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ABSTRACT

Cloud computing has emerged as a multi-billion dollar industry and as a successful

paradigm for web-scale application deployment. Represented by the MapReduce pro-

cessing model, MPP (Massively Parallel Processing) systems form a critical component

of the cloud software stack. Hailed for its high scalability, massive parallelism, and effec-

tively programable interface, the MapReduce paradigm is widely recognized as a revolu-

tionary advancement in large scale computation. However, due to the heterogeneity and

massiveness nature of data in the Cloud, current Cloud systems trade rigorous data man-

agement functionalities for better versatility and scalability. On one hand, the absence of

comprehensive data model and access methods, which have been developed extensively

for relational database management systems (RDBMSs), has affected MapReduce-based

system’s applicability to a wider variety of real world analytical tasks. On the other hand,

due to the complexity of processing logic layers in its system architecture, RDBMSs fail

to provide desirable scalability and elasticity.

The overarching goal of this dissertation is to exploit the opportunity for a better mar-

riage of RDBMS technologies and Cloud Computing systems. This dissertation shows

that with careful choice of design and features, it is possible to architect a large scale

system that syncretizes the efficient access methods of RDBMS and the powerful paral-

lelized processing of MapReduce. This dissertation advances the research in this topic by

improving two critical facets of large scale data processing systems. First, we propose an

architecture to support the usage of DBMS-like indexes in MapReduce systems to facili-

tate the storage and processing of structured data. We start with devising a bitmap-based

indexing scheme that provides superior space efficiency, and improves the performance

of MapReduce programs on a specific category of data. We then generalize the index ap-

plication, and propose a generalized index framework for MapReduce systems to handle

large data and applications. Second, we propose models and techniques to incorporate the

power of MapReduce with parallel database system technologies in query processing.
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CHAPTER 1

Introduction

1.1 Cloud Computing

We are in an era of Cloud.

With the irresistible trend of digitalization, the volume of data generated from online

and off-line has reached an unprecedented scale. The emergence of Cloud Computing is a

timely and practical response to the storage and processing demand in large scale compu-

tation. The Cloud has revolutionized the way computing infrastructure is abstracted and

used. Analysts project the global cloud computing services revenue is worth tens of billion

dollars and is growing [86]. The major features that make cloud computing an attractive

service oriented architecture are: elasticity, i.e., the ability to scale the resources and ca-

pacity on-demand; pay-as-you-go pricing resulting in low upfront investment and low

time to market for trying out novel application ideas; and the transfer of risks from the

small application developers to the large infrastructure providers. Many novel application

ideas can therefore be tried out with minimal risks, a model that was not economically

feasible in the era of traditional enterprise infrastructures. This has resulted in large num-

bers of applications – of various types, sizes, and requirements – being deployed across

the various cloud service providers.

Three cloud abstractions have gained popularity over the years. Infrastructure as a

service (IaaS) is the lowest level of abstraction where raw computing infrastructure (such

as CPU, memory, storage, network etc.) is provided as a service. Amazon web ser-

vice (http://aws.amazon.com/) and Rackspace (http://www.rackspace.com/) are example

IaaS providers. Platform as a service (PaaS) constitutes the next higher level of ser-

vice abstraction where a platform for application deployment is provided as a service.

1



CHAPTER 1. INTRODUCTION

Applications are hosted and managed by a PaaS provider’s platform throughout their life-

cycles. Microsoft Azure (http://www.microsoft.com/windowsazure), Google AppEngine

(http://code.google.com/appengine/), Engine Yard (http://www.engineyard.com/), and Face-

book’s developer platform (http://developers.facebook.com/) are example PaaS providers.

Software as a Service (SaaS) is the highest level of abstraction where a complete ap-

plication is provided as a service. A SaaS provider typically offers a generic appli-

cation software targeting a specific domain (such as a customer relationship manage-

ment, property management, payment processing and checkout, etc.) with the ability

to support minor customizations to meet customer requirements. Google Apps for Busi-

ness and Enterprises (http://www.google.com/enterprise/apps/business/), Salesforce.com

(http://www.saleforce.com/), Akamai (http://www.akamai.com/), and Oracle’s on demand

CRM (http://www.oracle.com/us/products/applications/crmondemand/index.html) are ex-

ample SaaS providers. The concept of service oriented computing abstractions can also

be extended to Database as a Service, Storage as a service, and many more.

1.2 Motivations and Challenges

Irrespective of the cloud abstraction, data is central to applications deployed in the

cloud. Data drives knowledge which engenders innovation. Be it personalizing search

results, recommending movies or friends, determining which advertisements to display or

which coupon to deliver, data is central in improving customer satisfaction and providing

a competitive edge. Data, therefore, generates wealth and many modern enterprises are

collecting data at the most detailed level possible, resulting in massive and ever-growing

data repositories. Database management systems (DBMSs) therefore form a critical com-

ponent of the cloud software stack.

Relational database management systems (RDBMSs) have been the solution to most

of the data needs for the past few decades; such systems include both commercial (such

as Oracle Database, IBM DB2, Microsoft SQL Server, etc.) and open source (such as

MySQL, Postgres, etc.) systems. These systems have been extremely successful in clas-

sical enterprise settings. Some of the key features of RDBMSs are: rich functionality,

i.e., handling diverse application workloads using an intuitive relational data model and

a declarative query language; high performance by leveraging over three decades of per-

formance optimizations; data consistency, i.e., dealing with concurrent workloads while

guaranteeing that data integrity is not lost; and high reliability and durability, i.e., ensur-

ing safety and persistence of data in the presence of different types failures.

In spite of the success of RDBMSs in conventional enterprise infrastructures, they are

often considered to be less “cloud friendly” [82]. This is because scaling the databases

2



CHAPTER 1. INTRODUCTION

on demand while providing guarantees competitive with RDBMSs and ensuring high data

availability in the presence of failures is a hard problem. The problem of scaling is pri-

marily attributed to the complex software stack of database systems, and stringent ACID

requirement. The database servers have to store a lot of tightly coupled states while guar-

anteeing stringent ACID properties and supporting concurrent access. Historically, there

have been two approaches to scalability: scaling-up and scaling-out.

Scaling-up, i.e., using larger and more powerful servers, has been the preferred ap-

proach to scale databases in enterprise infrastructures. This allows RDBMSs to support

a rich set of features and stringent guarantees without the need for expensive distributed

synchronization. However, scaling-up is not viable in the Cloud primarily because the

cost of hardware grows non-linearly, thus failing to leverage the economies achieved from

commodity servers.

Scaling-out. i.e., increasing system’s capacity by adding more (commodity) servers,

is the preferred approach in the Cloud. Scaling-out minimizes the total system cost by

leveraging commodity hardware and the pay-as-you-go pricing. Scaling out RDBMSs,

while supporting flexible functionality, however, is expensive due to distributed synchro-

nization and the cost of data movement for transactions whose execution cannot be con-

tained in a single node1. Moreover, managing RDBMS cluster installations is a major

engineering challenge with high administration cost [47].

Unfortunately, the rapid growth of the amount of information has outpaced the pro-

cessing and I/O capabilities of single machines – even those of high-end servers. As a

result, more and more organizations have to scale out their computations across clus-

ters, and the emergence of Cloud Computing technologies is a response to this demand.

The essence of a Cloud Computing system is to create a distributed cluster environment

by leveraging massive commodity servers to achieve high scalability, elasticity, and fault

tolerance. Although distributed systems have been studied and practiced for decades, the

new Cloud paradigm enables efficient massively parallel processing (MPP) by encapsulat-

ing failure recovery, inter-machine communication in an execution engine, and bringing

about programmability for upper layer applications. Example practises of Cloud MPP

systems are Google’s MapReduce [30], Microsoft’s Dryad [48], Yahoo!’s Pig Latin [72],

and their variants.

Diverse applications deployed in Cloud infrastructures result in very different schemas,

workload types, and data access patterns, which requires the Cloud system to be able to

efficiently store and process heterogeneous data, and adapt to different workloads. Unlike

data processing in RDBMSs, the power of MapReduce programming model comes from

1We use the term node to represent a single server in a distributed system. These two terms, node and
server, are used interchangeably throughout this dissertation.

3
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Data Access Methods
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Figure 1.1: Scaling-out while providing data access functionalities. MapReduce systems are designed for
large scale operations but support limited schema semantics while RDBMSs provide comprehensive data
access methods. This dissertation bridges this chasm.

its simplicity – it provides simple model through which users are able to express relatively

sophisticated distributed programs. But as all the good things in the world, this simplic-

ity comes with a price. Due to the heterogeneity and massiveness nature of data stored

in the system, most MapReduce systems employ a distributed file system as the storage

layer, and data are mostly imported directly from sources and barely parsed using schema.

As pointed out by Dewitt and Stonebreaker [34], MapReduce lacks many of the features

that have been proven invaluable for structured data analysis workloads, and its imme-

diate gratification paradigm precludes some of the long term benefits of first modeling

and loading data before processing. The potential performance drawback of MapReduce

has been reported [76] on the basis of experiments on two benchmarks – TPC-H and a

customized benchmark tailored for search engines.

As a result, there exist a big chasm between RDBMSs that provide comprehensive data

access methods (such as index, etc.) but are hard to scale-out and MapReduce systems

that leverage parallelism but support limited schema semantics. Figure 1.1 depicts this

balance between scale-out and data access functionalities. It is therefore critical to rethink

the design of large scale data processing systems, that has the capability to scale-out while

providing comprehensive data access methods.

1.3 Dissertation Overview

The overarching goal of this dissertation is to exploit the opportunity for a better in-

tegration of DBMS technologies and Cloud Computing systems. The underlying thesis

of this dissertation is that with careful choice of design and features, it is possible to ar-
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chitect a large scale system that syncretize the efficient access methods of RDBMS and

the powerful parallelized processing of MapReduce. Using this principle as the corner-

stone, this dissertation advances the state-of-the-art by improving two critical facets of

large scale data management systems. First, we propose architectures and abstractions to

support DBMS-like index in MapReduce systems to facilitate the storage and processing

of structured data. Second, we propose models and techniques to incorporate the power of

MapReduce with state-of-the-art parallel database system technologies in query process-

ing. The prototype we build approaches parallel databases in performance and efficiency,

yet still yields the scalability, fault tolerance, and flexibility of MapReduce-based systems.

1.3.1 Indexing the Cloud

The advent of cloud computing marked the beginning of global transformation in how

data is created, shared, stored and archived. The explosion of data not only puts challenges

on the storage capacity of current large scale systems, but also on their ability to efficiently

process the data to uncover the hidden value. Analytical insight is critical from cutting-

edge data-driven business to traditional industries, and using the immense volume of data

in the Cloud to gather and derive meaningful knowledge creates a unique ground for Cloud

analytical technologies to realize value. For example, retailers can track user web clicks

to identify behavioral trends that improve campaigns, pricing and stockage. Governments

and even Google can detect and track the emergence of disease outbreaks via social media

signals. Oil and gas companies can take the output of sensors in their drilling equipment

to make more efficient and safer drilling decisions. A recent study reports that the global

Cloud analytics market is expected to grow from $5.25 billion in 2013 to $16.52 billion

by 2018 [65].

Conventional RDBMSs organize data in the relational data model, provide compre-

hensive storage and query optimization, and a declarative query language (SQL). As a

result, when an RDBMS is scaled-out and distributed over a cluster of servers, the bulky

system incurs expensive management overhead and performance degradation. While not

being able to be adopted as a whole, RDBMSs have a lot of nice features that can be “par-

tially” applied to the Cloud to reinforce its functionality. Data access methods, among all,

are what current Cloud systems fail to facilitate.

The most prevalent data access technique employed by conventional RDBMSs is in-

dexing. By organizing a target attribute (table column) into a search friendly structure

(index), an indexing technique is able to provide fast location of desired data without hav-

ing to scan the whole database, and accelerate data retrieval. Ideally, indexing techniques

are able to effectively speed up data retrieval in large scale systems, however, applying in-

dex in MapReduce is non-trivial mainly because of two reasons: (1) MapReduce does not
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have built-in support for processing traditional index, and (2) scaling traditional indexes

in a distributed environment is difficult due to undesirable maintenance and tuning over-

heads. Given the necessity and current absence of effective index application in the Cloud,

we present the design of two index mechanisms tailored for large scale data processing

systems.

The choice of an appropriate index for data with certain characteristic has decisive

impact on query performance. For instance, in an update intensive environment, an LSM-

Tree [73] serves better than B+-Tree index. If we have a highly selective workload on

wide range of numeric data, then B+-Tree is preferable. In this thesis, we first investi-

gate a specific category of data, namely, data with limited range of value. Bitmap in-

dex is traditionally employed to index data with such characteristic. More importantly,

the space efficiency of bitmap index makes it a promising candidate for supporting re-

trieval over large scale datasets. Consequently, we propose BIDS [62], a bitmap based

indexing scheme for large-scale data store. Our study shows that, the proposed bitmap

index scheme effectively reduces the space overhead of indexing large volume of data

by incorporating state-of-the-art bitmap compression techniques, such as WAH encoding

[100] and bit-sliced encoding [83]. BIDS also adopts a query-sensitive partial indexing

scheme to further reduce the index size at runtime. Moreover, BIDS is designed as a light-

weighted service and can be seamlessly integrated into the current MapReduce runtime

as a plug-in of execution engine. The architectural design of BIDS enables it to achieve

high scalability by leveraging MapReduce to process index operations in parallel.

Indexing techniques are useful for locating a subset of data that satisfy the search

condition quickly without having to scan the whole database. They are indeed the most

effective means in reducing query processing cost and many indexes have been proposed

for such purposes. However, it is not straightforward to introduce a new indexing structure

to an existing system, as it affects not only the storage manager, but also query processor

and concurrency controller. The problem is further complicated in distributed processing

platforms as data and indexing structures may be distributed. Indexing in distributed

processing platforms should have the following features:

1. To support different types of applications and queries, a general indexing framework

is required which can be used to build all popular indexes, such as B+-tree index and

R-tree index, for the distributed systems. It should also provide unified interfaces

for users to implement new types of index.

2. The framework should work as a non-intrusive component for existing systems such

as MapReduce so that the previous algorithms written for those systems do not need

to be modified to exploit the benefit of index-base processing.
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3. As an index service for parallel data processing, the design of index framework

must consider the efficiency, reliability and scalability as its first class citizen.

Based on the above rationale, we take our previous research one step further, and pro-

pose an indexing framework, ScalaGiST – Scalable Generalized Search Tree – which

is intrigued by classical Generalized Search Tree (GiST) [45]. Traditional GiST provides

functionalities of various types of database search trees in a single package, while ScalaG-

iST is designed for dynamic distributed environments to handle large-scale datasets and

adapt to changes in the workload while leveraging commodity hardware. ScalaGiST is

extensible in terms of both data and query in that it enables users to define indexes for

new type of data and provides efficient lookup over the index data as built-in functions

without the need of data mapping as being used in other distributed indexing frameworks

[24, 70]. Indexes in ScalaGiST are distributed and replicated among index servers in the

cluster for scalability, data availability and load balancing purposes. ScalaGiST devel-

ops a light-weight distributed processing service to process index requests in parallel and

effectively reduce the overhead of searching over a large index. ScalaGiST is designed

as an indexing service and can work with other systems in a non-intrusive way. While

secondary indexes facilitate a more direct location of data of interest, they may incur non-

negligible cost due to random accesses to the base data. Therefore, ScalaGiST develops a

data access optimizer to compare two possible query execution plans, namely index scan

and full table scan, and choose the better plan before running the query.

1.3.2 Parallelizing the RDBMSs

The production environment for analytical data management applications is rapidly

changing. Many enterprises are shifting away from deploying their analytical databases

on high-end proprietary machines, and moving towards cheaper, lower-end, commodity

hardware, typically arranged in a shared-nothing MPP (Massively Parallel Processing)

architecture, which is widely believed to scale the best [63]. However, there are very

few known parallel database deployments consisting of more than one hundred nodes [5].

There are a variety of reasons why parallel databases generally do not scale well into the

hundreds of nodes. First, failures become increasingly common as one adds more nodes

to a system, yet parallel databases tend to be designed with the assumption that failures

are a rare event. Second, parallel databases generally assume a homogeneous array of

machines, yet it is nearly impossible to achieve pure homogeneity at scale. Third, until

recently, there have only been a handful of applications that required deployment on more

than a few dozen of nodes for reasonable performance, so parallel databases have not been

tested at larger scales, and unforseen engineering hurdles await.
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Figure 1.2: Shifting to a Hybrid Architecture

The widespread adoption of MapReduce for MPP systems unfolds discussions and at-

tempts to extend MapReduce to handle data analytical workloads at unconventional scale

instead of using parallel databases. Unfortunately, comparing to RDBMS, MapReduce

lacks comprehensive query optimizations, and above all, assumes a relatively simplified

unstructured data model. Although such design choice preserves the original form of

data (e.g., crawled documents, web request logs, etc.) and shortens data-to-query time,

it is criticized to place the burden of repeatedly parsing records and cause an order of

magnitude slower performance than parallel databases [76].

Ideally, the scalability advantages of MapReduce could be combined with the perfor-

mance and efficiency advantages of parallel databases to achieve a hybrid architecture

that is well suited for large scale systems and can handle the future demands of data in-

tensive application, as illustrated in Figure 1.2. We exploit the feasibility of building

a hybrid system that takes the best features from both technologies, and propose Best-

Peer++ [104], an adaptive query processing engine that incorporates the query execution

of traditional parallel databases and MapReduce. In particular, we identify the strategic

differences between DBMS query execution and MapReduce, and model the query ef-

ficiency for both execution plans. Using the cost model, we devise a hybrid execution

engine that adaptively generates the most cost effective plan for queries. The prototype

we build approaches parallel databases in performance and efficiency, yet still yields the

scalability, fault tolerance, and flexibility of MapReduce-based systems.

1.4 Contribution and Impact

This dissertation makes several fundamental contributions towards realizing our vision

of building a large scale system that syncretize the efficient access methods of RDBMS
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RDBMSs + MapReduce

BIDS
[ICDE 2013]

ScalaGiST
[VLDB 2015]
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[TKDE 2014]

Index reinforced MapReduce

Adaptive Query Processing
PDBMS+MapReduce

Storage
Tier
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Figure 1.3: Overview of the dissertations contributions classified into the two thrust areas for this disserta-
tion: indexes in MapReduce and adaptive data processing.

and the powerful parallelized processing of MapReduce. Our contributions significantly

advance the state-of-the-art by supporting index and orchestrating a hybrid processing

mechanism for large scale systems. Our technical contributions are in bitmap encod-

ing and processing of large scale data, distributed index support in MapReduce systems,

and adaptive query processing incorporating parallel databases and MapReduce. These

technologies are critical to ensure the success of the next generation of large scale data

processing systems in Cloud Computing infrastructures.

Figure 1.3 summarizes these contributions into the two major thrust areas of this dis-

sertation: indexes in MapReduce and adaptive data processing. We now highlight these

contributions and their impact.

• We present a thorough analysis of the state-of-the-art systems and distill the im-

portant aspects in the design of different systems and analyze their applicability

and scope. We then articulate some basic design principles for designing new MPP

systems for the cloud. A thorough understanding and a precise characterization of

the design space are essential to carry forward the lessons learned from the rich

literature in scalable and distributed database management.

• We design a bitmap-based indexing scheme for large scale distributed data store.

Using effective bitmap encoding techniques and partial index mechanism, the in-
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dexing scheme is able to achieve high space efficiency. Size is a vital factor for

indexing data at large scale, and the compactness of our proposed scheme enables

efficient indexing of large scale data.

• We present the architecture and implementation of BIDS [62], a full-fledged in-

dexing and query processing technique based on bitmap. BIDS is one of the first

systems to allow seamless integration of index processing in MapReduce runtime.

We present the mechanisms for MapReduce-based systems to directly work on the

underlying index, and the series of runtime optimizations to facilitate efficient query

processing in MapReduce.

• We propose ScalaGiST , a generalized index framework to extend the indexibility in

MapReduce systems. ScalaGiST provides extensibility in terms of data and query

types, and hence is able to support unconventional queries in MapReduce system.

We define the generalized index interface using which users are able to customized

new types of index on their data.

• We present the design and implementation of a index processing mechanism to

integrate ScalaGiST seamlessly with Hadoop platform, coupled with a cost-based

data access optimizer for improving the performance of MapReduce execution. In-

dexibility in MapReduce systems is decisive in improving query performance, and

ScalaGiST is the first system providing support to a wide variety of traditional in-

dexes in distributed environment.

• We study the query performance of parallel database systems and MapReduce, and

identify the influencing factors with respect to query complexity. We then propose a

cost model to evaluate the execution efficiency of a given query when using parallel

database and MapReduce. This cost model takes into account data distribution and

query parameters, and gives a quantitative guideline for runtime optimization.

• We present BestPeer++ [104], an adaptive query processing mechanism in dis-

tributed environment. BestPeer++ is a hybrid system incorporating query process-

ing mechanism from parallel database and MapReduce. Using the proposed cost

model, we implement an adaptive query processing mechanism that is able to pro-

vide optimal efficiency for different types of query.

• All three techniques have been prototyped in real MapReduce systems to demon-

strate feasibility and the benefits of the proposed techniques. A detailed analysis

of the trade-offs of each design allows future systems to make informed decisions

based on insights from this dissertation.
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1.5 Organization

In Chapter 2, we provide a systematic survey and analysis of the state-of-the-art in

scalable and distributed data management systems, as well as index technologies used in

RDBMSs. The rest of the dissertation is organized into two parts focussing on the two

thrust areas of this dissertation.

Part I focuses on systems designed to support efficient index in MapReduce systems.

Chapter 3 presents our first work on orchestrating bitmap indexing scheme in MapReduce

systems. Chapter 4 presents the design of ScalaGiST , which provides a generalized index

search tree framework for MapReduce.

Part III focuses on models and techniques to enable adaptive large-scale query pro-

cessing. Chapter 5 presents the technical details of performance modeling of distributed

query execution, and the architecture of an adaptive query engine incorporating parallel

database and MapReduce.

Chapter 6 concludes this dissertation and outlines some open challenges.
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CHAPTER 2

State of the Art

“Stand on the shoulders of giants.”

– Bernard of Chartres and Isaac Newton.

Scalable distributed data management has been the vision of the computer science

research community for more than three decades. This chapter surveys the related works

in this area in light of the cloud infrastructures and their requirements. Our goal is to distill

the key concepts and analyze their applicability and scope. A thorough understanding and

a precise characterization of the design space are essential to carry forward the lessons

learned from the rich literature in scalable and distributed database management.

2.1 Cloud Architectural Service Layers

The past decade has witnessed the emergence of “cloud computing”. This paradigm

shift entails harnessing large number of (low-end) processors working in parallel to solve

a computing problem. While cloud computing has gained fast popularity, users might get

overwhelmed with a variety of taxonomy such as cloud platform, platform as a service

(PaaS), etc., introduced by various cloud service providers such as Microsoft Azure1,

Google AppEngine2 and Amazon Web Services3. In this section, we review various cloud

computing concepts and especially examine its architectural service layers.

One of the beauties of the cloud computing model is the simplicity with which they

are presented to the end users. At the same time, the cloud computing model actually con-

1http://www.windowsazure.com/
2https://appengine.google.com/
3http://aws.amazon.com/
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sists of a complex series of interconnected layers. Understanding these layers is essential

to any organization that wishes to utilize cloud computing services in the most efficient

manner. Like the seven-layer OSI model for networking, each layer of the cloud comput-

ing model exists conceptually on the foundation of the previous layers. Within this model,

there are three different service layers that are used to specify what is being provisioned,

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS). Additionally, there are three further layers that are not provided as user services.

The Hardware Layer and the Virtualization Layer are owned and operated of the cloud

services provider while the Client Layer is supplied by the end users.

SaaS

PaaS

IaaS

Google Apps, Saleforce.com, NetSuite,
Lotus, WebFilings, Zoho, Yahoo!Mail,

HotMail, ...

Google App Engine, Force.com,
Windows Azure, LongJump,

Rollbase, Amazon Elastic Beanstalk,
Vmware CloudFoundry, ...

Amazon EC2, Rackspace,
Vmware, Joyent, Google

Cloud Storage, ...

Source: Gartner AADI Summit Dec 2009

Figure 2.1: Cloud Computing Service Layers

The Hardware Layer

The hardware layer is sometimes referred to as the server layer. It represents the phys-

ical hardware that provides actual resources that make up the cloud. Since, by definition,

cloud computing users do not specify the hardware used to provide services, this is the

least important layer of the cloud. Often, hardware resources are inexpensive and are not

fault tolerant. Redundancy is achieved simply by utilizing multiple hardware platforms

while fault tolerance is provided at other layers so that any hardware failure is not noticed

by the users.

The Virtualization Layer

Often referred to as the infrastructure layer, the virtualization layer is the result of

various operating systems being installed as virtual machines. Much of the scalability

and flexibility of the cloud computing model is derived by the inherent ability of virtual

machines to be created and deleted at will.
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Above these two layers are the service layers where the actual cloud services are

delivered to users. In Figure 2.1, we can see how the analyst firm Gartner segregates the

remaining three layers.

SaaS

Starting from the highest level: software applications that are only available online fall

into the ”Software-as-a-Service” category, also known as “SaaS”. Services at the software

level consist of complete applications that do not require development. Such applications

can be email, customer relationship management, and other office productivity applica-

tions. Enterprise services can be billed monthly or by usage, while software as service

offered directly to consumers, such as email, is often provided for free.

IaaS

On the opposite end of the spectrum, we have “Infrastructure-as-a-Service,” or “IaaS,”

where hardware is outsourced. The infrastructure layer builds on the virtualization layer

by offering the virtual machines as a service to users. Instead of purchasing servers or even

hosted services, IaaS customers can create and remove virtual machines and network them

together at will. Clients are billed for infrastructure services based on what resources are

consumed. This eliminates the need to procure and operate physical servers, data storage

systems, or networking resources.

PaaS

In the middle, we have “Platform-as-a-Service,” or “PaaS.” The platform layer rests

on the infrastructure layer’s virtual machines. At this layer customers do not manage their

virtual machines, they merely create applications within an existing API or programming

language. There is no need to manage an operating system, let alone the underlying hard-

ware and virtualization layers. Clients merely create their own programs which are hosted

by the platform services they are paying for. While this service level is the least known

or discussed, some feel that this is the most powerful of the three. Systems like Google

AppEngine, Salesforce’s Heroku4, Microsoft Azure, and VMwares Cloud Foundry5, all

fall under the PaaS umbrella.

2.2 Cloud Data Management

2.2.1 Early Trends

Early efforts targeting the design space of scalable data management systems resulted

in two different types of systems: distributed DBMSs (DDBMS) such as R* [60] and

4http://www.salesforce.com/heroku/
5https://www.gopivotal.com/platform-as-a-service/cloud-foundry
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SDD-1 [85] and parallel DBMSs (PDBMS) such as Gamma [32] and Grace [40]. De-

Witt and Gray [33] and Ozsu and Valduriez [74] provide thorough surveys of the design

space, principles, and properties of these systems. The goal of both classes of systems

was to distribute data and processing over a set of database servers while providing the

abstractions and semantics similar to centralized systems.

Different from the distributed and parallel DBMSs, another approach to scaling DBMSs

while preserving the semantics of a single node RDBMS is through data sharing. In such

a model, a common database storage is shared by multiple processors that concurrently

execute transactions on the shared data. Examples of such systems are Oracle Real Ap-

plication Clusters [20] and IBM DB2 data sharing [54]. A common aspect of all these

designs is a shared lock manager responsible for concurrency control. Even though many

commercial systems based on this architecture are still used in production, the scalability

of such systems is limited by the shared lock manager and the complex recovery mecha-

nisms resulting in longer unavailability periods as a result of a failure.

While conventional distributed and parallel database technologies lay the foundation

for cloud-based data management systems, they are not sustainable beyond a few ma-

chines due to the crippling effect on performance caused by partial failures and synchro-

nization overhead.

2.2.2 Eyes in the Cloud

Historically, data management systems are categorized by two different workloads:

online transactional processing (OLTP) and online analytical processing (OLAP). Sys-

tems handling OLAP and OLTP workloads have distinctive architectural perspectives:

RDBMS for OLTP and data warehousing system for OLAP. Periodically, data in RDBMS

are extracted, transformed and loaded (a.k.a. ETL) into the data warehouse. This system-

level separation is motivated by the facts that OLAP is computationally expensive and its

execution on a separate system will not compete for resources with the response-critical

OLTP operations, and snapshot-based results are generally sufficient for decision making.

With the advent of the Cloud paradigm, the two streams of systems both have their

projections in the new era, in particular, Key-Value Stores for OLTP, and MapReduce and

its derivatives for OLAP.

The Key-Value Store

With the growing popularity of the Internet, many applications were delivered over

the Internet and the scale of these applications also increased rapidly. As a result, many

Internet companies, such as Google, Yahoo!, and Amazon, faced the challenge of serving
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hundreds of thousands to millions of concurrent users. Classical RDBMS technologies

could not scale to these workloads while using commodity hardware to be cost-effective.

The need for low cost scalable DBMSs resulted in the advent of Key-value stores such as

Google’s Bigtable [21], Yahoo!’s PNUTS [28], and Amazon’s Dynamo [31].6 These sys-

tems were designed to scale out to thousands of commodity servers, replicate data across

geographically remote data centers, and ensure high availability of user data in the pres-

ence of failures which is the norm in such large infrastructures of commodity hardware.

These requirements were a higher priority for the designers of the Key-value stores than

rich functionality. Key-value stores support a simple key-value based data model and sin-

gle key access guarantees, which were enough for their initial target applications [96]. In

this section, we discuss the design of these three systems and analyze the implications of

the various design choices made by these systems.

BigTable [21] was designed to support Google’s crawl and indexing infrastructure. A

BigTable cluster consists of a set of servers that serve the data; each such server (called a

tablet server) is responsible for parts of the tables (known as a tablet). A tablet is logically

represented as a key range and physically represented as a set of SSTables. A tablet is

the unit of distribution and load balancing. At most one tablet server has read and write

access to each tablet. Data from the tables is persistently stored in the Google File System

(GFS) [42] which provides the abstraction of scalable, consistent, fault-tolerant storage.

There is no replication of user data inside BigTable; all replication is handled by the

underlying GFS layer. Coordination and synchronization between the tablet servers and

metadata management is handled by a master and a Chubby cluster [16]. Chubby provides

the abstraction of a synchronization service via exclusive timed leases. Chubby guaran-

tees fault-tolerance through log-based replication and consistency amongst the replicas is

guaranteed through a Paxos protocol [19]. The Paxos protocol [57] guarantees safety in

the presence of different types of failures and ensures that the replicas are all consistent

even when some replicas fail. But the high consistency comes at a cost: the limited scal-

ability of Chubby due to the high cost of the Paxos protocol. BigTable, therefore, limits

interactions with Chubby to only the metadata operations.

PNUTS [28] was designed by Yahoo! with the goal of providing efficient read access

to geographically distributed clients. Data organization in PNUTS is also in terms of

range-partitions tables. PNUTS performs explicit replication across different data centers.

This replication is handled by a guaranteed ordered delivery publish/subscribe system

called the Yahoo! Message Broker (YMB). PNUTS uses per record mastering and the

master is responsible for processing the updates; the master is the publisher to YMB and

6At the time of writing, various other Key-value stores (such as HBase, Cassandra, Voldemort, Mon-
goDB etc.) exist in the open-source domain. However, most of these systems are variants of the three
in-house systems.
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the replicas are the subscribers. An update is first published to the YMB associated to

the record’s master. YMB ensures that updates to a record are delivered to the replicas

in the order they were executed at the master, thus guaranteeing single object time line

consistency. PNUTS allows clients to specify the freshness requirements for reads. A

read that does not have freshness constraints can be satisfied from any replica copy. Any

read request that requires data that is more up-to-date than that of a local replica must be

forwarded to the master.

Dynamo [31] is another highly available and scalable distributed data store built for

Amazon’s platform. In addition to scalability, high write availability, even in the presence

of network partitions, is a key requirement for Amazons shopping cart application. Dy-

namo therefore explicitly replicates data and a write request can be processed by any of

the replicas. It uses a quorum of servers for serving the read and writes. A write request

is acknowledged to the client when a quorum of replicas has acknowledged the write. To

support high availability, the write quorum size can be set to one. Since updates are prop-

agated asynchronously without any ordering guarantees, Dynamo only supports eventual

replica consistency [97] with the possibility that the replicas might diverge. Dynamo relies

on application level reconciliation based on vector clocks [56].

The distinguishing feature of the Key-value stores is their simple data model. The

primary abstraction is a table of items where each item is a key-value pair or a row. The

value can either have structure (as in BigTable and PNUTS), or can be an uninterpreted

string or blob (as in Dynamo). BigTables data model is a sparse multi-dimensional sorted

map where a single data item is identified by a row identifier, a column family, a column,

and a timestamp. The column families are the unit of data co-location at the storage

layer. PNUTS provides a more traditional flat row-like structure similar to the relational

model. Atomicity and isolation are supported at the granularity of a single key-value

pair, i.e., an atomic read-modify-write operation is supported only for individual key-

value pairs. Accesses spanning multiple key-value pairs are best-effort without guaranteed

atomicity and isolation from concurrent accesses. These systems allow large rows, thus

allowing a logical entity to be represented as a single row. Restricting data accesses to

a single-key provides designers the flexibility of operating at a much finer granularity.

Since a single key-value pair is never split across compute nodes, application level data

manipulation is restricted to a single compute node boundary and thus obviates the need

for multi-node coordination and synchronization [44]. As a result, these systems can

scale to billions of key-value pairs using horizontal partitioning. The rationale is that even

though there can be potentially millions of requests, the requests are generally distributed

throughout the data set. Moreover, the single key operation semantics limits the impact of

failure to only the data that was being served by the failed node; the rest of the nodes in
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the system can continue to serve requests. Furthermore, single-key operation semantics

allows fine-grained partitioning and load-balancing. This is different from RDBMSs that

consider data as a cohesive whole and a failure in one component results in overall system

unavailability.

MapReduce in Action

MapReduce [30] and related software such as the open source Hadoop [1], useful

extension [72, 93], and Microsoft’s Dryad/SCOPE stack [48, 18] are all designed to auto-

mate the parallelization of large sale data analysis workloads.

MapReduce is a simplified parallel data processing approach for execution on a com-

puter cluster. Its programming model consists of two user defined functions, map and

reduce 2.1.

map (k1, v1) → list(k2, v2)

reduce (k2, list(v2)) → list(v3)

Table 2.1: map and reduce Functions

Users specify a map function that processing a key/value pair (e.g. filename/file)

to generate a set of intermediate key/value pairs, and a reduce function that collect and

aggregate all intermediate values associated with the same intermediate key. The beauty of

MapReduce is that it provides the developers with conveniently programmable interface,

while the system is responsible for scheduling and synchronizing the parallel computation.

Its wide adoption and success lies in its distinguishing features, which can be summarized

as follows.

1. Flexibility. Since the code for map and reduce are written by the user, there is

considerable flexibility in specifying the exact processing that is required over the

data rather than specifying it using SQL. Programmers can write simple map and

reduce functions to process petabytes of data on thousands of machines without the

knowledge of how to parallelize the processing of a MapReduce job.

2. Scalability. A major challenge in many existing applications is to be able to scale to

increasing data volumes. In particular, elastic scalability is desired, which requires

the system to be able to scale its performance up and down dynamically as the com-

putation requirements change. Such a pay-as-you-go service model is now widely

adopted by the cloud computing service providers, and MapReduce can support it

seamlessly through data parallel execution. MapReduce was successfully deployed

on thousands of nodes and able to handle petabytes of data.
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3. Efficiency. MapReduce does not need to load data into a database, which typi-

cally incurs high cost. It is, therefore, very efficient for applications that require

processing the data only once (or only a few times).

4. Fault Tolerance. In MapReduce, each job is divided into many small tasks that are

assigned to different machines. Failure of a task or a machine is compensated by

assigning the task to a machine that is able to handle the load. The input of a job

is stored in a distributed file system where multiple replicas are kept to ensure high

availability. Thus, the failed map task can be repeated correctly by reloading the

replica. The failed reduce task can also be repeated by re-pulling the data from the

completed map tasks.

Despite its evident merits, MapReduce often fails to exhibit acceptable performance

for various processing tasks. The criticisms of MapReduce center on its reduced func-

tionality, requiring considerable amount of programming effort, and its unsuitability for

certain type of applications (e.g. those that requires iterative computations) [34, 76, 89].

MapReduce does not require the existence of a schema and does not provide a high-

level language such as SQL. The flexibility advantage mentioned above comes at the

expense of considerable (and usually sophisticated) programming on the end of the user.

Consequently, a job that can be performed using relatively simple SQL commands may

require considerable amount of programming in MapReduce, and this code is generally

not reusable. To make MapReduce easier to use, a number of high-level languages have

been developed, among which Pig Latin [72] and HiveQL [93] are the two representative

practices.

Pig Latin [72] is a dataflow language that adopts a step-by-step specification method

where each step refers to a data transformation operation. It supports a nested data model

with user defined functions and the ability to operate over plain files without any schema

information. The details of these features are discussed below:

1. Dataflow language. Pig Latin is not declarative and the user is expected to spec-

ify the order of the MapReduce jobs. Pig Latin offers relational primitives such as

LOAD, GENERATE, GROUP, FILTER and JOIN, and users write a dataflow pro-

gram consisting of these primitives. The order of the MapReduce jobs generated is

the same as the user-specified dataflow, which helps users control query execution.

2. Operating over plain files. Pig is designed to execute over plain files directly without

any schema information although a schema can also be optionally specified. The

users can offer a user-defined parse function to Pig to specify the format of the input

data. Similarly, the output format of Pig can also be flexibly specified by the user.
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3. Nested data model. Pig Latin supports a nested data model. The basic data type

is Atom such as an integer or string. Atoms can be combined into a Tuple, and

a several Tuples form a Bag. It also supports more complex data types such as

Map〈sourceIP, Bag(Tuple1, Tuple2, ...)〉. This model is closer to the recursive data

type in object-oriented programming languages and easier to use in user defined

functions.

4. User defined functions (UDFs). Due to the nested data model of Pig Latin, UDFs

in Pig support non-atomic input parameters, and can output non-atomic values. The

UDFs can be used in any context, while in SQL, the set-valued functions cannot be

used in the SELECT clause.

HiveQL is a SQL-like declarative language that is part of the Hive [93] system, which

is an OLAP execution engine built on top of Hadoop. HiveQL features are the following:

1. SQL-like language. HiveQL is a SQL-like query language that supports most of the

traditional SQL operators such as SELECT, CREATE TABLE, UNION, GROUP

BY, ORDER BY and JOIN. In addition, Hive has three operators, MAP, CLUSTER

BY and REDUCE, which could integrate user defined MapReduce programs into

the SQL statement. HiveQL supports equijoin, semijoin and outer join. Since Hive

is a data warehouse system, the insert operation in HiveQL does not support in-

place insertion into an existing table, instead it replaces the table by the output of a

HiveQL statement.

2. Data Model. Hive supports the standard relational data model: data are logically

modeled as rows and tables, and a table may consist of several logical partitions,

whose purpose is mainly for load balancing. Tables are physically stored as direc-

tories in distributed file system (DFS).

Pig Latin and HiveQL supplement MapReduce with a language interface, enhance its

programmability and usability. Most importantly, these efforts explore the feasibility of

extending the generic MapReduce to serve a better data analytical purpose.

Besides generic MapReduce (and its language layer), there are many other distributed

data processing systems that have been inspired by MapReduce but that go beyond the

MapReduce framework. These systems have been designed to address various problems,

such as iterative processing over the same dataset, that is not well handled by MapReduce,

and many are still ongoing.

An interesting line of research has been to develop parallel processing platforms that

have MapReduce flavor, but are more general. Two examples of this line of work are

Dryad [48] and epiC [52].
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Microsoft’s Dryad [48] a general-purpose distributed execution engine for coarse-

grain data-parallel applications. Dryad represents each job as a directed acyclic graph

whose vertices correspond to processes and whose edges represent communication chan-

nels. Dryad jobs (graphs) consist of several stages such that vertices in the same stage

execute the same user-written functions for processing their input data. Consequently,

MapReduce programming model can be viewed as a special case of Dryad’s where the

graph consists of two stages: the vertices of the map stage shuffles their data to the vertices

of the reduce stage.

A Dryad job is coordinated by a process called the “job manager”. The job manager

contains the application-specific code to construct the job’s communication graph along

with library code to schedule the work across the available resources. The scheduler inside

the job manager keeps track of the state and history of each vertex in the graph.

Driven by the limitations of MapReduce-based systems in dealing with “varieties” in

cloud data management, epiC [52] was designed to handle variety of data (e.g., struc-

tured and unstructured), variety of storage (e.g., database and file systems), and vari-

ety of processing (e.g., SQL and proprietary APIs). Its execution engine is similar to

Dryads to some extent. The important characteristic of epiC, from a MapReduce or data

management perspective, is that it simultaneously supports both data intensive analytical

workloads (OLAP) and online transactional workloads (OLTP). Traditionally, these two

modes of processing are supported by different engines. The system consists of the Query

Interface, OLAP/OLTP controller, the Elastic Execution Engine (E3) and the Elastic Stor-

age System (ES2) [17]. SQL-like OLAP queries and OLTP queries are submitted to the

OLAP/OLTP controller through the Query Interface. E3 is responsible for the large scale

analytical jobs, and ES2, the underlying distributed storage system that adopts the rela-

tional data model and supports various indexing mechanisms [24, 98, 101], handles the

OLTP queries.

With the previous research paving the way, one of the most recent trends reinforcing

MapReduce in data analysis context is the development of efficient full-fledged MapReduce-

based RDBMSs. In their simplest form, these systems consist of only a SQL parser,

which transforms the SQL queries into a set of MapReduce jobs. Examples include Hive

[93] and Google’s SQL translator [22]. In a more complete form, a MapReduce-based

DBMS natively incorporates existing database technologies to improve performance and

usability, such as indexing, data compression, and data partitioning. Examples include

HadoopDB [7], Llama [59], and Cheetah [25]. Some of these systems follow the tra-

ditional relational DBMS approach of storing data row-wise (e.g., HadoopDB), and are,

therefore, called row stores. Others (e.g., Llama) store data column-wise, and are called

column stores. It is now generally accepted that column-wise storage model is prefer-
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able for analytical applications that involve aggregation queries because (a) the values in

each column are stored together and a specific compression scheme can be applied for

each column, which makes data compression much more effective, and (b) it speeds up

the scanning of the table by avoiding access to the columns that are not involved in the

query [90]. In addition to pure row stores and column stores, some systems adopt a hybrid

storage format (e.g., Cheetah): the columns of the same row are stored in the same data

chunk, but the format of each data chunk is column oriented.

A full DBMS implementation over MapReduce usually supports the following func-

tions: (1) a high level language, (2) storage management, (3) data compression, (4) data

partitioning, (5) indexing, and (6) query optimization.

HadoopDB [7] introduces the partitioning and indexing strategies of parallel DBMSs

into the MapReduce framework. Its architecture consists of three layers. The top layer

extends Hive to transform the queries into MapReduce jobs. The middle layer implements

the MapReduce infrastructure and DFS, and deals with caching the intermediate files,

shuffling the data between nodes, and fault tolerance. The bottom layer is distributed

across a set of computing nodes, each of which runs an instance of PostgreSQL DBMS to

store the data.

HadoopDB combines the advantages of both MapReduce and conventional DBMSs. It

scales well for large data sets and its performance is not affected by node failures due to the

fault tolerance of MapReduce. By adopting the co-partitioning strategy, the join operator

can be processed as a map-only job. Moreover, at each node, local query processing

automatically exploits the functionality of PostgreSQL.

Llama [59] proposes the use of a columnar file (called CFile) for data storage. The

idea is that data are partitioned in vertical groups, each group is sorted based on a selected

column and stored in column-wise format in HDFS. This enables selective accesses only

to the columns used in a query. In consequences, more efficient access to data than tradi-

tional row-wise storage is provided for queries that involve a small number of attributes.

Cheetah [25] also employs data storage in columnar format and also applies different

compression techniques for different types of values appropriately. In addition, each cell

is further compressed created using GZIP. Cheetah employs the PAX layout [11] at the

block level, so each block contains the same set of rows as in row-wise storage, only

inside the block column layout is employed. Compared to Llama, the important benefit of

Cheetah is that all data that belong to a record are stored in the same block, thus avoiding

expensive network access (as in the case of CFile).

The detailed comparison of the three systems is shown in Table 2.2. In systems that

support a SQL-like query language, user queries are transformed into a set of MapReduce

jobs. These systems adopt different techniques to optimize query performance, and many
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HadoopDB Llama Cheetah
Language SQL-like Simple interface SQL
Storage Row store Column store Hybrid store

Data
Compression

No Yes Yes

Data
Partition

Horizontally partitioned Vertically partitioned
Horizontally partitioned

at chunk level

Indexing
Local index in each
database instance

Local index +
Bitmap Index

Local index for
each data chunk

Query
Optimization

Rule based optimization
plus local optimization

by PostgreSQL

Column-based
optimization, late

materialization and
processing multiway

join in one job

Multi-query
optimization,

materialized views

Table 2.2: Comparison of MapReduce DBMS Implementations

of these techniques are adaptations of well-known methods incorporated into many rela-

tional DBMSs. The storage scheme of HadoopDB is row-oriented, while Llama is a pure

column-oriented system. Cheetah adopts a hybrid storage model where each chunk con-

tains a set of rows that are vertically partitioned. This “first horizontally-partition, then

vertically-partition” technique has been adopted by other systems such as RCFile [43].

Both Llama and Cheetah take advantage of superior data compression that is possible

with column-storage.

Generic MapReduce is designed for batch processing workloads in which a job scans

through the data and generates result in one pass. Although several MapReduce jobs can

be concatenated to implement more complex logic, this model is not well suited for a

class of emerging data-intensive applications with much more diverse computation mod-

els, such as iterative computation [15, 106], graph processing [64, 61], and continuous

processing [68, 3]. Detailed introduction and comparison of these system is presented in

[58].

2.2.3 Design Choices and their Implications

Even though all the above systems share some common goals, they also differ in some

fundamental aspects of their designs. We now discuss these differences, the rationale for

these decisions, and their implications.

Data Model

Most generic MapReduce systems adopt simplified data model – by “simplified” it

means that data are directly imported from sources without much effort in parsing or
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any form of preprocessing. Therefore, relational schema does not fit in MapReduce’s

context. This design choice was initially made based on two unique characteristics of

MapReduce systems: (a) the massiveness and heterogeneity of data do not allow upfront

rigorous scheme design, and (b) MapReduce programs mostly use brute force scan instead

of selective access to data.

Key-value stores provide primary schema abstraction which can be seen as a table of

items where each item is a key-value pair or a row. The purpose of this data model is to

provide transactional semantics while guaranteeing high scalability and availability.

Be it generic MapReduce or Key-value store, the first class citizen in their design

is scalability. The storage components in such systems are distributed file systems, and

are decoupled from the upper layer processing engine. Although DFS provide massive

storage capability and high scalability, its power in data representation is largely limited.

HadoopDB [7] and many other hybrid systems resort to RDBMS’s style of storage

by replacing the whole storage layer using RDBMSs. Albeit with stronger data model

support, there remains a great deal of engineering efforts in deployment and tuning of the

hybrid architecture, and the performance optimization issues are left untouched.

There is a tradeoff between comprehensive data model and scalability. In essence, the

origin of the scalability problem is not in that the data model itself do not scale, but the

algorithms and techniques built over the data model cannot scale well. Therefore, devel-

oping scalable techniques regardless of the underlying data model is the key to success in

system design.

Processing Strategy

Much of the performance issues of MapReduce and its derivative systems can be at-

tributed to the fact that they were not initially designed to be used as complete, end-to-end

data analysis systems over structured data. Their target use cases include scanning through

a large set of documents produced from a web crawler and producing a web index over

them [30]. In these applications, the input data is often unstructured and a brute force

scan strategy over all of the data is usually optimal. MapReduce then helps automate the

parallelization of the data scanning and application of user defined functions as the data

is being scanned.

For more traditional data analysis workloads that work with data produced from busi-

ness operational data stores, the data is far more structured. Furthermore, the queries

tend to access only a subset of this data (e.g. breakdown the profit of stores located in

the Northeast). Using data structures that help accelerates access to needed entities (such

as indexes) and dimensions (such as column-stores), and data structures that precalculate

common requests (such as materialized views) often outperform a brute-force scan ex-
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ecution strategy. Therefore, it is desirable for MapReduce to support not only the data

structures, but also the interface to incorporate the processing of these structures into its

framework.

To facilitate data analysis workloads, there are a number of database operators imple-

mented in MapReduce [71, 14, 94, 66, 8]. In addition to “partially” employ database tech-

nologies, a hybrid solution that combines the fault tolerance, heterogeneous cluster, and

ease of use out-of-the-box capabilities of MapReduce with the efficiency, performance,

and tool plugability of shared-nothing parallel database systems could have a significant

impact on the cloud data analysis market.

2.3 Index Support in the Cloud

In generic MapReduce, data access are resorted to brute-force parallel scan. Moreover,

given a set of input data partitions stored on DataNodes, the execution framework of

MapReduce will initiate map tasks on all input partitions. However, for certain types of

analytical queries, it would suffice to access only a subset of the input data to produce

the result. Other types of queries may require focused access to a few tuples only that

satisfy some predicate, which cannot be provided without accessing and processing all

the input data tuples. In both cases, it is desirable to provide a selective access mechanism

to data, in order to prune local non-useful data at a DataNode from processing as well

as pruning entire DataNode from processing if necessary. In traditional RDBMSs, this

problem is solved by means of indexing. There have been considerable amount of efforts

incorporating the idea of index in MapReduce systems. Among them, some are more tree-

oriented that migrate the traditional tree indexes to MapReduce framework [37, 9, 101,

99], while some others adjust the data layout to make data “recognizable” to MapReduce

programs, and thus achieve better intellective data access [35, 36, 38].

In [9], B-tree was made scalable by distributed transactions. The design of the scal-

able B-tree relies on an underlying distributed data sharing service, Sinfonia [10], which

provides fault tolerance and a light-weight distributed atomic primitive. The nodes of a

B-tree are spread over multiple servers in a local-area network, and modifications to the

B-tree are handled by distributed transactions.

The B-tree operations are implemented as natural extensions of centralized B-tree

algorithms wrapped in optimistic transactions. As clients traverses the tree, it retrieves

nodes from the servers as needed, and adds those nodes to the transaction’s read set. If the

client wants to change a node, say due to a key-value insertion or a node split, the client

locally buffers the change and adds the changed node to the transaction’s write set. To

commit a transaction, the client executes a Sinfonia mini-transaction, which (a) validates
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that the nodes in the read set are unchanged, by checking that their version numbers match

what is stored at the servers, and (b) if so, atomically performs the updates in the write

set.

However, this method suffers from two weakness. First, although it uses a B-tree

based index, such index is mainly designed for simple lookup queries and is therefore not

capable of handling range queries efficiently. To process a range query [l, u], it must first

locate the leaf node responsible for l. Then, if u is not contained by the same leaf node,

the next leaf node has to be retrieved from some other compute server based on the sibling

pointer. Such form of retrieval continues until the whole range is covered, which would

easily lead to high transaction and memory overhead. Second, it incurs high maintenance

cost for the server nodes and huge memory overhead in the client machines, as the client

node (user’s own PC) lazily replicates all the corresponding internal nodes.

CG-index [101] is a secondary indexing scheme for Cloud storage systems. It is tai-

lored for online queries and maintained in an incremental way. CG-index software con-

sists of two components: a client library which is linked with user application and a set

of index servers which store the index. The CG-index servers operate in a shared pool of

compute nodes allocated from Cloud and the index server process can reside in the same

physical machine with the storage server process.

In CG-index, a local B+-tree index which only indexes local data is built for each

compute node. The compute nodes then are organized as a structured overlay and a portion

of the local B+-tree nodes are published to the overlay for efficient query processing. In

this method, an adaptive algorithm is proposed to select the B+-tree nodes to be published

according to query patterns.

However, the above methods are largely tree-based methods which is known to incur

high storage cost. Given the large amount of data in the Cloud, it is not storage efficient

to build many such indexes.

Hadoop++ [35] is a system that provides indexing functionality for data store in HDFS

by means of User-defined Functions (UDFs), i.e., without modifying the Hadoop frame-

work at all. The indexing information (called Trojan Indexes) is injected into logical

input splits and serves as a cover index for the data inside the split. Moreover, the index

ins created at load time, thus imposing no overhead in query processing. Hadoop++ also

supports joins by co-partitioning data and co-locating them at load time. Intuitively, this

enables the join to be processed at the map side, rather than at the reduce side (which

entails expensive data transfer/shuffling in the network).

HAIL [36] improves the long index creation times of Hadoop++, by exploiting the

n replicas (typically n=3) maintained by default by Hadoop for fault-tolerance and by

building a different clustered index for each replica. At query time, the most suitable
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index to the query is selected, and the particular replica of the data is scanned during the

map phase. As a result, HAIL improves substantially the performance of MapReduce

processing, since the probability of finding a suitable index for efficient data access is

increased. In addition, the creation of the indexes occurs during the data upload phase to

HDFS (which is I/O bound), by exploiting “unused CPU ticks”, thus it does not affect the

upload time significantly. HAIL is shown in [36] to improve index creation time and the

performance of Hadoop++.

SpatialHadoop [38] is an extension to Hadoop that injects spatial data awareness in

the main layer of Hadoop. By implementing basic spatial operations, SpatialHadoop is

able to support multi-dimensional queries in Hadoop runtime.

2.4 Peer-to-Peer Data Management Technology

To enhance the usability of conventional P2P networks, database community have

proposed a series of PDBMS (Peer-to-Peer Database Manage System) by integrating the

state-of-art database techniques into the P2P systems. These PDBMS can be classified as

the unstructured systems such as PIAZZA [92], Hyperion [84] and PeerDB [69], and the

structured systems such as PIER [46].

The work on unstructured PDBMS focus on the problem of mapping heterogeneous

schemas among nodes in the systems. PIAZZA introduces two materialized view ap-

proaches, namely Local As View (LAV) and Global As View (GAV). PeerDB employs

information retrieval technique to match columns of different tables. The main problem

of unstructured PDBMS is that there is no guarantee for the data retrieval performance

and result quality.

The structured PDBMS can deliver search service with guaranteed performance. The

main concern is the possibly high maintenance cost [6]. To address this problem, partial

indexing scheme [103] is proposed to reduce the index size. Moreover, adaptive query

processing [105] and online aggregation [102] techniques have also been introduced to

improve query performance.

The techniques of PDBMS also have been applied widely adopted in cloud systems.

In Dynamo [31] and ecStore [95], a similar data dissemination and routing strategy is

applied to manage the large-scale data.

2.4.1 Overview of the BestPeer++ System

The BestPeer++ [23] system is a P2P database system designed for Cloud deploy-

ment for corporate network applications. and is the foundation on which we conduct our
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research in adaptive massive parallel processing in Chapter 5. In this section, we first

describe the evolution of BestPeer platform from its early stage as an unstructured P2P

query processing system to BestPeer++, an elastic data sharing services in the cloud. We

then present the design and overall architecture of BestPeer++.

BestPeer7 data management platform. While traditional P2P network has not been

designed for enterprise applications, the ultimate goal of BestPeer is to bring the state-of-

art database techniques into P2P systems. In its early stage, BestPeer employs unstruc-

tured network and information retrieval technique to match columns of different tables

automatically [69]. After defining the mapping functions, queries can be sent to differ-

ent nodes for processing. In its second stage, BestPeer introduces a series of techniques

for improving query performance and result quality to enhance its suitability for corpo-

rate network applications. In particular, BestPeer provides efficient distributed search

services with a balanced tree structured overlay network (BATON [51]) and partial index-

ing scheme [103] for reducing the index size. Moreover, BestPeer develops adaptive join

query processing [105] and distributed online aggregation [102] techniques to provide

efficient query processing.

BestPeer++, a cloud enabled evolution of BestPeer. Now in the last stage of its

evolution, BestPeer++ is enhanced with distributed access control, multiple types of in-

dexes, and pay-as-you-go query processing for delivering elastic data sharing services in

the cloud. The software components of BestPeer++ are separated into two parts: core

and adapter. The core contains all the data sharing functionalities and is designed to be

platform independent. The adapter contains one abstract adapter which defines the elastic

infrastructure service interface and a set of concrete adapter components which imple-

ment such an interface through APIs provided by specific cloud service providers (e.g.,

Amazon). This “two-level” design facilitates portability for the system. With appropri-

ate adapters, BestPeer++ can be ported to any cloud environments (public and private)

or even non-cloud environment (e.g., on-premise data center). In what follows, we first

present this adapter and then describe the core components.

Amazon Cloud Adapter

The key idea of BestPeer++ is to use dedicated database servers to store data for each

business and organize those database servers through P2P network for data sharing. The

Amazon Cloud Adapter provides an elastic hardware infrastructure for BestPeer++ to op-

erate on by using Amazon Cloud services. The infrastructure service that Amazon Cloud

Adapter delivers includes launching/terminating dedicated MySQL database servers and

monitoring/backup/auto-scaling those servers.

7http://www.comp.nus.edu.sg/∼bestpeer/
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Amazon EC2 service is employed to provision the database server. Each time a new

business joins the BestPeer++ network, a dedicated EC2 virtual server is launched for

that business. The newly launched virtual server (called a BestPeer++ instance) runs

a dedicated MySQL database software and the BestPeer++ software. The BestPeer++

instance is placed in a separate network security group (i.e., a VPN) to prevent invalid

data access. Users can only use BestPeer++ software to submit queries to the network.

Amazon Relational Data Service (RDS) is used to back up and scale each BestPeer++

instance8. The whole MySQL database is backed up to Amazon’s reliable EBS storage

devices in a four-minute window. In order to provide high availability service, BestPeer++

performs asynchronous back-up operation, and there will be no service interrupt during

the back-up process. The scaling scheme of BestPeer++ consists of two dimensions:

processing and storage, which scale up independently according to user’s computation re-

quirement. Initially, each BestPeer++ instance is launched as a m1.small EC2 instance

(1 virtual core, 1.7 GB memory) with 5GB storage space. With the growth of business

demand, user can scale up to a more powerful EC2 instance (e.g., m1.large instance

which has 4 virtual cores and 7.5 GB memory). In another word, there is no limitation on

the resources used.

Finally, the Amazon Cloud Adapter also provides automatic fail-over service. In a

BestPeer++ network, a special BestPeer++ instance (called bootstrap peer) monitors the

health of all other BestPeer++ instances, by querying the Amazon CloudWatch service. If

an instance fails to respond to the bootstrap peer (e.g., crashed), Amazon Cloud Adapter

is called to perform fail-over for that instance. The details of fail-over are presented in

Section 5.2.1.

The Core Components

The BestPeer++ core contains all platform-independent logic, including query pro-

cessing and P2P overlay. It runs on top of the Cloud adapter and consists of two software

components: bootstrap peer and normal peer. A BestPeer++ network can only have a sin-

gle bootstrap peer instance which is always launched and maintained by the BestPeer++

service provider, and a set of normal peer instances.

The bootstrap peer is the entry point of the whole network. It has several respon-

sibilities. First, the bootstrap peer serves for various administration purposes, including

monitoring and managing normal peers and also scheduling various network management

events. Second, the bootstrap peer acts as a central repository for meta data of corporate

network applications, including shared global schema, participant normal peer list, and

8Actually, the server provisioning is also through RDS service which internally calls EC2 service to
launch new servers.
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role definitions. In addition, BestPeer++ employs the standard PKI encryption scheme

to encrypt/decrypt data transmitted between normal peers in order to further increase the

security of the system. Thus, the bootstrap peer also acts as a Certificate Authority (CA)

center for certifying the identities of normal peers.

Normal peers are the BestPeer++ instances launched by businesses. Each normal peer

is owned and managed by an individual business and serves the data retrieval requests

issued by the users of the owning business. To meet the high throughput requirement,

BestPeer++ does not rely on a centralized server to locate which normal peer hold which

tables. Instead, the normal peers are organized as a balanced tree peer-to-peer overlay

based on BATON [51]. The query processing is, thus, performed in entirely a distributed

manner.
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CHAPTER 3

Exploiting Bitmap Index in MapReduce

3.1 Motivation

The emergence of cloud computing techniques has brought about several challenges in

data management. As an example, the global network traffic was estimated to be 160 PB

per second in 2008. Consider a network monitoring system that is built on top of the traffic

logs, and a query to discover a specific type of network attack. Clearly, without effective

index support, it is very costly, if not impossible, to handle such a request, even with

the help of highly parallel processing engines like the MapReduce-based systems [30].

Therefore, the main challenge of current information systems is not about the effective

storage of data, but how to retrieve data.

The first step towards addressing this challenge is the development of key-value store

in the Cloud, such as BigTable [21], Dynamo [31] and Cassandra [55]. In these systems,

data are organized as key-value pairs and partitioned by a certain key order (range, hash,

etc.). Given a key, one can locate the corresponding value efficiently. A wide variety

of traditional database applications are now built on top of key-value store systems by

specifying one attribute as key and bundling the remaining attributes as value. In this way,

queries containing the key attribute in their predicates are efficiently facilitated. However,

for other query types, the whole data set has to be scanned, incurring excessive cost.

One simple extension is to store a tuple using multiple attributes as the keys. In other

words, multiple replicas have to be maintained for a tuple, each using a different subset

of attributes as the key. This strategy simplifies query processing, but incurs high storage

and update overhead.

In fact, in key-value store, an index is built for the key attribute implicitly. To support
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efficient search on other attributes, we can intentionally build additional indexes. In recent

years, numerous tree-based indexes (e.g., distributed B-tree index [9, 101] and distributed

R-tree index [37, 99]) have been proposed for Cloud systems. These indexing schemes

offer good query performance, but are not space efficient and costly to maintain. This is

because 1) the index size is usually proportional to, sometimes even larger than the data

size itself; 2) to support various types of queries, a large number of indexes have to be

built on different attributes, incurring more overhead. Due to the fact that data volume is

extremely large in the Cloud, building indexes for these data yields unacceptable cost, as a

large number of compute nodes have to be purchased to maintain the indexes. Therefore,

to provide scalable data retrieval service in the Cloud, we need to re-examine how indexes

should be designed.

In this work, we propose BIDS (Bitmap Index for Database Service), a specialized

bitmap indexing scheme for a large-scale data store. BIDS is built on top of the underlying

DFS, and adopts a set of techniques to make bitmap indexes more scalable. Only one

MapReduce job is required to build the indexes for the columns of one table. Compared

to tree-based indexes, BIDS can be built/rebuilt very efficiently, thanks to the application

of parallel processing.

The most distinguishing feature of BIDS is its compactness. As an example, for a

100G TPC-H [4] dataset, BIDS takes up less than 20MB to index some columns, such as

Shipdate and Commitdate. This high compactness is achieved by two bitmap encoding

schemes, WAH encoding [100] and bit-sliced encoding [83]. Moreover, a query-sensitive

partial indexing scheme is proposed to further reduce the index size at runtime. The

intuition behind this scheme is to index the hot data to handle skewed query patterns. It

selectively indexes those rows and columns that are touched most, based on the runtime

statistics during query processing.

BIDS can facilitate a wide variety of queries. First, because of its compactness, more

attributes can be indexed, and hence more queries (over different attributes) can be sup-

ported. Second, many queries can be directly answered by the bitmap indexes. That is,

suppose all the requested columns of a query have BIDS index support, instead of retriev-

ing the data from the DFS, we can recover the values from the index directly, without

accessing the original data.
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3.2 System Architecture

Index Tracker 
Process

Distributed File System

Data
Bitmap 
Index

Index 
Manager

Imported Data Query Engine

Log File

Update 
Manager

Updates

External System Modules

BIDS Index Service

Figure 3.1: BIDS Overview.

In this work, we adopt the loosely connected model of cloud-based systems. Fig-

ure 3.1 illustrates how BIDS can be embedded into existing data storage systems. To

support BIDS, an index layer is built between the underlying DFS and the external system

modules. The BIDS index layer consists of three modules (update manager, index man-

ager and index tracker). As an indexing service, BIDS interacts with external systems,

such as Hive [93] and HadoopDB [7]. Our goal is to develop BIDS as a lightweight index

module that can be deployed non-intrusively in existing systems.

As shown in Figure 3.1, an index manager is established in the system to build and

maintain the BIDS index. When data are imported into the system, the index manager cre-

ates the BIDS index on-the-fly. Essentially, for each column/attribute, the index manager

determines if an index should be built, and if so, whether the index should be partial or

full. In a full index, every distinct value of a column is maintained. However, in a partial

index, only a subset of the distinct values and/or tuples will be maintained. The subset of

distinct values and/or tuples are determined based on the query patterns. We shall discuss

this further in Section 3.3.

Both the BIDS index and the imported data are stored in the DFS. The index manager

is also responsible for tuning the BIDS index. In particular, for partial indexes, the query

patterns provide insights on the distinct values and/or tuples that should be indexed. The

index manager will then dynamically adjust the indexes to respond to the queries’ needs.

BIDS is defined for read-mostly applications. To handle infrequent updates, BIDS em-

ploys an update manager to buffer updates in memory. Occasionally, the update manager
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interacts with the index manager to update the index in batch mode.

When receiving a query, the query engine interacts with the index manager to process

the queries. Based on the query type, the query engine may choose different processing

strategies. In our implemention, MapReduce is used as the default processing engine.

In our system, the BIDS index is distributed across nodes in the cluster. BIDS runs

as an index tracker process in the cluster node, which is responsible for caching index

data and performing index lookup operations. Like existing Cloud-based systems, the

index tracker process, the DFS process and the MapReduce process run on the same set

of nodes. The index service is independent of other services, e.g. storage service and

processing service. This design allows the index service to scale up and down without

affecting the other services deployed in the same Cloud. We refer to a node that runs an

index tracker process an index node.
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3.3 Methodology

In this section, we present BIDS, a Bitmap Indexing scheme for Database Service

in the Cloud. We shall look at how to build and maintain the BIDS index, and how it

facilitates query processing. Before delving into the details of BIDS, we first give a brief

review of the bitmap index.

3.3.1 Bitmap Index

Consider a table T with n records, and a column c with k distinct values. A bitmap

index for column c consists of k bit arrays of size n (in number of bits), each of which

corresponds to a distinct value of c. For the bit array of value d, the ith bit is set to “1”

if the ith record has value d for column c; otherwise, the ith bit is set to “0”. Table 3.1

illustrates a bitmap index built for column returnflag of table Lineitem in the TPC-H

benchmark. returnflag has three unique values, n, r and a, resulting in three arrays:

n:11000100, r:00101001 and a: 00010010.

Compared to other indexes, bitmap index has significant space and performance ad-

vantage. However, it is not suitable for columns with too many distinct values. One way

to handle this limitation is to apply the WAH [100] and bit-sliced [83] encodings.

Row ID n r a
0 1 0 0
1 1 0 0
2 0 1 0
3 0 0 1
4 0 1 0
5 1 0 0
6 0 0 1
7 0 1 0

Table 3.1: Bitmap for Column returnflag of Lineitem

WAH Encoding

Consider a table with n records, and a column with k distinct values. The size of the

bitmap index for the column is nk bits. If a column has too many distinct values, the

bitmap index may end up being larger than the original dataset. To address this problem,

WAH (Word Aligned Hybrid) [100] encoding can be employed to further compact the

bitmap index.

WAH encoding is based on the observation that there are typically many consecutive

0s and 1s in a bitmap, and these consecutive sequences can be “compressed”. In WAH, if
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each word contains W bits, the data to be encoded is split into segments of W-1 bits, and

the encoding scheme is applied to each segment as follows. The first bit of each encoded

word is the signal bit and the remaining W-1 bits are used for the encoded data. If the next

segment to be encoded contains a mixture of 0s and 1s, WAH leaves it untouched. The

signal bit is set to 0, and the original form of the segment is stored in the remaining W-1

bits. If the next m segments are all 0s or 1s, WAH sets the signal bit to 1 and the second

bit to 0 or 1 to indicate whether the encoded bits are 0s or 1s. The remaining W-2 bits

are now used to represent the number of consecutive 0 or 1 segments. By applying WAH

encoding, the size of a bitmap index can be significantly reduced.

256 bit value 1*1, 20*0, 3*1, 203*0, 29*1
31-bit groups 186*0 10*0, 21*1 8*1

binary value(hex) 4000380 00...000 001FFFFF 000000FF
WAH(hex) 4000380 80000006 001FFFFF 000000FF

1,20*0,3*1,7*0

Figure 3.2: Example of WAH Encoding.

Figure 3.2 shows an example of WAH encoding, where W=32. We encode a 256-bit

value by using WAH encoding. The first 31 bits have both 0s and 1s. Thus, the WAH

encoding is equal to the binary value. Then, we encounter six words of consecutive 0s

(186*0), which is encoded as “80000006”. The next 31 bits just copy their binary values,

as we have both 0s and 1s. The last 8 bits are also equal to their binary values, as it is the

last word. Thus, in this example, we see a 50% savings in space (a 256-bit value being

encoded as 4 32-bit words).

Bit-Sliced Encoding

It is commonly believed that the bitmap index is only beneficial for columns with few

distinct values. One solution to this problem is to apply bit-sliced encoding [83] for the

numeric values. In this work, we use 2 as the base in bit-sliced encoding. As such, a

value is transformed into its binary representation1. To index a column with k distinct

values, only �log2 k� bit arrays are needed, one for each digit in the binary representation.

As an example, column quantity in Lineitem ranges from 1 to 50. Instead of creating

a bitmap index with 50 bit arrays, we construct only �log2 50� = 6 bit arrays, b1, ..., b6.

If the quantity value of the ith record is 6 (000110), the ith bit of bit arrays b4 and b5

is set to 1. In essence, bit-sliced encoding trades query performance for storage cost. To

reconstruct the bitmaps for a specific value, all �log2 k� bit arrays must be retrieved and

1Note that bit-sliced encoding is more general, and arbitrary base could have been used, in which case,
the number of bits required to represent a value might be different from that for base 2.
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combined together. In our system, bit-sliced encoding is blended with WAH encoding to

compress the bitmap index, i.e., we apply WAH encoding on each bit array obtained from

bit-sliced encoding.

3.3.2 Index Creation

A BIDS index is essentially a bitmap index enhanced with techniques tailored for the

Cloud system. In our implementation, we build a BIDS index for each table. When data

are imported into DFS, the index manager generates statistics on the data distribution.

Specifically, given a table T and its column T.c, we determine the number of distinct val-

ues of T.c (denoted as f(T.c)) and the number of bytes for storing a T.c’s value (denoted

as g(T.c))2. Based on the statistics collected, the indexing process examines each column

of the table T to determine if an index should be built on the column. The intuition of

BIDS is to improve query performance by scanning the bitmap index, which is expected

to be much smaller than the original dataset. An adaptive indexing strategy is proposed to

optimize BIDS’ construction, which is based on the following observations.

Lemma 3.1. Given a column T.c, if g(T.c) ≥ f(T.c)
8

, building bitmap index for T.c is

always cost effective.

Proof. In this case, the bitmap index for column T.c is no larger than the actual storage

required for the column. Therefore, in query processing, we can always scan T.c’s bitmap

index to get a better performance.

Lemma 3.2. Given a column T.c, the bit-sliced encoding bitmap is beneficial, i.f.f.
3 log2 f(T.c)

8
< g(T.c).

Proof. When using bit-sliced encoding to process queries (for details, please refer to Sec-

tion 3.3.3), we need to scan the bit arrays of all values. Namely, log2 f(T.c) bit arrays

are scanned. For each bit array, we need to test against the query and write the partial

result (also a bit array with the same length) back to the file system. To get the final result,

log2 f(T.c) partial results are read out and combined. This process incurs 3 log2 f(T.c)
8

costs,

while scanning the original dataset incurs g(T.c) costs. Therefore, the bit-sliced encoding

bitmap is beneficial only if the above condition holds.

For a column T.c, the adaptive indexing scheme is shown in Algorithm 1. We will

stick to the basic bitmap index whenever Lemma 3.1 is satisfied (Strategy S1), because

compared to the bit-sliced encoding bitmap, the basic bitmap index is more efficient for

2In this thesis, we assume fixed size columns. For variable size columns, g(T.c) will be equal to the
maximum byte size among all values for T.c.
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query processing. Otherwise, the bit-sliced encoding is used to reduce the size of index

(Strategy S2). However, if the bit-sliced encoding incurs higher overhead for query pro-

cessing, we will switch to the partial index. For the non-key attribute, we will initialize

the partial index (Strategy S3), which is dynamically built during query time. And for the

key attribute, bitmap index is not scalable and we will employ conventional indexes like

B-trees (Strategy S4).

Algorithm 1: Adaptive Index(Table T , Column c)

1: if g(T.c) ≥ f(T.c)
8

then
2: build index with WAH encoding (Strategy S1)
3: else
4: if 3 log2 f(T.c)

8
< g(T.c) then

5: build index with WAH and bit-sliced encoding (Strategy S2)
6: else
7: if T.c is not the primary key then
8: initial the partial index (Strategy S3)
9: else

10: no bitmap index is built (Strategy S4)

Suppose g(Lineitem) = 150 (namely, the average size of tuples in table Lineitem is 150

bytes ). Table 3.2 shows the indexing strategies for table Lineitem.

Column Unique Value Index Strategy
l orderkey depending on data size S4
l partkey depending on data size S4
l suppkey depending on data size S4

l linenumber 7 S1
l quantity 50 S2

l extendedPrice ∼1 million S3
l discount 11 S1

l tax 9 S1
l returnflag 3 S1
l linestatus 2 S1
*l date.day 31 S1

*l date.month 12 S1
*l date.year 7 S1

l shipInstruct 4 S1
l shipMode 7 S1
l comments depending on data size S4

Table 3.2: Indexing Strategy for Lineitem

BIDS index is not applicable to the key-attributes (Orderkey, Partkey, Suppkey),

as they have unique values for each record. For these attributes, B-tree based index is
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more appropriate. Another exception is the Comments column, which also has excessive

strings to index. For the rest of the columns in Lineitem, we can build BIDS index

using different strategies. Note that we split the columns of date type into three new

columns, which represent day, month and year, respectively. In this way, all the dates can

be indexed with strategy S1. Otherwise, we will have 7×356=2492 (TPC-H records 7

years’ transactions) possible dates and bit-sliced encoding is required, which may affect

the query performance.

To construct BIDS index for a table T , the indexing process generates two MapReduce

jobs. Suppose the BIDS index is built for column set C in table T . The first MapReduce

job applies a sorting function S to reorder the table records. This is because the com-

pression rate of WAH encoding is highly correlated to the order of records. Sorting leads

to a more compact bitmap index [77]. Various types of sorting functions can be applied.

In [39], LSH (Locality Sensitive Hashing) is applied to group similar records together,

while [77] uses Gray code reorder algorithm to sort data. We just adopt a general sorting

function, as finding optimal sorting function is beyond the scope of this paper in our imple-

mentation. In particular, we will sort the table by the order of (c1, c2, ..., ck), where ci ∈ C,

C =
⋃
{ci} and f(T.ci) > f(T.ci+1). Namely, we first sort the table by the columns with

more distinct values. This is because even without WAH encoding, a column with fewer

unique values results in a compact bitmap index. The sorting is implemented by modify-

ing the Tera-sort code distributed with Hadoop. We use the values of the sorting columns

as the composite keys. Only one MapReduce job is required, regardless of the number of

columns involved.

In the sorted data set, each record is represented by an equal size binary array. Thus,

to retrieve a record with a specific row ID, we can compute the offset of the record in DFS

and invoke the positional read interface. The sorting can be considered as a preprocessing

for the BIDS index. It is only invoked when we first build the index. In our cluster, the

100G TPC-H data set can be sorted within 10 minutes.

The second MapReduce job is used to generate the BIDS index for columns. Algo-

rithms 2 and 3 show the pseudo code of the MapReduce job for building BIDS index. To

simplify the presentation, we did not show the details of WAH and bit-sliced encoding in

the algorithmic descriptions. In the initial step, we will not build the partial BIDS index,

which is actually created during query time.

In Algorithm 2, each map process scans a data chunk (512M by default) to build the

BIDS index. The finished BIDS index is buffered in memory. As WAH encoding is used

and the BIDS index is only created for a data chunk, the map process will not overflow the

memory. When the map process detects the end of the stream, it disseminates the BIDS

index by generating composite keys. The composite key includes the name of the column
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and the value that the bitmap is created for.

Algorithm 2: BIDS Map(Object key, Text value, Context context, BIDSSet V )
1: Tuple tuple = parse(value)
2: for ∀ci ∈ C do
3: BIDS idx = V .get(ci)
4: idx.setBitValue(tuple.ci)
5: if last tuple in the data chunk then
6: for ∀idx ∈ V do
7: CompositeKey key =

new CompositeKey(idx.column, idx.value)
8: context.collect(key, idx)

In Algorithm 3, the reduce process collects the BIDS index created by the different

map processes. Next, it applies bit-wise OR to generate the BIDS index for the whole

dataset. The resultant BIDS index is then flushed back to DFS using the specific names-

pace.

Algorithm 3: BIDS Reduce(Key key, Iterable values, Context context)
1: String column = key.first()
2: Object value = key.second()
3: BIDS idx = new BIDS()
4: for BitmapWritable val : values do
5: idx = idx OR val
6: write idx to DFS file ”tableName/column/value”

Table 3.3 shows the sizes of B-tree (Berkeley DB implementation) and bitmap indexes

for different attributes of table Lineitem with 6 million tuples. In the table, the column

Unsorted BIDS refers to the sizes of bitmap indexes obtained without sorting the table,

and the column BIDS refers to the sizes of bitmap indexes under BIDS where the table is

sorted by the order of (shipdate, commitdate, receiptdate, quantity, discount, taxt, lines-

tatus, returnflag). From the table, it is clear that BIDS is more space efficient and sorting

can reduce the index size significantly.

Attribute Name B-tree Unsorted BIDS BIDS
shipdate 601 MB 35.5 MB 82 KB

commitdate 589 MB 35.5 MB 7.4 MB
receiptdate 585 MB 35.5 MB 22.5 MB

quantity 561 MB 33.2 MB 33 MB
discount 536 MB 6.46 MB 7.9 MB

tax 543 MB 5.75 MB 6.44 MB
linestatus 519 MB 2.15 MB 5 KB
returnflag 505 MB 1.43 MB 740 KB

Table 3.3: Index Sizes For Six Million Tuples
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Row ID 0.01 0.02 0.03 ...
0 0 1 0 ...
1 1 0 0 ...
2 1 0 0 ...
3 0 0 0 ...
4 0 0 1 ...
5 0 0 0 ...
6 0 0 0 ...
7 0 1 0 ...

Table 3.4: Bitmap for Column l discount of Lineitem

3.3.3 Query Processing

BIDS can interact with query engine of external systems to speed up the query pro-

cessing. It provides an index-based query optimizer. In this Section, we present our index

processing strategy with BIDS.

Consider a typical database query,

SELECT A FROM T WHERE P

where A denotes an aggregate function over columns of T , and P denotes a set of predi-

cates in the where clause. We use π(A) and π(P) to denote the columns involved in the

aggregate function and where clause, respectively.

We note that the BIDS index has different roles in processing the aggregate function

and the where clause. For A, the bitmaps for the columns in π(A) are used to compute

the aggregate result; for P , the bitmaps for the columns in π(P) are used to prune the

data. For example, let A = {avg(discount)} and P = {returnflag = r}. Suppose we

have the BIDS index as shown in Table 3.4. By checking the BIDS index for returnflag,

we have a bitmap (00101001), denoting rows satisfying the predicate, P . Applying this

bitmap to BIDS index of discount, we can retrieve the discount values for rows 2, 4 and

7. The average discount value can then be computed as 0.02 = 0.01+0.03+0.02
3

.

Formally, given a column c, let idxc be the BIDS index for c. idxc composes of a set

of bit arrays (b1, b2, ..., bk). Without bit-sliced encoding, one bit array is built for a specific

value of the column. Otherwise, it refers to a digit (0 or 1) of the binary encoding of the

value. In our system, the index manager maintains a mapping table for the BIDS index

and its values. For simplicity, we define function m(bi) to map between bit array bi and its

value vi. For example, in Table 3.4, m(b1) returns 0.01. When bit-sliced encoding is used,

m(bi) returns i, the position of the bit array in the bitmap. BIDS provides the following

operators to manipulate the indexes.

• Filter (F): If c ∈ π(P) and the predicate for column c is L < c < U , we will

compute a filtering bit array fc for column c, denoting the rows that satisfy the
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predicate. If bit-sliced encoding is not applied,

fc =
∨

L<m(bi)<U

bi

where
∨

denotes the bit-wise OR operation. If bit-sliced encoding is used, to gen-

erate fc, we need to combine and scan all the bit arrays. Specifically, the jth bit of

fc is computed as

fc[j] =

{
1 let vj = b1[j]b2[j]...bk[j], if L < vj < U

0 otherwise

where vj is a binary value, generated by concatenating all the jth values of the bit

arrays. Finally, the complete filtering array f is computed by combining the filtering

bit arrays of all columns in π(P)3.

f =
∧

c∈π(P)

fc

where
∧

denotes the bit-wise AND operation. f is used to prune the search space

during query processing.

• Grouping (G): If the result is required to be grouped by column c, we will split its

filter array based on c’s bit arrays. Specifically, k filter arrays (k is the number of

groups) are created and the ith array is generated as

fi[j] =

{
f [j] if bi[j] = 1

0 otherwise

The filter array (f1, f2, ..., fk) is then passed to the Materialization operator.

• Materialization (M): The Materialization operator will compute a result for each

group. If c ∈ π(A) and the computation is represented as exp(c), we will retrieve

c’s BIDS arrays (b1, b2, ..., bk) to calculate exp(c). For the jth tuple, if fx[j] = 1,

it passes the filtering bit array of the xth group. We will compute its result for the

xth group as exp(c) = exp(m(bi)), if bi[j] = 1 and no bit-sliced encoding is used.

Otherwise, let vj be the binary value of the bitmap, namely vj = b1[j]b2[j]...bk[j].

In the bit-sliced encoding case, exp(c) = exp(vj).

The external query engine can directly apply the above operators to process queries

3For simplicity, we assume conjunctive predicates only.
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by translating the query into a set of F , G and M operators. As an example, given the

following query:

Q0:

SELECT sum(l extendedprice * l discount)

as revenue

FROM Lineitem

WHERE l shipdate = Date(1994-01-01) AND

l discount < 0.02

GROUP BY l returnflag

A possible plan is:

1. f = F (l shipdate =′ 1994− 01− 01′)
∧

F (l discount < 0.02))

2. FilterArraySet Sf = G(f, l returnflag)

3. ∀fi ∈ Sf , resulti=M(l extendedprice, fi) op

M(l discount, fi)

The query engine first applies the Filter operator to the l shipdate and l discount columns.

The result filter array is then forwarded to the Grouping operator, where three new filter

arrays are generated as l returnflag has three unique values. The filter arrays are passed

to the Materialization operator, which selectively extracts data of l extendedprice and

l discount columns. The final result is computed via the materialized values, where op

denotes the multiplication operator. The above plan is broadcast to all index tracker pro-

cesses, which perform the index lookup in parallel. Details of index distribution will be

presented in the next section.

Alternatively, the external query engine can use BIDS’ interfaces in its MapReduce

jobs.

1. In the map phase, all the corresponding BIDS indexes are loaded. As maintained

by the DFS, the BIDS index data are also partitioned into chunks. Each mapper is

responsible for reading one specific chunk.

2. Filter operator is performed in the map phase, where a filtering array is generated

for each column in the predicate.

3. The filter array and the BIDS index data for Materialization are shuffled to the

reducers, where the Grouping operator is applied to generate the shuffling keys.
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4. The filter arrays of different columns are combined in the reducers and the Materi-

alization operator is applied to compute the aggregation result.

3.3.4 Partial Index

As noted in our discussions, the bitmap index is typically not suitable of indexing

a column with a large number of distinct values. However, in practice, many queries

access only a small portion of the data. For example, in data warehouse system, most

queries focus on the (more) recent data rather than the historical data. One effective way

to reduce the storage cost of BIDS index is to create indexes for the popular data only. For

example, if 80% of the queries are directed at 20% of the data, by indexing the popular

data only, the index size can be significantly reduced; while at the same time, we can

still answer most queries via the index. Partial indexing has been applied in conventional

DBMS [88] to reduce the index cost. In BIDS, we apply this technique to make more

columns indexable.

In this work, there are two flavors of partial BIDS index. The first is applicable to

conventional bitmap index (as used in our strategy S1). The other is applicable to bitmaps

with bit-sliced encoding (as used in our strategies S2 and S3). We shall refer to the former

one as partial bitmap index, and the latter as partial bit-sliced bitmap index.

Partial Bitmap Index

Consider a table T with a column c for which we would like to build a partial bitmap

index. WLOG, suppose column c has d distinct values. The partial index of column c

composes of three parts, an indicator bit array Ic, an index range rc and the data bitmap

idxc = {b1, b2, ..., bk} (k ≤ d). Ic and rc denote the rows and columns that we have

indexed, while idxc is the (partial) BIDS index for the corresponding rows. For example,

for the full BIDS index in Table 3.5, suppose Ic = 10001000 (i.e., we only indexed

records 0 and 4) and rc = {n, r} (i.e., we only indexed values n and r), idxreturnflag is

transformed into Table 3.5.

Compared to the full index bitmap (Table 3.1), the uncompressed version of the partial

index requires 66.7% of the storage of the full index. The savings is expected to be more

significant when we apply WAH encoding. This is because there are more opportunities

for compression as the bit vector of a distinct value has more “0” bits (than its counterpart

in a full index).

The partial bitmap index is built as a by-product of query processing. Therefore, we

discuss the query processing and tuning strategy together. We follow the discussion and

notations in Section 3.3.3. Note that the partial indexing strategy is not applied to the
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Row ID n r
0 1 0
1 0 0
2 0 0
3 0 0
4 0 1
5 0 0
6 0 0
7 0 0

Table 3.5: Partial Index for Column l returnflag of Lineitem

Group operator, as most queries require the results for all groups. For a partial index

idxc
4,

• Filter (F): If c ∈ π(P), we generate a filtering bit array fc for idxc as in the full

index case. Now, since records that are not indexed by idxc may also satisfy P (and

may be answers to the query), we need to examine all records that are not indexed.

To consider the records that are not indexed in idxc, fc is updated as fc
∨

Īc, where

we use
∨

to denote bit-wise OR and Īc is the complement of Ic and is computed

as Īc = e XOR Ic (e is a bit array with all elements set to 1). The new fc is then

combined with other filtering arrays and used in pruning the dataset. The index

manager keeps a query histogram. If it detects that c is always queried in a popular

range r which is currently not being indexed, a MapReduce job will be triggered to

scan the dataset and materialize the bit arrays in r. r is then inserted into the index

range rc. Similarly, if a range r has not been used for a certain period of time, it

may be removed from rc. We call this type of index tuning Vertical Tuning.

• Materialization: If c ∈ π(A), we first generate a bit array for the tuples that can

be processed by the index. The bit array is computed as x = f
∧

Ic, where f is

the filtering array created from the where clause. If x = f , then the result can be

directly computed via the index. Otherwise, we have y = x XOR f . y indicates

the tuples that we need to retrieve from DFS on-the-fly. To process the query, we

can access DFS to recover the missing tuples or fully scan the dataset if too many

random accesses are required. In either case, we get the search result for column c.

We can update the partial index by setting the bits for tuples in y and changing the

indicator as Ic = Ic
∨

y. This type of index tuning is called Horizontal Tuning.

Horizontal Tuning incurs less overhead than Vertical Tuning, as it just reuses the re-

sults of queries. Figure 3.3 shows an example of the two types of index tuning. In Hori-

4Here, we assume a partial index already exists. If the bitmap for a distinct value does not exist, it can
be initialized to a bit vector of all 0s.
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Figure 3.3: Example of Partial Index.

zontal Tuning, tuples 0 and 6 are indexed and thus I = (10000010). In Vertical Tuning,

the tuples in the range [0.03, 0.04] are indexed.

When more bits are set in the partial index, WAH encoding cannot provide a good

compression performance. Consequently, the index is costly to maintain. Thus, occasion-

ally, we rebuild the partial index by clearing all set bits in Ic and idxc and resetting rc.

When queries follow a skewed distribution, the index reconstruction process only affects a

few queries, as the popular tuples will be indexed soon. The details of index maintenance

are discussed in the next section.

Partial Bit-Sliced Bitmap Index

Besides the partial bitmap index, there is another type of partial index, the partial

bit-sliced bitmap index. When bit-sliced encoding is used, the resultant partial index is

similar to that of the partial bitmap index. However, none of the bitmaps can be dropped,

and so rc is essentially not needed. In this case, though the storage for the uncompressed

bitmaps is the same as that required for the full index, it is still more space efficient as

WAH encoding can result in a more compact representation because of the larger number

of “0” bits.

Let idxc = {b1, b2, ..., bk}. If c = v appears in the search predicate P , we transform v

into its binary representation v[1]v[2]...v[k]. Let the indicator be Ic. For tuple ti in Ic, if

bj [i] = v[j] for all 1 ≤ j ≤ k, ti passes the filter and thus the filter bitmap fc sets its ith

bit to 1.

If c appears inA and the filter bitmap is f , we first check whether f
∧

Ic equals to f . If

it does, then all results can be obtained from the index. For the ith tuple, we just transform

b1[i]b2[i]...bk[i] back to its represented value and compute the query result. Otherwise, we

need to retrieve the tuple from DFS.

For the partial bit-sliced bitmap index, we only need to consider horizontal tuning. If

c ∈ π(A) and we have not built full index for c, to process the query, we need to retrieve
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data from DFS. Suppose bitmap y indicates the missing tuples from the partial index.

After processing the query, we decide to build partial index for tuples in y by exploiting

the query result. Let the partial index of c be {b1, b2, ..., bk}. bj is for the jth bit in the

bit-sliced encoding. For tuple ti in y, we transform ti.c to a bit-sliced encoding string s

(in our case, s is a binary string). We set bj [i] to s[j] for 1 ≤ j ≤ k. Besides the indicator

is updated as Ic = Ic
∨
y.

3.3.5 Discussion for Join Processing

Our BIDS index cannot be used to index the primary key as the number of unique

values is equal to the number of tuples. Thus, directly applying the BIDS index to process

primary-foreign key join is not efficient. However, it can be integrated with other index

structures to handle the join processing. One possibility is to build the Trojan index [35],

which organizes joinable tuples in a co-partition.

Alternatively, the BIDS index can be used to prune the participating tables before the

join is performed. Consider the following query:

SELECT A FROM T1, T2

WHERE T1.key = T2.fkey AND T1.a > x

Assume there is no other index available. We use a MapReduce job to process the query.

Before the MapReduce job starts, we apply the Filter operator on T1.a to get a filter array

Sr, which represents the tuples satisfying the predicate. Then we prune table T1 in two

steps. In the first step, the data chunks in DFS that do not have any record in Sr are pruned.

This can reduce the number of mappers and improve the performance significantly [53].

In the second step, each mapper loads Sr into memory when it starts up. The mapper

processes tuples with continuous row IDs, as tuples are stored by their row IDs. Thus,

the mapper can know the ID of the next tuple and test it against Sr. If the tuple does not

qualify Sr, it is filtered out without a need to be parsed from the input stream. Parsing is

another key factor that affects the performance of MapReduce, which can be effectively

avoided by using BIDS.

3.4 Index Distribution and Maintenance

In our system, each distributed index node is assigned with a certain key range. When

a new index node joins the system, it obtains information about the current index from

the index manager. It then selectively loads the bit arrays, whose keys are covered by the

node’s key range. In this way, the BIDS index is cached in the distributed memory of the

index nodes.
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3.4.1 Distributing the BIDS Index

In our system, the index service is loosely connected with the underlying storage sys-

tem and the upper-layer query engine. This is a popular design in Cloud systems, which

makes the index service scale up and down independently of other services in the system.

This feature is extremely important for our BIDS index, because as mentioned before,

BIDS is designed as a lightweight index, which can be deployed non-intrusively in exist-

ing systems.

To exploit the shared memory, we distribute the BIDS indexes among the index nodes

by applying the Chord [87] protocols. We generate a unique ID Ki for each index node

ni by using consistent hash functionH. Suppose we have m index nodes (n1, n2, ..., nm),

sorted by their IDs in ascending order. Node ni will be responsible for the key range

(Ki−1, Ki]. The exception is node n1, whose key range consists of two parts, [0, K1] and

(nm, max key].

To distribute the BIDS index across nodes, we adopt a bit array as the basic unit of

distribution. Suppose we have a BIDS index of column c in table T with k bit arrays,

(b1, b2, ..., bk). As mentioned before, we use a mapping function m to retrieve the value

of the bit array. Namely, bi is built for value m(bi). We generate a key for each bit array

by concatenating its table name, column name and the value as follows:

• keybi=T .name + c.name + m(bi)

Then, bit array bi is mapped to the key H(keybi). There is a unique index node, I ,

whose key range covers the key. I is responsible for handling the requests for bi. Its role

is similar to the region server in HBase [2]. To speed up the index lookup, we will buffer

bi at index node I .

3.4.2 Load Balancing

Suppose each index node contributes M bytes memory for caching the index, and the

BIDS index is N bytes. Ideally, we need � N
M
� nodes to cache all indexes in memory.

However, in practice, more nodes are required as

• Even with consistent hashing, the load across nodes in Chord will not be balanced.

It is estimated that the ratio of maximal load to minimal load is about log2m [87],

where m is the number of index nodes. Thus, some nodes may need more memory

than others to cache the allocated index data.

• As we adopt WAH encoding, different bit arrays are encoded in different ways.

Therefore, their sizes may vary a lot. This also leads to load imbalance.
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Algorithm 4: LoadBalance(Node ni, BitArrays B, MemorySize M)
1: if sizeof(B) > M then
2: sort bit arrays of B by keys in ascendant order
3: p=ni.getPredecessor()
4: s=ni.getSuccessor()
5: x1=p.size, x2=s.size, x3=sizeof(B)
6: for i=0 to B.size() do
7: if B[i].size + x1 < M then
8: x1 = x1 +B[i].size, x3 = x3− B[i].size
9: if x3 > M then

10: for j=B.size() to i do
11: if B[j].size + x2 < M then
12: x2 = x2 +B[j].size, x3 = x3 −B[j].size
13: adjusting p’s ID to B[i].key
14: adjusting ni’s ID to B[j].key
15: if x3 > M then
16: nj=getLigthlyLoadedNode()
17: if nj=null then
18: nj=buyNewNode()
19: nj .key = ni.key
20: adjusting ni’s ID to ni.key+p.key

2

To address the above problems, we use an active load balancing approach. If the index

node detects that its assigned bit arrays cannot be fully buffered in the shared memory, it

invokes the balancing process given in Algorithm 4. The node first sorts its bit arrays by

their keys (line 2). Then, it tries to forward part of its bit arrays to its predecessor (lines

6 to 8) and its successor (lines 10 to 12). In fact, we just need to change the IDs of the

index nodes (lines 13 and 14). The index nodes will automatically dismiss or reload the

bit arrays. Finally, if the node is still overloaded, the load balancing process tries to find

a lightly loaded node (line 16). The selected node sheds its load to its adjacent nodes and

rejoins the overloaded node to share its load. If we are not able to find such a node, we

need to request for a new index node from the service provider5.

3.4.3 Index Maintenance

The BIDS index is designed for read-mostly applications. It can provide high per-

formance for queries with less maintenance cost. It can also handle infrequent updates

efficiently. To update the index, we adopt a similar update strategy as BigTable [21] and

Hbase [2].

In BIDS, we always index the latest version of the data. Therefore, we provide the

5At this moment, we do not consider storing the BIDS index on disk.
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same consistency (eventual consistency) as BigTable [21] and Hbase [2]. The update

model of BIDS is based on the characteristics of the bitmap index. The bitmap index

cannot be frequently updated, as updating the index will lock the whole bit array, blocking

all the other accesses. However, rebuilding the bitmap index is cost effective compared

to other index structures. Thus, in BIDS, we adopt a “cache and rebuild” model. As

shown in Figure 3.1, the updates are handled by the update manager. Recent updates are

cached in a buffer and when the buffer is full, the update manager updates the data files

and recomputes the BIDS index.

When we flush the updates into the data files, we rebuild the BIDS index simultane-

ously. This can be done efficiently by combining the old BIDS index and the updates.

Specifically, we need to

1. Reset the bits of existing records, if they have been updated.

2. Create new bits for index, if new records are inserted or new values of a column are

observed.

In this way, the size of the BIDS index will keep increasing and we cannot get a good

compression ratio, because updates violate the order of data (sorting is important for WAH

encoding). Hence, a total index rebuilding is required after too many updates are applied.

When processing a query, the query engine needs to ask the update manager to adjust

the result. We build some in-memory indexes to speed up the data retrieval in the update

buffer. When the index rebuilding process starts, the update manager flushes current up-

date buffer to disk and opens another buffer for accepting new updates. This strategy is

similar to Oracle’s hot backup [79]. The old buffer acts as our “offline log” and the new

buffer simulates the functionality of “online log”. We keep the old index to enable query

processing during the rebuilding process. When the new index is ready, the old one is

replaced.
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3.5 Performance Evaluation

BIDS is evaluated on our in-house cluster. In our cluster, the master node is a Dell

PowerEdge R610 with dual CPU (each CPU has 4 cores, 2.4GHz). The slave node is

powered with an intel Xeon CPU 2.4GHZ and 8GB memory. The nodes are connected

with 1Gb bandwidth switch. We use TPC-H [4] data set as our benchmark. The scale

factor ranges from 20 to 1000. When scale factor equals to 100, we generate a 100GB

dataset on disk. In the current implementation, Hadoop and its file system, HDFS, are

employed as our processing engine and storage system, respectively. Table 3.6 shows the

default settings of our experiments.

Parameter Default Value
Hadoop Cluster Size 50
TPC-H Scale Factor 100
Size of Data Chunk 512MB

Memory Per Indexing Tracker Process 256MB

Table 3.6: Experiment Settings

Besides Lineitem table, there are 38 non-key attributes inPart, Customer, PartSupp,

Orders and Lineitem tables. BIDS index are built for 28 attributes, among which 22 in-

dexes are full indexes and the rest are partial indexes.

Each experiment is repeated 10 times and the average result is presented. Before a new

experiment starts, we clear the cache of the file system. To avoid interference from other

jobs, all nodes are exclusively reserved for our experiments. We evaluate the performance

of BIDS in processing both OLAP and high-selective queries. For OLAP query, TPC-H

Q6 and Q14 are used as our query templates to generate random queries.

Q6: SELECT sum(extendedprice*discount) as revenue

FROM Lineitem

WHERE shipdate≥ x AND shipdate< x+ 1 year AND

discount≥ y AND discount< y − 0.02 AND

quantity< z

Q14: SELECT 100*sum(case when P.type like ‘PROMO%’

then extendedprice*(1-discount) else 0 end)/

sum(extendedprice*(1-discount))

FROM Lineitem L, Part P

WHERE L.partkey=P.partkey and L.shipdate≥ x

and L.shipdate< x+ 1 month
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For the high-selective query, we use the following simple query to evaluate the efficiency

of BIDS.

SELECT extendedprice

FROM Lineitem

WHERE shipdate=x and discount=y and taxt=z

All parameters, except x, follow the uniform distribution in their domain. To simulate a

skewed query pattern, x follows Zipf distribution, namely about 80% queries request for

records in 1993-1994. The storage cost and query processing time are used as our metrics.

3.5.1 Storage Cost

Figure 3.4 shows the compression ratio of Lineitem, which is computed as the data

size in disk divided by its BIDS index size. We observe an extremely high compression

ratio for BIDS index – our BIDS index can be between 27-45 times smaller than the orig-

inal data size. Moreover, as the data size increases, BIDS achieves a better compression

ratio. This can be attributed to the use of WAH encoding, which can effectively reduce

the size of sorted data.
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Figure 3.4: Compression Ratio.
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Figure 3.5: Effect of Encodings.

Another reason of the high compression ratio is due to the adoption of bit-sliced en-

coding scheme, whose effect is depicted in Figure 3.5. We build BIDS index using dif-

ferent encoding schemes for column quantity, which has 50 unique values. The index

encoded by bit-sliced encoding is much smaller than the one with WAH encoding only.

And the saving increases for a larger dataset.

However, even with bit-sliced encoding, fully built BIDS may incur high storage over-

head for some columns. Figure 3.6 shows the benefits of our partial indexing scheme. The

figure compares two indexing schemes for column extendedprice, which has about 1 mil-

lion unique values. For this experiment, we run variations of TPC-H Q9 for 10 minutes to
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warm up the system and measure the size of the partial index for extendedprice. Figure

3.6 verifies that partial indexing is more cost-effective than full indexing in terms of stor-

age overhead. As we shall see shortly, when queries follow a skewed distribution, partial

index can be used to answer most queries at a much lower storage cost.

3.5.2 Index Construction Cost
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Figure 3.7: BIDS Construction Cost.

BIDS can be built and rebuilt efficiently by running a handful of MapReduce jobs.

The cost of BIDS index construction composes of two parts, data sorting cost and index

building cost. Sorting is adopted to achieve better compression ratio, which is used in the

index initialization as preprocessing. Figure 3.7 shows the time of building BIDS index

for Lineitem. When data size increases, we also increase the number of cluster nodes. In

particular, we set TPC−H factor
node number

= 2. Namely, we use 50 nodes to handle TPC-H 100GB

dataset. As we apply MapReduce to create the index in parallel, only a few minutes are
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required. Compared to BIDS, building B-tree index for a single column may take an hour

for 10G TPC-H dataset [4].
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Figure 3.8: Efficiency of Memory Management.

In BIDS, all index data are buffered in distributed shared memory. When the system

starts, we set the initial number of index processes to 5, each of which shares 256MB

memory for buffering index data. In the case where the index data overflows the memory,

Algorithm 4 is invoked to create more index processes and perform load balancing. Figure

3.8 compares the number of required index processes in the ideal case and in practice. It

demonstrates the effectiveness of our load balancing algorithm.

3.5.3 OLAP Performance
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Figure 3.9: OLAP Performance.

In Figure 3.9a, we show the performance of BIDS for TPC-H Q6. We consider two

cases, namely the naive MapReduce and MapReduce powered by BIDS. These two pro-

cessing models differ in that the latter utilizes BIDS operators to take advantage of BIDS
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index. Typically, data are pruned by the filter operator in the map phase, then are passed to

the materialization operator invoked in the reduce phase to come up with the aggregation

results. We also take the effect of partial index into account. Initially, there is no index

for column extendedprice at system start time. After the system runs for a while, partial

index is adaptively built for extendedprice and the queries can be directly answered by

searching BIDS index. Figure 3.9a shows that BIDS index performs better than conven-

tional MapReduce processing in both cases. BIDS requires only approximately 20-40%

of the time required for MapReduce processing.

BIDS can be used in multi-relational queries to prune tables before join process-

ing. Figure 3.9b shows the performance of BIDS in processing TPC-H Q14, which joins

Lineitem and Part on partkey. BIDS index wins by a wide margin, and effectively

reduces the processing cost to about 50% that of MapReduce processing.
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Figure 3.10: Scalability of BIDS.

Figure 3.10 shows the scalability of BIDS, where we increase the data size from 200G

to 1T. The experiments are conducted on the 50-node cluster and we use template Q6 to

generate the test queries. In Figure 3.10, the query processing time is proportional to the

data size, which indicates that BIDS is a linear scale-up indexing scheme.

3.5.4 High-Selective Query Performance

One advantage of BIDS index is the ability to support various types of queries. Figure

3.11 shows the performance of high-selective queries, which are processed by the index

manager directly (MapReduce job is not necessary as only a few tuples are retrieved).

Similar to the last experiment, two cases are tested, namely BIDS with partial index and

BIDS without partial index. When partial index is created, most queries can be answered

by BIDS index directly. The main cost comes from the computation cost of bit-wise

operations. On the contrary, when partial index is not ready, we need to retrieve tuples

from HDFS, which incurs significant overhead due to the inefficient random I/O.
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Figure 3.12: Mixed Workload.

To evaluate the performance of update, in Figure 3.12, we measure the throughput

of mixed workload who runs queries and updates concurrently. The ratio of the number

of queries to the number of updates is set to 1. Among the update requests, half are

modifications to existing data and the rest are new insertions. Figure 3.12 shows that BIDS

can handle highly concurrent mixed workload efficiently. This is because all updates

are processed in memory. However, when the update buffer is full, we need to flush

the updates out to disk and rebuild the index. Figure 3.13 studies the effect of index

rebuilding.
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Figure 3.13: Effect of Index Rebuilding.

The buffer size is set to 1MB for the case where no partial index is built for extendedprice.

To achieve a similar rebuilding frequency, we set the buffer to 12MB for BIDS with partial

index. As observed from Figure 3.13, the update buffer becomes full for about 400 sec-

onds. Therefore, given 1GB update buffer, the intervals of rebuilding process are 9.4 hours

and 113.6 hours for BIDS with partial index and without partial index, respectively. The

rebuilding process is invoked infrequently where a reasonable large buffer is provided.

Moreover, based on the results in Figure 3.13, without partial index, the performance is
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only slightly affected by the rebuilding process, as query process and rebuilding process

compete for the HDFS. When partial index is ready, most queries can be answered via

BIDS index and the performance is not affected by the rebuilding process.

3.5.5 Comparison with HadoopDB
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Figure 3.14: Comparison with HadoopDB.

In this experiment, we deploy HadoopDB on our in-house cluster and compare its per-

formance with BIDS using the same query templates. Before each experiment, we empty

the cache of Postgres. Therefore, in our configuration, the HadoopDB starts without a

warmup process. Figure 3.14a and Figure 3.14b show the comparison results for Q6 and

Q14. For single-table queries, BIDS performs 2-5 times better than HadoopDB. This is be-

cause instead of scanning the original table, BIDS can answer the query partially or fully

via the compact index data, resulting in a big saving for I/O costs. For multi-table queries,

BIDS still outperforms HadoopDB. But as BIDS index is only used in filtering, the perfor-

mance gap is not that significant as the single-table case. In fact, HadoopDB benchmark

requires the tables involved in a join to be co-partitioned on their join key in advance

[7]. This strategy pushes joins to local DB nodes to avoid broadcasting data among the

cluster nodes. However, such a method only facilitates limited joins on a predetermined

join key. On the contrary, BIDS does not need co-partitioning as it can be exploited at

the filtering phase instead of the joining phase, and thus BIDS is able to benefit almost

all joins. Moreover, in HadoopDB, co-partitioning yields inevitable preprocessing cost,

while BIDS does not require such preprocessing. The cost of co-partitioning is not shown

in Figure 3.14b.
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3.6 Summary and Contributions

In this chapter, a bitmap based indexing scheme, BIDS, is proposed to manage large

amount of data in the Cloud. BIDS index is storage efficient and easy to maintain, which

makes it more scalable. It is built on top of the underlying DFS and cached in the dis-

tributed memory. BIDS adopts WAH encoding, bit-sliced encoding and pre-sorting to

ensure compactness. To further reduce the index size, the index is dynamically tuned

based on the query patterns. We also introduced BIDS-based query processing. The

query operators are transformed into a set of bit-wise AND/OR operators, which can be

handled more efficiently.

In summary, the technical contributions of this work are as follows.

• BIDS is generated by a few MapReduce jobs. It can be created from scratch in

minutes for 1TB dataset in a small cluster.

• In addition to the application of WAH encoding and bit-sliced encoding, BIDS

adopts a novel and query efficient partial indexing technique to reduce the size of

indexes. The partial index is built as a by-product of query processing, and hence

its maintenance cost is negligible.

• A new query processing strategy that employs BIDS within MapReduce is designed

to achieve high performance for various types of queries, such as range queries and

join queries.

• BIDS is buffered in the distributed shared memory based on the Chord [87] proto-

cols, which enables efficient search over distributed indexes.

• A new “cache and rebuild” update strategy is designed to dynamically refresh the

index to handle updates in a batch mode.

• Extensive experiments are conducted to depict the efficiency of BIDS and we com-

pare BIDS with HadoopDB [7] on TPC-H benchmark.

This work lays the ground for our further research on index utilization in MapRe-

duce system. Based on the lessons learned from this work, in the next chapter, we will

generalize index usage in MapReduce.
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Scalable Generalized Search Tree

4.1 Motivation

By design, traditional parallel database systems are optimized for fairly static environ-

ments with a relatively small number of high-end machines. While this architecture pro-

vides the desired performance, its capability is limited in scaling dynamically with loads

and needs. To take advantage of dynamic cluster environments comprising a large number

of commodity machines, MapReduce was first introduced by Dean and Ghemawat [30]

to simplify the building of web-scale inverted indexes, and the framework has gained fast

popularity as the state-of-the-art of data parallel programming model.

However, based on the evaluation of an open-source implementation of MapReduce,

namely Hadoop1, the framework has been noted to yield sub-optimal performance in the

database context [76]. In generic MapReduce, data access are resorted to brute-force

parallel scan. Moreover, given a set of input data partitions stored on DataNodes, the

execution framework of MapReduce will initiate map tasks on all input partitions. For

certain types of analytical queries, it would suffice to access only a subset of the input

data to produce the result. Other types of queries may require focused access to a few

tuples only that satisfy some predicate, which cannot be provided without accessing and

processing all the input data tuples. In both cases, it is desirable to provide a selective

access mechanism to data, in order to prune local non-useful data at a DataNode from

processing as well as pruning entire DataNode from processing if necessary. In traditional

RDBMSs, this problem is solved by means of indexing.

Consider the following example query which tries to generate the statistics about the

1http://hadoop.apache.org
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regional behavior of users in a certain age group:

SELECT count(*)

FROM mobile m, user u

WHERE m.x< x0 + α and m.x> x0 − α and

m.y< y0 + β and m.y> y0 − β and m.uid=u.uid

m.dataUsage>3000MB and u.age>20 and u.age<30

GROUP BY u.age

Using MapReduce, the query is translated to a MapReduce job comprises of two types

of mappers. One type of mapper scans the mobile table and filters the tuples based on

the data usage and location information. The other type scans through the user table to

retrieve the users with ages within the query range. Both types of mapper shuffle the

data to the reducers by using uid as the partition key. Then a reducer can generate the

partial results for its designated uid. But to merge the users from the same age group, one

additional MapReduce job is required to aggregate the results using age as the key .

In fact, the above MapReduce query processing strategy incurs unnecessary I/O over-

heads, which can be effectively avoided by using indexes. The challenge, however, is that

we need to build various types of indexes to support the query. For example, an R-tree in-

dex can be employed to locate the mobile phones within the range [(x0−α, x0+α), (y0−
β, y0 + β)]. An un-clustered B+-tree index can be built for attribute dataUsage to track

user’s data consumption. For the user table, a clustered B+-tree index is preferred as it

can efficiently prune the users that are not in the qualified age group. With those indexes

available, the mappers can push down query predicates for the indexes to evaluate and

scan only the tuples that contribute to the query result, in which way query performance

can be significantly improved.

There have been several proposals on distributed index schemes in cloud environ-

ments. For example, a distributed B+-tree-like index was proposed to support single-

dimensional range queries [101]. To facilitate multi-dimensional queries, SpatialHadoop

[38] realized multi-dimensional indexes in Hadoop using specialized index operators, and

can support several types of spatial indexes, such as R-tree and grid files. Another dis-

tributed R-tree-like index to support multi-dimensional range and k-NN (k-nearest neigh-

bors) queries was introduced in [99]. Our previous work on bitmap index [62] provides

the functionality for MapReduce to process numeric data with limited range values. How-

ever, these index schemes are specialized in a certain type of index. Moreover, these

distributed index schemes need to be implemented and deployed separately on the same

cluster. Such an approach results in high index maintenance overheads, and lacks code

and interface reuse. To facilitate comprehensive analytical queries in MapReduce, it is

desirable for the system to support multiple indexes of different types at the same time.
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More recently, a generalized distributed indexing framework based on Cayley graph

model has been proposed to address the scalability and performance issues of support-

ing a large number of indexes of different types in dynamic cluster environments [24].

Although this work provides a generic framework for the declaration and implementa-

tion of scalable distributed indexes, it requires users to define a data mapping function

for each specific index (for example, mapping from multi-dimensional to single dimen-

sional data). This could result in inefficiency of range query processing because such data

mapping may incur redundant I/Os for the system having to scan false positive candidates.

In summary, the challenges of incorporating indexes for MapReduce and other large-

scale data processing systems are:

1. To support different types of applications and queries, a general indexing framework

is required which can be used to build all popular indexes, such as B+-tree index and

R-tree index, for the distributed systems. It should also provide unified interfaces

for users to implement new types of index.

2. The framework should work as a non-intrusive component for existing systems such

as MapReduce so that the previous algorithms written for those systems do not need

to be modified to exploit the benefit of index-base processing.

3. As an index service for parallel data processing, the design of index framework

must consider the efficiency, reliability and scalability as its first class citizen.

Based on the above rationale, in this work, we present an distributed index framework,

ScalaGiST – Scalable Generalized Search Tree – which is intrigued by classical General-

ized Search Tree (GiST) [45]. GiST provides functionalities of various types of database

search trees in a single package, while ScalaGiST is designed for dynamic distributed

environments such as in-house clusters and public clouds so as to handle large-scale data

sets and adapt to changes in the workload while leveraging commodity hardware. ScalaG-

iST is extensible in terms of both data and query in that it enables users to define indexes

for new type of data and provides efficient lookup over the index data as built-in functions

without the need of data mapping as being used in other distributed indexing frameworks

[24, 70].

Indexes in ScalaGiST are distributed and replicated among index servers in the cluster

for scalability, data availability and load balancing purposes. ScalaGiST develops a light-

weight distributed processing service to process the request in parallel and effectively

reduce the overhead of searching over a large index. ScalaGiST is designed as an index-

ing service and can work with other systems in a non-intrusive way. In Section 4.4, we

show how to embed ScalaGiST into the execution of MapReduce-based systems by only
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launching appropriate map tasks on selected data chunks containing records (for primary

indexes) that satisfy the query predicate. This strategy creates opportunities in reducing

the startup cost of MapReduce jobs, and most importantly, avoids unnecessary I/Os and

computation that do not eventually contribute to the query results. While secondary in-

dexes facilitate a more direct location of data of interest, they may incur non-negligible

cost due to random accesses to the base data. Therefore, ScalaGiST develops a data ac-

cess optimizer to compare two possible query execution plans, namely index scan and full

table scan, and choose the better plan before running the query.
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4.2 Architecture Overview
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Figure 4.1: Overview of ScalaGiST.

ScalaGiST is designed as a scalable and non-intrusive indexing framework for MapRe-

duce systems as illustrated in Figure 4.1. The index is organized as a tree structure and

stored as a sequential file in the DFS (HDFS in this paper). Similar to a normal DFS file,

the index file is also partitioned into multiple chunks. Each chunk, in fact, contains the

index data of one or multiple sub-trees of an index. Given limited memory, ScalaGiST

selectively loads some index chunks into memory. More specifically, ScalaGiST employs

a metastore to collect the query statistics, based on which a prediction model is applied to

generate a caching strategy to maximize the performance (the details will be discussed in

the next section.) If multiple indexes are created, the metastore also maintains the basic

information of the index including:

1. The DFS file for which the index is constructed. By default, ScalaGiST considers

all DFS files as an unstructured format, where each line contains a key and a value.

If it is built for the relational data, the user should define a parser for the DFS file

and specify the indexed column.

2. The role of the index, e.g. primary and secondary. Primary index is built for the
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sorted data and if the data are not sorted by the indexed column, ScalaGiST will

invoke the tera-sort algorithm of MapReduce to do the sorting.

3. The type of indexes. ScalaGiST includes B-tree index and R-tree index in it imple-

mentations. For other customized indexes, the user can register their index types in

the metastore via the interface provided by ScalaGiST .

To process index search requests, ScalaGiST develops a light-weighted distributed

processing service which includes an index master and multiple index workers. As shown

in Figure 4.1, each index worker handles one index chunk by scanning the file and mate-

rializing the index in memory. Among the workers, a specific worker (worker 1 in Figure

4.1) is responsible for the root node. Once receiving a search request, the index master

forwards it to the worker hosting the root node, which progressively forwards the request

to the other workers. When receiving the request, all workers start the search concurrently

to exploit the parallelism to maximize the performance. To reduce maintenance overhead,

when no query is being processed, the worker process releases all its resources.

The search results of ScalaGiST are offsets of the DFS that refer to the tuples that

satisfy the predicates. The offsets are flushed back to the DFS as a temporary file. In

ScalaGiST , we provide a specific IndexInputFormat for MapReduce runtime to read the

temporary files. In the ideal case, if ScalaGiST finds that a data chunk cannot contribute

to any query result, the corresponding mapper will not be scheduled. In most cases,

the mapper will adopt the skip-and-scan strategy to read a few tuples that qualifies the

predicates, which effectively reduces the processing cost.
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4.3 System Implementation

In this section, we list the interfaces of ScalaGiST and the techniques adopted in our

implementation. More specifically, we discuss how multiple indexes are used together

to facilitate the query processing and how the memory is exploited to reduce the index

search overhead.

4.3.1 Interface of ScalaGiST

The essence of ScalaGiST is to provide template algorithms for traversal and modi-

fication of the tree structures distributed in dynamic environments. These algorithms are

designed and implemented to work with a generic class of data key.

Unlike classical B-trees whose keys typically are numerical values or short strings,

ScalaGiST’s keys are instances of a user-defined class overrides the abstraction key class.

This capability allows users to define new types of indexes by customizing the key class.

As an illustration, ScalaGiST can be instantiated as a distributed B+-tree-like index

structure by defining keys as ranges of numbers, which means that all index entries de-

scending from a certain index node have the values between the range. Similarly, ScalaG-

iST can be instantiated as a distributed R-tree-like index structure by defining keys as

bounding boxes so that all index entries descending from a certain index node are bounded

by the box2.

Overall, in order to instantiate ScalaGiST as a specific type of search tree, the only

thing that users are required to do is to define what represents a key, and implement,

i.e., override, abstracted methods in the key class as discussed below. These methods

will be invoked at runtime by the template algorithms implemented within the ScalaGiST

framework to realize basic tree operations such as search and modification.

• Consistent(N.p, q). This method provides the basis for guiding the search opera-

tion correctly. It takes as input two parameters, namely a key predicate p of a tree

node N and a query predicate q. It returns true if both p and q are satisfied for a

given data key, and returns false otherwise.

• Penalty(e,N). This method provides an indication of the cost if the new index

entry e is inserted to the subtree rooted by node N . The path that has the least

penalty in the tree is chosen for inserting the new entry.

• Union(S). This method defines how to merge a set S of index nodes. It returns a

new key predicate p that evaluates to true for all the index entries contained in or

reachable from the index nodes in S.
2In this chapter, we use the term “node” and “page” interchangeable
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• PickSplit(N). This method is invoked when there is a node split upon the insertion

of a new index entry. It decides which index entries stay on the old node, and which

ones go to a newly allocated index node.

• Parse(InputStream). This method reads the binary data from the DFS and parses

it into a user-defined tree node.

• Store(N,OutputStream). This method serializes node N into its binary represen-

tation and flushes it back to the DFS.

In ScalaGiST , users can define a customized node type, and thereby a new index

type, by implementing the above interfaces. An abstract class, GiSTWorker, is used as

our index processing unit and users should pass the node definition as a template to the

worker process. The declaration of GiSTWorker class is:

abstract class GiSTWorker<AbstractNode>

As shown in Figure 4.1, we actually maintain multiple nodes in one GiSTWorker.

The GiSTWorker loads a data chunk of the index file and adopts the Parse method to

reconstruct the tree nodes. For each node, GiSTWorker invokes the user-defined function

to process the request. In current implementation, ScalaGiST has created two sub-classes

of the AbstractNode, namely the BTreeNode and RTreeNode for supporting the B-tree

index and and R-tree index respectively. In the experiments, we also show that using

ScalaGiST , we can build various types of indexes, such as a metric index MTree [27], by

overriding the interface functions. The new indexes can provide a scalable performance as

well. In the following discussion, we use the R-tree as our running example to demonstrate

the index construction and search process in ScalaGiST .

4.3.2 Tree Methods

Index Construction

When a user requests to build an index using ScalaGiST , a new MapReduce job is

submitted for the index construction. Figure 4.2 illustrates the idea of how an R-tree

index is built.

ScalaGiST first randomly picks K samples from the indexed attributes and then par-

titions the key space into W sub-spaces (W is the number of reducers used to construct

the index), so that each sub-space has the same number of samples. For single dimension

case, the partitioning process works as building a equal-depth histogram, while for multi-

dimension case, it just simulates the KD-tree algorithm. After the partitioning, C mappers

are started to scan the data where C is the total number of data chunks. Each mapper gen-

erates W intermediate files, recording how tuples are distributed to different sub-spaces.
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Figure 4.2: Building an R-tree Index.

In the reduce phase, each reducer collects the intermediate files from the mappers for a

specific sub-space and constructs a local R-tree using Algorithm 5. In the ChooseSubtree

method, we apply the user-defined Penalty function to recursively select the subtree

that the key should be inserted into until reaching the leaf node. After inserting the new

key, we check whether the node needs to split. If so, a recursive split process is invoked

using the PickSplit function.

After the MapReduce job completes, the index master reads the root nodes of all sub-

trees (e.g., R1, R2, R3 and R4 in Figure 4.2) and builds a top R-tree by using those root

nodes as its leaf nodes. The top R-tree is the merging result of the sub-trees. Both the top

R-tree and the sub-trees are written back to the HDFS as index chunks. In particular, the

sub-trees are serialized into a sequential file based on the in-order traversal. The sub-tree

in Figure 4.2 is serialized as C, D, A, E, F, B, R4. For a large sub-tree, it may be stored

as multiple index chunks. Suppose C, D, A and E, F, B, R4 are two index chunks. For

the second chunk, we include a pointer to the offset of A in the first chunk to indicate the

position of the left child of R4.

To give a detailed illustration of the index construction process, here we show the

Algorithm 5: Insert(Key key)

1: AbstractNode root = getRoot()
2: if root==null then
3: createRootNode(key)
4: else
5: AbstractNode node = ChooseSubtree(root, key)
6: node.insert(key)
7: if node.needSplit() then
8: Key splitkey=PickSplit(node)
9: create two new nodes based on the splitkey

10: notify the parent node about the two new nodes and do the recursive split if
necessary
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performance breakdown of indexing 10 GB 2-dimensional data. There are two strategies

that are commonly used for R-Tree construction, namely sequential insertion (insert

data points one by one sequentially) and bulk-loading. We implement both methods and

compare their efficiency. The data set contains approximately 10 million records.

Sequential Insertion Bulk Loading
No. of Mapper 20 20

Map Time (second) 151 151
No. of Reducer 40 40

Reduce Time (second) 1094.2 26.63
Sub-Tree Merging (millisecond) 178 178

Table 4.1: Comparison of Index Construction Strategies

As shown, bulk loading outperforms sequential insert by a large margin. There are

in total 20 mappers launched. Each mapper reads in 512MB of data, maps them to sub-

spaces and shuffles the data to 40 reducers. This process takes up to 2.5 minutes (151

seconds) for both methods, inclusive of instantiation time of the job. When a reducer

receives the data, it performs R-Tree construction (locally). In this phase, sequential

insertion spends 18 minutes due to large amount of keys (over 10 millions), whereas bulk

loading is very efficient and costs only 27.19 seconds. The final merge phase reads in the

root nodes of local R-Trees as leaf nodes and inserts them into a top layer R-Tree. This

phase involves reading the 40 root nodes from DFS and inserting them into an in-memory

R-Tree, which is rather fast and can be finished in 178 milliseconds. It is notable that

sequential insertion is directly supported by the GiST interface for all types of indexes,

while bulk loading requires some customized codes for each index.

Search

Figure 4.3 shows how the GiSTWorker processes a range query. It simulates the typical

tree search algorithm. The search starts from the index master which maintains the top

R-tree. Based on the search range, it sends the query to GiSTWorker1 and GiSTWorker2.

The two workers start the tree search in parallel. When reaching the leaf nodes, a worker

checks whether it can return the result or it needs to forward the search message to other

workers. Algorithm 6 illustrates the local search process inside each worker. The index

master monitors the whole search process. Once it detects that all workers have finished

their tasks, it notifies the MapReduce scheduler for further query processing.

On top of range search, we provide two k-NN algorithms, one is generic for all indexes

defined by the ScalaGiST interface and one is specific for the R-tree index. The generic

k-NN algorithm iteratively expands its search range until k results are obtained. Suppose

72



CHAPTER 4. SCALABLE GENERALIZED SEARCH TREE

search

index master

RTreeWorker1 RTreeWorker2 RTreeWorker3

RTreeWorker4 RTreeWorker5 RTreeWorker6 RTreeWorker7

Figure 4.3: Search with R-tree.

Algorithm 6: GiSTWorker.Search(Query q)
1: Set<AbstractNode> nodes = new Set(root)
2: while nodes.hasMoreElement() do
3: AbstractNode n̄ = nodes.next()
4: if Consistent(n̄.key, q) then
5: if n̄.isLeaf() then
6: result.add(n̄)
7: else
8: Set<AbstractNode> child = n̄.getChild()
9: while child.hasMoreElement() do

10: AbstractNode c = child.next()
11: nodes.add(c)
12: return result

the query point is p = (v1, ..., vd). We submit an initial query as Q0 = ([v1 − r0, v1 +

r0], ..., [vd − r0, vd + r0]). If more than k results are obtained, the search completes.

Otherwise, we enlarge the search range by θ. So the new query is Q1 = ([v1−r0−θ, v1+

r0 + θ], ..., [vd − r0 − θ, vd + r0 + θ]). To avoid repeating the search of the initial query,

we also include Q0 when processing Q1. The query will not be sent to the tree nodes that

only overlaps with Q0. r0 and θ are two tunable parameters in the k-NN search which

have been well studied [91]. Using their analysis, we set r0 = θ, and θ is estimated as:

θ =
Dk

k
=

2 d

√
Γ(d

2
+ 1)

k
√
π(1−

√
1− d

√
K
N
)

where Dk represents the distance between the kth nearest neighbor and the query point
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and N is the estimated number of data in the whole space. Γ is a function defined as:

Γ(x + 1) = xΓ(x) with Γ(1) = 1 and Γ(0.5) = π
2
. We start with an initial θ value and

each time when we complete a range search, we will update our estimation for Dk, so the

next range is more accurate and tight.

We also include the classic branch-and-bound k-NN algorithm for R-tree which pro-

vides a near optimal performance [75]. It first retrieves the nearest neighbor to the query

point and then computes its minimal and maximal distances to the nearby bounding boxes.

The distances are used to expand the search range and decide when to terminate. In fact,

both the performances of the two k-NN algorithms differ marginally in both our experi-

ments and the theoretic analysis [91].

It is also noted that different index construction strategies has substantial impact on

search performance [26]. We use the two R-Trees populated by sequential insertion and

bulk loading in the last benchmark, and compare their query performance using range

search and k-NN search.

Sequential Insertion Bulk Loading
Range Query (second) 0.185 10.28
k-NN Query (second) 3.97 27.19

Table 4.2: Comparison of Query Performance

Table 4.2 shows that, although bulk loading speeds up index construction, it compro-

mises the query performance to some extend comparing to that of sequential insertion,

because one-by-one insertion allows the index to adaptively pick a better sub-tree in the

R-tree to insert and reduces the size of bounding boxes. In the above evaluation, query

performances for range query and k-NN query are about 55 times and 7 times worse when

using bulk loading. Therefore, there is a trade-off between index construction cost and

run-time performance. It is up to the users to decide which method to use.

Insertion

As an indexing service for the MapReduce system, ScalaGiST only supports batch

insertion. For a new batch of data, instead of appending them to the existing DFS file,

we import them as a new file under the same directory. ScalaGiST checks the metastore

whether we need to build indexes for the new data and starts the index construction process

if necessary. ScalaGiST creates a new index tree and registers it in the index master.

Therefore, for an increasing dataset, we may have multiple index trees and we will route

the query to all trees for processing.

Periodically, ScalaGiST merges the index trees to reduce the search cost. Let T0 be the

original tree and T1,...,Tk be the new trees. T1,..,Tk, in fact, are discarded and we build a
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Figure 4.4: Search With Multiple Indexes.

new T0 by inserting their data into T0. We start a MapReduce job to perform the merging.

Specifically, in the map phase, we scan data files of T1,..,Tk and partition them based on

the same partitioning strategy of T0. In the reduce phase, the reducer loads its specific

sub-tree of T0 and inserts the new data into T0. After all reducers complete their insertion,

the index master will generate a new index tree for all existing data files. For example,

in Figure 4.2, the new data are partitioned into four sub-spaces defined by the previous

sampling process. In reducer4, we load R4 from the DFS and insert the received data into

R4’s sub-tree. The insertion process applies the user-defined Consistent, Penalty and

PickSplit functions to guide the tree construction. After the MapReduce job, a new R4

covers all existing data in the sub-space is built.

4.3.3 Search with Multiple Indexes

One of the most distinguished features of ScalaGiST is its capability of supporting

various types of index. As shown in our example query in the introduction section, we

can build both a B-tree index and an R-tree index for different attributes of a table. In

ScalaGiST , only one clustered index can be built for a table, while the number of sec-

ondary indexes is not limited. Figure 4.4 shows how ScalaGiST exploits multiple indexes

together to process the query.

Suppose we have a clustered B-tree index which is disseminated to worker 1, worker

2 and worker 3. We also have a secondary R-tree index which is maintained by worker

4, worker 5 and worker 6. Given a query with two predicates, p0 and p1, suppose p0 is

on the clustered attribute and p1 is on the other attributes. ScalaGiST splits the search

into two parts. p0 is forwarded to worker 1 to worker 3, while p1 is forwarded to the

other 3 workers. All the workers start their search in parallel. When we complete the

search of clustered index, suppose only worker 2 has the query results (DFS offsets that
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point to the corresponding tuples). Instead of returning the results to the applications,

e.g., MapReduce jobs, worker 2 waits for the search results of the secondary index. Once

worker 5 and worker 6 finish their search, they broadcast their results to worker 2 and

worker 3. As a matter of fact, worker 3 will not be notified by ScalaGiST , as it does not

have the query results for p0. On the other hand, worker 2 will merge its results with the

results from the other two workers. The final index search results are then returned to

the users. The flexibility of ScalaGiST allows us to link the workers in an arbitrary way,

simplifying the search algorithm design for the multiple indexes.

4.3.4 Memory Management

After a worker completes the job, we destroy its memory stacks and reclaim all the

used memory. When the next query comes, ScalaGiST will wake up the worker and re-

construct its states. Such initialization cost and the cost of loading index nodes from the

DFS into memory cannot be ignored. One way to address the problem is to maintain

some workers and their states in memory. In other words, those workers are maintained

as a “persistent worker” in ScalaGiST . They are always running, waiting for receiving

the requests from the users. Their states, e.g., the tree structure, are also cached in mem-

ory. This is similar to using the RDD as the storage in Spark [106]. However, given

limited memory, we must adaptively select the memory-resident workers to maximize the

performance.

Definition 4.1. Benefit of A GiSTWorker

The benefit of a GiSTWorker regarding to a query q is defined as the total size of index

tree nodes (except the root nodes) that are required to read from the DFS to process q.

In ScalaGiST , we record the last processed k queries in the metastore and use that

statistics to measure the benefit of buffering each GiSTWorker. So the memory manage-

ment problem is transferred into an optimization problem:

Definition 4.2. Optimal Buffering Strategy

Given a query set Q and a GiSTWorker set U , suppose we only have limited memory M ,

we want to select a subset GiSTWorkers Ū from U , so that:

1. The memory for buffering GiSTWorkers in Ū is less than M .

2. For any other subset Û ⊆ U satisfying the memory constraint, its benefit is less

than that of Ū .

Note that although all GiSTWorkers handle the same-size index chunks, when ma-

terializing the tree nodes in memory, the GiSTWorkers require different sizes of memory
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because the index nodes may have different data structures. Therefore, the optimal buffer-

ing strategy is, in fact, a set-packing problem which is NP-hard. In ScalaGiST , we adopt

a greedy-based heuristic approach as shown in Algorithm 7. The intuition is to compute a

score for each worker as benefit
memory size

and rank workers based on the scores. The top ranked

workers are set as “persistent workers” which are maintained in memory for speeding up

the processing.

Algorithm 7: ManageBuffer()
1: for each GiSTWorker u ∈ U do
2: u.score = u.benefit/u.memory size
3: Heap H = sortByScore(U)
4: while Ū .size < M and H .size>0 do
5: Worker u = H .pop()
6: ū.add(u)
7: return ū

In ScalaGiST , Algorithm 7 is invoked periodically to adjust the buffer strategy. We

provide a parameter for users to tune the frequency. By default, Algorithm 7 is invoked

only when new indexes have been created since the last adjustment.

4.3.5 Tuning the Fanout

...

...

A B C D E F G H A B C D E F G H
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N1 N2

N3 N4

N5 N6 N7 N8
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N1 N2

Figure 4.5: Effect of Fanout.

For tree-based index, fanout F affects the search performance. We illustrate the prob-

lem using Figure 4.5. Suppose each index chunk can maintain three leaf nodes or 6

pointers of the internal nodes. For the left binary tree, the workers and their tree node

assignment is: { (W1: A, B, N5), (W2: C, D, N6, N3), (W3: E, F, N7), (W4: G, H, N8, N4,

N1), ...}. For the right tree, the tree node assignment is: {(W1: A, B, C), (W2: D, E, F),

(W3: N1),...}. Given a query that retrieves data from leaf nodes B, C, D and E, the left

tree first forwards the query to W4. W4 then forwards the query to W2 and W3. W2 further

forwards the query to W1. There are totally four workers involved in the processing and

three workers (W1, W2 and W3) perform their jobs concurrently. On the contrary, in the
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right tree, the query is first routed to W3 and then forwarded to W1 and W2. Only two

workers can run concurrently. However, the left binary tree requires a longer search path

W4 → W2 → W1, while the right tree has a much shorter path W3 → W1. In summary,

the fanout has the following two properties:

1. A small fanout can increase the level of parallelism by involving more workers in

the processing. This can effectively improve the performance when the query needs

to retrieve a large portion of data. But it also incurs more communication costs,

when only a few results are required.

2. A large fanout can reduce the search path and hence, lead to a lower communication

and I/O cost. However, it may result in load imbalance, as the query is processed

by fewer workers.

In fact, most B+-tree style hierarchies in production such as Bigtable [21] and HBase

[2] also use a small number of levels and very high fanouts. This is because they are

targeting at high-selective queries (e.g., key-based retrieval). ScalaGiST , on the other

hand, is designed for the MapReduce system. So we also want to benefit the large analytic

queries. In ScalaGiST , we group the historical queries into two categories, high-selective

queries and large analytic queries. Our purpose is to estimate a fanout F that can achieve

a good performance for both types of queries.

We apply a coarse estimation and for space limitation, we use the single-dimension

index to briefly demonstrate the idea. We assume that the index evenly partitions the key

range. Therefore, at level l, we have F l leaf nodes and the domain is partitioned into F l

sub-ranges. Let t be the size of a tree node and C be the size of DFS file chunk. Each

worker handles C
t

index nodes. Using the partitioning strategy shown in Figure 4.1, we

can estimate how the F 0 + ... + F l nodes are distributed to different workers. Given a

list of historical queries {q0, ..., qk}, we can also estimate how many workers are involved

for each query. Based on the query pattern, we set two selectivity thresholds θx and θy.

For queries with selectivity smaller than θx, we want to set a F that only one worker is

involved in the search concurrently. So we can get a lower bound εlow for F . For queries

with selectivity larger than θy, we want as many index workers as possible in the search

process. Namely, the involved index workers are no less than W where W is the number

of available cluster nodes that ScalaGiST is deployed on. This constraint can generate an

upper bound εup for F . Let {θ0, ..., θn} denote the selectivity of historical queries on table

T . The total cost can be estimated as (detailed cost model will be discussed in Section

4.4.2):
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n∑
i=0

�
∑logF |T |

j=1 θiF
je2

W
�

We then iterate F in the range of [εlow, εup] and compute the above equation respec-

tively. ScalaGiST selects the F value that minimizes the cost estimation.

4.4 Hadoop Integration and Data Access Optimization

Unlike existing proposals [9, 24, 101, 99], our proposed ScalaGiST has been designed

for seamless integration with Hadoop and its data access optimization algorithm helps

MapReduce select an index scan versus a full table scan method depending on character-

istics of queries.

4.4.1 Leveraging Indexes in Hadoop

One of the major advantages of MapReduce is that it is a generic execution engine

and independent of the underlying data storage system. Consequently, to make MapRe-

duce able to read input data from a new type of storage, users only need to extend the

InputFormat abstraction class and provide appropriate implementation for the functions

that will be invoked by MapReduce to retrieve data from the new storage. In ScalaGiST ,

we implement an IndexInputFormat class for ScalaGiST so that its data can be accessed

by MapReduce. This class overrides the required public methods such as getSplits() and

createRecordReader().

More specifically, the getSplits() routine will be called during the starting up of a

MapReduce job to identify how the index data are split into chunks, which in turn will

determine the number of map tasks that are required to execute the query processing job.

Given a query, the system parses its range predicates and composes an appropriate Scan

operator on the corresponding index. All index pages between the start and end keys

of the range Scan operator are included for processing the query. ScalaGiST splits the

index data at index pages’ boundaries, and therefore the number of splits is essentially the

number of index pages located within the query range.

During the execution of the MapReduce job, the framework iterates over the splits and

calls the createRecordReader() for each split. Each calling creates a new IndexRecor-

dReader to access the corresponding index page, and process the index page in two steps:

(1) retrieving the base record referred by the index entry, and (2) mapping the record based

on the map function customized for processing the query and shuffling intermediate data

to the appropriate reduce task.

79



CHAPTER 4. SCALABLE GENERALIZED SEARCH TREE

Overall, in this MapReduce execution with index scan, the selectivity of the query

predicate determines the number of map tasks to be launched for processing the query.

By utilizing the index, the number of needed maps is restricted to the minimal and only

relevant records satisfying the query predicate are retrieved from the base table, thus re-

ducing the task’s startup and I/O cost significantly. However, the benefits of this index

scan execution do not come for free. In fact, this index scan strategy introduces other

overhead that does not exist in the full table scan approach. First, index traversals are

needed before the MapReduce execution in order to identify leaf pages where necessary

maps should be launched. However, as the height of a practical ScalaGiST tree is typi-

cally low (and most hot internal index pages are cached in memory) this extra overhead is

negligible. Second, scanning the index data in each map to get record pointers stored in

index entries also incurs additional I/Os. This part of overhead may not cause serious is-

sues since the index data usually have much smaller size than the base data. The third part

of overhead in this index scan approach, which is the most significant one, is the I/O cost

of random access to the base data in the case of secondary indexes. Consequently, even

though the index access execution provides an alternative option for processing queries,

it does not always achieve better performance than the full parallel sequential scan execu-

tion. A cost model is therefore essential and proposed in the following section to estimate

the performance of the two strategies so that the system is able to choose the optimal one

for query execution.

4.4.2 Data Access Optimization Algorithm

To identify an optimal access method, we build histograms to collect statistics of data

distribution and design a cost model to select the data access plan.

Construction of Histograms

At regular time, the system runs a background MapReduce job for constructing his-

tograms of tables. Suppose a0, a1, ..., an−1 are columns of table T and [li, ui] is ai’s do-

main. We build an equal-width histogram for each column. That is, we split [li, ui] into

B buckets, and for each bucket, we count the number of tuples whose attribute value falls

within the bucket. In the map phase, we generate a composite key for each tuple. Key-

value pairs follow the format of < (columnID, bucketID), 1 >, where columnID is

the unique ID of the column and bucketID is the bucket ID of the bucket containing the

corresponding attribute value.

To reduce shuffling cost, we customize the combiner function to aggregate key-value

pairs within the same bucket so that each mapper only generates at most one key-value
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pair for a bucket. In the reduce phase, we group key-value pairs by their columnID and

combine the results from multiple mappers. Finally, the metadata of a histogram bucket,

including table name, column name, bucket range and bucket value, are written back to

HDFS. To efficiently locate a histogram, histograms are maintained as a directory tree in

HDFS, e.g., the histogram for column ai of table T is stored in “/histogram/T/ai”.

Selection of Optimal Data Access Plan

After having constructed the histograms for selectivity estimation of range predicates,

we proceed to design an algorithm for selection of optimal data access plan.

The base tables are comprised of equal-size (sd) data chunks in the underlying dis-

tributed file system (e.g., HDFS ). Consider a query Q, we use the function f(Q) to

denote the size of data involved in the processing of that query. For full table scan, if the

query Q involves multiple tables T1,...,Tk, then f(Q) is computed as
∑k

i=1 |Ti|si, where

si denotes the average size of records in the table Ti. For index scan approach, f(Q) is

estimated as
∑k

i=1 g(Ti, Q)si. g(Ti, Q) denotes the number of tuples in the table Ti that

satisfy the selection predicates of the query Q. In the following discussion, we estimate

the cost of map phase for processing a table Ti, as index is mainly used by the mappers to

reduce the I/O cost.

Full scan. The total number of data chunks in the base tables referred in the query is
|Ti|si
sd

We need the same number of mappers in our processing. The underlying distributed

file system (HDFS) ensures that the data chunks are roughly distributed across machines

in the cluster. Suppose we have N cluster nodes. Let cs be the cost ratio of sequential

scan. The cost of the slowest node is:

cpscan = �|Ti|si
sdN

� × sdcs = �
|Ti|si
N
�cs (4.1)

Index scan. If the query can be processed by the primary index of Ti, we can ef-

fectively reduce the number of data chunks in the MapReduce job. The scan cost of the

slowest node is reduced to

ciscan = �|Ti|sig(Ti, Q)

N
�cs (4.2)

If the query only involves the secondary index, ScalaGiST groups the pointers that re-

fer to the same data chunk and performs random accesses to the base records in sequential

offsets. Let cr denote the cost ratio of random read with sequential offsets. The cost of

slowest node is

ciscan = �|Ti|sig(Ti, Q)

N
�cr (4.3)
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For a query involving k tables, we normally generate k−1 MapReduce jobs to perform

the join. If we stick to the left-deep plan, except the first job, the rest jobs join a raw table

with an intermediate result table. For an intermediate result table Ti, we consider it as a

table without indexes (namely, g(Ti, Q) = |Ti|). Given two table Ti and Tj , the scan cost

of slowest node in the map phase is:

�|Ti|si + |Tj |sj
N

�cs

And the cost of primary index scan is:

ciscan = �|Ti|sig(Ti, Q) + |Tj |sjg(Tj, Q)

N
�cs (4.4)

Similarly, the cost of secondary index scan can be estimated.

Another cost is the index lookup cost. As most internal tree nodes are buffered in

memory, our model only computes the network communication cost and the scan cost of

leaf nodes. Let L be the number of index workers in the longest search path of the index.

So the maximal network cost is Lcn, where cn is the network cost ratio. If the size of each

leaf index entry is e, we can maintain approximately sd
e

leaf nodes in one index chunk.

Namely, each index worker can handle about sd
e

leaf nodes. Suppose we have W index

workers, the index search cost is estimated as:

clookup = Lcn + �
g(Ti, Q)e2

W
�cs (4.5)

The second term in above equation denotes the average cost of each index worker

when processing the leaf node scan. For two table join, we need to add up the index

search costs of both tables.

Data access optimizer. After estimating the cost of the two data accessing schemes

(scan and index-based processing), we now present a data access optimization algorithm

as a guiding principle for the system to dynamically choose the optimal data access plan

for the execution of a specific query with MapReduce. Given a query, we split it into

multiple MapReduce jobs {j0, j1, ..., jk}. For each job ji, we estimate the cost of cpscan
and ciscan + clookup and select the optimal strategy. At regular time, the system runs a

background a micro-benchmark on the underlying distributed file system to measure the

performance of raw random and sequential I/Os and update the values of cs, cr and cn

respectively.
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4.5 Performance Evaluation

We have conducted a series of experiments to evaluate the effectiveness and scalability

of ScalaGiST . First, we evaluate the performance of ScalaGiST using the YCSB bench-

mark [29]. Then, we compare the performance of ScalaGiST-integrated MapReduce with

generic MapReduce in processing analytical queries. We also study the performance of

ScalaGiST in terms of analytic query and multi-dimensional query, and compare its per-

formance with other distributed indexing frameworks, namely Data Mapping [24], Spa-

tialHadoop [38], and RT-CAN [99]. To show the flexibility of ScalaGiST , we implement

a new index MTree [27] on top of ScalaGiST and evaluate its performance on processing

multi-dimensional queries. Lastly, we show the effectiveness of ScalaGiST in an applica-

tion scenario involving multiple indexes in a single query.

4.5.1 Experimental Setup

The experiments are conducted on an in-house cluster, which includes 64 commodity

machines equipped with Intel X3430 2.4 GHz processors, 8 GB of memory, two 7200

RPM SATA disks with 500 GB capacity each, and 1 Gb ethernet. The machines in the

cluster are connected via a flat network.

A Hadoop cluster is set up as the infrastructure system for index storage and query

processing with ScalaGiST . We keep the settings of Hadoop as default. Each machine in

the cluster runs three daemon processes and plays multiple roles as a data node for HDFS,

a worker node for MapReduce, and an index worker for ScalaGiST . The index master

process is configured to run on the same machine as Hadoop cluster’s master node.

4.5.2 Micro-benchmarks

In this test, we study the performance of index construction and index lookup opera-

tions with ScalaGiST using the YCSB [29] benchmark. We build a B+-tree index using

ScalaGiST . We generate the following two workloads.

• Insert. New records (key-value pairs) are randomly generated and inserted into the

system. Note that when working with MapReduce system, ScalaGiST only supports

batch insertion, but for the indexing service itself, ScalaGiST can support realtime

insertion. The master forwards the updates to the corresponding index workers

who update their local sub-trees. This experiment shows the raw performance of

ScalaGiST and also indicates the cost of batch insertion using MapReduce.

• Lookup. The previously inserted records are searched, with the keys are randomly

chosen.
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For each index server, we configure the YCSB runtime to instantiate 4 client threads

to concurrently access the ScalaGiST tree. That is, client workloads submitted to the

system scale up much faster than the system size, and index servers will observe heavy

loads when the system size is large. The aggregate throughput of the two workloads are

measured as the system scales out from 10 to 60 index servers.

We also run the workload on a centralized system with a standalone B+-tree imple-

mentation to show the advantages of scalable distributed search trees. The B+-tree is

deployed on a Dell PowerEdge R610 server (which has a much higher hardware configu-

ration compared to other commodity machines in the cluster), and is configured to have a

cache of 4 GB. The number of concurrent client threads submitting workloads to the stan-

dalone B+-tree is configured to be equivalent with the above setting of ScalaGiST tree.

Before running the insert workload, both the ScalaGiST tree and the stand-alone B+-tree

are pre-populated with 10,000 records.
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Figure 4.6: Micro-benchmark: Aggregated Throughput.

As shown in Figure 4.6a, the ScalaGiST tree scales almost linearly with the system

size. On the contrary, the stand-alone B+-tree achieves a much lower throughput and

its capacity is saturated quite soon due to the lack of the ability to handle concurrent

requests. The high throughput performance of ScalaGiST is attributed to its scalable

architectural design. In addition, with the help of caching internal index nodes, most

of the tree traversals along the read path can be finished within one network hop before

reaching the appropriate index server to retrieve the desired index leaf page.

Figure 4.6b plots the system throughput for the insert workload. The aggregate through-

put grows almost linearly with system sizes at low and medium scales (up to 40 machines).

As the workload gets heavier (by increasing the number of machines and hence the num-

ber of client threads also scales up four times as much as described in the experiment set-

tings), new insertions incur more network communication overhead and I/O contentions.
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Overall, the above experimental results confirm the elastic performance of raw ScalaG-

iST framework. More index servers can be added into the system to serve the increasing

workloads.

4.5.3 MapReduce Scan vs. Index Scan

In this section, we compare the performance of ScalaGiST-integrated MapReduce

with generic MapReduce in processing analytical queries. We conduct the experiment on

TPC-H benchmark dataset [4] which models the workload of a decision support system.

Q1:SELECT custkey, count(orderkey)

FROM Orders

WHERE totalprice ≥ y and totalprice ≤ y + 100

GROUP BY (custkey)

We consider a selective query above on the Orders table. The scale factor of Orders

table is varied from 10 to 100. Under each scale factor, the workload generator produces

1.5 million records for the table. Each record has an average size of 1 KB. Thus, the total

data size ranges from 15 GB to 150 GB. The data records are stored in the underlying

HDFS and sorted by the selection key, i.e., the totalprice attribute. A 20-machine cluster

is set up for this experiment. The ScalaGiST index built on the data set is configured to

instantiate a scalable B+-tree-like index on the totalprice column.
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Figure 4.7: MapReduce Scan vs. Index Scan.

By setting the value of y in the query predicate, we can define the selectivity of the

query (denoted as s in Figure 4.7). Two sets of experiments were conducted to evaluate

the query processing time of generic MapReduce and ScalaGiST-integrated MapReduce

under different selectivity settings.
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In the first experiment, we study performance characteristics of the systems when exe-

cuting highly selective queries – the selectivity is set to 0.4% and 4%. The results plotted

in Figure 4.7a confirm the effectiveness of ScalaGiST in supporting query processing

over large scale data. Generic MapReduce program implements this query by performing

a full parallel scan on the entire data chunks of Orders table, and hence its performance

is not affected much by the query selectivity. In contrast, ScalaGiST helps to achieve a

better performance by first querying the distributed index to identify the qualified data,

then launching map tasks only on the data chunks hosting the target data. In this way,

ScalaGiST avoids yielding unnecessary overhead on full table scan over irrelevant data.

The overhead of traversal within internal nodes of ScalaGiST index tree is negligible,

because most internal nodes are cached locally.

Based on the insights of our cost model, ScalaGiST-integrated MapReduce underper-

forms in the case where index search cannot prune out enough data chunk. Hence, in

the second experiment, we test the two approaches with non-selective queries to see the

crossover point. With the decrease in selectivity, query latency increases drastically when

ScalaGiST is used. As depicted in Figure 4.7b, a selectivity of 30% is low enough for

ScalaGiST-integrated MapReduce to perform worse than the generic MapReduce. Low

query selectivity results in a larger result set that may span across more data chunks, and

hence more map tasks have to be launched. Further, larger result set incurs abundant

random I/Os to retrieve the data records because of the non-clustered secondary index

tested in this experiment. These two factors have significant impacts on the performance

of ScalaGiST-integrated MapReduce. Note that in this experiment we disabled the data

access optimizer so that the execution engine would stick to either generic MapReduce

plan (full table scan) or ScalaGiST plan (index scan).

4.5.4 Multi-Dimensional Index Performance

In this section, we demonstrate the effectiveness of ScalaGiST in terms of its sup-

port for multi-dimensional data. We first compare the performances of ScalaGiST and

three systems (namely, Data Mapping [24], SpatialHadoop [38] and RT-CAN [99]) on a

2-dimensional dataset. We then evaluate the performance of ScalaGiST’s M-tree imple-

mentation in higher dimensional (up to 10) settings.

For the first set of experiments, we construct a 2-dimensional table T with schema

T (a1, a2, p) where each attribute ai uniformly generated from the domain of 109 integer

values, and attribute p is a payload of 1 KB string data. The table is populated with 10

million to 100 million records, thus the size of the table varies from 10 GB to 100 GB.

R-Tree indexes are built on (a1, a2) pair using the three systems, respectively. The number

of index servers in the system is fixed to be 20.
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We run both range queries and k-NN queries to evaluate the systems’ performance.

Specifically, range queries are run on (a1, a2) against the indexes with the following tem-

plate:

Q2:SELECT p FROM T

WHERE a1 l ≤ a1 ≤ a1 u and a2 l ≤ a2 ≤ a2 u

We define the selectivity as the percentage of searched space. By adjusting the lower

bounds and upper bounds for both a1 and a2, we are able to control the query selectivity,

which is set to 0.4% in this experiment. K-NN queries are processed via a set of range

queries. For k-NN queries, k is set to be 16 in the experiments. The results are presented

in the following sections.

Generalized Search Tree vs. Data Mapping

For multi-dimensional domains, data mapping approach partitions the original space

into sub-spaces by different dimension iteratively, then links the partitions with adjacent

identifiers to form the Z-ordering [67], which is a 1-dimensional representation of the

original multi-dimensional domain, and thus range query in higher dimensional spaces

could be transformed into querying intervals along the Z-ordering.

As can be seen in Figure 4.8, ScalaGiST gains a better performance over the “Data

Mapping” approach. As the data size increases, the latency of queries with “Data Map-

ping” grows proportionally, while remaining stable with only a slight increment for ScalaG-

iST .
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Figure 4.8: Range Query Performance.
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Figure 4.9: k-NN Query Performance.

“Data Mapping” handles multi-dimensional query by mapping both the data and query

into a 1-dimension space and disseminating the query to the underlying overlay network.

Such dimension reduction provides a unified key space for different types of overlays at

the price of false-positive candidates in the result set that add extra overhead to process.
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It is because of the fact that two adjacent points in the multi-dimensional space might be

mapped to non-adjacent partitions in the single dimensional space. As a result, there could

be considerable amount of false positive points along the Z-ordering of the query range,

incurring undesirable I/Os and computation overheads. On the contrary, by customiz-

ing the abstracted key class and tree methods ScalaGiST can avoid such problem since

it resembles the traditional R-tree’s structure and search algorithms on multi-dimensional

spaces, which makes its query performance more efficient compared to the ‘Data Map-

ping’ approach for processing much less false-positive candidates.

Generalized Search Tree vs. SpatialHadoop

SpatialHadoop extents Hadoop to support spatial index operations. It organizes the

spatial index in a layered structure, namely global partition index and local indexes. Spa-

tialHadoop provides a layer of abstraction upon MapReduce by implementing its own

multi-dimensional index operators, such as range operator and k-NN operator in order to

facilitate multi-dimensional queries. In comparison, ScalaGiST adopts a different index

processing mechanism in which the index operations are performed by index workers,

and DFS data requests are handled by MapReduce(e.g. Hadoop) runtime.

Figure 4.8 and 4.9 compare the performance of ScalaGiST and SpatialHadoop in terms

of range queries and k-NN queries. From the results, we observe a close performance for

the two systems. In both systems, index operations are mostly done in memory, while

the local index (in SpatialHadoop) or index workers (in ScalaGiST) take care of DFS

I/Os. The slight difference comes from different implementation of index operators, in

particular, the different instantiation cost for the two systems.

However, it is a promising result for ScalaGiST in that the performance of its gen-

eralized framework is comparable to that of SpatialHadoop’s specially built and tuned

index.

Generalized Search Tree vs. RT-CAN

RT-CAN is a multi-dimensional indexing framework for cloud environments. RT-

CAN organizes the servers into an overlay based on an extended CAN routing protocol,

and utilizes R-tree based index scheme at each server to support multi-dimensional query.

In the experiments, data are pre-partitioned into 5,000 grids and disseminated to the

servers of RT-CAN. A local R-tree is built for the grids at each server with a page size of

4 KB.

The results plotted in Figure 4.9 confirm the extensibility of ScalaGiST to support

complex multi-dimensional query. In particular, the overall performance of ScalaGiST
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is better than RT-CAN in terms of supporting k-NN query. Even though ScalaGiST in-

curs higher latency for k-NN queries at small data size, we observe a better performance

of ScalaGiST as the data size increases. When data size is small, the start-up time for

MapReduce tasks has more significant impact on the query efficiency with ScalaGiST ,

while RT-CAN does not suffer such overhead due to its different (peer-to-peer) process-

ing model. However, at lager scales, the iterative overlay lookup and local R-tree search

yield relatively high I/Os and computational cost.

Scalagist in Multi-dimensional Metric Space
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Figure 4.10: Effect of Dimensionality.

Using ScalaGiST , we can build new distributed indexes with ease by overriding the

interface functions. In this experiment, we demonstrate the ScalaGiST’s M-tree imple-

mentation which is employed to index multi-dimensional data in a metric space. We use

synthetic Random-Cluster (R-Cluster) data sets to evaluate the performance of ScalaG-

iSTon varied dimensionalities (up to 10). The R-Cluster data sets consist of records with

a tuple ID and d-dimensional coordinates. The IDs are 4-byte integers and the coordinates

are 4-byte floating-point types. Distance between two records can be calculated using any

user defined metric distance function. In this experiment, we adopt the L∞ metric, i.e.

L∞(Ox, Oy) = maxDim
j=1 {|Ox[j]−Oy[j]|}. System settings remain the same as in the pre-

vious experiments. A range query with selectivity of 0.4% in the d-dimensional space is

run on the indexed data. Under each scale, we report the effect of varying dimensionality

from 2 to 10 in Figure 4.10.

As depicted in Figure 4.10, with the increase of dimensionality and data size, the

average time of running a range query also increases. This trend coincides with the typical
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performance of M-tree in the stand-alone setting. In addition, we are able to observe a

good scalability both in terms of dimensionality and data size. The time-to-dimensionality

and time-to-size pairs both scale nearly linearly. These results verify the functionality of

ScalaGiST in supporting multi-dimensional data.

4.5.5 Multiple Indexes Performance

As mentioned in Section 4.3.3, one of the most distinguished features of ScalaGiST

is its capability of supporting various types of indexes. In this experiment, we demon-

strate this merit by incorporating multiple indexes in a single query. As most of the real

data are business sensitive and are not publicly available, we synthetically construct our

data to have multiple dimensional characteristics. Our purpose is to use this simple but

straightforward example to exhibit how ScalaGiST benefits query using multiple indexes.

The schema T{orders, (a1, a2)} is composed of the Orders table from TPC-H dataset,

and the two-dimensional attribute (a1, a2) we generate in the last experiment. The table is

sorted by totalprice column in Orders table. Given its characteristic, a B+-tree can be

built on the totalprice column, and the 2-dimensional column (a1, a2) can be indexed by

an R-tree.

Note that when building multiple indexes on one table, factors such as the clustering

of data, the choice of primary index, etc., would all have substantial influence on the

performance. ScalaGiST is designed to provide flexible functionality and APIs, and leaves

other decisions to the user.

The query used in this experiment is a simple extension of Q1 with a range search on

the 2-dimensional column:

Q3:SELECT custkey, count(orderkey)

FROM Orders

WHERE totalprice ≥ y and totalprice ≤ y + 100

and a1 l ≤ a1 ≤ a1 u and a2 l ≤ a2 ≤ a2 u

Q3 is evaluated in three execution modes. The first is ScalaGiST multiple indexes

mode, who has both B+-tree and R-tree built on the two columns respectively. The second

mode only builds R-tree on the 2-dimensional column. And in the third mode we use

SpatialHadoop. The size of data varies approximately from 15G to 150G (Orders table

plus additional column). The results are plotted in Figure 4.11.

To process Q3, two columns of the table are touched. The indexed column is searched

via index workers first. With the knowledge of index search result, MapReduce jobs are

launched on the chunks hosting the interested data. For the column without index, a
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Figure 4.11: Multiple Index Performance.

MapReduce scan must be launched. Specifically, in the R-tree only case, index search on

R-tree returns a super set of the accurate selection result. Then a “partial” MapReduce

job scans through the chunks included in the search result to test against the totalprice

column before generating the final results. For SpatialHadoop, two set of MapReduce jobs

are launched. The first MapReduce job runs range search using original SpatialHadoop

function. The second set of MapReduce jobs are used to scan the whole table for selective

condition, and merge the scan result with result of range search.

In Figure 4.11, the processing time is broken down to highlight the index search phase

and the MapReduce phase. As shown, the overall execution time of ScalaGiST is signif-

icantly reduced comparing to those of SpatialHadoop and single index. ScalaGiST has

longer index processing time, since the runtime need to wait until all index workers com-

plete the search and merge the results. However, with the benefit of more accurate index

search result, the subsequent MapReduce job in ScalaGiST is able to avoid launching

redundant mappers, and enjoys better performance.
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4.6 Conclusion

In this work, we bring the previous work on bitmap indexing in MapReduce one step

further, and present ScalaGiST – scalable generalized search tree – which provides the

much desired extensibility in terms of data and query type. It supports multiple types of

indexes, and can be dynamically deployed on large clusters while resilient to machine fail-

ures. We have implemented ScalaGiST and demonstrated that it can be easily instantiated

as scalable B+-tree and R-tree like indexes for dynamic cluster environments. More im-

portantly, its seamless integration with Hadoop platform, coupled with a cost-based data

access optimizer, provide promising opportunities for significant performance improve-

ment on query processing in MapReduce-based systems. Our experiments on ScalaG-

iST’s performance with respect to multiple types of indexes confirmed the effectiveness

and efficiency of our proposed indexing mechanism.

In summary, the contributions of this work are as follows.

• We introduce ScalaGiST – scalable generalized search tree for dynamic cluster en-

vironments such as the Cloud. It provides extensibility in terms of data and query

types for supporting unconventional queries (e.g., multi-dimensional range and k-

NN queries), and more importantly, can be dynamically deployed on large clusters

for handling big users and data.

• We present an approach to integrating ScalaGiST seamlessly with Hadoop platform,

coupled with a cost-based data access optimizer for improving the performance of

MapReduce execution.

• We have built ScalaGiST and conducted an extensive performance study on an in-

house cluster. We compare the R-tree and B+-tree-like indexes implemented us-

ing ScalaGiST with recent indexes such as Data Mapping [24], RT-CAN[99] and

SpatialHadoop[38]. The results confirm its efficiency and scalability in terms of

write and read performance, as well as effective support of exact match, range, and

similarity queries.
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Parallelizing the RDBMSs
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CHAPTER 5

Adaptive Massive Parallel Processing

5.1 Motivation

The production environment for analytical data management applications is rapidly

changing. Many enterprises are shifting away from deploying their analytical databases

on high-end proprietary machines, and moving towards cheaper, lower-end, commodity

hardware, typically arranged in a shared-nothing MPP (Massively Parallel Processing)

architecture, which is widely believed to scale the best [63]. However, there are very

few known parallel database deployments consisting of more than one hundred nodes.

There are a variety of reasons why parallel databases generally do not scale well into the

hundreds of nodes. First, failures become increasingly common as one adds more nodes

to a system, yet parallel databases tend to be designed with the assumption that failures

are a rare event. Second, parallel databases generally assume a homogeneous array of

machines, yet it is nearly impossible to achieve pure homogeneity at scale. Third, until

recently, there have only been a handful of applications that required deployment on more

than a few dozen of nodes for reasonable performance, so parallel databases have not been

tested at larger scales, and unforseen engineering hurdles await.

The widespread adoption of MapReduce for MPP systems unfolds discussions and

attempts to extend MapReduce to handle data analytical workloads at unconventional

scale instead of using parallel databases. Much of the performance issues of MapReduce

and its derivative systems can be attributed to the fact that they were not initially designed

to be used as complete, end-to-end data analysis systems over structured data. Their

target use cases include scanning through a large set of documents produced from a web

crawler and producing a web index over them [30]. In these applications, the input data is

95



CHAPTER 5. ADAPTIVE MASSIVE PARALLEL PROCESSING

often unstructured and a brute force scan strategy over all of the data is usually optimal.

MapReduce then helps automate the parallelization of the data scanning and application

of user defined functions as the data is being scanned.

For more traditional data analysis workloads that work with data produced from busi-

ness operational data stores, the data is far more structured. Furthermore, the queries

tend to access only a subset of this data (e.g. breakdown the profit of stores located in

the Northeast). Using data structures that help accelerates access to needed entities (such

as indexes) and dimensions (such as column-stores), and data structures that precalculate

common requests (such as materialized views) often outperform a brute-force scan exe-

cution strategy. As pointed out by Dewitt and Stonebreaker [34], MapReduce lacks many

of the features that have been proven invaluable for structured data analysis workloads,

and its immediate gratification paradigm precludes some of the long term benefits of first

modeling and loading data before processing. The potential performance drawback of

MapReduce has been reported on the basis of experiments on two benchmarks [76] –

TPC-H and a customized benchmark tailored for search engines.

Therefore, it is now clear that neither MapReduce-like software, nor parallel databases

are ideal solutions for data analysis in the Cloud. Hence, a hybrid solution that combines

the fault tolerance, heterogeneous cluster, and ease of use out-of-the-box capabilities of

MapReduce with the efficiency, performance, and tool plugability of shared-nothing par-

allel database systems could have a significant impact on the Cloud database market.

There has been some recent work on bringing together ideas from MapReduce and

database systems, however, these works focus on language and interface issues. The

Pig project at Yahoo! [72] and the SCOPE project at Microsoft [18] aim to integrate

declarative query constructs from the database community into MapReduce-like software

to allow greater data independence, code reusablity, and automatic query optimization.

Greenplum and Aster Data have added the ability to write MapReduce functions (instead

of, or in addition to, SQL) over data stored in their parallel database products. Although

these four projects are without question an important step in the direction of a hybrid

solution, there remains a need for a hybrid solution at the systems level in addition to at

the language level.

5.1.1 The BestPeer++ Lesson

BestPeer++ [23] is a cloud enabled data sharing platform designed for corporate net-

work applications. BestPeer++ integrates cloud computing, database, and peer-to-peer

(P2P) technologies, and is a practical, flexible and efficient solution for corporate network

applications. However, with the majority of the reported experiments having dominant

advantage, the performance of BestPeer++ was surpassed by that of HadoopDB in the
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face of complex query which involves multiple joins and aggregations (TPC-H Query 5).

Analysis of query execution in BestPeer++ shows that the performance degradation of

BestPeer++ in TPC-H Query 5 is mainly caused by the way that BestPeer++ implements

join. In the shared-nothing architecture of BestPeer+, tables are distributed among local

RDBMSs, and there is few global knowledge of data maintained. During a join, local

RDBMSs have to perform rounds of replicated joins which inevitably leads to undesirable

I/O and computation overhead. In addition, the final round of join has to be executed in a

single peer in order to gather the partial results from distributed peers. Such way of join

execution incurs redundant I/O and computation cost, and the single peer becomes the

bottleneck if the final result table is exceedingly large. On the contrary, by encapsulating

a DFS abstraction on top of the distributed RDBMSs, HadoopDB is able to post local

selection results on the globally mounted DFS, and performs all the joins in a parallel

fashion using MapReduce.

Nevertheless, using HadoopDB is not always beneficial as reported in other exper-

iments in [23]. This disparity in performance gives rise to an interesting and practical

question: is it possible to combine the advantages in parallel RDBMS and MapReduce to

supplement the deficiencies of each other?

In this work, we exploit the feasibility of building a hybrid system that takes the best

features from both MapReduce and shared-nothing parallel RDBMSs, and propose an

adaptive query processing engine that incorporates the query execution of traditional par-

allel databases and MapReduce. In particular, we identify the strategic differences be-

tween DBMS query execution and MapReduce, and model the query efficiency for both

execution plans. Using the cost model, we devise a hybrid execution engine that adap-

tively generates the most cost effective plan for queries. The prototype we build ap-

proaches parallel databases in performance and efficiency, yet still yields the scalability,

fault tolerance, and flexibility of MapReduce-based systems.
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Figure 5.1: The BestPeer++ network deployed on Amazon Cloud offering

5.2 The BestPeer++ Core

The BestPeer++ core contains all platform-independent logic, including query pro-

cessing and P2P overlay. It runs on top of the Cloud adapter and consists of two software

components: bootstrap peer and normal peer. A BestPeer++ network can only have a sin-

gle bootstrap peer instance which is always launched and maintained by the BestPeer++

service provider, and a set of normal peer instances. The architecture is depicted in Figure

5.1. This section briefly describes the functionalities of these two kinds of peer. Individual

components and data flows inside these peers are presented in the subsequent sections.

The bootstrap peer is the entry point of the whole network. It has several respon-

sibilities. First, the bootstrap peer serves for various administration purposes, including

monitoring and managing normal peers and also scheduling various network management

events. Second, the bootstrap peer acts as a central repository for meta data of corporate

network applications, including shared global schema, participant normal peer list, and

role definitions. In addition, BestPeer++ employs the standard PKI encryption scheme

to encrypt/decrypt data transmitted between normal peers in order to further increase the

security of the system. Thus, the bootstrap peer also acts as a Certificate Authority (CA)

center for certifying the identities of normal peers.

Normal peers are the BestPeer++ instances launched by businesses. Each normal peer

is owned and managed by an individual business and serves the data retrieval requests

issued by the users of the owning business. To meet the high throughput requirement,

BestPeer++ does not rely on a centralized server to locate which normal peer hold which

tables. Instead, the normal peers are organized as a balanced tree peer-to-peer overlay

based on BATON [51]. The query processing is, thus, performed in entirely a distributed
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manner. Details of query processing is presented in Section 5.3.

5.2.1 Bootstrap Peer

The bootstrap peer is run by the BestPeer++ service provider, and its main function-

ality is to manage the BestPeer++ network. This section presents how bootstrap peer

performs various administrative tasks.

Managing Normal Peer Join/Departure

Each normal peer intends to join an existing corporate network must first connect to

the bootstrap peer. If the join request is permitted by the service provider, the bootstrap

peer will put the newly joined peer into the peer list of the corporate network. At the same

time, the joined peer will receive the corporate network information including the current

participants, global schema, role definitions, and an issued certificate. When a normal

peer needs to leave the network, it also notifies the bootstrap peer first. The bootstrap peer

will move the departure peer to the black list and mark the certificate of the departing peer

invalid. The bootstrap peer will the reclaim all resources allocated to the departing peer

and finally remove the departing peer from the peer list.

Auto Fail-over and Auto-Scaling

In addition to managing peer join and peer departure, the bootstrap peer spends most

of its running-time on monitoring the healthy of normal peers and scheduling fail-over

and auto-scaling events. Algorithm 8 shows how the daemon service of the bootstrap

works.

The bootstrap periodically collects performance metrics of each normal peer (line 2).

If some peers are malfunctioned or crashed, the bootstrap peer will trigger an automatic

fail-over event for each failed normal peer (line 6-10). The automatic fail-over is per-

formed by first launching a new instance from cloud. Then, the bootstrap peer asks the

newly launched instance to perform database recovery from the latest database backup

stored in Amazon EBS. Finally, the failed peer is put into the blacklist. Similarly, if any

normal peer is overloaded (e.g., CPU is over-utilized or free storage space is low), the

bootstrap peer triggers an auto-scaling event (line 12-17) to either upgrade the normal

peer to a larger instance or allocate more storage spaces.

At the end of each maintenance epoch, the bootstrap releases the resources in the

blacklist (line 18) and notifies the changes to all participants (line 20).

As discussed above, cloud services provide the required reliability of a single node,

i.e., its data can be safely recovered in cases of crashes within a recovery time constraint
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Algorithm 8: BootStrapDaemon()
1: while true do
2: Status S = invokeCloudWatch()
3: ArrayList peerList = BootStrap.getAllPeer()
4: ArrayList newPeer= new ArrayList()
5: for i=0 to peerList.size() do
6: if peerList.get(i).fails() then
7: Peer peer = new Peer()
8: peer.loadMySQLBackUpFromRDS(peerList.get(i))
9: newPeer.add(peer)

10: BootStrap.setBlackList(peerList.get(i))
11: else
12: if peerList.get(i).overloaded() then
13: Peer peer = new Peer()
14: peer.upScale(peerList.get(i))
15: peer.clone(peerList.get(i).getDB())
16: BootStrap.setBlackList(peerList.get(i))
17: newPeer.add(peer)
18: BootStrap.removeAllPeersInBlackList()
19: BootStrap.addAllNewPeer(newPeer)
20: BootStrap.broadcastNetworkStatus()
21: sleep T seconds

guaranteed by the service level agreements (SLAs) offered by the cloud services. In a data

sharing platform like BestPeer++, enforcing system’s consistency guarantee is a crucial

but difficult task. An important issue is the consistency of the whole system when there are

node failures, more specifically how queries can be executed in these situations. Business

applications rely on accurate summarization of data, and thus may suffer from any form of

data inconsistency. Therefore, the widely used eventual consistency model [13] or other

weakened consistency models do not fit in our case. In BestPeer++, we opt to enforce

strong consistency by guaranteeing that all necessary data in a business scope is online

at query time. When a node crashes, all affected queries need to be blocked until the

auto fail-over process is completed. We are able to provide correctness and consistency

guarantee in this way at the expense of some latency. However, given that the recovery

time complies with SLA’s constraint, this latency is restrained within an acceptable range.

5.2.2 Normal Peer

The normal peer software consists of five components: schema mapping, data loader,

data indexer, access control, and query executor. We present the first four components in

this section. Query processing in BestPeer++ will be presented in the next section.

As shown in Figure 5.2, there are two data flows inside the normal peer: an offline data

flow and an online data flow. In the offline data flow, the data are extracted periodically by

a data loader from the business production system to the normal peer instance. In partic-
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Figure 5.2: Data Flow in BestPeer++

ular, the data loader extracts the data from the business production system, transforms the

data format from its local schema to the shared global schema of the corporate network

according to the schema mapping, and finally stores the results in the MySQL databases

hosted in the normal peer.

In the online data flow, user queries are submitted to the normal peer and then pro-

cessed by the query processor. The query processor performs user queries using a fetch

and process strategy. The query processor first parses the query and then employs the

BATON search algorithm to identify the peers that hold the data related to the query.

Then, the query executor employs a pay-as-you-go query processing strategy, which will

be described in Section 5.3 in detail, to process those data and return the results to the

user.

Schema Mapping

Schema mapping [12] is a component that defines the mapping between the local

schema of each production system and the global shared schema employed by the cor-

porate network. Currently, BestPeer++ only supports relational schema mapping, namely

both local schema and the global schema are relational. The mapping consists of meta-

data mappings (i.e., mapping local table definitions to global table definitions) and value

mappings (i.e., mapping local terms to global terms). Besides schema-level mapping,

BestPeer++ can also support instance-level mapping [81], which complements the map-

ping process when there is not sufficient schema information. In general, the schema

mapping process requires human to be involved and is rather time consuming. However,

it only needs to perform once. Furthermore, BestPeer++ adopts templates to facilitate the

mapping process. Specifically, for each popular production system (i.e., SAP or People-

Soft), we provide a mapping template which defines the transformation of local schemas

of those systems to a global schema. What the business only needs is to modify the map-

ping template to meet its own needs. We found that this mapping template approach works

well in practice and significantly reduces the service setup efforts.
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join(P) Join the network
leave(P) Leave the network
put(k, v) Insert a key-value pair into the network
remove(k, v) Delete the value with the key
get(k) Retrieve the value with the single key
get(begin, end) Retrieve values with the key range

Table 5.1: BATON Interface

Data Loader

Data Loader is a component that extracts data from production systems to normal

peer instances according to the result of schema mapping. While the process of extracting

and transforming data is straightforward, the main challenge comes from maintaining

consistency between raw data stored in the production systems and extracted data stored

in the normal peer instance (and subsequently data indices created from these extracted

data) while the raw data being updated inside the production systems.

We solve the consistency problem by the following approach. When the data loader

first extracts data from the production system, besides storing the results in the normal

peer instance, the data loader also creates a snapshot of the newly inserted data 1. After

that, at interval times, the data loader re-extracts data from the production system to create

a new snapshot. This snapshot is then compared to the previously stored one to detect

data changes. Finally, the changes are used to update the MySQL database hosted in the

normal peer.

Given two consecutive data snapshots, we employ a similar algorithm as the one pro-

posed in [41]. In our algorithm, the system first fingerprints every tuple of the tables in

the two snapshots to a unique integer. We use 32Bits Rabin fingerprinting method [80].

Then, each table is sorted by the fingerprint values. Finally, the algorithm executes the

sort merge algorithm on the tables in both snapshots. The resultant table after sorting

reveals changes in the data.

Data Indexer

In the BestPeer++, the data are stored in the local MySQL database hosted by each

normal peer. Thus, to process a query, we need to locate which normal peers host the

tables involved in the query. For example, to process a simple query like select R.a

from R where R.b=x, we need to know the location of the peers store tuples belong-

ing to the global table R.

We adopt the peer-to-peer technology to solve the data locating problem and only send

1The snapshot is also stored in the normal peer instance but in a separate database.
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Figure 5.3: BATON Overlay

queries to normal peers which host related data. In particular, we employ BATON [51], a

balanced binary tree overlay protocol to organize all normal peers. Figure 5.3 shows the

structure of BATON. Given a value domain [L, U], each node in BATON is responsible

for two ranges. The first range, R0, is the sub-domain maintained by the node. The second

range, R1, is the domain of the subtree rooted at the node. For example, R0 and R1 are

set to [25, 32) and [0, 38) for node D, respectively. For a key k, there is one unique peer

p responsible for k and k is contained by p.R0. For a range [l, u], there is also one unique

peer p̄ for it and 1) [l, u] is a sub-range of p̄.R1; and 2) if [l, u] is contained by p̂.R1, p̂

must be p̄’s ancestor node.

If we traverse the tree via in-order, we can access the values in consecutive domains. In

BATON, each node maintains log2N routing neighbors in the same level, which are used

to facilitate the search process in this index structure. To achieve a balanced structure,

BATON employs two flexible load balancing schemes [51]. A node can balance its load

with adjacent nodes when there exists under-loaded ones. However, in the case that there

is no adjacent node available for load balancing, BATON performs a global adjustment

by moving a non-adjacent leaf node from its original position to the overloaded region

to share load. Since BATON organizes nodes as a balanced tree, such a scheme could

incur network restructuring. However, this amortized cost is just O(log2N) per insertion

or deletion [49], which is negligible. For details about BATON, readers are referred to

[49, 51].

In BestPeer++, the interface of BATON is abstracted as Table 5.1. We provide three

ways to locate data required for query evaluation: table index, column index, and range

index. Each of them is designed for a separate purpose.

Table Index. Given a table name, a table index is designed for searching the normal

peers hosting the related table. A table index is of the form IT (key, value) where the key

is the table name and value is a list of normal peers which store data of the table.

Column Index. Column index is a supplementary index to table index. This index

type is designed to support queries over columns. A column index IC(key, value) in-

cludes a key, which is the column name in the global shared schema, and a value, which
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Type Key Indexed Value
Table Index Table Name A normal peer list

Column Index Column Name A list of peer-table pairs
Range Index Table Name A list of column-range pairs

Table 5.2: Index Format Summaries

consists of the identifier of the owner normal peer and a list of tables containing the col-

umn in the peer.

Range Index. Range indices are built on specific columns of the global shared tables.

One range index is built for one column. A range index is of the form ID(key, value)

where key is the table name and the value is a list. Each item in the list consists of the

column name denoting which column the range index is built on, a min-max value which

encodes the minimum and maximum value in the column being indexed, and the normal

peer which stores the table.

Table 5.2 summarizes the index formats in BestPeer++. In query processing, the pri-

orities of indices are (Range Index>Column Index>Table Index). We will use the more

accurate index whenever possible. Consider Q1 of the TPC-H benchmark:

SELECT l orderkey, l receiptdate

FROM LineItem

WHERE l shipdate > Date(1998-11-05) AND

l commitedate > Date(1998-09-29)

If the range index has been built for l shipdate, the query processor can know

which peers have the tuples with l shipdate> Date(1998-11-05). Otherwise, if

column index is available, the query processor only knows which peers have the LineItem

table and their l shipdate columns have valid values.2 In the worst case, when only

table index is available, the query processor needs to communicate with every peer that

has part of the lineitem table.

Since machine failures in cloud environment are not uncommon, BestPeer++ employs

replication of index data in the BATON structure to ensure the correct retrieval of index

data in the presence of failures. Specifically, we use the two-tier partial replication strategy

to provide both data availability and load balancing, as proposed in our recent study [95].

BestPeer++ couples its inherent load balancing scheme with the one proposed in [95] to

achieve a better performance. The complete method for system recovery from various

types of node failures is also studied in this work.

2In multi-tenant scenario, even the companies share the same schema, they may have different set of
columns.
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Distributed Access Control

The access to multi-businesses data shared in a corporate network needs to be con-

trolled properly. The challenge is for BestPeer++ to provide a flexible and easy-to-use

access control scheme for the whole system; at the same time, it should enable each

business to decide the users that can access its shared data in the inherent distributed en-

vironment of corporate networks. BestPeer++ develops a distributed role-based access

control scheme. The basic idea is to use roles as templates to capture common data access

privileges and allow businesses to override these privileges to meet their specific needs.

Definition 5.1. Access Role

The access role is defined as Role = {(ci, pj, δ)|ci ∈ Sc ∧ pj ∈ Sp ∧ δ ∈ Sv}, where Sc is

the set of columns, Sp is the set of privileges and Sv is the range conditions.

For example, suppose we have created a role Rolesales={(lineitem.extendedprice, read∧write,

[0, 100]), (lineitem.shipdate, read, null) } and a user is assigned the role Rolesales. He can

only access two columns. For the shipdate column, he can access all values, but cannot

update them. For the extendedprice column, the user can read and modify the values in

the range of [0, 100].

When setting up a new corporate network, the service provider defines a standard set

of roles. The local administrator at each normal peer can assign the new user with an

existing role if the access privilege of that role is applicable to the new user. If none of the

existing roles satisfies the new user, the local administrator can create new roles by three

operators: �, − and +.

• Rolei � Rolej : Rolej inherits all privileges defined by Rolei.

• Rolej = Rolei− (ci, pj, δ): Rolej gets all privileges of Rolei with the exception of

(ci, pj, δ).

• Rolej = Rolei+(ci, pj, δ): Rolej gets all privileges of Rolei and a new access rule

(ci, pj, δ).

The roles are maintained locally and used in the query processing to rewrite the

queries. Specifically, given a query Q submitted by user u, the query processor will

send the data retrieval request to the involved peers. The peer, upon receiving the request,

will transform it based on u’s access role. The data that cannot be accessed by u will

not be returned. For example, if a user assigned to Rolesale tries to retrieve all tuples

from lineitem, the peer will only return values from two columns: extendedprice

and shipdate. For extendedprice, only values in [0, 100] are shown, the rest are

marked as “NULL”.
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Note that BestPeer++ does not collect the information of existing users in the collab-

orating ERP databases, since it will lead to potential security issues. Instead, the user

management module of BestPeer++ provides interfaces for the local administrator at each

participating organization to create new accounts for users who desire to access Best-

Peer++ service. The information of the users created at one peer is forwarded to the boot-

strap peer and then broadcasted to other normal peers also. In this manner, each normal

peer will eventually have enough user information of the whole network, and therefore

the local administrator at this peer can easily define the role-based access control for any

user.

5.3 Pay-As-You-Go Query Processing

BestPeer++ provides two services for the participants: the storage service and search

service, both of which are charged in a pay-as-you-go model. This section presents the

pay-as-you-go query processing module which offers an optimal performance within the

user’s budget. We begin with the presentation of histogram generation, a building block

for estimating intermediate result size. Then, we present the query processing strategy.

Before discussing the details of query processing, we first define the semantics of

query processing in the BestPeer++. After data are exported from the local business sys-

tem into a BestPeer++ instance, we apply the schema mapping rules to transform them

into the predefined formats. In this way, given a table T in the global schema, each peer

essentially maintains a horizontal partition of it. The semantics of queries is defined as

Definition 5.2. Query Semantic

For a query Q submitted at time t, let T denote the tables involved in Q. The result of Q

is computed on
⋃

∀Ti∈T St(Ti), where St(Ti) is the snapshot of table Ti at time t.

When a peer receives a query, it compares the timestamp (t′) of its database with the

query’s timestamp (t). If t′ ≤ t, the peer processes the query and returns the result.

Otherwise, it rejects the query and notifies the query processor, which will terminate the

query and resubmit it.

5.3.1 The Histogram

In BestPeer++, histograms are used to maintain the statistics of column values for

query optimization. Since attributes in a relation are correlated, single-dimensional his-

tograms are not sufficient for maintaining the statistics. Instead, multi-dimensional his-

tograms are employed. BestPeer++ adopts MHIST [78] to build multi-dimensional his-

tograms adaptively. Each normal peer invokes MHIST to iteratively split the attribute
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which is most valuable for building histograms until enough histogram buckets are gener-

ated. Then, the buckets (multi-dimensional hypercube) are mapped into one dimensional

ranges using iDistance [50] and we index the buckets in BATON based on their ranges.

Once the histograms have been established, we can estimate the size of a relation and

the result size of joining two relations as follows.

Estimation of a Relation Size. Given a relation R and its corresponding histogram

H(R), ES(R) =
∑

i H(R)i, where H(R)i denotes the value of the ith bucket in H(R).

Estimation of Pairwise Joining Result Size. Given two relations Rx, Ry, their cor-

responding histograms H(Rx), H(Ry) and a query q = σp(Rx 	
Rx.a=Ry.b Ry), where

p = Rx.a1 ∧ · · · ∧Rx.an−1 ∧ Ry.b1 ∧ · · · ∧Ry.bn−1, to estimate the joining result size of

a query, we first estimate the number of data in each histogram belonging to the queried

region (QR) defined by the predicate p as follows.

EC(H(Rx)) =
∑
i

H(Rx)i ×
Areao(H(Rx)i, QR)

Area(H(Rx)i)

EC(H(Ry)) =
∑
i

H(Ry)i ×
Areao(H(Ry)i, QR)

Area(H(Ry)i)

Where Area(H(Rx)i) and Areao(H(Rx)i, QR) denote the region covered by the ith buck-

ets of H(Rx) and the overlapping region between this region and QR. A similar explana-

tion is applied for Area(H(Ry)i) and Areao(H(Ry)i, QR).

Based on EC(H(Rx)) and EC(H(Ry)), the estimated result size of q is calculated as

follows.

ES(q) =
EC(H(Rx))× EC(H(Ry))∏

i Wi

where Wi is the width of the queried region at dimension i.

5.3.2 Basic Processing Approach

BestPeer++ employs two query processing approaches: basic processing and adaptive

processing. The basic query processing strategy is similar to the one adopted in the dis-

tributed databases domain. Overall, the query submitted to a normal peer P is evaluated

in two steps: fetching and processing. In the fetching step, the query is decomposed into

a set of subqueries which are then sent to the remote normal peers that host the data in-

volved in the query (the list of these normal peers is determined by searching the indices

stored in BATON, cf. Section 5.2.2). The subquery is then processed by each remote

normal peer and the intermediate results are shuffled to the query submitting peer P .
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In the processing step, the normal peer P first collects all the required data from the

other participating normal peers. To reduce I/O, the peer P creates a set of MemTables to

hold the data retrieved from other peers and bulk inserts these data into the local MySQL

when the MemTable is full. After receiving all the necessary data, the peer P finally

evaluates the submitted query.

The system also adopts two additional optimizations to speed up the query process-

ing. First, each normal peer caches sufficient table index, column index, and range index

entries in memory to speed up the search for data owner peers, instead of traversing the

BATON structure. Second, for equi-join queries, the system employs bloom join algo-

rithm to reduce the volume of data transmitted through the network.

During the query processing, BestPeer++ charges the user for data retrieval, network

bandwidth usages and query processing. Suppose N bytes of data are processed and the

query consumes t seconds, the cost is represented as:

Cbasic = (α + β)N + γt (5.1)

where α and β denote the cost ratio of local disk and network usages respectively and γ

is the cost ratio for using a processing node for a second. Suppose one processing node

can handle θ bytes data per second, the above equation becomes

Cbasic = (α+ β)N + γ
N

θ
(5.2)

One problem of the basic approach is the inefficiency of query processing. The per-

formance is bounded by N
θ

, as only one node is used. We can easily address this problem

by employing more nodes to process the query in parallel.

5.3.3 Adaptive Processing Approach

The lesson learnt from BestPeer++ in Section 5.1.1 has led us to the proposal of the

adaptive engine. In this section and its subsequent sections, we present the design and

models for implementing the adaptive mechanism.

Implementing MapReduce for BestPeer++

Besides its generic P2P processing strategy, a MapReduce engine is implemented

for BestPeer++. To facilitate MapReduce processing, a Hadoop Distributed File System

(HDFS) is mounted at system start time to serve as the intermediate storage for MapRe-

duce jobs. In general, in our MapReduce engine, the mappers read data directly from

the BestPeer++ instances and the output of reducers are written back to HDFS, which
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is similar to HadoopDB [7]. Specifically, a submitted SQL query is packed and sent to

participant nodes using BestPeer++’s messaging substrate by the query dispatcher. Each

local MySQL is connected via its JDBC interface using the query parameters given in

the package and returns the intermediate results. We extend Hadoop’s InputFormat class

to handle data transmission between BestPeer++ nodes and HDFS. The InputFormat li-

brary provides all necessary parameters such as: database name, query fetch size and

other query tuning parameters. It capsulizes each MySQL output tuple in a MapReduce

Readable format and implements RecordReader interface for MapReduce job to fetch the

intermediate tuple from HDFS. The intermediate results are then fed to the MapReduce

job doing join and aggregation. We illustrate the integrated engine of MapReduce and

P2P in Figure 5.4.

Distributed File System

Local
Query Results

MapReduce
Runtime

P2P
Structured Overlay

P2P
Query
Results

Figure 5.4: MapReduce Integration. A MapReduce layer is mounted in parallel with the P2P overlay. Query
can be executed using either P2P engine or MapReduce.

The integrated design allows a query be executed either by the P2P engine or by

MapReduce, under full control of the runtime optimizer.

Modeling the Cost for Execution Plans

Since MapReduce and the P2P engine are both adopted in BestPeer++ for query pro-

cessing, it is crucial to understand the performance metrics of these methods in order for

the runtime to optimize its execution strategy. In this section, we present our models to
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evaluate the two execution plans. We first define a processing graph in which the execu-

tion flow is expressed in a graph layered by JOIN and GROUPBY operators.

Definition 5.3. Processing Graph

Given a query Q, the processing Graph G = (V,E) is generated as follows:

1. For each node vi ∈ V , we assign a level ID to vi, denoted as f(vi).

2. Root node v0 represents the peer that accepts the query, which is responsible for

collecting the results for the user. f(v0) = 0.

3. Suppose Q involves x JOINs and y GROUPBY attributes, the maximal level of the

graph L satisfies L ≤ x + f(y) (f(y) = 1, if y ≥ 1. Otherwise f(y) = 0). In this

way, we generate a level of nodes for each JOIN operator and GROUPBY operator.

4. Except for the root node, all other nodes only process one JOIN operator or GROUPBY

operator.

5. Nodes of level L accept input data from the BestPeer++’s storage system (e.g. local

databases). After completing its processing, node vi sends its data to the nodes in

level f(vi)− 1.

6. All of operators that are not evaluated in the non-root node are processed by the

root.

And the parameters used in the model are summarized in Table 5.3

Notations

S(T ) Size of table T
τ(T ) Number of partitions of table T
Wi Workload of shuffling between level i and i+ 1
ϕ Overhead of MapReduce job
α Cost ratio of network

βBP CPU cost ratio of P2P engine
βMR CPU cost ratio of MapReduce engine
g(i) Selectivity of opi
σ(i) Size of intermediate data after level i
CBP Total cost of P2P method
CMR Total cost of MapReduce method

Table 5.3: Notations for Cost Modeling
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The Parallel P2P Processing Approach

The idea of parallel processing is shown in Figure 5.5. For each join, instead of

forwarding all tuples into a single processing node, we disseminate them into a set of

nodes, which will process the join in parallel. We adopt the conventional replicated join

approach. Namely, the small table will be replicated to all processing nodes and joined

with a partition of the large table. For example, in Figure 5.5, table S is replicated to two

nodes and joined with the partitions of R (R1 and R2). When a query involves multiple

joins and group by, the query plan can be expressed as a processing graph:

Figure 5.5: Parallel P2P Processing

In the replicated join, we trade off the network cost (a table is replicated to multiple

nodes) for the parallelism. The benefit may be neutralized when a large number of tuples

are re-partitioned in the P2P network. Therefore, we propose a model to estimate the cost.

The intermediate result from level i + 1 needs to be broadcasted to all of the τ(Ti)

partitions of table Ti involving in level i’s join. In this cost model, we assume that the I/O

(local and network communication) and the CPU time dominate the overall cost. First,

we define the workload of ith replicated join as the product of last step’s workload and

the number of partition of Table Ti:

W (i) = τ(Ti)× σ(i+ 1) (5.3)

Meanwhile, σ(i) obeys the recurrence relation:

σ(i) = σ(i+ 1)× S(Ti)× g(i) (5.4)
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Therefore, the size of intermediate result involving in level i’s join can be expressed as:

σ(i) =
i∏

j=L

S(Tj)g(j) (5.5)

Combining Equation (5.3) and Equation (5.5), we obtain the workload of level i:

W (i) = τ(Ti)×
i∏

j=L

S(Tj)g(j) (5.6)

The cost of level i is consisted of both network and CPU cost on its workload:

C(i) = W (i)× (α + βBP ) (5.7)

Since there are L levels in a processing graph, the total cost is inferred as:

CBP = (α+ βBP )×
1∑

i=L

W (i)

= (α+ βBP )×
1∑

i=L

[τ(Ti)×
i∏

j=L

S(Tj)g(j)] (5.8)

The MapReduce Approach

The major difference between MapReduce method and generic P2P method comes

from the way they process join.

Figure 5.6: MapReduce Processing

As shown in Figure 5.6, in MapReduce method, instead of doing replicate joins, the

symmetric-hash join approach is adopted. Each mapper reads in its local data and shuffles

the intermediate tuple according to the hash value of the join key. Therefore, each tuple
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only needs to be shuffled once on each level. Note that the configuration and launch of a

MapReduce job also incurs certain overhead, which, can be measured in the runtime, is a

constant value. The workload of ith level can be inferred as:

W (i) = σ(i+ 1) + S(Ti) + ϕ (5.9)

Similar to P2P method, the size of intermediate data in level i can be derived from a

recursion formula:

σ(i) =

i∏
j=L

S(Tj)g(j) (5.10)

Therefore, the total cost for the MapReduce method is:

CMR = (α + βMR)×
1∑

i=L

W (i)

= (α + βMR)×[
1∑

i=L

i∏
j=L

S(Tj)g(j) +

1∑
i=L

S(Ti) + ϕ(L− 1)

]
(5.11)

5.3.4 Adaptive Query Processing in BestPeer++

For small jobs, the P2P engine performs better than the MapReduce engine, as it

does not incur initialization cost and database join algorithms have been well optimized.

However, for large-scale data analytic jobs, the MapReduce engine is more scalable, as it

does not incur recursive data replications.

Based on the above-mentioned cost models, we propose our adaptive query processing

approach. When a query is submitted, the query planner retrieves related histogram and

index information from the bootstrap node, analyzes the query and constructs a processing

graph for the query. Then the costs of both the P2P engine and MapReduce engine are

predicted based on the histograms and runtime parameters of the cost models. The query

planner compares the costs between two methods and executes the one with lower cost.

The detailed algorithm description is shown in Algorithm 9.

Comparing between two cost models, we can observe that table size and query com-

plexity are the key factors that affect the query planner’s decision. With more levels of

join, and larger size of tables, the query planner tends to choose the MapReduce method,

while on the contrary, simple queries involving smaller data size and fewer joins are taken

care of by the P2P method.
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Algorithm 9: Adaptive Query Processing
Input: Query Q
Output: Query configuration on a specific query engine
TableSet S ←− TableParser(Q) ;
Cost Cmin ←−MAX VALUE ;
QueryPlan Target←− null ;
QueryPlanSet QS ←− ∅ ;
foreach Table T ∈ S do

// Generate Processing Graphs rooted on T
GraphSet GS = GraphGen(T );
// Iterate through all Processing Graph rooted on T
foreach GraphG ∈ GS do

QueryPlan P1 = P2PP lanGen(G);
QueryPlan P2 = MapredP lanGen(G);
QS = QS ∩ {P1};
QS = QS ∩ {P2};

foreach QueryPlan P ∈ QS do
if CostEst(P ) < Cmin then

Cmin = CostEst(P );
Target = P ;

return Target;

In order to make smart and accurate decision about which method to use, the query

planner requires query statistics (such as S(T ), g(i), α, βBP , βMR, ϕ). These parameters

are determined using a statistics module built in between the storage engine and the boot-

strap node, which communicates with both to collect necessary statistics. Additionally,

the statistics module is extended with a feedback-loop mechanism capable of adjusting

the query parameter based on recently measured values.
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5.4 Performance Evaluation

This section evaluates the performance and throughput of BestPeer++ on Amazon

cloud platform. For the performance benchmark, we compare the query latency of Best-

Peer++ with HadoopDB using five queries selected from typical corporate network ap-

plications workloads. For the throughput benchmark, we create a simple supply-chain

network consisting of suppliers and retailers and study the query throughput of the sys-

tem.

5.4.1 Performance Benchmarking

This benchmark compares the performance of BestPeer++ with HadoopDB. We choose

HadoopDB as our benchmark target since it is an alternative promising solution for our

problem and adopts an architecture similar to ours. Comparing the two systems (i.e.,

HadoopDB and BestPeer++) reveals the performance gap between a general data ware-

housing system and a data sharing system specially designed for corporate network appli-

cations.

Benchmark Environment

We run our experiments on Amazon m1.small DB instances. Each DB small in-

stance has 1.7GB memory, 1 EC2 Compute Unit (1 CPU virtual core). We attach each

instance with 50GB storage space. We observe that the I/O performance of Amazon cloud

is not stable. The hdparm reports that the buffered read performance of each instance

ranges from 30MB/sec to 120MB/sec. To produce a consistent benchmark result, we run

our experiments at the weekend when most of the instances are idle. Overall, the buffered

read performance of each small instance is about 90MB/sec during our benchmark. The

end-to-end network bandwidth between DB small instances, measured by iperf, is ap-

proximately 100MB/sec. We execute each benchmark query three times and report the

average execution time. The benchmark is performed on cluster sizes of 10, 20, 50 nodes.

For the BestPeer++ system, these nodes are normal peers. We launch an additional dedi-

cated node as the bootstrap peer. For HadoopDB system, each launched cluster node acts

as a worker node which hosts a Hadoop task tracker node and a PostgreSQL database

server instance. We also use a dedicated node as the Hadoop job tracker node and HDFS

name node.

115



CHAPTER 5. ADAPTIVE MASSIVE PARALLEL PROCESSING

BestPeer++ Settings

The configuration of a BestPeer++ normal peer consists of two parts: the underlying

MySQL database server and the BestPeer++ software. For MySQL database, we use

the default MyISAM storage engine which is optimized for read-only queries since no

transactional processing overhead is introduced. We set up a large index memory buffer

(500MB) and the maximum number of tables to be concurrently opened (50 tables). For

BestPeer++ software stack, we set the maximum memory consumed by the MemTable to

be 100MB. We also configure each normal peer to use 20 concurrent threads for fetching

data from remote peers. Finally, we configure each normal peer to use the basic query

processing strategy.

HadoopDB Settings

We carefully follow the instructions presented in the original HadoopDB paper to

configure HadoopDB. The setting consists of the setup of a Hadoop cluster and the Post-

greSQL database server hosted at each worker node. We use Hadoop version 0.19.2 run-

ning on Java 1.6.0 20. The block size of HDFS is set to be 256MB. The replication factor

is set to 3. For each task tracker node, we run one map task and one reduce task. The max-

imum Java heap size consumed by the map task or the reduce task is 1024MB. The buffer

size of read/write operations is set to 128KB. We also set the sort buffer of the map task

to 512MB with 200 concurrent streams for merging. For reduce task, we set the number

of threads used for parallel file copying in the shuffle phase to be 50. We also enable the

buffer reuse between the shuffling phase and the merging phase. As a final optimization,

we enable JVM reuse.

For the PostgreSQL instance, we run PostgreSQL version 8.2.5 on each worker node.

The shared buffers used by PostgreSQL is set to 512MB. The working memory size is

1GB. We only present the results for SMS-coded HadoopDB, i.e., the query plan is gen-

erated by HadoopDB’s SMS planner.

Datasets

Our benchmark consists of five queries, denoted as Q1, Q2, Q3, Q4, and Q5 which

are executed on the TPC-H datasets. We implement the benchmark queries by ourselves

since the TPC-H queries are complex and time-consuming queries which are not suitable

for benchmarking corporate network applications.

The TPC-H benchmark dataset consists of eight tables. We use the original TPC-H

schema as the shared global schema. HadoopDB does not support schema mapping and

access control. To benchmark the two systems in the same environment, we perform
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LineItem l shipdate, l commitdate, l receiptdate

Orders o custkey, o orderpriority, o orderdate

Customer c mktsegment

PartSupp ps supplycost

Part p brand, p type, p size, p mfgr

Table 5.4: Secondary Indexes for TPC-H Tables

additional configurations on BestPeer++ as follows. First, we set the local schema of each

normal peer to be identical to the global schema. Therefore, the schema mapping is trivial

and can be bypassed. We, thus, let the data loader directly load the raw data into the global

table without any transformations. Second, we create a unique role R at bootstrap peer.

The unique role is granted full access to all eight tables. A benchmark user is created at

one normal peer for query submitting. All normal peers are configured to assign the role

R to the benchmark user. In summary, in the performance benchmark, each normal peer

contributes data to all eight tables. As a result, to evaluate a query, the query submitting

peer will retrieve data from every normal peer. Finally, we generate the datasets using

TPC-H dbgen tool and distribute 1GB data per node. Totally, we generate datasets of

10GB, 20GB, and 50GB for cluster sizes of 10, 20, 50 nodes.

Data Loading

The data loading process of BestPeer++ is performed by all normal peers in parallel

and is consisted of two steps. In the first step, each normal peer invokes the data loader to

load raw TPC-H data into the local MySQL databases. In addition to copying raw data,

we also build indices to speedup query processing. First, a primary index is built for each

TPC-H table on the primary key. Second, some additional secondary indices are built on

selected columns of TPC-H tables. Table 5.4 summarizes the secondary indices that we

built. After the data is loaded into the local MySQL database, each normal peer invokes

the data indexer to publish index entries to the BestPeer++ network. For each table, the

data indexer publishes a table index entry and a column index entry for each column.

Since the values in TPC-H datasets follow uniform distribution, each normal peer holds

approximately the same data range for each column of the table, therefore, we do not

configure normal peer to publish range index.

For HadoopDB, data loading process is straightforward. For each worker node, we

load only raw data into the local PostgreSQL database instance using SQL COPY com-

mand and build corresponding primary and secondary indices for each table. We did not

employ the Global Hasher and Local Hasher to further co-partition tables. HadoopDB

co-partitions tables among worker nodes on join key in order to speed up join processing
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3. However, in a corporate network, data is fully controlled by each business. It is unde-

sirable for a certain business to move data to normal peers managed by other businesses

due to privacy and safety concern. Therefore, we disabled this co-partition function for

HadoopDB.

The Q1 Query Results

The first benchmark query Q1 evaluates a simple selection predicate on the l shipdate

and l commitdate attributes from the LineItem table. The predicates yields approx-

imately 3,000 tuples per normal peer.

SELECT l orderkey, l receiptdate

FROM LineItem

WHERE l shipdate > Date(1998-11-05) AND

l commitedate > Date(1998-09-29)

The BestPeer++ system evaluates the query by fetching and processing strategy de-

scribed in Section 5.3. The query executor first searches for those peers that hold the

LineItem table. In our settings, the search will return all normal peers since each nor-

mal peer hosts all eight TPC-H tables. Then, the query executor generates a subquery for

each normal peer by pushing the selection and projection clause into that peer. The final

results are produced by merging partial results returned from data owner peers.

HadoopDB’s SMS planner generates a single MapReduce job to evaluate the query.

The MapReduce job only consists of a map function which takes the SQL query, generated

by SMS planner, as input, executes the query on local PostgreSQL instance and writes the

results into a HDFS file. Similar to BestPeer++, HadoopDB’s SMS planner also pushes

projection and selection clause to remote worker nodes.

The performance of each system is presented in Figure 5.7. Both systems (HadoopDB

and BestPeer++) perform this query within a short time. This is because both systems

benefit from the secondary indices built on l shipdate and l commitdate columns.

However, the performance of BestPeer++ is significantly better than HadoopDB. The per-

formance gap between HadoopDB and BestPeer++ is attributed to the startup costs of

MapReduce job introduced by the Hadoop layer, including the cost of scheduling map

tasks on available task tracker nodes and the cost of launching a fresh new Java process

on each task tracker node to perform the map task. We note that independent of the cluster

size, Hadoop requires approximately 10∼15 seconds to launch all map tasks. This startup

3If two tables are co-partitioned on the join column, the join over the two tables can be performed locally
without shuffling.
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Figure 5.7: Results for Q1.

cost, therefore, dominates the query processing. BestPeer++, on the other hand, has no

such startup cost since it does not require a job tracker node to schedule tasks among

normal peers. Moreover, to execute a subquery, the remote normal peer does not launch a

separate Java process. Instead, the remote normal peer just forwards that subquery to the

local MySQL instance for execution.

The Q2 Query Results

The second benchmark query Q2 involves computing the total prices over the qualified

tuples stored in LineItem table. This simple aggregation query represents another kind

of typical workload in a corporate network.

SELECT l returnflag, l linestatus

SUM(l extendedprice)

FROM LineItem

WHERE l shipdate > Date(1998-09-01) AND

l discount < 0.06 AND

l discount > 0.01

GROUP BY

l returnflag, l linestatus

The query executor of BestPeer++ first searches for peers that host the LineItem

table. Then, it sends the entire SQL query to each data owner peer for execution. The

partial aggregation results are then sent back to the query submitting peer where the final

aggregation is performed.

The query plan generated by the SMS planner of HadoopDB is identical to the query

plan employed by BestPeer++’s query executor described above. The SMS compiles this

query into one MapReduce and pushes the SQL query to the map tasks. Each map task,
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then, performs the query over its local PostgreSQL instance and shuffles the results to the

reducer side for final aggregation.
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Figure 5.8: Results for Q2.

The performance of each benchmarked system is presented in Figure 5.8. BestPeer++

still outperforms HadoopDB by a factor of ten. The performance gap between HadoopDB

and BestPeer++ comes from two factors. First, the startup costs introduced by Hadoop

layer still dominates the execution time of HadoopDB. Second, Hadoop (and generally

MapReduce) employs a pull based method to transfer intermediate data between map

tasks and reduce tasks. The reduce task must periodically queries the job tracker for

the map completion events and start to pull data after it has retrieved these completion

events. We observe that, in Hadoop, there is a noticeable delay between the time point

of map completion and the time point of those completion events being retrieved by the

reduce task. Such delay slows down the query processing. The BestPeer++ system, on

the other hand, has no such delay. When a remote normal peer completes its subquery,

it directly sends the results back to the query submitting peer for final processing. That

is, BestPeer++ adopts a push based method to transfer intermediate data between remote

normal peers and the query submitting peer. We observe that, for short queries, the push

approach is better than pull approach since the push approach significantly reduces the

latency between the data consumer (query submitting peer) and the data producer (remote

normal peer).

The Q3 Query Results

The third benchmark query Q3 involves retrieving qualified tuples from joining two

tables, i.e., LineItem and Orders.

SELECT l orderkey, l shipdate

FROM LineItem, Orders

WHERE l orderkey = o orderkey

AND l receiptdate < Date(1994-02-07)
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AND l receiptdate > Date(1994-01-01)

AND o orderdate < Date(1994-01-31)

AND o orderdate > Date(1994-01-01)

To evaluate this query, BestPeer++ first identifies the peers that host LineItem and

Orders tables. Then, the normal peer retrieves qualified tuples from those peers and

performs the join.

The query plan produced by SMS planner of HadoopDB is similar to the one adopted

by BestPeer++. The map tasks retrieve qualified tuples of LineItem and Orders tables

and sort those intermediate results based on l orderkey (for LineItem tuples) and

o orderkey (for Orders tuples). The sorted tuples are joined at reducer side using a

merge-join algorithm. By default, the SMS planner only launches one reducer to process

this query. We found that the default setting yields poor performance. Therefore, we

manually set the number of the reducers to be equal to the number of worker nodes and

only report results with this manual setting.
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Figure 5.9: Results for Q3.

Figure 5.9 presents the performance of both systems. We can observe from this figure

that, the performance gap between BestPeer++ and HadoopDB becomes smaller. This is

because this query requires to process more tuples than previous queries. Therefore, the

Hadoop startup costs is amortized by the increased workload. We also see that as the num-

ber of nodes grows, the scalability of HadoopDB is slightly better than BestPeer++. This

is because BestPeer++ performs the final join processing at the query submitting peer.

Therefore, the data which are required to process at the query submitting peer grows lin-

early with the number of normal peers, resulting in performance degradation. HadoopDB,

however, can distribute the final join processing to all worker nodes and thus insensitive

to data volume needed to be processed. We should note that, in real deployment, we can

boost the performance of BestPeer++ by scaling-up the normal peer instance.
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The Q4 Query Results

The fourth benchmark query Q4 is as follows.

SELECT p brand, p size, SUM(ps avialqty),

SUM(ps supplycost)

FROM PartSupp, Part

WHERE p partkey = ps partkey

AND p size < 10

AND ps supplycost < 50

AND p mfgr = ’Manufacturer#3’

GROUP BY p brand, p size

The BestPeer++ system evaluates this query by first fetching qualified tuples from

remote peers to query submitting peer and storing those tuples in MemTables. The Best-

Peer++, then, joins tuples stored in the MemTables and produces the final aggregation

results.

The SMS planner of HadoopDB compiles the query into two MapReduce jobs. The

first job joins PartSupp and Part tables. The SMS planner pushes selection conditions

to the map tasks in order to efficiently retrieve qualified tuples by using indices. The join

results are then written to HDFS. The second MapReduce job is launched to process the

joined tuples and produce the final aggregation results.
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Figure 5.10: Results for Q4.

Figure 5.10 presents the performance of both system. We can see that BestPeer++ still

outperforms HadoopDB. But the performance gap between the two systems are much

smaller. Also, HadoopDB achieves better scalability than BestPeer++. This is because

HadoopDB can benefit from parallelism by distributing the join and aggregation process-

ing among worker nodes. However, to achieve that, we must manually set the number of

reducers to be equal to the number of worker nodes. BestPeer++, on the other hand, only

performs the join and the final aggregation at the query submitting peer. As more nodes
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are involved, more data need to be processed at the query submitting peer, resulting in that

peer to be over-loaded. Again, the performance problem of BestPeer++ can be mitigated

by upgrading the normal peer to a larger instance.

The Q5 Query Results

The final benchmark query Q5 involves a muti-tables join and is defined as follows.

SELECT c custkey, c name,

SUM(l extendedprice*(1-l discount)) AS R

FROM Customer, Orders, LineItem, Nation

WHERE c custkey = o custkey

AND l orderkey = o orderkey

AND c nationkey = n nationkey

AND l returnflag = ’R’

AND o orderdate >= date(1993-10-01)

AND o orderdate < date(1993-12-01)

GROUP BY c custkey, c name

Figure 5.11 presents the results of this benchmark. Overall, HadoopDB performs

better than BestPeer++ in evaluating this query. This distinction comes from the query

execution strategies the two systems use.
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Figure 5.11: Results for Q5.

The original P2P strategy executes this query by first fetching all qualified tuples to the

query submitting peer and then do the final join and aggregation processing. HadoopDB

compiles this query into four MapReduce jobs with the first three jobs performing the

joins and the final job performing the final aggregation.

In BestPeer++, the query submitting peer joins all qualified tuples, thus at a large scale

(20 and 50 nodes), the query submitting peer becomes the bottleneck, impacting system’s

performance. HadoopDB, on the contrary, utilizes all nodes to perform joins in parallel

and hence has a better scalability, which can be seen in Figure 5.11.
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We identified this problem and proposed our adaptive query processing strategy, which

will be evaluated in the next experiment.

Adaptive Query Processing Results

To demonstrate our adaptive query processing strategy, we further evaluate Q5 using

three different engines separately alone, namely the P2P engine, the MapReduce engine

and the adaptive query engine for BestPeer++. To start with, we compile and execute Q5

on either the P2P engine or the MapReduce engine. In each case, we enforce our query

planner to invoke either the P2P engine or the MapReduce engine alone, regardless of

the possible cost. As described in the previous experiment, the execution strategies of

these two engines differ from each other in the way that they shuffles intermediate data

and organize the joins, which leads to a considerable performance gap. We then use our

adaptive processing engine to make comparison.
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Figure 5.12: Adaptive Query Processing.

Figure 5.12 presents the performance of these three processing strategy. The P2P

engine works better in a smaller scale (10 data nodes). With the increase of data scale, we

witness a decent performance gain from the MapReduce engine, who then outperforms

the P2P engine at the scale of 20 and 50 data nodes. Such a trend complies the prediction

of our cost model in the sense that the P2P engine handles lighter workload nicely, while

on the contrary, the MapReduce scales better with more complex queries.

Taking use of the insight that our cost model gives, the adaptive engine switches be-

tween the P2P engine and the MapReduce engine to accommodate itself to a vaster variety

of queries in a cost efficient way. The results from figure 5.12 shows the effectiveness end

efficiency of the adaptive engine. With a negligible overhead for constructing plans for

both engine and evaluating the cost, the performance of the adaptive engine approaches

whatever the better one under different workload setups.
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5.4.2 Throughput Benchmarking

This Section studies the query throughput of BestPeer++. HadoopDB is not designed

for high query throughput, therefore, we intentionally omit the results of HadoopDB and

only present the results of BestPeer++. We conduct two tiers of benchmark evaluation for

the performance and scalability of BestPeer++, respectively.

Benchmark Settings

We establish a simple supply-chain network to benchmark the query throughput of

the BestPeer++ system. The supply-chain network consists of a group of suppliers and

a group of retailers which query data from each other. Each normal peer either acts as a

supplier or a retailer. We set the number of suppliers to be equal to the number of retailers.

Thus, in the cluster with 10, 20, and 50 normal peers, there are 5, 10, and 25 suppliers and

retailers respectively.

We still use the TPC-H schema as the global shared schema, but partition the schema

into two sub-schema, one for suppliers and the other for retailers. The supplier schema

consists of the following tables: Supplier, PartSupp, and Part. The retailer schema

involvesLineItem, Orders, and Customer tables. The Nation and Region tables

are commonly owned by both supplier peers and retailers peers. We partition the TPC-H

datasets into 25 datasets, one dataset for each nation, and configure each normal peer to

only host data from a unique nation. The data partition is performed by first partitioning

Customer and Supplier tables according to their nation keys. Then, joining each

Supplier and Customer dataset with the other four tables (i.e., Part, PartSupp,

Orders, LineItem respectively, the joined tuples in those tables finally form the cor-

responding partitioned datasets. To reflect the fact that each table is partitioned based on

nations, we modify the original TPC-H schema and add a nation key column in each table.

For scalability evaluation, we scale-up the amount of data and the number of normal

peer proportionally. Eventually, we generate a 50GB raw TPC-H dataset on 50 normal

peers, which consists of 25 suppliers and 25 retailers, and measure the absolute system

throughput for the two types of peers respectively. In the performance evaluation, we

retain the data size and peer scale (50 normal peers and 50GB data in our setup), and

increase the throughput, until the point at which the system is saturated and throughput

stops increasing. We report the average latency versus throughput curve, as in the YCSB

[29] tool’s terminology.

We configure the access control module as follows. We set up two roles: supplier

and retailer. The supplier role is granted full access to tables hosted by retailer peers.

The retailer role is granted full access to tables hosted by supplier peers. We should not
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be confused with the supplier role and the supplier peer. The supplier peer is a Best-

Peer++ normal peer which hosts tables belonged to a supplier (i.e., Supplier, Part,

PartSupp tables). The supplier role is an entity in the access control policy which will

be used by a local administrator of a retailer peer to grant users of supplier peers to access

tables (i.e., LineItem, Orders, Customer) hosted at the local MySQL instance. We

also create a throughput test user at each normal peer (either supplier peer or retailer peer)

for query submission. Each retailer peer is tasked to assign the supplier role to users from

supplier peers. We also let each supplier peer assign the retailer role to users of retailer

peers. In this setting, users in retailer peers can access data stored in supplier peers but

cannot access data stored in other retailers.

Data Loading

The data loading process is similar to the loading process described in Section 5.4.1.

The only difference is that in addition to publishing the table indices and column indices,

we also build a range index on the nation key column of each table in order to avoid

accessing suppliers or retailers which do not host data of interest.

Results for Throughput Benchmark

The throughput benchmark queries of suppliers and retailers are as follows:

SELECT s name, s address

FROM Supplier, PartSupp, Part

WHERE p type like ’MEDIUM POLISHED%’ AND

p size < 10 AND p availqty < 300 AND

s suppkey = ps suppkey AND

p partkey = ps partkey

SELECT l orderkey, o orderdate,

o shippriority, SUM(l extendedprice)

FROM Customer, Orders, LineItem

WHERE c mktsegment = ’BUILDING’ AND

o orderdate < Date(1995-03-15) AND

l shipdate > Date(1995-03-15) AND

c custkey = o custkey AND

l orderkey = o orderkey

GROUP BY l orderkey, o orderdate,

o shippriotiy
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Figure 5.13: Scalability Evaluation.

The above queries omit the selection clauses on nation key column to save space. In

the actual benchmark, we append a nation key clause (e.g., s nationkey = 0) for

each table to restrict the data access on a single supplier or retailer. The benchmark is

performed in two rounds: supplier round and retailer round. In the supplier round, the

throughput test user at each supplier peer sends retailer benchmark queries to retailer

peers. In the retailer round, the throughput test user at each retailer peer sends supplier

benchmark queries to supplier peers. In each round, the nation key is randomly chosen

among available nations. Each benchmark query only queries data stored in one retailer or

supplier’s database. Each round begins with a 20 minutes warming up. The throughput,

namely the number of queries being processed, are collected from the next 20 minutes

benchmark.

Figure 5.13 presents the results of scalability evaluation. We can see that BestPeer++

achieves near linear scalability in both heavy-weight workload (i.e., retailer queries) and

light-weight workload(i.e., supplier queries). The main reason for this is that BestPeer++

adopts a single peer optimization. In our benchmark, all queries will only touch just one

normal peer. In the peer searching phase, if the query executor finds that a single normal

peer hosts all required data, the query executor employs the single peer optimization and

sends the entire SQL to that normal peer for execution. The results returned by that normal

peer are directly sent back to the user. The final processing phase is entirely skipped.

Figure 5.14a and figure 5.14b plot the system performance by showing the average

query latency versus throughput curves for both business participants. The heavy-weight

retailer workload suffers from higher latency because of its higher computational demand.

In contrast, the supplier workload incurs lower latency at higher throughput. Overall, the

BestPeer++ system achieves relatively high throughput with acceptable response time to

analytical queries. The heavy-weight retailer queries are finished within 10 seconds at

maximum throughput (3400 queries/sec), while the light-weight supplier queries achieve
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Figure 5.14: System Throughput.

better performance with less than 1 second latency when throughput peaks at 19000

queries/sec. This is because BestPeer++ employs BATON overlay [51] to organize normal

peers as a balanced tree, and thus avoiding performance bottleneck at high throughput.
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5.5 Summary and Contributions

In this work, we first studied the query performance of parallel database systems and

MapReduce based on the observations from our previous work [23], and identified the

influencing factors with respect to query’s complexity. We then proposed a cost model

to evaluate the execution efficiency of a given query when using parallel database and

MapReduce. This cost model takes into account data distribution and query parameters,

and gives a quantitative guideline for runtime optimization.

Based on the proposed cost model, we presented BestPeer++, an adaptive query pro-

cessing mechanism in distributed environment. BestPeer++ is a hybrid system incorporat-

ing query processing mechanisms from parallel database and MapReduce. We presented

the implementation of an adaptive query processing mechanism that is able to provide

optimal efficiency for different types of query.

The adaptive query processing scheme is one of the first hybrid proposals to support

both MapReduce processing and traditional parallel RDBMS processing in one system.

It combines the nice features from RDBMSs (e.g., indexing, query optimization) and

MapReduce (e.g., arbitrarily massive parallel processing), and offers a flexible and effi-

cient query execution mechanism by modeling the execution cost at runtime.
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CHAPTER 6

Conclusion and Future Directions

“Reasoning draws a conclusion, but does not make the conclusion certain,

unless the mind discovers it by the path of experience.”

– Roger Bacon.

6.1 Concluding Discussion

Over the past few years, cloud computing has emerged as a multi-billion dollar in-

dustry and as a successful paradigm for web application deployment. Irrespective of the

cloud provider or the cloud abstraction, data is central to applications deployed in the

cloud. The data management layer stores and serves an application’s critical data, and it

forms a mission critical component in the cloud software stack.

The variety of data management systems deployed in a Cloud infrastructure and sup-

porting diverse applications face unique challenges. First, traditional RDBMSs cannot

naturally scale-out and be deployed in the Cloud due to the complex software stack and

stringent ACID requirement; and second, as one of the few tools available for large scale

data processing, MapReduce is noted to have suboptimal performance because it lacks

many of the features that have been proven invaluable for structured data analysis work-

loads. These two major challenges largely limit MPP system’s applicability to a wider va-

riety of data and workload types. Therefore, we believe that the next generation MPP sys-

tems should syncretize the merits of existing approaches. The strong features of MapRe-

duce clearly need to be retained; however, they should be combined with efficient data

access methods and query optimization techniques present in traditional DBMSs.
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The overarching goal of this dissertation was to exploit the opportunity for a better

integration of RDBMS technologies and Cloud Computing systems. In particular, we

focused on making data access more efficient for MapReduce by designing scalable in-

dexing techniques, and making parallel DBMS’s processing more efficient by leveraging

MapReduce adaptively. The support for indexes improves the performance of MapRe-

duce, and allows more data analysis applications to benefit from MapReduce. What is

more, integrating MapReduce with traditional parallel DBMS in the query processor im-

proves the dynamism of MapReduce, making it more adaptive to workloads. The hy-

brid solution closes the performance gap between MPP systems and traditional parallel

DBMSs.

In the area of exploiting index in MapReduce systems, we proposed the design and

implementation of two systems that offer index service in MapReduce. The key insight for

both designs was to incorporate indexes in MapReduce’s execution stack, thus providing

selective access to data other than brute-force scanning, and resulting in better resource

allocation and higher scalability.

First, we proposed BIDS, a bitmap-based indexing scheme for large scale distributed

data store. BIDS is one of the first index service proposed for MapReduce-based systems

to directly work on the underlying index, We presented the design and implementation

of the index service in Chapter 3. Given the consideration of size, we firstly proposed to

use effective bitmap encoding and partial index schemes to achieve high space efficiency.

In addition, we designed a full-fledged mechanism that allows the index be directly pro-

cessed by MapReduce. The construction and query of index can both leverage the par-

allelism of MapReduce. Furthermore, we introduced series of runtime optimizations to

facilitate efficient query processing in MapReduce.

The next objective of this dissertation was to provide an index framework in MapRe-

duce systems. Towards this goal, we proposed in Chapter 4 ScalaGiST , a generalized

index framework to extend the indexibility in MapReduce systems. ScalaGiST provides

extensibility in terms of data and query types, and hence is able to support unconven-

tional queries (e.g., spatial-temporal queries) in MapReduce system. Firstly, we defined

the generalized index interface based on which users are able to customize new types of

index on their data. We then presented the design and implementation of an index pro-

cessing mechanism to integrate ScalaGiST seamlessly with Hadoop platform. What is

more, we proposed a cost-based data access optimizer for improving the performance of

MapReduce execution. Indexibility in MapReduce systems is decisive in boosting query

performance, and ScalaGiST is the first framework that provides support to a wide va-

riety of traditional indexes in distributed environment. In addition, through an extensive

experimental study, we showed that ScalaGiST offers good scalability and wide support
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for various types of indexes. Having the efficiency and flexibility, ScalaGiST can be an

invaluable tool for index applications in MapReduce systems.

In the area of adaptive query processing using MapReduce and parallel DBMS, we

proposed the design and implementation of a hybrid system that adaptively employs

MapReduce and P2P based DBMS based on different workloads. The key insight for this

hybrid solution was to provide flexibility for general purposed MPP system by integrat-

ing MapReduce and parallel DBMS in one query processor in order to adapt to different

workloads. The adaptive query processing scheme proposed in Chapter 5 is one of the first

hybrid proposals to support both MapReduce processing and traditional parallel RDBMS

processing in one system. It combines the nice features from RDBMSs (e.g., indexing,

query optimization) and MapReduce (e.g., arbitrarily massive parallel processing), and

offers a flexible and efficient query execution mechanism by modeling the execution cost

at runtime.

We first studied the query performance of parallel database systems and MapReduce,

and identified the influencing factors with respect to query’s complexity. We then pro-

posed a cost model to evaluate the execution efficiency of a given query when using par-

allel database and MapReduce. This cost model takes into account data distribution and

query parameters, and gives a quantitative guideline for runtime optimization.

Based on the proposed cost model, we presented BestPeer++, an adaptive query pro-

cessing mechanism in distributed environment. BestPeer++ is a hybrid system incorporat-

ing query processing mechanisms from parallel database and MapReduce. We presented

the implementation of an adaptive query processing mechanism that is able to provide

optimal efficiency for different types of query.

For each of these proposals, we implemented the components and thoroughly evalu-

ated them using various benchmark queries and datasets. This dissertation makes funda-

mental contributions in the two thrust areas of indexes in MapReduce and adaptive data

processing. These advances are critical to the design of data processing systems for cloud

computing infrastructure and significantly advances the state-of-the-art in that field.

6.2 Future Directions

The continuing growth of data sizes, advent of novel applications, and evolution of

the infrastructure engender new research challenges. While some of these future research

directions are direct extensions of the techniques presented in this thesis, others are more

radical.

In the area of creating a hybrid MapReduce/parallel database system, one interesting

research question that would stem from such a hybrid integration would be how to further
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push DBMS features to reinforce MapReduce. DBMS typically employs a storage engine

to harness data, while MapReduce directly sits on files stored in DFS whose interface

is rather simple without much of the optimizations (e.g., index, materialized view, com-

pression, columnar storage, etc.). Decoupling the storage optimizations in DBMS and

applying them to raw data in DFS is promising in further boosting MapReduce’s perfor-

mance. Incremental algorithms are called for, where data can initially be read directly off

of the file system (distributed), but each time data is accessed, progress is made towards

the many activities surrounding a DBMS load.

A major challenge in data analytics today stems from the sheer volume of data avail-

able for processing. The data storage and processing techniques that we presented in this

dissertation were aimed at handling such large datasets. This challenge of dealing with

very large datasets has been termed the volume challenge. There are two other related

challenges, namely, those of velocity and variety.

The velocity challenge refers to the short response-time requirements for collecting,

storing, and processing data. The research we conducted in this dissertation are based

on batch systems. For latency sensitive applications, such as identifying potential fraud

and recommending personalized content, batch data processing is insufficient. The data

may need to be processed as it streams into the system in order to extract the maximum

utility from the data. Therefore, one interesting challenge is to dynamically index the data

while providing fast and accurate query result. We envision two sub-problems towards

this challenge: techniques to incrementally update existing indexes, and techniques to

accumulatively build and process index on-the-fly for growing data.

The variety challenge refers to the growing list of data types – relational, time series,

text, graphs, audio, video, images, genetic codes – as well as the growing list of analysis

techniques on such data. New insights could be found while analyzing more than one

of these data types together. The storage and processing techniques that we have seen in

this dissertation are predominantly aimed at handling data that can be represented using

a relational model (rows and columns) and processed by query plan operators like filters,

joins, and aggregation. However, the new and emerging data types cannot be captured

easily in a relational data model, or analyzed easily by software that depends on running

operators like filters, joins, and aggregation. This challenge calls for newly designed

indexing scheme to capture the variety types of data while providing indexing scalability

and extensibility.

Another interesting research question is how to balance the tradeoffs between fault

tolerance and performance. Maximizing fault tolerance typically means carefully check-

pointing intermediate results, but this usually comes at a performance cost (e.g., the rate

which data can be read off disk in the sort benchmark from the original MapReduce paper
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is half of full capacity since the same disks are being used to write out intermediate Map

output). A system that can adjust its levels of fault tolerance on the fly given an observed

failure rate could be one way to handle the tradeoff.
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