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Péter Moson, for his help with my studies in France. I am also greatly indebted to

vi



my high school teachers from the wonderful Fazekas Mihály Secondary School, es-

pecially to Tünde Fazakas, András Hraskó, László Surányi, and Gábor Horváth. I
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Summary

This thesis contains contributions to the theory of concentration inequalities, in par-

ticular, concentration inequalities for dependent random variables. In addition, a new

concept of spectral gap for non-reversible Markov chains, called pseudo spectral gap,

is introduced.

We consider Markov chains, stationary distributions of Markov chains (including

the case of dependent random variables satisfying the Dobrushin condition), and lo-

cally dependent random variables. In each of these cases, we prove new concentration

inequalities that improve considerably those in the literature. In the case of Markov

chains, we prove concentration inequalities that are only the mixing time of the chain

times weaker than those for independent random variables. In the case of stationary

distributions of Markov chains, we show that Lipschitz functions are highly concen-

trated for distributions arising from fast mixing chains, if the chain has small step

sizes. For locally dependent random variables, we prove concentration inequalities

under several different types of local dependence.
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Chapter 1

Introduction

Concentration inequalities are bounds on the quantity P(f(X)−E(f(X)) ≥ t), where

X is typically a vector of random variables X := (X1, . . . , Xn). The case where X is

a vector of independent random variables is well-understood, and many inequalities

are rather sharp in this case (see the introductionary book by Boucheron, Lugosi, and

Massart (2013b)). Applications of such inequalities are numerous and can be found

in computer science, statistics, and probability theory.

In stark contrast, in the case of dependent random variables, the results in the

literature are often not sharp, even for some of the most frequently occurring types

of dependence. Because of this, there seem to be much fewer applications of such

inequalities as compared to the independent case.

In this thesis, we sharpen and extend such inequalities for some important depen-

dency structures, namely Markov chains, stationary distributions of Markov chains,

and local dependence.

A classical example of concentration inequalities is McDiarmid’s bounded differ-

ences inequality. Let Ω be a Polish space, let X = (X1, . . . , Xn) be a vector of

1
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independent random variables taking values in Ωn, and let f : Ωn → R be a function

such that changing the value of coordinate i can change the value of f at most by ci,

for 1 ≤ i ≤ n. Then

P(|f(X)− E(f)| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
, (1.0.1)

where E(f) := E(f(X)). The importance of this result lies in the fact that, whereas

the range of f satisfies that supx∈Ωn f(x)− infx∈Ωn f(x) ≤
∑n

i=1 ci, the typical size of

the deviation |f(X) − E(f)| is only (
∑n

i=1 c
2
i )

1/2, which can be much smaller. Thus

the bound expresses the fact that if f is a function that depends only a “little bit”

on each of its coordinates and n is large, then f(X) is concentrated around its mean

at a much smaller range than its maximal possible deviation.

Inequality (1.0.1) implies, in particular, Hoeffding’s inequality. Suppose that

X1, . . . , Xn are i.i.d. random variables with expectation E(X1), satisfying a ≤ Xi ≤ b

almost surely. Hoeffding’s inequality states that for any t ≥ 0,

P
(∣∣∣∣∑n

i=1Xi

n
− E(X1)

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2n

(b− a)2

)
. (1.0.2)

This can be obtained from the (1.0.1) by considering the function f(x) = (x1 + . . .+

xn)/n.

A similar inequality, that also taking into account the variances of Xi, is Bern-

stein’s inequality. Suppose that X1, . . . , Xn are i.i.d. random variables, with expecta-

tion E(X1), satisfying |Xi − E(Xi)| ≤ C almost surely, then for any t ≥ 0,

P
(∣∣∣∣∑n

i=1Xi

n
− E(X1)

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2n

2Var(X1) + (2/3)Ct

)
. (1.0.3)
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Then typically this is sharper than (1.0.2), especially when Var(X1)� C2.

Hoeffding’s and Bernstein’s inequalities are useful for constructing non-asymp-

totically valid confidence intervals of E(X1), given n independent samples X1, . . . , Xn,

by comparing the difference between the estimated mean X̂ = (
∑n

i=1Xi)/n and the

mean E(X1). In the particular case of Bernoulli random variables with parameter p,

E(X1) = p, and Hoeffding’s inequality states that P(|X̂ − p| ≥ t) ≤ 2 exp(−2t2 · n).

This means that the typical deviations are of order
√
n.

In many practical situations, however, independent sampling is not possible, and

the only way to sample from the distribution of interest is via the Markov Chain Monte

Carlo method, in which case X1, . . . , Xn is a realisation of a Markov chain. Suppose

that a Markov chain takes values in a Polish state space Ω, has unique stationary

distribution π, and that we are interested in evaluating the expectation of some

function f : Ω→ R. Then we can use the approximation (
∑n

i=1 f(Xi))/n ≈ Eπ(f) to

evaluate the expectation. Now it is of great practical importance to know how good

is this approximation, since this determines how many samples do we need from the

Markov chain, and hence how long do we need to run our simulation. For this reason,

it is important to generalise the concentration inequalities above to the case where

X1, . . . , Xn is a Markov chain.

It seems that, unlike in the independent case, where many of the sharp results

known can be obtained by log-Sobolev inequalities and the entropy method, different

types of dependences and different types of functions require different methods to get

sharp bounds.

In order to get sharp concentration bounds for Markov chains, we need to under-

stand their mixing properties. One way to express the mixing properties of Markov
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chains is by analysing their spectrum. Let L2(π) be the Hilbert space of measur-

able functions f : Ωn → R that are square integrable with respect to π, equipped

with the scalar product 〈f, g〉π = Eπ(fg). Then the Markov kernel P defined as

P (f)(x) = E(f(X2)|X1 = x) is a linear operator on this space. In the case of re-

versible chains, this operator is self-adjoint, and thus its eigenvalues are real. As

it is well known, the Markov kernel’s largest eigenvalue is always one. The spectral

gap, denoted by γ = γ(P ), is essentially the distance between its largest and second

largest eigenvalue. We denote by γ∗ the absolute spectral gap of the chain, which

is essentially the gap between 1 and the eigenvalue with the second largest absolute

value.

In the case of non-reversible chains, the eigenvalues of P may be complex. The

standard approach in the literature in this case is to look at the spectral gap of the

multiplicative reversiblication P ∗P , denoted by γ(P ∗P ) (here P ∗ denotes the adjoint

of P , defined by the Markov kernel P ∗(x, dy) := P (y,dx)
π(dx)

· π(dy)). This corresponds to

the spectral gap of the Markov chain created from the original chain by taking one

step forward in time, followed by one step backward in time.

Another way to express mixing properties of Markov chains is by means of mix-

ing times. The total variational distance mixing time, denoted by tmix is the most

frequently used in the literature. It equals to the number of steps the chain has to

take to get to less that 1/4 in total variational distance to the stationary distribution

from any initial point.

For reversible chains, the mixing time and the spectral gap are related by some

simple inequalities, stating that whenever the mixing time is small, the spectral gap

is large, and in the case of chains with finite state spaces, that whenever the spectral
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gap is large, the mixing time is small (we will discuss this in more details in Chapter

3). In practice, 1/γ and tmix are typically of the same orders of magnitude up to

logarithmic factors.

For non-reversible chains on finite state spaces, it is also known that whenever

γ(P ∗P ) is large, tmix is small. However, the converse is not true, since there are

chains that mix fast in total variational distance (i.e. tmix is small), but for which

γ(P ∗P ) = 0. This has lead us to propose a new definition of spectral gap for non-

reversible chains. Let the pseudo spectral gap of the chain be defined as

γps := max
k≥0

γ
(
(P ∗)kP k

)
/k.

We are going to show that this quantity behaves similarly to the spectral gap for

reversible chains. That is, if the mixing time is small, the pseudo spectral gap is large,

and for chains on finite state spaces, if the pseudo spectral gap is large, the mixing

time is small.

In Chapter 3, we prove concentration inequalities for functions of Markov chains.

We use two different methods to prove these inequalities for sums, and more general

functions. In the case of general functions, we use what we call Marton couplings,

originally introduced by Marton (2003). Using this coupling, and by partitioning the

random variables into larger blocks of size proportional to the mixing time, we gen-

eralise the martingale-type approach of Chazottes, Collet, Külske, and Redig (2007).

This leads to the following generalisation of McDiarmid’s bounded differences inequal-

ity to Markov chains, with constants that are proportional to the mixing time of the

chain. If X = (X1, . . . , Xn) is a Markov chain on the state space Ω, and f : Ωn → R

is a function such that changing the value of coordinate i can change the value of f
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at most by ci, for 1 ≤ i ≤ n, then for any t ≥ 0,

P(|f(X)− E(f)| ≥ t) ≤ 2 exp

(
− t2

4.5tmix ·
∑n

i=1 c
2
i

)
. (1.0.4)

The Central Limit Theorem implies that under mild conditions, (
∑n

i=1 f(Xi))/
√
n

converges in distribution to N(Eπ(f), σ2
as), where σ2

as denotes the asymptotic variance

of a function f : Ω→ R, defined as

σ2
as := lim

n→∞

1

n
Var

(
n∑
i=1

f(Xi)

)
.

We propose a new estimator to this quantity (based on f(X1), . . . , f(Xn)). Our

estimator is a rather complicated function of X1, . . . , Xn, however, we show that it

satisfies the conditions of our version of McDiarmid’s bounded differences inequality,

and deduce that it is highly concentrated. This allows us to estimate σ2
as with arbitrary

precision by setting n sufficiently high (depending on the mixing time of the chain).

Using spectral methods due to Lezaud (1998b), we obtain concentration bounds

for sums of the form
∑n

i=1 f(Xi), and more generally, of form
∑n

i=1 fi(Xi), for a

Markov chain X1, . . . , Xn. We obtain that for a stationary and reversible Markov

chain with spectral gap γ, and a function f satisfying |f(x) − E(f)| ≤ C for some

constant C > 0,

P
(∣∣∣∣∑n

i=1 f(Xi)

n
− E(f)

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2 · n

2 (σ2
as + 0.8Var(f)) + 10(C/γ) · t

)
.

(1.0.5)

This is a type of Bernstein inequality. For small values of t, this bound is roughly

equal to exp
(
− t2·n

2(σ2
as+0.8Var(f))

)
. For a standard normal random variable, the sharpest
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tail bound that holds is of the form exp(−t2/2). Since the Central Limit Theorem

implies that (
∑n

i=1 f(Xi))/n is close to N(Eπ(f), σ2
as/n) in distribution, the sharpest

tail bound that we can expect is of the form exp
(
− t2·n

2σ2
as

)
. Therefore our bound is

essentially sharp for small values of t (except for the 0.8Var(f) term, but typically this

is much smaller than σ2
as). The Bernstein inequality of Lezaud (1998b) for reversible

chains only depends on γ and Var(f), but does not incorporates the asymptotic

variance σas, meaning that our bound is sharper.

For stationary non-reversible chains, using the pseudo spectral gap, we obtain the

following version of Bernstein’s inequality. Under the same conditions as in (1.0.5),

for any t ≥ 0,

P
(∣∣∣∣∑n

i=1 f(Xi)

n
− E(f)

∣∣∣∣ ≥ t

)
≤ exp

(
−t

2 · γps · (n− 1/γps)

8Var(f) + 20Ct

)
. (1.0.6)

The Bernstein inequality of Lezaud (1998b) uses the spectral gap of the multiplicative

reversiblication, γ(P ∗P ), thus our bound is sharper.

The main application of the bounds (1.0.5) and (1.0.6) is to estimate the error

of MCMC empirical averages (that is the quality of the approximation Eπ(f) ≈
1
n

∑n
i=1 f(Xi)).

We include generalisations of McDiarmid and Bernstein-type concentration in-

equalities to Markov processes. The proofs for this case are based on simple limiting

arguments.

In addition to Markov chains, there are other dependency structures that can

arise in practice, and are thus worth studying. One insightful way of looking at dis-

tributions of dependent random variables is by considering a Markov chain that has

this distribution as its stationary distribution. There are several approaches in the
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literature that show that under various conditions on the mixing rate of this Markov

chain (so-called contraction conditions), the stationary distribution satisfies concen-

tration inequalities (see Chatterjee (2005), Ollivier (2009), and Djellout, Guillin, and

Wu (2004)). In Chapter 4, we generalise Ollivier’s coarse Ricci curvature approach,

and also identify connections to the results of Chatterjee (2005).

Let us consider a stationary Markov chain with transition kernel P on a Polish

space Ω equipped with a metric d : Ω2 → R (which we denote by (Ω, d)), with

stationary distribution π. Denote the distribution of one step in the Markov chain

starting from x ∈ Ω by Px. Given two measures µ and ν on Ω, we define their

Wasserstein distance W1(µ, ν) as

W1(µ, ν) := inf
ξ∈Π(µ,ν)

∫
(x,y)∈Ω2

d(x, y)dξ(x, y),

with Π(µ, ν) denoting the set of distributions on Ω2 with marginals µ and ν.

A natural way to quantify the mixing rate is to compare W1(Px, Py) with d(x, y).

Following Ollivier (2009), we define the coarse Ricci curvature κ to be the largest

possible constant such for any two disjoint x, y ∈ Ω, W1(Px, Py) ≤ (1 − κ)d(x, y) (it

is easy to see that this constant always exists, but may be −∞). If κ > 0, then it

can be thought as a kind of contraction coefficient, since after k steps in the chain,

we have W1(P k
x , P

k
y ) ≤ (1− κ)k. Here P k

x denotes the distribution of the kth step of

the Markov chain starting from x.

This property is then used to prove concentration for Lipschitz functions. Ollivier

(2009) shows that under the assumption κ > 0, for X ∼ π and for some range
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0 ≤ t ≤ tmax, they satisfy concentration inequalities of the form

P(f(X)− E(f) ≥ t) ≤ exp

(
− t2 · n

6σ2 · (1/κ) · ‖f‖2
Lip

)
, (1.0.7)

where σ2 is a quantity related to the typical size of the jumps of the Markov chain,

n is a quantity related to the dimension of the space, and ‖f‖Lip is the Lipschitz

coefficient of f .

In this thesis, we generalise this bound by considering the coarse Ricci curvature

of multiple steps in the Markov chain. Define P k
x as the distribution of taking k steps

in the chain, starting from x, and let the multi-step coarse Ricci curvature κk be

the largest real number such that W1(P k
x , P

k
y ) ≤ (1− κk)d(x, y). Then we show that

concentration inequalities of the type

P(f(X)− E(f) ≥ t) ≤ exp

(
− t2 · n

6σ2 · κ(2)
Σ · ‖f‖2

Lip

)
, (1.0.8)

hold for some range 0 ≤ t ≤ tmax, with κ
(2)
Σ :=

∑∞
k=0(1 − κk)2. It is easy to see that

for κ > 0, κ
(2)
Σ < 1/κ, implying that our result is stronger then (1.0.7). We are going

to give examples for κ > 0, but where κ
(2)
Σ is much smaller than 1/κ, and examples

where κ < 0, but where κ
(2)
Σ is finite.

The coarse Ricci curvature has connections with the spectral properties of Markov

chains. For reversible chains it is known that γ ≥ κ. Here we generalise this result

and show that γ ≥ κk/k, and also show how to bound the pseudo spectral gap γps in

terms of the coarse Ricci curvature κk.

We include applications to the split-merge walk on random partitions, Glauber

dynamics on statistical physical spin models, and a random walk on the binary cube
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with a forbidden region.

Although the multi-step coarse Ricci curvature approach works for many depen-

dency structures, one of its disadvantages is that the concentration bounds only take

into account the Lipschitz coefficient of f . For more complicated functions, Tala-

grand’s convex distance inequality can yield better bounds. In Chapter 5, we will

prove a version of Talagrand’s convex distance inequality for weakly dependent ran-

dom variables satisfying the so-called Dobrushin condition. We show that, in par-

ticular, sampling without replacement satisfies this condition. Our approach is an

extension of the method of Chatterjee (2005), which is based on Stein’s method of

exchangeable pairs. We give applications to classical problems from computer science,

the stochastic travelling salesman problem, and the Steiner tree problem.

In Chapter 5, similarly to Chatterjee (2005), we use exchangeable pairs to prove

concentration inequalities. Chen and Röllin (2010) has introduced a more general

coupling structure called Stein coupling, defined as follows.

Definition 1.0.1. Let (W,W ′, G) be a coupling of square integrable random vari-

ables. We call (W,W ′, G) a Stein coupling if

E{Gf(W ′)−Gf(W )} = E{Wf(W )},

for all functions for which the expectation exists.

Exchangeable pairs are a special case of this coupling structure. From the defini-

tion, it is easy to show that the moment generating function m(θ) = E(eθW ) satisfies

m′(θ) = E
{
G
(
eθW

′ − eθW
)}

, (1.0.9)
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which means that concentration inequalities can be obtained in terms of the typical

size of G and W −W ′. In Chapter 6, we show that non-exchangeable Stein couplings

can also be used to prove concentration inequalities. We apply our results to random

graph models, in particular, to the number of edges in geometric random graphs, and

to randomly chosen large subgraphs of huge graphs.

Finally, in Chapter 7, we investigate concentration inequalities for locally depen-

dent random variables. Let [n] := {1, . . . , n}. We say that family of random variables

{Xi}1≤i≤n satisfies (LD) if for each 1 ≤ i ≤ n there exists Ai ∈ [n] (called the

neighbourhood of Xi) such that Xi and {Xj}j∈Aci are independent. We define the

dependency graph of {Xi}1≤i≤n as a graph with [n] where i and j are interconnected

if i ∈ Aj or j ∈ Ai (that is, Xi or Xj is in the neighborhood of the other).

(Janson, 2004) obtains concentration results for sums of random variables sat-

isfying (LD), and also obtain Hoeffding and Bernstein inequalities, with constants

that are only by the chromatic number of G times weaker than in the independent

case. We show that unlike in the case of Hoeffding and Bernstein inequalities, (LD)

dependence is not sufficient to show McDiarmid’s bounded differences inequality. We

define a stronger condition of local dependence, called (HD) dependence, and show

that it does imply a version of the bounded differences inequality.

Now we are going to explain the organisation of this thesis. In Chapter 2, we in-

troduce the subject of concentration inequalities, give some illustrative examples, and

review the most popular methods for proving such inequalities. Chapter 3 contains

our results for functions of Markov chains, which we obtain using Marton couplings,

and spectral methods. Chapter 4 proves concentration inequalities for Lipschitz func-

tions, when the measure arises as the stationary distribution of a fast-mixing Markov
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chain. In Chapter 5, we will prove Talagrand’s convex distance inequality for weakly

dependent random variables satisfying the Dobrushin condition. Chapter 6 proves

concentration inequalities based on Stein couplings. Finally, in Chapter 7 we will

prove concentration inequalities for functions of locally dependent random variables.



Chapter 2

Review of the literature

In this chapter, we briefly review the literature of concentration inequalities. First,

we explain the relation of the set formulation and the functional formulation of the

concentration of measure phenomenon. After this, we start with a section containing

selected examples of concentration inequalities, in particular, Hoeffding and Bernstein

inequalities, with an application of Hoeffding’s inequality to the running time of the

Quicksort algorithm, followed by McDiarmid’s bounded differences inequality, with

an application to the chromatic number of the Erdős-Rényi random graph, then

Talagrand’s convex distance inequality, with an application to the concentration of the

eigenvalues of random symmetric matrices, and finally the Gromov-Lévy inequality

for concentration on a sphere. This is followed by a section about some of the most

popular methods for proving concentration inequalities.

13
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2.1 Concentration of sets versus functions

The first concentration inequalities were introduced by Bernstein (1924), Chernoff

(1952), and later generalised by Hoeffding (1963) and Azuma (1967). The set formu-

lation of the concentration of measure phenomenon was introduced by Milman in the

early seventies, in the asymptotic theory of Banach spaces. Since then, it has found

numerous applications in diverse fields such as geometry, functional analysis, discrete

mathematics, and probability theory.

The standard reference on concentration inequalities is Ledoux (2001). Boucheron,

Lugosi, and Massart (2013b) and Dubhashi and Panconesi (2009) are written at a

more elementary level, and they contain many applications and exercises.

We illustrate the concentration of measure phenomenon with the example of con-

centration on a hypercube. Let Λ := {0, 1}n be equipped with the counting measure

µ, i.e. for any A ⊂ Λ, µ(A) := |A|/2n, where |A| denotes the number of elements

in A. For x, y ∈ Λ, x = (x1, . . . , xn), y = (y1, . . . , yn), let d(x, y) :=
∑n

i=1 1[xi 6= yi]

be the Hamming distance between x and y. For two sets A,B ⊂ Λ, we define the

set distance d(A,B) := infx∈A,y∈B d(x, y) and let d(x,B) := d({x}, B). Then for any

A,B ⊂ Λ,

µ(A) · µ(B) ≤ exp

(
−d(A,B)2

2n

)
. (2.1.1)

This inequality is the set formulation of the concentration of measure phenomenon.

It says that if two sets are far from each other, then at least one of them has small

probability.

Alternatively, suppose that X = (X1, . . . , Xn) is a vector of i.i.d. Bernoulli random

variables with parameter 1/2. Denote the measure induced by X by P. Suppose that
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a function f : Λ → R is 1-Lipschitz with respect to the Hamming distance d. Then

for any t ≥ 0,

P(|f(X)− E(f)| ≥ t) ≤ 2 exp(−2t2/n). (2.1.2)

Remark 2.1.1. More precisely, we have P(f(X) − E(f) ≥ t) ≤ exp(−2t2/n) and

P(f(X) − E(f) ≤ −t) ≤ exp(−2t2/n). To avoid unnecessary repetition, the conven-

tion in the literature is to state the results in the form (2.1.2). Here we will adapt

this convention.

This bound means that the typical deviation of the function f around its mean

is
√
n (meanwhile, the maximal deviation can be up to n). Such inequalities are the

called the functional formulation of the concentration of measure phenomenon.

The two formulations are equivalent, up to small constant factors. Here we show

this in the case of Gaussian tails. Note that Gaussian concentration (i.e. bounds of

the form exp(−t2/C)) of f around its mean is equivalent to concentration around its

median, as shown in Proposition 1.8. of Ledoux (2001).

Firstly, suppose that Λ is a Polish space equipped with a metric d, and P is a

probability distribution on Λ such that for any two sets A,B ∈ Λ,

P(A) · P(B) ≤ exp(−d(A,B)2/C)

for some positive constant C. Let X ∼ P be a Λ valued random variable. Suppose

that f : Λ → R is 1-Lipschitz with respect to d. Denote its median by M(f)

(by this we mean any real number satisfying that P(f(X) ≥ M(f)) ≥ 1/2 and

P(f(X) ≤ M(f)) ≥ 1/2). Let A := {x ∈ Λ : f(x) ≤ M(f)}, and for every t > 0,

let Bt := {x ∈ Λ : f(x) ≥ M(f) + t}. Then by the 1-Lipschitz property of f , we
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have d(A,Bt) ≥ t, thus by our initial assumption, we obtain that P(A) · P(Bt) ≤

exp(−t2/C). Now P(A) ≥ 1/2, thus we obtain that

P(f(X)−M(f) ≥ t) ≤ 2 exp(−t2/C),

and the same bound holds for the lower tail too.

Alternatively, suppose that Lipschitz functions are concentrated around their me-

dian, i.e. P(f(X)−M(f) ≥ t) ≤ 2 exp(−t2/C) for every 1-Lipschitz f . Let A,B be

two sets in Λ.

Suppose first that A has probability larger than 1/2. Then the median of the

1-Lipschitz function d(x,A) is 0, thus by our assumption,

P(B) ≤ P(d(x,A) ≥ d(A,B)) = P(d(x,A) ≥M(d(x,A)) + d(A,B))

≤ 2 exp(−d(A,B)2/C).

Therefore P(A)P(B) ≤ 2 exp(−d(A,B)2/C) in this case. The case when B has prob-

ability larger than 1/2 is similar.

Now suppose that both A and B have probability smaller than 1/2. Let τ :=

M(d(x,A)) be the median of d(x,A), and let C := {x ∈ Λ : d(x,A) ≥ τ}, and

D := {x ∈ Λ : d(x,A) ≤ τ}. Then P(C) ≥ 1/2 and P(D) ≥ 1/2, moreover it is easy

to see that 0 < τ < d(A,B), and d(A,C) ≥ τ , and d(B,D) ≥ d(A,B)− τ . Therefore

using the same argument as in the previous section on A,C and B,D, respectively,

we can deduce that

P(A) ≤ 2 exp(−τ 2/C), and P(B) ≤ 2 exp(−(d(A,B)− τ)2/C),
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thus

P(A)P(B) ≤ 4 exp(−d(A,B)2/(2C)).

For most of the applications, the functional form is more useful. In this thesis, we

will state our inequalities in the functional form. In the next section, we are going to

give some examples of the concentration of measure phenomenon.

2.2 Selected examples for concentration

2.2.1 Hoeffding and Bernstein inequalities for sums

The Hoeffding and Bernstein inequalities are the two most frequently used concen-

tration bounds for sums of random variables.

Bernstein’s inequality first appeared in Bernstein (1924), and was later rediscov-

ered several times in the literature. Hoeffding’s inequality (essentially a special case

of Bernstein’s inequality, up to constant factors) appeared in Hoeffding (1963), and

was generalised to martingales in Azuma (1967).

Let X1, . . . , Xn be independent random variables satisfying that ai ≤ Xi ≤ bi for

1 ≤ i ≤ n. Then (a simple form of) Hoeffding’s inequality states that for any t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E(Xi)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)
. (2.2.1)

Alternatively, assume thatX1, . . . , Xn are independent random variables satisfying

that |Xi − E(Xi)| ≤ C almost surely. Then (a simple form of) Bernstein’s inequality
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states that for any t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E(Xi)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−t2

2
∑n

i=1 Var(Xi) + (2/3)Ct

)
, (2.2.2)

and the same bound holds for the lower tail.

The advantage of Bernstein’s inequality is that it takes into account the variances,

whereas Hoeffding’s inequality only takes into account the extremal values of the

random variables. Therefore it is typically sharper than Hoeffding’s inequality.

In the special case when X1, . . . , Xn are i.i.d., these inequalities can be thought

as a non-asymptotic form of the law of large numbers.

Indeed, in statistics, they can be used in assessing the quality of the estimator

(
∑n

i=1Xi) /n of E(Xi) (see page 65 of Wasserman (2004)). It can be though as a

strong form of consistency result for the estimator, in the sense that it not only states

that it converges as the sample size tends to infinity, but also gives an explicit error

bound for finite sample sizes. We give another application of Hoeffding’s inequality

in Section 2.2.2.

2.2.2 An application: Quicksort, a randomised algorithm

Quicksort is one of the most efficient sorting algorithms, for sorting a sequence of

numbers x1, . . . , xn into increasing order. It is a randomised algorithm, i.e. the time

it takes is random, but using concentration inequalities, we are going to show that

with high probability, it takes O(n log(n)) operations. The following exposition is

based on Section 2.4 of Dubhashi and Panconesi (2009).

The idea of the algorithm is the following. First, we choose a number out of

x1, . . . , xn uniformly, that is, each one with 1/n probability. We call this number
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the pivot, denoted by p. Then we partition the rest into two blocks, the first block

containing the numbers that are less or equal to p, and the second block containing

the numbers that are larger than p. This way we obtain a sequence of the form

y1, . . . , yi, p, z1, . . . , zj, with y1, . . . , yi are smaller or equal to p, and z1, . . . , zj are

larger than p (one of these two sets may be empty). Finally, we repeat the same step

on y1, . . . , yi, and z1, . . . , zj (i.e. the algorithm is recursive).

Now to evaluate how many operations does this algorithm takes, we can notice

that the natural way to describe it is by a binary tree. In the root, we put x1, . . . , xn,

then in each step, the two children of the node become the two sequences y1, . . . , yi,

and z1, . . . , zj. Then there will be a single number on the leaves.

Now since partitioning takes linear time, and every level of the tree contains at

most n numbers in total, it is enough to estimate the height of the tree to bound the

running time of the algorithm.

Denote the height of the tree by H, then the following proposition gives a bound

on it.

Proposition 2.2.1. For the above algorithm, we have

P(H ≥ 21 log2(n)) ≤ 1

n
.

Proof. Denote the length of the path from the root to each of the leaves by P1, . . . , Pl,

with l ≤ n denoting the total number of leaves. Then H = max1≤i≤l Pi.

Now for 1 ≤ i ≤ l, Pi is a random variable, which depends on the choices of pivots

in each step of the algorithm. We say that a pivot is good if both of the partitions

are at least 1/3 of the size of the original length, and bad otherwise. Then the length

of the sequence after each pivot decreases to less than its two thirds, so the number
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of good pivots along any path cannot exceed log3/2(n) ≤ 2 log2(n). Suppose that a

path to a leaf from the root is at least 21 log2(n) long, then among the first 21 log2(n)

choices, we must have chosen at most 2 log2(n) good pivots.

Now the probability of choosing a good pivot is 1/3. If we denote by Z1, . . . , Z21 log2(n)

i.i.d. Bernoulli random variables with parameter 1/3, then
∑21 log2(n)

i=1 E(Zi) = 7 log2(n),

and thus using (2.2.1) (Hoeffding’s inequality), we obtain

P(Pi ≥ 21 log2(n)) ≤ P

21 log2(n)∑
i=1

Zi ≤
21 log2(n)∑

i=1

E(Zi)− 5 log2(n)


≤ exp(−2(52 log2(n)2)/(21 log2(n))) ≤ 1/n2.

Now using the union bound, we obtain the result of the proposition.

A sharper bound on the running time of this algorithm can be obtained using

martingale methods, see Section 7.6 of Dubhashi and Panconesi (2009).

There are many other examples in the computer science literature of application

of concentration inequalities to estimate the running times of randomised algorithms.

For an accessible treatment, we recommend Dubhashi and Panconesi (2009), and

Mitzenmacher and Upfal (2005). A related approach is the so called probabilistic

method of Erdős, which consists of introducing probability into problems of discrete

mathematics that have nothing to do with probability in their original form. Amongst

other things, concentration bounds can be used to obtain existence results. For a

wonderful exposition of this topic, see Alon and Spencer (2008). Recently, this line of

argument has been applied to prove existence results in quantum information theory

(see Ahlswede and Winter (2002a), Ahlswede and Winter (2003)).
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2.2.3 The bounded differences inequality

The bounded differences inequality is actually a consequence of the Azuma-Hoeffding

inequality (due to Azuma (1967), see Section 2.3.1). It became popular after the

publication McDiarmid (1989), which has given several interesting applications to this

inequality. Since then, the literature calls this result McDiarmid’s bounded differences

inequality.

Let X = (X1, . . . , Xn) be a vector of independent random variables taking values

in Ω := Ω1 × . . .×Ωn, and f : Ω→ R be a function satisfying that for some positive

constants c1, . . . , cn,

|f(x)− f(y)| ≤
n∑
i=1

ci · 1[xi 6= yi] for every x = (x1, . . . , xn), y = (y1, . . . , yn).

Then the bounded differences inequality states that for any t ≥ 0,

P(f(X)− E(f) ≥ t), P(f(X)− E(f) ≤ −t) ≤ exp

(
−2t2∑n
i=1 c

2
i

)
. (2.2.3)

One of the classical applications of this result is proving concentration for the

chromatic number of an Erdős-Rényi graph. Let G(n, p) be an Erdős-Rényi graph

with edges X = (Xi,j)1≤i<j≤n being i.i.d. Bernoulli random variables with parameter

p. The chromatic number number of the graph, denoted by χ(X), is the minimal

number of colors needed to color the vertices of the graph such that no two vertices

of the same color are connected by any edge.

We define Y1 := (X1,2, . . . , X1,n), Y2 := (X2,3, . . . , X2,n), . . . , Yn−1 := (Xn−1,n).

Then Y = (Y1, . . . , Yn−1) is just a repartition of X, thus we can define a function

χ′ such that χ′(Y ) = χ(X) almost surely. Now it is easy to verify that changing
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the value of Yi can change the chromatic number at most by 1. This means that χ′

satisfies the conditions of the bounded differences inequality with c1 = . . . = cn−1 = 1,

and thus for any t ≥ 0,

P(χ(X)− E(χ) ≥ t), P(χ(X)− E(χ) ≤ −t) ≤ exp

(
−2t2

n− 1

)
.

The beauty of this result lies in the fact that the chromatic number is a very compli-

cated function of X, and there are no results in the literature about the asymptotic

distribution of χ(X) − E(χ). Despite this, the bounded differences inequality gives

an elegant way to bound the tails of χ(X)− E(χ).

2.2.4 Talagrand’s convex distance inequality

Talagrand’s convex distance inequality is a fundamental result that allows to obtain

better bounds than those possible using the bounded differences inequality in many

examples. The inequality was first stated in the original paper Talagrand (1995).

There are several ways to state this inequality. The original proof is based on the set

distance formalism (explained in more detail in Section 2.3.2), which then implies con-

centration for functions. Here we state the form that is most useful for applications,

called the method of non-uniformly bounded differences. This form of the inequality

was first stated in Steele (1997), which also includes several interesting applications.

Theorem 2.2.2. Let X = (X1, . . . , Xn) be a vector of independent random variables

taking values in Ω := Ω1 × . . .× Ωn, and f : Ω→ R be a function satisfying that for
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some positive functions c1, . . . , cn : Ω→ R,

f(x)− f(y) ≤
n∑
i=1

ci(x) · 1[xi 6= yi] for every x = (x1, . . . , xn), y = (y1, . . . , yn),

and
∑n

i=1 c
2
i (x) ≤ C uniformly in x ∈ Ω, then for any t ≥ 0,

P(f(X)−M(f) ≥ t),P(f(X)−M(f) ≤ −t) ≤ exp

(
−t2

4C

)
,

where M(f) denotes the median of f(X).

Remark 2.2.3. This is the classical form of this theorem. In the manuscript Paulin

(2014), based on the transportation cost inequality approach of Samson (2000), we

improve this result and shown that under the same conditions,

P(f(X)− E(f) ≥ t),P(f(X)− E(f) ≤ −t) ≤ exp

(
−t2

2C

)
.

We do not include the proof in this thesis because of space considerations.

One of the important applications of this result is to show concentration for eigen-

values of random matrices with bounded entries.

Proposition 2.2.4. Suppose that X = (Xi,j)1≤i,j≤n is a real valued symmetric matrix

with Xi,j = Xj,i for every 1 ≤ i, j ≤ n, and (Xi,j)1≤i<j≤n are independent random

variables that satisfy that |Xi,j| ≤ 1. Denote the eigenvalues of the matrix X by

λ1(X) ≥ . . . ≥ λn(X). Then for any 1 ≤ s ≤ n, for any t ≥ 0,

P(|λs(X)−M(λs)| ≥ t) ≤ 4 exp(−t2/(32s2)),
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and the same bound holds for λn−s+1(X).

This proposition is due to Alon, Krivelevich, and Vu (2002). A sharper version (s2

replaced by s) was obtained in Meckes (2004), also using Talagrand’s convex distance

inequality.

2.2.5 Gromov-Lévy inequality for concentration on a sphere

Let Sn ⊂ Rn+1 be the surface of an n+1 dimensional sphere of radius 1. Let f : Sn →

R be a function that is 1-Lipschitz with respect to the geodesic distance on Sn. Let

µ be the uniform distribution on Sn, and X ∼ µ, then for any t ≥ 0,

|P(f(X)−M(f)| ≥ t) ≤ 4 exp(−(n− 1)t2/2),

where M(f) denotes the median of f . In this form, the result is due to Lévy. It was

extended to manifolds with strictly positive Ricci-curvature by Gromov. Recently,

this result has found impressive applications in quantum information theory, shedding

light on basic properties of entanglement, see Hayden, Leung, and Winter (2006).

2.3 Methods to prove concentration

In this section, we are going to review some of the most popular methods in the liter-

ature for proving concentration inequalities. At the time of the writing of this thesis,

the field of concentration inequalities has grown very large, with contributions from

various areas of mathematics (functional analysis, geometry, probability, statistics,

computer science). There is an infinite variety of dependence structures that can

arise between random variables. Therefore we make no claim of completeness here,
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there are other approaches in the literature, and for some specific types of depen-

dence, they may yield sharper results than those discussed here. However, we have

made an effort to explain the basics of those methods that we know to be related to

this thesis, and describe their relation to our new results here.

2.3.1 Martingale-type approaches

Martingale-type approaches have been popular for proving concentration inequalities

since the classical result of Azuma and Hoeffding (Azuma (1967), Hoeffding (1963)).

Theorem 2.3.1 (Azuma-Hoeffding inequality). Let (Ω,F ,P) be a probability space.

Suppose that ∅ = F0 ⊂ F1 ⊂ . . . ⊂ FFn = F is a filtration of σ-fields. Suppose that

X0, X1, . . . , Xn is a martingale with respect to this filtration. Let Di := ess sup|Xi −

Xi−1|, and let D2 :=
∑n

i=1D
2
i , then for X ∼ P, for any t ≥ 0,

P(|Xn − E(Xn)| ≥ t) ≤ 2 exp(−t2/(2D2)). (2.3.1)

Remark 2.3.2. The upper tail also holds for super-martingales (and symmetrically,

the lower tail holds for sub-martingales).

Proof. The proof is based on bounding the moment generating of Xn, and then using

Markov’s inequality (this argument is standard, and will be used for every concentra-

tion bound in this thesis). For θ ∈ R, we have

E
(
eθXn

)
= E

(
eθ

∑n
i=1(Xi−Xi−1)

)
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Now using Yensen’s inequality for convex functions, for any θ ∈ R, and −1 ≤ u ≤ 1,

eθu ≤ 1 + u

2
eθ +

1− u
2

e−θ.

Now E(Xn −Xn−1|Fn−1) = 0, so this means that

E
(
eθ(Xn−Xn−1)|Fn−1

)
≤ E

(
eθDn ·

1 + Xn−Xn−1

Dn

2
+ e−θDn ·

1− Xn−Xn−1

Dn

2

∣∣∣∣∣Fn−1

)

≤ cosh(θDn) ≤ exp(θ2D2
n/2).

Now returning to the moment generating function, we can successfully condition on

Fn−1,Fn−2, . . . ,F0, to get

E
(
eθ

∑n
i=1(Xi−Xi−1)

)
= E

(
eθ

∑n−1
i=1 (Xi−Xi−1) · E

(
eθ(Xn−Xn−1)|Fn−1

))
≤ E

(
eθ

∑n−1
i=1 (Xi−Xi−1)

)
· exp(θ2D2

n/2)

≤ E
(
eθ

∑n−2
i=1 (Xi−Xi−1)

)
· exp(θ2(D2

n−1 +D2
n)/2) ≤ . . . ≤ exp(θE(Xn)) · exp(θ2D2/2).

Now we can use Markov’s inequality to obtain the concentration bounds. For any

t ≥ 0, θ ≥ 0, E(eθXn−E(Xn)) ≥ P(Xn − E(Xn) ≥ t) · exp(θt), and E(eθXn−E(Xn)) ≤

exp(θ2D2/2), thus

P(Xn − E(Xn) ≥ t) ≤ exp(θ2D2/2− θt).

Now optimising in θ shows that the minimum of the right hand side is taken at

θ = t/D2, and thus we obtain P(Xn − E(Xn) ≥ t) ≤ exp(−t2/(2D2)). The proof of

the lower tail is similar (using negative values of t and θ).
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This theorem implies McDiarmid’s bounded differences inequality for independent

random variables. In Section 3.2 of Chapter 3, we are going to generalise this proof

to Markov chains, and show a version of the bounded differences inequality with

constants depending on the mixing time of the chain.

The martingale method was used to prove concentration for Hamming Lipschitz

functions of uniform permutations in Maurey (1979) (see also Corollary 4.3 of Ledoux

(2001)). It has also been generalised to apply to some non-Lipschitz functions, in

particular, multivariate polynomials, in Vu (2002), and Kim and Vu (2000). Such

bounds have been applied, for example, to the number of triangles in the Erdős-

Rényi graph.

Combining coupling ideas with martingale arguments has proven fruitful for prov-

ing concentration inequalities for dependent variables, see Külske (2003), and Cha-

zottes, Collet, Külske, and Redig (2007).

2.3.2 Talagrand’s set distance method

Let Ω = Ω1 × . . .× Ωn. For a vector α ∈ Rn
+, we define the distance dα : Ω2 → R as

dα(x, y) =
∑n

i=1 αi1[xi 6= yi]. We define Talagrand’s convex distance between a set

A ⊂ Ω and a point x ∈ Ω as

dT (x,A) := sup
α∈Rn+,

∑
α2
i≤1

inf
y∈A

dα(x, y). (2.3.2)

Then the strongest form of Talgrand’s convex distance inequality for product spaces

is the following.
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Theorem 2.3.3. Let µ be a product measure on Ω. Let X ∼ µ. Then for any A ⊂ Ω,

E
(
ed

2
T (X,A)/4

)
≤ 1

P(A)
. (2.3.3)

The original proof of this result is based on mathematical induction in the dimen-

sion n.

Let At := {x ∈ Ω : dT (x,A) > t}, then this theorem implies the following weaker

form. For any t ≥ 0, any A ⊂ Ω,

P(A) · P(At) ≤ exp(−t2/4). (2.3.4)

This, in turn, implies the method of non-uniformly bounded differences (Theorem

2.2.2). For a short proof of these, see pages 139-140 of Dubhashi and Panconesi

(2009).

Besides product spaces, Talagrand’s convex distance inequality also holds for uni-

form permutations (see Talagrand (1995)). In this case, an equation of the form of

(2.3.3) holds, with constant 16 instead of 4.

In addition to the definition (2.3.2), Talagrand has defined set distances in sev-

eral other ways as well. His so called ”control by several points method” gener-

alises dT (x,A) to define a distance between a point and several sets, of the type

dT (x,A1, . . . , Aq). This method has lead to important new concentration inequalities

for suprema of empirical processes in product spaces (in particular, for sums of the

form supf∈F
∑n

i=1 f(Xi), where X1, . . . , Xn are independent random variables, and F

is a countable set of real valued functions). These inequalities have proven to be very

useful for applications in model selection, and machine learning.
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For a concise proof of this result Talagrand’s inequality for uniform permutations,

see Section 8.2 of Ledoux (2001). Talagrand’s inequality for uniform permutations

was further generalised in McDiarmid (2002), and Luczak and McDiarmid (2003).

Boucheron, Bousquet, and Lugosi (2005a) is a great survey on applications of con-

centration inequalities for empirical processes to the theory of classification. For

applications to model selection problems, see Massart (2007).

Finally, it is worth noting that most of the inequalities obtained by Talagrand’s

set distance method have been also proven using Ledoux’s log-Sobolev-type entropy

method (Ledoux (1995/97), Massart (2000)), and using transportation cost inequal-

ities (see Dembo (1997)).

2.3.3 Log-Sobolev inequalities and the entropy method

In this section first we state the simplest form of log-Sobolev inequalities, show how

they imply concentration via the so called Herbst argument. Then we explain the

basics of the entropy method.

Log-Sobolev inequalities were introduced in Gross (1975) in relation with quantum

field theory. They have later found applications in many fields of mathematics, see the

lecture notes Guionnet and Zegarlinksi (2003), and Ané, Blachère, Chafäı, Fougères,

Gentil, Malrieu, Roberto, and Scheffer (2000). For applications to Markov chains

(bounding for the spectral gap of the chain), see Diaconis and Saloff-Coste (1996).

More recently, a version of log-Sobolev inequalities, the entropy method, has proven

to be a powerful method to prove concentration inequalities (see Boucheron, Lugosi,

and Massart (2013b)).

Given a probability space (Ω,F , µ), and a measurable function f : Ω → R, we



CHAPTER 2. REVIEW OF THE LITERATURE 30

define its entropy as

Entµ(f) := Eµ(f log(f))− Eµ(f) log(Eµ(f)).

Now in the case of Ω = Rn, and F being all the Borel sets ofRn, we say that µ satisfies

the log-Sobolev inequality with constant C if for all smooth enough functions f ,

Entµ
(
f 2
)
≤ 2CEµ

(
|∇f |2

)
, (2.3.5)

with |∇f(x)| denoting the Euclidean length of the gradient vector of f at point x.

Then the following theorem gives an example about log-concave distributions

where the log-Sobolev constant C can be bounded.

Theorem (Theorem 5.2 of Ledoux (2001)). Suppose that Ω = R
n, and F contains

all the Borel sets. Let dµ = e−U(x)dx, where for some c > 0, λmin (Hess U(x)) ≥ c

uniformly for every x ∈ Rn (λmin denotes the smallest eigenvalue). Then for all

smooth enough functions f on Rn,

Entµ
(
f 2
)
≤ 2

c
Eµ
(
|∇f |2

)
,

i.e. the log-Sobolev inequality holds with constant C = 1/c.

Remark 2.3.4. In the special case of the n dimensional standard Gaussian distri-

bution, U(x) = ‖x‖2
2/2 + n/2 log(2π), and thus λmin (Hess U(x)) = λmin (I) = 1,

therefore we have c = 1 and C = 1.

The following proposition relates the log-Sobolev inequality with concentration of

Lipschitz functions.
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Proposition 2.3.5 (Herbst argument). Suppose that µ satisfies (2.3.5). Let X ∼ µ,

the for any f : Rn → R, any t ≥ 0,

P(|f(X)− E(f)| ≥ t) ≤ 2 exp

(
− t2

2C‖f‖2
Lip

)
,

where ‖f‖Lip denotes the Lipschitz coefficient of f with respect to the Euclidean dis-

tance.

Remark 2.3.6. The proof of this result is given on pages 94-95 of Ledoux (2001).

In the special case of the standard normal distribution, C = 1, thus we obtain the

Cirelson-Ibragimov-Sudakov inequality (see Section 1.2.1 of Massart (2007)).

Proposition 2.3.7. Let X = (X1, . . . , Xn) be a vector of independent standard nor-

mal random variables. Let f : Rn → R be a 1-Euclidean Lipschitz function. Then

for any t ≥ 0,

P(|f(X)− E(f)| ≥ t) ≤ 2 exp(−t2/2).

Now we turn to the basics of the entropy method.

A classical inequality from probability theory is the Efron-Stein inequality (in this

form, see Boucheron, Lugosi, and Massart (2003)).

Theorem 2.3.8. Let Z = g(X1, . . . , Xn) be square integrable, where X1, . . . , Xn are

independent random variables. Let X ′1, . . . , X
′
n be independent copies of them. For

some real valued function g, let Z := g(X1, . . . , Xn), and Z(i) := g(X1, . . . , X
′
i, . . . , Xn).

Then

Var(Z) ≤ 1

2

n∑
i=1

E(Z − Z(i))2,

whenever all the expectations exist.
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The advantage of this result is that it is using the typical deviations of g when

changing each of the random variables X1, . . . , Xn separately (instead of using the

maximal possible deviations, as in the bounded differences inequality). The disadvan-

tage is that it only gives bound on the variance, and not an exponential concentration

result. The entropy method allows us to recover exponential concentration bounds of

similar type.

The following theorem is an exponential version of the Efron-Stein inequality (see

Boucheron, Lugosi, and Massart (2003)).

Theorem 2.3.9. Let X1, . . . , Xn, Z, and Z(i) be as in Theorem 2.3.8. Let

V+ := E

[
n∑
i=1

(Z − Z(i))2
1[Z > Z(i)]|X1, . . . , Xn

]
, and

V− := E

[
n∑
i=1

(Z − Z(i))2
1[Z < Z(i)]|X1, . . . , Xn

]
.

Then for all θ > 0 and λ ∈ (0, 1/θ),

logE[λ(Z − E(Z))] ≤ λθ

1− λθ
logE

[
exp

(
λV+

θ

)]
, and

logE[−λ(Z − E(Z))] ≤ λθ

1− λθ
logE

[
exp

(
λV−
θ

)]
.

These inequalities give bounds on the moment generating function of Z − E(Z)

in terms of the moment generating function of V+ and V−. The mean of V+ and V−

can be expressed as

E(V+) = E(V−) =
n∑
i=1

E
[(
Z − Z(i)

)2
]
,
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which is exactly the bound from the Efron-Stein inequality. If we assume that

V+ has finite exponential moments for a non-empty range of positive exponents,

then it follows from the theorem that for small values of λ, logE[λ(Z − E(Z))] ≤

exp(λ2E(V+)), which in turn implies that for sufficiently small deviations, Gaussian

tails hold with constants proportional to the right hand side of the Efron-Stein in-

equality,
∑n

i=1 E(Z − Z(i))2. Thus whenever the Efron-Stein bound gives the right

order of variance, we can get sharp Gaussian tails for sufficiently small deviations.

The proof of Theorem 2.3.9 is based on the following modified log-Sobolev in-

equality (see Massart (2000)).

Theorem 2.3.10. Let ψ(x) := ex − x− 1. Suppose that X1, . . . , Xn are independent

random variables, and X ′1, . . . , X
′
n are independent copies of them. For some real

valued function g, let Z := g(X1, . . . , Xn), and Z ′i := g(X1, . . . , X
′
i, . . . , Xn). Then

for any s > 0,

sE[ZesZ ]− E[esZ ] logE[esZ ] ≤
n∑
i=1

E[esZψ(−s(Z − Z ′i))].

Moreover, denote τ(x) := x(ex − 1). Then for all s ∈ R,

sE[ZesZ ]− E[esZ ] logE[esZ ] ≤
n∑
i=1

E
[
esZτ(−s(Z − Z ′i))1[Z > Z ′i]

]
, and

sE[ZesZ ]− E[esZ ] logE[esZ ] ≤
n∑
i=1

E
[
esZτ(−s(Z ′i − Z))1[Z < Z ′i]

]
.

The entropy method was shown to imply the strongest form (2.3.3) of Talagrand’s

convex distance inequality in Boucheron, Lugosi, and Massart (2009). In Chapter 7,

we use parts of the approach of that paper to prove Talagrand’s convex distance
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inequality for dependent variables. The entropy method has also been generalised to

obtain moment bounds for functions of independent random variables in Boucheron,

Bousquet, Lugosi, and Massart (2005b).

2.3.4 Transportation cost inequality method

Transportation cost inequalities are a powerful tools of proving concentration results.

They were introduced by Marton, based on ideas from information theory. Here we

briefly review the basics of this method.

Suppose that we have a Polish metric space (Ω, d), and distributions µ and ν on

it. Then the L1 and L2 Wasserstein distances are defined as

W1(µ, ν) := inf
π[X∼µ,Y∼ν]

Eπ(d(X, Y )), (2.3.6)

W2(µ, ν) := inf
π[X∼µ,Y∼ν]

[Eπ(d2(µ, ν))]1/2, (2.3.7)

where the infimum is taken over all distributions π defined on Ω2 having marginals µ

and ν. Define the relative entropy of two measures ν and µ as

D(ν||µ) =

∫
log

(
dν

dµ

)
dν, (2.3.8)

with the convention that it is infinity if ν is not absolutely continuous with respect

to µ. A distribution µ on (Ω, d) is said to satisfy a transportation cost inequality with

constant c if for any distribution ν on (Ω, d),

W1(ν, µ) ≤
√

2cD(ν||µ).
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Alternatively, a distribution µ on (Ω, d) is said to satisfy a quadratic transportation

cost inequality with constant c if for any distribution ν on (Ω, d),

W2(ν, µ) ≤
√

2cD(ν||µ).

In general spaces, transportation cost inequalities imply Gaussian concentration for

d-Lipschitz functions (in fact, as it was shown in Djellout, Guillin, and Wu (2004),

Gaussian concentration is equivalent to transportation cost inequalities). In product-

like spaces (such that independent random variables, or uniform permutations) they

can be shown to imply McDiarmid’s bounded differences inequality.

Quadratic transportation cost inequalities are stronger results. In product-like

spaces, some special type of quadratic transportation cost inequalities also imply Ta-

lagrand’s convex distance inequality, Bernstein’s inequality, and further inequalities,

see Samson (2000), Marton (2003). In the seminal work Otto and Villani (2000), it

was shown that in a general setting, log-Sobolev inequalities imply quadratic trans-

portation cost inequalities.

One great success of the transportation cost inequality method was proving con-

centration inequalities for so called contracting Markov chains. For a homogeneous

Markov chain with Polish state space Ω, and transition probabilities P (x, y), let

us denote a := supx,y∈Ω dTV(P (x, ·), P (y, ·)), then Proposition 1 of Marton (1996b)

proves a transportation cost inequality 1/(1 − a)2 times worse than in the indepen-

dent case (see (3.1.1) for the definition of the total variational distance). Marton

(1996a) shows a quadratic transportation cost inequality for such chains, again, with

constants 1/(1 − a)2 times weaker than in the independent case. Further extension

was given in Samson (2000) and an unpublished manuscript of Marton.
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In this thesis, we improve upon these bounds for Markov chains, and show that

McDiarmid’s bounded difference inequality holds with constants that are the mixing

time of the chain times weaker than in the independent case. In fact, we have found

two proofs for this result, one using transportation cost inequalities (which is more

general, and also yields Talagrand’s convex distance inequality, Bernstein’s inequality,

and further inequalities), and one simpler approach using a martingale-type argument.

Because of space considerations, we have decided to only include the martingale-type

approach in this thesis.

In this short paragraph, we have only attempted a cover the basics of the trans-

portation cost inequality method, which have became popular in the last decade,

and found many connections with other fields. More complete references are Villani

(2009), and Gozlan and Léonard (2010).

2.3.5 Spectral methods

For sums of the form f(X1)+. . .+f(Xn), where X1, . . . , Xn is a Markov chain, spectral

methods can be used to obtain variance and concentration bounds. For reversible

chains, these methods take into account the spectrum of Markov kernel, in particular,

they depend on its spectral gap (the distance between its largest eigenvalue, 1, and

its second largest eigenvalue).

The first Hoeffding-type concentration bound, in the case when f is a 0-1 valued

indicator function, was given in Gillman (1998) (see also Kahale (1997) for a sharper

version). This bound have used the perturbation theory of linear operators. In fact,

much earlier, asymptotic bounds have been obtained for such sums using this theory

in Nagaev (1957).
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Building upon the ideas of Gillman (1998), and also using Kato’s perturbation

theory of linear operators, Lezaud (1998b) has proven Bernstein-type concentration

bounds for reversible, and non-reversible Markov chains, and processes. In the re-

versible case, the bound depends on the spectral gap of the chain, while in the non-

reversible case, the spectral gap of its multiplicative reversiblication (P ∗P ).

A sharp version of Hoeffding’s inequality was proven in León and Perron (2004)

for reversible Markov chains using a stochastic ordering-type argument.

In Section 3.3 of Chapter 3, we improve upon these results, using the same ap-

proach as Lezaud (1998b), but with more careful estimation. For reversible chains,

we give Bernstein bounds as a function of the asymptotic variance, while for non-

reversible chains, as a function of the pseudo spectral gap of the chain (a generalisation

of the multiplicative reversiblication).

2.3.6 Semigroup tools, and the coarse Ricci curvature

Semigroup arguments can be used to obtain concentration inequalities for probability

measures arising as the stationary distribution of Markov processes. They have been

successfully applied to show concentration for spheres, manifolds with strictly positive

Ricci curvature (Gromov-Lévy theorem), as well as log-concave densities (such as the

Gaussian measure). The main idea of these methods is that we choose a Markov

process with analytically simply described generator (such as the heat semigroup,

with generator L = ∇, the Laplace operator), and then use various integration by

parts formulas to get bounds on the moment generating function E(eλf ) for smooth

Lipschitz functions f (which then translate into bounds for all Lipschitz functions

by limiting arguments). The advantage of these methods is that they can lead to
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sharp bounds, and the arguments can be very concise. The disadvantage is that for

different types of Markov processes, different tricks need to be used.

A generalisation of the semigroup approach to discrete time Markov chains is the

following general concentration inequality (Theorem 3.3 of Ledoux (2001)).

Theorem 2.3.11. Let P (x, y) be a reversible Markov kernel, with finite state space

Ω, stationary distribution π, and spectral gap γ. For a function f : Ω→ R, define

|||f |||∞ :=
1

2
sup
x∈Ω

∑
y∈Ω

|f(x)− f(y)|2 · P (x, y).

Let X ∼ π, then for any t ≥ 0,

P(|f(X)− E(f)| ≥ t) ≤ 6 exp(−t√γ/(2|||f |||∞),

with γ denoting the spectral gap of the chain.

This result is quite general, since it proves concentration for possibly non-Lipschitz

functions. However, it only shows exponential bounds. In fact, Gaussian bounds can

hold in many cases. Thus it is rarely possible to obtain sharp bounds using this

theorem.

Another, more recent approach is the so called coarse Ricci curvature method

initiated by Ollivier, which allows to prove concentration inequalities for distributions

arising as the stationary distribution of Markov chains. The bounds depends mainly

on 4 quantities (the latter three is defined below), the Lipschitz constant of the

function, the coarse Ricci curvature, the local dimension, and the diffusion constant.

Let P (x, z) be a Markov kernel with Polish metric state space (Ω, d). For any x, y ∈ Ω,
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x 6= y, the coarse Ricci curvature is defined as

κ(x, y) = 1− W1(Px, Py)

d(x, y)
for x 6= y, and κ = sup

x,y∈Ω,x 6=y
κ(x, y),

where Px denotes the measure P (x, dz), and W1 denotes the Wasserstein distance of

Px and Py (as defined in (2.3.6)). The local dimension n(x) is defined as

n(x) :=
σ(x)2

sup{VarPxf, f : SuppPx → R 1 - Lipschitz}
.

Then n(x) ≥ 1, and when Ω is an N dimensional space or the surface of an N

dimensional manifold, n(x) is usually related to N . Let σ2(x) is defined as

σ2(x) :=
1

2

∫ ∫
d(y, z)2dPx(y)dPx(z).

Based on these quantities, Ollivier (2009) shows that for X ∼ π, for any f : Ω → R

with Lipschitz coefficient ‖f‖Lip, there is some tmax > 0 such that for 0 ≤ t ≤ tmax,

P(|f(X)− Eπ(f)| ≥ t) ≤ exp

(
− t2

6κ‖f‖2
LipEπ

(
σ2

n

)) . (2.3.9)

The value of tmax depends on the maximal diameter of the support of the measure

Px(dz), and on the Lipschitz coefficient of σ2(x)/n(x).

This method has been successfully applied to numerous examples. In particular,

by showing that κ can be lower bounded on manifolds positive Ricci curvature, it

recovers the celebrated Gromov-Lévy theorem (up to constant factors). In Chapter

4, we generalise this method by considering the coarse Ricci curvature of several steps

in the Markov chain.



CHAPTER 2. REVIEW OF THE LITERATURE 40

2.3.7 Concentration by Stein’s method of exchangeable pairs

Stein’s method of exchangeable pairs was adapted for proving concentration inequal-

ities by Chatterjee (2005). Here we explain the basics of this method. Suppose that

Ω is a Polish space, and F : Ω2 → R is an antisymmetric function. Suppose that

(X,X ′) is an exchangeable pair taking values in Ω. Let f(X) := E(F (X,X ′)|X), and

∆(X) :=
1

2
E(|(f(X)− f(X ′))F (X,X ′)||X).

The concentration of f around its mean is determined by ∆(X). We have Var(f) ≤

E(∆(X)), and if ∆(X) ≤ C almost surely, then

P(|f(X)− E(f)| ≥ t) ≤ 2 exp(−t2/(2C)).

More generally, if ∆(X) ≤ ϕ(f(X)) for some function ϕ(x) ∼ xα with 0 ≤ α < 2,

then P(|f(X)− E(f)| ≥ t) ≤ 2 exp(−O(t2−α)) holds.

There are several examples of models where a smart choice of F (X,X ′) can lead to

a concentration inequality for an interesting function f (see the references below). On

the other hand, the converse problem, how can we find F (X,X ′) for a given function

f , is also important. This problem is addressed in Chapter 4 of Chatterjee (2005).

Denote by P the Markov kernel generated by the exchangeable pair (X,X ′) (that is,

P (g)(x) = E(g(X ′)|X = x)). Then under some technical assumptions ensuring the

convergence, F defined as

F (x, y) :=
∞∑
i=0

[
P k(f)(x)− P k(f)(y)

]
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is antisymmetric, and satisfies E(F (X,X ′)|X) = f(X). This construction is used in

Chatterjee (2005) to prove a version of McDiarmid’s bounded differences inequality for

weakly dependent random variables satisfying the Dobrushin condition. Applications

of the method in Chatterjee (2005) include proving mean-field equations for the Curie-

Weiss and Sherrington-Kirkpatrick models, pseudo maximal likelihood estimation for

the Ising model (see also Chatterjee (2007)). The ∆(X) ≤ ϕ(f(X)) case is explored

in Chatterjee and Dey (2010), with further applications to statistical physical models,

and random graphs.

In Chapter 5, we generalise this method to show Talagrand’s convex distance

inequality under the Dobrushin condition. In Chapter 4, we explore a connection

between this method and Ollivier’s coarse Ricci curvature. This allows us to prove

concentration for Lipschitz functions beyond the Dobrushin condition case.

Finally, we note that recently other variants of Stein’s method, size-biasing and

zero-biasing, has also been used to prove concentration inequalities, see Ghosh and

Goldstein (2011), Goldstein and Islak (2013).

2.3.8 Janson’s trick for sums of dependent random variables

We say that X1, . . . , Xn are locally dependent random variables (more specifically,

(LD) dependent) if for every Xi there is a collection of random variables Ai such that

it is independent from all the rest. Denote by G = (V,E) the dependence graph of

these variables, i.e. a graph having vertices 1, . . . , n, and edges between vertex i and

j if and only if Ai contains Xj or Aj contains Xi. Denote by χ(G) the chromatic

number of the graph, then we can divide X1, . . . , Xn into χ(G) groups X1, . . . , Xχ(G)

such that each of the groups contains independent random variables.
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Denote by Y1, . . . , Yχ(G) the sum of the random variables in each group, then using

Jensen’s inequality, we can bound the movement generating function as

E
(
eθ

∑n
i=1Xi

)
= E

(
eθ

∑χ(G)
i=1 Yi

)
≤ 1

k

χ(G)∑
i=1

E(eθkYi), (2.3.10)

which can be bounded above using independence. More generally, we have

E
(
eθ

∑χ(G)
i=1 Yi

)
≤

χ(G)∑
i=1

ciE(eθYi/ci)

for any positive reals c1, . . . , cχ(G) satisfying
∑χ(G)

i=1 ci = 1.

This method has been applied in Janson (2004) to obtain Hoeffding and Bernstein

inequalities for sums of locally dependent random variables.

In this thesis, we generalise this trick somewhat further, by noticing that the

groups X1, X1, . . . do not need to consist of independent random variables, it is suf-

ficient if the dependence between the variables in each group is small.

Our definition of the pseudo spectral gap in Chapter 3, Section 3.3 is motivated

by this method.

2.3.9 Matrix concentration inequalities

Suppose that X = (X1, . . . , Xn) is a vector of random variables, and f(X1, . . . , Xn)

is a Hermitian matrix valued function. Then in many cases, we are interested in the

concentration properties of f(X) around its mean, in the sense that we want to get

bounds on the quantity P(‖f(X) − E(f)‖ ≥ t), with ‖ · ‖ denoting the L2 operator

norm. Bounds of this type are called matrix concentration inequalities. They have
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first appeared in quantum information theory (Ahlswede and Winter (2002b)), and

became popular after Tropp (2012), which has considerably sharpened the previous

results, and proven Azuma-Hoeffding and Bernstein-type inequalities.

The main tool for proving such inequalities is the trace moment generating func-

tion, defined as Etr exp(θf(X)). This function is behaving quite similarly as the

moment generating function in the scalar case, and by bounding it, we can obtain a

concentration bound for P(‖f(X) − E(f)‖ ≥ t). However, a considerable difficulty

in the matrix case is that even for sums of independent random matrices, the trace

moment generating function does not factorizes to the product of individual terms

(because of the non-commutativity of the matrix product). This difficulty can be

solved with the help of various trace inequalities.

In addition to the independent case treated in Tropp (2012), concentration in-

equalities have been also proven for functions of dependent random variables, using

the Stein’s method approach of Section 2.3.7. Mackey, Jordan, Chen, Farrell, and

Tropp (2012) has introduced the concept of Stein pairs, and used it to show concentra-

tion for sums of dependent random matrices. This was further generalised in Paulin,

Mackey, and Tropp (2013) to consider more general functions, and a matrix version of

McDiarmid’s bounded differences inequality was proven for weakly dependent random

variables (we do not include it in this thesis because of space considerations).

These inequalities have found numerous applications in statistics (Rohde and Tsy-

bakov (2011)), and computer science, in particular in the field of compressed sensing

(Tropp (2011), Candès and Davenport (2013)).
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2.3.10 Other methods

In this section we mention a few other methods for proving concentration inequalities.

The regeneration times approach is an important method for proving concentra-

tion inequalities, and various limit theorems for Markov chains, by essentially de-

ducing them from results for independent random variables. Adamczak (2008) and

Adamczak and Bednorz (2012) have used this approach to prove Bernstein inequality,

and a version of Talagrand’s inequality for empirical processes, for Markov chains (see

also Douc, Moulines, Olsson, and van Handel (2011) for a concentration bound for

sums of functions of Markov chains). Moreover, this chapter also uses truncation to

prove inequalities for sums of unbounded functions of dependent random variables (a

truncation approach was also used in the earlier result van de Geer (2002)). In the

Appendix of this thesis, motivated by the regeneration times approach, we show that

for sums of unbounded functions of Markov chains, concentration can be much weaker

than in the case of independent summands (i.e. the sums of random variables with

gaussian tails will not necessarily be gaussian). Moreover, in Section 3.3 of Chapter

3, we state a proposition based on the truncation method, for generalising our results

to unbounded summands.

Negative dependence between random variables X and Y typically corresponds to

the condition that for any monotone increasing functions f and g, E(f(X)g(Y )) ≤

E(f(X))E(g(Y )). Under this kind of dependence (and further generalisations), Ho-

effding and Bernstein type inequalities hold for sums, similarly as in the independent

case (the proof is based on factorizing the moment generating function using the

negative dependence condition). See Dubhashi and Ranjan (1998) and Section 3 of

Dubhashi and Panconesi (2009) for more details, and examples.
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Concentration bounds under further, interesting types of dependence structures

are proven in Gavinsky, Lovett, Saks, and Srinivasan (2012), and in Unger (2009).



Chapter 3

Concentration for Markov chains1

3.1 Introduction

Consider a vector of random variables

X := (X1, X2, . . . , Xn)

taking values in Λ := (Λ1× . . .×Λn), and having joint distribution P. Let f : Λ→ R

be a measurable function. Concentration inequalities are tail bounds of the form

P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ t) ≤ g(t),

with g(t) typically being of the form 2 exp(−t2/C) or 2 exp(−t/C) (for some constant

C, which might depend on n).

Such inequalities are known to hold under various assumptions on the random

1This chapter is based on the manuscripts Paulin (2014) and Gyori and Paulin (2014).
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variables X1, . . . , Xn and on the function f . With the help of these bounds able to

get information about the tails of f(X) even in cases when the distribution of f(X)

is complicated. Unlike limit theorems, these bounds hold non-asymptotically, that is

for any fixed n. Our references on concentration inequalities are Ledoux (2001), and

Boucheron, Lugosi, and Massart (2013a).

Most of the inequalities in the literature are concerned with the case when X1, . . .,

Xn are independent. In that case, very sophisticated, and often sharp bounds are

available for many different types of functions. Such bounds have found many ap-

plications in discrete mathematics (via the probabilistic method), computer science

(running times of randomized algorithms, pattern recognition, classification, com-

pressed sensing), and statistics (model selection, density estimation).

Various authors have tried to relax the independence condition, and proved con-

centration inequalities under different dependence assumptions. However, unlike in

the independent case, these bounds are often not sharp.

In this chapter, we focus on an important type of dependence, that is, Markov

chains. Many problems are more suitably modelled by Markov chains than by inde-

pendent random variables, and MCMC methods are of great practical importance.

Our goal in this chapter is to generalize some of the most useful concentration in-

equalities from independent random variables to Markov chains.

We have found that for different types of functions, different methods are needed

to obtain sharp bounds. In the case of sums, the sharpest inequalities can be obtained

using spectral methods, which were developed by Lezaud (1998a). In this case, we

show variance bounds and Bernstein-type concentration inequalities. For reversible

chains, the constants in the inequalities depend on the spectral gap of the chain (if we
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denote it by γ, then the bounds are roughly 1/γ times weaker than in the independent

case). In the non-reversible case, we introduce the “pseudo spectral gap”,

γps := maximum of (the spectral gap of (P ∗)kP k divided by k) for k ≥ 1,

and prove similar bounds using it. Moreover, we show that just like 1/γ, 1/γps can also

be bounded above by the mixing time of the chain (in total variation distance). For

more complicated functions than sums, we show a version of McDiarmid’s bounded

differences inequality, with constants proportional to the mixing time of the chain.

This inequality is proven by combining the martingale-type method of Chazottes,

Collet, Külske, and Redig (2007) and a coupling structure introduced by Katalin

Marton.

An important feature of our inequalities is that they only depend on the spectral

gap and the mixing time of the chain. These quantities are well studied for many

important Markov chain models, making our bounds easily applicable.

Now we describe the organisation of the chapter.

In Section 3.1.1, we state basic definitions about general state space Markov

chains. This is followed by two sections presenting our results. In Section 3.2, we

define Marton couplings, a coupling structure introduced in Marton (2003), and use

them to show a version of McDiarmid’s bounded differences inequality for dependent

random variables, in particular, Markov chains. Examples include m-depedent ran-

dom variables, hidden Markov chains, and a concentration inequality for the total

variational distance of the empirical distribution from the stationary distribution. In

Section 3.3, we show concentration results for sums of functions of Markov chains
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using spectral methods, in particular, variance bounds, and Bernstein-type inequali-

ties. Several applications are given, including error bounds for hypothesis testing. In

Section 3.4, we generalise the bounds of the previous two sections to continuous time

Markov processes. We apply our results to obtain a concentration inequality for the

average number of customers in an M/M/1 queue. In Section 3.5, we compare our

results with the previous inequalities in the literature, and finally Section 3.6 contains

the proofs of the main results.

This work grew out of the author’s attempt to solve the “Spectral transportation

cost inequality” conjecture stated in Section 6.4 of Kontorovich (2007).

3.1.1 Basic definitions for general state space Markov chains

In this section, we are going to state some definitions from the theory of general

state space Markov chains, based on Roberts and Rosenthal (2004). If two random

elements X ∼ P and Y ∼ Q are defined on the same probability space, then we

call (X, Y ) a coupling of the distributions P and Q. We define the total variational

distance of two distributions P and Q defined on the same state space (Ω,F) as

dTV(P,Q) := sup
A∈F
|P (A)−Q(A)|, (3.1.1)

or equivalently

dTV(P,Q) := inf
(X,Y )

P(X 6= Y ), (3.1.2)

where the infimum is taken over all couplings (X, Y ) of P and Q. Couplings where this

infimum is achieved are called maximal couplings of P and Q (their existence is shown,

for example, in Lindvall (1992), see also Lemma 5.5.1 for a concrete construction).
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Note that there is also a different type of coupling of two random vectors called

maximal coupling by some authors in the concentration inequalities literature, in-

troduced by Goldstein (1978/79). We will call this type of coupling as Goldstein’s

maximal coupling (which we will define precisely in Proposition 3.2.6). Let Ω be a

Polish space. The transition kernel of a Markov chain with state space Ω is a set of

probability distributions P (x, dy) for every x ∈ Ω. A time homogenous Markov chain

X0, X1, . . . is a sequence of random variables taking values in Ω satisfying that the

conditional distribution of Xi given X0 = x0, . . . , Xi−1 = xi−1 equals P (xi−1, dy). We

say that a distribution π on Ω is a stationary distribution for the chain if

∫
x∈Ω

π(dx)P (x, dy) = π(dy).

A Markov chain with stationary distribution π is called periodic if there exist

d ≥ 2, and disjoints subsets Ω1, . . . ,Ωd ⊂ Ω with π(Ω1) > 0, P (x,Ωi+1) = 1 for all

x ∈ Ωi, 1 ≤ i ≤ d − 1, and P (x,Ω1) = 1 for all x ∈ Ωd. If this condition is not

satisfied, then we call the Markov chain aperiodic.

We say that a time homogenous Markov chain is φ-irreducible, if there exists a

non-zero σ-finite measure φ on Ω such that for all A ⊂ Ω with φ(A) > 0, and for

all x ∈ Ω, there exists a positive integer n = n(x,A) such that P n(x,A) > 0 (here

P n(x, ·) denotes the distribution of Xn conditioned on X0 = x).

The properties aperiodicity and φ-irreduciblility are sufficient for convergence to

a stationary distribution.

Theorem (Theorem 4 of Roberts and Rosenthal (2004)). If a Markov chain on a

state space with countably generated σ-algebra is φ-irreducible and aperiodic, and has
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a stationary distribution π, then for π-almost every x ∈ Ω,

lim
n→∞

dTV(P n(x, ·), π) = 0.

We define uniform and geometric ergodicity.

Definition 3.1.1. A Markov chain with stationary distribution π, state space Ω, and

transition kernel P (x, dy) is uniformly ergodic if

sup
x∈Ω

dTV (P n(x, ·), π) ≤Mρn, n = 1, 2, 3, . . .

for some ρ < 1 and M <∞, and we say that it is geometrically ergodic if

dTV (P n(x, ·), π) ≤M(x)ρn, n = 1, 2, 3, . . .

for some ρ < 1, where M(x) <∞ for π-almost every x ∈ Ω.

Remark 3.1.2. Aperiodic and irreducible Markov chains on finite state spaces are

uniformly ergodic. Uniform ergodicity implies φ-irreducibility (with φ = π), and

aperiodicity.

The following definitions of the mixing time for Markov chains with general state

space are based on Sections 4.5 and 4.6 of Levin, Peres, and Wilmer (2009).

Definition 3.1.3 (Mixing time for time homogeneous chains). Let X1, X2, X3, . . .

be a time homogeneous Markov chain with transition kernel P (x, dy), Polish state

space Ω, and stationary distribution π. Then tmix, the mixing time of the chain, is
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defined by

d(t) := sup
x∈Ω

dTV

(
P t(x, ·), π

)
, tmix(ε) := min{t : d(t) ≤ ε}, and

tmix := tmix(1/4).

The fact that tmix(ε) is finite for some ε < 1/2 (or equivalently, tmix is finite) is

equivalent to the uniform ergodicity of the chain, see Roberts and Rosenthal (2004),

Section 3.3. We will also use the following alternative definition, which also works for

time inhomogeneous Markov chains.

Definition 3.1.4 (Mixing time for Markov chains without assuming time homogene-

ity). Let X1, . . . , XN be a Markov chain with Polish state space Ω1 × . . .×ΩN (that

is Xi ∈ Ωi). Let L(Xi+t|Xi = x) be the conditional distribution of Xi+t given Xi = x.

Let us denote the minimal t such that L(Xi+t|Xi = x) and L(Xi+t|Xi = y) are less

than ε away in total variational distance for every 1 ≤ i ≤ N − t and x, y ∈ Ωi by

τ(ε), that is, for 0 < ε < 1, let

d(t) := max
1≤i≤N−t

sup
x,y∈Ωi

dTV (L(Xi+t|Xi = x),L(Xi+t|Xi = y)) ,

τ(ε) := min
{
t ∈ N : d(t) ≤ ε

}
.

Remark 3.1.5. One can easily see that in the case of time homogeneous Markov

chains, by triangle inequality, we have

τ(2ε) ≤ tmix(ε) ≤ τ(ε). (3.1.3)

Similarly to Lemma 4.12 of Levin, Peres, and Wilmer (2009) (see also proposition
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3.(e) of Roberts and Rosenthal (2004)), one can show that d(t) is subadditive

d(t+ s) ≤ d(t) + d(s), (3.1.4)

and this implies that for every k ∈ N, 0 ≤ ε ≤ 1,

τ(εk) ≤ kτ(ε), and thus tmix

(
(2ε)k

)
≤ ktmix(ε). (3.1.5)

3.2 Marton couplings

In this section, we are going to prove concentration inequalities using Marton cou-

plings. First, in Section 3.2.1, we introduce Marton couplings (which were originally

defined in Marton (2003)), which is a coupling structure between dependent random

variables. We are going to define a coupling matrix, measuring the strength of de-

pendence between the random variables. We then apply this coupling structure to

Markov chains by breaking the chain into blocks, whose length is proportional to the

mixing time of the chain.

3.2.1 Preliminaries

In the following, we will consider dependent random variables X = (X1, . . . , XN)

taking values in a Polish space

Λ := Λ1 × . . .× ΛN .
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Let P denote the distribution of X, that is, X ∼ P . Suppose that Y = (Y1, . . . , YN)

is another random vector taking values in Λ, with distribution Q. We will refer to

distribution of a vector (X1, . . . , Xk) as L(X1, . . . , Xk), and

L(Xk+1, . . . , XN |X1 = x1, . . . , Xk = xk)

will denote the conditional distribution of Xk+1, . . . , XN under the condition X1 =

x1, . . . , Xk = xk. Let [N ] := {1, . . . , N}. We will denote the operator norm of a

square matrix Γ by ‖Γ‖. The following is one of the most important definitions of

this chapter. It has appeared in Marton (2003).

Definition 3.2.1 (Marton coupling). Let X := (X1, . . . ,XN ) be a vector of random

variables taking values in Λ = Λ1 × . . .× ΛN . We define a Marton coupling for X as

a set of couplings (
X (x1,...,xi,x

′
i),X ′(x1,...,xi,x

′
i)
)
∈ Ω× Ω,

for every i ∈ [N ], every x1 ∈ Ω1, . . . , xi ∈ Ωi, x
′
i ∈ Ωi, satisfying the following

conditions.

(i) X (x1,...,xi,x
′
i)

1 = x1, . . . , X (x1,...,xi,x
′
i)

i = xi,

X ′(x1,...,xi,x
′
i)

1 = x1, . . . , X ′(x1,...,xi,x
′
i)

i−1 = xi−1, X ′(x1,...,xi,x
′
i)

i = x′i.

(ii)
(
X (x1,...,xi,x

′
i)

i+1 , . . . ,X (x1,...,xi,x
′
i)

N

)
∼ L(Xi+1, . . . ,XN |X1 = x1, . . . ,Xi = xi),(
X ′(x1,...,xi,x

′
i)

i+1 , . . . ,X ′(x1,...,xi,x
′
i)

N

)
∼ L(Xi+1, . . . ,XN |X1 = x1, . . . ,Xi−1 = xi−1,Xi = x′i).

(iii) If xi = x′i, then X (x1,...,xi,x
′
i) = X ′(x1,...,xi,x

′
i).
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For a Marton coupling, we define the mixing matrix Γ := (Γi,j)i,j≤N as an upper

diagonal matrix with Γi,i := 1 for i ≤ N , and

Γj,i := 0, Γi,j := sup
x1,...,xi,x′i

P
[
X (x1,...,xi,x

′
i)

j 6= X ′(x1,...,xi,x
′
i)

j

]
for 1 ≤ i < j ≤ N .

Remark 3.2.2. The definition says that a Marton coupling is a set of couplings be-

tween the distributions L(Xi+1, . . . ,XN |X1 = x1, . . . ,Xi = xi) and L(Xi+1, . . . ,XN |X1 =

x1, . . . ,Xi−1 = xi−1,Xi = x′i) for every x1, . . . , xi, x
′
i, and every i ∈ [N ]. The mixing

matrix quantifies how close is the coupling. For independent random variables, we can

define a Marton coupling whose mixing matrix equals the identity matrix. Although

it is true that

Γi,j ≥ sup
x1,...,xi,x′i

dTV [L(Xj|X1 = x1, . . . ,Xi = xi),

L(Xj|X1 = x1, . . . ,Xi−1 = xi−1,Xi = x′i)] ,

the equality does not hold in general (so we cannot replace the coefficients Γi,j by

the right hand side of the inequality). At first look, it might seem to be more

natural to make a coupling between L(Xi+1, . . . ,XN |X1 = x1, . . . ,Xi = xi) and

L(Xi+1, . . . ,XN |X1 = x′1, . . . ,Xi = x′i). For Markov chains, this is equivalent to our

definition. The requirement in this definition is less strict, and allows us to get sharp

inequalities for more dependence structures (for example, random permutations) than

the stricter definition would allow.

We define the partition of a set of random variables.

Definition 3.2.3 (Partition). A partition of a set S is the division of S into disjoint



CHAPTER 3. CONCENTRATION FOR MARKOV CHAINS 56

non-empty subsets that together cover S. Analogously, we say that X̂ := (X̂1, . . . , X̂n)

is a partition of a vector of random variables X = (X1, . . . , XN) if (X̂i)1≤i≤n is a

partition of the set {X1, . . . , XN}. For a partition X̂ of X, we denote the number of

elements of X̂i by s(X̂i) (size of X̂i), and call s(X̂) := max1≤i≤n s(X̂i) the size of the

partition.

Furthermore, we denote the set of indices of the elements of X̂i by I(X̂i), that is,

Xj ∈ X̂i if and only if j ∈ I(Xi). For a set of indices S ⊂ [N ], let XS := {Xj : j ∈ S}.

In particular, X̂i = XI(X̂i)
. Similarly, if X takes values in the set Λ := Λ1× . . .×ΛN ,

then X̂ will take values in the set Λ̂ := Λ̂1 × . . .× Λ̂n, with Λ̂i := ΛI(X̂i)
.

Our main result of this section will be a McDiarmid-type inequality for dependent

random variables, where the constant in the exponent will depend on the size of a

particular partition, and the operator norm of the mixing matrix of a Marton coupling

for this partition. The following proposition shows that for uniformly ergodic Markov

chains, there exists a partition and a Marton coupling (for this partition) such that

the size of the partition is comparable to the mixing time, and the operator norm of

the coupling matrix is an absolute constant.

Proposition 3.2.4 (Marton coupling for Markov chains). Suppose that X1, . . . , XN

is a uniformly ergodic Markov chain, with mixing time τ(ε) for any ε ∈ [0, 1). Then

there is a partition X̂ of X such that s(X̂) ≤ τ(ε), and a Marton coupling for for this
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partition X̂ whose mixing matrix Γ satisfies

Γ = (Γi,j)i,j≤n ≤



1 1 ε ε2 ε3 . . .

0 1 1 ε ε2 . . .

...
...

...
...

... . . .

0 0 0 0 . . . 1


, (3.2.1)

with the inequality meant in each element of the matrices.

Remark 3.2.5. Note that the norm of Γ now satisfies that ‖Γ‖ ≤ 1 + 1
1−ε = 2−ε

1−ε .

This result is a simple consequence of Goldstein’s maximal coupling. The follow-

ing proposition states this result in a form that is convenient for us (see Goldstein

(1978/79), equation (2.1) on page 482 of Fiebig (1993), and Proposition 2 on page

442 of Samson (2000)).

Proposition 3.2.6 (Goldstein’s maximal coupling). Suppose that P and Q are prob-

ability distributions on some common Polish space Λ1 × . . . × Λn, having densities

with respect to some underlying distribution ν on their common state space. Then

there is a coupling of random vectors X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) such that

L(X) = P , L(Y ) = Q, and P(Xi 6= Yi) ≤ dTV(L(Xi, . . . , Xn),L(Yi, . . . , Yn)).

Remark 3.2.7. Marton (1996b) assumes maximal coupling in each step, correspond-

ing to

Γ = (Γi,j)i,j≤n ≤



1 a a2 a3 . . .

0 1 a a2 . . .

...
...

...
... . . .

0 0 0 . . . 1


, with
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a := sup
x,y∈Ω

dTV(P (x, ·), P (y, ·)). (3.2.2)

Samson (2000), Chazottes, Collet, Külske, and Redig (2007), Chazottes and Redig

(2009), Kontorovich (2007) uses the Marton coupling generated by Proposition 3.2.6.

Marton (2003) shows that Marton couplings different from those generated by Propo-

sition 3.2.6 can be also useful, especially when there is no natural sequential relation

between the random variables (such as when they satisfy some Dobrushin-type con-

dition). Our main contribution is the introduction of the technique of partitioning.

Remark 3.2.8. In the case of time homogeneous Markov chains, Marton couplings

(Definition 3.2.1) are in fact equivalent to couplings (X,X ′) between the distribu-

tions L(X1, . . . , XN |X0 = x0) and L(X1, . . . , XN |X0 = x′0). Since the seminal paper

Doeblin (1938), such couplings have been widely used to bound the convergence of

Markov chains to their stationary distribution in total variation distance. If T is a

random time such that for every i ≥ T , Xi = X ′i in the above coupling, then

dTV

(
P t(x0, ·), P t(x′0, ·)

)
≤ P(T > t).

In fact, even less suffices. Under the so called faithfulness condition of Rosenthal

(1997), the same bound holds if XT = X ′T (that is, the two chains are equal at a

single time).

3.2.2 Results

Our main result in this section is a version of McDiarmid’s bounded difference in-

equality for dependent random variables. The constants will depend on the size of

the partition, and the norm of the coupling matrix of the Marton coupling.
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Theorem 3.2.9 (McDiarmid’s inequality for dependent random variables). Let X =

(X1, . . . , XN) be a sequence of random variables, X ∈ Λ, X ∼ P . Let X̂ = (X̂1, . . . , X̂n)

be a partition of this sequence, X̂ ∈ Λ̂, X̂ ∼ P̂ . Suppose that we have a Marton cou-

pling for X̂ with mixing matrix Γ. Let c ∈ RN
+ , and define C(c) ∈ Rn

+ as

Ci(c) :=
∑

j∈I(X̂i)

cj for i ≤ n. (3.2.3)

If f : Λ→ R is such that

f(x)− f(y) ≤
n∑
i=1

ci1[xi 6= yi] (3.2.4)

for every x, y ∈ Λ, then for any λ ∈ R,

logE
(
eλ(f(X)−Ef(X))

)
≤ λ2 · ‖Γ · C(c)‖2

8
≤ λ2 · ‖Γ‖2‖c‖2s(X̂)

8
. (3.2.5)

In particular, this means that for any t ≥ 0,

P (|f(X)− Ef(X)| ≥ t) ≤ 2 exp

(
−2t2

‖Γ · C(c)‖2

)
, (3.2.6)

Remark 3.2.10. Most of the results presented in this chapter are similar to (3.2.6),

bounding the absolute value of the deviation of the estimate from the mean. Because

of the absolute value, a constant 2 appears in the bounds. However, if one is interested

in the bound on the lower or upper tail only, then this constant can be discarded.

A special case of this is the following result.

Corollary 3.2.11 (McDiarmid’s inequality for Markov chains). Let X := (X1, . . . , XN)
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be a (not necessarily time homogeneous) Markov chain, taking values in a Polish state

space Λ = Λ1 × . . .× ΛN , with mixing time τ(ε) (for 0 ≤ ε ≤ 1). Let

τmin := inf
0≤ε<1

τ(ε) ·
(

2− ε
1− ε

)2

. (3.2.7)

Suppose that f : Λ→ R satisfies (3.2.4) for some c ∈ RN
+ . Then for any t ≥ 0,

P (|f(X)− Ef(X)| ≥ t) ≤ 2 exp

(
−2t2

‖c‖2τmin

)
. (3.2.8)

Remark 3.2.12. It is easy to show that for time homogeneous chains,

τmin ≤ inf
0≤ε<1

tmix(ε/2) ·
(

2− ε
1− ε

)2

≤ 9tmix. (3.2.9)

In many situations in practice, the Markov chain exhibits a cutoff, that is, the total

variation distance decreases very rapidly in a small interval (see Figure 1 of Lubetzky

and Sly (2009)). If this happens, then τmin ≈ tmix.

Remark 3.2.13. In Example 3.2.17, we are going to use this result to obtain a con-

centration inequality for the total variational distance between the empirical measure

and the stationary distribution. Another application is given in Gyori and Paulin

(2014), Section 3, where this inequality is used to bound the error of an estimate of

the asymptotic variance of MCMC empirical averages.

In addition to McDiarmid’s inequality, it is also possible to use Marton couplings

to generalise the results of Samson (2000) and Marton (2003), based on transportation

cost inequalities. In the case of Markov chains, this approach can be used to show

Talagrand’s convex distance inequality, Bernstein’s inequality, and self-bounding-type
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inequalities, with constants proportional to the mixing time of the chain. We have

decided not to include them here because of space considerations.

3.2.3 Applications

Example 3.2.14 (m-dependence). We say that X1, . . . , XN are m-dependent random

variables if for each 1 ≤ i ≤ N−m, (X1, . . . , Xi) and (Xi+m, . . . , XN) are independent.

Let n := dN
m
e, and

X̂1 := (X1, . . . , Xm), . . . , X̂N := (X(n−1)m+1, . . . , XN).

We define a Marton coupling for X̂ as follows.

(
X̂(x̂1,...,x̂i,x̂

′
i), X̂ ′

(x̂1,...,x̂i,x̂
′
i)
)

is constructed by first defining

(
X̂

(x̂1,...,x̂i,x̂
′
i)

1 , . . . , X̂
(x̂1,...,x̂i,x̂

′
i)

i

)
:= (x̂1, . . . , x̂i),(

X̂ ′
(x̂1,...,x̂i,x̂

′
i)

1 , . . . , X̂ ′
(x̂1,...,x̂i,x̂

′
i)

i

)
:= (x̂1, . . . , x̂i−1, x̂

′
i),

and then defining

(
X̂

(x̂1,...,x̂i,x̂
′
i)

i+1 , . . . , X̂
(x̂1,...,x̂i,x̂

′
i)

n

)
∼ L(X̂i+1, . . . , X̂n|X̂1 = x̂1, . . . , X̂i = x̂i).
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After this, we set

(
X̂ ′

(x̂1,...,x̂i,x̂
′
i)

i+2 , . . . , X̂ ′
(x̂1,...,x̂n,x̂′i)

n

)
:=
(
X̂

(x̂1,...,x̂i,x̂
′
i)

i+2 , . . . , X̂
(x̂1,...,x̂i,x̂

′
i)

n

)
,

and then define X̂ ′
(x̂1,...,x̂i,x̂

′
i)

i+1 such that for any (x̂i+2, . . . , x̂n),

L(X̂ ′
(x̂1,...,x̂i,x̂

′
i)

i+1 |X̂ ′
(x̂1,...,x̂i,x̂

′
i)

i+2 = x̂i+2, . . . , X̂
(x̂1,...,x̂i,x̂

′
i)

n = x̂n) =

L(X̂i+1|X̂1 = x̂1, . . . , X̂i = x̂i, X̂i+2 = x̂i+2, . . . , X̂n = x̂n).

Because of the m-dependence condition, this coupling is a Marton coupling, whose

mixing matrix satisfies

Γ = (Γi,j)i,j≤n ≤



1 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

...
...

...
...

...
... . . .

0 0 0 0 . . . 0 1


.

We can see that ||Γ|| ≤ 2, and s(X̂) = m, thus the constants in the exponent in

McDiarmid’s inequality are about 4m times worse than in the independent case.

Example 3.2.15 (Hidden Markov chains). Let X̃1, . . . , X̃N be a Markov chain (not

necessarily homogeneous) taking values in Λ̃ = Λ̃1 × . . . × Λ̃N , with distribution P̃ .

Let X1, . . . , XN be random variables taking values in Λ = Λ1 × . . . × ΛN such that

the joint distribution of (X̃,X) is given by

H(dx̃, dx) := P̃ (dx̃) ·
n∏
i=1

Pi(dxi|x̃i),
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that is, Xi are conditionally independent given X̃. Then we call X1, . . . , XN a hidden

Markov chain.

Concentration inequalities for hidden Markov chains have been investigated in

Kontorovich (2006), see also Kontorovich (2007), Section 4.1.4. Here we show that

our version of McDiarmid’s bounded differences inequality for Markov chains in fact

also implies concentration for hidden Markov chains.

Corollary 3.2.16 (McDiarmid’s inequality for hidden Markov chains). Let τ̃(ε) de-

note the mixing time of the underlying chain X̃1, . . . , X̃N , then Corollary 3.2.11 also

applies to hidden Markov chains, with τ(ε) replaced by τ̃(ε) in (3.2.7).

Proof. It suffices to notice that (X1, X̃1), (X2, X̃2), . . . is a Markov chain, whose mixing

time is upper bounded by the mixing time of the underlying chain, τ̃(ε). Since the

function f satisfies (3.2.4) as a function of X1, . . . , XN , and it does not depends on

X̃1, . . . , X̃N , it also satisfies this condition as a function of (X1, X̃1), (X2, X̃2), . . .,

(XN , X̃N). Therefore the result follows from Corollary 3.2.11.

Example 3.2.17 (Convergence of empirical distribution in total variational dis-

tance). Let X1, . . . , Xn be a uniformly ergodic Markov chain with countable state

space Ω, unique stationary distribution π, and mixing time tmix. In this example,

we are going to study how fast is the empirical distribution, defined as πem(x) :=

1
n

∑n
i=1 1[Xi = x] for x ∈ Ω, converges to the stationary distribution π in total vari-

ational distance. The following proposition shows a concentration bound for this

distance, d(X1, . . . , Xn) := dTV(πem(x), π).

Proposition 3.2.18. For any t ≥ 0,

P(|d(X1, . . . , Xn)− E(d)| ≥ t) ≤ 2 exp

(
− t2 · n

4.5tmix

)
.
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Proof. The result is an immediate consequence of Corollary 3.2.11, by noticing that

the function d satisfies (3.2.4) with ci = 1/n for 1 ≤ i ≤ n.

This proposition shows that the distance dTV(πem(x), π) is highly concentrated

around its mean. In Example 3.3.16 of Section 3.3, we are going to bound the expec-

tation E(d) in terms of spectral properties of the chain. When taken together, our

results generalise the well-known Dvoretzky-Kiefer-Wolfowitz inequality (see Dvoret-

zky, Kiefer, and Wolfowitz (1956), Massart (1990)) to the total variational distance

case, for Markov chains.

Note that a similar bound was obtained in Kontorovich and Weiss (2012). The

main advantage of Proposition 3.2.18 is that the constants in the exponent of our

inequality are proportional to the mixing time of the chain. This is sharper than the

inequality in Theorem 2 of Kontorovich and Weiss (2012), where the constants are

proportional to a quantity similar to 1/(1− a)2 (defined in (3.2.2)).

3.3 Spectral methods

In this section, we prove concentration inequalities for sums of the form f1(X1) +

. . . + fn(Xn), with X1, . . . , Xn being a time homogeneous Markov chain. The proofs

are based on spectral methods, due to Lezaud (1998a).

Firstly, in Section 3.3.1, we introduce the spectral gap for reversible chains, and

explain how to get bounds on the spectral gap from the mixing time and vice-versa.

We then define a new quantity called the “pseudo spectral gap”, for non-reversible

chains. We show that its relation to the mixing time is very similar to that of the

spectral gap in the reversible case.
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After this, our results are presented in Section 3.3.2, where we state variance

bounds and Bernstein-type inequalities for stationary Markov chains. For reversible

chains, the constants depend on the spectral gap of the chain, while for non-reversible

chains, the pseudo spectral gap takes the role of the spectral gap in the inequalities.

In Section 3.3.3, we state propositions that allow us to extend these results to

non-stationary chains, and to unbounded functions.

Finally, Section 3.3.4 gives some applications of these bounds, including hypothesis

testing, and estimating the total variational distance of the empirical measure from

the stationary distribution.

In order to avoid unnecessary repetitions in the statement of our results, we will

make the following assumption.

Assumption 3.3.1. Everywhere in this section, we assume that X = (X1, . . . , Xn)

is a time homogenous, φ-irreducible, aperiodic Markov chain. We assume that its

state space is a Polish space Ω, and that it has a Markov kernel P (x, dy) with unique

stationary distribution π.

3.3.1 Preliminaries

We call a Markov chain X1, X2, . . . on state space Ω with transition kernel P (x, dy)

reversible if there exists a probability measure π on Ω satisfying the detailed balance

conditions,

π(dx)P (x, dy) = π(dy)P (y, dx) for every x, y ∈ Ω. (3.3.1)

In the discrete case, we simply require π(x)P (x, y) = π(y)P (y, x). It is important

to note that reversibility of a probability measures implies that it is a stationary

distribution of the chain.



CHAPTER 3. CONCENTRATION FOR MARKOV CHAINS 66

Let L2(π) be the Hilbert space of complex valued measurable functions on Ω that

are square integrable with respect to π. We endow L2(π) with the inner product

〈f, g〉π =
∫
fg∗dπ, and norm ‖f‖2,π := 〈f, f〉1/2π = (Eπ (f 2))1/2. P can be then

viewed as a linear operator on L2(π), denoted by P , defined as (P f)(x) := EP (x,·)(f),

and reversibility is equivalent to the self-adjointness of P . The operator P acts on

measures to the left, creating a measure µP , that is, for every measurable subset A

of Ω, µP (A) :=
∫
x∈Ω

P (x,A)µ(dx). For a Markov chain with stationary distribution

π, we define the spectrum of the chain as

S2 :=

{
λ ∈ C \ 0 : (λI− P )−1 does not exist as

a bounded linear operator on L2(π)

}
.

For reversible chains, S2 lies on the real line. We define the spectral gap for reversible

chains as

γ := 1− sup{λ : λ ∈ S2, λ 6= 1} if eigenvalue 1 has multiplicity 1,

γ := 0 otherwise.

For both reversible, and non-reversible chains, we define the absolute spectral gap as

γ∗ := 1− sup{|λ| : λ ∈ S2, λ 6= 1} if eigenvalue 1 has multiplicity 1,

γ∗ := 0 otherwise.

In the reversible case, obviously, γ ≥ γ∗. For a Markov chain with transition kernel

P (x, dy), and stationary distribution π, we defined the time reversal of P as the
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Markov kernel

P ∗(x, dy) :=
P (y, dx)

π(dx)
· π(dy). (3.3.2)

Then the linear operator P ∗ is the adjoint of the linear operator P , on L2(π). We

define a new quantity, called the pseudo spectral gap of P , as

γps := max
k≥1

{
γ((P ∗)kP k)/k

}
, (3.3.3)

where γ((P ∗)kP k) denotes the spectral gap of the self-adjoint operator (P ∗)kP k.

Remark 3.3.1. The pseudo spectral gap is a generalization of spectral gap of the

multiplicative reversiblization (γ(P ∗P )), see Fill (1991). We apply it to hypothesis

testing for coin tossing (Example 3.3.25). Another application is given in Paulin

(2013), where we estimate the pseudo spectral gap of the Glauber dynamics with

systemic scan in the case of the Curie-Weiss model. In these examples, the spectral

gap of the multiplicative reversiblization is 0, but the pseudo spectral gap is positive.

If a distribution q on Ω is absolutely continuous with respect to π, we denote

Nq := Eπ

((
d q

d π

)2
)

=

∫
x∈Ω

d q

dπ
(x)q(dx). (3.3.4)

If we q is not absolutely continuous with respect to π, then we define Nq :=∞. If q

is localized on x, that is, q(x) = 1, then Nq = 1/π(x).

The relations between the mixing and spectral properties for reversible, and non-

reversible chains are given by the following two propositions (the proofs are included

in Section 3.6.2).
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Proposition 3.3.2 (Relation between mixing time and spectral gap). Suppose that

our chain is reversible. For uniformly ergodic chains, for 0 ≤ ε < 1,

γ∗ ≥ 1

1 + τ(ε)/ log(1/ε)
, in particular, γ∗ ≥ 1

1 + tmix/ log(2)
. (3.3.5)

For arbitrary initial distribution q, we have

dTV (qP n, π) ≤ 1

2
(1− γ∗)n ·

√
Nq − 1, (3.3.6)

implying that for reversible chains on finite state spaces, for 0 ≤ ε ≤ 1,

tmix(ε) ≤ 2 log(1/(2ε)) + log(1/πmin)

2γ∗
, in particular, (3.3.7)

tmix ≤
2 log(2) + log(1/πmin)

2γ∗
, (3.3.8)

with πmin = minx∈Ω π(x).

Proposition 3.3.3 (Relation between mixing time and pseudo spectral gap). For

uniformly ergodic chains, for 0 ≤ ε < 1,

γps ≥
1− ε
τ(ε)

, in particular, γps ≥
1

2tmix

. (3.3.9)

For arbitrary initial distribution q, we have

dTV (qP n, π) ≤ 1

2
(1− γps)

(n−1/γps)/2 ·
√
Nq − 1, (3.3.10)
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implying that for chains with finite state spaces, for 0 ≤ ε ≤ 1,

tmix(ε) ≤ 1 + 2 log(1/(2ε)) + log(1/πmin)

γps

, in particular, (3.3.11)

tmix ≤
1 + 2 log(2) + log(1/πmin)

γps

. (3.3.12)

3.3.2 Results

In this section, we are going to state variance bounds and Bernstein-type concentra-

tion inequalities, for reversible and non-reversible chains (the proofs are included in

Section 3.6.2). We state these inequalities for stationary chains (that is, X1 ∼ π),

and use the notation Pπ and Eπ to emphasise this fact. In Proposition 3.3.12 of the

next section, we will generalise these bounds to the non-stationary case.

Theorem 3.3.4 (Variance bound for reversible chains). Let X1, . . . , Xn be a station-

ary, reversible Markov chain with spectral gap γ, and absolute spectral gap γ∗. Let f

be a measurable function in L2(π). Define Vf := Varπ(f), and define the asymptotic

variance σ2
as as

σ2
as := lim

N→∞
N−1Varπ (f(X1) + . . .+ f(XN)) . (3.3.13)

Then

Varπ [f(X1) + . . .+ f(Xn)] ≤ 2nVf
γ

, (3.3.14)

|Varπ [f(X1) + . . .+ f(Xn)]− nσ2| ≤ 4Vf/γ
2. (3.3.15)
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More generally, let f1, . . . , fn be functions in L2(π), then

Varπ [f1(X1) + . . .+ fn(Xn)] ≤ 2

γ∗

n∑
i=1

Varπ [fi(Xi)] . (3.3.16)

Remark 3.3.5. For empirical sums, the bound depends on the spectral gap, while for

more general sums, on the absolute spectral gap. This difference is not just an artifact

of the proof. If we consider a two state (Ω = {0, 1}) periodical Markov chain with

transition matrix P =

0 1

1 0

, then π = (1/2, 1/2) is the stationary distribution,

the chain is reversible, and −1, 1 are the eigenvalues of P . Now γ = 2, and γ∗ = 0.

When considering a function f defined as f(0) = 1, f(1) = −1, then
∑n

i=1 f(Xi) is

indeed highly concentrated, as predicted by (3.3.14). However, if we define functions

fj(x) := (−1)j · f(x), then for stationary chains,
∑n

i=1 fi(Xi) will take values n and

−n with probability 1/2, thus the variance is n2. So indeed, we cannot replace γ∗ by

γ in (3.3.16).

Theorem 3.3.6 (Variance bound for non-reversible chains). Let X1, . . . , Xn be a

stationary Markov chain with pseudo spectral gap γps. Let f be a measurable function

in L2(π). Let Vf and σ2
as be as in Theorem 3.3.4. Then

Varπ [f(X1) + . . .+ f(Xn)] ≤ 4nVf
γps

, and (3.3.17)

|Varπ [f(X1) + . . .+ f(Xn)]− nσ2
as| ≤ 16Vf/γ

2
ps. (3.3.18)

More generally, let f1, . . . , fn be functions in L2(π), then

Varπ [f1(X1) + . . .+ fn(Xn)] ≤ 4

γps

n∑
i=1

Varπ [fi(Xi)] . (3.3.19)
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Theorem 3.3.7 (Bernstein inequality for reversible chains). Let X1, . . . , Xn be a

stationary reversible Markov chain with spectral gap γ, and absolute spectral gap γ∗.

Let f ∈ L2(π), with |f(x) − Eπ(f)| ≤ C for every x ∈ Ω. Let Vf and σ2
as be as in

Theorem 3.3.4. Let S :=
∑n

i=1 f(Xi), then

Pπ(|S − Eπ(S)| ≥ t) ≤ 2 exp

(
− t2

2n(σ2
as + 0.8Vf ) + 10tC/γ

)
, (3.3.20)

and we also have

Pπ(|S − Eπ(S)| ≥ t) ≤ 2 exp

(
− t2 · γ

4nVf + 10tC

)
. (3.3.21)

More generally, let f1, . . . , fn be L2(π) functions satisfying that |fi(x)− Eπ(fi)| ≤ C

for every x ∈ Ω. Let S ′ :=
∑n

i=1 fi(Xi), and VS′ :=
∑n

i=1 Varπ(fi), then

Pπ(|S ′ − Eπ(S ′)| ≥ t) ≤ 2 exp

(
−t

2 · (2γ∗ − (γ∗)2)

8VS′ + 20tC

)
, (3.3.22)

Remark 3.3.8. The inequality (3.3.20) is an improvement over the earlier result

of Lezaud (1998a), because it uses the asymptotic variance σ2
as. In fact, typically

σ2
as � Vf , so the bound roughly equals 2 exp

(
− t2

2nσ2
as

)
for small values of t, which

is the best possible given the asymptotic normality of the sum. Note that a result

very similar to (3.3.20) has been obtained for continuous time Markov processes by

Lezaud (2001).

Theorem 3.3.9 (Bernstein inequality for non-reversible chains).

Let X1, . . . , Xn be a stationary Markov chain with pseudo spectral gap γps. Let f ∈

L2(π), with |f(x)− Eπ(f)| ≤ C for every x ∈ Ω. Let Vf be as in Theorem 3.3.4. Let
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S :=
∑n

i=1 f(Xi), then

Pπ(|S − Eπ(S)| ≥ t) ≤ 2 exp

(
− t2 · γps

8(n+ 1/γps)Vf + 20tC

)
. (3.3.23)

More generally, let f1, . . . , fn be L2(π) functions satisfying that |fi(x)− Eπ(fi)| ≤ C

for every x ∈ Ω. Let S ′ :=
∑n

i=1 fi(Xi), and VS′ :=
∑n

i=1 Varπ(fi). Suppose that kps

is a the smallest positive integer such that

γps = γ((P ∗)kpsP kps)/kps.

For 1 ≤ i ≤ kps, let Vi :=
∑b(n−i)/kpsc

j=0 Varπ(fi+jkps), and let

M :=

 ∑
1≤i≤kps

V
1/2
i

/ min
1≤i≤kps

V
1/2
i .

Then

Pπ(|S ′ − Eπ(S ′)| ≥ t) ≤ 2 exp

(
− t2 · γps

8VS′ + 20tC ·M/kps

)
. (3.3.24)

Remark 3.3.10. The bound (3.4.30) is of similar form as (3.3.23) (nVf is replaced

by VS′), the main difference is that instead of 20tC, now we have 20tC ·M/kps in

the denominator. We are not sure whether the M/kps term is necessary, or it can be

replaced by 1. Note that the bound (3.4.30) also applies if we replace Vi by V ′i ≥ Vi

for each 1 ≤ i ≤ n. In such a way, M/kps can be decreased, at the cost of increasing

VS′ .

Remark 3.3.11. Theorems 3.3.7 and 3.3.9 can be applied to bound the error of

MCMC simulations, see Gyori and Paulin (2014) for more details and examples.
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The generalisation to sums of the form f1(X1) + . . . fn(Xn) can be used for “time

discounted” sums, see Example 3.3.23.

3.3.3 Extension to non-stationary chains, and unbounded

functions

In the previous section, we have stated variance bounds and Bernstein-type inequal-

ities for sums of the form f1(X1) + . . .+ fn(Xn), with X1, . . . , Xn being a stationary

time homogeneous Markov chain. Our first two propositions in this section generalise

these bounds to the non-stationary case, when X1 ∼ q for some distribution q (in

this case, we will use the notations Pq, and Eq). Our third proposition extends the

Bernstein-type inequalities to unbounded functions by a truncation argument. The

proofs are included in Section 3.6.2.

Proposition 3.3.12 (Bounds for non-stationary chains). Let X1, . . . , Xn be a time

homogenous Markov chain with state space Ω, and stationary distribution π. Suppose

that g(X1, . . . , Xn) is real valued measurable function. Then

Pq(g(X1, . . . , Xn) ≥ t) ≤ N1/2
q · [Pπ(g(X1, . . . , Xn) ≥ t)]1/2 , (3.3.25)

for any distribution q on Ω (Nq was defined in (3.3.4)). Now suppose that we

“burn” the first t0 observations, and we are interested in bounds on a function h

of Xt0+1, . . . , Xn. Firstly,

Pq(h(Xt0+1, . . . , Xn) ≥ t) ≤ N
1/2

qP t0
· [Pπ(h(X1, . . . , Xn) ≥ t)]1/2 , (3.3.26)
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moreover,

Pq(h(Xt0+1, . . . , Xn) ≥ t) ≤ Pπ(h(Xt0+1, . . . , Xn) ≥ t) + dTV

(
qP t0 , π

)
. (3.3.27)

Proposition 3.3.13 (Further bounds for non-stationary chains). In Proposition

3.3.12, NqP t0 can be further bounded. For reversible chains, we have

NqP t0 ≤ 1 + (Nq − 1) · (1− γ∗)2t0 , (3.3.28)

while for non-reversible chains,

NqP t0 ≤ 1 + (Nq − 1) · (1− γps)
2(t0−1/γps). (3.3.29)

Similarly, dTV (qP n, π) can be further bounded too. For reversible chains, we have,

by (3.3.6),

dTV (qP n, π) ≤ 1

2
(1− γ∗)n ·

√
Nq − 1.

For non-reversible chains, by (3.3.10),

dTV (qP n, π) ≤ 1

2
(1− γps)

(n−1/γps)/2 ·
√
Nq − 1.

Finally, for uniformly ergodic Markov chains,

dTV (qP n, π) ≤ inf
0≤ε<1

εbn/τ(ε)c ≤ 2−bn/tmixc. (3.3.30)

The Bernstein-type inequalities assume boundedness of the summands. In order to

generalise such bounds to unbounded summands, we can use truncation. For a, b ∈ R,
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a < b, define

T[a,b](x) = x · 1[x ∈ [a, b]] + a · 1[x < a] + b · 1[x > b],

then we have the following proposition.

Proposition 3.3.14 (Truncation for unbounded summands).

Let X1, X2, . . . , Xn be a stationary Markov chain. Let f : Ω → R be a measurable

function. Then for any a < b,

Pπ

(
n∑
i=1

f(Xi) ≥ t

)

≤ Pπ

(
n∑
i=1

T[a,b](f(Xi)) ≥ t

)
+ Pπ

(
min

1≤i≤n
f(Xi) < a

)
+ Pπ

(
max
1≤i≤n

f(Xi) > b

)

≤ Pπ

(
n∑
i=1

T[a,b](f(Xi)) ≥ t

)
+
∑

1≤i≤n

Pπ(f(Xi) ≤ a) +
∑

1≤i≤n

Pπ(f(Xi) ≥ b).

Remark 3.3.15. A similar bound can be given for sums of the form
∑n

i=1 fi(Xi). One

might think that such truncation arguments are rather crude, but in the Appendix,

we include a counterexample showing that it is not possible to obtain concentration

inequalities for sums of unbounded functions of Markov chains that are of the same

form as inequalities for sums of unbounded functions of independent random variables.

3.3.4 Applications

In this section, we state four applications of our results, to the convergence of the

empirical distribution in total variational distance, “time discounted” sums, bounding

the Type-I and Type-II errors in hypothesis testing, and finally to coin tossing.
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Example 3.3.16 (Convergence of empirical distribution in total variational distance

revisited). Let X1, . . . , Xn be a uniformly ergodic Markov chain with countable state

space Λ, unique stationary distribution π. We denote its empirical distribution by

πem(x) := 1
n

∑n
i=1 1[Xi = x]. In Example 3.2.17, we have shown that the total

variational distance of the empirical distribution and the stationery distribution,

dTV(πem, π), is highly concentrated around its expected value. The following propo-

sition bounds the expected value of this quantity.

Proposition 3.3.17. For stationary, reversible chains,

Eπ(dTV(πem, π)) ≤
∑
x∈Λ

min

(√
2π(x)

nγ
, π(x)

)
. (3.3.31)

For stationary, non-reversible chains, (3.3.31) holds with γ replaced by γps/2.

Proof. It is well known that the total variational distance equals

dTV(πem, π) =
∑
x∈Λ

(π(x)− πem(x))+.

Using (3.3.14), we have

Eπ
(
(π(x)− πem(x))2

+

)
≤ Varπ(π(x)− πem(x)) ≤ 2π(x)(1− π(x))

nγ
.

By Jensen’s inequality, we obtain that

Eπ[(π(x)− πem(x))+] ≤ min

(√
2π(x)

nγ
, π(x)

)
,

and the statement follows by summing up. The proof of the non-reversible case is
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similar, using (3.3.17) to bound the variance.

It is easy to see that for any stationary distribution π, our bound (3.3.31) tends

to 0 as the sample size n tends to infinity. In the particular case of when π is an

uniform distribution on a state space consisting of N elements, we obtain that

Eπ(dTV(πem, π)) ≤

√
2N

nγ
,

thus n� N/γ samples are necessary.

Example 3.3.18 (Estimation of the asymptotic variance). Now we propose an esti-

mator to the asymptotic variance σ2. For some integer k ∈ [1, N̂ − t̂0 − 1], let

σ̂2(k) :=

(
γ̂0 + 2

k∑
i=1

γ̂i

)
· N̂ − t̂0 − k
N̂ − t̂0 − 3k − 1

, (3.3.32)

with

γ̂i :=

∑N̂−k
j=t̂0+1 f(Xj)f(Xj+i)

N̂ − t̂0 − k
− 1

2

∑N̂−k
j=t̂0+1 f(Xj)

N̂ − t̂0 − k

2

− 1

2

∑N̂−k+i
j=t̂0+i f(Xj)

N̂ − t̂0 − k

2

.

(3.3.33)

The following two propositions bounds on the bias of σ̂2(k), and state a non-

asymptotic error bound for it.

Proposition 3.3.19 (Bias of σ̂2(k)). For stationary, reversible chains, when k is

even, the expected value of σ̂2(k) satisfies the following inequality:

− Lk ≤ σ2 − Eπ(σ̂2(k)) ≤ Uk, (3.3.34)
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with

Lk :=

(
min

(
Vf ,

2Vf
γ

(1− γ∗)k+1

)
+

4Vf
γ2

2k + 1

(N̂ − t̂0 − k)2

)
· N̂ − t̂0 − k
N̂ − t̂0 − 3k − 1

, and

Uk :=

(
2Vf
γ

(1−min(γ, 1))k+1 +
4Vf
γ2

2k + 1

(N̂ − t̂0 − k)2

)
· N̂ − t̂0 − k
N̂ − t̂0 − 3k − 1

.

For stationary non-reversible chains, for any k ≥ 1,

|Eπ(σ̂2(k))− σ2| ≤ Wk, (3.3.35)

with

Wk :=
4Vf
γps

(1− γps)
(k+1−1/γps)/2 +

16Vf
γ2

ps

2k + 1

(N̂ − t̂0 − k)2
.

Proposition 3.3.20 (Concentration of σ̂2(k)). Suppose that f : Ω → R satisfies

that supx∈Ω |f(x)− Eπf | ≤ C for some finite C. In the case of stationary, uniformly

ergodic chains, we have for any t ≥ 0,

Pπ(|σ̂2(k)− Eπ(σ̂2(k))| ≥ t) ≤ 2 exp

(
−t2(N̂ − t̂0 − 3k − 1)

288(2k + 1)2C4tmix

)
, (3.3.36)

This implies that for uniformly ergodic reversible chains, with arbitrary initial distri-

bution q, for even k ≥ 2, any t ≥ 0,

Pq
(
σ2 − σ̂2(k) ≥ Uk + t

)
≤ exp

(
−t2(N̂ − t̂0 − 3k − 1)

288(2k + 1)2C4tmix

)
+ E(t̂0), (3.3.37)
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and for uniformly ergodic non-reversible chains, for any k ≥ 1, t ≥ 0,

Pq
(
σ2 − σ̂2(k) ≥ Wk + t

)
≤ exp

(
−t2(N̂ − t̂0 − 3k − 1)

288(2k + 1)2C4tmix

)
+ E(t̂0). (3.3.38)

Remark 3.3.21. It is clear that if we increase k, the bias |σ2 − Eπ(σ̂2(k))| becomes

smaller, but the concentration bounds become weaker.

With the choice

t̂0 := b0.1N̂c, k := 10 ·
⌊
N̂1/3

⌋
, σ̂2 := σ̂2(k), (3.3.39)

our bounds imply that for bounded functions, σ̂2 will be a consistent estimate of σ2

as N̂ → ∞, for any uniformly ergodic Markov chain, irrespectively of the value of

the mixing time. In practice, we suggest choosing N̂ to be at least 106, or higher.

Note that via Proposition 3.3.14, the error bound of Proposition 3.3.20 can also be

extended to unbounded functions.

We will use the following lemma for the proof of our propositions.

Lemma 3.3.22. For t ∈ N, let γt := Eπ[(f(X1) − Eπf)(f(Xt+1) − Eπf)]. Then for

reversible chains, for k ≥ 2 even,

−min

(
Vf
2
,
2Vf
γ
· (1− γ∗)k+1

)
≤ σ2 −

(
γ0 + 2

k∑
t=1

γt

)
≤ 2Vf

γ
· (1−min(γ, 1))k+1.

(3.3.40)

For non-reversible chains, we have, for k ≥ 1,

∣∣∣∣∣σ2 −

(
γ0 + 2

k∑
t=1

γt

)∣∣∣∣∣ ≤ 4Vf
γps

· (1− γps)
(k+1−1/γps)/2. (3.3.41)
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Proof. Without loss of generality, assume that Eπf = 0. Define the operator π on

L2(π) as π(g)(x) := Eπ(g). We have σ2 = γ0 + 2
∑∞

t=1 γt, thus

σ2 −

(
γ0 + 2

k∑
t=1

γt

)
= 2

∑
t=k+1

γt = 2

〈
f,

(
∞∑

t=k+1

P t

)
f

〉
π

= 2

〈
f,

(
∞∑

t=k+1

(P − π)t

)
f

〉
π

= 2
〈
f, (P − π)k+1 (I − (P − π))−1 f

〉
π
.

For reversible chains, one one hand, we can write ‖P − π‖2,π ≤ 1− γ∗, and

‖ (I − (P − π))−1 ‖2,π = 1/γ,

thus ∣∣∣∣∣σ2 − (γ0 + 2
k∑
t=1

γt)

∣∣∣∣∣ ≤ 2Vf
γ
· (1− γ∗)k+1. (3.3.42)

On the other hand, we can express the self-adjoint operator (P − π)k+1 (I − (P − π))

as a sum of positive and negative parts (we also use the fact that k + 1 is odd):

(P − π)k+1 (I − (P − π))−1 =
(

(P − π)k+1
+ − (P − π)k+1

−

)
(I − (P − π))−1 .

Now it is easy to see that

‖ (P − π)k+1
+ (I − (P − π))−1 ‖2,π ≤ min(γ, 1)k+1/γ, and

‖ (P − π)k+1
− (I − (P − π))−1 ‖2,π ≤ 1/2,
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thus

−min

(
Vf ,

2Vf
γ

(1− γ∗)k+1

)
≤ 2

〈
f, (P − π)k+1 (I − (P − π))−1 f

〉
π

≤ 2Vf
γ

(1−min(γ, 1))k+1 .

Combining this and (3.3.42) leads to (3.3.40). For non-reversible chains, by the proof

of Theorem 3.3.6, we have that ‖ (I − (P − π))−1 ‖2,π ≤ 2/γps, and ‖ (P − π)k+1 ‖2,π ≤

(1− γps)
(k+1−1/γps)/2, thus (3.3.41) follows.

Now we turn to the proof of the two propositions. First we prove the expectation

bounds, and then the concentration bounds.

Proof of Proposition 3.3.19. For reversible chains, for 0 ≤ i ≤ k, from Chebyshev’s

inequality (Theorem 3.3.4), we obtain

∣∣∣∣∣∣Eπ
1

2

∑N̂−k
j=t0+1 f(Xj)

N̂ − t̂0 − k

2

+
1

2

∑N̂−k+i
j=t0+i f(Xj)

N̂ − t̂0 − k

2− [(Eπf)2 +
σ2

N̂ − t̂0 − k

]∣∣∣∣∣∣
≤ 4Vf

γ2
· 1

(N̂ − t̂0 − k)2
,

and thus it follows that

∣∣∣∣Eπ(γ̂i)−
(
γi −

σ2

N̂ − t̂0 − k

)∣∣∣∣ ≤ 4Vf
γ2
· 1

(N̂ − t̂0 − k)2
.
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Summing up in i, and using (3.3.40) leads to

−Kf −min

(
Vf ,

2Vf
γ

(1− γ∗)k+1

)
≤ σ2 −

(
γ̂0 + 2

k∑
i=1

γ̂i +
σ2(2k + 1)

N̂ − t̂0 − k

)

≤ Kf +
2Vf
γ
· (1−min(γ, 1))k+1,

where Kf :=
4Vf
γ2 · (2k+1)

(N̂−t̂0−k)2
. Now putting together the terms involving σ2, and dividing

by N̂−t̂0−3k−1

N̂−t̂0−k
leads to (3.3.34). The proof of (3.3.35) is similar.

Proof of Proposition 3.3.20. Firstly, it is easy to show for any 0 ≤ i ≤ k, γ̂i does not

change if we replace the function f by f − Eπf , thus σ2(k) remains the same under

such transformation. Now a simple computation shows that changing the value of Xj,

for t̂0 + 1 ≤ j ≤ N̂ , can only change γ̂i at most by 8C2/(N̂ − t̂0 − k), and thus it can

only change the value of σ̂2(k) at most by 8(2k + 1)C2/(N̂ − t̂0 − 3k − 1). From this

(the so called Hamming-Lipschitz property), using McDiarmid’s bounded differences

inequality for Markov chains (Corollary 3.2.11), we can deduce (3.3.36). Finally,

(3.3.37) and (3.3.38) follow by combining this with the bounds on the bias.

Example 3.3.23 (A vineyard model). Suppose that we have a vineyard, which in

each year, depending on the weather, produces some wine. We are going to model the

weather with a two state Markov chain, where 0 corresponds to bad weather (freeze

destroys the grapes), and 1 corresponds to good weather (during the whole year). For

simplicity, assume that in bad weather, we produce no wine, while in good weather,

we produce 1$ worth of wine. Let X1, X2, . . . be a Markov chain of the weather, with

state space Ω = {0, 1}, stationary distribution π, and absolute spectral gap γ∗ (it is

easy to prove that any irreducible two state Markov chain is reversible). We suppose

that it is stationary, that is, X1 ∼ π.
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Assuming that the rate of interest is r, the present discounted value of the wine

produced is

W :=
∞∑
i=1

Xi(1 + r)−i. (3.3.43)

It is easy to see that E(W ) = Eπ(X1)/r. We can apply Bernstein’s inequality for

reversible Markov chains (Theorem 3.3.7) with fi(Xi) = Xi(1 + r)−i and C = 1, and

use a limiting argument, to obtain that

P(|W − Eπ(X1)/r| ≥ t) ≤ 2 exp

(
− t2 · (γ∗ − (γ∗)2/2)

4Varπ(X1)
∑∞

i=1(1 + r)−2i + 10t

)
= 2 exp

(
− t2 · (γ∗ − (γ∗)2)

4Varπ(X1)(1 + r)2/(r2 + 2r) + 10t

)
.

If the price of the vineyard on the market is p, satisfying p < Eπ(X1)/r, then we can

use the above formula with t = Eπ(X1)/r − p to upper bound the probability that

the vineyard is not going to earn back its price.

If we would model the weather with a less trivial Markov chain that has more

than two states, then it could be non-reversible. In that case, we could get a similar

result using Bernstein’s inequality for non-reversible Markov chains (Theorem 3.3.9).

Example 3.3.24 (Hypothesis testing). The following example was inspired by Hu

(2011). Suppose that we have a sample X = (X1, X2, . . . , Xn) from a stationary,

finite state Markov chain, with state space Ω. Our two hypotheses are the following.

H0 := {transition matrix is P0, with stationary dist. π0, and X1 ∼ π0},

H1 := {transition matrix is P1, with stationary dist. π1, and X1 ∼ π1}.
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Then the log-likelihood function of X given the two hypotheses are

l0(X) := log π0(X1) +
n−1∑
i=1

logP0(Xi, Xi+1),

l1(X) := log π1(X1) +
n−1∑
i=1

logP1(Xi, Xi+1).

Let

T (X) := l0(X)− l1(X) = log

(
π0(X1)

π1(X1)

)
+

n−1∑
i=1

log

(
P0(Xi, Xi+1)

P1(Xi, Xi+1)

)
.

The most powerful test between these two hypotheses is the Neyman-Pearson likeli-

hood ratio test, described as follows. For some ξ ∈ R,

T (X)/(n− 1) > ξ ⇒ Stand by H0, T (X)/(n− 1) ≤ ξ ⇒ Reject H0.

Now we are going to bound the Type-I and Type-II errors of this test using our

Bernstein-type inequality for non-reversible Markov chains.

Let Yi := (Xi, Xi+1) for i ≥ 1. Then (Yi)i≥1 is a Markov chain. Denote its

transition matrix by Q0, and Q1, respectively, under hypotheses H0 and H1 (these

can be easily computed from P0 and P1). Denote

T̂ (Y ) :=
n−1∑
i=1

log

(
P0(Yi)

P1(Yi)

)
=

n−1∑
i=1

log

(
P0(Xi, Xi+1)

P1(Xi, Xi+1)

)
, (3.3.44)

then

T (X)

n− 1
=

log(π0(X1)/π1(X1))

n− 1
+
T̂ (Y )

n− 1
. (3.3.45)

Let

δ0 := max
x,y∈Ω

logP0(x, y)− min
x,y∈Ω

logP0(x, y),
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and similarly,

δ1 := max
x,y∈Ω

logP1(x, y)− min
x,y∈Ω

logP1(x, y),

and let δ := δ0 + δ1. Suppose that δ < ∞. Then
∣∣∣ log(π0(X1)/π1(X1))

n−1

∣∣∣ ≤ δ
n−1

, implying

that |T (X)/(n−1)− T̂ (Y )/(n−1)| ≤ δ/(n−1). Moreover, we also have | logP0(Yi)−

logP1(Yi)| ≤ δ.

It is easy to verify that the matrices Q0 and Q1, except in some trivial cases,

always correspond to non-reversible chains (even when P0 and P1 are reversible). Let

J0 := E0

(
log

P0(X1, X2)

P1(X1, X2)

)
, and J1 := E1

(
log

P0(X1, X2)

P1(X1, X2)

)
.

Note that J0 can be written as the relative entropy of two distributions, and thus it

is positive, and J1 is negative. By the stationary assumption, E0(T̂ (Y )) = (n− 1)J0

and E1(T̂ (Y )) = (n− 1)J1.

By applying Theorem 3.3.9 on T̂ (Y ), we have the following bounds on the Type-I

and Type-II errors. Assuming that J0 − δ/(n− 1) ≥ ξ ≥ J1 + δ/(n− 1),

P0

(
T (X)

n− 1
≤ ξ

)
≤ exp

(
−(J0 − δ/(n− 1)− ξ)2(n− 1)γps(Q0)

8V0 + 20δ · (J0 − δ/(n− 1)− ξ)

)
, (3.3.46)

P1

(
T (X)

n− 1
≥ ξ

)
≤ exp

(
−(ξ − J1 − δ/(n− 1))2(n− 1)γps(Q1)

8V1 + 20δ · (ξ − J1 − δ/(n− 1))

)
. (3.3.47)

Here V0 = Var0

(
log
(
P0(X1,X2)
P1(X1,X2)

))
, V1 = Var1

(
log
(
P0(X1,X2)
P1(X1,X2)

))
, and γps(Q0) and

γps(Q1) are the pseudo spectral gaps of Q0 and Q1.

Example 3.3.25 (Coin tossing). Let X1, . . . , Xn be the realisation of n coin tosses

(1 corresponds to heads, and 0 corresponding to tails). It is natural to model them

as i.i.d. Bernoulli random variables, with mean 1/2. However, since the well-known
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paper of Diaconis, Holmes, and Montgomery (2007), we know that in practice, the

coin is more likely to land on the same side again than on the opposite side. This

opens up the possibility that coin tossing can be better modelled by a two state

Markov chain with a non-uniform transition matrix. To verify this phenomenon, we

have performed coin tosses with a Singapore 50 cent coin (made in 2011). We have

placed the coin in the middle of our palm, and thrown it up about 40-50cm high

repeatedly. We have included our data of 10000 coin tosses in the Appendix. Using

Example 3.3.24, we can make a test between the following hypotheses.

H0 - i.i.d. Bernoulli trials, i.e. transition matrix P0 :=

 1/2 1/2

1/2 1/2

, and

H1 - stationary Markov chain with transition matrix P1 =

 0.6 0.4

0.4 0.6

.

For these transition matrices, we have stationary distributions π0(0) = π0(1) = 1/2

and π1(0) = 1 − π1(1) = 1/2. A simple computation gives that for these transition

probabilities, using the notation of Example 3.3.24, we have δ0 = 0, δ1 = log(0.6) −

log(0.4) = 0.4055, J0 = 2.0411 · 10−2, J1 = −2.0136 · 10−2, and δ = δ0 + δ1 = 0.4055.

The matrices Q0 and Q1 are

Q0 =



0.5 0.5 0 0

0 0 0.5 0.5

0.5 0.5 0 0

0 0 0.5 0.5


, and Q1 =



0.6 0.4 0 0

0 0 0.4 0.6

0.6 0.4 0 0

0 0 0.4 0.6


.
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We can compute Q∗0 and Q∗1 using (3.3.2),

Q∗0 =



0.5 0 0.5 0

0.5 0 0.5 0

0 0.5 0 0.5

0 0.5 0 0.5


, and Q∗1 =



0.6 0 0.4 0

0.6 0 0.4 0

0 0.4 0 0.6

0 0.4 0 0.6


.

As we can see, Q0 and Q1 are non-reversible. The spectral gap of their multiplica-

tive reversiblization is γ(Q∗0Q0) = γ(Q∗1Q1) = 0. However, γ((Q∗0)2Q2
0) = 1 and

γ((Q∗1)2Q2
1) = 0.96, thus γps(Q0) = 0.5, γps(Q1) = 0.48. The stationary distributions

for Q0 is [0.25, 0.25, 0.25, 0.25], and for Q1 is [0.3, 0.2, 0.2, 0.3] (these probabilities cor-

respond to the states 00, 01, 10, and 11, respectively). A simple calculation gives

V0 = 4.110 · 10−2, V1 = 3.946 · 10−2. By substituting these to (3.3.46) and (3.3.47),

and choosing ξ = 0, we obtain the following error bounds.

Type-I error. P0(T (X)/(n− 1) ≤ ξ) ≤ exp(−4.120) = 0.0150, (3.3.48)

Type-II error. P1(T (X)/(n− 1) ≥ ξ) ≤ exp(−4.133) = 0.0160. (3.3.49)

The actual value of T (X)/(n − 1) on our data is T̃ /(n − 1) = −7.080 · 10−3. Since

T̃ /(n− 1) < ξ, we reject H0 (Bernoulli i.i.d. trials).

The choice of the transition matrix P1 was somewhat arbitrary in the above

argument. Indeed, we can consider a more general transition matrix of the form

P1 =

 p 1− p

1− p p

 . We have repeated the above computations with this tran-

sition matrix, and found that for the interval p ∈ (0.5, 0.635), H0 is rejected, while
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Figure 3.1: Hypothesis testing for different values of the parameter p
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(c) Logarithm of bound on
Type-II error

outside of this interval, we stand by H0. Three plots in Figure 3.1 show the log-

likelihood differences, and the logarithm of the Bernstein bound on the Type-I and

Type-II errors, respectively, for different values of p (in the first plot, we have re-

stricted the range of p to [0.4, 0.7] for better visibility). As we can see, the further

away p is from 0.5, the smaller our error bounds become, which is reasonable since it

becomes easier to distinguish between H0 and H1. Finally, from the first plot we can

see that maximal likelihood estimate of p is p̂ ≈ 0.57.

3.4 Continuous time Markov processes

In this section, we are going to generalise our previous results for Markov chains to

continuous time Markov processes.

Firstly, in Section 3.4.1, we introduce Markov processes, and define the continuous

time versions of our previous notions, including the mixing time, and the spectral gap.

We also state propositions concerning the relations between mixing time and spectral

gap, the way to get bounds for non-stationary processes from bounds for stationary

ones, and the use of truncation to handle unbounded functions.
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After this, in Section 3.4.2 we state our results for Markov processes: variance

bounds and Bernstein-type inequalities for integrals of the form
∫ T
t=0

ft(Xt)dt, and a

version of McDiarmid’s bounded differences inequality for uniformly ergodic Markov

processes.

Finally, Section 3.4.4 contains two applications, the average number of persons

waiting in an M/M/1 queue, and the total variational distance of the empirical mea-

sure to the stationary distribution of Markov processes.

3.4.1 Preliminaries

In this section, we will first define Markov processes, then generalize the notions of

Sections 3.1.1 and 3.3.1 to them.

We call a collection of random variables {Xt}t≥0 (taking values in Polish spaces

{Λt}t≥0, and defined on a common probability space (Ω,F ,P)) a Markov process if

they satisfy the Markov property: for every 0 ≤ s < t, for every y ∈ Λt,

P(Xt ∈ dy|{Xr}0≤r≤s) = P(Xt ∈ dy|Xs). (3.4.1)

In this case, we define, for 0 ≤ s < t,

Ps,t(x, dy) := P(Xt ∈ dy|Xs = x) (3.4.2)

the Markov kernel of the time inhomogeneous Markov process {Xt}t≥0. By the fact

that {Xt}t≥0 are defined on the same probability space, such a Markov kernel always

satisfies the Chapman-Kolmogorov equations: for any 0 ≤ s < r < t,
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Ps,t(x, dy) =

∫
z∈Λr

Ps,r(x, dz)Pr,t(z, dy). (3.4.3)

We say that {Xt}t≥0 is a time homogenous Markov process if the state space Λt

is the same, Ω, for every t ≥ 0, and Ps,t(x, dy) = P0,t−s(x, dy) for every x, y ∈ Ω,

0 ≤ s < t. In this case, we define Pt(x, dy) := P0,t−s(x, dy).

For time homogeneous Markov processes, we say that a distribution π on Ω is a

stationary distribution if for every x ∈ Λ, every t > 0,

∫
x∈Ω

Pt(x, dy)π(dx) = π(dy). (3.4.4)

Now we define uniform and geometric ergodicity for Markov processes:

Definition 3.4.1. A time homogeneous Markov process {Xt}t≥0, with stationary

distribution π, state space Ω, and transition kernels {Pt(x, dy)}t>0 is uniformly ergodic

if

sup
x∈Λ

dTV (Pt(x, ·), π) ≤Mρt, for every t > 0,

for some ρ < 1 and M <∞, and we say that it is geometrically ergodic, if

dTV (Pt(x, ·), π) ≤M(x)ρt, for every t > 0

for some ρ < 1, where M(x) <∞ for π a.e. x ∈ Ω.

Now we are going to define mixing times for time homogeneous and inhomogeneous

Markov processes.
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Definition 3.4.2 (Mixing time for time homogeneous processes). Let {Xt}t≥0 be

a time homogeneous Markov process with transition kernels {Pt(x, dy)}t>0, state

space Ω (a Polish space), and stationary distribution π. For t > 0, let dcont(t) :=

supx∈Ω dTV (Pt(x, ·), π), and let

tcont
mix (ε) := min{t > 0 : d(t) ≤ ε} and tcont

mix := tmix(1/4).

One can easily prove that the fact that tmix(ε) is finite for some ε < 1/2 (or

equivalently, tmix is finite) is equivalent to the uniform ergodicity of the Markov

process.

Definition 3.4.3 (Mixing time for time inhomogeneous processes). Let {Xt}t≥0 be

a Markov process with transition kernels {Ps,t(x, dy)}0≤s<t, state space {Λt}t≥0 (a

Polish space). Let

d
cont

(t) := sup
s:s≥0

sup
x,y∈Ω

dTV (Ps,s+t(x, ·), Ps,s+t(y, ·)) ,

τ cont(ε) := inf
{
t : t > 0, d

cont
(t) ≤ ε

}
.

Remark 3.4.4. One can easily see that in the case of time homogeneous Markov

processes, by triangle inequality, one has

τ cont(2ε) ≤ tmix(ε) ≤ τ cont(ε). (3.4.5)

One can show that d
cont

(t) is subadditive, i.e.

d
cont

(t+ s) ≤ d
cont

(t) + d
cont

(s), (3.4.6)
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and this implies that for every k ∈ N, 0 ≤ ε ≤ 1,

τ cont(εk) ≤ kτ cont(ε), and thus tcont
mix

(
(2ε)k

)
≤ ktcont

mix (ε). (3.4.7)

Now, we are going to generalise some of the spectral properties from Section

3.3.1 to time homogeneous Markov processes. First of all, we define L2(π), and the

operator P corresponding to a Markov kernel P the same way as in Section 3.3.1. We

say that the time homogeneous Markov process {Xt}t≥0 is reversible with respect to

stationary distribution π if for every t > 0, the Markov kernel Pt(x, dy) is reversible

(i.e. Pt(x, dy)π(dx) = Pt(y, dx)π(dy)). Equivalently, this means that Pt is self-adjoint

for every t > 0.

A family of operators {P }t≥0 is a stochastic semigroup if

1. P0 = I,

2. each element Pt is generated by a Markov kernel Pt(x, dy), and

3. it satisfies the Chapman-Kolmogorov equations: Ps+t = PsPt, t ≥ 0.

The stochastic semigroup {Pt}t≥0 is standard if Pt → I as t ↓ 0, i.e. for every

f ∈ L2(π), limt↓0(Ptf)(x) = f(x), π - a.s. in x.

For a time homogeneous Markov process {Xt}t≥0 with standard stochastic semi-

group {Pt}t≥0, we define its generator L as a linear operator from D2(L) to D2(L),

defined as

L(f) := lim
t↓0

Ptf − f
t

, (3.4.8)

with the domain D2(L) being the subset of L2(π) such that this limit exists in the

L2(π) sense. The Hille-Yosida theory (Yosida (1980)) shows that D2(L) is a dense
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subspace of L2(π). Notice that if the process is reversible, then L is self-adjoint.

We define spectrum of the process as

S2 :=

{
λ ∈ R \ 0 : (λI − (L+L∗)/2)−1 does not exist as

a bounded linear operator on D2(L)

}
,

and the spectral gap of the process as

γcont := − sup{λ : λ ∈ S2, λ 6= 0} if eigenvalue 0 of (L+L∗)/2 is simple,

γcont := 0 otherwise.

Notice that (L+L∗)/2 is negative semidefinite, thus S2 ⊂ R− and γcont ≥ 0.

For a time homogeneous Markov process {Xt}t≥0, we define the pseudo spectral

gap of the process as

γcont
ps := sup

t>0
{γ(P ∗t Pt)/t} , (3.4.9)

where γ(P ∗t Pt) denotes the spectral gap of the self-adjoint operator P ∗t Pt.

The relations between the mixing and spectral properties of time homogeneous

Markov processes are given by the following two propositions proposition (which are

similar to Propositions 3.3.2 and 3.3.3).

Proposition 3.4.5 (Relation between mixing time and spectral gap for Markov

processes). Suppose that we have a reversible Markov process. For uniformly ergodic

Markov processes, for 0 ≤ ε < 1,

γcont ≥ log(1/ε)

τ cont(ε)
, in particular, γcont ≥ log(2)

tcont
mix

. (3.4.10)
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For arbitrary initial distribution q, we have for every t > 0,

dTV (qPt, π) ≤ 1

2
(1− γcont)t ·

√
Nq − 1, (3.4.11)

implying that for reversible processes on finite state spaces, for 0 ≤ ε ≤ 1,

tcont
mix (ε) ≤ 2 log(1/(2ε)) + log(1/πmin)

2γcont
, in particular, tcont

mix ≤
2 log(2) + log(1/πmin)

2γcont

(3.4.12)

with Nq and πmin defined as in Proposition 3.3.2.

Proposition 3.4.6 (Relation between mixing time and pseudo spectral gap for

Markov processes). For uniformly ergodic Markov processes, for 0 ≤ ε < 1,

γcont
ps ≥

1− ε
τ cont(ε)

, in particular, γcont
ps ≥

1

2tcont
mix

. (3.4.13)

When starting from initial distribution q, we have for every t > 0,

dTV (qPt, π) ≤ 1

2
(1− γcont

ps )(t−1/γcont
ps )/2 ·

√
Nq − 1, (3.4.14)

implying that for processes with finite state spaces, for 0 ≤ ε ≤ 1,

tcont
mix (ε) ≤ 1 + 2 log(1/(2ε)) + log(1/πmin)

γcont
ps

, in particular, (3.4.15)

tmix ≤
1 + 2 log(2) + log(1/πmin)

γcont
ps

. (3.4.16)

Some of the definitions above were adapted from the survey Bakry (2006). Other

good references on the subject are Saloff-Coste (1997), Montenegro and Tetali (2006),
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and Wang (2006) (however, in some of these, the authors restrict themselves to heat

kernels, a special case of continuous time Markov processes with generator of the form

L = P − I for some Markov kernel P ).

3.4.2 Results

In this section, we are going to state variance bounds, Bernstein-type inequalities for

integrals of the form
∫ T
t=0

ft(Xt)dt, with (Xt)0≤t≤T being a time homogeneous Markov

process. These bounds will be stated for stationary Markov processes, however, they

can be generalised to non-stationary processes by Proposition 3.4.16. We also state a

version of McDiarmid’s bounded differences inequality for uniformly ergodic Markov

processes.

Firstly, we state the variance bounds for reversible and non-reversible processes.

Theorem 3.4.7 (Variance bound for reversible processes). Let {Xt}t≥0 be a time

homogeneous, stationary, reversible Markov process, with distribution P, standard

stochastic semigroup {Pt}t≥0, stationary distribution π, and spectral gap γcont. For

f ∈ L2(π), we define its variance as Vf := Varπ(f), and its asymptotic variance as

σ2
cont := lim

T→∞
(1/T ) · Varπ

(∫ T

t=0

f(Xt)dt

)
. (3.4.17)

Assume that f satisfies

lim
N→∞

T

N

N∑
k=1

f
(
X T

N
·k

)
=

∫ T

t=0

f(Xt)dt P almost surely, (3.4.18)

lim
N→∞

T

N

N∑
k=1

Eπ
(
f 2
)

=

∫ T

t=0

Eπ(f 2)dt. (3.4.19)
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Then

Varπ

[∫ T

t=0

f(Xt)dt

]
≤ 2TVf

γcont
, (3.4.20)∣∣∣∣Varπ

[∫ T

t=0

f(Xt)dt

]
− Tσ2

cont

∣∣∣∣ ≤ 4Vf
(γcont)2

. (3.4.21)

Remark. We apply this theorem to M/M/1 queues in Example 3.4.22.

The following theorem generalises this to integrals of the form
∫ T
t=0

ft(Xt).

Theorem 3.4.8. Let {Xt}t≥0 be as in Theorem 3.4.7. Let {ft}t≥0 be functions in

L2(π) satisfying that Eπft = 0 for every t ≥ 0. Assume that

lim
N→∞

T

N

N∑
k=1

f T
N
·k

(
X T

N
·k

)
=

∫ T

t=0

ft(Xt)dt P almost surely, (3.4.22)

lim
N→∞

T

N

N∑
k=1

Eπ
(
f 2
T
N
·k

)
=

∫ T

t=0

Eπ(f 2
t )dt. (3.4.23)

Then

Varπ

[∫ T

t=0

ft(Xt)dt

]
≤

2
∫ T
t=0

Varπ (ft) dt

γcont
. (3.4.24)

Theorem 3.4.9 (Variance bounds for non-reversible Markov processes). Let {Xt}t≥0

be a time homogeneous Markov process, with distribution P, stationary distribution

π, and pseudo spectral gap γcont
ps .

Let f be a function in L2(π) satisfying the regularity conditions (3.4.18) and
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(3.4.19). Let Vf and σ2
cont be as in Theorem 3.4.7. Then

Varπ

[∫ T

t=0

f(Xt)dt

]
≤ 4TVf

γcont
ps

, (3.4.25)∣∣∣∣Varπ

[∫ T

t=0

f(Xt)dt

]
− Tσ2

cont

∣∣∣∣ ≤ 16Vf
(γcont

ps )2
. (3.4.26)

More generally, let {ft}t≥0 be functions in L2(π) satisfying the regularity conditions

(3.4.22) and (3.4.23) (essentially Riemann integrability), then

Eπ

[(∫ T

t=0

ft(Xt)dt

)2
]
≤

4
∫ T
t=0

Varπ (ft) dt

γcont
ps

. (3.4.27)

Now we are going to state Bernstein-type concentration inequalities for reversible

and non-reversible processes.

Theorem 3.4.10 (Bernstein inequality for reversible processes). Let {Xt}t≥0 be a

time homogeneous, stationary, reversible Markov process, with distribution P, stan-

dard stochastic semigroup {Pt}t≥0, stationary distribution π, and spectral gap γcont.

Let {ft}t≥0 ∈ L2(π), satisfying that |ft(x)−Eπft| ≤ C for every t ≥ 0, x ∈ Ω. Assume

that they satisfy the regularity conditions (3.4.22) and (3.4.23). Define

S ′ :=

∫ T

t=0

ft(Xt)dt, and VS′ :=

∫ T

t=0

Varπ(ft)dt,

then

Pπ(|S ′ − Eπ(S ′)| ≥ r) ≤ 2 exp

(
− r2 · γcont

4VS′ + 10rC

)
. (3.4.28)

Remark. We apply this inequality to M/M/1 queues in Example 3.4.22.

Theorem 3.4.11 (Bernstein inequality for non-reversible Markov processes). Let
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{Xt}t≥0 be a time homogeneous, stationary Markov process, with stationary distribu-

tion π, and pseudo spectral gap γcont
ps . Let f ∈ L2(π), satisfying that |f(x)−Eπf | ≤ C

for every t ≥ 0, x ∈ Ω. Let

S :=

∫ T

t=0

f(Xt)dt,

then for any r ≥ 0

Pπ(|S − Eπ(S)| ≥ r) ≤ 2 exp

(
−

r2 · γcont
ps

8(T + 1/γcont
ps )Varπ(f) + 20rC

)
. (3.4.29)

The following theorem generalises this to integrals of the form
∫ T
t=0

ft(Xt)dt.

Theorem 3.4.12. Let {Xt}t≥0 be a time homogeneous, stationary Markov process,

with stationary distribution π, and pseudo spectral gap γcont
ps . Let {ft}t≥0 ∈ L2(π),

satisfying that |ft(x) − Eπft| ≤ C for every t ≥ 0, x ∈ Ω. Assume that they satisfy

the regularity conditions (3.4.22) and (3.4.23). Define

S ′ :=

∫ T

t=0

ft(Xt)dt, and VS′ :=

∫ T

t=0

Varπ(ft)dt.

Suppose that there is tps ∈ R+ such that γps = γ((Ptps)
∗(Ptps))/tps (if this does not

exist, we can use a limiting argument). Let

M :=

∫ tps

t=0

(∑b(T−t)/tpsc
j=0 Varπ(ft+jtps)

)1/2

dt

inft∈[0,tps]

(∑bT/tpsc
j=0 Varπ(ft+jtps)

)1/2
.

Then for any r ≥ 0,

Pπ(|S ′ − Eπ(S ′)| ≥ r) ≤ 2 exp

(
− r2 · γps

8VS′ + 20rC ·M/tps

)
. (3.4.30)
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The following theorem is the main results of Lezaud (2001) (which we compare to

our results in the following remark).

Theorem 3.4.13 (Theorem 1.1. of Lezaud (2001)). Let Pt be an ergodic Markov

semigroup with invariant probability measure π. Assume that its infinitesimal gen-

erator L has as simple isolated eigenvalue λ = 0 and that the initial distribution q

has a L2(π) density relatively to the measure π. Let Xsym
s be a Markov process with

generator (L+L∗)/2, Ssym
T :=

∫ T
0
f(Xsym

s )dt, and

σ2
sym := lim

T→∞
T−1Varπ(Ssym

T ).

Let f ∈ D2(L) such that Eπ(f) = 0, and ‖f‖∞ ≤ C. Then for all r > 0, T > 0,

Pq(T−1ST ≥ r) ≤ Nq exp

− 2Tr2

σ2
sym

(
1 +

√
1 + 4Cr/(γsymσ2

sym)
)2

 , (3.4.31)

with ST :=
∫ T

0
f(Xs)dt, γsym is the spectral gap of (L + L∗)/2, and Nq is the L2(π)

norm of the density of q related to the stationary distribution π.

Remark 3.4.14. A similar bound is given, by different methods, in Guillin, Léonard,

Wu, and Yao (2009). As we can see, for reversible processes, σcont = σsym, and

− 2Tr2

σ2
cont

(
1 +

√
1 + 4Cr/(γcontσ2

cont)
)2 ≤ −

Tr2

2σ2
cont + 4(C/γcont)r

,

thus for r ≤ σ2
contγcont/2C, this is smaller than−Tr2/(4σ2

cont), and for r � σ2
contγcont/(2a),

it is essentially −Tr2/(2σ2
cont). The constant 2 is sharp here because of the asymptotic

normality of the empirical average. For reversible processes, this bound is sharper
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than Theorem 3.4.10, since it uses the asymptotic variance (in this case, the asymp-

totic variance σ2
cont equals σ2

sym). However, for non-reversible processes, in general

σ2
cont 6= σ2

sym, and γsym is the spectral gap of symmetrized operator (L+L∗)/2, which

may be 0 even for fast mixing processes. Thus Theorem 3.4.11, involving γcont
ps , can

be sharper in this case.

Finally, we present a version of McDiarmid’s bounded differences inequality for

continuous time Markov processes.

Theorem 3.4.15 (McDiarmid’s bounded differences inequality for Markov processes).

Let {Xt}0≤t≤T be a (not necessarily time homogeneous) Markov process, with Xt tak-

ing values in a Polish space Λt. Let Λ :=
∏T

t=0 Λt. Suppose that its mixing time is

given by τ cont(ε) (for 0 ≤ ε ≤ 1).

Assume that some function f : Λ→ R satisfies that for some c : [0, T ]→ R+, for

every 0 ≤ a < b ≤ T , every x, x′ ∈ Λ such that xt = x′t whenever t /∈ [0, T ] \ [a, b],

|f(x)− f(x′)| ≤
∫ b

t=a

c(t)dt.

Let Λ(N) := Λ0 × ΛT/N × . . .× ΛT (N−1)/N , and define X(N) ∈ Λ(N) as X
(N)
i = X(i/N)T

for 0 ≤ i < N . Assume that f also satisfies the following regularity conditions: for

some sequence of functions f (N) : Λ(N) → R, N ∈ N,

lim
N→∞

f (N)(X(N)) = f(X) P almost surely, (3.4.32)

lim
N→∞

E
(
f(X(N))

)
= E (f(X)) . (3.4.33)
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Let

τ cont
min := inf

0≤ε<1
τ cont(ε) ·

(
2− ε
1− ε

)2

. (3.4.34)

Then for any r ≥ 0,

P (|f(X)− Ef(X)| ≥ r) ≤ 2 exp

(
−2r2∫ T

t=0
c2(t)dt · τ cont

min

)
. (3.4.35)

3.4.3 Extension to non-stationary chains, and unbounded

functions

In the previous section, we have stated variance bounds and Bernstein-type inequal-

ities for integrals of the form
∫ T
t=0

ft(Xt)dt, with {Xt}0≤t≤T being a stationary time

homogeneous Markov process. Our first two propositions in this section generalise

these bounds to the non-stationary case, when X1 ∼ q for some distribution q (in

this case, we will use the notations Pq, and Eq). Our third proposition extends the

Bernstein-type inequalities to unbounded functions by a truncation argument. The

proofs are included in Section3.6.3.

The following two propositions are useful to generalise such bounds to non-stationary

processes.

Proposition 3.4.16 (Bounds for non-stationary processes). Let X := (Xt)0≤t≤T be

a time homogenous Markov process with state space Ω, and stationary distribution π.

Suppose that g(X) is real valued measurable function. Then

Pq(g(X) ≥ r) ≤ N1/2
q · [Pπ(g(X) ≥ r)]1/2 , (3.4.36)

for any distribution q on Ω. Now suppose that we “burn” observations up to some
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time t0, and we are interested in bounds on a function h of (Xt)t0≤t≤T . Firstly,

Pq(h((Xt)t0≤t≤T ) ≥ r) ≤ N
1/2
qPt0
·
[
Pπ(h((Xt)t0≤t≤T ) ≥ r)

]1/2
, (3.4.37)

moreover,

Pq(h((Xt)t0≤t≤T ) ≥ r) ≤ Pπ(h((Xt)t0≤t≤T ) ≥ r) + dTV (qPt0 , π) . (3.4.38)

Proposition 3.4.17 (Further bounds for non-stationary processes). In Proposition

3.4.16, NqPt0
can be further bounded. For reversible processes, we have

NqPt0
≤ 1 + (Nq − 1) · (1− γcont)2t0 , (3.4.39)

while for non-reversible processes,

NqPt0
≤ 1 + (Nq − 1) · (1− γcont

ps )2(t0−1/γcont
ps ). (3.4.40)

Similarly, dTV (qPt0 , π) can be further bounded too. For reversible processes, we have,

by (3.4.11),

dTV (qPt0 , π) ≤ 1

2
(1− γcont)t0 ·

√
Nq − 1,

For non-reversible processes, by (3.4.14),

dTV (qPt0 , π) ≤ 1

2
(1− γcont

ps )(t0−1/γcont
ps )/2 ·

√
Nq − 1,
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Finally, for uniformly ergodic Markov processes,

dTV (qPt0 , π) ≤ inf
0≤ε<1

εbt0/τ
cont(ε)c ≤ 2−bt0/t

cont
mix c. (3.4.41)

The Bernstein-type inequalities will assume boundedness of the functions that

we integrate. In order to generalise such bounds to unbounded functions, we can use

truncation. For a, b ∈ R, a < b, define T[a,b](x) = x·1[x ∈ [a, b]]+a·1[x < a]+b·1[x >

b] (as in Section 3.3.1), then we have following proposition (continuous analogue of

Proposition 3.3.14).

Proposition 3.4.18 (Truncation for Markov processes). Let (Xt)0≤t≤T be a time

homogeneous, stationary Markov process with stationary distribution π, and Polish

state space Ω. Let f : Ω→ R be a measurable function. Then for any a < b, for any

r,

Pπ
(∫ T

t=0

f(Xt)dt ≥ r

)
≤ Pπ

(∫ T

t=0

T[a,b](f(Xt))dt ≥ r

)
+ Pπ

(
inf

0≤t≤T
f(Xt) < a

)
+ Pπ

(
sup

0≤t≤T
f(Xt) > b

)
.

Remark 3.4.19. A similar bound can be given for integrals of the form
∫ T
t=0

ft(Xt)dt.

Example 3.4.22 shows an application to M/M/1 queues.

3.4.4 Applications

Example 3.4.20 (Convergence of empirical distribution for Markov processes). Let

{Xt}0≤t≤T be a uniformly ergodic Markov chain with countable state space Λ, unique

stationary distribution π, and mixing time tcont
mix . We denote its empirical distribution
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by πem(x) := 1
T

∫ T
t=0
1[Xi = x]. In Examples 3.2.17 and 3.2.17, we have analysed

the the total variational distance of the empirical distribution and the stationery

distribution, and shown concentration inequalities for it. The following proposition

proves an analogous result for Markov processes.

Proposition 3.4.21. Denote

d({Xt}0≤t≤T ) := dTV(πem(x), π),

then for any r ≥ 0,

P(|d({Xt}0≤t≤T )− E(d)| ≥ r) ≤ 2 exp

(
− t2 · T

4.5tcont
mix

)
.

For stationary, reversible processes,

E(d) ≤
∑
x∈Λ

min

(√
2π(x)

Tγcont
, π(x)

)
. (3.4.42)

In the case of stationary, non-reversible processes, (3.4.42) holds with γcont replaced

by γcont
ps /2.

Proof. The proof is similar to the proofs in Examples 3.2.17 and 3.2.17, except that

we use Theorems 3.4.15, 3.4.7 and 3.4.9.

Example 3.4.22 (Empirical averages for M/M/1 queues). Then M/M/1 queue is

a simple single server queue model. Customers arrive with exponential interarrival

times with mean 1/λ, and they are served in order of arrival, by a single server with

exponential service times with mean 1/µ. Denote the number of customers in the

queue at time t by Xt. Then Xt is a continuous time Markov process, with state
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space Ω = N. If ρ := λ/µ < 1, then it is reversible with respect to the stationary

distribution π(x) = (1− ρ)ρx, x ∈ N (geometric distribution, with parameter 1− ρ).

The mean and variance of this distribution are given by

M :=
ρ

1− ρ
, and V := ρ/(1− ρ)2. (3.4.43)

In the following, we will suppose that our process is stationary, that is ρ < 1, and

X0 ∼ π. The M/M/1 queue has been well studied, in particular, it is proven in Karlin

and McGregor (1958) that if ρ < 1, then

γcont = (µ1/2 − λ1/2)2. (3.4.44)

Consider the average number of customers in the queue up to time T ,

AT :=
1

T

∫ T

t=0

Xtdt. (3.4.45)

This is the continuous time empirical average of the unbounded function f(x) = x.

By Theorem 3.4.7, we can bound the variance of this quantity as

Var(AT ) ≤ 2V γcont

T
. (3.4.46)

The following proposition states a concentration inequality for AT .

Proposition 3.4.23. For any s ≥ 0, let

B(s) := max

(
(V/5s) ·

(
−1 +

√
1 +

5

2V 2
· s3T · γcont

log(1/ρ)

)
,
4 log(λT )

log(1/ρ)

)
.
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Then

P
[
|AT −M | ≥

ρB(s)+1

1− ρ
+ s

]
≤ 4(λT ) log(1/ρ)B(s) exp

[
− s2Tγcont

4V + 10B(s) · s

]
.

(3.4.47)

Remark 3.4.24. If s is small (s ≤ (log(1/ρ)V 2/(γcontT ))1/3), then the exponen-

tial term is of the form exp(−s2Tγcont/(6V )), while for larger s, it is of the form

exp(−O(
√
sT )).

We will prove this proposition using a truncation argument. The following lemma

will be used in the proof.

Lemma 3.4.25. Suppose that (Xt)0≤t≤T is a stationary M/M/1 queue. Let YT :=

sup0≤t≤T Xt. Then for T ≥ 2/λ, b ≥ 4 log(λT )/ log(1/ρ),

P(YT > b) ≤ 2(λT )ρb/2b log(1/ρ).

Proof. For N ≥ 1 positive integer, let Y
(N)
T := max0≤i<N X i

N
T be the “discretised ap-

proximation” of YT . Then obviously, we have Y
(N)
T ≤ YT . Notice that the supremum

in the definition of YT is achieved at one of the arrival times, denote the smallest such

by time by ts. Then between ts and the previous arrival time there can be no one

served. Therefore if we choose N such that T/N is smaller than the shortest inter-

arrival time up to time T , then YT ≤ Y
(N)
T + 1. Denote the event that the shortest

interarrival time up to time T is shorter than T/N by ET/N .

Now we need to get an upper bound on P(ET/N). The total number of arrivals

to time T can be shown to be Poisson distributed with parameter λT . Denote this

distribution by µPoi
λT . Since the exponential distribution of parameter λ has density
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fλ(x) = λ exp(−λx) ≤ λ for x ≥ 0, the probability of an interarrival time being

shorter than T/N is smaller than λT/N . Therefore, the probability that amongst

the first M interarrival times, there is at least one shorter than T/N is smaller then

MλT/N . This means that

P(ET/N) ≤ µPoi
λT [(M,∞)] +

MλT

N
.

for any M ∈ N. The moment generating function of the Poisson distribution µPoi
λT

function is known to be exp(λT (eθ − 1)). When θ = log(1 + 1/(λT )), this equals e,

so by Markov’s inequality, we obtain

µPoi
λT [(M,∞)] ≤ e · exp[−M log(1 + 1/(λT ))].

Using this in our bound on P(ET/N), we obtain

P(ET/N) ≤ e · exp[−M log(1 + 1/(λT ))] +
MλT

N
.

By setting M := 2λT log(eN/(2(λT )2)), we obtain that

P(ET/N) ≤ 4
(λT )2

N
log

(
N

(λT )2

)
for N ≥ e(λT )2.

Now Y
(N)
T = max0≤i<N X i

N
T , and X i

N
T is distributed geometrically with parameter

1− ρ, so it is easy to see that for any b ∈ N,

P(Y
(N)
T > b) ≤ N

∞∑
i=b+1

ρi(1− ρ) = Nρb+1.
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Moreover, we know that outside of the event EN/T , YT ≤ Y
(N)
T +1, so for N ≥ e(λT )2,

P(YT > b) ≤ Nρb + 4
(λT )2

N
log

(
N

(λT )2

)
.

Now the statement of the lemma follows by setting N = 2λT/(ρb/2).

Now we are ready to prove our concentration bound.

Proof of Proposition 3.4.23. In order to get a concentration inequality for AT , we are

going to apply the truncation argument of Proposition 3.4.18. For any b ∈ N, s ≥ 0,

Pπ
(∣∣∣∣ 1

T

∫ T

t=0

Xtdt−M
∣∣∣∣ ≥M − Eπ(T[0,b](X0)) + s

)
≤ (3.4.48)

Pπ
(∣∣∣∣ 1

T

∫ T

t=0

T[0,b](Xt)dt− Eπ(T[0,b](X0))

∣∣∣∣ ≥ s

)
+ Pπ

(
sup

0≤t≤T
Xt > b

)
.

A simple calculation shows that Eπ(T[0,b](Xt)) = ρ
1−ρ −

ρb+1

1−ρ and VarπT[0,b](Xt) ≤

VarπXt = V . By Bernstein’s inequality for reversible processes (Theorem 3.4.10), we

have

Pπ
(∣∣∣∣ 1

T

∫ T

t=0

T[0,b](Xt)dt− Eπ(T[0,b](X0))

∣∣∣∣ ≥ s

)
≤ 2 exp

(
− s2γcontT

4V + 10sb

)
.

By Lemma 3.4.25, it follows that for T ≥ 2/λ, b ≥ 4 log(λT )/ log(1/ρ),

Pπ
(

sup
0≤t≤T

Xt > b

)
≤ 2(λT )b log(1/ρ)ρb/2.

The statement of the proposition follows from (3.4.48), by setting b = B(s), and

noticing that ρB(s)/2 ≤ exp
(
− s2γcontT

4V+10sB(s)

)
.
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A similar argument is possible for queues involving k servers (M/M/k queues).

The spectral gaps for such queues are computed in Karlin and McGregor (1958). Note

also that in the case of an infinity number of servers (the so called M/M/∞ queue),

Joulin and Ollivier (2010) proves an exponential concentration bound for empirical

averages of Lipschiz functions (such as the average number of persons in the queue

up to time T ) using the coarse Ricci curvature approach (see also Joulin (2009), and

Guillin, Léonard, Wu, and Yao (2009)).

3.5 Comparison with the previous results in the

literature

The literature of concentration inequalities for Markov chains is quite large, with

many different approaches for both sums, and more general functions.

The first result in the case of general functions satisfying a form of the bounded

differences condition (3.2.4) is Proposition 1 of Marton (1996b), a McDiarmid-type

inequality with constants proportional on 1/(1 − a)2 (with a being the total varia-

tional distance contraction coefficient of the Markov chain in on steps, see (3.2.2)).

The proof is based on the transportation cost inequality method. Marton (1996a,

1997, 1998) extends this result, and proves Talagrand’s convex distance inequality

for Markov chains, with constants 1/(1 − a)2 times worse than in the independent

case. Samson (2000) extends Talagrand’s convex distance inequality to more general

dependency structures, and introduces the coupling matrix to quantify the strength

of dependence between random variables. Finally, Marton (2003) further develops the

results of Samson (2000), and introduces the coupling structure that we call Marton
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coupling in this chapter. There are further extensions of this method to more general

distances, and mixing conditions, see Rio (2000), Djellout, Guillin, and Wu (2004),

and Wintenberger (2012). Alternative, simpler approaches to show McDiarmid-type

inequalities for dependent random variables were developed in Chazottes, Collet,

Külske, and Redig (2007) (using an elementary martingale-type argument) and Kon-

torovich and Ramanan (2008) (using martingales and linear algebraic inequalities).

For time homogeneous Markov chains, their results are similar to Proposition 1 of

Marton (1996b).

In this chapter, we have improved upon the previous results by showing a McDiarmid-

type bounded differences inequality for Markov chains, with constants proportional to

the mixing time of the chain, which can be much sharper than the previous bounds.

In the case of sums of functions of elements of Markov chains, there are two

dominant approaches in the literature.

The first one is spectral methods, which use the spectral properties of the chain.

The first concentration result of this type is Gillman (1998), which shows a Hoeffding-

type inequality for reversible chains. The method was further developed in Lezaud

(1998a), where Bernstein-type inequalities are obtained. A sharp version of Hoeffd-

ing’s inequality for reversible chains was proven in León and Perron (2004).

The second popular approach in the literature is by regeneration-type minorisation

conditions, see Glynn and Ormoneit (2002) and Douc, Moulines, Olsson, and van

Handel (2011) for Hoeffding-type inequalities, and Adamczak and Bednorz (2012)

for Bernstein-type inequalities. Such regeneration-type assumptions can be used to

obtain bounds for a larger class of Markov chains than spectral methods would allow,

including chains that are not geometrically ergodic. However, the bounds are more
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complicated, and the constants are less explicit, making them harder to apply in

practice than spectral methods.

In this chapter, we have sharpened the bounds of Lezaud (1998a). In the case

of reversible chains, we have proven a Bernstein-type inequality that involves the

asymptotic variance, making our result essentially sharp. For non-reversible chains,

we have proven Bernstein-type inequalities using the pseudo spectral gap, improving

upon the earlier bounds of Lezaud (1998a).

3.6 Proofs

3.6.1 Proofs by Marton couplings

Proof of Proposition 3.2.4. The main idea is that we divide the index set into mixing

time sized parts. We define the following partition of X. Let n =
⌈
N
τ(ε)

⌉
, and

X̂ := (X̂1, . . . , X̂n)

:=
((
X1, . . . , Xτ(ε)

)
,
(
Xτ(ε)+1, . . . , X2τ(ε)

)
, . . . , (X(n−1)τ(ε), . . . , XN)

)
.

Such a construction has the important property that X̂1, . . . , X̂n is now a Markov

chain, with ε-mixing time τ̂(ε) = 2 (the proof of this is left to the reader as an exercise).

Now we are going to define a Marton coupling for X̂, that is, for 1 ≤ i ≤ n, we need to

define the couplings
(
X̂(x̂1,...,x̂i,x̂

′
i), X̂ ′

(x̂1,...,x̂i,x̂
′
i)
)

. These couplings are simply defined

according to Proposition 3.2.6. Now using the Markov property, it is easy to show that

for any 1 ≤ i < j ≤ n, the total variational distance of  L(X̂j, . . . X̂n|X̂1 = x̂1, . . . , X̂i =

x̂i) and  L(X̂j, . . . X̂n|X̂1 = x̂1, . . . , X̂i−1 = x̂i−1, X̂i = x̂′i) equals to the total variational
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distance of  L(Xj|X̂1 = x̂1, . . . , X̂i = x̂i) and  L(Xj|X̂1 = x̂1, . . . , X̂i−1 = x̂i−1, X̂i = x̂′i),

and this can be bounded by εj−i−1, so the statement of the proposition follows.

We will use the following Lemma in the proof of Theorem 3.2.9 (due to Devroye

and Lugosi (2001)).

Lemma 3.6.1. Suppose F is a sigma-field and Z1, Z2, V are random variables such

that

1. Z1 ≤ V ≤ Z2

2. E(V |F) = 0

3. Z1 and Z2 are F-measurable.

Then for all λ ∈ R, we have

E(eλV |F) ≤ eλ
2(Z2−Z1)2/8.

Proof of Theorem 3.2.9. We prove this result based on the martingale approach of

Chazottes, Collet, Külske, and Redig (2007) (a similar proof is possible using the

method of Kontorovich (2007)). Let f̂(X̂) := f(X), then it satisfies that for every

x̂, ŷ ∈ Λ̂,

f̂(x̂)− f̂(ŷ) ≤
n∑
i=1

1[x̂i 6= ŷi] · Ci(c).

Because of this property, we are going to first show that

logE
(
eλ(f(X)−Ef(X))

)
≤ λ2 · ‖Γ · c‖2

8
(3.6.1)
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under the assumption that there is a Marton coupling for X with mixing matrix Γ.

By applying this inequality to X̂, (3.2.5) follows.

Now we will show (3.6.1). Let us define Fi = σ(X1, . . . , Xi) for i ≤ N , and write

f(X)− Ef(X) =
∑N

i=1 Vi(X), with

Vi(X) := E(f(X)|Fi)− E(f(X)|Fi−1)

=

∫
zi+1,...,zN

P(Xi+1 ∈ dzi+1, . . . , XN ∈ dzn|X1, . . . , Xi)

· f(X1, . . . , Xi, zi+1, . . . , zN)

−
∫
zi,...,zN

P(Xi ∈ dzi, . . . , XN ∈ dzn|X1, . . . , Xi−1)

· f(X1, . . . , Xi−1, zi, . . . , zN)

=

∫
zi+1,...,zN

P(Xi+1 ∈ dzi+1, . . . , XN ∈ dzn|X1, . . . , Xi)

· f(X1, . . . , Xi, zi+1, . . . , zN)

−
∫
zi

P(Xi ∈ dzi|X1, . . . , Xi−1)·

·
∫
zi+1,...,zN

P(Xi+1 ∈ dzi, . . . , XN ∈ dzn|X1, . . . , Xi−1, Xi = zi)·

· f(X1, . . . , Xi−1, zi, . . . , zN)

≤ sup
a∈Λi

∫
zi+1,...,zN

P(Xi+1 ∈ dzi+1, . . . , XN ∈ dzn|X1, . . . , Xi−1, Xi = a)·

· f(X1, . . . , Xi−1, a, zi+1, . . . , zN)

− inf
b∈Λi

∫
zi+1,...,zN

P(Xi+1 ∈ dzi+1, . . . , XN ∈ dzn|X1, . . . , Xi−1, Xi = b)·

· f(X1, . . . , Xi−1, b, zi+1, . . . , zN)

=: Mi(X)−mi(X),
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here Mi(X) is the supremum, and mi(X) is the infimum, and we assume that these

values are taken at a and b, respectively (one can take the limit in the following

arguments if they do not exist).

After this point, Chazottes, Collet, Külske, and Redig (2007) defines a coupling

between the distributions

L(Xi+1, . . . , XN |X1, . . . , Xi−1, Xi = a),

L(Xi+1, . . . , XN |X1, . . . , Xi−1, Xi = b)

as a maximal coupling of the two distributions. Although this minimises the prob-

ability that the two sequences differ in at least one coordinate, it is not always the

best choice. We use a coupling between these two distributions that is induced by

the Marton coupling for X, that is

(X(X1,...,Xi−1,a,b), X ′
(X1,...,Xi−1,a,b)).

From the definition of the Marton coupling, we can see that

Mi(Y )−mi(Y ) = E
(
f(X(X1,...,Xi−1,a,b))− f(X ′

(X1,...,Xi−1,a,b))
∣∣∣X1, . . . , Xi−1

)
≤ E

(
N∑
j=i

1

[
X

(X1,...,Xi−1,a,b)
j 6= X ′

(X1,...,Xi−1,a,b)
j

]
· cj

∣∣∣∣∣X1, . . . , Xi−1

)

≤
N∑
j=i

Γi,jcj.

Now using Lemma 3.6.1 with V = Vi, Z1 = mi(X) − E(f(X)|Fi−1), Z2 = Mi(X) −
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E(f(X)|Fi−1), and F = Fi−1, we obtain that

E
(
eλVi(X)

∣∣Fi−1

)
≤ exp

λ2

8

(
n∑
j=i

Γi,jcj

)2
 .

By taking the product of these, we obtain (3.6.1), and as a consequence, (3.2.5). The

tail bounds follow by Markov’s inequality.

Proof of Corollary 3.2.11. We use the Marton coupling of Proposition 3.2.4. By the

simple fact that ‖Γ‖ ≤
√
‖Γ‖1‖Γ‖∞, we have ‖Γ‖ ≤ 2/(1− ε), so applying Theorem

3.2.9 and taking infimum in ε proves the result.

3.6.2 Proofs by spectral methods

Proof of Proposition 3.3.2. The proof of the first part is similar to the proof of Propo-

sition 30 of Ollivier (2009). Let L∞(π) be the set of π-almost surely bounded func-

tions, equipped with the ‖ · ‖∞ norm (‖f‖∞ := ess supx∈Ω |f(x)|). Then L∞(π) is

a Banach space. Since our chain is reversible, P is a self-adjoint, bounded linear

operator on L2(π). Define the operator π on L2(π) as π(f)(x) := Eπ(f). This is a

self-adjoint, bounded operator. Let M := P − π, then we can express the absolute

spectral gap γ∗ of P as

γ∗ = 1− sup{|λ| : λ ∈ S2(M )}, with S2(M) :=

{λ ∈ C \ 0 : (λI−M )−1 does not exists as a bounded lin. op. on L2(π)}.

Thus 1 − γ∗ equals to the spectral radius of M on L2(π). It is well-known that the

Banach space L∞(π) is a dense subspace of the Hilbert space L2(π). Denote the
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restriction of M to L∞(π) by M∞. Then this is a bounded linear operator on a

Banach space, so by Gelfand’s formula, its spectral radius (with respect to the ‖‖∞

norm) is given by limk→∞ ‖M k
∞‖

1/k
∞ . For some 0 ≤ ε < 1, it is easy to see that

‖M τ(ε)
∞ ‖∞ ≤ 2ε, and for l ≥ 1, τ(εl) ≤ lτ(ε), thus ‖M lτ(ε)

∞ ‖∞ ≤ 2εl. Therefore, we

can show that

lim
k→∞
‖M k

∞‖1/k
∞ ≤ ε1/τ(ε). (3.6.2)

For self-adjoint, bounded linear operators on Hilbert spaces, it is sufficient to control

their spectral radius on a dense subspace, and therefore M has the same spectral

radius as M∞. This implies that

γ∗ ≥ 1− ε1/τ(ε) = 1− exp(− log(1/ε)/τ(ε)) ≥ 1

1 + τ(ε)/ log(1/ε)
.

Now we turn to the proof of (3.3.6). For Markov chains on finite state spaces, (3.3.6)

is a reformulation of Theorem 2.7 of Fill (1991) (using the fact that for reversible

chains, the multiplicative reversiblization can be written as P 2). The same proof

works for general state spaces as well.

Proof of Proposition 3.3.3. In the non-reversible case, it is sufficient to bound

γ((P ∗)τ(ε)P τ(ε)) = γ∗((P ∗)τ(ε)P τ(ε)),

for some 0 ≤ ε < 1. This is done similarly as in the reversible case. Firstly, note

that γ∗((P ∗)τ(ε)P τ(ε)) can be expressed as the spectral radius of the matrix Q2 :=

(P ∗)τ(ε)P τ(ε)−π. Denote the restriction of Q2 to L∞(π) by Q∞. Then by Gelfand’s

formula, Q∞ has spectral radius limk→∞ ‖Qk
∞‖

1/k
∞ , which can be upper bounded by ε.
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Again, it is sufficient to control the spectral radius on a dense subspace, thus Q2 has

the same spectral radius as Q∞, and therefore γ((P ∗)τ(ε)P τ(ε)) ≥ 1 − ε. The result

now follows from the definition of γps.

Finally, we turn to the proof of (3.3.10). Note that for any k ≥ 1,

dTV (qP n(·), π) ≤ dTV

(
q(P k)bn/kc(·), π

)
.

Now using Theorem 2.7 of Fill (1991) with M = (P ∗)kP k, we obtain

dTV (qP n(·), π) ≤ 1

2
(1− γ((P ∗)kP k))bn/kc/2 ·

√
Nq − 1.

Finally, we choose the k such that γ((P ∗)kP k) = kγps, then

dTV (qP n(·), π) ≤ 1

2
(1− kγps)

bn/kc/2 ·
√
Nq − 1

≤ 1

2
(1− γps)

(n−k)/2 ·
√
Nq − 1 ≤ 1

2
(1− γps)

(n−1/γps)/2 ·
√
Nq − 1.

Proof of Theorem 3.3.4. Without loss of generality, we assume that Eπ(f) = 0, and

Eπ(fi) = 0, for 1 ≤ i ≤ n. For stationary chains,

Eπ(f(Xi)f(Xj)) = Eπ(fP j−i(f)) = Eπ(f(P − π)j−i(f)),

for 1 ≤ i ≤ j ≤ n. By summing up in j from 1 to n, we obtain

Eπ

(
f(Xi)

n∑
j=1

f(Xj)

)
=

〈
f,

(
n∑
j=1

(P − π)|j−i|

)
f

〉
π

, (3.6.3)
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where

n∑
j=1

(P − π)|j−i| = I +
i−1∑
k=1

(P − π)k +
n−i∑
k=1

(P − π)k = (I − (P − π)i)

· (I − (P − π))−1 + (I − (P − π)n−i+1) · (I − (P − π))−1 − I.

Since P is reversible, the eigenvalues of P −π lie in the interval [−1, 1−γ]. It is easy

to show that for any k ≥ 1 integer, the function x→ (1−xk)/(1−x) is non-negative

on the interval [−1, 1 − γ], and its maximum is less than or equal to max(1/γ, 1).

This implies that for x ∈ [−1, 1− γ], for 1 ≤ i ≤ n,

−1 ≤ (1− xi)/(1− x) + (1− xn−i+1)/(1− x)− 1 ≤ 2 max(1/γ, 1)− 1.

Now using the fact that 0 < γ ≤ 2, we have |(1−xi)/(1−x)+(1−xn−i+1)/(1−x)−1| ≤

2/γ, and thus

∥∥∥∥∥
n∑
j=1

(P − π)|j−i|

∥∥∥∥∥
2,π

≤ 2

γ
, thus E

(
f(Xi)

n∑
j=1

f(Xj)

)
≤ 2

γ
Eπ
(
f 2
)
.

Summing up in i leads to (3.3.14).

Now we turn to the proof of (3.3.15). Summing up (3.6.3) in i leads to

E

(( n∑
i=1

f(Xi)

)2
)

=

〈
f,
[
(2nI − 2

(
I − (P − π)n−1)(I − (P − π))−1

)
(3.6.4)

· (I − (P − π))−1 − nI
]
f

〉
π

,
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so by the definition of σ2
as, we can see that

σ2
as =

〈
f,
[
2(I − (P − π))−1 − I

]
f
〉
π
, and∣∣∣∣∣Varπ

(
n∑
i=1

f(Xi)

)
− nσ2

as

∣∣∣∣∣
=
∣∣〈f, [2(I − (P − π)n−1) · (I − (P − π))−2

]
f
〉
π

∣∣ ≤ 4Vf/γ
2.

Now we turn to the proof of (3.3.16). For stationary chains, for 1 ≤ i, j ≤ n,

Eπ(fi(Xi)fj(Xj)) = Eπ(fiP
j−i(fj)) = Eπ(fi(P − π)j−i(fj))

≤ ‖fi‖2,π‖fj‖2,π‖P − π‖j−i2,π ≤
1

2
Eπ(f 2

i + f 2
j )(1− γ∗)i−j,

and thus for any 1 ≤ i, j ≤ n, E(fi(Xi)fj(Xj)) ≤ 1
2
Eπ(f 2

i + f 2
j )(1− γ∗)|i−j|. Summing

up in i and j proves (3.3.16).

Proof of Theorem 3.3.6. Without loss of generality, we assume that Eπ(f) = 0, and

Eπ(fi) = 0 for 1 ≤ i ≤ n. Now for 1 ≤ i, j ≤ n,

Eπ(f(Xi)f(Xj)) = Eπ(fP j−i(f)) = Eπ(f(P − π)j−i(f)) ≤ Vf
∥∥(P − π)j−i

∥∥
2,π
,

and for any integer k ≥ 1, we have

∥∥(P − π)|j−i|
∥∥ ≤ ∥∥(P − π)k

∥∥d |j−i|k
e

2,π
=
∥∥(P ∗ − π)k(P − π)k

∥∥ 1
2
d |j−i|

k
e

2,π
.

Let kps be the smallest positive integer such that kpsγps = γ
(
(P ∗)kpsP kps

)
= 1 −∥∥(P ∗ − π)k(P − π)k

∥∥
2,π

, then E(f(Xi)f(Xj)) ≤ Vf (1− kγps)
1
2
d j−i
kps
e
. By summing up



CHAPTER 3. CONCENTRATION FOR MARKOV CHAINS 120

in i and j, and noticing that

∞∑
l=0

(1− kpsγps)
1
2
d l
kps
e ≤ 2

∞∑
l=0

(1− kpsγps)
d l
kps
e

=
2kps

kpsγps

=
2

γps

,

we can deduce (3.3.17). By the definition of σ2
as, it follows that

σ2
as =

〈
f,
[
2(I − (P − π))−1 − I

]
f
〉
π
,

and by comparing this with (3.6.4), we have

∣∣∣∣∣Varπ

(
n∑
i=1

f(Xi)

)
− nσ2

as

∣∣∣∣∣
=
∣∣〈f, [2(I − (P − π)n−1) · (I − (P − π))−2

]
f
〉
π

∣∣ .
In the above expression, ‖(I − (P − π)n−1)‖2,π ≤ 2, and for any k ≥ 1,

‖(I − (P − π))−1‖2,π ≤
∞∑
i=0

‖(P − π)i‖2,π ≤ k
∞∑
i=0

‖(P − π)k‖i2,π

=
k

1−
√

1− γ((P ∗)kP k)
≤ 2k

γ((P ∗)kP k)
.

Optimizing in k gives ‖(I− (P −π))−1‖2,π ≤ 2/γps, and (3.3.18) follows. Finally, the

proof of (3.3.19) is similar, and is left to the reader as exercise.

Before starting the proof of the concentration bounds, we state a few lemmas that

will be useful for the proofs.

Lemma 3.6.2. Let X1, . . . , Xn be a time homogeneous, stationary Markov chain,

with state space Ω, and stationary distribution π. Suppose that f : Ω → R is a
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bounded function in L2(π), and let S := f(X1) + . . .+ f(Xn). Then for any θ,

Eπ(exp(θS)) =
〈
1, (eθDfP )n1

〉
π
≤ ‖eθDf/2P eθDf/2‖n−1

2,π ‖eθf/2‖2
2,π, (3.6.5)

here 1 is the constant 1 function on Ω, and Df is the bounded linear operator on

L2(π) corresponding to Df (g)(x) = f(x)g(x) for every x ∈ Ω, g ∈ L2(π).

More generally, if f1, . . . , fn are bounded functions in L2(π), and S ′ := f1(X1) +

. . .+ fn(Xn), then for any θ,

Eπ(exp(θS ′)) =
〈
1,
(
eθDf1P

)
· . . . ·

(
eθDfnP

)
1
〉
π

(3.6.6)

=
〈
1,
(
P eθDf1

)
· . . . ·

(
P eθDfn

)
1
〉
π

≤ ‖P eθDf1‖2,π · . . . · ‖P eθDfn‖2,π.

Proof. This result is well known, it follows by a straightforward application of the

Markov property.

Lemma 3.6.3. Suppose that f ∈ L2(π), −1 ≤ f ≤ 1, Eπ(f) = 0, then for reversible

P , for 0 < θ < γ/10, we have

‖eθDfP eθDf‖2,π ≤ 1 +
4Vf
γ
· θ2 ·

(
1− 10θ

γ

)−1

, and (3.6.7)

‖eθDfP eθDf‖2,π ≤ 1 + 2(σ2
as + 0.8Vf ) · θ2 ·

(
1− 10θ

γ

)−1

, (3.6.8)

where Vf := Eπ(f 2) and σ2
as := limN→∞

1
N

Varπ(f(X1) + . . .+ f(XN)).

Proof. (3.6.7) is proven in Lezaud (1998b) (pages 47 and 97), see also Lezaud (1998a).

We prove (3.6.8) using a refinement of the same argument. Let us assume, without loss
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of generality, that our Markov chain has a finite state space (the general state space

case can be proven analogously, see page 97 of Lezaud (1998b)). We start by noting

that the positive definite matrix eθDfP eθDf is similar to the matrix P (2θ) := P e2θDf .

Using the Ferron-Probenius theorem, it follows that P (2θ) has real eigenvalues, and

‖eθDfP eθDf‖2,π = λmax(P (2θ)) (the maximal eigenvalue).

Define the operator π on L2(π) as π(f)(x) = Eπ(f) for any x ∈ Ω. Denote

Z :=
∞∑
n=0

(P n − π) =
∞∑
n=0

(P − π)n = (I − P + π)−1,

Z(0) := −π , and Z(k) := Zk for k ≥ 1. Then we have ‖Z‖π = 1/γ. By page 46 of

Lezaud (1998b), using the theory of linear perturbations, for 0 ≤ r ≤ γ/3, we have

λmax(P (r)) = 1 +
∞∑
n=1

β(n)rn, with

β(n) =
n∑
p=1

−1

p

∑
ν1+...+νp=n
k1+...+kp=p−1
vi≥1,kj≥0

1

ν1! · · · νp!
tr
[
PDν1

f Z
(k1) · · ·PDνp

f Z
(kp)
]
.

Now for every integer valued vector (k1, . . . , kp) satisfying k1 + . . .+kp = p−1, ki ≥ 0,

at least one of the indices must be 0. Suppose that the lowest such index is i, then we

define (k′1, . . . , k
′
p) := (ki+1, . . . , kp, k1, . . . , ki), (a “rotation” of the original vector).

We define (ν ′1, . . . , ν
′
p) analogously. Using the fact that such rotation of matrices does

not change the trace, and that Z(k′p) = Z(0) = −π, we can write

β(n) =
n∑
p=1

1

p

∑
ν1+...+νp=n
k1+...+kp=p−1
vi≥1,kj≥0

1

ν1! · · · νp!

〈
f ν
′
1 ,Z(k′1)PDν2

f · · ·Z
(k′p−1)P f ν

′
p

〉
π
. (3.6.9)
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After a simple calculation, we obtain β(1) = 0, and β(2) = 〈f,Zf〉π − (1/2) 〈f, f〉π.

By page 48-49 of Lezaud (1998b), 〈f,Zf〉π = σ2
as + (1/2) 〈f, f〉π, thus β(2) = σ2

as. For

n = 3, after some calculations, using the fact that Z and P commute, we have

β(3) = 〈f,ZPDfZP f〉π +
〈
f,ZP f 2

〉
π

+
1

6
Eπ(f 3)

=
〈
Z1/2f,Z1/2PDfPZ

1/2(Z1/2f)
〉
π

+
〈
f,ZP f 2

〉
π

+
1

6
〈f,Dff〉π ,

and we have 〈f,ZP f 2〉π ≤
Vf
γ

, 1
6
〈f,Dff〉π ≤

1
6
Vf ,

〈
Z1/2f,Z1/2PDfPZ

1/2(Z1/2f)
〉
π

≤ ‖Z1/2f‖2
2,π · ‖Z1/2PDfPZ

1/2‖2,π

≤ 1

γ
〈f,Zf〉π =

1

γ

(
σ2

as + Vf/2
)
,

thus |β(3)| ≤ σ2
as/γ + (3/2)Vf/γ + (1/6)Vf . Suppose now that n ≥ 4. First, if p = n,

then ν1 = . . . = νp = 1, thus each such term in (3.6.9) looks like

〈
f,Z(k′1)PDf · · ·Z(k′n−1)PDfZ

(k′n−1)P f
〉
π

=
〈
f,Z(k′1)PDf · · ·Z(k′n−1)PDfPZ

(k′n−1)f
〉
π
.

If k′1 or k′n−1 are 0, then such terms equal zero (since π(f) = 0). If they are at least

one, then we can bound the absolute value of this by

∣∣∣〈Z1/2f,Zk′1−1/2PDf · · ·Z(k′n−1)PDfPZ
k′n−1−1/2(Z1/2f)

〉
π

∣∣∣
≤ 〈f,Zf〉π

2γn−2
≤ σ2

as + Vf
2γn−2

.
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It is easy to see that there are
(

2(n−1)
n−1

)
such terms. For 1 ≤ p < n, we have

∥∥∥〈f ν′1 ,Z(k′1)PDν2
f · · ·Z

(k′p−1)P f ν
′
p

〉
π

∥∥∥ ≤ Vf
γp−1

,

and there are
(
n−1
p−1

)(
2(p−1)
p−1

)
such terms. By summing up, and using the fact that

ν1! · · · νp! ≥ 2n−p, and 2/γ ≥ 1, we obtain

|β(n)| ≤ 1

n

(
2(n− 1)

n− 1

)
σ2

as + Vf
2γn−2

+
n−1∑
p=1

1

p

(
n− 1

p− 1

)(
2(p− 1)

p− 1

)
1

2n−p
· Vf
γp−1

≤ 1

n

(
2(n− 1)

n− 1

)
σ2

as + Vf
2γn−2

+
Vf

2n−1

n−1∑
p=1

1

p

(
n− 1

p− 1

)(
2(p− 1)

p− 1

)(
2

γ

)n−2

.

Now by (1.11) on page 20 of Lezaud (1998b), we have
(

2(n−1)
n−1

)
≤ 4(n−1)√

(n−1)π
. Define

D(n) :=
∑n

p=1
1
p

(
n−1
p−1

)(
2(p−1)
p−1

)
, then by page 47 of Lezaud (1998b), for n ≥ 3, D(n) ≤

5n−2. Thus for n ≥ 4, we have

|β(n)| ≤ 4n−1

n
√

(n− 1)π

σ2
as + Vf
2γn−2

+
5n−3

2γn−2
Vf (3.6.10)

≤ 5n−2

γn−2

(
σ2

as + Vf
2

· 1

4
+
Vf
10

)
≤ 5n−2

γn−2

(
σ2

as + 0.8Vf
2

)
.

By comparing this with our previous bounds on β(2) and β(3), we can see that (3.6.10)

holds for every n ≥ 2. By summing up, we obtain

λmax(P (r)) = 1 +
∞∑
n=1

β(n)rn ≤ 1 +
σ2

as + 0.8Vf
2

· r2

1− 5r/γ
,

and substituting r = 2θ gives (3.6.8).

Proof of Theorem 3.3.7. We can assume, without loss of generality, that C = 1. First,
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we will prove the bounds for S, then for S ′.

By (3.6.5), we have

Eπ(exp(θS)) ≤ ‖eθDf/2P eθDf/2‖n−1
2 · Eπ

(
eθf
)
. (3.6.11)

By (3.6.7), and (3.6.8), we have that for 0 ≤ θ ≤ γ/5,

‖eθDf/2P eθDf/2‖2,π ≤ exp

(
Vf
γ
· θ2 ·

(
1− 5θ

γ

)−1
)
, and (3.6.12)

‖eθDf/2P eθDf/2‖2,π ≤ exp

(
σ2

as + 0.8Vf
2

· θ2 ·
(

1− 5θ

γ

)−1
)
. (3.6.13)

Now using the fact that −1 ≤ f(x) ≤ 1, Eπ(f) = 0, it is easy to show that for

any θ ≥ 0,

Eπ
(
eθf
)
≤ exp

(
Vf (e

θ − θ − 1)
)
,

and it is also easy to show that this can be indeed further bounded by the right hand

sides of (3.6.12) and (3.6.13). Therefore, we obtain that for 0 ≤ θ ≤ γ/5,

Eπ(exp(θS)) ≤ exp

(
nVf
γ
· θ2 ·

(
1− 5θ

γ

)−1
)
, and

Eπ(exp(θS)) ≤ exp

(
nσ2

as + 0.8Vf
2

· θ2 ·
(

1− 5θ

γ

)−1
)
.

Now the bounds (3.3.21) and (3.3.20) follow by Markov’s inequality, for the opti-

mal choice

θ =
tγ

Vf (1 + 5t/Vf +
√

1 + 5t/Vf )
, and θ =

t

5t/γ +K(1 +
√

1 + 5t/(γK))
,
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with K = 0.5σ2
as + 0.4Vf .

Now we are going to prove (3.3.22). Firstly, by (3.6.6), we have

Eπ(exp(θS ′)) ≤ ‖P eθDf1‖2,π · . . . · ‖P eθDfn‖2,π. (3.6.14)

Now for 0 ≤ θ ≤ γ(P 2)/10, each of these terms can be further bounded by (3.6.7) as

‖P eθDfi‖2,π = ‖eθDfiP 2eθDfi‖1/2
2,π ≤ exp

(
2Eπ(f 2

i )

γ(P 2)
· θ2 ·

(
1− 10θ

γ(P 2)

)−1
)
.

By taking the product for 1 ≤ i ≤ n, we obtain that for 0 ≤ θ ≤ γ(P 2)/10,

Eπ(exp(θS ′)) ≤ exp

(
2VS′

γ(P 2)
· θ2 ·

(
1− 10θ

γ(P 2)

)−1
)
, (3.6.15)

and (3.3.22) follows by Markov’s inequality.

Proof of Theorem 3.3.9. We will treat the general case concerning S ′ first. The proof

is based on a trick of Janson (2004). First, we divide the sequence f1(X1), . . . , fn(Xn)

into kps parts,

(
f1(X1), fkps+1(Xkps+1), . . . ,

)
, . . . ,

((
fkps(Xkps), f2kps(X2kps), . . . ,

))
.

Denote the sums of each part by S ′1, . . . , S
′
kps

, then S ′ =
∑kps

i=1 S
′
i. By Yensen’s in-

equality, for any weights 0 ≤ p1, . . . , pkps ≤ 1 with
∑kps

i=1 pi = 1,

Eπ exp(θS ′) ≤
kps∑
i=1

piEπ exp((θ/pi) · S ′i). (3.6.16)
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Now we proceed the estimate the terms E exp(θS ′i).

Notice that Xi, Xi+kps , . . . , Xi+kpsb(n−i)/kpsc is a Markov chain with transition kernel

P kps . Using (3.6.6) on this chain, we have

Eπ(exp(θS ′i)) ≤ ‖P kpseθDfi‖2,π · . . . · ‖P kpse
θDfi+kpsb(n−i)/kpsc‖2,π.

Now ∥∥∥P kpseθDfj

∥∥∥
2,π

=
∥∥∥eθDfj (P ∗)kps P kpseθDfj

∥∥∥1/2

2,π
.

By (3.6.7), and using the assumption Eπ(fj) = 0,

∥∥∥P keθDfj

∥∥∥
2,π

≤ ‖eθDfP eθDf‖2,π ≤ exp

(
2Varπ(fj)

γ((P ∗)kpsP kps)
· θ2 ·

(
1− 10θ

γ((P ∗)kpsP kps)

)−1
)
.

By taking the product of these, we have

Eπ(exp(θS ′i))

≤ exp

(
2
∑b(n−i)/kpsc

j=0 Varπ(fi+jkps)

γ((P ∗)kpsP kps)
· θ2 ·

(
1− 10θ

γ((P ∗)kpsP kps)

)−1
)
.

These bounds hold for every 1 ≤ i ≤ kps. Setting pi in (3.6.16) as

pi := V
1/2
i /

(
k∑
i=1

V
1/2
i

)
,
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and using the inequality (
∑kps

i=1 V
1/2
i )2 ≤ kps

∑n
i=1 Vi, we obtain

Eπ(exp(θS ′)) ≤ exp

(
2kps

∑n
j=1 Varπ(fj)

γ((P ∗)kpsP kps)
· θ2 ·

(
1− 10θ ·M

γ((P ∗)kpsP kps)

)−1
)

≤ exp

(
2
∑n

j=1 Varπ(fj)

γps

· θ2 ·
(

1− 10θ ·M
kpsγps

)−1
)
,

and (3.4.30) follows by Markov’s inequality. In the case of (3.3.23), we have

Eπ(exp(θS ′i))

≤ exp

(
2dn/kpse

γ((P ∗)kpsP kps)
· θ2 ·

(
1− 10θ

γ((P ∗)kpsP kps)

)−1
)
,

which implies that

Eπ(exp(θS)) ≤ exp

(
2kpsdn/kpseVarπ(f)

γps

· θ2 ·
(

1− 10θ

γps

)−1
)
.

Now (3.3.23) follows by Markov’s inequality and kpsdn/kpse ≤ n+ 1/γps.

Proof of Proposition 3.3.12. Inequalities (3.3.25) and (3.3.26) follow by writing

Pq (g(X1, . . . , Xn) ≥ t) = Eq (1[g(X1, . . . , Xn) ≥ t])

= Eπ
(

dq

dπ
· 1[g(X1, . . . , Xn) ≥ t]

)
,

and then applying Cauchy-Schwartz inequality. Inequality (3.3.27) follows by noticing

that by the Markov property, the two distributions

L(Xt0+1, . . . , Xn|X1 ∼ q) and L(Xt0+1, . . . , Xn|X1 ∼ π)
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have total variational distance equal to the total variational distance of

L(Xt0+1|X1 ∼ q) and L(Xt0+1|X1 ∼ π).

Proof of Proposition 3.3.13. Inequalities (3.3.28) and (3.3.29) follow from (2.11) on

page 68 of Fill (1991), similarly to the proof of Proposition 3.3.3 (by noticing that

the χ2 distance can be written as Nq−1). Finally, (3.4.41) follows from the definition

of τ(ε) and tmix.

Proof of Proposition 3.3.14. This follows by a straightforward coupling argument.

The details are left to the reader.

3.6.3 Proofs for continuous time Markov processes

Proofs of Propositions 3.4.5 and 3.4.6. Notice that Pτ(ε) = eτ(ε)L (as operators on

D2(L)), and thus γ(Pτ(ε)) = eτ(ε)γcont
. From here, the proof is similar to the proof of

Propositions 3.3.2 and 3.3.3, and it is left to the reader as an exercise. Note that in

the reversible case, one needs to use Theorem 2.14 of Fill (1991) for proving (3.4.11)

(in the non-reversible case, we can still use Theorem 2.7).

Proofs of Propositions 3.4.16 and 3.4.17. The proofs are similar to the proofs of Propo-

sitions 3.3.12 and 3.3.13

Proof of Proposition 3.4.18. This follows by a straightforward coupling argument.

The details are left to the reader.

Proof of Theorem 3.4.8. This result follows by applying (3.3.16) of Theorem 3.3.4 to
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bound the variance of sums of the form

T − t0
N

N∑
k=1

f
t0+

T−t0
N
·k

(
X
t0+

T−t0
N
·k

)
,

and then taking the limit as N → ∞. The details are left to the reader. Notice

that in continuous time, there is no difference between the spectral gap and absolute

spectral gap (since all the eigenvalues of the generator L are negative).

Proof of Theorem 3.4.7. This is similar to the proof of Theorem 3.4.8.

Proof of Theorem 3.4.9. The proof is similar to the previous one, except here we use

Theorem 3.3.6.

Proof of Theorem 3.4.10. By (3.4.22), it is sufficient to consider tail bounds of the

form

Pπ

(
T

N

N∑
k=1

f T
N
·k

(
X T

N
·k

)
≥ r

)
.

Now for {X T
N
·k}k≥1 is a reversible Markov chain with transition kernel PT/N , so we can

apply Theorem 3.3.7. Using the fact that PT/N = eT/N ·L, it follows that γ(PT/N) =

γ∗(PT/N), and thus by (3.3.21),

Pπ

(
T

N

N∑
k=1

f T
N
·k

(
X T

N
·k

)
≥ r

)

≤ 2 exp

− r2 · (2γ(PT/N)− (γ(PT/N))2) ·N2/T 2

8
∑N

k=1 Var
(
f T
N
·k

(
X T

N
·k

))
+ 20rC ·N/T

 .

Now we can see that

γ(Pt/N) = γ(eT/N ·L) =
T

N
γcont + o(1/N), (3.6.17)
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thus, using (3.4.23), we obtain that

lim
N→∞

γ(PT/N)− (γ(PT/N))2) ·N2/T 2

8
∑N

k=1 Var
(
f T
N
·k

(
X T

N
·k

))
+ 20tC ·N/T

=
γcont

4
∫ T
t=0

Varπ(ft)dt+ 10tC
,

thus the result follows.

Proof of Theorem 3.4.11. This is similar to the proof of Theorem 3.4.10. We apply

Theorem 3.3.7 on the Markov chain
{
X T

N
·k

}
k≥1

, and then take the limit N →∞.

Proof of Theorem 3.4.12. Assume, without loss of generality, that Eπft = 0 for 0 ≤

t ≤ T . We have

S ′ =

∫ tps

t=0

T/tps∑
j=0

ft+jtps(Xt+jtps)dt.

From the proof of Theorem 3.3.9, it follows that

E

exp

θ T/tps∑
j=0

ft+jtps(Xt+jtps)


≤ exp

(
2
∑T/tps

j=0 Varπft+jtps

γ((P ∗)tpsPkps)
· θ2 ·

(
1− 10θ

γ((P ∗)tpsPtps)

)−1
)
,

and the result follows by applying Jensen’s inequality with appropriate weights.

Proof of Theorem 3.4.15. This follows by applying Corollary 3.2.11 to f(X(N)), then

taking the limit in N →∞ (and using (3.4.32) and (3.4.33)).



Chapter 4

Mixing and concentration by Ricci

curvature1

4.1 Introduction

The coarse Ricci curvature of a Markov chain with metric state space (Ω, d), and

kernel P (x, dz) was defined in Ollivier (2009) as

κ(x, y) = 1− W1(Px, Py)

d(x, y)
for x 6= y, and κ = inf

x,y∈Ω,x 6=y
κ(x, y).

where Px denotes the measure P (x, dz), and W1 denotes the Wasserstein distance of

Px and Py.

It is known that for reversible chains, κ gives a lower bound on the spectral

gap: γ ≥ κ. It can be also used to bound the mixing time of the chain (known as

the Bubley-Dyer path coupling method, see Bubley and Dyer (1997)). The name

1This chapter is based on the manuscript Paulin (2013).
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curvature comes from the fact that it is linked to the geometric definition of Ricci

curvature. One of the motivating examples of Ollivier (2009) is the well known

Gromov-Lévy theorem, which it recovers (up to a small constant factor).

When considering Lipschitz functions on Ω under the stationary distribution π

of the chain, it is possible to prove variance and concentration bounds, with con-

stants depending on 1/κ, the typical step size of the Markov chain, and the Lipschitz

coefficient. In addition to this, one can show concentration inequalities for MCMC

empirical averages of Lipschitz functions (see Joulin and Ollivier (2010)).

The coarse Ricci curvature approach have been found to give the right order

of concentration and spectral bounds in numerous examples. However, there were

also cases where it has not succeeded to give bounds of the correct order. One of

them is the split-merge walk on partitions (also called the coagulation-fragmentation

chain, see Diaconis, Mayer-Wolf, Zeitouni, and Zerner (2004) for references), where

κ = O(1/N2), which is too small, since γ = O(1/N) in this case. In order to extend

the coarse Ricci curvature approach to this situation, we define the multi-step coarse

Ricci curvature as

κk(x, y) = 1−
W1(P k

x , P
k
y )

d(x, y)
for x 6= y, and κk = inf

x,y∈Ω,x 6=y
κk(x, y),

which is the coarse Ricci curvature of the k step Markov kernel P k. We extend the

spectral and concentration bounds to this case. We show that for reversible chains,

for any k ∈ N, the spectral gap satisfies γ ≥ κk/k, and concentration inequalities hold

with constants depending on
∑∞

k=0(1 − κk). In particular, this allows us to recover

bounds of the correct order of magnitude for the split-merge walk on partitions.

Our concentration bounds essentially mean that if we have a Markov chain that
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has small step sizes, and it mixes fast in the multi-step coarse Ricci curvature sense,

then the stationary distribution is concentrated. Intuitively, it is clear that stationary

distributions of such chains cannot have multiple modes, since they could not mix

well by just making local moves. Unimodal distributions tend to satisfy some form

of concentration, and as we will see, the strength of the concentration (Gaussian,

exponential, or polynomial) is related to the tail behaviour of the step sizes.

We propose several approaches to bound κk. The first approach is applicable when

the mixing time of the chain can be bounded, and the state space is discrete. In this

case, we are able to obtain bounds on κk for sufficiently large k, which in turn can

imply concentration bounds. We illustrate this with an example about the Curie-

Weiss model in critical phase. The second approach gives a recursive lower bound on

κk. If the curvature is positive in most of the state space, and negative in a small

part, then in some situations, this recursive bound can show that κk becomes positive

for sufficiently large k. An example is given about a random walk on a binary cube

with a forbidden region.

Now we explain the organisation of this chapter. In Section 4.2, we introduce the

main definitions. Section 4.3 contains our results, in particular, new spectral bounds,

concentration inequalities, and moment bounds involving the multi-step coarse Ricci

curvature. We also state propositions for bounding κk. In Section 4.4, we present some

applications. Finally, Section 4.5 contains the proofs of our concentration inequalities.

We end the introduction by a few additional remarks about the related litera-

ture. The coarse Ricci curvature approach originates from semigroup tools, which

have been used previously in the literature to prove concentration inequalities for
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Lipschitz functions of random variables distributed according to the stationary dis-

tribution of a Markov process (see Ledoux (2001), Section 2.3). These can be used

to prove concentration for the Gaussian measure, and more generally, for log-concave

densities. For a recent extension of the coarse Ricci curvature to continuous time

Markov processes, see Veysseire (2012a), and Veysseire (2012b). Veysseire (2012) ob-

tains concentration bounds in the case when the coarse Ricci curvature is zero. The

coarse Ricci curvature have been used previously, but without geometric interpreta-

tion, to bound mixing times, known as the Bubley-Dyer path coupling method. In

this sense, it has been also extended to consider multiple steps in the Markov chain,

in Dyer, Goldberg, Greenhill, Jerrum, and Mitzenmacher (2000), see also Bhamidi,

Bresler, and Sly (2011). The coarse Ricci curvature approach was adapted to graphs

in Bauer, Jost, and Liu (2011) and Bauer, Horn, Lin, Lippner, Mangoubi, and Yau

(2013), and to adaptive MCMC in Pillai and Smith (2013).

There is another popular curvature notion called the Sturm-Lott-Villani curvature

(Lott and Villani (2009), Sturm (2006)). Ollivier (2013) gives a visual introduction

to various curvature definitions, and compares them on numerous examples. In the

case of Riemann manifolds, Milman (2012a) studies the relation of isoperimetric,

functional and transportation cost inequalities, and Milman (2012b) generalises the

Gromov-Lévy theorem to compact manifolds with negative curvature. This chapter

was motivated by some of the problems of the survey Ollivier (2010). Finally, we

note that after we have completed this work, Luczak (2008) have been bought to our

attention. It considers similar ideas as ours, and obtains concentration and spectral

bounds depending on the contraction properties of the measures describing multiple

steps in the Markov chain. The approach was further developed in Luczak (2012),
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Brightwell and Luczak (2013b) and Brightwell and Luczak (2013a). Our results in

this chapter are more precise, since they take into account the typical size of the

jump of the Markov chain, as well as the dimension of the state space, which were

not considered in the earlier work. In addition, we also show a recursive bound on

the multi-step coarse Ricci curvature, which makes our method easier to apply in

practice.

4.2 Preliminaries

We will work with stationary, time homogeneous Markov chains (Xi)i∈N with transi-

tion kernel P (x, dy) taking values in a Polish metric space (Ω, d). We will denote the

stationary distribution of the chain by π. The expected value of a function f : Ω→ R

under π will be denoted by Eπ(f). The jump measure when starting from x will be

denoted by Px, that is, Px(dy) = P (x, dy). For k ≥ 0, the k-step transition kernel

will be denoted by P k(x, dy) (in particular, P 0(x, dy) = δx(dy), the Dirac-measure

concentrated on x).

4.2.1 Ricci curvature

We define the L1 transportation distance (Wasserstein distance) of two measures on

(Ω, d) as

W1(µ1, µ2) := inf
(X,Y )

E(d(X, Y )), (4.2.1)

where the infimum is taken over all couplings (X, Y ) of µ1 and µ2 (that is, (X, Y ) is

a random vector taking values on Ω × Ω, whose distribution has marginals µ1, and

µ2). The following definition is a generalisation of Ollivier’s coarse Ricci curvature
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(Definition 3 of Ollivier (2009)).

Definition 4.2.1 (Multi-step coarse Ricci curvature). Let (Ω, d) and P (x, dy) be as

above. Then for k ∈ N, x, y ∈ Ω, we let

κk(x, y) := 1−
W1(P k

x , P
k
y )

d(x, y)
if x 6= y, and κk(x, y) := 1 if x = y, (4.2.2)

and define the multi-step coarse Ricci curvature as κk := infx,y∈Ω κk(x, y).

Remark 4.2.2. For k = 1, this is just the usual definition of coarse Ricci curvature,

that is, κ = κ1. It is easy to show that 1− κi satisfies the inequality

1− κk+l ≤ (1− κk)(1− κl) for k, l ∈ N. (4.2.3)

4.2.2 Mixing time and spectral gap

We define the total variational distance of two measures P,Q defined on the same

state space (Ω,F) as

dTV(P,Q) := sup
A∈F
|P (A)−Q(A)|, (4.2.4)

which is equivalent to

dTV(P,Q) := inf
(X,Y )

P(X 6= Y ), (4.2.5)

with the infimum taken over all the couplings (X, Y ) of P and Q.

We define the mixing time of a time homogeneous Markov chain with general

state space in the following way (similarly to Section 4.5 and 4.6 of Levin, Peres, and

Wilmer (2009)).
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Definition 4.2.3 (Mixing time). Let X1, X2, X3, . . . be a time homogeneous Markov

chain with transition kernel P (x, dy), state space Ω (a Polish space), and stationary

distribution π. Let us denote

d(t) := sup
x∈Ω

dTV

(
P t
x, π
)
, tmix(ε) := min{t : d(t) ≤ ε}, and tmix := tmix(1/4).

Let L2(π) denote the Hilbert space of complex valued measurable functions with

domain Ω that are square integrable with respect to π, endowed with the inner product

< f, g >π=
∫
fg∗dπ, and norm ‖f‖2,π := 〈f, f〉1/2π = Eπ (f 2)

1/2
(we use the same

notation for the induced operator norm). P can be then viewed as a linear operator

on L2(π), denoted by P , defined as

(P f)(x) := EPx(f),

and reversibility is equivalent to the self-adjointness of P . The operator P acts on

measures to the left, creating a measure µP , that is, for every measurable subset A of

Ω, µP (A) :=
∫
x∈Ω

P (x,A)µ(dx). For a Markov chain with transition kernel P (x, dy),

and stationary distibution π, we define the time reversal of P as the Markov kernel

P ∗(x, dy) :=
P (y, dx)

π(dx)
· π(dy). (4.2.6)

Then the linear operator P ∗ is the adjoint of the linear operator P on L2(π). For a

Markov chain with stationary distribution π, we define the spectrum of the chain as

S2 := {λ ∈ C \ 0 : (λI− P )−1 does not exist as a bounded lin. oper. on L2(π)}.
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For reversible chains, S2 lies on the real line.

Definition 4.2.4 (Spectral gap and pseudo spectral gap). The spectral gap for re-

versible chains is

γ := 1− sup{λ : λ ∈ S2, λ 6= 1} if eigenvalue 1 has multiplicity 1,

γ := 0 otherwise.

For both reversible, and non-reversible chains, the absolute spectral gap is

γ∗ := 1− sup{|λ| : λ ∈ S2, λ 6= 1} if eigenvalue 1 has multiplicity 1,

γ∗ := 0 otherwise.

In the reversible case, γ ≥ γ∗.

The pseudo spectral gap of P (introduced in Paulin (2014)) is

γps := max
k≥1

{
γ((P ∗)kP k)/k

}
, (4.2.7)

where γ((P ∗)kP k) denotes the spectral gap of the self-adjoint operator (P ∗)kP k.

Remark 4.2.5. The pseudo spectral gap is similar to the spectral gap in the sense

that it allows to obtain variance and concentration bounds on MCMC empirical

averages, for example Varπ((f(X1) + . . . f(XN))/N) ≤ 4Varπ(f)/(Nγps) (see Paulin

(2014), Section 3). Moreover, it is related to the mixing time, γps ≤ 1/(2tmix),

and for chains on finite state spaces, tmix ≤ (1 + 2 log(2) + log(1/πmin))/γps (here

πmin := minx∈Ω π(x)).
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4.3 Results

In this section, we will present our results based on the multi-step coarse Ricci cur-

vature. In Section 4.3.1, we present a recursive lower bound for κk. Section 4.3.2

states spectral bounds, explain the relation of the multi-step coarse Ricci curvature

and spectral properties of the Markov chain, while Section 4.3.3 states bounds on the

diameter of the state space. In Section 4.3.4, where we state variance, moment, and

concentration bounds for Lipschitz functions of random variables distributed accord-

ing to the stationary distribution of a Markov chain.

4.3.1 Bounding the multi-step coarse Ricci curvature

Our first proposition, the so called geodesic property is useful to get bounds on κk

(similarly as in Proposition 19 of Ollivier (2009)).

Proposition 4.3.1. Suppose that (Ω, d) is ε-geodesic in the sense that for any two

points x, y ∈ Ω, there exists an integer n, and a sequence x0 = x,x1, . . . , xn = y such

that d(x, y) =
∑n−1

i=0 d(xi, xi+1) and d(xi, xi+1) ≤ ε for 0 ≤ i ≤ n− 1. Let k ≥ 1, then

if κk(x, y) ≥ κk for any pair of points x, y with d(x, y) ≤ ε, then κk(x, y) ≥ κk for

any pair of points x, y ∈ Ω.

Proof. Apply Proposition 19 of Ollivier (2009) to the Markov kernel P k.

The following proposition gives a recursive lower bound on the multi-step Ricci

curvature κk(x, y).

Proposition 4.3.2. For some x, y ∈ Ω, x 6= y, let (X, Y ) be a coupling of Px and Py,

then

κk+1(x, y) ≥ 1− E
(
d(X, Y )(1− κk(X, Y ))

d(x, y)

)
.
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If (X, Y ) satisfies that E(d(X, Y )) = W1(Px, Py) (that is, the coupling “achieves” the

Wasserstein distance), then

κk+1(x, y) ≥ κ(x, y) + E
(
κk(X, Y )d(X, Y )

d(x, y)

)
.

Proof. We are going to construct a coupling Xk+1 ∼ P k+1
x , Yk+1 ∼ P k+1

y as follows.

We start from our coupling (X, Y ) of Px and Py, and for any a, b ∈ Ω, define

L(Xk+1, Yk+1|X = a, Y = b)

as the optimal coupling between P k
a , P k

b , achieving E(d(Xk+1, Yk+1)|X = a, Y = b) =

W1(P k
a , P

k
b ). Then we have

W1(P k+1
x , P k+1

y ) ≤ E(d(Xk+1, Yk+1)) = E(E(d(Xk+1, Yk+1)|X, Y ))

= E((1− κk(X, Y ))d(X, Y )),

and thus

κk+1(x, y) = 1−
W1(P k+1

x , P k+1
y )

d(x, y)
≥ 1− E((1− κk(X, Y ))d(X, Y ))

d(x, y)

= 1− E(d(X, Y ))

d(x, y)
+ E

(
κk(X, Y )d(X, Y )

d(x, y)

)
.

Finally, if (X, Y ) is the optimal coupling between Px, and Py, then E(d(X, Y )) =

(1− κ(x, y))d(x, y), and the second claim of the proposition follows.

Suppose that everywhere except in a small part of the state space Ω, κ(x, y) > 0

for neighbouring x and y. Then this result says that κk+1(x, y) can be lower bounded
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by some sort of average of κk(x, y), and for sufficiently large k, the negative curvature

may disappear. In Section 4.4.3, we are going to apply this result to a random walk

on the binary cube with a forbidden region.

4.3.2 Spectral bounds

Our first result is a bound on the mixing time.

Proposition 4.3.3 (Relation of mixing time and coarse Ricci curvature). Let (Ω, d)

be a metric space, and P (x, dy) a Markov kernel. Suppose that diam (Ω) < ∞, and

there is d0 > 0 such that for any x 6= y, d(x, y) ≥ d0. Then

tmix(ε) ≤ inf{k : k ≥ 1, 1− κk ≤ εd0/diam (Ω)}. (4.3.1)

Conversely, we have, for any ε > 0, k ≥ tmix(ε/2),

κk ≥ 1− ε · diam (Ω)/d0. (4.3.2)

Remark 4.3.4. If κ > 0, then 1− κk ≤ (1− κ)k, thus

tmix(ε) ≤
⌈

log(εd0/diam (Ω))

log(1− κ)

⌉
,

which is the well known Bubley-Dyer path coupling bound. Our bound, however,

does not require κ > 0, thus it is more general.

Proof of Proposition 4.3.3. For two disjoint x, y ∈ Ω, k ≥ 1, we have

dTV(P k
x , P

k
y ) ≤

W1(P k
x , P

k
y )

d0

≤ diam (Ω)(1− κk)
d0

.
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Averaging out in y gives

dTV(P k
x , π) ≤ W1(P k

x , π)

d0

≤ diam (Ω)(1− κk)
d0

,

and this is less than equal to ε if 1− κk ≤ εd0/diam (Ω). The proof of (4.3.2), based

on Proposition 4.3.1, is left to the reader as exercise.

Now we give lower bounds on the spectral gap and the pseudo spectral gap.

Proposition 4.3.5 (Relation of spectral gap and coarse Ricci curvature). For re-

versible chains, for every k ≥ 1,

γ∗ ≥ 1− (1− κk)1/k ≥ κk
k
. (4.3.3)

Without assuming reversibility, for every k ≥ 1,

γps ≥
1− (1− κk(P ∗))(1− κk)

k
, (4.3.4)

with κk(P
∗) denoting the kth step coarse Ricci curvature of the time reversal of our

Markov kernel, P ∗(x, dy).

Remark 4.3.6. In Section 4.4.1, we are going to use this result to obtain a lower

bound for the spectral gap of the split-merge walk on partitions. Another application

is given in Section 4.4.2, where we use this proposition to bound the pseudo spectral

gap of the systemic scan Glauber dynamics in the high temperature regime.

Proof of Proposition 4.3.5. For reversible chains, by applying Proposition 30 of Ol-

livier (2009) to P k, we get that 1−γ∗(P k) ≤ 1−κk, and (4.3.3) follows by the fact that
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1 − γ∗(P k) = (1 − γ∗)k. Similarly, applying Proposition 30 of Ollivier (2009) to the

reversible kernel (P ∗)kP k, we get 1 − γ∗((P ∗)kP k) = 1 − γ((P ∗)kP k) ≤ κ((P ∗)kP k).

Now 1− κ((P ∗)kP k) ≤ (1− κk(P ∗))(1− κk), thus (4.3.4) follows.

4.3.3 Diameter bounds

Our first result in this section is an analogue of Proposition 23 of Ollivier (2009).

Proposition 4.3.7 (L1 Bonnet-Myers theorem). For k ≥ 1, let the k-step jump

length of the random walk at x be

Jk(x) :=

∫
y

d(x, y)dP k
x (y).

Suppose that for some k ≥ 1, κk(x, y) > 0 for every x, y ∈ Ω. Then for every x, y ∈ Ω,

we have

d(x, y) ≤ Jk(x) + Jk(y)

κk(x, y)
,

and in particular,

diam (Ω) ≤ 2 supx Jk(x)

κk
≤ 2k supx J(x)

κk
.

Proof. Apply Proposition 23 of Ollivier (2009) to P k.

Remark 4.3.8. In Section 4.4.1, we are going to apply this proposition to split-merge

walk on partitions, and obtain a bound on diameter of Ω of O(N).

Similarly, we can generalise Proposition 24 of Ollivier (2009).
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Proposition 4.3.9 (Average L1 Bonnet-Myers theorem). Suppose that for some k ≥

1, κk(x, y) > 0 for all x, y ∈ Ω. Then for any x ∈ Ω, we have

∫
d(x, y)dπ(y) ≤ Jk(x)

κk
,

and thus, ∫ ∫
d(x, y)dπ(x)dπ(y) ≤ 2 infx Jk(x)

κk
.

Proof. Apply Proposition 24 of Ollivier (2009) to P k.

4.3.4 Concentration bounds

Similarly to the results of Ollivier (2009), our concentration bounds will be based

on 3 types of quantities related to the multi-step coarse Ricci curvature, the average

step size of the Markov chain, and the dimension of the state space. In order to

avoid unnecessary repetitions in the statement of the theorems, we introduce some

notations (similarly to Definition 18 of Ollivier (2009)).

Definition 4.3.10. Firstly, we make a few definitions related to the multi-step coarse

Ricci curvature. Let us define, for any x, y ∈ Ω,

κcΣ(x, y) :=
∞∑
i=0

(1− κk(x, y)), let κcΣ := sup
x,y∈Ω

κcΣ(x, y), and M := sup
k≥0

(1− κk).

The letter c refers to complement (we add up 1− κk(x, y) instead of κk(x, y)).

Secondly, we state some definitions related to the step size of the Markov chain.
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Let the (coarse) diffusion constant of the random walk at x be

σ(x) :=

(
1

2

∫ ∫
d(y, z)2dPx(y)dPx(z)

)1/2

,

and let the average diffusion constant be

σ :=

(∫
x

σ2(x)dπ(x)

)1/2

.

Similarly, define the mean square jump length as

σ̂(x) :=

(∫
y

d(x, y)2dPx(y)

)1/2

,

and the average mean square jump length as

σ̂ :=

(∫
x

σ̂2(x)dπ(x)

)1/2

.

Let the local granularity be σ∞(x) := 1
2
diam SuppPx (the diameter of the support

of Px), and the granularity be σ∞ := supx∈Ω σ∞(x). Define the maximal diffusion

constant as σmax = supx∈Ω σ(x), and the maximal mean square jump length as σ̂max =

supx∈Ω σ̂(x).

Finally, we state a definition related to the dimension of the state space. Let the

local dimension at x be

n(x) :=
σ(x)2

sup{VarPxf, f : SuppPx → R 1 - Lipschitz}
.
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Remark 4.3.11. Using (4.2.3), we can see that κcΣ can be bounded as

κcΣ ≤
∑k−1

i=0 (1− κi)
κk

≤ kM

κk
for any k ≥ 1. (4.3.5)

The random walk can be divided into a drift term (corresponding to the change of

the expected location), and a diffusion term (corresponding to the spread in space).

The diffusion constant σ2(x) quantifies the diffusion term, when starting from point

x.

The local dimension n(x) is a quantity related to the dimension of the state space

Ω. In general, when Ω is an N dimensional Euclidean space (or surface of an N

dimensional manifold), n(x) is related to N . We always have n(x) ≥ 1.

Our first concentration result is a variance bound for Lipschitz functions (gener-

alising Proposition 32 of Ollivier (2009)).

Theorem 4.3.12 (Variance bound). For reversible chains satisfying

∫
y

d(x, y)κcΣ(x, y)dPx(y) <∞ for π − almost every x, (4.3.6)

for any 1-Lipschitz function f on (Ω, d), we have

Varπ(f) ≤
∫ ∫

κcΣ(x, y)d(x, y)2dπ(x)dPx(y) ≤ 1

2
κcΣσ̂

2. (4.3.7)

More generally, without using reversibility, we have

Varπ(f) ≤

(∑
k≥0

(1− κk)2

)
Eπ
(
σ2

n

)
. (4.3.8)
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Our next result is a moment bound for Lipschitz functions of reversible chains.

Theorem 4.3.13 (Moment bound for reversible chains). For reversible chains satis-

fying (4.3.6), for any 1-Lipschitz function f on (Ω, d), for any p ≥ 1, we have

Eπ
(
[f(X)− Eπ(f)]2p

)
≤
(

(2p− 1)κcΣ
2

)p
· Eπ(σ̂2p).

Now we state a concentration bound for reversible chains.

Theorem 4.3.14 (Concentration for reversible chains). For reversible chains satis-

fying (4.3.6), for any 1-Lipschitz function f on (Ω, d) we have the Gaussian bound

Pπ(|f(X)− Eπ(f)| ≥ t) ≤ 2 exp

(
− t2

κcΣ · σ̂2
max

)
. (4.3.9)

For x ∈ Ω, denote

V (x) :=

∫
κcΣ(x, y)d(x, y)2dPx(y).

Let L := 4Eπ(V )/(‖V ‖Lipσ̂
2κcΣ), where ‖V ‖Lip is the Lipschitz coefficient of V . Then

for any t ≥ 0,

Pπ(|f(X)− Eπ(f)| ≥ t) ≤ 2 exp

(
− t2

4Eπ(V ) + 4L−1/2 · t

)
, (4.3.10)

More generally, without using reversibility, we have the following concentration

bound (generalising Theorem 33 of Ollivier (2009)).

Theorem 4.3.15 (Concentration without reversibility). For any function f with
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Lipschitz-coefficient ‖f‖Lip on (Ω, d), let Smax := supx∈Ω
σ2(x)
n(x)

, and denote

Dmax := 2‖f‖2
LipSmax ·

∞∑
i=0

exp

(
2

3
(1− κi)2‖f‖2

Lip

)
(1− κi)2.

Let tmax := Dmax/(6σ∞), then for 0 ≤ t ≤ tmax, we have the Gaussian bound

Pπ(|f(X)− Eπ(f)| ≥ t) ≤ 2 exp

(
− t2

Dmax

)
, (4.3.11)

while for t > tmax, we have the exponential bound

Pπ(|f(X)− Eπ(f)| ≥ t) ≤ 2 exp

(
− t2max

Dmax

− t− tmax

3σ∞

)
. (4.3.12)

Theorem 4.3.16. Alternatively, suppose that σ2(x)/n(x) ≤ S(x) for some S : Ω→

R (for every x ∈ Ω). Let K be a positive integer such that κK > 0. Let

D := ‖f‖2
LipEπ(S) · 16M2K

κK − κ2
K/4

.

Let λ′max := min
(

1
6Mσ∞‖f‖Lip

, κK
4KM2‖S‖Lip‖f‖Lip

)
, and t′max := Dλ′max/2. Then for 0 ≤

t ≤ t′max,

Pπ(|f(X)− Eπ(f)| ≥ t) ≤ 2 exp

(
− t

2

D

)
, (4.3.13)

while for t > t′max,

Pπ(|f(X)− Eπ(f)| ≥ t) ≤ 2 exp

(
−t

2
max

D
− (t− t′max) · λ′max

)
. (4.3.14)

Remark 4.3.17. By comparing the concentration inequalities for reversible chains,
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and without using reversibility, there are some important differences. Firstly, The-

orem 4.3.14 is not using the maximal jump diameter σ∞, thus it may give better

bounds than Theorem 4.3.15 in cases when σ∞ is very large (or infinity) compared to

the typical jump length. However, Theorem 4.3.14 ignores the local dimension n(x),

while Theorem 4.3.15 takes it into account, and thus it can give better bounds when

n(x)� 1. The variance, moment, and concentration bounds above can be applied to

most of our examples in Section 4.4.

4.4 Applications

In this section, we present some applications of our results. Firstly, in Section 4.4.1,

we use the multi-step Ricci curvature (in particular, Proposition 4.3.5 and Theorem

4.3.14) to prove spectral bounds for the transposition walk on the symmetric group,

and get concentration inequalities for Lipschitz functions of uniform permutations. In

Section 4.4.2 we apply our theorems to Markov chains related to statistical physical

models. First, in Section 4.4.2, we show how Dobrushin’s interdependence matrix is

related to the multi-step Ricci curvature, for Glauber dynamics with random scan

and systemic scan. In Sections 4.4.2 and 4.4.2, we apply these bounds to the Curie-

Weiss and 1D Ising models, respectively. Finally, in Section 4.4.3, we present an

application of the recursive lower bound for κk to a random walk on a binary cube

with a forbidden region.
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4.4.1 Split-merge random walk on partitions

The partitions of N are m-tuples of positive integers (a1, . . . , am), such that a1 ≥ a2 ≥

. . . ≥ am,
∑m

i=1 ai = N , and m ≤ n. Let us denote the set of the partitions of N by Ω.

The split-merge random walk can be thought as the projection of the transposition

random walk on the symmetric group SN to the partitions of N , according to the

cycle structure of the permutations. The split-merge walk is defined as in Definition

2 of Bormashenko (2011), as follows.

Assume that we are in (a1, . . . , am). Then in the following step, we may

1. Split – ai is replaced by (r, ai − r), with probability ai/n
2 for every 1 ≤ i ≤

m, 1 ≤ r ≤ ai − 1.

2. Merge – Replace ai and aj with ai + aj, with probability 2aiaj/n
2, for every

1 ≤ i < j ≤ m.

3. Stay – stay in place with probability 1/n.

For x, y ∈ Ω, we define the distance d(x, y) as the minimal number of splits or merges

required to get from x to y (or vice-versa). The following proposition estimates the

multi-step Ricci curvature κk for this random walk on the metric space (Ω, d).

Proposition 4.4.1 (Ricci curvature for the split-merge walk on partitions). For the

split-merge walk on partitions of N , κ > 0, and thus κi > 0 for any i ≥ 1. Moreover,

there exists α > 0, 0 < β < 1 universal constants such that for k ≥ (α + 1/2)N ,

κk ≥ β.

Proof. First, we are going to show that κ > 0. By Proposition 4.3.1, it is sufficient

to show that

W1(Px, Py) ≤ (1− κ)d(x, y), (4.4.1)
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for neighbouring x and y, that is, when d(x, y) = 1. Now it is easy to construct a

coupling (X, Y ) of Px and Py such that d(X, Y ) ≤ 1, and P(X = Y ) = 2/n2. This

means that (4.4.1) holds with κ = 2/n2. The fact that κk ≥ β for k ≥ (α + 1/2)N

follows from Lemma 17 of Bormashenko (2011).

Now we can apply our results on this example. Firstly, using Proposition 4.3.3,

and the facts that diam (Ω) = N − 1, d0 = 1, and 1− κ(α+1/2)N ·l ≤ (1− β)l for l ∈ N,

we have

tmix(ε) ≤ (α + 1/2)N · log((N − 1)/ε)

log(1/(1− β))
= O(N log(N)).

Similarly, using Proposition 4.3.5, we can see that γ∗ ≥ κk
k
≥ β

(α+1/2)N
= O(1/N).

These are likely to be of the correct order of magnitude, since similar results hold for

the transposition walk on the symmetric group (as shown in Diaconis and Shahsha-

hani (1981)). Such bounds could not have been deduced using original coarse Ricci

curvature approach of Ollivier (2009), since κ = O(1/N2).

Applying Proposition 4.3.7 shows that diam (Ω) ≤ 2(α + 1/2)N/β, which is the

correct order of magnitude.

Finally, in our concentration bounds for reversible chains (Theorem 4.3.12 and

Theorem 4.3.14), we have κcΣ ≤ (α + 1/2)N/β, thus for any f : Ω → R that is

1-Lipschitz with respect to d, Varπ(f) ≤ (α + 1/2)N/β and

Pπ(|f(X)− Eπf | ≥ t) ≤ exp

(
− t2

(α + 1/2)N/β

)
.

Note that this result also follows from the concentration result for functions of random

permutations (see Maurey (1979), and Talagrand (1995)), since the d(x, y) can be

bounded from above by the transposition distance.
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It would be interesting to prove similar bounds for the transposition walk on the

symmetric group, too. In fact, Bormashenko (2011) uses a connection between the

two walks to bound the mixing time of the transposition walk on the symmetric group,

based on a coupling argument for the split-merge walk on partitions. However, this

approach does not seem to be applicable to the multi-step coarse Ricci curvature.

4.4.2 Glauber dynamics on statistical physical models

In this section, we are going to estimate the coarse Ricci curvature of the Glauber

dynamics (with random, and systemic scan) on statistical physical models. A common

property of these models is that we have some random variables (spins)X1, X2, . . . , XN ,

that are dependent on each other, and the strength of their dependence is influenced

by a parameter β (inverse temperature).

In the following, in Section 4.4.2, first we define the Dobrushin interdependence

matrix (a way to measure the strength of dependence between the random variables),

and then state propositions that estimate κk in terms of this matrix in the case of

Glauber dynamics. In Sections 4.4.2 and 4.4.2, we apply our results to the Curie-

Weiss, and the one dimensional Ising models.

Bounds using the Dobrushin interdependence matrix

The following definition originates from Dobrusin (1968) and Dobrushin (1970).

Definition 4.4.2 (Dobrushin interdependence matrix). Let (Λ, dΛ) be a Polish met-

ric space (of a single spin). Define Ω := ΛN , and for x, y ∈ Ω, define d(x, y) =∑N
i=1 dΛ(xi, yi), where xi denotes coordinate i of x.

For x ∈ Ω, denote x−i := (x1, . . . , xi−1, xi+1, . . . , xN). Given a Ω valued random
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vector X = (X1, . . . , XN) with distribution µ, we say that a matrix A := (aij)i,j≤N is

its Dobrushin interdependence matrix if aii = 0 for i ≤ N , and for any x, y ∈ Ω,

W1(µi(·|x−i), µi(·|y−i)) ≤
n∑
j=1

ai,jdΛ(xj, yj). (4.4.2)

Here µi(·|x−i) denotes the conditional distribution of the Xi given X−i = x−i, and

W1 denotes the Wasserstein distance with respect to the distance dΛ. Finally, we say

that µ satisfies the Dobrushin condition if ‖A‖1 < 1.

Remark 4.4.3. A frequently used special case of this is when dΛ(xi, yi) = 1[xi 6=

yi], then W1(µi(·|x−i), µi(·|y−i)) corresponds to the total variational distance. For

examples using other types of distances, see Wu (2006).

Proposition 4.4.4 (Glauber dynamics with random scan). Let (Ω, d), µ and X and

A be as in Definition 4.4.2. Consider the Glauber dynamics Markov chain on Ω as

follows. In each step, we choose a coordinate I uniformly from [N ], and then replace

XI with a conditionally independent copy, given X−I . Then for this Markov chain,

we have

κk ≥ 1−

∥∥∥∥∥
(
N − 1

N
I +

1

N
A

)k∥∥∥∥∥
1

. (4.4.3)

This implies, in particular, that the absolute spectral gap γ∗ satisfies

γ∗ ≥ 1− sp

(
N − 1

N
I +

1

N
A

)
≥ 1− sp(A)

N
, (4.4.4)

where sp(A) denotes the spectral radius of A.

Remark 4.4.5. Notice that
∥∥∥(N−1

N
I + 1

N
A
)k∥∥∥

1
tends to 0 as k → ∞ if and only if

the spectral radius of A is strictly smaller than 1. This follows from the Gelfand’s
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formula, which says that the spectral radius of a matrix M equals limk→∞ ‖Mk‖1/k,

for any induced matrix norm. This is a less restrictive criteria than ‖A‖1 < 1. In

particular, ‖A‖∞ < 1, or ‖A‖2 < 1 also suffices. See Wu (2006) for a spectral gap

bound for Markov processes that is similar to (4.4.4).

Proof. The proof is similar to the proof of Theorem 4.3 of Chatterjee (2005). We

start by defining a coupling of Ω valued random variables (Xk, Y k)k∈N, satisfying

that Xk ∼ P k
x , Y

k ∼ P k
y . First, let X0 = x, and Y 0 = y. Suppose that we have

already defined (Xk, Y k)0≤k≤r. Then let Ir be uniformly distributed in [N ]. Now we

define Xr and Y r as equal to Xr−1 and Y r−1 except in their Irth component. We

define Xr
Ir

and Y r
Ir

as the coupling that minimises the Wasserstein distance of the

distributions µIr(·|Xr−1
−Ir ), µIr(·|Y r−1

−Ir ) (if the minimising distribution does not exist,

then we can make a limiting argument). For this coupling, define the vectors (lk)k≥0

taking values in RN as lki := E(dΛ(Xk
i , Y

k
i )). Using the definition of the Dobrushin

interdependence matrix, we can show that for k ≥ 0,

lk+1 ≤
(
N − 1

N
I +

1

N
A

)
lk,

where the inequality is meant in each component. From this, we can see that

lk ≤
(
N − 1

N
I +

1

N
A

)k
l0,

which implies that 1−κk ≤
∥∥∥(N−1

N
I + 1

N
A
)k∥∥∥

1
. Finally, (4.4.4) follows from Gelfand’s

formula, and (4.3.3).

Proposition 4.4.6 (Glauber dynamics with systemic scan). Let Ω, µ, X, and A be

as in Definition 4.4.2. Consider a Markov chain such that in each step, we go through
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X1, . . . , Xn in a row, and replace them with a conditionally independent copy given

the rest. For 1 ≤ i ≤ N , define Bi as a matrix equal to the identity matrix, except its

ith row, which is the same as the ith row of A. Let B = Bn ·Bn−1 · . . . ·B1. Then for

k ≥ 1,

κk ≥ 1− ‖Bk‖1.

Remark 4.4.7. Similarly to the random scan case, ‖Bk‖1 → 0 as k →∞ if and only

if the spectral radius of B is less than 1.

Remark 4.4.8. Dyer, Goldberg, and Jerrum (2008) contains an estimation of the

mixing time of the systemic scan Glauber dynamics under various forms of the Do-

brushin condition. In particular, in Section 7 it is proven that for any x, y ∈ Ω,

dTV(P k
x , P

k
y ) ≤ N‖A‖k1,

implying that

tmix(ε) ≤ 1 +
log(N) + log(1/ε)

log(1/‖A‖1)
≤ 1 +

log(N) + log(1/ε)

1− ‖A‖1

.

Proof of Proposition 4.4.6. The proof is similar to the proof of Proposition 4.4.4, but

this time we need to show that lk+1 ≤ Blk. The details are left to the reader.

Curie-Weiss model

Let Λ := {−1, 1}, Ω = ΛN . The natural distance on Λ is dΛ(a, b) := 1[a 6= b], which

induces the Hamming distance d(x, y) :=
∑n

i=1 1[xi 6= yi] for x, y ∈ Ω. For any ω ∈ Ω,
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let the Hamiltonian function be

Hβ,h
CW (ω) :=

β

N
·
∑

1≤i<j≤N

ωiωj + h
∑
i≤N

ωi.

Here β > 0 is called the inverse temperature, and h is the external field. Define the

probability distribution on Ω as

πβ,hCW (ω) = exp(Hβ,h
CW (ω))/Zβ,h

CW , (4.4.5)

where Zβ,h
CW is a normalising constant. In the zero magnetisation case (h = 0), this

model is known to undergo phase transition at β = 1. We call β < 1 the high-

temperature phase, β = 1 the critical phase, and β > 1 the low-temperature phase.

When applying the Glauber dynamics chains (with random, or systemic scan) of

the previous section to this model (see Propositions 4.4.4 and 4.4.6), the distribution

πβ,hCW arises as their stationary distribution. The following proposition estimates the

multi-step coarse Ricci curvature of these chains.

Proposition 4.4.9 (Ricci curvature for the Curie-Weiss model). For the Curie-Weiss

model described above, for any h and β, for any k ≥ 2, we have

κGl.rand.scan. ≥
(

1− βN − 1

N

)
1

N
, κGl.sys.scan. ≥ 2− eβ,

κGl.sys.scan.k ≥ 1− βeβ
(
β
N − 1

N

)k−1

, γGl.sys.scan.ps ≥ 1− β · (N − 1)/N

4
.

Finally, for β = 1 and h = 0 (the critical phase), there exists a universal con-

stant C > 0 such that for any N , any k ≥ CN3/2 log(N), κGl.rand.scan.k ≥ 1/2, and

(κcΣ)Gl.rand.scan. ≤ 2CN3/2 log(N).
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Proof. A simple calculation shows that for the Curie-Weiss model, the following ma-

trix is a Dobrushin interdependence matrix for any β and h (albeit not the sharp one

for h 6= 0).

ACW :=



0 β/N β/N β/N . . .

β/N 0 β/N β/N . . .

...
...

...
... . . .

β/N β/N β/N . . . 0


.

Since ‖ACW‖1 < β(N − 1)/N , κGl.rand.scan. ≥ 1 − β(N − 1)/N by Proposition 4.4.4.

For the Glauber dynamics with systemic scan, we apply Proposition 4.4.6 with the

Dobrushin interdependence matrix ACW . Let x := β/N , then after some calculations,

we obtain that the matrix B is given by

bi,1 = 0, bi,i+1 = bi,i+2 = . . . = bi,N = x(1 + x)i−1,

bi+k,i = x ·
(
(1 + x)i+k−1 − (1 + x)k

)
,

for 1 ≤ i ≤ N , 0 ≤ k ≤ N − i. Now for any k ≥ 1, ‖Bk‖1 = max(1 · Bk) (maximum

column sum), with 1 denoting a row vector of ones, and max denoting the maximal

element of the vector. After a simple calculation, we get that for 1 ≤ i ≤ N ,

(1 ·B)i = (1 + x)N − (1 + x)N−i+1,

which implies that ‖B‖1 = max(1 · B) = (1 + x)N − 1− x = eβ − 1− β/N , thus by

Proposition 4.4.6,

κGl.sys.scan. ≥ 2− eβ.
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As we can see, κ is negative for part of the high temperature case (β < 1). Now

we will use the following lemma.

Lemma 4.4.10. Let v = (0, 1/(N − 1), 2/(N − 1), . . . , 1). Then for B defined as

above,

(v ·B)i ≤ vi ·
(
β · N − 1

N

)
.

This lemma can be proven by straightforward calculations, which we omit.

Now it is easy to see that for 1 ≤ i ≤ N ,

(1 ·B)i ≤ ((1 + x)N − (1 + x)N−1) · (i− 1) = β(1 + x)N−1 · i− 1

N
≤ β

N − 1

N
eβ

i− 1

N − 1
,

and thus by the above lemma, we can conclude that

‖Bk‖1 = max(1 ·Bk) ≤ eβ
(
β
N − 1

N

)k
,

which implies that for k ≥ 1,

κk ≥ 1− ‖Bk‖1 ≥ 1− eβ
(
β
N − 1

N

)k
.

From this, for 0 ≤ β ≤ 1, with the choice of k = d2/(1 − β · (N − 1)/N)e (using

the identity (1 − c)(1/c) ≤ (1/e) for c > 0), we get κk ≥ 1 − 1/e. By symmetry

κk(P
∗) = κk, so using (4.3.4), we get

γGl.sys.scan.ps ≥ (1− 1/e2)/d2/(1− β · (N − 1)/N)e ≥ 1− β · (N − 1)/N

4
.

Finally, we move to the case of the critical phase (β = 1, h = 0). Theorem 2 of Levin,
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Luczak, and Peres (2010) (see also Ding, Lubetzky, and Peres (2009)) shows that the

mixing time satisfies tmix = O(N3/2), thus (4.3.2) gives us the bound on κk, and by

(4.3.5), we get the bound on κcΣ.

Substituting the bound (κcΣ)Gl.rand.scan. ≤ 2CN3/2 log(N) and σ̂max = 1 to Theo-

rem 4.3.14 leads to the following concentration inequality (a new result).

Proposition 4.4.11. In the critical phase of the Curie-Weiss model (β = 1, h = 0),

for any f : Ω→ R that is 1-Lipschitz with respect to d (Hamming distance), for any

t ≥ 0,

P(|f(X)− Ef | ≥ t) ≤ 2 exp

(
− t2

2CN3/2 log(N)

)
,

where X ∼ π1,0
CW , and C is an universal constant.

Remark 4.4.12. This most likely holds without the log(N) term as well. The con-

stant in the exponent should be at least of order N3/2, as one can see from the limiting

distribution of the magnetisation (f(ω) =
∑N

i=1 ωi), where one has to normalise by

N3/4 (see Chatterjee and Shao (2011), page 466). Proposition 4 of Chatterjee and Dey

(2010) shows a subgaussian (exp(−ct4)) concentration bound for the magnetisation.

1D Ising model

Let Ω = {−1, 1}N . Let d be the Hamming distance on Ω, as in the previous section.

For any ω ∈ Ω, let the Hamiltonian function be

Hβ,h
I1D(ω) :=

β

N
·
∑

1≤i<N

ωiωi+1 + h
∑
i≤N

ωi.
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Here β > 0 is called the inverse temperature, and h is the external field. Define the

probability distribution on Ω as

πβ,h1D (ω) = exp(Hβ,h
I1D(ω))/Zβ,h

I1D, (4.4.6)

where Zβ,h
I1D is a normalising constant. This model is known to have no phase tran-

sition. The following proposition applies our results on this model, assuming that

h = 0.

Proposition 4.4.13 (Ricci curvature for 1D Ising model). For the 1D Ising model

described above, for h = 0, for any β > 0, let ρ := 1/(1 + e−4β), then

κGl.rand.scan. ≥ 2

N
(1− ρ), κGl.sys.scan. ≥ 2(1− ρ)/(3/2− ρ),

γGl.sys.scan.ps ≥ 2(1− ρ)/(3/2− ρ)2.

Proof. For the 1 dimensional Ising model, the probability of a spin being 1, given

that m of it’s neighbours are 1, m = 0, 1, 2, is

1

1 + exp(4β − 2h)
,

1

1 + exp(−2h)
,

1

1 + exp(−4β − 2h)
, respectively.

It follows that for this model, the Dobrushin matrix is tridiagonal, with the diag-

onal elements being 0. For h ≤ 0, the above and below-diagonal elements equal

1
1+exp(−4β−2h)

− 1
1+exp(−2h)

, while for h > 0, they equal 1
1+exp(−2h)

− 1
1+exp(4β−2h)

. In

the case of zero external field, h = 0, the upper and lower diagonal elements equal

ρ − 1/2, and ‖AI1D‖1 = 2ρ − 1 < 1. Using this, κGl.rand.scan. ≥ 2
N

(1 − ρ) follows by

Proposition 4.4.4.
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In the systemic scan case, it is easy to see that for 1 ≤ j ≤ N , bj1 = 0, for

1 < r ≤ N , br−1,r = ρ−1/2, br,r = (ρ−1/2)2, and for r < j ≤ N , bj,r = (ρ−1/2)2+j−r.

This impies that ‖B‖1 ≤ (ρ−1/2)/(1−ρ+1/2), and κGl.sys.scan. ≥ 2(1−ρ)/(3/2−ρ)

follows by Proposition 4.4.6. Finally, by symmetry and using Proposition 4.3.5, we

have

γGl.sys.scan.ps ≥ 1− (1− κGl.sys.scan.)2 ≥ 2(1− ρ)/(3/2− ρ)2.

4.4.3 Random walk on a binary cube with a forbidden region

Consider a binary cube Ω0 := {0, 1}N . We call the region F := {x ∈ Ω0,
∑
xi < R}

the forbidden region. Let Ω := Ω0 \ F . We consider the following random walk (a

version of Glauber dynamics) on Ω. If we are in x, then we pick an index I out of

{1, . . . , N} uniformly, and

• if
∑N

i=1 xi > R, or if
∑N

i=1 xi = R and xI = 0, then xI is replaced with an

independent Bernoulli(1/2) random variable,

• if
∑N

i=1 xi = R, and xI = 1, then we do nothing, and stay in x.

The stationary distribution π is the uniform distribution on Ω (the random walk can

be shown to be reversible with respect to this distribution). Because of the geodesic

property, it is sufficient to look at κk(x, y) for neighbouring x and y. Because of

symmetry, we can denote this by κk(j) := κk(x, y) for x such that
∑N

i=1 xi = j, y

such that
∑N

i=1 yi = j+ 1, and
∑N

i=1 1[xi 6= yi] = 1 (for R ≤ j ≤ N − 1). Initially, we

have negative curvature,

κ1(R) =
2−R
2N

, κ1(j) =
1

N
for R < j ≤ N − 1.
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From Proposition 4.3.2, we get the recursive bounds

κk+1(R) ≥ 2−R
2N

+
N − 1 +R

2N
· κk(R) +

N −R− 1

2N
· κk(R + 1),

κk+1(j) ≥ 1

N
+
N − 1

2N
· κk(j) +

j

2N
· κk(j − 1) +

N − j − 1

2N
· κk(j + 1)

for R < j ≤ N − 1. Notice that all the coefficients of κk(j) in these inequalities are

positive. This implies that if we let κ̃1(j) := κ1(j) for R ≤ j ≤ N − 1, and let

κ̃k+1(R) :=
2−R
2N

+
N − 1 +R

2N
· κ̃k(R) +

N −R− 1

2N
· κ̃k(R + 1),

κ̃k+1(j) :=
1

N
+
N − 1

2N
· κ̃k(j) +

j

2N
· κ̃k(j − 1) +

N − j − 1

2N
· κ̃k(j + 1)

for R < j ≤ N − 1, then κk(j) ≥ κ̃k(j) for every k ≥ 1, R ≤ j ≤ N − 1, implying

that κ̃k := minR≤j≤N−1 κ̃k(j) ≤ κk. It is easy to conduct numerical simulations to see

the behaviour of this recursion. The figures below show this for N = 500, R = 100.

The figures show that initially κ̂k is decreasing, and stays negative, but eventually

the positive curvature wins, and κ̂k becomes positive. The following proposition gives

bounds on κn and κcΣ based on this recursion.

Proposition 4.4.14. Let ρ(R/N) := 1
2
− 1

e
− R

N−2R
. Then for R ≤ N/10,

κn ≥ ρ(R/N), and κcΣ ≤
N

ρ(R/N)
·
(

1 +
R

N − 2R

)
.

Remark 4.4.15. By Propositions 4.3.3 and 4.3.5, the spectral gap and mixing time of

the walk can be bounded as γ ≥ 1
N
ρ(R/N), tmix ≤ 2N log(N)/ρ(R/N). Moreover, by
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Figure 4.1: Evolution of the multi-step coarse Ricci curvature

200 205 210 215 220 225 230

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

(a) κ̃1(j) for R ≤ j < R+ 30

200 205 210 215 220 225 230

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b) κ̃100(j) for R ≤ j < R+ 30

200 205 210 215 220 225 230

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(c) κ̃500(j) for R ≤ j < R+ 30

0 100 200 300 400 500

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(d) κ̃k for 1 ≤ k ≤ 500

Theorem 4.3.14, it follows that for a random vector X ∼ π and for any 1-Hamming-

Lipschitz function f , for any t ≥ 0,

P(|f(X)− E(f)| ≥ t) ≤ 2 exp

(
− t

2

N
· ρ(R/N)/

(
1 +

R

N − 2R

))
.

Proof of Proposition 4.4.14. Let ε := R/N , and for 0 ≤ i ≤ N −R− 1, k ≥ 1, let

κ̂k(R + i) := − ε

1− 2ε
·
(

ε

1− ε

)i
+

(
1− exp

(
− k

N

))
− k − 1

2N
. (4.4.7)

Then it is easy to see that κ̂1(j) ≤ κ̃1(j) ≤ κ1(j) for R ≤ j ≤ N − 1. Moreover, one
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can verify that for every k ≥ 1,

κ̂k+1(R) ≤ 2−R
2N

+
N − 1 +R

2N
· κ̂k(R) +

N −R− 1

2N
· κ̂k(R + 1),

κ̂k+1(j) ≤ 1

N
+
N − 1

2N
· κ̂k(j) +

j

2N
· κ̂k(j − 1) +

N − j − 1

2N
· κ̂k(j + 1)

for R < j ≤ N − 1, implying that κ̂k(j) ≤ κ̃k(j) ≤ κk(j). The bound on κN now

follows by noticing that κk ≥ κ̂k(R) for every k ≥ 1, and the bound on κcΣ follows

from (4.3.5).

4.5 Proofs of concentration results

In this section, we present the proofs of our concentration inequalities. First, we

briefly review Chatterjee’s method of proving concentration inequalities via Stein’s

method of exchangeable pairs. We prove our variance and concentration bounds for

reversible chains using this approach. Finally, we prove our variance and concentra-

tion bounds without using reversibility, by a modification of Ollivier’s proofs.

4.5.1 Concentration inequalities via the method of exchange-

able pairs

For the proof of our theorems about reversible chains, we will use Stein’s method

of exchangeable pairs for concentration inequalities, developed in Chatterjee (2005).

Let (X,X ′) be an exchangeable pair taking values in a Polish space Ω. Let f : Ω→

R, Ef(X) = 0, E(f(X)2) < ∞. Suppose that there is an antisymmetric function
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F : Ω2 → R such that E(F (X,X ′)|X) = f(X). Define

∆(X) :=
1

2
E(|F (X,X ′)(f(X)− f(X ′))||X), (4.5.1)

and assume that ∆(X) <∞ almost surely. Then the following results hold.

Theorem 4.5.1 (Theorem 3.2 of Chatterjee (2005)). With the above notations,

Var(f(X)) =
1

2
E((f(X)− f(X ′))F (X,X ′)).

Theorem 4.5.2 (Theorem 3.14 of Chatterjee (2005)). For any positive integer p, we

have

E
(
[f(X)− E(f)]2p

)
≤ (2p− 1)pE(∆(X)p).

Theorem 4.5.3 (Theorem 3.3 of Chatterjee (2005)). If ∆(X) ≤ C almost surely,

then for any θ ∈ R, E(eθf(X)) ≤ exp(θ2C/2), and

P(|f(X)− E(f(X))| ≥ t) ≤ 2 exp

(
−t2

2C

)
.

Theorem 4.5.4 (Theorem 3.13 of Chatterjee (2005)). Let r(L) := logE(eL∆(X))
L

. Then

for any L > 0 such that r(L) <∞, we have

P(|f(X)− E(f(X))| ≥ t) ≤ 2 exp

(
−t2

2r(L) + 4tL−1/2

)
.

Now we show how to find F (x, y) for a given f(x) (based on Section 4 of Chatterjee

(2005)). First, notice, that an exchangeable pair (X,X ′) induces a Markov kernel P ,
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defined as

P (x,A) := P(X ′ ∈ A|X = x) for every x ∈ Ω, and every measurable A ⊂ Ω.

Conversely, for a reversible Markov kernel P on Ω with stationary distribution π,

we define an exchangeable pair as X ∼ π, and P(X ′ ∈ A|X = x) := P (x,A).

The following lemma explains the construction of F (x, y) (this is a straightforward

extension of Lemma 4.1 of Chatterjee (2005)).

Lemma 4.5.5. Let X,X ′ and P as above. Let f : Ω → R be a measurable function

with E(f(X)) = 0. Suppose that for every x, y ∈ Ω, there is a constant L(x, y) < ∞

such that L(y, x) = L(x, y),

∞∑
k=0

|P kf(x)− P kf(y)| ≤ L(x, y), and that E(L(X,X ′)|X) <∞ almost surely.

(4.5.2)

Then the function

F (x, y) =
∞∑
k=0

(P kf(x)− P kf(y)) (4.5.3)

satisfies F (x, y) = −F (y, x) and E(F (X,X ′)|X) = f(X).

Proof. We have E(P kf(X)− P kf(X ′)|X) = P kf(X)− P k+1f(X), and thus

∞∑
k=0

E(P kf(X)− P kf(X ′)|X) = f(X)− PN+1f(X). (4.5.4)

Now by (4.5.2), and Lebesgue’s dominated convergence theorem, the left hand side

will converge to a limit as N → ∞. For the right hand side, we have PN+1f(y) −

PN+1f(x) → 0 by (4.5.2) for any x, y ∈ Ω. The expected value of both sides of
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(4.5.4) is 0, so limN→∞ P
N+1f(x) = 0 for every x ∈ Ω, and the claim of the lemma

follows.

4.5.2 Concentration of Lipschitz functions under the station-

ary distribution

We start with the variance bounds.

Proof of Theorem 4.3.12. Without loss of generality, assume Ef(X) = 0. Let (X,X ′)

be the exchangeable pair induced by the Markov kernel P , then it is easy to see that

|P kf(x)− P kf(y)| ≤ (1− κk(x, y))d(x, y),

thus (4.5.2) is satisfied with L(x, y) = d(x, y)κcΣ(x, y). Condition (4.3.6) ensures that

E(L(X,X ′)|X) <∞ almost surely, and Lemma 4.5.5 gives

F (x, y) =
∞∑
k=0

(P kf(x)− P kf(y)). (4.5.5)

By Theorem 4.5.1, we obtain that

Var(f(X)) =
1

2
E((f(X)− f(X ′))F (X,X ′)) =

1

2
E
[
(f(X)− f(X ′))·

·
∞∑
k=0

(P kf(X)− P kf(X ′))

]
≤ 1

2
E

(
d(X,X ′)

∞∑
k=0

(1− κk(x, y))d(X,X ′)

)

=
1

2
E(κcΣ(X,X ′)d(X,X ′)2) ≤ 1

2
κcΣσ̂

2.

Now we turn to the non-reversible case. The proof of this part is similar to the proof

of Proposition 32 of Ollivier (2009). Assume first that ‖f‖∞ <∞. Then Var(f) <∞.
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Now we will show that if κcΣ < ∞, then Var(P kf) → 0 as k → ∞. Let Br be a ball

of radius r centred at some point in Ω, then we can write

Var(P kf) =
1

2

∫ ∫ (
P kf(x)− P kf(y)

)2
dπ(x)dπ(y) ≤ 2(1− κk)2r2 + 2A2π(Ω \Br).

If we set r = (1− κk)−1/2, then this will tend to 0 as k → ∞, since κcΣ < ∞ implies

that 1− κk → 0. Moreover, if κcΣ =∞, our bound is vacuous, so there is nothing to

prove. Now it is easy to show that

Var(f) = Var(Pf) +

∫
x∈Ω

VarPx(f)dπ(x),

and then using Var(P kf)→ 0, we get

Var(f) =
∞∑
k=0

∫
x∈Ω

VarPx(P
kf)dπ(x).

Now P k(f) is (1− κk)-Lipschitz, so by the definition of the local dimension n(x), we

have VarPx(P
k(f)) ≤ (1−κk)2σ2(x)/n(x), and (4.3.8) follows. Finally, the ‖f‖∞ =∞

case can be handled by a limiting argument.

Now we prove concentration for the reversible case.

Proof of Theorem 4.3.14. As in the proof of Theorem 4.3.12, we can show that F (x, y) =∑∞
k=0(P kf(x)− P kf(y)), and thus

∆(X) =
1

2
E

(∣∣∣∣∣
∞∑
k=0

(P kf(x)− P kf(y))

∣∣∣∣∣ · |f(X)− f(X ′)|

∣∣∣∣∣X
)

≤ 1

2
E

(
∞∑
k=0

(1− κk)d(X,X ′)2

∣∣∣∣∣X
)
≤ 1

2
κcΣσ̂(X)2 ≤ 1

2
κcΣσ̂

2
max, (4.5.6)
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and we get (4.3.9) by Theorem 4.5.3. From Theorem 4.5.3 applied to g(X) = ∆(X)−

E(∆(X)) it follows that for any L > 0,

E(eL∆(X)) ≤ eLE(V (X)) · eL2‖V ‖Lipκ
c
Σσ̂

2
max/4.

Now choosing L as stated, and applying Theorem 4.5.4 proves (4.3.10).

Our next proof is the moment bound for reversible chains.

Proof of Theorem 4.3.13. From (4.5.6), we have ∆(X) ≤ 1
2
κcΣσ̂(X)2, and applying

Theorem 4.5.2 leads to this result.

Now we prove concentration bounds without using reversibility.

The proof of Theorem 4.3.15 is based on the following two lemmas (the first one

is a slight variation of Lemma 38 of Ollivier (2009)).

Lemma 4.5.6. Let ϕ : Ω→ R be an α-Lipschitz function. Assume that λ ≤ 1/(3σ∞).

For r ∈ R, let g(r) := e(2/3)r · r2/2. Then for x ∈ Ω, we have

(P eλϕ)(x) ≤ exp

(
λPϕ(x) + λ2σ(x)2

n(x)
· g(α)

)
.

Proof. The proof is similar to the original argument, but instead of diam Suppmx ≤

2σ∞, now we have diam Suppmx ≤ 2ασ∞. The details are left to the reader.

Lemma 4.5.7. Suppose that a function f : Ω→ R satisfies that for 0 ≤ λ ≤ λmax,

E(exp(λf) ≤ exp(λE(f) + λ2C).
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Let tmax := 2Cλmax, then for 0 ≤ t ≤ tmax, we have

P(f(X) ≥ E(f) + t) ≤ exp

(
− t2

4C

)
,

and for t ≥ tmax, we have

P(f(X) ≥ E(f) + t) ≤ exp

(
−t

2
max

4C
− (t− tmax)λmax

)
.

Proof. This follows by the standard Markov inequality argument.

Proof of Theorem 4.3.15. Fix some λ ∈ [0, 1/(3σ∞)]. Let f0 := f , and for k ≥ 0,

define fk+1 as

fk+1(x) := P fk(x) + λg(‖fk‖Lip) · Smax.

Lemma 4.5.6 shows that

(P fk)(x) ≤ eλfk+1(x), and thus (P kf)(x) ≤ eλfk(x).

Since Smax is a constant, we have ‖fk‖Lip = Lip(P kf) ≤ (1− κk)‖f‖Lip, and

fk(x) ≤ P kf(x) + λSmax

k−1∑
i=0

g((1− κi)‖f‖Lip).

By taking the limit k →∞, we get that

lim
k→∞

fk(x) ≤ Eπ(f) +
λ

4
Dmax,
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and thus

Eπ(eλf ) = lim
k→∞

(P keλf )(x)) ≤ eλEπ(f)+λ2Dmax/4.

We obtain the bounds (4.3.11) and (4.3.12) from Lemma 4.5.7.

Proof of Theorem 4.3.16. Fix some λ ∈ [0,min(1/(3σ∞), κK/(2KM‖S‖Lip))]. Let

f̂(x) := f̂0(x) := f(x)/(2M‖f‖Lip), and for k ≥ 0, define f̂k+1 as

f̂k+1(x) := P f̂k(x) + λg(‖f̂k‖Lip) · S(x).

Then Lemma 4.5.6 shows that

(P f̂k)(x) ≤ eλf̂k+1(x), and thus (P kf̂)(x) ≤ eλf̂k(x).

Now for k ≥ 1, f̂k(x) as defined above can be expressed as

f̂k(x) = P k(f̂)(x) + λ
k∑
i=1

g(‖f̂i−1‖Lip)P k−i(S)(x),

where

‖f̂k‖Lip ≤ (1− κk)‖f̂‖Lip + λ‖S‖Lip

k∑
i=1

(1− κk−i)g(‖f̂i−1‖Lip). (4.5.7)

Now taking the limit k →∞, we get that

Eπ(exp(λf̂)) ≤ lim
k→∞

exp(λf̂k(x)) ≤ exp

(
λEπ(f̂) + λ2

(
∞∑
i=0

g(‖f̂i‖Lip)

)
· Eπ(S)

)
.

(4.5.8)

In order to proceed, we will need to bound ‖f̂i‖Lip and
∑∞

i=0 g(‖f̂i‖Lip). We claim
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that for λ ∈ [0,min(1/(3σ∞), κK/(2KM‖S‖Lip))], for any k ∈ N , we have

‖f̂k‖Lip ≤ (1− κK/2)bk/Kc, (4.5.9)

and thus
∞∑
i=0

g(‖f̂i‖Lip) ≤ K

κK − κ2
K/4

. (4.5.10)

To show this, first note that since M = supi≥0(1 − κi), for any j ≥ 0, we have

1 − κj ≤ M(1 − κK)bj/Kc (using (1 − κi+j) ≤ (1 − κi)(1 − κj)). This implies that∑∞
j=0(1− κj) ≤ MK/κK . Now using the fact that g(x) ≤ x2 for 0 ≤ x ≤ 1, and the

condition λ ∈ [0,min(1/(3σ∞), κK/(2KM‖S‖Lip))], we can deduce that ‖f̂j‖Lip ≤ 1

for any j ≥ 0. Now let F0 := 1, and for k ≥ 1, let

Fk :=
1

2
(1− κK)bk/Kc +

1

2

κK
K
·

k∑
i=1

(1− κK)bk−i/Kc · F 2
i−1.

Then it follows from (4.5.7) that for any λ ∈ [0,min(1/(3σ∞), κK/(2KM‖S‖Lip))],

any k ≥ 0 we have ‖fk‖Lip ≤ Fk. Now define G0 := 1, G1 := (1 − κK/2), and for

k ≥ 2, let

Gk :=
1

2
(1− κK)i +

1

2
κK ·

(
(1− κK)k +

k−1∑
j=1

(1− κK)jG2
k−1−j

)
.

Then it is easy to see that for k ≥ 0, Fk ≤ Gbk/Kc+1, and after some straightforward

calculations, we can show that Gi ≤ (1−κK/2)i−1 for any i ≥ 1. This implies (4.5.9),

and by summing up, we get (4.5.10).



CHAPTER 4. MIXING AND CONCENTRATION BY RICCI CURVATURE 174

Using these two inequalities and (4.5.8), we obtain that for

λ ∈ [0,min(1/(3σ∞), κK/(2KM‖S‖Lip))],

Eπ(exp(λf̂)) ≤ exp

(
λEπ(f̂) + λ2 · K

κK − κ2
K/4
· Eπ(S)

)
, (4.5.11)

which implies that for λ ∈
[
0,min

(
1

6Mσ∞‖f‖Lip
, κK

4KM2‖S‖Lip‖f‖Lip

)]
, we have

Eπ(exp(λf)) ≤ exp

(
λEπ(f) + λ2 ·

4M2‖f‖2
LipK

κK − κ2
K/4

· Eπ(S)

)
. (4.5.12)

The tail bounds now follow by Lemma 4.5.7.



Chapter 5

Convex distance inequality with

dependence 1

5.1 Introduction

The theory of concentration of measure for functions of independent random variables

has seen major development since the groundbreaking work of Talagrand (1995) (see

the books Ledoux (2001), Dubhashi and Panconesi (2009), and Boucheron, Lugosi,

and Massart (2013b)). These inequalities are very useful for obtaining non-asymptotic

bounds on various quantities arising from models that are based on collections of

independent random variables.

However, for many applications it may be difficult, if not impossible, to describe

the model by means of a collection of independent random variables, whereas simpler

descriptions based on dependent random variables may be readily available. Such

models arise, for example, in statistical physics, where certain distributions can be

1This chapter is based on the manuscript Paulin (2014).
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described as stationary distributions of appropriate Markov chains. Therefore, it is

important to have concentration inequalities that are applicable beyond the indepen-

dent setting.

In this chapter, we will prove such inequalities for a certain type of dependence,

namely for random variables satisfying the so-called the Dobrushin condition (how-

ever, we believe that the methods presented here can also be adapted to other set-

tings). This condition is satisfied, in particular, in certain statistical physical models

when the temperature is sufficiently high, and for sampling without replacement.

Concentration inequalities in the literature for random variables satisfying the

Dobrushin condition can be found in the literature (see Külske (2003), Marton (2003),

Chatterjee (2005), Djellout, Guillin, and Wu (2004), Wu (2006), Chazottes, Collet,

Külske, and Redig (2007), Ollivier (2010), Wang and Wu (2014), Wang (2014)).

Most of these results are variants of McDiarmid’s bounded differences inequality,

only taking into account the maximal deviations

sup
x1,...,xn,x′i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)|, for 1 ≤ i ≤ n.

In order to get sharper bounds, it is natural to impose stronger conditions on the

function f . In this article, we will do this by using the general formalism of (a, b)-

self-bounding functions, introduced for independent random variables by Boucheron,

Lugosi, and Massart (2009).

Our main contribution in this chapter is the following. We will prove concentration

inequalities for a slightly restricted subclass of (a, b)-self-bounding functions, which

we call (a, b)-∗-self-bounding (the reason for using the ∗, instead of a letter, is to

make it clear that we have two parameters, a and b). We show that our result implies
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a version of Talagrand’s convex distance inequality for dependent random variables

satisfying the Dobrushin condition.

Our approach in this chapter is based on Stein’s method of exchangeable pairs,

as introduced in Chatterjee (2007). Recently, other variants of Stein’s method, size-

biasing and zero-biasing, have been adapted to prove concentration inequalities, see

Ghosh and Goldstein (2011), and Goldstein and Islak (2013).

It is important to note that for certain types of dependence, such as uniform per-

mutations (Talagrand (1995)) and Markov chains (Marton (1996a), Samson (2000),

Marton (2003), and Paulin (2014)) Talagrand’s convex distance inequality was shown

to hold. However, these approaches do not seem to easily generalise to dependent

random variables satisfying the Dobrushin condition.

The rest of this chapter is organised as follows. In Section 5.2, we will introduce

the main definitions used in the article. In Section 5.3, we present our main results.

In Section 5.4, we discuss three applications, the stochastic salesman problem, the

Steiner tree problem, and the total magnetisation of the Curie-Weiss model with

external field. In Section 5.5 we prove some preliminary results, and in Section 5.6,

we prove our main results. Finally, the Appendix includes a version of Talagrand’s

convex distance inequality for sampling without replacement.

5.2 Preliminaries

We start by introducing some notation. Let X := (X1, . . . , Xn) be a vector of random

variables, where each Xi takes values in a Polish space Λi, and, similarly, let Λ :=

Λ1 × Λ2 × . . .× Λn, and let F be the Borel sigma algebra on Λ.

For a vector x in Λ, let x−i := (x1, . . . , xi−1, xi+1, . . . , xn) be the vector created by
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dropping the ith coordinate, and set Λ−i := Λ1 × . . . × Λi−1 × Λi+1 × . . . × Λn. The

distribution of the random vector X is denoted by µ, and (Λ,F , µ) is the probability

space induced by X, that is, for S ∈ F , µ(S) = P(X ∈ S). The marginal distribution

of Xi given X−i = x−i will be denoted by µi(·|x−i).

We are going to use matrix norms. For an n×n matrix A = (aij)1≤i,j≤n, we denote

its operator norms by ‖A‖1, ‖A‖∞ and ‖A‖2, respectively. Note that, in particular,

‖A‖1 = max1≤j≤n
∑n

i=1 |aij| and ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij|.

Let g : Λ→ R+ be a non-negative function. We will be interested in the concen-

tration properties of g(X). We will denote its centered version by

f(x) := g(x)− E(g(X)).

The following definition of self-bounding functions is essentially that of Boucheron,

Lugosi, and Massart (2009).

Definition 5.2.1. Let a, b > 0. A function g : Λ→ R+ is called (a, b)-self-bounding

if there exist measurable functions gi : Λ−i → R, i = 1, . . . , n, such that for every

x ∈ Λ,

(i) 0 ≤ g(x)− gi(x−i) ≤ 1 for 1 ≤ i ≤ n, and

(ii)
∑n

i=1(g(x)− gi(x−i)) ≤ ag(x) + b.

A function g : Λ→ R is called weakly (a, b)-self-bounding if for every x ∈ Λ,

(ii’ )
∑n

i=1 (g(x)− gi(x−i))2 ≤ ag(x) + b;

note that (i) is not required in this case.

Remark 5.2.2. If g is (a, b)-self-bounding, then it is also weakly (a, b)-self-bounding.
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If g is (a, b)-self-bounding, then we can always take the functions gi to be

gi(x−i) := inf
x′i∈Λi

g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn). (5.2.1)

We define (a, b)-∗-self-bounding functions as follows.

Definition 5.2.3. Let a, b ≥ 0. A function g : Λ→ R is called (a, b)-∗-self-bounding

if there exist measurable functions α1, . . . , αn : Λ→ R such that

(i) 0 ≤ αi(x) ≤ 1,

(ii) for every x, y ∈ Λ,

g(x)− g(y) ≤
∑
i:xi 6=yi

αi(x),

(iii) for every x ∈ Λ,
n∑
i=1

αi(x) ≤ ag(x) + b.

Similarly, a function g : Λ → R is called weakly (a, b)-∗-self-bounding if there exists

functions α1, . . . , αn : Λ→ R+ such that (ii) above holds, and

(iii’ ) for every x ∈ Λ,
n∑
i=1

αi(x)2 ≤ ag(x) + b;

note that, again, (i) is not required in this case.

Remark 5.2.4. For each a, b ≥ 0, the following relations hold.

(a, b)-self-bounding ⇒ weakly (a, b)-self-bounding

⇑ ⇑

(a, b)-∗-self-bounding ⇒ weakly (a, b)-∗-self-bounding

The reverse implications are false in general.
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The following definition allows us to quantify the dependence between the random

variables.

Definition 5.2.5 (Dobrushin’s interdependence matrix). Suppose A = (aij) is an

n×n matrix with nonnegative entries and zeroes on the diagonal such that for every

i, and every x, y ∈ Λ,

dTV(µi(·|x−i), µi(·|y−i)) ≤
∑

j∈[n]\{i}

aij1[xj 6= yj], (5.2.2)

where dTV denotes the total variational distance (see Section 5.5.1), µi(·|x−i) =

P(Xi ∈ ·|X−i = x−i) denotes the marginal of Xi, and [n] := {1, . . . , n}. We call

such A a Dobrushin interdependence matrix for the random vector X (or, equiva-

lently, for the measure µ).

Remark 5.2.6. The condition ‖A‖1 < 1 is commonly called the Dobrushin condition

in the literature. However, some authors use ‖A‖2 < 1 or ‖A‖∞ < 1 instead. The

definition implicitly requires that µi(·|x−i) exists for every x−i. This may only be

true in some of our applications in an almost sure sense. However, because we are

going to assume that our random variables take values in a Polish space, we may use

regular conditional probabilities, and change µ on a set of zero probability such that

(5.2.2) becomes true everywhere, not just in an almost sure sense (see Faden (1985)

for more details on the existence of regular conditional probabilities).

5.3 Main results

In this section, we state our main results regarding concentration for (a, b)-∗-self-

bounding functions, and Talagrand’s convex distance inequality. The results apply
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to weakly dependent random variables satisfying the Dobrushin condition.

5.3.1 A new concentration inequality for (a, b)-∗-self-bounding

functions

Our main result is a bound on the moment generating function (mgf) of functions of

random variables satisfying the Dobrushin condition.

Theorem 5.3.1. Let X = (X1, . . . , Xn) be a vector of random variables, taking values

in Λ. Let A be a Dobrushin interdependence matrix for X, and suppose that ‖A‖1 < 1

and ‖A‖∞ ≤ 1. Let g : Λ→ R be a non-negative measurable function such that g(X)

has finite mean, denoted by E(g). Let a, b ≥ 0.

1. If g is (a, b)-∗-self-bounding, then for 0 ≤ θ ≤ (1− ‖A‖1)/a,

logE
[
eθ(g(X)−E(g))

]
≤ (aE(g) + b)θ2

2(1− ‖A‖1 − aθ)
.

2. If g is weakly (a, b)-∗-self-bounding, then for 0 ≤ θ ≤ (1− ‖A‖1)/(2a),

logE
[
eθ(g(X)−E(g))

]
≤ (aE(g) + b)θ2

(1− ‖A‖1 − 2aθ)
. (5.3.1)

3. Suppose that g is weakly (a, b)-∗-self-bounding, and in addition, for every x, x∗ ∈

Λ differing only in one coordinate, |g(x) − g(x∗)| ≤ 1. Then for 0 ≥ θ ≥

−1−‖A‖1
2a

, the following inequality holds.

(logm(θ))′ ≥ −
(
e−θ − 1

) 2

1− ‖A‖1

(
aE(g) + b− θ a(aE(g) + b)

2(1− ‖A‖1 + 2aθ)

)
.

(5.3.2)
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The proof of this is deferred to Section 5.6. As a corollary, we obtain concentration

inequalities. For stating them, we will use a constant defined as follows. Let ac be

the unique positive solution of

(exp(1/4a)− 1)

1/(4a)
=

8

5
. (5.3.3)

Note that 0.285 < ac < 0.286.

Corollary 5.3.2. Under the conditions of Theorem 5.3.1, we have the following.

1. If g is (a, b)-∗-self-bounding, then for all t ≥ 0,

P[g(X) ≥ E(g) + t] ≤ exp

(
− (1− ‖A‖1)t2

2(aE(g) + b+ at)

)
.

2. If g is weakly (a, b)-∗-self-bounding, then for all t ≥ 0,

P[g(X) ≥ E(g) + t] ≤ exp

(
− (1− ‖A‖1)t2

4(aE(g) + b+ at)

)
.

3. Suppose that g is weakly (a, b)-∗-self-bounding, and in addition, for every x, x∗ ∈

Λ differing only in one coordinate, |g(x)−g(x∗)| ≤ 1. If a ≥ ac(1−‖A‖1), then

for all t ≥ 0,

P[g(X) ≤ E(g)− t] ≤ exp

(
−(1− ‖A‖1)t2

8(aE(g) + b)

)
,

while if a ≤ ac(1− ‖A‖1), then for all t ≥ 0,

P[g(X) ≤ E(g)− t] ≤ exp

(
− t2

5(aE(g) + b)/(1− ‖A‖1) + (2/3)t

)
.



CHAPTER 5. CONVEX DISTANCE INEQUALITY WITH DEPENDENCE 183

5.3.2 The convex distance inequality for dependent random

variables

Recently, Talagrand’s convex distance inequality was proven using the weakly self-

bounding property in Section 2 of Boucheron, Lugosi, and Massart (2009) (the original

proof in Talagrand (1995) was based on mathematical induction). We are going to

use similar ideas to prove a version of Talagrand’s convex distance inequality based

on Theorem 5.3.1 and, hence, applicable to dependent random variables satisfying

the Dobrushin condition.

The result is stated in terms of Talagrand’s convex distance, which is defined as

follows. For c ∈ Rn
+, and x, y ∈ Λ, we define dc(x, y) :=

∑n
i=1 ci1 [xi 6= yi]. For a

point x ∈ Λ and a set S ⊂ Λ, we let dc(x, S) := miny∈S dc(x, y) and

dT (x, S) := sup
c∈Rn+,||c||2=1

dc(x, S), (5.3.4)

which we call Talagrand’s convex distance between a point x and a set S.

Theorem 5.3.3. Let X := (X1, . . . , Xn) be a vector of random variables, taking

values in a Polish space Λ = Λ1 × . . .×Λn, equipped with the Borel σ-algebra F . Let

µ be the probability measure on Λ induced by X. Let A be a Dobrushin interdependence

matrix for X, and suppose that ‖A‖1 < 1 and ‖A‖∞ ≤ 1. Then for any S ∈ F ,

E
[
edT (X,S)2·(1−‖A‖1)/26.1

]
≤ 1

µ(S)
. (5.3.5)

Remark 5.3.4. Inequality (5.3.5) is of the same form as Talagrand’s original convex

distance inequality in the independent case, but the latter holds with the constant
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(1 − ‖A‖1)/26.1 being replaced by 1/4. Our bound takes into account the strength

of dependence between the random variables.

The following corollary of the above result generalises the so-called “method of

non-uniformly bounded differences” to dependent random variables satisfying the

Dobrushin condition.

Corollary 5.3.5. Let X = (X1, . . . , Xn) be a vector of random variables, taking

values in Λ, equipped with the Borel σ-algebra F . Let µ be the probability measure on

Λ induced by X. Let A be a Dobrushin interdependence matrix for X, and suppose

that ‖A‖1 < 1 and ‖A‖∞ ≤ 1. Let g : Λ → R be a function satisfying that for some

positive functions c1, . . . , cn : Λ→ R+,

g(x)− g(y) ≤
n∑
i=1

ci(x) · 1[xi 6= yi] (5.3.6)

for every x = (x1, . . . , xn), y = (y1, . . . , yn) in Λ, and

n∑
i=1

c2
i (x) ≤ C (5.3.7)

for every x in Λ. Then for any t ≥ 0,

P(|g(X)−M(g)| ≥ t) ≤ 2 exp

(
−t2 · (1− ‖A‖1)

26.1C

)
, (5.3.8)

where M(f) denotes the median of g(X) (if the median is not unique, then the result

holds for all of them).

Proof. The proof is along the same lines as the proof of Lemma 6.2.1 on page 122 of

Steele (1997), except that the constant 4 is replaced by 26.1/(1− ‖A‖1).
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5.4 Applications

In this section, we apply our results to a variant of the stochastic travelling salesmen

problem, Steiner trees, the Curie-Weiss model, and exponential random graphs.

5.4.1 Stochastic travelling salesman problem

One important and well studied problem in combinatoric optimisation is the travelling

salesman problem (TSP). In the simplest, and most studied case, we are given n points

in the unit square [0, 1]2, and we are required to find the shortest tour, that is, to find

the permutation σ ∈ Sn (Sn denoting the symmetric group) that minimises

|xσ(1) − xσ(2)|+ . . .+ |xσ(n) − xσ(1)|,

where |x− y| denotes the Euclidean distance between x and y.

Let us denote the length of the minimal tour by T (x1, . . . , xn). There has been

much effort to find efficient algorithms to compute the minimal tour (in general, this

is a difficult, NP complete problem, but there are fast algorithms that find a tour

that is at most a fixed constant times worse than the optimal tour, see Applegate,

Bixby, Chvatal, and Cook (2011) for a recent book on this topic).

From a probabilistic point of view, it is of interest to look at the concentration

properties of T (X1, . . . , Xn), where X1, . . . , Xn is a random sample from [0, 1]2. One

of the classical applications of Talagrand’s convex distance inequality is to show that,

if X1, . . . , Xn are i.i.d. uniformly distributed in [0, 1]2, then T (X1, . . . , Xn) is very

sharply concentrated around its median (or equivalently, its expected value), with

typical deviations of order 1.
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We are going to study a modified version of the travelling salesman problem. Let

A := {a1, . . . , aN} be a fixed set of distinct points in [0, 1]2. Let L(x, y) : A2 → R be

the cost function, satisfying that for some constant C,

|x− y| ≤ L(x, y) ≤ C|x− y| for every x, y ∈ A, (5.4.1)

where |x− y| denotes the Euclidean distance of x and y. Note that the cost function

does not need to be a metric, and we do not even assume that it is symmetric. A non-

symmetric cost function may be used to model the time taken for driving between two

locations in a city that are at different elevation, since going uphill can take longer

than going downhill.

For any set of distinct points {x1, . . . , xn} ∈ A, we let T (x1, . . . , xn) be the shortest

tour through all the points, that is the minimum of the sum

L(x(σ(1)), x(σ(2)) + . . .+ L(x(σ(n)), x(σ(1)))

for σ ∈ Sn. Since T is invariant under the permutation of the points, we will also use

the notation T ({x1, . . . , xn}).

Assume that a set of n distinct points are chosen from A according some distri-

bution µ on all the subsets of size n of A. Let

rn,1(µ) := sup
B⊂A
|B|=n−1

sup
b∈A\B

µ(B ∪ b)∑
b′∈A\B

µ(B ∪ b′)
,
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rn,2(µ) := sup
B⊂A
|B|=n−2

sup
b,c,d∈A\B

∣∣∣∣∣∣∣∣∣
µ(B ∪ b ∪ d)∑

d′∈A\(B∪b)

µ(B ∪ b ∪ d′)
− µ(B ∪ c ∪ d)∑

d′∈A\(B∪c)

µ(B ∪ c ∪ d′)

∣∣∣∣∣∣∣∣∣ ,

and define the inhomogeneity coefficient of this distribution µ as

ρn(µ) := n (rn,1(µ) + (N − n) · rn,2(µ)) . (5.4.2)

This coefficient is related to the distance of the distribution µ from the uniform

distribution on all sets of size n, corresponding to sampling without replacement.

The following theorem is the main result of this section.

Theorem 5.4.1 (Stochastic TSP for random subsets). Let X be a random subset

of size n of A, chosen according to a distribution µ, with inhomogeneity coefficient

ρn(µ) < 1. Then for any t ≥ 0,

µ(|T (X )−M(T )| ≥ t) ≤ 4 exp

(
−t

2(1− ρn(µ))

1671C2

)
, (5.4.3)

where M(T ) denotes the median of T .

Remark 5.4.2. The inequality has the same form as the original result in the inde-

pendent case (in that bound, the exponent is of the form 4 exp(−t2/64)).

Example 5.4.3. Now we give a simple example of a distribution µ on A, which we

call weighted sampling without replacement. Let p be a probability distribution on [N ]

satisfying that p(i) is strictly positive for every i ∈ [N ]. Let us choose a random subset

X ⊂ A as follows. Initially, X is empty. First, we pick an index from [N ] according

to p, and put the element in A corresponding this index into X . Then, we pick
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another index from [N ], according to p conditioned on not choosing the first index.

We obtain X by iterating this procedure n times in total. If we have picked the indices

I1, . . . , Ik ∈ [N ] in the first k steps, then P(k+ 1th point is i) = p(i)∑
j∈[N ]\{I1,...,Ik}

p(j)
(for

0 ≤ k < n). This means that for any i1, . . . , in ∈ [N ], we have

P(I1 = i1, . . . , In = in)

= 1[i1, . . . , in are disjoint ] · p(i1) · p(i2)∑
j∈[N ]\{i1} pj

· . . . · p(in)∑
j∈[N ]\{i1,...,in−1} pj

.

Based on this, for a set of n disjoint points {ai1 , . . . , ain} ⊂ A, we define µ({ai1 , . . . , ain})

by averaging over all the possible ways the random variables I1, . . . , In can take values

i1, . . . , in, that is,

µ({ai1 , . . . , ain}) :=
1

n!

∑
j1,...,jn

P(I1 = j1, . . . , In = jn),

with the summation in j1, . . . , jn is taken over all n! enumerations of i1, . . . , in.

Note that this sampling scheme can be equivalently formulated using independent

exponentially distributed random variables with parameters p1, . . . , pN (exponential

clocks), where we choose the sets corresponding to the indices of the smallest n such

exponential variables (the first n clocks that ring).

Let pmax := maxi∈[N ] p(i) and pmin := mini∈[N ] p(i), then an elementary computa-

tion shows that for the weighted sampling without replacement scheme,

ρn(µ) ≤ 1

2

(
pmax/pmin + (pmax/pmin)2) · n

N − n
, (5.4.4)

which is smaller than 1 if n < N/
[
1 +

(
pmax/pmin + (pmax/pmin)2 )/2].
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Sampling without replacement corresponds to the case when p(i) = 1/N for every

i ∈ [N ]. In this case, the condition of our theorem, ρn(µ) < 1, is satisfied if n < N/2.

In this particular case, using a theorem of Talagrand, we can show that the convex

distance inequality holds for any n ≤ N , which implies that Theorem 5.4.1 also holds

for any n ≤ N . See the Appendix for more details.

Note that it does not seem to be possible to deduce Theorem 5.4.1 using the results

of Samson (2000). In the special case when X1, . . . , Xn are n samples taken without

replacement out of N possibilities, the total variational distance of the distributions

L(Xl|X1 = x1, . . . , Xk = xk) and L(Xl|X1 = x1, . . . , Xk−1 = xk−1, Xk = x′k) is greater

than 1/N . This means that the above diagonal elements of the mixing matrix are at

greater than 1/N , and the matrix created by taking the square root of every element

has L2 norm of O(1+n/
√
N). This means that we need to have n = O(

√
N) to obtain

concentration results that are only a constant times worse than in the independent

case, whereas with our method, this is true for any n < N/2.

Now we turn to the proof of Theorem 5.4.1. The proof consists of two parts.

Firstly, we compute the coefficients of the Dobrushin interdependence matrix and

verify the Dobrushin condition. Secondly, we check that the function T satisfies the

conditions of Corollary 5.3.5.

The Dobrushin interdependence matrix is estimated in the following Lemma.

Lemma 5.4.4. Let µ be a distribution on the subsets of size n of A. Let X1, . . . , Xn

be random variables taking values in A, distributed as

P (X1 = ai1 , . . . , Xn = ain) =
µ({ai1 , . . . , ain})

n!
for any distinct i1, . . . , in ∈ [N ].
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Then there is a Dobrushin interdependence matrix for X1, . . . , Xn such that

‖A‖1, ‖A‖∞ ≤ ρn(µ).

Proof. Define the event Fn−1(B, b) := {{X1, . . . , Xn−2} = B, Xn−1 = b} for every

B ⊂ A, |B| = n−2 and b ∈ A\B. By the definition of the Dobrushin interdependence

matrix, using the triangle inequality for the total variational distance, we can set

an(n−1) = sup
B⊂A,|B|=n−2,

b,c∈A\B

dTV

(
L(Xn|Fn−1(B, b),L(Xn|Fn−1(B, c))

)
= sup
B⊂A,|B|=n−2,

b,c∈A\B

1

2

∑
d∈A\B

∣∣P(Xn = d|Fn−1(B, b))− P(Xn = d|Fn−1(B, c))
∣∣.

This sum has two type of terms, the first type is when d equals b or c, and the

second type is when d equals something else in A \ B. Terms of the first type are

less then equal to rn,1(µ), and terms of the second type are bounded by rn,2(µ), thus

an(n−1) ≤ ρn(µ)/n. Because of the symmetry of the distribution of X1, . . . , Xn, the

same holds for every aij, thus the claim of the lemma follows.

The following lemma will be used to verify the properties of the function T .

Proposition 5.4.5 (Proposition 11.1 of Dubhashi and Panconesi (2009)). There is

a constant c > 0 such that, for any set of points x1, . . . , xn ∈ [0, 1]2, there is a

permutation σ ∈ Sn satisfying

|xσ(1) − xσ(2)|2 + . . .+ |xσ(n) − xσ(1)|2 ≤ c. (5.4.5)

That is, there is a tour going trough all points such that the sum of the squares of the
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lengths of all edges in the tour is bounded by an absolute constant c. By the argument

outlined in Problem 11.6 of Dubhashi and Panconesi (2009), the above holds with

c = 4.

The following lemma summarises the properties of the function T required for our

proof.

Lemma 5.4.6. For any x, y ∈ An, there are functions α1, . . . , αn : [0, 1]2 → R+ such

that we have

T (x)− T (y) ≤
n∑
i=1

αi(x)1[xi 6= yi], (5.4.6)

and for any x ∈ An,
n∑
i=1

α2
i (x) ≤ 64C2, (5.4.7)

where C is as in (5.4.1).

Proof. For any x1, . . . , xn ∈ A, let σ̂ be the permutation in Sn that satisfies (5.4.5). If

there are several such permutations, we choose the one that is smallest in the ordering

of permutations ranging from (1, 2, . . . , n) to (n, n− 1, . . . , 1). For 1 ≤ i ≤ n, define

αi(x1, . . . , xn) as

αi(x1, . . . , xn) := 2[L(xσ̂(i−1), xσ̂(i)) + L(xσ̂(i), xσ̂(i+1))],

with i − 1 and i + 1 taken in the modulo n sense. With this choice, inequality

(5.4.6) is proven on page 125 of Steele (1997), see also page 144 of Dubhashi and

Panconesi (2009). Inequality (5.4.7) follows from Proposition 5.4.5, and the condition

|x− y| ≤ L(x, y) ≤ C|x− y|.

Now we are ready to prove our concentration result.
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Proof of Theorem 5.4.1. The inequality (B.1.3) follows from applying Corollary 5.3.5

to T (X1, . . . , Xn), with ‖A‖1 ≤ ρn(µ) and C = 64C2.

5.4.2 Steiner trees

Suppose that H = {x1, . . . , xn} is a set of n distinct points on the unit square [0, 1]2.

Then the minimal spanning tree (MST) of H is a connected graph with vertex set

H such that the sum of the edge length is minimal (in Euclidean distance). The

minimal Steiner tree of H is the minimal spanning tree containing H as a subset

of its vertices. By the definition, the sum of the edge lengths of this is less than or

equal to the sum of the edge lengths of the minimal spanning tree, since we can also

add vertices and edges to the graph (an example where they differ is the equilateral

triangle, where the minimal Steiner tree adds the centre of mass of the triangle to the

graph, thus reducing the total edge length). We denote the sum of the edge lengths of

the minimal Steiner tree by S(x1, . . . , xn). Note that this is invariant to permutations

of x1, . . . , xn, thus we can equivalently denote it by S({x1, . . . , xn}).

This is a quantity of great practical importance, since it expresses the minimal

amount of interconnect needed between the points x1, . . . , xn. It has found numerous

applications in circuit and network design. Hwang, Richards, and Winter (1992) is a

popular book on this subject.

From a probabilistic perspective, a problem of interest is to quantify the behaviour

of S(X1, . . . , Xn), where X1, . . . , Xn are random variables that are i.i.d. uniformly

distributed on [0, 1]2. Steele (1997) has proven that the total length of the minimal

Steiner tree, S(X1, . . . , Xn), is sharply concentrated around its median, with typical

deviations of order 1.
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Here we study a modified version of this problem, when we choose a random subset

of size n from a set of points A := {a1, . . . , aN} in [0, 1]2. Let µ be a probability

measure on such subsets, and denote its inhomogeneity coefficient defined in (5.4.2)

by ρn(µ). Using our version of Talagrand’s convex distance inequality for dependent

random variables, we obtain the following concentration bound.

Theorem 5.4.7 (Minimal Steiner tree for random subsets). Let X be a random subset

of size n of A, chosen according to a distribution µ, with inhomogeneity coefficient

ρn(µ) < 1. Then for any t ≥ 0,

P(|S(X )−M(S)| ≥ t) ≤ 4 exp

(
−t

2(1− ρn(µ))

520000

)
, (5.4.8)

where M(S) denotes the median of S.

The proof consists, again, of two parts. First, we bound the Dobrushin interde-

pendence matrix, then show that the function S satisfies the conditions of our version

of the method of non-uniformly bounded differences for dependent random variables

(Corollary 5.3.5). The first part is proven in Lemma 5.4.4. For the second part, we

are going to use the following lemma.

Lemma 5.4.8 (Steele (1997), page 107, equation (5.26)). Let us denote the edge

lengths of the minimum spanning tree for x1, . . . , xn ∈ [0, 1]2 by e1, . . . , en−1. Then

for some universal constant c,

e2
1 + . . .+ e2

n−1 ≤ c, (5.4.9)

in particular, we can choose c = 410 (see page 108 of Steele (1997)). If there are

multiple minimal spanning trees, then this holds for each of them.
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The conditions on S are verified in the following lemma.

Lemma 5.4.9. For any x1, . . . , xn ∈ [0, 1]2, denote x = (x1, . . . , xn), and for 1 ≤ i ≤

n, define αi(x) as two times the length of the incurring edges in the minimal spanning

tree of x1, . . . , xn. Then for any x, y ∈ ([0, 1]2)n, we have

S(x)− S(y) ≤
n∑
i=1

αi(x) · 1[xi 6= yi].

Moreover, for any x ∈ ([0, 1]2)n,

n∑
i=1

α2
i (x) ≤ 19680.

Proof. The first claim is proven on pages 123-124 of Steele (1997). For the second

claim, first notice that the vertices in the minimum spanning tree can have degree at

most 6. Now for any 6 reals z1, . . . , z6, we have (z1 + . . . + z6)2 ≤ 6(z2
1 + . . . + z2

6),

and every edge belongs to two vertex so it is counted twice, thus by Lemma 5.4.8, we

have
n∑
i=1

α2
i (x) ≤ 6 · 22 · 2

n−1∑
i=1

e2
i ≤ 19680.

Now we are ready to prove our concentration result.

Proof of Theorem 5.4.7. Using Lemma 5.4.4 and Lemma 5.4.9, the statement of the

theorem follows by applying Corollary 5.3.5 with ‖A‖1 = ‖A‖∞ = ρn(µ) and C =

19680.
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5.4.3 Curie-Weiss model

The Curie-Weiss model of ferromagnetic interaction is the following. Consider the

state space Λ = {−1, 1}n, and denote an element of the state space (a configuration)

by σ = (σ1, . . . , σn). Define the Hamiltonian for the system as

H(σ) :=

(
β

1

n

∑
1≤i<j≤n

σiσj + h

n∑
i=1

σi

)
,

and the probability density

pβ(σ) :=
exp(βH(σ))

Z(β, h)
,

where Z(β, h) :=
∑

σ∈Λ exp(βH(σ)) is the normalizing constant. The following propo-

sition gives bounds on the Dobrushin interdepence matrix for this model.

Proposition 5.4.10. For σ as above, the Dobrushin interdependence matrix A sat-

isfies

‖A‖1, ‖A‖∞, ‖A‖2 < β.

Proof. We will now calculate the Dobrushin interdependence matrix for this system.

Suppose first that h = 0. Let x and y be two configurations, then we want to bound

dTV(µi(·|x−i), µi(·|y−i))

Since σi can only take values 1 or −1, so the total variation distance is simply

dTV(µi(·|x−i), µi(·|y−i)) = |P(σi = 1|x−i)− P(σi = 1|y−i)|.
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Now by writing mi(x) := 1
n

∑
j:j 6=i xj and mi(y) := 1

n

∑
j:j 6=i yj, we can write

P(σi = 1|x−i) =
exp(βmi(x))

exp(βmi(x)) + exp(−βmi(x))
,

so by denoting

r(t) :=
exp(t)

exp(t) + exp(−t)
=

1

1 + exp(−2t)
, (5.4.10)

we can write

|P(σi = 1|x−i)− P(σi = 1|y−i)| = |r(βmi(x))− r(βmi(y))|.

Now it is easy to check that |r′(t)| ≤ 1
2
, and changing one spin in x can change mi

at most by 2/n. From this, we obtain a Dobrushin interdependence matrix A with

aij = β
n

for i 6= j. For this A, it is easy to see that

‖A‖1 = ‖A‖∞ = ‖A‖2 = β

(
1− 1

n

)
< β.

Thus for the high temperature case 0 ≤ β < 1, we can apply Corollary 5.3.2 to

obtain concentration inequalities.

In the case when writing the conditional probabilities for h 6= 0, one can show that

in the above argument, r(t) in (5.4.10) gets replaced by r(t, h) := exp(t+h)
exp(t+h)+exp(−t−h)

.

This function still satisfies that | ∂
∂t
r(t, h)| ≤ 1/2, thus A as defined above is a Do-

brushin interdependence matrix in this case as well.

Now we are going to show a concentration inequality for the average magne-

tization of the Curie-Weiss model. Let us denote the average magnetization by

m := 1
n

∑n
i=1 σi. We have the following proposition.
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Proposition 5.4.11. For the above model, when 0 ≤ β < 1, and h ≥ 0, we have

P(m(σ) ≥ E(m(σ)) + t) ≤ exp

(
− n(1− β)t2

16(1− tanh(h) + 4/((1− β)
√
n)

)
P(m(σ) ≤ E(m(σ))− t) ≤ exp

(
− n(1− β)t2

4[1− tanh(h) + 4/((1− β)
√
n)] + 4t

)
.

Remark 5.4.12. Since 1 − tanh(h) ≤ 2 exp(−2h) for h ≥ 0, this proposition is

better for large values of h than what we could obtain from McDiarmid’s bounded

differences inequality (Theorem 4.3 of Chatterjee (2005)). That result uses only the

Hamming Lipschitz property, and gives bounds of order exp(−n(1 − β)t2)), which

does not capture the fact that in such cases σi and thus m(σ) has small variance.

Proof of Proposition 5.4.11 . Let n−(σ) =
∑n

i=1 1[σi = −1] be the number of −1

spins, then m = n−2n−
n

, and for t ≥ 0,

P(m(σ) ≥ E(m(σ)) + t) = P
(
n−(σ) ≤ E(n−(σ))− n

2
t
)
, (5.4.11)

P(m(σ) ≤ E(m(σ))− t) = P
(
n−(σ) ≥ E(n−(σ)) +

n

2
t
)
. (5.4.12)

Here n−(σ) is a sum of non-negative variables, so one can easily see that it is (1, 0)-

∗-self-bounding, and thus, by Theorem 5.3.1, we have for every t ≥ 0,

P(n−(σ) ≥ E(n−(σ)) + t) ≤ exp

(
− (1− β)t2

2E(n−(σ)) + 2t

)
(5.4.13)

P(n−(σ) ≤ E(n−(σ))− t) ≤ exp

(
− (1− β)t2

8E(n−(σ))

)
. (5.4.14)

In order to apply this bound, we will need to estimate E(n−(σ)) = n(1−E(m))/2.

For this, we are going to use Proposition 1.3 of Chatterjee (2007), stating that for
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any t ≥ 0,

P
(
m(σ)− tanh(βm(σ) + h) ≥ β

n
+

t√
n

)
≤ exp(−t2/(4 + 4β)), (5.4.15)

and the same bound holds for the lower tail as well. Here we have replaced βh

with h in the equation of Proposition 1.3 because of the different definition of the

Hamiltonian of the model. Now for 0 ≤ β < 1, the equation m = tanh(βm + h)

admits a unique solution in m, which we denote by m∗(h).

For 0 ≤ β ≤ 1, (5.4.15) can be further bounded by exp(−nt2/8), moreover, for

any x ≥ 0, P(|m(σ) − m∗| ≥ x/(1 − β)) ≤ P(|m(σ) − tanh(βm(σ) + h)| ≥ x), and

thus for any t ≥ 0,

P
(

(m(σ)−m∗) ≥
(

1

1− β

)
·
(

1

n
+

t√
n

))
≤ exp(−t2/8),

and the same inequality holds for the lower tail as well, but with m(σ)−m∗ replaced

by m∗ −m(σ). From this, using integration by parts, we obtain that

E((m(σ)−m∗)+),E((m(σ)−m∗)−) ≤ 1

1− β
· 1

n
+

1

1− β
· 1√

n
·
√

2π ≤ 4

(1− β)
√
n
,

implying that |E(m(σ))−m∗| ≤ 4/((1− β)
√
n). Now it is easy to see that for h ≥ 0,

we have m∗(h) ≥ tanh(h), and thus E(m(σ)) ≥ tanh(h)− 4/((1− β)
√
n) and

E(n−(σ)) ≤ n(1 + 4/((1− β)
√
n)− tanh(h))/2.

Now the results follow by combining this with equations (5.4.11), (5.4.12), (5.4.13)

and (5.4.14).
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5.4.4 Exponential random graphs

Exponential random graph models are increasingly popular for modelling network

data (see Chatterjee and Diaconis (2013)). For a graph with n vertices, the edges are

distributed according to a probability distribution of the form

pβ(G) := exp

(
k∑
i=1

βiTi(G)− ψ(β)

)
, (5.4.16)

where β = (β1, . . . , βk) is a vector of real parameters, and T1, . . . , Tk are functions on

the space of the graphs (T1 is usually the number of edges, while the rest can be the

number of triangles, cycles, etc. ), and ψ(β) is the normalising constant.

The simplest special case of this model is the Erdős-Rényi graph. Let E be the

number of edges of the graph, and let 0 < p < 1 be a parameter, then in this case,

pβ(G) := pE(1− p)n(n−1)/2−E = exp

(
log

(
p

1− p

)
E + log(1− p)n(n− 1)/2

)
.

In this case, the edges are i.i.d. random variables distributed according to the Bernoulli

distribution with parameter p.

A more complex model, which was analysed in Chatterjee and Diaconis (2013),

has the distribution

pβ1,β2(G) = exp

(
2β1E +

6β2

n
∆− n2ψn(β1, β2)

)
,

where E denotes the number of edges, ∆ denotes the number of triangles, and

ψn(β1, β2) is the normalising constant. Note that in this case, the edges are no longer

independent, because the number of triangles introduces a form of dependence into
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the model.

In general, for any model of the type (5.4.16), there is a certain set D ⊂ Rk of non-

zero volume such that when the parameters β ∈ D, the edges, as random variables,

satisfy the Dobrushin condition (that is, there is an interdependence matrix such that

‖A‖1 < 1 and ‖A‖∞ < 1). This fact can be shown by a simple continuity argument,

since the random variables are independent when β = 0. The set D is analogous to

the high-temperature phase of statistical physical models.

The following theorem, based on our new concentration inequality for (a, b)-*-

self-bounding functions, establishes concentration inequalities for subgraph counts in

exponential random graph models in the high temperature phase.

Theorem 5.4.13 (Subgraph counts in exponential random graphs).

Let Λ := {0, 1}n(n−1)/2, and let X := (Xij)1≤i<j≤n be the edges of an exponential

random graph, taking values in Λ, distributed according to pβ, as defined by (5.4.16).

Suppose that β ∈ D.

Let S be a fixed graph with nS vertices and eS edges. Let NS denote the number

of copies of S in our exponential random graph, then for any t ≥ 0,

P(NS − E(NS) ≥ t) ≤ exp

(
(1− ‖A‖1)t2

2
(
n−2
nS−2

)
eS · (E(NS) + t)

)
, (5.4.17)

P(NS − E(NS) ≤ −t) ≤ exp

(
(1− ‖A‖1)t2

8
(
n−2
nS−2

)
eS · E(NS)

)
. (5.4.18)

Remark 5.4.14. By the number of copies of S, we mean the number of subsets of size

nS of the set of n vertices of our graph such that the corresponding subgraph contains

S. A of similar concentration inequality can be shown to hold for the maximal degree

among all the vertices (see Example 6.13 of Boucheron, Lugosi, and Massart (2013b)),
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which can be shown to be (1, 0)-*-self-bounding. Our results are sharper than what we

could obtain using Theorem 4.3 of Chatterjee (2005) (McDiarmid’s bound differences

inequality for dependent random variables satisfying the Dobrushin condition).

Proof of Theorem 5.4.13. The proof is based on the *-self-bounding property of NS.

If we add an edge to X, then NS will increase, or stay the same, while if we erase an

edge from X, then NS will decrease, or stay the same. For x ∈ Λ, 1 ≤ i < j ≤ n,

let αi,j(x) be the number of copies of S in x that contain the edge (i, j). Then

0 ≤ αi,j(x) ≤
(
n−2
nS−2

)
, and we can see that for any x, y ∈ Λ,

NS(x)−NS(y) ≤
∑

1≤i<j≤n

αi,j(x)1[xij 6= yij].

Moreover, since S contains eS edges, we have

∑
1≤i<j≤n

αi,j(x) ≤ eSNS(x).

This means that NS(x)/
(
n−2
nS−2

)
is (eS, 0)-*-self-bounding, and the results follow by

Corollary 5.3.2.

5.5 Preliminary results

In this section, we will prove some preliminary results needed for proving our main

results from Section 5.3. First, we prove a lemma about the total variational distance.

After this, review the basics of the concentration inequalities by Stein’s method of

exchangeable pairs approach. Finally, we prove some lemmas about bounding moment

generating functions.
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5.5.1 Basic properties of the total variational distance

The total variational distance of two probability distributions µ1 and µ2 defined on

the same measurable space (X ,F) is defined as

dTV(µ1, µ2) = sup
S∈F
|µ1(S)− µ2(S)|. (5.5.1)

The following lemma proposes a coupling related to the total variational distance that

we are going to use.

Lemma 5.5.1. Let µ1 and µ2 be two probability measures on a Polish space (X ,F).

Then for any fixed q with dTV(µ1, µ2) ≤ q ≤ 1, we can define a coupling of independent

random variables χ,B,C,D such that χ has Bernoulli distribution with parameter q,

and the random variables

X := (1− χ)B + χC, Y := (1− χ)B + χD (5.5.2)

satisfy that X ∼ µ1, Y ∼ µ2.

Proof. The proof is similar to Problem 7.11.16 of Grimmett and Stirzaker (2001). We

define the measure µ12(·) on (X ,F) as µ12(S) = µ1(S)+µ2(S)
2

. Then µ1 and µ2 are both

absolutely continuous with respect to µ12, thus we can define the Radon-Nikodym

derivatives f(x) := dµ1

dµ12
(x) and g(x) := dµ2

dµ12
(x) for almost every x ∈ Ω.

The density of random variables B, C and D with respect to µ12 can be defined in

terms of f(x) and g(x) as follows. Let us define h : X → R as h(x) = min(f(x), g(x)),
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and let p := dTV(µ1, µ2). For any S ∈ F , we let

µB(S) :=

∫
x∈S

h(x)

1− p
dµ12(x),

µC(S) :=

∫
x∈S

(
h(x)

q − 1

1− p
+ f(x)

)
1

q
dµ12(x),

µD(S) :=

∫
x∈S

(
h(x)

q − 1

1− p
+ g(x)

)
1

q
dµ12(x),

and we set χ ∼ Bernoulli(q), B ∼ µB, C ∼ µC , D ∼ µD be independent random

variables. With this choice, it is straightforward to check that the conditions of the

lemma are satisfied.

5.5.2 Concentration by Stein’s method of exchangeable pairs

Let f : X → R, where X is a Polish space, and X is a random variable taking

values in X . We are interested in the concentration properties of f(X). Suppose that

E(f(X)) = 0. Let (X,X ′) be an exchangeable pair, m(θ) := E(eθf(X)). Suppose that

F (x, y) : X 2 → R is an antisymmetric function satisfying

E(F (X,X ′)|X) = f(X). (5.5.3)

Then for any θ ∈ R,

m′(θ) = E(f(X)eθf(X)) = E(F (X,X ′)eθf(X)) = −E(F (X,X ′)eθf(X′))

= E
(
F (X,X ′)

eθf(X) − eθf(X′)

2

)
. (5.5.4)
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By Chatterjee (2005), this can be further bounded by

E
(
θ

2
|F (X,X ′)||f(X)− f(X ′)|eθf(X)

)
,

and conditions on ∆(X) := 1
2
E ( |F (X,X ′)||f(X)− f(X ′)||X) determine the concen-

tration properties of f(X).

In this chapter, we are also going to use (5.5.4), but instead of taking absolute

value, we consider positive and negative parts.

In order to apply the approach for some function f , we need to find the antisym-

metric function F (x, y) such that (5.5.3) is satisfied. Chapter 4 of Chatterjee (2005)

finds such an antisymmetric function by a method using a Markov chain, we give a

summary below.

An exchangeable pair (X,X ′) automatically defines a reversible Markov kernel P

as

Pf(x) := E(f(X ′)|X = x), (5.5.5)

where f is any function such that E|f(X)| <∞.

Let {X(k)}k≥0 and {X ′(k)}k≥0 be two chains with Markov kernel P , having ar-

bitrary initial values, and coupled according to some coupling scheme which satisfies

the following property.

P For every initial value (x, y) of the joint chain {X(k)}k≥0, {X ′(k)}k≥0 , and ev-

ery k, the marginal distribution of X(k) depends only on x and the marginal

distribution of X ′(k) depends only on y.

Under this assumption, the following lemma holds.
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Lemma 5.5.2 (Lemma 4.2 of Chatterjee (2005)). Suppose the chains {X(k)} and

{X ′(k)} satisfy the property P described above. Let f : X → R be a function such that

Ef(X) = 0. Suppose there exists a finite constant L such that for every (x, y) ∈ X 2,

∞∑
k=0

|E(f(X(k))− f(X ′(k))|X(0) = x,X ′(0) = y)| ≤ L. (5.5.6)

Then, the function F , defined as

F (x, y) :=
∞∑
k=0

E(f(X(k))− f(X ′(k))|X(0) = x,X ′(0) = y),

satisfies F (X,X ′) = −F (X ′, X) and E(F (X,X ′)|X) = f(X).

Remark 5.5.3. It is useful to start with X(0) = X and X ′(0) = X ′, because we can

bound F (X,X ′) during the verification of (5.5.6).

5.5.3 Additional lemmas

The following lemma proves concentration in the case when ∆(X) is not bounded

almost surely, but itself is concentrated (a reformulation of Lemma 11 of Massart

(2000)). Since the proof is short, we include it for completeness (it is based on part

of the proof of Theorem 3.13 of Chatterjee (2005)).

Lemma 5.5.4. Let m(θ) = E(eθf(X)). For any random variable V , and any L > 0,

we have for every θ ∈ R,

E(eθf(X)V ) ≤ L−1 logE(eLV )m(θ) + L−1θm′(θ)− L−1m(θ) log(m(θ)),

if the expectations on both sides exist.
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Proof. Let u(X) := eθf(X)

m(θ)
. Let A,B ≥ 0 be two random variables with finite variance

and E(A) = 1, then

E(A log(B)) ≤ log(E(AB)),

which can be shown by changing the measure and applying Jensen’s inequality. Using

this, we have

E(eθf(X)V ) = L−1m(θ)E
(
u(X)

(
log

eLV

u(X)
+ log u(X)

))
≤ L−1 logE(eLV )m(θ) + L−1E

(
eθf(X) log u(X)

)
,

here we applied our previous inequality with A = u(X) and B = eLV

u(X)
. Now using

the fact that log(u(X)) = θf(X)− log(m(θ)), we obtain the result.

We will use the following well known result many times in our proofs.

Lemma 5.5.5. Let W be a centered random variable with moment generating function

m(θ). Let C,D ≥ 0, suppose that m(θ) is finite, and continuously differentiable in

[0, 1/C), and satisfies

m′(θ) ≤ Cθm′(θ) +Dθm(θ).

Then for 0 ≤ θ < 1/C,

log(m(θ)) ≤ Dθ2

2(1− Cθ)
, (5.5.7)

and for every t ≥ 0,

P(W ≥ t) ≤ exp

(
− t2

2(D + Ct)

)
. (5.5.8)
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Proof. By rearranging, we have

(1− Cθ)m′(θ) ≤ Dθm(θ)

log(m(θ))′ ≤ Dθ

1− Cθ

log(m(θ)) ≤
∫ θ

x=0

Dx

1− Cx
= −Dθ

C
− D log(1− Cθ)

C2
≤ Dθ2

2(1− Cθ)
,

using the fact that for 0 ≤ z ≤ 1, −z− log(1− z) ≤ z2

2(1−z) . We obtain the tail bound

by applying Markov’s inequality for θ = t
D+Ct

.

5.6 Proofs of the main results

In this section, we are going to prove our main result, Theorem 5.3.1 and Corollary

5.3.2. The theorem concerns dependent random variables, and we need to introduce

a certain amount of notation to handle them, making the proof rather technical. In

order to help the reader in digesting this proof, we are going to prove the theorem

first in the independent case, where we are free of the notational burden required for

dependent random variables.

Before starting the proof in the independent case, we introduce some notation and

two lemmas that are going to be used in both the independent and the dependent

cases.

Let X = (X1, . . . , Xn) be an vector of random variables taking value in Λ. Let

f : Λ→ R be the centered version of g, defined as

f(x) = g(x)− E(g(X)) for every x ∈ Λ. (5.6.1)
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Let α1, . . . , αn : Λ→ R+ be functions such that for any x, y ∈ Λ,

f(x)− f(y) ≤
n∑
i=1

1[xi 6= yi]αi(x); (5.6.2)

let α(x) := (α1(x), . . . , αn(x)). Note that at this point we do not yet make any specific

self-bounding type assumptions on α(x).

Let I be uniformly distributed in [n]. Suppose that (X,X ′) is an exchangeable

pair, such that Xi = X ′i for every i ∈ [n] \ {I}. Suppose that for k ≥ 0, X(k) and

X ′(k) are Markov chains with kernel defined as in (5.5.5), satisfying Property P and

(5.5.6). For k ≥ 0, define the random vector L(k) ∈ Rn
+ as

Li(k) := 1[Xi(k) 6= X ′i(k)] for 1 ≤ i ≤ n.

The following two lemmas bound the moment generating function of f in function of

the vectors L(k) and α(x).

Lemma 5.6.1. Under the above assumptions, for θ > 0, if m(θ) <∞, then we have

m′(θ) ≤ E

(
∞∑
k=0

〈L(k), α(X(k))〉αI(X)θeθf(X)

)
.

Proof. Note that

m′(θ) = E(f(X)eθf(X))

= E
(
F (X,X ′)eθf(X)

)
=

1

2
E
(
F (X,X ′)(eθf(X) − eθf(X′)

)
≤ E

(
(F (X,X ′))+(eθf(X) − eθf(X′))+

)
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= E
(

(F (X,X ′))+(1− e−θ(f(X)−f(X′))+)eθf(X)
)

≤ E
(
(F (X,X ′))+(f(X)− f(X ′))+θe

θf(X)
)

≤ E

(
∞∑
k=0

(f(X(k))− f(X ′(k)))+ (f(X)− f(X ′))+ θe
θf(X)

)
.

Using (5.6.2), we have

(f(X)− f(X ′))+ ≤ αI(X), and (f(X(k))− f(X ′(k)))+ ≤ 〈L(k), α(X(k))〉 ,

thus the result follows.

Lemma 5.6.2. Under the above assumptions, for θ < 0, if m(θ) < ∞, and in

addition, f(X)− f(X ′) ≤ 1 almost surely, then

m′(θ) ≥ −
∞∑
k=0

E
((
e−θ − 1

)
eθf(X) 〈L(k), α(X(k))〉αI

)
.

Proof. Note that

m′(θ) =
1

2
E
(
F (X,X ′)

(
eθf(X) − eθf(X′)

))
≥ −E

(
(F (X,X ′))+

(
eθf(X) − eθf(X′)

)
−

)
≥ −E

(
(F (X,X ′))+

(
eθf(X′) − eθf(X)

)
+

)
≥ −E

(
(F (X,X ′))+

(
eθ(f(X′)−f(X)) − 1

)
+
eθf(X)

)
= −E

(
(F (X,X ′))+

(
e−θ(f(X)−f(X′))+ − 1

)
eθf(X)

)
.

Since θ < 0, and
(
e(−θ)x − 1

)
/x is a monotone function in x for x ≥ 0, using 0 ≤
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(f(X)− f(X ′))+ ≤ 1, we obtain

(
e−θ(f(X)−f(X′))+ − 1

)
≤ (f(X)− f(X ′))+

(
e−θ − 1

)
.

Now applying (5.6.2) proves the result.

5.6.1 Independent case

In this section, we are going to prove Theorem 5.3.1 and Corollary 5.3.2 under the

additional assumption that X = (X1, . . . , Xn) is a vector independent random vari-

ables. First, we are going to construct a valid coupling of (X(k), X ′(k))k≥0, satisfying

Property P and (5.5.6). After this, we will use Lemma 5.6.1 and 5.6.1 to obtain the

mgf bounds of Theorem 5.3.1.

The construction of (X(k), X ′(k))k≥0 is the same as in Example on page 73 of

Chatterjee (2005), sketched here for the sake of completeness. This is a version of the

Glauber dynamics. First, we set X(0) = x, and X ′(0) = y for some x, y ∈ Λ. Then we

let I(1), I(2), . . . be independent random variables uniformly distributed on [n], and

X∗(1), X∗(2), . . . be independent copies of X. Then in the first step, we define the

vectors X(1) and X ′(1) as equal to X(0), and X ′(0), respectively, except in coordinate

I(1), where we set XI(1)(1) = X ′I(1)(1) = X∗I(1)(1). We define X(k), X ′(k) in the same

way, by starting from X(k − 1), X ′(k − 1), and changing their coordinate I(k) to

X∗I(k)(k). This coupling has shown to satisfy Property P and (5.5.6) in Chatterjee

(2005) (via the coupon collector’s problem). Finally, we note that X ′ is defined as

one step in the dynamics, that is, we let X∗ be an independent copy of X, I be

uniformly distributed on [n], independently of X and X∗, and X ′ equals to X except

in coordinate I, where it equals X∗I .
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Now we are ready to prove Theorem 5.3.1 and Corollary 5.3.2 under the indepen-

dence assumption.

Proof of Part 1 of Theorem 5.3.1 and Corollary 5.3.2 assuming independence.

By Lemma 5.6.1, using the fact that f is bounded under our assumptions, we have

that for θ > 0,

m′(θ) ≤
∞∑
k=0

E

(
θeθf(X) ·

n∑
i=1

αi(X(k))αi(X)1[i /∈ I(1), . . . , I(k)]

)

Now by our assumption, αi(X(k)) ≤ 1, and using that g is (a,b)-*-self-bounding,

m′(θ) ≤
∞∑
k=0

E

(
θeθf(X) · 1

n

n∑
i=1

αi(X)1[i /∈ I(1), . . . , I(k)]

)

≤ E

(
θeθf(X) · 1

n

n∑
i=1

αi(X)
∞∑
k=0

(
1− 1

n

)k)

≤ E
(
θeθf(X)(ag(X) + b)

)
= E

(
θeθf(X)(af(X) + (aEg(X) + b))

)
≤ θam′(θ) + θ (aEg(X) + b)m(θ).

The mgf bound now follows by rearrangement and integration, and applying Lemma

5.5.5 proves the concentration bound of Corollary 5.3.2.

Proof of Part 2 of Theorem 5.3.1 and Corollary 5.3.2 assuming independence.

By Lemma 5.6.1, we have for θ > 0

m′(θ) ≤
∞∑
k=0

E

(
θeθf(X) · 1

n

n∑
i=1

αi(X(k))αi(X)1[i /∈ I(1), . . . , I(k)]

)
. (5.6.3)
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Now by the fact that g is weakly (a, b)-*-self-bounding, we have

n∑
i=1

αi(X)2 ≤ ag(X) + b, and
n∑
i=1

αi(X(k))2 ≤ ag(X(k)) + b.

We will use the conditional version of the Cauchy-Schwarz inequality: if Ai, Bi are

random variables for 1 ≤ i ≤ n, then

E(AiBi|X) ≤
(
E(A2

i |X)
)1/2 ·

(
E(B2

i |X)
)1/2

,

E

(
n∑
i=1

AiBi

∣∣∣∣∣X
)
≤

n∑
i=1

(
E(A2

i |X)
)1/2 ·

(
E(B2

i |X)
)1/2

.

Now writing Ai = αi(X)1[i /∈ I(1), . . . , I(k)] and Bi = αi(X(k)), we obtain

n∑
i=1

E(αi(X(k))αi(X)1[i /∈ I(1), . . . , I(k)]|X)

≤
n∑
i=1

(
E(αi(X)2

1[i /∈ I(1), . . . , I(k)]|X)
)1/2 ·

(
E(αi(X(k))2|X)

)1/2

=

(
1− 1

n

)k/2
·

n∑
i=1

(αi(X)2)1/2 ·
(
E(αi(X(k))2|X)

)1/2

≤
(

1− 1

n

)k/2
·

n∑
i=1

1

2
E
(
αi(X)2 + αi(X(k))2|X

)
≤
(

1− 1

n

)k/2
· 1

2
E(ag(X) + b+ ag(X(k)) + b|X)

By substituting this into (5.6.3), we obtain that

m′(θ) ≤
∞∑
k=0

E

(
θeθf(X) 1

n

∞∑
k=0

(
1− 1

n

)k/2
1

2
(ag(X) + b+ ag(X(k)) + b)

)
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≤
∞∑
k=0

E

(
θeθf(X) 1

n

∞∑
k=0

(
1− 1

n

)k/2
(ag(X) + b)

)

≤ E
(
θeθf(X)2(ag(X) + b)

)
= E

(
θeθf(X)(2af(X) + 2aEg(X) + 2b)

)
≤ θ2am′(θ) + θ (2aEg(X) + 2b)m(θ).

Here we have used the fact that for θ > 0,

E(eθf(X)f(X(k))) ≤ E(eθf(X)f(X)), (5.6.4)

since using the exchangeability of f(X) and f(X(k)),

E
(
eθf(X) (f(X)− f(X(k)))

)
= E

(
eθf(X(k))(f(X(k))− f(X))

)
= E

((
eθf(X) − eθf(X(k))

)
(f(X)− f(X(k)))

)
≥ 0,

since eθf(X) − eθf(X(k)) and f(X)− f(X(k)) always have the same sign. We conclude

by applying Lemma 5.5.5.

Proof of Part 3 of Theorem 5.3.1 and Corollary 5.3.2 assuming independence.

By Lemma 5.6.2,

m′(θ) ≥ −
∞∑
k=0

E

((
e−θ − 1

)
eθf(X) · 1

n

n∑
i=1

αi(X(k))αi(X)1[i /∈ I(1), . . . , I(k)]

)
.
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In Part 2, we proved that

n∑
i=1

E(αi(X(k))αi(X)1[i /∈ I(1), . . . , I(k)]|X)

≤
(

1− 1

n

)k/2
· 1

2
E(ag(X) + b+ ag(X(k)) + b|X),

so we obtain

m′(θ) ≥ −E
((
e−θ − 1

)
eθf(X) 1

n
(5.6.5)

·
∞∑
k=0

(
1− 1

n

)k/2
· 1

2
(af(X) + af(X(k)) + 2b+ 2aEg(X))

)
.

The terms involving f(X(k)) cause some difficulty. Although we can show, in the

same way as in Part 2, that

−E(eθf(X)f(X(k))) ≤ −E(eθf(X)f(X)),

for us the other sided inequality would be more convenient. Nevertheless, we can use

the concentration properties of f(X(k)) from Part 2 to bound this term. By Lemma

5.5.4, for any L > 0,

E(eθf(X)f(X(k))) ≤ L−1 logE(eLf(X(k)))m(θ) + L−1θm′(θ)

Now by exchangeability E(eLf(X(k))) = E(eLf(X)) = m(L), and we can use the bound
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from Part 2 to obtain that for 0 < L < 1/(2a),

log(m(L)) ≤ (aEg(X) + b)L2

(1− 2aL)

E(eθf(X)f(X(k))) ≤ (aEg(X) + b)L

(1− 2aL)
m(θ) + L−1θm′(θ)

= E
[

(aEg(X) + b)L

(1− 2aL)
eθf(X) + L−1θf(X)eθf(X)

]

Substituting this back to (5.6.5), and summing up in k as previously, we obtain

m′(θ) ≥ −
(
e−θ − 1

)
· E
[
eθf(X)

(
2aEg(X) + 2b+ a

(aEg(X) + b)L

(1− 2aL)

)
+ f(X)eθf(X)

(
a+ aL−1θ

)]
.

A convenient choice for L, which makes the inequality tractable, is L = −θ. With

this choice, for 0 > θ > − 1
2a

, we obtain

m′(θ) ≥ −
(
e−θ − 1

)(
2aEg(X) + 2b− a(aEg(X) + b)θ

(1 + 2aθ)

)
m(θ)

log(m(θ))′ ≥ −
(
e−θ − 1

)(
2aEg(X) + 2b− a(aEg(X) + b)θ

(1 + 2aθ)

)
,

thus we have shown (5.3.2). Now we turn to the proof of the concentration bounds

of Corollary 5.3.2. Suppose that 0 > θ > − 1
4a

, then 1 + 2aθ ≥ 1/2, so

log(m(θ))′ ≥ −
(
e−θ − 1

)
(2− 2aθ)(aEg(X) + b). (5.6.6)

Now we consider two cases, depending on the size of a. The function (ex − 1) /x is
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increasing for positive x, so we can write

−
(
e−θ − 1

)
(2− 2aθ) ≥

(
e

1
4a − 1

)
1/(4a)

5

2
θ

log(m(θ))′ ≥

(
e

1
4a − 1

)
1/(4a)

5

2
θ(aEg(X) + b)

log(m(θ)) ≤

(
e

1
4a − 1

)
1/(4a)

5

4
(aEg(X) + b)θ2 ≤ 2(aEg(X) + b)θ2,

whenever (
e

1
4a − 1

)
1/(4a)

≤ 8

5
, (5.6.7)

that is, whenever a ≥ ac (with ac defined as in (5.3.3)). Using Markov’s inequality,

we have that for 0 < t < Eg(X), 0 > θ > − 1
4a

,

logP(f(X) ≤ −t) ≤ log(m(θ)) + tθ ≤ 2(aEg(X) + b)θ2 + θt,

which takes its minimum at

θmin =
−t

4(aEg(X) + b)
,

which satisfies 0 > θ > − 1
4a

, and thus

logP(f(X) ≤ −t) ≤ −t2

8(aEg(X) + b)
.

Finally, we need to tackle the case when a < ac. Going back to equation (5.6.6), we
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can write that for 0 > θ > − 1
4a

,

log(m(θ))′ ≥ −
(
e−θ − 1

) 5

2
(aEg(X) + b)

log(m(θ)) ≤
(
e−θ + θ − 1

) 5

2
(aEg(X) + b)

Let us write C := 5
2
(aEg(X) + b), then by Markov’s inequality, we have that for

0 > θ > − 1
4a

, 0 < t < Eg(X),

log(P(f(X) ≤ −t)) ≤ log(m(θ)) + θt ≤
(
e−θ + θ − 1

)
C + θt

The minimum of the right hand side is taken at

θmin = − log

(
1 +

t

C

)
≥ − log

(
1 +

2

5
· 1

a

)
,

which satisfies 0 > θmin > − 1
4a

whenever a < ac. Thus, in this case we have

log(P(f(X) ≤ −t)) ≤
(
t

C
− log

(
1 +

t

C

))
C − log

(
1 +

t

C

)
t

= C

[
t

C
− log

(
1 +

t

C

)(
1 +

t

C

)]
.

Now let us take a look at the x − log(1 + x)(1 + x) function for positive x, we can

easily check that this is negative, and

x− log(1 + x)(1 + x) ≤ − x2

2 + (2/3)x
,
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so

log(P(f(X) ≤ −t)) ≤ − t2

2C + (2/3)t
= − t2

5(aEg(X) + b) + (2/3)t
.

Discussion

When compared to the original proof of Theorem 4.3 of Chatterjee (2005), we have

introduced several new ideas in the proof. Firstly, instead of bounding

∆(X) :=
1

2
E(|F (X,X ′)(f(X)− f(X ′))||X),

we use the one sided version (F (X,X ′))+(f(X) − f(X ′))+. Moreover, we have not

taken the expectation of this quantity with respect to X, but instead used a tricky

symmetrisation argument in (5.6.12). Finally, we have also used Lemma 5.5.4, which

was not needed for the original proof. In an upcoming paper, we are going to show

that these techniques are powerful enough to imply the exponential and polynomial

Efron-Stein inequalities for independent random variables, due to Boucheron, Lugosi,

and Massart (2003) and Boucheron, Bousquet, Lugosi, and Massart (2005b). The

dependent case remains an open problem.

5.6.2 Dependent case

In this section, we are going to prove Theorem 5.3.1 and Corollary 5.3.2. First, we

will clarify the notations in this section. After this, we state two basic lemmas, and

a coupling scheme that will be used in the proof. Finally, we give the proof of the

results.

Let X = (X1, . . . , Xn) be an vector of random variables taking value in Λ, with

Dobrushin interdependence matrix A = (ai,j)1≤i,j≤n.
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Now we will construct a coupling for {X(k)}k≥0, and {X ′(k)}k≥0. Suppose that

we have already coupled

X(0), . . . , X(k) and X ′(0), . . . , X ′(k),

and that X(k) = x, X ′(k) = y. Let I(k + 1) be uniformly chosen from [n], inde-

pendently of the previously defined variables. In order to obtain XI(k+1)(k + 1) and

X ′I(k+1)(k + 1), write

ν1 := µI(k+1)(·|x−I(k+1)) and ν2 := µI(k+1)(·|y−I(k+1)).

By Lemma 5.5.1, we can define the same way as in Section 5.5.1, there exists B(k+1),

C(k+1), D(k+1), χ(k+1) conditionally independent of each other given X−I(k+1)(k)

and X ′−I(k+1)(k). We can choose χ(k + 1) ∼ Bernoulli(q) for any q ≥ dTV(ν1, ν2).

Let ξ(k + 1) be a random vector taking values in {0, 1}n, having distribution

ξ(k + 1) := ei with probability aI(k+1),i (i ∈ [n]), otherwise ξ(k + 1) := 0, (5.6.8)

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith unit vector, and by 0 we mean the null

vector. We suppose that ξ(k+1) is conditionally independent of all else given I(k+1).

This distribution exists, since

n∑
i=1

aI(k+1),i ≤ ‖A‖∞ ≤ 1,
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by our assumptions. Define

χ(k + 1) := 〈ξ(k + 1), L(k)〉 , (5.6.9)

with 〈·, ·〉 denoting scalar product. Then χ(k + 1) ∼ Bernoulli(q) with

q =
n∑
i=1

aI(k+1),iLi(k) ≥ dTV(ν1, ν2).

Note that we may have q > dTV(ν1, ν2), thus our coupling is different from “the greedy

coupling” that is used on page 76 of Chatterjee (2005).

By Lemma 5.5.1, we can define

XI(k+1)(k + 1) := (1− χ(k + 1))B(k + 1) + χ(k + 1)C(k + 1),

and

X ′I(k+1)(k + 1) := (1− χ(k + 1))B(k + 1) + χ(k + 1)D(k + 1),

for all i 6= I(k + 1), Xi(k + 1) := Xi(k) and X ′i(k + 1) := X ′i(k). It is easy to verify

by induction that this coupling scheme satisfies Property P. For a vector v ∈ Rn,

and i ∈ [n], define M(i, v) as an n× n matrix, with (M(i, v))l,m = 1[l = m] for every

1 ≤ l,m ≤ n such that l 6= i, and (M(i, v))i,m = vm for every 1 ≤ m ≤ n (thus it

equals to the identity matrix in every row except the ith one where it equals to v).
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For example,

M(3, (1, 0, 0, 0, 0)) =



1 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1


.

The following lemma states a recursive bound for L(k).

Lemma 5.6.3. For the above coupling, for every k ≥ 0

L(k + 1) ≤M(I(k + 1), ξ(k + 1))L(k), (5.6.10)

and thus

L(k) ≤M(I(k), ξ(k)) . . .M(I(1), ξ(1))L(0). (5.6.11)

Proof. Because of the construction of the coupling, we have Li(k) = Li(k + 1) if

i 6= I(k+ 1). Moreover, XI(k+1)(k+ 1) 6= X ′I(k+1)(k+ 1) implies that χ(k+ 1) = 1, so

(5.6.10) follows by the definitions of χ(k + 1) and M(I(k + 1), ξ(k + 1)). We obtain

(5.6.11) by iteration.

Note that in Theorem 5.3.1, in each of the three cases, g is always going to be

bounded, thus f is also bounded. This means that we have |f(x)| ≤ C for some

absolute constant C for every x ∈ Λ. Using this and (5.6.11), we have

|E(f(X(k))− f(X ′(k))|X(0) = x,X ′(0) = y)|

≤ E(2C‖L(k)‖1|X(0) = x,X ′(0) = y) ≤ 2C‖[E(M(I(1), ξ(1)))]k‖1‖L(0)‖1
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≤ 2nC

∥∥∥∥∥
(

1− 1

n
E +

1

n
A

)k∥∥∥∥∥
1

≤ 2nC

(
1− 1

n
+

1

n
‖A‖1

)k
,

so by summing up, we obtain that (5.5.6) holds with L = 2nC/
(
1− 1

n
+ 1

n
‖A‖1

)
.

Now we are ready to prove Theorem 5.3.1 and Corollary 5.3.2.

Proof of Part 1 of Theorem 5.3.1 and Corollary 5.3.2. For θ > 0, using Lemma 5.6.1,

we have

m′(θ) ≤ E

(
∞∑
k=0

〈L(k), α(X(k))〉αI(X)θeθf(X)

)
.

Let {X(k), X ′(k)}k≥0 be defined as in our coupling scheme, then using (5.6.11),

and the fact that L(0) ≤ eI , we can write

E (〈L(k), α(X(k))〉αI(X)|X)

≤ E (〈(M(I(k), ξ(k)) . . .M(I(1), ξ(1))eI) , α(X(k))〉αI(X)|X)

≤ 1

n
E
(
α(X(k))t (M(I(k), ξ(k)) . . .M(I(1), ξ(1)))α(X)

∣∣X)
≤ 1

n
E (‖α(X(k))‖∞ ‖M(I(k), ξ(k)) . . .M(I(1), ξ(1))α(X)‖1|X) .

Denote by E the identity matrix of size n. Using the facts that for *-self-bounding

functions, ‖α(X(k))‖∞ ≤ 1, and that the elements of M(I(k), ξ(k)) and L(k) are

non-negative for every k, we obtain

E (〈L(k), α(X(k))〉αI(X)|X)

≤ E (〈M(I(k), ξ(k)) . . .M(I(1), ξ(1))eI , 1〉αI(X)|X) ,

with 1 denoting an n vector of ones. Using the fact thatM(I(1), ξ(1)), . . ., M(I(k), ξ(k))
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are independent of I and X, we have

E (〈L(k), α(X(k))〉αI(X)|X)

≤ 1

n
‖E (M(I(k), ξ(k)) . . .M(I(1), ξ(1))|X)‖1 ‖α(X)‖1

≤ 1

n

∥∥∥E (M(I(1), ξ(1))|X)k
∥∥∥

1
(ag(X) + b)

≤ 1

n

∥∥∥∥∥
((

1− 1

n

)
E +

1

n
A

)k∥∥∥∥∥
1

(ag(X) + b)

≤ 1

n

(
1− 1

n
+

1

n
‖A‖1

)k
(af(X) + aE(g) + b),

We sum up in k, and obtain that

m′(θ) ≤
∞∑
k=0

1

n

(
1− 1

n
+

1

n
‖A‖1

)k
E
(
(af(X) + aE(g) + b)θeθf(X)

)
,

m′(θ) ≤ 1

1− ‖A‖1

(aθm′(θ) + (aE(g) + b)θm(θ)) .

We obtain the mgf bound in Theorem 5.3.1 by integration of this inequality, and our

concentration bound in Corollary 5.3.2 from Lemma 5.5.5.

Proof of Part 2 of Theorem 5.3.1 and Corollary 5.3.2. As in Part 1, we have that for

θ > 0, m′(θ) ≤ E
(∑∞

k=0 〈L(k), α(X(k))〉αI(X)θeθf(X)
)
, and

E (〈L(k), α(X(k))〉αI(X)|X)

≤ 1

n
E
(
α(X(k))t (M(I(k), ξ(k)) . . .M(I(1), ξ(1)))α(X)

∣∣X)
≤ 1

n
E (‖α(X(k))‖2 ‖M(I(k), ξ(k)) . . .M(I(1), ξ(1))α(X)‖2|X)
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≤ 1

n
E
(
‖α(X(k))‖2

2

∣∣X)1/2 E
(
‖M(I(k), ξ(k)) . . .M(I(1), ξ(1))α(X)‖2

2

∣∣X)1/2

≤ 1

n
E (ag(X(k)) + b|X)1/2 · E

(
α(X)tM(I(1), ξ(1))t · . . . ·M(I(k), ξ(k))t

×M(I(k), ξ(k)) · . . . ·M(I(1), ξ(1))α(X)

∣∣∣∣X)1/2

≤ 1

n
E (ag(X(k)) + b|X)1/2 ·

(
α(X)tE

(
M(I(1), ξ(1))t · . . . ·M(I(k), ξ(k))t

×M(I(k), ξ(k)) · . . . ·M(I(1), ξ(1))

∣∣∣∣X)α(X)

)1/2

≤ 1

n
E (ag(X(k)) + b|X)1/2 (ag(X) + b)1/2

×
∥∥E(M(I(1), ξ(1))t · . . . ·M(I(k), ξ(k))tM(I(k), ξ(k)) · . . . ·M(I(1), ξ(1))

∣∣X)∥∥1/2

2
.

Now for example

M(3, (1, 0, 0, 0, 0))t ·M(3, (1, 0, 0, 0, 0))

=



1 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


·



1 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1


=



2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


,

so M(I(k), ξ(k))tM(I(k), ξ(k)) is diagonal, therefore it is easy to see that

M(I(1), ξ(1))t . . .M(I(k), ξ(k))tM(I(k), ξ(k)) . . .M(I(1), ξ(1))

is also diagonal. Moreover, by denoting the n × n matrix of only one 1 at position
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i, j and zeros elsewhere by H(i, j) and H(i) := H(i, i), we can write

E(M(I(k), ξ(k))tM(I(k), ξ(k))|X, I(1), ξ(1), . . . , I(k − 1), ξ(k − 1))

= E(M(I(k), ξ(k))tM(I(k), ξ(k))|X)

=
1

n

n∑
i=1

[
n∑
j=1

ai,j(E −H(i) +H(i, j))t(E −H(i) +H(i, j))

+

(
1−

n∑
j=1

ai,j

)
(E −H(i))t(E −H(i))

]

=
1

n

n∑
i=1

[
n∑
j=1

ai,j(E −H(i) +H(j)) +

(
1−

n∑
j=1

ai,j

)
(E −H(i))

]

=

(
1− 1

n

)
E +

1

n

n∑
i=1

n∑
j=1

ai,jH(j) =

(
1− 1

n

)
E +

1

n

n∑
j=1

(
n∑
i=1

ai,j

)
H(j).

Now using the conditions of our theorem, we have (
∑n

i=1 ai,j) ≤ ‖A‖1 < 1, so we can

write

E(M(I(k), ξ(k))tM(I(k), ξ(k))|X, I(1), ξ(1), . . . , I(k − 1), ξ(k − 1))

≤
(

1− 1

n
+

1

n
‖A‖1

)
E.

By repeating this, we obtain that

∥∥E (M(I(1), ξ(1))t · . . . ·M(I(k), ξ(k))tM(I(k), ξ(k)) · . . . ·M(I(1), ξ(1))
∣∣X)∥∥1/2

2

≤
(

1− 1

n
+

1

n
‖A‖1

)k/2
,
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so summing up in k, we have

m′(θ)

≤ 1

n
E

(
∞∑
k=0

E (ag(X(k)) + b|X)1/2 (ag(X) + b)1/2 ·
(

1− 1

n
+

1

n
‖A‖1

)k/2
θeθf(X)

)

≤ 1

n
E

(
∞∑
k=0

(
af(X(k)) + af(X) + 2b+ 2aE(g)

2

)
·
(

1− 1

n
+

1

n
‖A‖1

)k/2
θeθf(X)

)

≤ 1

n
E

(
∞∑
k=0

(af(X) + b+ aE(g))

(
1− 1

n
+

1

n
‖A‖1

)k/2
θeθf(X)

)

≤ E
(

2

1− ‖A‖1

(af(X) + b+ aE(g)) θeθf(X)

)
,

and the mgf bound in Theorem 5.3.1 follows by integration. Here we have used the

fact that for θ > 0,

E(eθf(X)f(X(k))) ≤ E(eθf(X)f(X)), (5.6.12)

because using the exchangeability of f(X) and f(X(k)),

E
(
eθf(X) (f(X)− f(X(k)))

)
= E

(
eθf(X(k))(f(X(k))− f(X))

)
=

1

2
E
((
eθf(X) − eθf(X(k))

)
(f(X)− f(X(k)))

)
≥ 0,

since eθf(X) − eθf(X(k)) and f(X) − f(X(k)) always have the same sign. Applying

Lemma 5.5.5 with C = 2a
1−‖A‖1 and D = 2(aE(g)+b)

1−‖A‖1 proves tail inequality in Corollary

5.3.2.

Proof of Part 3 of Theorem 5.3.1 and Corollary 5.3.2. Now we will bound the lower
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tail, so suppose that θ < 0. By Lemma 5.6.2,

m′(θ) ≥ −
∞∑
k=0

E
((
e−θ − 1

)
eθf(X) 〈L(k), α(X(k))〉αI

)
.

In Part 2, we proved that

E (〈L(k), α(X(k))〉αI(X)|X)

≤ 1

n
E
(
af(X(k)) + af(X) + 2b+ 2aE(g)

2

∣∣∣∣X)(1− 1

n
+

1

n
‖A‖1

)k/2
.

By summing up in k, we obtain

m′(θ) ≥ −
(
e−θ − 1

) ∞∑
k=0

1

n

(
1− 1

n
+

1

n
‖A‖1

)k/2
× E

((
af(X(k)) + af(X) + 2b+ 2aE(g)

2

)
eθf(X)

)
.

By Lemma 5.5.4, since m(θ) ≥ 1, for any L > 0,

E(eθf(X)f(X(k))) ≤ L−1 logE(eLf(X(k)))m(θ) + L−1θm′(θ),

and by Part 2, for 0 ≤ L ≤ 1−‖A‖1
2a

,

logE(eLf(X(k))) = log(m(L)) ≤ (aE(g) + b)L2

(1− ‖A‖1 − 2aL)
,

so we have

E(eθf(X)af(X(k))) ≤ a
(aE(g) + b)L

(1− ‖A‖1 − 2aL)
m(θ) + aL−1θm′(θ).
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By the convenient choice of L = −θ, we obtain that for 0 ≥ θ ≥ −1−‖A‖1
2a

,

E
(
eθf(X)(f(X(k)) + f(X))

)
≤ −a (aE(g) + b)θ

(1− ‖A‖1 + 2aθ)
m(θ),

so for 0 ≥ θ ≥ −1−‖A‖1
2a

,

m′(θ) ≥ −
(
e−θ − 1

) 1

n

∞∑
k=0

(
−a
2

(aE(g) + b)θ

(1− ‖A‖1 + 2aθ)
+ aE(g) + b

)

×m(θ)

(
1− 1

n
+

1

n
‖A‖1

)k/2
≥ −

(
e−θ − 1

) 2

1− ‖A‖1

(
−a
2

(aE(g) + b)θ

(1− ‖A‖1 + 2aθ)
+ aE(g) + b

)
m(θ),

which implies (5.3.2). Suppose that 0 ≥ θ ≥ −1−‖A‖1
4a

, then 1− ‖A‖1 + 2aθ ≥ 1−‖A‖1
2

,

so

m′(θ) ≥ −
(
e−θ − 1

) 2

1− ‖A‖1

(
1− ‖A‖1 − aθ

1− ‖A‖1

(aE(g) + b)

)
m(θ), (5.6.13)

which implies our mgf bound (5.3.2) in Theorem 5.3.1.

We will split the argument for obtaining tail inequalities in Corollary 5.3.2 into

into two parts depending on the size of a.

First, let K := 1−‖A‖1
4a

, then for 0 ≥ θ ≥ −K,
(
e−θ − 1

)
≤ eK−1

K
θ, and 1−‖A‖1−aθ

1−‖A‖1 ≤
5
4
, so

m′(θ) ≥ −θ · e
K − 1

K

1

1− ‖A‖1

5

2
(aE(g) + b)m(θ)

logm(θ) ≤ θ2 · e
K − 1

K

1

1− ‖A‖1

5

4
(aE(g) + b) ≤ 2

1− ‖A‖1

(aE(g) + b)θ2,
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whenever

eK − 1

K
≤ 8

5
. (5.6.14)

Let us denote the unique positive solution of the equation

ex − 1

x
=

8

5
(5.6.15)

by Kc. It is easy to see that Kc = 1/(4ac). For K ≤ Kc, (5.6.14) holds, thus for

a ≥ 1−‖A‖1
4Kc

= (1−‖A‖1)ac, (5.6.14) holds. Using Markov’s inequality, we obtain that

for 0 < t < E(g), 0 > θ > −1−‖A‖1
4a

,

logP(f(X) ≤ −t) ≤ log(m(θ)) + tθ ≤ 2

1− ‖A‖1

(aE(g) + b)θ2 + θt,

which takes its minimum at

θmin = − (1− ‖A‖1)t

4(aE(g) + b)
,

which satisfies 0 > θmin > −1−‖A‖1
4a

, and thus

logP(f(X) ≤ −t) ≤ −(1− ‖A‖1)t2

8(aE(g) + b)
.

Finally, we need to verify the case when a < (1 − ‖A‖1)ac. Going back to equation

(5.6.13), we can write that for 0 > θ > −1−‖A‖1
4a

,

m′(θ) ≥ −
(
e−θ − 1

) 2

1− ‖A‖1

(
1− ‖A‖1 − aθ

1− ‖A‖1

(aE(g) + b)

)
m(θ),
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log(m(θ))′ ≥ −
(
e−θ − 1

) 5

2

1

1− ‖A‖1

(aE(g) + b),

log(m(θ)) ≤
(
e−θ + θ − 1

) 5

2

1

1− ‖A‖1

(aE(g) + b).

Let us write C := 5
2

1
1−‖A‖1 (aE(g) + b), then by Markov’s inequality, we have that for

0 > θ > −1−‖A‖1
4a

, 0 < t < E(g),

log(P(f(X) ≤ −t)) ≤ log(m(θ)) + θt ≤
(
e−θ + θ − 1

)
C + θt

The minimum of the right hand side is taken at

θmin = − log

(
1 +

t

C

)
≥ − log

(
1 +

2

5
· 1− ‖A‖1

a

)
,

which satisfies 0 > θmin > −1−‖A‖1
4a

whenever a < ac(1− ‖A‖1). Thus, in this case we

have

log(P(f(X) ≤ −t)) ≤
(
t

C
− log

(
1 +

t

C

))
C − log

(
1 +

t

C

)
t

= C

[
t

C
− log

(
1 +

t

C

)(
1 +

t

C

)]

Now we can verify that the function x→ x− (1 + x) log(1 + x) is negative for x > 0,

and

x− (1 + x) log(1 + x) ≤ − x2

2 + (2/3)x
,

so

log(P(f(X) ≤ −t)) ≤ − t2

2C + (2/3)t
= − t2

5(aE(g) + b)/(1− ‖A‖1) + (2/3)t
.
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5.6.3 The convex distance inequality for dependent random

variables

In this section, we prove Theorem 5.3.3. Before turning to the proof, we will state

some results. We will use Sion’s minimax theorem, which states the following (Sion

(1958), and Komiya (1988)).

Theorem 5.6.4. Let f(x, y) denote a function X ×Y → R that is convex and lower-

semicontinuous with respect to x, concave and upper-semicontinuous with respect to

y. If X is convex and compact, then

inf
x

sup
y
f(x, y) = sup

y
inf
x
f(x, y) = min

x
sup
y
f(x, y).

The following lemma is the ∗-self-bounding analogue of Lemma 1 of Boucheron,

Lugosi, and Massart (2009).

Lemma 5.6.5. For any S ∈ F , d2
T (x, S) is weakly (4, 0)-∗-self-bounding, and satisfies

that |d2
T (x, S)− d2

T (x∗, S)| ≤ 1 for every x, x∗ ∈ Λ differing only in one coordinate.

Proof. The second claim is proven in Lemma 1 of Boucheron, Lugosi, and Massart

(2009). The proof of the first claim is similar to the proof of Lemma 1 of Boucheron,

Lugosi, and Massart (2009) (see also Proposition 13 of Boucheron, Lugosi, and Mas-

sart (2003)). We recall some of their argument here.

Let M(S) denote the set of probability measures on S. Then, using Sion’s mini-

max theorem, we may rewrite dT as

dT (x, S) = inf
ν∈M(S)

sup
‖α‖2≤1

n∑
j=1

αjEν [1xj 6=Yj ] (5.6.16)



CHAPTER 5. CONVEX DISTANCE INEQUALITY WITH DEPENDENCE 232

where Y = (Y1, . . . , Yn) is distributed according to ν.

We may use once again Sion’s minimax theorem to write the convex distance as

dT (x, S) = inf
ν∈M(S)

sup
‖α‖2≤1

n∑
j=1

αjEν [1xj 6=Yj ]

= sup
‖α‖2≤1

inf
ν∈M(S)

n∑
j=1

αjEν [1xj 6=Yj ].

Denote the pair (ν, α) at which the saddle point is achieved by (ν̂, α̂).

Note that strictly speaking, the conditions of Sion’s minimax theorem (X should

be convex and compact) are not satisfied, however, this problem can be dealt with

the same way as in Boucheron, Lugosi, and Massart (2003) (by mapping the large

space M(S) on the convex compact set of the probability measures on {0, 1}n).

We can suppose without loss of generality that d2
T (y, S) ≤ d2

T (x, S), thus

d2
T (x, S)− d2

T (y, S) = (dT (x, S)− dT (y, S))(dT (x, S) + dT (y, S))

≤ (dT (x, S)− dT (y, S))2dT (x, S) ≤
∑
i:xi 6=yi

2dT (x, S)α̂i,

where α̂i was defined a few lines above. With

αi(x) := 2dT (x, S)α̂i,

we have
n∑
i=1

αi(x)2 ≤ 4d2
T (x, S),

so the claim follows. Similarly, analogously to Proposition 13 of Boucheron, Lugosi,

and Massart (2003), one can show that dT (x, S) is weakly (1, 0)-∗-self-bounding.
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Now we are ready to prove the main result of this section.

Proof of Theorem 5.3.3. By Lemma 5.6.5, we can apply Theorem 5.3.1 to g(x) :=

d2
T (x, S) with a = 4, b = 0. From (5.3.2), we obtain for 0 ≥ θ ≥ −1−‖A‖1

8
,

(logm(θ))′ ≥ −
(
e−θ − 1

) 2

1− ‖A‖1

(
4E(g)− θ 8E(g)

(1− ‖A‖1 + 8θ)

)
.

Here
(
e−θ − 1

)
≤ (−θ) e1/8−1

1/8
. Let us define θ∗ := θ

1−‖A‖1 , then the condition 0 ≥ θ ≥

−1−‖A‖1
8

above is equivalent to 0 ≥ θ∗ ≥ −1/8. Under this assumption, we have

(logm(θ))′ ≥ e1/8 − 1

1/8
θ∗
(

8E(g)− θ∗ 16E(g)

(1 + 8θ∗)

)
.

By integration we obtain that

logm(θ) ≤ e1/8 − 1

1/8
E(g)

(
3(θ∗)2 +

1

4
θ∗ − 1

32
log(1 + 8θ∗)

)
(1− ‖A‖1).

Now by applying Markov’s inequality, we obtain

log[P(X ∈ S)] = log[P(g(X)− E(g) ≤ −E(g))] ≤ m(θ) + θE(g)

≤ e1/8 − 1

1/8
E(g)

(
3(θ∗)2 +

1

4
θ∗ − 1

32
log(1 + 8θ∗)

)
(1− ‖A‖1)

+ (1− ‖A‖1)θ∗E(g).

In order to minimize this, we solve

e1/8 − 1

1/8
θ∗m

(
8E(g)− θ∗m

16E(g)

(1 + 8θ∗m)

)
= −E(g),
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which has solution θ∗m ≈ −0.0806628 > −1/8, and thus

P(X ∈ S) ≤ e1/8 − 1

1/8
E(g)

(
3(θ∗m)2 +

1

4
θ∗m −

1

32
log(1 + 8θ∗m)

)
(1− ‖A‖1)

+ θ∗m(1− ‖A‖1)E(g) ≤ − 1

21.345
(1− ‖A‖1)E(g).

On the other hand, by (5.3.1), we have that for 0 ≤ θ ≤ (1− ‖A‖1)/8,

logE
[
eθ(g(X)−E(g))

]
≤ 4E(g)θ2

(1− ‖A‖1 − 8θ)
,

thus for θ = (1− ‖A‖1)/26.1,

P(X ∈ S)E
[
eθg(X)

]
≤ exp

(
E(g)

(
θ +

4E(g)θ2

(1− ‖A‖1 − 8θ)
− 1

21.345
(1− ‖A‖1)

))
≤ 1.



Chapter 6

From Stein-type couplings to

concentration

6.1 Introduction

Stein couplings were introduced in Chen and Röllin (2010) as follows.

Definition 6.1.1. Let (W,W ′, G) be a coupling of square integrable random vari-

ables. We call (W,W ′, G) a Stein coupling if

E{Gf(W ′)−Gf(W )} = E{Wf(W )},

for all functions for which the expectation exists.

Remark 6.1.2. In this chapter, in every example we will consider bounded random

variables W,W ′, G, and continuous functions f , thus both of the expectations will

exist.

235
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Chen and Röllin (2010) proposes a framework explaining the requirements on the

coupling that imply that W is close to normal, and shows many examples of such

couplings. Our goal here is to use Stein couplings for proving concentration of W

around its mean, that is, bounding the probabilities

P(W − E(W ) ≥ t), and P(W − E(W ) ≤ −t)

for t > 0. We define the moment generating function of W as m(θ) := E(eθW ). It is

easy to see that m′(θ) = E(WeθW ) (if both of the expectations exist). The basic idea

of this chapter is that we are going to let f(x) := eθx, and use the definition of Stein

couplings to show that

m′(θ) = E{Wf(W )} = E{Gf(W ′)−Gf(W )} = E
{
G
(
eθW

′ − eθW
)}

. (6.1.1)

This quantity is then further bounded using information about the typical size of G

and W −W ′. From this bound, we obtain concentration inequalities using a standard

argument.

We illustrate our approach with three examples, the number of isolated vertices

in an Erdős-Rényi random graph, the number of edges in a geometric random graph,

and an example about randomly chose large subgraphs of huge fixed graphs.

All of these examples are based on Stein couplings similar to Construction 2A of

Chen and Röllin (2010), which we briefly explain here. Let X1, . . . , Xn be dependent

centered random variables, and denote W := X1 + . . . + Xn. Let I be uniformly

distributed in [n] = {1, 2, . . . , n}, and set G := −nXI . Suppose that we can define

W ′
1, . . . ,W

′
n such that for every 1 ≤ i ≤ n, E(Xi|W ′

i ) = 0 (this is satisfied in particular
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if E(Xi) = 0 and Xi is independent of W ′
i ). Finally, we set W ′ := W ′

I . Then it is

easy to check that (W,W ′, G) is a Stein coupling, satisfying E(G|W ) = −W and

E(G|W ′) = 0.

One basic example where such a coupling is possible is the case of locally dependent

random variables (that is, every Xi has a neighbourhood Ni ⊂ [n] such that Xi is

independent of {Xj}j∈[N ]\Ni). In this case, we let

W := X1 + . . .+Xn, W ′
i :=

∑
j∈[N ]\Ni

Xj, W ′ := W ′
I , and G := −nXI .

From here, we can obtain concentration inequalities via (6.1.1).

Now we briefly review the related literature. There are several examples in the lit-

erature that are using Stein-type couplings to obtain concentration inequalities. The

first such approach was proposed in Chatterjee (2005) (see also Chatterjee (2007),

Chatterjee and Dey (2010)), where exchangeable pairs are used to obtain concentra-

tion inequalities. Note that exchangeable pair couplings are a special case of Stein

couplings.

Another approach, which is similar to ours, was proposed in Theorem 3.1 of Chat-

terjee (2012), where a non-exchangeable coupling structure is used, that is a general-

isation of the coupling for locally dependent random variables. As an application, an

essentially sharp bound is given to the upper tail of triangle counts in an Erdős-Rényi

graph. The main theorem of Chatterjee (2012), however, has been optimised for this

particular problem, and makes strong assumptions on the coupling, thus it is not

applicable to the examples of this chapter. Our goal here is to state theorems using

Stein-type couplings that are useful in a wider variety of problems.
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Recently, other Stein-type coupling methods has been proposed for proving con-

centration inequalities. Ghosh and Goldstein (2011) is based on size-biasing, while

Goldstein and Islak (2013) uses zero-biasing.

The chapter is organised as follows. In Section 6.2, we prove a concentration

inequality for the number of isolated vertices in Erdős-Rényi graphs. After this,

Section 6.3 shows concentration for the number of edges in geometric random graphs.

Finally, Section 6.4 proves concentration inequalities for subgraph counts in a random

subgraph of a fixed graph whose vertices are sampled without replacement. These

results are obtained using abstract lemmas that relate Stein couplings to concentration

bounds, which may be of independent interest.

6.2 Number of isolated vertices in Erdős-Rényi graphs

Let G(n, p) be an Erdős-Rényi graph, with edges X := (Xi,j)1≤i<j≤n being i.i.d.

Bernoulli random variables with parameter p. Denote the number of its isolated

vertices (that is, the vertices with zero incurring edges) by I(X). Then the following

theorem bounds the lower tail of I(X). Note that the same bound was shown in

Ghosh, Goldstein, and Raič (2011) using size biasing.

Theorem 6.2.1. For any t ≥ 0, we have

P(I(X) ≤ E(I(X))− t) ≤ exp

(
− t2

4n(1− p)n−1

)
. (6.2.1)

To prove this theorem, we will use two lemmas. The first lemma is a well-known

result about getting concentration bounds from bounds on the moment generating

function. The second shows how to get bounds on the moment generating function
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under certain assumptions on the Stein coupling.

Lemma 6.2.2. Let W be a centered random variable with moment generating function

m(θ). Let C,D ≥ 0, suppose that m(θ) is finite, and continuously differentiable in

[0, 1/C), and satisfies

m′(θ) ≤ Cθm′(θ) +Dθm(θ). (6.2.2)

Then for 0 ≤ θ < 1/C,

log(m(θ)) ≤ Dθ2

2(1− Cθ)
, (6.2.3)

and for every t ≥ 0,

P(W ≥ t) ≤ exp

(
− t2

2(D + Ct)

)
. (6.2.4)

Remark 6.2.3. For the lower tail, equivalent inequalities hold if we assume that

m′(θ) ≥ −Cθm′(θ) +Dθm(θ) (6.2.5)

for θ ∈ (−1/C, 0].

Proof. The result follows by a standard Markov inequality argument.

Lemma 6.2.4. Let (W,W ′, G) be a Stein coupling. Suppose that W ≥ W ′ almost

surely. Then for any θ ≥ 0,

m′(θ) = E(−G(eθW − eθW ′)) ≤ E(θG−(W −W ′) · eθW ). (6.2.6)

Similarly, if W ′ ≥ W almost surely, then for any θ ≤ 0,

m′(θ) = E(−G(eθW − eθW ′)) ≥ E(θG+(W ′ −W ) · eθW ). (6.2.7)
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Here G− := −G · 1[G < 0] and G+ := G · 1[G > 0] denotes the negative, and positive

parts of G.

Remark 6.2.5. Note that if E(G|W ′) = 0, then we can shift W ′ by a constant and

ensure that the conditions of this theorem hold.

Proof of Lemma 6.2.4. Since θ(W −W ′) ≥ 0, we have

1− e−θ(W−W ′) ≤ θ(W −W ′),

thus (6.2.6) follows, and the proof of (6.2.7) is similar.

Proof of Theorem 6.2.1. It is easy to see that E(I(X)) = n(1 − p)n−1, thus we set

W := I(X) − n(1 − p)n−1. We define X ′ by picking a vertex I uniformly from [n],

and removing all the edges connected to it. Let

W ′ := I(X ′)− n(1− p)n−1, and G := −n1[I is an isolated vertex] + n(1− p)n−1,

then (W,W ′, G) is a Stein coupling, E(G|W ′) = 0, and W ′ ≥ W almost surely. From

Lemma 6.2.4, we obtain that for θ < 0,

m′(θ) ≥ E(G+θ(W
′ −W )eθW ) ≥ n(1− p)n−1θE((W ′ −W )eθW ).

Now we are left to bound E(W ′ −W |W ). In the following paragraph, we will show

that for any graph X, E(W ′ −W |W ) ≤ 2.

Here W ′ −W expresses the number of new isolated vertices created by erasing

all of the edges of a randomly picked vertex from X. This operation can only create

new isolated vertices from those that only had one incurring edge. Such vertices are
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organised into groups of two (two vertices are connected to each other and isolated

from the rest) or groups of k ≥ 3 (k−1 vertices have their only edge connected to the

kth vertex, which we call root vertex ). Let Nk denote the number of groups of size k,

for 3 ≤ k ≤ n. Since the total number of vertices n, we must have
∑

k≥2 kNk ≤ n.

Now if we pick the vertex I from a group of two, that will create two new isolated

vertices. If we pick a root vertex from a group of k ≥ 3, we create k new isolated

vertices, while if we pick any other vertex, we create only one new isolated vertex.

Therefore, we have

E(W ′ −W |X) ≤ 2N2

n
· 2 +

n∑
k=3

(
Nk

n
k +

(k − 1)Nk

n

)
≤
∑n

k=2 2kNk

n
≤ 2.

This implies that E(W ′−W |W ) ≤ 2, and by substituting this into our bound on the

moment generating function, we obtain that for θ ≤ 0,

m′(θ) ≥ 2n(1− p)n−1θm(θ).

From this, we obtain our concentration bound by Lemma 6.2.2.

6.3 Edge counts in geometric random graphs

Geometric random graphs are a popular model in stochastic geometry (see Penrose

(2003), Section 3 for limit theorems for subgraph counts in such graphs). We define

a geometric random graph Geo(n, c) as follows. Let Ω = [0, 1]2, and X1, . . . , Xn be

i.i.d. uniform in Ω. Define the distance function d : Ω2 → R+ as the torus distance

between two points (this assumption is made to avoid edge effects). For some c > 0,
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we put an edge between two points Xi and Xj if their distance is less than c. We call

the resulting graph Geo(n, c).

Theorem 6.3.1. Denote by E the number of edges in the geometric random graph

Geo(n, c). Let

CL :=
√

6πnc, DL := 12(log(1/c) + nc2π)n2c2π

CU := max(
√

12πnc, 2n), DU := 24(log(1/c) + nc2π)n2c2π.

Then for any t ≥ 0,

P(E − E(E) ≥ t) ≤ exp

(
− t2

2(DU + CU t)

)
, and

P(E − E(E) ≤ −t) ≤ exp

(
− t2

2(DL + CLt)

)
.

Remark 6.3.2. Applying McDiarmid’s bounded differences inequalities would only

give a concentration inequality of order exp(−t2/n3), independent of c. Our result

depends on c, thus it is better when c is much smaller than 1.

The proof uses the following two lemmas. The first is a technical result for upper

bounding quantities of the form E(eθWV ), while the second lemma for obtains moment

generating function bounds under certain conditions on the Stein coupling.

Lemma 6.3.3 (Massart (2000)). For real valued random variables V and W , any

L > 0, for every θ ∈ R, we have

E(eθWV ) ≤ L−1 logE(eLV )m(θ) + L−1θm′(θ)− L−1m(θ) log(m(θ)),
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if the expectations on both sides exist.

Proof. Let U := eθW/m(θ). Let A,B ≥ 0 be two random variables with finite variance

and E(A) = 1, then

E(A log(B)) ≤ log(E(AB))

by changing the measure and applying Jensen’s inequality. Using this result, we have

E(eθWV ) = L−1m(θ)E
(
U

(
log

eLV

U
+ logU

))
≤ L−1 logE(eLV )m(θ) + L−1E

(
eθW logU

)
,

here we have applied our previous inequality with A = U and B = eLV /U . Now the

result follows using the fact that log(U) = θW − log(m(θ)).

Lemma 6.3.4. Let (W,W ′, G) be a Stein coupling. Let

G(−) := ess sup(G)−G, (6.3.1)

where ess sup(G) denotes the supremum of G in the almost sure sense. Suppose that

W and W ′ have the same distribution. Suppose that Wmax and Wmin are random

variables such that |W −W ′| ≤ Wmax −Wmin, and conditioned on some σ-field F , G

is independent of Wmax−Wmin and W ′. Suppose that Wmax−Wmin ≤M <∞ almost
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surely. Then

m′(θ) ≤ E
(
E
(
G(−)

∣∣F) (eθ(Wmax−Wmin) − 1
)
eθW

′
)

for θ > 0, thus (6.3.2)

m′(θ) ≤ E
(

2θE
(
G(−)

∣∣F) (Wmax −Wmin)eθW
′
)

for 0 ≤ θ ≤ 1/M, and (6.3.3)

m′(θ) ≥ E
(
θE
(
G(−)

∣∣F) (Wmax −Wmin)eθW
′
)

for θ < 0. (6.3.4)

Proof. For θ > 0, using that W and W ′ have the same distribution, we have

m′(θ) = E(G(eθW
′ − eθW )) = E(G(−)(eθW − eθW ′))

= E
(
G(−)eθW

′
(
eθ(W−W

′) − 1
))
≤ E

(
G(−)

(
eθ(Wmax−Wmin) − 1

)
eθW

′
)

= E
(
E
(
G(−)

∣∣F) (eθ(Wmax−Wmin) − 1
)
eθW

′
)
.

The statement for 0 < θ < 1/M follows from the fact that for 0 ≤ x ≤ 1, ex−1 ≤ 2x.

For θ < 0, using the fact that 1− e−x ≤ x for any x ∈ R, we have

m′(θ) = E
(
G(−)eθW

′
(
eθ(W−W

′) − 1
))

= −E
(
G(−)eθW

′
(

1− eθ(W−W ′)
))

≥ E(θG(−)(W −W ′)eθW
′
) ≥ E

(
θE
(
G(−)

∣∣F) (Wmax −Wmin)eθW
′
)
.

Proof of Theorem 6.3.1. Denote by Ei,j the indicator function of the edge between

Xi and Xj, then E =
∑

1≤i<j≤n Ei,j. We have E(Ei,j) = c2π, so E(E) =
(
n
2

)
c2π.

Let I and J be random indices such that I < J , uniformly chosen among the
(
n
2

)
possibilities. Let G :=

(
n
2

)
(−EI,J + c2π), then G(−) =

(
n
2

)
EI,J . Define W = E −E(E),

and W ′ created by replacing XI and XJ by an independent copy and evaluating W on

the resulting graph. Define Emax as the maximum number of edges in the geometric

random graph that only differs from our graph in XI and XJ (that is, we move them
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to the most dense areas). Similarly, define Emin as the number of edges of the graph

created by removing XI and XJ . Let Wmax := Emax−E(E), and Wmin := Emin−E(E).

Then the conditions of Lemma 6.3.4 are satisfied with F being the σ-field generated

by I, J , thus by (6.3.4), for θ < 0,

m′(θ) ≥ E
(
θE
(
G(−)

∣∣F) (Wmax −Wmin)eθW
′
)

(6.3.5)

≥ θ

(
n

2

)
c2π · E

(
(Wmax −Wmin)eθW

′
)
.

Moreover, we have

Wmax −Wmin ≤ 2 · maximum number of points in a circle of size c.

Now we can cut the square into roughly 1/(4c2) small squares of edge length 2c, and

by putting a circle of radius c into each square, and on the vertices of each square,

we cover the original square with roughly 1/(2c2) circles. Since any circle of radius c

can cross at most 6 of these circles, we have

Wmax −Wmin ≤ 12 · max. number of points in a circle among the 1/(2c2) circles.

Since the number of points in a circle of radius c is just the sum of n independent

Bernoulli random variables with parameter c2π, we have that for any L > 0,

E
(
eL(Wmax−Wmin)

)
≤ 1

2c2

(
1− c2π + c2π · e12L

)n
,
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and thus

1

L
logE

(
eL(Wmax−Wmin)

)
≤ −2 log(c)

L
+
n

L
log
(
1− c2π + c2π · e12L

)
.

From this, by Lemma 6.3.3, and (6.3.5), we have

m′(θ) ≥

θ

(
n

2

)
c2π ·

[(
−2 log(c)

L
+
n

L
log
(
1 + c2π ·

(
e12L − 1

)))
m(θ) + L−1θm′(θ)

]
.

Now with the choice L = 1/12, we obtain that for any θ < 0,

m′(θ) ≥ θ
n2c2π

2
·
[
24(log(1/c) + nc2π)m(θ) + 12θm′(θ)

]
= C1θ

2m′(θ) + C2θm(θ),

with C1 := 6n2c2π and C2 := 12(log(1/c)+nc2π)n2c2π. This bound can be rearranged

to obtain that

m′(θ)(1− C1θ
2) ≥ C2θm(θ)

m′(θ)(1−
√
C1θ)(1−

√
C1θ) ≥ C2θm(θ),

m′(θ)(1 +
√
C1θ) ≥

C2θm(θ)

1−
√
C1θ
≥ C2θm(θ)

m′(θ) ≥ −
√
C1θm

′(θ) + C2θm(θ).

This means that condition (6.2.5) of Lemma 6.2.2 is satisfied with C =
√
C1 and

D = C2, and the result for the lower tail follows.

For the upper tail, we apply the same argument, but use (6.3.3) of Lemma 6.3.4.
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Since we have Wmax −Wmin ≤ 2n, thus we obtain that for 0 ≤ θ ≤ 1/(2n),

m′(θ) ≤ 2θ

(
n

2

)
c2π · E

(
(Wmax −Wmin)eθW

′
)
. (6.3.6)

Now applying Lemma 6.3.3 with L = 1/12 leads to

m′(θ) ≤ θn2c2π ·
[
24(log(1/c) + nc2π)m(θ) + 12θm′(θ)

]
= D1θ

2m′(θ) +D2θm(θ),

with D1 = 12n2c2π, and D2 = 24(log(1/c) + nc2π)n2c2π. From this, we obtain that

for 0 ≤ θ ≤ 1/(2n),

m′(θ)(1−D1θ
2) ≤ D2θm(θ)

m′(θ)(1−
√
D1θ) ≤ D2θm(θ)

m′(θ) ≤ D2θm(θ) +
√
D1θm

′(θ)

≤ D2θm(θ) + max(
√
D1, 2n)θm′(θ),

thus assumption (6.2.2) is satisfied with C = max(
√
D1, 2n) and D = D2, and the

result for the upper tail follows.

6.4 Large subgraphs of huge graphs

Let us consider a fixed graph with N vertices. Let [N ] := {1, . . . , N} denote the

vertices of the graph, and and (Ei,j)1≤i<j≤N denote its edges. We denote the graph

by G := ([N ], (Ei,j)1≤i<j≤N).
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Now suppose that we choose n vertices out of [N ] by sampling without replace-

ment, that is, we let I(1), . . . , I(n) be random variables chosen from [N ] such that

they are all different, uniformly from the N · . . . · (N − n+ 1) possibilities. Let H :=

({I(1), . . . , I(n)}, (EI(i),I(j))1≤i<j≤n)) be the subgraph of G with vertices I(1), . . . , I(n).

A natural question is the following. If F a small fixed subgraph with k vertices,

then how many copies of F are in our subgraph H, and how is this related to the

total number of such copies in G? This basically expresses how much can we interfere

about the structure of G from H.

Given a fixed graph F := {[k], (Fi,j)1≤i<j≤k}, we define the number of induced

copies (also called full copies) of F in G as

NF(G) :=
∑′

1≤i(1),...,i(k)≤N

1[Ei(l),i(m) = Fl,m for every 1 ≤ l < m ≤ k],

where
∑′ means that we only add up summands where all the indices are different.

Similarly, the number of copies of F in G is defined as

MF(G) :=
∑′

1≤i(1),...,i(k)≤N

1[Ei(l),i(m) ≥ Fl,m for every 1 ≤ l < m ≤ k].

The difference between these two is that the induced copy needs to exactly match

F , while a copy only needs to contain all the edges of F (and can contain more

edges). The following theorem expresses that when k is fixed, and both N and n are

large, that is, we take large subgraphs of huge graphs, then the number of copies and

induced copies of F in H is strongly concentrated, and essentially determined by the

number of such subgraphs in G.

Theorem 6.4.1. Let F := {[k], (Fi,j)1≤i<j≤k} be a fixed graph with k vertices. Let
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G = ([N ], (Ei,j)1≤i<j≤N) be a fixed graph with N vertices, and H be one of its subgraphs

with n vertices, chosen uniformly among the
(
N
n

)
possibilities. Denote the number of

copies of F in G by NF(G), and the number of copies of F in H by NF(H). Then for

any t ≥ 0, we have

P (|NF(H)− E(NF(H))| ≥ t) ≤ 2 exp

(
− t2

2k2nk−1 · E(NF(H)) + k2nk−1t

)
,

where E(NF(H)) = NF(G) · n(n−1)...(n−k+1)
N(N−1)...(N−k+1)

. The same bounds hold for MF(H) as

well, with NF replaced by MF in every formula.

Remark 6.4.2. A weaker bound, of the form

P (|NF(H)−M(NF(H))| ≥ t) ≤ 4 exp

(
− t2

16k2n2k−1

)

can be obtained from equation (6.12) of Theorem 6.5 of Paulin (2012b). Here

M(NF(H)) denotes the median of NF(H) (if there are multiple medians, then any of

them works).

This theorem can be viewed as a non-asymptotic law of large numbers. When

N and n are large, and k is small, and F is quite frequent in G in the sense that

NF(G) = O(Nk), then E(NF(H)) = O(nk), while the typical deviations of NF(H)

is of O(knk−1/2). This implies that NF(H) is concentrated around its mean, which

is determined by G. Thus we can read the structure of G, in the sense of subgraph

frequencies, and make small error with high probability, from just one large sample

H.

Note that such a similar problem was studied in Tran, Choi, and Zhang (2013),

where they count subgraphs in the human genome. However, in contrast with this
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chapter, they use sampling with replacement, and only obtain variance bounds, in-

stead of concentration inequalities.

The proof is based on the following lemma.

Lemma 6.4.3. Let (W,W ′, G) be a Stein coupling. Suppose that W and W ′ have the

same distribution. Let G(−) be as in (6.3.1). Then

m′(θ) ≤ E
{
θG(−)|W −W ′|

(
eθW + eθW

′

2

)}
for θ > 0, and

m′(θ) ≥ E
{
θG(−)|W −W ′|

(
eθW + eθW

′

2

)}
for θ < 0.

Proof. Using the facts that W and W ′ has the same distribution, and |ex − ey| ≤
ex+ey

2
· |x− y| (shown, for example, in Chatterjee (2007)), we have that for θ > 0,

m′(θ) = E
{
G
(
eθW

′ − eθW
))

= E
(
G(−)

(
eθW − eθW ′

)}
≤ E

{
G(−)|W −W ′|θ

(
eθW + eθW

′

2

)}
.

The proof for θ < 0 is similar.

Proof of Theorem 6.4.1. We are going to construct a Stein coupling (W,W ′, G), and

then apply Lemma 6.4.3 to get tail estimates. Note that the construction of this

coupling is not in the usual way, since we are going to first define W ′, then G,

and finally W . Although in the statement of the theorem we have already defined

I(1), . . . , I(n) as being sampled without replacement from [N ], we will not start the

coupling based on this, but later on we will verify that this indeed holds for the

construction we make.
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Let p := NF(G)/[N(N − 1) . . . (N − k + 1)], then

E(NF (H)) = p · n(n− 1) . . . (n− k + 1).

Let I ′(1), . . . , I ′(n) be sampled without replacement from [N ], and define

W ′ :=
∑′

1≤i(1),...,i(k)≤n

(
1
[
EI′(i(l)),I′(i(m)) = Fl,m for every 1 ≤ l < m ≤ k

]
− p
)
,

that is, this is the centered version of the number of copies of F in the subgraph

H
′ of G with vertices I ′(1), . . . , I ′(n). Let J(1), J(2), . . . , J(k) be sampled without

replacement from [N ], independently of I ′(1), . . . , I ′(n), and let

G := −n · . . . · (n− k + 1) ·
(
1
[
EJ(l),J(m) = Fl,m for every 1 ≤ l < m ≤ k

]
− p
)
,

that is a rescaled, centered version of the indicator function corresponding to whether

the subgraph of G with vertices J(1), . . . , J(k) equals to F .

Now using the independence, we have E(G|W ′) = 0. We define I(1), . . . , I(n)

as follows. First, set I(1) := I ′(1), . . . , I(n) := I ′(n). Then, whenever an element

of the sequence I(1), . . . , I(n) is also a member of the sequence J(1), . . . , J(k), we

mark it in both sequences. Suppose that there are r non-marked elements left in the

sequence J(1), . . . , J(k). Then we choose r elements at random from the non-marked

elements of I(1), . . . , I(n), and replace them with the corresponding non-marked ele-

ment of J(1), . . . , J(k). This way, we have ensured that the sequence J(1), . . . , J(k)
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is distributed as if it were sampled without replacement from I(1), . . . , I(n). Let

W :=
∑′

1≤i(1),...,i(k)≤n

(
1
[
EI(i(l)),I(i(m)) = Fl,m for every 1 ≤ l < m ≤ k

]
− p
)
,

then E(G|W ) = −W , thus (W,W ′, G) is a Stein coupling. We can verify that W ′

and W have the same distribution (actually, they are even exchangeable). Moreover,

there are at most k indices i in [n] such that I(i) differs from I ′(i), therefore

|W −W ′| ≤ n · . . . · (n− k + 1)− (n− k) · . . . · (n− 2k + 1) ≤ k2nk−1.

Define G(−) := −G + E(NF(H)), then G(−) ≥ 0, and from Lemma 6.4.3, we obtain

that for θ > 0,

m′(θ) ≤ E
(
θG(−)|W −W ′|

(
eθW + eθW

′

2

))
≤ E

(
θG(−) · k2nk−1

(
eθW + eθW

′

2

))
.

Now it is easy to check that E(G(−)|W ) = W + E(NF(H)) and E(G(−)|W ′) =

E(NF(H)), thus using the fact that E(WeθW ) = m′(θ), we obtain

m′(θ) ≤ θ · k2nk−1 (E(NF(H))m(θ) +m′(θ)/2) . (6.4.1)

Now the upper bound follows by applying Lemma 6.2.2 with D = k2nk−1E(NF(H))

and C = k2nk−1/2. The lower bound is proven in the same way, except that we use

the inequality for θ < 0 in Lemma 6.4.3. Finally, the bounds for MF can be proven

using the same argument.



Chapter 7

Concentration for local

dependence1

7.1 Introduction

Local dependence, when the variables only depend on those others which are in their

neighborhood, has been one of the first examples of Stein’s method, see (Chen and

Shao, 2004) and the references therein.

Let [n] := {1, . . . , n}. The usual form of local dependence is the following (based

on (Chen et al., 2011), Chapter 4.7.).

Definition 7.1.1 ((LD) dependence). A group of random variables {Xi}1≤i≤n satis-

fies (LD) if for each i there exists Ai ∈ [n], called the neighbourhood of Xi, such that

Xi and {Xj}j∈Aci are independent.

Let G be a graph with vertices [n], and edge between i and j if i ∈ Aj or j ∈ Ai

(that is, one of them is in the neighborhood of the other). We call G the dependency

1This chapter is based on the manuscript Paulin (2012a).
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graph.

The chromatic number of an undirected graph G, denoted by χ(G), is the smallest

positive integer k such that the vertices of G can be colored with k colors with no

edge between vertices of the same color. An elementary argument shows that χ(G) is

bounded by the maximum degree of the graph G plus one.

(Janson, 2004) proved concentration of sums under (LD) dependence. In partic-

ular, Chernoff-Hoeffding and Bernstein inequalities hold for sums of (LD) dependent

variables, with constants less than χ(G) times weaker than in the independent case.

The objective of this chapter is to investigate whether this result holds for more

general functions of (LD) dependent variables.

Now we describe the organisation of the chapter. In Section 7.2, via a coun-

terexample, we show that (LD) dependence is a too weak condition for the bounded

differences inequality. In Section 7.3, we introduce a stronger condition of local de-

pendence, and show that it implies the bounded differences inequality.

7.2 Counterexample under (LD) dependence

In this section, we show a counterexample illustrating that (LD) dependence is not

sufficient for the bounded differences inequality.

Let n ∈ N be even. Let X1, ..., Xn/2 be i.i.d. Rademacher random variables, with

P (Xi = 1) = P (Xi = −1) = 1/2. Let Q be an independent Rademacher random

variable with P (Q = 1) = P (Q = −1) = 1/2. Define Xi+n/2 := Q·Xi for 1 ≤ i ≤ n/2.
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Now {Xi}1≤i≤n satisfies the (LD) dependence, with

Ai := [n] \ {i, n/2 + i} for 1 ≤ i ≤ n/2, and

Ai := [n] \ {i− n/2, i} for n/2 < i ≤ n.

Now it is easy to see that the dependency graph G has maximum degree 1, and the

chromatic number χ(G) equals 2. Define the function g : {−1, 1}2 → R as

g(1, 1) = g(−1,−1) = 1/2 and g(1,−1) = g(−1, 1) = −1/2.

Let

f(x1, ..., xn) :=

n/2∑
i=1

g(Xi, Xi+n/2) for x1, . . . , xn ∈ {−1, 1},

then f is 1-Hamming Lipschitz in each variable, that is,

sup
x1,...,xn,x′i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ 1 for every 1 ≤ i ≤ n.

From the definition of Xi and Xi+n/2, we can see that g(Xi, Xi+n/2) = Q for every

1 ≤ i ≤ n/2, thus

f(X1, ..., Xn) = nQ/2, (7.2.1)

taking values n/2 and −n/2 with probability 1/2. This behaviour is completely

different from the case of independent random variables. If a variant of the bounded

differences inequality would hold, then we should have

P(|f(X1, . . . , Xn)− E(f)| ≥ t) ≤ 2 exp(−t2/(n · c))
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for some c depending on the chromatic number (or the maximal degree) of the depen-

dency graph G. This is clearly not the case, as (7.2.1) implies that c should be more

than n/8 in this example, despite the fact that the dependency graph has maximal

degree 1.

7.3 Concentration under (HD) dependence

In this section, we define (HD) dependence, a special case of (LD) dependence, and

show that it implies the bounded differences inequality.

Definition 7.3.1 ((HD) dependence). We say that random variables {Xi}1≤i≤n are

(HD) dependent if they can be written as functions of independent random variables

{Yi}1≤i≤N for some N ∈ N, that is, there are sets S1, . . . , Sn ⊂ [N ] and functions

φ1, . . . , φn such that

Xi = φi(YSi) for every 1 ≤ i ≤ n, where YSi := {Yj}j∈Si .

For each j ∈ [N ], let Rj := {i ∈ [N ] such that j ∈ Si}, that is, Rj the set of Xis

depending of Yj, and Si is the set of Yjs that Xi depends on. We say that {Xi}1≤i≤n

satisfies (HD, k, l) if {Yi}1≤i≤N can be chosen such that

max
1≤i≤n

|Si| ≤ k, and max
1≤i≤n

|Ri| ≤ l.

The next example illustrates the definition in the case of m-dependence.

Example 7.3.2 (m-dependence). Let Y1, . . . , Yn be independent random variables,
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and

X1 := f1(Y1, . . . , Ym), X2 := f2(Y2, . . . , Ym+1), . . . , Xn := fn(Yn, Y1, . . . , Ym−1).

A direct application of the definition implies that X1, . . . , Xn satisfy (HD, m, m).

Moreover, by breaking (Yi)1≤i≤n into groups of size m, it follows that X1, . . . , Xn also

satisfy (HD, 2, 2m− 1).

The next proposition explains the relation between (HD, k, l) and (LD).

Proposition 7.3.3. (HD,k,l) implies (LD) with a dependency graph G that has max-

imum degree bounded by k(l − 1).

Proof. We can choose the neighbourhood Ai of the random variable Xi as the set

of the indices of Xjs where Sj ∩ Si is non-empty. Since Xi depends on at most k

elements of {Yj}1≤j≤N , and each of these influences at most l elements of {Xi}1≤i≤n,

the size of Ai is bounded by k(l − 1). Finally, since the condition that ”Sj ∩ Si is

non-empty“ is symmetric in i and j, it follows that the resulting dependency graph

G has maximum degree at most k(l − 1).

The proposition above implies that the results of (Janson, 2004) also hold for

(HD) dependent random variables. Now we show versions of the bounded differences

inequality and the method of non-uniformly bounded differences for this dependence

structure.

Theorem 7.3.4 (Bounded differences inequality for (HD) dependence). Suppose that

X = {Xi}1≤i≤n satisfies (HD,k,l), X ∈ Λ, then for any f : Λ → R satisfying the
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condition

f(x)− f(y) ≤
∑

1≤i≤n

ci1[xi 6= yi] (7.3.1)

for some c1, . . . , cn ∈ R+, for any t ≥ 0, we have

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp

(
−2t2

kl
∑n

i=1 c
2
i

)
. (7.3.2)

Remark 7.3.5. The result is kl times weaker than the bounded differences inequality

for independent random variables.

Proof of Theorem 7.3.4. Define g(Y1, . . . , YN) := f(ψ1(YS1), . . . , ψn(YSn) = f(X).

For 1 ≤ j ≤ N , let Cj :=
∑

k∈Rj ci, then g satisfies that

g(x)− g(y) ≤
∑

1≤j≤N

cj1[xj 6= yj] (7.3.3)

for any x and y, thus by McDiarmid’s bounded differences inequality (see McDiarmid

(1989)), we have

P(|g(Y )− Ef(Y )| ≥ t) ≤ 2 exp

(
−2t2∑N
j=1 C

2
j

)
. (7.3.4)

Now the result follows by noticing that
∑N

j=1C
2
j ≤ kl

∑n
i=1 c

2
i .

Theorem 7.3.6 (Method of non-unif. bounded differences for (HD) dependence).

Suppose that X = {Xi}1≤i≤n satisfies (HD,k,l), X ∈ Λ, then for any f : Λ → R

satisfying the condition

f(x)− f(y) ≤
∑

1≤i≤n

ci(x)1[xi 6= yi] (7.3.5)
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for some c1, . . . , cn : Λ → R+ such that
∑

i c
2
i (x) ≤ C uniformly, for any t ≥ 0, we

have

P(|f(X)−Mf(X)| ≥ t) ≤ 4 exp

(
−t2

4klC

)
, (7.3.6)

where Mf(X) denotes the median of f(X).

Proof. The proof is similar to the proof of the previous theorem. We define g(Y1, . . . , YN) =

f(X) as there, and apply the method of non-uniformly bounded differences (Lemma

6.2.1 on page 122 of Steele (1997)) to g(Y1, . . . , YN) to conclude.
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W. Doeblin. Exposé de la théorie des chaınes simples constantes de markova un
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Appendix A

Concentration for Markov chains

A.1 Counterexample for unbounded sums

In this section, we give a counterexample to a conjecture for concentration of sums

of unbounded functions of Markov chains proposed in a previous version of this

manuscript.

Lemma 5.5. of Vershynin (2010) shows that three natural definitions of subgaus-

sian random variables (tail bound, moment bound, subexponential moment) are in

fact equivalent. Definition 5.7. of Vershynin (2010) defines the ψ2 norm of a real

valued random variable X as

||X||ψ2 = sup
p≥1

p−1/2 (E|X|p)1/p . (A.1.1)

For bounded variables, we have ||X||ψ2 ≤ ||X||∞. Vershynin (2010) states a Chernoff-

Hoeffding type inequality for sums of subgaussian random variables.
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Proposition A.1.1 (Proposition 5.10 of Vershynin (2010)). Let X1, . . . , XN be in-

dependent, centered, subgaussian random variables, and let K := maxi ||Xi||ψ2 . Then

for every a = (a1, . . . , aN) ∈ RN and every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ e · exp

(
− ct2

K2 ·
∑

i≤N a
2
i

)
, (A.1.2)

where c > 0 is an absolute constant.

Conjecture (Unbounded random variables). A version of Proposition 5.10 of Ver-

shynin (2010) holds for Markov chains, with constants tmix times weaker than in the

independent case.

Remark A.1.2. Theorem A.7.1 of Talagrand (2011) an unbounded version of Bern-

stein’s inequality for random variables with exponential tails. See Adamczak (2008)

has shown Bernstein-type results for unbounded summands for Markov chains, using

regeneration-type assumptions (with additional logarithmic factors).

Here we show this conjecture is false in general. Let Ω = R, π be the distribution

with tails π([x,∞)) = π((−∞,−x]) = (1/2) · exp(−x2) for x ≥ 0, and let f(x) = x.

Define the operator π on L2(π) as π(g)(x) = Eπ(g), and let P = γπ+(1−γ)I for some

0 < γ < 1. Then this operator P corresponds to a Markov transition kernel P that

does the following: in step i (from Xi to Xi+1), with probability γ, we set Xi+1 as an

independent variable with distribution π, and with probability 1−γ, Xi+1 = Xi. Then

for such a probability transition kernel, it is easy to see that the chain is reversible,

with spectral gap γ, and mixing time tmix ≤ dlog(1/4)/ log(1 − γ)e) ≤ 1 + log(4)/γ.

On the other hand, with probability at least (1− γ)n−1, X1 = X2 = . . . = Xn, so for
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every t ≥ 0,

Pπ

(
n∑
i=1

f(Xi) ≥ t

)
≥ (1− γ)n−1P(f(X1) ≥ t/n) = (1− γ)n−1 · 1

2
exp(−t2/n2).

(A.1.3)

Now with the choice γ = 1/2, we obtain

Pπ

(
n∑
i=1

f(Xi) ≥ t

)
≥ exp(−t2/n2 − log(2)n).

For large values of t, this is much larger than what we would expect by a Gaussian

bound of type (A.1.2). Similarly, for the exponential tail case, we can set π([x,∞)) =

π((−∞,−x]) = (1/2) · exp(−x) for x ≥ 0. Then for every t ≥ 0,

Pπ

(
n∑
i=1

f(Xi) ≥ t

)
≥ (1−γ)n−1P(f(X1) ≥ t/n) = (1−γ)n−1 · 1

2
exp(−t/n), (A.1.4)

thus for γ = 1/2, we obtain Pπ (
∑n

i=1 f(Xi) ≥ t) ≥ exp(−t/n − log(2)n). For large

values of t, this is again much worse than what we would have in the independent

case. Thus Conjecture A.1 is false. A possible way to prove inequalities for un-

bounded summands is truncation (see Propositions 3.3.14 and 3.4.18). This allows

us to recover Gaussian/exponential tails for sufficiently small deviation t. Note that

for the truncation approach, it is important to know the concentration properties of

f(Xi) under the stationary distribution π.
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A.2 Coin toss data

Below are results of 10000 coin tosses for Example 3.3.25 (1 corresponds to heads,

and 0 to tails).

100100101111001111110011111111100000110100001111111110101111100000010100000110011000000101111000011000

100000011111100001111111110011110000000100111000000000111000100001111100010101010000110011011001000111

110000000011111011000000011010000001010100011011111100100000001101000100111110101011110110111100111100

011000000000000100110000011111010000001100110111110110000000111111100110101101101000010000010111111111

110100111111100011000000011111000011110100100010110011010110011100101101110011100000111111001001110011

101111111001110110000011111001010001100101111111011100100111111111100000000000010000000010110100110000

010111110000011000001101110010111111100101111100100111111011011100011111110010111000001111110111110001

111100000101100111111000111100111111111000000000011110000001101111111110111100001110011110100011111100

110001111111100000010010100010010011110000000100110111011100000010001111111000000110001100011110011110

011101111111001010100001101101100111111110000001111111110100000000111011000111011101011111000100110111

111111111110001110000111100110101001010101100000110101000100000000110011100111010111010110011000111001

111110001011001100000000011010000111011001111011010111111111111101111111100000000110000000011111101100

001101000101100110000000010111000111010001100001110001011110000110000000011100000000011000011111100000

000001011110111101100110010001111011010111010001111000000000010110010111000001001000011110010001101001

111111111001100111010101111100000010001111110000111011111111110111011010111100001111000011000100000001

110000000111000011000101101111101111111101011111111100110011111111001101111100011110010001000111101100

011110111111111000111100001110100110110000001110000011011000111000000101100001111111100111001111001111

011101110100011001000011000011110011001110010111111111001010100110000010111110001100101110001110100111

011110000110001101110010011001111111101001011110000110111110110100001000000101100000011001110000101011

000000001011110001101111010100110111100000011101110011100100000000000100101000111011111111011101110001

011011100100110001111010000011001111100010100000101011000000111011001111110011010011010100001100011001
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111111111000011000001101111100010001111101001000010100011111011011011001101111000000110011100010111110

000001001011001010000000001100111110111011110010000001110011010000111100000110000000101101110001101001

001001111010111110011010111010010000000101011000100010011000100010111010011010111100110000011101001001

010011100100011011110100101100011100011011111111100001100101010100111111110000011011011111000001000100

001111110010111000000010011100000010010101111100001111100110001100011100110100110010111011100010011100

000001111111000001010111111101111100111101101110001111111001110000010111001110 011101101101111000011111

001101001000010011011011001001111110110001010101101101111101100000011000000001101001010110110011111011

000111111101000011010001000111010000011111110101010101110001000000010111100111011110101101001110001000

010100101001000100001011101111011000110000111110111111111011000010101100001010001011100011100001001010

110110111010011010001110110011001111010011110000000101001111001001100010011001001111100001001100001110

011111000111001111011001100001111011010011011111101110000010111011000111000011011001111000111101110110

000000011000000100010011101011100010100000111110100010011100011001000001110011000111111111000111011000

111110001001110011101111100001101011111001101000000001110010111110011110100101001100011101110101010010

110101110111111011000010010000011001011100100111000100000010101100001110011011001011110011001011110100

000101100111110010111101111011010000110100110100001011110010111110100110111110111110111100110010100101

000100111110111100011011111110100000001001001111011001010100101011001110111001101110011101011111111111

100111011101111011011100011110100110001011110001000100000010010111000111001011111110001000110001100000

011111111111111110110101000011100010011001011011001110100001110000101100110010110011111111111111100000

011100110011000001110110111111110110000100011111101011000110110010100001001111111111011010001000011100

010110101111001011010111111101101110100100110111110100000000001100000001000011010000101101011110111100

011111011111100001010010110000100110000000000110001110011111110101011101110100000000000000100000001111

001011001000110001000110110011100110010000000100101110111111101110100101100011111111111000011101001100

000101100000011100000011110100011101100100010001101110001100111000111011100011111010111111010101101000

000000001111111111100010110101111000010101001101001001001110000010011110000110110011111101100011000010
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100000000111110011110101101011000000101000001100011110110101000000000010010111000010111110001011100101

101110011001011101101010110010001110100000110011010101100011101011000000010000001110000111111000100010

111010100110000111001011101100111111110000000111101000101101011111100011110001010000000110110101011111

001110001101001011000011010111111110001011010101110010101110110100011110110011100111110110110101110001

101011111110100000100000011100010101110001101110000001110111001101110001100010011100001111110000001100

110111110100011101111100011011110001010000010010110010011101100000000111011111000001110000001010111111

010000011000011010101011110101000011100101000000011101111011010110101001111100010001110011101000001011

100000001000111011110000000110010101010010011110101010111101010101011111010101010111010001100100000011

111101111001000100111111001001000011111100001101011110000000010011011110111000000111010111110000100010

110000110111000101111110011010000110101110011000011110100101011110110011001001111101011000001100011110

011111111110011010010000011001110001110010001111111110110011011101100111101011110100011101011000000110

010000111101010010100001010011101101111110000100000011101101011101011110000001000001001010000001111011

110110000001101010001010000100101100111101010101011010011110001110010010001000111000110110011101110101

100011010001011000110100100000001101110100011010011001001110000010001101010011010101100010001001100001

110011111111011011100000001001101110101001010111000000001000101010000000011011011001100101100010000010

001011110101010011001110010100100000011000101010100001110101011101111101110001110000111000000100001111

100001101011011000110011010110010100011110000010011111101011001001011110011111010101111111001101101000

000111010100001100000000011110100001001000000000011100001101010110101100011000000001001111011010011010

001000000010000011001110110001011111110100010111000000011110011111101011110001001110100000111111110001

111110001000011010100111110011011000110001011111010000100100101110000011011101101110111011111101001000

100001100011110101100011010100101000111110110011011100010101100110001000010100111101110000110100000101

010010100001101001101101001100110101001110110010110010111100010011100000100001111000111100001100110100

011111011001010110000100101000100010001100000000111110000111010111101110111100111001110001000000010111

100000000111011000011010100000000101110100001011101011000110010011110111111000101001101110001110111101
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110001001100111111100110000101000010101011100001010100101111000011001010111011111011110000110001001100

111111001111111101101111111100111111011010000000000110100111001101110000001011010010110110110110110111

100110000000111100110010010000010010111100101111000011110011111000010100111100000001110011111110001010

100101000110010000011100001000111011010000001100111010111000001010011111100000101100110000011110010101

000110011100101010011100101110111100011110011110000111101000111110011110000011110110100000001110001110

100011001101011001000110110010111110101001111010010110010001001110111001000011110000100111101011111001

000100001011111001010000100010101101111001111101010010001101011100110010100010101010000011110110011001

001011111111111010100000110111010101100011011001111000011111110011001001000000111001101101111001000000

000001100110000101111110000000110111111010010001110100001000010000110000001001000101010100101110001101

110111110100010001000100101111111010100000110111100110000101011101001101101111011101110001000000000101

100001101001000110100100011000001110010000101011101101101011010110011000000011101011101000111001101011

101110100000001001010101001111000010001000000000000011111100100110101110011100010011110110001101001101

100001111010111000000110110010011000011111100101000100001000010101011010010100010100101010110111010110

110000000110100101000001010111011000010111011000111100000100101110000001110000111000110000000000100110

111110111001011100111101000110010100011111000111111000111011101001101100101100110011000110110001111111

010010110000110111101011111011101001101101001010100110110000011011001101100101101011000010010001001000

100110000101111010001111110111010001111110000010000100101110110011111011100000001101111110111111000001

000110000010001111111011101111110000110111111111100011111010001111010000001101011110001111011110011010

001100111111000111111111111100011001111110110000000100110101011011000100001111000110110001100101011100

101111000111110011000010010111111100100001000110101101000001011011110011111100111000001101010110111001

100101110111010001111111100110001101101100000100000001100110101110000101000001001001001001101011100011

011011111110000000000010111000111111010000010011100001101100001101111001110010000011101111110111110000

001001001001000100111000100111101110000100100000101000111111000000010110110110 000111111001101011100111

011111010111011101000111100001111011100001001111000010000110001001111010000000000000001010100100100111
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110000101010111001111110000100011111010011101111101010101100001010110110111001010000101110010001110001

00011



Appendix B

Convex distance inequality with

dependence

B.1 The convex distance inequality for sampling

without replacement

In this section, we first state a version of Talagrand’s convex distance inequality for

sampling without replacement, and then apply it to the stochastic travelling salesmen

problem of Section 5.4.1.

Theorem B.1.1. Let X = (X1, . . . , Xn) be a vector of random variables taking val-

ues in a set S = {A1, . . . , AN}. We assume that they are chosen from S without

replacement, that is, they are distributed uniformly among the N · . . . · (N − n + 1)

possibilities. Let Ω := {x1, . . . , xn ∈ S, xi 6= xj for 1 ≤ i < j ≤ n}, then for any

A ⊂ Ω, we have

E(exp(d2
T (X,A)/16)) ≤ 1

P(A)
, (B.1.1)
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with dT defined as in (5.3.4). Let g : Ω→ R be a function satisfying (5.3.6) for some

functions ci : Ω → R+, 1 ≤ i ≤ n. Suppose that
∑n

i=1 c
2
i (x) ≤ C for every x ∈ Ω,

then for any t ≥ 0,

P(|g(X)−M(g)| ≥ t) ≤ 4 exp

(
−t2

16C

)
, (B.1.2)

Remark B.1.2. Note that for sums, Hoeffding and Bernstein-type inequalities for

sampling without replacement exist in the literature, see Bardenet and Maillard

(2013).

This theorem follows from the following result, due to Talagrand (1995).

Theorem B.1.3. Denote the symmetric group on [N ] by SN , and let Y := (Y1, . . . , YN)

be distributed uniformly among the N ! permutations in SN . Then for any B ⊂ SN ,

E(exp(d2
T (Y,B)/16)) ≤ 1

P(B)
.

Proof of Theorem B.1.1. Without loss of generality, assume that S = [N ]. Let us

define B := {x ∈ SN : (x1, . . . , xn) ∈ A}. Then it is easy to check that for this choice,

for any x ∈ SN , dT (x,B) = dT ((x1, . . . , xn), A). This means that

E[exp(d2
T ((Y1, . . . , Yn), A)/16)] = E[exp(d2

T (Y,B)/16)]

≤ 1

P((X1, . . . , Xn) ∈ B)
=

1

P(A)
.

Now (B.1.1) follows from the fact that the vectors (Y1, . . . , Yn) and (X1, . . . , Xn) have

the same distribution. Finally, we obtain (B.1.2) similarly to the proof of Lemma

6.2.1 on page 122 of Steele (1997).
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As a consequence of these results, we obtain a version of Theorem 5.4.1 for sam-

pling without replacement.

Theorem B.1.4 (Stochastic TSP for sampling without replacement). Let A =

{a1, . . . , aN} be a set of points in [0, 1]2, X1, . . . , Xn be sampled without replacement

from A, and T (X1, . . . , Xn) be the length of the shortest tour according to some cost

function L(x, y) satisfying |x − y| ≤ L(x, y) ≤ C|x − y| (as in Section 5.4.1). Then

for any t ≥ 0,

P(|T (X1, . . . , Xn)−M(T )| ≥ t) ≤ 4 exp

(
− t2

1024C2

)
, (B.1.3)

where M(T ) denotes the median of T .

Proof. This follows from Lemma 5.4.5 and (B.1.2).
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