
 
 

 
 COMPUTER-AIDED DRUG DESIGN OF 

NEURAMINIDASE INHIBITORS AND MCL-1 

SPECIFIC DRUGS 

 
 
 
 
 
 

 
NITIN SHARMA 

(M.Sc. (Bioinformatics), BIT,Mesra) 

 
 
 
 
 
 
 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF PHARMACY 

NATIONAL UNIVERSITY OF SINGAPORE 

2014  



ii 
 

Declaration 
 

I hereby declare that this thesis is my original work and it has been written 

by me in its entirety. I have duly acknowledged all the sources of information 

which have been used in the thesis. 

 

This thesis has also not been submitted for any degree in any university 

previously. 

 

 

Nitin Sharma 
2 December 2014 

 

 

  



iii 
 

Acknowledgements 

 
I would like to dedicate this thesis to the two most important people of my 

life my mother and my wife, who have supported me in good and bad times. In 

addition I would like to thank my brother and my friends who have been with me 

throughout the journey.  

 

I wish to express my heartfelt appreciation to my supervisor, Assistant 

Professor YAP Chun Wei, who has provided me with excellent guidance and 

gave enough support and freedom to perform scientific research.  

 

I would like to thank to Dr. CHAI Li Lin, Christina for allowing me to be 

a part of MCL-1 project which gave me valuable experience.  

 

Finally, I wish to thank all members of the Pharmaceutical Data 

Exploration Laboratory (especially Sreemanee) for their suggestions and help in 

one way or another.  

  



iv 
 

Table of Contents 
 

Declaration ..................................................................................................... ii 

Acknowledgements ......................................................................................... iii 

Table of Contents ........................................................................................... iv 

Summary ....................................................................................................... ix 

List of Tables ............................................................................................... xiii 

List of Figures ............................................................................................... xiv 

List of Abbreviations ..................................................................................... xvi 

List of Publications ..................................................................................... xviii 

List of oral and poster presentations .............................................................. xix 

Thesis structure ..............................................................................................xx 

Chapter 1 ........................................................................................................ 1 

Introduction .................................................................................................... 1 

 Drug discovery process ................................................................................1 1.1

 Computer Aided Drug Design .......................................................................3 1.2
 Target identification ................................................................................................... 4 1.2.1

 Homology Modeling .......................................................................................... 4 1.2.1.1
 Lead Discovery ........................................................................................................... 5 1.2.2

 Ligand and Structure based drug design .......................................................6 1.3
 Ligand-based drug design ........................................................................................... 6 1.3.1

 Quantitative structure–activity relationship (QSAR) ......................................... 8 1.3.1.1
 Structure-based drug design ..................................................................................... 10 1.3.2

 Docking ........................................................................................................... 10 1.3.2.1
 Molecular dynamics ......................................................................................... 15 1.3.2.2

 Lead optimization ..................................................................................... 18 1.4

 Objective .................................................................................................. 19 1.5

Chapter 2 ...................................................................................................... 22 

Methods ........................................................................................................ 22 

 QSAR ........................................................................................................ 22 2.1
 Data selection and curation ....................................................................................... 25 2.1.1
 Descriptor calculation ............................................................................................... 25 2.1.2
 Descriptor selection .................................................................................................. 26 2.1.3



v 
 

 Pre-processing.................................................................................................. 26 2.1.3.1
 Selection .......................................................................................................... 27 2.1.3.2

2.1.3.2.1 Genetic Algorithm ...................................................................................... 28 
 Model development .................................................................................................. 29 2.1.4

 k nearest neighbor ............................................................................................ 30 2.1.4.1
 Support Vector Machine .................................................................................. 31 2.1.4.2
 Applicability domain (AD) .............................................................................. 31 2.1.4.3

 Validation ................................................................................................................. 33 2.1.5
 Internal validation ............................................................................................ 34 2.1.5.1
 External validation ........................................................................................... 34 2.1.5.2
 Predictive performance .................................................................................... 35 2.1.5.3

 Consensus model ...................................................................................................... 37 2.1.6

 Docking ..................................................................................................... 38 2.2
 Receptor Preparation ................................................................................................ 38 2.2.1
 Identification of active site ....................................................................................... 38 2.2.2
 Ligand preparation .................................................................................................... 39 2.2.3
 Docking .................................................................................................................... 39 2.2.4

 Molecular Dynamics .................................................................................. 39 2.3
 System Preparation ................................................................................................... 40 2.3.1
 Minimization ............................................................................................................ 40 2.3.2
 Heating up the system and equilibration .................................................................. 41 2.3.3
 Production run .......................................................................................................... 41 2.3.4

Chapter 3 ...................................................................................................... 42 

Neuraminidase .............................................................................................. 42 

 Influenza virus ........................................................................................... 42 3.1
 Influenza A ............................................................................................................... 43 3.1.1
 Structure of Influenza A virus .................................................................................. 43 3.1.2
 Virus life cycle ......................................................................................................... 44 3.1.3
 Antigenic variation ................................................................................................... 47 3.1.4

 Antigenic Drift ................................................................................................. 47 3.1.4.1
 Antigenic Shift ......................................................................................................... 48 3.1.5
 Characteristic function of Neuraminidase ................................................................ 48 3.1.6
 Neuraminidase as a drug target ................................................................................ 51 3.1.7
 Structure of neuraminidase ....................................................................................... 51 3.1.8
 Active site of neuraminidase .................................................................................... 52 3.1.9
 Neuraminidase inhibitors ..................................................................................... 54 3.1.10
 Drug resistance ..................................................................................................... 55 3.1.11

Chapter 4 ...................................................................................................... 57 

Neuraminidase Methods ................................................................................ 57 

 QSAR ........................................................................................................ 57 4.1
 Dataset curation ........................................................................................................ 57 4.1.1



vi 
 

 Descriptor calculation ............................................................................................... 59 4.1.2
 Development of QSAR model and screening ........................................................... 60 4.1.3

 Docking ..................................................................................................... 60 4.2
 Structure preparation ................................................................................................ 60 4.2.1
 Active site ................................................................................................................. 62 4.2.2
 Dataset for virtual screening ..................................................................................... 62 4.2.3
 Molecular docking .................................................................................................... 62 4.2.4
 Energy minimization and rescoring .......................................................................... 63 4.2.5

Chapter 5 ...................................................................................................... 66 

Neuraminidase Results and Discussion ......................................................... 66 

 QSAR ........................................................................................................ 66 5.1
 Base Models ............................................................................................................. 69 5.1.1
 Performance of consensus model ............................................................................. 69 5.1.2
 Compounds outside AD ........................................................................................... 70 5.1.3

 Docking ..................................................................................................... 75 5.2
 Energy Minimization and Rescoring ........................................................................ 80 5.2.1

 Standard Deviation of the docking scores........................................................ 80 5.2.1.1
 Correlation between IC50 and average binding free energy (ABFE) .............. 82 5.2.1.2

 Conformations of Glutamic276 in non-mutant strains ............................................. 84 5.2.2
 Conformation of Glutamic276 leading to resistance ................................................ 84 5.2.3

 N294S and H274Y mutations .......................................................................... 84 5.2.3.1
 R292K mutation............................................................................................... 87 5.2.3.2

 Comparison of the poses of potential inhibitors with wild strains ............................ 88 5.2.4
 Comparison of the poses of potential inhibitors with mutant strains ........................ 91 5.2.5

Chapter 6 ...................................................................................................... 97 

MCL-1 .......................................................................................................... 97 

 Apoptosis .................................................................................................. 97 6.1
 Apoptosis and Cancer ............................................................................................... 98 6.1.1
 Apoptotic Pathways .................................................................................................. 98 6.1.2

 BCL-2 Protein Family ............................................................................... 101 6.2
 BCL-2 family protein-protein interactions ............................................................. 102 6.2.1
 BCL-2 family proteins as therapeutic targets ......................................................... 102 6.2.2
 BH3 mimetic as potential drugs ............................................................................. 104 6.2.3
 MCL-1 as a drug target ........................................................................................... 105 6.2.4

 MCL-1 ..................................................................................................... 106 6.3
 MCL-1 function ...................................................................................................... 108 6.3.1
 MCL-1 versus BCL-2 family member’s specificity ............................................... 108 6.3.2
 BH3 and interaction with MCL-1 ........................................................................... 109 6.3.3

 Position 2d ..................................................................................................... 110 6.3.3.1
 Position 3a ..................................................................................................... 111 6.3.3.2



vii 
 

 Positions 3d .................................................................................................... 111 6.3.3.3
 Position 4a ..................................................................................................... 111 6.3.3.4
 Positions 3g .................................................................................................... 112 6.3.3.5

 Targeting MCL-1.................................................................................................... 112 6.3.4
 ABT-737 ........................................................................................................ 113 6.3.4.1

Chapter 7 .................................................................................................... 114 

MCL-1 Methods .......................................................................................... 114 

 Docking ................................................................................................... 114 7.1
 Structure preparation .............................................................................................. 114 7.1.1
 Active site ............................................................................................................... 115 7.1.2
 Dataset for docking ................................................................................................. 115 7.1.3

 Fluorescence polarization assay ..................................................................... 116 7.1.3.1
 Molecular Docking ................................................................................................. 118 7.1.4

 Molecular Dynamics ................................................................................ 118 7.2
 System preparation ................................................................................................. 118 7.2.1
 Minimization, heating up and equilibration of system ........................................... 119 7.2.2
 Production run ........................................................................................................ 120 7.2.3
 Binding free energy ................................................................................................ 121 7.2.4

Chapter 8 .................................................................................................... 123 

MCL-1 Results and Discussion .................................................................... 123 

 MCL-1 versus BCL-XL ............................................................................... 123 8.1

 Docking ................................................................................................... 123 8.2

 Molecular Dynamics ................................................................................ 124 8.3
 Clustering ............................................................................................................... 124 8.3.1
 Binding free energy calculation .............................................................................. 127 8.3.2
 Interactions ............................................................................................................. 127 8.3.3

 ST_1_046 ....................................................................................................... 127 8.3.3.1
 ST_1_109 ....................................................................................................... 128 8.3.3.2
 ST_1_R1N ..................................................................................................... 128 8.3.3.3
 ST_1_208 ....................................................................................................... 131 8.3.3.4
 ST_1_247 ....................................................................................................... 131 8.3.3.5
 ST_1_202 ....................................................................................................... 131 8.3.3.6
 ST_1_159 ....................................................................................................... 132 8.3.3.7
 ST_1_249 ....................................................................................................... 132 8.3.3.8
 ST_1_162 ....................................................................................................... 132 8.3.3.9

 ST_1_227 and ST_1_222 .............................................................................. 134 8.3.3.10
 ST_1_261 ....................................................................................................... 134 8.3.3.11

 Conformation of the residues ................................................................................. 134 8.3.4
 Comparison between different scaffolds ................................................................ 135 8.3.5

 Rhodanine ...................................................................................................... 135 8.3.5.1
 Thiohydantoin ................................................................................................ 136 8.3.5.2



viii 
 

 Hydantoin ...................................................................................................... 137 8.3.5.3
 Thiazolidinedione .......................................................................................... 137 8.3.5.4

Chapter 9 .................................................................................................... 138 

Conclusions ................................................................................................ 138 

 Contributions .......................................................................................... 138 9.1

 Limitations .............................................................................................. 144 9.2

 Future work ............................................................................................ 145 9.3

Bibliography ............................................................................................... 147 

 

  



ix 
 

Summary 

Drug discovery is a lengthy and complicated process. In order to reduce 

the time to market, computational methods such as molecular modeling, 

chemoinformatics and chemometrics have been incorporated successfully in many 

drug discovery projects. The aim of the study is to contribute to the achievement 

of Pharmaceutical Data Exploration Laboratory in the field of drug discovery by 

developing novel drugs against two targets i.e. neuraminidase and MCL-1 and in 

process learn different methodologies used in computer aided drug design such as 

QSAR, docking and molecular dynamics. The two targets were selected due to the 

difference in the nature of the proteins. While neuraminidase has small buried 

hydrophobic pocket, MCL-1 has long narrow binding site on the surface of the 

protein. The difference in the active site has its own challenges and can lead to 

different approaches in computer aided drug design.  

Influenza is a contagious viral disease of respiratory tract. The primary 

drug target for treatment influenza is neuraminidase due to its conserved nature 

and important role in virus life cycle. Neuraminidase can be divided into two 

groups i.e. group I and group II. Oseltamivir and zanamivir are two FDA 

approved drugs for treatment of influenza. Mutations like H274Y, N294S and 

R292K have already resulted in resistance against oseltamivir and zanamivir.  

These mutations are group specific e.g. H274Y and N294S belong to group I 

while R292K is found in group II neuraminidase. Hence, pan neuraminidase 

inhibitor effective against both groups and as well as wild and mutant strains is 

required. 
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To achieve this, consensus QSAR model with applicability domain was 

developed to screen potential neuraminidase inhibitors. The compounds screened 

by model were later used in docking study against group I and group II 

neuraminidase strains along with major mutations i.e. H274Y, N294S and R292K 

to discover novel pan neuraminidase inhibitors.  

The results show that the probable inhibitors had similar orientations as 

zanamivir and oseltamivir in wild type i.e.N1_closed and N9_closed. As a result 

of H274Y, the side chain was found to be pushed back thus negating the inward 

movement of Glu276. The longer side chain was found to be facing away from 

Glu276 and closer to Ile222, Arg224, Ala246 (N1)/Ser246 (N9). R292K mutation 

resulted in the constriction of the hydrophobic cavity thereby resulting in rotation 

of side chain. ZN88 was able to form hydrogen bond between amino group of the 

side chain and Glu276, Glu277, Asp151 in both wild and mutant strains. The 

extra flexibility of the side chain in ZN88, ZN33 and ZN35 was due to bifurcation 

at 1st atom. Thus, it can be concluded that inhibitors having guanidino group, 

flexible side chain with an amino group can be pan neuraminidase inhibitors. Low 

SD observed for of ZN43, ZN88, ZN35 and ZN46 indicates less deviation in in 

binding against mutant strains as well as different groups of neuraminidase.  

 Anti-apoptotic proteins, like BCL-XL, play important roles in apoptosis 

and have been a target of number of anti-cancer efforts. However, MCL-1 

overexpression has been one of the reasons behind the resistance against anti-

cancer drugs targeting BCL-XL. In a recent study rhodanine based compounds 

have shown promise as MCL-1 specific inhibitor. However, compounds with 
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rhodanine scaffold are known as pan assay interference compounds (PAINS). 

Hence, the second objective is to analyze the role of rhodanine scaffold in 

selective inhibition of MCL-1 to guide the development of more potent and 

selective MCL-1 inhibitors. In order to achieve second objective, our collaborator 

Miss Tang Shi Qing graduate student Dr. Christina CHAI synthesized compounds 

belonging to four different classes i.e. rhodanine, thiazolidinedione, thiohydantoin 

and hydantoin by scaffold hoping. 

Molecular dynamics was performed to analyze the interactions of MCL-1 

with compounds of different scaffolds in order to improve potency and selectivity 

of MCL-1 inhibitors. Crystal structure of MCL-1 inhibitors reported in previous 

studies utilizes mostly one or sometimes two pockets in MCL-1 binding grove. 

On the other hand, most active compound ST_1_046, belonging to rhodanine 

scaffold, was found to be aligned with the hydrophobic grove and interacted with 

pockets P1, P2 and P3. This alignment was supported by non-polar rhodanine ring 

flanked with electronegative groups. More polar central ring of other scaffolds led 

to decrease in activity. Thus it was concluded that increase in occupancy of the 

binding grove, which depends on the electrostatics of ligand, increases the 

activity. 

On the basis of the computational results, five compounds with rhodanine 

scaffold were synthesized by our collaborators. Analysis of these compounds 

indicates that further increase in length of the inhibitor does not lead to better 

activity. Thus in future, compounds with bulkier non-polar central group can be 

developed which can help to improve the activity to a greater extent. 
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Both studies have been successful in predicting the probable inhibitors for 

neuraminidase and MCL-1. Predicted probable neuraminidase inhibitors will be 

subjected to molecular dynamics study against different mutant strains. ZN43, 

ZN88, ZN35 and ZN46 will be used to develop pharmacophore model for 

screening potent pan neuraminidase inhibitors. Recent discovered neuraminidase 

10 and 11 will be included for the screening and testing. The effect of the 

compounds on the human sialidase also needs to be tested in the future.  

The knowledge gained from the interaction of the ligands with MCL-1 

will be utilized to develop novel selective inhibitors against MCL-1. In-vitro 

studies will be performed against both MCl-1 and BCL-2 to establish the 

selectivity of the ligands. As poor results were obtained in docking studies 

therefore novel algorithms should be developed to target such binding grooves. 

Despite the fact that molecular dynamics improved the results, there is a need to 

establish a relation between number and duration of trajectories required for a 

molecular dynamics experiment to attain a good correlation between predicted 

binding energy and experimental activity.  
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Thesis structure 

 

Thesis structure can be divided into four main sections i.e. introduction, 

methods, neuraminidase and MCL-1. The first section describes the application 

and importance of CADD in drug discovery process. The components of CADD, 

especially those applied in our work, are described in chapter 1.  The second 

chapter describes the methods used to achieve our objectives i.e. QSAR, docking 

and molecular dynamics. The parameters specific to any particular study is 

described in their respective sections.  

The third and fourth sections are divided into three chapters each i.e. 

introduction, methods, results and discussion. Chapter 3 describes influenza and 

its life cycle. It also elaborates neuraminidase and its role in the influenza life 

cycle, thereby making it an appropriate target for influenza inhibition.  

The methods used in discovery of neuraminidase inhibitors and 

parameters specific to it are described in chapter 4. The development of QSAR 

model and its application to screen ZINC library (J. J. Irwin & Shoichet, 2005; 

John J. Irwin, Sterling, Mysinger, Bolstad, & Coleman, 2012) along with docking 

study is explained in this chapter. 

Chapter 5 consists of the results and discussion for neuraminidase section. 

It describes the prediction performance of QSAR, compounds outside the AD of 

the model and screening of the ZINC library. In addition, the compounds selected 

as result of docking, their poses in wild and mutant strains are discussed.   
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The role of apoptosis and its control by BCL-2 protein family is described 

in chapter 6. This chapter also explains the different role of apoptotic and anti-

apoptotic proteins. In addition, the importance of MCL-1 as a drug target is also 

discussed. 

The application of molecular dynamics to predict the poses and understand 

the dynamics of MCL-1 is described in chapter 7. The use of multiple trajectories 

to increase the accuracy is also shown. This chapter also highlights the limitation 

of docking in predicting the accurate pose. 

The orientation of compounds predicted by 25ns and 45ns trajectory 

resulting in MCL-1 inhibition is discussed in chapter 8. This chapter describes the 

importance of P2 pocket in interaction with ligand. Moreover, the role of 

electrostatics and scaffold of compounds in determining the activity is discussed. 

The last chapter i.e. chapter 9 describes the contributions of the two 

projects involved in this work and also the limitations and future work.
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Chapter 1 

Introduction 
 

Computer aided drug design (CADD) is emerging as an important 

component of drug discovery process as it helps to reduce time to market and cost 

of the drugs. Traditionally CADD includes ligand-based drug design i.e. 

quantitative structure activity relationship (QSAR) and structure based drug 

design i.e. docking. Recently, molecular dynamics emerged as a vital part of the 

drug discovery process. The first section of this chapter (1.1) describes overview 

of drug discovery process and application of CADD. The objective and thesis 

structure are described in 1.5, 1.6 sections respectively. 

 

 Drug discovery process 1.1
 

Drug discovery and development is time-consuming, costly process and 

risky endeavor. It takes about 15 years and $1- $1.5 billion to turn a promising 

lead compound into a potential drug. Despite the increase in investment in drug 

discovery, the output is considerably low, mainly due to high rate of drug failure 

in clinical trials (Allison, 2012). Consequently, in order to reduce the cost and 

time of a drug to reach market, new technologies were ventured.   
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With the advancement in areas of genomic and proteomics and 

development of high-throughput screening (HTS) (Broach & Thorner, 1996; 

Hertzberg & Pope, 2000), the requirement of new lead compounds was felt. 

Combinatorial chemistry which can create large population of structurally 

different compounds became an attractive choice (W. A. Warr, 1997). As 

combinatorial chemistry grew and was adapted in many research studies, the need 

for a faster method to screen compounds arise. To cope with these challenges, 

both experimental and theoretical methods were developed. HTS, for instance, 

involves screening large libraries of chemicals against a biological target while 

virtual screening screens large libraries of chemicals computationally and then 

verifying the predicted compounds  in vitro/in vivo (Shoichet, 2004). The purpose 

of HTS is to speed up the drug discovery process by screening large compound 

libraries. HTS involves target identification, reagent preparation, compound 

management, assay development and high-throughput screening which requires 

great care (Martis E A, 2011) Due to individual biochemical assays with over 

millions of compounds huge cost and time consumed with HTS (Subramaniam, 

Mehrotra, & Gupta, 2008). This has led to more faster and effective 

computational approach i.e. computational virtual screening or virtual screening. 

In comparison to HTS, virtual screening requires structural information either of 

ligands (ligand-based virtual screening) or of the target itself (target-based virtual 

screening) (Ekins, Mestres, & Testa, 2007). Though both virtual screening and 

HTS are complementary process (Bajorath, 2002), virtual screening gives much 

higher hit rate (Yun Tang, Weiliang Zhu, Kaixian Chen, & Hualiang Jiang, 2006).  
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The rapid growth of low-cost computational power in last decades has 

increased the application of computational technology in the drug discovery 

pipeline and is known as CADD. CADD is a broad term including different 

computational tools involved in database, screening potential lead molecules, 

analyzing the cause of effectiveness or ineffectiveness of a particular drug, 

modeling and simulation of the compound or biomolecules (Dalkas, Vlachakis, 

Tsagkrasoulis, Kastania, & Kossida, 2013; Ooms, 2000).  

 Computer Aided Drug Design  1.2
 

The general steps of drug discovery can be defined (Figure1.1) as disease 

related genomic, target identification, target validation, lead discovery, lead 

optimization, preclinical trials and clinical trials (Y. Tang, W. Zhu, K. Chen, & H. 

Jiang, 2006). Application of computational tools is rapidly gaining 

implementation in drug discovery and is generally known as CADD 

(Kapetanovic, 2008). Initially, CADD tools were developed for lead optimization 

but now they find application in almost all phases of drug discovery (Y. Tang et 

al., 2006). CADD mainly involves in 1) identification and optimization of new 

drugs using chemical and biological information of the ligands and structures. 2) 

filtration compounds with undesirable properties and select most promising 

compounds (Kapetanovic, 2008; Ou-Yang et al., 2012; Rahman et al., 2012; C. 

M. Song, Lim, & Tong, 2009).    
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 Target identification 1.2.1
 

The two main reasons for drug failure are lack of activity against proposed 

target or its unsafe nature. Hence, target identification and validation is the first 

and most important stage of any drug discovery process (Hughes, Rees, 

Kalindjian, & Philpott, 2011). Ideal novel drug targets should be a part of a 

crucial biological pathway, different from previously known targets, functionally 

and structurally characterized; and druggable i.e. can bind to small molecules 

(Bakheet & Doig, 2009).  Structure based computational methods have shown 

promise in predicting targets such as in case of protein kinase inhibitors (Rockey 

& Elcock, 2006). Potential drug targets have also been identified using inverse 

docking i.e. docking a compound with a known biological activity against 

different receptors (Y. Z. Chen & Zhi, 2001) and screening target libraries 

(Rognan, 2006).  

 Homology Modeling 1.2.1.1
 

In absence of experimental structures such as in case of most membrane 

proteins, homology modeling is used to predict target structure (Cavasotto & 

Phatak, 2009; Kopp & Schwede, 2004; Elmar Krieger, Nabuurs, & Vriend, 2005). 

Homology modeling takes advantage of the fact that protein structure is more 

conserved than sequence and similar sequence have similar structure. Homology 

modeling is a multistep process (Figure1.2) and can be summarized into 

following steps (Elmar Krieger et al., 2005): 

1. Template recognition and initial alignment 
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2. Alignment correction 

3. Backbone generation 

4. Loop modeling, Side-chain modeling 

5. Model optimization 

6. Model validation 

Homology works best with sequence identity of more than 40% between 

the initial sequence and the homologous templates. The accuracy drops 

considerably as sequence identity drops below 30% (Marti-Renom et al., 2000). 

Besides dedicated software like Modeller (https://salilab.org/modeller/) (Eswar et 

al., 2007) and multi-utility software Yasara (http://www.yasara.org/) (E. Krieger 

et al., 2009) webservers like SWISS-MODEL (http://swissmodel.expasy.org/) 

(Biasini et al., 2014), are frequently used to predict protein structure. Homology 

modeling has been utilized in several studies such as in deduction of bovine μ- 

calpain inhibitor-binding domains (Chai, Lim, Lee, Chai, & Jung, 2014), human 

muscarinic acetylcholine receptors (T. Thomas et al., 2014), G-protein-coupled 

receptors (Yarnitzky, Levit, & Niv, 2010) and Human Kynurenine 

Aminotransferase III (Nematollahi, Church, Nadvi, Gorrell, & Sun, 2014) being 

some of the recent examples. 

 Lead Discovery 1.2.2
 

Once we have a defined target, next step is to find a lead molecule. A lead 

molecule has at least weak affinity and minimum toxic effects and forms the 

starting point of the drug like compound (Verlinde & Hol, 1994). Lead structures 

https://salilab.org/modeller/
http://www.yasara.org/
http://swissmodel.expasy.org/
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should possess following properties: (1) simple chemical features so that they can 

be easily optimized; (2) have an established structure activity relationship; (3) 

novel in order to get patent; and (4) good absorption, distribution, metabolism and 

excretion (ADME) properties (Oprea, Davis, Teague, & Leeson, 2001). Based on 

the presence or absence of the target structure, lead discovery can be divided into 

two major class i.e. ligand-based lead discovery and structure-based lead 

discovery. 

 Ligand and Structure based drug design 1.3
 

Depending on availability of structural information of the target, CADD 

can be divided into two categories (Figure1.3) i.e. ligand-based and structure-

based CADD. Structure-based CADD relies on the knowledge of the target 

protein structure to predict potential inhibitors and their binding poses. On the 

other hand, ligand-based approach utilizes the knowledge of active and inactive 

compounds to construct quantitative structure-activity relation (QSAR) models 

for predicting possible ligands (Kalyaanamoorthy & Chen, 2011). Both structure 

and ligand-based approaches find application in lead discovery as well as lead 

optimization. 

  Ligand-based drug design 1.3.1
 

Ligand-based CADD uses a set of structurally diverse compounds with 

known activity for a particular target and is based on the hypothesis that compou- 
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Figure1.1 Drug Discovery Pipeline 

 
Figure1.2 Workflow of homology modeling 

 
Figure1.3 Computer aided drug design   
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-nds with similar structure have similar properties.  Based on the presence of 

either active and/or inactive compounds, ligand-based lead discovery can be 

divided into two groups (1) selection of compounds based on chemical similarity 

or (2) the construction of a QSAR model to predict probable lead like compounds. 

 Quantitative structure–activity relationship (QSAR)  1.3.1.1
 

QSAR is used often in drug discovery projects to find new lead 

compounds and works by establishing mathematical relation between structure 

and function using chemometric method (Kubinyi, 1997; S. Zhang, 2011).  

In drug discovery, structure implies physicochemical properties of the 

compounds; function refers to biological activity and chemometric method 

includes multiple linear regression (MLR), support vector machine (SVM), 

artificial neural network (ANN) etc. Since the pioneer work of Hansch and Free-

Wilson, a lot of progress has been made in QSAR with the rise of 3D (Verma, 

Khedkar, & Coutinho, 2010) and even 4D QSAR (Andrade, Pasqualoto, Ferreira, 

& Hopfinger, 2010). 

A QSAR model has following objectives: 

1. To identify chemical properties responsible for biological activity. 

2. To optimize the existing leads in order to improve their biological 

activities. 

3. To predict the biological activities of novel compounds. 
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A QSAR workflow consists of creating a combined dataset of active and 

inactive compounds, calculating descriptors of the compounds present in dataset, 

splitting dataset into modeling and validation set, creating QSAR model using 

modeling set and evaluating it by the validation set. The model is used to screen a 

desired chemical library and accuracy of the screening is judged from the 

validation results performed earlier. Success of QSAR model not only depends on 

the dataset but also on the descriptors and methods used for modeling. As 

effective screening depends on the dataset used for training the model, a diverse 

dataset can increase the chemical space of the model (Kubinyi, 1997; S. Zhang, 

2011).  

In addition to the extensive use in predicting the bioactivity, QSAR has 

also been applied to distinguish drug-like from non-drug-like molecules, explain 

possible molecular mechanism of the receptor-ligand interactions (G. F. Yang & 

Huang, 2006). prediction of physicochemical, pharmacokinetic (Xu et al., 2007), 

and ADMET properties (Klopman, Stefan, & Saiakhov, 2002; Winkler, 2002). 

Some of the recent application of QSAR in drug discovery are discovery novel 

GPCR ligands (A. Tropsha & Wang, 2006), inhibitors of acetylcholinesterase in 

Alzheimer's disease (K. Y. Wong, Duchowicz, Mercader, & Castro, 2012), HIV 

inhibitors (Debnath, 2005), neuraminidase inhibitors (N. Sharma & Yap, 2012; 

Zheng et al., 2006) etc. 
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  Structure-based drug design 1.3.2
 

Unlike ligand-based lead discovery, structure based approach requires 

protein structure and exploits the protein-ligand interactions to select compounds 

that bind strongly to the biologically relevant target (Ghosh, Nie, An, & Huang, 

2006). In the scenario with no information on the compounds active against the 

target, de novo design approach can be used to identify possible leads (Arakawa, 

Hasegawa, & Funatsu, 2007). However, de novo design is not restricted to a 

certain condition and can be used whenever a novel lead molecule is required 

such as in the identification of D816V mutant-selective c-KIT inhibitors (H. Park, 

Lee, Lee, & Hong, 2014), Aurora A kinase inhibitors (Rodrigues et al., 2013), 

novel HCV helicase inhibitor (Kandil et al., 2009), and  inhibitors of cyclophilin 

A (Ni et al., 2009), among many others. Structure-based drug design has been 

successfully applied in many drug discovery projects such as design of GPCR 

inhibitors (Congreve, Dias, & Marshall, 2014), catechol-O-methyltransferase 

inhibitors (Ma, Liu, & Wu, 2014), carbonic anhydrase inhibitors (Guzel, 

Innocenti, Vullo, Scozzafava, & Supuran, 2010), angiotensin-I converting enzyme 

inhibitors (Anthony, Masuyer, Sturrock, & Acharya, 2012) etc. 

 Docking 1.3.2.1
 

Docking program aims to predict the orientation and conformation of the 

ligand within the binding site of a receptor. This is achieved by sampling the 

conformational space of ligand and binding site which are later used to find the 

binding interactions between ligand and protein. This gives us a score also known 
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as binding score. The compounds and their respective poses are ranked on the 

basis of binding score. By this way, docking can predict strength of the interaction 

of possible lead like molecule prior to its synthesis and in vitro or in vivo 

evaluation.  

Docking can be divided into of two main steps. In the first step, the 

algorithm tries to predict the possible binding modes for protein-ligand pair. The 

aim of the scoring function selected for this step is to roughly distinguish the true 

binding poses without compromising on speed. The second step involves 

selection of several poses from the first stage and revaluating them. The scoring 

function used in this step is generally more complex and attempts to estimate 

binding energies as accurately as possible. 

Scoring functions are mathematical equations to calculate binding affinity 

of a ligand towards a receptor. Any protein-ligand interaction can be defined by 

the equation 1. 

                                              ΔGbind 

[P]aq + [L]aq           ⇌        [P+L]aq  (1) 

The free energy of binding i.e. ΔG is obtained with the Gibbs-Helmholtz 

equation:  

ΔG = ΔH - TΔS   (2) 
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Where ΔH is the enthalpy, T is the temperature in Kelvin and ΔS the entropy. The 

binding constant i.e. Ki can be related with ΔG by following equation: 

        ΔG = -RT1nKi        (3)  

 Evaluation and ranking of predicted poses is an important aspect of any 

docking process.  An ideal scoring function should be able to identify true binding 

poses. An ideal scoring function will be computationally too expensive making 

them unsuitable for large number of protein-ligand interactions. Therefore every 

docking program makes its own set of approximations and do not fully account 

for a number of physical phenomena for example, entropic effects, leading to 

difference in the results between them (Kitchen, Decornez, Furr, & Bajorath, 

2004; Mohan, Gibbs, Cummings, Jaeger, & DesJarlais, 2005). Moreover 

exhaustiveness of the scoring function can depend on the stage of docking as a 

less exhaustive scoring scheme is used in pose selection process but more 

complex scoring scheme is used while estimating binding energies of the selected 

poses. 

Broadly scoring functions can be classified in three different types i.e. 

force-field based, knowledge based and empirical based scoring functions. The 

parameters of force field scoring functions such as DOCK (Ewing, Makino, 

Skillman, & Kuntz, 2001), GOLD (Jones, Willett, Glen, Leach, & Taylor, 1997) 

are derived from both experimental data and ab initio quantum mechanical 

calculations. However, a major hurdle lies in the treatment of solvent in ligand 

binding (Huang, Grinter, & Zou, 2010) . Empirical scoring functions like FlexX 

(Matthias Rarey, Bernd Kramer, Thomas Lengauer, & Gerhard Klebe, 1996) 
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estimate the binding affinity of a complex on the basis of a set of weighted energy 

term. The coefficients are obtained from experimentally determined binding 

energies and X-ray structural information. Compared to the force field scoring 

functions, the empirical scoring functions are much faster. On the other hand, 

dependence on the molecular data sets often yields different weighting factors for 

the various terms. Hence, terms from differently fitted scoring functions cannot 

easily be recombined into a new scoring function (Kitchen et al., 2004). 

Knowledge based scoring functions rely on the information derived from the 

experimental structures. In comparison to the other two scoring functions, 

knowledge-based scoring functions have a good balance between accuracy and 

speed (S. Y. Huang et al., 2010). However, lack of experimental structures can 

lead to problems (Kitchen et al., 2004). Consensus scoring such as CScore has 

been utilized to overcome the weakness of individual scoring functions. SYBYL’s 

CScore uses DOCK-like D-Score and GOLD-like G-score which are force field 

based scoring functions, ChemScore (Eldridge, Murray, Auton, Paolini, & Mee, 

1997) an empirical based function and Potential of Mean Force (PMF) (Muegge, 

2002) which is knowledge based scoring function. 

Despite many attempts to make prediction as accurate as possible, docking 

methods are still far from being perfect. There are many factors leading to 

inaccuracy of the docking predictions. The lack of a fast and accurate scoring 

function is perhaps the most limiting factor (Sousa, Fernandes, & Ramos, 2006). 

Lack of protein flexibility is another reason for inaccurate predictions by docking. 

During protein-ligand interaction, protein changes its conformation to achieve 
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best possible pose of the ligand in a phenomenon known as induced fit. To 

include the effect of induced fit, flexibility of the protein must be considered. 

However, including the degrees of freedom (DOF) of a receptor will make 

docking an even more challenging task. Hence, most docking programs consider 

ligand as flexible while keeping receptor rigid (Zoete, Grosdidier, & Michielin, 

2009). Implicit protein flexibility is achieved in SYBYL by application of soft 

docking algorithms which work by using a relaxed representation of the 

molecular surface. 

Every year, a number of successful applications of docking are published 

in literature. Docking has played pivotal role in many drug discovery projects 

such as development of dipeptidyl peptidase IV (Tanwar, Tanwar, 

Shaquiquzzaman, Alam, & Akhter, 2014), Sortase A (Uddin & Saeed, 2014), 

Poly (ADP-ribose) polymerase-1 (Hannigan et al., 2013), HIV protease 

(Wlodawer & Vondrasek, 1998), neuraminidase (Shan, Ma, Wang, & Dong, 

2012), monoamine oxidase (Ferino, Vilar, Matos, Uriarte, & Cadoni, 2012) 

inhibitors as well as drug molecules against protein kinases and phosphatases (C. 

F. Wong & Bairy, 2013), potassium ion channels (Dave & Lahiry, 2012),  solute 

carrier transporters (Schlessinger, Khuri, Giacomini, & Sali, 2013) etc. 

There are many docking programs that differ in sampling algorithms, the 

handling of ligand and protein flexibility, and scoring functions (Lyne, 2002). 

Some of them are mentioned in Table1.1. 
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Table1.1 Brief overview of some of the common docking software 

 

Software Algorithm Scoring function Success Stories 

DOCK (Ewing et al., 
2001) 

Shape 
matching 
(sphere images) 

Force field or 
contact score 

(Mohan Sahoo, 
Chandra Dinda, Ravi 
Kumar, Panda, & S 
Brahmkshatriya, 2014) 

AutoDock (Morris et 
al., 1998) 

Lamarckian 
GA Force field 

(Khalid & Paul, 2014; 
Tan, Khairuddean, 
Wong, Khaw, & 
Vikneswaran, 2014) 

FlexX (M. Rarey, B. 
Kramer, T. Lengauer, 
& G. Klebe, 1996) 

Incremental 
construction Empirical score (Saeed, Khan, Rafique, 

Shahid, & Iqbal, 2014) 

GOLD (Jones, 
Willett, & Glen, 
1995) 

GA Empirical score (Grover et al., 2014) 

Glide (Halgren et al., 
2004) 

Descriptor 
matching/Mont
e Carlo (MC) 

Empirical score (H. Sharma et al., 2014) 

Fred (McGann, 
2011) 

Shape 
matching 
(gaussian 
functions) 

Gaussian score or 
empirical scores (Korošec et al., 2014) 

ICM (Abagyan, 
Totrov, & Kuznetsov, 
1994) 

Monte Carlo  Mixed force field 
Empirical score (Hu et al., 2014) 

MOE (MOE) 
Monte Carlo 
simulated 
annealing 

Empirical score 
(Abdellatif, Belal, & 
Omar, 2013; Allen et 
al., 2013) 

SYBYL (SYBYL-X) Incremental 
construction Consensus score 

(Dutta Gupta et al., 
2014; Jayanthi et al., 
2014) 

 

 Molecular dynamics 1.3.2.2
 

Though studies based on crystal structure played a major role in drug 

discovery projects, the static nature of the proteins have led drug designers to look 

for computational techniques, such as molecular dynamics, to study systems more 

dynamically (Durrant & McCammon, 2011). Molecular dynamics simulations, 
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developed in the late 1970s, is based on Newtonian physics and the general 

workflow can be described in the following steps (Durrant & McCammon, 2011; 

H.-J. Huang et al., 2010) 1) the determination of initial positions and velocities of 

every atom; 2) the calculation of forces applied on the investigated atom using 

inter-atomic potentials; 3) move the atoms to the position defined by forces 

calculated in step 2; 4) simulate for a short time period and move to step 2.  

Classical molecular dynamics is based on Newton’s laws of motion (eq 1) 

which are integrated in time dependent manner.  

an =  fn/m   (1) 

from time n to n+1the velocity and coordinates changes according to following : 

vn+1 = vn + anΔt 

xn+1 = xn + vnΔt + ½ (anΔt2) 

where v is velocity, x is atomic coordinate and Δt is magnitude of the integration 

time step.  

These steps are repeated for long duration resulting in the trajectory of the atomic 

motions during that period (Beck & Daggett, 2004). 

Force field refers to a mathematical formula and associated parameters 

that describes the potential energy of the protein as a function of its atomic 

coordinates. AMBER, CHARMM, GROMOS and OPLS-AA are the most 

commonly used force fields. The force fields are associated with molecular 
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dynamics suites and thus the choice of force field is a secondary one. There is no 

consensus which force field is better and often simulations performed with same 

parameters on different force fields generate consistent results (Hug, 2013; Price 

& Brooks, 2002).  

Molecular dynamics is generally considered as the simulation of all atoms 

present in the system. This is called as full atomistic simulation. Despite the 

increase in computational power and use of Graphics Processor Unit (GPU) in 

molecular dynamics, a full atomistic simulation for longer durations is a daunting 

task. Hence, different variants of classical molecular dynamics has been designed 

such as temperature accelerated molecular dynamics, replica exchange molecular 

dynamics, steered molecular dynamics, coarse grained molecular dynamics etc. 

(Hug, 2013; Kerrigan, 2013). 

MD simulation has two broad applications. First is to analyze the actual 

dynamics of the system thereby observing the motion of biomolecules at the 

atomic scale for example, folding/unfolding of peptides or small proteins. The 

second application is to derive equilibrium and kinetic properties of the system 

and compare them with experiments to interpret the molecular mechanisms 

behind a particular biological activity (X. Cheng & Ivanov, 2012). 

 Some of the recent studies involving molecular dynamics are defining 

binding mode of phosphoinositide 3-kinase α-selective inhibitor (Bian et al., 

2014), analysis of the active site of enzyme mannosyltransferase in Leishmania 

major (Shinde, Mol, Jamdar, & Singh, 2014), analysis of interaction of the 
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inhibitors against adipocyte fatty-acid binding protein  (J. Chen, Wang, & Zhu, 

2014), discovery of Hsp90 inhibitors (Li et al., 2014), analysis of CDK2 inhibitors 

(Tripathi & Singh, 2014) etc.  

 Lead optimization 1.4
 

Advances in combinatorial chemistry and HTS have resulted in 

tremendous increase in number of lead molecules (Chaturvedi, Decker, & 

Odinecs, 2001). This has made lead optimization a much required step which 

aims to identify compounds with increased likelihood of success in clinical trials 

(Korfmacher, 2003).  Lead optimization involves chemical modification of 

promising lead molecules in order to improve potency, selectivity, metabolism 

and pharmacokinetic parameters (K. C. Cheng, Korfmacher, White, & Njoroge, 

2008; Hughes et al., 2011). 

 Different docking methodologies reproduce the crystallographic binding 

pose to near perfection but struggle while docking novel ligand to the pocket. 

Hence, lead optimization can be achieved by accurate prediction of receptor-

ligand binding affinities and poses. One of the most commonly used 

methodologies is the application of molecular dynamics to the selected lead like 

molecules in order to predict poses and binding free energy. It has been found that 

rescoring poses generated from docking increases the correlation with the 

experimental results (Guimarães & Cardozo, 2008; Lindstrom et al., 2011). 
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 Objective 1.5
 

Pharmaceutical Data Exploration Laboratory (PaDEL) excels in 

development and application of methods and tools in the biomedical and 

pharmaceutical fields. The research in PaDEL can be divided into drug discovery, 

clinical informatics, public health informatics and metabonomics. This study 

intends to contribute in the drug discovery project leading to discovery of novel 

drugs against neuraminidase and MCL-1. 

The first objective is to discover pan neuraminidase inhibitors. Majority of 

the drug discovery projects on neuraminidase have focused on a single mutation 

belonging to either group I or group II neuraminidase. However, mutations 

causing resistance against oseltamivir or both oseltamivir and zanamivir are not 

restricted to any specific group. Thus, there is need to develop inhibitors which 

can be effective against neuraminidase irrespective of mutation or group. The first 

step is to build QSAR model to screen probable neuraminidase inhibitor. A 

number of QSAR models have been developed but to the best of my knowledge 

none of them has considered mutations belonging to both groups of 

neuraminidase. Moreover, most of the QSAR models built till date lack 

applicability domain thereby having low reliability. Hence, a consensus QSAR 

model with applicability domain will be built to screen probable neuraminidase 

inhibitors. Structure based drug design is an important part of most of the drug 

discovery projects. Hence, the second aim to achieve the first objective is to do 

structure based screening using various docking protocols. This will help us to 
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find a possible solution to the resistance in neuraminidase and help to develop 

even more potent drugs in future. 

Apoptosis plays an important role in cancer and most of the tumors have 

increased levels of anti-apoptotic proteins. This has led to the development of 

drugs targeting anti-apoptotic proteins. However, challenging binding site of the 

anti-apoptotic proteins have led to only few moderately active inhibitors. 

Moreover, the resistance to these inhibitors due to overexpression of MCL-1 has 

been a cause of concern. Many studies have been performed to develop selective 

MCL-1 inhibitors. In recent study compounds with rhodanine scaffold have 

shown promise as MCL-1 inhibitor. However, the function of the rhodanine 

scaffold is not understood. Hence, the second objective is to analyze the role of 

rhodanine scaffold in selective inhibition of MCL-1 in order to guide the 

development of more potent and selective MCL-1 inhibitors. In order to achieve 

the second objective the compounds belonging to four different classes i.e. 

rhodanine, thiazolidinedione, thiohydantoin and hydantoin were prepared by 

scaffold hoping. The substituents of the compounds were selected for direct 

comparison with the compounds having rhodanine group. This comparison will 

help us to understand the role of rhodanine in MCL-1 inhibition as well as 

develop potential drugs in future.  

The above mentioned objectives of the study will provide exposure to the 

different aspects of the computer aided drug design such as QSAR, docking, 

molecular dynamics. Moreover, two different targets, with different type of 
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pockets, i.e. deep and hydrophobic, shallow and surface groove, will help me to 

get experience in handling different problems.  
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Chapter 2 

Methods 
 

 

This chapter describes three possible components of CADD: QSAR (2.1), 

docking (2.2) and molecular dynamics (2.3). These sections also describe the 

methodology applied in our study. The specific parameters, if any, used during a 

particular study are mentioned in respective sections. 

 

 QSAR 2.1
  

In our study, the QSAR modeling consisted of following steps (Figure2.1) 

1. Dataset selection and curation 

2. Descriptor calculations 

3. Descriptor selection 

4. Base model development 

5. Internal validation 

6. Consensus model development 

7. External validation 

8. Prediction i.e. Screening of chemical library 
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Figure2.1 General workflow of QSAR 
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Figure2.2 k-nearest neighbor 

 

 
Figure2.3 Support Vector Machine 

Kernel function (Ø) SVM converts non-linear classification into linear classification 
 

 
Figure2.4 Five-fold cross validation 
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 Data selection and curation 2.1.1
 

QSAR model depends on the descriptors, which in turn depends on the 

structures of compounds in the dataset. Since accuracy of any model depends on 

the quality of data, any error in the structure will translate into error in the 

descriptors, leading to inaccurate models.  

Some of the steps followed in our study for data curation are removal of 

the data that cannot be handled by cheminformatics techniques, e.g., inorganic 

and organometallic compounds, counterions, salts and mixtures; structure 

validation; ring aromatization; analysis of tautomeric forms; and removal of 

duplicates (Alexander Tropsha, 2010).  

 Descriptor calculation 2.1.2
 

Molecular descriptors are key features of compounds in mathematical 

values that describe the structure or shape of molecules in order to predict the 

activity and properties of molecules (Todeschini & Consonni, 2000). The choice 

of descriptors plays an important role in ligand-based lead discovery. Descriptors 

can be classified according to 1) their dimension and 2) the properties of the 

chemical that they represent. According to dimension, descriptors can be 

classified as 1D, 2D and 3D. 1D descriptor are calculated from the formula itself 

e.g. number of atoms, molecular weight and 2D descriptors are calculated from 

2D structure e.g. number of hydrogen bonds and 3D descriptors are calculated 

from 3D structure e.g. molecular volume, surface area etc. Descriptors derived on 
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the basis of property used such as physicochemical e.g. logP and pKa, electronic 

e.g. polarity and polarizability, topological e.g. connectivity and Weiner index, 

geometrical e.g. length, width and molecular volume etc and complex e.g. BCUT, 

WHIM and 3D-MoRSE (Nikolova & Jaworska, 2003; Todeschini & Consonni, 

2009; Xue & Bajorath, 2000) 

 Descriptor selection 2.1.3
 

 Pre-processing 2.1.3.1
 

A good QSAR model requires a subset of relevant descriptors. However, 

before selecting a subset of descriptors, a pre-processing step is performed. The 

descriptors were normalized to ensure that all attributes have equal influence on 

the model.  

A large number of descriptors are not recommended (Dudek, Arodz, & 

Gálvez, 2006) (Shahlaei, 2013) as: 

1. Only some of the descriptors are significantly correlated with the 

activity 

2. Many descriptors are intercorrelated. 

3. Prediction accuracy of model might be improved through 

exclusion of redundant and irrelevant descriptors. 

4. Including too many descriptors may lead to overfitting of the 

model 
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5. With less number of descriptors the interpretability of relationship 

between the descriptors and observed activity might be increased. 

Hence, an appropriate subset of the descriptors was identified by feature 

selection to develop the model. 

 Selection 2.1.3.2
 

Descriptor/feature selection is a step to reduce the dimensionality by 

removing irrelevant data. This can lead to increased learning accuracy, and 

improved result comprehensibility (Lei Yu & Liu, 2003). Feature selection can be 

supervised or unsupervised. Supervised feature selection can be divided into three 

general categories i.e. filter methods, wrapper methods and embedded methods 

(Guyon & Elisseeff, 2003; Saeys, Inza, & Larranaga, 2007). Wrapper method 

works by selecting subset of the features by search algorithm and then testing the 

performance of the selected subset by the modeling algorithm (Soto, Cecchini, 

Vazquez, & Ponzoni, 2008). The performance is tested by cross validation or 

validation set. The feature subset with best performance is selected to build the 

model. Forward selection, backward elimination, simulated annealing, tabu 

search, genetic algorithm (GA) are some of the examples using this methodology 

(Gammerman, 2014; Goodarzi, Dejaegher, & Vander Heyden, 2012). Wrapper 

methods use modeling algorithm as a blackbox thus making it simple and 

universal in approach (Guyon & Elisseeff, 2003). Hence, in our study, GA, which 

is one of the wrapper methods, was used for descriptor selection. 
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2.1.3.2.1 Genetic Algorithm 
 

GA belongs to the class of evolutionary algorithms and is based on laws of 

genetics and biological evolution and can be divided into following steps (Leardi, 

2007; Thede, 2004): 

1. Initialization: Create large population of random descriptor 

subsets, represented by binary chromosomes that indicate whether 

a descriptor is selected. 

2. Evaluation: Each chromosome is evaluated and assigned a fitness 

score. Fitness score is a measure of how well a set of descriptor 

can predict the properties. 

3. Selection: In order to improve the fitness of the population two 

members are selected from the current population. The chance of 

being selected is proportional to the chromosomal fitness.  

4. Crossover:  Crossover is performed to exchange descriptors 

between two members hoping to achieve descriptor set with better 

prediction power 

5. Mutation:  In order to add a little bit randomness into the 

population, mutation is performed. It is performed by changing the 

binary value of few descriptors selected randomly. 

6. Repeat: Repeat step 2 to 5 until a new population of N members 

has been created. 
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 Model development 2.1.4
 

The QSAR model that we developed in our study used the following 

procedure: (1) Construct many base models using different descriptor subsets and 

different modeling methods; (2) Select suitable base models to construct a 

consensus model; (3) Evaluate the performance of the consensus model.  

 Model development began by splitting the dataset into 4:1 ratio. The four 

parts were combined to form training set while the 5th part comprised external 

validation set. Training set was used to develop base models. Base models are 

individual predictive models that were combined to form consensus model. In this 

study, base models were constructed from the training set using different 

descriptor subsets and different modeling methods. The different descriptor 

subsets were obtained using a GA process. During the GA process, models were 

developed and evaluated by calculating their Matthew’s correlation coefficient 

(explained in section 2.1.5.3) (Vihinen, 2012) using a 5-fold cross validation 

(explained in section 2.1.5.1 ) process in order to identify relevant descriptors.  

The GA process was repeated several times while the performance, i.e. Matthew’s 

correlation coefficient (MCC), of each model being evaluated using 5-fold cross 

validation. All the models having 70% MCC were added to the model pool. 

In general, methods for building a QSAR model i.e. modeling methods 

can be divided into classification and regression methods. Classification method 

is used to predict the class of the members like inhibitor/non-inhibitor of the 

dataset screened by QSAR.  On the other hand, regression analysis estimates 
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relationships between dependent (response or outcome) variable and one or more 

independent (predictor or input) variables and is used for predicting outcomes 

such as IC50 (Gramatica, 2010; Yee & Wei, 2012). For regression analysis, 

absolute value and minimum error are required. However, this is not available in 

most of the biological activity assay results, for example inactive compounds are 

mentioned as having IC50 greater than 100 µm. Hence, in our study, classification 

methods such as kNN and SVM were used for the development of base models.  

 k nearest neighbor 2.1.4.1
 

k nearest neighbor (kNN) is one of the easiest modeling methods and is 

the first choice when there is little or no prior knowledge about the distribution of 

the data. kNN works by measuring the distance between the test compound to 

every compound in the training set. The two most common measures to calculate 

distance are Euclidean distance and Manhattan distance. The class represented by 

majority of the k number of closest members is returned as the class of test 

compound (Figure2.2) (Yee & Wei, 2012). 

As kNN decision is based on a small neighborhood of similar objects it 

performs well with multi-modal classes. However, treatment of all the features 

equally can lead to classification errors, especially when only a small subset of 

useful features is present (J. Kim, Kim, & Savarese, 2012). 
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 Support Vector Machine 2.1.4.2
 

 SVM is one of the most well-known kernel based method for model 

development. It is based on the concept of decision planes that define decision 

boundaries. In a binary classification problem the data can be linearly separable or 

nonlinearly separable. For a linearly separable data, SVM builds a maximal 

margin hyperplane to separate the two classes. While for nonlinearly separable 

data, SVM uses a kernel function to map the vectors into a higher dimensional 

feature space (Figure2.3) in order to make them linearly separable (Yee & Wei, 

2012). 

A main advantage of SVM is that it performs well on datasets having 

many attributes, even with few samples for the training process. However, main 

drawbacks of SVM are limitation in speed and size and the selection of the kernel 

function parameters (J. Kim et al., 2012). 

 Applicability domain (AD) 2.1.4.3
 

All base models had inherent AD which is among the five benchmarks set 

by OECD for any standard QSAR model (Gramatica, 2007).  AD has been 

considered important part of model development by many studies and can be 

defined as the chemical space where a model can predict properties of compounds 

with certain accuracy (Jaworska, Aldenberg, & Nikolova, 2004; Jaworska, 

Nikolova-Jeliazkova, & Aldenberg, 2005; Netzeva et al., 2005; Alexander 

Tropsha & Golbraikh, 2007; Weaver & Gleeson, 2008).  
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AD is the chemical space where a model can be used to predict the 

properties of compounds (Jaworska et al., 2005; Alexander Tropsha & Golbraikh, 

2007; Weaver & Gleeson, 2008). In this study, the AD of each base model was 

defined using the method proposed by Fumera et al (Giorgio Fumera, Fabio Roli, 

& Giacinto, 2000). This multiple thresholds method uses a value that is computed 

by modeling methods to specify the confidence for each prediction. Different 

modeling methods have different algorithms to compute this confidence value. 

For example, in kNN, the confidence value for predicting a compound as an 

inhibitor is computed as the proportion of k nearest neighbors of the compound 

that are inhibitors. So if k is 5 and the number of nearest neighbors of the 

compound that are inhibitors is 4, the confidence value that the compound is an 

inhibitor will be 0.8. Usually in a binary classification modeling method, a 

threshold of 0.5 for the confidence value is used such that if the confidence value 

is more than 0.5, the compound will be predicted as an inhibitor. Otherwise, it 

will be predicted as a non-inhibitor. In the multiple thresholds methods, two 

thresholds are used such that if the confidence value is greater than the higher 

threshold value, the compound will be predicted as an inhibitor. Conversely, if the 

confidence value is smaller than the lower threshold value, the compound will be 

predicted as a non-inhibitor. When the confidence value lies between the two 

threshold values, the compound will be considered as out of the AD of the model 

and its activity will not be predicted. 

In this study, the two thresholds were determined using the confidence 

values of the compounds in the testing sets of a 5-fold cross validation. The 
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confidence values were sorted and those that were found in both inhibitors and 

non-inhibitors, or those that indicate a transition between inhibitors and non-

inhibitors were identified as potential thresholds. All combinations of threshold 

pairs from the pool of potential thresholds were then tested. The optimum 

threshold pair was identified using three criteria. The first is the accuracy of the 

model for those compounds identified as out of the AD should be the lowest when 

using the optimum threshold pair. The second criterion is the precision of the 

model for those compounds identified as within the AD should be the highest 

when using the optimum threshold pair. The last is the number of compounds 

identified as out of the AD should be the largest when using the optimum 

threshold pair. The three criteria were applied consecutively. If only one threshold 

pair satisfied the first criterion, the process was stopped and that pair was 

identified as the optimum pair. If more than one threshold pairs satisfied the first 

criterion, the second criterion was applied. The third criterion was used only when 

more than one threshold pairs satisfied the second criterion. Ties for threshold 

pairs satisfying the third criterion, if any, were broken randomly.  

 Validation  2.1.5
 

Validation is important in order to make a QSAR prediction reliable. 

Depending upon the dataset used for validation, it can be defined as internal and 

external validation. Though both internal and external validation are important, it 

is shown that external validation can improve the reliability of QSAR prediction 

(Golbraikh & Tropsha, 2002; Alexander Tropsha, Gramatica, & Gombar, 2003). 



CHAPTER 2: METHODS                                                                                    34 
 

 

 Internal validation 2.1.5.1
 

Internal validation is performed by a subset selected from the training set. 

Some of the methods used for internal validation are random subsampling, 

bootstrap and cross-validation. Cross validation or n-fold cross validation is most 

popular among them where n is the number of portions in which training set is 

distributed. 

In our study, 5-fold cross validation was performed (Figure2.4). The steps 

involved in 5-fold cross-validation are as follows: 

1. Divide the dataset into 5 equal portions 

2. Combine 4 portions to form the training set to build the model 

3. Use the remaining portion as a testing set to assess the predictive 

performance of the model 

4. Repeat steps 2 and 3 until all the portions has been used as a 

testing set once 

5. Get the average performance of the five testing sets 

 External validation  2.1.5.2
 

Unlike internal validation, the external validation dataset is never used in 

model development. Moreover, it was shown that higher internal validation is not 

necessarily sufficient for accurate prediction of model. In addition, emphasis was 

given on external validation as only way to trust the reliability of QSAR 

(Golbraikh & Tropsha, 2002; Alexander Tropsha, 2010). 
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 Predictive performance 2.1.5.3
 

Prediction by QSAR model can be defined as follows: 

 
Table2.1 Confusion matrix showing the predictions made by QSAR model 

 

 Predicted positive class Predicted negative class 

Positive class True positives (TP) False negatives (FN) 

Negative class False positives (FP) True negatives (TN) 

   

All the base models were then ranked based on their cross-validated MCC 

value and the top ten base models were selected to construct a consensus model 

(explained in section 2.1.6). The performance of the consensus model was then 

evaluated using the validation set. The performance was assessed in terms of TP, 

TN, FP and FN, SE, SP, false positive rate (FPR), false discovery rate (FDR). The 

overall performance was measured by Q and MCC. 

False positive rate: FPR defines expected proportion of FP among 

compounds belonging to negative class. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 ∗ 100% 

False discovery rate: FDR defines expected proportion of FP among 

compounds belonging to positive class. 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃 ∗ 100% 
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Sensitivity: SE relates to the model's ability to identify a compound 

belonging to positive class correctly. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 

Specificity: SP relates to the model's ability to identify compound 

belonging to negative class correctly. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100 

Overall accuracy: is also a statistical measure of how well a QSAR 

correctly identifies compounds belonging to a particular class. Accuracy is the 

proportion of true results of both TP and TN in the population. 

𝑄 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100% 

Matthew’s correlation coefficient: The MCC is used to measure the 

quality of binary (two-class) classifications and is regarded as a balanced measure 

which can be used even with classes of different sizes. MCC is a correlation 

coefficient between the observed and predicted binary classifications. 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁)− (𝐹𝑃 ∗ 𝐹𝑁)

�(𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁) ∗ (𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁)
 

In our study, MCC values were used to rank the base models and the top 

ten base models were selected to construct a consensus model. 
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 Consensus model 2.1.6
 

Every modeling method has its own strength and weakness. Combining 

the prediction of the different models reduces the risk of wrong selection by a 

single poor model, enables the use of different models trained with different 

portions of the data, reduces risk of overfitting by individual models, supports 

individual model to be trained on different type of data. In order to have a good 

consensus model, the individual models should be as unique as possible. Diverse 

models can be created by different modeling methods, modeling methods with 

different parameters, different feature selection method etc. In our study, all base 

models were ranked based on their cross-validated MCC value and the top ten 

base models were selected to construct a consensus model. 

The AD of the consensus model was defined based on the prediction of 

the base models. Compounds were defined to be out of the AD of the consensus 

model when all the base models identified the compound to be out of their AD, or 

if there was a tie in the predictions (i.e. an equal number of base models predicted 

the compounds to be inhibitors and non-inhibitors). Otherwise, the compounds 

were defined to be within the AD of the consensus model and were predicted 

based on majority voting of the base models. In addition, confidence values for 

the predictions were also computed using a similar algorithm as described earlier 

using kNN. 
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 Docking 2.2
 

Docking is the most important component of the structure based drug 

designing which has been supported by the increase in high-resolution 3D 

structures and techniques like homology modeling techniques along with the 

improvements in docking and scoring technologies (Tuccinardi, 2009). Molecular 

docking has two major roles i.e. to predict the binding mode and to predict the 

binding affinity of a complex (Huang & Zou, 2010). In our study docking was 

used as a means to screen probable inhibitors and deduce their binding poses.  

Docking method in our study involved the following steps i.e. receptor structure 

preparation, identification of active site, ligand structure preparation, docking and 

analysis of the results.   

 Receptor Preparation 2.2.1
 

The 3D structure was downloaded from the protein data bank (PDB) 

(Berman et al., 2000) and prepared for the docking process. The preparation 

involved deletion of natural ligand and water, addition of missing hydrogen 

atoms, termini treatment, correction of protonation sates according to a particular 

pH, energy minimization of the hydrogen atoms keeping heavy atoms fixed. 

 Identification of active site 2.2.2

  
The active site was selected according to the data present in literature. If 

the active site is not explicitly mentioned in literature, residues within 6Å of 

natural ligand were selected as active site. 
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 Ligand preparation 2.2.3
 

 Ligands were prepared within MOE or SYBYL which included prediction 

of ionization states, generation of tautomers, conformational isomers and energy 

minimization.  

 Docking 2.2.4
 

 Optimized ligands were docked against the receptor using MOE or 

SYBYL. Parameters for the docking were selected according to the problem. 

Ligands were ranked according to the scores generated by the docking. The 

selected poses predicted for the ligands were analyzed to deduce reason behind 

the biological activity of the ligand. 

 Molecular Dynamics 2.3
 

All biological systems are dynamic in nature and cannot be understood 

merely looking at their static structure which is just a snapshot from real 

dynamics (X. Cheng & Ivanov, 2012; Durrant & McCammon, 2011). Molecular 

dynamics was performed in our study as it enables to understand the interactions 

in real time which can give more insights leading o better understanding of the 

biological system. In this study, molecular dynamics was performed by following 

steps: 

1. System Preparation 

2. Minimization 
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3. Heat up system  

4. Equilibration 

5. Production run 

 System Preparation 2.3.1
 

 System preparation is the most important step for any process. A system 

with defects like atomics clashes, missing atoms and improper charge can result 

in dubious results. The aim of system preparation is to: 

1. Add missing atoms via homology modeling 

2. Modify ionization according to the desired pH 

3. Preparation of parameter files for novel residues and molecules 

4. Fix bond 

5. Add hydrogen 

6. Add counterions to neutralize the system  

 Minimization 2.3.2
 

Energy minimization is the first real step in molecular dynamics protocol. 

The purpose of energy minimization is to adjust the system according to a 

particular force field, uniform distribution of solvent (in case of explicit solvent) 

and counter-ions and remove any steric clashes between atoms. It was performed 

in two stages: 

1. Energy minimization of water molecules and counter-ions with 

restraints on the protein and ligand was first performed 
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2. In second step, the entire system was minimized.  

Mostly, energy minimization end up finding local minimum structure. To 

avoid local minimum the system is heated in subsequent step. 

 Heating up the system and equilibration 2.3.3
 

The initial positions of the atoms taken from crystal structure have 

velocity corresponding to absolute zero temperature. The velocity reassigned 

randomly is not an accurate method. Hence, the system is heated from 0K to 

310K over a period of time thus reassigning velocities to particular temperature. 

The gradual increase of the temperature ensures that system has uniform 

temperature. 

 Production run 2.3.4
 

Molecular dynamics can be performed by using three different canonical 

ensembles i.e. microcanonical ensemble (constant N,V,E), canonical ensemble 

(constant N,V,T) and isothermic-isobaric ensemble (constant N,P,T). Any 

ensemble can be selected according to the problem in hand. All biological process 

occurs at nearly constant pressure (e.g., atmospheric pressure). Thus, isothermic-

isobaric ensemble seems like a reasonable choice. In our work production run was 

performed at NPT conditions. As molecular dynamics is a random process, 

multiple trajectories were generated for a conclusive result. 
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Chapter 3 

Neuraminidase  
 

This chapter provides an introduction to influenza virus and 

neuraminidase. The role of neuraminidase in virus life cycle and its importance 

as drug target is also discussed. Influenza, commonly called as flu, is a 

communicable respiratory viral disease that affects mainly nose, throat, bronchi 

and, occasionally lungs. Although flu is often confused with other influenza-like 

illnesses such as common cold during the early phase of infection, it is a more 

severe disease and is caused by a completely different virus (Apisarnthanarak et 

al., 2004; Nicholson, 1992; Yuen et al., 1998). 

 

 Influenza virus 3.1
 

Influenza viruses are enveloped viruses belonging to the family 

Orthomyxoviridae. The influenza virus can be distinguished into three categories, 

influenza A, B and C on the basis of antigenic differences between their matrix 

and nucleoprotein (NP) (Lamb & King, 2001).   

Influenza C is less common and Influenza B is confined to human and 

rarely infects other species (Taubenberger & Morens, 2008). Although both 

influenza A and B co-circulate and have been responsible for epidemics, the 

impact of influenza A has been much higher than influenza B. This is because the 
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lower rate of genetic variability, combined with its limited host range reduces the 

chances of pandemics caused by influenza B (Hay, Gregory, Douglas, & Lin, 

2001). 

 Influenza A 3.1.1
 

Influenza A virus is the most virulent of all three due to greater genetic 

variability and host range such as, such as humans, birds, horses, dogs and pigs. 

Influenza A can be sub-divided into different subtypes according to antigenic 

properties of Hemagglutinin (HA) and Neuraminidase glycoproteins. Numerous 

combinations can be found by the combination of 16 HA (H1–H16) and 9 

neuraminidase (N1–N9) glycoproteins. The neuraminidase is further classified 

into two phylogenetic groups based on sequence analysis: N1, N4, N5 and N8 are 

in group I, while N2, N3, N6, N7 and N9 in group II (Russell et al., 2006).                      

 Structure of Influenza A virus 3.1.2
 

The influenza virus consists of a lipid membrane derived from the host 

cell comprising of three surface proteins, the HA, neuraminidase and membrane 

ion channel (M2) protein (Figure3.2). Enclosed inside the lipid membrane are 

internal proteins which includes NP, the matrix protein (M1) and the RNA 

dependent RNA polymerase complex (RPC) composed of polymerase basic 

protein 1 (PB1), polymerase basic protein 2 (PB2) and polymerase acidic protein 

(PA) and two nonstructural proteins, nonstructural protein 1 (NS1) and 

nonstructural protein 2 (NS2) (Swayne, 2008). 
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HA is a trimer composed of a globular domain and a stem domain. HA has 

receptor binding site responsible for the attachment of the virus to the cell sialic 

acid (SA) receptors and fusion peptide responsible for fusion of the viral and cell 

membrane (Wiley & Skehel, 1987). 

Neuraminidase is an enzyme made up of four co-planar and roughly 

spherical and identical subunits. Each subunit consists of head, which possesses 

enzymatic activity, along with a centrally attached stalk. The stalk is embedded in 

the viral membrane by a hydrophobic region. The enzyme is an exo-

glycohydrolase and cleaves α‑ketosidic linkage between terminal sialic acid and 

an adjacent sugar residue (Air & Laver, 1989; Colman, 1994). 

Membrane ion channel protein (M2) is a single-pass membrane protein. 

The function of M2 is to reduce the pH across the viral membrane to allow the 

fusion of viral and endosome membrane. (Pielak & Chou, 2011). 

 Virus life cycle  3.1.3
 

Like all viruses influenza virus need the biological machinery of the host 

cell for its replication (Figure3.3). To achieve this, the virus needs to enter the 

cell. The attachment of influenza virus to the cell is initiated by the interaction 

between the HA and SA receptors present on cell surface. The attachment is 

followed by the internalization of the virus by the process of endocytosis. During  
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Figure3.1 General symptoms of Influenza (Häggström, 2014) 

 
Figure3.2 Structure of Influenza Virus (Mackay)  
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Figure3.3 Overview of influenza virus life cycle (Times, 2007) 

 
Figure3.4 Role of neuraminidase in influenza life cycle (Can005, 2011). 

Neuraminidase plays an important role in virus life cycle and is required for release of budding 
virion from the host cell. Neuraminidase achieves that by cleavage of bond formed between 
hemagglutinin and sialic acid receptors   
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the process of endocytosis drop in pH lead to the fusion of the membrane and 

unpacking of the genome (Ari, 1992; Pinto & Lamb, 2006).The fusion domain 

causes the fusion of viral and endosome membrane followed by the release of 

RNP into the cellular cytoplasm leading to generation of virus progeny (Fodor & 

Brownlee, 2002; Pielak & Chou, 2011). The HA that facilitates the viral entry 

inhibits the release of virion by attaching again to the SA receptors. 

Neuraminidase cleaves of α(2-6) ketosidic linkage between a terminal SA and an 

adjacent sugar residue thus releasing the budding virions and blocking them to get 

clumped with each other (Figure3.4). 

 Antigenic variation  3.1.4
 

Antigenic variation in influenza viruses occurs by mainly two mechanisms 

(Figure3.5) (Hay et al., 2001; Nelson & Holmes, 2007) i.e. point mutations 

(antigenic drift) and gene reassortment (antigenic shift). 

 Antigenic Drift 3.1.4.1
 

Antigenic drift is caused due to the accumulation of point mutations in 

viral proteins. The high rate of mutation is the result of low accuracy of RNA-

dependent RNA polymerase. The viruses having certain advantages over other are 

selected. Eventually this leads to changes sufficiently large enough to avoid 

existing antibodies. Antigenic drift happens while a single type of virus passes 

through the host. 
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 Antigenic Shift 3.1.5
 

The genetic shift occurs when two viruses, having property to infect two 

different hosts, co-infect a single host e.g. swine. The selectivity of a virus 

depends on the type of SA acid linkage present in a host. The SA has α(2,6) 

linkage in humans and have α(2,3) linkages in case of avians and equines while 

swine has SA with both type of linkages (Kimble, Nieto, & Perez, 2010). As 

genome of the influenza virus is segmented, reassortment of the genome between 

two strains of viruses results in a new strain. This new strain can have the 

capability to infect human but due to genetic reassortment is significantly 

different to avoid immune response. 

 Characteristic function of Neuraminidase  3.1.6
 

The role of neuraminidase is to catalyze the cleavage of α(2-6) - or α(2-3)-

ketosidic linkage that exists between a terminal SA and an adjacent sugar residue. 

This removal of SA has two major effects. Firstly, it assists in the mobility of 

virus in the respiratory tract as well as facilitates the release of virion progeny 

from infected cells. Secondly, the removal of SA from the carbohydrate moiety of 

newly synthesized HA and neuraminidase is necessary to prevent self-aggregation 

of the virus after release from host cells (Air & Laver, 1989; Gong, Xu, & Zhang, 

2007).  In addition, neuraminidase plays an important part in secondary infection 

such as bacterial pneumonia possibly by the destruction of respiratory epithelium; 

virus-induced immunosuppression; and inflammatory response to viral infection 

(Gong et al., 2007). 
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Figure3.5 Schematic representation of different ways causing virus mutation (NIAID, 2011). 

In step B the virus is transferred from the bird to the human directly. The virus leaving the human 
have gained some mutation by the process of genetic drift. Genetic drift also leads to mutation on 
path C where virus is first transferred to swine and then later to humans. However, the virus 
specific to bird (A-1) and human (A-3) infect common host swine in step A-3. This leads to new 
strain of virus having capability to infect human but with different antigen to avoid immune 
system by the process of genetic reassortment.  
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Figure3.6 Neuraminidase tetramer [2HTY] 

 
             a) 
 

 
                b) 

Figure3.7 Neuraminidase group 1 monomer depicting putative active site, 430 loop and (a) closed 
150 loop [2HU4] and open 150 loop [2HTY]  
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 Neuraminidase as a drug target 3.1.7
 

M2 ion channel allows the uncoating of virus particles in endosome and 

thus plays a crucial part in virus life cycle. Considering its important role, M2 ion 

channel was the first target for influenza treatment. However, the M2 inhibitors 

were effective against influenza A infection as only the A strains of the virus have 

M2 ion channel proteins. Moreover, cases of CNS side effects and drug-resistant 

viral strains were reported against M2 inhibitors (Q. Liu, Liu, & Yang, 2013; 

Mark von Itzstein, 2007). This resulted in the hunt for other possible targets for 

influenza treatment. Neuraminidase is another protein that plays crucial role in 

virus life cycle and has been considered as a prime target for influenza inhibitors. 

As can be seen from Figure3.4 neuraminidase inhibitors halts the release 

of budding influenza viruses from infected host cells thereby preventing infection 

of new host cells and interrupting the infection (Moscona, 2008).  Studies have 

revealed that despite low sequence identity, the structure is well conserved among 

group I and II as well as neuraminidase of influenza B virus. Moreover, the active 

site is more or less conserved among all neuraminidase (Russell et al., 2006).  

 Structure of neuraminidase 3.1.8
 

  The structure of neuraminidase was deduced by Varghese, Laver and 

Colman for N2 subtype (J. N. Varghese, Laver, & Colman, 1983). According to 

them, neuraminidase is a mushroom-shaped tetrameric protein (Figure3.6), 

attached to the viral membrane by slender stalk composed of hydrophobic 

sequence at N-terminus. The enzyme active site and calcium binding domain are 
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situated in the head of neuraminidase. The neuraminidase's head region is 

propeller-like structure formed by six blades. Each blade is formed of four anti-

parallel β sheets stabilized by disulfide bonds. Blades are connected by loops of 

variable length and structure. (Air, 2012; Gong et al., 2007; Shtyrya, 2009) 

   Active site of neuraminidase 3.1.9
 

There is up to 75% sequence variation but the active site is highly 

conserved in most influenza A and B viruses and there are large numbers of 

charged residues in the pocket enclosing SA binding site also known as SA cavity 

(Gong et al., 2007). However, group-1 and group-2 neuraminidase differ from 

each other centered on the 150-loop (residues 147–152). A major consequence of 

these differences in structure is that there is a large cavity (150-cavity) adjacent to 

the active site in group-1 but not in group-2 neuraminidase (Figure3.7). This 

leads to an increase in width of the active site cavity by about 5Å in group-1 

viruses (Russell et al., 2006).  

It has been found in the apo simulations of group-1 neuraminidase that 

motion is coupled to an outward movement of the adjacent 430-loop (residues 

430-439). This had led to two additional cavities in group-1 neuraminidase 

besides SA cavity i.e. 150-cavity and 430 cavity which has been explored to 

identify potential residues for novel drug interactions (Amaro et al., 2007; L. S. 

Cheng et al., 2008; Landon et al., 2008). 

Out of the residues comprising the active site, eight amino acids i.e. 

Arg118, Asp151, Arg152, Arg224, Glu276, Arg292, Arg371, and Tyr406 are 
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referred as catalytic residues due to their critical role for functioning and their 

direct contact to the substrate, while eleven others i.e. Glu119, Arg156, Trp178, 

Ser179, Asp198, Ill222, Asp227, Asp277, Asn294, and Asp425 are known as 

framework residues due to their primary role in stabilization of the active site 

(Ferraris & Lina, 2008). Catalytic residues, except Arg224, are in direct contact 

with sialic acid and form polar contacts. Arg224 forms nonpolar contact with the 

glycerol moiety of the N-acetylneuraminic acid (Neu5Ac2en) (Shtyrya, 2009).  

 
Table3.1 Binding cavity residues  

 
 
SA cavity 

 
Arg118, Glu119, Leu134, Val149*, Lys150*, Asp151, Arg152, Ser153, 
Pro154, Arg156, Trp178, Ser179, Ser195, Gly196, Ile222, Arg224, Glu227, 
Ser246, Glu276, Glu277, Arg292, Asn294, Tyr347, Arg371, Tyr406 
 

 
150 
cavity 
 

 
Val116, Ile117, Arg118, Leu134, Thr135, Gln136, Ser145, Gly147, Thr148, 
Val149*, Lys150*, Asp151, Arg156, Arg430, Pro431, Ile437, Trp438, 
Thr439 
 

 
430 
cavity 

 
Asn325, Pro326, Tyr347, Asn369, Ser370, Arg371, Trp403, Ser404, 
Tyr406, Ile427, Arg428, Gly429, Arg430, Pro431, Lys432, Glu433, Ile437, 
Trp438, Thr439 
 

Binding cavity residues are sorted according to the location in different cavities. Residues in bold 
face participate in interactions in more than one cavity across cavity boundaries  

  
On the basis of the occurrence of residues at SA cavity, 150 loop or 430 

loop Cheng et al. classified the residues as shown in Table3.1. While some 

residues are restricted to a particular loop or pocket, other are shared between two 

cavities. Moreover residues such as Val149 and Lys150 are present in 150 cavity 

but form a part of SA cavity as 150 loop attains closed conformation. 
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 Neuraminidase inhibitors 3.1.10
 

The mechanism of neuraminidase action proceeds via formation of a 

sialosyl cation intermediate. This catalytic intermediate is subsequently released 

as α-Neu5Ac (Mark von Itzstein, 2007). C-1 carboxylate group α-Neu5Ac  and 

Neu5Ac2en forms charge–charge interactions with positively charged arginine 

triad i.e. Arg118, Arg292 and Arg371 (M. von Itzstein & Thomson, 2009).  As a 

result, a number of Neu5Ac2en mimetic was discovered as potential 

neuraminidase inhibitors. Among these, 2‑deoxy‑2,3-didehydro‑N-

acetylneuraminic acid (DANA) proved to be the most potent inhibitor. The 

deduction of apo and holo crystal structures with ligands α-Neu5Ac and 

Neu5Ac2en turned out to be critical in the discovery of neuraminidase inhibitors 

(Colman, Varghese, & Laver, 1983; J. N. Varghese et al., 1983; J. N. Varghese, 

McKimm-Breschkin, Caldwell, Kortt, & Colman, 1992). By applying structure 

based drug design, the most potent neuraminidase inhibitor 4-deoxy-4-guanidino-

Neu5Ac2en i.e. zanamivir was discovered. However, due to its poor 

bioavailability, intraoral inhalation was chosen for drug delivery (Mark von 

Itzstein, 2007; M. von Itzstein & Thomson, 2009).  

The discovery of zanamivir provided valuable details and laid the 

foundation of other neuraminidase inhibitors such as GS4071 (Figure3.8). The 

crystal structure of GS4071 revealed that the orientation of the cyclohexene ring 

and key interactions involving the carboxylate, amino and acetamido substituents 

with the neuraminidase active site are similar to those observed for Neu5Ac2en 
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and its derivatives (C. U. Kim et al., 1997; C. U. Kim et al., 1998). The pentyloxy 

side chain occupied the region utilized by glycerol group in zanamivir. This was 

possible due to the reorientation of Glu276 thus creating a hydrophobic cavity. 

However, GS4071, similar to zanamivir, had poor bioavailability and thus its pro-

drug was used. This ethyl ester pro-drug is known as oseltamivir (Mark von 

Itzstein, 2007; M. von Itzstein & Thomson, 2009). 

  
Figure3.8: The first two neuraminidase inhibitors 

 

 
 

 
 

GS4071 

 
 

 
Zanamivir 

 

 Drug resistance 3.1.11
 

Both zanamivir and oseltamivir resemble the natural substrate. It was 

believed that due to this close resemblance, they are less likely to face resistance. 

However, several mutations have been observed to cause resistance against one or 

both of them (Abed, Baz, & Boivin, 2006; Ferraris & Lina, 2008; Richard et al., 

2008). Currently three major neuraminidase mutations i.e. H274Y, N294S in N1 

and R292K in N9 have been reported (Collins et al., 2008; Yan Wu et al., 2013). 
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The R292K mutation have been shown to compromise viral growth and 

reduced neuraminidase catalytic efficiency (Yan Wu et al., 2013) but the H274Y 

and N294S mutations are stably maintained. The high resistance against 

oseltamivir due to H274Y and R292K in N1 and N9 respectively has caused 

major concerns (Collins et al., 2008; Woods, Malaisree, Long, McIntosh-Smith, 

& Mulholland, 2013; Yan Wu et al., 2013). A number of studies has been 

conducted to deduce the mechanism behind the oseltamivir and zanamivir 

resistance due to various mutations in order to develop better neuraminidase 

inhibitors (Chachra & Rizzo, 2008; Collins et al., 2009; Aeron C. Hurt, Lowther, 

Middleton, & Barr, 2010; Karthick & Ramanathan, 2014; Malaisree et al., 2009; 

Mihajlovic & Mitrasinovic, 2008; J. W. Park & Jo, 2009; Shu et al., 2011; 

Vergara-Jaque et al., 2012; Woods et al., 2012). However, not much success has 

been achieved and pan neuraminidase inhibitor remains a dream.   
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Chapter 4 

Neuraminidase Methods 
 

This chapter describes methods used to achieve our goal to discover pan 

neuraminidase inhibitors. Consensus QSAR model (4.1) with AD was built to 

screen ZINC library for probable neuraminidase inhibitors (PNI). The probable 

inhibitors were docked (4.2) against group I and group II neuraminidase with 

open, closed conformations. The three most important mutations, i.e. H274Y, 

N294S and R292K, resulting in resistance against all three influenza drugs i.e. 

oseltamivir, zanamivir and laninamivir were also used. 

 

 QSAR 4.1
 

 Dataset curation 4.1.1
 

The literature was extensively surveyed to obtain as many structurally 

diverse inhibitors of influenza A neuraminidase group I (NA1) with their 

respective IC50 values. A total of 279 NA1 inhibitors were obtained (Abed, 

Nehme, Baz, & Boivin, 2008; Dao et al., 2011; Dao et al., 2010; Honda, Masuda, 

Yoshida, Arai, Kaneko, et al., 2002; Honda, Masuda, Yoshida, Arai, Kobayashi, 

et al., 2002; A. C. Hurt et al., 2007; C. U. Kim et al., 1998; Lew et al., 2000; Lew 

et al., 1998; A. L. Liu, Wang, Lee, Wang, & Du, 2008; Y. Liu et al., 2011; 
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Masuda, 2003; Rao et al., 2010; Shie et al., 2007; Smith et al., 1998; Sun, Zhang, 

Huang, & Zhou, 2006; Wen et al., 2010; Williams et al., 1997; Yamashita et al., 

2009). The 2D structures of the inhibitors were drawn using ChemDraw Pro 12.0 

(ChemDraw, 2011) and then processed using Pipeline Pilot student edition 

(Pipeline, 2011), following the general guidelines suggested by recent reviews on 

the importance of data curation in QSAR modeling work (Dearden, Cronin, & 

Kaiser, 2009; Fourches, Muratov, & Tropsha, 2010). The process started with the 

removal of compounds containing one or more metal atoms as the majority of 

chemical descriptors cannot be calculated reliably for such compounds. The 

protonation states of common functional groups were set according to pH 6.5, 

which is the standard assay conditions for neuraminidase assays (L. S. Cheng et 

al., 2008; Garozzo, Timpanaro, Stivala, Bisignano, & Castro, 2011). Compounds 

with several tautomeric forms were standardized to a single tautomer. The 

compounds were then energy minimized using the default settings in Pipeline 

Pilot energy minimization component. Duplicate compounds were identified by 

generating canonical SMILES string for each compound and removing those 

compounds with duplicate canonical SMILES string. For enantiomeric pairs, the 

enantiomer with the higher IC50 value was removed because only 1D and 2D 

chemical descriptors will be calculated and such descriptors cannot discriminate 

between the enantiomers. This reduced the number of NA1 inhibitors to 264.  

The inhibitors were then divided into two groups based on their IC50 

values. A total of 173 compounds with IC50 values ≤ 10 µM were placed in the 

potent inhibitors group, and 91 compounds with IC50 values > 10 µM were placed 
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in the weak inhibitors group. In order to increase the diversity and size of the 

dataset, 1326 drugs from FDA Orange Book were obtained and processed in the 

same manner as the NA1 inhibitors. Drugs that were known neuraminidase 

inhibitors were removed. A similarity check protocol based on Tanimoto 

coefficient in Pipeline Pilot was also performed to remove those drugs that were 

very similar to the NA1 inhibitors. The remaining 1224 drugs were considered as 

non-inhibitors and were combined with the weak inhibitors group to form the 

weak/non-inhibitors group (henceforth referred to as non-inhibitors for brevity). 

A training set and a validation set were formed from the two groups by 

splitting the compounds in the groups in a ratio of 8:2. The training set was used 

to develop the QSAR models and contained 138 potent inhibitors and 1052 non-

inhibitors. The validation set was used to determine the prediction performance of 

the final QSAR model and contained 35 potent inhibitors and 263 non-inhibitors. 

 Descriptor calculation  4.1.2
 

A total of 672 1D and 2D different molecular descriptors were calculated 

using PaDEL-Descriptor v2.7 (Yap, 2011). These include descriptors from 

different classes such as autocorrelation descriptors (e.g. autocorrelation 

(charge)); chi indices descriptors (e.g. chi chain); electrotopological state indices 

descriptors (e.g. atom type electrotopological state); BCUT descriptors; 

constitutional descriptors (e.g. weight, ring counts); topological descriptors (e.g. 

Zagreb index, Wiener numbers). Descriptors with zero standard deviation in their 

values were then removed. 
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 Development of QSAR model and screening    4.1.3
 

The models were built according to the method defined in chapter 2 with 

following parameters. For kNN, different k values were used and these include 3, 

5, 7, 9, 11 and 13. For SVM, γ used were 0, 0.02, 0.0002, 0.000002, 0.00000002 

with C = 100000. 

In order to identify novel neuraminidase inhibitors, the ZINC library 

containing 26 million compounds were screened with the consensus model.  

 Docking 4.2
 

 Structure preparation 4.2.1
 

 Both group I and II neuraminidase crystal structures were downloaded 

from PDB. These include N1 crystal structures with open and closed loop, H274Y 

and N294S mutation (henceforth referred as N1_open, N1_closed, N1_H274Y, 

and N1_N294S respectively) and N9 crystal structures (N9_closed, N9_R292K). 

The neuraminidase strains used in this study and their corresponding PDB files 

can be found in Table4.1. 

Calcium has an important role in the enzymatic activity of neuraminidase 

and its use in docking studies has been suggested (Lawrenz et al., 2010). Among 

the structures used in the study only N1_closed and N1_N294S lacked calcium 

ion. Hence, a calcium ion was added to N1_closed and N1_N294S by 

superimposing it to N1_open and placing a calcium ion in the same location as in 
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Table4.1 Neuraminidase strains used for docking study 

 

Name PDB ID Susceptibility 
towards 
oseltamivir 

Susceptibility 
towards 
zanamivir 

Susceptibility 
towards 
laninamivir 

N1_open 2HTY 
(Russell et al., 
2006) 

Susceptible Susceptible Susceptible 

N1_closed 2HU4 
(Russell et al., 
2006) 

Susceptible Susceptible Susceptible 

N1_H274Y 3CKZ 
(Collins et al., 
2008) 

Resistant Susceptible Susceptible 

N1_N294S 3CL2 (Collins 
et al., 2008) 

Low resistant Susceptible Susceptible 

N9_closed 7NN9 (Joseph 
N. Varghese, 
Chandana 
Epa, & 
Colman, 
1995) 

Susceptible Susceptible Susceptible 

N9_R292K 4MWL (Yan 
Wu et al., 
2013) 

Resistant Low resistant Low resistant 

 

N1_open. Ligands and water molecules were deleted from PDB structures and the 

resulting structures were prepared using MOE and SYBYL (SYBYL-X). 

Structure preparation includes structure correction, protonation and energy 

minimization. The protonation states were determined at pH 6.5, which is the 

standard assay condition for neuraminidase assays (L. S. Cheng et al., 2008; 

Garozzo et al., 2011). The calculation of partial charges and energy minimization 
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of only hydrogen atoms was performed using AMBER99 within MOE and 

SYBYL. 

 Active site 4.2.2
 

In our study, residues described by Lily et al., (L. S. Cheng et al., 2008) 

were used defined active site. For receptors with closed 150 loop, residues of SA 

cavity i.e. R118, E119, L134, V149, K150, D151, R152, S153, P154, R156, 

W178, S179, S195, G196, I222, R224, E227, S246, E276, E277, R292, N294, 

Y347, R371, Y406 constituted the active site. In addition, residues from 150 and 

430 cavity i.e V116, I117, T135, Q136, S145, G147, T148, N325, P326, N369, 

S370, W403, S404, I427, R428, G429, R430, P431, K432, E433, I437, W438 and 

T439 were used to define the active site for the structures with open 150 loop.  

 Dataset for virtual screening 4.2.3
 

 Compounds predicted as PNI as result of screening by QSAR model was 

used for virtual screening (N. Sharma & Yap, 2012). In addition, oseltamivir and 

zanamivir, the two well-known neuraminidase inhibitor, as well as laninamivir 

were added to the library. 

 Molecular docking 4.2.4
 

 Docking was performed in two stages i.e. filtering compounds that are by 

a less exhaustive approach and exhaustive search against various mutant strains 

(Figure4.1).  It has been mentioned in many studies that 150 loop closes after 

binding to ligand which enables it to make tighter interaction with the ligand 
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(Russell et al., 2006; M. Wang et al., 2011; Yan; Wu et al., 2013). Hence, the 

preliminary filtering was performed using N1_open. In the first stage docking was 

performed using MOE and SYBYL. The resulting poses were sorted according to 

the docking score and top 50% of the ligands from each were combined to form a 

non-redundant library of compounds. High penalty was opted for ligands leaving 

the active site while docking using SYBYL. The side chains were kept free during 

refinement of the poses while docking with MOE. 

Before moving on to second stages of docking, drug-like filters were 

applied to remove the compound with more likeness to be, for instance, 

bioavailable. The remaining compounds went through second stage of docking. 

Docking was performed against N1_closed, N1_H274Y, N1_N294S, N9_closed 

and N9_R292K using the more rigorous Surflex-GeomX protocol in SYBYL. 

Compounds with score lower than oseltamivir were filtered at every stage of 

docking.  

 Energy minimization and rescoring 4.2.5
 

Considering the amount of time required only top 10 PNI were selected 

for energy minimization. The three best poses for each PNI, selected by visual 

inspection of docking results, were used for energy minimization. Partial charges 

and force field parameters for the compounds were generated automatically by 

antechamber suite in AMBER12 (D.A. Case, 2012). The general AMBER force 

field (gaff) (J. Wang, Wolf, Caldwell, Kollman, & Case, 2004) was used for com-  
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Figure4.1 Overview of docking process 

 

-pounds, and AMBER ff12SB force field for the proteins. Hydrogen atoms for the 

neuraminidase were added using the LEaP module in AMBER12. Systems were 

solvated using TIP3P (Jorgensen, Chandrasekhar, Madura, Impey, & Klein, 1983) 
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water in a octahedron box extending 12 Å beyond any solute atom. The system 

was made neutral by adding appropriate number of counter ions.  

Energy minimization was performed using pmemd.cuda in AMBER12. 

Water molecules and counter ions were minimized with 500 cycles of steepest 

descent followed by same number of conjugate gradient cycles. This was 

followed by energy minimization of the entire system during which only ligand, 

protein residues within 6Å of ligand and hydrogen atoms were allowed to move, 

maintaining other atoms fixed. The energy minimization of atoms only in 

proximity of the ligand was performed as fully minimized poses could lead to 

different local minima thereby creating noise in analysis (Guimarães & Cardozo, 

2008). The minimized poses were rescored using Autodock (Morris et al., 2009).  
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Chapter 5 

Neuraminidase Results and Discussion 
 

This chapter describes the results for neuraminidase including the 

performance of base models, overall performance of consensus model and the 

compounds predicted outside AD. In addition, results of docking and comparison 

of the poses of approved neuraminidase inhibitors as well as probable inhibitors 

against wild and mutant type are discussed.    

 

 QSAR 5.1
 

In this work, the first phase of drug design was to develop a QSAR model 

with a defined AD and low FPR for screening large chemical libraries for novel 

and potentially potent NA1 inhibitors. We have developed such a model using a 

multiple thresholds AD method, potent NA1 inhibitors, use of marketed drugs as 

additional non-inhibitors and consensus modeling. 

Only compounds having inhibitory activity against NA1 were collected 

while those having activity against other neuraminidase were not added into the 

dataset to reduce the FPR. It is common to use IC50 ≤ 10 µM to identify potent 

inhibitors (Birchall, Gillet, Harper, & Pickett, 2008; Lange et al., 2010; Naik, 

Santoshi, & Joshi, 2012). Although IC50 ≤ 1 µM has been suggested to identify 
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very potent inhibitors, it would have reduced the number of inhibitors in this 

study, which may reduce the diversity of inhibitors and cause the model to miss 

the identification of substantial numbers of potential inhibitors. Hence, in this 

study, we have decided to use the common threshold of IC50 ≤ 10 µM. In the 

future, when there are more very potent inhibitors available, another QSAR model 

could be developed for the prediction of very potent neuraminidase inhibitors. A 

similar consideration is the use of two cutoff values to ensure better separation of 

inhibitors and non-inhibitors. However, this would have removed a large portion 

of the weak inhibitors from the negative set, which may reduce the AD of the 

model. The use of single cutoff value ensured that the molecules with weak 

activity were categorized as non-inhibitors. Hence, a single cutoff value of IC50 ≤ 

10 µM was chosen to divide the dataset into potent and weak inhibitors.  

There are more published potent NA1 inhibitors than non-inhibitors. 

Models trained using such datasets often had high FPR. Hence, in this study, we 

added marketed drugs to increase the size and diversity of non-inhibitors so as to 

reduce the FPR of the models. The results suggest that such approach is practical 

and useful. A considerably low FPR and FDR of the consensus model increase the 

efficiency to screen large chemical libraries. 
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Table 5.1 Performance of the base models selected to form consensus model 

 
 

Base 
model 

 
 

Value of 
k 

 
 

No. of 
descriptors 

Training Cross Validation 

 
TP 

 
FN TN FP 

No. of 
inhibitors 

outside AD 
of model 

No. of non-
inhibitors 

outside AD of 
model 

 
AUC 

 
SE (%) SP (%) MCC 

1 3 227 110 0 1023 0 28 29 0.992 100 99.6 0.980 

2 3 224 110 0 1023 0 28 29 0.991 100 99.6 0.980 

3 3 221 112 0 1023 0 26 29 0.991 100 99.6 0.980 

4 3 228 110 0 1023 0 28 29 0.992 100 99.6 0.980 

5 3 225 110 0 1023 0 28 29 0.991 100 99.6 0.980 

6 5 221 124 3 1039 5 11 8 0.993 97.4 99.5 0.962 

7 5 222 124 3 1039 5 11 8 0.993 97.4 99.4 0.959 

8 5 224 124 3 1039 5 11 8 0.993 97.4 99.4 0.959 

9 5 223 124 3 1039 5 11 8 0.993 97.4 99.4 0.959 

10 5 224 124 3 1039 5 11 8 0.993 97.4 99.4 0.959 
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 Base Models 5.1.1
 

From a total of 38655 base models, top models were selected on the basis 

of their performance (Table 5.1) to form consensus model. Analysis of the base 

models used to construct the consensus model showed that all the base kNN 

models had k as 3 or 5. 

Base kNN models with k > 5 had larger FP and FN. This could be due to 

the fact that though large k yields smoother decision regions (Y. Song, Huang, 

Zhou, Zha, & Giles, 2007), k that were too large are detrimental as it destroys the 

locality of the estimation since farther unrelated compounds are also used for the 

prediction of the unknown compounds (V. C. P. Chen, 2010). Base SVM models 

usually had larger FN, which may have led to the rejection of many novel 

inhibitors. Hence these models were not used to form the consensus model. From 

the initial 672 descriptors, a maximum of 228 descriptors were found to be useful 

for developing the base models.  

 Performance of consensus model 5.1.2
 

The performance of the consensus model on the training set and validation 

set were similar, with an overall accuracy of 99.3% and 98.0% respectively 

(Table5.2). This suggests that the consensus model was unlikely to be overfitted. 

It can be seen that the consensus model has a low FPR, the proportion of 

negative predicted as positive out of total negative compounds available, of 0.8% 



CHAPTER 5: NEURAMINIDASE RESULTS AND DISCUSSION                  70 
 

 

and low FDR, which is a measure of how many of total positives predicted are not 

TP, of 6.3%. 

Table5.2 Performance of the consensus model 

 TP FN TN FP 

No. of 
inhibitor 
outside 
AD of 
model 

No. of 
non-

inhibitor 
outside 
AD of 
model 

AUC SE 
(%) 

SP 
(%) 

Q 
(%) MCC 

Training set 127 3 1042 5 8 5 0.916 97.7 99.5 99.3 0.966 

Validation 
set 30 4 260 2 1 1 0.851 88.2 99.2 98.0 0.898 

 

The numbers of descriptors used in the base models varied between 200 

and 250.  MCC value was calculated as it is less influenced by imbalanced test 

sets due to consideration of accuracy and error rate of both classes (Bekkar, 

Djemaa, & Alitouche, 2013). In comparison to overall accuracy MCC dropped for 

validation set which was more significant for validation set i.e. 0.898 in 

comparison to 0.966.  

 Compounds outside AD 5.1.3
 

AD for a model can be defined in many ways. Some models define AD 

using chemical classes that are found in the training set. In other cases, AD is 

defined using the range of descriptors values or determining the probability 

density. The disadvantage of these AD methods is that the AD is dependent on the 

training set but independent of the modeling method. An improved method is to 

define the AD on the basis of prediction confidence (Tong et al., 2004). This 

allows the AD to be dependent on both the training set and modeling method. 
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Hence, AD of the base models was defined using prediction confidence in this 

study. 

 
Table 5.3 Compounds outside the AD of the consensus model 

 
Compound 

 

Name as in 
reference Chemical class 

 
a) Training set 
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61+ 2H-1,2,4-thiadiazolo 
[2,3-a] pyrimidine 
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A-315675* 

 

5-[(1R,2S)-1 
(acetylamino)-2-

methoxy-2-
methylpentyl]-4-

[(1Z)-1-propenyl]-
(4S,5R)-D-proline 
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N

N

N

N

N+

H3C

O

-O H

H

H

H

 

Azathioprine**  

 
b) Validation set 
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OH

NCl  

40+ 

 

Acyl(thio)ureas 
bearing a substituted 

pyrimidine ring 

O

O

N
H

N
H

O S

N

N

NCl

Cl

 

46+ 

 

Acyl(thio)ureas 
bearing a substituted 

pyrimidine ring 

+ From Reference (Sun et al., 2006), *From reference (Abed et al., 2008), ** Drug from 
FDA orange book 
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 Table 5.4 Functional group present in the compounds outside of AD 

Group Number of appearance in different compounds 

OMe 14 

6-Cl-3-Py 5 

OEt 2 

Cl 4 

Me 3 

2-Cl-3-Py 2 

2-Me-1-(4-Cl-Ph)-Pr 1 

(2,4-Cl2-Ph)-OCH2 1 

5,6-Cl2-3-Py 1 

5-(4-NO2-Ph)-2-Furyl 1 

2-F-4-Cl-Ph 1 

(2,4-Cl2-Ph)-OCH2 1 

3-Py 1 

OH 1 

Me : Methyl, Et : Ethyl, Ph: Phenyl, Py: Pyrimidine 
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A total of 13 compounds in the training set and 2 compounds in the 

validation set were outside the AD of the consensus model Table 5.3. Analysis of 

the compounds outside AD of the consensus model reveals that the majority of 

these compounds are of the acyl(thio) urea class with substituted pyrimidine rings. 

Other than substituted pyrimidine rings, other groups were also present in these 

compounds (Table 5.4). 

Screening of the ZINC library using the consensus model identified 64772 

compounds as potential neuraminidase inhibitors. A total of 173674 compounds 

were outside the AD of the consensus model. Most of the identified potential NA1 

inhibitors from the ZINC library have one or more aromatic rings. The scaffold 

connecting the rings had C=S, N-H, and C=O, which may form hydrogen bonds 

in the active site of NA1. 

 Docking 5.2
 

The extensive docking process reduced the number of compounds to 1148. 

The structures of the top 10 PNI selected for energy minimization can be 

observed in (Table5.5). The Tanimoto coefficient was calculated between the top 

10 PNI and established drugs i.e. oseltamivir, zanamivir and laninamivir. The 

patent records were checked for any possible patents of the inhibitors suggested 

by our work.  In addition the inhibitors were inspected for role in any other 

disease. Lastly, commercial availability of the compounds was looked into.  

As can be observed from the (Table5.6) none of the PNI is closely related 

to established drugs. However, PNI were found to be more similar to zanamivir 
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and laninamivir which could be attributed to the presence of guanidino group. 

ZN37 was found to be most similar to all three established inhibitors which can be 

observed by highest tanimoto coefficient of 0.549, 0.609 and 0.307 for zanamivir, 

laninamivir and oseltamivir respectively.  ZN17 and ZN88 were found to be most 

dissimilar compounds in comparison due to lack of central scaffold present in 

other inhibitors. ZN33 and ZN99 are other compounds similar to established 

inhibitors. Despite having guanidino group and central ring similar to zanamivir 

and laninamivir, ZN88 has low tanimoto coefficient of 0.216, 0.194 and 0.189 

against zanamivir, laninamivir and oseltamivir respectively. The tanimoto 

coefficient of ZN46 was also found on lower side. 

As be seen from (Table5.7) that none of the probable inhibitors have been 

reported in literature for any other diseases. However, two compounds ZN21 and 

ZN37 was found to be covered in patent by IBM and Thomson pharma 

respectively. Despite being screened from ZINC library, none of the PNI is 

commercially available. 
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Table5.5 The final 10 PNI and their ZINC codes 

 

 Zinc Code Structure  Zinc Code Structure 

1 
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(ZN37) 
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ZINC34341188 
(ZN88) 
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CHAPTER 5: NEURAMINIDASE RESULTS AND DISCUSSION                  78 
 

 

Table5.6 Tanimoto coefficient of the PNI against established inhibitors 

 Zinc Code Zanamivir Laninamivir Oseltamivir 

1 ZN37 0.549 0.609 0.307 

2 ZN33 0.398 0.498 0.291 

3 ZN99 0.537 0.495 0.265 

4 ZN35 0.37 0.46 0.28 

5 ZN21 0.353 0.343 0.217 

6 ZN43 0.332 0.333 0.301 

7 ZN46 0.245 0.294 0.259 

8 ZN88 0.216 0.194 0.189 

9 ZN17 0.157 0.142 0.098 

10 ZN78 0.115 0.14 0.132 
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Table5.7 Information related to PNI 

 Zinc 
Code 

Literature 
Reference Organism Patent Other 

Diseases 

 
Vendor 

1 ZN33 

 
Bioorg Med Chem 

Lett. 2002 Aug 
5;12(15):1925-8 

 

Influenza 
A None None None 

2 ZN35 

 
Bioorg Med Chem 

Lett. 2002 Aug 
5;12(15):1925-8. 

 

Influenza 
A None None None 

3 ZN99 

 
Bioorg Med Chem 

Lett. 2002 Aug 
5;12(15):1921-4. 

 

Influenza 
A None None None 

4 ZN21 
Bioorg. Med. Chem. 

Lett., (1996) 
6:15:1805 

Influenza 
A/B 

IBM Patent 
Data 

EP0833825; 
US5990156; 

WO1996036628 

None None 

5 ZN43 

 
J. Med. Chem., 
(1998) 41:6:787 

  

Influenza 
A/B None None None 

6 ZN17 
 

None 
 

None None None None 

7 ZN37 

 
Bioorg Med Chem 

Lett. 2002 Aug 
5;12(15):1925-8. 

 

Influenza 
A 

Thomson 
Pharma  None None 

8 ZN46 
 

None 
 

None None None None 

9 ZN88 
 

None 
 

None None None None 

10 ZN78 
 

None 
 

None None None None 
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 Energy Minimization and Rescoring  5.2.1
 

Scores generated as a result of energy minimization can be observed in 

Table 5.8. The energy minimization and pose rescoring resulted in decrease of the 

energy for ZN17 and ZN78. The binding free energy of zanamivir and 

laninamivir was found to be close to each other. For all three i.e. oseltamivir, 

zanamivir and laninamivir, lowest binding free energy was found in N9_R292K. 

Besides N9_R292K the binding free energy of zanamivir and laninamivir showed 

no effect of mutation. On the other hand, the binding free energy of oseltamivir 

dropped slightly in N1_N294S and even more in N1_H274Y. Binding free energy 

of the top five PNI were not affected by N1_H274Y and N1_N294S mutation but 

some slight drop was observed in N9_R292K. 

 Standard Deviation of the docking scores 5.2.1.1
 

The standard deviation (SD) of the docking scores was calculated (Table 

5.8) in order to indicate how susceptible the different inhibitors are to different 

mutation environments. The lowest SD was observed for ZN78 but it also had 

lowest average docking score. The SD of ZN43, ZN88, ZN35 and ZN46 was 

found close to each other. Among these four ZN88 had highest average binding 

free energy followed by ZN46, ZN35 and ZN43. Though ZN33 and ZN21 ranked 

2nd and 3rd according to the average binding free energy but they showed higher 

SD in comparison to the above mentioned inhibitors. The highest SD was 

observed for  laninamivir, zanamivir and oseltamivir indicating maximum 
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susceptibility towards mutations. Hence, ZN43, ZN88, ZN35 and ZN46 are least 

influenced by mutations and also has good binding free energy. 

 
Table 5.8  Binding free energy (kcal/mol) of 10 PNI along with oseltamivir, 

zanamivir and laninamivir. 
 

Compound N1_closed N1_N294S N1_H274Y N9_closed N9_R292K ABFE SD 

ZN78 -5.51 -5.17 -5.02 -5.15 -6.01 -5.372 0.4 

ZN43 -9.24 -9.28 -9.7 -8.71 -8.19 -9.024 0.584 

ZN88 -11.17 -11.6 -11.63 -10.64 -10.25 -11.058 0.604 

ZN35 -9.79 -9.61 -10.16 -9.31 -8.5 -9.474 0.625 

ZN46 -9.21 -9.43 -10.7 -9.12 -9.39 -9.57 0.644 

ZN37 -7.49 -8.15 -9.58 -8.04 -8.21 -8.294 0.733 

ZN99 -7.92 -10.13 -9.31 -8.51 -8.93 -8.96 0.833 

ZN33 -10.94 -9.71 -10.61 -10.08 -8.75 -10.018 0.853 

ZN21 -9.02 -10.18 -11.16 -9.21 -8.95 -9.704 0.952 

ZN17 -7.75 -7.7 -5.28 -6.46 -5.99 -6.636 1.079 

Laninamivir -7.65 -8.32 -8.85 -7.57 -5.59 -7.596 1.237 

Zanamivir -8.1 -7.83 -8.73 -7.97 -5.28 -7.582 1.332 

Oseltamivir -8.58 -8.38 -7.72 -8.87 -5.16 -7.742 1.504 
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 Correlation between IC50 and average binding free energy 5.2.1.2
(ABFE) 

 

Table 5.9  Average binding free energy (kcal/mol) and IC50 (nM) oseltamivir, 
zanamivir and laninamivir 

 

 

Zanamivir Laninamivir Oseltamivir 

IC50* ABFE IC50* ABFE IC50* ABFE 

N1_closed 0.15 -8.1 0.28 -7.65 0.31 -8.58 

N1_N294S 0.48 -7.83 1.4 -8.32 28 -8.38 

N1_H274Y 1.5 -8.73 7.5 -8.85 1100 -7.72 

N9_closed 0.65 -7.97 0.74 -7.57 0.28 -8.87 

N9_R292K 35.68 -5.28 16.33 -5.59 2870 -5.16 

Correlation 0.959 0.659 0.986 

 

The IC50 was of zanamivir, laninamivir and oseltamivir for N1 and N9 

strains was collected from the work of Marjuki H et.al (Marjuki et al., 2014) and 

Yamashita (Yamashita, 2010)  respectively. Correlation was calculated between 

IC50 and average binding free energy obtained for zanamivir, laninamivir and 

oseltamivir. High correlation was obtained for oseltamivir and zanamivir i.e. 

0.986, 0.959 which dropped slightly for laninamivir i.e. 0.659 (Table 5.9).  
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Among the 10 PNI, IC50 for six inhibitors are reported for neuraminidase 

A i.e. N1_closed in our study. The correlation of 0.486 was observed between the 

documented IC50 and calculated average binding free energy (Table 5.10).  

 

Table 5.10  Correlation between IC50 and calculated binding free energy 

Compound IC50 (µg/ml) BFE 

ZINC13443833 
0.016 

 (Honda, Masuda, Yoshida, Arai, Kaneko, et al., 2002) 
 

-10.94 

ZINC13443835 
0.0141 

(Honda, Masuda, Yoshida, Arai, Kaneko, et al., 2002) 
 

-9.79 

ZINC13443799 
0.0181 

(Honda, Masuda, Yoshida, Arai, Kaneko, et al., 2002) 
-7.92 

ZINC13778721 
0.28 

(Sollis, Smith, Howes, Cherry, & Bethell, 1996) 
-9.02 

ZINC13778743 
0.0001 

(Smith et al., 1998) 
-9.24 

ZINC29556337 
0.264 

(Honda, Masuda, Yoshida, Arai, Kaneko, et al., 2002) 
 

-7.49 
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 Conformations of Glutamic276 in non-mutant strains 5.2.2
 

Comparison of the poses of N1_closed with oseltamivir, zanamivir and 

laninamivir (together all three will be referred as OZL) reveals that Glu276 can 

occupy two conformations suitable for both polar and non-polar interactions 

(Figure5.2). In the first conformation, i.e. with zanamivir and laninamivir as 

ligands, the carboxylic group faces the binding pocket thereby forming hydrogen 

bond with 8- and 9- hydroxyl of the glycerol group of zanamivir and laninamivir. 

On the other hand while oseltamivir is the ligand, carboxylic group of Glu276 

faces away from binding pocket thus making the pocket more hydrophobic in 

nature. This facilitates oseltamivir pentyloxy side to form non-polar interactions 

with Glu276. 

 Conformation of Glutamic276 leading to resistance 5.2.3
 

All three mutations, i.e. N294S, H274Y and R292K, results in movement 

of carboxylic group inside hydrophobic cavity with varying strength. This results 

in the disruption of hydrophobic cavity leading to resistance against oseltamivir.  

 N294S and H274Y mutations 5.2.3.1
 

Mutation of Asn294 to Ser294 (N294S) results in slight change in the 

position of Glu276 which has no effect on hydrogen bond formation with polar 

side chain of zanamivir or laninamivir (Figure5.3). The non-polar side chain of 

oseltamivir was pushed outside by about 1Å. The effect of Tyr347 being slightly 

flipped did not result in loss of hydrogen bond. However, the bond length of  
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Figure5.1  Structures of oseltamivir, zanamivir, laninamivir and top 5 PNI accoring to ABFE 

 
Figure5.2 Conformation of Glu276 with osetlamivir, zanamivir and laninamivir as inhibitors 

 
Figure5.3 Comparsion of oseltamivir and zanamivir poses in N1_closed and N1_N294S. 
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Figure5.4 Comparison of pose of oseltamivir, zanamivir in N1_closed and N1_H274Y. 

 

 
Figure5.5 Comparison of poses of oseltamivir, zanamivir in N9_closed and N9_R29K. 

 

 
Figure5.6 Comparsion of ZN88 and oseltamivr pose in N1_closed and N9_closed 
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hydrogen bond formed was higher by 0.2Å for mutated system. These results are 

in concordance with study performed by Collins et.al (Collins et al., 2009; Collins 

et al., 2008). 

As a result of H274Y, i.e. His274 to Tyr274, mutation, Glu276 moved 

inside the cavity by about 2Å thereby pushing the oseltamivir outside by about 

2.1Å (Figure5.4). However, the mutation resulted in orientation of Glu276 close 

to one required by zanamivir and laninamivir for formation of hydrogen bond. 

Hence, binding mode of zanamivir and laninamivir was not affected and they 

formed hydrogen bond with Glu276 in both closed and mutant strains. 

Effect of large inward movement of Glu276 in N1_H274Y as compared to 

N1_N294S was also evident by high binding free energy difference of oseltamivir 

between N1_H274Y and N1_closed in comparison to N1_N294S and N1_closed. 

 R292K mutation 5.2.3.2
 

The comparison of poses of oseltamivir in N9_closed and N9_R292K 

shows that mutation of Arg292 to Lys292 (R292K) causes the Glu276 to adopt a 

conformation enabling it to form salt bridge with Lys292 (Figure5.5). This 

inward movement disrupts the hydrophobic cavity required by oseltamivir’s 

pentyloxy group thereby shifting oseltamivir by 2.96Å which is in good 

agreement with a recent study (Yan Wu et al., 2013). The change in orientation of 

Glu276 has limited effect on zanamivir and laninamivir due to the formation of 

hydrogen bond between polar group of the side chain and Glu276. However, 

presence of Lys292 instead of Arg292 resulted in loss of hydrogen bond with the 
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carboxylic group of the ligand.  This causes resistance against OZL which is 

indicated by lowest binding free energy in N9_R292K. 

 Comparison of the poses of potential inhibitors with 5.2.4
wild strains 

 

 Comparison of the poses of ZN88 with oseltamivir in N1_closed and 

N9_closed (Figure5.6) indicates that side chain of ZN88 and oseltamivir are close 

to each other. In both N1_closed and N9_closed (Figure5.7) amino group of side 

chain of ZN88 forms salt-bridge with Glu276 and Glu277. Salt-bridge between 

amino group of side chain and Asp151 was observed in N1_closed. In addition, 

non-polar part of the side chain is involved in hydrophobic interactions.  

On the other hand, side chain of ZN33 shows more flexibility as observed 

from the poses with N1_closed and N9_closed (Figure5.7).  Similar to ZN33, the 

flexible side chain of ZN35 was found close to oseltamivir exploring the 

hydrophobic cavity in N1_closed and N9_closed (Figure5.9). In both ZN33 and 

ZN35, the ether group of the side chain was not able to form any hydrogen bond.  

The longer pentyl side chain of ZN21 was found to be close to the 

terminal of oseltamivir side chain in N1_closed. The side chain was found to be in 

different conformation in N1_closed thus indicating the flexibility of the side 

chain (Figure5.10). Despite of the presence of ketone group and amine group no 

polar interaction was observed. 

The side chain of ZN46 was found in close proximity to oseltamivir and 

formed non-polar interaction similar to other inhibitors (Figure5.11). In addition  
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Figure5.7  Comparsion of the Interactions of ZN88 in N1_closed and N9_closed. 

 
Figure5.8 Comparsion of ZN33 and oseltamivr pose in N1_closed and N9_closed 

 
Figure5.9 Comparsion of ZN35 and oseltamivr pose in N1_closed and N9_closed.  
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Figure5.10  Comparsion of ZN21 and oseltamivr pose in N1_closed and N9_closed 

 

 
Figure5.11 Comparsion of ZN46 and oseltamivr pose in N1_closed and N9_closed 

 

 
Figure5.12 Comparsion of the poses of ZN88 in different strains  
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the ketone group was also able to form additional hydrogen bond with Arg152. 

However, the amino group did not participate in hydrogen bond with Glu276, 

Glu277 and Asp151 like ZN88. 

Due to absence of side-chain amino group, ZN33, ZN35 and ZN21 lacked 

additional salt-bridge formed by ZN88. All inhibitors due to guanidino group 

formed hydrogen bond with Glu119, Asp151, Arg152, Trp178, Glu227 and 

between Arg152 and amide group similar to zanamivir and laninamivir. 

Increase of the side chain by one carbon in ZN35 in comparison to ZN33 

cause the shorter side chain to move inside the pocket. This indicates the side 

chain, only as long as propyl can occupy the binding cavity. The effect of longer 

chain was also observed in ZN21 where longer side chain hindered its entrance 

into the pocket. The unprotonated form of amino group in ZN46 resulted in 

absence of hydrogen bond with Glu276, Glu277 and Asp151. 

 Comparison of the poses of potential inhibitors with 5.2.5
mutant strains 

 

 The comparison of poses of ZN88 across different mutant strains reveals 

that pose with N1_N294S is almost similar to one with N1_closed (Figure5.12). 

However, for mutant N1_H274Y, where Glu276 is present more towards the 

pocket, the side chain of ZN88 is pushed backwards. In N9_R292K, the presence 

of Lys292 resulted in smaller hydrophobic cavity (Figure5.13a). It can be 

observed that side chain of pose in N1_H274Y crashes in the surface created by 

N9_R292K. This causes the side chain to rotate and still form the non-polar 
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interactions. In addition, the amino group of ZN88 was able to form salt-bridge 

with Glu276 in N9_R292K (Figure5.13b) and in N1_H274Y (Figure5.14). The 

interaction between Asp151 and ZN88 was not observed in N1_N294S 

(Figure5.14). 

Like ZN88, the pose of ZN33 in N1_closed was found similar to 

N1_N294S. However, for N1_H274Y the shorter ethyl side chain was found to be 

deep inside the cavity while propyl side chain was pushed outside (Figure5.15). 

For N9_R292K, the ethyl side chain was found inside the pocket while propyl 

was found facing outwards. The longer side chain was found to be shifted as a 

result of constricted hydrophobic cavity. The interactions with guanidine and 

amide group, similar to non-mutant strains, were found in all mutant systems. 

The effect of increase in length of the side chain can be observed from the 

orientations of ZN35. Except for N1_N294S, the side shorter chain was found 

inside the pocket for N1_closed and N1_H274Y. For N9_R292K the side chain 

was found to be twisted due to constrain in binding cavity (Figure5.16).  

Almost similar poses were observed for ZN21 in N1_closed, N1_N294S 

and N1_H274Y (Figure5.17). The side chain was found to be rotated in opposite 

direction in N9_R292K as compared to N9_closed. However, the effect of the 

change in hydrophobic cavity was not observed in both N9_closed and 

N9_R292K as the side chain was not found facing the base of the cavity. 

ZN46 was able to deal with the mutation by the change in orientation of side 

chain (Figure5.18). The vinyl group was able to form non-polar interaction with  
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a)                                     b) 

Figure5.13 a) Comparsion of the poses of ZN88 in N1_H274Y and N9_R292K b) Interaction of 
Zn88 in R292K 

 

 
Figure5.14 Comparsion of the poses of ZN88 in N1_N294S and N1_H274Y 

 

 
Figure5.15 Comparison of the poses of ZN33 in different strains 
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Figure5.16 Comparison of the poses of ZN35 in different strains 

 

 
Figure5.17 Comparison of the poses of ZN21 in different strains 

 

 
Figure5.18 Comparison of the poses of ZN46 in different strain  
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Tyr347 in N1_N294S and N1_H274Y; with Ala246 in N9_closed; and with 

Ile222 in N9_R292K. In addition, the ketone group was able to hydrogen bond 

with Arg152 in N1_closed and N9_R292K. 

For both ZN88 and ZN33 in N1_N294S and N1_closed, side chain was 

found close to each other due to less inwards movement of Glu276 inside 

hydrophobic cavity. On the other hand greater inward movement of Glu276 in 

N1_H274Y resulted in pushing side chains deeper in the pocket. ZN35, ZN21 and 

ZN46 indicate that the length of the side chain and the flexibility is a key 

determinant in formation of non-polar interactions. The presence of Lys292, in 

addition to inward movement of Glu276, caused the shift in side chain of ZN88 

and ZN33. Effect of constriction in hydrophobic cavity was also observed in 

ZN35 and ZN46. Nevertheless, all inhibitors were able to form non-polar 

interaction in all the systems.  

The central ring and guanidino group were unaffected by any mutation. 

Hence, interaction between Glu119, Asp151, Arg152, Trp178, Glu227, Arg152 

and guanidino group was still maintained similar to N1_closed and N9_closed. 

All inhibitors formed hydrogen bond with arginine triad i.e. Arg118, Arg292 and 

Arg371 in N1_closed except in N9_closed where Arg292 was replaced with 

Lys292. 

In addition, ZN88 was able to form hydrogen bond with Glu276 and 

Glu277 in all the cases. Though hydrogen bond was not observed between 

Asp151 and side chain of ZN88, the distance was close enough to make 
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interactions. It is possible that a slight change in conformation might lead to 

formation of hydrogen bond. The concluding remarks of this work have been 

described in Chapter 9. 
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Chapter 6 

MCL-1 
 

This chapter describes one of the most important biological processes 

known as apoptosis and its role in maintaining cell balance (6.1). It also 

describes the control of apoptosis by BCL-2 family of proteins and implications in 

cancer (6.2). Importance of Myeloid cell leukemia-1 (MCL-1) in apoptosis and as 

a drug target is discussed in 6.3 section. 

 

 Apoptosis  6.1
 

The study by Kerr et.al. (Kerr, Wyllie, & Currie, 1972) highlighted the 

importance of a process known as cell death or apoptosis. According to them, 

apoptosis plays a complementary and opposite role to mitosis, thereby regulating 

cell population. In multicellular organisms, the delicate balance between the 

number of cells to be eliminated and number of new cells produced is maintained 

by apoptosis (Meier, Finch, & Evan, 2000).  Apoptosis is activated whenever 

tissue modeling is required and has many essential roles (Golstein, 1998) such as 

it eliminates the less fit cells in vertebrate epiblast (Claveria, Giovinazzo, Sierra, 

& Torres, 2013), shapes the embryo (e.g. by removing interdigital cells during 

limb formation) (Zuzarte-Luis & Hurle, 2002), eliminates autoreactive and non-

functioning immature lymphocytes (Rathmell & Thompson, 2002).   
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 Apoptosis and Cancer 6.1.1
 

In a seminal study, Weinberg and Hanahan (Hanahan & Weinberg, 2000) 

described six hallmarks traits that govern the transformation of normal cells to 

cancer cells. They include sustaining proliferative signaling, evading growth 

suppressors, resisting cell death, enabling replicative immortality, inducing 

angiogenesis, and activating invasion and metastasis. Recently, this list  

was updated to include four more traits i.e., genome instability and mutation, 

tumor-promoting inflammation, avoiding immune destruction and deregulating 

cellular energetics (Hanahan & Weinberg, 2011). Among all these, apoptosis has 

been the center of attraction as cancer cells try to evade cell death either by 

inactivation of pro-apoptotic or up-regulation of anti-apoptotic factors (Marsoni & 

Damia, 2004). 

 Apoptotic Pathways 6.1.2
 

Apoptosis involves the following steps: detection of stress signals, 

suppression of anti-apoptotic proteins, activation of pro-apoptotic proteins, release 

of apoptosis inducing agents from mitochondria inter-membrane space (IMS) 

such as cytochrome c and Smac/DIABLO, activation of caspases and finally cell 

death (Tait & Green, 2010). Caspases are effector molecules in apoptotic pathwa- 
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Figure6.1 The intrinsic and extrinsic apoptotic pathways (adapted from (Peter E. Czabotar, 

Lessene, Strasser, & Adams, 2014; Youle & Strasser, 2008)). 
Cytotoxic stimulus like intracellular damage, cytokine deprivation initiates the intrinsic pathway 
by activation of BH3-only proteins. BH3 proteins inhibit anti-apoptotic BCL-2 proteins thus 
indirectly activating apototic proteins BAX and BAK. However, Some BH3-only proteins, such as 
BIM and PUMA, may also be able to directly activate BAX or BAK. BAX and BAK after 
oligomerization cause mitochondrial outer membrane permeabilization (MOMP) thereby releasing 
cytochrome C (Cyt C) and SMAC. Cytochrome C combines with APAF1 to form apoptosome 
which in turn activates pro-caspase 9 to caspase 9. SMAC inhibits XIAP (X-linked inhibitor of 
apoptosis protein) which can inhibit caspase 9. Caspase 9 activates effector caspases e.g. caspase 
3, caspase 7 causing cell death. Extrinsic pathway is activated by various factors such as genotoxic 
agents. Death receptor on activation recruits protein with a death domain (DD) which in turn 
recruits pro-caspase 8 leading to its activation. Caspase 8 creates active form of BID i.e. tBID by 
cleavage. tBID links extrinsic pathway to intrinsic pathway.  



CHAPTER 6: MCL-1                                                                                          100 
 

 

 
Figure6.2 Classification of core B-cell lymphoma-2 (BCL-2) family proteins on the basis of 
BCL-2 homology (BH) domains (adapted from (L. W. Thomas, Lam, & Edwards, 2010)) 

 
Figure6.3 The selective interactions within BCL-2 family members. (adapted from (Peter E. 

Czabotar et al., 2014)) 
 a) It can be observed that promiscuous binders BIM, PUMA and tBID can inhibit all the anti-
apoptotic proteins. On the other hand, NOXA interact only with MCL-1 and A1 and BAD only 
with BCL-2, BCL-XL and BCL-W and are known as selective binders b) Similarly BAX can be 
inhibited by all anti-apoptotic members while BAK is only inhibited by BCL-XL, MCL-1 and A1  
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-ys and are synthesized as inactive pro-caspases. On initiation of apoptotic 

pathway, these pro-caspases convert to active form via cleavage of a pro-domain 

mostly by other caspases (Favaloro, Allocati, Graziano, Di Ilio, & De Laurenzi, 

2012). Caspases can be activated by two major pathways (Figure6.1) i.e. extrinsic 

pathway and intrinsic pathway (Fulda & Debatin, 2006). 

 BCL-2 Protein Family 6.2
 

BCL-2 was discovered over 20 years ago as a result of its upregulation in 

follicular B-cell lymphoma. This was a milestone discovery as overexpression of 

BCL-2 inhibited the cell death instead of promoting cell proliferation like most 

previously discovered oncogenes (Tsujimoto, Ikegaki, & Croce, 1987). It has 

been widely accepted that BCL-2 family of proteins, is essential for the 

development and maintenance of homeostasis. 

BCL-2 family proteins are characterized by the presence of four regions of 

sequence homology i.e. BCL-2 homology (BH) domains. Based on structural and 

functional features, BCL-2 proteins family can be divided into three sub-families 

i.e. anti-apoptotic proteins, multi-domain pro-apoptotic proteins (also known as 

effector proteins) and BH3-only pro-apoptotic proteins (Figure6.2). The anti-

apoptotic proteins includes BCL-2, BCL-XL, MCL-1, BCL-W and BCL‑2A1; 

effector proteins consists of  BAX, BAK and BOK; and BH3-only pro-apoptotic 

proteins comprise of BIM, BID, PUMA, BAD, HRK, NOXA and BMF. 
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 BCL-2 family protein-protein interactions  6.2.1
 

The BH3-only proteins act upstream of BAX and BAK which can be 

deduced from the fact that in the absence of BAX and BAK, BH3-only proteins 

cannot induce apoptosis on their own. Initially, it was believed that activated 

BH3-only proteins can bind to all pro-survival counterparts. However, due to 

subtle differences in their BH3 domains and in the groves of the anti-apoptotic 

proteins, it was found that different BH3-only proteins have varying affinity 

towards anti-apoptotic counterparts (Figure6.3). BIM, PUMA and tBID can bind 

to all the pro-survival proteins and are knows as promiscuous binders. On the 

other hand, NOXA interact only with Mcl-1 and A1 and BAD only with BCL2, 

BCL-XL and BCL-W and are known as selective binders (Weyhenmeyer, 

Murphy, Prehn, & Murphy, 2012). 

 BCL-2 family proteins as therapeutic targets 6.2.2

BCL-2 family members have essential roles right from early 

embryogenesis to adult tissue homeostasis. BCL-2 family of proteins regulates 

apoptosis which is important for embryonic development and prevention of 

cancer. In addition to apoptosis, Bcl-2-family proteins regulate other types of cell 

death, including necrosis and autophagy, thus acting as nodal points where 

multiple pathways converge (Yip & Reed, 2008). BCL-2 proteins also play 

critical roles in non-cancerous cells by maintaining neuronal activity, autophagy, 

calcium handling, mitochondrial dynamics and energetics (Hardwick & Soane, 
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2013). Some of the important effects caused by their deletion can be seen in 

Table 6.1 (Peter E. Czabotar et al., 2014; Youle & Strasser, 2008) 

 
Table 6.1 Physiological role of BCL-2 protein families 

 
 

Anti-Apoptotic members 
 

BCL-2 
Abnormal death of renal epithelial progenitors, death of mature B and T 

lymphocytes causing defective immune system, premature greying  

BCL-XL 

Death of fetal erythroid progenitors and neuronal cells. Loss of a single allele 

encoding BCL‑XL decreases spermatogenesis and reduces platelet numbers, 

while loss of both alleles kills hepatocytes resulting in liver fibrosis  

BCL-W Death of developing sperm cell leading to male sterility  

A1 Death of granulocytes and mast cells  

MCL1 
Loss of MCL1 causes failure in implantation, premature death of B and T 

lymphoid cells, cardiomyopathy and heart failure  

Effector Proteins 

BAX Mild lymphoid hyperplasia, male sterility  

BAK 
Elimination of BAK results in excess platelets as a result of increased platelet 

lifespan  

 
BH3-only Proteins 

 

BIM 
Lymphoid and myeloid cell hyperplasia, SLE-like autoimmune disease, 

abnormal resistance to cytokine deprivation, deregulated calcium flux  

BID Resistance to hepatocyte killing, fatal hepatitis  

PUMA Resistant to DNA damage, cytokine deprivation and glucocorticoids  

BAD Resistance to loss of epidermal growth factor or insulin growth factor  

HRK Mild resistance to deprivation of nerve growth factor  

BIK No defects till date  

NOXA 
Mild resistance of fibroblasts to γ-irradiation , but high resistance of 

fibroblasts and keratinocytes in the skin to UV radiation  
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Any flaw in the apoptotic pathway causes several diseases, particularly 

cancer and autoimmunity.  Inhibition of apoptotic pathway not only causes tumor 

progression but also leads to resistance of diverse tumours against chemotoxic 

drugs (Peter E. Czabotar et al., 2014). On the other hand too much apoptosis can 

enhance ischaemic conditions leading to neurodegeneration (Peter E. Czabotar et 

al., 2014). 

 BH3 mimetic as potential drugs 6.2.3

  
Targeting the regulation of anti-apoptotic BCL‑2 family members is the 

most attractive approach. Most of the tumors show increased levels of BH3-only 

proteins due to high levels of anti-apoptotic proteins. Such findings along with the 

success of stapled BH peptides have resulted in the search for BH3 mimetics. 

However, the long, shallow and mainly hydrophobic grove of the anti-apoptotic 

BCL-2 proteins is more challenging and thus only a few slightly potent MCL1 

inhibitors have been discovered. Several small-molecule BH3 mimetics have been 

identified but most of them bind their targets with moderate affinity (Peter E. 

Czabotar et al., 2014; Juin, Geneste, Gautier, Depil, & Campone, 2013). 

Following the line of BH3 mimetics, two potential drugs ABT-737, a BH3 

mimetic modeled after BH3 domain of BAD (Oltersdorf et al., 2005), and ABT-

263 (Tse, 2008) have been launched (Figure6.4). Both ABT-737 and ABT-263 

bind strongly to BCL-2, BCL-XL and BCL-W but not to MCL-1 (Lee et al., 

2007; Oltersdorf et al., 2005). Surprisingly the target of these drugs is BIM-BCL-

2 complex instead of unoccupied BCL-2. Furthermore, their affinity towards 
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BIM-BCL-2 complexes is much more than BIM-BCL-XL or BIM-BCL-W 

complexes (Merino et al., 2012). Thus, increased level of BCL-XL, MCL-1 or A1 

can lead to the resistance against ABT-737 and ABT-263.  Moreover, the ability 

of ABT-263 to act on BCL-XL causes toxicity due to role of BCL-XL in 

controlling the platelet lifespan (Roberts et al., 2012). These findings indicate that 

BH3 mimetics targeting single anti-apoptotic proteins might be better approach. 

The selective target approach was applied in ABT-199, which is a selective BCL-

2 inhibitor. 

 
Figure6.4 BH3 mimetic ABT-737 and ABT-263 

 
 

 

 

 MCL-1 as a drug target 6.2.4
 

MCL-1 is among the most frequently amplified genes in human cancer (G. 

Wei et al., 2012) and has been linked to several cancer including lung, breast, 
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prostate, pancreatic, ovarian, melanoma, leukemia and cervical cancers, making it 

an appealing target (Akgul, 2009; Brotin et al., 2010; Cavarretta et al., 2006; Ding 

et al., 2007; Goncharenko-Khaider, Matte, Lane, Rancourt, & Piche, 2012; Gores 

& Kaufmann, 2012; Mitchell et al., 2010; L. Song, Coppola, Livingston, Cress, & 

Haura, 2005; H. Zhang et al., 2011; Zhou et al., 2013). Moreover, MCL-1 

overexpression has emerged as a resistance mechanism against a number of 

anticancer drugs such as ABT-263 (Tse, 2008), ABT-737 (Yecies, Carlson, Deng, 

& Letai, 2010), BT-199 (Souers et al., 2013) and WEHI-539, as well against 

gemcitabine (S. H. Wei et al., 2008), the widely prescribed drug for pancreatic 

cancer (Lessene, 2013). Though the crucial physiological role of MCL1 suggests 

that targeting it might produce severe side effects, many cancers like acute 

myeloid leukaemia cells are more sensitive to the loss of MCL1. Hence, there is 

need of MCL-1 inhibitors with a well-defined therapeutic window. 

  MCL-1 6.3
 

The human MCL-1 gene is located on chromosome 1q21 and consists of 

three exons. As a result of alternative splicing, MCL-1 gene translate into two 

isoforms i.e. MCL-1L and MCL-1S. MCL-1L (or generally called as MCL-1) 

unlike other anti-apoptotic members possess three BH domains (Figure6.2) i.e. 

BH1-BH3 and lacks BH4 domain (Akgul, 2009).  MCL-1 contains two PEST 

sequences i.e. sequences containing mainly of proline (P), glutamic acid (E), 

serine (S) and threonine (T) at N-terminal (Le Gouill, Podar, Harousseau, & 

Anderson, 2004). These PEST sequences are characteristic of MCL-1 and respon- 
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.  
a) 

 
                                                                         b) 

Figure6.5 Structure of MCL-1 
a) Structure of MCL-1 revealing the hydrophobic grove formed by α2-4 and α8 helices with α5 
forming core of the hydrophobic grove. The pockets P1- P4 are defined by residues 2d, 3a, 3d and 
4a respectively of BIM-BH-3 only protein. b) It can be observed that pocket P2 is deepest among 
all the pockets and pocket P4 is separated from the rest three pockets by a saddle like intervention 
with which Gly266 is aligned. The hydrophobic grove is flanked by electropositive residues 
shown by blue colour of the surface. 
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-sible for its short half-life (Akgul, 2009). Similar to other anti-apoptotic 

members, MCL-1 contains C-terminal transmembrane domain that helps to insert 

into different intracellular membranes including mitochondria (Michels, Johnson, 

& Packham, 2005). MCL-1 is localized at intracellular membranes including 

mitochondria as well as in cytoplasm. Localization of MCL-1 at outer 

mitochondrial membrane is important for its anti-apoptotic function. MCL-1 

localized at mitochondrial membrane inhibits apoptosis by forming dimer with 

pro-apoptotic member BAK thereby suppressing cytochrome-c release from 

mitochondria (Akgul, 2009).  

 MCL-1 function 6.3.1
 

In vitro studies indicate that similar to other anti-apoptotic members, 

MCL-1 sequesters BAK, thereby preventing its oligomerization. This interaction 

is disrupted by NOXA, BIM, BID and PUMA causing cell death (M. R. Warr & 

Shore, 2008). Different BH3-only proteins have different effect upon binding with 

MCL-1. It has been shown that BIM and PUMA stabilizes MCL-1 while NOXA 

induces proteasomal-dependent MCL-1 degradation (P. E. Czabotar et al., 2007).  

 MCL-1 versus BCL-2 family member’s specificity 6.3.2
 

The topology of MCL-1 is similar to other BCL-2 family member 

proteins. MCL-1 is composed of eight helices i.e. α1 (residues 172-191), α2 

(residues 204-221), α3 (residues 225-235), α4 (residues 244-256), α5 (residues 

261-281), α6 (residues 288-301), α7 (residues 303-308) and α8 (residues 312-
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318) where central hydrophobic α5 helix is enveloped by rest seven helices. 

However, the grove is composed of α2-4 and α8 helices surrounding α5 helix 

which forms core of grove (Figure6.4a). Despite the fact that MCL-1 has similar 

structure, it has a distinct BH3 binding profile (Figure6.3).  

Although MCL-1 has a very similar structure with other anti-apoptotic 

BCL-2 proteins, having less than 2Å backbone root mean square deviation 

(RMSD) over conserved helices, it only shares ~25% sequence identity (Day et 

al., 2005; Fire, Gullá, Grant, & Keating, 2010).  Comparison of MCL-1 and BCL-

XL reveals that α3 helix is longer in MCL-1. MCL-1 surface is electropositive in 

nature due to fourteen lysine and four histidine residues present at α3, α3-α4 loop, 

and α4 while BCL-XL grove is essentially uncharged (Figure6.4b). Moreover, 

the binding grove in BCL-XL is tightly packed due to hydrogen bond between 

Gln111 of α3 and Glu129 of α4 in comparison to Lys215 and His233 in MCL-1. 

This results in significantly different BH3 binding profile of MCL-1 in 

comparison to other anti-apoptotic members (Day et al., 2005; Quinn et al., 2011).  

 BH3 and interaction with MCL-1 6.3.3
 

The sequences of BH3 peptides are highly variable. However, for all BH3 

the residues follow a heptad repeat, [abcdefg]n, with ‘‘a’’ and ‘‘d’’ positions 

buried in the hydrophobic pocket of the respective partner. It has been observed 

that residues at position 3e (mostly having small residue like glycine), aspartic 

acid at 3f and four hydrophobic residues at positions 2d, 3a, 3d and 4a (4a means 

residues at a position in 4th heptad repeat) are more or less conserved.  The 
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pockets corresponding to the four hydrophobic residues 2d, 3a, 3d and 4a in anti-

apoptotic members are known as P1, P2, P3 and P4 respectively (Figure6.4a).  

The difference in residues at positions 2d, 3a, 3d and 4a can lead to 

difference in specificity (Fire et al., 2010). In BH3-only proteins, 2d  is the least 

conserved of all four hydrophobic residues i.e. 2d, 3a, 3d and 4a while the 

hydrophobic residues 3a and 3d are highly conserved.  Though residues 3a and 3d 

provide stability but their role in selectivity is yet not clear (Day et al., 2005). 

As can be seen from Figure6.4b the pockets are of varying depths and 

sizes. The P2 pocket is the deepest among them and is contiguous with the 

shallower pockets P1 and P3. Residue 3e aligns with a saddle point which 

separates the pocket P1, P2 and P3 from P4. Structure compounds targeting BCL‑

2, BCL‑XL or MCL-1 reveals that all compounds are anchored in the P2 

hydrophobic pocket. The P2 pocket appears to be critical for binding all of the 

ligands because of its plasticity and ability to accommodate the BH3 mimetics 

into deep cavities not present with natural ligands (P. E. Czabotar et al., 2007). 

The important role of the conserved residues 2d, 3a, 3d, 4a and 3g are as follows: 

  Position 2d 6.3.3.1
 

 The binding pocket P1 surrounding 2d is formed by residues of α3 and α4 

helices i.e. Met231, Lys234, Leu235, Val249 and Phe270. Moreover, it seems that 

the interaction with pocket P1 forms the selctive binding criteria (Day et al., 

2005). 



CHAPTER 6: MCL-1                                                                                          111 
 

 

 MCL-1 can undergo local conformational change at the 2d position to 

accommodate isoleucine, smaller residue alanine or even larger residues like 

tyrosine. In case of smaller residue alanine Leu235 shifts to fill the cavity. While 

for large residue like tyrosine, a more prominent movement of α3 region of MCL-

1 by 1.7 Å away from the peptide and 1.2 Å movement of peptide away from 

MCL-1 is observed. This movement is facilitated by the local conformational 

changes in peptide and α3 helix of MCL-1. (Fire et al., 2010).  

 Position 3a 6.3.3.2
 

Pocket P2, engaged by 3a, is formed by Met231, Val249, Val253, Leu267, 

Phe270 in case of MCL-1. This pocket cannot accommodate charged or polar 

residues (Fire et al., 2010). 

 Positions 3d 6.3.3.3
 

Residues Val220, His224, Ala227, Phe228, Met231 and Thr266 forms 

pocket P3 enveloping 3d. Due to less helical α3/α2 region of the receptor, 3d site 

is less tightly packed in BCL-XL in comparison to MCL-1. In MCL-1, the site is 

constrained to isoleucine whereas BCL-XL can accommodate a range of residues. 

(Dutta et al., 2010; Fire et al., 2010).  

 Position 4a 6.3.3.4
 

  The pocket P4 formed by Val216, Val220, Val265, Phe319 for MCL-1 is 

found to be more open and solvent exposed in MCL-1 as compared to BCL-XL. 

This makes MCL-1 tolerant to many mutations at site 4a while BCL-XL is more 
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constrained at this site. If 4a site is replaced with charged or polar amino acids, 

affinity of the BH3 only protein to BCL-XL drops significantly (Fire et al., 2010).  

 Positions 3g 6.3.3.5
 

 Presence of negatively charged residues at 3g position makes BH3 only 

proteins BCL-XL specific due to presence of arginine. On the other hand, NOXA, 

a MCL-1 specific BH3-only protein, has a lysine at this position. Mutation of 

lysine to glutamic acid increases the affinity of NOXA towards BCL-XL (Fire et 

al., 2010). 

Comparison of apo and holo forms of both BCL-XL and MCL-1 reveals 

that binding grove needs to open in order to accommodate BIM BH3 peptide. The 

structural change accompanied with binding grove opening is largest in P2 and P3 

(P. E. Czabotar et al., 2007). While, MCL-1 achieves it by reorientation of 

carboxy-terminal end of α4 helix, BCL-XL does it by shifting the residues that 

compose α3 helix (Fire et al., 2010). This can be attributed to the higher flexibility 

of α4 helix in MCL-1 and α3 helix in BCL-XL (C.-Y. Yang & Wang, 2012). 

 Targeting MCL-1 6.3.4
 

Numerous approaches have been applied to target MCL-1. However, most 

of them are not MCL-1 specific and target multiple anti-apoptotic proteins. BH3 

mimetic is one of the most promising approaches and has been applied to discover 

some of the recent drugs.  
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 ABT-737 6.3.4.1
 

It is one of the most successful BH3 mimetic and has strong affinity 

towards anti-apoptotic members of the BCL-2 family. The chloro-biphenyl 

moiety and thio-phenyl moiety of ABT-737 occupies P2 and P4 pocket 

respectively. MCL-1 and BCL-XL differs in P2 pocket. Moreover, in MCL-1, P4 

pocket is relatively more open and exposed towards the solvent. Hence, ABT-737 

does not bind with MCL-1, thereby fails in cancer with overexpression of MCL-1 

(Lee et al., 2007). 



CHAPTER 7: MCL-1 METHODS                                                                      114 
 

 

Chapter 7 

MCL-1 Methods 
 

The methods used to explain the activity of the compounds against MCL-1 

are elaborated in this chapter. Docking and molecular dynamics are explained in 

7.1 and 7.2 sections respectively. The specific parameters for MCL-1 are also 

described in these sections.  

 

 Docking 7.1
 

 Structure preparation 7.1.1
 

 The structure of MCL-1 (PDB id 2NL9) was downloaded from PDB. 

Ligand and water molecules were deleted from PDB structure and the resulting 

structure was prepared using MOE. The structure was prepared by addition of 

hydrogen atoms, structure correction, protonation states according to pH 7 and 

energy minimization of hydrogen atoms keeping heavy atoms fixed. The 

calculation of partial charges and energy minimization was performed using 

AMBER99 within MOE.  
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 Active site 7.1.2
 

 Active site was determined by selecting the residues within 6Å of the 

natural peptide. It comprised of Arg215, Val216, Gly217, Gly219, Val220, 

His224, Ala227, Phe228, Gly230, Met231, Leu232, Lys234, Leu235, Asp236, 

Lys244, Ser245, Leu246, Arg248, Val249, Met250, His252, Val253, Phe254, 

Ser255, Asp256, Gly257, Val258, Asn260, Trp261, Gly262, Arg263, Ile264, 

Val265, Thr266, Leu267, Phe270, Phe318, Phe319, His320 and Val231. 

 Dataset for docking 7.1.3
 

In the study by Bernando et al.  (Bernardo et al., 2010), compounds having 

rhodanine scaffold, i.e. ST_1_046 and ST_1_109 Table7.1, were reported to be 

active against MCL-1. ST_1_046 and ST_1_109 exhibited different pro-survival 

protein selectivity. While ST_1_046 acted as selective Mcl-1 inhibitor, ST_1_109 

showed activity against both Mcl-1 and Bcl-XL. The selectivity of ST_1_046 

towards Mcl-1 was credited to the para-methoxy group, which fits perfectly in the 

binding groove of Mcl-1 but faces steric repulsion in the binding groove of Bcl-

XL. In the work by Bernardo et al., effect of substituent groups towards 

selectivity and activity was studied but function of the rhodanine scaffold was not 

understood. Rhodanine-based compounds are known as pan assay interference 

compounds (PAINS) due to frequent hits in screening campaigns. Rhodanine-

based compounds can non-specifically interact with proteins in multiple ways due 

to more than one reactive site present on rhodanine. Thus activity of compounds 
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possessing a rhodanine moiety is considered very skeptically despite convincing 

results (Tomasic & Peterlin Masic, 2012). 

To understand the functional role of the scaffold in interaction with anti-

apoptotic proteins, our collaborator Miss Tang Shi Qing graduate student Dr. 

Christina CHAI, used scaffold-hopping strategy to swap the rhodanine scaffold 

with structurally related five-membered multihetrocyclic rings, i.e. 

thiohydantoins, hydantoins and thiazolidinediones Table7.1 were used for 

docking. These rings differ in the presence of the exocyclic and endocyclic sulfur 

atoms. The compounds synthesized have biaryl substituents similar to ST_1_046 

and ST_1_109 for direct comparison. In addition to similar biarayl substituents, 

bicyclic methylidene substituent and naphthalene-1-yl methylene was also 

synthesized to analyze the effect of multicyclic arylidenes versus biaryl arylidenes 

in the different heterocyclic systems. 

 Fluorescence polarization assay 7.1.3.1
 

The inhibitory activity of the compounds against Mcl-1 and Bcl-XL was 

evaluated with fluorescence polarization assay (FPA) by our collaborator Miss 

Tang Shi Qing graduate student Dr. Christina CHAI. FPA was performed by 

using a fluorescein tagged BH3 domain of Bak peptide as the fluorescent source. 

The Bak peptide was chosen because it is known to bind to both proteins of 

interest. The optimal protein concentration to be used for the assay was firstly 

determined via a protein titration with 60 nM of Flu-Bak ligand. From the titration 

curves, the optimal protein concentration for Mcl-1 and Bcl-XL were found to be  
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Table7.1 Dataset for Mcl-1 studies 

 

 
 

Name 
 

Structure Class 
 

IC50 (µM)* 

1 ST_1_109 
 

rhodanines 
 

22.31 

2 ST_1_046 
 

rhodanines 
 

10.64 

3 ST_1_R1N 

 

rhodanines 

 
17.84 

4 ST_1_202 
 

thiohydantoin 
 

58.5 
 

5 ST_1_208 
 

thiohydantoin 
 

38.97 

6 ST_1_247 
 

thiohydantoin 
 

38.46 
 

7 ST_1_222 

 

hydantoin 
 

57.68 

8 ST_1_227 

 

hydantoin 

 
45.90 

9 ST_1_261 

 

hydantoin 
 

57.07 

10 ST_1_159 
 

thiazolidinedione 
 

>100 

11 ST_1_162 

 

thiazolidinedione 

 
>100 

12 ST_1_249 

 

thiazolidinedione 
 

>100 

* The IC50 values are the average of three independent experiments;  
Values are the average ± standard error of the mean . 
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63.75 μg/ml and 37.5 μg/ml respectively. Using the optimal protein concentration, 

the IC50 values of our compounds were obtained by performing a 10-point 2-fold 

dilution of the compounds with 60 nM of Flu-Bak and 63.75 μg/ml and 35.60 

μg/ml Mcl-1 and Bcl-XL respectively. All the IC50 values determinations were 

carried out in triplicates and average IC50 was reported Table7.1 

 Molecular Docking 7.1.4
 

Docking was performed in MOE by default parameters. Primary challenge 

in a docking study is prediction of the correct binding pose. The involvement of 

rhodanine moiety enhanced this problem thus post-processing of the docking 

results was performed. Different methods for post-processing of the docking 

results such as using MPBSA (Lindstrom et al., 2011) clustering (Kozakov, 

Clodfelter, Vajda, & Camacho, 2005) and short MD simulation have been applied 

(Yuriev & Ramsland, 2013). In our work poses predicted by MOE were clustered 

and the pose with best docking score of highest cluster was selected for further 

analysis.  

 Molecular Dynamics 7.2
 

 System preparation 7.2.1
 

For molecular dynamics structure with PDB id 4HW4 was used which has 

complete human sequence as compared to 2NL9. The best pose predicted by 

docking was overlapped with 4HW4 and was used as starting structure. The 

partial charges and force field parameters for the compounds were generated 
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automatically by the antechamber suite in AMBER12 (D.A. Case, 2012). The 

general AMBER force field (gaff) (J. Wang et al., 2004) was used for the 

compounds, and AMBER ff12SB force field for the proteins. All missing 

hydrogen atoms of the proteins were added using the LEaP module in AMBER12. 

Systems were solvated using TIP3P (Jorgensen et al., 1983) water in a octahedron 

box extending 12 Å beyond any solute atom. The system was made neutral by 

adding appropriate number of counter ions.  

 Minimization, heating up and equilibration of system 7.2.2
 

Molecular dynamics simulations were performed using pmemd.cuda in 

AMBER12. Water molecules and counter ions were minimized with 500 cycles of 

steepest descent followed by same number of conjugate gradient cycles. This was 

followed by energy minimization of the entire system. Molecular dynamics 

simulations were performed using a time step of 2 fs with a cutoff radius of 8Å 

for the non-bonded interactions. Long range electrostatic interactions were 

calculated by particle-mesh Ewald (PME) method (Darden, York, & Pedersen, 

1993). The bonds involving hydrogen were constrained using SHAKE algorithm 

(Ryckaert, Ciccotti, & Berendsen, 1977) and Langevin dynamics was used for 

temperature control. The temperature was gradually increased from 0k to 310K 

with protein restraints over a period of 20ps at NVT conditions. This was 

followed by 1000ps of NPT equilibration at 1 atm pressure and later succeeded by 

production run. The periodic boundary conditions (PBC) were used during 

molecular dynamics simulations. 
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 Production run 7.2.3
 

It has been suggested that single longer trajectory approach does not 

necessarily lead to good results (T. Hou, J. Wang, Y. Li, & W. Wang, 2011). 

Moreover, in a recent study it was shown that a single run samples the system 

inadequately and replicate trajectories enhances the search of conformational 

space (Adler & Beroza, 2013) . Coordinates of not more than 1% of the atoms of 

the receptor was altered by 0.001 Å while keeping the initial velocities unchanged 

of the equilibrated systems. The production run was performed on these modified 

coordinates to generate five replicate trajectories of 10ns each. However, 

considering the flexibility of the α4 helix, comprising key residues forming P1 

and P2 pocket, a single longer simulation of 50ns was also generated.  

The RMSD of the backbone atoms was calculated for the trajectories. 

Depending on the analysis the later 5ns of each replicate trajectory was merged 

into a single trajectory of 25 ns for further analysis. Similarly first 5ns of the 

trajectory was discarded for longer 50ns trajectory. However, this single longer 

trajectory 45ns (will be referred to as 45NsT from now on) was not merged with 

shorter 25ns one (will be referred to as 25NsT from now on) to avoid bias for one 

particular pose. The clustering analysis was performed for the both 25NsT and 

45NsT by cpptraj of AMBER12.  
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 Binding free energy 7.2.4

  
The binding free energy for each system was calculated by the MM/GBSA 

approach. MM/GBSA was selected as it has been shown in many recent studies 

that MM/GBSA produces results with comparable accuracy to MM/PBSA and 

outperforms its counterpart while calculating relative binding free energies at less 

computational cost (Tingjun Hou, Junmei Wang, Youyong Li, & Wei Wang, 

2011; Srivastava & Sastry, 2012).  MMGBSA approach combines molecular 

mechanical energies with the continuum solvent approaches using sander program 

from Amber12. The binding free energy (ΔGbind) of the compounds in each 

complex was calculated according ΔGbind = Gcomplex - Gprotein - Gligand = ΔH + 

ΔGsolvation – TΔS = ΔEMM + ΔGGB + ΔGSA – TΔS (1 where ΔEMM is the gas-phase 

interaction energy between protein and ligand, including the electrostatic and Van 

der Waals interactions; ΔGGB and ΔGSA are the polar and non-polar components 

of the desolvation free energy and TΔS is the change of the conformational 

entropy upon ligand binding. 

ΔGbind = Gcomplex - Gprotein - Gligand = ΔH + ΔGsolvation – TΔS = ΔEMM + ΔGGB + ΔGSA – TΔS (1) 

 The gas phase free energy contributions are calculated by sander within 

the Amber program suite. The solvation free energy contributions can be further 

decomposed into an electrostatic and hydrophobic contribution. The electrostatic 

portion was calculated using Generalized Born (GB) method with igb = 2 

(Onufriev, Bashford, & Case, 2000, 2004), with salt concentration 0.1 Molarity 

and PM3 semi-empirical Hamiltonian used for the quantum calculation. The 
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hydrophobic contribution is approximated by the LCPO method (Weiser, 

Shenkin, & Still, 1999) implemented within sander. 
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Chapter 8 

MCL-1 Results and Discussion 
 

The results of the docking and molecular dynamics study to explain 

activity against MCL-1 are explained in this chapter.  The results of the clustering 

and analysis of the subsequent poses are discussed. 

 

 MCL-1 versus BCL-XL 8.1
 

As a result of overlapping residues it was observed that residues such as 

Ala93, Glu96, Phe97, Arg100, Tyr101, Leu112, Ser122, Gln125, Val126, 

Leu130, Gly138, Arg139, Ala142, Phe143, Phe146 and Tyr196, that are part of 

binding pocket or close to it are more pronounced in BCL-XL. More than other 

residues, Phe146 and Phe97 seem to be having more effect by reducing depth of 

P2 and P3 cavity respectively. The P2 cavity was observed to be distinguishing 

feature as it seems to be deeper than BCL-XL. 

 Docking  8.2
The poses of the compounds indicated that the active compounds utilize 

the P2 pocket. However, the results could not explain the reason why certain 

compounds were strongly active while others were not.    
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 Molecular Dynamics 8.3
 

The trajectories for most of the simulations were found to be equilibrated 

as shown by the RMSD calculation of the backbone atoms (Figure8.1, 

Figure8.2).  

 Clustering 8.3.1
 

Clustering analysis performed on 25NsT (Table 8.1) shows that for 

ST_1_159, ST_1_261 there was no consensus and ligand occupied different 

orientations. Moreover, difference in size of first and second cluster ST_1_227 

and ST_1_249 was not too large. The representative poses from both first and 

second cluster was considered for analysis of these compounds. For the remaining 

compounds, their representative pose from top cluster was selected for analysis. 

 
Table 8.1 The cluster size of top three clusters is shown. 

 

Compounds* Cluster_1 Cluster_2 Cluster_3 
ST_1_109 1715 500 285 
ST_1_159 1098 1000 397 
ST_1_162 2000 440 60 
ST_1_208 1500 500 471 
ST_1_202 2500   
ST_1_222 1680 351 244 
ST_1_227 838 500 361 
ST_1_247 2499   
ST_1_249 1224 979 217 
ST_1_261 500 500 500 
ST_1_046 1653 500 347 
ST_1_R1N 2500   

              *2500 can be the highest number of poses possible 
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Figure8.1 RMSD comparison of the backbone atoms between five trajectories 
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Figure8.2  RMSD comparison of the backbone atoms between five trajectories continued. 
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 Binding free energy calculation 8.3.2
 

Table 8.2 shows the average binding free energy (Avg_GBSA) calculated 

from 5 trajectories, which has a Pearson correlation coefficient of 0.2693 with 

IC50. However, after discarding values >100 from calculation value of the Pearson 

correlation coefficient increased to 0.655. Avg_GBSA was not able to clearly 

rank the compounds according to activity, as ST_1_046 was ranked third 

according to Avg_GBSA (Avg) even though it is the strongest inhibitor. 

 
Table 8.2 Average binding free energy 

 
 

Compounds 
 

 
Traj1 

 
Traj2 

 
Traj3 

 
Traj4 

 
Traj5 

 
Avg 

 
IC50 

ST_1_109 -31.8544 -31.1679 -23.6406 -30.6913 -32.0964 -29.8901 22.31 
R1N -29.7772 -28.3109 -30.349 -28.7014 -27.5232 -28.9323 17.84 

ST_1_046 -27.7594 -29.812 -30.0837 -27.0106 -29.8793 -28.909 10.64 
ST_1_202 -27.8631 -26.548 -27.0877 -27.3295 -27.0592 -27.1775 58.5 
ST_1_222 -22.8788 -28.9803 -30.9283 -23.6671 -27.8489 -26.8607 57.68 
ST_1_247 -28.5871 -26.5147 -25.968 -25.4701 -27.1897 -26.7459 38.46 
St_1_159 -25.1196 -23.1986 -26.5482 -27.881 -24.0857 -25.3666 100 
ST_1_162 -16.9434 -26.4017 -28.1194 -27.177 -27.8438 -25.2971 100 
ST_1_249 -28.1785 -24.4087 -28.2246 -22.3472 -19.6618 -24.5642 100 
ST_1_208 -18.313 -24.0395 -25.2114 -23.5915 -28.7542 -23.9819 38.97 
ST_1_227 -23.0639 -24.9602 -29.8268 -27.8299 -12.1799 -23.5721 45.9 
ST_1_261 -23.3401 -16.0467 -30.067 -13.7237 -27.7501 -22.1855 57.07 

 

 Interactions 8.3.3
 

 ST_1_046 8.3.3.1
 

Clustering of pose for 25NsT reveals that ST_1_046 occupies P1, P2 and 

P3 pocket of the MCL-1 binding grove (Figure8.3). The 3,4 dimethoxy group 
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faces the base of the P1 cavity and forms van der Waals interaction with Leu246 

and Val249, while phenyl ring forms π-π and π-alkyl interactions with Met231 

and Phe270. Pyridine ring forms π-interactions with Val253 and Met231. In 

addition, Arg263 is involved in formation of salt bridge with carboxylic group 

and Van der Waal’s interaction with exocyclic oxygen present in rhodanine ring. 

Exocyclic oxygen is involved in formation of Van der Waal’s interaction with 

Thr266.   

The visualization of the longer 45ns simulation and clustering of the pose 

for 45NsT indicates that ST_1_046 flips by 180° with exocyclic sulphur of 

rhodanine ring facing the base of P2 pocket (Figure8.3). This shifts the terminal 

phenyl and carboxylic group near P3 pocket, pyridine ring at P1 pocket while 3,4 

dimethoxy phenyl ring shifts towards C-terminal of the natural peptide. 

 ST_1_109 8.3.3.2
 

The pose predicted by the clustering of 25NsT shows that P2 pocket is 

occupied by terminal phenyl ring and rhodanine. However, the rhodanine ring 

was not found deep inside the P2 cavity. Pyridine ring was found close to P1 

pocket (Figure8.3).  The inward movement of α3 and outwards movement of α4  

loop resulted in bigger P2 pocket and smaller P3 pocket. Similar pose was 

observed from the clustering of longer 45NsT. 

 ST_1_R1N 8.3.3.3
 

The clustering of poses from 25NsT resulted in a single cluster indicating 

stability of predicted pose. The naphthalene ring was found to be parallel to P1  
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Figure8.3  Orientation of ST_1_046, ST_1_109, ST_1_R1N, ST_1_261, ST_1_208 

25NsT and 45NsT belongs to 25ns and 45ns trajectory 
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Figure8.4  Orientation of ST_1_202, ST_1_227, ST_1_159, ST_1_162, ST_1_222 and ST_1_227 
Pose1 and pose 2 belongs to cluster 1 and cluster 2, 25NsT and 45NsT belongs to 25ns and 45ns 
trajectory 
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pocket and forms π-alkyl interactions with Met231 and Lys234 (Figure8.3). The 

orientation of naphthalene ring causes rhodanine ring to move out of P2 pocket 

resulting in loss of interaction between exocyclic sulphur and phenyl ring of 

Phe254 in P2 pocket. 

 ST_1_208 8.3.3.4
 

The pose predicted as a result of clustering indicates that the ligand does 

not align along the MCL-1 binding grove but only interacts with the P2 pocket 

with N3 benzyl substituent (Figure8.3). However, longer simulation 45NsT 

indicates that ST_1_208 flips and N3 benzyl ring moves out of the pocket. 

 ST_1_247 8.3.3.5
 

Similar pose was predicted by clustering of 25NsT and 45NsT. As can be 

seen in that thiohydantoin ring and N3 benzyl substituent occupies P2 pocket 

(Figure8.4). In addition, naphthalene ring stays close to P1. The trajectory 

analysis of 45NsT reveals that ST_1_247 stays close to P2 pocket for complete 

45ns utilizing its more non-polar groups. 

 ST_1_202 8.3.3.6
 

As can be seen from Figure8.4 the thiohydantoin ring and N3 benzyl 

substituent occupies P2 pocket. However, the ligand was not found to be aligned 

with hydrophobic grove. Similar observation was found for longer 45NsT. 
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 ST_1_159 8.3.3.7
 

The size of cluster_1 and cluster_2 was found to be almost similar in case 

of ST_1_159. In both poses, i.e. predicted by cluster_1 and cluster_2 (Figure8.4), 

its N3 benzyl substituent interacts with the pocket P2. 

 ST_1_249 8.3.3.8
 

The difference in the number of poses predicted for cluster_1 and 

cluster_2 of ST_1_249 is not large. Moreover, superimposition of the pose from 

45_NsT showed a third possible orientation for ligand. Analysis of three 

orientations revealed that, similar to pose predicted by cluster_1, ST_1_249 

utilizes its benzyl substituent to interact with the P2 pocket (Figure8.5). On 

inspection of 45NsT trajectory it was observed that after 20ns of simulation the 

compound starts flipping and after 40ns the carboxylic group faces P2 pocket. 

 ST_1_162 8.3.3.9
 

The predicted orientation indicates that ST_1_162 interacts with the P2 

pocket with its N3 benzyl substituent (Figure8.4). However, the pose predicted 

by 45NsT was found to be outside pocket P2.  On visualization of the 45NsT 

trajectory, it was observed that after initial stay in the pocket ST_1_162 moves 

out and is not able to interact with P2 pocket again. 
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Figure8.5  Orientation of ST_1_249 and the distance between the pocket residues and closet atom 

of the pose ST_1_046 in 45NsT  
 
 

 
Figure8.6  Comparison of the residues of α3 and α4 and loop α2-α4 loop for ST_1_046 25NsT, 

ST_1_046 45NsT, ST_1_109 25NsT and ST_1_R1N 25NsT  
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 ST_1_227 and ST_1_222 8.3.3.10
 

The pose predicted by clustering of 25NsT and 45NsT for both ST_1_227 

and ST_1_222 (Figure8.4) shows that its N3 benzyl substituent interacts with the 

pocket P2 while its biaryl ring attempts to interact with the P1 pocket. The 45NsT 

simulation of ST_1_227 and ST_1_222 reveals that thiazolidinedione ring is not 

able to enter P2 pocket and subsequently flips out of the pocket.        

 ST_1_261 8.3.3.11
 

The similar cluster size of best 3 clusters reveals that ST_1_261 was not 

able to form stable interactions. The pose predicted by cluster_1 (Figure8.3) 

indicates that N3 benzyl substituent occupies the P2 pocket of MCL-1. 

 Conformation of the residues 8.3.4
 

The conformations of residues were analyzed to understand the 

interactions and flexibility of α3 and α4 loop (Figure8.6). The conformations of 

receptor bound to active compounds i.e. ST_1_046, ST_1_R1N, ST_1_109 were 

analyzed. The residues at the α2-α3 and α3-α4 loop were found in different 

conformations. Among them, residues such as His224 and Asn223 seem to 

influence the P3 pocket. For ST_1_109, His224 shifts inside the pocket by 3.11Å 

thus shrinking the P3 pocket while not a significant change was observed for 

ST_1_R1N. The position of His224 was observed to be shifted slightly in 

opposite direction for 25NsT of ST_1_046. However, after a longer simulation, 
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the position of His224 was found close to the one observed in case of ST_1_109 

and ST_1_R1N.  

The position of Leu235 which is the last residue of α3 loop was found to 

be shifted by 3.9 Å for shorter ST_1_046 simulation. Val249 was found to shift 

outwards for all the poses except ST_1_R1N where it was found to move inside 

the cavity. Met231 was observed to possess three conformations i.e. facing 

towards α2-α3 loop, towards the P2 pocket and facing towards α3-α4 loop i.e. P1 

pocket. For both ST_1_109 and ST_1_R1N, Met231 was facing α3-α4 loop. For 

ST_1_R1N, it initially faces the α2-α3 loop but then shifts towards P2 pocket. 

 Comparison between different scaffolds 8.3.5
 

 Rhodanine 8.3.5.1
 

The compounds with rhodanine ring, i.e. ST_1_046, ST_1_109 and 

ST_1_R1N, possess both endo and exocyclic sulphur. All three compounds form 

stable orientation by going deep into P2 pocket as well as by interacting with 

residues of other pockets. This can be correlated with better activity in 

comparison to compounds with different scaffold. The difference in ST_1_046 

and ST_1_109 lies in the position of methoxy group, i.e. ST_1_046 possess 3,4 

dimethoxy in comparison to 2,3 dimethoxy present in ST_1_109. As shown by 

poses predicted for ST_1_046, the methoxy group at meta position (meta-p) 

interacts with Val249 residue comprising P1 pocket, and either Leu246 or 

Lys234. Moreover, it was observed that the distance between the residues in 

proximity of the hydrogen atom present at metaposition is close to 4Å 
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(Figure8.5) which is not big enough for a bigger methoxy group attached to the 

ortho position. This results in ST_1_109 occupying P1 and P2 pocket while 

ST_1_046 occupies P1, P2 and P3 pockets. Similarly, ST_1_R1N due to large 

naphthalene ring was not able to align with the binding grove. 

The presence of endo and exocylic sulphur along with the exocyclic 

oxygen in ST_1_046 goes well with the electrostatics of the MCL-1 binding 

pocket. The binding grove of the MCL-1 is hydrophobic in nature which was 

utilized by the rhodanine ring while the electropositive surface interacted with the 

methoxy and carboxylic group flanking the rhodanine ring.  

With the increase in polar character of the central ring, interactions got 

weaker. Out of the endo and exocylic sulphur of rhodanine ring, exocyclic sulphur 

had major contribution as can be observed from the difference in activity of 

compounds with thiohydantoin and thiazolidinedione ring. 

 Thiohydantoin 8.3.5.2
 

The thiohydantoin ring, possess exocyclic sulphur while endocyclic 

sulphur is replaced by amino group. Exocyclic sulphur was able to interact with 

the residue occupying hydrophobic grove. However, due to increase in polar 

character, central ring was not able to align with the hydrophobic grove. This 

resulted in loss of key interactions leading to poor activity of ST_202, ST_208 

and ST_1_247.  
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 Hydantoin 8.3.5.3
 

The hydantoin ring, possess endocyclic sulphur while exocyclic sulphur is 

replaced by oxygen. Due to presence of polar groups like endocyclic oxygen and 

carboxylic group in proximity, a strong interaction with the binding grove was not 

established. Hence, ST_222, ST_227 and ST_1_261 were not able to form stable 

interactions. 

 Thiazolidinedione 8.3.5.4
 

Thiazolidinedione ring lacks both endocyclic and exocyclic sulphur. The 

presence of polar groups hindered the alignment with hydrophobic grove of 

MCL-1. Thus, ST_159, ST_162 and ST_1_249 were not able to stay in 

hydrophobic grove for long duration resulting in least activity of compounds. In 

all four classes of compounds, presence of larger naphthalene ring did not 

improve the activity. The concluding remarks of this work have been described in 

Chapter 9. 
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Chapter 9 

Conclusions 
 

The last chapter summarizes the contributions (9.1) of this work towards 

the development of inhibitors against neuraminidase and MCL-1. Limitations and 

future work are described in 9.2 and Future work sections. 

 

 Contributions 9.1

In Chapter 2, 4 and 7, applications of computational methods like QSAR, 

docking and molecular dynamics was shown to develop drugs against diseases 

like influenza and cancer, i.e against neuraminidase and MCL-1.  

The data utilized to train the QSAR models was collected from a number 

of publications on different strains of neuraminidase and with different mutations. 

This made dataset quite diverse in terms of scaffold. In contrast, most of the 

previous studies have used a limited a number of compounds effective against a 

particular strain.  Dataset was processed and filtered thereby removing unwanted 

components. AD is a much desired property for any QSAR model to stop the 

prediction of the compounds not belonging to chemical space used to train the 

model. This ensured that prediction by the models in our work was accurate with 

low FPR and high accuracy. The base models had low FP and low false negative 

rate with Matthew’s correlation coefficient, denoting accuracy of the model, 
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greater than 95%. The consensus model, combining the strengths of top 10 base 

models, increased the accuracy of the model to 98% with low FPR of 0.8% and 

low FDR of 6.3%. The QSAR model developed in our work to screen PNI had 

better prediction accuracy than most of the previous models developed. This 

shows greater impact of our model in screening PNI. Moreover, it highlights the 

importance of diverse and clean dataset for building the model. This along with 

use of consensus modeling and AD can help to improve the prediction of the 

model considerably. It was observed that in comparison to overall accuracy, MCC 

dropped for validation set. Thus in future work, with such imbalanced dataset, 

MCC should be used as main criteria for evaluation.  In addition other modeling 

methods can also be implemented with diverse parameters can be used to build 

the base models. This will help to achieve the full potential of consensus model.  

As the aim of this work is to discover pan neuraminidase inhibitors, 

extensive docking study was performed to reduce the compounds obtained by 

screening of ZINC library to most potent compounds. None of the docking studies 

to my knowledge have used both neuraminidase group I and group II along with 

multiple strains for the discovery of neuraminidase inhibitors. The docking 

performed against group I and group II neuraminidase in open and closed form 

helped to cover two most important conformations of the neuraminidase. Various 

mutations have been reported in neuraminidase making it resistance against 

oseltamivir and zanamivir. Among the mutations reported, some have been found 

by reverse genetics while others are found in clinical samples. The viability of the 

viruses with mutations discovered by reverse genetics is yet not established. 
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Hence, the mutations established in clinical samples i.e. H274Y, N294S and 

R292K were selected for docking studies. These mutations also belong to 

different groups of neuraminidase with H274Y and N294S belonging to group I 

neuraminidase and R292K to group II neuraminidase. In addition, these mutations 

also cover resistance to all three recommended drugs against influenza i.e. 

oseltamivir, zanamivir and laninamivir. This ensured that the predicted inhibitors 

can act as pan neuraminidase inhibitors. Though this study uses three most 

important mutations, the probable inhibitors can be tested against other resistant 

strains to achiever real pan neuraminidase inhibitors.  

It was found that all top 5 compounds have similar orientation of the 

central ring, carboxylic, guanidino and acetamide group as compared to the 

existing inhibitors i.e. oseltamivir, zanamivir and laninamivir. The carboxylic 

group interacted with Arg118, Arg292, Tyr347 and Arg371 while guanidino 

group interacted with Glu119, Asp151, Trp178 and Glu227 and acetamide group 

interacted with Arg152. The side chain in compounds ZN88, ZN33 and ZN35 was 

bifurcated at 1st carbon providing it extra flexibility to negate the constriction in 

hydrophobic cavity. This flexibility allowed the side chain to be pushed 

backwards or rotate in H274Y and R292K mutation respectively. The shorter side 

chain was found to be facing the base of the cavity while the longer side chain 

was found close to the face of the cavity. Comparison of ZN33 and ZN35 indicate 

that maximum length of the side chain facing the base of cavity can be equal to 

propyl group. The longer side chain was found to be facing away from Glu276 

and closer to Ile222, Arg224, Ala246 (N1)/Ser246 (N9). Except N1_N294S, 
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ZN88 formed hydrogen bond between the amino group of side chain and Glu276, 

Glu277 and Asp151 in all systems. However, slight movement in Asp151 can 

lead to formation of hydrogen bond in N1_N294S. The guanidino group provided 

extra stability by binding to residues comprising 150 loop. Thus, it can be 

concluded that inhibitors with guanidino group, flexible side chain and amino 

group in side chain can act as pan neuraminidase inhibitors.  The low SD was 

observed for of ZN43, ZN88, ZN35 and ZN46 along with high average binding 

free energy. These compounds can be used to develop pharmacophore which later 

can used to develop potent pan neuraminidase inhibitors. Though this work 

covered most important conformations and resistant strains but these compounds 

can be tested against other resistant strains to check their validity as pan 

neuraminidase inhibitors. 

It is a long desired dream to develop drugs to cure cancer. Many drugs 

have been developed that target anti-apoptotic proteins like BCL-XL. However, 

these drugs fail due to overexpression of MCL-1 and the drugs ineffectiveness 

against MCL-1. The second phase of our work concentrated on deducing the 

cause behind the activity of drugs against MCL-1. Poses clustered from the 

multiple trajectories indicate that the P2 pocket is important for interaction.  

Though inhibitors against MCL-1 have been designed but most of them are not 

selective to MCL-1. Moreover, they compete with BH3-only peptides by binding 

to one or two pockets. Thus the binding cavity is not utilized fully. In our work, it 

was found that compounds spanning through majority of binding grove increases 

its activity.  
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The analysis of the orientation of different scaffolds reveals that non-polar 

nature of the rhodanine facilitates the occupancy of the hydrophobic grove. As the 

polar character of the ring increases, the interactions get weaker leading to poor 

activity. This caused the drop in activity of compounds with other scaffolds i.e. 

thiohydantoin, hydantoin and thiazolidinedione. ST_1_046 was found to span the 

hydrophobic grove thus occupying P1, P2 and P3 pockets. The alignment with the 

grove was assisted by the polar groups flanking the non-polar rhodanine ring. 

Hence, the electrostatics of the ligand can determine the interaction with the 

binding grove. It was also observed that as the ST_1_046 goes deeper into the 

hydrophobic grove resulting in better activity. However, not every pocket can 

accommodate larger ligands and it can be observed from the fact that larger 

naphthalene of ST_1_R1N caused a drop in activity.  

The analysis of residues reveals that α3 and α4 loop play important role in 

opening and closing of the pocket. The movement of α3 and α4 is due to greater 

flexibility of the loops linking them to adjacent helices. Val249 and Met231 seem 

to be crucial for the interaction and plasticity of the P2 pocket. Met231 by 

adopting different conformation can interact with inhibitors in both P1 and P2 

pocket. These findings can be expanded to design more potent and selective 

MCL-1 inhibitors. 

Five compounds had been synthesized by our collaborators, taking the 

computational results into consideration. Four compounds had a longer backbone 

with extension at N3 benzyl. In fifth compound i.e. ST_1_345, 3,4 dimethoxy is 

replaced by 3,4 diol. All five compounds had activity less than 20 µM while the 
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best compound had activity of about 13 µM. The compounds without extended 

structure had activity of about 15 µM. The extension of the structure did not 

improve activity. However, the central group can be made bulkier to occupy P2 

pocket to greater depth. This can further help to improve the activity. 
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 Limitations 9.2

The limitation of any QSAR model is its dependence on the dataset. 

Though the model was trained on most elaborate dataset but the dataset could not 

be referred to as representative dataset of all the compounds. Inadequate 

representation of the compounds could affect the prediction accuracy.  

Docking was used to discover pan neuraminidase inhibitors. However, 

docking has limited accuracy in ranking the poses of the compounds. Energy 

minimization and pose rescoring was performed to overcome it but the error 

cannot be completely eliminated. There can be a chance of some important 

compound being overlooked in process of filtration. 

The docking against broad hydrophobic grove at surface of MCL-1 was 

quite challenging. Docking was not able to produce sufficient results to deduce 

the poses for inhibitors in order to establish a trend. Molecular dynamics was used 

to overcome those limitations and binding free energy was calculated. Though 

molecular dynamics was able to explain the results on basis of poses but binding 

free energy was not able to correlate with experimental binding activity.  
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 Future work 9.3

With time, the dataset used to train our neuraminidase QSAR model will 

no longer be sufficient. Thus, the QSAR model should be trained with new 

dataset for a better prediction. The QSAR model to predict inhibitors against 

influenza should be trained again with updated dataset including new inhibitors. 

The models can be tested using Akaike information criterion (AIC) which seems 

to be less prone to overfitting.  

The neuraminidase inhibitors predicted by our work could be analyzed by 

molecular dynamics study against important mutant strains. This will help to get 

more insights about the mutations and predict novel neuraminidase inhibitors. The 

compounds can be further verified by in-vivo and in-vitro studies to develop novel 

potent pan neuraminidase inhibitors. This model can be extended to other viral 

diseases facing resistance against existing inhibitors. In our present work non-

inhibitors were only used to build QSAR models and were not used in docking 

study. However, in future these compounds can be checked for possible role as 

neuraminidase inhibitor. Two probable inhibitors predicted in our study ZN33 and 

ZN35 come close to I222 and S246. Recently, it has been shown that both of 

these residues play role in resistance. Hence, in future more detailed study of can 

be performed involving mutations caused by I222 and S246. Compounds shown 

to be less effected by the mutant strains i.e. ZN43, ZN88, ZN35 and ZN46 will be 

used to develop pharmacophore model. This model will be used to develop novel 

and potent pan neuraminidase inhibitors. Recent discovered strains of 

neuraminidase i.e. N10 and N11 will be included for the screening and testing. 
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The effect of the compounds on the human sialidase will also be tested in the to 

check for any possible side effects. 

The results of MCL-1 indicate that inhibitors occupying a large surface of 

the hydrophobic grove can increase potency. However, occupancy of only three 

pockets, i.e. P1, P2 and P3, can lead to a potent inhibitor. The application the 

electrostatic properties of the ligand along with the selective nature of the pockets 

can be utilized to develop novel, potent and selective inhibitors against MCL-1. 

Inhibitors with bulkier non-polar central scaffold with electronegative ends can be 

developed. This approach can be extended to other members of BCL-2 protein 

family to develop selective inhibitors. Docking production for surface grove is 

poor. Hence, the algorithms should be trained to solve such hurdles. Also there is 

a need to establish a relation between number and duration of trajectories required 

for a molecular dynamics experiment, in order to attain a good correlation 

between predicted binding energy and experimental activity. Molecular dynamics 

will be performed to study the minimum duration and number of trajectories 

required to explain biological activity.  
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