
Improving GPGPU
Energy-Efficiency through

Concurrent Kernel Execution and
DVFS

Jiao Qing

(B.Sc., ShanDong University of China, 2012)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48808295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Signature: Date:

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Profes-

sor Tulika Mitra. She guided me to embark on the research on December.

2012. Thanks her for the continuous support of my master study and re-

search, for her patience, motivation, and immense knowledge. Her guidance

helped me in all the time of research and writing of this thesis.

My gratitude also goes to: Dr.Alok Prakash, Dr.Thannirmalai Somu

Muthukaruppan, Dr.Lu Mian, Dr.HUYNH Phung Huynh and Mr.Anuj

Pathania, for the stimulating discussions, and for all the fun we have had

in the last two years.

Last but not the least, I would like to thank my parents and brother

for their love and support during the hard time.

Contents

List of Tables . I

List of Figures . II

1 Introduction 1

2 Background 4

2.1 Power Background . 4

2.1.1 CMOS Power Dissipation 5

2.1.2 Power Management Metric 7

2.2 GPGPU Background . 8

2.2.1 CUDA Thread Organization 9

2.3 NVIDIA Kelper Architecture 9

2.3.1 SMX Architecture 10

2.3.2 Block and Warp Scheduler 11

3 Related Work 14

3.1 Related Work On GPU Power Management 14

3.1.1 Building GPU Power Models 15

II

3.1.2 GPU Power Gating and DVFS 16

3.1.3 Architecture Level Power Management 19

3.1.4 Software Level Power Management 21

3.2 Related Work On GPU Concurrency 23

4 Improving GPGPU Energy-Eciency through Concurrent

Kernel Execution and DVFS 24

4.1 Platform and Benchmarks 25

4.2 A Motivational Example . 26

4.3 Implementation . 28

4.3.1 Implementation of Concurrent Kernel Execution . . . 29

4.3.2 Scheduling Algorithm 31

4.3.3 Energy Efficiency Estimation Of A Single kernel . . . 37

4.3.4 Energy Efficiency Estimation Of Concurrent kernels . 41

4.3.5 Energy Efficiency Estimation Of Sequential Kernel

Execution . 45

4.4 Experiment Result . 47

4.4.1 Discussion . 50

5 Conclusion 52

III

Summary

Current generation GPUs can accelerate high-performance, compute in-

tensive applications by exploiting massive thread-level parallelism. The

high performance, however, comes at the cost of increased power consump-

tion, which have been witted in recent years. With the problems caused

by high power consumption, like hardware reliability, economic feasibil-

ity and performance scaling, power management for GPU becomes urgent.

Among all the techniques for GPU power management, Dynamic Voltage

and Frequency Scaling (DVFS) is widely used for its significant power ef-

ficiency improvement. Recently, some commercial GPU architectures have

introduced support for concurrent kernel execution to better utilize the

compute/memory resources and thereby improve overall throughput.

In this thesis, we argue and experimentally validate the benefits of

combining concurrent kernel execution and DVFS towards energy-efficient

execution. We design power-performance models to carefully select the ap-

propriate kernel combinations to be executed concurrently. The relative

contributions of the kernels to the thread mix, along with the frequency

choices for the cores and the memory achieve high performance per energy

metric. Our experimental evaluation shows that the concurrent kernel ex-

ecution in combination with DVFS can improve energy efficiency by up to

39% compared to the most energy efficient sequential kernel execution.

List of Tables

2.1 Experiment with Warp Scheduler 13

4.1 Supported SMX and DRAM Frequencies 25

4.2 Information of Benchmarks at The Highest Frequency 26

4.3 Concurrent Kernel Energy Efficiency Improvement Table . . 31

4.4 Step 1 - Initial Information of Kernels and Energy Efficiency

Improvement . 35

4.5 Step 2 - Current Information of Kernels and Energy Effi-

ciency Improvement . 35

4.6 Step 3 - Current Information of Kernels and Energy Effi-

ciency Improvement . 36

4.7 Step 4 - Current Information of Kernels and Energy Effi-

ciency Improvement . 36

4.8 Features and The Covered GPU Components 38

4.9 Offline Training Data . 39

4.10 Concurrent Kernel Energy Efficiency 48

I

List of Figures

2.1 CUDA Thread Organization 9

2.2 NVIDIA GT640 Diagram . 10

2.3 SMX Architecture . 10

2.4 Screenshot of NVIDIA Visual Profiler showing The Left Over

Block Scheduler Policy. 12

3.1 Three Kernel Fusion Methods (the dashed frame represent

a thread block) . 22

4.1 GOPS/Watt of The Sequential and Concurrent execution. . 27

4.2 Frequency Settings . 28

4.3 Default Execution Timeline Under Left Over Policy 29

4.4 Concurrent Execution Timeline 30

4.5 The Relationship of Neural Network Estimation Models . . . 39

4.6 Frequency Estimation . 40

4.7 Weighted Feature for Two Similar Kernels 42

4.8 Find Ni for Kernel Samplerank 43

II

4.9 GOPS/Watt Estimations of 4 Kernel Pairs. (1) Matrix and

Bitonic. Average error is 4.7%. (2) BT and Srad. Average

error is 5.1%. (3) Pathfinder and Bitonic. Average error is

7.2%. (4) Layer and Samplerank. Average error is 3.5%. . . 45

4.10 GOPS/Watt Estimation Relative Errors of Sequential Exe-

cution. (1) BT and Srad. Max error is 6.1%. (2) Pathfinder

and Bitonic. Max error is 9.9%. (3) Matrix and Bitonic.

Max error is 5.3%. (4) Hotspot and Mergehist. Max error

is 6.1%. 47

4.11 GOPS/Watt Estimation for Concurrent Kernels 48

4.12 Energy Efficiency for Concurrent Kernels with Three Kernels 50

4.13 Performance Comparison . 51

III

Chapter 1

Introduction

Current generation GPUs are well-positioned to satisfy the growing re-

quirement of high-performance applications. Starting from fixed function

graphic pipeline to a programmable massive multi-core parallel proces-

sor for advanced realistic 3D graphics [Che09], and accelerator of general

purpose applications, the performance of GPU has evolved in the past

two decades at a voracious rate, exceeding the projection of Moore’s Law

[Sch97]. For example, NVIDIA GTX TITAN Z GPU has a peak perfor-

mance of 8 TFlops [NVI14], and AMD Radeon R9 has a peak performance

of 11.5 TFlops [AMD14]. With limited chip size, the high performance

comes at the price of high density of computing resources on a single chip.

With the failing of Dennard Scaling [EBS+11], the power density and total

power consumption of GPUs have increased rapidly. Hence, power man-

agement for GPUs has been widely researched in the past decade.

There exist different techniques for GPU power management, from

hardware process level to software level. Due to the easy implementation

and significant improvement in energy efficiency, Dynamic Voltage and Fre-

quency Scaling (DVFS) is one of the most widely used techniques for GPU

power management. For example, based on the compute and memory in-

1

tensity of a kernel, [JLBF10] [LSS+11] attempt to change the frequencies

of Streaming Multiprocessors (SMX) and DRAM. In commercial space,

AMD uses PowerPlay to reduce dynamic power. Based on the utilization

of the GPU, PowerPlay puts GPU into low, medium and high states ac-

cordingly. Similarly, NVIDIA uses PowerMizer to reduce power. All of

these technologies are based on DVFS.

Currently, new generation GPUs support concurrent kernel execution,

such as NVIDIA Fermi and Kepler series GPUs. There exist some prelim-

inary research to improve GPU throughput using concurrent kernel execu-

tion. For example, Zhong et al. [ZH14] exploit the kernels’ feature to run

kernels with complementary memory and compute intensity concurrently,

so as to improve the GPU throughput.

Inspired by GPU concurrency, in this thesis, we explore combining

concurrent execution and DVFS to improve GPU energy efficiency. For a

single kernel, based on its memory and compute intensity, we can change

the frequencies of core and memory to achieve the maximum energy effi-

ciency. For kernels executing concurrently in some combination, we can

treat them as a single kernel. By further applying DVFS, the concurrent

execution is able to achieve better energy efficiency compared to running

these kernels sequentially with DVFS.

In this thesis, for several kernels running concurrently in some com-

bination, we propose a series of estimation models to estimate the energy

efficiency of the concurrent execution with DVFS. We also estimate the

energy efficiency of running these kernels sequentially with DVFS. By com-

paring the difference, we can estimate the energy efficiency improvement

through concurrent execution. Then, given a set of kernels at runtime,

we employ our estimation model to choose the most energy efficient kernel

combinations and schedule them accordingly.

2

This thesis is organized as follows: Chapter 2 will first introduce the

background of CMOS power dissipation and GPGPU computing. It will

introduce details of the NVIDIA Kepler GPU platform used in our exper-

iment. Chapter 3 discusses the related works of GPU power management

and concurrency. Chapter 4 presents our power management approach for

improving GPGPU energy efficiency through concurrent kernel execution

and DVFS. Final, Chapter 5 concludes the thesis.

3

Chapter 2

Background

In this Chapter, we will first introduce the background of CMOS power

management and GPGPU computing. Then, we introduce details of the

NVIDIA kepler GPU architecture used as our experimental platform.

2.1 Power Background

CMOS has been the dominate technology starts from 1980s. However, as

Moore’s Law [EBS+11] succeeded in increasing the number of transistors,

with the failing of Dennard Scaling [Sch97], it results in microprocessor

designs difficult or impossible to cool down for high processor clock rates.

From the early 21th century, power consumption has became a primary

design constraint for nearly all computer systems. In mobile and embedded

computing, the connection between energy consumption to battery lifetime

has made the motivation for energy-aware computing very clear. Today,

power is universally recognized by architects and chip developers as a first-

class constraint in computer systems design. At the very least, a micro-

architectural idea that promises to increase performance must justify not

only its cost in chip area but also its cost in power [KM08].

4

To sum up, before the replacement of CMOS technology appears,

power efficiency must be taken into account at every design step of com-

puter system.

2.1.1 CMOS Power Dissipation

CMOS power dissipation can be divided into dynamic and leakage power.

We will introduce them separately.

Dynamic Power

Dynamic power dominants the total power consumption. It can be calcu-

lated using the following equation.

P = CV 2Af

Here, C is the load capacitance, V is the supply voltage, A is the

activity factor and f is the operating frequency. Each of these is described

in greater detail below.

Capacitance (C): At an abstract level, it largely depends on the wire

lengths of on-chip structures. Architecture can influence this metric in

several ways. As an example, smaller cache memories or independent banks

of cache can reduce wire lengths, since many address and data lines will

only need to span across each bank array individually [KM08].

Supply voltage (V): For decades, supply voltage (V or Vdd) has dropped

steadily with each technology generation. Because of its direct quadratic

influence on dynamic power, it has very high leverage on power-aware de-

sign.

Activity factor (A): The activity factor refers to how often transistors

actually transit from 0 to 1 or 1 to 0. Strategies such as clock gating are

5

used to save energy by reducing activity factors during a hardware unit’s

idle periods.

Clock frequency (f): The clock frequency has a fundamental impact

on power dissipation. Typically, maintaining higher clock frequencies re-

quires maintaining a higher voltage. Thus, the combined V 2f portion of the

dynamic power equation has a cubic impact on power dissipation [KM08].

Strategies, such as Dynamic Voltage and Frequency Scaling (DVFS) rec-

ognizes this effect and reduces (V, f) accordingly to the workload.

Leakage Power

Leakage power has been increasingly prominent in recent technologies.

Representing roughly 20% or more of power dissipation in current de-

signs, its proportion is expected to increase in the future. Leakage power

comes from several sources, including gate leakage and sub-threshold leak-

age [KM08].

Leakage power can be calculated using the following equation.

P = V (ke−q
Vth

a·kaT)

V refers to the supply voltage. Vth refers to the threshold voltage. T

is temperature. The remaining parameters summarize logic design and

fabrication characteristics.

It is obvious, Vth has an exponential effect on leakage power. Lowering

Vth brings tremendous increase in leakage power. Unfortunately, lowering

Vth is what we have to do to maintain the switching speed in the face of

lower V . Leakage power also depends exponentially on temperature. V

has a linear effect on leakage power.

For Leakage power reduction, power gating is a widely applied tech-

6

nique. It stops the voltage supply. Besides power gating, leakage power

reduction is mostly taking place at the process level, such as the high-k

dielectric materials in Intels 45 nm process technology[KM08].

Dynamic power still dominates the total power consumption, and it

can be manipulated more easily, such as using DVFS through software in-

terface. Therefore, most of the power management works focus on dynamic

power reduction.

2.1.2 Power Management Metric

The metrics of interest in power studies vary depending on the goals of

the work and the type of platform being studied. This section offers an

overview of the possible metrics.

We first introduce three most widely used metrics:

(1) Energy. Its unit is joule. It is often considered the most fundamen-

tal metric, and is of wide interest particularly in mobile platforms

where energy usage relates closely to battery lifetime. Even in non-

mobile platforms, energy can be of significant importance. For data

centers and other utility computing scenarios, energy consumption

ranks as one of the leading operating costs. Also the goal of reduc-

ing power could often relate with reducing energy. Metrics like Giga

Float points Per Second per Watt (GFlops/Watt) in fact is equal to

energy. In this work, we use Giga Operations issued per Second

per Watt (GOPS/Watt), which is similar to Gflops/Watt.

(2) Power. It is the rate of energy dissipation or energy per unit time.

The unit of power is Watt, which is joules per second. Power is

a meaningful metric for understanding current delivery and voltage

regulation on-chip.

7

(3) Power Density. It is power per unit area. This metric is useful for

thermal studies; 200 Watt spread over many square centimeters may

be quite easy to cool down, while 200 Watt dissipated in the rela-

tively small area of today’s microprocessor dies becomes challenging

or impossible to cool down [KM08].

In some situations, metrics that emphasize more on performance are

needed, such as Energy-Per-Instruction (EPI), Energy-Delay Product (EDP),

Energy-Delay-Squared Product (ED2P) or Energy Delay-Cubed Product

(ED3P).

2.2 GPGPU Background

GPUs are originally designed as a specialized electronic circuit to acceler-

ate the processing of graphics. In 2001, NVIDIA exposed the application

developer to the instruction set of Vertex Shading Transform and Lighting

Stages. Later, general programmability was extended to shader stage. In

2006, NVIDIA GeForce 8800 mapped separate graphic stages to a unified

array of shader cores with programmability. It is the birth of General

Purpose Graphic Processing Unit (GPGPU), which can be used

to accelerate the general purpose workloads. Speedups of 10X to 100X

over CPU implementations have been reported in [ANM+12]. GPUs have

emerged as a viable alternative to CPUs for throughput oriented applica-

tions. This trend is expected to continue in the future with GPU architec-

tural advances, improved programming support, scaling, and tighter CPU

and GPU chip integration.

CUDA [CUD] and OpenCL [Ope] are two popular programming frame-

works that help programmers use GPU resource. In this work, we use

CUDA framework.

8

2.2.1 CUDA Thread Organization

In CUDA, one kernel is usually executed by hundreds or thousands of

threads on different data in parallel. Every 32 threads are organized into

one warp. Warps are further grouped into blocks. One block can contain

1 to maximum 64 warps. Programmers are required to manually set the

number of warps in one block. Figure 2.1 shows the threads organization.

OpenCL uses similar thread(work item) organization.

Figure 2.1: CUDA Thread Organization

2.3 NVIDIA Kelper Architecture

For NVIDIA GPUs with Kepler Architecture, one GPU consists of several

Streaming Multiprocessors (SMX) and a DRAM. The SMXs share one L2

cache and the DRAM. Each SMX contains 192 CUDA cores. Figure 2.2

shows the diagram of GT640 used as our platform.

9

Figure 2.2: NVIDIA GT640 Diagram

2.3.1 SMX Architecture

Within one SMX, all computing units share a shared memory/L1 cache

and texture cache. There are four warp schedulers that can issue four

instructions simultaneously to the massive computing units. Figure 2.3

shows the architecture of SMX.

Figure 2.3: SMX Architecture

10

2.3.2 Block and Warp Scheduler

GPU grid scheduler dispatches blocks into SMXs. Block is the basic grid

scheduling unit. Warp is the scheduling unit within each SMX. Warp sched-

uler schedules the ready warps. All threads in the same warp are executed

simultaneously in different function units on different data. For example,

192 CUDA cores in one SMX can support 6 warps with integer operations

simultaneously.

As there is no published material describing in detail the way block

and warp scheduler work for NVIDIA Kepler Architecture, we use micro-

benchmarks to reveal it.

Block Scheduler

Block Scheduler allocates blocks to different SMXs in a balanced way. That

is when one block is ready to be scheduled, the block scheduler first cal-

culates the available resources on each SMX, such as free shared memory,

registers, and number of warps. Whichever SMX has the maximum avail-

able resources, the block would be scheduled into it. For multiple kernels,

it uses left over policy [PTG13]. Left over policy first dispatches blocks

from the current kernel. After the last block of the current kernel has been

dispatched, if there are available resources, blocks from the following ker-

nels start to be scheduled. Thus, with left over policy, the real concurrency

only happens at the end of a kernel execution.

Figure 2.4 shows the execution timeline of two kernels from NVIDIA

Visual Profiler. It clearly shows the left over scheduling policy.

11

Figure 2.4: Screenshot of NVIDIA Visual Profiler showing The Left Over
Block Scheduler Policy.

Warp Scheduler

Kepler GPUs support kernels running concurrently within one SMX. After

grid scheduler schedules blocks into SMXs, one SMX may contain blocks

that come from different kernels. We verify that the four warp schedulers

are able to dispatch warps from different kernels at the same time in each

SMX.

We first run a simple kernel called integerX with integer operations

only. There are 16 blocks of intergerX in each SMX, where each block has

only one warp. While integerX is running, the four warp schedulers within

each SMX must schedule 4 warps per cycle to fully utilize the compute

resource. This is because 192 CUDA cores can support up to 6 concurrent

warps with integer operation. Next, we run another 16 kernels with inte-

ger operations concurrently. Each kernel puts one warp in each SMX. The

profiler shows these 16 kernels runing in real concurreny, because they have

the same start time. And they finish almost at the same time as integerX.

Thus, while the 16 kernels are running concurrently, warp schedulers must

dispatch four warps in one cycle. Otherwise, the warps cannot complete ex-

ecution at the same time as integerX. The four scheduled warps must come

12

from different blocks and kernels. Table 2.1 shows the NVIDIA Profiler’s

output information.

Table 2.1: Experiment with Warp Scheduler

Kernel Name Start Time Duration
(ms)

Number of
Blocks In
Each SMX

Number of
Warps In
Each SMX

integerX 10.238s 33.099 16 1

integer1 10.272s 33.098 1 1

integer2 10.272s 33.099 1 1

...

integer16 10.272s 33.109 1 1

13

Chapter 3

Related Work

This chapter will first introduce related works for GPU power manage-

ment. Since our work also applies concurrent kernel execution, we briefly

introduce the related work for GPU concurrency.

3.1 Related Work On GPU Power Manage-

ment

As mentioned in the background of CMOS power dissipation, there exist

different techniques for GPU power management, from hardware level, ar-

chitecture level to software level. Power gating and DVFS are on hardware

level and they can be manipulated through software interface. For this

thesis, we only focus on software approaches. Also, some research works

only analyze GPU power consumption. Therefore, we divide the related

works into four categories shown below and introduce them separately.

1) Building GPU Power Models

2) GPU Power Gating and DVFS

14

3) Architecture Level Power Management

4) Software Level Power Management

3.1.1 Building GPU Power Models

For GPU power reduction, figuring out the power consumption of a ker-

nel is often the first step. However, few GPUs provide the interface to

measure GPU power directly, let alone the power consumption of different

components inside a GPU. Also using probes to measure GPU power is a

very tedious and time consuming process, as a probe requires direct con-

nection to PCI-Express and auxiliary Power lines [KTL+12]. To solve this

problem, there are some research works building GPU power models for

power estimation and analyses. For building power models, there are few

research works applying analytical method, due to the complexity of GPU

architecture, most of the research works choose to build empirical power

models.

Hong et al. [HK10] build a power model for GPU analytically. It

is based on access rate to the GPU components. Using the performance

model from Hong et al. [HK09], by analyzing the GPU assembly code, it

is possible to figure out the access rate of a kernel to various GPU function

units.

Wang et al. [WR11] build a power model empirically using the GPU

assembly instructions (PTX instructions). The equation is built consider-

ing the following factors: unit energy consumption of a certain PTX in-

struction type, number of different PTX instruction types, and static block

and startup overhead. Works in [WC12] also uses PTX codes. It groups the

PTX instructions into two kinds: compute and memory access instructions.

It first measures the power consumption for artificial kernels that contain

15

different proportions of compute and memory access instructions. Then,

they build a weighted equation to estimate the power consumption of a new

kernel given its proportion of compute and memory access instructions.

Since commercial GPUs like NVIDIA and AMD GPUs provide very

fine-grain GPU performance events, such as the utilization of various caches,

besides the above methods, most of the works make use of the performance

information provided by GPU hardware to build power models. Given the

performance information of a new kernel, its power consumption can thus

be estimated. For example, Choi et al. [CHAS12] use 5 GPU workload

characteristics on NVIDIA GeForce 8800GT to build an empirical power

model. The workload signals are vertex shader busy, pixel shader busy,

texture busy, goem busy and rop busy. Zhang et al. [ZHLP11] explore to

use Random Forest to build an empirical power model for a ATI GPU.

Song et al. [SSRC13] build an empirical power model using neural network

for NVIDIA fermi GPUs. Nagasaka et al. [NMN+10] build an analytical

power model for NVIDIA GPU using line regression. They assume there is

a linear relationship between power consumption and three global memory

access types. Kasichayanula et al. [KTL+12] propose an analytical model

for NVIDIAC2075 GPU. It is based on the activity intensity of each GPU

function unit.

In this work, we use hardware performance counters to build an energy

efficiency estimation model.

3.1.2 GPU Power Gating and DVFS

As have been introduced in the CMOS power background section, DVFS

and power gating both reduce power dissipation significantly. They can

also be easily manipulated through software interface. These two features

make them become the most widely used techniques for power management,

16

especially DVFS.

Lee et al. [LSS+11] demonstrate that by dynamically scaling the num-

ber of operating SMXs, and the voltage/frequency of SMs and intercon-

nects/caches will increase the GPU energy efficiency and throughput sig-

nificantly.

Jiao et al. [JLBF10] use the ratio of global memory transactions and

computation instructions to indicate the memory or compute intensity of

a workload. Then, based on the memory and compute intensity of a work-

load, they apply DVFS to SMXs and DRAM accordingly and thus achieve

a higher energy efficiency.

Wang et al. [WR11] [WC12] exploit to use PTX instruction to find

the compute intensity of a workload. For a running workload, based on its

compute intensity, they select the number of active SMXs, and power gate

the rest of the SMXs. Hong et al. [HK10] use a performance model [HK09]

to find out the optimal number of active SMXs.

Besides SMXs and DRAM, some research works propose fine-grain

GPU power management using DVFS and power gating, such as increasing

the energy efficiency of caches and registers. Nugteren et al. [NvdBC13]

do an analysis on GPU micro-architectural. They propose to turn off the

cache to save power in some situation, since GPU can hide pipeline and

off-chip memory latencies through zero-overhead thread switching. Hsiao

et al. [HCH14] propose to reduce register file power. They partitioned

the register file based on the activity. They power gate the registers that

are either unused or waiting for long latency operations. To speed up the

wakeup process, they use two power gating methods: gate Vdd and drowsy

Vdd. Chu et al. [CHH11] uses the same idea to clock gate the unused register

file. Want et al. [WRR12] attempt to change the power state of L1 and

L2 caches to save power. They put L1 and L2 caches in state-preserving

17

low-leakage mode, when no threads in SMs are ready or have memory

request. They also propose several micro-architecture optimizations that

can recover for the power states of L1 and L2 caches fast.

Some power management research works are designed specifically for

graphic workloads. Wang et al. [WYCC11] propose three strategies for

applying power gating on different function components in GPU. By ob-

serving the 3D game frame rate, they found that the shader clusters are

often underutilized. They then proposed a predictive shader shutdown

technique to eliminate leakage in shader clusters. Further they found ge-

ometry units are often stalled by fragment units, which is caused by the

complicated fragment operation. They further proposed deferred geometry

pipeline. Finally, as shader clusters are often the bottleneck of the system,

they applied a simple time-out power gating method to the non-shader ex-

ecuting units to exploit a finer granularity of the idle time. Wang et al.

[WCYC09] also observe that the required shader resources to satisfy the

target frame rate actually varies across frames. It is caused by the different

scene complexity. They explore the potential of adopting architecture-level

power gating techniques for leakage reduction on GPU. It uses a simple

historical prediction to estimate the next frame rate, and choose different

number of shaders accordingly. Nam et al. [NLK+07] design a low-power

GPU for hand-held devices. They divide the chip into three power domains:

vertex shader, rendering engine and RISC processor, and then apply DVFS

individually. The power management unit decides the frequencies and sup-

ply voltages of these three domains, with the target to saving power while

maintaining the performance.

In commercial area, AMD power management system uses PowerPlay

[AMD PowerPlay 2013] to reduce dynamic power. Based on the utiliza-

tion of GPU, PowerPlay will put GPU into low, medium and high states

accordingly. Similarly, NVidia uses PowerMizer to reduce dynamic power.

18

All of them are based on DVFS.

3.1.3 Architecture Level Power Management

Some works optimize the energy efficiency by improving the GPU archi-

tecture. They usually change some specific functional components of GPU

based on the workloads’ usage pattern.

Gilani et al. [GKS13] propose three power-efficient techniques for im-

proving the GPU performance. First, for integer instruction intensive work-

loads, they propose to fuse dependent integer instructions into a composite

instruction to reduce the number of fetched/executed instructions. Sec-

ond, GPUs often perform computations that are duplicated across multiple

threads. We could dynamically detect such instructions and execute them

in a separate scalar pipeline. Finally, they propose an energy efficient sliced

GPU architecture that can dual-issue instructions to two 16-bit execution

slices.

Gaur et al. [GJT+12] claim that reducing per-instruction energy over-

head is the primary way to improve future processor performance. They

propose two ways to reduce the energy overhead of GPU instruction: hier-

archical register file and a two-level warp scheduler. For register file, they

found that 40% of all dynamic register values are read only once and within

three instructions. They then design a second level register file with much

smaller size and also close to execution units. They also propose a two-level

warp scheduler. The warps that are waiting for a long latency operand will

be put into a level that will not be scheduled. This reduction of active

warps reduces the scheduler complexity and also the state preserving logic.

Li et al. [LTF13] observe that threads can be seriously delayed due

to the memory access interference with others. Instead of stalling in the

19

registers on the occurrence of long latency memory access, they propose to

build the energy efficient hybrid TFET-based and CMOS-based registers.

They perform the memory contention aware register allocation. Based on

the access latency of previous memory transactions, they predict the thread

stall time during its following memory access, and allocate TFET-based

registers.

Sethia et al. [SDSM13] investigate the use of prefetching to increase

the GPU energy efficiency. They propose an adaptive mechanism (called

APOGEE) to dynamically detect and adapt to the memory access patterns

of the running workloads. The net effect of APOGEE is that fewer thread

contexts are necessary to hide memory latency. This reduction in thread

contexts and related hardware lead to a reduction in power.

Lashgar et al. [LBK13] propose to adopt filter-cache to reduce accesses

to instruction cache. Sankaranarayanan et al. [SABR13] propose to add

a small sized filter cache between the private L1 cache and the shared L2

cache. Rhu et al. [RSLE13] find few workloads require all of the four 32

bytes sectors of the cache-blocks. They propose an adaptive granularity

cache access to improve power efficiency.

Ma et al. [MDZD09] explore the possibility to reduce DRAM power.

They examine the power reduction effects of changing the memory chan-

nel organization, DRAM frequency scaling, row buffer management policy,

use or bypass L2 cache. Gebhart et al. [GKK+12] propose to use dy-

namic memory partition to increase energy efficiency. Because different

kernels have different requirement of register, shared memory and cache,

by effectively allocating the memory resource, the access to DRAM can be

reduced.

For graphic workload, there exist few works that propose new or mod-

ified graphics pipeline to reduce the wastage of processing the non-useful

20

frame primitives. For example, Silpa et al. [SVP09] find that the graphics

pipeline has a stage that will reject on an average about 50% of primitives

in each frame. They also find all the primitives are first processed by vertex

shader and then tested for rejection, which is wasteful for both performance

and power. They then propose a new graphics pipeline that will have two

vertex shader stages. In the first stage only position variant primitives are

processed. Then, all the primitives are assembled to go through the rejec-

tion stage, and are disassembled to be processed in vertex shader again to

make sure all primitives left are processed.

3.1.4 Software Level Power Management

It has been reported that software level and application-specific optimiza-

tions can greatly improve GPU energy efficiency.

Yanget et al. [YXMZ12] analyze various workloads and identify the

common code patterns that may lead to a low energy and performance

efficiency. For example, they find adjustment of thread-block dimension

could increase shared memory or cache utilization, and also the global

memory access efficiency.

You et al. [YW13] target Cyclone GPU. In this architecture, the local

input buffers receive required data to process one task. When a workload is

finished, the output buffer writes out the results to an external buffer. The

author use compiler technique to gather the I/O buffer access information,

thereby increasing the buffer idle time to power gate it longer. The compiler

will advance the input buffer access, and delay the output buffer access.

Wang et al. [WLY10] propose three kernel fusion methods: inner

thread, inner thread blocks and inter thread block. The three methods are

shown in Figure 3.1. They show that kernel fusion will improve energy

21

efficiency. It is one of the works that inspire our research work in this

thesis.

Figure 3.1: Three Kernel Fusion Methods (the dashed frame represent a
thread block)

22

3.2 Related Work On GPU Concurrency

Before the commercial support of GPU concurrency, there have been some

studies proposed to use concurrency to improve GPU throughput. Most of

them accomplish concurrency using software solutions or runtime systems.

Guevara et al. [GGHS09] in 2009 do the first work on GPGPU con-

currency. They combine two kernels into a single kernel function using a

technique called thread interleaving. Wang et al. [WLY10] proposes three

methods to run kernels concurrently: inner threads, inner thread blocks

and inter thread blocks, as has been introduced in the previous section.

Gregg et al. [GDHS12] propose a similar technique like thread interleaving

to merge the kernels. Their framework provides a dynamic block scheduling

interface that could achieve different resources partitioning at the thread

block level.

Pai et al. [PTG13] do a comprehensive study on NVIDIA Fermi GPUs

that support kernel concurrency. They identify the reasons that make the

kernels run sequentially. Left over policy is one of the main reasons, which

has been introduced in the background section of Kepler architecture. To

overcome the serialization problem, they propose elastic kernels and several

concurrency aware block scheduling algorithms.

Adriaens et al. [ACKS12] propose to spatially partition GPU to sup-

port concurrency. They partition the SMs among concurrently executing

kernels using a heuristic algorithm.

23

Chapter 4

Improving GPGPU

Energy-Eciency through

Concurrent Kernel Execution

and DVFS

Previous chapters have introduced all the necessary background and related

works. Among all the techniques for GPU power management, DVFS is

widely used for its easy implementation and significant improvement in

energy efficiency. Inspired by GPU concurrent kernel execution, in this

chapter, we present work of improving GPGPU energy-efficiency through

concurrent kernel execution and DVFS.

This chapter is organized as follows: Section 4.1 first shows our ex-

periment setup. Section 4.2 presents a motivational example. Section 4.3

introduces our work implementation. Section 4.4 shows the experiment

result.

24

4.1 Platform and Benchmarks

Platform

We conduct all experiments and analysis on NVIDIA GT640 with Kepler

architecture. GT640 consists of two SMXs and a 2 GB DRAM.

The two SMXs and DRAM can be set into 6 discrete frequency levels,

as shown in Table 4.1. Therefore, there are 36 pairs of SMX and DRAM

frequencies in total. We measure power using PCI-Express and National

Instrument SC-2345.

Table 4.1: Supported SMX and DRAM Frequencies

SMX Frequency (MHz) Memory Frequency (MHz)

562 324

705 400

836 480

967 550

1097 625

1228 710

Benchmarks

In this work, we created hundreds of artificial kernels. Besides the artificial

kernels, we choose 11 real-world kernels with various compute and memory

intensity as experimental benchmarks. Kernel information and the input

data size are shown in Table 4.2. Kernel Bitonic, Samplerank, Matrix and

Mergehist are selected from CUDA Sample 5.5. The rest are selected from

Rodinia Benchmark 2.4 [ROD].

25

Table 4.2: Information of Benchmarks at The Highest Frequency

Kernel GOPS DRAM GB/s Block Number

Pathfinder 7.9 1.9 1300

Bitonic 4.6 19.3 5000

Bt 10.1 0.1 500

Hotspot 7.7 0.5 10000

Layer 9.2 1.8 3600

Samplerank 4.0 17.5 3000

Srad 5.3 19.5 5000

Matrix 9.9 0.6 500

Time step 2.8 18.8 16000

Mergehist 4.2 0.8 5000

Transpose 7.7 13.9 16000

4.2 A Motivational Example

In this study, we use Giga Operations Per Second Per Watt (GOPS/Watt)

as the metric to measure the energy efficiency. It represents the compu-

tation capability with unit power consumption. With DRAM and SMX

frequency varied as well as the concurrent kernel execution, we are able to

show a motivational example. We choose benchmarks Hotspot and Merge-

hist. Our goal is to finish these two kernels in a most energy efficient way.

We introduce the following two possible execution solutions. The ma-

jor difference is to adopt the sequential or concurrent kernel execution.

• Sequential execution: Without concurrent execution technique, the

default way is to tune the SMX and DRAM frequencies for each

individual kernel, and then to run these two kernels sequentially with

their own optimal frequencies.

• Concurrent execution: With the concurrent kernel execution, we are

26

able to run the two kernels concurrently. We can tune the frequency

setting for this concurrent kernel to further improve energy efficiency.

Figure 4.1: GOPS/Watt of The Sequential and Concurrent execution.

Figure 4.1 shows the GOPS/Watt result of the sequential and concur-

rent execution. The concurrent kernel is combined using 6 blocks of Hotspot

running concurrently with 10 blocks of Mergehist in each SMX. The detail

of block combination is showed in next section 4.3. We run this concur-

rent kernel on all frequency settings to find out the most energy efficient

frequency. For the sequential run, we run Hotspot and Mergehist serially

at their respective most energy efficient frequencies. Figure 4.1 shows the

concurrent execution has improved the energy efficiency by 39% over the se-

quential execution. Furthermore, Figure 4.1 shows running the concurrent

kernel at the maximum frequency does not achieve the best energy effi-

ciency. We can see the concurrent execution at the highest frequency has

a lower 217 GOPS/Watt comparing with the optimal frequency with 247

GOPS/Watt. Also the sequential execution at the highest frequency does

not have a higher energy efficiency than the optimal frequency. To con-

clude, this example gives us two important observations. First, we find the

concurrent execution is able to improve the energy efficiency significantly.

Second, tuning the SMX and DRAM frequency is crucial to achieve the

best energy efficiency.

In addition, if we only consider performance, we should run Hotspot

27

Figure 4.2: Frequency Settings

and Mergehist with block ratio 8 to 8 at the highest frequency. As shown

in figure 4.2, the GOPS/Watt for this case is 206. Even if we run this con-

current kernel with block ratio 8 to 8 at its most energy efficient frequency,

the GOPS/Watt is 219, which is lower than 247 of the concurrent kernel

with block ratio 6 to 10. This differentiates our work from the performance

orientated GPU works in terms of choosing kernel combination. Further, it

shows the importance of choosing block ratios for higher energy efficiency.

To sum up, in this work, we explore the solution of utilizing DVFS

and concurrent kernel execution to improve the energy efficiency.

4.3 Implementation

Previous section has showed a motivational example. This section intro-

duces our work in detail. The application scenario is for a single GPU plat-

form, there are many kernels waiting to be processed. With our technique,

waiting kernels can be scheduled in some combinations to run concurrently

in order to improve the energy efficiency.

In this section, Section 4.3.1 first introduces our method of achieving

concurrent kernel execution. In Section 4.3.2, we show our algorithm for

28

combining kernels and scheduling concurrent kernels. Section 4.3.3, 4.3.4

and 4.3.5 propose a series of estimation models to solve the steps in the

algorithm in selecting kernels running concurrently.

4.3.1 Implementation of Concurrent Kernel Execu-

tion

The very first step of our work is to achieve concurrent kernel execution.

Although GPUs support concurrent kernel execution, as showed in the

background chapter, left over policy only allows minimal overlap among

blocks from different kernels. To improve the concurrency, there are some

related works [PTG13] [WLY10] [ZH14]. Under the current left over policy,

we choose to use kernel slicing [ZH14] and CUDA stream to accomplish

concurrency.

Algorithm 1 Default CUDA Code for Running Two Kernels

K1 <<<100,block size,streams[0] >>>(function parameters);
K2 <<<100, block size,streams[1]>>> (function parameters);

Figure 4.3: Default Execution Timeline Under Left Over Policy

Kernel slicing divides the thread blocks of one kernel into multiple

slices and each time runs only a slice of blocks to leave space for other

kernels. The number of blocks in each slice is determined by the block

ratio of the concurrent kernel. For example, considering two kernels K1

and K2 with 100 blocks each. Algorithm 1 shows the default CUDA code.

In Algorithm 1, these two kernels only have execution overlap or actual

concurrency at the end of the first kernel. Figure 4.3 shows its execution

29

timeline. Algorithm 2 shows the CUDA code with kernel slicing. In this

case, the number of blocks in each kernel slice for K1 and K2 are 6 and 10,

respectively. Under kernel slicing, 6 blocks from K1 will run concurrently

with 10 blocks from K2 from the beginning. Blocks from K2 finish earlier,

then we feed SMX with blocks from K2 to keep the block ratio 6 to 10. It

equals to call the same kernel several times to finish the data processing.

Figure 4.4 shows the execution timeline with kernel slicing.

Algorithm 2 Kernel Slicing

K1 <<<6, block size,streams[0]>>> (function parameters);
K2 <<<10, block size,streams[1]>>> (function parameters);
K2 <<<10, block size,streams[2]>>> (function parameters);
K1 <<<6, block size,streams[3]>>> (function parameters);
K2 <<<10, block size,streams[4]>>> (function parameters);

. . .

Figure 4.4: Concurrent Execution Timeline

Changing the code from Algorithm 1 to 2 is straightforward. Here

we may need to change block index in kernel function [PTG13]. Cut-

ting kernels into multiple slices will cause CPU to issue more system calls

(nanosecond level) to GPU, but comparing with the block running time

(mostly on millisecond level, some on microsecond level) this overhead can

be ignored, all our experiment result already includes this overhead.

In our experiment, for a concurrent kernel combined by kernelsKi, Kj...,

we first measure the execution time of each kernel block when it runs con-

currently with other kernel blocks. Then, Algorithm 3 is used to automat-

ically generate the correct slice order. Whenever there is no more kernel

slice from any combined kernel member Ki, the concurrent kernel cannot

be kept with a static block ratio and thus finishes.

30

Algorithm 3 Produce the Kernel Slice Order

T Sleni = block execution time of Ki; // Input
ETi = 0 ; //initial end time of kernel slice for all kernels Ki

while true do
ETj = min{ET1, ET2...};// initially choose a random kernel
if there are kernel blocks from kernel Kj then

Run kernel slice from kernel Kj ;
ETj = ETj + T Slenj;

else
break; //this concurrent kernel finishes

end if
end while

4.3.2 Scheduling Algorithm

Now for a single GPU processing point, at the beginning or whenever a new

kernel is added to the waiting pool, the system goes through the following

steps to generate an estimation table like Table 4.3.

Table 4.3: Concurrent Kernel Energy Efficiency Improvement Table

Concurrent Kernel Block Ratio Frequency GOPS/Watt Improvement

K1,K2 x:y (836, 324) 30%

K2,K3 v:w (705, 400) 25%

. . . .

1) For two kernels from the waiting pool, we find out all possible con-

current kernels combined by different block ratios of these two ker-

nels. Because the SMX supports maximum 16 blocks, the maximum

number of possible concurrent kernels is 16. Thus, the overhead of

exhaustive search is limited.

2) For every concurrent kernel, we estimate its optimal GOPS/Watt,

and the corresponding frequency.

31

3) For every concurrent kernel, we estimate the energy efficiency if we

run these two kernels sequentially.

4) By comparing the difference of step 2 and 3, we can calculate the

GOPS/Watt improvement for a concurrent kernel. Then, for these

two kernels, we can find out which block ratio of these two kernels

has the most energy efficiency improvement.

5) Repeat step 1 to 4, for every kernel pair, we can find out its most

energy efficiency saving block ratio and the corresponding frequency

setting. We then sort the concurrent kernels by their energy efficiency

improvement in descending order.

Here given n kernels, we choose exhaustive search to find out the opti-

mal kernel and frequency combinations. Because currently doing analytical

analysis on GPU architecture and power dissipation are very tough work

or even not feasible, especially that commercial GPU architectures are not

open to public, further their accuracy and overhead are also questionable.

We will leave this for future study. Also in Steps 2), 3), for two kernels,

there are about 16 block combinations and 36 frequency settings, if we

manually do exhaustive search, it will cost one person more than 1 day to

find out the optimal block ratio and frequency, and it is not scalable to new

kernels. Thus, we choose light-weight online models, which take time in

micro second level. The models introduced later only need single kernel’s

information. In summary, given n kernels, the total estimation overhead is

O(n2). For concurrency of more than two kernels, we will show it does not

provide better energy efficiency over two kernels in Section 4.4.

After the concurrent kernel energy efficiency improvement table (Table

4.3) is ready, considering new kernels will join the GPU waiting pool and

we update the table, we choose a greedy algorithm to decide the scheduling

order of the concurrent kernels. Algorithm 4 describes the algorithm for-

32

mally. We dispatch the concurrent kernel with the highest energy efficiency

improvement first. Whenever one of the running kernel finishes all of its

blocks, we dispatch the next concurrent kernel. If there is no concurrent

kernel available, we run kernels sequentially in FIFO order. While running

kernels serially, if there are new kernels joining the waiting pool, we update

the energy efficiency improvement table. After updating the table, if there

are items in the table, we stop the sequential run and start to run the new

concurrent kernel.

Algorithm 4 Dispatch Concurrent Kernels

Estimate Table 4.3;
while true do

Update Table 4.3;
if Table 4.3 is not empty then

Run the first concurrent kernel in table using
algorithm 3;
if the concurrent kernel finishes because there is
no more block from kernel such as Ki then

Delete all concurrent kernels from Table 4.3 that
containing kernel Ki;

end if
else

Run the earliest joined kernel alone at its most
energy efficient frequency.
At the same time, if there are new kernels added
to GPU, break and enter into while loop again;

end if
end while

We use an example to illustrate the scheduling algorithm. In this

example, there are four kernels and each has 100 blocks waiting to be

processed. To make it simple, here we assume all kernel blocks have the

same execution time and arrive at the same time. We first calculate the

energy efficiency improvement table. The following steps show the system

work flow.

Step 1. Table 4.4 shows the initial kernel information and energy efficiency

improvement. There are only four concurrent kernel combinations

33

that have GOPS/Watt improvement greater than zero. We will run

the concurrent kernel, which is combined using block ratio 10:6 from

kernels K1,K2 at frequency pair (836, 324). For this concurrent ker-

nel, 100 blocks of K1 needs 60 blocks of K2 to maintain the 4:12 block

ratio. If the block execution time is different, the number of blocks

consumed will be varied accordingly. After 100 blocks of K1 finish,

this concurrent kernel is also finished. For this concurrent kernel,

comparing with running 100 blocks of K1 and 60 blocks of K2 se-

quentially, it improves GOPS/Watt by 30%. Since there are no more

blocks of K1, all concurrent kernels on the table 4.4 containing it will

be deleted in the next step.

Step 2. Table 4.5 shows the current kernel information and efficiency im-

provement. Now we will run concurrent kernel from kernels K2, K3

in block ratio 8:10. In this case, 40 blocks of K2 and 50 blocks of

K3 run concurrently to maintain the block ratio. For this concurrent

kernel, comparing with running 40 blocks of K2 and 50 blocks of K3

sequentially, it improves GOPS/Watt by 20%.

Step 3. Table 4.6 shows the current kernel information and efficiency im-

provement. Now we will run the concurrent kernel from kernelsK3,K4

at block ratio 6:10. In this case, 50 blocks of K3 need 83 blocks of

K4 to maintain the block ratio. After this concurrent kernel finishes,

only 17 blocks of K4 are left.

Step 4. Table 4.7 shows the current kernel information and efficiency im-

provement. Now there is only K4 left, we have to run it alone on its

most energy efficient frequency setting.

After the above four steps, we finish all of the 400 blocks from the

four kernels. If in Step 3, there are no K4 blocks left, every single kernel is

running concurrently with other kernels. In this case, the total GOPS/Watt

34

improvement for this four kernels will be within range 30% to 20%. The

exact value depends on the relative execution time of the three concurrent

kernels. As Step 4 described, if there is no concurrent kernel left, we have

to run all of the remaining kernels sequentially. If there are new kernels

added to the waiting pool, we need to update the table.

Table 4.4: Step 1 - Initial Information of Kernels and Energy Efficiency
Improvement

Kernel Available blocks

K1 100

K2 100

K3 100

K4 100

Concurrent Kernel Block Ratio Frequency GOPS/Watt Improvement

K1,K2 10:6 (836, 324) 30%

K2,K3 8:10 (705, 400) 25%

K3,K4 6:10 (967, 710) 20%

K1,K4 4:12 (836, 324) 15%

Table 4.5: Step 2 - Current Information of Kernels and Energy Efficiency
Improvement

Kernel Available blocks

K2 40

K3 100

K4 100

Concurrent Kernel Block Ratio Frequency GOPS/Watt Improvement

K2,K3 8:10 (705, 400) 25%

K3,K4 6:10 (967, 710) 20%

35

Table 4.6: Step 3 - Current Information of Kernels and Energy Efficiency
Improvement

Kernel Available blocks

K3 50

K4 100

Concurrent Kernel Block Ratio Frequency GOPS/Watt Improvement

K3,K4 6:10 (967, 710) 20%

Table 4.7: Step 4 - Current Information of Kernels and Energy Efficiency
Improvement

Kernel Available blocks

K4 17

Concurrent Kernel Block Ratio Frequency GOPS/Watt Improvement

36

4.3.3 Energy Efficiency Estimation Of A Single ker-

nel

From this section, we start to introduce our estimation models to generate

the energy efficiency improvement table. For multiple kernels running con-

currently, we can treat it as a single kernel. We start with a single kernel.

This section introduces the model to estimate the energy efficiency of a

single kernel. The input of the estimation model are features of the kernel.

The output of the model are optimal GOPS/Watt and the corresponding

frequency setting.

In this section, we first introduce the feature selection, then we show

the neural network fitting model.

Kernel Feature Selection

We choose the kernel features that cover the GPU main components, and

also reflect the kernel’s performance. NVIDIA Profiler [PRO] provides

very fine grained metrics. After filter out some metrics, Table 4.8 shows

the selected features and the corresponding covered GPU components.

A memory request may involve several transactions. For a coalesced

memory request, it would cause less transactions and thus has higher energy

efficiency. Therefore, we also include transaction numbers.

Because these features have per second time information, we use fea-

tures measured at a reference frequency. We set the reference frequency

as the highest frequency, with SMXs run at 1228MHz, DRAM runs at

710MHz.

37

Table 4.8: Features and The Covered GPU Components

Metric GPU Components

Single flop per second

Computing Units
Double flop per second

Special flop per second

Arithmetic unit utilization

L1/Shared memory utilization
L1/Shared memory

Shared memory throughput GB/s

Shared load/store transactions per second

Texture transactions per second Texture Cache

L2 write/read transactions per second
L2 Cache

L2 throughput GB/s

Dram write/read transactions per second
DRAM

Dram throughput GB/s

Giga instructions issued per second (GOPS) General information.
They imply the usage
of all GPU components.

Issued Load/Store instruction per second

Global Load/Store transactions per second

Neural Network Fitting

We choose neural network fitting to build an estimation model. In order to

make the model more robust, we create 190 artificial kernels with various

computation and memory behaviors to stress GPU components. We also

add another 25 real-world kernels from Rodinia benchmark and CUDA

samples to the training set.

In offline, for each of these 215 kernels, we run it at all 36 frequency

settings and find out the most energy efficient frequency setting. We also

measure the features of each training kernel at the highest frequency. Now

with the input being the kernel’s features at the highest frequency, and the

target being the optimal frequency and the corresponding GOPS/Watt, we

have 215 samples shown in Table 4.9. We then use these samples to train

the neural network. We use neural network fitting tool in Matlab 2010,

the neural network is set with two layers, the hidden layer has 21 neurons.

38

After hundreds round of training, we choose the most precise model.

Table 4.9: Offline Training Data

Input Information Estimation Targets

K1 15 features (1097MHz, 400MHz), 190GOPS/Watt

K2 15 features (705MHz, 324MHz), 220GOPS/Watt

K3 15 features (1228MHz, 480MHz), 140GOPS/Watt

... ...

K215 15 features (836MHz, 324MHz), 230GOPS/Watt

The model needs to estimate GOPS/Watt and the corresponding SMX

and DRAM frequencies. Since estimating a vector is inaccurate by neural

network, we choose to estimate them using three models. One model is used

to estimate GOPS/Watt. Its input is kernel’s features. Another two models

are used to estimate the corresponding DRAM and SMX frequencies. Their

input are kernel’s features and the estimated GOPS/Watt. Thus, these

three models are actually correlated, and can be treated as one model that

outputs a vector with three elements. Figure 4.5 shows the relationship

diagram of the three models.

Figure 4.5: The Relationship of Neural Network Estimation Models

GOPS/Watt Estimation Result

The training error for GOPS/Watt estimation is 2.7%. 28 test kernels are

used to evaluated the test accuracy. The average error for GOPS/Watt

39

estimation is 3.6%. The maximum estimation error is 12.1%. Considering

nerual network is empirical model, we show the maximum estimation error

to show our model is robust and it does not overshoot.

Frequency Estimation Result

We set the output of frequency estimation to its nearest discrete frequency.

For SMX frequency estimation, the training accuracy is 91.4%. For DRAM

frequency estimation, the training accuracy is 96.7%. The estimation infor-

mation for the 28 test kernels is shown in Figure 4.6. The correct rate for

SMX and DRAM frequency estimation are 24 out of 28 and 25 out of 28,

respectively. For the mis-predicted frequencies, the predicted frequencies

are only one level away from the actual frequencies. It is because these

frequency levels have the similar energy efficiency.

Figure 4.6: Frequency Estimation

40

4.3.4 Energy Efficiency Estimation Of Concurrent ker-

nels

In the previous section, we can estimate GOPS/Watt and frequency for a

single kernel given its features. If we can get the features of the concur-

rent kernel, we can estimate the energy efficiency of the concurrent kernel.

Thus, in this section, we introduce the methods to estimate the features of

concurrent kernels.

We will describe our model step by step, starting from a simple model.

All of the following symbols represent values at the highest frequency set-

ting.

We set Xki to represent the feature vector of kernel Ki, GOPSKi

represents the feature GOPS of Ki, when Ki running alone with maximum

number of blocks Ni in each SMX.

GOPS represents the instruction issued per second; the higher, the

more compute intensity. For kernels with similar GOPS, they have similar

compute or memory intensity. We find that for two kernels Ki, Kj with

similar GOPS, if ni blocks from Ki run concurrently with nj blocks from

Kj in each SMX, the features of the combined concurrent kernel would be

very accurately estimated by equation (4.1).

ni
Ni
·Xki +

nj
Nj
·Xkj . (4.1)

Figure 4.7 shows a simple example. For kernels Ki, Kj, they can put max-

imum 8 blocks in each SMX when they are running alone. Now replace 3

blocks of Ki with Kj, the concurrent kernel’s features are calculated using

weighted sum.

41

Figure 4.7: Weighted Feature for Two Similar Kernels

Now for two kernels with large GOPS difference, equation (4.1) is

inaccurate. When a compute intensive kernel runs concurrently with a less

compute intensive kernel, we find the block execution time of the compute

intensive kernel will become obviously shorter. The features like GOPS

and various utilizations become greater. Thus, we add a scale factor αi to

the weighted feature equation, as shown in equation (4.2).

ni
Ni
·Xki · αi +

nj
Nj
·Xkj · αj. (4.2)

With:

αi = max{ GOPSKi

ni

Ni

·GOPSKi
+
nj

Nj

·GOPSKj

, 1},

αj = max{
GOPSKj

ni

Ni

·GOPSKi
+
nj

Nj

·GOPSKj

, 1},

As introduced in the background chapter, warp is the instruction issue

42

unit, the higher of GOPS the more ready warps.
ni

Ni

· GOPSKi
indicates

the ready warps if we only put ni blocks of kernel Ki in each SMX. Now

we add nj blocks of kernel Kj, the sum of ready warps is indicated by

ni

Ni

·GOPSKi
+
nj

Nj

·GOPSKj
. If this sum is smaller thanGOPSKi

, the warps

of ni blocks from Ki now have more chance to be scheduled compared with

them running with Ni−ni blocks from Ki. Thus, the ni blocks from Ki will

finish faster, and the features like utilization and bandwidth will be greater.

Therefore, αi is greater than 1 for Ki. If
ni

Ni

·GOPSKi
+
nj

Nj

·GOPSKj
is

greater than GOPSKi
, we find set αi = 1 is more accurate than a smaller

value. This may be caused by the improved function unit utilization for

mixed operations from the concurrent kernel.

Figure 4.8: Find Ni for Kernel Samplerank

For memory bound kernels, we find that as we increase the number of

blocks in SMX, the performance will keep a constant after certain point.

For example, for kernel Samplerank in Figure 4.8. When there are five

blocks, the kernel already achieves the DRAM bandwidth limit, even it

can put 8 blocks. Thus, the feature vector of running 8 blocks in each

SMX is equal to 5 blocks in each SMX. If the DRAM has unlimited mem-

ory bandwidth, features like GOPS should be 8/5 = 1.6 times higher. If we

run Samplerank with a compute intensive kernel Ki, both of them will have

DRAM bandwidth requirement, and are affected by the bandwidth limita-

tion. We set NSamplerank to be 5 instead of 8 to recover the feature vector of

Samplerank if there is no DRAM bandwidth limitation. By changing the

43

Ni for DRAM memory bound kernel, we make all kernels become compute

bound and then calculate more accurate speedup factor α.

Because we may have the scale factor α greater than 1 and a smaller

N for DRAM bound kernels, equation (4.2) may produce a feature vector

that exceeds DRAM bandwidth limitation. We add another scale vector

β.

Finally, for two kernels Ki, Kj, if we put ni, nj blocks running concur-

rently, the feature vector of the concurrent kernel at the highest frequency

can be estimated using equation (4.3).

(
ni
Ni
·Xki · αi +

nj
Nj
·Xkj · αj

)
· β. (4.3)

With:

αi = max{ GOPSKi

ni

Ni

·GOPSKi
+
nj

Nj

·GOPSKj

, 1},

αj = max{
GOPSKj

ni

Ni

·GOPSKi
+
nj

Nj

·GOPSKj

, 1},

β = min{1, MBW
ni

Ni

·DBWKi
+
nj

Nj

·DBWKj

}.

MBW is the hardware maximum DRAM bandwidth. DBWKi
is the

DRAM bandwidth throughput of kernel Ki.

Now feature vector XKi
can be estimated. Out of the 15 features,

GOPS has the highest correlation with GOPS/Watt. We show our esti-

mation accuracy by showing the estimation accuracy of feature GOPS. For

kernels with similar features, like Matrix and BT, the estimation error is the

smallest. For the 11 benchmarks, we run kernel pairs with large difference,

44

the estimation error for GOPS is within 5%.

Using the estimated features, we can estimate GOPS/Watt of a con-

current kernel. For all the concurrent kernels tested, the average and maxi-

mum error for GOPS/Watt estimation are 4.9% and 15%, respectively. We

show the relative errors between the measured and estimated GOPS/Watt

for 20 concurrent kernels composed by 4 kernel pairs in Figure 4.9. For

each kernel pair, there are five concurrent kernels combined by different

block ratios of these two kernels.

Figure 4.9: GOPS/Watt Estimations of 4 Kernel Pairs. (1) Matrix and
Bitonic. Average error is 4.7%. (2) BT and Srad. Average error is 5.1%. (3)
Pathfinder and Bitonic. Average error is 7.2%. (4) Layer and Samplerank.
Average error is 3.5%.

4.3.5 Energy Efficiency Estimation Of Sequential Ker-

nel Execution

Now given two kernels and a block ratio, we can estimate the energy ef-

ficiency of the concurrent execution. We also need to estimate energy

efficiency for the sequential execution to generate the energy efficiency im-

provement table. Therefore, this section will introduce the method to esti-

mate the GOPS/Watt for sequential kernel execution.

For two kernels Ki, Kj, we set Pi, Pj to represent their power at their

45

most energy efficient frequencies, respectively; Ii, Ij to represent the GOPS

at these frequency settings, respectively. We run them concurrently with ni

blocks from Ki and nj blocks from Kj in each SMX. The optimal frequency

for this concurrent kernel is fc.

1. The GOPS/Watt for these two kernels are
Ii
Pi

,
Ij
Pj

, respectively.

2. Let us run the concurrent kernel for t second, suppose it consumes

insti + instj instructions. insti, instj are the number of instructions

from Ki and Kj, respectively. We can express the GOPS/Watt of the

sequential execution as:

S =
insti + instj

Ts · Ps

With,

Ts = ti + tj . ti =
insti
Ii

, tj =
instj
Ij

.

Ps =
ti
Ts
· Pi +

tj
Ts
· Pj.

After simplification, the equation becomes:

S =
1

Pi · insti
Ii · (insti + instj)

+
Pj · instj

Ij · (insti + instj)

3.
Pi

Ii
and

Pj

Ij
are calculated simply by inversing the value GOPS/Watt

of the two kernels. Thus, as long as we know the ratio of insti : instj,

we can calculate S.
insti

insti + instj
and

instj
insti + instj

can be estimated

from GOPSKi,fc information at fc. The analysis is the same as pre-

vious concurrent kernel’s feature estimation. The equation is:

insti : instj =
ni

Ni

(GOPSKi,fc) :
nj

Nj

(
GOPSKj ,fc

)

46

Here, for DRAM bandwidth bound kernel the way to find the value

of Ni is the same as previous section.

Figure 4.10 shows a part of experiment result for sequential GOPS/Watt

estimation relative errors. It shows our estimation is accurate. For all the

kernel pairs we tested, the maximum error is 10.1%.

Figure 4.10: GOPS/Watt Estimation Relative Errors of Sequential Execu-
tion. (1) BT and Srad. Max error is 6.1%. (2) Pathfinder and Bitonic.
Max error is 9.9%. (3) Matrix and Bitonic. Max error is 5.3%. (4) Hotspot
and Mergehist. Max error is 6.1%.

4.4 Experiment Result

In this section, we conduct experiments based on the platform and bench-

marks as shown in Section 4.1.

We first study the accuracy of our estimation model in estimating

the optimal block ratio and frequency setting for a kernel pair. We show

the GOPS/Watt savings using the exhaustive optimal block ratio and fre-

quency, and the achieved ones using the estimated block ratio and fre-

quency. Figure 4.11 shows the result of 8 kernel pairs. Results on other

pairs have the same conclusions and thus figures are omitted. This shows

that our approach only losses less than 5% GOPS/Watt improvement com-

47

paring with the optimal ones. It indicates that our estimation model can

find the block ratio and frequency setting that has the GOPS/Watt im-

provement near the optimal combinations.

Figure 4.11: GOPS/Watt Estimation for Concurrent Kernels

Table 4.10: Concurrent Kernel Energy Efficiency

Concurrent Kernel Block Ratio Frequency
(Core, DRAM)

GOPS/Watt
Improved

Hotspot, Mergehist 4 : 12 1228, 324 34.5%

Pathfinder, Bitonic 6 : 10 1097, 324 29.8%

Samplerank, Hotspot 8 : 8 1228, 625 28.5%

Samplerank, BT 10 : 6 562,400 28.4%

Mergehist, Matrix 14 : 2 1228, 324 26.0%

Hotspot, Transpose 8 : 8 1228,400 23.4%

Matrix, Bitonic 6 : 10 836,324 23.2%

Layer, Time step 8 : 8 1228,480 23.1%

Layer, Bitonic 10 : 6 1228,400 22.6%

Hotspot, Time step 4 : 5 967, 400 21.6%

Hotspot, Srad 10 : 6 1097,400 20.2%

Hotspot, Matrix 8 : 8 1228,400 18.6%

Bt, Srad 6 : 10 967,480 15.3%

Layer, Pathfinder 4 : 12 1097,400 14.3%

Matrix, transpose 14 : 2 1228,400 13.8%

For 11 benchmarks as shown in Table 4.2, there are 55 kernel pairs.

We show the top 15 most energy efficient concurrent kernels in Table 4.10

48

with their GOPS/Watt improvement using the estimated block ratios and

frequencies. As seen from Table 4.10, all of the top energy efficient concur-

rent kernels are composed of one compute intensive kernel and one memory

intensive kernel. The improved energy efficiency thus comes from the more

balanced utilization of SMXs and DRAM. Moreover, their block ratios and

frequency settings vary for different kernel pairs. This confirms that our es-

timation models are required to tune the runtime kernel settings to achieve

high performance.

At runtime, the best case is there are only two kernels Hotspot and

Mergehist waiting to be processed. We run these two kernels concurrently,

after the concurrent kernel finishes, both of them have no blocks left. In

this case, we can achieve energy efficiency improvement by 34.5%. For a

more general case, for the 11 benchmarks in the GPU waiting pool with the

input data size showed in Table 4.2, the overall GOPS/Watt improvement

is 20.3% using our estimation model and scheduling algorithm.

Finally, we show the results of our approach for running three kernels

concurrently. Our work can be easily applied to concurrent kernels with

more than two kernels. Based on Table 4.10, we find five kernel groups

each containing three kernels that should improve energy efficiency the

most. For each kernel group, we exhaustively search all kernel combinations

and frequencies to find out the optimal GOPS/Watt improvement. We

show the experiment result in Figure 4.12. As shown, for all of these five

kernel groups, the concurrent execution with three kernels do not produce

a higher energy efficiency than running two kernels concurrent. The reason

may be explained as follows: although a concurrent kernel combined by

three kernels may has a more balanced utilization of SMX and DRAM,

considering that the power of SMX and DRAM each can be reduced by

frequency scaling, a more compute or memory intensive kernel could have

higher energy efficiency than this concurrent kernel.

49

Figure 4.12: Energy Efficiency for Concurrent Kernels with Three Kernels

4.4.1 Discussion

In this work, we use GOPS/Watt as the metric. It considers both per-

formance and power. For two kernels, when running them concurrently,

the improved GOPS/Watt can come from both power and throughput im-

provement. To show we don’t sacrifice performance heavily to achieve

GOPS/Watt, we show a group of experiment result. For any kernel, the

highest performance will be achieved at the highest frequency. For the

top 6 most energy efficient concurrent kernels in Table 4.2, we show the

normalized performance achieved in three situations: running kernels con-

currently at the most energy efficient frequency, running kernels serially

at the highest frequency and energy efficient frequencies in Figure 4.13.

We also indicate the performance improvement of concurrent execution

at the most energy efficient frequency over serial execution at the highest

frequency.

From Figure 4.13, we can see when running kernels at the most energy

efficient frequency settings, concurrent execution improves performance

over serial execution significantly, which mainly comes from better uti-

lization of GPU resource. Comparing the red and green columns, we can

50

Figure 4.13: Performance Comparison

see that even running kernels at the highest frequency serially, the con-

current execution at the most energy efficient frequency can still improve

performance for 4 out of 6 kernel pairs. For the other 2 kernel pairs, the

performance losses are also within a limited range. Considering the amount

of GOPS/Watt improvement of concurrent execution, it is clear that we

achieve higher energy efficiency with reasonable or no performance loss.

51

Chapter 5

Conclusion

In this thesis, we aim to improve GPU energy efficiency by combining DVFS

and kernel concurrency. For a single kernel, DVFS is used to improve en-

ergy efficiency significantly. In this work, we run kernels concurrently and

apply DVFS on this concurrent kernel. We observe it has significant en-

ergy efficiency improvement than applying DVFS alone with serial kernel

execution. Our experiment data shows that combining DVFS and concur-

rency on NVIDIA Kepler GT640 GPU can improve energy efficiency by up

to 39%. We then propose estimation models that are used online to se-

lect kernels to run concurrently, and the corresponding optimal frequency

setting. Our estimation models accurately predict the energy efficiency

improvement of concurrent kernel combinations. Given benchmarks and

input data size, using our estimation method and scheduling algorithm,

we can improve energy efficiency by 20.3% compared with running these

kernels sequentially with DVFS.

52

Bibliography

[ACKS12] Jacob T Adriaens, Katherine Compton, Nam Sung Kim, and

Michael J Schulte. The case for gpgpu spatial multitasking.

In High Performance Computer Architecture (HPCA), 2012

IEEE 18th International Symposium on, pages 1–12. IEEE,

2012.

[AMD14] AMD RadeonTM R9. http://www.amd.com/en-us/products/

graphics/desktop/r9/295x2, 2014.

[ANM+12] Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott B

Baden, and Dean M Tullsen. Redefining the role of the cpu in

the era of cpu-gpu integration. Micro, IEEE, 32(6):4–16, 2012.

[CHAS12] Hyojin Choi, Kyuyeon Hwang, Jaewoo Ahn, and Wonyong

Sung. A simulation-based study for dram power reduction

strategies in gpgpus. In Circuits and Systems (ISCAS), 2012

IEEE International Symposium on, pages 1343–1346. IEEE,

2012.

[Che09] J.Y. Chen. Gpu technology trends and future requirements. In

Electron Devices Meeting (IEDM), 2009 IEEE International,

pages 1–6, Dec 2009.

[CHH11] Slo-Li Chu, Chih-Chieh Hsiao, and Chiu-Cheng Hsieh. An

energy-efficient unified register file for mobile gpus. In Embed-

53

ded and Ubiquitous Computing (EUC), 2011 IFIP 9th Inter-

national Conference on, pages 166–173. IEEE, 2011.

[CUD] Nvidia cuda introduction. http://www.nvidia.com/object/cuda

home new.html.

[EBS+11] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam,

and D. Burger. Dark silicon and the end of multicore scaling.

In Computer Architecture (ISCA), 2011 38th Annual Interna-

tional Symposium on, pages 365–376, June 2011.

[GDHS12] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin

Skadron. Fine-grained resource sharing for concurrent gpgpu

kernels. In Proceedings of the 4th USENIX conference on

Hot Topics in Parallelism, pages 10–10. USENIX Association,

2012.

[GGHS09] Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin

Skadron. Enabling task parallelism in the cuda scheduler. In

Workshop on Programming Models for Emerging Architectures,

pages 69–76, 2009.

[GJT+12] Mark Gebhart, Daniel R Johnson, David Tarjan, Stephen W

Keckler, William J Dally, Erik Lindholm, and Kevin Skadron.

A hierarchical thread scheduler and register file for energy-

efficient throughput processors. ACM Transactions on Com-

puter Systems (TOCS), 30(2):8, 2012.

[GKK+12] Mark Gebhart, Stephen W Keckler, Brucek Khailany, Ronny

Krashinsky, and William J Dally. Unifying primary cache,

scratch, and register file memories in a throughput processor.

In Proceedings of the 2012 45th Annual IEEE/ACM Interna-

54

tional Symposium on Microarchitecture, pages 96–106. IEEE

Computer Society, 2012.

[GKS13] Syed Zohaib Gilani, Nam Sung Kim, and Michael J Schulte.

Power-efficient computing for compute-intensive gpgpu ap-

plications. In High Performance Computer Architecture

(HPCA2013), 2013 IEEE 19th International Symposium on,

pages 330–341. IEEE, 2013.

[HCH14] C Hsiao, S Chu, and C Hsieh. An adaptive thread scheduling

mechanism with low-power register file for mobile gpus. 2014.

[HK09] Sunpyo Hong and Hyesoon Kim. An analytical model for

a gpu architecture with memory-level and thread-level paral-

lelism awareness. In ACM SIGARCH Computer Architecture

News, volume 37, pages 152–163. ACM, 2009.

[HK10] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and

performance model. In ACM SIGARCH Computer Architec-

ture News, volume 38, pages 280–289. ACM, 2010.

[JLBF10] Yang Jiao, Heshan Lin, Pavan Balaji, and Wu-chun Feng.

Power and performance characterization of computational ker-

nels on the gpu. In Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l

Conference on Cyber, Physical and Social Computing (CP-

SCom), pages 221–228. IEEE, 2010.

[KM08] Stefanos Kaxiras and Margaret Martonosi. Computer archi-

tecture techniques for power-efficiency. Synthesis Lectures on

Computer Architecture, 3(1):1–207, 2008.

[KTL+12] Kiran Kasichayanula, Dan Terpstra, Piotr Luszczek, Stan To-

mov, Shirley Moore, and Gregory D Peterson. Power aware

55

computing on gpus. In Application Accelerators in High Per-

formance Computing (SAAHPC), 2012 Symposium on, pages

64–73. IEEE, 2012.

[LBK13] Ahmad Lashgar, Amirali Baniasadi, and Ahmad Khonsari.

Inter-warp instruction temporal locality in deep-multithreaded

gpus. In Architecture of Computing Systems–ARCS 2013,

pages 134–146. Springer, 2013.

[LSS+11] Jungseob Lee, Vijay Sathisha, Michael Schulte, Katherine

Compton, and Nam Sung Kim. Improving throughput of

power-constrained gpus using dynamic voltage/frequency and

core scaling. In Parallel Architectures and Compilation Tech-

niques (PACT), 2011 International Conference on, pages 111–

120. IEEE, 2011.

[LTF13] Zhi Li, Jingweijia Tan, and Xin Fu. Hybrid cmos-tfet based reg-

ister files for energy-efficient gpgpus. In Quality Electronic De-

sign (ISQED), 2013 14th International Symposium on, pages

112–119. IEEE, 2013.

[MDZD09] Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. Sta-

tistical power consumption analysis and modeling for gpu-

based computing. In Proceeding of ACM SOSP Workshop on

Power Aware Computing and Systems (HotPower), 2009.

[NLK+07] Byeong-Gyu Nam, Jeabin Lee, Kwanho Kim, Seung Jin

Lee, and Hoi-Jun Yoo. A low-power handheld gpu

using logarithmic arithmetic and triple dvfs power do-

mains. In SIGGRAPH/EUROGRAPHICS Conference On

Graphics Hardware: Proceedings of the 22 nd ACM SIG-

GRAPH/EUROGRAPHICS symposium on Graphics hard-

ware, volume 4, pages 73–80, 2007.

56

[NMN+10] Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio

Endo, and Satoshi Matsuoka. Statistical power modeling of

gpu kernels using performance counters. In Green Computing

Conference, 2010 International, pages 115–122. IEEE, 2010.

[NvdBC13] Cedric Nugteren, Gert-Jan van den Braak, and Henk Corpo-

raal. Future of gpgpu micro-architectural parameters. In Pro-

ceedings of the Conference on Design, Automation and Test in

Europe, pages 392–395. EDA Consortium, 2013.

[NVI14] NVIDIA GTX TITAN Z GPU. http://www.geforce.com/hard-

ware/desktop-gpus/geforce-gtx-titan-z/specifications, 2014.

[Ope] OpenCL Introduction. https://www.khronos.org/opencl/.

[PRO] Profiler User’s Guide. http://docs.NVIDIA.com/cuda/profiler-

users-guide.

[PTG13] Sreepathi Pai, Matthew J Thazhuthaveetil, and R Govindara-

jan. Improving gpgpu concurrency with elastic kernels. In

ACM SIGPLAN Notices, volume 48, pages 407–418. ACM,

2013.

[ROD] Rodinia Benchmarks. http://www.cs.virginia.edu/ skadron/wiki

/rodinia/index.php.

[RSLE13] Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mat-

tan Erez. A locality-aware memory hierarchy for energy-

efficient gpu architectures. In Proceedings of the 46th An-

nual IEEE/ACM International Symposium on Microarchitec-

ture, pages 86–98. ACM, 2013.

[SABR13] Alamelu Sankaranarayanan, Ehsan K Ardestani, Jose Luis

Briz, and Jose Renau. An energy efficient gpgpu memory hi-

erarchy with tiny incoherent caches. In Low Power Electronics

57

and Design (ISLPED), 2013 IEEE International Symposium

on, pages 9–14. IEEE, 2013.

[Sch97] R.R. Schaller. Moore’s law: past, present and future. Spectrum,

IEEE, 34(6):52–59, Jun 1997.

[SDSM13] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and Scott

Mahlke. Apogee: Adaptive prefetching on gpus for energy effi-

ciency. In Proceedings of the 22nd international conference on

Parallel architectures and compilation techniques, pages 73–82.

IEEE Press, 2013.

[SSRC13] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W

Cameron. A simplified and accurate model of power-

performance efficiency on emergent gpu architectures. In Par-

allel & Distributed Processing (IPDPS), 2013 IEEE 27th In-

ternational Symposium on, pages 673–686. IEEE, 2013.

[SVP09] BVN Silpa, Kumar SS Vemuri, and Preeti Ranjan Panda.

Adaptive partitioning of vertex shader for low power high per-

formance geometry engine. In Advances in Visual Computing,

pages 111–124. Springer, 2009.

[WC12] Haifeng Wang and Qingkui Chen. An energy consumption

model for gpu computing at instruction level. 2012.

[WCYC09] Po-Han Wang, Yen-Ming Chen, Chia-Lin Yang, and Yu-Jung

Cheng. A predictive shutdown technique for gpu shader pro-

cessors. Computer Architecture Letters, 8(1):9–12, 2009.

[WLY10] Guibin Wang, YiSong Lin, and Wei Yi. Kernel fusion: An

effective method for better power efficiency on multithreaded

gpu. In Green Computing and Communications (GreenCom),

2010 IEEE/ACM Int’l Conference on & Int’l Conference on

58

Cyber, Physical and Social Computing (CPSCom), pages 344–

350. IEEE, 2010.

[WR11] Yue Wang and Nagarajan Ranganathan. An instruction-level

energy estimation and optimization methodology for gpu. In

Computer and Information Technology (CIT), 2011 IEEE 11th

International Conference on, pages 621–628. IEEE, 2011.

[WRR12] Yue Wang, Soumyaroop Roy, and Nagarajan Ranganathan.

Run-time power-gating in caches of gpus for leakage energy

savings. In Proceedings of the Conference on Design, Automa-

tion and Test in Europe, pages 300–303. EDA Consortium,

2012.

[WYCC11] Po-Han Wang, Chia-Lin Yang, Yen-Ming Chen, and Yu-Jung

Cheng. Power gating strategies on gpus. ACM Transactions on

Architecture and Code Optimization (TACO), 8(3):13, 2011.

[YW13] Yi-Ping You and Shen-Hong Wang. Energy-aware code motion

for gpu shader processors. ACM Transactions on Embedded

Computing Systems (TECS), 13(3):49, 2013.

[YXMZ12] Yi Yang, Ping Xiang, Mike Mantor, and Huiyang Zhou. Fixing

performance bugs: An empirical study of open-source gpgpu

programs. In Parallel Processing (ICPP), 2012 41st Interna-

tional Conference on, pages 329–339. IEEE, 2012.

[ZH14] J. Zhong and B. He. Kernelet: High-throughput gpu kernel

executions with dynamic slicing and scheduling. Parallel and

Distributed Systems, IEEE Transactions on, 25(6):1522–1532,

June 2014.

[ZHLP11] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. Performance and

power analysis of ati gpu: A statistical approach. In Network-

59

ing, Architecture and Storage (NAS), 2011 6th IEEE Interna-

tional Conference on, pages 149–158. IEEE, 2011.

60

