Therefore, different initial conditions will yield distinct solution tra-

jectories. Hence, without i.i.c., it is impossible for the control system to generate a
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solution trajectory that is identical to the reference xd(t). That is the main reason why

i.i.c. is indispensable for perfect tracking. For more discussion, please see Remark 2.4

in Chapter 2.

From the tracking error definition in (6.2), we can find out the error dynamics as follows.

ėi, j = ẋd− ẋi, j,

= ẋd−θ
0
jξ

0
j(t,xi, j)−η j(t,xi, j)−b jui, j

= ẋd−η j(t,xd)−θ
0
jξ

0
j(t,xi, j)−b jui, j +(η j(t,xd)−η j(t,xi, j))

= b jθ jξ j(t,xi, j)+(η j(t,xd)−η j(t,xi, j))−b jui, j, (6.6)

where

θ j , [−b−1
j θ

0
j , b−1

j (ẋd−η j(t,xd))] ∈ R1×(n j+1), (6.7)

ξ j(t,xi, j), [(ξ 0
j(t,xi, j))

T , 1]T ∈ R(n j+1)×1. (6.8)

Note that since b j 6= 0, (6.7) and (6.8) are well-defined.

The error dynamics (6.6) contain parametric uncertainty θ
0
jξ

0
j(t,xi, j), the lumped

uncertainty η j(t,xi, j), and the derivative of unknown desired trajectory ẋd . Equation

(6.6) shows by lumping ẋd−η j(t,xd) into parametric uncertainties, it is possible to in-

corporate adaptive ILC with robust ILC to deal with parametric uncertainties θ jξ j(t,xi, j)

and η j(t,xd)−η j(t,xi, j) with the help of Assumption 6.1, provided that ei, j is available

for each follower. However, ei, j cannot be used to design ILC schemes because only a

small portion of followers can access the leader’s trajectory. Remark 6.3 shows by us-

ing local information, consensus tracking can be achieved when an ILC law is designed

appropriately.
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6.3 Controller Design for First-order Multi-agent Systems

This section contains two parts. The first part shows how to design ILC law to en-

sure robust consensus tracking for the multi-agent systems discussed in Section 6.2.2.

The second part discusses how to design ILC updating law for system (6.1) if Assump-

tion 6.3 is relaxed.

6.3.1 Main results

In the following convergence analysis, let ∆ represent the difference operator over

two consecutive iterations. Specifically, ∆ωi := ωi−ωi−1, where ωi ∈ {Ei,Vi}, and Ei,

Vi are defined later.

Obviously, the proposed ILC updating law for the jth agent needs to ensure the con-

sensus tracking, reject lumped uncertainties, and learn parametric uncertainties. There-

fore, it has three components:

ui, j = b−1
j γεi, j︸ ︷︷ ︸

consensus tracking

+b−1
j

(
φ j(xi, j)

)2
εi, j︸ ︷︷ ︸

robust control

+ θ̂ i, jξ j(t,xi, j)︸ ︷︷ ︸
parameter learning

, (6.9)

where

φ j(xi, j) = sup
|z|≤bd

φ j(z,xi, j), (6.10)

γ is a positive constant to be designed, and θ̂ i, j is an estimation of θ j at the ith iteration.

It is updated as follows

θ̂ i, j(t) = θ̂ i−1, j(t)+κεi, j
(
ξ j(t,xi, j)

)T
,

θ̂ 0, j(t) = 0, ∀t ∈ [0,T ], (6.11)

where κ > 0 is the parameter learning gain.
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The updating laws (6.9) can be rewritten in a stack vector form,

ui = B−1
(

γI +
(
Φ(xi)

)2
)

ε i + Θ̂iξ (t,xi), (6.12)

where B , diag(b1, . . . ,bN); ε i, ui and ξ (t,xi) are the column stack vectors of εi, j, ui, j

and ξ j(t,xi, j) respectively, and

Φ(xi) , diag(φ 1(xi,1),φ 2(xi,2) . . . ,φ N(xi,N)),

Θ̂i , diag(θ̂ i,1, θ̂ i,2, . . . , θ̂ i,N).

For convenience, we introduce the following notations,

ηd ,

[
η1(t,xd), η2(t,xd), · · · , ηN(t,xd)

]T

,

η(t,xi) ,

[
η1(t,xi,1), η2(t,xi,2), · · · , ηN(t,xi,N)

]T

,

B , diag(b1,b2 . . . ,bN),

Θ , diag(θ 1,θ 2, . . . ,θ N),

Θ̃i , Θ− Θ̂i.

This leads to the following closed loop error dynamics,

ėi = (ηd−η(t,xi))+BB−1
(

γI +
(
Φ(xi)

)2
)

ε i + Θ̃iξ (t,xi). (6.13)

The following CEF is introduced:

Ei(t) = Vi(ei)︸ ︷︷ ︸
consensus tracking

+
1

2κ

∫ t

0
Trace

((
Θ̃i(τ)

)T BΘ̃i(τ)
)

dτ︸ ︷︷ ︸
parameter learning

, (6.14)

where Vi(ei), 1
2 eT

i Hei. The CEF contains the information related to consensus tracking

and the parameter learning. It is defined for each time instant over [0,T ].

The first result is stated in Theorem 6.1.
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Theorem 6.1 Assume that Assumptions 6.1–6.3 hold for the multi-agent system (6.1).

The closed loop system consisting of (6.1) and the updating laws (6.9)–(6.11), can en-

sure that the tracking error ei, j(t) converges to zero point-wisely ( j = 1,2, . . . ,N) for

any t ∈ [0,T ] along the iteration axis, if

γ ≥ 1
4σ(H2)

+α, (6.15)

for some positive constant α . Moreover, ui, j ∈L 2[0,T ] for any j = 1,2, . . . ,N, i∈N≥0.

Proof: see Appendix B.3. �

Remark 6.7 In the proof of Theorem 6.1, it shows that Ei+1(t) ≤ Ei(t)−Vi(ei(t)) for

each time instant over [0,T ]. After showing the uniform boundedness of E1(t) over

time, the point-wise convergence of the tracking error can be ensured. The uniform

boundedness of Ei(t) for any i ∈ N≥0, t ∈ [0,T ] shows that the control input is L 2

bounded uniformly for all i ∈ N≥0.

Remark 6.8 As pointed out by Xu and Tan (2002a), the parameter updating law (6.11)

cannot ensure the uniform boundedness of the Θ̂i, i ∈ N≥0, only the point-wise conver-

gence of the tracking error can be ensured and the input signal is L 2 bounded. When

an appropriate projection method is used for the updating law (6.11), it is possible to get

stronger results (uniform convergence of the tracking error and uniform boundedness

of the input signal). However, the projection method always requires extra information:

the upper and lower bounds of unknown time-varying parameters.

Remark 6.9 In the parameter updating rule (6.11), the derivative of the desired tra-

jectory ẋd is treated as a completely unknown variable, though, some of the followers

are able to know ẋd . This available information can be used to possibly improve the

performance (for example, transient response along iteration domain). Let Ω0 be the
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set of agents who can obtain the leader’s information, i.e., Ω0 , { j ∈ V |d j = 1}, which

leads to another parameterization:

θ
a
j ,


[−b−1

j θ
0
j ,−b−1

j η j(t,xd),b−1
j ], if j ∈Ω0,

[−b−1
j θ

0
j ,b
−1
j (ẋd−η j(t,xd))], otherwise,

and

ξ
a
j(t,xi, j),


[
(ξ 0

j(t,xi, j))
T ,1, ẋd

]T
, if j ∈Ω0,

[(ξ 0
i, j(t,xi, j))

T ,1]T , otherwise.

Under this parameterization, the parameter updating law (6.11) is applicable if θ j

and ξ j are replaced by θ
a
j and ξ

a
j respectively. It is interesting to observe when more

information is available, the number of unknown parameters increases, leading to a

more complicated controller.

6.3.2 Extension to alignment condition

Although Assumption 6.3 is a necessary condition to ensure the perfect tracking

performance, it is not easy to achieve i.i.c. in general. It is widely observed in the

industry that many motion systems start from the position where they stopped in the

previous iteration (Xu and Qu, 1998; Xu and Xu, 2004). For example, consider the in-

dustry manipulator performing the pick and place task repetitively. The starting position

is always the final position in the previous task execution. This motivates the widely

used alignment condition in the area of ILC.

Assumption 6.4 For any i∈N≥0 and j = 1,2, . . . ,N, the system (6.1) satisfies xi+1, j(0)=

xi, j(T ). Moreover, the desired trajectory also satisfies xd(0) = xd(T ).

With this relaxed assumption, we can obtain the following weaker result.

Corollary 6.1 Assume that Assumptions 6.1, 6.2 and 6.4 hold for the multi-agent sys-

tem (6.1). The closed loop system consisting of (6.1) and the updating laws (6.9)–(6.11)
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satisfying (6.15), can ensure that the tracking error ei, j(t) converges in the sense of

L 2[0,T ] norm, i.e.,

lim
i→∞

∫ T

0
(ei, j(τ))

2 dτ = 0. (6.16)

Moreover, ui, j ∈L 2[0,T ] for any j = 1,2, . . . ,N, i ∈ N≥0

Proof: see Appendix B.4. �

Remark 6.10 As Assumption 6.3 is relaxed by Assumption 6.4, Corollary 6.1 obtains a

weaker convergent result compared with that in Theorem 6.1, namely, from point-wise

to L 2 convergence.

6.4 Extension to High-order Systems

With some nontrivial modifications of the proposed methods in Section 6.3, the

learning controllers can be applied to high-order systems. The results are first derived

under i.i.c., then extended to the imperfect initial conditions with the inital rectifying

action.

Consider the jth agent modeled by the following dynamics,

ẋi, jk = xi, jk+1 , k = 1,2, . . . ,n−1,

ẋi, jn = θ
0
jξ

0
j(t,xi, j)+η j(t,xi, j)+b j(t)ui, j, (6.17)

where xi, j is the column stack vector of xi, jk , k = 1, . . . ,n.

The desired trajectory xd = [xd1 ,xd2 , . . . ,xdn ]
T is generated by

ẋdk = xdk+1 , k = 1,2, . . . ,n−1,

ẋdn = ẋd .
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Define the following two auxiliary variables:

si, j ,
n

∑
k=1

ckxi, jk , and sd ,
n

∑
k=1

ckxdk ,

where cn = 1, and

λ
n−1 + cn−1λ

n−2 + · · ·+ c1 = 0 (6.18)

is a stable polynomial. For instance, ci can be chosen the same coefficient as the poly-

nomial (λ +1)n−1.

Let the tracking error for the jth agent at the ith iteration be ei, j = sd−si, j. Since the

the polynomial (6.18) is stable, and xi, j(0) = xd(0), hence, if ei, j = 0, perfect tracking

is achieved, i.e., xi, j(t) = xd(t), t ∈ [0,T ]. The corresponding extended tracking error is

defined as

εi, j , ∑
k∈N j

a j,k(si,k− si, j)+d j(sd− si, j). (6.19)

Similarly, the extended tracking error εi, j in (6.19) can be written in the compact matrix

form,

ε i =−Lsi +Dei = Hei, (6.20)

where ε i, ei, and si are the column stack vectors of εi, j, ei, j, and si, j. Notice that the

definitions of ei, j and si, j are rather different from the ones in Section 6.3.

The error dynamics now become

ėi, j =
n

∑
k=1

ckẋdk −
n

∑
k=1

ckẋi, jk

=
n−1

∑
k=1

ck(xdk+1− xi, jk+1)+ ẋd−θ
0
jξ

0
j(t,xi, j)−η j(t,xi, j)−b jui, j

= b jθ jξ j(t,xi, j)+η j(t,xd)−η j(t,xi, j)−b jui, j, (6.21)

where

θ j ,

[
−b−1

j θ
0
j , b−1

j

(
n−1

∑
k=1

ckxdk+1 + ẋd−η j(t,xd)

)
,−b−1

j

]
,
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and

ξ j(t,xi, j),

[(
ξ

0
j(t,xi, j)

)T
, 1,

n−1

∑
k=1

ckxi, jk+1

]T

.

The proposed ILC controller and updating rule are

ui, j = b−1
j

(
γ +
(
φ j(xi, j)

)2
)

εi, j + θ̂ i, jξ j(t,xi, j), (6.22)

θ̂ i, j = θ̂ i−1, j +κεi, j
(
ξ j(t,xi, j)

)T
, θ̂ 0, j = 0, (6.23)

where φ j(xi, j) = sup
|z|≤bd

φ j(z,xi, j), and θ̂ i, j is the estimate of θ j at the ith iteration.

To analyze the convergence properties of the proposed algorithm. The following

result is required. Denote δxi, j = xd − xi, j, and cT = [c1, . . . ,cn]. Then we have ei, j =

cT δxi, j.

Lemma 6.2 Under Assumption 6.3, xi, j(0) = xd(0), we have

|δxi, j| ≤ r|ei, j|,

where r = ‖eCtg‖, C =



0 1 0 · · · · · ·

0 0 1 0 · · ·

...
...

...
. . .

...

0 −c1 −c2 · · · −cn−1


, and g =



0

0

...

1


.

Proof: Taking derivative of ei, j yields ėi, j = cT δ ẋi, j. Rewrite δ ẋi, j in the linear matrix

form, one has

δ ẋi, j =Cδxi, j +gėi, j.

Notice Assumption 6.3 that δxi, j(0) = 0, the above differential equation renders the

following solution,

δxi, j = eCt
δxi, j(0)+

∫ t

0
eC(t−τ)gėi, j(τ)dτ

=
∫ t

0
eC(t−τ)gėi, j(τ)dτ.
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Taking norm operation from the both sides yields,

|δxi, j| ≤
(

max
t∈[0,T ]

|eCtg|
)∣∣∣∣∫ t

0
ėi, j(τ)dτ

∣∣∣∣= r|ei, j|.

�

Remark 6.11 The characteristic polynomial of C is λ (λ n−1+cn−1λ n−2+ . . .+c1) = 0.

Notice that the polynomial in (6.18) is stable, therefore, zero is one of the eigenvalues

of C, and all the rest eigenvalues are stable. Hence, ‖eCt‖ is finite for all t ∈ [0, ∞).

Define

η(t,xd) , [η1(t,xd),η2(t,xd), . . . ,ηN(t,xd)]
T ,

η(t,xi) , [η1(t,xi,1),η2(t,xi,2), . . . ,ηN(t,xi,N)]
T .

With the help of Lemma 6.2, the equation (B.9) in Appendix B.3 for the first-order case

now becomes

|εT
i (η(t,xd)−η(t,xi))| ≤ ε

T
i
(
Φ(xi)

)2
ε i +

1
4σ(H)2 r2

ε
T
i ε i. (6.24)

Theorem 6.2 Assume that Assumptions 6.1–6.3 hold for the high-order multi-agent

system (6.17). The closed loop system consisting of (6.17) and the updating rules

(6.22)–(6.23), can ensure that the tracking error ei, j(t) approaches to zero point-wisely

( j = 1,2, . . . ,N) for any t ∈ [0,T ] along iteration axis, if

γ ≥ r2

4σ(H2)
+α,

for some positive constant α . Moreover, ui, j ∈L 2[0,T ] for any j = 1,2, . . . ,N, i∈N≥0.

Sketch of proof: The error dynamics (6.21) and controllers (6.22), (6.23) are very sim-

ilar to the ones in the first-order case, except that the parameterizations become more

complex and the error term definitions are different. Consider the CEF below

Ei(t) =Vi(ei)+
1

2κ

∫ t

0
Trace

(
Θ̃

T
i BΘ̃i

)
dτ,
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together with (6.24), follow the similar proof procedures in the previous section, we

conclude Theorem 6.2. �

Theorem 6.2 depends on the i.i.c., which makes the results sensitive to the initial

conditions. Assume that the initial state of each agent cannot be manipulated and is

reset to a fixed state at every iteration, but not the same as the desired state xd(0). By

extending the concept of the initial rectifying action (Sun and Wang, 2002), it is possible

to make the results more robust to the CEF based ILC.

Assumption 6.5 The initial state of the jth follower is reset to a fixed initial state at

every iteration, i.e., xi, j(0) = x j(0) 6= xd(0) for all i ∈ N≥0.

Define matrices A, Ā ∈ Rn×n below,

A =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 · · · · · · · · · 0


,

and Ā = A− gK is a stable matrix, where K ∈ R1×n and g is defined in Lemma 6.2.

K can be interpreted as the state feedback gain. The structure of A is decided by the

structure of system model (6.17). Let the extended tracking error be

ε̂i, j , ∑
k∈N j

a j,k(si,k− si, j)+d j(sd− si, j)− ∑
k∈N j

a j,kcT eĀt(xk(0)−x j(0))

−d jcT eĀt(xd(0)−x j(0)). (6.25)

It is worth noting that the extended tracking error in (6.25) is a distributed measurement.

Hence, it can be used in the distributed controller design.

To design and analyze the distributed version of initial rectifying action in the CEF
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framework, define the following auxiliary variables:

x̂d, j , xd− eĀt(xd(0)−x j(0)),

ŝd, j , cT x̂d, j = sd− cT eĀt(xd(0)−x j(0)),

êi, j , ŝd, j− si, j.

The dynamics of êi, j can be obtained as

˙̂ei, j = ˙̂sd, j− ṡi, j

= ˙̂sd, j−
n−1

∑
k=1

ckxi, jk+1−θ
0
jξ

0
j(t,xi, j)−η j(t,xi, j)−b jui, j

= b jθ jξ j(t,xi, j)+η j(t, x̂d, j)−η j(t,xi, j)−b jui, j, (6.26)

where the new parameterizations are

θ j ,
[
−b−1

j θ
0
j , b−1

j

( ˙̂sd, j−η j(t, x̂d, j)
)
,−b−1

j

]
,

and

ξ j(t,xi, j),

[(
ξ

0
j(t,xi, j)

)T
, 1,

n−1

∑
k=1

ckxi, jk+1

]T

.

The dynamics in (6.26) are identical to (6.21) except that the error definition and

parameterizations are different. Analogous to the controller design in the i.i.c. case, the

proposed ILC controller and updating rule are

ui, j = b−1
j

(
γ +
(
φ j(xi, j)

)2
)

ε̂i, j + θ̂ i, jξ j(t,xi, j), (6.27)

θ̂ i, j = θ̂ i−1, j +κε̂i, j
(
ξ j(t,xi, j)

)T
, θ̂ 0, j = 0, (6.28)

where φ j(xi, j) = sup
|z|≤b̂d

φ j(z,xi, j), b̂d = bd + |xd(0)− x j(0)|, and θ̂ i, j is the estimate of

θ j at the ith iteration.

To analyze the convergence properties, ε̂i, j should be expressed in terms of êi, j. With
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the help of auxiliary variables, we have

ε̂i, j = ∑
k∈N j

a j,k(ŝd, j− si, j− (ŝd,k− si,k)− ŝd, j + ŝd,k)− ∑
k∈N j

a j,kcT eĀt(xk(0)−x j(0))

+d j(sd− si, j)−d jcT eĀt(xd(0)−x j(0))

= ∑
k∈N j

a j,k(êi, j− êi,k)+d jêi, j.

Rewriting the above equation in compact matrix form yields

ε̂ i = H êi, (6.29)

where ε̂ i and êi are the column stack vectors of ε̂i, j and êi, j respectively.

Based on the definition of x̂d, j, it is guaranteed that x̂d, j(0) = x j(0). Define δ x̂i, j =

x̂d, j−xi, j, following the idea in Lemma 6.2, we have |δ x̂i, j| ≤ r|êi, j|.

With the above developments and analogy to Theorem 6.2, we have the following

results.

Theorem 6.3 Assume that Assumptions 6.1, 6.2, and 6.5 hold for the high-order multi-

agent system (6.17). The closed loop system consisting of (6.17) and the updating rules

(6.27)–(6.28), can ensure that the tracking error êi, j(t) approaches to zero point-wisely

( j = 1,2, . . . ,N) for any t ∈ [0,T ] along iteration axis, if

γ ≥ r2

4σ(H2)
+α,

for some positive constant α . Therefore,

lim
i→∞

xi, j(t) = xd(t)− eĀt(xd(0)−x j(0)).

Moreover, ui, j ∈L 2[0,T ] for any j = 1,2, . . . ,N, i ∈ N≥0.

The convergence results can be proved analogously to Theorems 6.1 and 6.2 by studying

the following CEF

Ei(t) =Vi(êi)+
1

2κ

∫ t

0
Trace

(
Θ̃

T
i BΘ̃i

)
dτ.
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As discussed in Remark 6.6, the perfect tracking can never be achieved when i.i.c. is

violated. From Theorem 6.3, it can be seen that the final trajectory of each individual

agent can be adjusted by the matrix K in Ā.

6.5 Illustrative Example

To illustrate the applications of the developed algorithms, consider a group of 4

agents. The communication graph among followers and leader is depicted in Fig-

ure. 6.1. Vertex 0 represents the virtual leader, and the dashed lines stand for the com-

munication links betweens leader and followers, i.e., only agents 1 and 4 can access

the state information of the leader. The solid lines denote the communication links be-

tween followers, and the communication graph among followers is connected. Then the

Laplacian is

L =



2 −1 0 −1

−1 3 −1 −1

0 −1 1 0

−1 −1 0 2


,

and D = diag(1,0,0,1). Hence, the smallest singular value of H is σ(H) = 0.3249.

1 2

4 3

0

Figure 6.1: Communication among agents in the network.

In the simulation study, we first demonstrate the results for first-order systems under
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i.i.c. and alignment condition. Next, illustrate the results for high-order systems.

6.5.1 First-order Agents

Let the 4 followers be modeled by the following dynamics,

ẋi,1 = sin(t)x2
i,1 +(1+0.1sin2(t))ui,1 +η1(t,xi,1),

ẋi,2 = cos(t)x3
i,2 +(1+0.2sin2(t))ui,2 +η2(t,xi,2),

ẋi,3 = e−tx2
i,3 +(1+0.3sin2(t))ui,3 +η3(t,xi,3),

ẋi,4 = −tx3
i,4 +(1+0.4sin2(t))ui,4 +η4(t,xi,4),

where the unknown disturbance η j(t,xi, j) = x2
i, j sin( j · t) for j = 1,2,3,4. Notice that

the disturbance η j(t,xi, j) satisfies the Assumption 6.1, i.e.,

|η j(t,xd)−η j(t,xi, j)| ≤ φ j(xd ,xi, j)|xd− xi, j|,

where φ j(xd ,xi, j) = |xd |+ |xi, j|.

The agent dynamics have the same form as in (6.1). So the learning rules (6.9) and

(6.11) can be applied directly.

Identical Initialization Condition

Choose the desired trajectory xd = sin3(t), t ∈ [0,5], and let all the agents satisfy the

i.i.c., i.e., xi, j(0) = xd(0). Set γ = 7.4, κ = 5, and φ j(xi, j) = 1+ |xi, j|.

Figure. 6.2 shows the trajectory profiles at the 1st and 50th iterations. At the 1st

iteration, the followers’ trajectories have some deviations from the leader’s. Due to the

current error feedback in the controller, the transient response is much better than the

typical contraction-mapping based controllers. The followers’ trajectories almost over-

lap with the leader’s at the 50th iteration. Figure. 6.3 shows the maximum tracking error
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Figure 6.2: The trajectory profiles at the 1st and 50th iterations under i.i.c.
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Figure 6.3: Maximum tracking error vs. iteration number under i.i.c.
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versus iteration number. The maximum tracking error has been reduced to 0.0086% of

the one at the 1st iteration, where the maximum tracking error at the ith iteration is

defined as max
j=1,2,3,4

max
t∈[0,T ]

|xd− xi, j|.

Alignment Condition

Choose the desired trajectory xd = sin3(t), t ∈ [0,π]. xd is a closed orbit since

xd(0) = xd(π). The initial condition for the follower agents are x1,1(0) = 0.2, x1,2(0) =

0.4, x1,3(0) = 0.6, x1,4(0) =−0.4. Set γ = 7.4, κ = 5, and φ j(xi, j) = 1+ |xi, j|.
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Figure 6.4: The trajectory profiles at the 1st and 50th iterations under alignment condi-

tion.

Figure. 6.4 shows the trajectory profiles at the 1st and 50th iterations. At the 1st

iteration, the followers’ trajectories have large deviations from the leader’s, especially

at the starting time. Due to the alignment condition, the controllers (6.9) and (6.11)

can still work. The trajectories almost overlap with the leader’s at the 50th iteration.

Figure. 6.5 shows the maximum tracking error versus iteration number. The maximum
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Figure 6.5: Maximum tracking error vs. iteration number under alignment condition.

tracking error has been reduced to 1.52% of the one at the 1st iteration.

6.5.2 High-order Agents

Consider the agent dynamics as follows, ẋi, j1

ẋi, j2

 =

 0 1

0 0


 xi, j1

xi, j2

+
 0

1+0.1∗ j sin2 t
m jl2

j+I j


 0

ui, j−gl j cos(xi, j1)



+

 0

η j(t,xi, j)

 , (6.30)

where xi, j1 is the position, xi, j2 is the velocity, m j is the mass, l j is the length of the rigid-

body, I j is the moment of inertia, ui, j is the control input, and η j(t,xi, j) = x2
i, j1 sin( j · t)

is the disturbance. The plant parameters are assumed to be unknown. In the simulation

example, they are specified in Table. 6.1.

The agent dynamics are slightly different from the system in (6.17), with some
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Table 6.1: Agent Parameters.

Agent m(kg) l (m) I (kg ·m2) b

1 1.5 0.8 0.48 0.60(1+ .1sin2 t)

2 2 0.9 0.81 0.38(1+ .2sin2 t)

3 1.8 1 0.9 0.37(1+ .3sin2 t)

4 1.7 0.7 0.42 0.62(1+ .4sin2 t)

modifications of the parameterization, controllers (6.22) and (6.23) are still applicable.

In this part of simulation study, the i.i.c. is assumed. The leader’s trajectory is chosen as

xd1(t) = sin3 t for t ∈ [0,5], and the controller parameters are chosen as c = 0.5, γ = 10,

κ = 15, and φ j(xi, j) = 1+ |xi, j1 |.

Let c = [c, 1]T , and c = 0.5. The auxiliary variable si, j = cxi, j1 + xi, j2 , and sd =

cxd1 + xd2 . Then, the error dynamics are

ėi, j = cxd2− cxi, j1 + ẋd−η j(t,xi, j)−b j(ui, j−gl jcos(xi, j1))

= b jθ jξ i, j +η j(t,xd)−η j(t,xi, j)−b jui, j,

where

θ j , [gl j, b−1
j (cxd2 + ẋd−η j(t,xd)),−b−1

j ],

and

ξ i, j , [cos(xi, j1), 1, cxi, j2 ]
T .

From Lemma 6.2, it can be shown that r = max
t∈[0,5]

|eCtg| < 2, where C =

 0 1

0 −.5

,

and g =

 0

1

.
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In the simulation study, the following control laws are applied,

ui, j = b−1
j (γ +

(
φ j(xi, j)

)2
)εi, j + θ̂ i, jξ j(t,xi, j),

θ̂ i, j = θ̂ i−1, j +κεi, j
(
ξ j(t,xi, j)

)T
, θ̂ 0, j(t) = 0,

where γ = 10, κ = 15, and φ j(xi, j) = 1+ |xi, j1 |. 5≤ θ̂ i, j1 ≤ 10, −20≤ θ̂ i, j1 ≤ 20, and

−4≤ θ̂ i, j3 ≤−1.
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Figure 6.6: The trajectory profiles at the 1st iteration.

Under i.i.c., Figures. 6.6 and 6.7 describe the position and velocity trajectories of all

agents at the 1st and 50th iterations. At the 1st iteration, both positions and velocities of

the followers do not match the leader’s. At the 50th iteration the followers’ trajectories

overlap with the leader’s.

Define the maximum position error at the ith iteration as max
j=1,2,...,4

‖xd1 − xi, j1‖, and

the maximum velocity error is defined analogously with the position error. The maxi-

mum position and velocity tracking error profiles are shown in Figure. 6.8. Based on

the simulation results, the maximum position tracking error at the 50th iteration has

been reduced to 0.05% of the one at the 1st iteration, meanwhile, the corresponding
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Figure 6.7: The trajectory profiles at the 50th iteration.
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Figure 6.8: Maximum tracking errors vs. iteration number.
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Figure 6.9: The trajectory profiles at the 1st iteration with initial rectifying action.
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Figure 6.10: The trajectory profiles at the 20th iteration with initial rectifying action.
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maximum velocity tracking error has been reduce to 1.93%.

To demonstrate the effectiveness of the initial rectifying action, let Assumption

6.5 hold, and the initial states of agents are chosen as x1(0) = [0.4,−0.5]T , x2(0) =

[0.5,−0.8]T , x3(0) = [0.8,0.5]T , and x4(0) = [0.6,−0.4]T . Obviously the initial states

are not at the desired states. Matrix K is chosen such that

Ā =

 0 1

−25 −10

 ,
which has two eigenvalues located at−5 in the complex plane. By using the controllers

(6.27) and (6.28), Figures. 6.9 and 6.10 depict the trajectory profiles at the 1st and 20th

iterations respectively. It can be seen from Figure. 6.10 that the learning controllers with

initial rectifying action demonstrate satisfactory performance even under the imperfect

initial conditions.

6.6 Conclusion

Adaptive ILC algorithms are developed for a synchronization problem, which is

formulated for a group of heterogeneous agents. Their dynamics are in general non-

linear form that do not satisfy the global Lipschitz condition. Although this group of

agents are connected through communications, the desired trajectory is only known to

a few of agents in the systems. By incorporating the desired trajectories as a part of the

parametric uncertainty, the proposed ILC algorithm combines the parameter learning

with robust control to handle both parametric uncertainties and lumped uncertainties.

Meanwhile, the composite energy function plays an important role to ensure that the

proposed ILC algorithm can synchronize all agents’ trajectories to the desired one. Ex-

tensive synchronization examples verify the correctness of the developed methods.
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Chapter 7

Synchronization for Networked

Lagrangian Systems under

Directed Graph

7.1 Background

Lagrangian system is an important class of systems, which can be used to model

robotic manipulators, ground and underwater vehicles, helicopters, and satellites. Syn-

chronization of networked Lagrangian systems has been reported in a number of pub-

lications. Leaderless synchronization algorithms are presented in Hou et al. (2009a,

2010); Ren (2009); Min et al. (2011), in which the final positions are constant and final

velocities are zero. In the leader-follower tracking scenario, the final velocity is usually

time-varying, which complicates the control problem. In Zhang et al. (2012), an adap-

tive backstepping-based method is developed for followers to track a dynamic leader.

However, the velocity and acceleration signals of the leader have to be available to all
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followers. With the similar information assumption, a decentralized adaptive leader-

follower control for multi-manipulator is proposed in Cheng et al. (2008). In Mei et al.

(2011), effective controllers are developed for two cases, namely, the leader with con-

stant velocity, and time-varying velocity. All the above mentioned works assume undi-

rected graph for communication among followers. When the system parameters are pre-

cisely known, by applying the terminal sliding mode technique, a finite-time consensus

tracking algorithm is developed in Khoo et al. (2009) under directed graph. The similar

tracking error definition in Khoo et al. (2009) is adopted in Chen and Lewis (2011) to

synchronize a group of uncertain robot manipulators, and the universal approximation

ability of neural network is adopted to compensate for the model uncertainties. Simi-

larly, the neural network is adopted in Cheng et al. (2010) to track a dynamic leader, and

robust term is also included to counteract the external disturbance and approximation

error. Furthermore, to avoid implementation dead loop, the acyclic communication is

explicitly discussed in Cheng et al. (2010).

In this chapter, we consider the multi-agent synchronization problem by iterative

learning control (ILC). Note that some robotic manipulator tracking algorithms are re-

ported in the ILC literature (Tayebi, 2004; Sun et al., 2006; Ouyang et al., 2006). The

problem formulation can be regarded as a single-leader-single-follower problem, where

the information of the leader is known to the single follower. However, in the general

multi-agent systems setup, the leader’s information is usually only available to a small

portion of the followers. It is currently not clear how the results in Tayebi (2004); Sun

et al. (2006); Ouyang et al. (2006) can be generalized to the networked synchronization

problem. In Chapter 6, an ILC rule for synchronization task is developed for parametric

systems. However, the results rely on symmetric graph Laplacian but do not apply to
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directed graph. The main contributions of this chapter are summarized below. By fully

utilizing the properties of Lagrangian systems, such as positive definite inertial matrix,

skew symmetric and linear in parameter properties, a distributed ILC rule is constructed

to achieve the synchronization task for networked Lagrangian systems. The plant pa-

rameters are assumed to be unknown, and the systems dynamics are subject to bounded

repeatable disturbances. The developed control rule contains three components, namely,

one proportional-plus-derivative (PD) term and two learning terms. The PD term drives

the tracking error to zero, one learning term compensates for the model uncertainties,

and the other learning term is used for rejecting the unknown disturbance. In addition,

the communication graph is directed and acyclic, which reduces the communication

burden compared to the undirected graph.

The rest of this chapter is organized as follows. In Section 7.2, the problem formu-

lation and some useful facts are presented. The learning controller design and perfor-

mance analysis are conducted in Section 7.3 under the identical initialization condition.

In Section 7.4, the results are generalized to the alignment condition, which is more

practical. To demonstrate the efficacy of the proposed learning controller, a numerical

example is presented in Section 7.5. Finally, conclusions are drawn in Section 7.6.

7.2 Problem Description

The dynamics of the followers are described by the Lagrangian systems below

Mi, j(qi, j(t))q̈i, j(t)+Ci, j(qi, j(t), q̇i, j(t))q̇i, j(t)+Gi, j(qi, j(t)) = τ i, j(t)+w j(t), (7.1)

where j ∈ V denotes the agent index, i represents the iteration index, t is the time

argument and omitted in the following context for convenience, qi, j ∈Rp is the vector of

generalized coordinates, Mi, j(qi, j) ∈ Rp×p is the inertial matrix, Ci, j(qi, j, q̇i, j)q̇i, j ∈ Rp
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is the vector of Coriolis and centrifugal forces, Gi, j(qi, j) is the gravitational force, τ i, j

is the control input for the jth agent, and w j is the bounded and repeatable disturbance.

The system represented by (1) is very general, and can be used to model a large

class of systems. The disturbance w j is assumed to be repeatable. This is a reasonable

assumption due to the fact that the disturbances are repeatable in many practical sys-

tems. For instances, the parasitic voltage ripple of power supply systems, disturbances

and frictions in rotary systems, atmospheric drag and solar radiation on the low earth

orbit satellites. When the disturbance term is not repeatable, sliding mode technique

can be applied to reject it if it is bounded (Cheng et al., 2010). As the focus of this work

is on the learning control perspective, the non-repeatable disturbance is not considered.

According to Spong et al. (2006), the system modeled in (7.1) has three interesting

and useful properties:

1. Positive definiteness: Mi, j(qi, j) is uniformly positive definite for any qi, j, i.e.,

there exist two positive constants α j and β j such that 0 < α jI ≤Mi, j(qi, j)≤ β jI.

2. Skew symmetric property: Ṁi, j(qi, j)−2Ci, j(qi, j, q̇i, j) is skew symmetric.

3. Linear in parameter:

Mi, j(qi, j)x+Ci, j(qi, j, q̇i, j)y+ zGi, j(qi, j) = Yi, j(qi, j, q̇i, j,x,y,z)Θ j,

where x, y ∈ Rp, z is a scalar, the regressor Yi, j ∈ Rp×m is a known function, and

Θ j ∈ Rm is an unknown constant which represents the parameters of the system.

The leader’s trajectory is given by q0 ∈ C 2[0,T ], and q0(t) for t ∈ (0,T ] is only

known to a few of the followers. The control task is to generate an appropriate τ i, j

such that perfect tracking is achieved, i.e., lim
i→∞

∥∥qi, j−q0
∥∥= 0. In the multi-agent prob-

lem setup, the control input has to be constructed by the local information under the
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communication topology Ḡ , i.e., τ i, j = τ i, j(q̈i,k, q̇i,k,qi,k),k ∈N j.

To restrict our discussion, the following assumptions about communication require-

ment and initialization conditions are imposed. These assumptions are extensively dis-

cussed in the previous chapters. Hence, they are not elaborated further.

Assumption 7.1 The communication graph Ḡ is acyclic and contains a spanning tree

with the leader being the root.

Assumption 7.2 The initial states of all followers are reset to the desired initial state

after each iteration, i.e., qi, j(0) = q0(0), q̇i, j(0) = q̇0(0).

Assumption 7.3 The initial state of a follower at the current iteration is the final state

of the previous iteration, namely, qi, j(0) = qi−1, j(T ), q̇i, j(0) = q̇i−1, j(T ).

The following Lemma is a useful result in multi-agent coordination.

Lemma 7.1 (Ren and Cao, 2011, pp.9-10) All eigenvalues of L+B have positive real

parts if and only if the graph Ḡ contains a spanning tree with the leader being the root,

where L is the Laplacian matrix of G , G is the communication graph among followers,

and B = diag(b1, . . . ,bN).

Remark 7.1 When the communication graph is undirected and connected, the graph

Laplacian is symmetric positive semi-definite. This property is usually utilized to con-

struct an appropriate Lyapunov function to facilitate controller design as what we have

done in Chapter 6. However, the Laplacian is asymmetric for directed graph in general,

which makes the controller design more challenging.
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7.3 Controller Design and Performance Analysis

Define the actual tracking error ei, j = q0−qi, j. As not all followers can obtain the

tracking error, ei, j cannot be used in the controller design. Following the convention in

Khoo et al. (2009), the extended tracking errors are defined as follows

ξ i, j = ∑
k∈N j

a j,k(qi,k−qi, j)+b j(q0−qi, j), (7.2)

ζ i, j = ∑
k∈N j

a j,k(q̇i,k− q̇i, j)+b j(q̇0− q̇i, j), (7.3)

where ξ i, j is the extended position tracking error, and ζ i, j is the extended velocity track-

ing error. In particular, ξ̇ i, j = ζ i, j.

From (7.2) and (7.3), the extended tracking errors can be represented in the compact

forms as,

ξ i = ((L+B)⊗ I)ei, (7.4)

ζ i = ((L+B)⊗ I)ėi, (7.5)

where ξ i, ζ i, and ei are column stack vectors of ξ i, j, ζ i, j, and ei, j for j = 1, . . . ,N.

Based on Assumption 7.1 and Lemma 1, L+B is of full rank since all the eigen-

values lie on the right half complex plane. Therefore, the minimum singular value

σ(L+B) 6= 0. As a result, it is straightforward to show that

‖ei‖ ≤
‖ξ i‖

σ(L+B)
, and ‖ėi‖ ≤

‖ζ i‖
σ(L+B)

,

by using the sub-multiplicative property of matrix norm. Therefore, if ξ i and ζ i con-

verge to zero, ei and ėi converge to zero as well. Now the major issue is to design the

distributed learning controllers, which drive ξ i and ζ i to zero along the iteration axis.

To facilitate the controller design, define the following auxiliary variable

si, j = ζ i, j +λξ i, j, (7.6)
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where λ is a positive constant. Equation (7.6) can be treated as a stable filter with input

si, j. If
∥∥si, j

∥∥= 0, ξ i, j and ζ i, j converge to zero exponentially. In addition to
∥∥si, j

∥∥= 0,

if ξ i, j(0) = 0 and ζ i, j(0) = 0, then ξ i, j(t) = 0 and ζ i, j(t) = 0 for all t ∈ [0,T ].

From the system dynamics (7.1) and (7.6), the dynamics of the auxiliary variable

si, j, derived using the linear in parameter property, is given by

Mi, j ṡi, j +Ci, jsi, j

= −(d j +b j)(τ i, j +w j)+Mi, jxi, j +Ci, jyi, j + z jGi, j

= −(d j +b j)(τ i, j +w j)+Yi, jΘ j (7.7)

where xi, j = ∑
k∈N j

a j,kq̈i,k + b jq̈0 + λζ i, j, yi, j = ∑
k∈N j

a j,kq̇i,k + b jq̇0 + λξ i, j, and z j =

d j +b j. Note that both xi, j and yi, j are distributed measurements.

The proposed controllers are

τ i, j =
1

d j +b j
(Ksi, j +Yi, jΘ̂i, j)− ŵi, j, (7.8)

˙̂
Θi, j = γY T

i, jsi, j, Θ̂i, j(0) = Θ̂i−1, j(T ), Θ̂0, j(0) = 0, (7.9)

ŵi, j = ŵi−1, j−ηsi, j, ŵ0, j = 0, (7.10)

where K is a positive definite matrix, γ and η are positive learning gains, Θ̂i, j is the

estimate of constant unknown Θ j, and ŵi, j is the estimate of time-varying but iteration-

invariant disturbance w j. The controller (7.8) consists of three components, where Ksi, j

is the proportional-plus-derivative term, which is commonly used in robotics control

(Spong et al., 2006). Yi, jΘ̂i, j compensates for the uncertainties in the system model, and

ŵi, j is used for rejecting the repeatable disturbance. Θ̂i, j is updated by the differential

updating rule (7.9), and ŵi, j is updated by the point-wise updating rule (7.10). As the

communication graph in Assumption 7.1 contains a spanning tree with the leader being

the root, d j +b j 6= 0. Therefore, the controller (7.8) is well defined.
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Remark 7.2 The regressor Yi, j contains the acceleration signal. However, acceleration

measurement is usually not available in most mechanical systems. On the other hand,

the velocity signal can be easily measured by tacho meters. Numerical differentiation

of velocity generates large amount of noise, and should not be used for acceleration

estimation. By using filtered differentiation (Slotine and Li, 1991) or the high gain

observer (singular perturbation) (Khalil, 2002), a reasonable estimation of acceleration

signal can be obtained. Detailed examples can be found in Lee and Khalil (1997); Islam

and Liu (2010).

Remark 7.3 The differential updating rule (7.9) is applied since the system parameters

are assumed to be constant. However, it is likely that the parameters are time-varying

due to payload variations, mechanical wear, and aging. Similar to (7.10), point-wise

updating rule can be used to handle the time-varying parameters. Therefore, the point-

wise updating rule for time-varying unknown parameters is not detailed in this work.

Theorem 7.1 Under Assumptions 7.1 and 7.2, the closed loop system consisting of

(7.1) and controllers (7.8)–(7.10) can ensure that the actual tracking error ei, j(t) con-

verges to zero in the sense of L 2[0,T ] norm for j = 1, . . . ,N as iteration number i goes

to infinity. Moreover, τ i, j ∈L 2[0,T ] for any j = 1, . . . ,N, i ∈ N≥0.

Proof : Consider the composite energy function (CEF)

Ei(t) = ∑
j∈V

Ei, j(t), (7.11)

where the individual energy function (EF) on agent j is defined as

Ei, j(t) =
1
2

sT
i, jMi, jsi, j +

1
2γ

Θ̃
T
i, jΘ̃i, j︸ ︷︷ ︸

Vi, j

+
d j +b j

2η

∫ t

0
w̃T

i, jw̃i, j dr︸ ︷︷ ︸
Ui, j

, (7.12)

where Θ̃i, j = Θ j− Θ̂i, j and w̃i, j = w j− ŵi, j.
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From the definition of Ei, it is easy to see Ei ≥ 0. For clarity, the proof is divided

into three parts. In Part A, it is shown Ei(T ) is non-increasing along the iteration axis.

The convergence of tracking error is shown in Part B, and in Part C, the boundedness of

control input energy is proven.

Part A: Calculate ∆Ei

Let ∆Ei, j = Ei, j−Ei−1, j. As such, ∆Ei = ∑ j∈V ∆Ei, j, and ∆Ei, j can be written as

∆Ei, j =Vi, j−Vi−1, j +Ui, j−Ui−1, j. (7.13)

Together with the error dynamics (7.7), controller (7.8), and the skew symmetric prop-

erty, Vi, j can written as

Vi, j =
∫ t

0
V̇i, j dr+Vi, j(0)

=
∫ t

0

{
1
2

sT
i, jṀi, jsi, j + sT

i, jMi, j ṡi, j +
1
γ

Θ̃
T
i, j

˙̃
Θi, j

}
dr+

1
2γ

Θ̃i, j(0)T
Θ̃i, j(0)

=
∫ t

0

{
−sT

i, j(Ksi, j−Yi, jΘ̃i, j +(d j +b j)w̃i, j)+
1
γ

Θ̃
T
i, j

˙̃
Θi, j

}
dr+

1
2γ

Θ̃
T
i, j(0)Θ̃i, j(0).

(7.14)

By using the following equality

(a−b)T (a−b)− (a− c)T (a− c) = (c−b)T (2a−b− c),

the difference of Ui, j between two consecutive iterations can be evaluated as

∆Ui, j = Ui, j−Ui−1, j

=
d j +b j

2η

∫ t

0

{
w̃T

i, jw̃i, j− w̃T
i−1, jw̃i−1, j

}
dr

=
d j +b j

2η

∫ t

0
(ŵi−1, j− ŵi, j)

T (2w j− ŵi, j− ŵi−1, j)dr

=
d j +b j

2η

∫ t

0
(ŵi−1, j− ŵi, j)

T (2w j−2ŵi, j + ŵi, j− ŵi−1, j)dr

=
d j +b j

2η

∫ t

0
(ŵi−1, j− ŵi, j)

T (2w̃i, j + ŵi, j− ŵi−1, j)dr

≤
d j +b j

η

∫ t

0
(ŵi−1, j− ŵi, j)

T w̃i, j dr. (7.15)
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Using equations (7.9), (7.10), (7.13), (7.14), and (7.15), ∆Ei(T ) becomes

∆Ei(T ) = ∑
j∈V

{
−
∫ T

0
sT

i, jKsi, j dr

+
1
2γ

Θ̃
T
i, j(0)Θ̃i, j(0)−

1
2γ

Θ̃
T
i−1, j(T )Θ̃i−1, j(T )−

1
2

si−1, j(T )Mi−1, jsi−1, j(T )
}

≤ − ∑
j∈V

∫ T

0
sT

i, jKsi, j dr ≤ 0. (7.16)

Therefore, Ei(T ) is non-increasing along the iteration axis.

Part B: Convergence of tracking error

Taking derivative of E1, j and substituting in the controllers (7.8)–(7.10) yield

Ė1, j = −sT
1, j(Ks1, j−Y1, jΘ̃1, j +(d j +b j)w̃1, j)+

1
γ

Θ̃
T
1, j

˙̃
Θ1, j +

d j +b j

2η
w̃T

1, jw̃1, j

= −sT
1, jKs1, j + sT

1, jY1, jΘ̃1, j +
1
γ

Θ̃
T
1, j

˙̃
Θ1, j− (d j +b j)sT

1, jw̃1, j +
d j +b j

2η
w̃T

1, jw̃1, j

≤ −(d j +b j)sT
1, j(w j +ηs1, j)+

d j +b j

2η
(w j +ηs1, j)

T (w j +ηs1, j)

≤
d j +b j

2η
wT

j w j. (7.17)

As w j is bounded, the boundedness of Ė1, j can be concluded from (7.17). Furthermore,

E1, j(t) can be calculated by integrating Ė1, j over [0, t], where t ≤ T . Therefore, the

boundedness of E1, j(t) is ensured for t ∈ [0,T ]. Ei(T ) can be written as

Ei(T ) = E1(T )+
i

∑
k=2

∑
j∈V

∆Ek, j

= E1(T )−
i

∑
k=2

∑
j∈V

∫ T

0
sT

k, jKsk, j dr. (7.18)

The finiteness of E1(T ) and positiveness of Ei(T ) leads to lim
i→∞

∫ T

0
sT

i, jsi, jdr = 0. There-

fore, ei, j converges to zero in the sense of L 2[0,T ] norm.

Part C: Boundedness property

Equation (7.18) implies that Ei(T ) is finite. As such, Ei, j(T ) is bounded for all
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agents, and there exist two finite constants P1
j and P2

j such that

1
2γ

Θ̃
T
i−1, j(0)Θ̃i−1, j(0) =

1
2γ

Θ̃
T
i, j(T )Θ̃i, j(T )≤ P1

j ,

d j +b j

2η

∫ t

0
w̃T

i, jw̃i, j dr ≤
d j +b j

2η

∫ T

0
w̃T

i, jw̃i, j dr ≤ P2
j .

From Part A, it can be shown that

∆Ei, j(t) ≤
1
2γ

Θ̃
T
i, j(0)Θ̃i, j(0)−

1
2γ

Θ̃
T
i−1, j(t)Θ̃i−1, j(t)

−1
2

si−1, jMi−1, jsi−1, j.

Therefore, Ei, j(t) can be expressed as

Ei, j(t) = Ei−1, j(t)+∆Ei, j

≤ 1
2γ

Θ̃
T
i, j(0)Θ̃i, j(0)−

1
2γ

Θ̃
T
i−1, j(t)Θ̃i−1, j(t)−

1
2

si−1, jMi−1, jsi−1, j +
1
2

sT
i−1, jMi−1, jsi−1, j

+
1
2γ

Θ̃
T
i−1, j(t)Θ̃i−1, j(t)+

d j +b j

2η

∫ t

0
w̃T

i−1, jw̃i−1, j dr

≤ 1
2γ

Θ̃
T
i, j(0)Θ̃i, j(0)+

d j +b j

2η

∫ t

0
w̃T

i−1, jw̃i−1, j dr

≤ P1
j +P2

j .

Hence, Ei, j(t) is bounded for all t ∈ [0,T ]. From the definition of Ei, j(t) in (7.12), it

can be concluded that si, j and Θ̂i, j are bounded, and ŵ j ∈L 2[0,T ]. Therefore, τ i, j ∈

L 2[0,T ]. �

Remark 7.4 In today’s control systems, most controllers are realized by digital com-

puters. In the controller design, the regressor Yi, j requires the acceleration signals of

agents in the neighborhood N j at the current time instance, which is not measurable.

Therefore, the acceleration signals have to be estimated from velocity measurements.

For example, pass the measured velocity through the filter α p
p+α

, where p is the Laplace

variable, and α� 1 is a design parameter. Applying the zero-order hold operation, the
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discrete implementation of the differentiation is (Slotine and Li, 1991, pp. 202)

ν i, j((k+1)h) = a1ν i, j(kh)+a2q̇i, j(kh),

ψ((k+1)h) = α(q̇i, j(kh)−ν i, j((k+1)h)),

where k is the discrete-time index, h is the sampling time, ν i, j is the internal state, ψ i, j

is the estimation of q̈i, j, a1 = e−αh, and a2 = 1−a1.

If the communication graph contains cycles, the acceleration signal may form a

closed loop dynamics, which is likely to be unstable. This observation can be verified

by numerical studies. However, stability analysis of such a sampled-data system is

extremely difficult due to the nonlinear terms in the closed loop systems. To rule out

such kind of situations, the directed acyclic graph is required for communication.

Remark 7.5 In case the communication graph contains cycles, some of the edges have

to be removed in order to make the graph acyclic. Alternatively, an agent simply does

not use the data received from certain channels so that Assumption 7.1 is fulfilled.

If the upper and lower bounds of w j are known, the projection operator can be used to

achieve a stronger convergence result. The projection operator can be defined as,

proj(z) =



z∗ if z < z∗

z z∗ ≤ z≤ z∗

z∗ z > z∗

where z∗ and z∗ are the upper and lower bounds of z. When the argument is a vector,

the projection operator is defined element-wise. By applying the projection operator to

(7.10), the controller becomes

ŵi, j = proj(ŵi−1, j)−ηsi, j, ŵ0, j = 0. (7.19)
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Corollary 7.1 Under Assumptions 7.1 and 7.2, the closed loop system consisting of

(7.1) and controllers (7.8), (7.10), (7.19) can ensure that the actual tracking error ei, j(t)

converges to zero uniformly for j = 1, . . . ,N as iteration number i goes to infinity. More-

over, τ i, j is bounded for any j = 1, . . . ,N, i ∈ N≥0.

Proof : Following the similar procedure as used in the proof of Theorem 7.1, it can

be shown that si, j and Θ̂i, j are bounded. Therefore, the boundedness of ŵi, j can be

concluded from (7.19). The controller (7.8) leads to the boundedness of control input

τ i, j. As such ṡi, j is finite. Together with (7.18), the uniform convergence of si, j and ei, j

can be concluded. �

Remark 7.6 The projection operation in (7.19) requires priori information about the

disturbance. When the upper and lower bounds of the disturbances are unknown, the

upper and lower bounds can be chosen as arbitrarily large constants.

7.4 Extension to Alignment Condition

In addition to the Assumption 7.3, the desired trajectory has to be closed, i.e.,

q0(0) = q0(T ) and q̇0(0) = q̇0(T ). The results in Section 7.3 are still valid when the

alignment assumption is assumed. Although this assumption seems to be more strin-

gent than the i.i.c., it is more practical. For example, for a satellite orbiting the earth

periodically, the position and speed at the beginning of the current cycle are identical to

the ones at terminal time of the previous cycle.

Theorem 7.2 Under Assumptions 7.1 and 7.3, if the leader’s trajectory is closed, the

closed loop system consisting of (7.1) and controllers (7.8)–(7.10) can ensure that the

actual tracking error ei, j(t) converges to zero in the sense of L 2[0,T ] norm for j =
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1, . . . ,N as iteration number i goes to infinity. Moreover, τ i, j ∈ L 2[0,T ] for any j =

1, . . . ,N, i ∈ N≥0.

Proof : Consider the same CEF in (7.11). Since the i.i.c. is not assumed, sT
i, j(0)Mi, jsi, j(0) 6=

0. Similar to (7.14), Vi, j can be expressed as

Vi, j =
∫ t

0

{
−sT

i, j(Ksi, j−Yi, jΘ̃i, j +(d j +b j)w̃i, j)+
1
γ

Θ̃
T
i, j

˙̃
Θi, j

}
dr+

1
2γ

Θ̃
T
i, j(0)Θ̃i, j(0)

+
1
2

sT
i, j(0)Mi, jsi, j(0). (7.20)

Assumption 7.3 implies that

sT
i, j(0)Mi, jsi, j(0) = sT

i−1, j(T )Mi−1, jsi−1, j(T ).

Together with (7.16) and (7.20), ∆Ei(T ) can be derived as

∆Ei(T ) =− ∑
j∈V

∫ T

0
sT

i, jKsi, j dr ≤ 0.

Following the steps in the proof to Theorem 7.1, Theorem 7.2 can be concluded. �

Analogous to Corollary 7.1, the projection operation can also be applied under As-

sumption 7.3. As such, we have the corresponding Corollary 7.2.

Corollary 7.2 Under Assumptions 7.1 and 7.3, if the leader’s trajectory is closed, the

closed loop system consisting of (7.1) and controllers (7.8), (7.10), (7.19) can ensure

that the actual tracking error ei, j(t) converges to zero uniformly for j = 1, . . . ,N as

iteration number i goes to infinity. Moreover, τ i, j is bounded for any j = 1, . . . ,N,

i ∈ N≥0.

7.5 Illustrative Example

To demonstrate the effectiveness of the developed methods, consider four networked

two-link robotic arms, which are modeled by the example in (Slotine and Li, 1991, pp.
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396) using

Mi, j(qi, j)q̈i, j +Ci, j(qi, j, q̇i, j)q̇i, j = τ i, j +w j.

The detailed definitions of Mi, j and Ci, j are given in Slotine and Li (1991). The nominal

values of the plant parameters are m0
1 = 1kg, l0

1 = 1m, m0
e = 2kg, δe = 30o, I0

1 = 0.12kg ·

m2, l0
c1 = 0.5m, I0

e = 0.25kg ·m2, and l0
ce = 0.6m. To demonstrate the capability of the

proposed method in dealing with heterogeneous agent systems, the actual parameters

for agent j are set as follows: ω j = (1+0.1 j)ω , where ω ∈ {m0
1, l0

1 , m0
e , I0

1 , l0
c1, I0

e , l0
ce}.

w j can be used to model the iteration-invariant input disturbance. For instance, the

frictions in rotary motion systems. In this example, the input disturbance is set as w j =

1sin( j · t). It is worth noting that all the parameters and disturbances are assumed to be

unknown in the actual simulation. Therefore, the system parameters such as m j
1, l j

1, m j
e,

etc. are lumped into Θ j, and estimated by Θ̂i, j. Similarly, the unknown disturbance is

estimated by ŵi, j.

The leader’s trajectory is a closed curve, and q0 = [sin(t),cos(t)]T for t ∈ [0,2π].

The communication among the followers and the leader is described by a directed

acyclic graph in Figure. 7.1. Only the first follower has access to the leader’s tra-

jectory, and all other followers have to learn the desired trajectory from their neigh-

bors. The alignment condition is assumed for the numerical study. The initial states

of the followers are q1,1 = [1,0.1]T , q1,2 = [2,2]T , q1,3 = [0.5,0.3]T , q1,4 = [0.8,0.4]T ,

q̇1,1 = [0.2,0.6]T , q̇1,2 = [0.4,0.7]T , q̇1,3 = [0.6,0.3]T , and q̇1,4 = [0.5,0.5]T .

Controllers (7.8)–(7.10) are applied to the networked systems. There are four con-

troller parameters to tune, namely, K, γ , η , and λ . Based on the theorems and corol-

laries in this work, if K is positive definite and all the rest parameters are positive, in-

dividual tracking error asymptotically converges to zero in the sense of L 2[0,T ] norm.
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1 2

0

3 4

Figure 7.1: Directed acyclic graph for describing the communication among agents.

However, the controller parameters directly affect the transient performance. Generally

speaking, when the parameters are chosen with small values, the control profiles are

smooth and the convergence rate is slow. Whereas, if the parameters have large mag-

nitudes, the convergence rate is very fast. However, when the values go beyond certain

limits, the control profiles become very oscillatory due to the fast learning in estimation

of unknown terms. In the numerical study, the controller parameters are selected as

K = diag(7,14), γ = 1, η = 1, and λ = 1.

The trajectory profiles of all agents at the 1st iteration are shown in Figure. 7.2,

where it can be seen that the followers’ trajectories have large deviations from the

leader’s. The developed controllers enable the followers to learn and improve the track-

ing performances from iteration to iteration. In contrast to Figure. 7.2, the trajectory

profiles at the 70th iteration are shown in Figure. 7.3, where it can be seen that all the

trajectories are indistinguishable. Define the maximum position errors at the ith itera-

tion as max
j∈V
‖[ei, j]1‖ for the first component, and max

j∈V
‖[ei, j]2‖ for the second one. The

maximum tracking error along the iteration profile is plotted in Figure. 7.4. The maxi-

mum position errors of the first and second generalized coordinates at the 70th iteration

have been respectively reduced to 0.67% and 0.72% of the ones at the 1st iteration. The

initial control inputs at the 1st iteration are described in Figure. 7.5. For each robotic
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arm, the input should reject the external disturbance and compensate for the model

uncertainties. As the learning process evolves along the iteration domain, the control

inputs gradually converges to the ones depicted in Figure. 7.6, in which the trajectories

are smooth.
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Figure 7.2: Trajectory profiles at the 1st iteration.

7.6 Conclusion

A leader-follower synchronization problem is formulated in the ILC framework for

a group of Lagrangian systems with model uncertainties and repeatable external dis-

turbances. By fully utilizing the properties of Lagrangian systems, learning controllers

for the synchronization problem are developed under the identical initialization condi-

tion and alignment condition respectively. It has been shown that the learning rules can

effectively deal with both constant and time-varying unknowns. In contrast to many

ILC works for synchronization problem that take advantages of symmetric Laplacian

for undirected graph, it turns out that the directed acyclic graph is sufficient for com-

munication among agents. Numerical study supports the theoretical results.
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Figure 7.3: Trajectory profiles at the 70th iteration, all trajectories overlap with each

other.
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Figure 7.4: Maximum tracking error profile.
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Figure 7.5: Control input profiles at the 1st iteration.
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Figure 7.6: Control input profiles at the 70th iteration.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis studies the multi-agent coordination and control problem from iterative

learning control (ILC) perspective. As consensus tracking is one of the most important

coordination problems in the multi-agent systems, and various coordination problems

can be formulated and solved in the consensus framework, for example the formation

control of multiple aerial vehicles, rendezvous of ground robots, sensor fusion, area cov-

erage by multiple robots, and distributed optimizations. Therefore, consensus tracking

is chosen as the main problem studied in this thesis.

We follow the two main approaches in ILC, namely contraction-mapping (CM) and

composite energy function (CEF) based methods, to investigate the consensus tracking

problems. First, the consensus tracking problem is formulated for a group of global

Lipschitz continuous agents under the fixed communication assumption and perfect ini-

tialization condition. Distributed D-type iterative learning rules are developed for all

of the followers to track a dynamic leader agent. Next, we relax the communication

assumption by considering the intermittent interactions among agents. It is shown that
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the consensus tracking can be achieved under very mild condition that the communi-

cation graph is uniformly strongly connected along the iteration axis. Furthermore, to

remove the stringent initialization condition, we only assume that the follower agent

is reset to the same initial state at the beginning of every iteration which may not be

the same as the leader’s initial state. It is shown that the previous D-type learning rule

is still convergent. However, the final tracking trajectories may have large deviations

from the leader’s. To improve the control performance under the imperfect initializa-

tion condition, a PD-type learning rule is developed for the multi-agent systems. The

PD-type learning rule has two advantages. On the one hand, it can ensure learning con-

vergence; on the other hand, it offers the controller designer additional freedom to tune

the final tracking performance. The results summarized above are derived based on the

CM method. Hence, they are only applicable to the linear and global Lipschitz nonlin-

ear systems. CM method for local Lipschitz systems has litter progress for the past 30

years. The traditional λ -norm fails to construct a contraction-mapping for local Lips-

chitz systems as we are unable to get a reasonable estimate of the upper bound of system

state. By combining the Lyapunov analysis and CM analysis methods, we can show that

CM based ILC can be applied to several classes of local Lipschitz systems such as sta-

ble systems with quadratic Lyapunov functions, exponentially stable systems, systems

with bounded drift terms, and uniformly bounded energy bounded state systems under

control saturation. This part of the results greatly complements the existing ILC liter-

ature, and also implies that the learning rules developed for multi-agent systems can

be applied a large scale of nonlinear systems. Finally, CEF based ILC is adopted to

study local Lipschitz systems whose dynamics can be linearly parameterized and full

state information can be used for feedback. The controller design requires undirected
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communication. Initial rectifying action control is employed to deal with the imper-

fect initialization condition. The controller is applicable to high-order systems and able

to reject the state dependent disturbance. This part of the results requires symmetric

Laplacian, namely the undirected communication graph. Finally, we develop a set of

distributed learning rules to synchronize networked Lagrangian systems under directed

acyclic graph. The learning rules fully utilize the properties of Lagrangian systems and

CEF approach is adopted to analyze their convergence.

8.2 Future Work

This thesis develops the general design principle for multi-agent coordination by

ILC approach. Some specific problems like switching communication, imperfect ini-

tialization condition, and local Lipschitz continuous systems are investigated. Although

many interesting results are presented, there are many other issues remaining unsolved

not only in the multi-agent set up but also in the ILC literature. Here we list some of the

open problems.

1. To deal with imperfect initialization condition, PD-type learning rule is developed

in Chapter 4. By using the similar idea and mathematical technique, it is possible

to extend the PD-type learning rule to PID-type learning rule. The PID-type

learning rule offers more freedom to tune the final tracking performance.

2. In the problem description, the leader’s trajectory is assumed to be iteration-

invariant. When the leader’s trajectory changes from iteration to iteration, the

existing learning rule does not work any more. Tracking an iteration-varying ref-

erence trajectory is still a challenging problem in the ILC literature. If the refer-

ence trajectories can be characterized by a high order internal model (HOIM) over
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the iteration domain, the HOIM can be incorporated in the learning rule design,

for example Liu et al. (2010). We can adopt the HOIM approach in the multi-

agent coordination problem. However, all the followers are required to know the

HOIM. Whereas, the HOIM is regarded as the global information. Such kind of

approach conflicts with the spirit of distributed controller design because only a

few of the followers can access the leader’s information. The learning rule that

does not require the HOIM is desired.

3. In Chapter 5, we show that the P-type learning rule can be applied to several

local Lipschitz systems. One sufficient condition says if the unstable factor in

the unforced systems satisfies the global Lipschitz condition, then P-type rule is

applicable to the system. At this stage, we do not know whether the controller

converges or not when the unstable factor only satisfies the local Lipschitz con-

dition. Based on our numerical study, P-type rule may converge in certain cases.

However, we are unable to identify a general result in this case. Besides D-type

learning rule for local Lipschitz systems remains unknown and is worth investi-

gation.

4. ILC is a kind of partial model free control method. However, it is a waste if we

do not use the inherent system properties when they are known. For example

the Lagrangian system has three useful properties, linear in parameter, positive

definiteness, and skewed symmetric property. It is possible that we can take ad-

vantages of these features to improve control performance. In Chapter 7 the three

properties are fully utilized in the learning rule design. Unlike many existing re-

sults which rely on symmetric interaction topology, the controller works under

directed graph. However, the graph is required to be acyclic. Otherwise, it may
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lead to instability problem in the learning rule. It is an open problem to design

learning rule that works under the general directed graph by CEF approach. The

main challenge is to find a suitable energy function which facilitates distributed

learning rule design.

5. In Yang and Xu (2014) we devise an input sharing mechanism for a group of

identical linear agent systems to perform leader-follower consensus tracking by

CM approach. Traditional ILC rule has only one learning resource, that is the

correction term. The input sharing mechanism allows the followers to share their

learned information with their neighbors. It is likely that the additional learning

resource will enhance the learning experience. In the paper, numerical examples

demonstrate that the input sharing mechanism not only increase the convergence

rate, but also smooth the transient performance. However, quantitative perfor-

mance improvement has not yet been examined. In addition, the idea of input

sharing is new and may lead to other novel controllers.

147



Bibliography

Hyo-Sung Ahn and Yangquan Chen. Iterative learning control for multi-agent forma-

tion. In ICROS-SICE International Joint Conference, pages 3111–3116, Fukuoka

International Congress Center, Japan, 18-21 August 2009.

Hyo-Sung Ahn, Yangquan Chen, and Kevin L Moore. Iterative learning control: Brief

survey and categorization. IEEE Transactions on Systems, Man, and Cybernetics -

Part C: Applications and Reviews, 37(6):1099–1121, 2007.

Hyo-Sung Ahn, Kevin L Moore, and Yangquan Chen. Trajectory-keeping in satellite

formation flying via robust periodic learning control. International Journal of Robust

and Nonlinear Control, 20(14):1655–1666, 2010.

Claudio Altafini. Consensus problems on networks with antagonistic interactions. IEEE

Transactions on Automatic Control, 58(4):935–946, 2013.

David Angeli, Eduardo D Sontag, and Yuan Wang. Further equivalences and semiglobal

versions of integral input to state stability. Dynamics and Control, 10(2):127 – 149,

2000a.

David Angeli, Eduardo D Sontag, and Yuan Wang. A characterization of integral input

to state stability. IEEE Transactions on Automatic Control, 45(6):1082–1097, 2000b.

148



Bibliography

Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Bettering operation of robots

by learning. Journal of Robotic Systems, 1(2):123–140, 1984.

He Bai and John T Wen. Cooperative load transport: A formation-control perspective.

IEEE Transactions on Robotics, 26(4):742–750, 2010.

Norman Biggs. Algebraic Graph Theory. Cambridge University Press, second edition,

1994.

D A Bristow, M Tharayil, and A G Alleyne. A survey of iterative learning control a

learning-based method for high-performance tracking control. IEEE Control Systems

Magazine, 26:96–114, 2006.

Ming Cao, A S Morse, and B D O Anderson. Coordination of an asynchronous multi-

agent system via averaging. In Proceedings of the 16th IFAC World Congress, Czech

Republic, 2005.

Yongcan Cao, Wenwu Yu, Wei Ren, and Guangrong Chen. An overview of recent

progress in the study of distributed multi-agent coordination. IEEE Transactions on

Industrial Informatics, 9(1):427–438, 2013.

Gang Chen and Frank L Lewis. Distributed adaptive tracking control for synchroniza-

tion of unknown networked lagrangian systems. IEEE Transactions on Systems, Man,

and Cybernetics - Part B: Cybernetics, 41(3):805–816, 2011.

Yangquan Chen, C Wen, Z Gong, and Mingxuan Sun. A robust high-order ptype iter-

ative learning controller using current iteration tracking error. International Journal

of Control, 68(2):331–342, 1997.

Yangquan Chen, C Wen, Z Gong, and Mingxuan Sun. An iterative learning controller

149



Bibliography

with initial state learning. IEEE Transaction on Automatic Control, 44(2):371–375,

1999.

Long Cheng, Zeng-Guang Hou, and Min Tan. Decentralized adaptive leader-follower

control of multi-manipulator system with uncertain dynamics. In Proceedings of The

34th Annual Conference of The IEEE Industrial Electronics Society, pages 1608–

1613, November 2008.

Long Cheng, Zeng-Guang Hou, Min Tan, Yingzi Lin, and Wenjun Zhang. Neural-

network-based adaptive leader-following control for multiagent systems with uncer-

tainties. IEEE Transactions on Neural Networks, 21(8):1351–1358, 2010.

Ronghu Chi, Zhongsheng Hou, and Jian-Xin Xu. Adaptive ilc for a class of discrete-

time systems with iteration-varying trajectory and random initial condition. Automat-

ica, 44:2207–2213, 2008.

Tommy W S Chow and Yong Fang. An iterative learning control method for continuous-

time systems based on 2-d system theory. IEEE Transactions on Circuits and Sys-

temsłI: Fundamental Theory and Applications, 45(4):683–689, 1998.

Jorge Cortex. Finite-time convergent gradient flows with applications to network con-

sensus. Automatica, 42(11):1993–2000, 2006.

Zhi-Sheng Duan and Guan-Rong Chen. Does the eigenratio λ2/λn represent the syn-

chronizability of a complex network? Chinese Physics B, 21(8):080506, 2012.

Lei Fang and Panos J Antsaklis. On communication requirements for multi-agent con-

sensus seeking. Networked Embedded Sensing and Control, Proceedings of Work-

shop NESC05, pages 53–68, 2006.

150



Bibliography

Yong Fang and Tommy W S Chow. 2-d analysis for iterative learning controller for

discrete-time systems with variable initial conditions. IEEE Transactions on Circuits

and SystemsłI: Fundamental Theory and Applications, 50(5):722–727, 2003.

Yuko Hatano and Mehran Mesbahi. Agreement over random networks. IEEE Transac-

tions on Automatic Control, 50(11):1867–1872, 2005.

Yiguang Hong, Jiangping Hu, and Linxin Gao. Tracking control for multi-agent con-

sensus with an active leader and variable topology. Automatica, 42(7):1177–1182,

2006.

Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University Press,

1985.

Zeng-Guang Hou, Long Cheng, and Min Tan. Decentralized robust adaptive control for

the multiagent system consensus problem using neural networks. IEEE Transactions

on Systems, Man, and Cybernetics - Part B: Cybernetics, 39(3):636–647, 2009a.

Zeng-Guang Hou, Long Cheng, and Min Tan. Decentralized robust adaptive control for

the multiagent system consensus problem using neural networks. IEEE Transactions

on Systems, Man, And CyberneticsłPart B: Cybernetics, 39(3):636–647, 2009b.

Zeng-Guang Hou, Long Cheng, Min Tan, and XuWang. Distributed adaptive coordi-

nated control of multi-manipulator systems using neural networks. In Robot Intel-

ligence: An Advanced Knowledge Processing Approach, chapter 3, pages 44 – 69.

Springer-Verlag, London, August 2010.

Jie Huang. Remarks on ‘synchronized output regulation of linear networked systems’.

IEEE Transactions on Automatic Control, 56(3):630–631, 2011.

151



Bibliography

S Islam and P X Liu. Adaptive iterative learning control for robot manipulators without

using velocity signals. In Proceedings of IEEE/ASME Iternational Conference on

Advanced Intelligent Mechatronics, pages 1293–1298, Montreal, Canada, 6-9 July

2010.

Ali Jadbabaie, Jie Lin, and A Stephen Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6):988–1001, 2003.

Zhong-Ping Jiang and Yuan Wang. Input-to-state stability for discrete-time nonlinear

systems. Automatica, 37(6):857–869, 2001.

Hassan K Khalil. Nonlinear Systems. Prentice Hall, third edition, 2002.

Suiyang Khoo, Lihua Xie, and Zhihong Man. Robust finite-time consensus tracking

algorithm for multirobot systems. IEEE/ASME Transactions on Mechatronics, 14

(2):219–228, 2009.

Kang Woong Lee and Hassan K Khalil. Adaptive output feedback control of robot

manipulators using high-gain observer. International Journal of Control, 67:869–

886, 1997.

Jinsha Li and Junmin Li. Adaptive iterative learning control for coordination of second-

order multi-agent systems. International Journal of Robust and Nonlinear Control,

2013. doi: 10.1002/rnc.3055. URL http://dx.doi.org/10.1002/rnc.3055.

Shihua Li, Haibo Du, and Xiangze Lin. Finite-time consensus algorithm for multi-agent

systems with double-integrator dynamics. Automatica, 47:1706–1712, 2011.

Zhongkui Li, Zhisheng Duan, Guanrong Chen, and Lin Huang. Consensus of multia-

152



Bibliography

gent systems and synchronization of complex networks: A unified viewpoint. IEEE

Transactions on Circuits and Systems - I, 57(1):213–224, 2010.

Chunping Liu, Jian-Xin Xu, and Jun Wu. On iterative learning control with high-order

internal models. International journal of Adaptive Control and Signal Processing, 24

(9):731–742, 2010.

Yang Liu and Yingmin Jia. An iterative learning approach to formation control of multi-

agent systems. Systems & Control Letters, 61(1):148–154, 2012.

Richard W Longman. Iterative learning control and repetitive control for engineering

practice. International Journal of Control, 73(10):930–954, 2000.

Cui-Qin Ma and Ji-Feng Zhang. Necessary and sufficient conditions for consensusabil-

ity of linear multi-agent systems. IEEE Transactions on Automatic Control, 55(5):

1263–1268, 2010.

Jie Mei, Wei Ren, and Guangfu Ma. Distributed coordinated tracking with a dynamic

leader for multiple euler-lagrange systems. IEEE Transactions on Automatic Control,

56(6):1415–1421, 2011.

Deyuan Meng and Yingmin Jia. Iterative learning approaches to design finite-time

consensus protocols for multi-agent systems. Systems & Control Letters, 61(1):187–

194, 2012.

Deyuan Meng, Yingmin Jia, Junping Du, and Fashan Yu. Tracking control over a finite

interval for multi-agent systems with a time-varying reference trajectory. Systems &

Control Letters, 61(7):807–818, 2012.

Deyuan Meng, Yingmin Jia, and Junping Du. Multi-agent iterative learning control with

153



Bibliography

communication topologies dynamically changing in two directions. Control Theory

& Applications, IET, 7(2):260–271, 2013a.

Deyuan Meng, Yingmin Jia, Junping Du, Jun Zhang, and Wenlin Li. Formation learning

algorithms for mobile agents subject to 2-d dynamically changing topologies. In

IEEE American Control Conference, pages 5165–5170, Washington, DC, 17-19 June

2013b.

Deyuan Meng, Yingmin Jia, Junping Du, and Jun Zhang. On iterative learning algo-

rithms for the formation control of nonlinear multi-agent systems. Automatica, 50

(1):291–295, 2014.

H Min, F Sun, S Wang, and H Li. Distributed adaptive consensus algorithm for net-

worked euler-lagrange systems. IET Control Theory & Application, 5(1):145–154,

2011.

Kevin L Moore. Iterative Learning Control for Deterministic Systems. Springer-Verlag,

London, 1993. Advances in Industrial Control.

Kevin L Moore, Yangquan Chen, and Hyo-Sung Ahn. Iterative learning control: A

tutorial and big picture. In Proceedings of the 45th IEEE Conference on Decision &

Control, pages 2352–2357, San Diego, CA, USA, 13-15 December 2006.

Luc Moreau. Stability of multiagent systems with time-dependent communication links.

IEEE Transactions on Automatic Control, 50(2):169–182, 2005.

Peter B Moyle and Joseph J Cech. Fishes: An Introduction to Ichthyology. Benjamin

Cummings, 5th edition, 2003.

Mikael Norrlof and Svante Gunnarsson. Time and frequency domain convergence prop-

154



Bibliography

erties in iterative learning control. International Journal of Control, 75(14):1114–

1126, 2002.

Reza Olfati-Saber and Richard M. Murray. Consensus problems in networks of agents

with switching topology and time-delays. IEEE Transactions on Automatic Control,

49(9):1520–1533, 2004.

Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and cooperation in

networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

P R Ouyang, W J Zhang, and Madan M Gupta. An adaptive switching learning control

method for trajectory tracking of robot manipulators. Mechatronics, 16:51–61, 2006.

Kwang-Hyun Park. An average operator-based pd-type iterative learning control for

variable initial state error. IEEE Transactions on Automatic Control, 50(6):865–869,

2005.

Kwang-Hyun Park, Zeungnam Bien, and Dong-Hwan Hwang. A study on the robust-

ness of a pid-type iterative learning controller against initial state error. International

Journal of Systems Science, 30(1):49 – 59, 1999.

Wei Ren. Synchronization of coupled harmonic oscillators with local interaction. Au-

tomatica, 44(12):3195–3200, 2008a.

Wei Ren. On consensus algorithms for double integrator dynamics. IEEE Transactions

on Automatic Control, 53(6):1503–1509, 2008b.

Wei Ren. Distributed leaderless consensus algorithms for networked eulerclagrange

systems. International Journal of Control, 82(11):2137–2149, 2009.

155



Bibliography

Wei Ren and Randal W Beard. Distributed Consensus in Multi-vehicle Cooperative

Control. Communication and Control Engineering Series. Springer-Verlag, London,

2008.

Wei Ren and Yongcan Cao. Distributed Coordination of Multi-agent Networks. Com-

munication and Control Engineering Series. Springer-Verlag, London, 2011.

Wei Ren, Randal W Beard, and Ella M Atkins. Information consensus in multivehicle

cooperative control. IEEE Control Systems Magazine, pages 71–82, April 2007.

Samer S Saab. On the p-type learning control. Transactions on Automatic Control, 39

(11):2298 – 2302, 1994.

Sanjib Kumar Sahoo, Sanjib Kumar Panda, and Jina-Xin Xu. Iterative learning-based

high-performance current controller for switched reluctance motors. IEEE Transac-

tions on Energy Conversion, 19(3):491 –498, 2004.

Jiantao Shi, Xiao He, Zidong Wang, and Donghua Zhou. Iterative consensus for a class

of second-order multi-agent systems. Journal of Intelligent & Robotic Systems, 73

(1-4):655 – 664, 2014.

Jean-Jacques E Slotine and Weiping Li. Applied Nonlinear Control. Prentice Hall,

1991.

Eduardo D Sontag. Input to state stability: Basic concepts and results. Springer, 2006.

Marija Ilic Spong, Riccardo Marino, Sergei M Peresada, and David G Taylor. Feedback

linearizing control of switched reluctance motors. IEEE Transactions on Automatic

Control, 32(5):371 – 379, 1987.

156



Bibliography

Mark W Spong, Seth Hutchinson, and M Vidyasagar. Robot Modeling and Control.

John Wiley & Sons Inc, 2006.

Mingxuan Sun and Danwei Wang. Iterative learning control with initial rectifying ac-

tion. Automatica, 38(7):1177–1182, 2002.

Mingxuan Sun, Shuzhi Sam Ge, and Iven M Y Mareels. Adaptive repetitive learn-

ing control of robotic manipulators without the requirement for initial repositioning.

IEEE Transactions on Robotics, 22(3):563–568, 2006.

V L Syrmos, C T Abdallah, P Dorato, and K Grigoriadis. Static output feedback - a

survey. Automatica, 33(2):125–137, 1997.

Alireza Tahbaz-Salehi and Ali Jadbabaie. A necessary and sufficient condition for con-

sensus over random networks. IEEE Transactions on Automatic Control, 53(3):791–

795, 2008.

Abdelhamid Tayebi. Adaptive iterative learning control of robot manipulators. Auto-

matica, 40:1195–1203, 2004.

Abdelhamid Tayebi and S Islam. Adaptive iterative learning control of robot manipula-

tors: Experimental results. Control Engineering Practice, 14:843–851, 2006.

Long Wang and Feng Xiao. Finite-time consensus problems for networks of dynamic

agents. IEEE Transactions on Automatic Control, 55(4):950–955, 2010.

Xiaoli Wang and Yiguang Hong. Finite-time consensus for multi-agent networks with

second-order agent dynamics. In Proceedings of the 17th IFAC World Congress,

pages 15185–15190, Seoul, Korea, 6-11 July 2008.

157



Bibliography

Youqing Wang, Furong Gao, and Francis J Doyle III. Survey on iterative learning

control, repetitive control, and run-to-run control. Journal of Process Control, 19:

1589–1600, 2009.

Peter Wieland, Rodolphe Sepulchre, and Frank Allgower. An internal model principle is

necessary and sufficient for linear output synchronization. Automatica, 47(3):1068–

1074, 2011.

Chai Wah Wu. Synchronization and convergence of linear dynamics in random directed

networks. IEEE Transactions on Automatic Control, 51(7):1207–1270, 2006.

Ji Xiang, Wei Wei, and Yanjun Li. Synchronized output regulation of linear networked

systems. IEEE Transactions on Automatic Control, 54(6):1336–1341, 2009.

Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems &

Control Letters, 53(1):65–78, 2004.

Guangming Xie and Long Wang. Consensus control for a class of networks of dynamic

agents: Fixed topology. In Proceedings of the 44th IEEE Conference on Decision and

Control and the European Control Conference 2005, pages 96–101, Seville, Spain,

12-15 December 2005.

Jian-Xin Xu and Zhihua Qu. Robust iterative learning control for a class of nonlinear

systems. Automatica, 34(8):983–988, 1998.

Jian-Xin Xu and Ying Tan. A composite energy function based learning control ap-

proach for nonlinear systems with time varying parametric uncertainties. IEEE Trans-

action on Automatic Control, 47(11):1940–1945, 2002a.

158



Bibliography

Jian-Xin Xu and Ying Tan. Robust optimal design and convergence properties analysis

of iterative learning control approaches. Automatica, 38(11):1867–1880, 2002b.

Jian-Xin Xu and Ying Tan. Linear and Nonlinear Iterative Learning Control. Springer-

Verlag, Germany, 2003. In series of Lecture Notes in Control and Information Sci-

ences.

Jian-Xin Xu and Jing Xu. On iterative learning from different tracking tasks in the

presence of time-varying uncertainties. IEEE Transactions On Systems, Man, and

Cybernetics – Part B: Cybernetics, 34(1):589–597, 2004.

Jian-Xin Xu and Rui Yan. On initial conditions in iterative learning control. IEEE

Transaction on Automatic Control, 50(9):1349–1354, 2005.

Jian-Xin Xu and Shiping Yang. Iterative learning based control and optimization for

large scale systems. In 13th IFAC Symposium on Large Scale Complex Systems:

Theory and Applications, pages 74–81, Shanghai, China, 7-10 July 2013.

Jian-Xin Xu, Yangquan Chen, T H Lee, and S Yamamoto. Terminal iterative learning

control with an application to rtpcvd thickness control. Automatica, 35(9):1535–

1542, 1999.

Jian-Xin Xu, Shuang Zhang, and Shiping Yang. A hoim-based iterative learning con-

trol scheme for multi-agent formation. In 2011 IEEE International Symposium on

Intelligent Control, pages 218–423, Denver, CO, USA, 28-30 September 2011.

Shiping Yang and Jian-Xin Xu. Adaptive iterative learning control for multi-agent sys-

tems consensus tracking. In IEEE International Conference on Systems, Man, and

Cybernetics, pages 2803–2808, COEX, Seoul, Korea, 14-17 October 2012.

159



Bibliography

Shiping Yang and Jian-Xin Xu. Multi-agent consensus tracking with input sharing by

iterative learning control. In The 13th European Control Conference, pages 868–873,

Strasbourg, France, 24-27 June 2014.

Shiping Yang, Jian-Xin Xu, and Deqing Huang. Iterative learning control for multi-

agent systems consensus tracking. In The 51st IEEE Conference on Decision and

Control, pages 4672–4677, Maui, Hawaii, USA, 10-13 December 2012.

Shiping Yang, Sicong Tan, and Jian-Xin Xu. Consensus based approach for economic

dispatch problem in a smart grid. IEEE Transactions on Power Systems, 28(4):4416–

4426, 2013.

Chenkun Yin, Jian-Xin Xu, and Zhongsheng Hou. A high-order internal model based

iterative learning control scheme for nonlinear systems with time-iteration-varying

parameters. IEEE Transaction on Automatic Control, 55(11):2665–2670, 2010.

Alpaslan Yufka, Osman Parlaktuna, and Metin Ozkan. Formation-based cooperative

transportation by a group of non-holonomic mobile robots. In Systems Man and Cy-

bernetics (SMC), 2010 IEEE International Conference on, pages 3300–3307, 2010.

Wenlin Zhang, Zheng Wang, and Yi Guo. Backstepping-based synchronization of

uncertain networked lagrangian system. International Journal of Systems Science,

2012. doi: 10.1080/00207721.2012.669869.

Xiao-Dong Zhang. The laplacian eigenvalues of graphs: A survey. In

arXiv:math.OC/arXiv:1111.2897v1, 2011.

Ya Zhang and Yu-Ping Tian. Consentability and protocol design of multi-agent systems

with stochastic switching topology. Automatica, 45:1195–1201, 2009.

160



Bibliography

Ke Ming Zhou and John C Doyle. Essentials of Robust Control. Prentice Hall, Upper

Saddle River, New Jersy, 1998.

161



Appendix A

Graph Theory Revisit

Let G = (V ,E ) be a weighted directed graph with the vertex set V = {1,2, . . . ,N}

and edge set E ⊆ V ×V . Let V also be the index set representing the follower agents

in the systems. A direct edge from k to j is denoted by an ordered pair (k, j)∈ E , which

means that agent j can receive information from agent k. The neighborhood of the kth

agent is denoted by the set Nk = { j∈V |( j,k)∈ E }. A =(ak, j)∈RN×N is the weighted

adjacency matrix of G . In particular, ak,k = 0, ak, j = 1 if ( j,k) ∈ E , and ak, j = 0

otherwise1. The in-degree of vertex k is defined as din
k = ∑

N
j=1 ak, j, and the Laplacian

of G is defined as L = D −A , where D = diag(din
1 , . . . ,d

in
N ). The Laplacian of an

undirected graph is symmetric, whereas the Laplacian of a directed graph is asymmetric

in general. An undirected graph is said to be connected if there is a path2 between any

two vertices. A spanning tree is a directed graph, whose vertices have exactly one parent

except for one vertex, which is called the root who has no parent. We say that a graph

contains or has a spanning tree if V and a subset of E can form a spanning tree.

1Undirected graph is a special case of directed graph, satisfying ak, j = a j,k.
2A path between vertices p and q is a sequence (p = j1, . . . , jl = q) of distinct vertices such that

( jk, jk+1) ∈ E ,∀1≤ k ≤ l−1.
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Important Properties of Laplacian Matrix:

• 0 is an eigenvalue of L and 1 is the associated eigenvector, namely, the row sum

of Laplacian matrix is zero.

• If G has a spanning tree, the eigenvalue 0 is algebraically simple and all other

eigenvalues have positive real parts.

• If G is strongly connected, then there exists a positive column vector w ∈ RN

such that wT L = 0.

Furthermore, if G is undirected and connected, then L is symmetric and has following

additional properties.

• xT Lx = 1
2 ∑

N
i, j=1 ai j(xi−x j)

2 for any x = [x1,x2, . . . ,xN ]
T ∈RN , and therefore L is

positive semi-definite and all eigenvalues are positive except one zero eigenvalue.

• The second smallest eigenvalue of L, which is denoted by λ2(L) > 0, is called

the algebraic connectivity of G . It determines the convergence rate of classic

consensus algorithm.

• The algebraic connectivity

λ2(L) = inf
x6=0,1T x=0

xT Lx
xT x

,

and therefore, if 1T x = 0, then xT Lx≥ λ2(L)xT x.
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Detailed Proofs

B.1 Proof of Proposition 2.1

By Schur triangularization theorem (Horn and Johnson, 1985, pp. 79), there is

a unitary matrix U and an upper triangular matrix ∆ with diagonal entries being the

eigenvalues of M, such that

∆ =U∗MU,

where ∗ denotes the conjugate transpose.

Let Q = diag(α,α2, . . . ,αn), α 6= 0, and set S = QU∗. So S is nonsingular. Now

define a matrix norm | · |S (Horn and Johnson, 1985, pp.296) such that

|M|S = |SMS−1|,

where | · | can be any lp vector norm induced matrix norm.

164



Chapter B. Detailed Proofs

Compute SMS−1 explicitly, we can obtain

SMS−1 =



λ1 α−1δ1,2 α−2δ1,3 · · · α−n+1δ1,n

0 λ2 α−1δ2,3 · · · α−n+2δ2,n

0 0 λ3 · · · α−n+3δ3,n

...
...

...
. . .

...

0 0 0 0 λn


,

where λi is an eigenvalue of M and δi, j is the (i, j)th entry of ∆.

Therefore, |M|S can be computed as below,

|M|S = max
|z|=1
|SMS−1z|

= max
|z|=1
|M0z+E(α)z|

≤ max
|z|=1
|M0z|+max

|z|=1
|E(α)z|, (B.1)

where M0 = diag(λ1,λ2, . . . ,λn) and

E(α) =



0 α−1δ1,2 α−2δ1,3 · · · α−n+1δ1,n

0 0 α−1δ2,3 · · · α−n+2δ2,n

0 0 0 · · · α−n+3δ3,n

...
...

...
. . .

...

0 0 0 0 0


.

It is easy to verify that

max
|z|=1
|M0z| = max

|z|=1

∣∣∣∣[ λ1z1 λ2z2 · · · λnzn ]T
∣∣∣∣

≤ max
j=1,2,...,n

|λ j|max
|z|=1
|z|= ρ(M). (B.2)

Define the last term in (B.1) as a function of α , g(α) = max
|z|=1
|E(α)z|. As g(α) is a

continuous function of α and lim
α→∞

g(α) = 0, therefore, for any ε = (1−ρ(M))/2, there
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exists an α∗ such that g(α)< ε for all α > α∗. Substituting (B.2) to (B.1) and choosing

α > α∗, we have

|M|S ≤ ρ(M)+ ε < (1+ρ(M))/2 < 1.

Therefore, we can conclude that limk→∞ (|M|S)k = 0. �

B.2 Proof of Lemma 2.1

The feasible region of the optimization problem

min
γ∈R

max
α1≤a≤

√
a2+b2≤α2

|1− γ(a+ jb)|

can be classified into three regions according to γ .

1. γ > 0, denoting J1
4
= min

γ>0
max

α1≤a≤
√

a2+b2≤α2

|1− γ(a+ jb)|, the boundary of a+ jb

can be seen in Figure. B.1.

2

1

A

B

Figure B.1: The boundary of complex parameter a+ jb.

According to Proposition 2.4, |1− γ(a+ jb)| reaches its maximum value at the

boundary of the compact set (the shadow area in Figure. B.1). The maximum
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value in chord AB is either at point A =
(

α1,
√

α2
2 −α2

1

)
or at point

B =
(

α1,−
√

α2
2 −α2

1

)
, because the imaginary parts of these two points reach

the maximum value in AB while the real parts in AB retain the constant α1.

max
(a,b)∈AB

|1− γ(a+ jb)|

=

√
(1− γα1)2 + γ2

(√
α2

2 −α2
1

)2

=
√

1−2γα1 + γ2α2
2 . (B.3)

Along the arc ÂB, ∀γ > 0, the real part a = α2 sin(θ) and the imaginary part

b = α2 cos(θ), with −θ̄ ≤ θ ≤ θ̄ and θ̄
4
= arccos

(
α1

α2

)
. The maximum value

can be calculated as

max
(a,b)∈ÂB

|1− γ(a+ jb)|

= max
−θ̄≤θ≤θ̄

√
(1− γα2 cos(θ))2 + γ2α2

2 sin2(θ)

= max
−θ̄≤θ≤θ̄

√
1−2γα2 cos(θ)+ γ2α2

2

=

√
1−2γα2

α1

α2
+ γ2α2

2

=
√

1−2γα1 + γ2α2
2 . (B.4)

Consequently when γ =
α1

α2
2

we have

J1 = min
γ>0

√
1−2γα1 + γ2α2

2

= min
γ>0

√
α2

2

(
γ− α1

α2
2

)2

+1−
α2

1

α2
2

=

√
α2

2 −α2
1

α2
. (B.5)

2. γ = 0, J2
4
= min

γ=0
max

α1≤a≤
√

a2+b2≤α2

|1− γ(a+ jb)|= 1.

3. γ < 0, J3
4
= min

γ<0
max

α1≤a≤
√

a2+b2≤α2

|1− γ(a+ jb)|> 1.
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Therefore, min
γ∈R

max
α1≤a≤

√
a2+b2≤α2

|1− γ(a+ jb)|= min{J1,J2,J3}=

√
α2

2 −α2
1

α2
. �

B.3 Proof of Theorem 6.1

From Assumption 6.2 and Lemma 6.1, we can get that H is a symmetric positive

definite matrix, and

(min
j

b j)I ≤ B≤ (max
j

b j)I.

Therefore, Ei(t) is a nonnegative function.

The proof consists of two parts. In Part A, the difference of Ei between two consec-

utive iterations is calculated, and convergence of tracking error is shown in Part B.

Part A: Difference of Ei

The difference of Ei(t) is defined as

∆Ei(t) = Ei(t)−Ei−1(t),

= Vi(ei)−Vi−1(ei−1)+
1

2κ

∫ t

0
Trace

(
(Θ̃i(τ))

T BΘ̃i(τ)
)

dτ

− 1
2κ

∫ t

0
Trace

(
(Θ̃i−1(τ))

T BΘ̃i−1(τ)
)

dτ (B.6)

Assumption 6.3 indicates that Vi(ei(0)) = 0. The first term in (B.6) becomes

Vi(ei) =
∫ t

0
V̇i(ei)dτ +Vi(ei(0))

=
∫ t

0
V̇i(ei)dτ. (B.7)

Noting that V̇i(ei) = eT
i H ėi = εT

i ėi, together with the closed loop error dynamics (6.13),

it yields

V̇i = ε
T
i BΘ̃iξ (t,xi)+ ε

T
i (ηd−η(t,xi))− ε

T
i

(
γI +

(
Φ(xi)

)2
)

ε i. (B.8)
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Since η j(t,xi, j) satisfies Assumption 6.1, noticing (6.4), we have

∣∣εT
i (ηd−η(t,xi))

∣∣
≤

N

∑
j=1

φ j(xd ,xi, j)|εi, j| · |ei, j| ≤ ε
T
i
(
Φ(xi)

)2
ε i +

1
4

eT
i ei

= ε
T
i
(
Φ(xi)

)2
ε i +

1
4

ε
T
i H−2

ε i

≤ ε
T
i
(
Φ(xi)

)2
ε i +

1
4σ(H)2 ε

T
i ε i. (B.9)

Substituting (B.9) to (B.8), using the convergence condition (6.15) leads to

V̇i ≤ ε
T
i BΘ̃iξ (t,xi)+ ε

T
i
(
Φ(xi)

)2
ε i +

1
4σ(H)2 ε

T
i ε i− ε

T
i

(
γI +

(
Φ(xi)

)2
)

ε i

≤ −αε
T
i ε i + ε

T
i BΘ̃iξ (t,xi) (B.10)

Combining the third term and the fourth term in (B.6) yields

Trace
(
Θ̃

T
i BΘ̃i

)
−Trace

(
Θ̃

T
i−1BΘ̃i−1

)
= Trace

(
(Θ̂i−1− Θ̂i)

T B(2Θi− Θ̂i− Θ̂i−1)
)

= Trace
(
(Θ̂i−1− Θ̂i)

T B(2Θi−2Θ̂i + Θ̂i− Θ̂i−1)
)

= Trace
(
(Θ̂i−1− Θ̂i)

T B(2Θ̃i + Θ̂i− Θ̂i−1)
)

= −Trace
(
(Θ̂i−1− Θ̂i)

T B(Θ̂i−1− Θ̂i)
)
+2Trace

(
(Θ̂i−1− Θ̂i)

T BΘ̃i
)
. (B.11)

From equations (B.6), (B.7), (B.10), and (B.11), one has

∆Ei ≤ −1
2

eT
i−1Hei−1 +

∫ t

0
−αε

T
i ε idτ +

∫ t

0
ε

T
i BΘ̃iξ (t,xi)dτ

−
∫ t

0

1
2κ

Trace
(
(Θ̂i−1− Θ̂i)

T B(Θ̂i−1− Θ̂i)
)

dτ

+
∫ t

0

1
κ

Trace
(
(Θ̂i−1− Θ̂i)

T BΘ̃i
)

dτ. (B.12)

From parameter updating rule (6.11), it can be shown that

ε
T
i BΘ̃iξ (t,xi)+

1
κ

Trace
(
(Θ̂i−1− Θ̂i)

T BΘ̃i
)
= 0,
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and Trace
(
(Θ̂i−1− Θ̂i)

T B(Θ̂i−1− Θ̂i)
)
≥ 0.

Therefore, (B.12) becomes

∆Ei ≤−
1
2

eT
i−1Hei−1 ≤ 0. (B.13)

Part B: Convergence of ei, j

If the boundedness of E1 is proven, following the same steps in Xu and Tan (2002a),

we can show the point-wise convergence of ei, j. Taking derivative of E1, together with

(B.10), simple manipulations lead to

Ė1 ≤ −αε
T
1 ε1 + ε

T
1 B(Θ− Θ̂1)ξ (t,x1)+

1
2κ

Trace
(
(Θ− Θ̂1)

T B(Θ− Θ̂1)
)

≤ 1
2κ

Trace
(
Θ

T BΘ
)
.

Θ is a finite and continuous signal, hence, Ė1 is bounded in the interval [0,T ]. Subse-

quently, E1 is bounded in the finite-time interval [0,T ]. �

B.4 Proof of Corollary 6.1

The proof is completed by evaluating the CEF defined in (6.14) at the time t = T .

By using Assumption 6.4, Vi(0)=Vi−1(T ), the difference between Vi(T ) and Vi−1(T )

can be written as

∆Vi(T ) =
∫ T

0
V̇i(τ)dτ +Vi(0)−Vi−1(T )

=
∫ T

0
V̇i(τ)dτ.

By following the similar proof of Theorem 6.1, eventually, we can obtain that

Ei(T ) = E1(T )+
i

∑
k=2

∆Ek(T )

≤ E1(T )−
i

∑
k=2

α

∫ T

0
(ek(τ))

T H2ek(τ)dτ.
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Since E1(T ) is bounded, Ei(T ) is nonnegative, and H2 is positive definite, it follows

that

lim
i→∞

∫ T

0
(ei(τ))

T ei(τ)dτ = 0.

This completes the proof. �
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