

EXPLOITING SIMILARITY

PATTERNS TO BUILD

GENERIC TEST CASE TEMPLATES

FOR

SOFTWARE PRODUCT LINE TESTING

SURIYA PRIYA R ASAITHAMBI

NATIONAL UNIVERSITY OF

SINGAPORE

2014

EXPLOITING SIMILARITY

PATTERNS TO BUILD

GENERIC TEST CASE TEMPLATES

FOR

SOFTWARE PRODUCT LINE TESTING

SURIYA PRIYA R ASAITHAMBI

M.Eng (CS- Distinction), National Institute of Technology, India

B.Eng (CS), Bharathidasan Unviversity, India

A THESIS SUBMITTED FOR THE

DEGREE OF PHILOSHOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

JULY 2014

i

DECLARATION

I hereby declare that the thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

SURIYA PRIYA R ASAITHAMBI

9 DECEMEBR, 2014

ii

Acknowledgement

I take this opportunity to express my heartfelt thankfulness and gratitude to my

research supervisor Prof. Stan Jarzabek. He introduced me to software product lines

and taught me key things I needed to learn in the field of software reuse and software

engineering that equipped me in pursuing this research. His mentorship, wisdom and

kindness have been my source of inspiration. The academic writing and research

guidance he imparted will always guide my future endeavours.

 My profound thanks to the members of my thesis panel of experts Prof Khoo Siau

Cheng, Prof Dong Jin Song and Prof Abhik Roychoudhury for their valuable advice

and directions during various stages of my research work.

I thank all the professors, faculty and teaching staff of SoC for sharing their wisdom

and knowledge during my course work as well as during my research. I also wish to

record my thanks to the administrative staff members of the SoC graduate office for

their kind support in various aspects of my candidature.

I wish to thank my employers ISS, the management and staff for their support and

encouragement for pursuing my research ambitions. I wish to thank Dr. Venkat

Ramanathan for his help in carrying out editorial review of my thesis and for his

constructive comments.

 I thank all my peer researchers at School of Computing for lightening my PhD years

with positive words of encouragement and sharing of ideas. I thank the anonymous

reviewers of my research publications for their valuable technical comments, pointers

and encouraging feedback which helped me shape my PhD research work.

 Finally I thank my family - my parents, mother-in-law, husband, sister and brother

for being there for me at good and as well as challenging times. Importantly, I thank

my son. His boundless affection gives a purpose to my life and strength to thrive this

research journey with enthusiasm and peace.

iii

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1. BACKGROUND ...1
1.2. MOTIVATION ..3

1.2.1. Challenges ..4
1.2.2. Existing SPLT Approaches ...6

1.3. OBJECTIVE ..8
1.4. PROPOSED SOLUTION ...9
1.5. CONTRIBUTIONS ..11
1.6. THESIS ORGANIZATION ..13

CHAPTER 2 OVERVIEW OF THE RESEARCH WORK .. 15

2.1. MOTIVATIONAL EXAMPLE ..16
2.2. STUDY OF REDUNDANCIES ...18
2.3. IMPACT OF TEST CLONES ON TEST LIBRARY MAINTENANCE ..20
2.4. GENERIC DESIGN APPROACHES ...21
2.5. PREVIEW OF PROPOSED SOLUTION ..24

2.5.1. Context ...24
2.6. THE PROPOSED REUSE-BASED APPROACH FOR TEST LIBRARIES ...26
2.7. CASE STUDY: IMPLEMENTATION OF PROPOSED SOLUTION ...27
2.8. DISCUSSION OF KEY RESULTS ..28

CHAPTER 3 LITERATURE REVIEW ... 30

3.1. INTRODUCTION ..31
3.2. LANDSCAPE: SOFTWARE TESTING ..31

3.2.1. Overall Challenges and Survey Publications ...32
3.2.2. Model based Testing ..34
3.2.3. Combinatorial Testing ..36
3.2.4. Mining and Learning Based Testing ...37
3.2.5. Summary ..38

3.3. LANDSCAPE: SOFTWARE PRODUCT LINE TESTING ...39
3.3.1. Overall Studies ..40
3.3.2. Test Planning, Process and Management ..41
3.3.3. Test Case Generation Approaches ..43
3.3.4. Test Selection and Execution Approaches ..45
3.3.5. Variability Management ..46
3.3.6. Levels of Testing ...47
3.3.7. Testing Efforts and Measurements ..49
3.3.8. Summary ..49

3.4. LANDSCAPE: ANDROID PLATFORM TESTING ..49
3.5. CONCLUSION ...51

CHAPTER 4 A STUDY OF REDUNDANCIES IN ANDROID PLATFORM TEST LIBRARIES 53

4.1. INTRODUCTION ..54
4.2. CHALLENGES ...55

4.2.1. Why is redundancy a problem in test libraries? ...55
4.2.2. Improving Reusability in Test Libraries ...56

4.3. OVERVIEW OF ANDROID PLATFORM TEST LIBRARIES ...57
4.3.1. Android Platform as Research subject ..57
4.3.2. Android Platform Diversity ...58
4.3.3. Architecture ..60
4.3.4. Development Tools ...61

iv

4.3.5. Testing Tools and Testing Framework ..61
4.3.6. Diversity Challenges while testing Android Platform ...62

4.4. RESEARCH HYPOTHESIS ...63
4.4.1. Research Motivation ..64
4.4.2. Research Objectives ..65
4.4.3. Research Questions ..66

4.5. METHODOLOGY ...67
4.5.1. Data Collection Process ..68
4.5.2. Analysis Process ..69
4.5.3. Validity Process ..69

4.6. RESULTS ...70
4.6.1. Group 1 - Simple Redundancies ..70
4.6.2. Group 2 - Complex Redundancies ...75

4.7. RESEARCH ANALYSIS ...78
4.7.1. Quantitative Analysis ...78
4.7.2. Qualitative Analysis ..79
4.7.3. Research Questions Answered ...81

4.8. THREATS TO VALIDITY ...83
4.9. CHAPTER CONCLUSION..84

CHAPTER 5 TEST CLONES - FORMULATION & DEFINITIONS ... 85

5.1. INTRODUCTION ..86
5.2. TEST CLONE DEFINITIONS ..86

5.2.1. Basic Terms...86
5.2.2. Software Test System Nomenclature ...87
5.2.3. Test Library and Test Clone Definitions ..89

5.3. TEST CLONE EXAMPLES ...94
5.3.1. General Test Clones ..94
5.3.2. Structural Test Clones ...98
5.3.3. Test Clone Taxonomy .. 102
5.3.4. Taxonomy Based on Similarity .. 103
5.3.5. Taxonomy Based On Granularity ... 105

5.4. METRICS EXHIBITED IN A TEST LIBRARY ... 106
5.4.1. Test Library Reusability Metrics .. 108
5.4.2. Test Library Maintainability Metrics ... 116

5.5. CHAPTER CONCLUSIONS ... 121

CHAPTER 6 SYSTEMIC TEMPLATE BASED REUSE APPROACH FOR LARGE SCALE TEST
LIBRARIES 123

6.1. STRAT OVERVIEW .. 124
6.1.1. Motivational Example ... 125

6.2. NEED FOR GENERIC DESIGN .. 128
6.3. PROPOSED SOLUTION .. 129

6.3.1. Solution Design .. 130
6.3.2. Scope of Proposed Solution ... 133
6.3.3. Generic Adaptive Test Template Derivation .. 134
6.3.4. Adaptive Reuse Technique... 138
6.3.5. GATT Derivations for Unification of Various Test Clone Types 139
6.3.6. STRAT Process and Template Lifecycle Management 148

6.4. ADDRESSING SPLT CHALLENGES USING STRAT APPROACH ... 163
6.4.1. Countering Voluminous Growth .. 164
6.4.2. Countering Redundancy .. 164
6.4.3. Managing Heterogeneity .. 165
6.4.4. Improving Scalability ... 165

v

6.5. BENEFITS OF THE APPROACH IN SPL TESTING CONTEXT .. 166
6.6. LIMITATIONS .. 168
6.7. CHAPTER CONCLUSIONS ... 169

CHAPTER 7 CASE STUDY: GENERIC ADAPTIVE TEST TEMPLATES FOR BIDITESTS LIBRARY 171

7.1. PURPOSE ... 172
7.2. CONTEXT ... 172
7.3. SELECTION OF CASE STUDY ... 173

7.3.1. Identifying Sample Space .. 174
7.3.2. Selection Criteria for an Ideal Test Library (Illustrative Example)...................... 175
7.3.3. Selection Methodology .. 177
7.3.4. Selection from Android Platform Test Repository ... 178

7.4. INTRODUCTION TO ‘BIDITESTS’ TEST LIBRARY ... 182
7.5. STUDY OF REDUNDANCIES IN ‘BIDITESTS’ TEST LIBRARY ... 185

7.5.1. Simple Test Clones ... 187
7.5.2. Structural Test Clones .. 189
7.5.3. Heterogeneous Test Clones ... 190
7.5.4. Other Variations .. 191
7.5.5. Possible Causes for test clones in BiDiTests ... 192

7.6. CONSTRUCTION OF TEST TEMPLATES FOR BIDITESTS.. 193
7.6.1. Version Sampling ... 194
7.6.2. Template Construction Process ... 195
7.6.3. Non-reducible Test Clone Groups .. 198
7.6.4. The Construction Iterations ... 199

7.7. RESEARCH EVALUATION OF GATT .. 204
7.7.1. Lossless Translation of Test Libraries to GATT Constructs 206
7.7.2. Improving Productivity by Reuse ... 207
7.7.3. Change Propagation .. 209
7.7.4. Scalability .. 211
7.7.5. Non-Intrusiveness .. 212
7.7.6. Other Benefits and Trade-offs ... 212
7.7.7. Threats to validity .. 213

7.8. ADAPTING TEST TEMPLATES TO OTHER SIMILAR SITUATIONS .. 214
7.9. KEY TAKEAWAYS & INFERENCES ... 214

CHAPTER 8 CONCLUSIONS ... 216

8.1. CONTRIBUTIONS ... 218
8.2. FUTURE EXTENSIONS ... 221
8.3. CLOSING REMARKS .. 222

vi

Summary

Software product line testing (SPLT) is more complicated than the conventional

testing. Since software product lines consist of several product variants, there

arises a need to test each variant thereby causing test case explosion. In this thesis

we studied Android OS product line test libraries to understand the combinatorial

test explosion problem. Our study reveals frequent occurrences of test code

fragments which we call “test clones”. As new product variants are added to SPL,

test cases from existing products are copied and modified. This leads to test clones

and problems of managing large test libraries with many redundancies. In this

thesis, we propose a method to avoid test clones and therefore save effort of

developing and maintaining SPL test libraries.

A study of existing literature reveals that while some attempts have been made to

address the test case explosion issue, most of these are heuristics, combinatorial

selection or model based approaches which have known limitations when it comes

to variability and heterogeneity prevalent in the software product line executable

test libraries. The approach proposed in this thesis solves the problem in a way

that is effective (any type of test clones can be tackled) and practical (any test

library can be addressed irrespective of programming platform).

The proposed approach is based on test case reuse facilitated by test templates.

Our approach constructs test libraries using templates that represent groups of

similar test cases in generic adaptable form. The Generic Adaptive Test Template

(GATT) structure proposed in this thesis takes advantage of common aspects and

predicted variability that are present among individual test cases. The process

starts with detection and grouping of test clones, provisioning for variability and

then constructing hierarchical templates. Subsequently, the process provides

specifications to derive the test library by binding variant points with appropriate

vii

variant choices. This compile-time test template approach helps in test

construction by adaptive generation without affecting the follow up test

execution. The proposed template-based design and implementation approach

helps the test engineers to handle key challenges namely variability, redundancy

and heterogeneity in large scale test libraries.

The results of the experiments conducted on Android OS test libraries

demonstrate that a compressed, normalized, non-redundant test library can be

achieved using our proposed approach. The results also confirm our hypothesis

that test library construction using template-based approach will facilitate

scalability in test evolution and improve test designers’ productivity.

The contributions made by this thesis is expected to create insights with reference

to usefulness of generic test case template approach, which in addition to being

beneficial to software product line industry would be a seed that would foster

further research in this fertile area.

viii

List of Tables

Table 1 Sample Selection ... 78

Table 2. Summary of Clone Analysis .. 78

Table 3 Test Clone Similarity Taxonomy .. 104

Table 4 Granularity Based Test Clone Taxonomy ... 106

Table 5 Test Clone Analysis for Android’s Core Test Library Projects 181

Table 6 BiDiTests Test Clone Types Identified ... 186

Table 7 BiDiTests Template Count .. 193

Table 8 BiDiTests Project Consecutive Three Version Statistics 208

Table 9 BiDiTests Unification Metrics .. 208

Table 10 Change Request List .. 209

Table 11 Comparison of change propagation ... 210

ix

 List of Figures

Figure 2-1 Simple Test Clone Example ... 17

Figure 2-2 Two Testing Processing Layers in Software Product Lines 25

Figure 2-3 Reuse approach for test library construction and management 26

Figure 3-1 Classification scheme for combination strategies 33

Figure 4-1 Android Platform Diversity .. 59

Figure 4-2 Android Layers ... 60

Figure 4-3 Android Testing .. 63

Figure 4-4 Android GIT Project Layers ... 68

Figure 4-5 Android Platform Testing Sub Projects .. 70

Figure 4-6 Test Code Fragment (1) .. 71

Figure 4-7 Test Code Fragment (2) .. 72

Figure 4-8 Test Code Fragment (3) .. 73

Figure 4-9 Test Code Fragment (4) .. 75

Figure 4-10 Permission Test Cases .. 76

Figure 4-11 Template Similarity between two test case files. 76

Figure 4-12 File Gapped Clone Occurrences ... 77

Figure 4-13 Call Sequence Similarity between Two Different Test Cases 77

Figure 5-1 Software Test System ... 88

Figure 5-2 Exact Test Clone Sample .. 95

Figure 5-3 Renamed and Parameterized Test Clone Sample 96

Figure 5-4 Sample Near Miss Test Clone .. 97

Figure 5-5 Gapped Test Clone Sample .. 98

Figure 5-6 Functional Structural Test Clones .. 100

Figure 5-7 Design Level Structural Test Clones .. 100

Figure 5-8 Design Similarity among Test Cases .. 101

Figure 5-9 File Level Test Clone Example .. 102

Figure 5-10 Software Quality Framework ... 107

Figure 5-11 Metrics for Reusability ... 111

Figure 5-12 Metrics for Maintainability ... 119

Figure 6-1 Note App (Listing, Create and Edit Screens) 125

Figure 6-2 Note app test project structure .. 126

Figure 6-3 Test Archetype and Test Case Structure Example 127

Figure 6-4 Sample Test Clone Testing Different Features 128

Figure 6-5 Generation of Original test libraries from GATT 131

file:///C:/Users/suria/Dropbox/~InduvidualChapters/~Binding/Thesis1.5.docx%23_Toc393905466

x

Figure 6-6 Systemic Template Approach for Large Scale Test Libraries 131

Figure 6-7 Software Testing Process .. 134

Figure 6-8 GATT for Test Clones .. 135

Figure 6-9 Templates for Motivational Example ... 135

Figure 6-10 Sample Android Activity based Test Clone Pair 136

Figure 6-11 GATT Representation of Test Case Example 137

Figure 6-12 GATT Unification of Exact Test Clones 140

Figure 6-13 Unification of Renamed and Parametrised Test Clones 141

Figure 6-14 Adaptation of Parametric and Renamed Test Clones 142

Figure 6-15 Unification of Near Miss Test Clones .. 143

Figure 6-16 Adaptation of Near Miss Test Clones ... 143

Figure 6-17 Unification of Gapped Clones .. 144

Figure 6-18 Gapped Test Clone Instances ... 145

Figure 6-19 Unifying Structural Test Clones ... 146

Figure 6-20 Test File Clones for BiDiTestGallery Group 147

Figure 6-21 GATT Structures for Heterogeneous Test Clone Fragments 148

Figure 6-22 Steps in STRAT Process ... 150

Figure 6-23 Generic Adaptive Test Template Lifecycle Activities 158

Figure 6-24 Template Hierarchy Example ... 160

Figure 6-25 Template Repositories .. 162

Figure 7-1 Android Platform Framework test libraries as a Feature Model 179

Figure 7-2 BiDiTests Partial Class Diagram .. 184

Figure 7-3 Gapped Test Clone Example .. 188

Figure 7-4 GATT Constructs for BiDiTests Simple Test Clones 188

Figure 7-5 GATT Construct for BiDiTests Structural Test Clones 189

Figure 7-6 GATT Construct for BiDiTests Heterogeneous Test Clones 191

Figure 7-7 Iterative Template Construction ... 200

Figure 7-8 BiDiTests (simple) Example .. 201

Figure 7-9 Grid Layout Unification (Simple) .. 201

Figure 7-10 Similarity across Layout Test Files .. 203

Figure 7-11 Layout Test File generation using GATT 204

Figure 7-12 Software testing process ... 205

Figure 7-13 Improvement towards non-redundancy with iterations 210

1

CHAPTER 1

Introduction

In this chapter we set the prelude for our thesis. We discuss the problems in

existing software product line testing and in particular the issues pertaining to test

libraries. These challenges provide the motivation for our research on developing

a non-redundant representation of test libraries.

1.1. Background

Gartner special report1 describes the emerging technology trends consisting of

social interaction solutions, mobile computing, cloud computing and information

via big-data as the “nexus of forces” that will empower organizations to drive

future digital workplaces. To exploit new opportunities provided by these latest

technologies software engineering practices are constantly evolving. A quick

look at the practices behind emerging technologies like the mobile computing

reveals the increasing demand for individualization and hence there is a constant

need for augmenting software engineering practices directed towards software

product line. “Software Product Line Engineering (SPLE) is a set of software-

intensive systems that share a common, managed set of features satisfying the

specific needs of a particular market segment or mission and are developed from

a common set of core assets in a prescribed way” [125] . Testing in a product line

scenario must examine both reusable core assets (termed as domain testing) and

individual products (termed as application testing).

Northrop and Clements [115] observe that increased adoption of SPLE practices

in industry has yielded good results in the form of reduced implementation costs,

1 http://www.gartner.com/technology/research/nexus-of-forces/ Last Retrieved June 2014

http://www.gartner.com/technology/research/nexus-of-forces/

2

shorter time to market and improved quality of the derived products. However, to

derive the full benefits, it is not only important for software development to be

carried out rapidly, but the developed software should be rapidly tested as well;

else the effort put in software development becomes sub-optimal since the

products cannot be released to users.

Software Product Line Testing (SPLT) verifies and validates the confidence that

any instance of the product line will operate correctly. By using managed reuse

techniques product lines take advantage of feature similarities. It hence becomes

important to focus on SPLT to explore for improved approaches that can

contribute towards faster launching of products and their various versions. SPLT

is complex because of the need to test a very large set of variations and the feature

combinatorics. SPLT processes produce test artefacts that can be further classified

as non-executable test artefacts (such as test plans, test model, test strategies and

test reports) and executable test artefacts (such as test cases, test data sets and test

scripts) as classified by Myers et al [110]. We shall refer to such executable test

artefacts as test libraries hereon.

In SPLT context of reuse, Knauber et al [84] raise the following research

questions encompassing both domain and application testing:

1) How to design generic reusable test cases for different testing levels,

namely unit testing, integration testing and system testing?

2) How to create non-redundant representation of test libraries that positively

influences the quality properties such as reliability, maintainability and

testability?

3) How to increase efficiency and effectiveness of testing efforts?

In order to achieve the overall product-line goals, namely increased reuse and

reduced cycle time for testing, improvements/enhancements to existing traditional

testing mechanisms are required. We had mentioned above that the SPLE

3

leverages on “reuse” to accomplish rapid software development. Taking a cue

from this we believe that such reuse approach should be embraced in software

product line testing as well. Hence one of the key improvements to software

product line testing would be to accomplish non-redundant test libraries with

effective reusability of common test libraries and variability management. This

would help in faster identification of product specific defects, which in turn would

result in increased throughput in testing process, more traceability and efficient

resource utilization.

1.2. Motivation

In a systematic mapping study Emilie Engström [51] states: “Three main

challenges concerning SPLT are: (i) the large number of tests, (ii) balance

between testing effort for reusable components and concrete products, and (iii)

handling variability in testing artefacts”. According to McGregor [99], the key

challenges while testing a product line with higher levels of reusability are

variability, emergent behaviour, creation and management of reusable

components. From our study on large scale test libraries it is observed that test

assets are composed of multiple programming languages, configuration

techniques and scripting procedures. The need for variability management among

software product line test libraries is exacerbated by two key orthogonal aspects.

(1) Cost of testing: Test case generation through a systemic template based

variability adaptation mechanism is an important means for keeping the cost of

the testing low, while guaranteeing adequate degree of dependability. (2) Testing

the various layers: the test case selection, interoperability and heterogeneity

problems arising due to variations in platform frameworks, operating system,

kernel and hardware layers causes bugs (as reported in al [3, 4]). This remark

highlights the need for variant adaptation mechanism towards product variants in

different layers. Thus focusing into new research approaches for SPLT artefacts

would be timely and lucrative.

4

1.2.1. Challenges

As product features grow, the product variations also grow and with the growth

in variations, there is a corresponding growth in binding options for each of these

variations. Consequently, the challenges get more complicated in SPLT due to the

need for testing individual features, their respective variations and bindings. We

describe some of the key challenges related to SPLT below:

1.2.1.1. Voluminous of Test Libraries

The key reason for increase in volume for SPLT is the presence of variability. As

variability grows, the number of test cases needed to verify all variant points along

with their respective choices increases. Typical industry product lines may consist

of thousands of variable features [18]. Moreover, due to continuous evolution of

projects, features get added, modified and removed over time. Key issues arising

out of such continuous evolution are: (i) poor visibility of changes that have been

applied to test libraries over time and (ii) the lack of generic adaptable

representations to facilitate in elegant evolution. Due to this test cases get

duplicates and volume increases. These problems need scientific investigation

with the view to proposing an effective methodology as a solution that would

address the stated issues.

1.2.1.2. Reusability in Test Libraries

The second challenge lies in designing reusable components and using them as

part of test libraries. If test libraries are not well-designed, redundancy builds up

over a period of time and makes test case library maintenance difficult. Testing

the product line involves testing various combinations of product against the

specified feature variants. To address these variations productively software

engineering practices normally resort to reusability. In testing context, this may

require design of generic adaptable test components. But designing reusable

components is a complex and time consuming job. Thus test engineers are

5

challenged to balance their efforts between creating reusable tests vs creating

product specific tests.

1.2.1.3. Variability Management

The breadth of the variability that must be accommodated in the product line

directly impacts the testing efforts needed to adequately ensure product quality.

This is a key issue that needs to be addressed. The creation and maintenance of

generic test libraries in domain testing that will be subsequently reused in

application testing accommodating all expected variations is a stated research

problem [126]. In SPL testing context, variability is expressed as variation points

at different levels with different types of interdependencies. According to Kolb

[85], one of the major risk factors in testing of product lines is the verification of

individual variant point to appropriate binding choices. This makes it necessary

to test all the variant points and their appropriate binding choices alongside

regular feature testing. Also a simple variant binding can happen at many stages

e.g., at domain testing stage for one product and at application testing stage for

another product. Hence in SPLT context, products can be built from core assets

in many different ways, both domain and application testing require “management

of variability”.

1.2.1.4. Heterogeneity of Test Libraries

Contexts such as multiple programming languages, diverse OS platforms and

multifarious devices cause heterogeneity in an SPLT environment. Traditional

structured SPLT techniques (and associated coverage criteria) currently target a

single programming language. With the advent of assorted computing trends in

newer technologies, we need to be more inclusive in adopting techniques that can

manage multiple programming languages and heterogeneous platforms. As the

complexity and intelligent features of product line devices increase, the need for

collaboration among different vendors, operating systems, versions and

firmware/software/hardware components also escalates. Often such heterogeneity

6

causes serious incompatibilities necessitating a robust SPLT approach. Thus,

seamless integration of test case management strategies targeting libraries

comprising of different programming languages, test mock data objects, tools and

techniques has become a crucial requirement for SPLT, which the research

community cannot afford to ignore.

From the descriptions in the above sub-sections it is evident that non-redundancy,

reusability, variability and heterogeneity are important qualities of well-designed

SPL test library.

1.2.2. Existing SPLT Approaches

Extensive research and systematic mapping studies have been conducted in the

SPLT literature to investigate and evaluate the state-of-practices [41, 51, 90] . The

following are some key alternate approaches for test library creation and

management:

 Model Based Testing: These techniques predominantly work with one of

the modeling representation, namely, feature models, unified modeling

language (UML) or object constraint language (OCL). One approach is to

use UML for deriving test models. Kishi and Noda [82, 83], Bertolino

Pluto [19-22]and ScenTED [134], Pohl & Metzger [125, 126] , Nebut

[111-113] , Duenas [48] and Olimpiew and Gomaa [62, 116-120] have

proposed derivation of test models using UML. The UML-based

techniques use various algorithms to generate test models using model

checking, test class diagrams, test scenario diagrams, activity diagrams,

sequence charts, profiles and stereotypes of UML artefacts as guidance.

Kang’s technique reported in [77, 79, 93] uses feature model that naturally

expresses the commonalities and variations among product line features

as a tree for guidance. WeiBleder’s technique [159] , uses state machines

and OCL expressions.

7

 Formal Specification & Natural Language Based Testing: These

techniques predominantly work with natural language or formal

specifications. Temesghen Kahsai [77] proposes a framework that

evaluates the use of specific test case selection based on formal

specification. Bashardoust Tajali [7] use domain models expressed as

generated contracts and use that to guide test case generation.

 Aspect Oriented Testing: These techniques predominantly work with

aspect based programming constructs and dependency injection concepts.

Feng [53] uses aspect oriented approach to generate unit test cases in a

product line context. Knauber and Schneider [84] combine aspect

oriented programming and unit testing to trace and manage small scale

variability among test cases.

Other significant contributions are discussed later in literature survey (Chapter 3).

A quick assessment of SPLT research literature and approaches proposed therein

reveal the following limitations:

 Model based techniques aid more in test case selection, model based

reusability and variability management using stereotypes/model checkers.

The test libraries are generally found to be non-executable test artefacts.

 Formal Specification & Natural Language based approaches provide

sound mathematical models for verification and validation of test

representation. They provide abstract representations (formal notations or

natural language) for variability, reusability and control test case

explosion.

 Aspect oriented approaches are limited by the capabilities of the hosting

container and underlying programming language expressiveness.

8

It is not possible for any one particular SPLT approach to mitigate all key

challenges mentioned earlier. Yet, if a few approaches can work collectively by

complementing each other instead of being mutually exclusive, then the chances

are that such a mixed approach can better handle test library construction.

With the advent of test-driven-development and advancement in the “nexus of

forces”, we believe that investigating SPL test libraries in construction and

management perspective is an essential research problem for the product line and

service testing community. Software engineering principle of generality

encourages avoiding repetitions and constructing parameterized, configurable and

adaptable generic test libraries as templates that can be reused. This serves as the

motivation behind our thesis. Our research work aims to contribute towards

effective test library construction and management in software product lines.

1.3. Objective

The main objective of this research study is to devise a

comprehensive generic adaptive test template approach for

constructing reusable, variability managed, non-redundant,

heterogeneous test libraries that would contribute towards

improved productivity under the complex, multi-faceted software

product line scenario.

The study of research literature and state of the practice in the typical software

development industry reveals the following key limitations of existing approaches

in the context of software product line testing:

i. Existing approaches are more focused on model based non-executable test

libraries and there is very limited research in executable test libraries.

9

ii. Even in the current research studies where executable test libraries are

being studied, there is a lack of study on variability management and

evolution in software product line testing context.

iii. Study of similarity patterns in test libraries which is crucial for SPLT has

not been sufficiently researched especially in large scale test libraries.

With the advent of test-driven-development and advancements in open source

software platforms, we believe that investigating SPL test libraries in maintenance

and evolution perspective is an essential research problem to address the gaps and

meet the stated objective.

With the above in view, this thesis aims to carry out detailed research on template

based variability management as a strategy and derive solutions that would act as

an effective enhancement to existing software product line test construction

approaches.

1.4. Proposed Solution

In a typical software development lifecycle, testing can take as much as 40% of

the development effort [143]. This would include test case construction and

maintenance, both of which are time consuming and manpower intensive. Over

a period of time, as the software evolves multiple versions get created. In software

product lines the presence of variations adds to the increase in versions and test

libraries tend to explode in size. We use the term ‘test library maintenance’ to

refer to the periodic changes made to the test libraries, possibly due to minor

changes in requirements or features in existing products. Likewise we use the term

‘test library evolution’ to refer to long term changes that happen during the whole

life span of test libraries due to reasons such as adding of new products to the

SPL. For example, consider a situation where a new product is created which is

similar to an existing one but with some variations from the original. To test this

product a new test case has to be created. Since the new test case has commonality

10

with the old test case (due to similarity of the products), test designers traditionally

makes a copy of the existing test case and modifies it to address the variations.

Typically test designers perform the following key steps to create the new test

library for the SPL:

1) Analyse the test requirements defined for the new product.

2) Understand the similarities and differences among the new test library and

earlier test library releases.

3) Select the best matching test library release from the configuration

repository and use it as a baseline.

4) Customize this selected test library to fully meet the defined test

requirements of the new product.

5) Execute the customized test library to validate the new product.

It can be logically inferred from the above copy-paste-modify approach that test

libraries may have plenty of redundancies. The large presence of redundancies

cause the test case explosion issue; i.e., test cases with similar code fragments

replicated in variant forms, which we call test clones. The presence of

redundancies cause hindrance to testing productivity by increasing the effort spent

on maintaining these duplicated tests. Therefore in the context of software product

families, the ability to achieve non-redundant test libraries would have significant

impact on testing productivity. Hence, we propose a template based test

construction approach that would mitigate test case explosion in software product

line situation. This is the prime focus of our research work.

Existing test library construction techniques use a combination of techniques such

as the use of parameterization, test patterns, test model generators and test

frameworks to manage variability. The test template approach proposed in this

thesis uses a synergetic merging of these existing mechanisms to represent groups

11

of similar test cases as generic, adaptive test templates that would improve

maintainability and impart engineering qualities that are otherwise difficult to

achieve. Our template-based approach pivots on flexible object oriented

programming (OOP) languages such as Java and C++ to design the core test

libraries comprising of test data, test fixtures, test cases, test suites and test

oracles. Our study also designs a structure for generic adaptive test template

(GATT) built using Adaptive Reuse Technique (ART). While the existing test

case codes composed using OOP languages and XML based configuration files

expresses the syntax and semantics of the test libraries, GATTs express the syntax

and semantics of change.

In our proposed template approach, we identify and unify test clones within test

libraries as well as help manage evolutionary changes that regularly occurs across

the test library releases over time. The non-redundant template representation that

we propose captures changes and their relationship within and across test libraries

and provides a way of unifying test clones of any type or granularity. GATT

structures are simple, tree-hierarchical, text file based and hence they can easily

grow and can remain intact under pressures exerted on the SPL test libraries by

multiple changes, and version creations happening over years of evolution.

1.5. Contributions

The proposed approach counters the test libraries explosion problem. The

research focuses on effort reduction via systematic reuse of generic test assets.

This is achieved by taking advantage of common aspects and predicted variability

that are present in test cases. The proposed template based reuse approach

organizes test libraries by preserving test case commonalities and provisioning

for variant points. The novelty of the proposed approach is that the suggested

technique is programming language/platform independent. Key contributions of

this thesis are listed below:

12

 SPLT deals with large voluminous test libraries. First and foremost benefit

of the proposed approach is that it can handle combinatorial explosion.

The approach constraints test library explosion by only allowing

permissible test combinations, while also preserving information relating

to code and test traceability.

 The empirical study presented later in Chapter 4 establishes the presence

of significant amount of redundancy among test libraries in a SPLT

context. This study further uncovers the strong need for research in test

clone management approaches. The findings are also expected to promote

other SPLT researchers to pursue possible research approaches in the

field. The study also contributes to detailed understanding of the

redundancy patterns occurring in test libraries by identifying the various

types of test clones and provides adequate examples to formalize the

redundancy patterns in a practical context. Based on this, the thesis has

constructed formal definitions and taxonomies for test clones present in

test libraries, which is a contribution to the SPLT theories.

 The thesis also proposes and defines useful SPLT metrics that can be used

in assessing quality of test library construction and management. These

metrics also aid in scientifically comparing different test library

construction approaches.

 The core contribution of this thesis is the formulation of a new approach

for template-based representation of test libraries which we call STRAT.

This approach and derived templates are capable of generating various

feature combinations and versions based on test designer’s choices. The

proposed approach provides a new framework to identify the redundant

elements, variability requirements and other feature specific details for

creation of templates. Adopting this approach is expected to yield

productivity gains for SPLT.

13

 Finally the thesis demonstrates the use of the STRAT approach by

constructing working test templates for software product line test libraries

where redundancy was found to be significant. The case study used the

above test templates to further generate test libraries to validate the

proposed STRAT approach. In addition, the generated test library was

compared to the original test library for the purpose of establishing the

benefits derived using STRAT approach. The results of this comparison

show that using our proposed approach yields significant improvements

in test library reuse.

The output produced as part of this thesis has contributed to research literature.

The research hypothesis was published in SPLASH 2012 conference proceedings

[5] under doctoral student research section. We received constructive suggestions

for improvements and we carefully implemented them in further research studies

presented in this thesis. The research outcomes of the study conducted on large

scale Android platform test libraries were published in the International

Conference on Software Reuse - ICSR 2013 proceedings [6].

In summary, the key contribution of our research work is the simplification that

comes from non-redundancy accomplished through reduction in both test libraries

size and its conceptual complexity. The study also has evaluated the benefits and

trade-offs of working with non-redundant test templates.

1.6. Thesis Organization

 Chapter 2 provides a summarized view of the entire research work carried

out as part of this PhD research which are presented in detail in various

subsequent chapters.

 Chapter 3 discusses the existing research literature in test library context;

comprehensively covering all related aspects namely general software

testing, software product line testing and android platform specific testing.

14

 Chapter 4 describes the results of similarity analysis performed on a

typical software product line with Android platform framework project’s

test libraries as example.

 Chapter 5 carries out an in-depth analysis of test software to define test

clones and formulate appropriate taxonomies, granularities and metrics

related to test clones. The chapter also illustrates these definitions with the

support of examples.

 Chapter 6 proposes a new approach for test clone management which we

call as Systemic Template based Reuse Approach for Large Scale Test

Libraries (STRAT). The chapter also elaborates the variability

management and template creation techniques involved in the proposed

STRAT approach.

 Chapter 7 provides an illustrative example to demonstrate the STRAT

approach described in the Chapter 6. It also details the experimental

analysis to assess the gains derived through the template-based approach

as well as to identify the constraints and trade-offs involved.

 Chapter 8 presents the thesis conclusions and identifies possible future

areas of follow up research work.

15

CHAPTER 2

Overview of the Research Work

In this chapter, we provide a bird’s eye view of the research work carried out as

part of this PhD thesis. We set the stage by discussing relevant concepts, problems

in test library construction and management, and then provide an overview of the

proposed approach along with key results.

The key idea behind our reuse based generic design approach is to construct

adaptive test templates that will provide flexibility and variability management to

the entire product line. To achieve flexibility and variability management, test

structures must be reused for both common and for variable portions by explicit

specification mechanisms. Generic templates foster this idea by creating unified

non-redundant structures and reusing them with modifications for product-

specific and version-specific variant bindings.

Unlike generics programming techniques applied to traditional executable test

cases, the generic adaptive test template approach aims to cater for unrestricted

test case parameterization. In the proposed approach, test designers need to

identify and capture only the commonalities among test clones in a product line

setting. Variations can be specified as deltas and can be kept separate from the

commonalities based generic representations. This makes the test structures

concise and non-repetitive. The existing test library (in terms of its component

structure) remains an integral part of the proposed solution. Any future changes

imposed on the test library can be done via template structures to ensure that the

test library and its template extensions are in sync with one another. Over a period

of time such templates allow the test library to improve its changeability, ease of

maintenance, reusability and reduced risk of anomalies.

16

This research work attempts to validate and demonstrate the above proposition

using scientific methods. In order to execute the above research, we adopted a

research methodology wherein we organized the work into phases. It is first

important to establish that redundancies are present in significant numbers in large

scale test libraries; this would form the motivation for exploring a generic

adaptive solution. Then the research has to establish a nomenclature to classify

and categorize the redundancies in terms of test clone patterns. Based on the

established research motivation and using the theoretical formulations, the

research work should propose a reuse-based template approach that enhances and

complements existing test construction techniques. Then the research needs

establish the practicality of the proposed technique through an illustrative case

study. Finally, the implementation has to be validated for effectiveness and

quantify the improvements offered in comparison to traditional techniques. A

quick summary of each of the above research phases are presented here as an

overview and elaborated in Chapters 3 through 7.

2.1. Motivational Example

Our analysis of Android test libraries reveal substantial redundancies among test

cases within a test library for single Android version, as well as across these test

libraries for different versions. To understand the nature of such redundant codes

(test clones) consider two test clones BitmapMeshLayerActivity and

BitmapMeshActivity shown in Figure 2-1. These are part of test cases that

tests the bitmap mesh functionality in two Android product features. The partial

codes for test methods onCreate() and onDraw() are provided in the left

and right column of the figure.

17

Figure 2-1 Simple Test Clone Example

Test case codes shown in regular font depict exact duplication, while variations

are either underlined or in bold font. Underlined text indicates test case parametric

variations that can be handled using traditional programming such as

generics[29]. Whereas the bold text refers to complex variations such as different

API/method calls, partial names and other gapped test clones whose handling may

not be feasible using traditional programming constructs. Similarly, more such

redundancies are observed across successive versions of test libraries.

This example is a typical illustration of the copy-paste-modify approach adopted

by test designers when they construct new test cases using existing test cases as

basis. Needless to say, such duplication would result in difficulty in test code

maintenance in the long run.

The motivation for our proposed research is born from the existence of such

redundancies in large scale test libraries of software product lines. It can be

inferred that the presence of redundancies inflate the size of test libraries. Hence,

any reduction in test library size decreases both the overhead of maintenance and

the number of test cases that must be rerun after changes are made to the software

18

product line. A good test libraries management approach or technique would

facilitate both in the ease of designing new test cases as well as in eliminating

unnecessary test cases. Presence of redundancies impairs the understandability

and maintainability of test libraries. Further during test library maintenance,

knowledge of similarity is essential to perform consistent changes. Thus, a clear

awareness of recurring code portions leads to better test library development and

reduced evolution efforts.

2.2. Study of Redundancies

As a first step it is important to establish the extent of redundancies within and

across large scale SPL test libraries and then nature of redundancies. For this

purpose, we chose to study the Android test libraries since it is a large scale open

source project with executable test libraries having the features of a typical

SPL[25] and hence meets our research focus. Android platform is a software stack

for mobile devices that includes an operating system, relevant middleware and

key applications. Moreover, Android platform is a “Code-line”2 and exhibits the

key characteristics of a typical software product line.

Additionally, being a well-built platform with suitable test automation

frameworks, Android systematically hosts’ more than 500 test libraries (as

projects) in its main source repository. We studied a large slice of these test

libraries to identify, understand and classify the nature of redundancies inside

these test libraries. Android test libraries are structured hierarchical using test

projects, source/configuration folders and test files. We used our lab’s internal

code clone tool, namely Clone Miner and Clone Visualizer along with external

ccfinder tool to gain an initial understanding. Subsequently we carried out

systematic code analysis to determine the nature of redundancies. Our

2 http://source.android.com/source/code-lines.html

19

investigations provided clues regarding possible root causes for redundancies, i.e.,

test clones. One of the reasons for test clones in Android test libraries is due to

the platform heterogeneity caused by (i) the need to the support diverse hosting

environment such as Dalvik VM and (ii) the Linux kernel and the use of multiple

programming languages like Java, C++ along with configurations through XML

and text based properties. Additionally, the absence of variability mechanisms,

results in test code replications. Current practice is that each vendor preserves

their variations as separate test projects.

We made a quantitative analysis to estimate the volume of redundancies. Our

studies indicate that around half of existing test case files (53%) contain some

form of redundancy and around three-fourths of test methods (79%) exhibit some

form of simple test clone similarities. In addition, the similarities found varied

from simple test code snippets to higher level test structures spread across files.

Test clones vary from as small as 30 tokens to as large as 1290 tokens. Average

test clone length was computed as 53 tokens. Although a majority of redundant

test case codes were either identical or parametric in nature, our study also

uncovered instances of complex structural similarities.

In summary, this study apart from establishing the presence of high level of

redundancy has also helped identify the existence of numerous types of test

clones; an in depth understanding of these clone patterns is required so that our

proposed template construction technique could address all types of test clones.

The impact of test clones on test libraries maintenance is significant in terms of

affecting testing productivity (as described in next section); therefore requires to

be addressed.

Some of the above challenges can be addressed by traditional techniques using

existing generic programming techniques such as parameterization, aspect

oriented programming (AOP) and test design patterns. Generic parameterization

approaches are used over types and variables. Iterators and collection libraries

20

separate out storage and traversal perspectives. AOP techniques are used to

achieve separation of concerns by isolating aspects. Test design patterns welds

together pre-existing exact test clones into a fixed patterns of functional

components. Despite the availability of such generic programming techniques we

find that these will not eliminate all types of redundancies found in the large scale

software product line like the Android platform. Since we need to collectively

counter multiple inducers such as heterogeneity and large volume which is only

possible through a seamless technique that supports variability management and

facilitates reusability.

These above reinforce the demand for a complementary template approach from

a generic design perspective and hence motivate us to devise a suitable research

solution.

2.3. Impact of Test Clones on Test Library Maintenance

Prior to describing the specifics of the proposed solution, we need to understand

“test clones”, a term that we have coined in this thesis drawing inspiration from

the popularly understood “code clones”. Whereas the code clone may refer to

duplicate code fragments in software applications, test clone refer to duplicate

code fragments in test libraries.

By test clones we mean group of test code fragments that are exactly similar or

test code fragments that are similar to a large extent. For further understanding

of test clones, we have conducted a thorough analysis as part of this research study

and have come with formal definitions for various types of test clones typically

found in test libraries. As per our classifications, test code fragments that are

similar with minor parametric variations are called simple test clones. Likewise,

test code fragments that have complex non-parametric or non-type variations with

larger-granularity (higher level syntactical structure) are called structural test

21

clones. A more detailed technical description of various types of test clones is

presented in Chapter 5.

Eliminating test clones benefits a test library in the following positive ways:

 Reduces maintenance efforts because it is easier to make changes across

similar groups of test assets.

 Improves clarity while designing new test cases since unified test clones

can be presented as shared common utility components within the test

libraries.

 Enhances reusability via common features that can be used for

consistently testing every product release.

 Optimizes resource utilization by carefully grouping expensive resource

intensive test components such as test fixtures, test data, test stubs and

automated test oracles.

In summary, eliminating or minimizing test clones helps us in improving design

generality that promotes larger granular reuse, effort savings and improved

quality attributes.

2.4. Generic Design Approaches

As mentioned in previous section, SPL is particularly prone to test clones. This

warrants an in-depth research study on test clone patterns to come up with a

simplified generic design and implementation approach. The aim of such generic

design is to unify differences among test clones and represent a group of such

clones in a unique, generic form.

The extent to which the test clones are present in a particular test library would

reflect a failure of the existing design approach to fully exploit the potentials of

generic design. From the study conducted on large scale test libraries, we notice

that there is a variety of test clones that contain similarities at various levels such

22

as method level, file level, directory level, design level and test pattern level. The

occurrence of test clones at diverse levels in a test library further complicates the

test library construction and test management efforts. Before going into finer

details of generic design, we outline the three key engineering benefits that a

generic design has to offer:

1) Generic design promotes test library reusability. Generic design aims to

unify redundancies found across test cases, test data and test processes.

2) Generic design facilitate test library understanding. By capturing

redundant test structures at a single place, the generic template also

captures the variability details. Hence it becomes easy for the tester to

understand the test code and data spatiality form the unified generic forms.

3) Generic design reduces the number of distinct conceptual elements that a

test designer has to deal with. Test library construction process depends

on concepts from the underlying domain engineering. Generic design

further unifies redundant test structures that could be part of either code or

design level similarities. Thus such unification will reduce the overall

individual conceptual element in comparison to those present in redundant

representations.

Generic design approach for test libraries is a well-researched area. Several

authors have proposed approaches for addressing redundancy issues.

 Parameterization Testing Approaches. There are a variety of

parameterization techniques ranging from simply sending different

primitive data values as parameters to sending objects as parameters to set

values in configuration files. Effective parameterization allows test

engineers to unify test code structures (such as methods or classes).

However parameterization is limited by generality offered by the

underlying programming language (Fraser et al [55, 56]).

23

 Aspect-oriented Testing Approaches. Aspect represents a cross-cutting

concern. Aspect injections evolve from underlying testing framework and

domain concepts. But when implementing testing as a concern, there are

known difficulties since the mechanisms offered by the aspect languages

are not always sufficient to capture all types of concerns that were

encountered (Marin et al [97]) .

 Test Pattern Approaches: The use of test patterns removes test smells

thereby further standardizing the test library. Consequently, test libraries

built using such standard test patterns display lots of similarity. Despite

the benefits from using test patterns driven design, test libraries still suffer

from maintenance complexity. This is because test patterns force

consistent repetitions between test components and thereby causing

design level redundancy (Fraser et al [55, 56]).

To overcome the above listed limitations, we propose the use of generic test

templates that would complement the existing generic design approaches. The

following list explains how our template based approach proposes to address the

generality:

 Generic templates use a representative mechanism that can compact test

code fragments irrespective of the underlying programming language, by

treating each of the fragments as pure text.

 Generic templates offer parameterization and control constructs that can

customize test code fragments at various granularity levels and to

provision for variations in a test library.

 Generic templates separate the product line variability concerns and

version-based changes into a meta-layer from the test libraries thereby

providing clarity and visibility for impact analysis during maintenance.

24

 Generic templates offer adaptive constructs that can customize the

administration of scattered test clones. Such unifications can alleviate

some of the combinatorial explosion of test libraries.

 Generic templates provide multi-level hierarchical representation

(fragment, file or tree structures) that makes the construction flexible and

scalable in any large scale test libraries context where horizontal and

vertical growth is anticipated.

Thus by providing a suitable test construction mechanism we focus on a smaller

base of non-redundant generic test templates; at the same time we preserve feature

combinations and variant dimensions inside the templates. Test libraries can be

generated based on test engineer’s choice specifications and by binding these

choices at compile-time using a suitable template processor.

2.5. Preview of Proposed Solution

The above discussion highlights the motivation for the generic design approaches

in the light of redundancies that are present in the form of test clones. The large

variety in types of test clones further highlight that traditional approaches do not

address all the challenges to improve management and maintenance of test

libraries. In this section we first highlight the context of where our proposed

solution fits in and then provide an overview of the solution.

2.5.1. Context

Test libraries store and manage not only test cases but also other sharable

components such as test data, test mocks, test stubs and test configurations. Figure

2-2 illustrates a typical product line environment where the domain testing

process involves domain requirements, domain test models, domain test scenarios

and domain test libraries. The application testing process will consider

application specific requirements, feature models and application specific test

libraries. Feature model is a compact representation of all the products of the

25

product line in terms of features. The domain of our research focus is shown in

black dotted box in the Figure 2-2.

Figure 2-2 Two Testing Processing Layers in Software Product Lines

Test library management problems require suitable generic design techniques that

address key problems. Among the many problems two are particularly acute;

namely, explosion of look-alike test structures and poor visibility of evolutionary

changes across multiple versions. These necessitate generic design techniques

that would meet requirements such as:

 A concise grammar for non-redundant representations.

 Ability to support different testing levels that cater to the different features

and their variations.

 A balanced approach for variability management that improves overall

quality attributes of the software.

Our proposed approach uses template-based refactoring of test libraries that

closely influences domain and application testing in a product line.

26

2.6. The Proposed Reuse-Based Approach for Test Libraries

This thesis proposes a Systemic Template based Reuse Approach for Large Scale

Test Libraries (STRAT) that aims to address the issues discussed above. Test

processes share common steps frequently. The approach aims to identify such

shared test code fragments using test clone detection techniques. After test clone

identification, the approach aims to capture the essential commonality as isolated

non-redundant template frames and template fragments. These become the

reusable building blocks for the approach using which the templates are evolved

by provisioning for variant points and binding options. Thus version based change

management and long term test library evolution support are addressed through

these templates designed as part of STRAT.

Thus STRAT works in two layers; one layer for the existing executable test library

and the second higher layer is for complementing templates representations. Since

STRAT uses compile time construction approach, respective variant binding for

each variant point can be derived based on the test designer’s binding and

configuration choices. All of the above reasons make the generic adaptive test

templates more exhaustive and permits intrinsically detailed variability design.

Figure 2-3 Reuse approach for test library construction and management

27

Figure 2-3 illustrates few key activities involved in the test construction and

execution layers. In our approach, activities related to test template refactoring,

composition by adaptations and augmentation is called test library construction

layer (this also includes planning and design of test templates). Test library

execution layer comprises of activities related to template binding choices,

derivation of executable test libraries and actual test execution. Further, template

file types are classified into specification files and configuration files. Both

template files can define variant points, declare possible binding choices and

provide constructs for selection, conditional branching, iterations and processing.

Specification files capture design level adaptation decisions while configuration

files capture the existing test library structure in a non-redundant form using

smaller reusable template building blocks in hierarchy.

STRAT targets groups of test clones. The more complex and scattered the test

clone structures are, the more effective the template based approach becomes.

Since STRAT uses templates that work similar to a pre-processing macro engine,

it is not constrained by the general syntactical representations of the test libraries.

All design decisions are implemented as directives, thus altering and managing

them becomes easier. In essence, templates capture parameterization, provide

generic design constructs, allow variant point definitions and allow variability

binding options. In summary, STRAT provides a compile-time variant-binding

test library maintenance model.

2.7. Case Study: Implementation of Proposed Solution

In this research phase we demonstrate a practical illustrative example using a

selected test library with the view of refactoring the test library using Generic

Adaptive Test Templates (GATT) and make experimental assessments of the

benefits derived. The example selected is BiDiTests test library from Android

Platform OS core test libraries repository. The case study provides a concrete

28

step-wise implementation to illustrate our proposed STRAT approach. Using the

case study as illustration we showcase the STRAT process as described below:

 The solution to the case study starts by identifying test clones and

classifying test clones based on similarity taxonomy.

 Then test clone structures were individually analysed to decide if use of

templates would be suitable.

 For test clone groups that are not reducible using conventional testing

techniques, a normalized template structure plan with allowance for

variant points and other needed control constructs was created.

 Subsequently these non-reducible groups were refactored into template

structures using various template unification schemes proposed earlier.

We also used this case study to carry out experiments to assess the strengths and

shortcomings of our complementary approach in comparison to pure traditional

techniques. Further, we unified three subsequent versions of the BiDiTests

project (namely versions 16, 17 & 18) to explore multiple version management.

We also studied version specific contextual interpretations, related variability

refinements and change propagation. The results were examined from the

perspective of non-redundant representation achieved, ease of change

propagation, structural hierarchy and ability to respond to future changes. These

results are discussed in the next section.

2.8. Discussion of Key results

The redundancy study on Android test libraries affirms our hypothesis that “reuse

of test cases can boost testing productivity” by showing presence of redundancy

in nearly half of the existing test files. Redundancies were either simple test clone

or structural test clones. Most redundant simple test clones were either identical

29

or had parametric variations. The study uncovered significant instances of

complex structures as well.

Based on detailed assessments, we conclude that some of these straight-forward

test case redundancies can be rectified by traditional approaches and some of the

more complex ones need a complementary generic adaptive test template

approach that supports unrestricted parameterization, variability management and

heterogeneous test file formats.

Firstly the case study established that the proposed STRAT approach yields a loss-

less re-construction of test libraries. Further the illustrative example confirms that

the template based test libraries are concise (less lines of code), non-redundant

(reduction in repeated fragments) and normalized (many clones represented in

single template construction).

Using the experimental observations we evaluated and reported a measure of

productivity improvements in terms of reusability (expressed through reduction

in executable lines of codes and ability to express many types of variability) and

effort reduction in terms of maintainability (expressed through reduced number

of modifications required to implement a particular change request and the ability

of template hierarchy to scale along with the growth of underlying test libraries).

For the selected test library, the use of GATT templates yielded 63% to 80%

compression to original size. In addition the same test library when reconstructed

across three subsequent versions shows a compression to 23%.

Such findings illustrate a very good potential and encouragement for using

template based approach in SPL Testing.

30

CHAPTER 3

Literature Review

In the previous chapter we described three key landscapes related to our research.

This chapter provides the background, current state of research progress and

literature review in the three areas relevant to this research thesis, which are: (1)

Software Testing (2) Software Product Line Testing and (3) Android Platform.

Software testing is the process of exercising or evaluating a system or system

components. It is used to validate specified requirements or to identify differences

between expected and actual results. Testing is the measurement of software

quality. This literature review focuses on three types of software testing strategies

namely model based testing, combinatorial testing and mining/learning based

testing.

Testing plays an important role in the quality assurance process for software

product line engineering. There are opportunities for economies of scale in the

software product line testing (SPLT) activities; consequently strategies and

techniques that can take advantage of these opportunities are essential. Variability

in features may lead to diverse products composition possibilities. Thus the

research focus in SPLT fall under various categories namely, overall challenges,

planning, processes, variability management, and levels of testing, testing efforts,

metrics, test case generation, selection and execution. This literature review

discusses past research work in each of these areas.

To align understanding research work pertaining to the motivational and

illustrative examples used in this thesis (i.e., Android mobile platform), a brief

review of android related work has been included in this chapter.

31

The organisation of the chapter is as below:

 Section 1 provides a brief introduction of this literature review.

 Section 2 reviews the various research efforts specific to typical testing

strategies from the current software testing landscape.

 Section 3 reviews the various research efforts specific to software product

line testing approaches, various test construction alternatives, their

strengths and limitations.

 Section 4 reviews the research published thus far specific to testing of the

Android platform.

 Section 5 concludes the chapter.

3.1. Introduction

We conducted a detailed review of available research literature to understand the

current state of practice in software product line test construction landscape.

Sources of information are scientific evidences such as scientific research

publications, industrial case studies and open sources product line code

repositories. Detailed listing and description regarding the source of information

is presented in Appendix A.

3.2. Landscape: Software Testing

The goal of software testing is to [106] ensure that the software satisfies specified

requirements as well as reveals faults that may exist . Efficiency and effectiveness

are important characteristics that seek a right balance across available resources.

Thus, it is carried out literature review to explore, identify and study the various

testing strategies and key factors in software testing automation context. We have

grouped the key findings, relevant papers and summarize their empirics into four

sub-sections based on the test case construction techniques used. First subsection

presents the overall challenges and findings from survey related publications. The

32

subsequent subsections deal with testing strategies such as model based testing,

combinatorial testing and mining/learning based testing.

3.2.1. Overall Challenges and Survey Publications

Antonia Bertolino [18] summarizes the many outstanding research challenges for

software testing into a consistent roadmap. She identifies four ultimate and

unachievable research goals called “dreams” and discusses the individual

challenges related to each of these dreams. In her work she mentions the need for

a more holistic approach to software testing research, where the community can

find new interesting synergies spanning across the other research disciplines of

software engineering.

Alessandro Orso and Gregg Rothermel [121] have recently published a research

travelogue that covers key research contributions from the past fourteen years in

the field of software testing. In this work the authors summarize that domain-

based testing techniques (i.e., those that address new application domains such as

component-based systems, web applications and mobile applications) will remain

one of the largest opportunities for testing researchers. They also assert that both

testing of a software product line and testing of android applications are relatively

young field of research offering more opportunities.

Two other key survey publications from Quan Yang et al [157] and Mats Grindal

et al [63] explain the state-of-affairs related to test case construction. Test

coverage is a measure of thoroughness and an indicator for confidence in the

readiness of software under test. Yang et al has compared and summarized

features of 17 coverage based testing tools. Yang et al in their survey make three

key conclusions as following: (1) Reliability increases with increase in test

coverage (2) Test coverage provides quantifications on test progress (3) In

industrial settings, test coverage is observed to improve testing efficiency.

Grindal et al [63] on the other hand classify various combination strategies based

33

on the algorithmic computability theory and illustrate the categories using a tree

diagram shown in Figure 3-1. Combination strategies define ways to select values

for individual input parameters and combine them to form complete test cases.

Several proposals, implementations and case study observations have been found

in their survey. Particularly, the work highlights the iterative combination

strategies in which the test libraries are built up gradually. In the test case based

iterative combination strategies, test cases are generated one at a time and added

to the test library. Thus, a tester may start the algorithm with a preselected set of

test cases.

Figure 3-1 Classification scheme for combination strategies

Studies [122, 137], show that testing techniques that are used to test evolving

software assume that a change consists of a modification of the code and even

make specific assumptions on the invariability of the environment. The studies

also conclude that heterogeneity and environment dependence which affect the

ability to perform impact analysis is yet another key consideration for testing

techniques that are heavily used during software maintenance phase.

In general, heterogeneity of technologies, rich contextual settings and high

configurability makes modeling a test library in its entirety using single-language

as self-contained units difficult. Also identifying differences between versions is

34

difficult; this identification is essential in understanding test library evolution and

performing regression testing.

In summary, it is evident from literature that the most important challenge for

researchers in the landscape of software testing is to define techniques that can go

a step further and embrace real world complexities of emerging on modern

software, regardless of its complexity and size.

3.2.2. Model based Testing

Model-based testing (MBT) [128, 129] is a variant of testing that relies on explicit

behaviour models that encodes the intended behaviour of a ‘System Under Test

(SUT)’ and/or the behaviour of its environment. Test cases are generated from

one of these models or their combination and then executed on the SUT. MBT

encompasses the processes and techniques for the automatic derivation of abstract

test cases from abstract models, the generation of concrete tests from abstract

tests, and the manual or automated execution of the resulting concrete test cases.

One of the reasons for the success of MBT from a practical standpoint is that it

has perceived advantages due to its capabilities at treating aspects such as

generation, abstraction and traceability. A generic process [148] of MBT then

proceeds as follows:

Step 1. A test model of the SUT directly linked with the testing objectives is

built using informal requirements or existing specification

documents.

Step 2. Test selection criteria are chosen to guide the automatic test

generation, so that it produces a ‘good’ test suite—one that fulfils the

test policy previously defined for the SUT.

Step 3. These test selection criteria are then transformed into test case

specifications.

35

Step 4. Once the test model and the test case specifications are defined, set of

test cases are generated with the aim of satisfying all the test case

specifications.

Step 5. Once the test library has been generated, the test cases are run.

The last three decades have seen substantial research in the area of MBT. Model-

based testing is extensively discussed in books by Beizer et al [17] and Utting et

al [147] as well. UML diagrams such as state-chart diagrams, use-case diagrams,

sequence diagrams, etc. can assist to generate test cases and this mechanism has

led to Model based test case generation. Several researchers have proposed

different ways of adopting or implementing MBT. Alessandra Cavarra et al [30-

32, 40] utilize UML profiles and test constraints in form of directives in their

generation approach. AGEDIS [65] is largely based on UML inputs. Desurvie et

al [45] used a meta-model (xml based) and UML artefacts as inputs. They

implemented a transformation program that generates a planner model, which aids

testers during manual test construction and selection. Riebisch et al[135] utilized

feature diagrams and extended the idea with UML multiplicity. S.Gnesi et al [60,

61] used formal conformance testing (UML state chart) and lambda calculus to

model IOLTS (Input / Output Labelled Transition States). A recent systematic

review of state-based MBT tools by Shafique and Labiche [141] gives a detailed

classification of nine commercial and research MBT tools. Due to the ability of

UML state machines/profiles to capture rich and detailed information, UML has

been used as guidance for the automated generation of test cases.

Jeff Offutt proposes a technique that utilizes specifications of UML state charts.

In this paper, the authors implement a prototype (UML test) which was later

integrated into Rational Rose. The authors covered a breadth of details such as

full predicate tests, statement coverage and transition pair tests. M.E.R.Vieira et

al [151] proposes and implements a prototype of “Design and Specification –

Based Object Oriented Testing (DAS BOOT)”. Here a tester chooses class under

36

test, possible states charts for a class and also choose a coverage criteria. The

prototype generates test cases based on these controlled inputs.

Dias-Neto et al [46] have performed a systematic review of the MBT research

literature. They identified 599 relevant publications and have analysed 271 of

these papers. From those publications, they identified 219 different approaches to

MBT. They classified the approaches according to 29 different attributes, such as

whether the models used UML or not, whether the goal was functional or non-

functional testing, the testing level (system/integration/unit/regression testing),

and the level of automation, the test generation process and the software

development environment within which MBT was used. The authors summarize

various benefits and limitations related to MBT research. One key finding from

this work is that in the case of evolution, after identifying the changes carried out

in a software component, the test library must be updated to reflect these changes.

However the MBT techniques proposed in the above literature do not explain how

to update their test models or what could be the effort do so or whether it would

be feasible could be to perform this task within the given toolset. They usually

presume that a new software model is ready to regenerate test cases which may

introduce risks to a project.

3.2.3. Combinatorial Testing

Test case generation is the most active area of combinatorial testing (CT)

research. To date, four main groups of methods have been proposed: greedy

algorithm, heuristic search, mathematic method and random method. The first two

groups are computational approaches while the latter two are guided by

mathematical engines.

Greedy algorithms have been the most widely used method for test suite generation

for CT. They construct a set of tests such that each test covers as many uncovered

combinations as possible. David M. Cohen et al [36-38] have implemented AETG

system that uses combinatorial design techniques. Complete automatic test

37

construction remains an important research area, but based on the study and literature

review, it is overrated as a practical technique; most current tools that automatically

generate tests produce tests that cover only trivial boundary condition test cases.

CITLAB [28] tool allows importing/exporting models of combinatorial problems

from/to different application domains, by means of a common interchange syntax

notation and a corresponding interoperable semantic meta-model.

Heuristic search techniques such as hill climbing, great flood, tabu search and

simulated annealing have been applied to τ-way covering array and variable

strength covering array generation. Ali et al [2] have conducted a systematic

review and empirical investigation on existing search based test construction

techniques. Their compilation suggests the existence of techniques such as genetic

algorithms, hill climbing, random search, static analysis, greedy algorithm and

constraints-solving based construction techniques. They also catalogue presence

of coverage, fault, timed and fitness based measurements that aid test asset

construction. Sami Beydeda and Volker Gruhn [23, 24] suggest a dynamic path

oriented approach using binary search algorithm.

Mathematical methods for computing the covering array have been widely

studied by several researchers [64, 66, 67] and published in mathematical

journals. The fourth group of test generation method is the random method, an ad

hoc approach that randomly selects test cases from the complete set of test cases

based on some input distribution. One example of these new random-testing

approaches is adaptive random testing. Adaptive random testing (ART) [33] is a

class of testing techniques designed to improve the failure-detection effectiveness

of random testing by increasing the diversity of the test inputs executed across a

program’s input domain.

3.2.4. Mining and Learning Based Testing

The increased connectivity and increased computational power of today’s

computers enable collection of large amounts of telemetry data. This telemetric

38

data includes execution profiles, program spectra analysis, execution failure

analysis, statistical usage, data mining, and machine learning techniques. Though

the field is still in its infancy, researchers are studying ways to collect [34, 59, 81]

and find ways to use these techniques to better guide the testing process [75, 94].

In this context, some important challenges mentioned by these researchers are

scalability, the treatment of sensitive information and the general inability to

assess whether an execution in the field terminated correctly or resulted in a (non-

crashing) failure.

3.2.5. Summary

Although many methods have been proposed to generate test suite, as the problem

of test suite generation is NP-hard, there is room for further improvement of these

testing strategies. In addition to above specified testing strategies, researchers

have also investigated ways to successfully combine testing strategies, as well as

to combine testing with other types of verification techniques. A good

representative work in this line is the Yogi project at Microsoft Research [114] ,

which is a property checking tool that picks an initial abstraction, and then based

on heuristics it picks predicates for refinement to perform further optimization

during testing.

In addition to research contributions, the software testing area has witnessed

improvements in the state of the practice. From observing the improvements in

the test automation landscape and key testing strategies we can summarize two

key contributions in the recent times as:

1) Availability of sophisticated testing framework that supports creation of

test fixtures, provides reusable test utilities and presents templates for

standard test cases. Some examples of such test framework are JUnit,

NUnit, Android Testing Framework, Robotium, Selenium Testing

Framework, TestNG and Mockito.

39

2) Another practical contribution is the practice of Continuous Integration

(CI). The idea behind CI is to commit code many times a day to integrate

all of the working copies of the software. Automated regression test

libraries are then run against the committed code to help ensure that the

software remains stable. Thus CI ensures that subsequent engineering

efforts can be performed reliably and reduces the amount of code rework

needed in later phases of development, thereby speeding up overall

development time.

3.3. Landscape: Software Product Line Testing

In software engineering lifecycle, testing often consumes 25% to 50% of the

development costs [95]. Due to the variability within an SPL, the testing of SPLs

is more challenging than single system testing. If these challenges are met by

adequate approaches, the benefits outweigh the higher complexity and the

increased effort of testing activities. The challenges of testing an SPL are caused

by the product line variability and the systematic reuse.

In Software Product Line (SPL) engineering [125], domain engineering constructs a

common product line platform by identifying commonality and variability while

application engineering develops individual products based on the platform. Domain

testing produces test libraries that would be reused for testing products in the product

line. Domain testing includes testing for common parts related to variable artefacts

that may or may not be realized during domain engineering. Meanwhile, application

testing should also be able to achieve efficient reuse of domain test assets at the time

it tests application specific parts.

To systematically present the literature review for SPLT, we decided to use the

idea of categorizing studies in different aspects, as described by Petersen et al

[124]. We classified the publication into different categories based on Research

Focus. Research focus explains the kind of problems being solved.

40

We identified seven key categories of ‘Research Focus’ in this literature review;

these are: (1) Overall Studies (2) Test Planning, Process and Management (3) Test

Case Generation Approaches (4) Test Selection and Execution Approaches (5)

Variability Management (6) Levels of Testing and (7) Testing Efforts and

Measurements. Overall Studies comprises of publications that focus on overall

landscape of SPLT challenges, technical reports and systematic mapping studies

in the field. Test planning, process and management comprises of publications

that focus on strategies coordinated to ensure an efficient, effective operation. It

also describes testing framework seeking answers regarding how the testing

activities are conducted, what are activity inter-relations, their sequence and

chronology. Test Case Generation approaches comprises of publications focusing

on methods, technologies and models used to construct test libraries (both generic

and product specific). When test libraries are constructed, the product features

designs are consulted as guidance for test case design. Test selection and

execution approaches comprise of publications that focus on testing activities

relating to (a) the selection of test cases from test libraries and (b) test execution

performed to evaluate the quality of the product line assets. Variability

management publications deal with commonality/variability analysis of the

product line testing. Levels of testing publications elaborate on testing approaches,

namely black-box or white-box and testing stages such as unit or integration or

systems and acceptance testing. Testing efforts and measurements publications

deal with test effort reduction strategies, test library measurements such as reuse,

testability and adequacy of testing measured through coverage.

3.3.1. Overall Studies

Testing of a software product line is a complex and costly task due to the large

variety of products derived from the product platform. In addition to the

complexity of stand-alone product testing, product line testing also includes the

dimension of what should be tested in the reusable domain platform and what

should be tested in each separate product version. Clements and Northrop [35]

41

present the key underlying practices for software product line engineering and

specifically discuss testing. McGregor brings out the need for research

improvements in the area of software product line testing by outlining key

challenges and discussing complex relationships between product lines and

testing practices in his technical reports [99, 100]. Kolb et al [85, 86] discuss the

importance and complexity of testing a software product line and component-

based systems. Extensive research and systematic mapping studies conducted for

investigating and evaluating the state-of-practices Software Product Line Testing

have been published [2, 41, 51, 90, 92, 146] over the recent years. These studies

document the general challenges, observations and comparisons among

variability management approaches. Observing the above seminal research

publications in SPLT reveals some key challenges are: (1) maintenance of large

volume of test assets, (2) balancing testing efforts between design of reusable

generic test components and tests targeting concrete products, and (3) handling

variability using appropriate generation/selection strategies [49, 153].

3.3.2. Test Planning, Process and Management

The group of research publications listed in this subsection relates to processes,

planning and other management activities of SPLT. Research in SPLT planning

and processes pinpoints the need for guidelines and comprehensive, efficient

techniques for systematically testing product lines. They also promote the idea of

creating generic test cases. The research on SPLT management contains proposals

and a few evaluated research works.

Condron et al [39] propose a conceptual model that supports the use of test

automation frameworks for rapid test development to improve the test execution

in various activities of the SPL test lifecycle. Software Engineering Institute (SEI)

has published reports on series of case studies of organizations that have adopted

software product line approach for developing systems. In particular, the report

describes the Salion Inc. [142] case study detailing their acquisition management

42

solutions with mass customizations for automotive suppliers. This case study also

describes dimensions that are key to testing practice, commonalty preservation

strategies, benefits gained and lessons learned. W-model proposed by Li Jin-hua

et al. [74] describes two V sub-models of domain test and application test and

discuss the key issues and activities specific to testing software product lines with

an example.

S.Kang et al [93] have come up with feature models which provides a compact

representation of the product line in terms of features and their relationships. Kang

et al., in one of their publications[79] , propose a for formal testing framework

that creatively links concepts such as feature, variability, product line architecture,

component and use case scenario to product line test concepts such as test

architecture, variability for test and test scenario and by providing a systematic

way for deriving product line tests. Nebut et al [105, 111-113] propose algorithms

and frameworks based on SPL requirements and SPL specifications to

automatically generate product-specific test cases. Publications [117, 136]

presents processes and planning based on product line requirements and

specifications.

Kolb and Muthig [86] discuss the importance and complexity of testing a software

product line and component-based systems. Muccini et al [108, 109] highlight the

risks and propose architecture based testing frameworks that emphasizes on the

need for a combination of heuristic approaches in order to effectively perform

testing. Denger et al [1]have studied comparison of defect detection techniques,

code inspections and functional testing, in the context of product line

development. There are discussions regarding review of domain design

approaches [44] in the design of adaptable SPL test plans. McGregor clearly

outlines steps for creating and using a fault model in SPLT context in[102].

Al dallal et al [42] focus on a testing model that considers retesting framework

assets during the application engineering. Ganesan et al [57] introduce an

43

economic model to calculate cost-benefits for SPLT by performing Monte-Carlo

simulation on various test strategies. In addition to these, publications based on

industrial best practices, experiences with regard to technology, organization, and

processes also provide useful insights into SPLT [149]. More specific SPTL

research specifically targeting mobile and medical devices are other useful

references pertaining to this thesis [71, 152].

In summary, product lines testing like all other software testing requires careful

planning and well-defined processes. The major conclusion resulting from our

literature review shows that most of the research in software product lines testing

process involves automatically generating test cases for software product line and

in the development of models to manage variability in software product lines.

3.3.3. Test Case Generation Approaches

Test case generation approaches are largely influenced by the technologies,

models, tools and strategies that were used to construct other core assets.

Coordination and effective construction of test libraries depend on the common

reuse techniques, nature of test libraries and variation mechanism adopted by

SPL. Some key contributions in the SPL test construction landscape are discussed

here.

3.3.3.1. Domain Testing

Key problems in dividing SPLT as domain testing and product testing has been

discussed by Tevalinna et al [146]. They highlight that complete integration and

system testing in domain engineering is not feasible. They also point out that it is

hard to decide how much we can depend on domain testing in the application

testing. They propose four different strategies for SPLT namely (1) product-by-

product testing (2) incremental product line testing (3) reusable asset instantiation

(4) division of responsibilities.

44

3.3.3.2. Model Based Techniques

Several model-based testing approaches for software product lines exist due to

the fact that models can be reused and adapted easily and are suitable to describe

variability. Antonia Bertolino and Stefania Gnesi [21]propose a methodology to

derive specific test cases for product families called PLUTO (Product Lines Use

case Test Optimization) that derives test cases by using requirements described as

product line use cases and a category partitions method; however, this work does

not provide methods for reducing testing effort across products. ScenTED by

Reuys et al [134] extends test case generation based on existing UML artefacts

such as test scenarios, sequence diagrams and activity diagrams. Wubbeke et al

[156] has published a proposal using feature models and trace them against

product line requirements to guide product line testing. Dueñas et al [48]present

a proposal of meta-model for testing, based on the UML profile for testing, but

capable of being used in a Product Family Engineering context. Olimpiew and

Gomaa [116], generated tests based on UML stereotypes and value tagging.

WeiBleder [154] use state machines and OCL expressions. Kishi and Noda [82]

propose a model checking technique for integration testing of a software product

line.

3.3.3.3. Combinatorial Techniques

Optimization techniques such as combinatorics may be used to prune redundant

test configurations that need not be explored. Test generation using combinatorial

techniques involve systematic selection of a set of configurations that represent

the relevant variability space and these configurations can be reused to test the

individual product later. Hervieu et al [68] propose a tool to analyse feature

models and automatically generate a set of configurations that cover all pair-wise

interactions between features. Lamancha et al [89] present a solution that

implements combinatorial testing techniques adapted to the SPL context. Gilles

Perrouin et al [123] have published an experience report that applies t-wise

techniques for SPL with two independent toolsets; one focuses on generality and

45

splits the generation problem according to strategies while the other emphasizes

providing efficient generation. The report then evaluates the respective merits and

limitations of these approaches.

3.3.3.4. Formal Specification & Natural Language Techniques

Applying formal methods and analysis techniques in SPLT is a promising way to

address the variability modelling challenge. Temesghen Kahsai et al [77] propose

frameworks that evaluate the use of specific test case selection based on formal

specification. Bashardoust and Tajali [7], use domain models expressed as

generated contracts and use that to guide test case generation. Both research

provide abstract representations (formal notations or contracts) of the tested

product features and guide product specific test case selection.

3.3.3.5. Aspect Oriented Techniques

Aspect oriented programming (AOP) allows testing techniques to exhibit power

of parameterization, construction time constraint checking and conditional

compilation to AOP languages. Feng et al [53], use aspect oriented approach to

generate unit test cases in a product line context. Knauber and Schneider [84]

combine aspect oriented programming and unit testing to trace and manage small

scale variability among test cases.

3.3.4. Test Selection and Execution Approaches

Almost all of the proposed strategies for product line testing are idealistic in the

sense that they enforce specific requirements on other parts of the development

process (i.e., software codes other than the testing). Literature cited below

describes many such conceptual and underlying tool dependent solution proposals

in the SPL test selection and execution approaches. Some interesting mentions are

listed.

46

3.3.4.1. Combinatorial Approaches

Similar to combinatorial test generation, McGregor in his technical report

mentions the use of combinatorial selection techniques for variant selection.

Muccini and Van Der Hoek [106-109] propose usage of heuristics for appropriate

test case selection. Cohen and Dwyer [38] use both combinatorial selection and

coverage criteria for selection.

3.3.4.2. Search Trees Based Approaches

The use of meta-heuristic search techniques for the automatic generation of test

data has been of burgeoning interest for many researchers in recent years.

Stephenson’s [144] proposal uses effective search strategies for reduction and

selection of test cases. Geppert et al [58] uses decision trees and execution traces

to reduce and select test cases. F.Ensan et al [52] propose an evolutionary testing

approach based on Genetic Algorithms to explore the configuration space of a

software product line feature model in order to automatically generate test suites

of O(n) size complexity with a suitable trade-off balance between error coverage

and feature coverage in its generated test suites.

3.3.4.3. Cost/Priority Based Approaches

Testing techniques select test cases based only on the testing priorities established

in the test plan. The selection and execution thus determines the number of test

cases for each feature based on priorities of the requirements that will provide

acceptable effectiveness. Imai [70] identifies the need and importance of finding

out the cost/efforts during maintenance of test cases. Dowie [47] highlights the

lack of customer perspective in existing SPLT approaches.

3.3.5. Variability Management

Variability management (VM) encompasses the activities of eliciting and

representing variability in product line artefacts as also covers aspects like

establishing and managing dependencies among different variability. In testing

47

scenarios a large majority of VM approaches are based on feature modelling

and/or UML based techniques. There are also approaches based mechanism such

as natural language, mathematical notation and domain-specific languages. As

discussed previously, the testing approaches handle variability using a wide range

of approaches; many of these usually explicate variability as early as possible and

use those variants to design test cases. Frequently, in model-based approaches

variability is introduced into test models created through UML use cases [67, 79]

, test scenarios [132-134] , activity diagrams [62, 116-120] and feature models.

Considering various research works reported in literature, McGregor summarizes

the implications of variability in testing through two key observations. (1)

Variation is identified at explicit, documented variation points: Each of these

points will impose a test obligation in terms either of selecting a test configuration

or test data. Analysis is required at each point to fully understand the range of

variation possible and the implications for testing. (2) Variation among products

(i.e., variation among tests between products): The test software will typically

have at least the same variation points as the product software. Specifying a set of

constraints is necessary to associate test variants with product variants. One

solution to specifying constraints in both product and test library is to have

automated scripts that represent variations and builds both the product and the

tests at the same time.

3.3.6. Levels of Testing

Levels of testing refers to particular research methods and strategies performed at

various stages of software product line testing (both domain and product

engineering). Some interesting citations are discussed below:

3.3.6.1. Unit Testing

Unit testing verifies the smallest unit of software implementation, for example a

method call. This unit (basic element) is usually be a class in most instances but

48

can even be a module, a function, or a software component. The granularity level

of the tests depends on the strategy adopted. The purpose of unit testing is to

determine whether this basic element performs as required through verification of

the code produced during the coding phase. Nebut et al. [77] use parameterized

use cases as contracts on which testing coverage criteria may be applied. Feng et

al. use an aspect-oriented approach to generate unit tests [77].

3.3.6.2. Integration Testing

Integration testing is applied as the modules are integrated with each other or

within the reference in domain level. Verification and validation of architecture

calls for specific domain components to be integrated in multiple systems. This

type of testing is also performed during application engineering [101]. Li et. al.

[153] present an approach for generating integration tests from unit tests.

3.3.6.3. System and Acceptance Testing

System testing ensures that the final product matches the required features. It is

generally observed that research in this area focuses on functionality, UI and

acceptance testing. According to Geppert et al. [58] , system testing evaluates the

features and functions of an entire product and validates that the system works the

way the user expects it to. Acceptance testing is conducted by the customer but

often the organization/department that develops the software would create and

execute a preliminary set of acceptance tests. Software product line organizations

often leverage on commonality among the tests pertaining to the various products

to reduce costs. Yi Yu et al [158] presents a software acceptance testing technique

based on knowledge acquisition and accumulation in form of an expert system.

This expert system builds information over a period of time and later helps in

exposing software faults based on the accumulated and processed knowledge.

49

3.3.7. Testing Efforts and Measurements

Test effort reduction strategies and testability factors can have significant impact

on productivity and profitability. McGregor first defines SPL testability, where

he describes the unique characteristics of SPL that helps in testing. Jaring et al[73]

point out that the testability of a product line can be viewed as a function of the

binding time of variability, and that providing early binding can increase the

ability to test products early. Engstrom et al [51] also discuss the different

attributes of testability, its relationship with SPL architecture and Isis Carbel et al

[27] propose an approach that improves SPL testability.

3.3.8. Summary

The above literature review suggests that most of the original research work on

SPL testing focused on solving specific research challenges. Thus, they present

the problems at the fine-grained level with appropriate techniques and do not

usually provide a perspective of the whole SPL testing process from initiation

through completion. Through a review of literature in this section we have tried

to highlight key contributions of the existing researches in various focus areas

such as overall SPLT landscape, SPLT planning, process and management, SPLT

variability management, SPLT levels, SPLT efforts and measurements and SPL

test libraries construction, selection and execution.

3.4. Landscape: Android Platform Testing

Users increasingly rely on mobile applications for computational needs. Google’s

Android Open Source Project (AOSP) maintains a complete software stack to be

ported by Open Equipment Manufacturers (OEM) and other device implementers

and run on their own hardware. To maintain the quality of Android solutions,

Google has a dedicated team of full-time engineers, product managers, user

interface designers, quality assurance testers and other roles required to bring

modern devices to market.

50

Google’s testing team executes individual test cases on attached mobile devices

or on emulators. The test cases are written in Java as JUnit tests and packaged as

Android .apk files to run on the actual device targets. The compatibility test suite

(CTS) test harness runs on desktop machines and manages test execution. The

CTS includes the following types of test cases:

 Unit tests: Tests atomic units of code within the Android platform; e.g. a

single class, such as java.util.HashMap.

 Functional tests: Test a combination of APIs together in a higher-level

use-case.

 Reference application tests: Instruments a complete sample application to

exercise a full set of APIs and Android runtime services.

From our literature review, we observe that several authors have published

Android test practices as proposals or case studies in the application testing

context. Amalfitano et al [3, 4] present AndroidRipper, an automated technique

that tests an Android app’s Graphical User Interface (GUI). Hu and Lulian [69]

present an approach for automating the testing process for Android apps with a

focus on GUI bugs. Takala and Jaaskelainen [72, 145] describe the model based

testing that they had performed using an Android app case study. Mahmood et al

[96] propose the use of cloud based performance testing for Android apps. They

developed a fully automated test case generator for the non-functional security

testing feature and implemented a feedback loop to ensure code coverage. Zhang

et al [159] use symbolic execution to test apps. Our research work focuses on the

variability management of executable test libraries including both functional and

non-functional features of the SPL under test. Being a relatively new platform,

there is a paucity of research investigation focusing on Android Platform.

Needless to say platform specific test case generation techniques will be of

interest only to concerned vendors and partners who distribute Android fortified

51

smart phones. Nevertheless due to the large market encroachment of Android and

due to an enormous pool of third party developers contributing to Android apps,

a deeper study is definitely perceived need [106] and valuable in enlarging the

knowledge of researchers in mobile platforms.

3.5. Conclusion

The literature review presented in this chapter indicates that software product line

testing is a virgin and fertile research area especially when viewed in the light of

research already conducted in the areas of matured software engineering practice.

It is also evident from this review that existing software product line testing

research publications are typically conceptual solution proposals and discussion

oriented. Further, the available research publications focus more on isolated

techniques than presenting industry practices or real-time experience reports. That

said, from the SPLiT workshop literature [116] it is clear that there is a well-

established understanding about challenges. Tevanlinna et al [146] in their survey

publication indicate that product line testing is a large scale effort and evaluations

are expensive, which is one of the explanations behind the limited availability of

empirical studies in literature.

In a majority of the SPLT publications the handling of variability is the main

focus. Each product line approach advocates a different test case derivation

technique based on specific ways of handling variation points. The underlying

variability mechanism of the tool has powerful influence regarding the uniform

handling of variant points in software as well as test libraries.

In summary, it can be concluded from the literature review that software testing

in general and software product line testing in particular need new, more inclusive

methodological approaches for test library construction that complements

traditional techniques. Also such new methods should be generic so that they can

52

be supported by underlying models for their theoretical foundation, tools for their

practical use and metrics for their management and evaluation.

53

CHAPTER 4

A Study of Redundancies in Android Platform Test

Libraries

Similar software systems have similar test cases. We find much redundancy even

within test cases of a single system and naturally the redundancy in software

product line test libraries is accepted to be significant. In this chapter, we describe

the results of similarity analysis performed on a typical software product line with

Android platform framework project’s test libraries as example. The results

confirm our hypothesis that reuse of test cases can boost productivity at least as

much as reuse of code. We also identified repetitive patterns in Android platform

framework test libraries that can be represented in generic form. In this chapter,

we present quantitative and qualitative findings from our study of Android

platform framework test libraries.

The organisation of the chapter is as below:

 Section 1 introduces context of test library similarities and reuse

opportunities studied in this chapter.

 Section 2 describes challenges involved when dealing with redundancies.

 Section 3 details the case under study, the Android platform test libraries.

 Section 4 elaborates on the research hypothesis of this study.

 Section 5 describes the step-by-step processes involved in this case study

research methodology.

 Section 6 presents the results of the conducted study.

 Section 7 presents the details of research analysis performed (both

quantitative and qualitative) for factual interpretation.

54

 Section 8 presents the possible threats to validity

 Section 9 concludes the chapter.

4.1. Introduction

Testing is an essential part of software development, since it consumes 40-60

percent of the whole software development effort [17]. Recent advancements in

test automation and newer development trends emphasize more continuous

integration; therefore software development teams consider early inclusion of

testing in iterative development environment. As organizations strive to shorten

the development time of their products while at the same time attempting to

improve their quality, the need for practical, scalable testing approach is

becoming increasingly important [8, 78, 91] .

Test case similarities create an opportunity for reuse and reduce the effort to both

develop and maintain test libraries: Suppose that for each large enough group of

similar test cases we design a ‘generic adaptable test case’, from which all test

case instances in that group can be automatically derived. It reduces the size and

cognitive complexity of test libraries. Also, instead of working at the level of

individual test cases, testers would effectively work with a smaller number of

generic test cases – a much simpler task.

In this chapter, we explore the scope for test case reuse with Android platform

framework test libraries as our case study. First, we conducted similarity analysis

of Android platform framework test libraries to assess the degree of redundancies

and investigated the potential benefit of test case reuse. Then, we identified

patterns of repetitions among test cases that are potential candidates for reuse.

Finally, we outline hints on how possibly the repetition patterns can be practical

made generic so as to realize the concept of test case reuse.

55

4.2. Challenges

The efficiency of testing lies in the ability to select a meaningful subset of test

cases that uncover defects and thereby increasing the confidence on the software

under test. Test case selection is guided by parameters namely, priority, risks and

scope. Well-designed testing techniques provide adequate coverage, improved

testability, faster defect discovery and promotes reusability. In the context of this

research, the testing artefacts and techniques should also facilitate reuse with a

view to addressing redundancies in test cases.

4.2.1. Why is redundancy a problem in test libraries?

From a test execution perspective, a test case in considered redundant if its

individual coverage does not contribute to the overall product’s test coverage.

Similarly, from a test library perspective, duplicate test cases or duplicate code

fragments within test cases are considered redundant. Presence of such

redundancy serves as a hindrance and causes negative influence in the following

ways:

1) During test case maintenance (i.e., day to day changes), redundancies

would necessitate multiple code changes which are complex to trace.

2) During test case evolution (i.e., when new products get created),

redundancies increase the efforts required to keep abreast of changing

requirements and hence business agility may suffer.

3) Redundancies is considered as a hindrance during continuous delivery

processes such as automated builds, continuous integration, refactoring

of test cases and test execution that helps in delivery of frequent product

release versions.

4) Redundancies may affect the ability to cope with change propagation due

to large number of variations and dependencies and hence resulting in

combinatorial test explosion problem discussed later.

56

Thus test construction approaches for building test libraries should provision for

testing of feature variations, planned test case reuse and seamless management of

various test artefacta. Such an approach is necessary to counter the negative

influences of redundancies.

4.2.2. Improving Reusability in Test Libraries

Reuse is a fundamental discipline in software engineering and plays an important

role in the development of new test libraries or in the maintenance of existing test

libraries. It is almost impossible to have a test library that has just one version.

One of the typical examples is testing of a well-established piece of software with

different versions (say several versions created to meet different features catering

to various users’ needs). Such diversities can be productively addressed by

systematic reuse approach.

Test library reuse has been an identified as a problem that requires extensive

research[106]. Identical or near identical test code fragments are referred to as test

clones. Presence of such large granular test clones signifies reuse opportunity. A

systematic product customization allows us to reuse a common base of test

libraries and at the same time evolve them into multiple generative versions in

close accordance to the customers’ requirements and test designers variability

choices. By improving the quality of test libraries via reuse approaches there is a

significantly higher chance of detecting faults and correcting them in one place

without propagating the faults in all products, thereby delivering robust products

with well managed release versions. The reuse of test libraries within the focus of

product line helps reduce maintenance effort. Testing the modified parts of the

software alone is not sufficient as changes to one part of the software may cause

errors in other parts. In regression testing, test cases of older versions of a software

product are reused to test a new software version.

57

The key idea of establishing test library reuse is to develop test cases once for the

entire product line and then reuse them for multiple test library versions. To

achieve a sufficient degree of reuse, test cases must be reused for common as well

as for variable parts of the test libraries by explicitly specifying and managing

common and variable parts. Test cases for common parts can be reused as they

are and for the test cases that contain variability, the variation points can be

defined and choices are bound at compile time before the test cases get executed.

4.3. Overview of Android Platform Test Libraries

Android is a software stack for mobile devices that includes an operating system,

relevant middleware and key applications [26]. Since its launch in 2003, Android

has captured the attention of mobile phone companies, developers as well as the

general audience. Android provides open standards for mobile devices. Android’s

architecture inherently promotes component reuse. There have been frequent

platform enhancements that introduced several releases into the market to provide

new features such as account synchronization, improved media-playing

performance and enhanced geo location support. Thus Android platform

frequently introduces complex features and effectively testing these features is a

challenge.

4.3.1. Android Platform as Research subject

The complexity and challenges in testing of mobile platforms are caused by

factors such as device heterogeneity, memory fragmentation, power-conserving

peripherals, sensor complexities and context awareness.

Android platform exhibits the key characteristics of a typical software product

line. The Android Open Source Project (AOSP) maintains a complete software

stack to be ported to original equipment manufacturers (OEMs) and other device

implementers to run on their own hardware. Android maintains commonality and

variability of features using separate Android project structures. Common

58

projects are grouped under section ‘base’ of the source repository. Also test

libraries manage display variability using layout configuration files and resource

property setting files. Similar to traditional Software Product Line Engineering

(SPLE) philosophy, Android names its core-assets as base framework and tests

its features using an example application. A release corresponds to a formal

version of the Android platform and configuration management involves policies

that separate the platform code from vendor specific capability contributions.

In summary, Android platform serves as a good test bed for all the four previously

stated redundancy problems namely, test maintenance, test evolution, test

automation and combinatorial test library explosion owing to feature variations to

be tested. The Android open source test libraries also exhibit several variability

criteria such as device diversity (displaying hardware variability), platform

diversity (displaying more of software variability), sensor collection (displaying

peripheral variability) and comprehensive connectivity (displaying networking

protocol variability). All the above mentioned factors support the choice of

Android Platform Framework test libraries as the subject for our research case

study.

4.3.2. Android Platform Diversity

Android is Open Source software and thus provides transparency in aspects such

as platform evolution, comprehension of its features, defect fixing and hardware

portability. According to Open Signals3 there are 11868 models of Android

devices as of July 2013, with diverse screen size, display density, media and

camera options, touch sensitivity, text/input devices, storage options, in-built

sensors (for measuring motion, orientation and environment conditions), and

connectivity devices such as Bluetooth, Near field Communication (NFC), Wi-

3 http://opensignal.com/reports/fragmentation-2013/

http://opensignal.com/reports/fragmentation-2013/

59

Fi, USB Host and Session Initiation Protocol (SIP). The report also reveals that

the Android platform currently supports forty eight billion apps in play store

spread over eight versions of OS in use simultaneously. Further the platform

supports software from various device manufacturers, wireless carriers and other

open source platform stack. All these characteristics clearly make Android fall

under SPL classification and an ideal candidate for SPLT research.

Android’s software stack consists of several layers. At the heart of its stack resides

the Linux based Dalvik virtual machine [50] that enables portable, optimized

byte-code interpretation for operating the mobile platform. Figure 4-1 below

illustrates the diverse nature of the platform and major functional distribution.

Figure 4-1 Android Platform Diversity

Android platform comprises of source codes related to both hardware and

software components. Hardware related codes comprises of devices, sensors and

related peripherals interface, while software components deal with kernel,

operating platform, memory, processes, user interactivity and play-store

functionalities. Communication protocols such as 3G, NFC, Wi-Fi, SIP, USB

Host and Bluetooth are supported by the platform. Additional functionalities

60

include location services, email communication, messaging, screen display

refresh, audio/video facilities and various UI features. Furthermore, there are

many different versions of Android platform OS that are concurrently active at

any one time, adding another level of complexity. Thus a versatile testing

framework and efficient test library implementation are quite essential despite the

fact that testing the platform and related apps across the whole range of diverse

Android devices in existence can be extremely challenging and time-consuming.

4.3.3. Architecture

Figure 4-2 shows Android platform layers. The innermost layer is the Linux

Kernel over which the Android Runtime Libraries are deployed. At the outer layer

are the Application Framework and the Application Layer. The application layer

provides core functionalities such as email, SMS, calendar, maps, browser, music,

gallery and contacts while the application framework layer provides APIs for

device management, context settings, application content and other programmer

related services. All applications are written in Java and provide concurrent

execution support. In addition to Java, the Android platform also uses C/C++ to

implement its internal core libraries like Surface Manager, Graphics, Media

Codecs and web browsing engine.

Figure 4-2 Android Layers

61

4.3.4. Development Tools

Android Software Development Kit (SDK) and Android Developer Tools (ADT)

plug-in for Eclipse can assist in creating rich and innovative applications usually

called ‘apps’. The developer environment consists of the Android SDK, the

Eclipse IDE and the Java Development Kit (JDK) which has to be preinstalled

prior to Android SDK and Eclipse.

4.3.5. Testing Tools and Testing Framework

The Android testing framework is an integral part of the Android software

development environment. It provides the necessary architecture along with a set

of powerful tools that help testing the various aspects at different testing levels

starting from unit test to complete system testing. Key features of Android testing

framework include:

 JUnit: Android test suites are based on JUnit. Either plain JUnit or

Android's JUnit extensions can be used to test Android components. The

general-purpose test case class named AndroidTestCase is useful for

simple test scenarios.

 Android JUnit extensions: The Android JUnit extensions provide

component-specific test case classes. These classes provide helper

methods for creating mock objects and methods that help testers to control

the lifecycle of a component.

 Test Suites: Test suites are contained in test packages that are similar in

structure to main application packages. These test files help in organizing

the test library components into logical units.

 SDK Tools: The SDK tools are useful in building and testing various

Apps either through Eclipse with ADT or using command-line. These

tools provide information about the application project under test and use

62

this information to automatically create the build files, manifest file and

directory structure for the test package.

 MonkeyRunner: The SDK also contains MonkeyRunner, an API for

testing devices with Python programs and UI/Application.

ExerciserMonkey is an additional command-line tool for stress-

testing UIs by sending pseudo-random events to a device.

 Robotium: Robotium is an Android test automation framework which can

be used to write powerful and robust automatic black-box test cases for

Android apps. Testers can write test scenarios to carry out functional

testing, systems testing and acceptance testing that can span multiple

Android activities.

4.3.6. Diversity Challenges while testing Android Platform

The rapid growth of the Android OS comes with an expectation of equally rapid

rollouts of platform improvements and bug fixes. With the proliferation of devices

such as a wide variety of mobile phone models, tablets and wearable devices,

Android based providers have to manage the changing platforms variations in

order to sustain the market. Vendor neutral, independent, end-to-end testing is

important for the success of the Android platform OS. The mind map provided in

Figure 4-3 illustrates the various functional aspects involved in testing both the

android platform and the hosted apps. The diversities include hardware devices,

connectivity, distribution channels, software flavours and tool stacks. Figure 4-3

illustrates the six key areas of focus for Android testing – these are hardware,

software, communication protocols, tools, user interface and distribution.

63

Figure 4-3 Android Testing

The discussion and analyses of Android platform described in this section

provides an adequate case for the need for in depth research to evolve an approach

and technique that can reduce the overall efforts required in SPL testing phase.

4.4. Research Hypothesis

The idea behind the reuse-based approach for test library maintenance and

evolution is to reuse the knowledge of the past software changes to effectively

implement test components that can support testing of future changes. The

essence of such reuse-based evolution is to ensure clear visibility of changes, clear

understanding of test library similarities/ differences at all granular levels and

minimizing redundancy.

The foremost requirement to achieve test-reuse is to identify similarities and

variations in test library. Hence facilitating reusability through identifying

similarities and variations is a prerequisite to construct generic, adaptive and

therefore reusable test libraries. Hence it is our hypothesis that: “Systematic reuse

approaches employed in a test library can boost productivity and reduce

maintenance/evolution efforts along similar lines as reuse of source code”.

64

4.4.1. Research Motivation

The derivation of test cases for product families is difficult due to the presence of

variability since each variation point multiplies the number of possible behaviours

to be tested. Combinatorial explosion is a frequently occurring problem in

testing. One instance of combinatorial explosion in testing is when systems under

test have several parameters, each with so many possible values that testing every

possible combination of parameter values becomes infeasible. Another instance

of combinatorial explosion in testing may occur for configurable systems. When

systems under test have many configuration parameters, each with several

possible values, testing each configuration becomes infeasible. Examples of

configuration parameters are versions of a specific software/ hardware module,

different types of software/ hardware modules and number of logical or physical

entities included in a computer system.

Combinatorial explosion of test libraries is caused by the need to test individual

variant features. Let us assume that a particular component contains 12 variant

features that may be different in different device installations. Then we might

have as many as 212 = 4096 combinations of these variant features in various

device installations. In practice, only some of those combinations are legal. The

above simple example shows that even a small number of variant features can

result in a combinatorial explosion of test cases. Such overwhelming number of

test cases can be reduced if we could exploit the fact that test cases for different

product variants are similar, in the same way that the respective products are

similar.

The combinatorial explosion in software product lines results in creating a large

set of test cases and consequently several test classes. However, in view of the

fact that these classes mostly get created due to parameter variation, a large part

of test classes under the same family may be same with minor differences that

cater for the parameter variations. Each such test classes are essentially clones. It

65

therefore becomes necessary for us to take a typical large sized test library of a

software product line to demonstrate the presence of clones as a first step. This

requirement motivates the current experiment where we try to explore the

presence of recurring similarity in test classes.

In SPLT context, most of the current research techniques anchors on the model

and symbolic execution based test construction techniques as linchpins. Since the

Android test libraries has not been scrutinized from a test construction and

maintenance perspective, this study investigates existing redundancy problems in

this large scale test libraries. By identifying and understanding the recurring

similarities in the Android platform framework’s large scale test library it is

possible to identify strategies for redundancy removal and derive generalizations.4

4.4.2. Research Objectives

The objective of the study is to identify, understand and classify the nature of

redundancy in test libraries. This study would lay the necessary foundations and

provide the necessary technical insights which may be required to subsequently

propose a strategy for reuse-based test library creation and eventually provide

guidelines for designing generic adaptable test cases, simplifying test libraries and

enabling test cases reuse and automation.

1) Objective #1: To establish the presence of large scale redundancies within

Test libraries of a typical SPL (Android Platform in this study).

2) Objective #2: To identify and analyse similarities found in the ‘Android

Platform Framework Test Libraries’.

4 {Some excerpts of this section is published in ICSR 2013[6]}

66

3) Objective #3: To analyse the findings with regard to redundancies and to

come up with insights that would help in design of generic adaptable test

cases.

4) Objective #4: Use the knowledge derived through this research study to

enhance and formalize the test clone taxonomy/definitions/nomenclature

which would contribute to the body of knowledge in testing domain.

4.4.3. Research Questions

The dichotomy in software product line testing is between testing various feature

combinations and limited period of time left to execute tests. Thus efforts

expended in testing activity must ensure sufficient coverage within a limited time

and at the same time effectively uncover key defects of product under test. This

systematic study using the Android platform test libraries as example aims to

summarize the current state of redundancies and variations by proposing answers

to a set of questions below. The research questions stem from the need for finding

efficient reuse based approach for test library construction, maintenance and

evolution. Further the focus of study is to analyse issues such as heterogeneity,

managing the growth and scalability of test libraries which are encountered in

typical software product line testing. The questions uncovering these SPLT

challenges [51]are:

1) Research Question #1: What kinds of similarities are found in test

libraries? How frequently do they occur and in what granularity?

2) Research Question #2: How are heterogeneous test assets of the current

test libraries managed?

3) Research Question #3: How scalable are conventional test library

construction techniques?

67

We aim to answer these questions through analysis and observations on the

empirical case study and report the findings of this research in subsequent

sections.

4.5. Methodology

The overall goal of the study was to identify similarities found in Android

platform OS test libraries and systematically assess the empirical evidence

collected from the test libraries. Although certain aspects of the methodology such

as the test designer’s domain expertise, platform comprehension and quality of

tools employed involves subjective judgments, the methodology focused also on

technical activities such as similarity findings, aggregation and inference which

are tangible. Key activities involved in the study are described in study overview

sub-section. Data collection explains how test library sample was retrieved from

GIT public source code repositories. Analysis process was accomplished using

automated tools. A final validation was conducted using manual inspection.

The experiment follows the guidelines published under the title ‘Software

Engineering Research Methodology Guidelines for Case Studies’ by [139], which

comprises of five key processes. Using this methodology, we conducted the

experiment using the steps as listed below:

1) Systematic design: During design stage, the key objectives and

experiment execution plans were formulated.

2) Data Collection: The study collects data from Android GIT open source

code repositories. Then during the data cleansing activity, each test case

was carefully scrutinized and segregated.

3) Analysis: Using the NUS SoC Software Engineering lab’s Clone Miner

and Clone Analyser tools, the experiment studied the occurrence of

similarity patterns. During clone analysis the tool provides various

filtering mechanisms that allow the test clones to be further scrutinized

68

and grouped. Additionally the similarity pattern data was stored in

database and examined in detail. The test case clones identified using the

tool were further classified into groups and categorized systematically

through observation and inference.

4) Report: The findings and interpretations were organized into a

redundancy report. The report logically details similarity occurrences

patterns, interjects additional insights on possible causes and categorically

summarizes the identified shortcomings that these redundancies present to

test library maintenance.

4.5.1. Data Collection Process

After initial analysis of Android code repository, the experiment focused on

Platform Framework Project which was selected from more than 400 similar

projects based in the GIT servers (Focused library is highlighted in the Figure 4-4

below). Platform Framework Project handles system variations, security settings,

graphics, multimedia and communication components. Thus the chosen platform

framework project which deals with device and platform heterogeneity and

provides common services and kernel interaction would be a good candidate for

our study.

GIT repository path is

https://android.googlesource.com/platform/frameworks/base/

Figure 4-4 Android GIT Project Layers

https://android.googlesource.com/platform/frameworks/base/

69

4.5.2. Analysis Process

We used the Clone Miner (CM) and Clone Analyser (CA) tool for our study.

CM/CA finds clones in the target software system(s) and also allows us to locate

and filter clones that are of interest to our research. CM/CA helps us to find both

simple and large similarities. CM/CA uses token-based techniques and data

mining algorithms to find both simple test clones and related higher level

structural similarities.

4.5.3. Validity Process

During the study, the CM/CA tool was limited and hence the identified

similarities in test libraries were manually inspected and validated by us. The

validity process was carried out using the following steps:

1) Setting up the clone miner and clone analyser tool.

2) Checking out the Android base platform code repositories from GIT server

and separating test artefacts directories for further investigation.

3) Conducting similarity investigation using clone miner and analyser tool

4) Analysing the similarity investigation outputs further.

5) Reporting the outputs, challenges and research findings that will be useful

in answering the original research questions defined.

70

Figure 4-5 Android Platform Testing Sub Projects

We studied various test library projects under the Android platform framework.

As shown in Figure 4-5 the test libraries are a collection of unit, integration and

system test cases targeting the features of Android Platform under test. As our

goal is to reuse test cases, we scoped our study to single language; we included

Java based test libraries, excluded C++ and C test libraries.

4.6. Results

In this section, the results of the experiment performed on the Android platform

framework test libraries are analysed and presented with examples. Each example

provides instances of test clone redundancy of varying nature; some heavy and

some with light amount of redundancies. The causes for the occurrence of

redundancies are also diverse. Based on these observations, we have classified

redundancies as simple or complex clones as described with examples in the

following paragraphs.

4.6.1. Group 1 - Simple Redundancies

Simple redundancies are exact or similar copies of test code with variations in

terms of few lines of code or parameters or attributes. Simple redundancies also

71

include syntactically identical lines of code (fragments), identical test classes or

identical test methods except for variations in the form of parameters, return types,

identifiers, literals, types, whitespace, layout and comments. A test method is a

single executable test case that may share a common set-up and tear-down method

for test fixtures (data). One of the key causes for such redundancies is the lack of

methodical reuse among common test codes. Our observations point out that

certain redundancy may also have occurred from lack of appropriate creational

test case design patterns. The following examples illustrate and discuss simple

redundancies.

4.6.1.1. Test Fixture Similarities

Test libraries need the setup of test environment before executing the individual

test cases. This environment is usually composed of complex data structures or

collections that are created and managed inside test fixtures. When the context is

similar, the test fixture codes are also similar. Test fixtures also manage life cycle

activities for mock objects and driver stubs. Test fixture codes include memory

management and data setup/tear-down and assertion statements causing

similarities. For example, in Figure 4-6, consider the test case from media group

targeting testing of media thumbnails. The MediaItemThumbnailTest class

comprises of seven identical clones shown in that validates and recycles test data.

Failing to design test fixture methods as reusable components is the cause for such

redundancies.

Figure 4-6 Test Code Fragment (1)

72

4.6.1.2. Exception based Similarities

In situations where test cases make invocation to methods that perform similar

functions, similar exceptions are thrown. Thus the test cases have redundant

exception managing try-catch block clones. For example, in the file

WindowManagerPermissionTests, every call to the IWindowManager

interface should throw SecurityException. Thus try-catch blocks are

redundant inside the test case as shown in Figure 4-7.

Figure 4-7 Test Code Fragment (2)

4.6.1.3. Set-up/ Tear-down Similarities

Test cases are usually run by a test runner class that loads the test case class. In

addition the test cases would set up the required fixtures (or data), runs and would

finally tear down each test. In this context, a majority of the redundancies in test

cases are found in set up and tear down methods. Our analysis of the calendar

feature testing in Android repository reveals that there are fifteen test methods

(with slight variations in text fixture values) occurring in

RecurrenceProcessorTest. A sample fixture structure that gets repeated

is shown in Figure 4-8.

73

Figure 4-8 Test Code Fragment (3)

4.6.1.4. Mock Object Similarities

To facilitate dependency injection in testing, Android provides classes that create

mock system objects such as Context objects, ContentProvider objects,

ContentResolver objects, and Service objects. Test cases provide mock

Intent objects. Testers use these mock objects both to isolate tests from the rest

of the system and to facilitate dependency injection for testing. These classes that

are found in the packages android.test and

android.test.mock.Mock objects isolate tests from a running system by

stubbing out or overriding normal operations. While testing the lifecycle events

of a particular graphical component, similar mock objects are initiated and

removed causing test similarities. Our analysis revealed several such multiple

redundancies in test methods relating to mock objects’ life cycle management

codes.

4.6.1.5. Activity and Service Based Similarities

An Activity is a single focused task in Android context; for example, creating

a pop-up dialog is an Activity. Instrumentation framework is the utility

that allows monitoring of all interactions inside an application or platform.

Activities have a complex lifecycle based on call-back methods; these methods

can't be invoked directly but only through Instrumentation. The activity

testing API base class is InstrumentationTestCase, which provides

instrumentation to the test case subclasses that are used for testing UI activities.

A Service object is a component that performs long operations in background

http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/test/package-summary.html
http://developer.android.com/reference/android/test/mock/package-summary.html
http://developer.android.com/reference/android/test/InstrumentationTestCase.html

74

without UI intervention. Android provides a testing utility for Service objects

that can run tests in isolation. Since the Service class is isolated, we can test a

Service object without using instrumentation. Redundancies are found in both

Activity and Service objects related test cases.

4.6.1.6. UI related Similarities

UI testing ensures that the framework returns the correct UI output in response to

a sequence of user actions on a device, such as entering keyboard input or pressing

toolbars, menus, dialogs, images and other UI controls. Functional or black-box

UI testing does not require testers to know the internal implementation details of

the app and it is sufficient that testers know only its expected output when a user

performs a specific action or enters a specific input. The Android SDK provides

tools to support automated, functional UI testing using UIAutomator and

TestRunner. Redundancies are observed among test cases using

UIAutomator and TestRunner utilities.

4.6.1.7. Functional similarity

One of the objectives of test cases is to verify specific functional requirements.

To demonstrate functional similarity, we have picked an example where many

functions are designed symmetrical across the screen. For example, consider

testing a particular hand gesture action such as swipe or pinch. The input

parameters may contain variations depending on the event under test, location and

context. But the function call sequences being tested are similar. Thus test cases

contain similar test codes but different input sets. This causes redundancies as

evident from our analysis of test libraries. For example, Figure 4-9 shows a test case

that validates whether or not a touch gesture used to grab a screen works properly.

The input parameter to this test function is the content that is “touched” which

could be either a hyperlink or a UI action. Consequently two sets of codes that

assert the two event activities are present in the test library as seen in Figure 4-9;

the code on left column for hyperlink and right for UI action.

75

Figure 4-9 Test Code Fragment (4)

4.6.2. Group 2 - Complex Redundancies

Contiguous segments of parametric test cases that have intervened code portions

is an example for complex redundancy. Our analysis during this study reveals

several instances where similarities get spread across files, directories and

projects. Complex redundancies are not constrained by syntactical boundaries.

4.6.2.1. Device and Configuration Similarities

The study reveals the existence of repetitive test codes belonging to the devices

and configuration highlighting similarities across files and directories. Closer

examination reveals presence of design and architectural similarities. Let us take

the example of test codes pertaining to testing of access permissions. Key

permissions are to be tested on activities, package managers, windows mangers,

service managers, SMS (Short Message Service) managers and vibration services.

These test codes are seen as intervened test clones in the test library repository.

The list of java classes that contain clones pertaining to the Permission Test Cases

are listed in Figure 4-10 below:

76

Figure 4-10 Permission Test Cases

4.6.2.2. Template

Test cases in Android repository usually had class level and package level

templates. Class level templates include set up, tests and tear down. Package level

templates include groups of test classes as test suites. Owing to the similarity in

the domain, similarities are found in the class level and package level templates

as shown in Figure 4-11. The figure shows that the testing files

HorizongalGravityTest and VerticalGravityTest have method

level similarities as provided in the file outline listing of the CM/CA tool.

Figure 4-11 Template Similarity between two test case files.

4.6.2.3. File Level Similarities

Using CA/CM tool we applied clustering technique based on clone length and

coverage metrics and located redundancies in the form of file level clones. Figure

4-12 depicts the CA/CM tool output revealing the existence of the file level

gapped clone called DownloadManagerBaseTest in two different

directories. The two instances have minor contextual differences and are managed

as duplicated gapped clones.

77

Figure 4-12 File Gapped Clone Occurrences

4.6.2.4. Call Sequence:

Android’s complex functionalities get broken down into smaller activities since

it uses a component based architecture. Hence test clones emerge while testing

such complex functionalities and these test clones contain similar set of group of

assertion statement calls as well as the sequence in which these assertion

statement calls are made. An example highlighting call sequence redundancy is

shown in Figure 4-13.

From the above findings it can be concluded that repetitive similarity patterns are

found at various test libraries in Android platform framework. By identifying such

redundancies and exploiting the similarities we can design generic adaptive test

template structures that are much smaller, easier to construct and evolve than

existing test libraries.

Figure 4-13 Call Sequence Similarity between Two Different Test Cases

78

4.7. Research Analysis

This section presents the results of research analysis of the test libraries using

quantitative and qualitative analysis methods.

4.7.1. Quantitative Analysis

The following tables present a summary of quantitative findings from the study

conducted on Android platform framework test libraries. The test library

comprises of both unit and integration test cases. Thus the findings and insights

are more applicable to white box testing approaches.

Table 1 Sample Selection

Android Platform:

Total Android Framework Code Base Size ~17 GB; Total 26767 Files; 9300824

LOC ~9300KLOC

Study Sample Focus – Framework Repository:

Framework Codes = 2.23 GB On Disk; Test Files In Framework Project: 1012

Selected Test Files For Study: 1007 Java Files (Unit /Integration/UI Tests);

12+MB;

A summary of study findings is shown in Table 2.

Table 2. Summary of Clone Analysis

Attribute Measure

Total Directories Analysed 224 Directories

Total Test Files (Java Classes) Analysed 1007 Files

Total Methods Analysed 9728 methods

% Methods Containing Simple Test Clones 79%

% Files Containing Simple Test Clones 53%

Average Length of Test Clone 53 Tokens

Maximum Length Of Test Clone Found 1290 Tokens

Minimum Length Of Test Clone Found 30 Tokens

Simple Test Clone Class 2407 Files

Simple Test Clone Methods 7731 Methods

Parametric Test Clone Found Within File 779 Instances

Parametric Test Clone Found Across Files 335Instances

Complex Test File Clones Within Directory 12 Files

Complex Test File Clones Across Directories 11 Files

79

Two key observations from the above table are: (1) At least 53% of test files

contain some form of redundancy. (2) At least 79% of test methods comprised of

some form of redundancy.

4.7.2. Qualitative Analysis

This section presents qualitative aspects of the findings from our study conducted

on Android platform framework test libraries. To perform the analysis we first

grouped the test cases test clone types. Next, detailed study on similarities within

each group was taken and a typical example of each type was catalogued. We also

illustrate similarity groups with appropriate examples and explanations. Although

the examples are not equally distributed, each group of test clone indicates a few

possible causes for redundancies. The following discussion summarizes our study

findings against the originally set research objectives.

1) To establish the presence of large scale redundancies within test libraries

of a typical SPL (Android Platform in this study). Around 53% of test files

have some form of redundancy. Test clones vary in type, complexity,

token length, and variations. From the study we observe that there could

be various reasons for the occurrence of test clones. Typical examples are

presence of test smells, lack of reuse-based test case design and parametric

combinatory explosion of test data.

2) To identify, and analyse, similarities found in the ‘Android Platform

Framework Test Libraries’. The research study catalogues simple

similarities (Group 1) found among repeated test fixtures, exception

management, test data set-up/tear-down, mock object lifecycle

management, Activity & Service events, UI components and functions.

The study also catalogues complex similarities (Group 2) caused among

device settings, configurations, call sequences, test case template

structures and test files. Removing similarities at the language level

requires changes to the test libraries. In existing Android system, test

80

clones are tolerated in spite of their negative effect on maintenance in

order to avoid the risk of breaking a functioning test library in an attempt

to remove redundant clones. Different techniques can be used to realize

reuse based evolution of test libraries.

3) To analyse the findings with regard to redundancies and to come up with

insights that would help in design of generic adaptable test cases. To some

extent these redundancies can be managed by programming level reuse

techniques; but they are not exhaustive in expressing product line

commonalties and variability. For example, consider the try-catch

exception management structures (example discussed in section 6.1.2)

that are being repeated several times in the Android platform test libraries.

It is an expressive limitation of the underlying Java language. Such kind

of generality demands a meta-level template composition based on

planned reuse approach that makes the template structures independent

from underlying platform and programming language. The proposed

approach complements traditional testing techniques very well by

addressing poorly supported test code scripting language paradigms.

4) Use the knowledge derived through this research study to enhance and

formalize the test clone taxonomy/definitions/nomenclature which would

contribute to the body of knowledge in testing domain. It is observed from

the literature that current executable test libraries are maintained using test

design reviews. These reviews can only identify reuse opportunities and

does not suggest implementation strategies. Test libraries construction and

management deals with identification of redundancies (test clones), re-

construct non-redundant forms and generate actual test libraries from

templates. Identification of test clones needs a formal nomenclature and

taxonomy. Thus we formalize test clone definitions and taxonomy and

provide a simple metric system for measuring reusability and

81

maintainability of test libraries in the forthcoming chapters. This will

provide a means for us to compare the state of original test libraries as

against the automated ones created using the previously suggested meta-

level template composition technique. These formalizations are explained

in Chapter 5.

McGregor [100] in his technical report states “Product line test architecture must

address specific range of variability and the relevant accompanying binding times.

If the range in the product line is very large, it may be reasonable to have multiple

architectures and this usually happens between test points.” Thus SPLT demands

mechanisms that are not limited to programming language or platforms.

Observations recorded by us while conducting the experiment on Android test

libraries also confirms McGregor’s opinion. This calls for systematic reuse

approach that includes language independent variability mechanism that

seamlessly connects the heterogeneous test libraries’ commonalities while also

preserving reuse and variants

4.7.3. Research Questions Answered

The goal of this study is to find frequently redundant test code patterns in Android

platform framework test libraries and empirically evaluate the similarity patterns.

Thus in summary the experimental study conducted on a typical software product

line, namely the Android platform, clearly answers the research questions that we

had posed initially:

1) Research Question #1: What kinds of similarities are found in test

libraries? How frequently do they occur and in what granularity?

o Around half of exiting test case files (53%) are found to have some

form of redundancy.

82

o Although a majority of redundant test case codes we found were

either identical or parametric in nature, our study also uncovered

some instances of complex test similarities.

o We also observe that unique similarity patterns are found in

situations such as exception management because of lack of error

management facilities in the underlying programming language

constructs.

o Finally we also observe redundancies due to configuration

similarities which may be attributed to the lack of expressive

ability of the underlying programming language.

2) Research Question #2: How are heterogeneous test assets of the current

test libraries managed?

o Currently the test libraries comprises of three types of test

artefacts. Java, C++ and XML files.

o In general, Android creates separate Java and C++ test library

(project work spaces). But few instances (example codec, native

and base projects) are observed to host both Java and C++ codes

together.

o XML is used for all types of configuration in all test libraries.

3) Research Question #3: How scalable are conventional test library

construction techniques?

o Scalability of test libraries are currently limited by two factors:

underlying programming language and IDE (Integrated Developer

Environment) abilities.

o Scalability of programming language expressiveness is beyond the

scope of this research study.

83

o On the IDE aspects, the test library scalability is guided by Eclipse

project scalability settings. Some current scalability issues

observed are slowing down of indexing, outline view and syntax

colouring operations as the size of test library grows. These are

mitigated by disabling the relevant operations from the active

editor.

4.8. Threats to Validity

This study comprises several steps, combining two research methodologies: the

exploratory study and the evaluation based on a tool experiment. There are a few

threats to validity:

 The selection of the subject under study is based on open source license

model. There could be different types of test libraries existing in the

commercial sector that is the researcher is unaware of.

 Since the subject under study is a large scale test library, initial test clones

were identified by the CM/CA tool. There are possibilities that some types

of test clones are missed by the tool during clone detection process.

The study does not claim to have generalized all possible test similarity

occurrences. There could be more causes for the test similarities (test clones) than

those being listed in the analysis section. The study attempted to observe and

classify as many different groups of test code clones as possible based on past

study experiences and successes achieved from other studies [15, 130, 131] on

software clones using the same tool. To address this issue we validated our

findings seeking the expertise of clone researchers. Gapped test code similarities

and other complex structural test clones are human interpreted and so it is possible

that another researcher would have identified a different list of important

prioritization factors. However, this is not considered a major issue since the

priorities can be consolidated based on inputs from other researchers, if required.

84

4.9. Chapter Conclusion

This chapter presented the results of similarity analysis performed on the Android

platform framework test libraries. The results confirmed that of the earlier

proposed hypothesis that “reuse approaches employed in a test library can boost

productivity” by affirming the presence of redundancy in nearly half of the exiting

test case files. Most redundant test codes (test clones) that were detected were

either identical or had parametric variations. The research study also uncovered

some instances of complex and structural repetitions. Notably, the study also

identified presence repetitive patterns in Android platform framework whose

handling would be clearly beyond the capability of conventional testing

techniques. As with the Android platform, most typical software product line test

libraries usually have significant amount of such complex redundancies. Thus

these redundancies necessitate a generic reuse technique with variability

management. With the understanding gained from this research study, we intend

to propose a systemic template based reuse approach for large scale test libraries

that will exploit similarity present among test cases. The proposed approach can

be further implemented by selecting a particular test library and rebuilding that

test library using generic adaptive test templates to see if it confirms the proposed

hypothesis fully, further analyse the benefits and shortcomings of the approach.

85

CHAPTER 5

Test Clones - Formulation & Definitions

In the previous chapter we had demonstrated that there are a lot of redundancies

in test libraries called “test clones”. The excessive creation of test clones may

become unproductive as the test library grows due to the efforts needed for

maintaining the duplication. Our research work focuses on creating a strategy to

manage test clones in a productive and scalable manner. However, to formulate

this strategy, standardized definitions for test clone and related theory have to be

identified or established. A review of available literature reveals an absence of

clear definitions for test clones. We hence propose to develop the necessary

theories for test clones. This chapter defines test clones and formulates a set of

taxonomy, granularity and metrics related to test clones as part of this research

thesis. The chapter also illustrates these definitions with the support of examples.

The organization of this chapter is as below:

 Section 1 introduces the chapter.

 Section 2 defines test clones by describing basic testing terms, building a

software test system nomenclature and finally defining types of test

clones.

 Section 3 provides examples for various types of test clones and further

describes test clone taxonomies based on similarity or granularity.

 Section 4 defines test clone metrics to measure reusability and

maintainability of a test library.

 Section 5 concludes the chapter.

86

5.1. Introduction

Several authors have presented guidelines, as well as examples for code clone

literature [80, 138, 140]. Though there are definitions, detection techniques,

taxonomy and industry experience reports in code clone literature, there is a lack

of mapping between general code clone terms and test library artefacts. Hence

this chapter attempts to provide definitions for general and structural test clones,

build a taxonomy based on similarity patterns and suggest possible metrics that

would support in scientifically assessing the influence of test clone on reusability

and maintainability of test libraries.

In this chapter, we pursue three objectives. First, we formalize the test definitions

and use it as a means to build test clone taxonomy. Secondly, we provide

descriptions for test clone granularity in terms of physical and logical syntactical

boundaries. Finally, we propose a set of metrics for reusability and maintainability

of test libraries. For this discussion examples drawn from a mobile product line

are used for illustrative purposes. The definitions, taxonomy and metrics would

be used for the research work presented in subsequent chapters.

5.2. Test Clone Definitions

The definitions of test clone in SPL and clone literature are inherently abstract

and the existing definitions are specific to the underlying clone algorithms used.

It therefore becomes necessary to formally define a test clone. For the sake of

consistent understanding throughout this thesis, this section attempts to provide

formal scientific definitions for test libraries and test clone related terms.

5.2.1. Basic Terms

A manual test is a test that is performed by a human expert, written in readable

natural language. In manual test, activities such as data inputs, analysis of the

output and evaluation of results are all performed manually without any

significant tool support.

87

Automated tests are performed without manual interaction and are usually

assisted by testing tools. A semi-automated test is a test which consists of

automated as well as manual parts.

The unit test validates the behaviour of a single component, method, or class

against its input/output behaviour specified in the corresponding signature. The

integration test validates the behaviour of two or more components that together

form a configuration as specified in the architecture. System tests are usually

conducted on complete systems to evaluate the software system’s compliance

against the system requirements specification.

Test Case is a sequence of executable statements (including data input and

output) that stimulate a certain situation within a software system with the intent

of validating the system’s behaviour. Test cases describe how to operate the

application, collect results and verify against expected outcomes. The test

functionality structure can be broken down as:

1) Setup - acquire the necessary resources,

2) Stimuli - send one or more stimuli to the unit under test,

3) Verify - verify that the unit responds properly, and

4) Teardown - release the acquired resources.

The above set of steps of a typical test case is called the setup-stimulate-verify-

teardown (S-S-V-T) cycle.

5.2.2. Software Test System Nomenclature

To define the software test system nomenclature we first present the constituents

of a typical Software Test System which is depicted in Figure 5-1. We use the

approach proposed by Van Rompaey et al [150] for unit testing as the starting

88

point to further enhance and modify the test clone definitions in product line

context.

Figure 5-1 Software Test System

Software Test System:

This is the universal set that comprises of application code, external libraries and

test libraries. A Software Test System is the collective set of all codes, libraries

and configurations that are required for successful testing and deployment of the

application to production environment.

External Libraries

These are a set of software libraries and tools that are not internally developed by

the software development team but are being used by the application code. In

addition to application software, the external library code would also consist of

testing framework used by test libraries.

89

Application Code:

This is the actual application code developed by the application team and this

code is the target for testing.

Test Libraries:

These are components implemented by the testing team that would be executed

against the application code for defect detection, functional verification and

system validation. Test libraries can be further subdivided into test suites, test

cases and test helper classes. In addition, test libraries may use the testing

framework of above mentioned external libraries code.

Depending on the type of testing framework employed there may be variations in

terms of how the test helper classes are grouped. However this discussion ignores

these minor variations and we would address them collectively as Helper Classes.

5.2.3. Test Library and Test Clone Definitions

The following definitions use set language notation to describe the various

constituents in the Software Test System:

5.2.3.1. Definition 1: Software Test System (S).

An object oriented software test system (S) is composed of application code (A),

external libraries (X) and test libraries (L).

𝑆 = 𝐴 ∪ 𝑋 ∪ 𝐿 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

5.2.3.2. Definition 2: Methods (M) and Attributes (AR).

𝑀(𝐶) is the set of all methods of a software system C, with C expressed as

a set of classes.

𝑃𝑎𝑟(𝑚) is the set of parameters of method m.

𝐴𝑅(𝐶) is the set if all attributes of system C.

90

𝐴𝑅(𝑐) for all attributes of an individual class c.

𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑐) is the set of descendants of class c.

𝑀𝐷(𝑐) is the set of methods declared in class c.

𝑀𝐼(𝑐) is the set of methods implemented in class c.

𝑀𝑂𝑉𝑅(𝑐) is the set of overriding methods in a class c.

𝑀(𝑐) Stands for the set of declared or implemented methods of a single

class c.

 i.e., 𝑀(𝑐) = 𝑀𝐷(𝑐) ∪ 𝑀𝐼(𝑐)

𝐼𝑀(𝑐) is the set of methods invoked in a class c.

𝐴𝑅(𝑚) stands for the set of attributes referenced by method m.

5.2.3.3. Definition 3: Testing Framework (TF).

An object oriented testing framework TF is an external library.

𝑇𝐹 ⊆ 𝐿 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠

 There exists a base test case 𝑏𝑡𝑐 ∈ 𝑇𝐹 that is the base class (provided by

the testing framework) for all test cases of the system.

 𝑀(𝑇𝐹) ⊆ 𝑀(𝐿) is the set of all testing framework methods and is

represented as ⋃ 𝑀(𝑐) 𝐶∈𝑇𝐹

 The base test setup method 𝑏𝑡𝑠 contains the basic functionality for setting

up a system under test into the right state ready for testing. Formally 𝑏𝑡𝑠 ∈

𝑀𝐼(𝑇𝐹), individual test case can override this method to add custom setup

needs.

 A testing framework also contains a set of test framework check methods

𝑇𝐹𝐶𝑀 ⊆ 𝑀(𝑇𝐹), used to check and report on a test’s outcome by

comparing the actual result with the expected outcome. Check methods

91

vary in the expected result, the precision requirement or the comparison

mechanism.

5.2.3.4. Definition 4: Test Library (TEST).

A test library is composed of one or more test suits organized in a hierarchical

fashion. Informally, we define test library (test code) as the set of classes that are

either test cases, access methods or attributes of test cases. All other classes are

considered production code.

 Test Library (also referred as Test Code) is defined as the union of the set

of test cases and all other types that access test case methods or attributes.

 𝑇𝐸𝑆𝑇 = 𝑇𝐶 ∪ {𝑐 ∈ 𝐶 |((𝐼𝑀(𝑐) ⋂ 𝑀(𝑇𝐶)) ⋃(𝐴𝑅(𝑐)⋂𝐴𝑅(𝑇𝐶))) ≠ 𝜙 }

 Production code is defined as all application code that is not test code.

 𝑃𝑅𝑂𝐷 = 𝐶 ∖ 𝑇𝐸𝑆𝑇.

5.2.3.5. Definition 5: Test Method (TM).

For a system under test in a certain state, a test command is a container for a single

test. It is typically implemented as a method of a test case containing the

stimulation and verification phases of the Setup-Stimulation-Verification-

Teardown cycle. There are no parameters that influence the outcome of the test.

[𝑇𝑀 = 𝑀(𝑇𝐶)]

5.2.3.6. Definition 6: Test Suite (TS).

A test suite of test library is composed of test cases classes (TC) and test helper

classes (TH). It may also comprise of project and environment settings

configuration aspects. Test suite can be defined as a logical grouping of related

test scenarios.

𝑇𝑆 = 𝑇𝐶 ∪ 𝑇𝐻 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

92

5.2.3.7. Definition 7: Test Cases (TCS).

In an OO programming language context, a test case may be a single or group of

classes of the test library (TL). Formally, test case is a set of classes where

 𝑇𝐶𝑆 = 𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑏𝑡𝑐) ∩ 𝐶 :

 𝑀(𝑇𝐶) ⊆ 𝑀(𝐶) is the set of all methods of test case classes and is

represented as 𝑈𝐶∈𝑇𝐶𝑀(𝑐).

 𝐴(𝑇𝐶) ⊆ 𝐴(𝐶) is the set of all test case attributes and is represented as

𝐴(𝑇𝐶) = 𝑈𝐶∈𝑇𝐶𝐴(𝑐).

5.2.3.8. Definition 8: Test Fixture (TF).

The test case fixture is the set of properties required in a test case to bring the

system under test into the desired initial state. It contains both instances of the

system under test and other needful shared data objects.

𝑇𝐹 = 𝐴(𝑐), (𝑏𝑡𝑐) ∩ 𝐶

5.2.3.9. Definition 9: Test Setup Method (TSM).

Informally, a test setup method initializes a test case fixture into the desired state

for testing. This method is invoked before every test command to reinitialize the

test case fixture, resulting in isolated tests. Formally, for each test case tc, let

𝑇𝑆𝑀(𝑡𝑐) = { 𝑚 ∈ 𝑀𝑂𝑉𝑅(𝑡𝑐)|𝑚 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒𝑠 𝑏𝑡𝑠}

5.2.3.10. Definition 9: Test Helper Method (THM).

A test helper method is a method in the test code that supports a set of test

commands (e.g., providing an abstraction for checking common results).

5.2.3.11. Definition 11: Test Code Fragment (TCF).

A test code fragment is any sequence of code lines (with or without comments).

It can be of any granularity, e.g., a class, a method, a function definition, begin-

end block, sequence of statements, etc. A TCF is identified by its file name and

93

the block of statements indicated as begin-end line numbers in the original code

base and is denoted as a triple:

(𝑇𝐶𝐹. 𝐹𝑖𝑙𝑒𝑁𝑎𝑚𝑒, 𝑇𝐶𝐹. 𝐵𝑒𝑔𝑖𝑛𝐿𝑖𝑛𝑒, 𝑇𝐶𝐹. 𝐸𝑛𝑑𝐿𝑖𝑛𝑒).

5.2.3.12. Definition 12: Test Clone (TC).

A test clone is a (consecutive) substring of a test with a certain minimal length,

appearing at least twice in a test suite. A test clone relation exists between two

test code clone fragments TCF1 and TCF2, if and only if TCF1 and TCF2 satisfy

certain threshold of pre-defined similarity or identical measures. A test code

fragment TCF2 is a clone of another test code fragment TCF1 if they are similar

when some given definition of similarity is applied, that is, 𝑓(𝑇𝐶𝐹1) = 𝑓(𝑇𝐶𝐹2)

where 𝑓 is the test functional similarity (defined later). Two fragments that are

similar to each other form a test clone pair - denoted by(𝑇𝐶𝐹1, 𝑇𝐶𝐹2).

5.2.3.13. Definition 13: Test Clone Group (class).

Test code fragments that satisfy certain threshold of pre-defined similarity or

identical measures are called test clone class or group - denoted

by (𝑇𝐶𝐹1, 𝑇𝐶𝐹2, 𝑇𝐶𝐹3, . . . 𝑇𝐶𝐹𝑛). A test clone group consists of test clones

within a test library.

5.2.3.14. Definition 14: Simple Test Clones (TC).

Test code fragments containing predefined amount of similarity are called

General Test Clones. Simple test clone is often the result of copying a code

fragment and pasting it into another location. This would include (1) Identical test

code fragments that vary only in whitespace, layout and comments; (2)

Syntactically identical test code fragments with variations in identifiers, literals,

types, parameters and variables. (3) Test code fragments that have additional

variations in terms of added, modified and removed statements.

94

5.2.3.15. Definition 15: Structural Test Clones (STC)

Structural test clones are a special type of general test clones. These fragments

can be similar based on their test functionality structure (independent of their test

code text). Test functionality structure is the S-S-V-T cycle defined previously.

Structural test clone fragments are semantically or functionally identical coarse

grained test clone groups that perform the same computation but implemented

through different syntactic variants.

In the context of this research thesis, the term test clone refers to either general

test clones or structural test clones; and having text based or syntactical similarity.

Semantic test clones inferring to computational similarity based on program

dependency graph (PDG) is not addressed in this study.

5.3. Test Clone Examples

In this section we provide some examples of test clone types with the support of

test code fragments. These would be mapped against test clone granularity and

unification template creation in subsequent chapters.

5.3.1. General Test Clones

5.3.1.1. Exact Test Clones

Two or more test code fragments are called exact test clones if they are identical

to each other with some differences in comments and whitespace or layout.

Editing activities like changing the comments, restructuring in layout i.e.,

changing the positions of begin, end brackets (e.g., “{“ “}”) or other language

elements through adding/removing tabs, blanks, new lines may have been applied

in the copied fragment. Figure 5-2 shows an exact test clone example (the bold

text in figure shows the difference between the original and the clone).

95

Figure 5-2 Exact Test Clone Sample

5.3.1.2. Renamed Test Clones

Renamed clones have variations in identifier names, literal values, comments or

whitespace changes between the copied test code fragments. Renamed test clones

are generally more inclusive of identifier changes. The example shown in Figure

5-3 below shows three test code fragments, original on the top, the clones on

centre and bottom. Renamed clones are inclusive of parameterized clones

(explained next) shown in centre as well as more generic clones as shown in

Figure 5-3.

96

Figure 5-3 Renamed and Parameterized Test Clone Sample

5.3.1.3. Parameterized Test Clones

A parameterized test clone or p-match test clone is a renamed clone with

systematic renaming. The detection techniques for parameterized test clones

usually perform consistent matching of identifiers and/or literals among test code

fragments. The parameter clones are a sub-type of renamed test clones. On the

example previously illustrated (Figure 5-3) the original and the centre test clone

fragment is a parameterized clone that has a and b identifiers renamed with var1

and var2.

5.3.1.4. Near-Miss Test Clones

Near-miss test clones are those test clones where the copied test code fragments

are very similar to the original. Editing activities such as changing in comments,

97

layouts, changing the position of the source code elements through blanks and

new lines, changing the identifiers, literals, macros may have been applied in such

clones after the copy was made. Near miss test clones despite having the above

said changes still have the syntactical structure of the original. However authors

[138] have not provided a clear metric to quantify or qualify the accepted level of

modifications allowed on the copied fragment from that of original. Incidentally,

all parameterized and renamed test clones are also a subset of near-miss clones.

Figure 5-4 shows a sample of a near-miss test clone that has both parametric as well

as class name modifications. Though the second clone has a copy of test code

fragments that is very similar to the original, there are changes and modifications

to syntactical structure as highlighted in bold.

Figure 5-4 Sample Near Miss Test Clone

5.3.1.5. Gapped Test Clones

A gap test clone code is partly similar to the original fragment. In this type of test

clone, there is some difference in code portions between the test clones. The code

portion that is different is called gap. Let us consider a piece of original test code

fragment (Figure 5-5). It can be seen that the gapped clones can have variations

based on insertion, deletion or modification to original test code fragment.

98

Figure 5-5 Gapped Test Clone Sample

5.3.1.6. Non-Contiguous Test Clones

Non-contiguous test clones are basically gapped test clones with multiple

modifications and larger granularity. All the variations that were identified for

gapped test clones are also applicable for non-contiguous test clones.

5.3.2. Structural Test Clones

Structural test clones are higher level clones that represent repeated structures,

resulting from a repetition of a high-level design or similar feature. Structural

similarity of test components (either unit, integration or system level test case

codes) originates from similarities present in the test case design. Most structural

test clones consist of a large number of test code fragments at the implementation

level as a result of what we call ‘test clone fragmentation’. Test clone

fragmentation is the phenomenon of coarse-grained clones actually manifesting

as scattered patterns of fine-grained test clones, resulting in an intractable number

of small test clones that we have to deal with. This fragmentation is a result of

decomposition forces of the implementation technology, further exacerbated by

injection of variations.

99

Structural test clones are similarities that could be of different granularities

depending on the underlying programming language. For example, consider the

java programming language; structural test clones may occur at the following

boundaries:

 Declaration: class { . . . }, interface { . . . }

 Method: method, constructor, static initializer

 Statement: if statement, for statement, while statement, do statement,

switch statement, try statement, synchronized statement.

 Block range surrounded with ‘{‘ and ‘}’.

In the same way, we can define the boundaries of structural test clones for other

languages of interest. Structural test clones can comprise of various simple test

clones such as exact clone, parameterized clone, renamed clones and gapped

clones. The structural test clones identification process focuses on finding similar

design structures after identifying the basic similarities like textual, lexical,

syntactical and/or semantic similarities. While the simple test clones are based on

the level of similarity between the code fragments, structural clones are based on

the level of clone granularity of the language.

5.3.2.1. Functional Test Clones

Functional test clones are test code fragments where an entire test method is

duplicated. Functional test clones are therefore, a subset of structural clones. For

example consider the function getview() in hwui test library (Figure 5-6).

The function creates and returns a text view by setting up resources as specified

by layout file (i.e., adds display boundaries, padding and size. This same

functional test clone call repeats itself in eight locations. Thus the need to

manipulate the View related activities results in creation of structural clones.

100

Figure 5-6 Functional Structural Test Clones

5.3.2.2. Design Level Test Clones

Design level structural test clones are also a subset of structural clones. These

higher level structural similarities are caused by design similarities among test

cases. [77]. Consider the example provided in Figure 5-7 which shows two

different test libraries as fbotest and modelviewer. Here the files with

suffix RS and View are structurally similar to each other and spawns across

different folders. These structural similarities are caused by the design similarity

that accesses the open graphics library. In other words the test clones are dictated

by the test case design that insist that the view must first access the rendering

script which then interacts with the graphic library.

Figure 5-7 Design Level Structural Test Clones

101

The diagram below (Figure 5-8) illustrates the design similarity among the

rendering script, view and graphic library for various entities such as FBOSync,

FBOTest, SceneGraph and SimpleModel.

Figure 5-8 Design Similarity among Test Cases

5.3.2.3. File Level Test Clone

File level structural test clones are exact code fragments spanning the whole file

syntactical boundaries with minimal variations. Variations could be few lines or

package names and so on. Usually file level test clones match attributes, method

codes, parentheses, quotation marks and comment delimiters.

In the following example (Figure 5-9),

BottomEditTextActivityPanScan is an activity test case used to test pan

and scan actions on a text graphical item.

BottomEditTextActivityResize is an activity test case used to test the

resize action on similar text graphical item. that Both these test files have exactly

similar test fixtures and manipulate identical graphical activities.

102

Figure 5-9 File Level Test Clone Example

5.3.3. Test Clone Taxonomy

Test clones or test code duplication is generally observed to be common in large

scale test libraries [5, 6]. Typically test clones can be characterized by repeated

blocks of code performing similar test functionalities. Depending on context such

repeated blocks can be either small or large (i.e., from as small as 30 token counts

to as high as few hundred token counts). Test clone taxonomy is an attempt to

measure how syntactic elements change within each test clone group. Test clone

taxonomies can also be useful for test case design and test execution optimization.

For example, consider the renamed test clones that include two test code

fragments, which are identical except for variations in attribute names and method

103

parameters. Understanding test clone fragments using a standard taxonomy would

help the test designer in classifying fragments. Such a classification is useful as

they contribute to better refactoring and maintenance techniques. Additionally by

knowing the frequencies with which different groups of test clones occur, a test

designer can concentrate his efforts by targeting test clones that have greater

redundancies first. Such prioritization is expected to improve the productivity of

the tester.

5.3.4. Taxonomy Based on Similarity

As stated above, a test clone relation exists between two test code fragments TCF1

and TCF2, if TCF1 and TCF2 satisfy certain threshold of pre-defined similarity.

Similarity of test code fragments can further be defined in terms of lexical,

syntactic or semantic structures. While machines can handle lexical and syntactic

comparisons, they are unable to distinguish between semantic equivalence

necessitating human intervention. Thus clone detection algorithms focus only on

similarity of tokens. Token based clone detection algorithms scale well for larger

libraries, have high recall and reasonable precision [88]. Human judgment is an

important factor in deciding the similarity threshold. However the use of effective

clone detection algorithm would largely assist in identifying the presence of

similarity.

In test libraries, a given test code fragment can be classified based on physical or

logical granularity. Examples of physical granularity include test method, test

files or test directories. Examples of logical granularity include test stimulus code

fragments, test fixture setup fragments, test helpers, test setup/teardown methods

and test assertion fragments. Given this context, test clone taxonomy can be built

based on syntactical boundaries such as method layout, expressions and control

flow. Examples of such syntactical boundaries in a test library are test method

signature, test fixture attributes, test methods and test helper methods.

104

Similarity relationship among test code fragments can be expressed using the

following descriptions:

1) Equal: Two test code fragments are considered equal if all of its associated

syntactical boundaries are same.

2) Similar: Two test code fragments are considered similar if the differences

between the associated syntactical boundaries are less than a pre-defined

delta threshold.

3) Distinct: Two test code fragments are considered distinct if the differences

of the associated syntactical boundaries are more than the pre-defined

delta threshold.

The Table 3 summarizes the commonly used test clone terms and possible

mapping to a clone type. The test clone code fragment boundaries can be of two

types: fixed or free. Fixed syntax boundaries work on predefined syntactic

boundaries or tokens (such as methods, begin-end block scopes etc.) while free

text is not constrained by syntactical boundaries. Clone detection algorithms finds

test clones depending on the boundary representations.

Table 3 Test Clone Similarity Taxonomy

Test Clone Group Test Clone Type

Boundary

Fixed

Syntax

Boundaries

Free Text

No

Boundaries

Exact Test Clones Simple Test Clone X X

Renamed Test Clones Simple Test Clone X X

Parameterized Test Clones Simple X X

Near Miss Test Clones Simple X X

Gapped Test Clones Simple X X

Non Contiguous Test Clones Simple X X

Structural Test Clones Simple and Structural X -

Functional Test Clones Simple and Structural X -

Design Level Structural Test

Clones

Simple and Structural X -

105

5.3.5. Taxonomy Based On Granularity

Another taxonomy we propose is based on test clone granularity. Test clone

granularity can vary from single line of test code to complete abstract syntax trees

or program dependency graphs. The structural test clones cover large granular

repeated test codes. As it often happens in clone research, the actual definition of

test clones is influenced by the underlying clone detection algorithm. In this

research we have used the Clone Miner tool [9-16] and hence target to derive

definitions that, apart from meeting generic test clone, would also address the

specifics required in the Clone Miner tool approach.

Clone Miner takes a bottom-up approach towards the detection of test clones

using the following hierarchy: Simple Test Clone Structures (containers being

methods and files), Test Method Clone Classes, Test Method Clone Structures

(containers being files and directories), Test File Clone Classes, Test File Clone

Structures (containers being directories) and Test Directory Clone Classes;

(abbreviated as STCS, TMCC, TMCS, TFCC, TFCS and TDCC respectively).

The higher-level structural test clones are built based on hierarchy of

corresponding lower-level test clones. Thus the tool initially detects simple test

clones based on the similarity of the transformed token strings generated by a

lexical analyser. It subsequently groups them in terms of their container level

(e.g., methods, files and directories). In the next stage, the Clone Miner detects

larger recurring configurations of simple test clones using frequent item-set

mining. Each of these recurring configurations of simple clones represents a

possible first-level “structural test clone”, where the test clone fragments are at

same container level. In the final step, the higher level structural clones that occur

within higher-level containers are detected based on clues from previous lower

level analysis.

106

The table below (Table 4) provides the taxonomy that we have created for the test

libraries that would use the clone miner tool.

Table 4 Granularity Based Test Clone Taxonomy

Level
Types of test clones found by

Clone Miner

E
x
a
c
t

T
e
st

 C
lo

n
e
s

R
e
n

a
m

ed
 T

e
st

 C
lo

n
e
s

P
a
ra

m
et

e
ri

ze
d
 T

e
st

 C
lo

n
e
s

N
e
a
r

M
is

s
T

e
st

 C
lo

n
e
s

G
a
p
p
e
d
 T

e
st

 C
lo

n
e
s

N
o
n

 C
o
n

ti
g

u
o
u

s
T

e
st

 C
lo

n
e
s

S
tr

u
c
tu

ra
l

T
e
st

 C
lo

n
e
s

F
u

n
c
ti

o
n

a
l

T
e
st

 C
lo

n
e
s

D
e
si

g
n

 L
e
v
e
l

S
tr

u
c
tu

ra
l

T
e
st

C
lo

n
e
s

Level 1

Simple Test Clone Structures (STCS)

STCS Within Methods X X X X X X - - -

STCS Across Methods X X X X X X

Level 2

Simple Test Clone Structures (STCS)

STCS Within Files X X X X X X - - -

STCS Across Files X X X X X X - - -

Level 3
Test Method Clone Classes

(TMCC)
X X X X X X X X X

Level 4

Test Method Clone Structures (TMCS)

TMCS Within Files X X X X X X X X X

TMCS Across Files X X X X X X X X X

Level 5
Test File Clone Classes

(TFCC)

X X X X X X X
- X

Level 6

Test File Clone Structures (TFCS)

TFCS Within Directories X X X X X X X - X

TFCS Across Directories X X X X X X X - X

Level 7
Directory Test Clone Classes

(DTCC)

X X X X X X X - X

As observed from the table, general test clones are found at all levels and types as

identified by the clone detection algorithm. But the structural test clones exhibit

similarity only across syntactical boundaries and thus are observed at only at

higher levels like test method, test file or test directory levels.

5.4. Metrics Exhibited in a Test Library

The current state-of-the-practice in testing involves the use of quality factors that

pertain to test libraries. Hence an appropriate set of metrics should be defined to

provide assessment for the identified quality factors. Such metrics can serve as an

indicator for efficiency and effectiveness of software testing process. Analysis

and evaluation of test clone metrics can identify areas for reuse and the test

designers can use this input to refactor test libraries that are easy to maintain.

107

Thus, test clone metrics can assist in continuous improvement of test library

creation and maintenance.

Based on a systematic analysis of SPLT projects and literature we have arrived at

the key quality factors that measure the test libraries. These are reusability,

maintainability, reliability, understandability, efficiency and testability. The

framework proposed by McCall et al [98] refers to a systematic correlation

between software quality factors and quality metric(s). Quality factors are further

decomposed into low level attributes that are normally referred as quality criteria.

Each of these quality criteria can be associated to quality factor based on the

characteristics of quality factor and directly measured using a further lower level

attribute known as quality metrics. Figure 5-10 illustrates the ordered relationship

between quality factor, quality criteria and quality metrics.

Figure 5-10 Software Quality Framework

While test library related metrics can be multi-dimensional, distributed and

comprehensive, it is obvious that the effectiveness of the metrics is more

important than the number of metrics used. A key point to be noted is that

measurements can be in terms of both quantitative and qualitative indicators [78].

Yet any decision making should be driven by further analysis and not merely

based on data. For the purpose of our research study, we have defined and

analysed two key metrics exhibited by test clones that directly influences test

library quality:

108

(1) Reusability – The extent to which a test case can be used in other test suites

including packaging, variations, commonality and scope of feature under test.

(2) Maintainability – The effort required to locate and manage changes to test

library that finds defects in the constantly changing application code.

The main reason for focusing on the re-usability and maintainability quality

factors is that both these factors unambiguously help to measure quality of test

libraries for longer life cycle, continuous execution and automated usage

characteristics.

5.4.1. Test Library Reusability Metrics

Test cases are the essence of test libraries. In product line scenario, reusing

available test cases is an effective strategy to improve the efficiency of the overall

core assets. Reusability reduces maintenance cost, improves test comprehension

and most importantly when test libraries are implemented using reusable cases

properly, they preserve the unique design decisions. In order to efficiently reuse

test cases, a unified standard format to describe test cases is needed.

Constructing test libraries in SPL context can be expensive and labour intensive.

Thus the possibility of standardizing on the test case file format depends on the

“reuse perspective” adopted. Usually reuse perspective depends on the generic

features of the product lines irrespective of underlying technology used. For

example, consider testing a product line of web applications, underlying test

libraries contain generic test cases for common features such as login screen,

forget password, registration information and page links. Identifying such

common features helps to decide on the right combination of test case reuse

strategy to be employed.

109

5.4.1.1. Three Reusability Perspectives

In testing context, reuse perspective depends on the test specification, design,

generation and execution on underlying domain. Test library reuse uses three key

factors: test fixtures (properties), states (of individual entities under test) and

templates (pertaining to the application as a whole). Though the objective of the

research work presented in this thesis confines to template based test library

reusability, a brief overview of all three perspectives of test library reusability is

provided below for completeness.

Fixtures Based Reusability

Test Fixture is the set of properties that are needed to bring the system under test

to desired initial state. In general terms a test fixture or test context is the

collection of one or more of the following items, required to perform the test: (1)

preconditions; (2) particular states of test units; (3) necessary clean-up

procedures. Though these tasks are encountered in many if not all test cases, what

makes a test fixture different is repetition. Where a normal test case

implementation does all preparatory and clean-up work by itself, a test fixture

allows this to be implemented in a separate reusable unit. Since test fixtures

attempts to capture reusable test data, the base programming language or the

testing framework will usually provide the necessary implementation

mechanisms.

State Based Reusability

Generally test suite is the set of logically connected test cases. These test cases

may be manually written or generated using a common design paradigm.

Different operation sequences of a test scenario with the same input data may

cause different results. An operation sequence can be partitioned into two styles

viz., state check and sate comparison. State check helps to determine if the state

resulting from the execution of an operation sequence is as expected. While state

comparison compares if different operation sequences arrives at the same state of

110

equivalence as provided by the specification. For example, a stack data structure

can have three states: {Empty}, {Loaded} and {Full}. There can be eight possible

test case scenarios based on state changes.

1. {Empty} pop
−−−− >

 {Empty}

2. {Empty} push
−−−− >

 {Loaded}

3. {Loaded} pop
−−−− >

 {Empty}

4. {Loaded} pop
−−−− >

 {Loaded}

5. {Loaded} push
−−−− >

 {Loaded}

6. {Loaded} push
−−−− >

 {Full}

7. {Full} pop
−−−− >

 {Loaded}

8. {Full} push
−−−− >

 {Full}

In many test cases design processes like above, the push method and the pop

method can be reusable across test cases. Thus, the two methods could be

extracted from different operation sequences and be stored in the library. State

based reusability perspective takes into account such standard operation

sequences and implements reusable methods or API on the testing libraries.

Templates Based Reusability

Another popular reusability strategy is the use of templates as a mechanism to

formalize, preserve and reuse the test assets within test libraries. A single template

fragment or file can be designed and distributed among the test library for reuse.

Template based reusability ensures consistent design, ease of changes and clarity.

Template based reuse approaches provide hierarchy, encapsulation and

extendibility. Since test templates attempt to capture both commonality and

variability in a software product line, it can be either implemented as part of test

library or as a meta-layer using generative composition techniques. Each style has

its own strengths and shortcomings.

111

5.4.1.2. Measuring Reusability

IEEE standards for software quality measurements define re-usability using

quality criteria such as generality, modularity, machine independence, software

system independence and self-descriptiveness. The standards further map these

criteria to metrics such as unit referencing, unit implementation, modular design,

modular implementation, hardware independence, software independence,

effectiveness of comments and descriptiveness of language. William Frakes and

Carol Terry [54] catalogue reusability metrics based on various categorization

such as cost/productivity model, amount of reuse, level of reuse, reuse maturity,

failure modes analysis and reuse library metrics. These discussions pertain to

general software reuse.

Figure 5-11 Metrics for Reusability

Along similar lines we may need to derive reuse metrics (Figure 5-11) that targets

SPL testing context with the view to later using these metrics to assess the benefits

and productivity gains derived by using the template-based testing approach

proposed in this research. Reuse metrics targeting SPL testing can be classified

into two groups. Static reuse metrics that measure reuse in terms of actual artefact

(test libraries in our case) and dynamic reuse metrics that measure the run-time

nature of reusable artefacts (test execution, defects and other runtime properties).

Since the template based reuse approach pursued in this thesis focuses only on

112

test libraries, only those static reuse metrics related to productivity improvements,

amount of test library reuse and level of reuse in test library will be discussed

further.

Amount of Reuse

The Amount of Reuse metric is used to assess and monitor improvement effort by

tracking percentages of reused objects over time. In an executable test library

context, amount of reuse usually refers to lines of code. More precisely, amount

of reuse is expressed in terms of executable lines of codes reduced in comparison

to the old redundant test library by the reuse approach.

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑅𝑒𝑢𝑠𝑒

=
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑟𝑒𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑙𝑖𝑏𝑟𝑎𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑙𝑖𝑏𝑟𝑎𝑟𝑦

Hence, the Amount of Reuse metric denotes the percentage fraction measuring the

extent of reused code lines to the total code lines. The metric is commonly

expressed as a fraction or at times as a percentage. Unit of measurement is ELOC

(Executable Lines of Code).

Reuse Level

The Reuse Level metric uses reuse improvement efforts as a dependent variable.

This may vary among test libraries depending on the platform and the scripting

language employed. However, reuse level measurement assumes that a test library

is composed of parts that have different levels of abstraction. To measure reuse

level, the levels of possible abstraction must be defined and interaction between

the components (both internal and external) have to be measured. For example in

the case of procedural language such as C, the components contain modules,

functions and lines of code. In an OO language such as Java, the components

contain test packages, test files, test methods, test fixture attributes and lines of

test code fragments. A test library contains higher level components that are

113

composed from lower level components. For example, a test file is composed of

test fixture attributes, test methods and test helper methods. The following

quantities can be calculated:

𝐿 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙

 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎 ℎ𝑖𝑔ℎ𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝐸 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

(𝑓𝑟𝑜𝑚 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠 𝑖𝑛 𝑎 ℎ𝑖𝑔ℎ𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)

𝐼 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

(𝑓𝑟𝑜𝑚 𝑡𝑒𝑠𝑡 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠 𝑖𝑛 𝑎 ℎ𝑖𝑔ℎ𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)

𝑀 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎 ℎ𝑖𝑔ℎ𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑅𝑒𝑢𝑠𝑒 𝐿𝑒𝑣𝑒𝑙 =
𝐸

𝐿

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑅𝑒𝑢𝑠𝑒 𝐿𝑒𝑣𝑒𝑙 =
𝑀

𝐿

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑢𝑠𝑒 𝐿𝑒𝑣𝑒𝑙 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑅𝑒𝑢𝑠𝑒 𝐿𝑒𝑣𝑒𝑙 + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑅𝑒𝑢𝑠𝑒 𝐿𝑒𝑣𝑒𝑙

=
𝐸 + 𝑀

𝐿

Hence, the Reuse Level metric may be interpreted as the ratio between the sum of

internal and external reuse level achieved by test libraries in comparison to the

total reuse achieved in the software product line.

Depth of Inheritance

This metric calculates the depth of inheritance hierarchies. Shallow hierarchies

forsake reusability for the simplicity of understanding, thus reducing the extent of

method reuse within an application. Depth of inheritance indicates the extent to

which a test file is influenced by the properties of its ancestors and the potential

impact on its descendants. The depth of inheritance and number of children

114

collectively indicate the genealogy of a class. In the test template based reuse

approach, this depth of inheritance metric can be converted as ‘Depth of Template

Tree (DTT)’. The deeper a template is in the hierarchy, the greater is the number

of methods it is likely to inherit, making templates more complex. As a positive

factor, deeper trees increase reusability because of inheritance feature.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑁𝑇𝐶)

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑏𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑇𝑟𝑒𝑒 (𝐷𝑇𝑇)

= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑟𝑜𝑚 𝑙𝑒𝑎𝑓 𝑡𝑜 𝑟𝑜𝑜𝑡

In essence, the Depth of template tress metric denotes the count of maximum

depth (from leaf node to root node) in the constructed hierarchical tree of test

templates.

5.4.1.3. Reusability Maturity Model

A reuse maturity model is a core set of recommendations for planned reuse that

helps organizations understand their past, current and future goals for reuse

activities. The model assesses the organization’s systematic reuse using an ordinal

scale of reuse phases.

The Software Productivity Consortium has developed a Reuse Capability Model

to serve as a basis for understanding and improving an organization’s reuse

capability[43]. The reuse capability model proposed has two phases: an

assessment phase and an implementation phase. The assessment phase suggests a

set of critical success factors (goals) that an organization can use to assess the

present state of its reuse practice. The set of goals respectively identified for a

software product are (1) Management (2) Application development (3) Asset

development and (4) Process/Technology perspectives. The implementation

phase prioritizes the above mentioned goals and builds the reusable asset in

115

successive stages. Research literature survey observes two other reuse maturity

models but these are proposal and are not systematically validated by the authors

[87].

Organizations use the ‘Reuse Capability Model’ to access their current reuse

maturity and further to set measurable goals for improvement. Also the

interpretations can be tailored in accordance to the requirements of software

artefacts under consideration such as analysis models, codes and test libraries.

From a test library perspective, the four stages of reuse maturity can be defined

and interpreted as listed below.

1) Opportunistic: The opportunistic reuse strategy is developed for every

individual test project. For example, when an initial test library is created

the maturity model identifies specialized reuse tools such as refactoring

wizards, test clone analyser and common test fixtures as reusable assets.

This stage produces an inventory of reusable test artefacts with respect to

the individual test library, which in case of Android test libraries would

be test data, test methods, fixtures and layout configuration files.

2) Integrated: The integrated reuse strategy is defined and integrated for all

test projects during the test development. For example, every time a new

test library is needed a test project is created and connected to reusable

test assets such as other common test libraries, testing frameworks and

component libraries. In case of Android testing scenario, these reusable

test assets would be Robotium, content providers, UIAutomator,

Service and Activity testing components.

3) Leveraged: In leveraged reuse strategy the entire test project life cycle and

is specialized for each product line. For example, the reuse performance

is measured and the weakness of individual test project is identified. In

case of Android testing scenario, this would be done through standard

116

tools such as tracing facilities available in testing tool kit and

AndroidTestCase helper classes.

4) Anticipating: In anticipating reuse strategy, the new business ventures

take advantage of the reuse capabilities and reusable assets. For example,

every new test project is planned and designed to integrate with existing

test projects. Here the high-payoff test projects or modules are identified

and carefully reused. In case of Android testing the reuse technology is

driven by the platform requirements.

Thus, the reuse maturity for a given test library can be assessed as opportunistic

or integrated or leveraged or anticipating, where opportunistic is considered least

and anticipating is considered the most matured state.

5.4.2. Test Library Maintainability Metrics

Prior to defining Test Library Maintainability Metrics for SPLT, this section

attempts to briefly review existing literature on the Software Maintainability in

SPL with a view to drawing correlations and proposing enhancements to the

existing concepts to meet the test libraries metrics requirements.

Pressman[127] defines maintainability as the ease with which a software (test

library in this thesis) can be understood, corrected, adapted and/or enhanced.

Software maintenance metrics measure the interconnectivity of system

components, efforts involved in different activities and measure how efficiently

the system reacts to software change requests. Some key published research works

that define metrics for maintainability in SPL context are listed below:

 IEEE [77], states: “It is reasonable to state that maintainability of software

has its sub characteristics as adaptability, modifiability, testability,

portability and understand ability.”

117

 Sanjay et al [77] map the maintainability metrics based on past research

literature into set of thirty eight attributes {Adaptability, Analysability,

Changeability, Cohesiveness, Compatibility, Complexity ,

Comprehensibility, Conciseness , Consistency , Correct ability,

Documentation, Ease of Impact, Analysis , Expandability, Extensibility,

Flexibility, Implementation, Install ability, Instrumentation, Integrate

Ability, Level of validation and testing, Localizability, Maintainability,

Compliance, Modifiability, Modularity, Perfectiveness, Portability,

Process Delivery, Programming language, Readability, Reusability, Self-

descriptiveness, Simplicity, Stability, Standardization, Testability,

Traceability and Understandability.}.

 McCall [77] has proposed a software quality model and has defined one

or more sub-characteristics for each of the quality characteristics. In his

model, maintainability quality characteristic has correct ability, testability

and expandability as the sub characteristics.

 Chidambaram and Kemerer (CK) [77] is the most referenced research for

SPL maintainability. They have defined six metrics viz., Weighted

Methods per Class (WMC), Response sets for Class (RFC), Lack of

Cohesion in Methods (LCOM), coupling between Object Classes (CBO),

Depth of Inheritance Tree of a class (DIT) and Number of Children of a

class (NOC). The CK metrics can be used to analyse coupling, cohesion

and complexity very well.

5.4.2.1. Four Dimensions of Maintainability

Changes are inevitable for test libraries as they need to constantly realign the test

functionalities to the constantly changing application codes as well as the

changing needs in business/user requirements. Thus test maintenance is difficult

and is an expensive task in the SPL testing. Maintainability of test libraries would

involve activities such as error correction in test scripts, enhancements of test

118

functionalities, deletion of obsolete test functionalities and optimization. Thus test

maintenance mechanisms attempt to evaluate the changes and make controlled

modifications on test libraries. Test library maintenance can be classified into four

dimensions based on nature of activity involved. A brief description of the four

dimensions is provided below:

1) Corrective Maintenance: Just as in software, executable test libraries are

also defect prone. Identification of such defects, removal of defects and

verification of correctness in test libraries is known as corrective

maintenance.

2) Adaptive Maintenance: Both business requirements and the application

under test constantly change. Therefore it becomes necessary to keep the

related test libraries in sync with the underlying test specification and code

modifications. This type of maintenance is known as adaptive

maintenance.

3) Perfective Maintenance: Test libraries needs to constantly expand their

test capabilities. The reason may be improved coverage, changing

business priority or new features being added to the product line. Thus test

libraries may need to be enhanced with additional test suites and test cases

for improved abilities. This type of maintenance is known as perfective

maintenance.

4) Preventive Maintenance: Test libraries are constantly improved to cater

for future anticipated enhancements. This type of maintenance is known

as preventive maintenance.

Although we have classified maintenance activities into four distinct dimensions,

they are all in a generic sense concerned with having to make specific changes to

the test library. In essence, Maintainability of Test Library can be defined as its

ability to adapt to changes as test library versions evolve.

119

5.4.2.2. Test Library Maintainability Metrics

A study of literature with regard to SPL software maintainability reveals that

researches have proposed numerous maintainability measures as discussed in

Chapter 3. While drawing basis from these as inputs, we focus on metrics for SPL

testing context. As was the case with reuse metrics, the maintainability metrics

(Figure 5-12) in SPL context can also be classified as static and dynamic metrics.

Examples for static maintainability metrics are test coverage, testing efforts,

change count and modularity based measurements. Examples for dynamic

maintainability metrics are testability, cohesion/coupling factors at runtime,

expandability and execution coverage. Since the template based reuse approach

proposed in this thesis focuses only on test libraries, this section confines to those

metrics that have direct impact on test library maintenance activities. Hence, the

relevant metrics dealt in this research are change request backlog, backlog

management index, number of modifications per change request and change

request responsiveness. Each of these metrics is described in detail in the

following sub-sections.

Figure 5-12 Metrics for Maintainability

Change Request Backlog and Backlog Management Index

Change request (CR) backlog is a workload statement for test library

maintenance. Change request backlog depends on both the CR arrival and the

120

time the CR is implemented and is expressed as a simple count of CR over a

period of time (week, month or year) depending on the frequency of change

request activities in that project. The second metric is backlog management index

(BMI) which provides a good measure of open unresolved CRs.

𝐵𝑀𝐼 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑅𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑅𝑠 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ
 𝑋 100%

BMI is interpreted to indicate that the backlog is “reduced” if the ratio of

completed problems to open problems is larger than 100 and likewise backlog is

interpreted as “increased” if BMI is less than 100. With more data points, BMI

can help investigate trends in CR arrival, completion and control limits.

Number of modifications to implement a particular Change Request

Modifications required on a test library to implement a change request can be

measured. Three metrics can be useful: number of modified location, nature of

modification and total number of modifications required per change request (CR).

The number of files affected by each CR is denoted as #F and the number of

modified locations is denoted as #L. To classify the nature of modifications, for

each modification in a given file we use #M to refer to edit changes, #A for newly

added changes and #D for deletions (code removals).

𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝐶𝑅 = ∑ ∑(#𝑀 + #𝐴 + #𝐷)

#𝐿

𝑗=1

#𝐹

𝑖=1

where, #𝐹 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑒𝑠 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑;

#𝐿 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑓𝑖𝑙𝑒;

#𝑀 𝑜𝑟 #𝐴 𝑜𝑟 #𝐷 𝑖𝑠 𝐸𝑑𝑖𝑡 𝑜𝑟 𝐴𝑑𝑑 𝑜𝑟 𝐷𝑒𝑙𝑒𝑡𝑒

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

Modifications per CR metric indicates the complexity involved in implementing

the change. The metric measures the effort needed in terms of lines of code change

121

and number of locations to perform the planned enhancement or restructuring or

fix.

Change Request Responsiveness Metric

It is also common to measure the mean time taken to implement a particular

change request. Many organizations have established guidelines for CRs, their

complexity, business priority and actual turn-around time. For high priority CRs

faster responses alleviates risks, while for lower priority CR response times are

not that crucial. CR responsiveness metric is usually calculated as a time measure.

𝐶𝑅 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝐶𝑅𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦

𝑡𝑜 𝑚𝑜𝑣𝑒 𝑓𝑟𝑜𝑚 𝑂𝑝𝑒𝑛 𝑡𝑜 𝐶𝑙𝑜𝑠𝑒𝑑 𝑠𝑡𝑎𝑡𝑒.

While the statistical mean is used for normal distributions, median is preferred for

skewed distributions. This is because if the change request data points are found

to have extreme values and the request arrivals are not frequent, then median is

known to yield a meaningful measure and hence used in the computation.

In general shorter time frames to implement CRs yield test productivity increase.

While there may be other measures such as the test engineer’s skills, technical

platform capability and business interests, these are subjective and not easily

quantifiable and are also contained as a subset of the Time Metric. Hence this

thesis confines to Time measurements as the relevant metric.

5.5. Chapter Conclusions

In this chapter, we formalized definitions for test libraries and related terms. We

proceeded to use this definitions to build test clone taxonomy. We provided

formal descriptions for test clone granularity in terms of physical and logical

syntactical boundaries. We analysed two key quality attributes that relate to test

libraries – reusability and maintainability, as these two quality factors were

observed to have greater influence on the test library construction approach.

122

Finally we proposed a set of metrics for reusability and maintainability in terms

of test libraries. The theory developed in this chapter would form the foundations

of the core research of the thesis which is to develop an approach for template

based test clone management in large scale test libraries.

123

CHAPTER 6

Systemic Template Based Reuse Approach for Large

Scale Test Libraries

In the earlier chapters we have laid the necessary foundations and built the

relevant theoretical prerequisites and formulations to use as basis for the proposed

testing strategy presented in this chapter.

In Chapter 4 we observed that the presence of redundancies increases testing

effort, reduces productivity and introduces anomalies. To solve the redundancy

problem caused by duplicate code fragments, we propose the use of generic

templates. Creation of generic templates requires a systematic approach

especially in Software Product Line (SPL) context were ramifications can be

large. Hence, to facilitate the creation of effective generic adaptable test templates

(GATT) we have formulated an approach which we call as Systemic Template

based Reuse Approach for Large Scale Test Libraries (STRAT). Testers can use

the proposed STRAT approach as a framework to methodically create GATT to

run it on top of the ART processor. This chapter elaborates the variability

management and template creation techniques involved in the proposed STRAT

approach.

The organisation of the chapter is as below:

 Section 1 provides an overview of the proposed template based testing

approach.

 Section 2 explains the reasons behind the need for generic design

solutions.

 Section 3 describes the proposed solution with the support of examples.

124

 Section 4 explores how the proposed solution helps software product lines

testing.

 Section 5 summarises the benefits of template-based approach.

 Section 6 identifies some of the limitations of the template based testing

approach.

 Section 7 provides the conclusions derived from this chapter.

6.1. STRAT Overview

When traditional approaches fail to construct non-redundant, large scale test case

repositories, it is worthwhile to look for new research solutions that address the

shortcomings. This chapter describes the proposed Systemic Template based

Reuse Approach for Large Scale Test Libraries (also synonymously referred in

short as “template-based approach” or “STRAT approach” or just “STRAT” in

this thesis). The STRAT approach applies variant parameterization and

composition based adaptation techniques to manage variability. The approach

employs the proposed Generic Adaptive Test Template artefacts to resolve issues

arising out of the presence of redundant test clone groups; these issues were

analysed and presented in the previous chapter. The generic adaptive test

templates are fabricated using a meta-programming technique called Adaptive

Reuse Technique (ART). STRAT incorporates techniques such as

parameterization, composition and adaptation of the test code fragment files that

are deemed non-unifiable using traditional testing techniques.

In this chapter, we pursue three objectives. First, we provide a sketch of the

proposed STRAT approach. Subsequently, we illustrate template unifications for

various test clone types. Finally, we discuss STRAT related process, template

lifecycle activities and the possible benefits of using STRAT approach to manage

variability in a product line context.

125

6.1.1. Motivational Example

The Android Note app is used as the motivational example for illustrating the

shortcomings of existing testing techniques and to showcase how STRAT

approach overcomes these shortcomings. This Note app was chosen due to its

ease of understanding and its suitability to demonstrate the research motivation.

The Note app can be used to create a new text note, add a title or save/edit/delete

an existing note. Test cases for this app would first set up required data and

context for the events and then simulate test situation by applying appropriate

activity commands on the instrumentation instance. The test cases would, finally

compare received results against expected values and report the results. The

existing test libraries for this app use test file archetype comprising of resource

setup, test cases and teardown. Examples for resource setup include common data,

mock object instantiations, test fixtures and instruments from the test framework.

A typical test case consists three elements namely, pre-conditions, the actual test

stimulus and the assertion of expected results. To provide a clear understanding

of the Test Case Scenario we have created a representative Test Library Project

using the Eclipse IDE and Android development toolkit. Execution of the Note

app Test Project would result in testing the three screens viz., listing, create and

edit screens as shown in Figure 6-1. The test cases for above mentioned screens

Figure 6-1 Note App (Listing, Create and Edit Screens)

126

employ a black box testing approach. The test cases verify the correctness of the

Note app features such as creation, editing and deletion.

The Test project consists of several files and directories which are explained

below. The Note app test project workspace (structure in Figure 6-2) comprises of

configuration and code files. The role of a configuration file (eg:

AndroidMaifest.xml) is to facilitate the setting up of the desired device

environment and context settings (e.g., the minimum version number for

platform/OS/API against which the app can be tested). The role of the Android

project’s code file (eg: EditorTest.java), is to define test cases targeting

the functionality of the various Note app features. The res folder, contains

presentation layer codes and UI related configuration values. A layout

configuration defines the visual structure for a user interface such as UI for an

activity or widget for an app. Examples for layout configuration can be radio

button color, text box length, form size, submit button’s display icon etc. The

project also references the Robotium framework library.

Figure 6-2 Note app test project structure

A typical Android test case constitutes of pre-conditions, the actual test stimulus

and the assertion of expected results (as illustrated in example test file

EditorTest.java in Figure 6-3). The setup() and teardown() methods

are the resource management codes. The

127

testPreferenceIsSaved()method encapsulates codes for implementing a

test case (preconditions, stimulus and result assertion).

Figure 6-3 Test Archetype and Test Case Structure Example

A common observation is that test cases that test a particular feature tend to be

similar even among different OS platforms. Our analysis shows that it is not

uncommon to find a fair amount of similarity between certain test cases for

different features. To understand the nature of such test clones and visualize how

to unify them, consider two test methods shown in Figure 6-4. The Test method

testAddNote() is provided in the left column while testEditMode()is

shown on the right column in the Figure 6-4. As the name suggests these methods

test the Add and Edit Note features.

128

Figure 6-4 Sample Test Clone Testing Different Features

Codes shown in regular font in depict exact duplication, while variations are either

underlined or in bold font. Whereas the underlined texts indicate parametric

variations that can be handled using traditional programming constructs, the bold

texts indicate complex variations such as different API/method calls, partial

names and other gapped test clones whose handling may fall beyond the purview

of traditional programming constructs. In Software Product Line Testing (SPLT)

context, test clones will directly benefit from core as well as app level test libraries

reuse. Domain engineering generality principle encourages avoiding repetitions

and construction of parameterized, configurable and adaptable generic test

libraries. The need for an approach incorporating such generality serves as the

motivation behind the proposed solution.

6.2. Need for Generic Design

In the previous chapter where we analysed the Android platform test libraries we

had observed the following:

 About 30% to 80% of test codes contain similar program structures

repeated within and across test libraries.

129

 The repeating structures range from fine grained instances such as few

lines of test codes (test clones), to large granularity, such as test

files/directory level patterns of test libraries (termed as structural clones

previously).

 Test clones induce extra conceptual complexity and are counter-

productive for maintenance.

 Scope for avoiding test clones through traditional approaches was limited

or would force test developers to compromise on other important test

design goals.

The above motivates the need for evolving a research based solution that would

address the stated issues.

6.3. Proposed Solution

Our proposed approach uses templates to represent test libraries in a non-

redundant way. Templates provide meta-level decomposition and test clone

unification support mechanisms. Creation of such templates requires a formal

approach consisting of the following elements:

 A mechanism for Test Clone Identification and Classification.

 A definition for Generic Adaptive Test Template Structure.

 Template Artefact Designs for defining various types of test clones.

 A mechanism for Test Clone Unification based on the underlying test

clone type and generic design requirements.

 A methodology for the Test Library Construction Process and related

Template Lifecycle Management activities.

130

Keeping the above in view, our solution proposes a formal identification

mechanism for test clone detection and classification based on various factors

such as structural granularity, feature under test, variant point representation and

nature of test artefact. The template structures proposed in our solution provides

for representational features such as heterogeneity (independent of underlying

scripting language), scalability, extensibility and variability. To address the need

for test clone unification, our solution proposes design guidelines and test clone

unification schemes for different types of test library variations with adequate

practical code samples. Finally to ensure that the proposed template solution can

be systematically adopted, our solution outlines a methodology for template

lifecycle management activities and test library refactoring.

6.3.1. Solution Design

STRAT provisions for unrestricted parameterization by implementing templates

as a non-intrusive complimentary layer that captures key information such as the

differences among test clone structures, change request modification design

decisions, variability choices and respective binding options. The STRAT

approach provides two layers; one layer for the executable test cases and the

second is a higher layer for templates (GATT). For clarity of distinction, we call

the meta-code level as GATT (or simply templates) and the original test cases as

test libraries. STRAT utilizes a flexible, configurable and versatile variability

management programming construct - ART (Adaptive Reuse Technique,

art.comp.nus.edu.sg) developed in our lab. Being a compile time test construction

method, the appropriate variant binding for each variant is generated based on the

test designer’s configuration choices. The use of templates permit more

exhaustive and intrinsically detailed variability design and management. The test

templates are made of two types of files: SPC (Specification Configuration) and

ART (Adaptive Reuse Technique) files. The SPC files are usually in the top level

acting as handles for rest of the ART template files. Both files have elements that

131

define variant points, possible binding choices and provide constructs for

selection, conditions, iterations and processing using ART directives.

Figure 6-5 Generation of Original test libraries from GATT

Figure 6-5 illustrates the steps in deriving test libraries from templates using ART

Processor. GATT design is a hierarchical arrangement of template files (*.art and

*.spc file extensions). Using the ART processor, specific test cases or the

complete test library can be generated from templates and subsequently the

system or app can be tested in a normal way. Since the test cases created using

GATT structures are pre-compiled, the proposed template based solution does not

interfere with the regular test execution procedures.

Figure 6-6 Systemic Template Approach for Large Scale Test Libraries

132

Figure 6-6 illustrates how STRAT approach works in two layers, namely test

construction (planning and design of test cases) followed by test execution.

STRAT approach involves the participation of two key roles; they are: test

designer who is a domain expert contributing towards test case design and

development; tester who is a test automation expert responsible for executing

selected set of tests on a targeted system. Test designer identifies test clones that

are candidates for building templates. Test designer selects group of test clones,

isolates the common portions and variations, create templates applying the

identified variability constructs. These templates along with test designer’s

variability binding choices are inputs that would eventually generate the original

executable test library. Test designer also preserves the domain related test design

decisions inside the templates.

As test cases are maintained at templates level, testers work with the

representation that is smaller in size than the actual test library and may hence

find it easier to understand due to non-redundant structure. Any change made to

template parameters can be selectively propagated without the need to deal with

each individual version thereby providing an inherent protection against

unintended changes. The specification and template files captures test design

decisions, variant options and other selective evolution based information. This

will allow test designers to browse existing test templates at any point in time,

grasp the overall similarity situation, and narrow selectively to specific templates

that facilitate test designers to study the exact nature of similarity and differences

in a given group of test cases.

As long as regular programming language constructs are able to unify the test

clones, it remains a traditional solution. But when the complexity of variations

cannot be handled, the test designer may resort to the use of STRAT approach.

As the name suggests, generic adaptive test templates complement than compete

with traditional techniques. While the STRAT approach proposes that the

133

maintenance of test libraries will be primarily handled through test templates, the

test libraries are the ones that get compiled and executed. Thus at runtime, there

is no difference between traditional and STRAT generated test libraries.

6.3.2. Scope of Proposed Solution

In this section we propose to identify where the proposed solution would fit within

the entire testing process space. Generally software testing process (shown in

Figure 6-7) comprises of four stages namely, Test Planning, Test Preparation, Test

Execution and Result analysis.

Test Planning involves planning for forthcoming testing activities such as

identification of tasks, resource estimation, financial and effort budgets. Test

preparation involves test case design, implementation, selection and

documentation. It also prepares necessary test fixtures and data needed for test

execution later. Test Execution could be manual or automated and each execution

results in test outcomes. Result Analysis uses the test outcomes and test coverage

achieved to suggest whether or not to perform further testing. If testing is to be

continued, it could recommence from any of the previous stages.

The STRAT approach fits into the Test Preparation stage and aligns closely with

the test library repository. Test preparation involves test data preparation, test case

design, implementation selection and documentation. STRAT works with all

artefacts belonging to test libraries and recommends potential candidates for

templates through identification of test clone groups and guides methodically in

re-constructing the identified subjects into generic adaptive test templates.

134

Figure 6-7 Software Testing Process

6.3.3. Generic Adaptive Test Template Derivation

Templates derived adopting generic design mechanisms allow test designers to

represent and maintain test clone structures as compact customizable test code

fragments. In this section we provide a conceptual overview of the derivation of

the proposed GATT followed by an actual example to illustrate the concept.

Consider a test library that consists of two similar test case codes T1 and T2. The

conceptual diagram (Figure 6-8) illustrates how these two similar test case codes

are managed. Our approach proposes that the generic form of test case code be

represented as template T. Additional codes specific to the above two instances

T1 and T2 to be represented in ΔT1 and ΔT2 respectively. Hence running the

templates via ART processor generates exact test cases (T1 and T2) as before.

Thus GATT’s variability management constructs promote reuse with only modest

extensions to existing test libraries.

135

Figure 6-8 GATT for Test Clones

To demonstrate this, we derived the templates using the proposed GATT for the

motivational example discussed in Section 6.1.1. The templates are shown in

Figure 6-9 where the two test clone files TestAddNote.java represents T1

TestEditNote.java represents T2. The GATT template files

TestNote.art is the main template file (T) and additional template fragments

are in TestNoteAdd.art (ΔT1) and TestNoteEdit.art (ΔT2).

TestNote.SPC is the main specification file.

Figure 6-9 Templates for Motivational Example

136

The above structure is typical in most test clone situations. However, for brevity

and ease of understanding, we first present a much simpler example (which

confines to a single template without delta variations) to explain the full details of

GATT constructs. Consider two similar test cases depicting non-parametric

variation namely, MainActivity.java and MainActivity2.java

(Figure 6-10). Both test cases attempt to search and invoke a menu item, and if

the searched menu item is found it adds more items to an attached action bar. As

part of test specifications, tests need to be performed for all orientations of the

screen and hence multiple test cases are created with screen layout variations

resulting in two test clones as seen in Figure 6-10. Comparing the two test clones

we have identified code level variations and have shown as bold text.

Figure 6-10 Sample Android Activity based Test Clone Pair

Variations as above can be well managed using template-based approach since

the screen layout orientation is set using test configuration files hence reducing

duplicate code fragments. Rewriting the above test clone pair using GATT, we

have two template files namely, Activity.art and Activity.SPC (refer

Figure 6-11). The ART template file also provisions variant points that can bind

to different values when generated into actual test cases later. In this example the

two variant points defined are @className and @methodName. The SPC file

137

provides relevant binding choices for each of the variant points defined earlier in

the ART template file. This can be seen through the #set directives in the SPC

files that are configured for each test case combination. Finally to generate the

two individual test cases, the SPC file uses an iteration structure (#while

construct).

Figure 6-11 GATT Representation of Test Case Example

Thus, based on tester’s choices the specification file (SPC) can be evolved to

manage multiple orientations. This example demonstrates the ease with which

other variations such as handling multiple platform settings and release versions

can be managed as the product line evolves over time.

138

6.3.4. Adaptive Reuse Technique

To support the understanding of the template unification examples provided

subsequently, this section briefly introduces ART structure along with the

relevant ART functionalities and their syntax. ART commands are embedded in

the base code resulting in a composite code file. This composite code must be

executed by a ART Processor to render the original base code. By setting ART

parameters, testers can derive many variants of test libraries from the base code.

ART provides controls for various levels of decomposition and composition.

Some frequently used ART commands are examined here (a complete set of

command syntax chart is provided in Appendix B):

 Global ART parameters are set in SPC (SPeCification) file. All other

source files comprising the base code are linked to SPC by chains

of #adapt commands. So to run the ART Processor it is enough to provide

the specification files.

 ART Processor executes template commands embedded in SPC, leaving

existing base test library codes untouched. Command #adapt f directs

the ART Processor to the adapt file f in the location where the command

is being called. Once file f has been processed, ART Processor resumes

processing. Processing of ART's #adapt command is similar to

cpp's #include command. The processed content of the adapted file

will be placed where the #adapt command was stated. We could say

adapting a file is almost the same as having its content in the place of

the #adapt command. The difference is the ability to make

configurations in the extended adapt body and in the scoping rules.

 ART Processor interprets template commands and generates test codes

corresponding to the template commands located in the visited files.

ART #output <path> command specifies the output file where the test

139

code should be placed. The <path> can be absolute or relative path. If

output file is not specified, then ART Processor emits tests to an

automatically generated default file named defaultOutput in the

main installation.

 #set command declares a template variable and sets its value.

#set command is similar to cpp’s #define except that template

variable values propagate across the files along #adapt links. With

the #set command, we can declare single and multi-value variables.

Expressions are written between question mark '?' characters. A direct

reference to variable x is written as ?@x?. Each extra ‘@’symbol in front

of a variable name indicates an extra level of indirection. This means we

can refer to the (value of (value of x)) with ?@@x?, and to the

(value of (@@x)) with ?@@@x?.

 An #insert command replaces all matching #breaks with its content.

Matching is done by a name (break X for example).

 Command #while is a loop that iterates over its body and generates

custom test code at each iteration. Command #select allows us to

choose one of many customization options. #while and #select are

often used together.

6.3.5. GATT Derivations for Unification of Various Test Clone

Types

ART can be employed in all test clone type that we had identified, classified and

described in the previous chapter. The examples given below show how the

GATT structures unify various test clones samples discussed previously.

140

6.3.5.1. Unification for Exact Test Clones

Consider the Exact Test Clone example discussed in previous chapter. That

sample of exact test clone could be unified into a template file and specification

as shown in Figure 6-12. All the exact code clone portions are captured in the file

TestBase.art, while the TestBase.SPC has an iterative structure to

generate all clone instances and needful variations for package name differences.

Figure 6-12 GATT Unification of Exact Test Clones

6.3.5.2. Unification of Renamed and Parameterized Test Clones

GATT deals with systematic variants for identifiers, literals and parameters. This

mechanism will assist in unifying both renamed and parameterized test clones.

While unifying renamed and parameterized clones, variant points and relevant

granularity are the design choices involved. Figure 6-13 shows the GATT derivation

for renamed and Parametrised test clones. In this test clone example, TC1 uses

parameter “a” while the same parameter is named “val1” in TC2 and “val2” in

TC3. The GATT derivation for this is also shown (Figure 6-13).

141

Renaming/parameterization is handled with appropriate settings in templates and

specification files. As can be seen from the GATT, the renamed variables are

configured in the ART (eg: the variables a, val1 and val2 of TC1, TC2 & TC3

respectively is named as @pos1). A similar approach is used for parameterised

variables between test clones. Since an identical configuration approach is used

for both parameterisation and renaming, an #if … #endif construct is used in the

ART to distinguish between the two. To generate test case instances the SPC

declares renamed variables as variation points that have been marked using the

#set command (eg: #set pos1Name=”a, val1, val2”). As before, to

generate the three individual test cases, the SPC file uses an iteration structure

(#while construct).

Figure 6-13 Unification of Renamed and Parametrised Test Clones

The above unification scheme will generate parametric test clones that cater for

test fixture variations (@pos1, @pos2) as well as test code variations (test code

fragment) as shown in Figure 6-14.

142

Figure 6-14 Adaptation of Parametric and Renamed Test Clones

6.3.5.3. Unification of Near Miss Test Clones

Near-miss test clone unification involves parameterizations of identifier, literals

and variable variations using appropriate variant points. Consider the near-miss

test clone with class name and parametric variations occurring at intervening

locations in a single file. These variations get unified with the help of variants

referring to both parametric as well as class syntactical name changes. The GATT

derivation for near miss test clone example is given (Figure 6-15).

143

Figure 6-15 Unification of Near Miss Test Clones

This unification scheme will generate parametric test clones that cater for

parametric variations (@var1, @var2) as well as code variations (test file class

name fragments) as illustrated in Figure 6-16.

Figure 6-16 Adaptation of Near Miss Test Clones

144

6.3.5.4. Unification of Gapped Test Clones and Non-Contiguous Test Clones

The GATT for unifying Gapped Test Clones is shown (Figure 6-17). The file

tag.art captures common portions of the test code fragment. The specification

file sets a variant point choice with four values as original, insert, modify and

delete. These tags cater for variations based on insertion, deletion or modification

of original test code fragment. The file and specification uses iteration and

conditional constructs to achieve the unification of gapped clones. Similar

techniques are extended for the non-contiguous test clones comprising of more

gapped test code fragment portions in the test clone classes.

Figure 6-17 Unification of Gapped Clones

145

The original clone instance consists of three segments depicted as A, B, and C in

Figure 6-18. Insert test clone instance adds segment D to the file end. Deletion test

clone instance removes segment B. Modified test clone instance changes B to B`.

Figure 6-18 Gapped Test Clone Instances

6.3.5.5. Unification of Structural Test Clones

As explained in previous section, structural test clone (SC) class can be

characterized as a compound structure that represents the various test clone

fragments which can be dispersed across syntactical boundaries such as test

methods, test files and test directories. Unified representation of structural test

clones and their appropriate instantiation mechanisms are represented by ART

files and SPC files respectively. Unlike simple test clones, the instantiation of

structural test clones can be dispersed across many ART files and SPC files.

Figure 6-19 shows the partial hierarchy of the coarse-grained structural clone (named

SC1) and three instances of it (named Instance 1, Instance 2, and Instance 3). The SC

boundaries are marked with double line boxes. SC1 in turn consists of three lower

level entities, two of which are further structural test clones themselves (SC2 and

SC3) and the other, a simple test clone (A). SC2 consists of two items which are also

146

structural clones (SC4 and SC5). These two structural clones consist of simple test

clones (B, C) and (D or E) respectively. Likewise the SC3 also has layers of low level

test clones as can be seen from the figure. Simple clones seen in the SC hierarchy are

A, B, C, D, E, F, G, H, I, X, Y, Z and related variant changes specified in the

individual ART files.

Figure 6-19 Unifying Structural Test Clones

This emphasizes the fact that more powerful structures can be generated using the

proposed GATT since it provides a comprehensive syntax collection suitable for all

types of variability adaptation situations.

6.3.5.6. Unification of Heterogeneous Test Clones

Heterogeneous test clones comprise of test clones with multiple file formats and

programming languages. GATT constructs can unify test clones in any

language/platform through heterogeneous text-based compile time test artefacts.

Consider a heterogonous test clone example as shown in Figure 6-20. The four

files shown (BiDiTestGalleryLtr.java,

BiDiTestGalleryRtl.java, gallery_ltr.xml and

gallery_rtl.xml) are exact test clone fragments with portions of non-

147

parametric variation in class names, layout API calls and layout orientations.

These variations between clones are indicated as bold text in the figure.

Figure 6-20 Test File Clones for BiDiTestGallery Group

Through this example, we propose to show how GATT seamlessly integrates the

Java and XML files as text templates. Though optimally these test code clones

can be composed into a single template file, for the sake of clarity and ease of

understanding the test clones are captured into two template files

(BiDiTestGallery.art and XML_gallery.art) and one specification

file (Main.SPC). The skeletal codes in Figure 6-21 show the relevant fragments

of the template files (BiDiTestGallery.art and XML_gallery.art).

As can be seen BiDiTestGallery.art templates the variability of xml while

the XML_gallery.art does the same for java. Finally when the test libraries

are generated, the Main.spc specification file iteratively emits the Java and

XML test file codes as specified by the test designer.

148

Figure 6-21 GATT Structures for Heterogeneous Test Clone Fragments

Typically, tree structures grow in a balanced manner thereby making them more

scalable than other connected structures. Hence, STRAT approach recommends

organizing the test templates in a hierarchical connected tree structure thus

providing ease of configuration as well as rich customization. Further, ART

Processor can interlink these test configurations derived through STRAT with the

relevant test libraries and automate test library generation smoothly.

6.3.6. STRAT Process and Template Lifecycle Management

In this section we propose a process comprising of a series of steps that describes

the underlying STRAT approach from a testing perspective, thus reducing the

semantics and complexity of research problem in hand. Subsequently we provide

details of the lifecycle activities involved during test template creation,

maintenance and management. The defined methodology for STRAT approach

comprises of the following key steps (process) and activities (template lifecycle):

 Step 1: Test Clone Identification - The first step in the approach is to

identify test clones occurrences in test libraries.

149

 Step 2: Feasibility analysis for adopting templates – Using the inventory

of test clones and classifying them in the previous step, this step checks

on the suitability of template approach for unification.

 Step 3: Template construction – This step involves template creation and

management. The management process carried out in stages using four

lifecycle activities listed below:

o Activity 1: Template cataloguing – Involves identification of test

clones using a combination of techniques and analysis which

yields categorization of test clones.

o Activity 2: Template unification - This activity involves three tasks

in sequence namely, select a technique (GATT or traditional),

harmonization and template structure unification.

o Activity 3: Repository creation – This activity involves storage and

retrieval tasks related to templates and test libraries.

o Activity 4: Evolution of templates for SPL that keep harvesting of

test clones and unifies as a continuous activity throughout the test

libraries life.

 Step 4: Product specific test library generation from GATT artefacts.

Further subsections deals with each of these steps and activities in detail.

6.3.6.1. The STRAT Process

Test library creation and maintenance is a key testing activity that involves a

continuous life cycle methodology contributing towards the products’ quality

improvements. The process includes design and implementation activities that

build and manage the test library artefacts. The generic test case template design

process used in STRAT comprises of four stages as shown in Figure 6-22.

150

Figure 6-22 Steps in STRAT Process

Step 1: Identify Test Clones

The first step in the approach is to identify various test clones patterns occurring

in existing test libraries. Input for this step is the existing test library that needs

improvements. This identification starts with use of standard code clone detection

techniques followed by test specific improvements. Standard code clone detection

techniques help find those functions that are either an exact copy or a mutant of

another function in the system. In existing test libraries, most test clones are

created by copying a test function and then making a series of modifications to

the copy. This is usually due to absence of an established re-use practice during

the test library construction processes. Test designers generally copy an entire test

suite or a part of it and then change the implementation based on relevant

functionalities. In a standard SPL environment, code clone detection algorithm

uses different ordinal scales of similarity relations and structural granularity for

comparison. Specifically in testing context, identification of test clones requires

the use of additional aspects of structural and semantic inferences. Such aspects

would also depend on the test library structure and test architecture.

151

Clone detection tools use pattern matching algorithms and data mining

techniques. The mining algorithm in Clone Miner tool used in this study is based

on Repeated Tokens Finder (RTF), a token based simple clone detector algorithm

for initial token based recurring pattern detection. The algorithm lists simple

clones for each method or file, depending on the analysis level. The method level

analysis works only when method boundaries are known and simple clones are

contained within these boundaries, without straddling them. To detect higher level

recurring patterns, the clone miner applies a data mining technique that aims to

find all the groups of simple test clone structures whose instances occur in the

targeted test libraries along with their locations (like files, classes or methods).

The clone miner then normalizes the data by removing the duplicates across the

multiple instances of simple test clone sets without missing out any key

information.

The role of human perspective provided by an experienced test designer cannot

be replaced while building test libraries. Keeping this in view, the STRAT

approach streamlines this process by proposing specific improvements on top of

regular clone detection techniques as described below:

 Test Feature Identification: Test features can be classified into three kinds

based on the variations they deal with. STRAT classifies these features as

stable, compile time variations and run time variant choices. These test

features are designed and customized by both test designer and tester5.

STRAT identifies the following special considerations for each of the

stated test feature type:

o Stable Test Features: These test features usually do not change

much across testing of different SPL products or versions. These

5 Roles are mentioned in subsection “Solution Design”

152

core test assets will be incorporated into templates crafted by the

test designer. The main challenge lies in identifying binding

options for the product line variations – this will be addressed by

test clone harmonization described in sub-section “Template

Lifecycle Management Activities”.

o Compile Time Variant Test Features: Compile time variant test

features are those that are pre-processed before test execution and

vary across testing of different product lines or versions. Variants

are present in all test artefacts such as test models, test plans, and

test libraries. Also variants can be classified further into two

groups. (1) Variant Points that are configured to manage the

features under test; (2) Variant Points that manage operating

platform, evolution and vendor specific variations. Both variant

options are crafted by test designers. Testers bind the templates

with appropriate binding choices when generating test library for

a particular version or platform

 Test Functional Identification: Test clones are identified and grouped

based on the encapsulated testing activity such as test fixture, test resource

setup, test resource teardown, mock library usage, test functions and test

helper functions. Test functional identification would facilitate in making

semantic interpretation about test pre-conditions and test methods while

constructing test templates.

 Test Granularity Identification: Test clones are identified and grouped

based on the physical syntactical test clone granularity such as test

directories, test files, test methods and test code fragment. Test granularity

identification would facilitate in deciding on template structure and

hierarchy.

153

 Test Commonality/Variability Identification: Presence of test clones

indicate the presence of commonality and variability among test clone

group. The commonalities among the products will translate into

opportunities for reuse in the test artefacts. The variability among products

will determine how much testing will be needed.

 Test Domain Influence Identification: Underlying domain perspective can

be identified from test clones. This identification is essential since the

domain will influence the test execution priorities of product and

consequently dictate the test coverage.

Testing frameworks and related test libraries constructed from these testing

frameworks combine various technologies involved in the software product line.

Due to involvement of multiple technologies, the application testing logic gets

spread across multiple configuration files, test scripts and test codes thereby

resulting in the test code fragmentation problem. Hence in this step STRAT

introduces a methodology wherein the test libraries are first analysed and all

possible test clone fragments are identified and categorised in various dimensions

to facilitate systematic construction of generic templates.

Step 2: Decide Use of Templates

Second step assesses the feasibility of unifying the identified test clones using

generic adaptive test templates (GATT). As stated before, some test clones can be

treated via traditional test case design while more complex variants need template

design. As already discussed, traditional testing techniques are limited to the

expressiveness and generality offered by the underlying programming language.

Thus traditional techniques fail to fully exploit test library similarities to derive

higher reuse benefits. To address this, STRAT proposes the preparation of a

decision schema that would map the test clone types that could be handled through

traditional approach or those that require templates. In this step, testers would

154

map the identified test clones against a set of test clone types that cannot be

handled by traditional approach as an aid to justify the use of templates.

This step further decides on the choice of template unification techniques that

need to be implemented. When choosing the unification technique, we compare

corrective test clone management (i.e. using traditional test methods such as test

fixtures, test method reuse, common setup/teardown and test utility files) against

compensatory test clone management using templates. Based on the test

maintenance activity classified in chapter 4 section 4.2.1 previously, test clone

management can be further categorized as preventive, corrective, generative and

compensatory. It is generally observed that use of traditional test construction

techniques address preventive and corrective test clone management scenarios,

while STRAT approach, in addition to preventive and corrective clone

management scenarios, can be used to address generative and compensatory test

clone management scenarios.

Factors typically considered when making the decision to use template approach

are:

 Development and Verification Effort – Is the test library reconstruct-able

into templates? Does it require further exploration? How much additional

effort is required to create these templates? Does it require the introduction

of a new technology? How much verification efforts are required?

 Impact – Is it self-contained? Do the test library changes impact other

projects? Does it require changes to unrelated test files in other test

libraries? Modification to widely reused test library may have wider

impact.

 Risk –Test clone unification requires changes to existing test libraries.

What is the risk involved in modifying executable test library? Is the risk

manageable (especially when there is no additional test coverage benefit)?

155

By constructing templates for test clone repetitions of significant engineering

importance, testers are able to abstract similarities, boost reuse levels, automate

test library generation and improve development/maintenance productivity for

test libraries.

Step 3: Template Construction for Test Library

The third step focuses on designing templates that would encompass variability

and heterogeneity while still preserving the commonality. Construction and

maintenance of test clones are labour intensive tasks. This step targets such

situations by improving test clone management via use of template approach.

Template construction step involves three activities namely, test clone filtering,

test clone harvesting and actual construction of templates.

Test Clone Filtering:

This activity involves removal of false positives. A few of the test clone fragments

identified by the clone detection tool (like Clone Miner) may not be clones (i.e.,

false positive). So before constructing generic test templates, the test clones are

manually inspected for removal of false positives. STRAT recommends the use

of clone detection tool to find out all possible test clone fragments and then

subsequently extract a list of significant test clone fragments by ignoring the rest

which could be false positives. STRAT recommends adding the following filters

to accomplish this efficiently:

 Granularity: Granularity refers to the structural boundary measure of the

test clone in terms of fragment, method, file and directories. Fixing the

minimum granularity in terms of token length will guarantee that only test

clones of reasonable length are considered for further template

construction. For example, if the test designer specifies a minimum token

length of 30 all the smaller insignificant test clones gets filtered off for the

template construction.

156

 Test Clone Density: Test clone density refers to the number of test clones

that occurs in a unit measure of test library codes expressed as a

percentage. Test clone density is an indicator for focusing on more test

clone prone test libraries so that unification efforts would yield more

benefits from refactoring. For example the test designer can specify that

testing suites that have a test clone density of 40% be unified as templates.

Test Clone Harvesting:

The term ‘harvesting’ is used to describe the process by which periodically test

clones are identified and unified as a continuous activity throughout the test

libraries lifecycle rather than one single task. Test clone harvesting is guided by

domain knowledge (i.e., knowledge of domain level test similarities), test case

design and test clone knowledge. Harvesting can be done in both top-down and

bottom-up fashions. In the top-down approach, coarse grained test clone

structures are identified and broken into further manageable finer-grained test

code fragments until the entire complex structure is fully represented via simple

test clone units. In the bottom-up approach, we start from simple test clones and

build the hierarchy upwards until higher level coarsest test structures are achieved.

STRAT approach recommends the use of bottom up approach in most cases. Top

down approach would prove beneficial when harvesting is attempted with

adequate test domain expertise and is recommended as preferred approach when

an organisation has such domain expertise.

Construction and Evolution of Test Templates:

The test clone unification and template construction consists of four core activities

namely, Cataloguing, Template Unification, Repository Creation and Template

Evolution. All these activities are conducted with template artefacts and thus

explained in more detail in sub-section “Template Lifecycle Management

Activities” below.

157

Step 4: Product Specific Test Library Derivation

In software product line testing, test libraries are required to be executed for every

build of an application or product. This process is time consuming, unreliable and

inconsistent when performed manually. Test cases are executed using multiple

test data and fixtures for the same set of actions. Test libraries often involve the

use of expensive resources such as test simulators, devices, sensors and data

connections. Thus automated test library derivation strategies are essential for

effective testing. Using the STRAT approach, once generic test templates are

crafted, the tester can choose to derive specific version of test library at any given

point in time using the ART Processor. Tester would need to additionally bind the

required set of variants and configurations with appropriate variant choices. More

details are provided in test template lifecycle activities in the next sub-section.

In conclusion, the four step process described above improves productivity in

scenarios where testing templates are derived commencing from existing test

libraries. Hence in this approach existing test libraries are analysed to derive the

necessary testing templates. This is the most prevalent practice in software

product line engineering and has been dealt in this thesis. However, software

teams that have strategic reuse plan with prior project experiences in template

based test library construction may construct test libraries from scratch using

forward engineering process. For this additional inputs in the form of information

such as feature model, test-requirement traceability, commonality, and variability

may be required to be considered in the test library construction step.

6.3.6.2. Template Lifecycle Management Activities

The STRAT approach consists of a set of logically grouped activities that

contribute to the overall productivity and maintenance through the use of the

proposed adaptive composition mechanisms. In this section we elaborate the

Template Creation step described in previous section 4.1.3. The template lifecycle

158

consists of four core activities namely Cataloguing, Template Unification,

Repository Creation and Template Evolution (shown in Figure 6-23).

Figure 6-23 Generic Adaptive Test Template Lifecycle Activities

Cataloguing

This activity consists of two tasks, namely Identify and Analyse. Identification of

test clones in test libraries can be made using a combination of techniques and is

performed in the ‘Identify’ task of the cataloguing step. The tester may first use

clone detection tools like CCFinder or Clone Miner to prepare a list of test

clones. Since the test designers are the creators of test libraries that contain the

test clones, their prior knowledge may also be used to draw out the test clone list.

In addition, since test clones can be caused by domain, design or feature

variations, the identification task may involve manual inspection to apply domain

specific knowledge. Hence identification of test clones can be driven from the

domain/design perspective or by harvesting existing test clones. The second task

159

namely ‘Analyse’ involves categorization of test clones to yield systematic

cataloguing. This would include measuring test clones based on size, priority,

granularity and other taxonomy. In summary, the cataloguing activity

encompasses identification and analysis which is followed by filtering and

prioritization.

Template Unification:

This activity consists of three tasks in sequence namely, Decide (GATT or

traditional), harmonize and apply.

Decide Task:

The first task in this activity starts with a weighted decision which would help

recommend if the use of templates over traditional test scripts is appropriate.

Factors considered to make this decision include intangible parameters such as

business priority, estimation of effort required to create templates, impact of

templates in maintenance and evolution, assessment of risks of switching to

templates (in the case of operational test libraries) and other trade-offs.

Harmonize Task:

Test clone unification into adaptive templates first requires harmonization.

Harmonization refers to reduction of accidental complexity. Examples of

accidental complexities include: removal of unintentional variations, reduction in

variant points, adjusting whitespace and reordering statements. In the

‘Harmonize’ task, the test designers can select similar test cases or test clones,

isolate their common and variant parts, and apply ART constructs to build test

templates accordingly. The unification schemes previously listed and illustrated

in sub-section “The STRAT Process” would be used in this task.

Apply Task:

160

Once harmonized, templates are constructed by applying ART constructs in the

‘Apply’ task of the unification process. This task includes creating new templates

as well as managing exiting templates. The template file hierarchy can be

decomposed as: specification files, adaptive template files and variant fragments.

The test designer constructs templates by decomposing original test clones into

tiny fragments or files depending on the variant management strategy adopted.

Finally the composed template hierarchy is normalised to remove any duplicate

template fragments or files. An example of such template hierarchy is shown in

Figure 6-24, illustrating a composition of one specification template file, two

template files and two template fragments.

Figure 6-24 Template Hierarchy Example

In summary, template unification requires performing the following key steps:

1) Decide on usage of reuse approach based on test templates to refactor

exiting or create new test libraries.

2) Harmonization of templates which include selection of template hierarchy

and variant point decisions.

3) Application of templates which consists of:

161

a. Construction: Conduct an iterative style template construction

process. The templates files are arranged in hierarchy mentioned

previously:

i. Create the master specification test template catering for

global variants and binding choices managing the whole

test library alongside output directory descriptions.

ii. Implement multiple template files and frames

incrementally depending on the size, priority, granularity

and other taxonomy. Usually the original test library is

chosen and converted into template files and fragments.

iii. Unify test clone groups by provisioning for commonality

and variability representation.

iv. Use mark-up mechanisms that define extension points

inside test templates.

v. Review for duplicates and normalise the templates.

b. Verification: Verify the ART processor output with original test

library to look for lossless translation.

c. Debug: In case the translation is defective, troubleshoot the

affected templates.

d. Optimization: Carryout optimization and improvements on the

constructed set of template files and fragments iteratively.

e. Further Iterations: Depending on the progress and objective the

template are further improved in subsequent iterations.

162

Repository Creation

In this activity two repositories are created one for templates (GATT) and the

second to host the core and template generated test libraries. The use of templates

allows testers to store core assets into a common test case library repository. Test

developers browse existing test templates to grasp the overall similarity situation

(Figure 6-25) and narrow selectively to specific templates with the view to

understanding the exact nature of similarity and differences in a given group of

test cases.

Figure 6-25 Template Repositories

The format of template storage and configuration management are crucial for the

sustenance and success of the STRAT approach. The templates can be stored on

the same source repository as that of the application code. The template files (SPC

and ART) are text format files so that they are non-intrusive to the run-time

hierarchy of test library and subsequent test execution runs. Generally template

files are managed as a separate module and are not mixed with the existing test

library codes; refer (Figure 6-25). Being a product line the test templates are

treated as core assets necessitating the test team to establish individual

configuration/workspace management procedures. Further STRAT recommends

that the test templates are to be base-lined and necessary multiple asset evolution

paths need to be designed and implemented.

163

Template Evolution

Improvements and evolution of the harvested generic adaptive test templates are

the only way we can sustain the quality of the overall test library. STRAT

recommends the following practices to be inculcated in the ‘Template Evolution’

activity:

 Matching the template construction closely to the core design and domain

specialization in order to make the solution easier and concise.

 Making conscious efforts to curtail the depth of template trees and

organizing the templates into logical manageable groups so as to ensure

that the evolution becomes more comprehensible.

 Carrying out regular improvements on variability and variant choices

management with a view to preserving the generality (generic nature) and

correctness of template representation is sustained.

 Harvesting of test clones periodically and standardizing the unification

procedures to ease maintenance activities in the long run.

 STRAT recognises that while the core technological solution for

addressing the test clone redundancy problem is the design and

implementation of GATT, to derive the full benefits of template-based

approach organisations would need a life cycle management strategy.

With this in view, this thesis has come up with a proposal for Life Cycle

Management approach as presented in this section.

6.4. Addressing SPLT Challenges using STRAT approach

In a software product line testing context, the presence of multiple layers and

variability results in: (1) voluminous growth in test libraries, (2) presence of

greater redundancies in the form of test clones, (3) heterogeneous nature of test

artefacts and (4) challenges to the inevitable need for scalability. STRAT attempts

164

to address these issues. This section illustrates how the STRAT approach counters

each above mentioned challenges.

6.4.1. Countering Voluminous Growth

Voluminous growth of test libraries occurs due to the need to test combinatorial

explosion of feature and variant combinations. While features are domain and

application dependent, variant parameters are more product line and technology

dependent. There are two means to counter this explosion. One way is to restrict

test case design only to legally permissible combinations of features and variants.

The other possibility is to exploit the similarity among test cases for different

product variants. Generic adaptive test templates provision for both means of

countering using a versatile adaptive reusable technique as could be seen from the

above derivation. Thus the use of STRAT fosters construction of moderated

templates.

6.4.2. Countering Redundancy

The second key challenge posed by SPLT variability is redundancy. If test

libraries are not well-designed, redundancy builds up over a period of time and

makes test case library maintenance difficult. A systematic and holistic reuse

approach provides a significant opportunity to counter redundancy. As

mentioned, STRAT approach uses templates as a formal mechanism to implement

effective reuse through unifying the similar code fragments into a single template

file. As can be seen from the proposed template structure derived above, the

template offers necessary encapsulation and extension which are key concerns in

software product lines. Thus the approach formalizes, preserves, and reuses the

domain design accumulated within test libraries in a clone free (or clone

minimised) format.

165

6.4.3. Managing Heterogeneity

With constant changes in computing platforms prevalent in software product

lines, technology has become more inclusive by managing polyglot of

programming languages and heterogeneous platform configurations. Thus, in

order to meet adaptability to software product lines, one of the key requirements

for the approach proposed in STRAT is to ensure seamless integration of language

specific test libraries, platforms, and external libraries in a tool neutral way. This

is possible only if the solution can function as a logical unit separate from the

original test library repository. The principle of design generality advocates

the importance of designing software that is free from unnatural restrictions and

limitations[103, 104]. The STRAT approach meets all of these factors through

designing a separate meta-layer to handle heterogeneous environment.

6.4.4. Improving Scalability

Software product lines evolve very rapidly and hence require scalability not only

in the software product designs but also in testing solution designs. In addition,

typical SPL test libraries are also large. To ensure test library scalability, STRAT

offers primitive building blocks which are supplemented by compile time

generators that can compose these blocks to yield the necessary test libraries. The

template structure (GATT) derived in the proposed STRAT approach scale very

well in a controlled hierarchy. The hierarchy naturally forms tree structures and

thus easily scales well to large scale test libraries. Thus templates are organically

grown to expand as scalable clusters.

Thus, in summary STRAT approach palliates the major shortcomings inherent in

SPL testing:

i. By supporting heterogeneity through its ability to include multiple

programming languages, platforms and configuration script formats.

ii. By improving scalability using a bottom up tree hierarchical organization

of template.

166

iii. By countering redundancies and unifying them as appropriate template

constructs.

iv. By curtailing volume through limiting the legally permissible feature

combinations without loss of precision.

6.5. Benefits of the Approach in SPL Testing Context

Existing software product line test construction approaches handle variants at

programming language level. These mechanisms are simple, cost-effective and

work well as long as the numbers of variant features differentiating the products

are small. In recent smart phone based computing landscape, test libraries are

complex and cannot be dealt using the old singular homogenous variant

management techniques. Product line configuration and customization is complex

and handled through parameterization of variant point at different stages such as

requirements, domain engineering and design, coding, and testing.

It was not our goal to contribute anything towards generic design, instead we used

ART that has good record in other applications. From the studies conducted on

Android platform, there are three prominent findings unique regarding test

libraries. (1) Test libraries have higher percentages of redundancies in comparison

to normal code owing to the fact that multiple test cases are being built around

same component for better test coverage. (2) Android Test libraries use polyglot

of programming languages as the mobile platform is composed of heterogeneous

integrated. (3) Test libraries related to UI components exhibit higher redundancies

resulting from the similarities among the UI components in terms of graphic type,

events designed, activities triggered, fixture setup/teardown and listener actions.

The STRAT approach proposed in this thesis implements "generic test case

templates" that can counter test case explosion problem using a heterogeneous

variability management technique. The novelty of the proposed approach is that

the generative technique is programming language and platform independent. In

addition, the ART based approach can manage variations, preserve commonality

167

and propagate changes across versions of test library repositories. Key benefits of

the proposed approach are summarised below:

 SPLT deals with large voluminous test libraries. First and foremost benefit

of the proposed approach is that mixed strategies can handle combinatorial

explosion. These wide input spaces of testing that usually result in

combinatorial explosion are curtailed by ART template based approach.

STRAT constrains testing space to only possible variant combinations,

tracts and preserves the code-test case relationships inside specific meta-

generative frames.

 In product line engineering, variant points and relevant binding cause

major source of errors. With larger amount of variants, the complexity

increases and exhaustively testing all variants in a core component prior

to product assembling is practically infeasible. In this context STRAT

fosters planned reuse and aims at validating only permissible variant

combination, thereby minimize testing efforts and increasing the overall

productivity.

 SPL test libraries comprise of heterogeneous assets with various levels of

testing (unit, integration, system, and acceptance), various test artefacts

(code, configurations and scripts) and various testing strategies (white box

and black box testing). Adding to the above mentioned benefits, the

STRAT approach being a meta-generative technique provides a

systematic scalable means to handle heterogeneous test assets.

The core contribution of this research work is in the simplification that is derived

from achieving non-redundancy in terms of reduction in both the size of test

libraries and its conceptual complexity. An evaluation of some of these stated

benefits and trade-offs has been performed which would be presented with a case

example in the next chapter.

168

6.6. Limitations

Despite the key benefits rendered by the proposed approach, currently the STRAT

approach exhibits some known limitations. The following list describes a few

such limitations along with possible suggestions to address these.

 The proposed approach is useful for situations where the time required to

abstract out the variability is more than compensated for by the time that

would be required to create and manage individual occurrences of a test

clone pattern. STRAT is not an “all-win” approach, hence it is essential to

apply quantitate and qualitative evaluation of the results using control

experiments, productivity metrics comparison and analytical arguments

before deciding to use test template approach.

 The proposed STRAT approach requires that a complete test library be

developed and then decomposed into the appropriate template chunks,

categorizing these into regions of commonality. Then a set of template

fragment pieces for each variant needs to be devised. The variant pieces

can be produced as and when needed or produced up front for later use.

Generation test libraries requires more planning and initial effort than

simply constructing a test library directly. This additional effort for

template construction is expected to be offset through a reduction in effort

for testing subsequent products and release versions if a proper

implementation strategy is used.

 Though the GATT structures are organized into template hierarchy of

specification and template files, the test designer will have a learning

curve to create and manage two layers of artefacts inside the test assets.

While an initial disciplining and learning effort is incurred, it pays off

when the test library scales and evolves.

169

 The proposed approach is yet to be ready for massive industry adoption.

Integration with existing tools, a focused template editor and clone

detector tools of industry standards are possible extensions.

6.7. Chapter Conclusions

In summary, the proposed approach provides a compile-time based test asset

maintenance model for large scale test libraries. In the context of this thesis, the

term "compile-time" refers to test library construction/selection phase. The

template based derivation provides standardized processes to perform test

activities in a product line that makes test routines consistently common across

multiple applications/products. Thus the use of STRAT approach yields the

following:

 Saves time in creating new extensions to existing test libraries (tester need

not reinvent the wheel).

 Provides variability breakpoint facilities using the versatile generic

adaptive test templates for test library evolution.

 Simplifies the process for changing common test codes without the need

for multiple modifications or re-linking.

 Facilitates management of sticky change repercussions on template based

test library since the proposed technique is easier than using traditional

testing techniques.

 Curtails explosion of redundant test clones thereby promoting reuse in test

libraries.

 Improves the selection and customization of baseline test libraries making

the processes formalized, automated and productive.

170

It would be of research interest to demonstrate and assess the benefits resulting

from the STRAT approach proposed here as a logical research follow up. In the

next chapter a practical example using a test library selected from Android

Platform OS is taken up with the view to rebuilding the library using generic

adaptive test templates and to make some experimental assessments of the

benefits derived.

171

CHAPTER 7

Case Study: Generic Adaptive Test Templates

for BiDiTests Library

This chapter provides a case study to illustrate the STRAT approach formulated

in the previous chapter. By using the STRAT process, we derive generic adaptive

test templates using examples from a selected Android OS Platform test library.

This chapter discusses in detail the steps involved in constructing the test

templates using the STRAT approach. Subsequently the chapter presents an

experimental analysis to assess the productivity gains derived through the

template-based approach as well as to identify the constraints and trade-offs

involved. The chapter also presents the experimental outcomes on test evolution

and demonstrates the benefits of STRAT in test library maintenance using

selected metrics.

The organization of this chapter is as follows:

 Section 1 describes the purpose of this research experiment.

 Section 2 sets the context for this case study

 Section 3 describes the selection process for the case study from an

identified pool of test library projects.

 Section 4 introduces the classes and variants in BiDiTests case example.

 Section 5 describes nature of redundancies present in BiDiTests and their

GATT representations.

 Section 6 describes how the templates (GATT) are constructed for

BiDiTests test library.

 Section 7 performs details experimental evaluation for the case study and

reports on details of productivity measurements observed.

 Section 8 presents some possible adaptations of the template-based

approach to other areas.

 Section 9 concludes this chapter.

172

7.1. Purpose

Software product line engineering offers a plethora of variability techniques and

strategies for core and product-based code maintenance; but offers little guidance

for test libraries resulting in significant test case redundancies and lack of

scalability. Thus the key challenge in SPL testing is to achieve reuse. The

proposed STRAT approach targets this by introducing a template-based approach

that effectively manages test library commonality and variability.

To assess the effectiveness of the proposed approach we present a case study. The

purpose of this case study is to:

1) Demonstrate the STRAT approach using an illustrative example and

develop generic adaptive test templates for the test libraries in the chosen

example.

2) Use the developed templates to generate test library and demonstrate

lossless translation of test libraries is achieved using the proposed generic

adaptive test template structure.

3) Compare the GATT based test libraries source codes with the original for

the purpose of establishing the benefits derived using STRAT approach

Thus the aim of this case study is to provide a concrete step-wise illustration of

the STRAT approach regarding how the previously identified redundant test clone

groups are systematically unified into generic adaptive test templates. The

illustrative example also helps in providing additional contextual interpretations,

refinements related to evolutionary changes, tactics for change propagation

visibility and assistance for managing multiple version releases.

7.2. Context

Android is the leading open source platform for mobile computing and it promotes

component architecture. The popularity of android devices increases the need for

173

testing that assures robust and reliable software stack. Android software stack can

be further subdivided into five layers: Linux kernel, native libraries, platform

framework, runtime and applications. Being an emergent platform facing rapid

development, new major releases are delivered frequently (at least once every few

months). This enormous growth necessitates sustainable and repeatable

automation efforts towards test library maintenance aspects. This research work

focuses on a test library example that performs testing of the platform framework

layer. The platform framework layer is an important component as it comprises

of the key Android product line core assets. The platform layer provides

abstractions for the underlying native libraries and kernel. Testing this layer

involves several constraints and challenges, and hence is an ideal candidate for

experiment and research evaluation.

7.3. Selection of Case Study

The main aim of this example is to investigate if the proposed STRAT approach

produces test libraries that are easier to manage and evolve in comparison to

traditional techniques. Thus, for this illustrative example, we use the “one factor

with two treatments” research design technique[76] . In the context of our case

study, the factor under investigation is the test library while the two treatments

investigated are the traditional techniques and the new STRAT approach. To

make a comprehensive, practical and unbiased comparison between the two

techniques, a structured mechanism to select a truly representative candidate is

necessary. For the selection of the candidate Test Library we used a methodical

process following the well accepted “balanced design principles”[139] which

consists of the following steps:

 Identifying Sample Space: This step involves defining the sample space

from which the candidate would be selected. In our case we commenced

from a universal set of 500 Android test libraries to arrive at a sample

space of 40 projects using the process explained in subsequent sections.

174

 Selection Criteria: This step identifies the key selection criteria that

characterize an ideal representation of the research subject. In our study,

the focus is to select a candidate that would comprehensively illustrate all

facets of the STRAT approach. The selection criteria must also include

factors that would help to measure the productivity changes in terms of

reusability and maintainability metrics that were previously defined in

chapter 5.

 Methodology: This step involves the design, implementation and

execution of a systematic selection method. In our case, during this step

we consistently evaluate all identified test library project candidates. The

selection methodology formulates steps related to qualifying potential

candidates (test library projects) and judging its fitness against defined

selection criteria.

 Selection: Final selection involves the identifying of one typical

candidate. In our study this step yielded a smaller set of test projects that

pass the fitness judgment and eventually we narrowed to “BiDiTests” as

the ideal candidate for the illustrative example that would best meet all

criteria as well as help focus on comparing the two approaches.

A detailed discussion on how we applied the above steps in the Android platform

and how we arrived at the BiDiTests as the candidate case example is

described in detail in the following sub sections.

7.3.1. Identifying Sample Space

The empirical study presented in Chapter 4 has established presence of

redundancies in Android test libraries. Android (universal set) software stack is

logically grouped as kernel, tools, devices, accessories and platform. Here the

platform group consists of the commonly used features (core assets) across all

Android devices and is divided into further sub-groups such as Dalvik virtual

175

machine, external libraries, framework, hardware, packages, SDK (software

development kit), system and tools. The framework subproject has all types of

test libraries (e.g., unit, integration, and UI test libraries) and we decided to

conduct the Chapter 4 study on test libraries redundancies using platform group

and framework sub-group. But this selection comprises of more than 500 types of

test libraries. Since we are more interested in generic core assets, we narrowed

our search to the test libraries in base repository of framework comprising of 40

test projects.

These 40 projects have mixed representations from unit, integration and UI test

cases. Unit test libraries verify an Activity in isolation using the

ActivityUnitTestCase class. Unit test cases for this context allow

verification of layout of the activity and also to check if intents are triggered as

planned. Integration tests verify interaction with different components. The

communication with the Android infrastructure is done via the

Instrumentation class which can be accessed via the

getInstrumentation() method. UI testing ensures that the platform

returns the correct UI output in response to a sequence of user actions on a device,

such as entering keyboard input or pressing toolbars, menus, dialogs, images, and

other UI controls. From this chosen sample space of 40 projects, we intend to pick

a representative archetype test library to illustrate the STRAT approach alongside

practical considerations involved in the iterative construction of generic adaptive

test templates (GATT).

7.3.2. Selection Criteria for an Ideal Test Library (Illustrative

Example)

In order to better utilize the effort spent, it is important to ensure that the selected

example satisfies both the intent for template construction and also facilitate

comparison against traditional techniques. To ensure such characteristic matching

176

to be used in a scientific selection process, the criteria that an ideal case example

should satisfy was first defined.

In test library context, the selection criteria must be representative of the

underlying similarity and granularity expressed as test clones. Such test clones

could be both structural and semantic. Identifying semantic similarity in a non-

deterministic research problem has been excluded from the scope of our study

since detecting true semantic similarity is undecidable problem. Even in the case

of generic and structural test clone, certain parameters require domain knowledge

and outcomes cannot be measured in clear quantitative terms (e.g., intangible

benefits). Test libraries/cases that have such parameters were excluded. The

selection process adopted in this research uses criteria based on the test clone

taxonomy discussed previously in Chapter 5 and the relevant definitions are

briefly recalled here for reference:

 Test Clone Type: Test clones can be of general, structural or sematic types.

This thesis restricts itself to general and structural test clones. Based on

these two types of test clones we can further describe the test clone type

as one of the following:

o Simple Test Clones: Exact Test Clones, Renamed Test Clones,

Parameterized Test Clones, Near Miss Test Clones, Gapped Test

Clones and Non Contiguous Test Clones

o Structural Test Clones: Simple Structural Test Clones, Functional

Test Clones and Design Level Structural Test Clones

 Test Clone Granularity: Based on structural boundaries test clone

granularity is classified into simple, method, file and directory. Using the

clone hierarchy we can form a list of clone types that grows in granularity

from few lines of similarity to directory level similarity. The hierarchy is

listed as: Simple Test Clone Structures (granularity being fragments,

177

methods and files), Test Method Clone Structures (granularity being

methods, files and directories), and Test File Clone Structures (granularity

being files and directories).

 Test Clone File Formats: The Android test library projects comprise of

two file formats. The test codes are in Java programming language and

test configuration is presented as XML (eXtensible Markup Language)

files.

An ideal test library candidate should meet various criteria (and its subtypes) in

terms of test clone type, granularity and file formats. In summary, the ideal

candidate should meet the following criteria:

a) The chosen test library should have both general and structural test clone

examples.

b) The test clones should possess various granularity such as simple, method,

file and directory.

c) Test clone files formats should comprise of both java and xml.

7.3.3. Selection Methodology

Selection of the ideal example (test library) is a crucial step in this research, since

the selection is closely connected to the generalization of the results by comparing

STRAT approach with the traditional techniques. In order to generalize the results

to test libraries in general, the example must be representative of an archetype of

typical test library. The size of the test library also impacts the results when

generalizing. The use of a larger test library ensures results are more

representative by minimizing errors in interpretation the results with limited data.

Thus the selection methodology must be based on purposive sampling and not a

random choice. The selection methodology we use has three key stages, guided

178

by generic research design principles as suggested by [155]. The key steps in the

selection methodology are purposive sampling, filtering and balancing.

 Purposive Sampling: A purposive sample is a judgmental sample that is

selected based on the knowledge of the test project’s fitness against a

defined set of selection criteria and the purpose of the research. In this case

study, the test library selection is based only on similarity perspective and

not on any other parameters. To meet this requirement we use purposive

sampling. The selection of test library (research subject) will thus be

representative of various types of test clone redundancies.

 Filtering: The test libraries used in this case example have different types

of test case redundancies. Some of these can be solved (treated) using

traditional testing techniques. Since the effect and reuse treatment of such

generic test clones is known, filtering is used to exclude samples that can

be treated through traditional techniques.

 Balancing: Selecting a test library that has significant numbers of all clone

types would yield an experimental design which would ensure unbiased

interpretation of results. Balancing is desirable because it strengthens the

statistical analysis of the case study. We adopted a selection methodology

that uses balancing by selecting a test library that comprises of test clones

spread across all categories and reasonably present in equal proportions.

The resulting candidate test library is expected to be typical, revelatory and be

illustrative of the STRAT approach. The selected example serves as descriptive

instance for reconstructing a test library using templates by introducing the reuse

concepts and variability management techniques relevant to test libraries.

7.3.4. Selection from Android Platform Test Repository

Mobile computing functions amidst constraints such as low-powered-CPU, small-

memory, limited display area and power supply. These constraints demand well

179

established, matured testing tools and techniques. The Android testing platform

is an automated regression test library repository that facilitates special test

instruments targeting peripheral devices, special sensors, graphics, geo-location,

communication protocols and other media. The selected sample of forty test

library projects is used in testing the Android platform UI facilities. This package

was chosen because the test cases are system testing representative of typical

black box strategy based test libraries and not specific to the operating or coding

platform. The projects we selected as candidates for investigation are being

presented as a feature diagram below.

Figure 7-1 Android Platform Framework test libraries as a Feature Model

As can be observed, the main classification among the test libraries are based on

the features named core, security, performance, networking, memory, battery,

sensors and UI related test libraries. The core library deals with tests related to

core platform functionalities, instrument setup, application launchers, internet

connectivity and smoke tests. Security test libraries verify SSL (secured socket

layer) and user certificate permissions. Network test libraries focus on internet

bandwidth settings and chat related protocols. Memory related platform

functionalities are tested against usage, storage, backup and rendering abilities.

180

Sensors based test libraries deal with verification of location, text-to-speech,

display, device vibrations and other hardware devices. Battery test libraries

checks for wastage, consumption and display status correlation. UI test libraries

are system test libraries dealing with layout, display orientation, touch sensitivity,

rendering facilities and other UI related activities.

A systematic sampling of significant test clone groups occurring in each of the

forty test library projects are given in Table 5. All the test projects from the sample

have been grouped and listed as rows while test clone similarity measurement are

provided in columns depicting Simple Test Clone Classes (STCC), Simple Test

Clone Structures (STCS), Test Method Clone Classes (TMCC), Test Method

Clone Structures (TMCS), Test File Clone Classes (TFCC), Test File Clone

Structures (TFCS) and Test Directory Clone Classes (TDCC). Though simple

clones are identified using the Clone Miner tool, manual inspection was used for

higher level test clone structures identification and analysis. The latter columns

of the table listing sophisticated structural test clones are more meaningful in the

context of refactoring into templates and are discussed in detail with respect to

BiDiTests Project test libraries.

181

Table 5 Test Clone Analysis for Android’s Core Test Library Projects

Group

P
r
o
je

c
t

J
a
v
a
 F

il
e
s

P
r
o
je

c
t

D
ir

e
c
to

r
ie

s

T
o
ta

l
L

in
e
s

O
f

C
o
d

e
(T

L
O

C
)

E
x
e
c
u

ta
b

le
 L

in
e
s

O
f

C
o
d

e
(E

L
O

C
)

T
o
ta

l
M

e
th

o
d

s

S
T

C
C

S
T

C
C

 I
n

st
a
n

c
e
s

T
M

C
C

S
T

C
C

 F
il

e
s

S
T

C
S

 F
il

es

T
M

C
C

 T
M

C
S

F
il

e
s

T
F

C
C

 T
F

C
S

F
il

e
s

T
D

C
C

 F
il

e
s

%
C

lo
n

e
 F

il
e
s

Core

 App Launch 1 6 352 279 11 0 0 0 0 0 0 0 0 0%

 backup 2 5 173 120 1 0 0 0 0 0 0 0 0 0%

 Browser Test Plugin 7 9 893 499 1 0 0 0 0 0 0 0 0 0%

 Compatibility 2 5 283 160 8 0 0 0 0 0 0 0 0 0%

 Core Tests 16 3 6372 4045 193 40 101 42 5 2 5 0 12 75%

 Data Idle Test 1 6 150 91 5 0 0 0 0 0 0 0 0 0%

 Shared Library 4 19 328 194 5 0 0 0 0 0 0 0 0 0%

 Smoke Test 3 10 217 121 21 1 3 1 1 0 0 0 1 33%

 Smoke Test Apps 3 6 168 94 1 3 3 3 3 0 0 0 3 100%

 Web View Tests 9 7 2529 1696 187 38 149 30 1 0 3 0 4 44%

Memory

 Dump Render Tree 19 9 4791 3523 263 13 30 24 7 4 3 0 14 74%

 24 14 5731 3896 313 19 41 26 13 5 1 0 19 79%

 Huge Backup 2 8 639 357 10 0 0 0 0 0 0 0 0 0%

 Large Asset Test 1 9 211 141 4 0 0 0 0 0 0 0 0 0%

 Lots Of Apps 1 7 734 713 1 0 0 0 0 0 0 0 0 0%

 Low Storage Test 1 8 242 188 5 1 2 2 1 0 0 0 1 100%

 Memory Usage 2 6 338 240 15 1 2 2 1 0 0 0 1 50%

Network
 Bandwidth Tests 2 9 323 230 9 1 2 2 1 0 0 0 1 50%

 Serial Chat 1 7 244 189 7 0 0 0 0 0 0 0 0 0%

Performance Performance 9 13 3521 2991 162 15 39 27 2 0 0 0 2 22%

Power

 Battery Waster 1 8 306 238 12 1 2 2 1 0 0 0 1 100%

 Browser Power Test 3 5 452 323 26 0 0 0 1 1 0 0 2 67%

 Status Bar 4 12 1764 1559 4 0 0 0 0 0 0 0 0 0%

Security
 permission 6 7 1062 719 33 47 183 22 3 1 0 1 5 83%

 ssl Load 1 5 138 100 4 0 0 0 0 0 0 0 0 0%

Memory

 Dpi Test 2 28 718 539 16 2 4 4 1 1 0 0 2 100%

 Fix Vibrate Setting 1 10 212 161 8 0 0 0 0 0 0 0 0 0%

 Hw Acceleration Test 87 14 8162 5861 397 66 182 102 58 14 0 0 72 83%

 Location Tracker 11 11 1815 1138 92 1 2 1 1 1 0 0 2 18%

 Tts Tests 3 6 412 259 21 1 2 1 1 0 0 0 1 33%

User

Interface

 Activity Tests 6 11 198 159 22 17 56 1 1 0 0 0 1 17%

 Assistant 1 14 174 122 1 0 0 0 0 0 0 0 0 0%

 app widgets 5 23 720 507 22 2 4 2 2 0 0 0 2 40%

 BiDi Tests 41 10 6733 5325 59 6 14 12 7 15 2 5 29 74%

 Canvas Compare 8 10 1822 1460 105 3 11 4 2 2 1 0 5 63%

 Grid Layout Test 11 9 762 472 21 3 7 7 4 2 0 0 6 55%

 Imf Test 31 15 2597 1473 74 10 24 13 13 6 4 3 26 84%

 Render Script Tests 83 93 5648 3904 630 100 273 148 56 15 4 4 79 95%

 Tile Benchmark 6 11 1422 1109 76 5 12 10 3 0 0 0 3 50%

 touchlag 1 1 295 240 0 0 0 0 0 0 0 0 0 0%

 Transform Test 1 10 239 179 11 0 0 0 0 0 0 0 0 0%

 Total 421 479 63890 45614 2856 396 1148 488 189 69 23 13 294 16

182

Using the selection methodology steps stated earlier (i.e., sampling, filtering and

balancing), we arrived at the BiDiTests project as the representative candidate

for this research case study.

 Using purposeful sampling we chose forty projects and at this step all were

considered and given equal chance to participate in the experiment.

 Using the filtering step the test clones were colonized into general and

structural test clone types.

 Using the balancing principle, only those projects containing samples

from all clone types were selected.

Thus the choices were limited to (1) lmfTests (2) BiDiTests and (3)

RendererScriptTests. After detailed analysis of forty system testing

projects in Android platform test libraries, we selected the BiDiTests Project

because of larger size 5325 ELOC (41 Java test files and relevant 37 XML

configuration files), presence of similarities are various granularity (at test code,

method and file levels) and being representative of various types of redundancies

(generic and structural test clones).

7.4. Introduction to ‘BiDiTests’ Test Library

The BiDiTests project represents a typical system test library, an archetype of

traditional user interface (UI) testing in smart phone platform. Information from

the developer forum, API documentation and GIT repository version details were

used to understand the underlying domain and maintenance aspects across

subsequent release version. This information was later used to measure change

requests related metrics.

BiDiTests Library comprises of UI based functional test cases designed to test

the bi-directional layout of the device screen orientation using a black box

approach. BiDiTests has both Java and XML based test codes. These test cases

183

validate the bidirectional functioning of selected View, Widget and Fragment

UI that are part of the System API. View class is the basic building block for UI

components. View occupies a rectangular area on the screen and is responsible

for drawing and event handling. View is the base class for Widgets, which are

used to create interactive UI components (buttons, text fields, etc.). A

Fragment is a self-contained component with its own UI and lifecycle; it can

be-reused in different parts of an application’s user interface depending on the

desired UI flow for a particular device or screen. Test classes in BiDiTests

project create test components using the three UI (View, Widget and

Fragment) on various layout settings to test the left-to-right and right-to-left

orientations of the UI components. A layout defines the visual structure for a user

interface, such as the UI for an activity or widget. Figure 7-2 shows the

participating class names of the BiDiTests project under the TableLayout.

Each test layer focuses on verifying a particular combination of feature variants

(graphic type, sub-type and orientation). The class hierarchies for other types of

layout namely LinearLayout, FrameLayout, GridLayout, and

RelativeLayout are similar to TableLayout.

The project defines different types of layouts explained earlier using XML

vocabulary. The advantage of such external declarative definition is that it enables

better separation of presentation from the platform behaviour. The external

declaration allows modification and adaptation of display orientation without

having to modify source code or recompile codes. BiDiTests project thus

creates XML layouts for different screen orientations, different device screen

sizes, and different languages. Additionally, the test scripts also verify proper

visualization of the UI components structure.

184

Figure 7-2 BiDiTests Partial Class Diagram

BiDiTests Libraries include tests for three types of graphical entities namely,

layout, view and gallery. Each entity has unique properties such as size, colour,

appearance, position, visibility and other behavioural properties associated. The

test cases related to each graphical entity exhibits a similar/standardized structure

in terms test fixtures, test data setups, tear downs, events and action lifecycle

testing methods. Analysing from the class hierarchy and feature based testing

perspective, BiDiTests classes have three levels (as shown earlier in Figure

7-2).

1) At the top level, testing focuses on graphical type. Canvas is the basic

UI entity because all other graphical entities are added on top of canvas.

Apart from canvas, there are Activity files, utility and constants

classes. The Activity initializes the logical test suite and executes all

other test case classes.

2) Analysis of the second level reveals that Canvas is further divided into

sub-types (example: various layouts) or specialties (example: text view is

a special type of view). For instance, let us consider the subtype Layout

which figures in the UI test. Layout is further divided into five subtypes

185

namely, frame, grid, linear, relative and table. In a graphical

scenario, the entity named View is further sub-classed into TextView

(specialty). Test attributes related to the normal view are not sufficient to

describe the special attributes for text view. Thus additional set of tests are

designed to cater for text view.

3) At the third level, each graphical entity has to be tested for various

orientations namely, left-to-right (ltr), right-to-left (rtl)

and locale. To provide an example consider a graphical entity Layout

and subtype Table with three orientations (classes

BiDTestTableLayoutLtr, BiDTestTableLayoutRtl and

BiDTestTableLayoutLocale shown in Figure 7-2). Let us

consider few more such examples. The test file named

BiDiTestRelativeLayoutRtl.java tests the graphic canvas for

relative layout and right-to-left orientation.

BiDiTestTextViewLtr.java would test the graphic canvas for

Text View UI and left-to-right orientation. Thus in the BiDiTests test files,

feature variant layers are explicitly declared in the file names in order.

7.5. Study of redundancies in ‘BiDiTests’ Test Library

This section discusses the redundancies found in the BiDiTests. According to

the test granularity defined earlier in Chapter 5, a typical test library comprises of

test codes fragments, test methods, test fixtures, test files and test directories.

The primary motive of presenting this illustrative case study is to provide an

example for GATT. In view of the large size of the solution and for illustrative

purposes we have confined ourselves to a few representative code fragments to

showcase our solution in this thesis. These examples were chosen to demonstrate

the presence of a cross-section of test clones belonging to different types namely,

simple and structural test clones. In addition to the java examples, to demonstrate

186

the heterogeneity of the proposed GATT structure we have also provided an

example where XML based test clone fragments were present.

For the scope of this case study, only test clones that have at least 30 tokens

similarity are considered (A token size of 30 is considered representative of

generic test clone patterns) [138]. This example contains 6733 TLOC (refers to

Total Lines of Code measured in physical lines including comments) and 5325

ELOC (refers to Executable Lines of Code excluding comments).

In order to provide an illustrative example on constructing a template based

solution we have chosen the Android BiDiTests project for the case study as

mentioned before. The BiDiTests project consists of test cases built using both

java codes and XML configuration files. The BiDiTests test library consists of

41 java classes and 37 XML configuration files (78 files in total) representing

about 53 test cases (file name listing is provided in Appendix C). The analysis of

the test library has revealed the presence of 83 test clones of varying sizes and test

clone types. The details of the test clones present among java files are shown in

Table 6.

Table 6 BiDiTests Test Clone Types Identified

Level
Types of test clones

found E
x

a
ct

T
es

t
C

lo
n

es

R
en

a
m

ed

T
es

t
C

lo
n

es

P
a

ra
m

et
er

iz
ed

T
es

t
C

lo
n

es

N
ea

r
M

is
s

T
es

t
C

lo
n

es

G
a

p
p

ed

T
es

t
C

lo
n

es

N
o

n
 C

o
n

ti
g
u

o
u

s

T
es

t
C

lo
n

es

S
tr

u
ct

u
ra

l

T
es

t
C

lo
n

es

F
u

n
ct

io
n

a
l

T
es

t
C

lo
n

es

D
es

ig
n

 L
ev

el

S
tr

u
ct

u
ra

l
T

C

T
o

ta
l

C
lo

n
es

Level 1

Simple Test Clones

Simple Test Clone

Codes (STCC)
4 0 0 0 2 0 - - - 6

Level 2

Structural Test Clone Fragments

Simple Test Clones

Structures (STCS)
3 2 0 0 1 0 - - - 6

Level 3
Test Method Clone

Classes (TMCC)
2 0 0 0 3 0 26 4 0 37

Level 4

Test Method Level Structural Test Clone Fragments

Test Method Clone

Structure (TMCS)
0 4 0 0 3 0 3 4 0 14

Level 5
Test File Clone

Classes (TFCC)
 4 0 0 0 0 4 - 0 8

Level 6

Test Method Level Structural Test Clone Fragments

Test File Clone

Structures (TFCS)
0 0 0 0 0 0 6 - 0 6

Level 7
Directory Test Clone

Classes (DTCC)
0 0 0 0 0 0 6 - 0 6

187

 An analysis of the java codes reveal that variability in BiDiTests test cases

are currently being handled using two approaches:

1. Test code customization using object oriented programming language

constructs and its type-free generics libraries

2. Test configuration using xml files and related dependency injection

constructs.

In spite of such implementation mechanism, we still observe test case

redundancies. The following sub-sections discuss a typical examples of test clone

types that were observed in BiDiTests test library and illustrate how GATT

construct can handle these test.

7.5.1. Simple Test Clones

Simple test clones refer to simple redundancies comprising of test code fragments

that have similarity such as test method or test fixture declaration methods. In

BiDiTests project, we focused on test code fragments that either participated

in specific roles of bidirectional display orientation testing or participated in

eventual test library modifications and evolution. In this sub-section we illustrate

a typical example of simple test clones and their equivalent GATT structures.

Consider the following piece of gapped test code fragment extracted from two

different java test files namely BitmapMeshLayerActivity.java and

BitmapMeshActivity.java as illustrated in Figure 7-3.

188

Figure 7-3 Gapped Test Clone Example

An analysis of these test clones reveal that the two classes are contiguous

segments of redundant test scripts that have intervened code portions that are not

parametric. The above example is gapped test clone pair with test codes for the

graphic components View and TextView. The test clone pair is similar in the

way they are created and tested with slight variations in properties. The cause for

duplication in the above example is the property setting variations of the graphical

component under test. This gapped test clone redundancy cannot be handled at

current programming language constructs level. Figure 7-4 illustrates the GATT

solution.

Figure 7-4 GATT Constructs for BiDiTests Simple Test Clones

189

This example illustrates that text based template fragments can easily adapt

gapped lines of test codes.

7.5.2. Structural Test Clones

Structural test clones are higher level clones that represent repeated structures,

resulting from a repetition of a high-level design or similar feature. In

BiDiTests test code fragments of duplicated test cases/suites are seen to be

present as part of a bigger replicated test library structure demonstrating the

presence of larger granularity similarities i.e., structural test clones. Locating

structural test clones in BiDiTests can help us to build significant test library

understanding, evolution, reuse, and reengineering which is paramount in an ever

evolving test library like BiDiTests.

Consider an example drawn from BiDiTests that depict non-parametric

variation in a structural test clone (Figure 7-5). Test files

BiDiTestCanvas.java and BiDiTestCanvas2.java test two

different canvas views. The variations between the test clones are being

highlighted in bold font in the figure.

Figure 7-5 GATT Construct for BiDiTests Structural Test Clones

190

The study of BidiTests reveals the presence of structural clones due to variations

occur in variable names, method names, class name or API calls. In addition

several structural clones in BiDiTests are as also due to the extra or missing

test code fragments between similar program structures. Not all of these can be

handled through traditional means. Such structural test clones are reconstructed

using GATT constructs using BiDiTestCanvas.art template files.

7.5.3. Heterogeneous Test Clones

The heterogeneous test clone example discussed here is of non-type variation is

expressed partially in code (Java) and partially in configuration (XML). To create

and use similar UI entities, different testers create different test data structures.

Consider the heterogeneous test clone group (textview_rtl.xml,

textview_ltr, textview_locale.xml,

textviewdrawables_rtl.xml, BiDiTestView.java,

BiDiTestViewDrawText.java & textviewdrawables_ltr.xml)

consisting of codes that verifies a View graphic item and layout. It is possible

that the codes were handled by more than one tester in the BiDiTests team and

one tester has chosen to define text size as int while another tester chose float.

In addition, we also observe that the test codes differ in the way variables are

scoped and memory managed (final and static). In such non-type based

variant situations, java generics are inadequate. Defining a template using the

available Java <T> syntax for such diverse layout values is not possible. Since

such kind of clones cannot be unified using traditional techniques because the

variations cannot be expressed as user defined object type or a primitive/Wrapper

types, the testers appear to have no option but to create duplicates in the form of

clones in this situation.

191

Figure 7-6 GATT Construct for BiDiTests Heterogeneous Test Clones

The GATT solution for this structural test clone example was constructed as

shown in Figure 7-6. The figure show relevant skeletal code fragments for the

structural clones (BiDiTextView.art and XML_textview.art).

7.5.4. Other Variations

Although type variations in test code fragments are the ideal targets for reuse

using generics, the limitations of conventional template implementations (i.e.,

limitation in java generic implementation in this case example) usually hinders

even in ideal situations. Three such limitations which apply to BiDiTests due

to its implementation platform (namely Java) are described below.

 For example, generic parameterization using primitive types (int,

short, long, double, etc.) is not allowed in Java. This is a restriction

imposed by Java type system. We can get around this problem by

replacing primitive types with corresponding wrapper types (Integer,

Short, Long, Double, etc.).

192

 Another tricky situation arises in situations where test cases make

invocation to methods that perform similar functions. The code structure

and exceptions are thus redundant. As a result, there are numerous try-

catch block redundancies found in BiDiTests.

 Test cases are usually run by a test runner class that loads the test class by

setting up the required set of data or fixtures, executes the test and finally

tears down each test.

In the light of the above stated situations and examples we notice that the

traditional testing approaches are inadequate to handle test clone redundancy and

variability management in totality. Most of the techniques are restricted by factors

such as expressiveness, type management and data structure management of the

underlying programming language. This motivates us to apply the STRAT

approach on top of existing test libraries for addressing this issue of variability

management and reduction of redundancy.

7.5.5. Possible Causes for test clones in BiDiTests

In this section we identify some possible causes that could have led to the presence

of test clones in BiDiTests. It is difficult to identify all the root causes for test

clone occurrences in the Android platform test libraries. There could be myriad

of reasons for the root causes ranging from lack of testing skills to presence of

bad test smells in the test libraries. Since BiDiTests is a smaller base of test

classes all root causes for test clones can be thoroughly analysed for the

BiDiTests. Such analysis would provide an understanding of the nature of

redundancies that needs to be tackled by test templates later on. In BiDiTests

project context, complexity arises from the fact that testing involves crafting test

cases for testing of different combinations of feature variants in relation to

bidirectional display orientations. Some reasons are:

193

 Similarities among various orientations, i.e., left-to-right, right-to-left and

layout orientation features result in test clones in the related test cases.

 Similarities among the five types of layouts causes similarity among the

test cases created to test these layout’s common and varying graphical

properties, causing test clones.

 Similarities among the event handling and action lifecycle of graphical

components are naturally reflected as test clones in the respective test

libraries.

 Similarities among screen layout configuration files are another cause for

test clones. This is so because most layout configuration files aspire for

consistent look and feel there by exhibiting redundancies.

Most of the similarities in BiDiTests project arise from test feature similarities.

Test methods for common features cannot be implemented independently of each

other in separate units. Thus variations appear in variant forms addressing feature

combinatorial testing. Whenever test library structures cannot be parameterized

to unify variant forms, similar test code structures appear as redundancies.

7.6. Construction of Test Templates for BiDiTests

In this case study we have reconstructed the test libraries using the template based

approach. The GATT based test library source consists of 30 template hierarchies.

In physical terms our solution consists of 1 SPC and 29 ART files (details in Table

7). Further experimental analysis to understand the benefits yielded by the

template based solution is based on the above constructed solution.

Table 7 BiDiTests Template Count

Description Templates

Canvas Testing Files 2

Layout Testing Files 8

Gallery Testing Files 3

Text View Testing Files 6

194

View Testing Files 4

Miscellaneous 7

Total 30

This section provides detailed explanation on the process descriptions for

template construction. We use the BiDiTests classes (three subsequent

versions) to illustrate the template construction.

7.6.1. Version Sampling

In this case example we initially built three versions of GATT corresponding to

three Android Platform OS test library versions (namely versions 16, 17 & 18).

The purpose of this expansion to consider subsequent versions (three versions) is

to demonstrate that the GATT can be unified into one single template

specification and also generate multiple version releases at the same time based

on the test designer’s binding choices. Test library codes were collected from GIT

repository, similar to previous experiment. Subsequent versions make the

analysing of change request implementation and identifying of evolution patterns

easier. Thus three subsequent versions (API 16, 17 & 18) of BiDiTests project’s

test cases were analysed for redundancies and were reconstructed into test

templates. Only Java based test files and xml based layout configuration files were

considered in the scope of study since the selected case example did not directly

deal with the Dalvik VM or Linux kernel. Consequently the properties and other

IDE dependent files were ignored from the scope of this research experiment.

There were no C++ test files in the project. The feature highlights of three versions

analysed were:

a) Jelly Bean 4.2 (API Level 16) based on Linux kernel 3.0.31, which is an

incremental update with the primary aim of improving the functionality

and performance of the user interface.

195

b) Jelly Bean 4.2 (API Level 17, based on Linux kernel 3.4) - features include

“photosphere” collection of panorama pictures, UI/ accessibility

improvements, and messaging notifications.

c) Jelly Bean 4.2 (API level 18, based on Linux kernel 3.4 GNU v2) –

features include notification bar and quick settings, better managed battery

life, camera AE/AF lock and high performance graphics via OpenGL ES

3.0.

Domain engineering generality principle encourages avoiding repetitions and

construction of parameterized, configurable and adaptable test libraries. GATT

serves as a means to create such hierarchical structures in the suggested STRAT

approach.

7.6.2. Template Construction Process

In this section we use the proposed STRAT approach to rebuild the existing test

files using generic adaptive test templates. The case example solution prototyping

was carried out using the following steps:

7.6.2.1. Step 1: Identify Test Clones

The first step is to identify various test clones patterns occurring in the test library.

Input for this step is the existing BiDiTests test project that needs improvements.

To achieve this, the clone miner and clone analyser tool was installed. BiDiTests

projects was checked out from github server and further investigated for

various test clone patterns. The clone analyser tool is employed for formal

detection and cataloguing of noticed similarities. These similarities were also

manually asserted for commonality and variations.

7.6.2.2. Step 2: Decide Use of Templates

Second step assesses the feasibility of unifying the identified test clones from

BiDiTests using GATT. We categorized clones into generic test clones and

196

structural test clones. Also test clone groups can be further classified into two:

Reducible test clone group and Non-Reducible test clone group. Reducible test

clone groups can be re-engineered for reuse using both traditional testing

techniques and template approach, while the non-reducible test clone group can

only be tackled by the template approach. In the beginning, we focused on simpler

test clones as they were more localized and easier to tackle. Then we widened our

focus to complex structural test clones and managed to unify those test clones

using content specific restructuring strategies. The logical grouping of similarities

and decisions for building GATT hierarchy for BiDiTests specific test artefacts

are detailed in Section 6.3 of this chapter later.

7.6.2.3. Step 3: Template Construction for Test Library

The third step focuses on designing GATT for logical groups of similarities in

BiDiTests project that would preserve commonalities, encompass variability and

manage file heterogeneity. This activity consists of selecting appropriate GATT

structure, harmonizing clones and template unification finally. The activity starts

with a weighted decision which would help recommend if the use of templates

over traditional test scripts is appropriate. We then apply generative technique to

build GATT structures to unify similarity patterns for which traditional testing

techniques fail to provide effective generic solutions. By applying START

approach, we turn the test libraries built with traditional testing approaches into a

generic test libraries based solution that offers substantial productivity gains in

test library construction and maintenance. Finally we unify test clones using a

combination of the following techniques:

 Configuring the SPC and ART level variants using set commands and

initialized appropriate variant binding values.

 Extracting duplicated test code fragments into template fragments.

197

 Unifying largely similar functions using conditional branches and iterative

control constructs from the GATT building blocks.

 Converting similar java test files and XML layout configurations into

equivalent template files (ART files)

 Finally enhancing these by applying more intensively composite template

constructs to unify higher level test clone commonalities.

Observations from the previous analysis step were used as guidance to find logical

cluster of templates. Then non-redundant template hierarchy (template

specifications, template files and template fragments) were constructed into

GATT iteratively with refinements carried out at each interaction. This was

repeated till all the templates get normalized to become non-redundant. Templates

generated from each iteration were further validated and verified for accuracy.

7.6.2.4. Step 4: Product Specific Test Library Derivation

In software product line testing, the test library needs to be executed for every

build of an application or product. The test templates derived using STRAT

approach were verified for loss-less translation. Additionally WinMerge

(http://winmerge.org/) was used to assist in folder comparison (based on

timestamp/content) to cross verify. The test templates derived using STRAT

approach were verified for loss-less translation as mentioned in the construction

process.

7.6.2.5. Step 5: Template Evolution:

Improvements and evolution of the harvested generic adaptive test templates are

the only way we can sustain the quality of the overall test library in the long term.

Observations from the previous analysis step were used as guidance for template

modifications. The modified change-set for every version release was checked out

from github servers (code repositories) based on the list of change requests

completed. The identified change requests and modified change-sets were further

http://winmerge.org/

198

analysed to identify the impact on the template hierarchy. The exiting non-

redundant template hierarchy is altered with additional specification files that

manage every change request as a change-set that includes related modified test

files. This was repeated till all the change requests were included in the

normalized non-redundant template hierarchy. Templates generated from each

iteration were further validated and verified for accuracy.

7.6.3. Non-reducible Test Clone Groups

Using the examples presented above we identified test clone groups for which

redundancies cannot be reduced using conventional testing techniques. The

purpose of grouping is to unify all the test clones within a group into a single

template (GATT). After a detailed analysis of BiDiTests project, the following

were identified as the non-reducible groups of test clones with complex variations.

1) BiDiCanvas[T].java: refers to the Java test files. Tests that verifies

proper display orientation of embedded graphical canvas. T refers to

number of canvas instances.

2) BiDiTest[U]Layout[V].java refers to the Java test files. Tests

target layout graphical entities. U refers to the particular layout under test

such as frame, grid, linear, relative and table layouts. V refers to one of

the display orientation choices such as Ltr, Rtl and Locale.

[U]_layout_[V].xml refers to the configuration files for the various

layout options.

3) BiDiTestGallery[W].java refers to the Java test files. Tests target

gallery graphical entities. W refers to one of display orientation choices

such as Ltr, Rtl and Images in gallery. Gallery_[W].xml refers to the

configuration files for the gallery.

4) BiDiTestTextView[X][Y].java: Java test files. Tests target test

view graphical entities. X refers to one of display directions or UI

199

component drawn, Y refers to one of display orientation choices such as

Ltr or Rtl. Test_view_[X]_[Y].xml refers to the configuration files

for the various view options. BiDiTestTextView[V].java: Java

test files. Tests target view graphical entities. V refers to one of display

orientation choices such as Ltr, Rtl and Locale. Text_view_[V].xml

refers to the configuration files for the various text view options.

BiDiTestView[Z].java Java test files. Tests targeting view

graphical entities. Z refers to one of margin and padding settings such as

padding, padding mixed, group margin, and draw text. View_[z].xml

refers to configuration files for the various views.

5) Rest of the test files (both java and configuration) inclusive can be drafted

into miscellaneous frames.

The five groups of redundancies described in the list above can be logically

clustered into five GATT templates named as Canvas, Layout, Gallery, Views

and Text Views, respectively.

7.6.4. The Construction Iterations

In our case study, we have designed and constructed three different versions of

BiDiTests project implementations (see Figure 7-7). The conversion process

was executed in three iterations. The first iteration named BiDiTestsSimple was

based on a simple design and construction, with little attention to minimizing

special redundancies. In the second iteration named BiDiTestsOptimized,

redundancies are unified by understanding test smells, refactoring non-parametric

and non-type variants, and also applying suitable testing patterns if needed to the

previous BiDiTestsSimple. Finally in BiDiTestsUnified iteration, we unified

the three subsequent versions which in our judgment, were worth the effort

because maintenance of three versions of test libraries is now made possible

200

with a smaller set of variant provisioned generic adaptive test templates. The list

of test files in API version 17 is clustered based on feature variants.

Figure 7-7 Iterative Template Construction

7.6.4.1. BiDiTests Simple

By keeping simplicity and conversion possibility in mind, we focused on

converting the system test cases into simple redundant templates when

implementing BiDiTestsSimple. The initial version is a draft first-cut solution

to test the idea of implementing a meta-layer. Meta layer captures special types

of domain choices and product line variants that are not dealt by conventional

construction techniques. Emphasis for the iteration was neither redundancy

removal nor maintainability concerns as yet. It is a simple proof-of-concept to

demonstrate that two-layer management of test libraries is possible. Such

separation yields added advantages of capturing test case design information

concerning feature combinatory of variants under test in a mobile product line

context. A high level template was created for every respective test file (java)

found in the project. The iteration verified the correctness, validity and no-loss

conversion by comparing the original test case with the ART processor generated

codes. Then on, the verification and validation (both manual and tools based) were

201

repeated at the end of each subsequent iteration to ensure that the qualities as those

of the original test libraries are retained.

Figure 7-8 BiDiTests (simple) Example

The above (Figure 7-8) example demonstrates the template construction for

TextView test clone group. Seven java test files related to TextView were

normalized into four frames. Global variables are handled at specification files

level (TextView.spc and View.spc). Template files TextView.art and

View.art manages the java and XML file codes respectively.

Figure 7-9 Grid Layout Unification (Simple)

Figure 7-9 illustrates unification of test clone files using test templates (GATT) –

BiDiTestGridLayoutCodeLtr.java &

202

BiDiTestGridLayoutCodeRtl.java. We constructed two files namely

BiDiTestGridLayoutCode.spc and

BiDiTestGridLayoutCode.art. SPC files manage variant points class

names, title and suffixes. It also adapts the art template using a #while-

#endwhile construct to generate the original test files.

7.6.4.2. BiDiTests Optimized

While the previous iteration focused on creating template frames, this iteration

focuses on more optimized template unification leading to higher reuse. Using the

initial similarities derived using the clone miner and visualization tool, we were

able to identify feature variations as mentioned in the Section 7.4 BiDiTests class

diagrams. In this optimization iteration, we unified a variety of generic and

structural clones using the variation among features as guidance. Additionally this

iteration identified and unified test clones with test smells by applying test

templates. These test clones could not be handled by traditional testing techniques

such as generics, modularization using method extraction, object

inheritance/interfaces and test case design patterns. We were able to inject feature

specific test cases variation into generic modules. Since our central focus is

demonstration of generic adaptable template construction for test libraries

comprising of special variants, we do not focus on regular software test case

design and construction issues such as: test double patterns, test organization, test

refactoring, test smells, strategy and fixture/test data patterns. These are managed

at scripting language level using test patterns.

203

Figure 7-10 Similarity across Layout Test Files

Another interesting example is the templates that were constructed for Layout

related test files. As shown in Figure 7-10, there are five layout types and two

orientations each. By constructing one specification file named,

BiDiTestsLayout.spc, the test designer sets the appropriate binding

choices for planned variant points regarding layout, prefix-suffix and listing of

test classes. For example consider the variant points in the template specification

file of Figure 7-11 starting from ListOfLayout to TFLclass. A generic

ART file (BiDiTestXXXXXLayout) represents the commonalties among the

nineteen tests. Using two concise specification and configuration template

definitions we were able to generate of 19 test files after proper variant binding.

Figure 7-11 illustrates the scenario.

204

Figure 7-11 Layout Test File generation using GATT

7.6.4.3. BiDiTests Unified

The last iteration focused on changes from evolution across versions and an all-

out effort to unify any remaining clones. In this iteration we merged three

consecutive versions of the BiDiTests projects from consecutive Android

platform code named Jelly bean versions with respective OS API Level 16, 17

and 18. After all the intra-module similarity patterns and regular test smells were

treated in the previous iterations, evolutionary changes were analysed across

versions. Unification of these change requests helped in achieving immediate

close to one-third reduction in size. Research evaluation’s change propagation

subsection provides more details.

7.7. Research Evaluation of GATT

For the purpose of evaluation, we focus only a subset of activities from the general

testing process (Figure 7-12) related to test libraries repository creation and

evolution. The STRAT approach to create and maintain test libraries is aimed at

maximizing productivity, ensuring repeatability in test library maintenance,

reduce influence of external factors, preserve test designer’s domain expertise and

test design choices inside templates.

205

Figure 7-12 Software testing process

In Chapter 5 we described the key metrics that can measure reusability and

maintainability of test libraries. These metrics are used in the following

subsections to evaluate the productivity gains that the STRAT approach offers in

comparison to the original test libraries creation/maintenance. In brief, the key

quality measures are:

 Reusability quality factor which is influenced by test library size reduction

and ability to express and manage various types of variability.

 Maintainability quality factor which is influenced by number of

modifications needed to implement a particular change request and how

the templates scales and sustains to the variations in growth of test

libraries.

To assess the benefits derived through the template based approach we use a set

of metrics in this section. Using these metrics we discuss the reusability

improvements achieved through variability management and effective change

propagation. We also discuss the non-intrusive nature of GATT layer, benefits of

template approach and the threats to validity.

206

7.7.1. Lossless Translation of Test Libraries to GATT Constructs

One of the objectives of this experiment is to prove loss-less conversion of test

clones in test libraries into GATT constructs and vice versa. As a scientific reuse

approach, STRAT is capable of translating a variety of test clone types found in

this case study into GATT constructs. It is very important and essential to verify

the templates created for loss-less translation of test libraries. The verification

process was carried out using the following steps:

1) Setting up the code examination tools.

2) Comparing the original and generated test libraries using the identified

code examination tools.

3) Using the clone miner tool to analyse the original and generated test

libraries for further investigation.

4) Conducting similarity investigation using clone analyser tool. Analyse and

affirm the equivalence of test codes.

5) Reporting the outputs and findings that will be useful in answering the

questions regarding equivalence of both test libraries.

We used two key techniques for this verification process of comparing the original

test library and the GATT generated test library: (1) Code Examination and (2)

Clone Detection.

7.7.1.1. Code Examination

Code examination was carried out using a token-based regular expression pattern

comparison tool (called Total Commander) to show that original and

generated test libraries are identical. Additionally, we used WinMerge

(http://winmerge.org/) to assist us with folder comparison based on

timestamp/content and to cross verify folder comparison we used ccfinder

(http://www.ccfinder.net/). These tools compared the original and generated test

libraries based on text content ignoring white space characters.

http://winmerge.org/
http://www.ccfinder.net/

207

7.7.1.2. Clone Detection

We ran the Clone Miner (CM) and Clone Analyser (CA) tool for

affirming that the test clones originally found in the test libraries are generated

without loss by the ART processor. We ran the clone detection on the

generated test library to show exactly same number of clones are found - so that

the GATT actually recreates the test library in its original form. CM/CA found

exact equivalence between all types and occurrences of test clones in both the

original and generated BiDiTests test libraries. Being a token-based technique

clone miner also verified similarities between simple test clones and structural

test clones between the original and the generated test libraries.

The above verification process asserts that the GATT ensures loss-less translation.

This also confirms that GATT based test libraries are accurate so that the further

experimental analysis and inferences would be accurate.

7.7.2. Improving Productivity by Reuse

Current mechanisms of Test Library creation already provide scope for achieving

reuse (e.g., reuse via test method, fixture, data, state management, and event

management with test patterns, support using Activity and Instrumentation). In

this case example, we applied GATT method over and above the conventional

methods with a view to unifying the test clones in situations where the

conventional techniques fail to provide effective reuse solutions. Our experiment

shows that more than 70% of the test files exhibited some form of redundancy

which could be eliminated at a meta-level. This elimination comes with additional

benefits of better maintainability and reduction in cognitive complexity of the test

libraries. In the BiDiTests project, the original test libraries amounted to

18EKLOC (executable kilo lines of code as test projects) forming three

subsequent API versions. We were able to reconstruct these test libraries without

any loss of quality as a non-redundant, variant preserving 4KLOC of generic test

case templates. Effectively the process has eliminated more than 77% of the

208

redundancy among the test project codes. From original code base of 218 files

(both Java and XML inclusive), the generic templates where compacted into 30

template files. Summary of the template iterations are shown in the Table 8 below.

Table 8 BiDiTests Project Consecutive Three Version Statistics

BiDiTests Project Consecutive Three Version Statistics

Description API16 API 17 API 18

of Java Test Files 34 41 39

of Java Test Methods 61 72 59

of XML Configuration Files 31 37 36

Total Files 65 78 75

Files Containing Redundancies 46 59 56

% Files Containing Redundancies 71% 76% 74%

File Size (Kbytes) 416 528 512

Lines Of Code 6556 8422 8102

of Executable Lines Of Code 4877 6393 6191

Total Executable Lines Of Code 17461

ART Templates 29 29 29

Each Versions (Executable LOC) 3924 4024 4063

ART compared to Original ELOC (%) 80% 63% 66%

Merged Frames (Executable LOC) 4063 (30 template Files)

ART compared to Original ELOC (%) 23%

Table 9 logically groups templates and quantitatively describes how redundant

test clones were compressed into GATT structures.

Table 9 BiDiTests Unification Metrics

BiDiTests Project Unification Metrics

Description # of Files BiDi (Optimized)

Canvas Testing Files 4 2

Layout Testing Files 37 8

Gallery Testing Files 5 3

Text View Testing Files 18 6

View Testing Files 8 4

Miscellaneous + SPC 6 6

Total 78 29

209

7.7.3. Change Propagation

Firstly, there is a significant drop in the size of test code to be maintained from

original test libraries to BiDiTestsUnified. In the BiDiTestsOptimized, there is a 20%,

37% and 34% reduction in test script (executable lines of codes) for API kernel

version 16, 17 and 18 respectively. The overall system has dropped by much more

(by 77%) largely due to unification of three API kernel versions to one.

Secondly, test templates reduce the risk of update anomalies. To study this, we

considered three change requests, namely Grid Change, Text View Change and

Drop Extra Canvas. Table 10 below shows the distribution of the impact of the

three evolutionary change requests which was available in the original github

source code repository.

We carried out a controlled experiment to verify the hypothesis that test templates

improve productivity and reduce update anomalies. We have collected complete

details of change request and updates done on the three versions and recreated the

same scenarios using test templates based test libraries. From kernel API version

16 to 17 seven files were added to satisfy change requests CR1 & CR2 shown in

Table 10. Likewise, from versions API 17 to 18 two files were deleted to satisfy

the change request #3.

Table 10 Change Request List

Grid Change (CR1)
Update BiDiTests app for adding ‘Grid

Layout’ unit tests

Text View Change (CR2) Add tests to view text alignment

Drop Extra Canvas (CR3)
Clean up code for Test View, ‘Canvas Layout’

and related code flags

Table 11 presents the comparison of change prorogation between original test

library and concise template representations. #F denotes the number of files

affected by the change request while #L denotes the number of modified

locations. The number of files affected was further sub-classified as newly added

files (#A), Deleted (removed) files (#D) and modified files (#M) as observed from

210

the distribution of impact recorded in Table 11. The effort and changes that need

to be performed in order to implement these change requests are observed to have

decreased in terms of modification counts from BiDiTestsSimple test libraries to

BiDiTestsUnified. Thus as testers navigate to non-redundant representation of test

libraries using test templates, the chances for inconsistency reduces during

updates and improves productivity since change propagation is made more

systemic via reuse.

Table 11 Comparison of change propagation

CR #F #L
Simplified Optimized Unified

#A #D #M #A #D #M #A #D #M

CR1 8 9 7 0 1 2 0 1 1 0 1

CR2 5 5 4 0 1 2 0 1 2 0 1

CR3 4 4 0 3 1 0 2 1 0 2 1

There are many ways to design BiDiTests that are different from our change

propagation strategy shown Table 11. Test templates are observed to easily

capture test case design, domain analysis and test maintenance decisions inside

the test template specification files. Some additional benefits achieved are feature

under test to testing capability mapping, rapid evolution of test library across

versions and ability to construct test libraries by binding variants of tester’s

choice. Releasing platforms and apps faster provide competitive advantage to

smart phone companies as it makes them agile to market needs.

Figure 7-13 Improvement towards non-redundancy with iterations

From Figure 7-13 it is can be seen that non-redundant representation of test

templates improves from being a more repetitive representation to conciseness of

211

test templates as the iterations progressed from simple to unified iteration. There

are additional test design comprehension, indirection and template layering as we

move from simple to unified representations of BiDiTests test library. This would

require more planning, analysis and modeling. Despite the drop in test library size

(calculated in ELOC), the construction efforts seem to increase. However as the

product line starts to expand the productivity gains may outweigh the construction

complexity. Also, as seen from the above control experiment test templates

solution complements the conventional test libraries construction approach with

modest additional foot prints.

7.7.4. Scalability

GATT is scalable and can handle large test libraries and heterogeneous test

assets. To be scalable, test libraries must offer more primitive building blocks and

be accompanied by generators that can compose these blocks to yield the required

data structures used by programmers. We believe that our GATT generative

approach is required in order to address the needs of scalable test libraries by

offering primitive building blocks (GATT constructs) accompanied by compile

time generators (ART Processor). Even though our empirical studies of Android

domain’s BiDiTests were of a small scale, they clearly demonstrated that the

idea of GATT method was feasible and have engineering merits in adopting the

generative approach. GATT provides a generic representation for both data-

structures and algorithms in its meta-layer. GATT also addresses concept of

vertical parameters (i.e. layered components) which is an essential ingredient for

scalable Testware. The GATT related configuration constructs work as pre-

generators and offers support to building of test case library in a hierarchical

fashion at the level of meta-layer, thereby guaranteeing scalability. Preliminary

experimental evidence presented in the BiDiTests library shows that GATT

prototype does not compromise productivity and performance of the generated

test cases.

212

7.7.5. Non-Intrusiveness

Testers work with test case code wrapped in GATT definitions. ART Processor

expands directives to generate the actual test cases from templates in the similar

way that the C pre-processor generates code by expanding cpp directives. When

the templates are instantiated, the implementation details of the test case are

resolved by binding values to the parameters of the template at compile time. For

example, for a template representing a group of similar test files, ART Processor

generates code for those files based on specifications of delta differences between

the template and each of those files. GATT uniformly manages variability in

various test library assets such as test code, test configurations and test data. In

Software Product Line (SPL) context, GATT streamlines and automates

customization of reusable components, improving productivity gains due to

reuse. GATT’s design or re-configurable and adaptable test case design is well

contained within the meta-layer of test construction in the Android product line

and thus is non-intrusive with the executable test libraries which the testers work

with.

7.7.6. Other Benefits and Trade-offs

The reduction of test libraries size by 77% is consistent with

measurements/feedback that both effort and difficulty in maintaining the original

test library were significantly more than what is now required for the multiple

versions of the test libraries. Many ART concepts, such as parameterization,

selection and iteration are similar to programming language concepts. Even

though there are specifics of ART that must be understood, it was found relatively

easy to start template construction with ART as compared to conventional

programming languages or other environments where testers in addition to the

language must be familiar with additional support APIs such as mock and other

utility libraries. Our reverse engineered extractive approach proved to be an

effective way to build the initial template versions, and further reactive approach

213

helped us gradually refine templates as we addressed new types of test clones.

The advantage of such an approach, as compared to proactive approach, is low

effort investment and faster in yielding results.

GATT structures organize design and code at the meta-level for enhanced

generality and changeability using ART. As a result, testers must additionally

manage the ART constructs using SPC, and x-frames (ART, Java, C++ and

XML). This additional complexity may have an impact on comprehension. One

more trade-off is that currently there is no tool support for debugging. Proper tool

support can help testers’ better cope with such comprehension issues. Future

studies should focus on how to apply GATT in larger testing projects, using full-

fledged software engineering processes.

7.7.7. Threats to validity

The above case study discussed steps, merits and limitations from the experience

of re-constructing test templates using GATT approach for BiDiTests project.

There are a few threats to validity such as the choice of BiDiTests project over

others in repository, the nature interpretation of test clones as found by the tool,

and use of text token based tools for comparison. Our work does not claim to have

generalized all possible test clone occurrences. There could be more causes for

the test clones than those being listed in the analysis section. Our estimates on

efforts/change metrics for change requests are based on GIT repositories entries.

It would strengthen our case if this experiment was extended to measure the actual

effort to maintain test templates versus original test cases. While we believe that

GATT approach can be smoothly accommodated into existing software testing

processes, this needs certainly be verified in industrial project settings with a

particular Android vendor like Samsung or Nexus.

214

7.8. Adapting Test Templates to other similar situations

This research case study shows that it is technically feasible to implement generic

adaptive test templates to unify test clones occurring in BiDiTests project, without

compromising any characteristics of the original test case library.

This STRAT approach of variability management can be further explored using

typical open source apps, device-specific variations and vendor specific

variations. Android is only one of technologies used for smart phone platforms

and apps. It is possible to relate our observations to alternative technologies such

as iOS or Windows Mobile. Object CTM and .NETTM are two similar advanced

platforms for implementing mobile apps. They also provide rich sets of API

programming and device facilities (e.g. for tablets, phones, sensors and

packaging). Therefore, ART implemented on the .NET or Object C is likely to

follow the same high-level architecture proposed in this thesis.

7.9. Key Takeaways & Inferences

Due to paucity of code-based reuse approaches observed in literature, this

research attempts to provide a solution, to improve the maintainability of large

scale test libraries using generic adaptive test templates. Traditional test

maintenance approaches do not capture the domain relationship between program

code and its relevant test libraries. In traditional approaches, such domain

relationships (if any) are implicitly inferred and not explicitly implemented. To

address this lacuna we have created generic adaptive test templates. The proposed

STRAT approach is not constrained by the programming language of the product

or its configuration set up.

To demonstrate above mentioned research intentions, we implemented BiDiTests

test library to illustrate the GATT construction and evolution process. This

illustrative example confirms both the purposes defined earlier.

215

1) Demonstrate the STRAT approach using an illustrative example and

develop generic adaptive test templates.

2) The case study clearly demonstrated that compressed, normalised, non-

redundant test library can be achieved using STRAT approach without any

loss of quality and at the same time preserving all product line variations.

The results show that test library achieved a compression of 23% to its

original size.

3) Use those developed templates to generate test library and compare with

the original for the purpose of establishing the benefits derived using

STRAT approach

4) Productivity improvements have been assessed in terms of reusability

(expressed through reduction in executable lines of codes and ability to

express many types of variability) and effort reduction in maintainability

(expressed through reduced number of modifications required to

implement a particular change request and the ability of template

hierarchy to scale along with the growth of underlying test libraries).

Thus we believe that the proposed STRAT approach can be particularly useful in

mobile and service computing, since multiple versions of apps and multiple

service clients’ leads to the explosion of test libraries in such environments. Based

on the results achieved, we feel positive about the productivity increase the

STRAT approach has to offer in SPLT.

216

CHAPTER 8

Conclusions

During the initial phase of our research we identified and studied the redundancies

that occur within and across large scale test libraries in open source software.

Redundancies often occur because of the copy-paste-modify approach used by

testers when creating test cases for similar products within a software product

line. We provided concrete evidence for the presence of test clones among large

scale test libraries by cataloguing various types, granularity and occurrence

examples. We also explained that the presence of test clones would increase effort

and complexity during test library creation, maintenance and evolution. The

complexity is caused due to difficulties in performing multiple concurrent

modifications, variability management and combinatorial explosion of test cases.

In the next phase, we conducted a systematic review of SPLT research literature

and this literature survey reveals the following:

 Existing test model based approaches reported in literature predominantly

work with one of the standard modelling representation, namely, feature

models, UML or OCL. These techniques aid in model based reuse, test

case selection for execution and variability management using

stereotypes/model checkers. These test libraries are generally found to be

non-executable test model artefacts and studies with regard to executable

test libraries are not reported.

 Existing formal specification and natural language based approaches

provide sound mathematical models for verification and validation of test

representation. They provide abstract representations (formal notations or

natural language) for achieving reusability, managing variability and

controlling test case explosion.

217

 Aspect oriented approaches are limited by the capabilities of the hosting

container and underlying programming language expressiveness.

 Key problems in dividing responsibilities between domain testing and

application testing have been reported [146]. Surveys highlight that

complete integration and system testing in domain engineering is not

feasible. They also infer that it is hard to decide how much we can depend

on domain testing in the application testing.

The above findings of the literature survey revealed a gap in existing research that

tackles test clone redundancy and variability management motivating further

study in this thesis.

A thorough search of existing literature indicates an absence of clear definitions

for test clones and also affirms the lack of mapping between general code clone

terms and test libraries. Hence, in this research thesis, we have formalized

definitions for simple and structural test clones in the initial phase of the research

towards building a generic solution. Further we built a simple taxonomy and

formulated metrics to scientifically measure the influence of test clones on

reusability and maintainability aspects.

One way to tackle test clones is to represent them in some generic form.

Traditional generic programming techniques such as parameterization, aspect

orientation and test design patterns can alleviate issues surrounding test clones.

For situations where traditional approaches fail, it is worthwhile to look for new

research solutions that address existing shortcomings. Based on experiences

gathered above, we understood that test clones can be well managed if reuse is

planned early in product line engineering.

Thus in the next phase, we addressed the test clone challenge using a reuse-based

approach towards building non-redundant generative test libraries. We propose

a template based approach as a solution. For this we formulated Generic Adaptive

218

Test Template (GATT) which is an unrestricted, non-intrusive layer of templates

that can be added to the existing base of test libraries. To formalise the steps and

activities involved in adopting the template we came up with an approach which

we have named Systemic Template based Reuse Approach for Large Scale Test

Libraries (STRAT).

In the final phase, we illustrated the proposal using a SPL case study. The case

study demonstrates that clear, compressed, normalised, non-redundant test library

can be generated using our STRAT without any loss of quality and at the same

time provisioning for variability. The results of the case study implementation

were analysed qualitatively and quantitatively and the proposed template based

approach is found to demonstrate measurable productivity improvements in terms

of test library maintainability by effort reduction and improved reusability by

unification of test clones.

8.1. Contributions

The following summarizes the key contributions and outcomes of our research

work:

 Study of Redundancies: The thesis systematically documents the empirical

study conducted on the large scale test libraries to establish significant

presence of test clones and analyse these test clones in the light of test

maintenance and rapid evolution conditions. Based on this analysis, we

came up with the following key findings:

o Test libraries are found to have various forms of test clones. In

general, around half the test cases exhibited some form of test

clone similarities. Majority of the simple test clones had either

‘exact text replication’ or ‘identifiable parametric variations’.

Further the study reveals significant diversity in structural test

clones; i.e., they are present in various proportions and granularity.

219

o The study also inferred possible causes for test clones – these range

from simple causes such as copy-paste-modifications to other

complex reasons such as lack of expressiveness of underlying

programming language, test assets spanning multiple file formats,

limitations of underlying programming language, test case design

similarities and use of wizards test case generation tools.

o The study reveals that event based test case (namely, activity,

service and other related event API’s as discussed in section

4.6.1.5 to 7)had the most repetitive structures. This was due to the

fact that event setup and lifecycle management methods have

common structures among similar components (Examples: UI

components such as radio buttons, text boxes and drop down lists).

Test cases also exhibit redundant patterns with reference to the

way in which test data gets initialized or garbage gets collected.

o The study concludes that though certain types of the identified test

clones can be treated with existing software testing research and

industry practices, certain complicated similarity patterns cannot

be treated using current language level generative techniques.

 New reuse-based test template approach: Finally, the thesis proposed a

reuse-based approach for developing and managing test libraries in a

product line context. This template approach addresses a few of the

previously mentioned shortcomings by targeting to design and build a

non-redundant template representation for existing test libraries.

o The template structure forms the heart of the proposed solution and

this thesis has devised GATT structure such that the templates

preserve and explicitly configure the program-code to test-case

relationships, which are otherwise non-comprehensible and

220

implicit in traditional testing approaches. Key contribution that

GATT offers:

 GATT structures have been designed to meet key

requirements such as non-redundant representations, text

based processing, variant provisioning and ease of test

library derivation.

 GATT ensures managing heterogeneity among test file

formats and GATT semantics provisions for variability

management.

o GATT facilitates in retention of domain expert’s knowledge of

variant points.To facilitate test designers to create GATT in a

methodical way, this thesis has formulated Systemic Template

based Reuse Approach for Large Scale Test Libraries comprising

of guidelines for test clone identification, deciding on usage of

templates, template construction by test clone unification schemes

and test library derivation. This helps practitioners to adopt our

proposed template based approach in a systematic way.

 Case Study - validation and experimental evaluation of proposed solution:

To illustrate the STRAT approach we implemented a typical test library

using the proposed Generic Adaptive Test Templates. Key contributions

and findings include:

o Demonstrating the feasibility of constructing test templates that

are concise, non-redundant and normalized.

o Demonstrating that template based libraries exhibit higher

compression rates achieved in terms of executable lines of code.

221

o Demonstrating that the use of GATT helps in increasing

productivity measured across various metrics such as executable

line of codes, depth of the template tree, etc.

o Demonstrating that the use of GATT improves the maintainability

as established by the number of modification metric needed to

implement a change request.

8.2. Future Extensions

The following list suggests future extensions of our research work:

 The culture of the underlying domain will directly influence the product

line testing priorities of individual features and ultimately the levels of test

coverage. For example, a medical device that integrates hardware and

software requires far more evidence of the absence of defects than the

latest video game. In order to formalize such influences, we need to collect

more empirical evidence on specific domains to better access the trade-

offs involved. STRAT approach currently does not formalize or mandate

mechanisms to capture domain or application testing design decisions into

the constructed test templates. This area of research could be extended in

the future.

 Currently our proposed approach focuses only on test libraries with

executable test cases. Future extensions on STRAT approach can study

the influence of test clones and efficiency of template approach in test

libraries with other similar test artefacts such as test models, test plans,

test documentation and test reports.

 A drawback of the proposed template based approach is the effort required

to achieve the appropriate level of abstraction. Another possible extension

for this research work would be to implement a simplified tool kit that

integrates clone mining tools and test related tools with a new GATT

222

editor workbench inside popular IDEs (Integrated Development

Environment) to further improve test designer productivity.

 The proposed research approach uses compile-time variability binding

technique and hence the generated test libraries can be statically verified

for correctness. Since template approach works at text level, it can be used

with any technologies even without concept of variation. The generator

replaces the variability in a template with information from the

specification. This approach can be extended to run time variability with

necessary alterations in the run-time container and generator using inputs

from the program-dependency-graphs of executable test libraries. Thus

the research study can be extended to incorporate dynamic-run time

variability mechanism in product line testing using test execution traces

as guidance.

8.3. Closing Remarks

Based on this research, we conclude that while some of the straight-forward

redundancies caused by test clones can be rectified by traditional approaches,

redundancies of complex nature commonly occurring in large scale product line

environment would need a complementary generic adaptive test template

approach to supports unrestricted parameterization, variability management and

heterogeneous test artefacts. While this thesis has demonstrated the benefits of

the GATT approach through Android platform test libraries as case example, the

principles of operation using generic adaptive test templates are same for any test

library that contain redundancies. Thus the contributions made by this thesis is

expected to benefit SPLT community for improving testing productivity as well

as researchers to gain greater insights into using generic approaches for test library

construction and maintenance.

223

Bibliography

[1] "Android Fragmentation Report July 2013 %U

http://opensignal.com/reports/fragmentation-2013."

[2] Ali, S., Briand, L. C., Hemmati, H., and Panesar-Walawege, R. K., “A

systematic review of the application and empirical investigation of search-

based test case generation,” Software Engineering, IEEE Transactions on,

vol. 36, no. 6, pp. 742-762, 2010.

[3] Amalfitano, D., Fasolino, A. R., and Tramontana, P., "A gui crawling-

based technique for android mobile application testing," Software Testing,

Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth

International Conference on, IEEE, 2011, pp. 252-261.

[4] Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., and

Memon, A. M., "Using GUI ripping for automated testing of Android

applications," Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, ACM, 2012, pp. 258-

261

[5] Asaithambi, S. P. R., and Jarzabek, S., "Generic adaptable test cases for

software product line testing: software product line," Proceedings of the

3rd annual conference on Systems, programming, and applications:

software for humanity, ACM, 2012, pp. 33-36

[6] Asaithambi, S. P. R., and Jarzabek, S., "Towards Test Case Reuse: A

Study of Redundancies in Android Platform Test Libraries," Safe and

Secure Software Reuse, pp. 49-64 Springer, 2013.

[7] Bashardoust-Tajali, S., and Corriveau, J. P., "On extracting tests from a

testable model in the context of domain engineering," Engineering of

Complex Computer Systems, 2008. ICECCS 2008. 13th IEEE

International Conference on, IEEE, 2008, pp. 98-107

[8] Basili, V. R., Caldiera, G., and Rombach, H. D., “Experience factory,”

Encyclopedia of software engineering, 1994.

[9] Basit, H. A., Ali, U., Haque, S., and Jarzabek, S., "Things structural clones

tell that simple clones don't," Software Maintenance (ICSM), 2012 28th

IEEE International Conference on, IEEE, 2012, pp. 275-284

[10] Basit, H. A., and Jarzabek, S., "A case for structural clones," Proc. Int.

Workshop on Software Clones (IWSC 09), 2009.

[11] Basit, H. A., and Jarzabek, S., “A data mining approach for detecting

higher-level clones in software,” Software Engineering, IEEE

Transactions on, vol. 35, no. 4, pp. 497-514, 2009.

http://opensignal.com/reports/fragmentation-2013.

224

[12] Basit, H. A., and Jarzabek, S., "Detecting higher-level similarity patterns

in programs," ACM SIGSOFT Software Engineering Notes, ACM, 2005,

pp. 156-165

[13] Basit, H. A., and Jarzabek, S., "Efficient token based clone detection with

flexible tokenization," Proceedings of the the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, ACM, 2007, pp.

513-516

[14] Basit, H. A., Rajapakse, D. C., and Jarzabek, S., “Beyond Generics: Meta-

Level Parameterization For Effective Generic Programming,” benefits,

vol. 3, pp. 17, 2005.

[15] Basit, H. A., Rajapakse, D. C., and Jarzabek, S., "Beyond templates: a

study of clones in the STL and some general implications," Proceedings

of the 27th international conference on Software engineering, ACM,

2005, pp. 451-459

[16] Basit, H. A., Rajapakse, D. C., and Jarzabek, S., "An Empirical Study on

Limits of Clone Unification Using Generics," SEKE, 2005, pp. 109-114.

[17] Beizer, B., Software testing techniques: Dreamtech Press 2003.

[18] Bertolino, A., "Software testing research: Achievements, challenges,

dreams," 2007 Future of Software Engineering, IEEE Computer Society,

2007, pp. 85-103

[19] Bertolino, A., Fantechi, A., Gnesi, S., and Lami, G., “11 Product Line Use

Cases: Scenario-Based Specification and Testing of Requirements,” vol.

Software Product Lines, pp. 425-445, 2006.

[20] Bertolino, A., Fantechi, A., Gnesi, S., and Lami, G., "Product line use

cases: Scenario-based specification and testing of requirements," Software

Product Lines, pp. 425-445 Springer, 2006.

[21] Bertolino, A., and Gnesi, S., "Pluto: A test methodology for product

families," Software Product-Family Engineering, pp. 181-197 Springer,

2004.

[22] Bertolino, A., and Gnesi, S., “Use case-based testing of product lines,”

ACM SIGSOFT Software Engineering Notes, vol. 28, no. 5, pp. 355-358,

2003.

[23] Beydeda, S., and Gruhn, V., "Test case generation according to the binary

search strategy," Computer and Information Sciences-ISCIS 2003, pp.

1000-1007 Springer, 2003.

[24] Beydeda, S., and Gruhn, V., "Test data generation based on binary search

for class-level testing," Book of Abstracts: ACS/IEEE International

Conference on Computer Systems and Applications, 2003, p. 129.

225

[25] Bosch, J., "From Software Product Lines to Software Ecosystems,"

Proceedings of the 13th International Software Product Line Conference,

SPLC '09, Carnegie Mellon University, 2009, pp. 111–119.

[26] Burnette, E., Hello, Android: introducing Google's mobile development

platform: Pragmatic Bookshelf %@ 1934356492, 2009.

[27] Cabral, I., Cohen, M. B., and Rothermel, G., "Improving the testing and

testability of software product lines," Software Product Lines: Going

Beyond, pp. 241–255: Springer, 2010.

[28] Calvagna, A., Gargantini, A., and Vavassori, P., "Combinatorial

interaction testing with CitLab," Software Testing, Verification and

Validation (ICST), 2013 IEEE Sixth International Conference on, IEEE,

2013, pp. 376-382

[29] Carmichael, L., Damarla, T., McHugh, P., and Chung, M. J., "Issues

involved in reuse library for design for test," AUTOTESTCON'95. Systems

Readiness: Test Technology for the 21st Century. Conference Record,

IEEE, 1995, pp. 84-93

[30] Cavarra, A., "Data flow analysis and testing of abstract state machines,"

Abstract State Machines, B and Z, pp. 85-97 Springer, 2008.

[31] Cavarra, A., Crichton, C., Davies, J., Hartman, A., Jeron, T., and Mounier,

L., "Using UML for automatic test generation," Proceedings of ISSTA,

2002.

[32] Cavarra, A., Davies, J., Jeron, T., Mournier, L., Hartman, A., and

Olvovsky, S., "Using UML for automatic test generation," Proceedings of

ISSTA, 2002.

[33] Chen, T. Y., Tse, T. H., and Yu, Y.-T., “Proportional sampling strategy: a

compendium and some insights,” Journal of Systems and Software, vol.

58, no. 1, pp. 65-81, 2001.

[34] Clause, J., and Orso, A., "A technique for enabling and supporting

debugging of field failures," Proceedings of the 29th international

conference on Software Engineering, IEEE Computer Society, 2007, pp.

261-270

[35] Clements, P., and Northrop, L., Software product lines: practices and

patterns: Addison-Wesley Reading, 2002.

[36] Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C., “The AETG

system: An approach to testing based on combinatorial design,” Software

Engineering, IEEE Transactions on, vol. 23, no. 7, pp. 437-444, 1997.

[37] Cohen, D. M., and Fredman, M. L., “New techniques for designing

qualitatively independent systems,” Journal of Combinatorial Designs,

vol. 6, no. 6, pp. 411-416, 1998.

226

[38] Cohen, M. B., Dwyer, M. B., and Shi, J., "Coverage and adequacy in

software product line testing," Proceedings of the ISSTA 2006 workshop

on Role of software architecture for testing and analysis, ACM, 2006, pp.

53-63

[39] Condron, C., "A domain approach to test automation of product lines,"

International Workshop on Software Product Line Testing, Citeseer, 2004,

p. 27.

[40] Crichton, C., Cavarra, A., and Davies, J., "Using UML for automatic test

generation," Proc. of the Intern. Conf. On Automated Software

Engineering, ASE, 2001.

[41] da Mota Silveira Neto, P. A., Carmo Machado, I. d., McGregor, J. D., De

Almeida, E. S., and de Lemos Meira, S. R., “A systematic mapping study

of software product lines testing,” Information and Software Technology,

vol. 53, no. 5, pp. 407-423, 2011.

[42] Dallal, J. A., and Sorenson, P., “Testing software assets of framework-

based product families during application engineering stage,” Journal of

Software, vol. 3, no. 5, pp. 11-25, 2008.

[43] Davis, T., "The reuse capability model: a basis for improving an

organization's reuse capability,", Selected Papers from the Second

International Workshop on Software Reusability, 1993. Proceedings

Advances in Software Reuse, 1993, pp. 126-133.

[44] de Souza Filho, E. D., de Oliveira Cavalcanti, R., Neiva, D. F. S., Oliveira,

T. H. B., Lisboa, L. B., de Almeida, E. S., and de Lemos Meira, S. R.,

"Evaluating domain design approaches using systematic review,"

Software Architecture, pp. 50-65 Springer, 2008.

[45] Desurvire, H., Caplan, M., and Toth, J. A., "Using heuristics to evaluate

the playability of games," CHI'04 extended abstracts on Human factors in

computing systems, ACM, 2004, pp. 1509-1512

[46] Dias-Neto, A. C., and Travassos, G. H., “A picture from the model-based

testing area: concepts, techniques, and challenges,” Advances in

Computers, vol. 80, pp. 45-120, 2010.

[47] Dowie, U., Gellner, N., Hanssen, S., Helferich, A., Helferich, A., and

Schockert, S., “Quality assurance of integrated business software: an

approach to testing software product lines,” ECIS 2005 Proceedings, pp.

152, 2005.

[48] Dueñas, J. C., Mellado, J., Cerón, R., Arciniegas, J. L., Ruiz, J. L., and

Capilla, R., "Model driven testing in product family context," First

European Workshop on Model Driven Architecture with Emphasis on

Industrial Application, Citeseer, 2004, pp. 91-96.

227

[49] Edwin, O. O., “Testing in software product lines,” Master's thesis,

Department of Software Engineering and Computer Science, Blekinge

Institute of Technology, Sweden, 2007.

[50] Ehringer, D., “The dalvik virtual machine architecture,” Techn. report

(March 2010), 2010.

[51] Engström, E., and Runeson, P., “Software product line testing–a

systematic mapping study,” Information and Software Technology, vol.

53, no. 1, pp. 2-13, 2011.

[52] Ensan, F., Bagheri, E., and Gašević, D., "Evolutionary search-based test

generation for software product line feature models," Advanced

Information Systems Engineering, Springer, 2012, pp. 613-628.

[53] Feng, Y., Liu, X., and Kerridge, J., "A product line based aspect-oriented

generative unit testing approach to building quality components,"

Computer Software and Applications Conference, 2007. COMPSAC

2007. 31st Annual International, IEEE, 2007, pp. 403-408

[54] Frakes, W., and Terry, C., “Software Reuse: Metrics and Models,” ACM

Comput. Surv., vol. 28, no. 2, pp. 415–435, 1996.

[55] Fraser, G., and Zeller, A., "Exploiting Common Object Usage in Test Case

Generation," 2011 IEEE Fourth International Conference on Software

Testing, Verification and Validation (ICST), 2011, pp. 80-89.

[56] Fraser, G., and Zeller, A., "Generating parameterized unit tests,"

Proceedings of the 2011 International Symposium on Software Testing

and Analysis, ACM, 2011, pp. 364-374

[57] Ganesan, D., Knodel, J., Kolb, R., Haury, U., and Meier, G., "Comparing

costs and benefits of different test strategies for a software product line: A

study from testo ag," Software Product Line Conference, 2007. SPLC

2007. 11th International, IEEE, 2007, pp. 74-83

[58] Geppert, B., Li, J., Rößler, F., and Weiss, D. M., "Towards generating

acceptance tests for product lines," Software Reuse: Methods, Techniques,

and Tools, pp. 35-48 Springer, 2004.

[59] Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V.,

Nichols, G., . . . Hunt, G., "Debugging in the (very) large: ten years of

implementation and experience," Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, ACM, 2009, pp. 103-116.

[60] Gnesi, S., Latella, D., and Massink, M., "Formal test-case generation for

UML statecharts," Engineering Complex Computer Systems, 2004.

Proceedings. Ninth IEEE International Conference on, IEEE, 2004, pp.

75-84

228

[61] Gnesi, S., Latella, D., and Massink, M., "Model checking UML statechart

diagrams using JACK," High-Assurance Systems Engineering, 1999.

Proceedings. 4th IEEE International Symposium on, IEEE, 1999, pp. 46-

55.

[62] Gomaa, H., and Olimpiew, E. M., "Managing variability in reusable

requirement models for software product lines," High Confidence

Software Reuse in Large Systems, pp. 182-185 Springer, 2008.

[63] Grindal, M., Offutt, J., and Andler, S. F., “Combination testing strategies:

a survey,” Software Testing, Verification and Reliability, vol. 15, no. 3,

pp. 167-199, 2005.

[64] Hartman, A., "Software and hardware testing using combinatorial

covering suites," Graph Theory, Combinatorics and Algorithms, pp. 237-

266 Springer, 2005.

[65] Hartman, A., and Nagin, K., "The AGEDIS tools for model based testing,"

ACM SIGSOFT Software Engineering Notes, ACM, 2004, pp. 129-132

[66] Hartman, A., and Raskin, L., “Problems and algorithms for covering

arrays,” Discrete Mathematics, vol. 284, no. 1, pp. 149-156, 2004.

[67] Hartmann, J., Vieira, M., and Ruder, A., "A UML-based approach for

validating product lines," Intl. Workshop on Software Product Line

Testing (SPLiT), Avaya Labs Technical Report, Citeseer, 2004, pp. 58-64.

[68] Hervieu, A., Baudry, B., and Gotlieb, A., "Pacogen: Automatic generation

of pairwise test configurations from feature models," Software Reliability

Engineering (ISSRE), 2011 IEEE 22nd International Symposium on,

IEEE, 2011, pp. 120-129

[69] Hu, C., and Neamtiu, I., "Automating GUI testing for Android

applications," Proceedings of the 6th International Workshop on

Automation of Software Test, ACM, 2011, pp. 77-83

[70] Imai, T., Kataoka, Y., and Fukaya, T., "Evaluating software maintenance

cost using functional redundancy metrics," Computer Software and

Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th

Annual International, IEEE, 2002, pp. 299-306

[71] Jaaksi, A., “Developing mobile browsers in a product line,” IEEE

software, vol. 19, no. 4, pp. 73-80, 2002.

[72] Jääskeläinen, A., Takala, T., and Katara, M., “Model-based GUI testing

of Android applications,” Experiences of Test Automation: Case Studies

of Software Test Automation, pp. 253, 2012.

[73] Jaring, M., Krikhaar, R. L., and Bosch, J., "Modeling variability and

testability interaction in software product line engineering," Composition-

229

Based Software Systems, 2008. ICCBSS 2008. Seventh International

Conference on, IEEE, 2008, pp. 120–129.

[74] Jin-Hua, L., Qiong, L., and Jing, L., "The w-model for testing software

product lines," Computer Science and Computational Technology, 2008.

ISCSCT'08. International Symposium on, IEEE, 2008, pp. 690-693

[75] Jones, J. A., Orso, A., and Harrold, M. J., “Gammatella: Visualizing

program-execution data for deployed software,” Information

Visualization, vol. 3, no. 3, pp. 173-188, 2004.

[76] Juristo, N., and Moreno, A. M., Basics of software engineering

experimentation: Springer Publishing Company, Incorporated %@

1441950117, 2010.

[77] Kahsai, T., Roggenbach, M., and Schlingloff, B. H., "Specification-based

testing for refinement," Software Engineering and Formal Methods, 2007.

SEFM 2007. Fifth IEEE International Conference on, IEEE, 2007, pp.

237-246

[78] Kan, S. H., Metrics and models in software quality engineering: Addison-

Wesley Longman Publishing Co., Inc. %@ 0201729156, 2002.

[79] Kang, S., Lee, J., Kim, M., and Lee, W., “Towards a Formal Framework

for Product Line Test Development,” CIT, vol. 7, pp. 921-926, 2007.

[80] Kim, M., Sazawal, V., Notkin, D., and Murphy, G., "An empirical study

of code clone genealogies," ACM SIGSOFT Software Engineering Notes,

ACM, 2005, pp. 187-196

[81] Kinshumann, K., Glerum, K., Greenberg, S., Aul, G., Orgovan, V.,

Nichols, G., . . . Hunt, G., “Debugging in the (very) large: ten years of

implementation and experience,” Communications of the ACM, vol. 54,

no. 7, pp. 111-116, 2011.

[82] Kishi, T., and Noda, N., “Formal verification and software product lines,”

Communications of the ACM, vol. 49, no. 12, pp. 73-77, 2006.

[83] Kishi, T., Noda, N., and Katayama, T., "Design verification for product

line development," Software Product Lines, pp. 150-161 Springer, 2005.

[84] Knauber, P., and Schneider, J., "Tracing variability from implementation

to test using aspect-oriented programming," International Workshop on

Software Product Line Testing, Citeseer, 2004, p. 36.

[85] Kolb, R., “A risk-driven approach for efficiently testing software product

lines,” Fraunhofer Institute for Experimental Software Engineering

(IESE), 2003.

[86] Kolb, R., and Muthig, D., “TECHNIQUES AND STRATEGIES FOR

TESTING COMPONENT-BASED SOFTWARE AND PRODUCT

230

LINES,” Development of Component-based Information Systems, pp.

123, 2006.

[87] Koltun, P., and Hudson, A., “A reuse maturity model,” 1991.

[88] Koschke, R., Falke, R., and Frenzel, P., "Clone detection using abstract

syntax suffix trees," Reverse Engineering, 2006. WCRE'06. 13th Working

Conference on, IEEE, 2006, pp. 253-262

[89] Lamancha, B. P., and Usaola, M. P., "Testing product generation in

software product lines using pairwise for features coverage," Testing

Software and Systems, pp. 111-125 Springer, 2010.

[90] Lamancha, B. P., Usaola, M. P., and Velthius, M. P., “Software Product

Line Testing,” A Systematic Review. ICSOFT (1), pp. 23-30, 2009.

[91] Lazić, L., “The Integrated and Optimized Software Testing Process,” PhD

Thesis, School of Electrical Engineering, Belgrade, Serbia, 2007.

[92] Lee, J., Kang, S., and Lee, D., "A survey on software product line testing,"

Proceedings of the 16th International Software Product Line Conference-

Volume 1, ACM, 2012, pp. 31-40

[93] Lee, K., Kang, K. C., and Lee, J., "Concepts and guidelines of feature

modeling for product line software engineering," Software Reuse:

Methods, Techniques, and Tools, pp. 62-77 Springer, 2002.

[94] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I., "Scalable

statistical bug isolation," ACM SIGPLAN Notices, ACM, 2005, pp. 15-26

[95] Ludewig, J., and Lichter, H., Software Engineering: Grundlagen,

Menschen, Prozesse, Techniken: dpunkt. verlag %@ 3864911680, 2012.

[96] Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek, S., and

Stavrou, A., "A whitebox approach for automated security testing of

Android applications on the cloud," Automation of Software Test (AST),

2012 7th International Workshop on, IEEE, 2012, pp. 22-28

[97] Marin, M., Van Deursen, A., and Moonen, L., "Identifying aspects using

fan-in analysis," Reverse Engineering, 2004. Proceedings. 11th Working

Conference on, IEEE, 2004, pp. 132-141

[98] McCall, J. A., “Quality factors,” encyclopedia of Software Engineering,

1994.

[99] McGregor, J., "Testing a Software Product Line," Testing Techniques in

Software Engineering, Lecture Notes in Computer Science P. Borba et al.,

eds., pp. 104-140 Springer Berlin / Heidelberg, 2010.

[100] McGregor, J., “Testing a software product line,” 2001.

231

[101] McGregor, J. D., "Building reusable test assets for a product line,"

Software Reuse: Methods, Techniques, and Tools, pp. 345-346 Springer,

2002.

[102] McGregor, J. D., "Toward a Fault Model for Software Product Lines,"

SPLC (2), 2008, pp. 157-162.

[103] Miller, G. A., and Chomsky, N., “Finitary models of language users,”

1963.

[104] Miller, G. A., and Johnson-Laird, P. N., Language and perception:

Belknap Press, 1976.

[105] Mishra, S., “Specification based software product line testing: a case

study,” Concurrency, Specification and Programming, 2006.

[106] Muccini, H., Di Francesco, A., and Esposito, P., "Software testing of

mobile applications: Challenges and future research directions,"

Automation of Software Test (AST), 2012 7th International Workshop on,

IEEE, 2012, pp. 29-35

[107] Muccini, H., Dias, M., and Richardson, D. J., “Software architecture-

based regression testing,” Journal of Systems and Software, vol. 79, no.

10, pp. 1379-1396, 2006.

[108] Muccini, H., Dias, M. S., and Richardson, D. J., "Towards software

architecture-based regression testing," ACM SIGSOFT Software

Engineering Notes, ACM, 2005, pp. 1-7

[109] Muccini, H., and Van Der Hoek, A., “Towards testing product line

architectures,” Electronic Notes in Theoretical Computer Science, vol. 82,

no. 6, pp. 99-109, 2003.

[110] Myers, G. J., Sandler, C., and Badgett, T., The art of software testing: John

Wiley & Sons %@ 1118133153, 2011.

[111] Nebut, C., Fleurey, F., Le Traon, Y., and Jézéquel, J.-M., "A requirement-

based approach to test product families," Software Product-Family

Engineering, pp. 198-210 Springer, 2004.

[112] Nebut, C., Le Traon, Y., and Jézéquel, J.-M., "System testing of product

lines: From requirements to test cases," Software Product Lines, pp. 447-

477 Springer, 2006.

[113] Nebut, C., Pickin, S., Le Traon, Y., and Jézéquel, J.-M., "Automated

requirements-based generation of test cases for product families,"

Automated Software Engineering, 2003. Proceedings. 18th IEEE

International Conference on, IEEE, 2003, pp. 263-266

232

[114] Nori, A. V., and Rajamani, S. K., "An empirical study of optimizations in

YOGI," Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1, ACM, 2010, pp. 355-364

[115] Northrop, L., Clements, P., Bachmann, F., Bergey, J., Chastek, G., Cohen,

S., . . . Little, R., “A framework for software product line practice, version

5.0,” SEI.-2007, 2007.

[116] Olimpiew, E., and Gomaa, H., "Reusable system tests for applications

derived from software product lines," International Workshop on

Software Product Line Testing (SPLiT 2005), Citeseer, 2005.

[117] Olimpiew, E. H. G., and Gomaa, H., "Customizable requirements-based

test models for software product lines," International Workshop on

Software Product Line Testing, 2006.

[118] Olimpiew, E. M., “Model-based testing for software product lines,” 2008.

[119] Olimpiew, E. M., and Gomaa, H., “Model-based testing for applications

derived from software product lines,” ACM SIGSOFT Software

Engineering Notes, vol. 30, no. 4, pp. 1-7, 2005.

[120] Olimpiew, E. M., and Gomaa, H., "Reusable model-based testing,"

Formal Foundations of Reuse and Domain Engineering, pp. 76-85

Springer, 2009.

[121] Orso, A., and Rothermel, G., "Software testing: a research travelogue

(2000–2014)," Proceedings of the IEEE International conference on

Software Engineering (ICSE), Future of Software Engineering, 2014.

[122] Orso, A., Shi, N., and Harrold, M. J., "Scaling regression testing to large

software systems," ACM SIGSOFT Software Engineering Notes, ACM,

2004, pp. 241-251.

[123] Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., and Le Traon, Y.,

“Pairwise testing for software product lines: comparison of two

approaches,” Software Quality Journal, vol. 20, no. 3-4, pp. 605-643,

2012.

[124] Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M., "Systematic

mapping studies in software engineering."

[125] Pohl, K., Böckle, G., and Van Der Linden, F., Software product line

engineering: foundations, principles, and techniques: Springer, 2005.

[126] Pohl, K., and Metzger, A., “Software product line testing,”

Communications of the ACM, vol. 49, no. 12, pp. 78-81, 2006.

[127] Pressman, R. S., and Jawadekar, W. S., “Software engineering,” New York

1992, 1987.

233

[128] Pretschner, A., "Model-based testing," Software Engineering, 2005. ICSE

2005. Proceedings. 27th International Conference on, IEEE, 2005, pp.

722-723.

[129] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M.,

Sostawa, B., . . . Stauner, T., "One evaluation of model-based testing and

its automation," Proceedings of the 27th international conference on

Software engineering, ACM, 2005, pp. 392-401

[130] Rajapakse, D. C., and Jarzabek, S., "An investigation of cloning in web

applications," Web Engineering, pp. 252–262: Springer, 2005.

[131] Rajapakse, D. C., and Jarzabek, S., "Using server pages to unify clones in

web applications: A trade-off analysis," Software Engineering, 2007.

ICSE 2007. 29th International Conference on, IEEE, 2007, pp. 116–126.

[132] Reuys, A., Kamsties, E., Pohl, K., and Reis, S., "Model-based system

testing of software product families," Advanced Information Systems

Engineering, Springer, 2005, pp. 519-534.

[133] Reuys, A., Reis, S., Kamsties, E., and Pohl, K., "Derivation of domain test

scenarios from activity diagrams," Proceedings of the International

Workshop on Product Line Engineering–The Early Steps–Planning,

Modeling and Managing (PLEES’03), Fraunhofer IESE, Erfurt,

September, Citeseer, 2003.

[134] Reuys, A., Reis, S., Kamsties, E., and Pohl, K., "The scented method for

testing software product lines," Software Product Lines, pp. 479-520:

Springer, 2006.

[135] Riebisch, M., Böllert, K., Streitferdt, D., and Philippow, I., "Extending

feature diagrams with UML multiplicities," Proceedings of the Sixth

Conference on Integrated Design and Process Technology (IDPT 2002),

Pasadena, CA, 2002.

[136] Robinson-Mallett, C., Grochtmann, M., Wegener, J., Kohnlein, J., and

Kuhn, S., "Modelling requirements to support testing of product lines,"

Software Testing, Verification, and Validation Workshops (ICSTW), 2010

Third International Conference on, IEEE, 2010, pp. 11-18

[137] Rothermel, G., and Harrold, M. J., “A safe, efficient regression test

selection technique,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 6, no. 2, pp. 173-210, 1997.

[138] Roy, C. K., Cordy, J. R., and Koschke, R., “Comparison and evaluation

of code clone detection techniques and tools: A qualitative approach,”

Science of Computer Programming, vol. 74, no. 7, pp. 470-495, 2009.

[139] Runeson, P., and Höst, M., “Guidelines for conducting and reporting case

study research in software engineering,” Empirical software engineering,

vol. 14, no. 2, pp. 131-164, 2009.

234

[140] Saha, R. K., Asaduzzaman, M., Zibran, M. F., Roy, C. K., and Schneider,

K. A., "Evaluating code clone genealogies at release level: An empirical

study," Source Code Analysis and Manipulation (SCAM), 2010 10th IEEE

Working Conference on, IEEE, 2010, pp. 87-96

[141] Shafique, M., and Labiche, Y., “A systematic review of model based

testing tool support,” Software Quality Engineering Laboratory,

Department of Systems and Computer Engineering, Carleton University,

Technical Report SCE-10-04, 2010.

[142] Shaulis, C. L., "Salion’s Quality Confident Approach to Testing Software

Product Lines," International Workshop on Software Product Line

Testing, Citeseer, 2004, p. 78.

[143] Sommerville, I., Software Engineering. International computer science

series: Addison Wesley, 2004.

[144] Stephenson, Z., Zhan, Y., Clark, J., and McDermid, J., "Test Data

Generation for Product Lines–A Mutation Testing Approach,"

International Workshop on Software Product Line Testing, Citeseer, 2004,

p. 13.

[145] Takala, T., Katara, M., and Harty, J., "Experiences of system-level model-

based GUI testing of an Android application," Software Testing,

Verification and Validation (ICST), 2011 IEEE Fourth International

Conference on, IEEE, 2011, pp. 377-386

[146] Tevanlinna, A., Taina, J., and Kauppinen, R., “Product family testing: a

survey,” ACM SIGSOFT Software Engineering Notes, vol. 29, no. 2, pp.

12-12, 2004.

[147] Utting, M., and Legeard, B., Practical model-based testing: a tools

approach: Morgan Kaufmann, 2010.

[148] Utting, M., Pretschner, A., and Legeard, B., “A taxonomy of model-based

testing,” 2006.

[149] van der Linden, F. J., Schmid, K., and Rommes, E., Software product lines

in action: Springer 5, 2007.

[150] Van Rompaey, B., Du Bois, B., Demeyer, S., and Rieger, M., “On The

Detection of Test Smells: A Metrics-Based Approach for General Fixture

and Eager Test,” IEEE Transactions on Software Engineering, vol. 33, no.

12, pp. 800-817, 2007.

[151] Vieira, M. E., Dias, M. S., and Richardson, D. J., "Object-Oriented

specification-based testing using UML statechart diagrams," Proceedings

of the Workshop on Automated Program Analysis, Testing, and

Verification (at ICSE’00), 2000.

235

[152] Weingärtner, J., "Product family engineering and testing in the medical

domain—validation aspects," Software Product-Family Engineering, pp.

383-387 Springer, 2002.

[153] Weiss, D. M., “Software product-line engineering: a family-based

software development process,” 1999.

[154] Weißleder, S., Sokenou, D., and Schlingloff, B.-H., “Reusing state

machines for automatic test generation in product lines,” Model-Based

Testing in Practice (MoTiP), Fraunhofer IRB Verlag, pp. 19-28, 2008.

[155] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and

Wesslén, A., Experimentation in software engineering: Springer %@

3642290442, 2012.

[156] Wübbeke, A., "Towards an Efficient Reuse of Test Cases for Software

Product Lines," SPLC (2), 2008, pp. 361-368.

[157] Yang, Q., Li, J. J., and Weiss, D. M., “A survey of coverage-based testing

tools,” The Computer Journal, vol. 52, no. 5, pp. 589-597, 2009.

[158] Yu, Y., and Wu, F., "A software acceptance testing technique based on

knowledge accumulation," VLSI, 1999. Proceedings. Ninth Great Lakes

Symposium on, IEEE, 1999, pp. 296-299.

[159] Zhang, L., Liu, Y., and Guo, W., "Research on Diversified Designing

Methods and User Evaluation of Smartphone Interface," Computational

Intelligence and Design (ISCID), 2010 International Symposium on,

IEEE, 2010, pp. 10-13

236

Appendix A

Journal and Conference Listing

 Abstract State Machines 2004. Advances in Theory and Practice

 ACM SIGSOFT Software Engineering Notes

 ACM Transactions on Software Engineering and Methodology (TOSEM)

 Advanced Information Systems Engineering

 Automated Software Engineering, 2003. Proceedings. 18th IEEE

International Conference

 Automation of Software Test (AST), 2012 7th International Workshop

 Books

 Book Sections

 CHI'04 extended abstracts on Human factors in computing systems

 Communications of the ACM

 Computational Intelligence and Design International Symposium

 Computer and Information Sciences-ISCIS

 Computer Science and Computational Technology, 2008. ISCSCT'08.

International Symposium

 Computer Software and Applications Conference

 Development of Component-based Information Systems

 Discrete Mathematics

 Electronic Notes in Theoretical Computer Science

 Empirical software engineering

 Engineering Complex Computer Systems

 Experiences of Test Automation: Case Studies of Software Test Automation

 Formal Foundations of Reuse and Domain Engineering

 Fraunhofer Institute for Experimental Software Engineering (IESE)

 Graph Theory, Combinatorics and Algorithms

 IEEE Software

 IEEE Transactions on Software Engineering

 Information and Software Technology

 International Conference on Evaluation and Assessment in Software

Engineering (EASE)

 International Conference on Empirical Assessment & Evaluation in Software

Engineering

237

 International Conference on Software Engineering and Knowledge

Engineering (SEKE)

 International Conference on Software Reuse

 ACM SIGSOFT Software Engineering Notes

 IEEE International Conference on Computer and Information Technology

 Communications of the ACM

 European Workshop on Model Driven Architecture

 International Conference on Software and Data Technologies, Proceedings

 Information and Software Technology

 International Workshop on Software Product Line Testing

 Journal of Systems and Software

 International Software Product Line Conference

 International Workshop on Software Product-Family Engineering,

 Joint European Software Engineering Conference (ESEC) and SIGSOFT

Symposium on the Foundations of Software Engineering (FSE-11)

 Journal of Combinatorial Designs

 Journal of Software Engineering and Knowledge Engineering

 Journal of Systems and Software

 Proc. Int. Workshop on Software Clones

 Reverse Engineering Working Conference

 Software, IEEE

238

Appendix B

Essential ART Syntax

Adaptive Reuse Technique (ART) follows a pre-processor style syntax and helps

testers to incorporate variability as base test case codes for family of test library

variants. ART organises and instruments test templates for ease of adaptation and

reuse. Following summary of Adaptive Reuse Technique (ART) syntax as was

adopted from the ART website [http://art.comp.nus.edu.sg/].

ART Syntax

File Types (SPC and ART)

Execution

Sequence

ART processor starts processing the test templates with the

specification file (has a *.spc extension). The processor executes

statement by statement and reaches end of the SPC file. Additional

configuration input files (*.art file extension) can be created and

adapted by calling from the spc file.

To understand the execution sequence, consider the example shown

in figure below. ART processor processes the TypeTest.SPC

file line by line. When the processor encounters adapt command it

starts processing TypeTest.art followed by

moreMethods.art. Conditionally for Byte type

Byte_moreMethods.art is adapted in sequence.

adapt command

Syntax #adapt: file

 <customizations>

#endadapt

Attributes file : File name to be adapted

Description Whenever ART processor encounters the ”#adapt file-A”

command, processing of the current file is suspended and the

processor starts processing file-A. Once processing of file-A

is completed, the processor resumes processing of the current file

239

for statements just after #adapt file-A. The syntax and

scoping rules for commands used under #adapt command are the

same as outside the #adapt command.

Additional A chain of #adapt commands must not lead to recursion, i.e., no

file can adapt itself directly or indirectly.

output command

Syntax #output <path>

Attributes The <path> can be absolute or relative path.

Description Output command specifies the output file where the source code

from the test template needs to be placed. If output file is not

specified, then processor emits code to an automatically generated

default file named defaultOutput in the main installation folder of

the processor.

set command

Syntax #set <var> = “value”

OR

#set <var> = “value1”, “value2”, “value 3”…

Attributes <var> Single or multi valued variable.

Description #set command declares a test template variable and sets its value.

With the #set command, we can either declare single and multi-

value variables.

Expressions

Syntax ?<<expression>>?

Description Expressions are written between question mark '?' characters. There

are three types of expressions, namely name expression, string

expression and arithmetic expression.

Note: A direct reference to variable x is written as?@x?.

1. A name expression can contain variable

references (example ?@x?), and combinations of variable

references (example ?@x@y@z?).

2. A string expression can contain any number of name

expressions intermixed with character strings. To evaluate

a string expression, we evaluate the name expressions from the

left to the right of the string expression, replace name

expressions with their respective values and concatenate with

character strings.

3. An arithmetic expression can contain any mathematical

expression. When an arithmetic expression is a well-formed,

the processor recognizes it as such and evaluates its value. An

arithmetic expression can contain ‘+’, ‘-’, ‘*’, ‘/’ operators and

nested parenthesis. Usual operator precedence rules as in

programming languages such as Java is applicable.

Additional Arithmetic and String expression cannot be mixed together. An

expression is either purely string or purely mathematical in nature.

The insert-break mechanism

Syntax

#insert breakX

 content

#endinsert

#break breakX

OR

#break: breakX

 default content

#endbreak

240

Description An #insert command replaces all matching #break with its

content. Matching is done by a name (breakX in the example).

#break commands in all files reached via #adapt chain can be

affected.

Loops and Selections

Syntax #while mul-val-var1, mul-val-var2 . . .

 content

#endwhile

Description Command #while is a generation loop that iterates over its body

and generates custom text at each iteration. The #while command

is controlled by one or more multi-value variables. The ith value

of each of the control variables is used in ith iteration of the loop.

This implies that all the control variables should have the same

number of values, and their respective number of values determines

the number of iterations of the loop.

Syntax #select <control-variable>

 #option-undefined

 % this will be executed if <variable>

 % is not defined

 . . .

 #endoption-unindefined

 #option <value>

 % this will be executed if value of

<variable>

 % is the given <value>

 . . .

 #endoption

 #option <value2|value3>

 % this will be executed if value of

<variable>

 % is <value2> OR <value3>

 . . .

 #endoption

 . . .

 #otherwise

 % this will executed if <variable> is

defined,

 % and none of the options corresponds to

value

 % of <variable>

 . . .

 #endotherwise

#endselect

Description Command #select allows us to choose one of many

customization options. With the #select command we can select

one of many options, depending on the value of a control variable.

The processor selects and processes in turn all the #options

whose values match the value of the control variable. #option-

undefined is processed if control variable is undefined.

#otherwise is processed if none of the #options can be

selected.

241

Additional #while and #select are often used together. #while command is

often used for test code generation. For instance, generating test

case for testing database tables, user interface buttons etc.

Comments

Syntax % comments

Description Text following % is considered a comment. In order to ignore a %

symbol a tester can use?

#setloop command

Description Keeping track of corresponding values becomes troublesome in

while loop, especially when variables have many values that are

often changed. Any mismatch of values may cause an annoying

error. #setloop command alleviates this problem by allowing us

to organize the values of control variables to be used in a while loop

in a more intuitive and less error prone way than multi-value

variables do. The basic usage scenarios for this command can be

directly translated into #set commands that control #while in

the usual way. #setloop command organizes values of loop

control variables into a table, where rows are formed by loop

iteration and columns by values of control variables.

242

Appendix C

BiDiTests File Listing

Java Files XML Files

BiDiTestActivity.java attrs.xml

BiDiTestBasic.java basic.xml

BiDiTestCanvas.java canvas.xml

BiDiTestCanvas2.java canvas2.xml

BiDiTestConstants.java custom_list_item.xml

BiDiTestFrameLayoutLocale.java frame_layout_locale.xml

BiDiTestFrameLayoutLtr.java frame_layout_ltr.xml

BiDiTestFrameLayoutRtl.java frame_layout_rtl.xml

BiDiTestGalleryImages.java gallery_ltr.xml

BiDiTestGalleryLtr.java gallery_rtl.xml

BiDiTestGalleryRtl.java grid_layout_code.xml

BiDiTestGridLayoutCodeLtr.java grid_layout_locale.xml

BiDiTestGridLayoutCodeRtl.java grid_layout_ltr.xml

BiDiTestGridLayoutLocale.java grid_layout_rtl.xml

BiDiTestGridLayoutLtr.java linear_layout_locale.xml

BiDiTestGridLayoutRtl.java linear_layout_ltr.xml

BiDiTestLinearLayoutLocale.java linear_layout_rtl.xml

BiDiTestLinearLayoutLtr.java main.xml

BiDiTestLinearLayoutRtl.java main_menu.xml

BiDiTestRelativeLayout2Locale.java relative_layout_2_locale.xml

BiDiTestRelativeLayout2Ltr.java relative_layout_2_ltr.xml

BiDiTestRelativeLayout2Rtl.java relative_layout_2_rtl.xml

BiDiTestRelativeLayoutLtr.java relative_layout_ltr.xml

BiDiTestRelativeLayoutRtl.java relative_layout_rtl.xml

BiDiTestTableLayoutLocale.java strings.xml

BiDiTestTableLayoutLtr.java table_layout_locale.xml

BiDiTestTableLayoutRtl.java table_layout_ltr.xml

BiDiTestTextViewAlignmentLtr.java table_layout_rtl.xml

BiDiTestTextViewAlignmentRtl.java textview_alignment_ltr.xml

BiDiTestTextViewDirectionLtr.java textview_alignment_rtl.xml

BiDiTestTextViewDirectionRtl.java textview_direction_ltr.xml

BiDiTestTextViewDrawablesLtr.java textview_direction_rtl.xml

BiDiTestTextViewDrawablesRtl.java textview_drawables_ltr.xml

BiDiTestTextViewLocale.java textview_drawables_rtl.xml

BiDiTestTextViewLtr.java textview_locale.xml

BiDiTestTextViewRtl.java textview_ltr.xml

BiDiTestView.java textview_rtl.xml

BiDiTestViewDrawText.java view_group_margin_mixed.xml

BiDiTestViewGroupMarginMixed.java view_padding.xml

BiDiTestViewPadding.java view_padding_mixed.xml

BiDiTestViewPaddingMixed.java

