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Abstract

In the early years of information theory, Shannon and other pioneers in informa-
tion theory set a high standard for future generations of information theorists by
determining the exact fundamental limits in point-to-point communication and
source coding problems. Extending their results to network information theory
is important and challenging. Many problems in network information theory,
such as characterizing the capacity regions for fundamental building blocks of a
communication network, namely the broadcast channel, the interference channel
and the relay channel, have been open problems for several decades. When exact
solutions are elusive, progress can be made by seeking for approximate solutions
first. The first contribution of the thesis is to obtain the approximate capacity
region for the symmetric Gaussian interference channel in the presence of noisy
feedback. The key approximation technique used to complete this task is the
so-called linear deterministic model. It is found that when the feedback link
strengths exceed certain thresholds, the performance of the interference chan-
nel starts to improve. The second contribution is on the understanding of the
interference channel in the finite-blocklength regime. In the so-called strictly
very strong interference regime, the normal approximation is used to obtain the
approximate finite-blocklength fundamental limits of the Gaussian interference
channel. It is found that, in this regime, the Gaussian interference still behaves
like a pair of separate independent channels. The third contribution is a study
of the finite-blocklength source coding problem with side information available
at both the encoder and the decoder. It is found that the rate of convergence to
the Shannon limit is governed by both the randomness of the information source
and the randomness of the side information.
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Chapter 1

Introduction

� 1.1 Motivation

Information theory has played an important role in guiding communication en-

gineers to design better communication systems in terms of speed, efficiency,

reliability and robustness. Yet, many fundamental questions in designing better

networks have been left unanswered for decades. For example, to determine the

capacity of a two-user interference channel setting has been an open problem for

more than 30 years. When exact answers are hard to find, it makes sense to

obtain good approximations. This is the theme of this thesis.

The first aspect that we will consider is feedback. Feedback is in general very

helpful in a communication network. Feedback allows communication nodes to

learn about each other’s transmitted signals, to manage interference due to si-

multaneous transmission and to cooperate with each other. Thus, the overall

performance of the network may in general be improved with feedback. How-

ever, the feedback links may be affected by noise. Will noisy feedback still be

helpful in boosting the performance of a communication network in general? If
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CHAPTER 1. INTRODUCTION

that is possible, how could a communication engineer quantify this performance

gain to justify for the cost of building feedback links in a noisy environment? In

another scenario, an application may be constrained by certain quality-of-service

requirements. For example, in an emergency situation, delay in communication

is not accepted and quick, effective communication is expected. In real-time

multimedia streaming, sequences of multimedia frames are expected to reach a

destination node within a specific delay. Nevertheless, most of results in infor-

mation theory hold provided the duration of communication is very long. These

results do not provide satisfactory answers in such delay-constrained communi-

cation settings. One may wonder how communication nodes can coexist in a

short, finite duration of communication. How should a communications engineer

compress and decompress an information source within a restricted number of

symbols if both the encoder and the decoder share some side information? To

find the exact answers to these questions is challenging. Instead, using approxi-

mation techniques, the thesis provides approximate answers to these questions.

� 1.2 Thesis Overview

Chapter 2 provides a necessary background for the rest of the thesis. A reader

who is familiar with concepts and topics in Chapter 2 can read any of the sub-

sequent chapters without any loss of continuity.

Chapter 3 is devoted to obtain the approximate capacity region for the sym-

metric Gaussian interference channel in the presence of noisy feedback. The key

2



Sec. 1.2. Thesis Overview

approximation technique used to complete this task is the linear deterministic

model, which excludes certain complexities of a Gaussian counterpart model yet

possesses essential properties of this Gaussian model. Chapter 3 first focuses on

determining the capacity region of the symmetric linear deterministic interfer-

ence channel with noisy feedback. Based on the insights gained from working

with linear deterministic interference channel, we tackle the symmetric Gaussian

interference channel with noisy feedback.

Chapter 4 focuses on the understanding of the interference channel in a finite-

blocklength communication. In the strictly very strong interference regime, this

chapter uses normal approximations to obtain the approximate finite-blocklength

capacity region of the Gaussian interference channel. The constituent disper-

sions, which characterize the rates of convergence to Shannon limits of direct

links in the point-to-point communication setting, are found to also characterize

the rate of convergence to Shannon limits in the interference channel.

Chapter 5 contains a preliminary study of the finite-blocklength source-

coding problem with side information available at both the encoder and the de-

coder when the information source is discrete, stationary and memoryless. This

chapter also uses normal approximations to approximate the finite-blocklength

rate-distortion function in the presence of side information.

While all three Chapter 3,4 and 5 focus on the theme of approximation,

there are other relations between the chapters. While Chapter 3 and Chapter

4 both focus on Gaussian interference channel, Chapter 3 considers Gaussian

3



CHAPTER 1. INTRODUCTION

interference channel with noisy feedback and Chapter 4 considers Gaussian in-

terference channel without feedback. While Chapter 4 and Chapter 5 both focus

on second-order analysis, Chapter 4 works on second-order analysis for Gaussian

interference channel and Chapter 5 works on second-order analysis for condi-

tional rate-distortion. While the theory of chapter 3 is general in the sense that

it is not restricted to any particular application, Chapter 4 and Chapter 5 cater

to the need of delay-constrained applications.

The thesis ends with Chapter 6, where reflections on the thesis and sugges-

tions for further avenues of research are found.

� 1.3 Thesis Contributions

� 1.3.1 On role of noisy feedback

• Chapter 3 in this thesis considers the impact of noise on the gain due to

feedback. Specifically, as a stepping stone to characterize the capacity re-

gion for the two-user Gaussian interference channel with noisy feedback,

the two-user linear deterministic interference channel with noisy feedback is

considered. The capacity region for the symmetric linear deterministic in-

terference channel with noisy feedback has been obtained. Noisy feedback

has been shown to increase the capacity region of the symmetric linear

deterministic interference channel with noisy feedback if and only if the

amount of feedback level l is greater than a certain threshold l∗. Denote

α as the normalized interference link gain with respect to the direct link

4



Sec. 1.3. Thesis Contributions

gain. It is found that, excluding the moderately strong interference regime

and the strong interference regime, i.e., 1
2 ≤ α ≤ 2, in which even full

feedback does not increase symmetric capacity, l∗ is equal to the per-user

symmetric capacity without feedback. Key ideas in the converse proof are

novel converse outer bounds on weighted sum rates 2R1 +R2 and R1 +2R2

and on the sum rate R1 + R2. The novel outer bounds are tightened by

specially defined auxiliary random variables. The key idea in the achiev-

ability proof is message splitting. Each transmitted message is split into

a private message, a cooperative common message and a non-cooperative

message. The sizes and positions of these messages need to be carefully

designed to maximize the achievable rate region for both transmitters.

• The results and the techniques developed for this linear deterministic model

are then applied to characterize inner bounds and outer bounds for the

symmetric Gaussian IC with noisy feedback. In the achievability proof,

we also use message splitting. The difficulty in message splitting is to

design the power allocation scheme so that the achievable rate region for

both transmitters is maximized. In principle, the transmitted power of

the private information should be chosen such that the received power

of the private information at non-intended receivers are below the noise

level. The transmitted powers of non-cooperative messages and cooperative

messages are governed by many factors: direct link strengths, interference

link strengths and feedback link strengths. Intuitively, as feedback link

strengths increase, the chance for cooperation increases. As a result, more

power can be allocated to cooperative messages. The specially defined

5



CHAPTER 1. INTRODUCTION

auxiliary random variables for the linear deterministic model helps us define

corresponding auxiliary random variables for the Gaussian model so that

the outer bounds can be tightened. Even though most of the techniques for

the linear deterministic models can be lifted to be applied to the Gaussian

model, the presence of Gaussian noise can lead to a complicated analysis,

so careful use of lifted techniques is required. The performance gain due to

noisy feedback is approximated in terms of the signal-to-noise ratios of the

direct links, the interference links and the feedback links. The outer bounds

have been shown to be at most 4.7 bits/s/Hz away from the achievable rate

region. This result holds for a large range of the signal-to-noise ratio of the

direct links.

� 1.3.2 On interference networks in the finite-blocklength regime

• Chapter 4 of this thesis characterizes the second-order coding rates of

the Gaussian interference channel in the strictly very strong interference

regime. In other words, we characterize the speed of convergence of rates

of optimal block codes towards a boundary point of the capacity region.

These second-order rates are expressed in terms of the average probabil-

ity of error and variances of some modified information densities. These

variances coincide with the dispersions of the constituent point-to-point

Gaussian channels. Thus, the approximate finite-blocklength capacity re-

gion in the strictly very strong interference regime is obtained. Intuitively,

in the strictly very strong interference regime, the interference caused by a

non-intended transmitter can be decoded by a non-intended receiver. As

6
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a result, the Gaussian interference channel approximately behaves like a

pair of separate channels in the finite-blocklength communication.

• In the achievability proof, Feinstein’s Lemma is generalized to yield any

achievable coding scheme for the Gaussian interference channel. In the con-

verse proof, Verdú-Han Lemma is generalized. In the strictly very strong

interference regime, the number of error events involved in the achievability

proof is reduced and the forward bounds match the converse bounds up to

the second-order term.

� 1.3.3 On the combined effect of side information and finite-blocklength
communication on source coding

• Chapter 5 of this thesis obtains the second-order rate-distortion function

of the source coding problem with side information available at both the

encoder and the decoder. In other words, the finite-blocklength rate-

distortion problem for this source coding is approximated. It is found

that the rate of convergence to the Shannon limit is governed by both

the randomness of the information source and the randomness of the side

information.

• The key idea in the achievablity proof is a random coding bound, which

allows us to deal with the information source random variable and the side

information random variable jointly.

• The concept of D-tilted information density is found to be useful not only

in the source coding problem without side information, but also useful in

7



CHAPTER 1. INTRODUCTION

the source coding problem with side information. The method of types

is very helpful in the second-order analysis of the source coding problem

without side information. However, it is not easy to use the method of

types in the second-order analysis of the source coding problem with side

information.

� 1.4 Bibliographical Notes

The material in this thesis has been presented in parts at various conferences

and submitted to various journals.

• The material in Chapter 3 was presented in [63, 64, 65] and was submitted

to IEEE Transactions on Information Theory in Dec 2012 [66].

• The material in Chapter 4 was presented in [67, 68, 69] and was submitted

to IEEE Transactions on Information Theory in Apr 2014 [70].

• The material in Chapter 5 was published as an NUS Technical Report.
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Chapter 2

Background

I
N this background chapter, we review some basic concepts and tools in in-

formation theory and probability theory, which lay the foundations for sub-

sequent chapters. Interested readers who want to see the proofs of the theo-

rems stated in this chapter are referred to texts in information theory such as

[18, 19, 30, 125], and texts in probability theory such as [26, 83, 89]. In addition,

we also briefly review the linear deterministic model [3].

� 2.1 Information theory

Information theory is a branch of applied mathematics, electrical engineering

and computer science [18, 19, 30, 125]. It is generally believed that information

theory was created when Shannon, in 1948, published his landmark paper titled

A Mathematical Theory of Communication in the Bell System Technical Journal

[96]. This paper contained ground-breaking concepts that changed the world.

Shannon showed how information can be quantified and demonstrated that all

information media can be unified. Information can exist in many forms such as

9
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texts, images, videos, electromagnetic waves. However, it can always be digitized.

Information theory is not created by Shannon alone. It has been a product of

crucial contributions made by many scientists, who have come from diverse fields,

have been motivated by Shannon’s revolutionary ideas and expanded upon them.

Although information theory is mathematical in nature, it serves as a beacon of

light for generations of communication engineers who have made great products

for the world.

In 1948, Shannon made a prophecy that every white additive Gaussian noise

(AWGN) has a capacity limit. In a layman language, it says it is mathematically

impossible to get an error-free communication if the transmission rate is above

the channel limit. On the other hand, it is mathematically possible to get an

error-free communication if the transmission rate is below the channel limit. The

noisy channel coding theorem does not tell a communication engineer how a code

can be constructed. However, it predicts that reliable communication is possible.

Indeed, the noisy channel coding theorem gave rise to the entire field of coding

theory. Error-correcting codes are important contributions of coding theory. In

error-correcting codes, redundancy are introduced into the digital representation

of information at the encoder so that this information can be recovered at the

decoder’s side. For example, if you scratch the surface of any DVD, there is a

high chance that this DVD can still play back perfectly. The spacecraft Mariner

VI, in 1969, used Reed-Muller codes for communication in the exploration of

Mars. At Neptune, which is 4.4 billion miles from the Earth, the spacecraft

Voyager could transmit information back to the Earth at a rate of 21.6 kbits/s

10
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in 1979. The advances in microprocessors provided the computation power to

realize many complicated coding schemes. In fact, 50 years after the publication

of Shannon’s landmark paper, turbo codes and LDPC codes are shown to itera-

tively achieve the capacity limit of the AWGN channel. In his landmark paper,

Shannon also discussed source coding, which considers efficient representation of

data. In 1952, David Huffman came up with Huffman code, which is optimal in

the sense that its minimum expected length achieves the theoretical limit. Huff-

man code is still widely used in data compression standards such as JPEG, MP3,

ZIP. Storage devices, such as hard drives and RAM, employ information theory

concepts. Information theory has also strongly influenced the development of

wireless systems and computer networks.

Information theory is essential not only in communication theory, but also in

many other fields such as statistical inference and statistics [20, 61, 74], economics

[50], physics [80]. However, in this thesis, we will only discuss information theory

as a sub-topic in communication theory.

Next, we briefly review some concepts and tools in information theory.

� 2.2 Measures of information for discrete random variables

There are various ways to measure information. One way to do so is to use

Shannon entropy (we will call it entropy for short).

11
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Encoder X̂nM DecoderXn

Figure 2.1. Lossless source compression system.

Definition 2.1. The entropy H(X) of a discrete random variable X, taking

values in a finite alphabet X , with probability mass function PX(x) is defined as

H(X) ,
∑

x∈X
PX(x) log2

1

PX(x)
, (2.1)

where the unit of information is called a bit. The unit of information is called a

nat if the base of the logarithm used in the definition is e.

Unless otherwise stated, we will assume that all logarithms in this thesis are

taken to base 2. In this definition, we adopt the convention that 0 log 0 = 0.

Note that the smaller the probability PX(x) is, the larger the value of log2
1

PX(x)

is. Intuitively, the more surprising the event X = x is, the more information it

contains. In other words, the entropy of a discrete random variable is a measure

of uncertainty in that random variable.

Operationally, the entropy of the source H(X) is a fundamental limit in

source compression problems. Consider a scenario when a discrete memoryless

stationary information source produces a sequence of random variables Xn =

(X1, X2, . . . , Xn). The source is discrete in the sense that each Xi, for i =

1, 2, . . . , n, only takes values from a finite source alphabet X . The source is mem-

oryless and stationary in the sense that the random variables Xi are independent

and have the same distribution PX . Given an observation of a sequence Xn, a

12
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communication engineer needs to encode this sequence into a binary codeword,

so that at the destination, this sequence can be recovered given an observation

of the corresponding binary codeword (see Figure 2.1). It is proven that, as the

number of source letters n gets sufficiently large, the number of bits per source

letter to complete this compression task, with arbitrarily small probability of

error, can be made to be arbitrarily close to the entropy of the source H(X)

[7, 19, 96, 98].

Similarly to the above, we can define the joint entropy H(X1, X2, . . . , Xn) of

a discrete random vector (X1, X2, . . . , Xn). Next, we define conditional entropy.

Definition 2.2. The conditional entropy H(X|Y ) of a discrete random variable

X, taking values in a finite alphabet X , given a discrete random variable Y , with

joint probability mass function PXY (xy) is defined as

H(X|Y ) ,
∑

y∈Y
PY (y)H(X|Y = y), (2.2)

where H(X|Y = y) is the entropy of the random variable X|Y = y and this

entropy is defined in Definition 2.1.

Definition 2.3. Consider two discrete random variables X and Y , taking values

in finite alphabet X and Y respectively, with joint probability mass function

PXY (xy). The mutual information I(X;Y ) is defined as

I(X;Y ) ,
∑

x∈X

∑

y∈Y
PXY (xy) log2

PXY (xy)

PX(x)PY (y)
. (2.3)

Operationally, the mutual information I(X;Y ) is an important quantity in

characterizing a fundamental limit in channel coding problems. Consider the

13



CHAPTER 2. BACKGROUND

Decoder M̂

P (y|x)

M Xn Y n
Encoder Channel

Figure 2.2. Discrete memoryless point-to-point channel.

scenario when a transmitter wants to transmit a message to a receiver through a

discrete memoryless stationary channel PY |X (see Figure 2.2). A communication

engineer needs to design an encoder which encodes a message into a codeword

Xn, which is then transmitted through the discrete memoryless channel in n

channel uses. At the receiver’s side, he needs to design a decoder which recovers

the message based on the observation of the received signal Y n. It is proven that,

as the number of channel uses n becomes sufficiently large, the data rate that the

channel can support, with arbitrarily small probability of error, can be chosen

to be arbitrarily close to maxX I(X;Y ) bits per channel use [25, 29, 96, 120].

Definition 2.4. Consider three discrete random variables X, Y and Z, with

joint probability mass function PXY Z(xyz). The conditional mutual information

I(X;Y |Z) is defined as

I(X;Y |Z) , H(X|Z)−H(X|Y Z). (2.4)

Next, we state some important properties of entropy, conditional entropy,

mutual information and conditional mutual information [18, 30].

Theorem 2.1. Consider three discrete random variables X, Y and Z, with joint

probability mass function PXY Z(xyz). We have

(i) H(X) ≥ 0.

14



Sec. 2.3. Measures of information for continuous random variables

(ii) H(X) ≤ log |X |, where |X | denotes the cardinality of the set X .

(iii) H(XY ) = H(X) +H(Y |X).

(iv) I(X;Y |Z) ≥ 0.

(v) H(X|Y ) ≤ H(X).

(vi) If X,Y and Z form a Markov chain in that order, i.e. X → Y → Z,

then I(X;Y ) ≥ I(X;Z). This is commonly known as the data-processing

inequality.

Fano’s inequality is very helpful in proving weak converses for many information-

theoretic problems [18].

Theorem 2.2 (Fano’s inequality). Consider two discrete random variables W

and Ŵ , taking values in the alphabets W and Ŵ, with joint probability mass

function PWŴ (wŵ). Define Pe = Pr(W 6= Ŵ ). We have

H(W |Ŵ ) ≤ 1 + Pe log |W|. (2.5)

� 2.3 Measures of information for continuous random variables

Sometimes, the source alphabet may not be discrete but continuous. We need

a measure of information for such a source. In this section, we introduce the

concept of differential entropy for continuous random variables [18].

Definition 2.5. A real-valued random variable X is said to be continuous if

its cumulative distribution function FX(x) = Pr(X ≤ x) is continuous. Let
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fX(x) = F ′X(x) when the derivative is defined. The function fX(x) is called the

probability density function for X. The support set S for random variable X is

the subset of X , where fX(x) > 0. The differential entropy h(X) of the random

variable X is defined as

h(X) = −
∫

S
fX(x) log fX(x)dx. (2.6)

Being different from entropy for discrete (finite) random variable which is

always non-negative and finite [29], the differential entropy of a random variable

can be negative or unbounded. Similarly, we can define differential entropy for

a random vector. Next, we define conditional differential entropy.

Definition 2.6. Consider continuous random variables X and Y , with joint

probability density function fXY (xy). The conditional differential entropy h(X|Y )

is defined as

h(X|Y ) = −
∫ +∞

−∞

∫ +∞

−∞
fXY (xy) log fX|Y (x|y)dxdy. (2.7)

Definition 2.7. Consider continuous random variables X and Y , with joint

probability density function fXY (xy). The mutual information I(X;Y ) is defined

as

I(X;Y ) , h(X) + h(Y )− h(XY ). (2.8)

Differential entropy has many properties that are similar to that of entropy

for discrete random variables.

Theorem 2.3. Consider three continuous random variables X, Y and Z, with

joint probability density function fXY Z(xyz). We have
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(i) h(X,Y ) = h(X) + h(Y |X).

(ii) I(X;Y |Z) ≥ 0.

(iii) h(X|Y ) ≤ h(X). Equality occurs if and only if X and Y are independent.

(iv) If X,Y and Z form a Markov chain in that order, i.e. X → Y → Z,

then I(X;Y ) ≥ I(X;Z). This is commonly known as the data-processing

inequality.

(v) h(X + c) = h(X), where c is any real-valued constant.

(vi) h(cX) = h(X) + log |c|, where c is any real-valued constant.

The following theorem presents an useful result. Over all distributions with

the same covariance, the multivariate normal distribution maximizes the entropy.

Theorem 2.4. Consider a random vector X ∈ Rk, with zero mean and covari-

ance matrix K. We have h(X) ≤ 1
2 log[(2πe)k det(K)]. Equality occurs if and

only if X ∼ N (0,K).

� 2.4 Measures of information for arbitrary random variables

The previously discussed measures of information for discrete and continuous

random variables give a sufficient background for us to present our new results

in the subsequent chapters. Readers, who are interested in rigorous definition of

measure of information for arbitrary random variables, are referred to works by

Kolmogorov [51], Pinsker [84], Gray [37].
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� 2.5 Weakly typical sequences

Having defined measure of information, we are next going to review some useful

tools in information theory. The concept of weakly typical sequences is useful in

constructing achievability schemes.

Definition 2.8. Consider a sequence of random variables X1, X2, . . ., which are

independent and identically distributed according to PX(x). The weakly typical

set A
(n)
ε (X) with respect to a probability distribution PX(x) is defined the set

of n-tuples (x1, x2, ..., xn) ∈ X n satisfying

2−n(H(X)+ε) ≤ PX1X2...Xn(x1, x2, ..., xn) ≤ 2−n(H(X)−ε). (2.9)

A weakly typical set has the following properties.

Theorem 2.5. Consider a sequence of random variables Xn = (X1, X2, . . . , Xn),

which are independent and identically distributed to PX(x). The weakly typical

set A
(n)
ε (X) has the following properties.

(i) For n sufficiently large, Pr{Xn ∈ A(n)
ε (X)} > 1− ε.

(ii) |A(n)
ε (X)| ≤ 2n(H(X)+ε), where |A| is the cardinality of set A.

(iii) For n sufficiently large, |A(n)
ε (X)| ≥ (1− ε)2n(H(X)−ε).

One of the most popular decoding rules is the jointly weakly typical decoding

rule, in which the codeword sequence is decoded as a sent sequence if it is jointly

18
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weakly typical with the received sequence. In this decoding rule, the concept of

a jointly weakly typical set and its properties are important.

Definition 2.9. Consider a length-n sequence of random vectors (XnY n), which

are independent and identically distributed according to PXY (xy), so that we

have PXnY n(xnyn) =
∏n
i=1 PXY (xiyi). The jointly weakly typical set A

(n)
ε (XY )

with respect to a probability distribution PXY (xy) is the set of length-n se-

quences (xnyn) ∈ X n × Yn satisfying

2−n(H(X)+ε) ≤ PXn(xn) ≤ 2−n(H(X)−ε), (2.10)

2−n(H(Y )+ε) ≤ PY n(yn) ≤ 2−n(H(Y )−ε), (2.11)

2−n(H(XY )+ε) ≤ PXnY n(xnyn) ≤ 2−n(H(XY )−ε). (2.12)

A jointly weakly typical set has the following properties [18]

Theorem 2.6. Consider a length-n sequence of random vectors (XnY n), which

are independent and identically distributed according to PXY (xy), so that we

have PXnY n(xnyn) =
∏n
i=1 PXY (xiyi). The jointly weakly typical set A

(n)
ε (XY )

has the following properties.

(i) For n sufficiently large, Pr{(XnY n) ∈ A(n)
ε (XY )} > 1− ε.

(ii) |A(n)
ε (XY )| ≤ 2n(H(XY )+ε), where |A| is the cardinality of set A.

(iii) Consider two random vectors X̃n and Ỹ n, which are independent and have

the same marginals as that of PXnY n(xnyn). Then we have

Pr({(X̃nỸ n) ∈ A(n)
ε (XY )}) ≤ 2−n(I(X;Y )−3ε). (2.13)
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When n is sufficiently large, we have

Pr({(X̃nỸ n) ∈ A(n)
ε (XY )}) ≥ 2−n(I(X;Y )+3ε). (2.14)

In network information theory problems, it is useful to make use of jointly

typical sets which involves more than two random variables.

Definition 2.10. Consider a sequence of random vectors (X(1)nX(2)n . . . X(k)n),

which are independent and identically distributed according to the probability

distribution PX(1)X(2)...X(k)(x(1)x(2) . . . x(k)), so that

PX(1)nX(2)n...X(k)n(x(1)nx(2)n . . . x(k)n) =

n∏

i=1

PX(1)X(2)...X(k)(x
(1)
i x

(2)
i . . . x

(k)
i ).

(2.15)

The jointly weakly typical set A
(n)
ε (X(1)X(2) . . . X(k)) with respect to the prob-

ability distribution PX(1)nX(2)n...X(k)n(x(1)nx(2)n . . . x(k)n) is the set of length-n

sequences (x(1)nx(2)n . . . x(k)n) ∈ X (1)n × . . .×X (k)n satisfying

2−n(H(S)+ε) ≤ PSn(sn) ≤ 2−n(H(S)−ε), (2.16)

where S is any subset of the set of random variables {X(1)X(2) . . . X(k)}.

A jointly typical set of a random vector has similar properties to that in

Theorem 2.6. In addition, it has the following important property [18, Theo-

rem 15.2.3].

Theorem 2.7. Consider a sequence of random vectors (X(1)nX(2)n . . . X(k)n),

which are independent and identically distributed according to the probability dis-

tribution PX(1)X(2)...X(k)(x(1)x(2) . . . x(k)). Let S1, S2 and S3 be three random vec-

tors, which are arbitrary subsets of {X(1)X(2) . . . X(k)}. If random vector S̃1 and
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random vector S̃2 are conditionally independent given a random vector S̃3, and

these three random vectors have the same pairwise marginals as that of (S1S2S3),

then we have

∣∣∣∣
1

n
log Pr(S̃n1 , S̃

n
2 S̃

n
3 ∈ A(n)

ε (S1S2S3))− I(S1;S2|S3)

∣∣∣∣ < 6ε, (2.17)

for n sufficiently large.

� 2.6 Results in probability theory

In this section, we review some results in probability theory, that we will use in

subsequent chapters. We start with the well-known weak law of large numbers

[89].

Theorem 2.8 (The weak law of large numbers). Let X1, X2, . . . be a sequence

of independent and identically distributed random variables, each having mean

E(Xi) = µ and finite variance. Then, for any ε > 0, we have

Pr

{∣∣∣∣
X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε
}
→ 0 (2.18)

as n→∞.

The weak law of large numbers is essential in the proof of Theorem 2.5.

The central limit theorem is one of most remarkable results in probability

theorem. In its simplest form, the central limit theorem is as follows [89].

Theorem 2.9 (The central limit theorem). Let X1, X2, . . . be a sequence of

independent and identically distributed (i.i.d.) random variables, each having
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mean µ and variance σ2. Then, the distribution of

X1 + · · ·+Xn − nµ√
nσ

(2.19)

tends to the standard normal as n → ∞. That is, for any −∞ < a < ∞, we

have

Pr
{X1 + · · ·+Xn − nµ√

nσ
≤ a

}
→ 1√

2π

∫ a

−∞
e−x

2/2dx (2.20)

as n→∞.

There are other versions of central limit theorems which are not restricted

to i.i.d. random variables or other technical conditions. In second-order asymp-

totics analysis, we are often interested in knowing the rate of convergence of

the scaled sum X1+···+Xn−nµ√
nσ

to the standard normal distribution. This rate of

convergence is quantified by the Berry-Esséen theorem, which is presented next

[26, Theorem 2, Chapter XVI. 5]

Theorem 2.10 (Berry-Esséen Theorem). . Let Xk, for k = 1, 2, . . . , n be inde-

pendent random variables with µk = E[Xk], σ
2
k = var[Xk], tk = E[|Xk − µk|3],

σ2 =
∑n

k=1 σ
2
k, and T =

∑n
k=1 tk. Then for any −∞ < λ <∞, we have

∣∣∣∣∣Pr

[
n∑

k=1

(Xk − µk) ≥ λσ
]
−Q(λ)

∣∣∣∣∣ ≤
6T

σ3
. (2.21)

The following theorem gives a variant of the multivariate Berry-Esséen The-

orem [35] [9], which is a restatement of Corollary 38 in [118]. The theorem can

be applied to random vectors which are independent, but not necessarily iden-

tically distributed. For i.i.d. random vectors, interested readers are referred to

Bentkus’s work [5].
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Theorem 2.11. Let U1, . . . ,Un be independent, zero-mean random vectors in

Rm. Let Gn , 1√
n

(U1 + . . .+ Un), V , cov(Gn), t , 1
n

∑n
i=1 E[‖Ui‖32] and let

Z ∼ N (0, V ). Let Cm be the family of all convex, Borel measurable subsets of

Rm. Assume V � 0 and let the minimum eigenvalue of V be λmin(V ). Then,

for all n ∈ N, we have

sup
C∈Cm

|Pr(Gn ∈ C)− Pr(Z ∈ C)| ≤ 254
√
mt

λmin(V )3/2
√
n
. (2.22)

The following theorem provides a variant of the multivariate Berry-Esséen

Theorem [35] [9], which is a restatement of Proposition 1 in [79]. The lemma can

be applied to functions of sums of i.i.d. random vectors under certain conditions.

This theorem is used in the direct proof of Theorem 4.1.

Theorem 2.12. Let {Ut , (U1t, U2t, . . . , Uat)}∞t=1 be a sequence of zero-mean

i.i.d. random vectors in Ra with E[‖Ut‖32] being finite. Consider a vector-valued

function g : Ra → Rb. Denote g(u) , [g1(u), g2(u), . . . , gb(u)]T . Assume that

g(u) has continuous second-order partial derivatives in a neighbourhood of u = 0.

Denote the corresponding Jacobian matrix J at u = 0 of g(u) as J ∈ Rb×a, whose

components are defined as

Jji ,
∂gj(u)

∂ui

∣∣∣∣∣
u=0

(2.23)

for j ∈ {1, 2, . . . , b}, and i ∈ {1, 2, . . . , a}. Let the random vector Z have distri-

bution N (g(0), 1
n J Cov(U1) JT ). Then, for any convex Borel-measurable set D

in Rb, there exists a finite positive constant c such that

∣∣∣∣∣Pr

[
g

(
1

n

n∑

t=1

Ut

)
∈ D

]
− Pr[Z ∈ D]

∣∣∣∣∣ ≤
c√
n
. (2.24)
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� 2.7 Network information theory

Point-to-point information theory has been well developed and been shown to

be useful to communication engineers to design point-to-point communication

systems. However, the point-to-point information theory cannot help engineers

design optimal communication networks which involve many transmitters and

many receivers. There are many elements of a communication network that

cannot be captured in the point-to-point model such as cooperation between

users and interference. This leads to the need for network information theory,

which has been one of the main foci in information theory for the past few

decades. However, our understanding in this field is far from being complete. In

this section, we briefly review the four basic building blocks of a communication

network: the multiple-access channel, the broadcast channel, the interference

channel and the relay channel.

Decoder
Channel

Encoder

Encoder

2

M1 Xn
1

M2

M̂1M̂2

P (y|x1x2)

Xn
2

Y n

1

Figure 2.3. Multiple-access channel.
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2

1

2

M1M2

Figure 2.4. Broadcast channel.

� 2.7.1 Multiple-access channel

The multiple-access channel consists of multiple transmitters communicating si-

multaneously with a single receiver (see Figure 2.3). The multiple-access channel

capacity region was found by Ahlswede [1] and Liao [72].

� 2.7.2 Broadcast channel

The broadcast channel consists of a single transmitter communicating with mul-

tiple receivers (see Figure 2.4). The capacity region of the broadcast channel has

been found only for a few special cases. The capacity region for the degraded

broadcast channel was found by Bergmans [8] and Gallager [31]. El Gamal [32]

found the capacity region for a class of more capable broadcast channel. Körner

and Marton [54] found the capacity region for the broadcast channels with de-

graded message sets. The largest achievable region for the broadcast channel

was found by Marton [76], and a simpler proof was discovered by El Gamal and

van der Meulen [33].
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Figure 2.5. Interference channel.

� 2.7.3 Interference channel

The interference channel was first introduced by Ahlswede [1]. In the interference

channel, there are two transmitters and two receivers. Each transmitter wants to

transmit a message to its intended receiver only (see Figure 2.5). In the process

of doing so, both transmitters interfere with each other. The capacity channel of

the interference channel has been found for only a few cases. Carleial first showed

that [14] interference is the same as no interference for the Gaussian interference

channel with very strong interference. Sato [92, 93] found the capacity region

for the interference channel with strong interference. The capacity region of

degraded interference channel was found by Benzel [6]. The largest achievable

rate region for the discrete memoryless interference channel was found by Han

and Kobayashi [41].

� 2.7.4 Relay channel

The relay channel consists of one transmitter, one receiver and one relay node

(see Figure 2.6). This channel was introduced by van der Meulen [21]. The
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Figure 2.6. Relay channel.

capacity region for the degraded relay channel was determined by Cover and El

Gamal [16]. The capacity region of the discrete memoryless relay channel is an

open problem.

� 2.8 Linear deterministic model

The linear deterministic model was introduced by Avestimehr, Diggavi and Tse

[3]. It is capable of capturing certain features of a communication network such

as signal strength, superposition and broadcasting. The beauty of linear deter-

ministic model is the strong connection between the linear deterministic model

and the corresponding Gaussian model. Under certain circumstances, a capacity-

achieving scheme in the deterministic model naturally suggests a scheme, which

can achieve within a constant gap from the outer bounds, for the correspond-

ing Gaussian model. In this section, we briefly review the linear deterministic

model for the point-to-point channel and its connection with the corresponding

Gaussian model.
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Consider a point-to-point Gaussian channel, which is given by

Y = gX + Z, (2.25)

where Y is the output of the channel, X is the input random variable, g is a fixed

real-valued channel gain and Z ∼ N (0, 1) is Gaussian noise. The input satisfies

the average power constraint E(|X|2) ≤ 1. Thus, the channel gain g satisfies

|g| =
√
SNR, (2.26)

where SNR is the signal-to-noise ratio of the channel. It is well-known that the

capacity of this point-to-point channel is CAWGN = 1
2 log(1 + SNR).

For simplicity, assume the input signal x has a peak power constraint of 1.

It is also assumed that the background noise z also has a peak power constraint

of 1. Denote the binary expansion of x as
∑∞

i=1 x(i)2−i. Denote the binary

expansion of z as
∑∞

i=1 z(i)2
−i. Expressing the received signal y in terms of the

binary expansion of x and z, we have

y = 2
1
2

log SNR
∞∑

i=1

x(i)2−i +

∞∑

i=1

z(i)2−i. (2.27)

Define n , d1
2 log SNRe. We have

y ≈ 2n
n∑

i=1

x(i)2−i +

∞∑

i=1

[x(i+ n) + z(i)]2−i. (2.28)

Ignoring input signal bits below the noise level, we have

y ≈ 2n
n∑

i=1

x(i)2−i. (2.29)

This approximation equation motivates the definition of the linear deter-

ministic model. Consider a transmitted signal x̂q, which is a binary vector of
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length q. The deterministic channel only passes the top n bits to the destination.

Therefore, the output signal ŷq, which is also a binary vector of length q, and

the input signal x̂q are governed by the following linear deterministic model

ŷq = Sq−nx̂q, (2.30)

where S is a q × q shifting matrix,

S ,




0 0 0 ... 0

1 0 0 ... 0

0 1 0 ... 0
...

...
...

. . .
...

0 ... 0 1 0



. (2.31)

The capacity of this linear deterministic point-to-point channel is n [3].

Linear deterministic model can also model superposition. Consider a Gaus-

sian MAC channel, which is given by

Y = g1X1 + g2X2 + Z, (2.32)

where Y is the output of the channel, X1 and X2 are the input random variables,

g1 and g2 are fixed real-valued channel gains and Z ∼ N (0, 1) is Gaussian noise.

The input random variables satisfy the average power constraint E(|Xj |2) ≤ 1,

for j = 1, 2. Thus, the channel gains gj , for j = 1, 2, satisfy

|gj | =
√
SNRj , (2.33)

where SNRj are the signal-to-noise ratios of the channel.

For simplicity, assume the input signal xj , for j = 1, 2, have peak power

constraints of 1. It is also assumed that the background noise z also has a peak
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power constraint of 1. Denote the binary expansion of xj , as
∑∞

i=1 xj(i)2
−i.

Denote the binary expansion of z as
∑∞

i=1 z(i)2
−i. Expressing the received signal

y in terms of the binary expansion of xj and z, we have

y = 2
1
2

log SNR1

∞∑

i=1

x1(i)2−i + 2
1
2

log SNR2

∞∑

i=1

x2(i)2−i +

∞∑

i=1

z(i)2−i. (2.34)

Define nj , d1
2 log SNRje. We have

y = 2n1

n1∑

i=1

x1(i)2−i + 2n2

n2∑

i=1

x2(i)2−i +
∞∑

i=1

[x1(n1 + i) + x2(n2 + i) + z(i)]2−i.

(2.35)

Ignoring input signal bits below the noise level, we have

y ≈ 2n1

n1∑

i=1

x1(i)2−i + 2n2

n2∑

i=1

x2(i)2−i. (2.36)

This approximation equation motivates the definition of the correspond-

ing linear deterministic model for the Gaussian MAC channel. Denote q =

max(n1, n2). Consider a transmitted signals x̂qj , which are binary vectors of

length q, for j = 1, 2. Due to the strengths of signal links, the deterministic

channel only passes the top nj bits of the j-th transmitter to the destination.

The output signal ŷq, which is also a binary vector of length q, and the input

signal x̂j
q are governed by the following linear deterministic model

ŷq = Sq−n1 x̂q1 ⊕ Sq−n2 x̂q2, (2.37)

where S is a q × q shifting matrix defined similarly to (2.31). For further infor-

mation, please see [3].
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Chapter 3

On the Gaussian Interference
Channel with Noisy Feedback

R
ECENT results have shown that feedback can significantly increase the

capacity of interference networks. This chapter considers the impact of

noise on the gain due to feedback. Specifically, this chapter studies the two-

user Gaussian interference channel with noisy feedback. It is too hard to find

the capacity region of the two-user Gaussian interference channel with noisy

feedback. Instead, we aim to approximate the capacity region of this channel

using the linear deterministic approach, which was introduced in the previous

chapter, section 2.8.

� 3.1 Introduction

One of the most important issues for communication networks is that of interfer-

ence management. Characterizing the capacity region of the two-user Gaussian

interference channel (GIC) remains one of the fundamental unresolved problems

in information theory. Recent breakthroughs in dealing with the capacity char-
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acterization of the GIC have made use of the linear deterministic interference

channel (LD-IC) model [3, 11]. The main idea behind these works is that an

appropriately defined LD model can serve as a good approximation to the Gaus-

sian channel. By gaining valuable insights from studying the LD-IC, the proof

techniques and ideas can be lifted over to the GIC. The capacity region of the

GIC has been characterized to within 1-bit in [24].

There are many techniques to manage interference, such as treatment of in-

terference as noise, interference alignment [12], and usage of feedback [102]. In

this work, we focus on interference management via feedback. It is well known

that, while feedback does not increase the capacity of the discrete memoryless

point-to-point channel, it may enlarge the capacity region of multi-user channels.

The fact that feedback enlarges the capacity region of the discrete memoryless

multiple-access channel (MAC) was shown by Gaarder and Wolf [28]. After-

wards, Ozarow [82] found the capacity region of the two-user Gaussian MAC

with noiseless feedback. Recently, Suh and Tse [102] obtained an interesting

result that noiseless feedback can provide significant capacity gains for the GIC.

To understand the usefulness of feedback for the interference channel, consider

the very strong interference regime, in which the direct links are weaker than the

cross (interference) links. In such a scenario, feedback can provide a substantial

capacity gain by using the alternate path of Tx1 → Rx2 → Tx2 → Rx1, i.e., the

information intended from Tx1 first reaches Rx2, which is then received as feed-

back at Tx2, which uses the strong cross (interference) link to reach the eventual

destination at Rx1. The approximate capacity region of the GIC with noiseless
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channel output feedback has been characterized [102] to within 2-bits. The re-

sults in [102] have been generalized to the case of the fully connected K-user IC

[77], and the cyclic K-user IC [108].

Full and noiseless feedback is too much to ask for when the feedback link is not

reliable. Vahid et al. considered an interesting generalization of [102] by studying

the two-user GIC with rate-limited feedback [114]. Rate-limited feedback refers

to a setting in which the receiver can utilize all the information it has received

so far and feed back information over an orthogonal channel of finite capacity

(bit-pipe). Several interesting results for the GIC with rate-limited feedback are

obtained in [114].

While rate-limited feedback may be useful in scenarios in which the feedback

links have good coding schemes to protect feedback signals from error, it places

much complexity on the receiver’s side. As a result, this model is not appropriate

when the complexity of the feedback design is a concern. In order to take some

of these issues into account, this chapter aims to investigate the model in which

the feedback at transmitter j is a scaled and noisy (additive white Gaussian noise

corrupted) version of the channel output at receiver j, for j = 1, 2. In partic-

ular, if the channel output at receiver j is Yj , then the feedback to transmitter

j is YFj = gjYj + Z̃j , for j = 1, 2 (see Figure 3.1). With the eventual goal of

understanding the capacity region of the GIC with noisy feedback, we present a

linear deterministic model with noisy feedback. We show that the LD-IC with

noisy feedback serves as a good approximation to the GIC with noisy feedback.

First, we consider the linear deterministic interference channel with noisy feed-
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back. Subsequently, we consider the Gaussian interference channel with noisy

feedback, based on the insights that we gain from the linear deterministic model.

Other related work that studied multi-user channels with feedback includes

[34, 49, 60, 62, 90, 107, 112, 113, 122]. [112] [122] found an achievable rate re-

gion for interference channel with generalized feedback, and their model can be

reduced to many well-known multi-user channels, including ours. Note that all

results for the general memoryless IC with generalized feedback can be immedi-

ately specialized to the IC with user cooperation by evaluating the bounds for

independent noises, or to the IC with noisy feedback by evaluating the bounds

for correlated noises. However, further optimization needs to be done to make

the inner bound tight for our current problem. In [49], Jiang et al. estab-

lished an achievable rate region for the interference channel with full noiseless

feedback. [34] found outer bounds for interference channel with degraded noisy

feedback. Additive white Gaussian noise (AWGN) MAC with imperfect feed-

back was studied in [62], which showed that the achievable rate region for MAC

with even imperfect feedback is larger than that without feedback. Tandon

and Ulukus in [107] derived outer bounds for the Gaussian MAC with noisy

feedback and outer bounds for Gaussian interference channel with user cooper-

ation. In [113], Tuninetti developed outer bounds on R1 + R2 for interference

with generalized feedback. Existing literature on the IC with source cooperation

[4, 13, 87, 117, 123] are different but also related to literature on the IC with

noisy feedback. In both cases, each transmitter receives a noisy version of sig-

nals from the other transmitter. However, while the signal noises in the source
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cooperation model are independent of channel noises, the signal noises in the

noisy feedback model may be correlated with the channel noises. Wang and Tse

[117] characterized the capacity region, to within a constant number of bits, of

the two-user Gaussian interference channel with conferencing transmitters.

� 3.1.1 Main contributions

The main contributions of this chapter are summarized as follows.

• In this chapter, we characterize the capacity region for the symmetric LD-

IC with noisy feedback. We illustrate through numerous examples, that

the sum-rate bounds derived in [63] alone are not sufficient to characterize

the capacity region, and 2R1 +R2 and R1 +2R2 bounds are also necessary.

Note that outer bounds are tightened with the help of specially defined

auxiliary random variables. We show that noisy feedback increases the

capacity region if and only if the amount of feedback level l is greater than

a certain threshold l∗. It is found that, excluding the regime 1
2 ≤ α ≤ 2 in

which even full feedback does not increase symmetric capacity, l∗ is equal

to the per-user symmetric capacity without feedback.

• Based on results for the symmetric LD-IC with noisy feedback, we derive

inner bounds and outer bounds for the symmetric Gaussian interference

channel with noisy feedback. The outer bounds are shown to be at most

4.7 bits/s/Hz from the achievable rate region. As a corollary of this result,

we also obtain a generalized-degree-of-freedom region for the symmetric
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Gaussian IC with noisy feedback.

� 3.1.2 Chapter outline

The structure of this chapter is as follows.

• In section 4.2, we introduce the system models for the discrete memoryless

interference channel with noisy feedback, the Gaussian interference channel

with noisy feedback and the LD-IC with noisy feedback, then we formally

state the problem.

• In section 3.3, we present the results and discussion for the symmetric

linear deterministic interference channel with noisy feedback.

• In the subsequent section, we present the results and discussion for the

symmetric Gaussian interference channel with noisy feedback.

• Finally, the chapter ends with a conclusion and the appendix, which con-

tains proofs to results in the chapter.

� 3.2 System model

The two-user Gaussian interference channel with noisy feedback (see Figure 3.1),

is defined by the following input-output relationships

Y1i = h11X1i + h21X2i + Z1i, (3.1)

Y2i = h12X1i + h22X2i + Z2i, (3.2)
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Figure 3.1. Gaussian IC with Noisy Feedback.

YF1i = g1Y1i + Z̃1i, (3.3)

YF2i = g2Y2i + Z̃2i, (3.4)

where Xji denotes the signal sent by transmitter j, Yji denotes the output at

receiver j, YFj ,i denotes the feedback received at transmitter j, for j = 1, 2, at

time i, for i ∈ {1, 2, ..., T}, and {Zji}Ti=1 and {Z̃ji}Ti=1 are independent, additive

white Gaussian noise processes with zero means and unit variances. The for-

ward channel gains {h11, h21, h12, h22} and the feedback channel gains {g1, g2}

are assumed to be constant and known at all terminals. Average unit power

constraints are imposed at each transmitter. In other words, for a code of block

length T , input sequences must satisfy 1
T E(

∑T
i=1 |Xji|2) ≤ 1, for j = 1, 2.

Transmitter Txj , for j = 1, 2, wishes to communicate a message mj ∈
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{1, 2, ...,Mj} , Wj to receiver Rxj . It is assumed that W1 and W2 are inde-

pendent. An (M1,M2, T, Pe) feedback code for the interference channel (IC)

with noisy feedback consists of a sequence of encoding functions such that

Xji = f ij(Wj , YFj1, YFj2, ..., YFj ,i−1) (3.5)

where Xij ∈ Xj for j = 1, 2, and i = 1, 2, ..., T , and two decoding functions such

that

Ŵj = djT (Y T
j ) for j = 1, 2; (3.6)

such that max{Pe,1T , Pe,2T } ≤ Pe, where Pe,1T and Pe,2T denote the average

decoding error probabilities, which are computed as Pe,jT = Pr(Ŵj 6= Wj). A

rate pair (R1, R2) is achievable for the IC with noisy feedback if there exists an

(M1,M2, T, Pe)-feedback code such that Pe → 0 as T →∞ and log(M1)
T ≤ R1 and

log(M2)
T ≤ R2. The capacity region of the IC with noisy feedback is defined as

the closure of the set of all achievable rate pairs. With the goal of understanding

the capacity region of the GIC with noisy feedback as defined above, we next

describe the linear deterministic interference channel with noisy feedback.

Using the deterministic model in [3], a non-negative integer nkj is used to

represent the channel gain from transmitter Txk to receiver Rxj and it is given

by nkj = dlog h2
kje

+
. Note that the effect of the Gaussian noise is captured

by these representative numbers. Let q denote the maximum channel gains in

the interference channel, i.e., q = max(nkj). Thus, the transmitted signal from

transmitter k at the time i will have a maximum of q bits visible to any receiver.

Denote Xki = [X1
ki, ..., X

q
ki]
T ∈ F q2 , for k = 1, 2, where the leftmost bit is the
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Figure 3.2. Symmetric Linear Deterministic IC with Noisy Feedback.

most significant bit and the rightmost bit is the least significant bit. In this

linear model, the effect of interference between various signals is captured as the

superposition of those signals. At the time i, the outputs at the receivers are

given as

Y1i = Sq−n11X1i ⊕ Sq−n21X2i, (3.7)

Y2i = Sq−n12X1i ⊕ Sq−n22X2i, (3.8)

where S is the a square shift matrix of size q given by

S :=




0 0 0 ... 0

1 0 0 ... 0

0 1 0 ... 0
...

...
...

. . .
...

0 ... 0 1 0




(3.9)

and the operation is modulo 2 addition in F2.

Next, we analyze the feedback links in the Gaussian interference channel.

The feedback links are effectively equivalent to

YF1i = g1Y1i + Z̃1i (3.10)
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= gF1

Y1i√
h2

11 + h2
21 + 2h11h21 + 1

+ Z̃1i, (3.11)

YF2i = g2Y2i + Z̃2i (3.12)

= gF2

Y2i√
h2

12 + h2
22 + 2h12h22 + 1

+ Z̃2i, (3.13)

where

gF1 , g1

√
h2

11 + h2
21 + 2h11h21 + 1

gF2 , g2

√
h2

12 + h2
22 + 2h12h22 + 1.

Using equations (3.10-3.13), we now model the corresponding feedback in the

LD-IC model. The channel gains gFj for the feedback links can be represented

by lj , for j = 1, 2, where lj = dlog g2
Fj
e+. Note that when lj = q, this corresponds

to the case of full feedback, which is the best kind of feedback that a system can

get. Therefore, there is no need to consider the case lj > q. It is thus sufficient

to consider only the case 0 ≤ lj ≤ q. The feedback signals at the transmitters

are given as

YF1i = Sq−l1Y1i, YF2i = Sq−l2Y2i. (3.14)

Effectively, via the feedback links, in time slot i, the transmitter j sees only the

top lj bits of the received signals Yji, for j = 1, 2 (see Figure 3.2) .

The chapter focuses on the symmetric LD-IC in which m = n12 = n21, n =

n11 = n22, and l = l1 = l2, and the symmetric Gaussian IC with noisy feedback,
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where h11 = h22, h12 = h21 and g1 = g2. Define

SNR , h2
11 = h2

22, (3.15)

INR , h2
21 = h2

12, (3.16)

SNRF , g
2
F1

= g2
1 · (h2

11 + h2
21 + 2h11h21 + 1)

= g2
F2

= g2
2 · (h2

12 + h2
22 + 2h12h22 + 1). (3.17)

Remark 3.1. Now we show how the Gaussian IC with noisy feedback is also

related to, but different from, the Gaussian IC with source cooperation. Note

YF1i = g1Y1i + Z̃1i (3.18)

= g1h11X1i + g1h21X2i + g1Z1i + Z̃1i. (3.19)

Transmitter 1 has access to its own codewords, so we will subtract the contribu-

tion from X1i, and define a scaled version of the remaining part

Y ′F1i =
1√
g2

1 + 1
g1h21X2i +

1√
g2

1 + 1
(g1Z1i + Z̃1i). (3.20)

Thus, the Gaussian IC with noisy feedback is also related to the Gaussian IC

with source cooperation considered by Prabhakaran and Wiswanath [87] and

others. However, there are differences. In the noisy feedback model, the noise

1√
g2
1+1

(g1Z1i + Z̃1i) is correlated with Z1i. In the source cooperation model, the

cooperation noises are independent of the channel noises Z1i and Z2i. Opera-

tionally, in the noisy feedback model, receiver 1 at time slot i does not know the

message X2i clearly. Therefore, it sends a copy of the received message Y1i via

the feedback link. After receiving the noisy feedback YF1i and subtracting its own

message, transmitter 1 learns about transmitter 2’s message X2i through a noisy
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version Y ′F1i
. On the other hand, in the source cooperation model, transmitter

2 knows exactly its own message and cooperates directly with transmitter 1.

Without having to remove its own message, transmitter 1 learns directly about

transmitter 2’s message X2i through a noisy version Y ′F1i
.

� 3.3 Symmetric deterministic IC with noisy feedback

As a stepping stone towards approximating the capacity region for the Gaus-

sian IC with noisy feedback, we first consider the associated symmetric linear

deterministic model.

� 3.3.1 Capacity region

Given a triple (n,m, l), we denote the capacity region for symmetric LD-IC with

noisy feedback by CN−FB(n,m, l), which is the set of all achievable rate pairs

(R1, R2) with noisy feedback. We find it useful to define forward and feedback

interference parameters respectively as follows

α ,
m

n
, β ,

l

n
. (3.21)

The forward interference parameter α measures the normalized interference,

whereas the feedback interference parameter β measures the normalized feed-

back. For the purpose of comparison with related work, we also define the

normalized rates, with respect to n, as R∗j ,
Rj
n , for j = 1, 2. Equivalent

to CN−FB(n,m, l), the normalized capacity region CN−FB(α, β) is the set of all

achievable normalized rate pairs (R∗1, R
∗
2) with noisy feedback.
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The capacity region for the symmetric LD-IC with noisy feedback is given

by the following theorem.

Theorem 3.1. The normalized capacity region CN−FB(α, β) of the symmetric

linear deterministic interference channel with noisy feedback, is the set of non-

negative normalized rate pairs (R∗1, R
∗
2) that satisfy

R∗1 ≤ max(1, α), (3.22)

R∗2 ≤ max(1, α), (3.23)

R∗1 ≤ 1 + (β − 1)+, (3.24)

R∗2 ≤ 1 + (β − 1)+, (3.25)

R∗1 +R∗2 ≤ (1− α)+ + max(1, α), (3.26)

R∗1 +R∗2 ≤ 2 max[(1− α)+, α] + 2 min[(1− α)+, (β −max(α, (1− α)+))+],
(3.27)

2R∗1 +R∗2 ≤ (1− α)+ + max(1, α) + max[α, (1− α)+]

+ min[(1− α)+, (β −max(α, (1− α)+))+], (3.28)

R∗1 + 2R∗2 ≤ (1− α)+ + max(1, α) + max[α, (1− α)+]

+ min[(1− α)+, (β −max(α, (1− α)+))+]. (3.29)

where (α)+ , max(0, α).

Proof. One of the key ideas in the forward proof is the following lemma, which

gives an achievable rate region for the general two-user discrete memoryless in-

terference channel with noisy feedback. This lemma was derived in [122].
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Lemma 3.1. The capacity region of the two-user discrete memoryless interfer-

ence channel with noisy feedback as defined above includes the set of (R1, R2)

such that

R1 ≤ ρ1 + κ2 + ρ3 (3.30)

R2 ≤ κ1 + ρ2 + κ3 (3.31)

R1 ≤ κ6 (3.32)

R1 ≤ κ4 + ρ1 (3.33)

R2 ≤ ρ6 (3.34)

R2 ≤ ρ4 + κ1 (3.35)

R1 +R2 ≤ κ2 + ρ6 (3.36)

R1 +R2 ≤ ρ2 + κ6 (3.37)

R1 +R2 ≤ κ1 + ρ1 + κ5 + ρ2 (3.38)

R1 +R2 ≤ κ1 + ρ1 + ρ5 + κ2 (3.39)

R1 +R2 ≤ κ1 + ρ1 + κ3 + ρ3 (3.40)

2R1 +R2 ≤ κ6 + κ2 + ρ3 + ρ1 (3.41)

2R1 +R2 ≤ 2ρ1 + κ1 + κ5 + κ2 + ρ3 (3.42)

R1 + 2R2 ≤ ρ6 + ρ2 + κ3 + κ1 (3.43)

R1 + 2R2 ≤ 2κ1 + ρ1 + ρ5 + ρ2 + κ3, (3.44)
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over all joint distributions

p(u)p(u1|u)p(u2|u)p(v1|u, u1)p(v2|u, u2)p(x1|u, u1, v1)

p(x2|u, u2, v2)p(y1y2|x1x2)p(yF1 |y1)p(yF2 |y2), (3.45)

where

κ1 = I(U2;YF1 |X1, V1, U1, U) (3.46)

κ2 = I(X1;Y1|U,U1, U2, V1, V2) (3.47)

κ3 = I(X1, V2;Y1|U,U1, V1, U2) (3.48)

κ4 = I(X1;Y1|U,U1, U2, V2) (3.49)

κ5 = I(X1, V2;Y1|U,U1, U2) (3.50)

κ6 = I(U,U2, V2, X1;Y1) (3.51)

ρ1 = I(U1;YF2 |UV2U2X2) (3.52)

ρ2 = I(X2;Y2|U,U1, U2, V1, V2) (3.53)

ρ3 = I(X2, V1;Y2|U,U2, V2, U1) (3.54)

ρ4 = I(X2;Y2|U,U2, U1, V1) (3.55)

ρ5 = I(X2, V1;Y2|U,U1, U2) (3.56)

ρ6 = I(U,U1, V1, X2;Y2). (3.57)

The details in applying Lemma 3.1 to do the forward proof are presented in

subsection 3.6.2.

Remark 3.2. We sometimes use the notation convenience pV |U (v|u) = p(v|u) and
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pV (v) = p(v), where the dropped subscripts are obvious by observation of the

arguments used in the functions.

Remark 3.3. The lemma, just as related works in [122] [112] [102] [114], uses

standard methods which combine three techniques: block Markov encoding [16],

backward decoding [17], and Han-Kobayashi message splitting [41]. A message

from each transmitter is split into three parts: private message, cooperative

common message and non-cooperative common message.

A system with noisy feedback can perform no better than a system with full

feedback. Thus, any outer bound that is applicable to the full feedback model, is

also applicable to the noisy feedback model. Thus, for the proof of outer bounds

for equations (3.22), (3.23) and (3.26), please refer to [102]. The outer bound for

the equation (3.24) is a simple cut-set bound [18], that follows from the outer

bound

R1 ≤ H(Y1, YF2 |X2), (3.58)

which can be proved easily. Nevertheless, there is an alternative way to prove

this outer bound. In the regime where α < 1, this outer bound is inactive due

to outer bound in (3.22); in the strong and very strong interference regimes, i.e.

α ≥ 1, this outer bound follows from an interesting observation. The observation

is that, when β ≤ 1, feedback YF2 does not help as the feedback is a composition

of X2 and the top n bits of X1, and when β > 1, feedback starts to help but

there is some overlap as the top n of X1 in this case is a mixture of YF2 and

X2. Thus, we will present, in the appendix, an alternative, slightly more compli-

cated, proof, which might be of interest to some readers, based on this simple,
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but intriguing, observation. The outer bound on the equation (3.25) is proved

similarly. In addition, we will present the rest of the converse proof for Theorem

3.1 in subsection 3.6.1.

Next, we will compare the result for the noisy feedback model with related

results for the no feedback model, the rate-limited feedback model and the full

feedback model.

� 3.3.2 Comparison with other feedback models

We recall here the capacity regions for the no feedback model, the rate-limited

feedback model and the full feedback model. The normalized capacity region

CNo−FB(α) of the symmetric linear deterministic channel with no feedback model

[11], in which β = 0, is given the set of non-negative rate pairs (R∗1, R
∗
2) that

satisfy

R∗1 ≤ 1,

R∗2 ≤ 1,

R∗1 +R∗2 ≤ (1− α)+ + max(1, α),

R∗1 +R∗2 ≤ 2 max[(1− α)+, α],

2R∗1 +R∗2 ≤ (1− α)+ + max(1, α) + max[α, (1− α)+],

R∗1 + 2R∗2 ≤ (1− α)+ + max(1, α) + max[α, (1− α)+]. (3.59)

The normalized capacity region CFull−FB(α) of the full feedback model [102],
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in which β = 1, is given the set of non-negative normalized rate pairs (R∗1, R
∗
2)

that satisfy

R∗1 ≤ max(1, α),

R∗2 ≤ max(1, α),

R∗1 +R∗2 ≤ (1− α)+ + max(1, α). (3.60)

The normalized capacity region CRL−FB(α, β′) of the rate-limited feedback

model found in [114], is equivalent to the set of non-negative normalized rate

pairs (R∗1, R
∗
2) that satisfy

R∗1 ≤ max(1, α),

R∗2 ≤ max(1, α),

R∗1 ≤ 1 + β′,

R∗2 ≤ 1 + β′,

R∗1 +R∗2 ≤ (1− α)+ + max(1, α),

R∗1 +R∗2 ≤ 2 max[(1− α)+, α] + 2 min[(1− α)+, β′],

2R∗1 +R∗2 ≤ (1− α)+ + max(1, α) + max[α, (1− α)+] + min[(1− α)+, β′],

R∗1 + 2R∗2 ≤ (1− α)+ + max(1, α) + max[α, (1− α)+] + min[(1− α)+, β′].
(3.61)

In contrast to that in the partial-feedback model, the receivers in a rate-
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limited feedback model, with feedback rate β′, can feed back to the transmitters

any function of the received outputs, even though β′ in the rate-limited feedback

model is also a normalized rate of feedback just like β in the partial-feedback

model. Clearly, such encoding functions include sending back the top nβ′ bits;

and hence the capacity of our model is in general contained within the capacity

region with the same amount of rate-limited feedback. Thus, when β = β′, the

capacity regions for these four models always satisfy the following rule

CNo−FB(α) ⊆ CP−FB(α, β) ⊆ CRL−FB(α, β′) ⊆ CFull−FB(α). (3.62)

The set inclusions here can be strict. We illustrate the results through examples.

Example 3.1. Consider a channel in which n = 6,m = 2 and l = 5. Figure

3.3 shows the capacity regions with no feedback, with full feedback, with rate-

limited feedback of l = 5 bits, and with noisy feedback of l = 5 bits. Several

interesting observations are worth making:

• The capacity region with full feedback coincides with that of rate-limited

feedback of l = 5 bits.

• The sum capacity is 10 bits/channel-use for full, rate-limited and noisy

feedback settings.

• Most importantly, the capacity region with noisy feedback is strictly con-

tained in the capacity region with full feedback and rate-limited feedback.

Previously, the capacity region for the model with full feedback did not re-

quire the bounds on 2R1 +R2 and R1 + 2R2. On the other hand, it is here
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Figure 3.4. Capacity regions for n =
1,m = 7 and l = 2.

that we can clearly see the necessity of 2R1 +R2 and R1 + 2R2 bounds in

characterizing the exact capacity region when the feedback links are noisy.

Example 3.2. Consider another channel in which n = 1,m = 7 and l = 2.

Figure 3.4 shows the capacity regions with no feedback, with full feedback, with

rate-limited feedback of l = 2 bits, and with noisy feedback of l = 2 bits. Several

interesting observations are worth making:

• All the set inclusions in (3.62) are strict. In other words, the capacity

regions of the no feedback model, the noisy feedback model and the rate-

limited feedback model are strictly included in that of the noisy feedback

model, the rate-limited feedback model, and the full feedback model re-

spectively.

• When l = 2, the capacity region of the noisy feedback model is strictly

larger than that of the no feedback model. In fact, this holds as long as

l > 1. Thus, we can partially observe the role the noisy feedback link plays
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in enlarging the capacity region. The capacity region of the noisy feed-

back model are characterized by not only the direct link strength n and

the cross interference link strength m, but also the feedback link strength l.

As a direct result of Theorem 3.1, we have the following corollary.

Corollary 3.1. The normalized sum rate R∗1 + R∗2 of the noisy feedback model

is the same as that of the no feedback model when β ≤ β∗1 , where

β∗1 =

{
max(α, (1− α)+) if α ≤ 1,

1 if 1 < α.
(3.63)

The normalized sum rate R∗1 +R∗2 of the noisy feedback model is the same as that

of the full feedback model when β ≥ β∗2 , where

β∗2 =

{
1− α

2 if α ≤ 1,
α
2 if 1 < α.

(3.64)

The normalized sum rate R∗1 +R∗2 as a function of β, for a fixed value of α, in

different regimes, is illustrated in Figures 3.5, 3.6, 3.7, and 3.8. The normalized

sum rate R∗1 + R∗2 of the noisy feedback model is the same as that of the no

feedback model when β ≤ β∗1 , which is defined in Corollary 3.1. Notice that,

excluding the case 2
3 ≤ α ≤ 2, β∗1 is the per-user symmetric capacity for the no

feedback model. The normalized sum rate R∗1 +R∗2 of the noisy feedback model

is strictly smaller than that of the rate-limited feedback model. The normalized

sum rate R∗1 +R∗2 for the noisy feedback model reaches saturation and achieves

the same performance as that of the full feedback model when β ≥ β∗2 . Notice

that β∗2 is the per-user symmetric capacity of the full feedback model.
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Note that the normalized sum rate R∗1 +R∗2 is not increased by any amount

of feedback in the moderately strong interference regime, where 2
3 ≤ α ≤ 1, and

the strong interference regime, where 1 ≤ α ≤ 2.

As a direct result of Theorem 3.1, we have another corollary.

Corollary 3.2. The capacity region of the noisy feedback model is increased by

the noisy feedback if and only if β ≥ β∗1 , where β∗1 is defined as in Corollary 3.1.

In the following subsection, we present discussion on ideas of the achievability

proof and the converse proof for Theorem 3.1.
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� 3.3.3 Comparison with the linear deterministic IC models with source
cooperation

In the literature, The Gaussian IC with source cooperation [87] indicates IC

with generalized feedback where all noises are independent and jointly Gaussian.

The difference between the Gaussian IC with source cooperation and the model

in this chapter is explained in Remark 3.1. However, in the high-SNR linear

deterministic model, there is no noise; hence the result for the case of source

cooperation can be readily specialized to the noisy feedback case. For this reason,

the result in [87] can be specialized to our scenario.

Denote βsc as the channel gain between the sources in the paper [87]. First,

we find the relationship between β in the noisy feedback model and βsc in the

source cooperation model. In the noisy feedback model, we have the restriction

β ≤ max(1, α) as a receiver cannot feedback more than the amount of information

it has received. In the source cooperation model, we have the restriction βsc ≤ α

as a transmitter does not need to see more bits of the interference signal than

the intended receiver. Notice that what matters in these types of problems is

how many interfering bits of X2 are seen at receiver 1 and how many bits of X1

are seen at receiver 2. Hence, we have

β = βsc + [1− α]+.

Thus, from Theorem 1 in [87], we obtain from the following corollary.

Corollary 3.3. The normalized sum-capacity region CN−FB(α, β) of the sym-

metric linear deterministic interference channel with noisy feedback, is the set of
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non-negative normalized rate pairs (R∗1, R
∗
2) that satisfy

R∗1 +R∗2 ≤ 2 max(1− α+ (β − (1− α)+)+, α, (β − (1− α)+)+), (3.65)

R∗1 +R∗2 ≤ max(1, α) + max(1, α, (β − (1− α)+)+ − α, (3.66)

R∗1 +R∗2 ≤ 2 max(1, (β − (1− α)+)+), (3.67)

R∗1 +R∗2 ≤ 2 max(1, α). (3.68)

Note that the bounds in this corollary are exactly equivalent to our bounds

on the sum rate R∗1 + R∗2 in Theorem 3.1. In the case α ≥ 1, the bounds on

2R∗1 + R∗2 and R∗1 + 2R∗2 are not active in characterizing the capacity region

the symmetric LD IC with noisy feedback. Therefore, the sum capacity in [87,

Theorem 1], together with the bounds on the individual rates (3.22-3.25), can

lead the same result as that in Theorem 3.1.

� 3.3.4 Achievability

In the classical interference channel without feedback, the HK encoding scheme

currently gives the best achievable rate region [41] [15]. It was proved in [24]

[11] that the HK encoding scheme can achieve the capacity region of the lin-

ear deterministic interference channel with no feedback. In the HK encoding

scheme, messages are split into two parts: common information and private in-

formation. However, splitting messages into two parts is not sufficient to account

for the effect of feedback links on the capacity region of the interference channel

with noisy feedback. Previous works have made used of more-than-two message
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Figure 3.9. Encoding example for (n = 7;m = 4; l = 5)

splitting [112] [122] [114] [87]. The works [112] [122] developed an achievabil-

ity scheme for a very generic model: IC with generalized feedback. It is true

that IC with noisy feedback is a special case of IC with generalized feedback.

Thus, any achievable scheme developed for IC with generalized feedback is also

applicable for IC with noisy feedback. The remaining question is which choice of

auxiliary random variables will obtain the optimal achievable rate region. Before

answering this question, we will consider an example.

Example 3.3. Consider an example, in which n = 7,m = 4 and l = 5. In this

example, we show an encoding scheme to achieve the point (R1, R2) = (5, 5) in

the achievable rate region. Without feedback, the maximum achievable sum rate

is 8 bits per channel use. Here, we manage to obtain a sum rate of 10 bits per

channel use through feedback. The encoding scheme is shown in Figure 3.9.

In the first time slot t = 1, each transmitter sends 5 fresh information bits as
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shown in the figure. With a feedback channel gain l = 4, Tx1 sees only the

top 5 bits, which are a1, a2,−, b1, a3 ⊕ b2, and hence it can recover b2. In the

second time slot i = 2, transmitter Tx1 sends 5 new fresh information bits again

and encodes b2 at the third topmost signal level as shown in the figure. The

third topmost signal level is chosen to ensure that the resolving signal bit b2 is

received cleanly at Tx1. With the help of b2, Rx1 can resolve the interference in

the previous time slot and decode a3 successfully. Due to symmetry, the same

encoding operation is carried out at Tx2 and Rx2. We can repeat this encoding

scheme again for a duration of B time slots. It is easy to see that this scheme

asymptotically achieves a sum rate R1 + R2 = 10 bits/channel use. Thus, the

bound R1 + R2 ≤ 2m + 2(l − m)+ is active in this example and the encoding

scheme has achieved the sum capacity in this regime.

A careful observation suggests, in each channel use, the message bits from a

transmitter is categorized into three parts. For example, transmitter 1, in the

second time slot when t = 2, has 3 private bits a8, a9, a10, 2 cooperative common

bit (b2,−), and the remaining 2 bits as non-cooperative common bits. This

example suggests the size of the cooperate common message in general to be

(l − (n − m)+)+ and the position of the cooperative common message to be

within the top m bits of each transmitter.

A detailed choice of auxiliary random variables are shown in the proof in

subsection 3.6.2.

Remark 3.4. Apart from the generic achievable scheme shown in subsection 3.6.2,

we developed an alternative, more elementary achievable scheme, which is pre-
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sented in subsection 3.6.3. That alternative scheme gives certain alternative

points of view, which are not captured by the generic achievable scheme here.

� 3.3.5 Outer bounds

Consider the same example in Figure 3.9. Notice that for l ≤ 4, the feedback

link does not show any advantage over the situation without feedback. For

example, in the first slot t = 1 when l = 4, even though transmitter 1 sees

4 bits (a1, a2,−, b1) via the feedback link, the knowledge of b1 is redundant as

no interference has appeared at receiver 1 yet. However, when l = 5, there is

interference at a3 ⊕ b2. Thus, we start to see the benefit of the feedback link.

Notice that transmitter 1 always knows the top n − m = 3 bits of receiver 1.

However, the benefit of feedback does not occur when l exceeds n −m. It only

occurs when l exceeds m. This motivates us to define Xtop1 and Xtop2 in the

converse. For more details, please refer to subsection 3.6.1.

� 3.4 Symmetric Gaussian interference channel with noisy feedback

With the results and techniques developed for the symmetric linear determinis-

tic model, we are one step closer to approximating the capacity region for the

symmetric Gaussian IC with noisy feedback. First, we derive the outer bounds,

next we derive the inner bounds. Then, we show that the gap between the outer

bounds and the inner bounds is a constant.
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� 3.4.1 Outer bounds

Define

αG ,
log INR

log SNR
. (3.69)

The outer bounds for the symmetric Gaussian interference channel with noisy

feedback is given by the following theorem.

Theorem 3.2. The capacity region of the symmetric Gaussian interference

channel with noisy feedback, is included by the set of non-negative pairs (R1, R2),

for some 0 ≤ ρ ≤ 1, satisfying

R1 ≤
1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)
, ψ1 (3.70)

R2 ≤
1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)

(3.71)

R1 ≤
1

2
log (SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
, ψ2 (3.72)

R2 ≤
1

2
log (SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(3.73)

R1 +R2 ≤
1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)
, ψ3 (3.74)

R1 +R2 ≤ ψ4 (3.75)

2R1 +R2 ≤ ψ5 (3.76)

R1 + 2R2 ≤ ψ5, (3.77)
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where

ψ4 ,





log
(

INR2

SNR + 1
)

+ log
(

SNRF
INR + 1

)
+ log

(
SNR
INR

)
+ log 3

if 1
2 ≤ αG < 1,

log
(

INR2+SNR+2INR+2ρ
√

SNR .INR+1
INR+1

)
+ log

(
SNRF (INR+1)
SNR+INR+1 + 1

)

otherwise,

(3.78)

ψ5 ,





1
2 log

(
INR2

SNR + 1
)

+ 1
2 log

(
SNRF
INR + 1

)
+ 1

2 log
(

SNR
INR

)
+ 1

2 log 3

+1
2 log

(
SNR

INR+1 + 1
)

+ 1
2 log

(
SNR + INR + 2ρ

√
SNR · INR + 1

)

if 1
2 ≤ αG < 1,

1
2 log

(
INR2+SNR+2INR+2ρ

√
SNR·INR+1

INR+1

)
+ 1

2 log
(

SNRF (INR+1)
SNR+INR+1 + 1

)

+1
2 log

(
SNR

INR+1 + 1
)

+ 1
2 log

(
SNR + INR + 2ρ

√
SNR · INR + 1

)

otherwise.

(3.79)

Proof. The bounds of (3.70),(3.71) and (3.74) were derived in [102]. Thus, it

suffices to prove the bounds of (3.72),(3.75) and (3.76). The proof of (3.73) and

(3.77) follow by symmetry. One of the key ideas in proving these outer bounds

is to make use of the following auxiliary random variables. Inspired by the linear

deterministic interference channel with partial feedback, we define

S2G ,
√

INRX2 + Z1, (3.80)

S1G ,
√

INRX1 + Z2, (3.81)

Xtop1G ,

{
INR√
SNR

X1 + Z2,
1
2 ≤ αG ≤ 1

0, otherwise,
(3.82)

Xtop2G ,

{
INR√
SNR

X2 + Z1,
1
2 ≤ αG ≤ 1

0, otherwise.
(3.83)

Almost similarly to the proof of the outer bounds in Theorem 3.1, we can show

the following lemma. However, there are subtle differences, which call for the

right analysis so that we can deal with channel noises and feedback noises. The

59



CHAPTER 3. ON THE GAUSSIAN INTERFERENCE CHANNEL WITH NOISY FEEDBACK

specially defined random variables Xtop1G and Xtop2G play a key role in obtaining

the sum rate bound (3.85) and the weighted sum rate bound (3.86).

Lemma 3.2. Consider the Gaussian IC with noisy feedback as defined in Section

4.2. The capacity region of the symmetric Gaussian IC with noisy feedback, is

included by the set of non-negative pairs (R1, R2) satisfying

R1 ≤ h(Y1, YF2 |X2)− h(Z1)− h(Z̃2), (3.84)

R1 +R2 ≤ h(Xtop1G|S2G) + h(YF2 |X2, Xtop1G) + h(Y2|S2G, Xtop1G)

+ h(Xtop2G|S1G) + h(YF1 |X1, Xtop2G) + h(Y1|S1G, Xtop2G)

− h(Z̃2)− h(Z̃1)− 2h(Z2)− 2h(Z1) (3.85)

2R1 +R2 ≤ h(Xtop1G|S2G) + h(YF2 |X2, Xtop1G) + h(Y2|S2G, Xtop1G)

+ h(Y1|S1G, X2) + h(Y1)− 2h(Z1)− 2h(Z2)− h(Z̃2). (3.86)

The proof of Lemma 3.2 is presented in the appendix, subsection 3.6.5.

Lemma 3.2 is tailor-made to deal with the effect of noisy feedback on the per-

formance of the symmetric Gaussian interference channel.

Using Lemma 3.2, we can prove bounds (3.72),(3.75), (3.76) and (3.73). The

details are presented in subsection 3.6.4.

Remark 3.5. When SNRF → ∞, the outer bounds of (3.72), (3.73), (3.76) and

(3.77) are redundant.

Remark 3.6. At high SNR, the outer bounds here are equivalent to that in the

full-feedback model [102]. At low SNR, the outer bounds here are slightly looser
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than that in the full-feedback model as we do not include the following cut-set

outer bound [102]

R1 ≤ h(Y2|X2)− h(Z2) + h(Y1|X2, S1)−H(Z1) (3.87)

≤ 1

2
log
(
1 + (1− ρ2)INR

)
+

1

2
log

(
1 +

(1− ρ2)SNR

1 + (1− ρ2)INR

)
. (3.88)

However, it is beyond the scope of this chapter to tighten the constant-gap result,

which is presented in Theorem 3.4, so we do not consider it here.

Remark 3.7. The symmetric Gaussian IC with noisy feedback and the symmetric

Gaussian IC with rate-limited feedback [114] share the same bounds of (3.70),

(3.71) and (3.74).

Remark 3.8. Theorem II.2 in the paper [113] gives a generic outer bound on the

sum rate R1 + R2 for IC with generalized feedback. That outer bound is also

applicable to our setting and potentially helpful in obtaining a better constant-

gap result.

Remark 3.9. The outer bounds on the sum rate in Theorem 2 and Appendix IV

in [24] possibly have competitive performance with our outer bounds in terms of

quantifying the constant gap for the sum rate.

� 3.4.2 Inner bounds

The inner bounds for the symmetric Gaussian interference channel with noisy

feedback is given by the following theorem.

Theorem 3.3. Given any real-valued number ρ such that 0 ≤ ρ ≤ 1. The

capacity region of the two-user symmetric Gaussian interference channel with
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noisy feedback includes the set of all non-negative pairs of (R1, R2) satisfying

R1 ≤ min(τ6, τ4 + τ1, τ1 + τ2 + τ3) (3.89)

R2 ≤ min(τ6, τ4 + τ1, τ1 + τ2 + τ3) (3.90)

R1 +R2 ≤ min(τ2 + τ6, 2τ1 + τ5 + τ2, 2τ1 + 2τ3) (3.91)

2R1 +R2 ≤ min(τ6 + τ2 + τ3 + τ1, 3τ1 + τ5 + τ2 + τ3) (3.92)

R1 + 2R2 ≤ min(τ6 + τ2 + τ3 + τ1, 3τ1 + τ5 + τ2 + τ3) (3.93)

where

τ6 ,
1

2
log

SNR + INR + 2ρ
√

SNR · INR + 1

INR · Pp + 1
(3.94)

τ5 ,
1

2
log

SNR(Pnc + Pp) + INR(Pnc + Pp) + 1

INR · Pp + 1
(3.95)

τ4 ,
1

2
log

SNR(Pnc + Pp) + INR · Pp + 1

INR · Pp + 1
(3.96)

τ3 ,
1

2
log

SNR · Pp + INR(Pnc + Pp) + 1

INR · Pp + 1
(3.97)

τ2 ,
1

2
log

SNR · Pp + INR · Pp + 1

INR · Pp + 1
(3.98)

τ1 ,
1

2
log

τ1n

τ1d
(3.99)

τ1n ,
SNRF

SNR + INR + 2
√

SNR · INR + 1
× [INR(Pcc + Pnc + Pp) + 1] + 1

τ1d ,
SNRF

SNR + INR + 2
√

SNR · INR + 1
× [INR(Pnc + Pp) + 1] + 1,

for all power allocation schemes that satisfy

Pp + Pcc + Pnc = 1− ρ, (3.100)

and Pp, Pcc and Pnc are non-negative.
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Proof. Theorem 3.3 is a direct corollary of Lemma 3.1. Choose (U,Ui, Vi, Xip),

for i ∈ {1, 2} as jointly Gaussian, independent random variables which satisfy

U ∼ N (0, ρ), (3.101)

Ui ∼ N (0, Pcc), (3.102)

Vi ∼ N (0, Pnc), (3.103)

Xip ∼ N (0, Pp), (3.104)

Pcc + Pnc + Pp = 1− ρ. (3.105)

Set Xi = U +Ui + Vi +Xip. With this choice of random variables, Theorem 3.3

is a direct corollary of Lemma 3.1.

Theorem 3 plays a key role in obtaining the constant-gap result in Theo-

rem 3.4. The major difficulty in using Theorem 3 is to choose the right power

allocation scheme, so that we can get tight inner bounds.

� 3.4.3 A constant gap between inner and outer bounds

Define

δR , δR1 , δR2 , min(ψ1, ψ2)−min(τ6, τ4 + τ1, τ1 + τ2 + τ3, τ) (3.106)

δ2R , δR1+R2 , min(ψ3, ψ4, 2ψ1, 2ψ2, ψ1 + ψ2)

−min(τ2 + τ6, 2τ1 + τ2 + τ5, 2τ1 + 2τ3, 2τ) (3.107)

δ3R , δ2R1+R2 , δR1+2R2
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, min(ψ5, ψ1 + ψ3, ψ1 + ψ4, ψ2 + ψ3, ψ2 + ψ4, 3ψ1, 3ψ2)

−min(τ1 + τ2 + τ3 + τ6, 3τ1 + τ2 + τ3 + τ5, 3τ). (3.108)

δ , max(δR,
1

2
δ2R,

1

3
δ3R) (3.109)

where τ is any achievable rate for any transmitter, using some achievability

scheme. In words, δR, δ2R and δ3R are the possible gaps between the minimum

of the set of the derived outer bounds and and the minimum of the set of the

derived inner bounds for the individual rate, the sum rate R1 + R2, and the

weighted sum rates 2R1 +R2 and R1 + 2R2 respectively.

This is the main result in this chapter.

Theorem 3.4. Outer bounds in Theorem 3.2 are no more than 4.7 bits/s/Hz

away from the achievable rate region. More precisely, we have

δ ≤ 4.7 (3.110)

Proof. Refer to subsection 3.6.6.

Remark 3.10. HK [41] scheme used two-message splitting, which was proved

to be at most 1 bit/s/Hz away from the outer bounds [24]. The achievability

scheme here makes use of three-message splitting. Prabhakaran and Viswanath

[87] proposed three different encoding schemes, which are based on three-message

splitting (which is the same as ours here), four-message splitting and mixture of

these two schemes. Other advanced achievibility schemes developed in [122] for

the IC with generalized feedback is also applicable to our model. We are not
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sure if our current inner bounds are sufficiently strict so it might be advanta-

geous to use any alternative achievability schemes found in these related works

to reduce the gap further. The large gap may be also due to the outer bounds.

Further works need to be done to tighten the outer bounds. In addition, partic-

ular attention should be paid to the outer bounds, such as the bounds of (3.72),

(3.73), (3.75 - 3.77), which are functions of the feedback link strength SNRF .

Furthermore, the gap is estimated based on a crude estimation method. A more

refined technique should be employed to reduce the gap further. The work in

[87] considered bounds for the symmetric Gaussian IC with source cooperation

and obtained a gap of 10 bits/s/Hz for the sum rate R1 + R2, for real random

variables. From the proof of this theorem, our gap for the sum rate only is

δ2R = 9.3 bits/s/Hz. At high SNR, bounds in [87] and the bounds here will give

the same result. However, at low SNR, ignoring the differences in estimation of

the gap, our outer bounds on the sum rate seem to be slightly better for sym-

metric Gaussian IC with symmetric noisy feedback.

Define

βG ,
log SNRF

log SNR
. (3.111)

Next, define the generalized degrees of freedom as

d1(αG, βG) , lim
SNR→∞

R1(SNR, INR,SNRF)
1
2 log(1 + SNR)

, (3.112)

d2(αG, βG) , lim
SNR→∞

R2(SNR, INR,SNRF)
1
2 log(1 + SNR)

. (3.113)

As a result of Theorem 3.4, we obtain the following corollary, which gives
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the generalized-degree-of-freedom region of the symmetric Gaussian interference

channel with noisy feedback.

Corollary 3.4. For the symmetric Gaussian interference channel with noisy

feedback, the generalized-degrees-of-freedom region is the set of non-negative pairs

(d1, d2) that satisfy

d1 ≤ max(1, αG), (3.114)

d2 ≤ max(1, αG), (3.115)

d1 ≤ max(1, βG), (3.116)

d2 ≤ max(1, βG), (3.117)

d1 + d2 ≤ max(1, αG) + (1− αG)+, (3.118)

d1 + d2 ≤ 2 max(1− αG, αG) + 2(βG −max(1− αG, αG))+, (3.119)

2d1 + d2 ≤ (βG −max(1− αG, αG))+

+ max(1− αG, αG) + (1− αG)+ + max(1, αG), (3.120)

d1 + 2d2 ≤ (βG −max(1− αG, αG))+

+ max(1− αG, αG) + (1− αG)+ + max(1, αG). (3.121)

Remark 3.11. The generalized-degrees-of-freedom region for the symmetric Gaus-

sian IC is the same as the capacity region for the symmetric LD-IC. Therefore,

any set of remarks and observations that are applicable to the symmetric LD-IC,

also applies directly to the generalized-degree-of-freedom region of the Gaussian

IC.
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� 3.4.4 Discussion on the asymmetric Gaussian interference channel
with noisy feedback

The symmetric Gaussian interference channel with symmetric noisy feedback is

only a special case of the asymmetric Gaussian interference channel with asym-

metric noisy feedback. To approximate the asymmetric Gaussian interference

channel with noisy feedback directly is a challenging task. Thus, it is beneficial

to first find the capacity region for the asymmetric LD-IC with asymmetric noisy

feedback. A keen reader would have noticed that the inner bounds and outer

bounds developed in the proof of Theorem 1 (sections 3.6.1 and 3.6.2) are also

applicable to the asymmetric LD-IC with asymmetric noisy feedback. However,

in the outer bounds, we relied on carefully-defined auxiliary random variables

Xtop1 and Xtop2 to optimally tighten the outer bounds. Similarly, in the inner

bounds, we relied on the carefully-chosen random variables U1 and U2, in terms of

the size and the location of the bits assigned to these two random variables with

respect to X1 and X2 respectively, so that we can optimally maximize the inner

bounds to the extent that the inner bounds match the outer bounds exactly.

We are not sure if the current outer bounds and inner bounds are sufficient to

determine the capacity region for the asymmetric LD-IC with noisy feedback. To

choose optimal sets of random variables Xtopj , Uj , for j ∈ {1, 2}, which enable us

to determine the capacity region for asymmetric LD-IC with asymmetric noisy

feedback, for different values of nij and lj , for i, j ∈ {1, 2}, is a non-trivial prob-

lem. Therefore, to approximate the capacity region for the asymmetric Gaussian

IC with asymmetric noisy feedback remains an open problem for now.
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� 3.5 Conclusions

In this chapter, we have obtained the capacity region for the symmetric linear

deterministic interference channel with noisy feedback. We have shown that

noisy feedback increases the capacity region if and only if the amount of feedback

level l is greater than a certain threshold l∗, and it is found that l∗ is equal to the

per-user symmetric capacity without feedback. One of the key ideas is a novel

converse proof which includes outer bound on weighted sum rates 2R1 +R2 and

R1 + 2R2. Our novel outer bounds are tightened by specially defined auxiliary

random variables. We have also illustrated through numerous examples, that

the outer bounds on the sum rate R1 +R2 derived in [63] alone are not sufficient

to characterize the capacity region, and 2R1 +R2 and R1 + 2R2 bounds are also

necessary. The result and the techniques developed for this linear deterministic

model are then applied to characterize inner bounds and outer bounds for the

symmetric Gaussian IC with noisy feedback. The outer bounds are shown to be

at most 4.7 bits/s/Hz away from the achievable rate region. As a corollary, the

generalized-degree-of-freedom region, which approximates the capacity region of

the symmetric Gaussian IC at high SNR, is found.
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Rx1

YF2

YF1

A1

B1

n

n

n ≤ m

m

Tx2

Rx2

Tx1

Figure 3.10. Illustration of A1 and B1 when n ≤ m.

� 3.6 Appendix

� 3.6.1 Converse proof of Theorem 3.1

� 3.6.1.1 Bounds on R1 and R2

Now, the outer bounds of (3.24) and (3.25) on R1 and R2 respectively, are proved.

When 0 ≤ m < n, we always have Rj ≤ n, for j = 1, 2, as proved above. Thus,

we only need to consider the case n ≤ m. Consider Figure 3.10. Let A1 denote

the top n bits of transmitter 1, and let B1 denote the top n bits of transmitter

2.
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We have

TR1 = H(W1)

(a)
= H(W1|W2)

= I(W1;AT1 Y
T
F2
|W2) +H(W1|W2A

T
1 Y

T
F2

)

(b)
= I(W1;AT1 Y

T
F2
|W2) +H(W1|W2A

T
1 Y

T
F2
XT

2 Y
T

1 )

(c)

≤ H(AT1 Y
T
F2
|W2) +H(W1|Y T

1 )

(d)

≤
T∑

i=1

H(A1iYF2i|Ai−1
1 Y i−1

F2
W2) + 1 + TP Te

(e)

≤
T∑

i=1

H(A1iYF2i|X2i) + 1 + TP Te , (3.122)

where

(a) follows from the independence between W1 and W2;

(b) follows from the fact XT
2 is a function of (W2Y

T
F2

), and Y T
1 is a function of

(AT1 X
T
2 );

(c) follows from the facts that H(AT1 Y
T
F2
|W2W1) = 0 and that conditioning

reduces the entropy;

(d) follows from Fano’s inequality; and

(e) follows from the fact that X2i is a function of (W2Y
i−1
F2

).

We next bound the term
∑T

i=1H(A1iYF2i|X2i) in (3.122).
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Case 1 : 0 ≤ l ≤ n. For this case, YF2i is a function of (A1iX2i). Thus, we

have

T∑

i=1

H(A1iYF2i|X2i) =

T∑

i=1

H(YF2i|X2iA1i) +

T∑

i=1

H(A1i|X2i)

≤ 0 + nT. (3.123)

Case 2 : n ≤ l ≤ m. In this case, A1i is a function of (YF2,iX2i). We have

T∑

i=1

H(A1iYF2i|X2i) =
T∑

i=1

H(YF2i|X2i) +
T∑

i=1

H(A1i|X2iYF2i)

≤ lT + 0. (3.124)

From both these cases, we conclude that R1 ≤ n+ (l − n)+. The inequality

for R2 can be proved in a similar manner.

� 3.6.1.2 Bound on R1 +R2

Let SD1 represent the top m bits of the first transmitter. When m < n, it will

be the top m bits out of n bits. When n < m, it will represent all the bits from

the first transmitter. Intuitively, SD1 represents the m information bits that

are visible at both receivers. Similarly, let SD2 represent the top m bits for the

second transmitter.

Furthermore, define Xtopj as the top min(m, (2m−n)+) bits of transmitter j.

In other words, Xtopj is the top (2m−n)+ bits of transmitter j when n
2 ≤ m ≤ n,

the top m bits when m ≥ n. No equivalent variable is defined in the case when
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2m− n

Tx2

Tx1

Rx1

Rx2

n−m

n−m

SD1

m

n−m

Tx1

Tx2

Rx1

Rx2

0 ≤ α < 1
2

1
2 ≤ α < 2

3

Xtop,1
2m− n

m

m

n−m

SD2

Xtop,2

SD2

SD1

m

Figure 3.11. Illustration of SDj and Xtop,j .

m ≤ n
2 . These two random variables mainly serve to explain the bounds in the

weak interference regime and the moderately strong interference regime.

It is worthwhile to give examples on these four random variables for ease of

reading. Consider the case of the very weak interference regime where 0 < m ≤

n
2 . Xtopj and SDj , for j = 1, 2, are illustrated in Figure 3.11. In this regime,

SD1 represents the top m bits of transmitter 1, and Xtop1 is a null region in this

regime.

Consider a second example. Consider the case of the weak interference regime

where n
2 ≤ m ≤ 2n

3 . Again, Xtopj and SDj , for j = 1, 2, are also illustrated in

Figure 3.11. In this regime, SD1 also represents the top m bits of transmitter 1.

Xtop1 is the top 2m− n bits of transmitter 1.
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In the proofs below, we make use of the following lemma.

Lemma 3.3.

I(STD2
XT
top1Y

T
F2
W2;Y T

F1
W1) ≤ H(Y T

F1
|W1) +

T∑

i=1

[H(YF2i|X2iXtop1,i)

+H(Xtop1,i|SD2i)] (3.125)

I(STD1
XT
top2Y

T
F1
W1;Y T

F2
W2) ≤ H(Y T

F2
|W2) +

T∑

i=1

[H(YF1i|X1iXtop2,i)

+H(Xtop2,i|SD1i)]. (3.126)

Proof.

I(STD2
XT
top1Y

T
F2
W2;Y T

F1
W1)

= I(W2;Y T
F1
W1) + I(STD2

XT
top1Y

T
F2

;Y T
F1
W1|W2)

(a)
= H(Y T

F1
|W1) +H(Y T

F2
STD2

XT
top1|W2)

(b)

≤ H(Y T
F1
|W1) +

T∑

i=1

[H(YF2i|Y i−1
F2

SiD2
Xi
top1W2X2i)

+H(Xtop1,i|Y i−1
F2

SiD2
W2X2i) +H(SD2i|Y i−1

F2
W2X2i)]

(c)
= H(Y T

F1
|W1) +

T∑

i=1

[H(YF2i|X2iXtop1,i) +H(Xtop1,i|SD2i)]

where

(a) follows from the fact that, given (W1W2), the entropy of any random variable

is 0; and that W1 is independent of W2;

(b) comes from the fact that X2i is a function of (Y i−1
F2

W2); and

(c) follows from the fact SD2i is a function of X2i.
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The second part of the lemma is proved similarly to the above.

We have

T (R1 +R2 − pTe )

≤ I(W1;Y T
1 ) + I(W2;Y T

2 )

≤ I(W1;Y T
1 Y

T
F1

) + I(W2;Y T
2 Y

T
F2

)

= H(Y T
1 ) +H(Y T

F1
|Y T

1 )−H(Y T
F1
|W1)−H(Y T

1 |Y T
F1
W1)

+H(Y T
2 ) +H(Y T

F2
|Y T

2 )−H(Y T
F2
|W2)−H(Y T

2 |Y T
F2
W2)

(a)
= H(Y T

1 )−H(STD2
|Y T
F1
W1) +H(Y T

2 )−H(STD1
|Y T
F2
W2)

−H(Y T
F1
|W1)−H(Y T

F2
|W2)

(b)
= H(Y T

1 )−H(STD2
XT
top1|Y T

F1
W1) +H(Y T

2 )−H(STD1
XT
top2|Y T

F2
W2)

−H(Y T
F1
|W1)−H(Y T

F2
|W2)

≤ H(Y T
1 ) + [I(STD2

XT
top1;Y T

F1
W1)−H(STD2

XT
top1)]

+ [H(STD2
XT
top1|Y T

2 )−H(STD2
XT
top1|Y T

2 X
T
2 )]

+H(Y T
2 ) + [I(STD1

XT
top2;Y T

F2
W2)−H(STD1

XT
top2)]

+ [H(STD1
XT
top2|Y T

1 )−H(STD1
XT
top2|Y T

1 X
T
1 )]

−H(Y T
F1
|W1)−H(Y T

F2
|W2)
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= I(STD2
XT
top1;Y T

F1
W1) +H(Y T

2 |STD2
XT
top1)

−H(STD2
XT
top1|Y T

2 X
T
2 )

+ I(STD1
XT
top2;Y T

F2
W2) +H(Y T

1 |STD1
XT
top2)

−H(STD1
XT
top2|Y T

1 X
T
1 )−H(Y T

F1
|W1)−H(Y T

F2
|W2)

(c)
= I(STD2

XT
top1;Y T

F1
W1) +H(Y T

2 |STD2
XT
top1)

+ I(STD1
XT
top2;Y T

F2
W2) +H(Y T

1 |STD1
XT
top2)

−H(Y T
F1
|W1)−H(Y T

F2
|W2)

(d)

≤ I(STD2
XT
top1Y

T
F2
W2;Y T

F1
W1) +H(Y T

2 |STD2
XT
top1)

+ I(STD1
XT
top2Y

T
F1
W1;Y T

F2
W2) +H(Y T

1 |STD1
XT
top2)

−H(Y T
F1
|W1)−H(Y T

F2
|W2)

(e)

≤
T∑

i=1

[H(Y2i|SD2iXtop1,i) +H(Y1i|SD1iXtop2,i)

+H(YF2i|X2iXtop1,i) +H(YF1i|X1iXtop2,i) +H(Xtop1,i|SD2i)

+H(Xtop2,i|SD1i),

where

(a) follows from the fact that YFj is a function of Yj for j = 1, 2;

(b) follows from the fact that XT
topj is a function of XT

j , which is in turn a

function of (Y T
Fj
Wj), for j = 1, 2;

(c) follows from the facts that STDj is a function of XT
j for j = 1, 2; and XT

top1 is

a function of XT
1 , which is in turn a function of (Y T

2 X
T
2 ), and vice versa;
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(d) follows from the fact that side information increases the mutual information;

and

(e) follows from Lemma 3.3.

Case 1: 0 ≤ m ≤ n
2

We have

H(Y2i|SD2iXtop1,i) = H(Y1i|SD1iXtop2,i) ≤ n−m, (3.127)

H(YF2i|X2iXtop1,i) = H(YF1i|X1iXtop2,i) ≤ (l − (n−m))+, (3.128)

H(Xtop1,i|SD2i) = H(Xtop2,i|SD1i) = 0. (3.129)

Thus, we have R1 +R2 ≤ 2(n−m) + 2[l − (n−m)]+.

Case 2: n
2 ≤ m ≤ n

We have

H(Y2i|SD2iXtop1,i) = H(Y1i|SD1iXtop2,i) ≤ n−m, (3.130)

H(YF2i|X2iXtop1,i) = H(YF1i|X1iXtop2,i) ≤ (l −m)+, (3.131)

H(Xtop1,i|SD2i) = H(Xtop2,i|SD1i) ≤ (2m− n)+. (3.132)

Thus, we have R1 +R2 ≤ 2m+ 2[l −m]+.
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Case 3: n ≤ m We have

H(Y2i|SD2iXtop1,i) = H(Y1i|SD1iXtop2,i)

= H(YF2i|X2iXtop1,i)

= H(YF1i|X1iXtop2,i) = 0, (3.133)

H(Xtop1,i|SD2i) = H(Xtop2,i|SD1i) ≤ m. (3.134)

Thus, we have R1 +R2 ≤ 2m.

Combining the three cases, we have proved the fourth outer bound for R1 +

R2.

� 3.6.1.3 Bound on 2R1 +R2 and R1 + 2R2

In this subsection, we focus on the proof for the upper bound on 2R1 +R2. The

proof for the bound on R1 + 2R2 follows in a similar manner.

We have

T (2R1 +R2 − pTe )

≤ 2I(W1;Y T
1 ) + I(W2;Y T

2 )

≤ I(W1;Y T
1 Y

T
F1

) + I(W1;Y T
1 Y

T
F2
|W2) + I(W2;Y T

2 Y
T
F2

)

= H(Y T
1 ) +H(Y T

F1
|Y T

1 )−H(Y T
F1
|W1)−H(Y T

1 |Y T
F1
W1)
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+H(Y T
F2
|W2) +H(Y T

1 |Y T
F2
W2)−H(Y T

1 Y
T
F2
|W2W1)

+H(Y T
2 ) +H(Y T

F2
|Y T

2 )−H(Y T
F2
|W2)−H(Y T

2 |Y T
F2
W2)

(a)
= H(Y T

1 )−H(Y T
F1
|W1)−H(Y T

1 |Y T
F1
W1)

+H(Y T
1 |Y T

F2
W2) +H(Y T

2 )−H(Y T
2 |Y T

F2
W2)

(b)
= H(Y T

1 )−H(Y T
F1
|W1)−H(STD2

|Y T
F1
W1)

+H(Y T
1 |Y T

F2
W2) +H(Y T

2 )−H(STD1
|Y T
F2
W2)

(c)
= H(Y T

1 )−H(Y T
F1
|W1)−H(STD2

XT
top1|Y T

F1
W1)

+H(Y T
1 |Y T

F2
W2) +H(Y T

2 )−H(STD1
|Y T
F2
W2)

(d)

≤ H(Y T
1 )−H(Y T

F1
|W1)−H(STD2

XT
top1|Y T

F1
W1)

+H(Y T
1 S

T
D1
|Y T
F2
W2) +H(Y T

2 )−H(STD1
|Y T
F2
W2)

(e)

≤ H(Y T
1 )−H(Y T

F1
|W1)− [H(STD2

XT
top1)

− I(STD2
XT
top1;Y T

F1
W1)] + [H(STD1

|Y T
F2
W2)

+H(Y T
1 |STD1

Y T
F2
W2)] +H(Y T

2 S
T
D2
XT
top1)−H(STD1

|Y T
F2
W2)

= H(Y T
1 )−H(Y T

F1
|W1) + I(STD2

XT
top1;Y T

F1
W1)

+H(Y T
1 |STD1

Y T
F2
W2) +H(Y T

2 |STD2
XT
top1)

(f)

≤ H(Y T
1 )−H(Y T

F1
|W1) + I(STD2

XT
top1Y

T
F2
W2;Y T

F1
W1)

+H(Y T
1 |STD1

Y T
F2
W2) +H(Y T

2 |STD2
XT
top1)
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(g)
= H(Y T

1 )−H(Y T
F1
|W1) + [I(W2;Y T

F1
W1)

+ I(STD2
XT
top1Y

T
F2

;Y T
F1
W1|W2)]

+H(Y T
1 |STD1

Y T
F2
W2) +H(Y T

2 |STD2
XT
top1)

(h)
= H(Y T

1 )−H(Y T
F1
|W1) + [(H(Y T

F1
|W1)

+H(Y T
F2
STD2

XT
top1|W2)]

+H(Y T
1 |STD1

Y T
F2
W2) +H(Y T

2 |STD2
XT
top1)

(i)

≤
T∑

i=1

[H(Y1i) +H(YF2i|Y i−1
F2

SiD2
Xi
top1W2X2i)

+H(SD2i|Y i−1
F2

W2X2i) +H(Xtop1,i|Y i−1
F2

SiD2
W2)

+H(Y1i|SD1iSD2i) +H(Y2i|SD2iXtop1,i)]

(j)
=

T∑

i=1

[H(Y1i) +H(YF2i|X2iXtop1,i) +H(Xtop1,i|SD2i)

+H(Y1i|SD1iSD2i) +H(Y2i|SD2iXtop1,i)],

where

(a) follows from the facts that H(Y T
1 Y

T
F2
|W2W1) = 0, H(Y T

F1
|Y T

1 ) = 0, and

H(Y T
F2
|Y T

2 ) = 0;

(b) follows from the fact that Xji is a function of (Y i−1
Fj

Wj), for j = 1, 2;

(c) follows from the fact that XT
top1 is a function of XT

1 , which is in turn a

function of (W1Y
T−1
F1

).This is the crucial step;

(d) follows from the fact that side information increases the entropy;

(e) follows from the fact that side information increases the entropy;
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(f) follows from the fact side information increases the mutual information;

(g) follows from the fact that STD2
is a function of (Y T

F2
W2);

(h) follows from the fact given (W1W2), the entropy of any random variable is

0;

(i) follows from the fact that X2i is a function of (Y i−1
F2

W2); and

(j) follows from the fact that SD2i is a function of X2i.

Case 1: 0 ≤ m ≤ n
2

We have

H(Y1i) ≤ n, (3.135)

H(YF2i|X2iXtop1,i) ≤ (l − (n−m))+, (3.136)

H(Xtop1,i|SD2i) = 0, (3.137)

H(Y1i|SD1iSD2i) = H(Y2i|SD2iXtop1,i) ≤ n−m. (3.138)

Thus, we have 2R1 +R2 ≤ 3n− 2m+ [l − (n−m)]+.

Case 2: n
2 ≤ m ≤ n

We have

H(Y1i) ≤ n, (3.139)

H(YF2i|X2iXtop1,i) ≤ (l −m)+, (3.140)

H(Xtop1,i|SD2i) ≤ (2m− n)+, (3.141)

H(Y1i|SD1iSD2i) = H(Y2i|SD2iXtop1,i) ≤ n−m. (3.142)
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Thus, we have 2R1 +R2 ≤ 2n+ [l −m]+.

Case 3: n ≤ m

We have

H(Y1i) = H(Y2i|SD2iXtop1,i) ≤ m (3.143)

H(YF2i|X2iXtop1,i) = H(Y1i|SD1iSD2i) = H(Y2i|SD2iXtop1,i) = 0. (3.144)

Thus, we have 2R1 +R2 ≤ 2m.

Combining the three cases, we have proved the bound on 2R1 +R2.

� 3.6.2 Forward proof of Theorem 3.1

In this subsection, we apply Lemma 3.1 and present an encoding scheme, for the

symmetric linear deterministic interference channel with noisy feedback.

� 3.6.2.1 Achievable rate region for the symmetric linear deterministic interference

channel with noisy feedback

Now, we apply this lemma to construct a generic encoding scheme, and to find the

corresponding achievable rate region for the symmetric deterministic interference

channel with noisy feedback. Denote Xj,CC , Xj,NCC and Xj,P as column vectors

of size max(n,m) bits, for j, k ∈ {1, 2} and j 6= k. We let

U = ∅ (3.145)

Uj = U ⊕Xj,CC (3.146)
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Vj = Uj ⊕Xj,NCC (3.147)

Xj = Vj ⊕Xj,P . (3.148)

Xj,CC , Xj,NCC , Xj,P contain the interfering common message, the non-interfering

common message and private message, respectively, for the transmitter j. Con-

sider Figure 3.12, which illustrates the generic encoding scheme. The interfering

common message and the non-interfering common message are restricted to the

top area of m bits, and the private message is restricted to the bottom area of

(n −m)+ bits. That means in the strong and very strong interference regimes

when n < m, no private message is encoded. Intuitively, this should be the

case as any transmitted signal from any transmitter j will be received by both

receivers anyway. As interfering common message causes interference to the non-

intended receiver, it needs to be fed back via the feedback link so that interference

can be resolved. Thus, the achievable rate of the interfering common message

depends directly on the feedback link strength. Hence, we propose an adaptive

encoding scheme that varies according the strength of the feedback link. Here,

we choose the size of the interfering common message of the transmitter j to be

upper-bounded by m . Once the codeword Uj for the cooperative common mes-

sage Xj,CC has been constructed, we construct the codeword Vj which depends

on the non-interfering common message Xj,NCC and Uj . The non-interfering

common message can either contain fresh information bits, or fedback signals,

which needs to be relayed again for resolving interference, or null information.

Furthermore, the non-interfering common message only occupies positions in the

top area of m bits, which has not been taken by the interfering common infor-

mation. Finally, the codeword Xj for the transmitter j depends on the private
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Xj,pVj Xj

(n−m)+

m

Xj,ic Uj Xj,nic

Figure 3.12. Generic encoding

message Xj,P and Vj . We will show that the optimal achievable rate region

matches the outer bound region.

For readers’ convenience and for ease of calculation, we illustrate the encoding

schemes case by case.

� 3.6.2.2 Very weak interference: m ≤ 1
2n

We consider 2 cases.

Case 1: l ≤ n−m.

Set
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• X1CC = X2CC = 0;

• X1NCC = X2NCC = m Bernoulli (1
2) random bits at the top region;

• X1P = X2P = n−m Bernoulli (1
2) random bits at the bottom area.

We have

ρ1 = κ1 = I(U2;YF1 |X1) = 0, (3.149)

ρ2 = κ2 = H(Y1|V1, V2) = n−m, (3.150)

ρ3 = κ3 = H(Y1|V1, U2) = n−m, (3.151)

ρ4 = κ4 = H(Y1|U1, V2) = n, (3.152)

ρ5 = κ5 = H(Y1|U1, U2) = n, (3.153)

ρ6 = κ6 = H(Y1) = n. (3.154)

Applying Lemma 3.1, the following region is achievable

R1 ≤ n, (3.155)

R2 ≤ n, (3.156)

R1 +R2 ≤ 2n−m, (3.157)

R1 +R2 ≤ 2(n−m), (3.158)

2R1 +R2 ≤ 3n− 2m, (3.159)

R1 + 2R2 ≤ 3n− 2m. (3.160)
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Case 2: n−m ≤ l.

In this case, the feedback link helps to increase the rate of interfering common

message. Set

• X1CC = X2CC = (l − (n − m))+ Bernoulli (1
2) random bits at the top

region;

• X1NCC = X2NCC = m − (l − (n −m))+ Bernoulli (1
2) random bits, right

below the interfering common message’s region;

• X1P = X2P = n−m Bernoulli (1
2) random bits at the bottom area.

Applying Lemma 3.1, the following region is achievable

R1 ≤ n, (3.161)

R2 ≤ n, (3.162)

R1 +R2 ≤ 2n−m, (3.163)

R1 +R2 ≤ 2(n−m) + 2(l − (n−m)+))+, (3.164)

2R1 +R2 ≤ 3n− 2m+ (l − (n−m)+)+, (3.165)

R1 + 2R2 ≤ 3n− 2m+ (l − (n−m)+)+. (3.166)

Thus, we have shown the achievability of the capacity region in Theorem 3.1

in the very weak interference regime.
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The calculation in other regimes are similar. Thus, we will only show the

assignment of bits to the random variables, and leave it the readers that these

bit assignments allow us to achieve the capacity region in Theorem 3.1.

� 3.6.2.3 Weak and moderately strong interference: 1
2n ≤ m ≤ n

We consider 2 cases.

Case 1: l ≤ m.

This is the case of weak feedback link, thus, feedback link cannot help to resolve

interference at receivers. No interfering common message should be sent. Set

• X1CC = X2CC = 0;

• X1NCC = X2NCC = m Bernoulli (1
2) random bits at the top region;

• X1P = X2P = n−m Bernoulli (1
2) random bits at the bottom area.

Case 2: m ≤ l. The rate of interfering common message should be chosen

carefully to make use of the strong feedback links. Set

• X1CC = X2CC = (l − (n − m))+ Bernoulli (1
2) random bits at the top

region;

• X1NCC = X2NCC = m − (l − (n −m))+ Bernoulli (1
2) random bits, right

below the interfering common message’s region;

• X1P = X2P = n−m Bernoulli (1
2) random bits at the bottom area.
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� 3.6.2.4 Strong and very strong interference: n ≤ m

Note that no private information is sent in these regimes. We consider two cases.

Case 1: l ≤ n. Set

• X1CC = X2CC = 0;

• X1NCC = X2NCC = m Bernoulli (1
2) random bits at the top region;

• X1P = X2P = 0.

Case 2: n ≤ l. Set

• X1CC = X2CC = m Bernoulli (1
2) random bits at the top region;

• X1NCC = X2NCC = 0;

• X1P = X2P = 0.

� 3.6.3 2nd achievability proof of Theorem 3.1

In this subsection, we present the second achievability proof of Theorem 3.1.

From the outer bounds in subsection 3.6.1, we can determine the corner points

for each of five regimes. If we can show those corner points are achievable, the

capacity region is established for that particular regime. This is the approach

we take in this subsection. This proof gives us insight into the encoding scheme

at corner points of the capacity region.
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A1

n

n

R2

R1

A1 : (n−min(m
2
, (l − (n−m))+),

n− 2m+ 3min(m
2
, (l − (n−m))+))

A2 : (n, n− 2m+min(m, (l − (n−m))+))

A2

Figure 3.13. Capacity region for LD-IC for α ∈ [0, 1
2
].

The capacity region in this case is shown in Figure 3.13.

It is trivial to show that the points (0, 0), (n, 0) and (0, n) are achievable. Due

to symmetry, we just need to show that the two points (n, n− 2m+ min(m, (l−

(n−m))+)) and (n−min(m2 , (l− (n−m))+), n−2m+ 3 min(m2 , (l− (n−m))+))

are achievable.

� 3.6.3.1 Very-Weak Interference: α ∈ [0, 1
2 ]

Firstly, we are going to show how to achieve the point (n, n− 2m+ min(m, (l−

(n −m))+)). The encoding scheme is shown in Figure 3.14. The set of n bits

at transmitter Tx1, for each channel use, is divided into 5 encoding regions,

A1, A2, ..., A5, of respective sizes m
2 ,

m
2 , n−2m, m2 ,

m
2 . A similar partition is done

at Tx2.
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i=1 i=1 i=2i=2i=3 i=3

E11

B2

B1

B3

B5 ⊕ A2

A3

A2

A1A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Signal

Interference

Feedback

A5 ⊕B2

A4 ⊕B1

E11

n− 2m

E12

B4 ⊕ A1

E13 E12 E11

E12

E23 E22 E21

E12 E11

E11 E12 E13

Figure 3.14. Encoding for corner point (n, n− 2m+ min(m, (l − (n−m))+)).

For every time slot, transmitter 1 always transmits n fresh information bits.

In the first time slot, transmitter 2 transmits (n− 2m) + E21 fresh information

bits in the regions B3 and (B4, B5) as shown in the diagram. The size of E21

is min(m, (l − (n −m))+). Receiver 2 feeds back the top l bits, which include

E21 ⊕ E11. Thus, at the end of the first time slot, transmitter 2 can decode

E11. In the second time slot, transmitter 2 relays E11 bits in the region (B1, B2).

The rest of the operations are similar to that in the first time slot. Notice that

E11 this time does not cause interference to receiver 1 as receiver 1 has already

received those bits in the first time slot. At the same time, E11 is received cleanly

at receiver 2. As a result, receiver 2 can decode the information E21 transmitted

in the first time slot. By repeating those operations for all time slots, the corner

point (n, n− 2m+ min(m, (l − (n−m))+)) is achievable.

Next, we are going to show how to achieve the corner point (n−min(m2 , (l−

(n−m))+), n−2m+3 min(m2 , (l−(n−m))+)). The encoding scheme is shown in

89



CHAPTER 3. ON THE GAUSSIAN INTERFERENCE CHANNEL WITH NOISY FEEDBACK

i=1 i=1 i=2i=2i=3 i=3

E233
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B1

B3
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A2

A1A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Signal

Interference

Feedback

A5 ⊕B2

n− 2m

B4 ⊕ A1

E111
E111

E111

E111

E111

E112 E112

E112

E121
E121

E121

E121

E121

E111 E121

E131
E131

E131

E122 E122

E122

E132 E132

E132

A4 ⊕B1

E211
E211

E211

E211 E211

E211

E221
E221

E221

E221 E221

E221

E231
E231

E231

E212

E213

E222

E223

E232

Figure 3.15. Encoding for corner point (n−min(m
2
, (l− (n−m))+), n− 2m+ 3 min(m

2
, (l−

(n−m))+)).

Figure 3.15. In the first time slot, transmitter 1 encodes n−min(m2 , (l−(n−m))+)

fresh information bits which cover all of the regions (A1, A3, A4, A5) and partially

cover the region A2. The bottom of the region A2, of the size min(m2 , (l − (n−

m))+) is left empty. Transmitter 2 transmits n− 2m+ 3 min(m2 , (l− (n−m))+)

bits in the regions B3, E211, E212, and E213. Notice that |E111| = |E21j | =

min(m2 , (l − (n−m))+), for j = 1, 2, 3. At the end of the first time slot, via the

feedback link, transmitter 1 can receive E211, and transmitter 2 can receive E111.

In the second time slot, besides repeating the operation in the previous time slot,

transmitter 1 relays the information in E211. In this time slot, receiver 1 can

receive E211 cleanly, thus receiver 1 can resolve the interference in the previous

time slot and decode those corresponding corrupted bits in the region A4 in

the previous time slot. Notice that E211 does not cause interference to receiver

2 as it was received perfectly by receiver 2 in the previous time slot already.

Besides repeating operation in the previous time slot, transmitter 2 relays the
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information in E111. Similarly, E111 is received cleanly by receiver 2, and thus

helps receiver 2 resolve interference in the previous time slot. By repeating those

operations, we can achieve the corner point (n − min(m2 , (l − (n − m))+), n −

2m+ 3 min(m2 , (l − (n−m))+)).

� 3.6.3.2 Weak Interference: α ∈ [1
2 ,

2
3 ]

The outer bound for the capacity region in this regime has a similar shape to

the previous regime, but has a different set of corner points. To show that

this region is achievable, we are going to show that all the corner points are

achievable. Trivially, the points (0, 0), (n, 0) and (0, n) are achievable. Due to

symmetry, we just need to show that the two points (n,min(2n−3m
2 , (l −m)+))

and (2(n−m)−min(2n−3m
2 , (l −m)+), 2(2m− n) + min(2n−3m

2 , (l −m)+)) are

achievable.

Firstly, we are going to show how the corner point (n,min(2n−3m
2 , (l−m)+))

is achieved. The encoding scheme is shown in Figure 3.16. The set of n bits at

the transmitter Tx1 is divided into 5 regions A1, A2, A3, A4 and A5. The sizes of

the 5 regions are 2m− n, 2n− 3m, 2m− n, 2n− 3m and 2m− n respectively. A

similar partition is done at transmitter Tx2.

The story in this regime is similar to that of the very weak regime, except

for the sizes and the places of encoding regions. In all time slots, transmitter

1 always transmits n fresh bits. Transmitter 2 only transmits E21 fresh bits in

B4. Note |E21| = min(2n−3m
2 , (l − m)+). In the second time slot, transmitter
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E11 E12

E11E12E13
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Figure 3.16. Encoding for corner point (n,min( 2n−3m
2

, (l −m)+)).

2 relays the bits in E11 in the region B2, besides sending a new batch of E22

bits. By repeating those operations, the corner point (n,min(2n−3m
2 , (l −m)+))

is achieved.

Next, we are going to show how to achieve the corner point (2(n − m) −

min(2n−3m
2 , (l−m)+), 2(2m−n) + min(2n−3m

2 , (l−m)+)). The encoding scheme

is shown in Figure 3.17. In the first time slot, transmitter 1 transmits (n −

m)−min(2n−3m
2 , (l −m)+) fresh bits (A1, A2), and another n−m fresh bits in

the region (A4, A5). No information is encoded in the region A3. Transmitter 2

encodes (2m−n) fresh bits in B1, E211 fresh information bits in B2, E212 +E213

bits in the region B4, and (2m−n) fresh bits in the region B5. In the second time

slot, besides sending new information as in the first time slot, transmitter 1 relays

E211 in the region A2. Besides sending new information, transmitter 2 relays E11
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Figure 3.17. Encoding for corner point (2(n − m) − min( 2n−3m
2

, (l − m)+), 2(2m − n) +
min( 2n−3m

2
, (l −m)+)).

in the region B2. By repeating those operations again for all other time slots,

we can achieve the corner point (2(n−m)−min(2n−3m
2 , (l−m)+), 2(2m− n) +

min(2n−3m
2 , (l −m)+)).

� 3.6.3.3 Moderately Strong Interference: α ∈ [2
3 , 1]

Case 1: l < m

In this case, the capacity region is the same as that of the region without any

feedback. The encoding schemes for this case are shown in [11].

Case 2: m ≤ l ≤ n

The corner points in this case are given by (0, 0), (min(n, l), 0), (0,min(n, l)),

(m+ (l −m)+, 2(n−m)− (l −m)+) and (2(n−m)− (l −m)+,m+ (l −m)+).
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The encoding schemes for the first three points are trivial. In the rest of this

subsection, we will show how to achieve the corner point (m + (l −m)+, 2(n −

m)− (l −m)+). The scheme to achieve (2(n−m)− (l −m)+,m+ (l −m)+) is

similar. There are 2 sub-cases to consider here.

Sub-case 2.1: 3(n−m) ≤ l.

The encoding scheme for this sub-case is shown in Figure 3.18. In the first

time slot, transmitter 1 transmits (2m − n) + (l − m)+ fresh bits in the top

region, and n − m fresh bits in the bottom region. Thus, it sends a total of l

fresh bits. Transmitter 2 transmits (n − m) − (l − m)+, or n − l fresh bits in

the top region, and n−m fresh bits in the bottom region. Thus, it sends a total

of 2(n−m)− (l −m) fresh bits. At the receiving sides, E11 causes interference

to receiver 2, and F21 causes interference to receiver 2. Via the feedback link,

transmitter 1 can decode F21, and transmitter 1 can decode E11.

In the second time slot, besides sending fresh information as in the first time

slot, transmitter 1 relays F21 in the middle gap as shown in the Figure 3.18, and

transmitter 2 relays E11. No matter what value l takes, receiver 2 can always

decode E11, thus can resolve the interference in the first time slot. As a result,

it can receive all of 2(n −m) − (l −m) fresh bits intended for itself in the first

time slot. Notice in this sub-case, we have an inequality that always holds:

n− l ≤ 3m−2n. Thus, (n− l) + |E11| ≤ (3m−2n) + (l−m). Therefore, the bits

F21 are always received cleanly in this sub-case. With those bits, receiver 2 can

resolve the interference in the first time slot. Those operations are repeated over
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Figure 3.18. Encoding schemes: 3n
2
≤ m ≤ n,m ≤ l, 3(n−m) ≤ l

time. The corner point (m + (l −m)+, 2(n −m) − (l −m)+) is asymptotically

achievable.

Sub-case 2.2: l < 3(n−m).

The encoding schemes in this case are similar to the first sub-case. Trans-

mitter 1 sends l fresh information bits, transmitter 2 sends 2(n −m) − (l −m)

fresh bits in the same regions every time slot. From the second time slot on-

wards, transmitter 2 relays the bits in the region E11. However, there is a slight

variation. Transmitter 1 relays in part, or in whole, the bits in the region F21,

which have not been decoded by receiver 1 yet, depending on the relative value

of l. The encoding scheme is illustrated by Figure 3.19.
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Figure 3.19. Encoding schemes: 3n
2
≤ m ≤ n,m ≤ l, l < 3(n−m)

Using this strategy, receiver 2 can always decode the bits in the region E11;

thus, it can resolve interference caused by transmitter 1 and achieve a rate of

2(n −m) − (l −m) fresh bits per channel use asymptotically. It can be shown

that receiver 1 always achieves a rate of l bits per channel use.

� 3.6.3.4 Strong Interference: α ∈ [1, 2]

Case 1: l ≤ n

The corner points in this case are given by (0, 0), (n, 0), (0, n), (n,m−n) and

(m − n, n). The encoding schemes to achieve the first three corner points are

trivial. The encoding schemes to achieve the last two points are the same as the

encoding schemes without feedback, and are shown in [11].

Case 2: n ≤ l

The corner points in this case are (0, 0), (min(m, l), 0), (0,min(m, l)), (l,m − l)
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and (m− l, l). The encoding schemes for the first three points are trivial. In the

rest of this subsection, we will show how to achieve the corner point (l,m − l).

The scheme to achieve (m − l, l) is similar. There are 2 sub-cases to consider

here.

Sub-case 2.1: n ≤ l and l ≤ 2m− 2n

Assume l ≤ m; otherwise, the result is trivial. The encoding scheme is shown

in Figure 3.20. In the first time slot, transmitter 1 sends l fresh bits in the top

region. Transmitter 2 sends F21 in the top region, where |F21| = 2n − m. In

addition, it sends 2m−2n− l bits in the middle region, such that there is a small

gap of l−n bits. Thus, transmitter 2 sends a total of m−l fresh information bits.

At the end of the first time slot, out of l bits sent from transmitter 1, receiver 1

can receive n intended bits cleanly. It cannot receive E11 directly yet. Receiver

F22

Tx1

Tx2

Rx1

Rx2

2n-m

E11

F21

l-n
E13 E11

F22

F21
2n-m
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E12
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F22
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m-n m-n m-n
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E11

E12

F21

F23
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Figure 3.20. Encoding scheme: n ≤ m ≤ 2n, n ≤ l ≤ 2m− 2n
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Figure 3.21. Encoding scheme: n ≤ m ≤ 2n, n ≤ l, 2m− 2n ≤ l

2 can receive 2m−2n− l bits cleanly and it cannot receive the bits in F21 due to

interference. Via the feedback link of strength l bits, transmitter 2 can decode

E11, and transmitter 1 can decode F21. In the second time slot, besides sending

new l fresh information, transmitter 1 relays F21 in the bottom region. Besides

sending new m − l fresh information bits, transmitter 2 relays E11 as shown in

the diagram. Subsequently, receiver 1 can recover E11, and receiver 2 can recover

F21 at the end of the second time slot. Those operations are repeated over time.

Asymptotically, the corner point (l,m− l) is achieved.

Sub-case 2.2: n ≤ l and 2m− 2n ≤ l

Assume l ≤ m; otherwise, the result is trivial. The encoding scheme is shown
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in Figure 3.21. Notice that (m − l) + (m − n) ≤ n, which makes the encoding

scheme feasible. In the first time slot, transmitter 1 sends l fresh bits in the top

region; transmitter 2 sends F21 in the top region, where |F21| = m − l. At the

end of the first time slot, out of l bits sent from transmitter 1, receiver 1 can

receive n intended bits cleanly. It cannot receive E11 directly yet. At the end of

the first time slot, receiver 2 cannot receive the bits in F21 directly yet as F21

is corrupted by interference from transmitter 1. In the second time slot, besides

sending new l fresh information, transmitter 1 relays F21 in the bottom region.

Besides sending new m − l fresh information bits, transmitter 2 relays E11 as

shown in the diagram. Subsequently, receiver 1 can recover E11, and receiver 2

can recover F21 at the end of the second time slot. Operations are repeated over

time. Asymptotically, the corner point (l,m− l) is achieved.

� 3.6.3.5 Very Strong Interference: α ∈ [2,∞)

Case 1: 2l < m

The corner points in this case are given by (0, 0), (n+ (l−n)+, 0), (0, n+ (l−

n)+) and (n+ (l − n)+, n+ (l − n)+). The achievable scheme for the first three

points are trivial. The achievable scheme for the last corner point is given in the

paper [63]. We focus on the next case which is more interesting.

Case 2: m < 2l

The corner points in this case are given by (0, 0), (min(m,n + (l − n)+), 0),
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Figure 3.22. Encoding scheme for the corner point (l,m− l)

(0,min(m,n+ (l− n)+)), (l,m− l) and (m− l, l). We are going to show how to

achieve the point (l,m− l). The encoding scheme to achieve this corner point is

shown in Figure 3.22. The set of m bits at transmitter Tx1 is partitioned into 3

regions A1, A2 and A3 with respective sizes n,m− 2n and n. A similar partition

is done at transmitter 2.

In the first time slot, transmitter 1 transmits a total of l fresh bits, n of

which are encoded in A1, and (l − n) of which are encoding in (A2, A3). Note

|E11| = l− n. For the second transmitter, there will be two sub-cases. Consider

the first sub-case when m− l ≥ n. In this sub-case, in the first time slot, n fresh

information bits are encoded in the region B1, and F11 bits are encoded in the

next region as shown in Figure 3.22. Note |F11| = m − l − n. In the second

sub-case, m − l < n, there is a slight difference from the first sub-case. In this

sub-case, only m− l bits are encoded in the region B1.
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Operations in subsequent time slots between these two sub-case are similar;

thus we only discuss the first sub-case in detail here. Via the feedback link,

transmitter 2 can recover E11 easily. Notice m − l < l, thus transmitter 1 can

recover F11 too with a feedback level of l bits.

In the second time slot, besides encoding l fresh bits, transmitter 1 relays F11

bits in the region A2. Besides encoding m− l fresh bits, transmitter 2 relays E11

. Due to the very strong interference link, receiver 1 can receive E11 cleanly, and

receiver 2 can receive F11 cleanly. Similar operations are done in the subsequent

time. By this approach, we can achieve the corner point (l,m− l).

Due to symmetry, the encoding scheme for the last point is similar to the

above.

� 3.6.4 Proof of Theorem 3.2

Lemma 3.2 is used in the proof of Theorem 3.2. We are going to upper-bound

the mutual informations in Lemma 3.2 and simplify them. We have

h(Y1|X2)− h(Z1) ≤ 1

2
log[SNR(1− ρ2) + 1] (3.167)

≤ 1

2
log(SNR + 1). (3.168)

We can also show that

h(YF2 |Y1, X2)− h(Z̃2)

= h(g2(h12X1 + Z2) + Z̃2|h11X1 + Z1, X2)− h(Z̃2) (3.169)

101



CHAPTER 3. ON THE GAUSSIAN INTERFERENCE CHANNEL WITH NOISY FEEDBACK

≤ h(g2(h12X1 + Z2) + Z̃2|h11X1 + Z1)− h(Z̃2) (3.170)

≤ 1

2
log

( SNRF
SNR+INR+2

√
SNR.INR+1

· (SNR + INR + 1)

SNR + 1
+ 1

)
(3.171)

≤ 1

2
log

(
SNRF

SNR + 1
+ 1

)
. (3.172)

From equations (3.84), (3.168) and (3.172), we can prove the validity of the

bound (3.72).

Next, we are going to prove the bound (3.75).

Case 1: 1
2 ≤ αG < 1

We have

h(Xtop1G|S2G)− h(Z2) ≤ h(Xtop1G)− h(Z2) (3.173)

≤ 1

2
log

(
INR2

SNR
+ 1

)
. (3.174)

Next, we have

h(Y2|S2G, Xtop1G)− h(Z2) (3.175)

= h

(
h21X1 + h22X2 + Z2|

√
INRX2 + Z1,

INR√
SNR

X1 + Z2

)
− h(Z2) (3.176)

= log

√
SNR

INR
− h(Z2)

+ h

(
INR√
SNR

X1 +
√

INRX2 +

√
INR√
SNR

Z2|
√

INRX2 + Z1,
INR√
SNR

X1 + Z2

)

(3.177)

=
1

2
log

SNR

INR
+ h

(
INR√
SNR

X1 +

√
INR√
SNR

Z2 − Z1|
√

INRX2 + Z1,
INR√
SNR

X1 + Z2

)

− h(Z2) (3.178)
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≤ 1

2
log

SNR

INR
+ h

(
INR√
SNR

X1 +

√
INR√
SNR

Z2 − Z1|
INR√
SNR

X1 + Z2

)
− h(Z2)

(3.179)

=
1

2
log

SNR

INR
+

1

2
log




INR3

SNR2 + 2 INR2

SNR + 1− 2 INR2
√

INR
SNR

√
SNR

INR2

SNR + 1


 (3.180)

≤ 1

2
log

SNR

INR
+

1

2
log 3. (3.181)

Next, we have

h(YF2 |X2, Xtop1G)− h(Z̃2)

= h

(
g2(h12X1 + Z2) + Z̃2

∣∣∣X2,
INR√
SNR

X1 + Z2

)
− h(Z̃2) (3.182)

≤ h
(
g2

√
INR ·X1 + g2Z2 + Z̃2

∣∣∣ INR√
SNR

X1 + Z2

)
− h(Z̃2) (3.183)

≤ 1

2
log


g2

2

INR + INR2

SNR − 2 INR
√

INR√
SNR

INR2

SNR + 1
+ 1


 (3.184)

≤ 1

2
log

(
g2

2

INR + INR2

SNR
INR2

SNR

+ 1

)
(3.185)

=
1

2
log

(
SNRF

SNR + INR + 2
√

SNRINR + 1
· SNR + INR

INR
+ 1

)
(3.186)

≤ 1

2
log

(
SNRF

INR
+ 1

)
(3.187)

Combining equations (3.85), (3.174),(3.181) and (3.187), and using symmetry,

we have proved the first half of the bound (3.75).

Case 2: αG /∈ [1
2 , 1]

In this case, due to the definition of XtopjG, the equation (3.85) is equivalent to

R1 +R2 ≤ h(YF2 |X2) + h(Y2|S2G) + h(YF1 |X1) + h(Y1|S1G)

− h(Z̃2)− h(Z̃1)− h(Z2)− h(Z1). (3.188)
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Next, we have

h(YF2 |X2)− h(Z̃2)

≤ 1

2
log

(
SNRF

SNR + INR + 2
√

SNR · INR + 1
· [INR(1− ρ2) + 1] + 1

)
(3.189)

≤ 1

2
log

(
SNRF

SNR + INR + 1
· (INR + 1) + 1

)
. (3.190)

Next, we have

h(Y1|S1G)− h(Z1) (3.191)

=
1

2
log

(
[INR2(1− ρ2) + SNR + 2INR + 2ρ

√
SNR · INR + 1] · 1

INR + 1

)

(3.192)

≤ 1

2
log

(
[INR2 + SNR + 2INR + 2ρ

√
SNR · INR + 1] · 1

INR + 1

)
. (3.193)

Combining equations (3.188), (3.190), and (3.193), and using symmetry, we have

proved the last half of the bound (3.75).

Next, we are going to prove the validity of the bound (3.76).

We have

h(Y1|X2, S1G)− h(Z1) ≤ 1

2
log

(
SNR

INR + 1
+ 1

)
(3.194)

h(Y1)− h(Z1) ≤ 1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1). (3.195)

Case 1: 1
2 ≤ αG < 1

Combining equations (3.86), (3.194), (3.195), (3.174), (3.181) and (3.187), we

have proved the bound (3.76) for this case.

Case 2: αG /∈ [1
2 , 1]
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Combining equations (3.86), (3.194), (3.195), (3.188), (3.190) and (3.193), we

have proved the bound (3.76) for this remaining case.

� 3.6.5 Proof of Lemma 3.2

The proof of the bound (3.84) in Lemma 3.2 is trivial. In this subsection, we

will only prove the bound (3.86). The proof of the bound (3.85) contains no new

ideas and can be proved similarly to the proof in Theorem 3.1 and the proof of

(3.86). Before proving the bound of (3.86), we need to prove a lemma.

Lemma 3.4.

I(ST2G, X
T
top1G, Y

T
F2
,W2;Y T

F1
,W1)

≤
T∑

i=1

[h(Xtop1G,i|S2G,i)− h(Z2i)

+ h(YF2i|X2i, Xtop1G,i)− h(Z̃1i)− h(Z̃2i)] + h(Y T
F1
|W1), (3.196)

I(ST1G, X
T
top2G, Y

T
F1
,W1;Y T

F2
,W2)

≤
T∑

i=1

[h(Xtop2G,i|S1G,i)− h(Z1i)

+ h(YF1i|X1i, Xtop2G,i)− h(Z̃2i)− h(Z̃1i)] + h(Y T
F2
|W2). (3.197)

Proof.

I(ST2G, X
T
top1G, Y

T
F2
,W2;Y T

F1
,W1)

= I(ST2G, X
T
top1G, Y

T
F2

;Y T
F1
,W1|W2) + I(W2;Y T

F1
,W1)
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= h(ST2G, X
T
top1G, Y

T
F2
|W2)− h(ST2G, X

T
top1G, Y

T
F2
|Y T
F1
,W1,W2)

+ h(Y T
F1
|W1) + h(W1)− h(W1|W2)− h(Y T

F1
|W1,W2)

(a)
= h(ST2G, X

T
top1G, Y

T
F2
|W2)− h(ST2G, X

T
top1G, Y

T
F2
|Y T
F1
,W1,W2)

+ h(Y T
F1
|W1)− h(Y T

F1
|W1,W2)

= h(ST2G, X
T
top1G, Y

T
F2
|W2)− h(ST2G, X

T
top1G, Y

T
F2
, Y T

F1
|W1,W2) + h(Y T

F1
|W1)

(3.198)

where

(a) follows from the fact that W1 and W2 are independent.

Next we have an upper bound on the first term of equation (3.198).

h(ST2G, X
T
top1G, Y

T
F2
|W2)

=

T∑

i=1

[h(S2G,i, Xtop1G,i, YF2i|Si−1
2G , Xi−1

top1G, Y
i−1
F2

,W2)]

(a)
=

T∑

i=1

[h(S2G,iXtop1G,i, YF2i|X2i, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

,W2)]

(b)

≤
T∑

i=1

[h(S2G,i, Xtop1G,i, YF2i|X2i)]

=

T∑

i=1

[h(S2G,i|X2i) + h(Xtop1G,i|X2i, S2G,i) + h(YF2i|X2i, S2G,i, Xtop1G,i)]

≤
T∑

i=1

[h(Z1i|X2i) + h(Xtop1G,i|S2G,i) + h(YF2i|X2i, Xtop1G,i)]

(c)
=

T∑

i=1

[h(Z1i) + h(Xtop1G,i|S2G,i) + h(YF2i|X2i, Xtop1G,i)] (3.199)

where
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(a) follows from the fact that X2i is a function of (Y i−1
F2

,W2);

(b) follows from the fact that more conditioning reduces the entropy; and

(c) follows from the fact that Z1i is independent of X2i.

Next we manipulate the second term of equation (3.198).

h(ST2G, X
T
top1G, Y

T
F2
, Y T

F1
|W1,W2)

=

T∑

i=1

[h(S2G,i, Xtop1G,i, YF2,i, YF1,i|W1,W2, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

, Y i−1
F1

)]

(a)
=

T∑

i=1

[h(S2G,i, Xtop1G,i, YF2,i, YF1,i|W1,W2, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

, Y i−1
F1

, X1i, X2i)]

=

T∑

i=1

[h(Z1,i, Z2,i, YF2,i, YF1,i|W1,W2, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

, Y i−1
F1

, X1i, X2i)]

(b)
=

T∑

i=1

[h(Z1,i) + h(Z2,i)

+ h(YF2,i, YF1,i|W1,W2, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

, Y i−1
F1

, X1i, X2i, Z1,i, Z2,i)]

=

T∑

i=1

[h(Z1,i) + h(Z2,i)

+ h(Z̃2,i, Z̃1,i|W1,W2, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

, Y i−1
F1

, X1i, X2i, Z1,i, Z2,i)]

(c)
=

T∑

i=1

[h(Z1,i) + h(Z2,i) + h(Z̃2,i) + h(Z̃1,i)] (3.200)

where

(a) follows from the fact that Xji is a function of (Y i−1
Fj

,Wj), for j = 1, 2;

(b) follows from the fact that Z1i and Z2i are independent of each other and

independent of (W1,W2, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

, Y i−1
F1

, X1i, X2i) ; and
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(c) follows from the fact that Z̃1i and Z̃2i are independent of each other and

independent of (W1,W2, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

, Y i−1
F1

, X1i, X2i, Z1,i, Z2,i) .

Combining (3.198), (3.199) and (3.200), we have proved the lemma.

Now, we are going to prove the bound (3.86). We have

T (2R1 +R2 − pTe )

≤ 2I(W1;Y T
1 ) + I(W2;Y T

2 )

≤ I(W1;Y T
1 , Y

T
F1

) + I(W1;Y T
1 , Y

T
F2
|W2) + I(W2;Y T

2 , Y
T
F2

)

= h(Y T
1 ) + h(Y T

F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

1 |Y T
F1
,W1)

+ h(Y T
F2
|W2)− h(Y T

F2
|W2,W1) + I(W1;Y T

1 |Y T
F2
,W2)

+ h(Y T
2 ) + h(Y T

F2
|Y T

2 )− h(Y T
F2
|W2)− h(Y T

2 |Y T
F2
,W2)

= h(Y T
1 )− h(Y T

1 |Y T
F1
,W1) + I(W1;Y T

1 |Y T
F2
,W2) + h(Y T

2 )− h(Y T
2 |Y T

F2
,W2)

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

= h(Y T
1 )− h(ST2G|Y T

F1
,W1) + I(W1;Y T

1 |Y T
F2
,W2) + h(Y T

2 )− h(ST1G|Y T
F2
,W2)

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

(a)
= h(Y T

1 )− h(ST2G, Z
T
2 |Y T

F1
,W1, X

T
1 ) + h(ZT2 |Y T

F1
,W1, X

T
1 S

T
2G)

+ I(W1;Y T
1 |Y T

F2
,W2) + h(Y T

2 )− h(ST1G|Y T
F2
,W2)

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )
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(b)

≤ h(Y T
1 )− h(ST2G, X

T
top1G|Y T

F1
,W1)

+ I(W1;Y T
1 |Y T

F2
,W2) + h(Y T

2 )− h(ST1G|Y T
F2
,W2)

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

(c)

≤ h(Y T
1 )− h(ST2G, X

T
top1G|Y T

F1
,W1)

+ I(W1;Y T
1 , S

T
1G|Y T

F2
,W2) + h(Y T

2 )− h(ST1G|Y T
F2
,W2)

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
, |Y T

2 )

= h(Y T
1 )− h(ST2G, X

T
top1G|Y T

F1
,W1) + h(Y T

1 , S
T
1G|Y T

F2
,W2)

− h(Y T
1 , S

T
1G|Y T

F2
,W2,W1) + h(Y T

2 )

− h(ST1G|Y T
F2
,W2) + h(Y T

F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

(d)

≤ h(Y T
2 )− h(ST2G, X

T
top1G|Y T

F1
,W1) + h(Y T

1 |ST1G, Y T
F2
,W2) + h(Y T

1 )− h(ZT1 , Z
T
2 )

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

(e)

≤ h(Y T
2 ) + [I(ST2G, X

T
top1G;Y T

F1
,W1)− h(ST2G, X

T
top1G)]

+ [h(ST2G, X
T
top1G|Y T

2 )− h(ST2G, X
T
top1G|Y T

2 , X
T
2 , X

T
1 )]

+ h(Y T
1 |ST1G, Y T

F2
,W2) + h(Y T

1 )− h(ZT1 )− h(ZT2 )

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

= I(ST2G, X
T
top1G;Y T

F1
,W1) + h(Y T

2 |ST2G, XT
top1G)

− h(ZT1 , Z
T
2 |Y T

2 , X
T
2 , X

T
1 ) + h(Y T

1 |ST1G, Y T
F2
,W2)

+ h(Y T
1 )− h(ZT1 )− h(ZT2 ) + h(Y T

F1
|Y T

1 )− h(Y T
F1
|W1)

− h(Y T
F2
|W2,W1) + h(Y T

F2
|Y T

2 )
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(f)

≤ I(ST2G, X
T
top1G, Y

T
F2
,W2;Y T

F1
,W1) + h(Y T

2 |ST2G, XT
top1G)

+ h(Y T
1 |ST1G, Y T

F2
,W2) + h(Y T

1 )− 2h(ZT1 )− h(ZT2 )

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

(g)

≤
T∑

i=1

[h(Xtop1G,i|S2G,i) + h(YF2i|X2i, Xtop1G,i)− h(Z2i)

− h(Z̃1i)− h(Z̃2i)] + h(Y T
F1
|W1)

+ h(Y T
2 |ST2G, XT

top1G)

+ h(Y T
1 |ST1G, Y T

F2
,W2) + h(Y T

1 )− 2h(ZT1 )− h(ZT2 )

+ h(Y T
F1
|Y T

1 )− h(Y T
F1
|W1)− h(Y T

F2
|W2,W1) + h(Y T

F2
|Y T

2 )

(h)

≤
T∑

i=1

[h(Xtop1G,i|S2Gi) + h(YF2i|X2i, Xtop1G,i)− h(Z2i)

− h(Z̃1i)− h(Z̃2i)] + h(Y T
2 |ST2G, XT

top1G)

+ h(Y T
1 |ST1G, Y T

F2
,W2) + h(Y T

1 )− 2h(ZT1 )− h(ZT2 )

+ h(Z̃T1 |Y T
1 )− h(Y T

F2
|W2,W1, Y

T
2 ) + h(Z̃T2 |Y T

2 )

=

T∑

i=1

[h(Xtop1G,i|S2Gi) + h(YF2i|X2,i, Xtop1G,i)− 2h(Z1i)− 2h(Z2i)]

+ h(Y T
2 |ST2G, XT

top1G) + h(Y T
1 |ST1G, Y T

F2
,W2, X

T
2 )

+ h(Y T
1 )− h(Z̃T2 |W2,W1, Y

T
2 )

≤
T∑

i=1

[h(Xtop1G,i|S2G,i) + h(YF2i|X2i, Xtop1G,i)

+ h(Y2i|S2G,i, Xtop1G,i) + h(Y1i|S1G,i, X2i) + h(Y1i)

− 2h(Z1i)− 2h(Z2i)− h(Z̃2i)]

where
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(a) follows from the fact that XT
1 is a function of (Y T

F1
,W1);

(b) follows from the fact XT
top1G is a function of ZT2 and XT

1 , which is in turn a

function of (Y T
F1
,W1);

(c) follows from the fact, more side information increases the mutual informa-

tion;

(d) follows from

h(Y T
1 , S

T
1G|Y T

F2
,W2,W1) ≥ h(Y T

1 , S
T
1G|Y T

F2
,W2,W1, X

T
1 )

= h(ZT1 , Z
T
2 );

(e) follows from the fact more conditioning reduces the entropy;

(f) follows from the fact, more side information increases the mutual informa-

tion;

(g) follows from utilization of Lemma 3.4; and

(h) follows from the fact more conditioning reduces the entropy.

� 3.6.6 Proof of Theorem 3.4

The strategy to prove this theorem is that we need to carefully choose the right

power allocations Pp, Pnc, Pcc such that the achievable rate region approximates

the capacity region within a constant gap.

When INR < 1, by treating interference as noise and not using any feedback,

111



CHAPTER 3. ON THE GAUSSIAN INTERFERENCE CHANNEL WITH NOISY FEEDBACK

each receiver can achieve a rate of

1

2
log

(
1 +

SNR

INR + 1

)
. (3.201)

We have

ψ1 −
1

2
log

(
1 +

SNR

INR + 1

)

=
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
log

(
1 +

SNR

INR + 1

)
(3.202)

≤ 1

2
log(3SNR + 3)− 1

2
log

(
1

2
+

SNR

2

)
(3.203)

=
1

2
log 3 +

1

2
= 1.3 bits (3.204)

Thus, δR ≤ 1.3.

Next, we have

ψ3 − 2 · 1

2
log

(
1 +

SNR

INR + 1

)
= ψ1 −

1

2
log

(
1 +

SNR

INR + 1

)
(3.205)

≤ 1

2
log 3 +

1

2
= 1.3 bits. (3.206)

Thus, δ2R ≤ 1.3.

Subsequently,

ψ3 + ψ1 − 3 · 1

2
log

(
1 +

SNR

INR + 1

)
≤ 2(

1

2
log 3 +

1

2
) = 2.6 bits. (3.207)

Thus, δ3R ≤ 2.6.

Therefore, we have δ = 1.3 and the outer bounds in Theorem 3.2 is within

1.3 bits/s/Hz away from the achievable rate region. Thus, our main focus in this
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subsection now is to quantify the gaps for INR ≥ 1.

Notice that Theorem 3.3 holds for all ρ, satisfying 0 ≤ ρ ≤ 1. Therefore, in

all the power allocations below, we simply choose ρ = 0 to obtain inner bounds

that are easily to be dealt with. In the outer bounds, we cannot choose ρ,

therefore, all outer bounds still involves ρ.

• Case 1: 1 ≤ αG

– Sub-case 1.1: SNRF < SNR

Choose Pp = 0, Pcc = 0, Pnc = 1. With this power allocation, from

Theorem 3.3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.208)

τ5 =
1

2
log(SNR + INR + 1) ≥ 1

2
log INR (3.209)

τ4 =
1

2
log(SNR + 1) (3.210)

τ3 =
1

2
log(INR + 1) ≥ 1

2
log INR (3.211)

τ2 = τ1 = 0. (3.212)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(3.213)

≤ 1

2
log(SNR + 1) +

1

2
log(2). (3.214)
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ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)

(3.215)

≤ 1

2
log(2) +

1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)
. (3.216)

ψ5 =
1

2
log

(
INR2 + SNR + 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)

+
1

2
log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)

+
1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)

(3.217)

≤ 1

2
log

(
INR2 + 5INR + 4

INR + 1

)

+
1

2
log (SNRF + 1) (3.218)

+
1

2
log(2) +

1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)

(3.219)

≤ 1

2
log (INR + 4) +

1

2
log (SNRF + 1)

+
1

2
+

1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)
. (3.220)

Now, the gap can be quantified easily.

ψ1 − τ6 = 0 (3.221)

ψ2 − (τ4 + τ1) ≤ 1

2
(3.222)

ψ1 − (τ1 + τ2 + τ3) ≤ 1

2
log(5INR)− 1

2
log(INR) (3.223)

=
1

2
log(5) = 1.2. (3.224)
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Thus, δR ≤ 1.2.

Next, we have

ψ3 − (τ2 + τ6) ≤ 1

2
, (3.225)

ψ3 − (2τ1 + τ2 + τ5) ≤ 1

2
+

1

2
log(5INR)− 1

2
log(INR) (3.226)

=
1

2
+

1

2
log(5) = 1.7 (3.227)

ψ3 − (2τ1 + 2τ3) ≤ 1

2
+

1

2
log(5INR)− 1

2
log(INR2) (3.228)

=
1

2
+

1

2
log(5) = 1.7 (3.229)

Thus, δ2R ≤ 1.7.

Next, we have

(ψ1 + ψ3)− (τ1 + τ2 + τ3 + τ6) = (ψ1 − τ6) + (ψ3 − τ3) (3.230)

≤ 1

2
+

1

2
log(5INR)− 1

2
log(INR)

(3.231)

=
1

2
+

1

2
log(5) = 1.7 (3.232)

(ψ1 + ψ3)− (3τ1 + τ2 + τ3 + τ5)

≤ [
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)

+
1

2
log(2) +

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)] (3.233)

− [
1

2
log(INR) +

1

2
log(SNR + INR + 1)] (3.234)

≤ [log 3(SNR + INR + 1) +
1

2
log(2) + log(5INR)]

− [
1

2
log(INR) +

1

2
log(SNR + INR + 1)] (3.235)

=
1

2
log(30) = 2.5 (3.236)
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Thus, δ3R ≤ 2.5.

Therefore, with current power allocation, in this sub-case, the achiev-

able region is at most δ = 1.2 bits/s/Hz from the outer bounds.

– Sub-case 1.2: SNR ≤ SNRF ≤ INR

Choose Pp = 0, Pcc = 1, Pnc = 0. With this power allocation, from

Theorem 3.3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.237)

τ5 = τ4 = τ3 = τ2 = 0 (3.238)

τ1 =
1

2
log

SNRF
SNR+INR+2

√
SNR.INR+1

· (INR + 1) + 1

SNRF
SNR+INR+2

√
SNR·INR+1

+ 1
(3.239)

≥ 1

2
log

SNRF
5INR · INR

2
(3.240)

=
1

2
log SNRF −

1

2
log 10 (3.241)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(3.242)

≤ 1

2
log(3SNRF ). (3.243)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)

(3.244)

≤ 1

2
log(2) +

1

2
log
(

SNR + INR + 2ρ
√

SNR · INR + 1
)
. (3.245)
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Now, the gap can be quantified easily.

ψ1 − τ6 = 0 (3.246)

ψ2 − (τ4 + τ1) ≤ 1

2
log 30 = 2.5 (3.247)

ψ2 − (τ1 + τ2 + τ3) ≤ 1

2
log 30 = 2.5. (3.248)

Thus, δR ≤ 2.5.

Next, we have

ψ3 − (τ2 + τ6) ≤ 1

2
, (3.249)

2ψ2 − (2τ1 + τ2 + τ5) ≤ log(30) = 4.9 (3.250)

2ψ2 − (2τ1 + 2τ3) ≤ log(30) = 4.9 (3.251)

Thus, δ2R ≤ 4.9.

Next, we have

(ψ2 + ψ3)− (τ1 + τ2 + τ3 + τ6) ≤ 1

2
log(60) = 3.0 (3.252)

(3ψ2)− (3τ1 + τ2 + τ3 + τ5) ≤ 1

2
log(27000) = 7.4 (3.253)

Thus, δ3R ≤ 7.4.

We have δ = 2.5. Therefore, with current power allocation, in this

sub-case, the achievable region is at most 2.5 bits/s/Hz from the outer

bounds.

• Case 2: 1
2 ≤ αG ≤ 1
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– Sub-case 2.1: SNRF ≤ INR

Choose Pp = 1
INR , Pnc = 1− Pp, Pcc = 0. With this power allocation,

from Theorem 3.3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
(3.254)

τ5 =
1

2
log(SNR + INR + 1)− 1

2
(3.255)

τ4 =
1

2
log(SNR + 2)− 1

2
≥ 1

2
log(SNR + 1)− 1

2
(3.256)

τ3 =
1

2
log

(
SNR

INR
+ INR + 1

)
− 1

2
≥ 1

2
log(INR)− 1

2
(3.257)

τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
≥ 1

2
log

(
SNR

INR

)
− 1

2
(3.258)

τ1 = 0. (3.259)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(3.260)

≤ 1

2
log(SNR + 1) +

1

2
log(2). (3.261)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1)

(3.262)

≤ 1

2
log

(
2

SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1).

(3.263)

ψ4 = log

(
INR2

SNR
+ 1

)
+ log

(
SNRF

INR
+ 1

)
+ log

(
SNR

INR

)
+ log 3

(3.264)

≤ log

(
2INR2

SNR

)
+ log(2) + log

(
SNR

INR

)
+ log 3 (3.265)

= log 12 + log INR (3.266)
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ψ5 =
1

2
log

(
INR2

SNR
+ 1

)
+

1

2
log

(
SNRF

INR
+ 1

)

+
1

2
log

(
SNR

INR

)
+

1

2
log 3

+
1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.267)

≤ 1

2
log

(
2INR2

SNR

)
+

1

2
log(2)

+
1

2
log

(
SNR

INR

)
+

1

2
log 3 (3.268)

+
1

2
log

(
2SNR

INR

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.269)

(a)
=

1

2
log 24 +

1

2
log SNR

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.270)

(b)

≤ 1

2
log 24 +

1

2
log SNR +

1

2
log 3(SNR + INR + 1) (3.271)

where, depending on our need, we use either the form (a) or the form

(b).

Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(3.272)

ψ2 − (τ4 + τ1) ≤ 1 (3.273)

ψ2 − (τ1 + τ2 + τ3) ≤
(

1

2
log(2SNR) +

1

2

)

−
(

1

2
log(INR)− 1

2
+

1

2
log(

SNR

INR
)− 1

2

)

(3.274)

=
1

2
log(16) = 2. (3.275)
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Thus, δR ≤ 2.

Next, we have

ψ3 − (τ2 + τ6) ≤ 3

2
, (3.276)

ψ3 − (2τ1 + τ2 + τ5) ≤ 1

2
log

(
2

SNR

INR

)

+ log(SNR + INR + 2ρ
√

SNR · INR + 1)

−
(

1

2
log

(
SNR

INR

)

− 1

2
+

1

2
log(SNR + INR + 1)− 1

2

)
(3.277)

≤ 1

2
log(2) + log 3(SNR + INR + 1)

−
(
−1

2
+

1

2
log(SNR + INR + 1)− 1

2

)

(3.278)

=
1

2
log(24) = 2.3 (3.279)

ψ4 − (2τ1 + 2τ3) ≤ [log 12 + log(INR)]− [log(INR)− 1] (3.280)

= log(24) = 4.6 (3.281)

Thus, δ2R ≤ 4.6.

Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤ 1

2
log 24 +

3

2
= 3.8 (3.282)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤ 1

2
log 72 +

3

2
= 4.6 (3.283)

Thus, δ3R ≤ 4.6.

Therefore, with current power allocation, in this sub-case, We have

δ = 2.3 and the achievable region is at most 2.3 bits/s/Hz from the

outer bounds.
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– Sub-case 2.2: INR ≤ SNRF ≤ SNR

Choose Pp = 1
INR , Pnc = SNR

INR·SNRF+SNR − Pp, Pcc = INR·SNRF
INR·SNRF+SNR .

With this power allocation, from Theorem 3.3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR.INR + 1)− 1

2
(3.284)

τ5 =
1

2
log

(
SNR2

INR · SNRF + SNR
+

INR.SNR

INR.SNRF + SNR
+ 1

)
− 1

2
(3.285)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(3.286)

τ4 =
1

2
log

(
SNR2

INR · SNRF + SNR
+ 2

)
− 1

2
(3.287)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(3.288)

τ3 =
1

2
log

(
SNR

INR
+

INR.SNR

INR · SNRF + SNR
+ 1

)
− 1

2
(3.289)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(3.290)

τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
(3.291)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(3.292)

τ1 =
1

2
log

SNRF
SNR+INR+2

√
SNR·INR+1

(INR + 1) + 1

SNRF
SNR+INR+

√
SNR·INR+1

( INR·SNR
INR·SNRF+SNR + 1) + 1

(3.293)

≥ 1

2
log

SNRF
5SNR (INR)

SNRF
SNR ( INR·SNR

INR·SNRF
+ 1) + 1

(3.294)

≥ 1

2
log

SNRF

SNR
(INR)− 1

2
log 15 (3.295)

Next, we simplify some outer bounds first.
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ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1)

(3.296)

≤ 1

2
log

(
2

SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1).

(3.297)

ψ4 = log

(
INR2

SNR
+ 1

)
+ log

(
SNRF

INR
+ 1

)
+ log

(
SNR

INR

)
+ log 3

(3.298)

≤ log

(
2INR2

SNR

)
+ log

(
2SNRF

INR

)
+ log

(
SNR

INR

)
+ log 3 (3.299)

= log 12 + log SNRF (3.300)

ψ5 =
1

2
log

(
INR2

SNR
+ 1

)
+

1

2
log

(
SNRF

INR
+ 1

)
+

1

2
log

(
SNR

INR

)

+
1

2
log 3 +

1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.301)

≤ 1

2
log

(
2INR2

SNR

)
+

1

2
log

(
2SNRF

INR

)
+

1

2
log

(
SNR

INR

)

+
1

2
log 3 +

1

2
log

(
2SNR

INR

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.302)

=
1

2
log 24 +

1

2
log

SNR · SNRF

INR

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.303)

Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(3.304)
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ψ1 − (τ4 + τ1) ≤ 1

2
log(5SNR)

−
[

1

2
log

SNRF

SNR
(INR)− 1

2
log 15

+
1

2
log(

SNR2

2INR · SNRF
)− 1

2

]
(3.305)

=
1

2
log(150) +

1

2
= 4.1 (3.306)

ψ1 − (τ1 + τ2 + τ3) ≤ 1

2
log(75) + 1 = 4.1 (3.307)

Thus, δR ≤ 4.1.

Next, we have

ψ3 − (τ2 + τ6) ≤ 3

2
(3.308)

ψ4 − (2τ1 + τ2 + τ5) = log(180) + 1 = 8.5 (3.309)

ψ4 − (2τ1 + 2τ3) ≤ log(180) + 1 = 8.5 (3.310)

Thus, δ2R ≤ 8.5.

Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤ 1

2
log 360 +

3

2
= 5.7 (3.311)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤ 1

2
log 405000 +

3

2
= 10.8 (3.312)

Thus, δ3R ≤ 10.8.

Therefore, with current power allocation, in this sub-case, We have

δ = 4.3 and the achievable region is at most 4.3 bits/s/Hz from the

outer bounds.

• Case 3: 0 ≤ αG ≤ 1
2
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– Sub-case 3.1: SNRF ≤ SNR
INR

Choose Pp = 1
INR , Pnc = 1− Pp, Pcc = 0. With this power allocation,

from Theorem 3.3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
(3.313)

τ5 =
1

2
log(SNR + INR + 1)− 1

2
(3.314)

τ4 =
1

2
log(SNR + 2)− 1

2
≥ 1

2
log(SNR + 1)− 1

2
(3.315)

τ3 =
1

2
log

(
SNR

INR
+ INR + 1

)
− 1

2
≥ 1

2
log

(
SNR

INR

)
− 1

2
(3.316)

τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
≥ 1

2
log

(
SNR

INR

)
− 1

2
(3.317)

τ1 = 0. (3.318)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(3.319)

≤ 1

2
log(SNR + 1) +

1

2
log(2). (3.320)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1)

(3.321)

≤ 1

2
log

(
2

SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1).

(3.322)

ψ4 = log

(
INR2 + SNR + 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)

+ log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)
(3.323)

≤ log

(
7SNR

INR

)
+ log(3) = log

(
SNR

INR

)
+ log(21) (3.324)
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ψ5 =
1

2
log

(
INR2 + SNR + 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)

+
1

2
log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)

+
1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.325)

≤ 1

2
log

(
7SNR

INR

)
+

1

2
log(3)

+
1

2
log

(
2SNR

INR

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.326)

≤ 1

2
log 42 +

1

2
log

(
SNR2

INR2

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)

≤ 1

2
log 42 +

1

2
log

(
SNR2

INR2

)
+

1

2
log 3(SNR + INR + 1) (3.327)

Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(3.328)

ψ2 − (τ4 + τ1) ≤ 1 (3.329)

ψ2 − (τ1 + τ2 + τ3) ≤ 1

2
log(16) = 2. (3.330)

Thus, δR ≤ 2.

Next, we have

ψ3 − (τ2 + τ6) ≤ 3

2
, (3.331)

ψ3 − (2τ1 + τ2 + τ5) ≤ 1

2
log(24) = 2.3 (3.332)

ψ4 − (2τ1 + 2τ3) ≤ log(21) + 1 = 5.4 (3.333)
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Thus, δ2R ≤ 5.4.

Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤ 1

2
log 42 +

3

2
= 4.2 (3.334)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤ 1

2
log 126 +

3

2
= 5.0 (3.335)

(3.336)

Thus, δ3R ≤ 5.0.

Therefore, with current power allocation, in this sub-case, We have

δ = 2.7 and the achievable region is at most 2.7 bits/s/Hz from the

outer bounds.

– Sub-case 3.2: SNR
INR ≤ SNRF ≤ SNR

Choose Pp = 1
INR , Pnc = SNR

INR·SNRF+SNR − Pp, Pcc = INR·SNRF
INR·SNRF+SNR .

With this power allocation, from Theorem 3.3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
(3.337)

τ5 =
1

2
log

(
SNR2

INR.SNRF + SNR
+

INR · SNR

INR.SNRF + SNR
+ 1

)
− 1

2
(3.338)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(3.339)

τ4 =
1

2
log

(
SNR2

INR · SNRF + SNR
+ 2

)
− 1

2
(3.340)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(3.341)

τ3 =
1

2
log

(
SNR

INR
+

INR · SNR

INR.SNRF + SNR
+ 1

)
− 1

2
(3.342)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(3.343)
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τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
(3.344)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(3.345)

τ1 =
1

2
log

SNRF
SNR+INR

√
SNR·INR+1

(INR + 1) + 1

SNRF
SNR+INR

√
SNR·INR+1

( INR·SNR
INR·SNRF+SNR + 1) + 1

(3.346)

≥ 1

2
log

SNRF
5SNR (INR)

SNRF
SNR ( INR·SNR

INR.SNRF
+ 1) + 1

(3.347)

≥ 1

2
log

SNRF

SNR
(INR)− 1

2
log 15 (3.348)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(3.349)

≤ 1

2
log(2SNR) +

1

2
log(2). (3.350)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1)

(3.351)

≤ 1

2
log

(
2

SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1).

(3.352)

ψ4 = log

(
INR2 + SNR + 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)

+ log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)
(3.353)

≤ log

(
7SNR

INR

)
+ log

(
3SNRF INR

SNR

)
(3.354)

≤ log(SNRF ) + log(21) (3.355)
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ψ5 =
1

2
log

(
INR2 + SNR + 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)

+
1

2
log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)

+
1

2
log

(
SNR

INR + 1
+ 1

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.356)

≤ 1

2
log

(
7SNR

INR

)
+

1

2
log

(
3SNRF INR

SNR

)

+
1

2
log

(
2SNR

INR

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.357)

≤ 1

2
log 42 +

1

2
log

(
SNRFSNR

INR

)

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (3.358)

Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(3.359)

ψ2 − (τ4 + τ1) ≤ 1

2
log(60) + 1 = 4.0 (3.360)

ψ2 − (τ1 + τ2 + τ3) ≤ 1

2
log(60) + 1 = 4.0 (3.361)

Thus, δR ≤ 4.0.

Next, we have

ψ3 − (τ2 + τ6) ≤ 3

2
(3.362)

ψ3 − (2τ1 + τ2 + τ5) =
1

2
log(2250) +

3

2
= 7.1 (3.363)

ψ4 − (2τ1 + 2τ3) ≤ log(315) + 1 = 9.3 (3.364)

Thus, δ2R ≤ 9.3.
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Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤ 1

2
log 630 +

3

2
= 6.2 (3.365)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤ 1

2
log 708750 + 2 = 11.7 (3.366)

(3.367)

Thus, δ3R ≤ 11.7.

Therefore, with current power allocation, in this sub-case, We have

δ = 4.7 the achievable region is at most 4.7 bits/s/Hz from the outer

bounds.

In conclusion, we have proved that the outer bounds are at most 4.7

bits/s/Hz from the achievable rate region.
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Chapter 4

A Case Where Interference Does
Not Affect Dispersion

M
ANY results in information theory are asymptotic in the sense that

the number of channel uses grow without bound. For example, as

the number of channel uses n becomes sufficiently large, the maximum data rate

that a point-to-point channel can support, with arbitrarily small probability

of error, is arbitrarily close to maxX I(X;Y ) bits per channel use, where X

denotes the input random variable and Y denotes the output random variable.

However, in some applications, communication systems need to operate in short

blocklengths due to delay constraints. How do these results change if we require

the communication systems to operate at a fixed finite number of blocklengths?

It is not easy to answer this question precisely. Recent works have made use

of Gaussian approximation to provide approximate answers. In this chapter,

using normal approximation, we approximate the maximum data rates that a

Gaussian interference channel can support, when it operates in the strictly very

strong interference regime, the blocklength is fixed and finite, and the probability

of error is allowed to be non-vanishing. It is shown that, in the second-order
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analysis, the Gaussian interference channel behaves as a pair of independent

point-to-point channels in the strictly very strong interference regime. In other

words, interference does not affect dispersions of the constituent channels in this

special case. This result extends Carleial’s result [14].

� 4.1 Introduction

Recently, the study of second-order coding rates for fixed error probabilities

has become an increasingly prominent research topic in network information

theory because the analysis provides key insights into the (delay-constrained)

performance of the communication systems in the finite blocklength regime [85].

Strassen [101], Hayashi [43], and Polyanskiy, Poor and Verdú [85] characterized

the second-order coding rate of the discrete memoryless (DM) point-to-point

channel and the additive white Gaussian noise (AWGN) point-to-point channel.

The result can be summarized as follows. If M∗(n, ε,SNR) denotes the maximum

number of codewords that can be transmitted over n uses of a discrete-time

AWGN channel with signal-to-noise ratio SNR and average error probability no

larger than ε ∈ (0, 1), then, it was shown by [85] and [106] that

logM∗(n, ε,SNR) = nC(SNR) +
√
nV(SNR)Φ−1(ε) +

1

2
log n+O(1) (4.1)

where Φ(·) is the cumulative distribution function of the standard Gaussian, and

the Gaussian capacity C(SNR) and Gaussian dispersion functions V(SNR) are

respectively defined as

C(SNR) ,
1

2
log(1 + SNR) nats per channel use, (4.2)
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and

V(SNR) ,
SNR(SNR + 2)

2(SNR + 1)2
nats2 per channel use. (4.3)

The sum of the first two terms of equation (1), nC(SNR)+
√
nV(SNR)Φ−1(ε),

is called the normal approximation to the logarithm of the size of the optimal

codebooks logM∗(n, ε,SNR). Since it has been shown that the normal approxi-

mation is a good proxy to the finite blocklength fundamental limits [85] at mod-

erate blocklengths, the result can be interpreted as follows: If a system designer

desires to use a Gaussian communication channel up to n times with a toler-

able average error probability not exceeding ε, the maximum number of nats

of information he can communicate is roughly nC(SNR) +
√
nV(SNR)Φ−1(ε).

Thus, for ε < 0.5, the backoff from the Shannon limit (Gaussian capacity) is

√
V(SNR)/nΦ−1(1− ε) (a positive quantity). The constraint on the blocklength

is motivated by real-world, delay-constrained applications such as real-time mul-

timedia streaming. In such applications, the communication data is usually di-

vided into a stream of packets, which have to arrive at their desired destinations

within a certain acceptable, and usually short, delay.

The quantities C(SNR) and V(SNR) are respectively the expectation and

the conditional variance of an appropriately defined information density ran-

dom variable. These are information-theoretic quantities that characterize the

information transmission capability of the channel. In fact, V(SNR), coined

the “dispersion” by Polyanskiy-Poor-Verdú [85], is a channel-dependent quan-

tity that characterizes the speed at which the rates of capacity-achieving codes
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converge to the Shannon limit. The second-order coding rate, a term coined by

Hayashi [42, 43], is a different, but related, object. It is the coefficient of the
√
n

term in (4.1), namely
√

V(SNR)Φ−1(ε). More precisely, the (κ, ε)-second-order

coding rate L∗(κ, ε) ∈ R is the maximum L for which there exists a sequence

of length-n block codes of sizes Mn and error probabilities asymptotically not

exceeding ε such that

logMn ≥ nκ+
√
nL+ o

(√
n
)
. (4.4)

If κ < C(SNR), then it can be seen by the direct part of the coding theorem

for the AWGN channel that L∗(κ, ε) =∞. If the strong converse holds (and for

the AWGN channel it does [126]), then for all κ > C(SNR), the (κ, ε)-second-

order coding rate L∗(κ, ε) = −∞. Hence, the only non-trivial case is the phase-

transition point κ = C(SNR). Hayashi’s result is that [43]

L∗(C(SNR), ε) =
√
V(SNR)Φ−1(ε), (4.5)

which implies the set of real numbers L satisfying

L ≤
√
V(SNR)Φ−1(ε), (4.6)

is second-order achievable, i.e., there exists a sequence of length-n block codes,

with average error probabilities not exceeding ε asymptotically, and fixed sizes

Mn, such that (4.4) holds.

Note that second-order coding rates can be negative depending on ε. Since

the problem we are solving in this chapter is a multi-terminal one, we focus
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-

6

R1

R2

0 I11

I21

u(i)
u(ii)u(iii)

Figure 4.1. Illustration of the capacity region of the Gaussian IC with very strong interference.
The signal-to-noise ratios Sj = h2

jjPj and I11 = C(S1) and I21 = C(S2).

on characterization of the set of achievable second-order coding rates (L1, L2),

which is a subset of the real plane.

� 4.1.1 Prior Work

Following the pioneering works in [42, 101], there have been many follow-up

works for various point-to-point models [43, 45, 47, 85, 110, 124], for source cod-

ing [48, 53, 56, 59], for joint source-channel coding [58, 116], and for coding with

side-information [118]. However, it is not trivial to generalize these results from

the single- to the multi-user setting. Thus far, there have been only a few second-

order works for multi-user settings. Hence, the understanding is far from being

complete. Initial efforts focused on global achievable dispersions[38] for the DM

multiple-access channel (MAC) [46, 78, 79, 105], for the DM asymmetric broad-

cast channel [105], and for the DM interference channel (IC) [67]. However, as

pointed out by Haim et al. [38], global dispersion analysis has certain drawbacks

such as the failure to precisely capture the nature of convergence to the boundary

of the capacity region, the inability in characterizing the deviation from a specific

point on the boundary and the difficulty in obtaining conclusive second-order re-
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sults. To overcome these weaknesses, Haim et al. [38] proposed local dispersion

analysis. Tan-Kosut [105] and Nomura-Han [81] characterized the second-order

optimal rate region (the set of achievable second-order coding rates for fixed er-

ror probability ε and a fixed point on the optimal rate region) for distributed

source coding, i.e., the Slepian-Wolf problem [100]. While it is possible to obtain

tight second-order converse bounds for distributed source coding, it is challeng-

ing to do similarly for channel coding problems such as the DM-MAC. This is

due in part to the union over independent input distributions. Scarlett-Tan [95]

recently obtained the second-order capacity region for the Gaussian MAC with

degraded message sets. The degradedness of the message sets makes it possible

to avoid certain difficulties to get a tight converse by appealing to the reductions

similar to the method of types. The local second-order capacity region for the

Gaussian MAC with non-degraded message sets is an open problem.

� 4.1.2 Main Contributions

In this chapter, we study the local dispersions of the Gaussian IC in the strictly

very strong interference regime. Carleial showed that the capacity region of the

very strong Gaussian IC (which includes the strictly very strong Gaussian IC)

is a rectangle [14], as shown in Figure 4.1. We characterize the so-called second-

order capacity region, which we briefly explain here. We fix a point (κ1, κ2)

lying on the boundary of the capacity region. We also fix an admissible error

probability ε ∈ (0, 1). We then characterize the set of pairs (L1, L2) for which

there exists a sequence of blocklength-n codes with Mjn codewords, and average
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error probabilities not exceeding ε asymptotically, such that

logMjn ≥ nκj +
√
nLj + o(

√
n), (4.7)

for j = 1, 2. The converse is proved using a generalized version of Verdú-Han

Lemma [43, 44, 115], which involves only two error events. The direct part is

proved using a generalized version of Feinstein’s lemma [25], which involves four

error events. The condition of being in the strictly very strong interference regime

reduces the number of error events involved in the direct part, thus allowing the

converse to match the direct part. Our key contribution is the determination

of the set of second-order rate pairs (L1, L2), which characterize the rate of

convergence of optimal (first-order) rates to a particular point (κ1, κ2) lying on

the boundary of the capacity region. One of the interesting observations is that,

if (κ1, κ2) is the corner point of the rectangular capacity region (case (ii) in

Figure 4.1), then the set of all such (L1, L2) ∈ R2 is given by

Φ

(
− L1√

V1

)
Φ

(
− L2√

V2

)
≥ 1− ε, (4.8)

where Vj , V(SNRj) is the effective Gaussian dispersion of the channel from

the jth transmitter to the jth receiver, i.e., Vj is equal to (4.3) evaluated at

signal-to-noise ratio SNRj . An illustration of the (L1, L2) region is provided in

Figure 4.2. We see from (4.8) that the two channels appear to operate inde-

pendently of each other. Indeed Φ
(
−Lj/

√
Vj
)

is asymptotically the probability

of correct detection of the jth-channel where the number of codewords for the

jth codebook is given by Mjn. Intuitively, the inequality in (4.8) says that the

system does not make an error if and only if both channels do not err. Just as

Carleial [14] showed that in the very strong interference regime the capacities of
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the constituent channel are not reduced, in the strictly very strong interference

regime, our main result shows that the dispersions V1 and V2 remain unchanged

and there is no cross-correlation between the two channels in the sense of (4.8).

We emphasize that apart from Scarlett-Tan’s work [95], this is the only work

that completely characterizes the local dispersions for a channel-type network

information theory problem. Furthermore, this is the first work which char-

acterizes the local dispersions for a channel-type network information theory

problem, where input distributions are of the product form.

� 4.1.3 Chapter Organization

This chapter is organized as follows.

• The system model is introduced and the problem is formulated in Section

4.2.

• Next, the main result of the chapter is stated and discussed in Section 4.3.

• Future works are then discussed in Section 4.4.

• All proofs are deferred to the appendix of this chapter.
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� 4.2 System model and problem formulation

The two-user Gaussian interference channel (IC) is defined by the following input-

output relationships

Y1i = h11X1i + h21X2i + Z1i, (4.9)

Y2i = h12X1i + h22X2i + Z2i, (4.10)

where Xji denotes the signal sent by transmitter j (Txj in short), Yji denotes the

output at receiver j (Rxj in short), for j = 1, 2, at time i, for i ∈ {1, 2, ..., n}, and

{Zji}ni=1 are independent (across time and between users at a fixed time), addi-

tive white Gaussian noise processes with zero means and unit variances. Denote

the input alphabets as X nj , and the output alphabets as Ynj . Denote the tran-

sitional probability PY n1 Y n2 |Xn
1 X

n
2

(yn1 y
n
2 |xn1xn2 ) as Wn(yn1 y

n
2 |xn1xn2 ) for conciseness.

Denote the Y1- and Y2-marginals of W as W1 and W2 respectively. The forward

channel gains {h11, h21, h12, h22} are assumed to be positive constants and known

at all terminals. Transmitter Txj , for j = 1, 2, wishes to communicate a message

Sj ∈ {1, 2, ...,Mjn} to receiver Rxj . It is assumed that the messages S1 and

S2 are independent, and uniformly distributed on their respective message sets

Wj , {1, 2, ...,Mjn}, for j = 1, 2. We use nats as the units of information.

Define the feasible set of channel inputs

Fjn ,
{
xnj ∈ X nj

∣∣∣∣
n∑

k=1

x2
jk ≤ nPj

}
(4.11)

for positive numbers Pj , j = 1, 2. P1 and P2 are the upper bounds on the average

powers of the codewords. An (M1n,M2n, n, εn, P1, P2)-code for the Gaussian IC
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consists of two encoding functions

fjn :Wj → Fjn (4.12)

and two decoding functions

gjn : Ynj → Ŵj for j = 1, 2, (4.13)

where the average probability of error is defined as

εn , Pr
(
Ŝ1 6= S1 or Ŝ2 6= S2

)
. (4.14)

In the spirit of the works on second-order asymptotics [42, 43, 81, 95, 105],

we define the second-order capacity region as follows.

Definition 4.1. Fix any two non-negative numbers κ1 and κ2. A real-valued

pair (L1, L2) is said to be (κ1, κ2, ε)-achievable 1 if there exists a sequence of

(M1n,M2n, n, εn, P1, P2)-codes such that

lim sup
n→∞

εn ≤ ε, (4.15)

and

lim inf
n→∞

1√
n

(logMjn − nκj) ≥ Lj (4.16)

for j = 1, 2. The (κ1, κ2, ε)-second-order capacity region of the IC L(κ1, κ2, ε) ⊂

R2 is defined as the closure of the set of all (κ1, κ2, ε)-achievable rate pairs

(L1, L2).

Definition 4.2. The IC is said to have a very strong interference if

h2
22 ≤

h2
21

1 + h2
11P1

and h2
11 ≤

h2
12

1 + h2
22P2

. (4.17)

1We note that it is more precise to define a pair being (P1, P2, κ1, κ2, ε)-achievable. However,
we omit the dependence on (P1, P2) as (P1, P2) are fixed throughout the chapter.
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The IC is said to have a strictly very strong interference if both inequalities in

(4.17) are strict.

Example 4.1. Consider a Gaussian IC, where P1 = P2 = 1, h11 = h22 = 1,

h21 = 3, and h12 = 4. This is an example of a Gaussian IC in the strictly very

strong interference regime. Clearly, there are uncountably many such examples

as long as the interference link gains h21 and h12 are sufficiently large compared

to the direct link gains h11 and h22 and the admissible powers P1 and P2.

Definition 4.3. Recall the definition of the Gaussian capacity function C(·) in

(4.2). Define the following first-order quantities

I11 , C(h2
11P1), I12 , C(h2

11P1 + h2
21P2), (4.18)

I21 , C(h2
22P2), I22 , C(h2

22P2 + h2
12P1), (4.19)

Ic , [I11 I21]T , Id , [I11 I21 I12 I22]T . (4.20)

The vectors Ic and Id characterize the first-order regions that are obtained

naturally from converse and direct bounds respectively. The non-asymptotic

bounds that we evaluate also yield these first-order vectors.

Carleial [14] proved that the capacity region C of the Gaussian IC in the very

strong interference regime is given by

C =
{

(R1, R2) ∈ R2
+ | R1 ≤ I11, R2 ≤ I21

}
. (4.21)

A certain set of information densities plays an important role for the IC

[15, 41, 67]. However, in dealing with channels with cost constraints, modified
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information densities [43, 79] offer certain advantages in the evaluation of non-

asymptotic bounds as n→∞.

Definition 4.4. Fix a joint distribution

PY n1 Y n2 Xn
1 X

n
2

(yn1 y
n
2x

n
1x

n
2 ) = PXn

1
(xn1 )PXn

2
(xn2 )Wn

1 (yn1 |xn1xn2 )Wn
2 (yn2 |xn1xn2 ). (4.22)

Given two auxiliary (conditional) output distributions QY n1 |Xn
2

and QY n1
2, define

the modified information densities

ĩn11(Xn
1X

n
2 Y

n
1 ) , log

Wn
1 (Y n

1 |Xn
1X

n
2 )

QY n1 |Xn
2

(Y n
1 |Xn

2 )
, (4.23)

ĩn12(Xn
1X

n
2 Y

n
1 ) , log

Wn
1 (Y n

1 |Xn
1X

n
2 )

QY n1 (Y n
1 )

. (4.24)

We will often use the shorthands ĩn11 and ĩn12. Furthermore, the dependencies of

ĩn11 and ĩn12 on the channel Wn
1 and the output distributions QY n1 |Xn

2
and QY n1

will be suppressed for the sake of brevity.

Similarly, given two auxiliary output distributions QY n2 |Xn
1

and QY n2 , we de-

fine ĩn21(Xn
1X

n
2 Y

n
2 ) and ĩn22(Xn

1X
n
2 Y

n
2 ).

ĩn21(Xn
1X

n
2 Y

n
2 ) , log

Wn
2 (Y n

2 |Xn
1X

n
2 )

QY n2 |Xn
1

(Y n
2 |Xn

1 )
, (4.25)

ĩn22(Xn
1X

n
2 Y

n
2 ) , log

Wn
2 (Y n

2 |Xn
1X

n
2 )

QY n2 (Y n
2 )

. (4.26)

In addition, we define

ĩnc (Xn
1X

n
2 Y

n
1 Y

n
2 ) , [̃in11 ĩn21]T (4.27)

ĩnd(Xn
1X

n
2 Y

n
1 Y

n
2 ) , [̃in11 ĩn21 ĩn12 ĩn22]T . (4.28)

2In the following, we will refer to QY n
1 |X

n
2

and QY n
1

collectively as output distributions,
dropping the qualifier conditional, for the sake of brevity.
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Remark 4.1. Note that the idea of modified information density was first in-

troduced by Hayashi and Nagaoka in [44] in quantum information theory. The

paper [43] introduced this idea in non-quantum information theory.

Definition 4.5. Recall the definition of the Gaussian dispersion function V(·)

in (4.3). Define the second-order quantities

V1 , V(h2
11P1), and V2 , V(h2

22P2). (4.29)

Note that h2
jjPj is the signal-to-noise ratio of the direct channel from Txj

to Rxj and V(h2
jjPj) is the corresponding dispersion. Also, the expectation

and the conditional covariance of the random vector ĩc(X1X2Y1Y2) are Ic and

diag([V1, V2]) respectively if (X1, X2) ∼ N (0, diag([P1, P2])), QY1|X2
(·|x2) =

N (h21x2, h
2
11P1 + 1) and QY2|X1

(·|x1) = N (h12x1, h
2
22P2 + 1).

The following is the cumulative distribution function of a standard Gaussian

distribution

Φ(t) ,
∫ t

−∞

1√
2π

exp(−u2/2) du. (4.30)

The inverse of Φ is defined as Φ−1(ε) , sup{t ∈ R |Φ(t) ≤ ε}.

In this chapter, we aim to characterize the (κ1, κ2, ε)-capacity region of the

Gaussian IC in the strictly very strong interference regime, i.e., we determine

L(κ1, κ2, ε) for any (κ1, κ2) ∈ [0,∞)2 and ε ∈ (0, 1).
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� 4.3 Main result

The main result of this chapter is summarized in the following theorem. See

Figure 4.1 for an illustration of the different cases.

Theorem 4.1. For any 0 < ε < 1, the (κ1, κ2, ε)-second-order capacity region

for the strictly very strong Gaussian interference channel in the following special

cases is given by

i) When κ1 = I11 and κ2 < I21 (vertical boundary),

L(κ1, κ2, ε) =

{
(L1, L2) ∈ R2

∣∣∣∣Φ
(
L1√
V1

)
≤ ε
}

; (4.31)

ii) When κ1 = I11 and κ2 = I21 (corner point),

L(κ1, κ2, ε) =

{
(L1, L2) ∈ R2

∣∣∣∣Φ
(
− L1√

V1

)
Φ

(
− L2√

V2

)
≥ 1− ε

}
; (4.32)

iii) When κ1 < I11 and κ2 = I21 (horizontal boundary),

L(κ1, κ2, ε) =

{
(L1, L2) ∈ R2

∣∣∣∣Φ
(
L2√
V2

)
≤ ε
}
. (4.33)

Proof. This theorem is proved in the appendix of this chapter.

Example 4.2. We visualize the result of case (ii) of Theorem 4.1 via an ex-

ample. Consider a Gaussian IC where the dispersions are equal, i.e., V1 = V2,

and the average error probability ε = 0.001. Clearly, by choosing h12 and h21

sufficiently large, we can guarantee that the Gaussian IC is in the strictly very
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Figure 4.2. The second-order capacity region L(κ1, κ2, ε) of case 2 when ε = 0.001

.

strong interference regime (see Example 4.1). The second-order capacity region

L(κ1, κ2, ε) of case (ii) where (κ1, κ2) = (I11, I21) is illustrated in Figure 4.2.

Because ε < 1/2, the second-order capacity region L(κ1, κ2, ε) lies entirely in the

third quadrant of R2. Due to the fact that V1 = V2, the second-order capacity

region L(κ1, κ2, ε) for case (ii) is also symmetric about the line L1 = L2.

� 4.3.1 Remarks Concerning Theorem 4.1

1. The result can be generalized to any (κ1, κ2) ∈ [0,∞)2. If (κ1, κ2) is in

the interior of C, then it can be shown that L(κ1, κ2, ε) = R2. If (κ1, κ2)

is in the exterior of C, then L(κ1, κ2, ε) = ∅. This implies the strong

converse. Thus, the strong converse, which was hitherto not established

for the Gaussian IC with very strong interference, is a by-product of our
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analyses. The only interesting cases, in which (κ1, κ2) is on the boundary

of the capacity region, are presented in Theorem 4.1.

2. In case (i), the (κ1, κ2, ε)-capacity region depends on ε and V1 only. This

region is more succinctly described as

L1 ≤
√
V1Φ−1(ε), and L2 ∈ R. (4.34)

Note that
√
V1Φ−1(ε) is exactly the second-order coding rate of the AWGN

channel between transmitter Tx1 and receiver Rx1 when there is no inter-

ference from transmitter Tx2 [43]. The fact that user 2’s parameters do

not feature in (4.34) is because κ2 < I21. Note that κ2 < I21 implies that

Tx2 operates at a rate strictly below the capacity of the second channel

I21. In this case, the second channel operates in the large-deviations (error

exponents) regime so the second constraint is not featured in our disper-

sion analysis. This is because the error probability is exponentially small

in this regime. See [38, 81, 95, 105]. By symmetry, case (iii) is similar to

case (i).

3. In case (ii), the (κ1, κ2, ε)-second-order capacity region is a function of ε and

both V1 and V2 because we are operating at rates near the corner point of

C. The two constraints on the rates come into play in the characterization

of L(κ1, κ2, ε). Roughly speaking, Φ(−Lj/
√
Vj) is the probability that the

jth-decoder decodes correctly if the number of codewords of the jth-user is

Mjn =
⌊

exp
(
nκj +

√
nLj + o(

√
n)
)⌋
. (4.35)

Thus, the product Φ(−L1/
√
V1)Φ(−L2/

√
V2), which is constrained to be

larger than 1 − ε in (4.32), is the probability that both messages are de-
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coded correctly assuming that both channels operate independently. More

explicitly, using the definition of the error probability criterion in (4.14),

we have that

Pr
(
Ŝ1 = S1 and Ŝ2 = S2

)
≥ 1− ε. (4.36)

Assuming independence, this means that

Pr
(
Ŝ1 = S1

)
Pr
(
Ŝ2 = S2

)
≥ 1− ε. (4.37)

Denoting o(1) as a sequence that tends to zero as the blocklength grows,

we observe that

Pr
(
Ŝj = Sj

)
= Φ

(
− Lj√

Vj

)
+ o(1) (4.38)

if (4.35) holds (a result by Hayashi [43, Thm. 4]). In this way, we recover

the main result in (4.32). Since V1 = V(h2
11P1) and V2 = V(h2

22P2) are

the dispersions of the point-to-point Gaussian channels without interfer-

ence, this is exactly analogous to Carleial’s result for Gaussian ICs with

very strong interference [14]. In other words, in this regime, the channel

dispersions of the constituent channels are not affected. This explains the

title of the chapter—namely that in this very special scenario, interference

does not affect (reduce) the dispersions of the constituent channels. In ad-

dition, no cross dispersion terms are present in (4.32) unlike other network

problems [81, 95, 105]. This is due to the independence of the noises Z1i

and Z2i as well as the strictly very strong interference assumption.

4. One of the input distributions that achieves the capacity, error exponent,

dispersion and even the third-order coding rate of the Gaussian point-to-

point channel [85, 97, 106], is the uniform distribution on the power sphere.
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MolavianJazi-Laneman [79] derived global achievable dispersions for the

two-user Gaussian MAC using uniform distributions on power spheres. In

this work, we also use the uniform input distributions on power spheres.

It is not easy to use the cost constrained ensemble in [95] as that input

distribution is more suited to, for example, superposition coding.

5. The proof of the direct part makes use of a generalized version of Fein-

stein’s lemma [25], which involves four error events. We also use the cen-

tral limit theorem for functions by MolavianJazi and Laneman [79] to “lift”

the problem to a higher dimension, in fact 10-dimensional Euclidean space,

ensuring that the i.i.d. version of the multivariate Berry-Esséen theorem

[9, 35, 118] may be employed. The converse makes use of a generalized

version of Verdú-Han Lemma [43, 44, 115], which involves only two error

events. At a high level, we use the strictly very strong interference con-

dition to reduce the number of error events in the direct part, so that it

matches the converse.

6. Finally, it is somewhat surprising that in the converse, even though we

must ensure that the transmitter outputs are independent, we do not need

to use the wringing technique, invented by Ahlswede [2] and used originally

to prove that the DM-MAC admits a strong converse. This is due to Gaus-

sianity which allows us to show that the first- and second-order statistics

of a certain set of information densities are independent of xn1 and xn2 on

power spheres. See (4.43)-(4.44).
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� 4.4 Conclusion

In this work, we characterized the second-order coding rates of the Gaussian

interference channel in the strictly very strong interference regime. The strictly

very strong interference assumption reduces the number of error events in the

direct part so that it matches the converse. It would be interesting to find

the second-order capacity region in the other regimes. New non-asymptotic

achievability and converse bounds are needed for other cases. In particular, it

is intriguing to see what the second-order capacity region for the interference

channel in the strong interference regime is. Note that in the strong interference

regime, the interference channel behaves like a pair of MACs but unfortunately

the second-order capacity region for the MAC remains unknown [46, 79, 95,

105]. The achievability scheme in this work is also applicable to the interference

channel in the strong interference regime. A non-trivial problem here is to derive

a tighter converse than that prescribed by Lemma 4.1 to be evaluated assuming

only strong interference.

� 4.5 Appendix to chapter 4

� 4.5.1 Proof of Theorem 4.1: Converse Part

In this sub-section, we present the converse proof of Theorem 4.1. By a standard

n ↔ n + 1 argument [97, Sec. X] [85, Lem. 39], we may assume that the power

constraints are satisfied with equality. We first start with an non-asymptotic

bound, which is a generalized version of Verdú-Han Lemma [115, Lem. 4] [43,
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44]. Verdú-Han introduced this kind of lemma without the modified information

density in the point-to-point channel. Hayashi [43] introduced this kind of lemma

with the modified information density in the point-to-point channel. Here, we

generalize this kind of lemma in the interference channel. The proof of this

lemma is given in sub-section 4.5.5.

Lemma 4.1. For every n ∈ N, for every γ > 0, and for any auxiliary output

distributions QY n1 |Xn
2

and QY n2 |Xn
1

, every (M1n,M2n, n, εn, P1, P2)-code for the

Gaussian IC satisfies

εn ≥ Pr(̃in11(Xn
1X

n
2 Y

n
1 ) ≤ logM1n − nγ

or ĩn21(Xn
1X

n
2 Y

n
2 ) ≤ logM2n − nγ)− 2e−nγ , (4.39)

where ĩ11 and ĩ21 are modified information densities defined in (4.23) and (4.24)

respectively and Xn
j is uniformly distributed over the jth codebook and so ‖Xn

j ‖2 =

nPj with probability one.

Remark 4.2. Intuitively, the proof of Lemma 4.1 relies on the fact that a system

with help of a genie, which provides the transmitted information of transmitter

2 to decoder 1, and the transmitted information from transmitter 1 to decoder

2, will always do no worse than a system without help from a genie.

Fix any pair of rates (κ1, κ2) on the boundary of C in (4.21). Consider any

second-order pair (L1, L2) that is (κ1, κ2, ε)-achievable for the Gaussian IC. This

implies that there exists a sequence of (M1n,M2n, n, εn, P1, P2)-codes satisfy-

ing (4.16).

By the definition of lim inf, for any β > 0, there exists an integer Nβ such
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that for all n > Nβ

logMjn − nκj ≥
√
n(Lj − β). (4.40)

Let Leq(κ1, κ2, ε) be the (κ1, κ2, ε)-second-order capacity region of the IC

with equal power constraints, i.e. each codeword xnj satisfies
∑n

k=1 x
2
jk = nPj

for j = 1, 2. As mentioned above, it can be shown that (cf. [85, Lem. 39])

Leq(κ1, κ2, ε) = L(κ1, κ2, ε). Therefore, in this converse proof, it is sufficient to

assume equal power constraints.

Define the auxiliary output distributions

Q̂Y1|X2
(y1|x2) , N (y1;h21x2, h

2
11P1 + 1) (4.41)

Q̂Y2|X1
(y2|x1) , N (y2;h12x1, h

2
22P2 + 1). (4.42)

These are the conditional output distributions of the Gaussian IC when the

inputs are X1 ∼ N (0, P1) and X2 ∼ N (0, P2).

Choose the conditional output distributions QY n1 |Xn
2

and QY n2 |Xn
1

in Lemma

4.1, respectively as the n-fold products of Q̂Y1|X2
(y1|x2) and Q̂Y2|X1

(y2|x1), which

are defined above. Next, choose γ = logn
2n . Let Vc be the 2 × 2 diagonal matrix

with V1 and V2 along its diagonals.

Next, we have the following lemma whose proof is presented in full in sub-

section 4.5.3.
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Lemma 4.2. For all xn1 and xn2 satisfying ‖xnj ‖2 = nPj we have

E

[
1

n

n∑

k=1

ĩck(x1kx2kY1kY2k)

]
= Ic, and (4.43)

cov

[
1√
n

n∑

k=1

ĩck(x1kx2kY1kY2k)

]
= Vc, (4.44)

where ĩck is the random vector with components given by (4.23) and (4.24).

This lemma is the crux of the converse proof. Note that the covariance matrix

in (4.44) is diagonal and this results in the decoupling of the events in the corner

point case given by (4.32). The diagonal nature of (4.44) arises, in part, from

the independence of the noises Z1i and Z2i for each time i = 1, . . . , n.

Let tc , 1
n

∑n
k=1 E[‖̃ick(x1kx2kY1kY2k)‖3] be the third absolute moment and

φc ,
254
√

2tc
λmin(Vc)3/2 , where λmin(Vc) is the minimum eigenvalue of Vc. Define the

rate pair Rc , [ logM1n

n , logM2n

n ]T . Note that Vc � 0 because the channel gains

and powers are all positive. Also tc < ∞ from [95, App. A]. Thus, φc is finite.

Define

Ψ
(
[t1, t2]; m,Σ

)
,
∫ t1

−∞

∫ t2

−∞
N (u; m,Σ) du (4.45)

as the bivariate generalization of the Gaussian cumulative distribution function.

Then we have

∆(xn1 , x
n
2 ) , Pr

(
1

n

n∑

k=1

ĩck(x1kx2kY1kY2k) > Rc − γ1

)

= Pr

(
1√
n

n∑

k=1

ĩck −
√
nIc >

√
n(Rc − Ic − γ1)

)

(a)

≤ Ψ(−√n(Rc − Ic − γ1); 0, Vc) +
φc√
n
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(b)

≤ Ψ(−√n(Rc − Ic); 0, Vc) +O

(
log n√
n

)
, (4.46)

where

(a) follows from the application of a variant of the multivariate Berry-Esséen

Theorem, which is stated in Theorem 2.11; and

(b) follows from Taylor expansion of the function Ψ(t; 0, Vc), which is differen-

tiable with respect to t.

From Lemma 4.1, we have

εn ≥ 1− Pr

(
1

n
ĩnc (Xn

1X
n
2 Y

n
1 Y

n
2 ) > Rc − γ1

)
− 2e−nγ

= 1− E [∆(Xn
1 , X

n
2 )]− 2e−nγ . (4.47)

Note that e−nγ = 1√
n

. Combining (4.46) and (4.47), we have

εn ≥ 1−Ψ(−√n(Rc − Ic); 0, Vc)−O
(

log n√
n

)
− 2√

n

(a)

≥ 1−Ψ

([√
n(I11 − κ1)− L1 + β√
n(I21 − κ2)− L2 + β

]
; 0, Vc

)
−O

(
log n√
n

)
− 2√

n
(4.48)

where

(a) holds for all n > Nβ and follows because t 7→ Ψ(t; 0, Vc) is monotonically

increasing in t and (4.40).

We now consider three different cases.
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Case 1: When κ1 = I11 and κ2 < I21

For any fixed L2, if κ2 < I21, we have
√
n(I21−κ2)−L2+β → +∞. Thus, the sec-

ond term on the right hand side (RHS) of (4.48) converges to Ψ (−L1 + β; 0, V1) =

Φ
(−L1+β√

V1

)
. Taking lim sup on both sides of (4.48), and using (4.40), we have

ε ≥ lim sup
n→∞

εn ≥ 1− Φ

(−L1 + β√
V1

)
. (4.49)

Since this is true for any β > 0, we may let β ↓ 0 and deduce that

Φ

(
L1√
V1

)
≤ ε. (4.50)

Case 1 is proved.

Case 2: When κ1 = I11 and κ2 = I21

In this case, the second term on the RHS of (4.48) converges to Ψ([−L1+β,−L2+

β]T ; 0, Vc). The rest of the arguments are similar to that in case 1. Note that

because Vc is diagonal,

Ψ
(
[−L1,−L2]T ; 0, Vc

)
= Φ

(
− L1√

V1

)
Φ

(
− L2√

V2

)
. (4.51)

Case 3: When κ1 < I11 and κ2 = I21

By symmetry, case 3 is proved similarly to case 1.

� 4.5.2 Proof of Theorem 4.1: Direct Part

In this sub-section, we present the achievability proof of Theorem 4.1. The

following non-asymptotic bound, a generalized version of Feinstein’s lemma [25],
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will be employed in the proof. The proof of this lemma is given in sub-section

4.5.6.

Lemma 4.3. Fix a joint distribution satisfying (4.22). For any n ∈ N, any

γ > 0, and any auxiliary output distributions QY n1 |Xn
2

, QY n1 , QY n2 |Xn
1

and QY n2 ,

there exists an (M1n,M2n, n, εn, P1, P2)-code for the Gaussian IC, such that

εn ≤ Pr(E11 ∪ E12 ∪ E21 ∪ E22) +Ke−nγ + PXn
1

(Fc1n) + PXn
2

(Fc2n) (4.52)

where

E11 , {̃in11(Xn
1X

n
2 Y

n
1 ) ≤ logM1n + nγ} (4.53)

E21 , {̃in21(Xn
1X

n
2 Y

n
2 ) ≤ logM2n + nγ} (4.54)

E12 , {̃in12(Xn
1X

n
2 Y

n
1 ) ≤ logM1nM2n + nγ} (4.55)

E22 , {̃in22(Xn
1X

n
2 Y

n
2 ) ≤ logM1nM2n + nγ}, (4.56)

and

K , K11 +K12 +K21 +K22, (4.57)

K11 , sup
xn2 ,y

n
1

PY n1 |Xn
2

(yn1 |xn2 )

QY n1 |Xn
2

(yn1 |xn2 )
, K12 , sup

yn1

PY n1 (yn1 )

QY n1 (yn1 )
, (4.58)

K21 , sup
xn1 ,y

n
2

PY n2 |Xn
1

(yn2 |xn1 )

QY n2 |Xn
1

(yn2 |xn1 )
, K22 , sup

yn2

PY n2 (yn2 )

QY n2 (yn2 )
. (4.59)

Remark 4.3. In fact, this lemma holds not just for Gaussian ICs, but for general

ICs.

Remark 4.4. The presence of the Radon-Nikodym derivativesKij in (4.57)–(4.59)

is the price to pay for the luxury of using the auxiliary output distributions. This

version of generalized Feinstein is different from the earlier versions (cf. [115,
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Thm. 1]) in that the information densities in this lemma involve auxiliary output

distributions that can be chosen. This technique was similarly employed in

[43, 44, 79]. By choosing the appropriate auxiliary output distributions and

input distributions, we can show that the inner bound to L(κ1, κ2, ε) coincides

with the outer bound.

First, we present the achievability proof for case 1.

Case 1: When κ1 = I11 and κ2 < I21

Fix any pair (L1, L2) satisfying

Φ

(
L1√
V1

)
≤ ε. (4.60)

Let the number of codewords in the jth codebook be

Mnj = bexp
(
nκj +

√
nLj + n1/4β

)
c (4.61)

for j = 1, 2, and a fixed β > 0. It is clear that

lim inf
n→∞

1√
n

(logMjn − nκj) ≥ Lj . (4.62)

Therefore, in order to show that (L1, L2) is (κ1, κ2, ε)-achievable, it suffices

to show the existence of a sequence of (M1n,M2n, n, εn, P1, P2)-codes such that

lim supn→∞ εn ≤ ε. For this, we define an appropriate input distribution to be

used in Lemma 4.3, which is going to be applied in this sub-section. Inspired

by [79, 106], we define the input distributions to be uniform on the respective

power shells, i.e.

PXn
j

(xnj ) ,
δ(‖xnj ‖ −

√
nPj)

An(
√
nPj)

, (4.63)
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for j = 1, 2 and where δ(·) is the Dirac delta and An(r) , 2πn/2

Γ(n/2)r
n−1 is the surface

area of a sphere in Rn with radius r. With this choice, we have PXn
1

(Fc1n) +

PXn
2

(Fc2n) = 0, i.e. the power constraints are satisfied with probability 1.

Define the output distributions

Q̂Y1(y1) , N (y1; 0, h2
11P1 + h2

12P2 + 1) (4.64)

Q̂Y2(y2) , N (y2; 0, h2
12P1 + h2

22P2 + 1) (4.65)

Q̂Y1|X2
(y1|x2) , N (y1;h21x2, h

2
11P1 + 1) (4.66)

Q̂Y2|X1
(y2|x1) , N (y2;h12x1, h

2
22P2 + 1). (4.67)

These are the output distributions of the Gaussian IC when the inputs are X1 ∼

N (0, P1) and X2 ∼ N (0, P2).

Choose the auxiliary output distributions QY n1 (yn1 ), QY n2 (yn2 ), QY n1 |Xn
2

(yn1 |xn2 )

and QY n2 |Xn
1

(yn2 |xn1 ) in Lemma 4.3 to be the n-fold memoryless extensions of

Q̂Y1(y1), Q̂Y2(y2), Q̂Y1|X2
(y1|x2) and Q̂Y2|X1

(y2|x1) respectively, the distribu-

tions of which are given in (4.64-4.67). With this choice of auxiliary output

distributions, the value of K in Lemma 4.3 is shown in the following lemma to

be bounded.

Lemma 4.4. For n sufficiently large, K11, K21, K12 and K22 are finite . Thus,

K in (4.57) is also finite.

This lemma is proved in sub-section 4.5.4.
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Define

α11 , 1 + h2
11P1, α12 , 1 + h2

11P1 + h2
21P2, (4.68)

α21 , 1 + h2
22P2, α22 , 1 + h2

12P1 + h2
22P2. (4.69)

We have

ĩn11 = log
Wn

1 (Y n
1 |Xn

1X
n
2 )

QY n1 |Xn
2

(Y n
1 |Xn

2 )
(4.70)

=
n

2
log(1 + h2

11P1) +

∑n
k=1(Y1k − h21X2k)

2

2(1 + h2
11P1)

−
∑n

k=1(Y1k − h11X1k − h21X2k)
2

2
(4.71)

=
n

2
log(1 + h2

11P1) +

∑n
k=1(Z1k + h11X1k)

2

2(1 + h2
11P1)

−
∑n

k=1(Z1k)
2

2
(4.72)

= nI11 +
1

2α11
[(α11 − 1)(n− ‖Zn1 ‖2) + 2h11〈Xn

1 , Z
n
1 〉], (4.73)

where 〈an, bn〉 denotes the inner product between an and bn.

Similarly, it can be shown that the other three modified information densities

can be expressed as

ĩn21 = nI21 +
1

2α21
[(α21 − 1)(n− ‖Zn2 ‖2) + 2h22〈Xn

2 , Z
n
2 〉]

ĩn12 = nI12 +
1

2α12
[(α12 − 1)(n− ‖Zn1 ‖2)

+ 2h11h21〈Xn
2 , X

n
1 〉+ 2h11〈Xn

1 , Z
n
1 〉+ 2h21〈Xn

2 , Z
n
1 〉]

ĩn22 = nI22 +
1

2α22
[(α22 − 1)(n− ‖Zn2 ‖2)

+ 2h22h12〈Xn
2 , X

n
1 〉+ 2h22〈Xn

2 , Z
n
2 〉+ 2h12〈Xn

1 , Z
n
2 〉]. (4.74)

Next, we use the central limit theorem for functions technique proposed by

MolavianJazi-Laneman [79] to transform these modified information densities
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into functions of sums of independent random vectors. Let Tnj ∼ N (0, In×n),

for j = 1, 2, be standard Gaussian random vectors that are independent of each

other and of the noises Znj . Note that the input distribution in (4.63) results in

Xjk =
√
nPj

Tjk
‖Tnj ‖

, for k ∈ {1, . . . , n}. Indeed, ‖Xn
j ‖2 = nPj with probability

one. Now consider the length-10 random vector

Uk , ({Uj1k}4j=1, {Uj2k}4j=1, U9k, U10k), (4.75)

where

U11k , 1− Z2
1k, U21k , h11

√
P1T1kZ1k,

U31k , h21

√
P2T2kZ1k, U41k , h11h21

√
P1P2T1kT2k,

U12k , 1− Z2
2k, U22k , h22

√
P2T2kZ2k,

U32k , h12

√
P1T1kZ2k, U42k , h12h22

√
P1P2T1kT2k,

U9k , T
2
1k − 1, U10k , T

2
2k − 1. (4.76)

It is easy to verify that Uk is i.i.d. across all channel uses k ∈ {1, . . . , n}, and

E(Uk) = 0 and E(‖Uk‖3) is finite. The covariance matrix of U1 is given by

Cov(U1) =




2 0 0 0 0 0 0 0 0 0

0 α11 − 1 0 0 0 0 0 0 0 0

0 0 α33 0 0 0 0 0 0 0

0 0 0 α44 0 0 0 α48 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 α21 − 1 0 0 0 0

0 0 0 0 0 0 α77 0 0 0

0 0 0 α48 0 0 0 α88 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 2




, (4.77)
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where

α33 , h
2
21P2 (4.78)

α44 , h
2
11h

2
21P1P2 (4.79)

α48 , P1P2h11h21h12h22 (4.80)

α77 , h
2
12P1 (4.81)

α88 , h
2
12h

2
22P1P2. (4.82)

Note that α11 + α33 = α12 and α21 + α77 = α22.

Define the functions τ11, τ12 : R10 → R as follows

τ11(u) , (α11 − 1)u11 +
2u21√
1 + u9

(4.83)

τ12(u) , (α12 − 1)u11 +
2u21√
1 + u9

+
2u31√
1 + u10

+
2u41√

1 + u9
√

1 + u10
, (4.84)

for receiver 1. Similarly, define τ21(u) and τ22(u) for receiver 2 as follows

τ21(u) , (α21 − 1)u12 +
2u22√
1 + u10

(4.85)

τ22(u) , (α22 − 1)u12 +
2u22√
1 + u10

+
2u32√
1 + u9

+
2u42√

1 + u9
√

1 + u10
. (4.86)

Denote

τ(u) , [τ11(u), τ21(u), τ12(u), τ22(u)]T . (4.87)

It can be shown that, for l ∈ {11, 12, 21, 22},

ĩnl = nIl +
n

2αl
τl

(
1

n

n∑

k=1

Uk

)
. (4.88)
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Denote the diagonal matrix

Λ , diag

(
1

α11
,

1

α21
,

1

α12
,

1

α22

)
. (4.89)

We have

1√
n

ĩnd −
√
n Id =

√
n

2
Λτ

(
1

n

n∑

k=1

Uk

)
. (4.90)

Note that τ(0) = 0 and the vector function τ(u) has continuous second-order

derivatives in all neighbourhood of u = 0. Therefore, the vector function τ(u)

satisfies the conditions given in Theorem 2.12. The Jacobian matrix Jτ (u) of

τ(u) with respect to u, calculated at u = 0, is given by

Jτ (0) =




α11 − 1 2 0 0 0 0 0 0 0 0

0 0 0 0 α21 − 1 2 0 0 0 0

α12 − 1 2 2 2 0 0 0 0 0 0

0 0 0 0 α22 − 1 2 2 2 0 0



. (4.91)

Next, by Theorem 2.12, we have that the random vector 1√
n
ĩnd−
√
n Id converges

in distribution to a zero-mean Gaussian with covariance matrix Vd, which is

given by

Vd =
1

n
· n

4
· ΛJτ (0)Cov(U1)[Jτ (0)]TΛ (4.92)

=




V1 0 Vd13 0

0 V2 0 Vd24

Vd13 0 Vd33 Vd34

0 Vd24 Vd34 Vd44




(4.93)

where

Vd13 , V(h2
11P1, h

2
11P1 + h2

21P2) (4.94)

Vd24 , V(h2
22P2, h

2
22P2 + h2

12P1) (4.95)

Vd33 , V(h2
11P1 + h2

21P2) +
h2

11P1h
2
21P2

(h2
11P1 + h2

21P2 + 1)2
(4.96)
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Vd44 , V(h2
22P2 + h2

12P1) +
h2

12P1h
2
22P2

(h2
12P1 + h2

22P2 + 1)2
(4.97)

Vd34 ,
h12h11P1h21h22P2

(h2
11P1 + h2

21P2 + 1)(h2
12P1 + h2

22P2 + 1)
. (4.98)

Thus, Vd has the form

Vd =




V1 0 ∗ ∗
0 V2 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



. (4.99)

In the above, the ∗’s represent entries that are inconsequential for the purposes

of subsequent analyses.

Define the length-4 rate vector

Rd ,

[
logM1n

n
,
logM2n

n
,
log(M1nM2n)

n
,
log(M1nM2n)

n

]T
. (4.100)

Appealing to Lemma 4.3, with γ = logn
2n , we have

εn ≤ 1− Pr

(
1√
n

ĩnd(Xn
1X

n
2 Y

n
1 Y

n
2 ) >

√
n(Rd + γ1)

)
−Ke−nγ

≤ 1− Pr

(
1√
n

n∑

k=1

(̃idk − Id) >
√
n (Rd − Id + γ1)

)
− K√

n

(a)

≤ 1−Ψ
(
−√n (Rd − Id + γ1) ; 0, Vd

)
−O

(
1√
n

)

(b)

≤ 1−Ψ(−√n(Rd − Id); 0, Vd) +O

(
log n√
n

)
, (4.101)

where

(a) follows from a variant of the multivariate Berry-Esséen theorem, which is

stated in Theorem 2.12; and

162



Sec. 4.5. Appendix to chapter 4

(b) follows from Taylor expanding t 7→ Ψ(t; 0, Vd).

Due to the strictly very strong interference assumption (Definition 4.2),

h2
22P2 + 1 <

h2
21P2 + h2

11P1 + 1

h2
11P1 + 1

. (4.102)

Thus, I11 + I21 < I12. Similarly, we have I11 + I21 < I22. Therefore, as n→∞,

we have

−√n(Rd − Id) = −√n




κ1 + L1√
n

+ β
n3/4 − I11

κ2 + L2√
n

+ β
n3/4 − I21

κ1 + κ2 + L1√
n

+ L2√
n

+ 2 β
n3/4 − I12

κ1 + κ2 + L1√
n

+ L2√
n

+ 2 β
n3/4 − I22



→




−L1

+∞
+∞
+∞



.

(4.103)

Thus,

Ψ(−√n(Rd − Id); 0, Vd)→ Ψ(−L1; 0, V1) = Φ

(
− L1√

V1

)
. (4.104)

Taking lim sup on both sides of (4.101), we have

lim sup
n→∞

εn ≤ 1− Φ

(
− L1√

V1

)
= Φ

(
L1√
V1

)
≤ ε, (4.105)

where the final inequality follows the choice of L1 in (4.60). This completes the

proof of the direct part for Case 1.

Case 2: When κ1 = I11 and κ2 = I21

In this case, we have

Ψ(−√n(Rd − Id); 0, Vd)→ Ψ([−L1 − L2]T ; 0, Vc) (4.106)

because the second and third entries in (4.103) tend to +∞ (by the strictly very

strong interference assumption) while the first and fourth entries tend to L1 and
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L2 respectively. Thus, as mentioned previously, only the (1, 1), (1, 2), (2, 1) and

(2, 2) entries in Vd, defined in (4.99), are required. Note that Vc is a sub-matrix

of Vd (in the [1 : 2, 1 : 2] position). Furthermore, by the fact that Vc is diagonal,

the relation in (4.51) also holds. The rest of the arguments are similar to case 1.

Case 3: When κ1 < I11 and κ2 = I21

By symmetry, case 3 is proved similarly to case 1.

� 4.5.3 Proof of Lemma 4.2

We have, for k ∈ {1, 2, . . . , n},

ĩ11k(x1kx2kY1k) =
1

2
log(h2

11P1 + 1) +
(Y1k − h21x2k)

2

2(1 + h2
11P1)

− (Y1k − h11x1k − h21x2k)
2

2
. (4.107)

In this case, ĩ11k(x1kx2kY1k) has the same statistics as

g11(Z1k) =
1

2
log(h2

11P1 + 1) +
(Z1k + h11x1k)

2

2(1 + h2
11P1)

− Z2
1k

2
. (4.108)

Using this expression, we have

E[̃i11k(x1kx2kY1k)] =
1

2
log(h2

11P1 + 1) +
1 + h2

11x
2
1k

2(1 + h2
11P1)

− 1

2
, (4.109)

var[̃i11k(x1kx2kY1k)] =
h4

11P
2
1 + 2h2

11x
2
1k

2(1 + h2
11P1)2

. (4.110)

Therefore,

E

[
1

n

n∑

k=1

ĩ11k(x1kx2kY1k)

]
=

1

2
log(h2

11P1 + 1) +
n+ h2

11‖xn1‖2
2n(1 + h2

11P1)
− 1

2
(4.111)

= I11. (4.112)
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Next, we have

var

[
1√
n

n∑

k=1

ĩ11k(x1kx2kY1k)

]
(a)
=

1

n

n∑

k=1

var
[̃
i11k(x1kx2kY1k)

]
(4.113)

=
1

n
· nh

4
11P

2
1 + 2h2

11‖xn1‖2
2(1 + h2

11P1)2
(4.114)

= V1, (4.115)

where (a) follows from the mutual independence of Z1k’s.

Similarly, ĩ21k(x1kx2kY2k) for k ∈ {1, 2, ..., n} has the same statistics as

g21(Z2k) =
1

2
log(h2

22P2 + 1) +
(Z2k + h22x2k)

2

2(1 + h2
22P2)

− Z2
2k

2
, (4.116)

and its statistics are given by

E[̃i21(x1kx2kY2k)] =
1

2
log(h2

22P2 + 1) +
1 + h2

22x
2
2k

2(1 + h2
22P2)

− 1

2
, (4.117)

var[̃i21(x1kx2kY2k)] =
h4

22P
2
2 + 2h2

22x
2
2k

2(1 + h2
22P2)2

. (4.118)

Similarly, we can find the mean and the variance of the sum of these infor-

mation densities, yielding

E

[
1

n

n∑

k=1

ĩck(x1kx2kY1kY2k)

]
= Ic, (4.119)

cov

[
1√
n

n∑

k=1

ĩck(x1kx2kY1kY2k)

]
= Vc. (4.120)

Interestingly, because Z1j is independent of Z2k, we have

cov
[̃
i11j(x1jx2jY1j), ĩ21k(x1kx2kY2k)

]
= 0, (4.121)

for all j, k ∈ {1, 2, . . . , n} with j 6= k. This leads directly to the diagonal covari-

ance matrix in (4.120). The lemma is proved.
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� 4.5.4 Proof of Lemma 4.4

Similar to [85, Lem. 61] and [79, Prop. 3], we can prove that K11 and K21 are

upper bounded by a constant when n is sufficiently large.

The marginal conditional output distribution PY n1 |Xn
2

induced by feeding the

input distributions, given in (4.63), into the Gaussian IC can be shown to be

PY n1 |Xn
2

(yn1 |xn2 ) =
1

2πn/2
Γ
(n

2

)
e−nh

2
11P1/2e−‖y

n
1−h21xn2 ‖2/2

×
In/2−1(‖yn1 − h21x

n
2‖
√
nP1h11)

(‖yn1 − h21xn2‖
√
nP1h11)n/2−1

, (4.122)

where Iv(·) is the modified Bessel function of the first kind and v-th order. The

marginal distribution PY n2 |Xn
1

has a similar form to the above.

We have

D11(yn1 |xn2 ) ,
PY n1 |Xn

2
(yn1 |xn2 )

QY n1 |Xn
2

(yn1 |xn2 )

=
1

2
Γ
(n

2

)
[2e−h

2
11P1(1 + h2

11P1)]n/2e
−h

2
11P1‖y

n
1−h21x

n
2 ‖

2

2(1+h2
11P1)

×
In/2−1(‖yn1 − h21x

n
2‖
√
nP1h11)

(‖yn1 − h21xn2‖
√
nP1h11)n/2−1

. (4.123)

Note that the gamma function Γ(·) can take different forms. Using Binet’s

first formula for log Γ(z) [23, Chap. 1], we have

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log(2π) +

∫ ∞

0

(
1

2
− 1

t
+

1

et − 1

)
e−tz

t
dt.

(4.124)

Note that the fourth term converges to 0 as z →∞. Thus, we can upper-bound
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Γ
(
n
2

)
by

Γ
(n

2

)
≤
(
n

2
− 1

2

)
log

n

2
− n

2
+

1

2
log(2π) + cn (4.125)

where {cn}∞n=1 is a sequence of numbers that converges to 0.

From Prokhorov’s work [88] and [85, Lem. 61], when k is even we can upper-

bound the modified Bessel function as

z−kIk(z) ≤
√
π

8
(k2 + z2)−1/4(k +

√
k2 + z2)−ke

√
k2+z2

. (4.126)

Note that In/2−1(·) < In/2−3/2(·). When n is odd, an upper bound is obtained

by replacing In/2−1(·) by In/2−3/2(·). Thus, it is sufficient to consider the upper

bound on D(yn1 |xn2 ) when n is even.

After some manipulations, we can show that

D11(yn1 |xn2 ) ≤ exp

[
c11 + cn +

n

2
φξ,P1,n

(‖yn1 − h21x
n
2‖2

n

)]
, (4.127)

where

c11 , log
1

2
+ log

√
π

8
+

1

2
log(2π) (4.128)

φξ,P1,n(z) , log
(

2(1 + h2
11P1)e−(1+h2

11P1)
)
− h2

11P1z

h2
11P1 + 1

+
√
ξ2 + 4h2

11P1z

− ξ log

(
ξ +

√
ξ2 + 4h2

11P1z

)
− 1− ξ

2
log

(√
ξ2 + 4h2

11P1z

)

(4.129)

ξ ,
n/2− 1

n/2
. (4.130)

Note that

lim
n→∞

φξ,P1,n(z) = φP1(z), (4.131)
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where

φP1(z) , log
(

2(1 + h2
11P1)e−(1+h2

11P1)
)
− h2

11P1z

h2
11P1 + 1

+
√

1 + 4h2
11P1z − log

(
1 +

√
1 + 4h2

11P1z

)
. (4.132)

It can be shown that φP1(z) ≤ 0. Equality occurs when z = 1 + h2
11P1. There-

fore, we have K11 is upper bounded by a constant, when n is sufficiently large.

Similarly, we can shown that K21 is upper bounded by a constant when n is

sufficiently large.

It is hard to derive a closed-form expression for the output distribution PY n1

induced by the input distributions in (4.63) and the IC. However, we can charac-

terize the distribution of Bn , h11X
n
1 + h21X

n
2 (see [79, Equations (137-151)]).

We have

PBn(bn) =





0 if ‖bn‖ ≤ |h11

√
nP1 − h21

√
nP2|

0 if ‖bn‖ ≥ |h11

√
nP1 + h21

√
nP2|

φB(bn) otherwise,

(4.133)

where

φB(bn) ,
1

hn21

√
P2

πP1

h21

h11

Γ(n2 )

Γ(n−1
2 )

1

Sn(
√
nP2)

1

‖bn‖

×
(

1−
(‖bn‖2 + n(h2

11P1 − h2
21P2)

2h11

√
nP1‖bn‖

)2
)(n−3)/2

(4.134)

cos θ0 ,
‖bn‖2 + n(h2

11P1 − h2
21P2)

2h11

√
nP1‖bn‖

. (4.135)

Define the auxiliary input distribution

QBn(bn) , N(bn; 0, (h2
11P1 + h2

21P2)In×n). (4.136)
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If this distribution is used as an input for the channel Y n
1 = Bn + Zn1 , the

corresponding output distribution is QY n1 . If it can be proved that

K ′12 , sup
bn

PBn(bn)

QBn(bn)
(4.137)

is uniformly bounded when n is sufficiently large, then, for any yn1 , we have

PY n1 (yn1 ) =

∫

Rn
PBn(bn)PY n1 |Bn(yn1 |bn)dbn

≤
∫

Rn
K ′12QBn(bn)PY n1 |Bn(yn1 |bn)dbn

= K ′12QY n1 (yn1 ). (4.138)

Therefore, K12 ≤ K ′12. That is, K12 is uniformly bounded when n is sufficiently

large. Now, we prove the finiteness of K ′12. Define

D12(bn) ,
PBn(bn)

QBn(bn)
. (4.139)

Next, by simple algebraic manipulations, it can be shown that

D12(bn) ≤ exp

[
c12 + cn + ρ12n

(‖bn‖2
n

)]
(4.140)

where

c12 , log

(
P2√
πP1

h21

h11

)
+

log(2π)

2
(4.141)

ρ12n(z) , − log z

n
+ log

h2
11P1 + h2

21P2

eh2
21P2

+
z

h2
11P1 + h2

21P2

+
n− 3

n
log

(
1− (z + h2

11P1 − h2
21P2)2

4h2
11P1z

)
, (4.142)

and where {cn} is a sequence converging to 0, and

|h11

√
nP1 − h21

√
nP2| < z < |h11

√
nP1 + h21

√
nP2|. (4.143)
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Note that

lim
n→∞

ρ12n(z) = ρ12(z), (4.144)

where

ρ12(z) , log
h2

11P1 + h2
21P2

eh2
21P2

+
z

h2
11P1 + h2

21P2
+ log

(
1− (z + h2

11P1 − h2
21P2)2

4h2
11P1z

)
.

(4.145)

It can be shown that ρ12(z) ≤ 0. Equality occurs at z = h2
11P1 + h2

21P2. Thus,

we can conclude that K ′12 is upper bounded by a constant when n is sufficiently

large. Similarly, K22 can be proved to be upper bounded by a constant for n

sufficiently large.

� 4.5.5 Proof of Lemma 4.1

Given the joint distribution in (4.22), denote two of the marginal distributions

as PY n1 Xn
1 X

n
2

(yn1x
n
1x

n
2 ) and PY n2 Xn

1 X
n
2

(yn2x
n
1x

n
2 ), and denote two of the conditional

distributions as PXn
1 |Xn

2
(xn1 |xn2 ), and PXn

2 |Xn
1

(xn2 |xn1 ), where

PY n1 Xn
1 X

n
2

(yn1x
n
1x

n
2 ) ,

∑

yn2

PY n2 Y n1 Xn
1 X

n
2

(yn2 y
n
1x

n
1x

n
2 ), (4.146)

PXn
1 |Xn

2
(xn1 |xn2 ) ,

∑
yn2 y

n
1
PY n2 Y n1 Xn

1 X
n
2

(yn2 y
n
1x

n
1x

n
2 )

PXn
2

(xn2 )
, (4.147)

and the remaining distributions are defined similarly.

Define the decoding regions

D1s1 , {yn1 ∈ Yn1 |g1n(yn1 ) = s1} (4.148)

D2s2 , {yn2 ∈ Yn2 |g2n(yn2 ) = s2} (4.149)
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D′1s1 , {(yn1 yn2 ) ∈ Yn1 × Yn2 |yn1 ∈ D1s1} (4.150)

D′2s2 , {(yn1 yn2 ) ∈ Yn1 × Yn2 |yn2 ∈ D2s2}, (4.151)

where s1 ∈ {1, 2, . . . ,M1n} and s2 ∈ {1, 2, . . . ,M2n}.

The decoding functions gjn and the encoding functions fjn, for j = 1, 2, in

this proof, are defined in the section for problem formulation.

Note that

Wn
1 (yn1 |xn1xn2 )

QY n1 |Xn
2

(yn1 |xn2 )
=

PY n1 Xn
1 X

n
2

(yn1x
n
1x

n
2 )

QY n1 Xn
2

(yn1x
n
2 )PXn

1 |Xn
2

(xn1 |xn2 )
(4.152)

(a)
=

PY n1 Xn
1 X

n
2

(yn1x
n
1x

n
2 )

QY n1 Xn
2

(yn1x
n
2 )PXn

1
(xn1 )

(4.153)

(b)
= M1n

PY n1 Xn
1 X

n
2

(yn1x
n
1x

n
2 )

QY n1 Xn
2

(yn1x
n
2 )

, (4.154)

where

(a) follows from the fact that Xn
1 and Xn

2 are independent; and

(b) follows from the fact that PXn
1

(xn1 ) = 1
M1n

for all xn1 in the first codebook.

Similarly, we have

Wn
2 (yn2 |xn1xn2 )

QY n2 |Xn
1

(yn2 |xn1 )
= M2n

PY n2 Xn
1 X

n
2

(yn2x
n
1x

n
2 )

QY n2 Xn
1

(yn2x
n
1 )

. (4.155)
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Define

B1s1s2 ,

{
yn1 ∈ Yn1

∣∣∣∣
PY n1 Xn

1 X
n
2

(yn1 f1n(s1)f2n(s2))

QY n1 Xn
2

(yn1 f2n(s2))
≤ e−nγ

}
(4.156)

B′1s1s2 , {(yn1 yn2 ) ∈ Yn1 × Yn2 |yn1 ∈ B1s1s2} (4.157)

B2s1s2 ,

{
yn2 ∈ Yn2

∣∣∣∣
PY n2 Xn

1 X
n
2

(yn2 f1n(s1)f2n(s2))

QY n2 Xn
1

(yn2 f1n(s1))
≤ e−nγ

}
(4.158)

B′2s1s2 , {(yn1 yn2 ) ∈ Yn1 × Yn2 |yn2 ∈ B2s1s2}, (4.159)

where s1 ∈ {1, 2, . . . ,M1n} and s2 ∈ {1, 2, . . . ,M2n}.

Define

G1 ,

{
(xn1x

n
2y

n
1 y

n
2 ) ∈ X n1 ×X n2 × Yn1 × Yn2

∣∣∣∣
PY n1 Xn

1 X
n
2

(yn1x
n
1x

n
2 )

QY n1 Xn
2

(yn1x
n
2 )

≤ e−nγ
}

(4.160)

G2 ,

{
(xn1x

n
2y

n
2 y

n
2 ) ∈ X n1 ×X n2 × Yn1 × Yn2

∣∣∣∣
PY n2 Xn

1 X
n
2

(yn2x
n
1x

n
2 )

QY n2 Xn
1

(yn2x
n
1 )

≤ e−nγ
}
,

(4.161)

where s1 ∈ {1, 2, . . . ,M1n} and s2 ∈ {1, 2, . . . ,M2n}.

In order to prove this lemma, it suffices to prove

PXn
1 X

n
2 Y

n
1 Y

n
2

(G1 ∪G2) ≤ εn + 2e−nγ . (4.162)

We are going to prove the validity of this inequality. We have

PXn
1 X

n
2 Y

n
1 Y

n
2

(G1 ∪G2) (4.163)

=

M1n∑

s1=1

M2n∑

s2=1

PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), B′1s1s2 ∪B′2s1s2) (4.164)
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=

M1n∑

s1=1

M2n∑

s2=1

[PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), (B′1s1s2 ∪B′2s1s2) ∩ (D1s1 ×D2s2)c)

+ PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), (B′1s1s2 ∪B′2s1s2) ∩ (D1s1 ×D2s2))] (4.165)

≤
M1n∑

s1=1

M2n∑

s2=1

[PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), (D1s1 ×D2s2)c)

+ PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), (B′1s1s2 ∪B′2s1s2) ∩ (D1s1 ×D2s2))] (4.166)

≤ εn +

M1n∑

s1=1

M2n∑

s2=1

[PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), B′1s1s2 ∩ (D1s1 ×D2s2))

+ PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), B′2s1s2 ∩ (D1s1 ×D2s2))]. (4.167)

Next, we upper-bound the second and third terms. We have

M1n∑

s1=1

M2n∑

s2=1

PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), B′1s1s2 ∩ (D1s1 ×D2s2)) (4.168)

≤
M1n∑

s1=1

M2n∑

s2=1

PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), B′1s1s2 ∩D′1s1) (4.169)

=

M1n∑

s1=1

M2n∑

s2=1

∑

(yn1 y
n
2 )∈B′1s1s2∩D

′
1s1

PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2)yn1 y
n
2 ) (4.170)

=

M1n∑

s1=1

M2n∑

s2=1

∑

yn1 ∈B1s1s2∩D1s1

PXn
1 X

n
2 Y

n
1

(f1n(s1)f2n(s2)yn1 ) (4.171)

(a)

≤
M1n∑

s1=1

M2n∑

s2=1

∑

yn1 ∈B1s1s2∩D1s1

QXn
2 Y

n
1

(f2n(s2)yn1 )e−nγ (4.172)

≤
M1n∑

s1=1

M2n∑

s2=1

∑

yn1 ∈D1s1

QXn
2 Y

n
1

(f2n(s2)yn1 )e−nγ (4.173)

=

M2n∑

s2=1

QXn
2

(f2n(s2))e−nγ (4.174)

≤ e−nγ , (4.175)

where (a) follows from the definition of B1s1s2 .
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Similarly to the above, we can show that

M1n∑

s1=1

M2n∑

s2=1

PXn
1 X

n
2 Y

n
1 Y

n
2

(f1n(s1)f2n(s2), B′2s1s2 ∩ (D1s1 ×D2s2)) ≤ e−nγ . (4.176)

Thus, we have proved the lemma.

� 4.5.6 Proof of Lemma 4.3

First, we consider the case without cost constraints. Define the sets

Tj1 ,
{

(xn1x
n
2y

n
j ) ∈ X n1 ×X n2 × Ynj |̃inj1 > logMjn + nγ

}
(4.177)

Tj2 ,
{

(xn1x
n
2y

n
j ) ∈ X n1 ×X n2 × Ynj |̃inj2 > logM1nM2n + nγ

}
(4.178)

Tj = Tj1 ∩ Tj2, (4.179)

where the modified information densities ĩnj1 and ĩnj2 are defined in (4.23) and

(4.24).

a) Codebook generation

Fix a joint distribution PXn
1

(xn1 )PXn
2

(xn2 ). Generate Mjn codewords fjn(sj), for

sj ∈ {1, 2, ...,Mjn}, and j = 1, 2. We denote the random codewords fjn(sj) as

Xn
j (sj) in the proof of this lemma.

b) Encoding rules at transmitters:

To transmit message sj , transmitter j sends the codewords Xn
j (sj).

c) Decoding rules at receivers
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Upon receiving an output yn1 , receiver 1 finds the unique message ŝ1 such that

(xn1 (ŝ1)xn2 (ŝ2)yn1 ) ∈ Tn1 (4.180)

for some ŝ2. An error is declared otherwise. This decoding rule is also known

as simultaneous non-unique decoding rule [22, Section 6.2]. The decoding rule at

receiver 2 is defined similarly to the above.

d) Calculation of probability of error

For ease of presentation, we define the event, for j = 1, 2,

Ejs1s2 , {((Xn
1 (s1)Xn

2 (s2)Y n
j ) ∈ Tnj }. (4.181)

Decoding errors at receiver 1 is bounded as

1

M1nM2n

M1n∑

s1=1

M2n∑

s2=1

[
Pr(Ec1s1s2) + Pr

( ⋃

s′1 6=s1, any s2′

E1s′1s
′
2

)]
(4.182)

(a)
= Pr(Ec111) + Pr


 ⋃

s′1 6=1, any s2′

E1s′1s
′
2


 (4.183)

(b)

≤ Pr(Ec111) +
∑

s′1 6=1

Pr(E1s′11) +
∑

s′1 6=1,s′2 6=1

Pr(E1s′1s
′
2
), (4.184)

where

(a) follows from the symmetry of the codebooks, and

(b) follows from the union rule.

Next, we bound the second term in the equation right above.
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∑

s′1 6=1

Pr(E1s′11) = (M1n − 1) Pr({(Xn
1 (s′1)Xn

2 (1)Y n
1 ) ∈ T1}) (4.185)

(a)
= (M1n − 1)

∑

(xn1 x
n
2 y
n
1 )∈T1

PXn
1

(xn1 )PXn
2 Y

n
1

(xn2y
n
1 ) (4.186)

≤ (M1n − 1)
∑

(xn1 x
n
2 y
n
1 )∈T11

PXn
1

(xn1 )PXn
2 Y

n
1

(xn2y
n
1 ) (4.187)

≤ (M1n − 1)
∑

(xn1 x
n
2 y
n
1 )∈T11

K11PXn
1

(xn1 )QXn
2 Y

n
1

(xn2y
n
1 ) (4.188)

(b)

≤ (M1n − 1)

×
∑

(xn1 x
n
2 y
n
1 )∈T11

K11PXn
1

(xn1 )PXn
2

(xn2 )W1(yn1 |xn2xn1 )e−nγ
1

M1n

(4.189)

≤ K11e
−nγ (4.190)

where

(a) follows from the fact that Xn
1 (s′1) and (Xn

2 (1), Y n
1 ) are independent, when

message pair (1, 1) are transmitted by transmitters, and

(b) follows from the definition of the set T11.

Similarly, we can show that

∑

s′1 6=1

Pr(E1s′1s
′
2
) ≤ K12e

−nγ . (4.191)

Similarly, we can upper-bound the decoding error events at receiver 2 by

1

M1nM2n

M1n∑

s1=1

M2n∑

s2=1

[
Pr(Ec2s1s2) + Pr

( ⋃

s′2 6=s2, any s1′

E2s′1s
′
2

)]
(4.192)

≤ Pr(Ec211) + (K21 +K22)e−nγ . (4.193)
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Therefore, we have

εn ≤ Pr(Ec111 ∪ Ec211) + (K11 +K12)e−nγ + (K21 +K22)e−nγ (4.194)

= Pr(E11 ∪ E12 ∪ E21 ∪ E22) +Ke−nγ . (4.195)

In the case where the cost constraint is imposed, we have

εn ≤ Pr(E11 ∪ E12 ∪ E21 ∪ E22) +Ke−nγ + PXn
1
PXn

2
({Xn

1 6∈ F1n ∪Xn
2 6∈ F2n}).

(4.196)

Thus, we have proved the lemma.
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Chapter 5

Second-order Rate-Distortion
Function for Source Coding with

Side Information

T
HE class of source coding problems with side information is important

as it can model many practical problems. Consider a scenario when

a source wants to transmit a high-resolution image to a receiver who happens

to have a low-resolution version of the same image. In another example, the

source may be a piece of music contaminated by a background noise source and

the intended receiver has already had samples of the background noise. This

chapter focuses on the approximation of the finite-blocklength rate-distortion

function for the source coding problem with side information available at both

the encoder and the decoder.

� 5.1 Introduction

In lossless source coding, the Shannon entropy of a source is, on average, the

minimum number of bits required to represent a given source [96]. In lossy source
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coding, the rate-distortion function (which, in this chapter, is more specifically

called the rate-distortion function without side information) plays the role of the

Shannon entropy [98]. The rate-distortion function without side information is

the minimum number of bits per symbol required to reconstruct a given source

with the probability of excess distortion being asymptotically small, or with an

average distortion that does not exceed a specified upper bound.

The rate-distortion problem without side information can be extended to the

case when the side information is available at both the encoder and the decoder

[7, 36], only causally available at the decoder [119], or non-causally available at

the decoder (i.e., Wyner-Ziv problem) [121]. The rate-distortion function for

stationary-ergodic sources with side information was found in [71]. The rate-

distortion function for mixed types of side information (i.e., a mixture of some

side information known at both the encoder and the decoder and some known

only at the decoder) was evaluated in [27]. For memoryless sources, delayed

side information at the decoder does not improve the rate-distortion function.

However, this is not the case for sources with memory [99]. The authors of [73]

considered source coding with side information, and with distortion measures as

functions of side information.

All the results shown above hold provided the blocklength, i.e., the number

of source symbols, is allowed to grow without bound. However, some applica-

tions are required to operate with short blocklengths due to delay or complexity

constraints at the destination. Thus, it is of high interest to characterize the

finite blocklength rate-distortion function, i.e., the minimum number of bits per
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symbol that is required to reconstruct a source at a given fixed blocklength. This

is, in general, a difficult task, and thus, we focus on approximating this quantity.

� 5.1.1 Related Works

Strassen [101] obtained the second-order coding rate for almost lossless source

coding without side information. Recently, Hayashi [42] considered second-order

coding rate for fixed-length source coding and showed that the outputs of fixed-

length source codes are not uniformly distributed (debunking Han’s folklore the-

orem [40] in the second-order sense). The second-order analysis is closely related

to the method of information spectrum [42]. In particular, the second-order

analysis of the source coding can be derived by the combination of the cen-

tral limit theorem and the method of information spectrum introduced by Han

[39]. Kostina and Verdú [56] and Ingber and Kochman [48] characterized the

dispersion of lossy source coding problem without side information. When the

source is stationary and memoryless, they showed that the finite blocklength

rate-distortion function without side information RnoSI(n,D, ε) can be approxi-

mated as

RnoSI(n,D, ε) = RnoSI(D) +

√
VnoSI(D)

n
Q−1(ε) +O

(
log n

n

)
, (5.1)

where RnoSI(D) is the rate-distortion function without side information, VnoSI(D)

is the dispersion that characterizes the convergence rate to the Shannon limit

RnoSI(D), n is the blocklength, D is the excess distortion threshold, and ε is

the upper bound on the probability that the distortion exceeds D. The rate-

distortion problem may also be studied from the moderate deviations perspective
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[103] and the fundamental limit there is also dependent on VnoSI(D). Achievable

second-order coding rates for the Wyner-Ahlswede-Korner problem of almost-

lossless source coding with rate-limited side-information, the Wyner-Ziv problem

of lossy source coding with side-information at the decoder and the Gelfand-

Pinsker problem of channel coding with non-causal state information available

at the decoder were established in [118]. The paper [53] studied second-order

coding rates for the fixed-to-variable lossless compression. For other related

works in the study of fixed error asymptotics, the reader is referred to [104].

� 5.1.2 Main Contributions

This chapter focuses on the analysis and approximation of the finite blocklength

rate-distortion function for source coding with side information available at both

the encoder and the decoder. The contributions of this chapter are stated below.

• A non-asymptotic achievability bound is established for the problem of

lossy source coding with side information available at both the encoder

and the decoder.

• We establish the second-order coding rate for the discrete memoryless

source with a side information variable taking values in a finite alphabet.

As a corollary, we obtain the second-order coding rate for the case when

the source alphabet, the reconstruction alphabet and the side information

alphabet are finite and the distortion measure is the Hamming distance.

• We establish the second-order coding rate for Gaussian source with Gaus-
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M
Encoder Decoder

Xn

Sn

Y n

Figure 5.1. Source coding with side information

sian side information and the squared-error distortion measure.

• When the source has memory, we establish the second-order coding rate

for the case where the sequence of source and side information variables

jointly forms a time-homogeneous Markov chain.

� 5.2 Problem formulation and definitions

Let X be the source alphabet, let Y be the reproduction alphabet, and let S

be the side information alphabet. The random variables X,Y and S follow the

distribution

PY XS(yxs) = PY |XS(y|xs)PX|S(x|s)PS(s). (5.2)

We use a single-letter fidelity criterion to measure the distortion between the

source sequence xn and the reproducing sequence yn, i.e.,

d(xn, yn) =
1

n

n∑

i=1

d(xi, yi), (5.3)

where d : X n × Yn → R+, for n ∈ N, is a bounded real-valued non-negative

distortion function.

Definition 5.1. An (Mn, n,D, εn)-code for the source coding system with side

information (see Figure 5.1) consists of an encoding function

φn : X n × Sn →Mn , {1, 2, . . . ,Mn}, (5.4)
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and a decoding function

ψn :Mn × Sn → Yn, (5.5)

such that the probability of excess distortion satisfies

Pr{d[Xn, ψn(φn(Xn, Sn), Sn)] > D} ≤ εn. (5.6)

An (Mn, n,D, εn)-code, which is defined as shown above, is called a D-

semifaithful code in the rate-distortion literature [127, 128].

Definition 5.2. A rate R is defined to be (ε,D)-achievable if there exists a

sequence of (Mn, n,D, εn)-codes satisfying

lim sup
n→∞

1

n
logMn ≤ R, (5.7)

lim sup
n→∞

εn ≤ ε. (5.8)

In contrast to the above definition, the following definition is non-asymptotic.

Definition 5.3. A rate R is defined to be (ε,D, n)-achievable if there exists a

(bexp(nR)c, n,D, εn)-code. The (ε,D, n) finite blocklength rate-distortion func-

tion R(ε,D, n) is defined as the infimum of the set of all (ε,D, n)-achievable

rates.

The following definition defines the quantity of interest in this chapter.

Definition 5.4. A number L ∈ R is defined to be second-order (ε,D, κ)-achievable
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if there exists a sequence of (Mn, n,D, εn)-codes satisfying

lim sup
n→∞

1√
n

(logMn − nκ) ≤ L, (5.9)

lim sup
n→∞

εn ≤ ε. (5.10)

The (ε,D, κ) second-order rate-distortion function L∗(ε,D, κ) is defined as the

infimum of the set of all second-order (ε,D, κ)-achievable rates.

The aim of this chapter is to characterize the (ε,D, κ) second-order rate-

distortion function L∗(ε,D, κ) for source coding with side information available

at both the encoder and the decoder.

Before presenting the main result, we state some definitions that will be used

throughout this chapter.

Definition 5.5. Fix the distribution of XS as PXS . Define the rate-distortion

function with side information as

R(X;D|S) = min
PY |XS

I(X;Y |S), (5.11)

where the minimum is taken over the set of all marginal conditional distributions

PY |XS satisfying

PY |XS(y|xs) ≥ 0 for all (y, x, s), (5.12)

∑

y∈Y
PY |XS(y|xs) = 1, (5.13)

∑

s∈S,x∈X ,y∈Y
PY |XS(y|xs)PX|S(x|s)PS(s)d(x, y) ≤ D. (5.14)

To make the dependence on the distribution PXS explicit, we sometimes also

denote R(X;D|S) as R(PX|S , D|PS). Assume the distribution that achieves the
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minimum in (5.11) is unique. When there is no side information, i.e., S = ∅, we

recover the rate-distortion function without side information denoted as R(X;D)

or R(PX , D).

When the excess distortion criterion is employed, we have the following first-

order result for the source coding problem with side information [7] (i.e., the

conditional rate-distortion problem [36]),

lim
ε→0

lim inf
n→∞

R(ε,D, n) = R(X;D|S). (5.15)

In order to characterize the second-order rate-distortion function, we state the

following definitions. The notion of information densities will play an important

role in characterizing the second-order rate-distortion function. In fact, in order

to deal with the constraints inherent in the rate-distortion problem, the concept

of D-tilted information densities, which was introduced in [57], is useful.

Definition 5.6. Define the conditional information densities as follows:

iX;Y |S(x; y|s) , log
PXY |S(xy|s)

PY |S(y|s)PX|S(x|s) , and (5.16)

iX|S(x|s) , iX;X|S(x;x|s). (5.17)

Note that iX|S is also known as the conditional self-information.

Definition 5.7. Define the conditional D-tilted information density as follows:

jX|S(x,D|s) , log
1

E[exp{λ∗D − λ∗d(x, Y ∗)}|S = s]
(5.18)

where PY ∗|XS is the distribution that achieves the minimum in (5.5), the ex-

pectation is taken with respect to the induced output distribution PY ∗|S(y|s) =
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∑
x PY ∗|XS(y|x, s)PX|S(x|s), and λ∗ is defined as

λ∗ , −
dR(PX|S , D|PS)

dD
. (5.19)

Remark 5.1. In this definition, the conditional D-tilted information density has

a built-in feature which takes the distortion constraint into consideration.

The conditional D-tilted information density jX|S(x,D|s) has some impor-

tant properties which can be found in [57]. We review them here.

Lemma 5.1. The conditional D-tilted information density jX|S(x,D|s) has the

following properties.

1. jX|S(x,D|s) = iX;Y ∗|S(x; y|s) + λ∗d(x, y)− λ∗D.

2. R(X;D|S) = E[jX|S(X,D|S)].

3. For any PY |S where X → S → Y , we have E[exp{λ∗d − λ∗d(X,Y ) +

jX|S(X,D|S)}] ≤ 1.

In the achievability proof of the conditional rate-distortion problem, the fol-

lowing concept is important.

Definition 5.8. Given a source sequence xn ∈ X n, define the D-ball BD(xn)

around this sequence as

BD(xn) , {yn ∈ Yn|d(xn, yn) ≤ D}. (5.20)

The following is the cumulative distribution function of a standard Gaussian
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distribution

Φ(t) ,
∫ t

−∞

1√
2π

exp(−u2/2) du. (5.21)

The complementary cumulative distribution function is Q(t) , 1 − Φ(t). Since

these functions are monotonic, they admit inverses, which we will denote as Φ−1

and Q−1.

� 5.3 Non-Asymptotic Bounds

In this section, we first present a non-asymptotic achievability bound.

Lemma 5.2 (Achievability). For every PȲ n|Sn, there exists an (Mn, D, n, εn)-

code such that

εn ≤ E{E[(1− PȲ n|Sn(BD(Xn)|Sn)M ]} (5.22)

where the inner expectation is w.r.t. PXn|Sn=sn, the outer expectation is w.r.t.

PSn, and we have

PȲ nXnSn = PȲ n|SnPXn|SnPSn . (5.23)

Proof. Given each side information sequence Sn = sn, we construct a recon-

struction codebook C(sn), which consists of M random reconstruction sequences

{Y n(m, sn)}Mm=1. Each of the sequence Y n(m, sn), for m ∈ M , {1, 2, . . . ,M},

is generated independently according to an arbitrary distribution PȲ n|Sn=sn ,

which satisfies equation (5.23). Choose a sub-code (φn, ψn), the encoder and
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decoder of which are defined as

φn(xn, sn) = arg min
m∈M

d(xn, Y n(m, sn)), (5.24)

ψn(m, sn) = Y n(m, sn). (5.25)

The average probability of error of this sub-code is given by

ε̄(sn) = E[1{min
m∈M

d(Xn, Y n(m, sn)) > D}|Sn = sn] (5.26)

= E

[
M∏

m=1

1{d(Xn, Y n(m, sn)) > D}|Sn = sn

]
(5.27)

= E

[
E

[
M∏

m=1

1{d(Xn, Y n(m, sn)) > D}|Xn

] ∣∣∣∣Sn = sn

]
(5.28)

= E

[
M∏

m=1

E[1{d(Xn, Ȳ n) > D}|Xn]|Sn = sn

]
(5.29)

= E[(1− PȲ n|Sn(BD(Xn))|Sn = sn)M ] (5.30)

where equation (5.29) follows from the independence of reconstruction sequences.

Taking the average over all sub-codes, we have the average probability of

error is

ε̄ =
∑

sn∈Sn
PSn(sn)ε̄(sn) (5.31)

= E{E[(1− PȲ n|Sn(BD(Xn))|Sn)M ]}. (5.32)

By the random coding argument, there exists an (Mn, D, n, εn)-code such that

εn ≤ E{E[(1− PȲ n|Sn(BD(Xn))|Sn)M ]}. (5.33)

This concludes the proof.
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Next, we relax the bound in Lemma 5.2 to obtain the following lemma, which

turns out to be more amenable to asymptotic evaluations.

Lemma 5.3. For any γn, βn, and δn, there exists an (Mn, D, n, εn)-code such

that

εn ≤ Pr[jXn|Sn(Xn, D|Sn) > log γn − log βn − λ∗nδn]

+ E[E[|1− βn Pr[D − δn ≤ d(Xn, Y n∗) ≤ D|Xn]|+|Sn]]

+ e
−M
γn E{E[min(1, γn exp(−jXn|Sn(Xn, D|Sn)))|Sn]}, (5.34)

where PY ∗|XS achieves the minimum in (5.5), and PY n∗|XnSn is the n-th order

product distribution of PY ∗|XS.

This lemma is proved in section 5.8.1.

The following lemma, which plays an important part in the converse, was

derived in [57].

Lemma 5.4. Any (Mn, n,D, εn)-code for the lossy source coding system with

side information satisfies

εn ≥ sup
γ>0
{Pr[jXn|Sn(Xn, D|Sn) ≥ logMn + γ]− exp(−γ)}. (5.35)

Remark 5.2. It is non-obvious how this non-asymptotic bound should be applied

to get a converse that is optimal in the second-order sense. If we follow the

approach and the intuition in the dual problem, which is the problem of finding

the dispersion for the point-to-point channel with state information available

at both the encoder and the decoder [111], we should first partition the side
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information into different type classes and derive the converse for each type

class separately. However, this approach does not work for the source coding

with side information. This is because source coding with side information is an

optimization problem with constraint whether the point-to-point channel with

state is an optimization problem without constraint. The presence of the excess

distortion constraint makes the analysis difficult.

� 5.4 Discrete memoryless source with i.i.d. side information

In this section, we consider the discrete memoryless source. Assume that the

source alphabet X , the reproduction alphabet Y, and the side information al-

phabet S are finite. The source coding system is memoryless and stationary in

the sense that

PXnSn(xnsn) =
n∏

i=1

PXS(xisi). (5.36)

Before presenting the main results of this section, we define an important

quantity.

Definition 5.9. Define the variance V of the conditional D-tilted information

density jX|S(X,D|S) with respect to PXS as

V , var(jX|S(X,D|S)) (5.37)

=
∑

x∈X ,s∈S
PXS(xs)[jX|S(x,D|s)]2 − [R(X;D|S)]2. (5.38)

Next, we present the first main result of this chapter.
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Theorem 5.1. The second-order rate-distortion function L∗(ε,D,R(X;D|S))

for the discrete memoryless source coding with side information is given by

L∗(ε,D,R(X;D|S)) =
√
V Q−1(ε). (5.39)

Let us mention that the dispersion [56] is an operational quantity that is

closely related to the second-order coding rate. It characterizes the speed at

which the rate of optimal codes converge to the first-order fundamental limit.

For conditional rate-distortion, we may define the dispersion Vdps as

Vdps , lim
ε→0

lim sup
n→∞

(√
n(R(ε,D, n)−R(X;D|S))

Q−1(ε)

)2

. (5.40)

From Theorem 5.1, we observe that the operational quantity Vdps is equal to the

information quantity V .

Let Vs , var(jX|S(X,D|S) |S = s) be the dispersion1 of the source Xs ∼

PX|S(·|s). Now notice that by the law of total variance, V can be decomposed

as

V = E
[
var(jX|S(X,D|S) |S)

]
+ var

[
E(jX|S(X,D|S) |S)

]
(5.41)

= E[VS ] + var[R(PX|S(·|S), D)]. (5.42)

The first term represents the randomness of the source weighted by the probabil-

ity mass function of the side information, while the second term represents the

randomness of the side information in terms of the constituent rate-distortion

functions.

1Note that term dispersion [56] here refers to the unconditional rate-distortion problem.
This should not cause any confusion in the sequel.
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Theorem 5.1 is proved in subsection 5.8.2. One of the key ideas in the achiev-

ability proof of Theorem 5.1 is to apply the random coding bound (Lemma 5.2)

in the asymptotic evaluation. The key idea in the converse proof of Theorem

5.1 is to make use of the non-asymptotic converse bound (Lemma 5.4) in the

asymptotic evaluation.

We illustrate this theorem through an example.

Example 5.1. Consider the case when the source alphabet X , the reconstruction

alphabet Y and the side information alphabet S are binary {0, 1}. The distortion

function is the Hamming distance function d(x, y) = 1{x 6= y}. Assume PS(1) =

a, PS(0) = 1 − a, PX(1) = b and PX(0) = 1 − b, for 0 < a, b < 1. Assume

PX|S(1|0) = PX|S(1|1) = c, and PX|S(0|0) = PX|S(0|1) = 1− c, for 0 < c < 1
2 . It

can shown that

jX|S(x,D|s) = iX|S(x|s)−H(D) (5.43)

if 0 < D < c, and 0 if D ≥ c. Note that the conditional D-tilted information

density in this case is independent of the marginal distributions PX and PS .

Next, we have

R(X;D|S) = H(X|S)−H(D) (5.44)

= H(c)−H(D) (5.45)

if 0 < D < c, and 0 if D ≥ c. Here H(D) is the entropy of a Bernoulli(D) source.

In this example, we can show that

V = c(1− c) log2 1− c
c

, (5.46)
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which is simply the dispersion of a Bernoulli(c) source.

In general, we have the following corollary.

Corollary 5.1. The second-order rate-distortion function L∗(ε,D,R(X;D|S))

for the binary source with binary side information and Hamming distortion func-

tion is given by

L∗(ε,D,R(X;D|S)) =
√
var[iX|S(X|S)]Q−1(ε). (5.47)

� 5.4.1 Remarks concerning Theorem 5.1

1. The relationship between the rate-distortion function R(PX|S(·|s), D), in

which the side information is fixed, and the conditional rate-distortion

function R(PX|S , D|PS) is given by the following lemma [36].

Lemma 5.5. We have

R(PX|S , D|PS) = inf
{ds}s∈S∈D

∑

s∈S
PS(s)R(PX|S(·|s), ds), (5.48)

where the set D is defined as

D =

{
{ds}s∈S

∣∣∣∣
∑

s∈S
PS(s)ds = D, ds ≥ 0

}
. (5.49)

Intuitively, any achievable code, that is optimal in the first-order sense, for

the conditional rate-distortion problem can be thought of as a combination

of sub-codes for sub-channels with the side information S = s and the

excess distortion ds. The total distortion D is the PS-convex combination

of the constituent excess distortions ds. However, this intuition is no longer
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true in the second-order sense. The dispersion for conditional source coding

is not simply a convex combination of dispersions for the sub-systems of

source coding with the side information given. Secondly, for each sub-

system of source coding with side information given, the optimal threshold

ds changes with s. These facts make the second-order analysis difficult.

Note that Ingber-Kochman [48] used the method of types (similarly to

the technique used in Marton’s covering lemma [75]) to perform a second-

order (dispersion) analysis for the rate-distortion problem without side

information. We attempted to adapt their technique for our setting but

it was not straightforward to generalize their method to the conditional

rate-distortion problem at hand. This is because Lemma 5.6 intuitively

suggests to treat X and S jointly to obtain the second-order rate-distortion

function L∗(ε,D,R(PX|S , D|PS)). However, if the method of types is used,

the relationship in Lemma 5.5 restricts us to treat X conditioning on S = s

first, in the achievability proof, in order to obtain the first-order term.

However, this method leads to a different (and, in fact, inferior) second-

order term. The key idea in the random coding bound in Lemma 5.3 is

that we need to treat X and S jointly, not separately.

2. One of the challenges in this problem is to find an achievable scheme that

is optimal in the second-order sense. An achievable scheme that allows us

to do so is presented in Lemma 5.2. The next challenge is how we should

use this non-asymptotic bound to obtain the achievability bound that is

second-order optimal. Similarly to the reason given in the previous point,

we cannot directly use the technique given in the well-known paper by
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Kostina-Verdu [56] because in our paper side information is involved. The

technique given in [56] makes use of hypothesis testing, and it is difficult to

generalize this approach to the case with side information. Neither could

we directly use the technique given by Ingber-Kochman [47]. Our solution

is to first relax Lemma 5.2 to obtain Lemma 5.3.

3. The proof of Theorem 5.1 can be used to characterize L∗(ε,D, κ) when

κ 6= R(X;D|S). We have

L∗(ε,D, κ) =





+∞ κ < R(X;D|S)√
V Q−1(ε) κ = R(X;D|S)

−∞ κ > R(X;D|S)

(5.50)

The first statement above (for the case κ < R(X;D|S)) implies the strong

converse for conditional rate-distortion. The strong converse for uncondi-

tional rate-distortion for discrete memoryless sources is already well known

(e.g., [19, Chapter 7]).

4. From Theorem 5.1, we deduce that there exists a sequence of (Mn, n,D, εn)-

codes for the source coding system with side information such that its rate

is

1

n
logMn = R(X;D|S) +

√
V

n
Q−1(ε) + o

(
1√
n

)
(5.51)

and its asymptotic probability of excess distortion satisfies

εn ≤ ε+ o(1). (5.52)

It is observed that V characterizes the rate of convergence to the first-order

rate-distortion function R(X;D|S).

5. In order to compute V , it is noted that the gradient of R(X;D|S) plays

an important role.
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Definition 5.10. For each a ∈ X , b ∈ S, define

R′(PX|S(a|b), D|PS(b)) ,
dR(PX̄|S̄ , D|PS̄)

dPX̄S̄(ab)

∣∣∣
PX̄S̄=PXS

. (5.53)

The function R(PX̄|S̄ , D|PS̄) can be thought of as that of |X ||S| variables.

By stacking up |X ||S| partial derivatives as defined in Definition 5.10, we

form the gradient ∇R(PXS) of R(PX̄|S̄ , D|PS̄) evaluated at PXS . The joint

distribution PXS can be regarded as a length-|X ||S| vector that sums to

one.

Even though the conditional D-tilted information density jX|S(X,D|S) is

useful in characterizing the second-order rate-distortion function, it is not

easy to compute. The task of computing V is made easier by the following

lemma.

Lemma 5.6. For any a ∈ X and b ∈ S, we have

jX|S(a,D|b) = R′(PX|S(a|b), D|PS(b)). (5.54)

Proof. We have

R′(PX|S(a|b), D|PS(b)) =
dR(PX̄|S̄ , D|PS̄)

dPX̄S̄(ab)

∣∣∣
PX̄S̄=PXS

(5.55)

=
dE[jX̄|S̄(X̄,D|S̄)]

dPX̄S̄(ab)

∣∣∣
PX̄S̄=PXS

(5.56)

=
d
[∑

x,s PX̄S̄(xs)jX̄|S̄(x,D|s)
]

dPX̄S̄(ab)

∣∣∣
PX̄S̄=PXS

(5.57)

= jX̄|S̄(a,D|b) +
dE[jX̄|S̄(X,D|S)]

dPX̄S̄(ab)

∣∣∣
PX̄S̄=PXS

.

(5.58)

Using part 1) of Lemma 5.1, it is evident that

dE[jX̄|S̄(X,D|S)]

dPX̄S̄(ab)

∣∣∣
PX̄S̄=PXS

= 0. (5.59)
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This completes the proof of the lemma.

Remark 5.3. The result in Lemma 5.6 is Surprising. The differentiation is

w.r.t. dPX̄S̄(ab), not dPX̄|S̄(a|b). According to [55, Theorem 2.2], the D-

tilted information density for the source coding without side information

is given by

jX(a,D) = R′(PX(a), D)− log e =
dR(PX̄ , D)

dPX̄(a)

∣∣∣
PX̄=PX

− log e. (5.60)

This is because

dR(PX̄ , D)

dPX̄(a)

∣∣∣
PX̄=PX

=
dE[jX̄(X̄,D)]

dPX̄(a)

∣∣∣
PX̄=PX

(5.61)

= jX̄(a,D) +
dE[jX̄(X,D)]

dPX̄(a)

∣∣∣
PX̄=PX

, (5.62)

and in this case we have

dE[jX̄(X,D)]

dPX̄(a)

∣∣∣
PX̄=PX

= − log e. (5.63)

Observe that the term − log e is present in the no-side information set-

ting (5.60) but not in the side information setting (5.54). This is due to

(5.63).

As a consequence of Lemma 5.6, the variance of the conditional D-tilted

information V , defined in (5.37)–(5.38), can be alternatively expressed as

the variance of the gradient ∇R(PXS) with respect to PXS , i.e.,

V = var(∇R(PXS)) (5.64)

=
∑

a∈X

∑

b∈S
PXS(ab)[R′(PX|S(a|b), D|PS(b))]2

−
[∑

a∈X

∑

b∈S
PXS(ab)R′(PX|S(a|b), D|PS(b))

]2

. (5.65)
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� 5.5 Gaussian memoryless source with i.i.d. side information

In this section, we consider the i.i.d. Gaussian source. More specifically,

Xi ∼ N (0, σ2
X). (5.66)

The side information is given by

Si = Xi + Zi (5.67)

where i = 1, 2, ..., n,

Zi ∼ N (0, σ2
Z) (5.68)

and Zi is independent of Xi. We consider the squared-error distortion function,

i.e.,

d(xn, yn) ,
n∑

i=1

(xi − yi)2. (5.69)

Define the conditional variance as

σ2
X|S ,

σ2
Xσ

2
Z

σ2
X + σ2

Z

(5.70)

The case where D ≥ σ2
X|S is trivial as R(X;D|S) = 0. It is assumed that

0 < D < σ2
X|S . In this case, it is well-known that [36] the conditional rate-

distortion function is given by

R(X;D|S) =
1

2
log

σ2
X|S

D
. (5.71)

The second-order rate-distortion function in this case is given by the following

theorem.
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Theorem 5.2. The second-order rate-distortion function L∗(ε,D,R(X;D|S))

for Gaussian source coding with side information is given by

L∗(ε,D,R(X;D|S)) =

√
1

2
Q−1(ε) log e. (5.72)

This theorem is proved in subsection 5.8.3.

� 5.5.1 Remarks concerning Theorem 5.2

1. From Theorem 5.2, we observe that the dispersion for Gaussian source

coding with side information is 1/2 nats squared per source symbol. In

other words, the second-order rate-distortion function for Gaussian source

coding with side information is the same as that for Gaussian source coding

without side information [56] even though the rate-distortion functions

for both coding problems are different in general. The presence of side

information at both the encoder and the decoder does not affect the second-

order coding rate. Intuitively, given the side information sn, the encoder

and the decoder can adapt to it and design a second-order optimal sub-code

for each source-encoding sub-test channel (indexed by sn). The second-

order coding rate for each sub-test channel is basically the same as that

for the source coding system without side information. The second-order

rate-distortion function for Gaussian source coding with side information

is the average of all second-order coding rates for sub-test channels, when

the average is taken with respect to the side information random variable.

Thus, this explains the observation. This observation might not hold if the
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side information sequence is not a Gaussian random process.

2. The proof of Theorem 5.1 is also applicable to that of Theorem 5.2. How-

ever, due to the special setting in this section, we present an alternative

achievability scheme in the proof. This achievability scheme helps us visu-

alize the structure of a code that is optimal in the second-order sense.

3. It would be interesting to investigate if the statement mentioned in the

previous item still holds when the side information is available at either only

the decoder or only the encoder. Of course, the rate-distortion functions

for the cases where the side information is known at both terminals and

at the decoder only are identical in the Gaussian case [22, Chapter 11].

Thus one wonders whether the dispersion remains at 1/2 nats2 per source

symbol for the Gaussian Wyner-Ziv problem [121].

4. Scarlett [94] showed that the dispersion for dirty paper coding (Gaussian

Gel’fand-Pinsker) is the same as that when there is no interference. Fur-

thermore, he showed that the same holds true even if the interference is

not Gaussian but satisfies some mild concentration conditions. It would be

interesting to investigate if the same is true in the lossy compression with

(encoder and decoder) side information scenario.

� 5.6 Markov source with Markov side information

So far, we have considered only memoryless sources. In this section, we consider

the system in which the source and side information jointly forms an irreducible,
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ergodic and time-homogeneous Markov chain, i.e.,

X1S1 → X2S2 → . . .→ XnSn. (5.73)

We further assume that the source alphabet X and the side information alphabet

S are both finite. Denote the stationary distribution of this Markov chain as πXS .

Assume that this Markov chain starts from the stationary distribution, i.e.,

PX1S1 = πXS . (5.74)

Under the assumption in (5.74), all the marginals PXiSi for i ≥ 1 are equal to

πXS .

First, we define a few relevant quantities.

Definition 5.11. Define

µ , R(X;D|S)
∣∣
PXS=πXS

, (5.75)

Vn , var

(
1√
n

n∑

i=1

jXi|Si(Xi, D|Si)
)
. (5.76)

We have the following important lemma.

Lemma 5.7. For the Markov chains considered above, the following limit exists

lim
n→∞

Vn (5.77)

and is equal to

V∞ , var[jX|S(X,D|S)]
∣∣
PXS=πXS

+ 2
∞∑

i=1

cov[jX1|S1
(X1, D|S1), jX1+i|S1+i

(X1+i, D|S1+i)]. (5.78)
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Proof. The lemma follows from the fact that

Vn =
1

n
var

(
n∑

i=1

jXi|Si(Xi, D|Si)
)

(5.79)

=
1

n

n∑

k,l=1

cov
[
jXk|Sk(Xk, D|Sk), jXl|Sl(Xl, D|Sl)

]
(5.80)

= var[j(X,D|S)]
∣∣
PXS=πXS

+
2

n

n∑

j=1

(n− j)cov
[
jX1|S1

(X1, D|S1), jX1+j |S1+j
(X1+j , D|S1+j)

]
. (5.81)

The equality in (5.81) follows from the time-homogeneity of the chain and simple

rearrangements. Now, since the covariance

∣∣∣cov
(
jX1|S1

(X1, D|S1), jX1+j |S1+j
(X1+j , D|S1+j)

)∣∣∣

decays exponentially fast in the lag j for this class of Markov chains,

lim
n→∞

n∑

j=1

j · cov
[
jX1|S1

(X1, D|S1), jX1+j |S1+j
(X1+j , D|S1+j)

]
= 0, (5.82)

and thus

lim
n→∞

Vn = var[j(X,D|S)]
∣∣
PXS=πXS

+ 2
∞∑

j=1

cov
[
jX1|S1

(X1, D|S1), jX1+j |S1+j
(X1+j , D|S1+j)

]
. (5.83)

The right-hand-side is exactly V∞ as desired.

The second-order rate-distortion function for the Markov sequence is given

by the following theorem.

Theorem 5.3. The second-order rate-distortion function L∗(ε,D, µ) for the

Markov source with side information is given by

L∗(ε,D, µ) =
√
V∞Q

−1(ε). (5.84)
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This theorem is proved in subsection 5.8.4 and it uses a Markov generalization

of the Berry-Esséen theorem due to Tikhomirov [109].

� 5.6.1 Remarks concerning Theorem 5.3

1. Notice that the second-order coding rate for the Markov case consists of

two parts:

A , var[jX|S(X,D|S)]
∣∣
PXS=πXS

,

B ,
∞∑

i=1

cov[jX1|S1
(X1, D|S1), jX1+i|S1+i

(X1+i, D|S1+i)]. (5.85)

When the sequence of random variables {XiSi}∞i=1 is independent and iden-

tically distributed, the second part B in (5.85) vanishes and we recover the

result in section 5.4. Thus, the infinite sum in the definition of V∞ in (5.78)

quantifies the effect that the mixing of the Markov chain {XiSi}∞i=1 has on

rate of convergence the finite blocklength rate-distortion function to the

Shannon limit. The faster the mixing is, the faster the convergence to the

Shannon limit is.

2. Denote Ξ as transitional matrix of the Markov chain X1S1 → X2S2 →

. . .→ XnSn. If Ξ is diagonalizable, we can compute V∞ using the following

lemma.

Lemma 5.8. Assume Ξ = Udiag(1, λ2, . . . , λ|X ||S|)U
†. We have

V∞ = cov[jX|S(X,D|S), jX′|S′(X
′, D|S′)]

∣∣
PXS,X′S′=πXSPX′S′|XS

(5.86)

where

PX′S′|XS(x′s′|xs) =

[
Udiag

(
1,

1 + λ2

1− λ2
, . . . ,

1 + λ|X ||S|

1− λ|X ||S|

)
U †
]

x′s′xs

. (5.87)
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This lemma can be proved using techniques presented by Tomamichel and

Tan in [111, Appendix A]. Briefly, we make use of the fact that the Markov

chain {XiSi}∞i=1 is time-homogeneous and starts from the stationary distri-

bution. Secondly, in the diagonalization of the transition matrix Ξ, except

for eigenvalue λ1 , 1, the rest of the eigenvalues satisfy |λi| < 1. Thus, we

have
∑∞

k=1 λ
k
i = λi

1−λi for all but the leading eigenvalue.

� 5.7 Conclusion

In this chapter, the second-order coding rates for the source coding problem with

side information available at both the encoder and the decoder are character-

ized for three different kinds of sources: discrete memoryless sources, Gaussian

memoryless sources and Markov sources. The conditional D-tilted information

density is found to play a key role in our second-order analysis.

� 5.8 Appendix

� 5.8.1 Proof of Lemma 5.3

Lemma 5.3 is a corollary of Lemma 5.2. From Lemma 5.2, we can show the

existence of an (Mn, D, n, εn)-code such that

εn ≤ E{E[(1− PȲ n|Sn(BD(Xn))|Sn)M ]} (5.88)

=
∑

sn

PSn(sn)E[(1− PȲ n|Sn(BD(Xn))|Sn = sn)M ]. (5.89)
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Using techniques from [55, Corollary 2.20], we can show that for every sn,

E[(1− PȲ n|Sn(BD(Xn))|Sn = sn)M ]

≤ Pr[jXn|Sn(Xn, D|Sn) > log γn − log βn − λ∗nδn|Sn = sn]

+ E[|1− βn Pr[D − δn ≤ d(Xn, Y n∗) ≤ D|Xn]|+|Sn = sn]

+ e
−M
γn E[min(1, γn exp(−jXn|Sn(Xn, D, Sn)))|Sn = sn], (5.90)

for any γn, βn, and δn.

Taking the average of both sides of inequality (5.90) over all sequences sn

completes the proof of this lemma.

� 5.8.2 Proof of Theorem 5.1

� 5.8.2.1 Achievability proof of Theorem 5.1

In this part, we prove that, for any δ > 0,
√
V Q−1(ε)+δ is second-order (ε,D, κ)-

achievable when κ = R(X;D|S).

We apply Lemma 5.3 to construct a sequence of (Mn, D, n, εn)-codes as fol-

lows. Choose δn = const
n . Similar to the proof in [56, Lemma 4], it can be proved

that

Pr[D − δn ≤ d(Xn, Y n∗) ≤ D|Xn = xn, Sn = sn] ≥ C√
n
, (5.91)

when n is sufficiently large, for some constant C.
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Choose βn =
√
n
C . We have

E[E[|1− βn Pr[D − δn ≤ d(Xn, Y n∗) ≤ D|Xn]|+|Sn]] = 0, (5.92)

when n is sufficiently large.

Choose γn = M√
n

. We have

e
−M
γn E{E[min(1, γn exp(−jXn|Sn(Xn, D, Sn)))|Sn]}

= e−
√
nE{E[min(1, γn exp(−jXn|Sn(Xn, D, Sn)))|Sn]} (5.93)

≤ e−
√
nE{E[1|Sn]} (5.94)

= e−
√
n. (5.95)

Choose

logMn = nR(X;D|S) +
√
nV Q−1(ε̂n) + log

√
n+ λ∗n

D

100
+ log

√
n

C
, (5.96)

where

ε̂n , ε−
Bn√
n
− e−

√
n (5.97)

Bn , 6
Tn

V 3/2
(5.98)

Tn ,
1

n

n∑

i=1

E[|jX|S(X,D|S)−R(X;D|S)|3]. (5.99)

Applying Lemma 5.3, for n sufficiently large, we have

εn ≤ Pr
[
jXn|Sn(Xn, D|Sn) > nR(X;D|S) +

√
nV Q−1(ε̂n)

]
+ e−

√
n (5.100)

≤ Pr

[
n∑

i=1

jX|S(Xi, D|Si) > nR(X;D|S) +
√
nV Q−1(ε̂n)

]
+ e−

√
n (5.101)

≤ ε (5.102)
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where equation (5.102) follows from Theorem 2.10.

Therefore, we have constructed a sequence of (Mn, D, n, εn)-codes satisfying

lim sup
n→∞

1√
n

(logMn − nR(X;D|S)) =
√
V Q−1(ε) (5.103)

lim sup
n→∞

εn ≤ ε. (5.104)

� 5.8.2.2 Converse proof of Theorem 5.1

Let L be a second-order (ε,D,R(X;D|S))-achievable. We want to show

Q−1(ε)
√
V ≤ L+ δ,

for any δ > 0.

Since L is second-order (ε,D,R(X;D|S))-achievable, by definition, there ex-

ists a sequence of (Mn, n,D, εn)-codes satisfying

logMn ≤ nR(X;D|S) +
√
n(L+ δ), (5.105)

lim sup
n→∞

εn ≤ ε, (5.106)

when n is sufficiently large.

Using Lemma 5.4 for Mn satisfying equation (5.105) and γ = log
√
n, we have

εn ≥ Pr[jXn|Sn(Xn, D|Sn) ≥ logMn + log
√
n]− 1√

n
(5.107)

= Pr

[ n∑

i=1

jX|S(Xi, D|Si) ≥ logMn + log
√
n

]
− 1√

n
(5.108)
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≥ Pr

[ n∑

i=1

jX|S(Xi, D|Si) ≥ nR(X;D|S) +
√
n(L+ δ) + log

√
n

]
− 1√

n

(5.109)

≥ Pr

[ n∑

i=1

jX|S(Xi, D|Si)− nR(X;D|S) ≥
√
nV

(
L+ δ√
V

+
log
√
n√

nV

)]
− 1√

n

(5.110)

≥ Q
(
L+ δ√
V

+
log
√
n√

nV

)
− Bn√

n
− 1√

n
(5.111)

= Q

(
L+ δ√
V

)
+O

(
log
√
n√

n

)
− Bn + 1√

n
(5.112)

where equation (5.111) follows from Theorem 2.10 and in this equation Bn is

defined in (5.98), and (5.112) follows from the continuity of Q(·) and Taylor

expansion.

Combining (5.112) and (5.106), we have

ε ≥ lim sup
n→∞

εn (5.113)

= Q

(
L+ δ√
V

)
. (5.114)

Thus, all second-order achievable rates L must satisfy L ≥ Q−1(ε)
√
V −δ. Taking

δ ↓ 0, we complete the proof of the converse.

� 5.8.3 Proof of Theorem 5.2

Define the correlation coefficient ρ between Xi and Si, for i = 1, 2, . . . , n as

ρ ,
E[XS]√

E[X2]E[S2]
=

σX√
σ2
Z + σ2

X

. (5.115)

Next, we define the conditional mean of X given S = s as

µ(s) , ρ · σX
σS
· s = ρ2 · s =

σ2
X

σ2
Z + σ2

X

· s. (5.116)
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This is simply the minimum mean squared estimate of X given S = s.

� 5.8.3.1 Achievability proof of Theorem 5.2

In this part, we prove that, for any δ > 0,
√

1
2Q
−1(ε) log(e) + δ is second-

order (ε,D, 1
2 log

σ2
X|S
D )-achievable. We apply Lemma 5.2 to construct a se-

quence of (Mn, D, n, εn)-codes as follows. For each sn, choose the distribution

PȲ n|Sn(·|Sn = sn) in equation (5.22) as the uniform distribution on the surface

of the n-dimensional sphere, with radius r0 ,
√
n(σ2

X|S −D) and centre at

µ(sn) , (µ(s1), µ(s2), . . . , µ(sn)). (5.117)

Observe that PȲ n|Sn(BD(xn))|Sn = sn) = 0 if

|xn − µ(sn)| <
√
n(σ2

X|S −D)−
√
nD , r1 (5.118)

or

|xn − µ(sn)| >
√
n(σ2

X|S −D) +
√
nD , r2. (5.119)

Therefore, we have a sequence of (Mn, D, n, εn)-codes that satisfies

εn ≤ E{E[(1− PȲ n|Sn(BD(Xn))|Sn)Mn ]} (5.120)

≤ E{E[(1− PȲ n|Sn(BD(Xn)))Mn .Pr(r1 ≤ |xn − µ(Sn)| ≤ r2)|Sn]}

+ E{E[Pr(r2 < |Xn − µ(Sn)|)|Sn]}

+ E{E[Pr(r1 > |Xn − µ(Sn)|)|Sn]}. (5.121)

By the weak law of large numbers, we observe that the second term and the

third term become vanishingly small as n→∞. Now, we analyze the first term.
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θ(sn)

N

P

M

µ(sn) MN =
√
n(σ2

X|S −D)

NP =
√
nD

MP = |xn − µ(sn)|

Figure 5.2. Encoding for Gaussian source

Note that |X
n−µ(sn)|2
σ2
X|S

has a central χ2
n distribution. Denote

An(r0) ,
nπ

n
2

Γ(n2 + 1)
rn−1

0

as the surface area of an n-dimensional sphere of radius r0. Denote An(r0, θ(s
n))

as the surface area of n-dimensional polar cap of radius r0 and angle θ(sn) (see

Figure 5.2), where the angle 0 < θ(sn) < π is given by

θ(sn) , cos−1

( |xn − µ(sn)|2 + r2
0 − nD

2|xn − µ(sn)|r0

)
. (5.122)

We have

E{E[(1− PȲ n|Sn(BD(Xn)))Mn .Pr(r1 ≤ |xn − µ(Sn)| ≤ r2)|Sn]} (5.123)

= E

{
E

[(
1− An(r0)

An(r0, θ(sn))

)Mn

.Pr(r1 ≤ |xn − µ(Sn)| ≤ r2)
∣∣∣Sn
]}

(5.124)

≤ E

{
E

[(
1− Γ(n2 + 1)√

πnΓ(n−1
2 + 1)

(sin(θ(sn)))n−1

)Mn

.Pr(r1 ≤ |xn − µ(Sn)| ≤ r2)
∣∣∣Sn
]}

(5.125)

≤ E
{[
n

∫ ∞

0
(1− f(n, z))Mn 1{r1 ≤ z ≤ r2}Pχ2

n
(nz)dz

∣∣∣Sn
]}

(5.126)

= n

∫ ∞

0
(1− f(n, z))Mn 1{r1 ≤ z ≤ r2}Pχ2

n
(nz)dz (5.127)
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where

• (5.124) comes from geometry,

• (5.125) comes from a lower bound on An(r0, θ(s
n)) [91], and

• in (5.126), the function f(n, z) is defined as

f(n, z) ,
Γ(n2 + 1)√

πnΓ(n−1
2 + 1)


1−

(
1 + z − 2 D

σ2
X|S

)2

4

(
1− D

σ2
X|S

)
z




n−1
2

(5.128)

and Pχ2
n

is the central χ2
n probability density function.

Next, we choose the sequence Mn such that

logMn

n
=

1

2
log

σ2
X|S

D
+

√
1

2n
Q−1(ε) log e+

log n

2n
+

log logn

n
+O

(
1

n

)
.

(5.129)

We can check that

lim sup
n→∞

1√
n

(
logMn −

n

2
log

σ2
X|S

D

)
=

√
1

2
Q−1(ε) log e. (5.130)

Using similar techniques as in [56, Appendix K], we can show that the bound in

(5.127) can be analyzed using the Gaussian approximation to yield

lim sup
n→∞

εn ≤ ε. (5.131)

� 5.8.3.2 Converse proof of Theorem 5.2

The conditional D-tilted information in the jointly Gaussian case is

jXn|Sn(xn, D|sn) =
n

2
log

σ2
X|S

D
+

∣∣∣xn − σ2
X

σ2
X+σ2

Z
sn
∣∣∣
2

2σ2
X|S

log e− n

2
log e. (5.132)
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For each i ∈ {1, 2, . . . , n}, we have

E[jXi|Si(Xi, D|Si)] =
1

2
log

σ2
X|S

D
, (5.133)

and

var[jXi|Si(Xi, D|Si)] = E

[
|Xi − µ(Si)|2

2σ2
X|S

log e− log e

2

]2

(5.134)

= E


E



(
|Xi − µ(Si)|2

2σ2
X|S

log e− log e

2

)2 ∣∣∣∣Si




 (5.135)

= (log e)2E

[
E

[(
|Xi − µ(Si)|4

4σ4
X|S

− |Xi − µ(Si)|2
2σ2

X|S
+

1

4

)∣∣∣∣Si
]]

(5.136)

=
1

2
(log e)2. (5.137)

Let L be second-order (ε,D, 1
2 log

σ2
X|S
D )-achievable. We want to show that

Q−1(ε)

√
1

2
log e ≤ L+ δ

for any δ > 0. Since L is second-order (ε,D, 1
2 log

σ2
X|S
D )-achievable, there exists

a sequence of (Mn, n,D, εn)-codes satisfying

logMn ≤
n

2
log

σ2
X|S

D
+
√
n(L+ δ), (5.138)

lim sup
n→∞

εn ≤ ε, (5.139)

where (5.138) holds for all n sufficiently large.
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Using Lemma 5.4 for Mn satisfying equation (5.138) and γ = log
√
n, we have

εn ≥ Pr[jXn|Sn(Xn, D|Sn) ≥ logMn + log
√
n]− 1√

n
(5.140)

≥ Q


 L+ δ√

1
2 log e

+
log
√
n√

1
2n log e


− Bn√

n
− 1√

n
(5.141)

= Q


 L+ δ√

1
2 log e


+O

(
log
√
n√

n

)
− Bn + 1√

n
(5.142)

where equation (5.141) follows from Theorem 2.10 and in this equation Bn is the

constant in Theorem 2.10, and (5.142) follows from the continuous differentia-

bility of Q(·) and Taylor expansion.

Combining (5.142) and (5.139), we have

ε ≥ lim sup
n→∞

εn (5.143)

= Q


 L+ δ√

1
2 log e


 . (5.144)

This completes the proof of the converse upon taking δ ↓ 0.

� 5.8.4 Proof of Theorem 5.3

To prove Theorem 5.3, we use a variant of Berry-Esséen Theorem [109] to deal

with a sequence of random variables that forms a Markov chain. This theorem

is stated as follows.

Theorem 5.4. Consider a stationary process {Xk : k ≥ 1}, with EX1 = 0 and

finite variance. Define the strong mixing coefficient α(n) as

α(n) , sup{|Pr(A ∩B)− Pr(A) Pr(B)| : A ∈ Fk−∞, B ∈ F∞k+n, k ∈ Z}, (5.145)
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where Fba = σ 〈Xi : i ∈ [a, b] ∩ Z〉 is the σ-field generated by {Xi : i ∈ [a, b] ∩ Z},

−∞ ≤ a ≤ b ≤ ∞. Denote

σ2
n , E






n∑

j=1

Xj




2
 . (5.146)

Assume that the strong mixing coefficient is exponentially decaying, i.e., α(n) ≤

Ke−κ1n for some K and κ1 and all n ≥ 1. Assume E[|X2+γ
1 ] < ∞ for some γ,

1 ≥ γ > 0. Then, there is a constant B(K,κ, γ) > 0 such that, for all n ∈ N,

sup
x∈R

∣∣∣∣∣Pr

[
1

σn

n∑

k=1

Xk ≤ λ
]
− Φ(λ)

∣∣∣∣∣ ≤
B(K,κ1, γ)(log n)1+ γ

2

n
γ
2

. (5.147)

Note that the strong mixing coefficient of a time-homogeneous, irreducible

and ergodic Markov chain decays to zero and, in fact, vanishes exponentially

fast[10, Theorem 3.1].

In this proof, we make use of the following lemma.

Lemma 5.9. If the sequence X1S1 → X2S2 → X3S3 → . . . forms a Markov

chain, then the sequence of D-tilted information densities {jXi|Si(Xi, D|Si)}∞i=1

also forms a Markov chain.

This lemma is proved in section 5.8.5

� 5.8.4.1 Achievability proof of Theorem 5.3

In this part, we prove that, for any δ > 0,
√
V∞Q

−1(ε) + δ is second-order

(ε,D, µ)-achievable.
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We apply Lemma 5.3 to construct a sequence of (Mn, D, n, εn)-codes as fol-

lows. Choose δn = const
n . Similar to the proof in [56, Lemma 4], it can be proved

that

Pr[D − δn ≤ d(Xn, Y n∗) ≤ D|Xn = xn, Sn = sn] ≥ C√
n
, (5.148)

when n is sufficiently large, for some constant C.

Choose βn =
√
n
C . We have

E[E[|1− βn Pr[D − δn ≤ d(Xn, Y n∗) ≤ D|Xn]|+|Sn]] = 0, (5.149)

when n is sufficiently large.

Choose γn = M√
n

. We have

e
−M
γn E{E[min(1, γn exp(−jXn|Sn(Xn, D, Sn)))|Sn]}

= e−
√
nE{E[min(1, γn exp(−jXn|Sn(Xn, D, Sn)))|Sn]} (5.150)

≤ e−
√
nE{E[1|Sn]} (5.151)

= e−
√
n. (5.152)

Choose

logMn = nµ+
√
nVnQ

−1(ε̂n) + log
√
n+ λ∗n

D

100
+ log

√
n

C
, (5.153)

where

ε̂n , ε−
B(K,κ1, γ)(log n)1+ γ

2

n
γ
2

− e−
√
n (5.154)

and B(K,κ1, γ) is found in Theorem 5.4.
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Applying Lemma 5.3, for n sufficiently large, we have

εn ≤ Pr
[
jXn|Sn(Xn, D|Sn) > nµ+

√
nVnQ

−1(ε̂n)
]

+ e−
√
n (5.155)

≤ Pr

[
n∑

i=1

jXi|Si(Xi, D|Si) > nµ+
√
nVnQ

−1(ε̂n)

]
+ e−

√
n (5.156)

≤ ε (5.157)

where equation (5.157) follows from Theorem 5.4.

Therefore, we have constructed a sequence of (Mn, D, n, εn)-codes satisfying

lim sup
n→∞

1√
n

(logMn − nµ) =
√
V∞Q

−1(ε) (5.158)

lim sup
n→∞

εn ≤ ε. (5.159)

� 5.8.4.2 Converse proof of Theorem 5.3

Let L be second-order (ε,D, µ)-achievable. In this part, we want to show that

Q−1(ε)
√
V∞ ≤ L+ δ, for any δ > 0.

Since L is (ε,D, µ)-second-order achievable, by definition there exists a se-

quence of (Mn, n,D, εn)-codes satisfying

logMn ≤ nµ+
√
n(L+ δ), (5.160)

lim sup
n→∞

εn ≤ ε, (5.161)

when n is sufficiently large.
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Using Lemma 5.4 for Mn satisfying equation (5.160) and γ = log
√
n, we have

εn ≥ Pr[jXn|Sn(Xn, D|Sn) ≥ logMn + log
√
n]− 1√

n
(5.162)

= Pr

[ n∑

i=1

jXi|Si(Xi, D|Si) ≥ logMn + log
√
n

]
− 1√

n
(5.163)

≥ Pr

[ n∑

i=1

jXi|Si(Xi, D|Si) ≥ nµ+
√
n(L+ δ) + log

√
n

]
− 1√

n
(5.164)

≥ Pr

[ n∑

i=1

jXi|Si(Xi, D|Si)− nµ ≥
√
nVn

(
L+ δ√
Vn

+
log
√
n√

nVn

)]
− 1√

n

(5.165)

≥ Q
(
L+ δ√
Vn

+
log
√
n√

nVn

)
− B(K,κ1, γ)(log n)1+ γ

2

n
γ
2

− 1√
n

(5.166)

= Q

(
L+ δ√
Vn

)
+O

(
log
√
n√

n

)
− B(K,κ1, γ)(log n)1+ γ

2

n
γ
2

− 1√
n

(5.167)

where equation (5.166) follows from Theorem 5.4 and in this equation B(K,κ1, γ)

is defined in Theorem 5.4, and (5.167) follows from the continuity of Q(·) and

Taylor expansion.

Combining (5.167) and (5.161), we have

ε ≥ lim sup
n→∞

εn (5.168)

= Q

(
L+ δ√
V∞

)
(5.169)

where in (5.169), we use the fact that Vn → V∞.

� 5.8.5 Proof of Lemma 5.9

In the proof of this lemma, we make use of the following lemma.

Lemma 5.10. Let {Ai}∞i=1 be a Markov chain in state space A. Consider the

sequence {Bi = f(Xi)}∞i=1, where f : A → B is a function from A to B. Suppose
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that there exists a function g : B × B → R such that

Pr(Bi+1 = b|Xi = a) = g(f(a), b) (5.170)

for any a ∈ A and b ∈ B. Then the sequence {Bi}∞i=1 forms a Markov chain.

The proof of this lemma can be found in [52, Lemma 13]. Note that if f

is one-to-one, then it is obvious that the sequence generated by f acting on a

Markov chain is also a Markov chain.

Here, jX|S is a composition of several functions log, 1
t for t 6= 0, exp, sum-

mation and d(.|.). So, Lemma 5.9 follows from Lemma 5.10.
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Chapter 6

Reflections and Future Works

� 6.1 Reflections

In this thesis, we have made progress to address the following three questions:

• What is role of noisy feedback in interference networks?

• How does the restriction to operate in the finite-blocklength regime affect

the performance of interference networks?

• How do the restriction to operate in the finite-blocklength regime and the

presence of side information affect the compression and decompression of

an information source?

� 6.1.1 Role of noisy feedback

• Even though noisy feedback has less information than full feedback, it is

found that noisy feedback can still improve the capacity region of an inter-

ference channel when the feedback link strength exceeds certain threshold.
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This performance gain is due to the fact that noisy feedback can help

communication nodes to learn about each other’s messages. As a result,

communication nodes can cooperate with each other.

• Intuitively, the most important part of a feedback is the information about

other transmitters. When the feedback link strength is too small, this

important message is submerged in the feedback noise. Therefore, noisy

feedback is useless in this case. However, when feedback link strength

is sufficiently large, noisy feedback starts to contain information of other

transmitters and the capacity region of the interference channel starts to

enlarge. When the performance gain due to noisy feedback is large, it

is justified economically to build a feedback system for a communication

system.

� 6.1.2 Interference networks in the finite-blocklength regime

In the strictly very strong interference regime, even in the finite-blocklength

communication, we still have an interesting observation that receivers can still

decode information from the non-intended receivers in such a short duration. As

a result, they can remove interference and decode information from the intended

receivers.
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� 6.1.3 Combined effect of side information and finite-blocklength
communication on source coding

Even in the finite-blocklength communication, it is found that the presence of side

information can help the encoder and the decoder to choose the most effective

coding strategy up to the second-order terms and to adapt to changes in the

environment.

� 6.2 Future Works

Various avenues for further research follow naturally from the contributions in

this thesis. Some possible extensions are mentioned below.

• One possible direction is to further reduce the gap between inner bounds

and outer bounds for the symmetric Gaussian IC with noisy feedback. The

current constant gap of 4.7 bits/s/Hz can potentially be improved.

• Another interesting work is to obtain the approximate capacity region for

the asymmetric Gaussian interference channel with noisy feedback. New

techniques might be needed to deal with the asymmetric setting.

• The class of mixed channels forms an important class of models for theoret-

ical study as they are the canonical class of non-ergodic channels [39]. The

second-order source coding rate region has been considered for the mixed

correlated source for the Slepian-Wolf problem in [81]. The corresponding

point-to-point channel coding problem was also studied in [86, 111]. It
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would be also interesting to find the second-order capacity region for the

mixed Gaussian IC in the strictly very strong interference regime. The

key difficulty is that characterizing the second-order capacity region for

the mixed Gaussian IC appears to involve manipulating the modified in-

formation densities and the auxiliary output distributions. Previous works

in mixed channels in [39, 81] do not involve auxiliary output distribu-

tions. New achievability and converse techniques will be needed to find the

second-order capacity region for the mixed Gaussian IC.

• It is also interesting to characterize the second-order capacity region of

Gaussian, or discrete memoryless, interference channel in the non-strictly

very strong interference regime.

• It is interesting to carry out the second-order analysis for Gaussian source

with a quadratic distortion measure.
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