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Summary

This thesis addresses the problem of digital video stabilization. Videos

captured by hand-held devices (e.g., cell-phones or DVs) often appear re-

markably shaky. Digital video stabilization improves the video quality by

removing unwanted camera motions. In this thesis, three different meth-

ods are presented. We first address video stabilization by adopting a depth

camera. We show that the depth can facilitate both camera motion esti-

mation and frame warping, thus make the video stabilization a much well

posed problem. Then, we present a video stabilization approach named as

bundled camera paths, in which multiple 2D camera paths are proposed to

represent camera motions. Its mesh-based , spatially-variant motion rep-

resentation allows us to fundamentally handle parallax issues without the

help of long feature trajectories. Finally, we present a novel motion model,

SteadyFlow, which has per-pixel level accuracy. The SteadyFlow is a spe-

cific optical flow by enforcing strong spatial coherence. Our experiments

demonstrate the effectiveness of our stabilization methods on real-word

challenging videos.

This thesis is organized to begin with an overview on challenges of video

stabilization, followed by self-contained chapters for three different meth-

ods in video stabilization. A summary chapter is included to summarize

our contributions and discuss future work.
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Chapter 1

Introduction

Videos captured by hand-held devices(e.g., cell-phones, portable camcorders) often

appear remarkably shaky and undirected. Traditionally, a stabilized video is captured

by expensive professional devices, a camera mounted on a body of a moving person

or placed on a track. Figure 1.1 left shows some examples. Digital video stabilization

improves the video quality by processing videos captured by consumer level devices

illustrated in Figure 1.1 right.

In general, video stabilization consists of the following three main steps: (1) es-

timating the camera motion to obtain original shaky camera path, (2) creating a new

smooth camera path, and (3) synthesizing the stabilized video using the smoothed cam-

era path. Figure 1.2 shows the pipeline. For the first step, the motion estimation can be

either in 3D or 2D. According to the adopted motion model, video stabilization can be

categorized as 3D-based[56], 2D-based[64, 39] or 2.5D-based[57, 35] methods. 3D-

based methods reconstruct the scene and recover the 3D camera poses using structure

from motion(SFM) algorithms[41]. 2D-based methods estimate affine or homography

between neighboring frames. Camera path is represented by the concatenation of these
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Figure 1.1: Left: Professional videos are often captured by expensive equipments.

Right: Digital video stabilization improves video quality captured by hand-held

devices.(cell-phones, DVs, tablets)

Camera motion 
estimation

Camera Path 
Smoothing Re-renderingInput Output

Figure 1.2: A general pipeline for video stabilization.

linear transformations. 2.5D-based approaches relax the requirement of full 3D recon-

struction to some partial 3D information such as the epipolar geometry[35]. A detailed

literature review is presented in Chapter 2.

Generally speaking, 2D methods are more robust and faster because they only es-

timate a linear transformation model between neighboring frames. But the 2D linear

motion model is too weak to fundamentally handle the parallax cased by non-trivial

depth changes. On the contrary, the 3D methods can deal with parallax in principle

and generate strongly stabilized results when 3D reconstruction is feasible. However,

the 3D reconstruction is less robust to various degenerations such as feature tracking

failure, motion blur, camera zooming, and rapid camera motion. In the following ,we

will discuss the challenging issues in video stabilization and demonstrate some com-
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mon artifacts when stabilization fails.

1.1 Challenges in Video Stabilization

Video stabilization algorithms have been improved dramatically in recent years. Some

works have successfully transferred into commercial softwares, e.g., the Warp sta-

bilizer in Adobe After Effects built on the technique of subspace method[57] and

YouTube stabilizer developed from homography mixture model[37]. They can pro-

duce very good results on many casual online videos and even handle some difficult

examples. However, there are always some challenge cases that go beyond the power

of existing techniques. In the following, we first review some of the major challenges

in casually shot consumer videos. We further demonstrate the kind of failure they will

cause in a video stabilization algorithm. This discussion motivates our design of new

stabilization algorithms.

Large depth variation A scene contains depth variation is very common in con-

sumer videos. Figure 1.3 left shows two examples. The reason depth becomes a chal-

lenge is mainly due to the plane based motion model. In 2D video stabilization[65],

affines or homographies are used to model the motion between neighboring frames.

A single homography is valid only when filming a planer scene or the camera under

goes pure rotation. The best fitting homography cannot describe all the motions of

the scene, resulting the wobble artifacts. Examples of wobble distortion are shown in

Figure 1.3 right. Please notice the shearing of the house and the curving of the tree

trunk. Recently, there are methods [38, 61] adopting multiple homographies for mo-

tion estimation. Even though, large depth variation still remains a challenge issue and

3



Figure 1.3: Left: two scenes contain large depth variation. Right: stabilized frames

suffer from wobble distortions.

requires more research efforts.

Quick camera motion Quick camera motion is another type of challenge for video

stabilization,(e.g., quick rotation and zooming). 3D and 2.5D methods rely on long

feature trajectories to stabilize a video. However, when quick motion happens, the

length of trajectories drop quickly and even approaches zero in some extreme cases.

This severely damages the performance of trajectory-based stabilization methods. Fig-

ure 1.4 shows two examples with quick camera zooming(top) and quick camera rota-

tion(bottom). The stabilized results contain large empty regions.

Large moving foreground Large dynamic objects can easily confuse a stabilizer

during camera motion estimation. If the dynamic object size is small, RANSAC can

be adopted for 2D methods and 3D methods, to exclude moving objects. However, it
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Figure 1.4: Two examples contain quick camera motion. First row: camera with quick

zooming. Second row: camera contains quick rotation. The results contain large empty

regions.

is difficult to distinguish the foreground and the background in the presence of large

size moving objects. If the foreground motion(fully or partially) is considered as the

background camera motion, the error motion would led to jitter and unstable results.

Recently, a user-assisted method[4] is proposed to address this issue by letting the user

to exclude features on the foreground during motion estimation. Nevertheless, motion

segmentation is still a challenge for automatic systems.

Motion blur Camera shake can blur video frames significantly at times when shake

is intense. Figure 1.6 shows such two examples where the blurred frames severely

damage the quality of the videos. Many stabilization methods can successfully sta-

bilize the video content, however they leave the blurriness cased by original camera

motion untouched. On the other hand, stabilization systems rely on feature tracking to

5



Figure 1.5: The camera motion estimation is inaccurate in the presence of large moving

foreground.

Figure 1.6: Video frames are blurred caused by the camera shake. Two examples of

blurry frames borrowed from Cho et al.[19]

estimate the camera motion. However, feature tracking over blurry frames is not reli-

able due to the lack of sharp image features. Thus, handling motion blur[19] becomes

an important task for a robust video stabilization system.

Rolling shutter effects The rolling shutter effects[67] are caused by parallel read-

out scheme of CMOS cameras. Pixels within a row are read out simultaneously, but

integration time is shifted row by row, resulting the bending of straight lines in the cap-

tured frame. Figure 1.7 shows two examples sufferring from rolling shutter distortion.

Many cell-phone cameras employ CMOS sensors due to their low power consumption.

It is of great practical importance to handel rolling shutter effects to obtain satisfactory

results for video stabilization. This requires non-linear motion models and more so-

6



Figure 1.7: Rolling shutter effects

phisticated smoothing strategies.

1.2 Objective

Each of the individual challenge is a research problem. A good video stabilization

system should try to overcome as much as possible. However, the problem becomes

much more difficult when multiple challenges happen together, e.g. rolling shutter ef-

fects together with large moving objects or quick camera motion together with motion

blur. There is a high possibility that these challenges are linked together in real world

scenarios. Empirically, we find that when 3D reconstruction is feasible, 3D methods

often produce the best results for scene with large depth variation. However, they lack

the ability to handle the other challenges. The 2D based methods, on the other hand,

are robust to quick camera motions, but with limited ability for depth handling. A

video contains large moving objects require motion segmentation methods[74, 23] to

discover the camera motion. However, motion segmentation for shaky videos with

dominate foregrounds is tough and challenge.

Another important issue is the stability. Some methods can successfully remove the

7



high-frequency camera jitters but leave the low-frequency camera shake untouched,(e.g.,

low-frequency bounces originated from a person walking during the capture). To ob-

tain high quality stabilized videos, we need to also suppress the low-frequency shake

with some advanced smoothing approach. Artifacts like wobble and excessive crop-

ping would be introduced if the camera path is not appropriately smoothed. In practice,

reducing stability can be considered as a kind of wobble suppression when there is no

other way around. Because the original shaky input contains no wobbles at all. One

can always suppress the wobbles at the sacrifice of stability. We need to seek a good

balance to achieve good stability with a reasonable cropping size and limited wobbles.

In summary, the objective for a desirable video stabilization system contains the

following goals: no geometrical distortions and wobbles, good stability, reasonable

cropping size, correcting rolling shutter effects , handling motion blur. Although, none

of the existing methods can satisfy all the goals, it is worth to explore towards this

direction.

1.3 Contributions

This section gives a brief introduction to the problems we have studied: Stabilizing

videos with depth cameras and stabilizing videos captured by traditional video recorder

(cell-phones, tablets and DVs). The central idea is on how to model camera motion

and define smoothing methods properly.

RGBD videos Previous video stabilization methods often employ homographies to

model transitions between consecutive frames, or require robust long feature tracks

for structure from motion. However, the homography model is invalid for scenes with

8



significant depth variations, and feature point tracking is fragile in videos with texture-

less objects, severe occlusion or camera rotation. To address these challenging cases,

we propose to solve video stabilization with an additional depth sensor. Though the

depth image is noisy, incomplete and low resolution, it facilitates both camera motion

estimation and frame warping, which make the video stabilization a much well posed

problem. This work has been published in CVPR 2012 [60]1.

Bundled camera paths This method is proposed to address consumer level videos

captured by traditional devices(mobile phones,tablets, camcorders). We model the

camera motion with a bundle of(multiple) camera paths. The proposed model is

derived from a mesh-based, spatially-variant motion representation and an adaptive,

space-time path optimization. Our motion representation allows us to fundamentally

handle parallax and rolling shutter effects while it does not require long feature tra-

jectories or sparse 3D reconstruction. We introduce the as-similar-as-possible idea

to make motion estimation more robust. Our space-time path smoothing adaptively

adjusts smoothness strength by considering discontinuities, cropping size and geomet-

rical distortion in a unified optimization framework. The evaluation on a large variety

of consumer videos demonstrates the merits of our method. This work has been pub-

lished in SIGGRAPH 2013[61]2.

SteadyFlow This method is also targeted on videos captured by traditional devices.

We propose a novel motion model, SteadyFlow, to represent the motion between neigh-

boring video frames for stabilization. A SteadyFlow is a specific optical flow by en-

forcing strong spatial coherence, such that smoothing feature trajectories can be re-

1Project page: http://www.liushuaicheng.org/CVPR2012/index.htm
2Project page: http://www.liushuaicheng.org/SIGGRAPH2013/index.htm
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placed by smoothing pixel profiles, which are motion vectors collected at the same

pixel location in the SteadyFlow over time. In this way, we can avoid brittle feature

tracking in a video stabilization system. Besides, SteadyFlow is a more general 2D mo-

tion model which can deal with spatially-variant motion. We initialize the SteadyFlow

by optical flow and then discard discontinuous motions by a spatial-temporal analysis

and fill in missing regions by motion completion. Our experiments demonstrate the ef-

fectiveness of our stabilization on real-world challenging videos. This work has been

published in CVPR 2014[62]1.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews the previous

works on video stabilization. Chapter 3 presents the work of video stabilization with

a depth camera. Chapter 4 discusses bundled camera paths. Chapter 5 details our

work on SteadyFlow for video stabilization. Chapter 6 summarizes the thesis. Chapter

3,4,5 are self-contained. Each chapter describes a video stabilization method. Chap-

ter 6 concludes this thesis with a discussion of limitations and some future research

directions.

1Project page: http://www.liushuaicheng.org/CVPR2014/index.htm
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Chapter 2

Literature Review

According to the adopted motion model, video stabilization can be categorized into

3D, 2D and 2.5D methods. Besides, the handling of rolling shutter effects is highly

related to the video stabilization.

3D methods 3D methods require explicit 3D structures for video stabilization, in-

cluding 3D camera poses and scene depth. These structures can be obtained by the

SFM algorithms[92, 90, 22, 79] or by the adopting of depth sensors[76]. Given the

original shaky 3D camera path, a smoothed virtual camera path is recovered. The sta-

bilized video is rendered along the virtual path as if it were taken from this new path.

This rendering process is often referred to as novel view synthesis. When 3D recon-

struction is feasible, it often produces the highest quality of results due to its physical

correctness. Our work ”Video stabilization with a depth camera[60]” belongs to this

category.

2D methods 2D methods estimate 2D transformations between consecutive video

frames. By concatenating these transformations, camera path in 2D space is obtained.

11



The stabilized video is generated by smoothing the 2D camera path. The 2D transfor-

mations are often affines or homographies. The research focus is given to both motion

estimation[65] and path planning[32, 33]. Strictly speaking, a homography is only

valid when the scene is planer or the camera undergoes purely rotational motion[41].

When a scene contains large depth variations, the 2D model is invalid. Artifacts such as

content distortions would be introduced in the stabilized results. On the other hand, the

advantage of 2D methods is the robustness. It only requires feature correspondences

between neighboring frames. The 2D model fitting is much more robust compared

with 3D reconstruction. Our work ”Bundled camera paths for video stabilization[61]”

and ”Steadyflow: spatially smooth optical flow for video stabilization[62]” belong to

this category. Our methods can produce results with the same quality as 3D methods

while enjoy the robustness of 2D methods.

2.5D methods 2.5D methods relax the requirement of full 3D reconstruction to some

partial 3D information(e.g., epipolar geometry [35]). The 3D information is embed-

ded in the feature trajectories. The 2.5D methods argue that the 3D reconstruction is

overshoot for video stabilization purpose. The 2.5D methods can produce comparable

results as full 3D methods while reduce the computational costs. However, the require-

ment of long feature trackings(e.g., feature trackings for 30 consecutive frames) is still

a bottleneck for the robustness.

Rolling Shutter Rolling shutter removal and video stabilization are highly related.

The rolling shutter effects [67] are caused by parallel readout scheme of CMOS sen-

sors. Pixels within a row are read out simultaneously, but integration time is shifted row

by row, resulting in bending of straight lines in the captured image. Many cell-phone
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cameras employ CMOS sensors due to their low power consumption. Stabilizing a

video alone would not produce satisfactory result if the video also suffers from rolling

shutter effects. Both our work [61] and [62] can rectify the rolling shutter effects.

In the following sections, we briefly review the prior works based on the categories.

We highlight one representative work for each category.

2.1 3D Video Stabilization

3D methods estimate 3D camera motion for stabilization. Beuhler et al. [15] proposed

a 3D video stabilization method based on a projective reconstruction of the scene with

an uncalibrated camera. When Euclidean reconstruction is feasible, Zhang et al. [76]

smoothed the camera trajectories to minimize its acceleration in rotation, translation

and zooming. Liu et al. [56] proposed a full 3D stabilization method by introducing

content-preserving warps(IPW) for the novel view synthesis. Zhou et al.[96] further

extended the content-preserving warps with plan-based constraints. These methods

are more or less limited by their adopted 3D reconstruction algorithms. Though there

is significant progress [70, 1, 27, 29, 45, 46, 86] in 3D reconstruction, reconstructing

a general video is still difficult. In the following, we briefly review the method of

content-preserving warp.

Content-Preserving Warp

Liu et al.[56] proposed the content-preserving warp for the novel view synthesis. It

is inspired by as-rigid-as-possible shape manipulation [42]. Given the input video

frame Ît, the corresponding output video frame It is generated by a warp from Ît. 3D

reconstruction provides a sparse set of 3D points. They can be projected onto both
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Figure 2.1: (a) A pair of matched features (p,p̂) should be represented by the same set

of bilinear interpolation weights of their four enclosing vertices. (b) The smooth term

requires each triangle v̂1,v̂2,v̂3 to follow a similarity transformation.

the input and output cameras, yielding two sets of corresponding 2D points: P̂ on the

input frame and P on the output frame.

data term Suppose {p, p̂} is the p-th matched feature pair from input and output

frame respectively. The feature p can be represented by a 2D bilinear interpolation of

the four vertices Vp = [v1p, v
2
p, v

3
p, v

4
p] of the enclosing grid cell: p = Vpwp, where wp =

[w1
p, w

2
p, w

3
p, w

4
p]

� are interpolation weights that sum to 1. The corresponding feature p̂

can be represented by the same weights of the warped grid vertices V̂p = [v̂1p, v̂
2
p, v̂

3
p, v̂

4
p].

Figure 3.6 (a) shows the relationship. Therefore the data term is defined as

Ed(V̂ ) =
∑

p
||V̂pwp − p̂||2. (2.1)

Here V̂ contains all the warped grid vertices.

similarity transformation term As illustrated in Figure 3.6 (b), the similarity term

is defined as:

Es(V̂ ) =
∑
v̂

‖v̂ − v̂1 − sR90(v̂0 − v̂1)‖2, R90 =

⎡
⎢⎣ 0 1

−1 0

⎤
⎥⎦ , (2.2)
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where s = ‖v − v1‖/‖v0 − v1‖ is a known scalar computed from the initial mesh. This

similarity transformation term requires the triangle of neighboring vertices v, v0, v1

undergoes a similarity transformation.

The final energy E(V̂ ) is obtained by combining two terms.

E(V̂ ) = Ed(V̂ ) + αEs(V̂ ), (2.3)

where α is a weight to control the amount of regularization. This energy equation is

quadratic and can be minimized by solving a sparse linear system. Content preserving

warp is applied to warp a frame to its novel view point. It shows greater advantage

over traditional image based rendering techniques[15, 20].

2.2 2D Video Stabilization

2D stabilization methods use a series of 2D transformations (such as homography or

affine transformations) to represent the camera motion, and smooth these transforma-

tions to stabilize the video. Early 2D video stabilization methods such as[66, 64, 49]

estimated affine transformations or homographies between consecutive frames and ap-

plied low pass filtering to reduce high frequency camera jitters. To suppress low fre-

quency camera shakes, Chen et al.[17] fits polynomial curves to camera trajectories.

Gleicher and Liu [32] further broke camera trajectories into segments and fitted smooth

motion to each of them for better camera motion. More recently, Grundmann et al. [39]

applied cinematography rules[33] and represented camera motion by a combination of

constant, linear or parabolic motion. This technique has been integrated into Google

YouTube. It is robust, follows cinematography rules, and works well on many casual
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online videos.

Let the video be a sequence of images I1,I2,...In, where each frame pair (It−1, It)

is associated with a linear motion model Ft. The camera path Ct is defined as:

Ct+1 = CtFt+1 ⇒ Ct = F1F2...Ft. (2.4)

L1-base Cinematography Camera Path

From a cinematographic viewpoint, a pleasant steady viewing experience is conveyed

by the use of static cameras, panning cameras mounted on tripods and cameras placed

onto a dolly[37]. To mimic professional footage, the optimized camera paths should

be composed by the following path segments:

• A constant path, representing a static camera

• A path of constant velocity, representing a panning or a dolly shot.

• A path of constant acceleration, representing the ease-in and out transition be-

tween static and panning cameras.

To obtain the optimal path, Grundmann et al. [39] formulated the problem as a con-

strained L1 minimization. Given the original path Ct, the desired optimal path is de-

noted as:

Pt = CtBt (2.5)

where Bt = C−1
t Pt is the update transform which brings the original frame to its

stabilized position. The objective function is formulated as:

O(P ) = w1|D(P )|1 + w2|D2(P )|1 + w3|D3(P )|1 (2.6)
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This objective function can be minimized by linear programming.

2.3 2.5D Video Stabilization

A trade-off between 2D and 3D stabilization techniques is to directly smooth the trajec-

tories of tracked image feature points. Goldstein and Fattal [35] utilized an “epipolar

transfer” technique to avoid the fragile 3D reconstruction. Wang et al.[85] represented

each trajectory as a Bezier curve and smoothed with a spatial-temporal optimization.

To address the occlusion issue, Lee et al. [50] introduced feature pruning to choose

robust feature trajectories for smoothing. Liu et al. [57] smoothed some basis trajec-

tories of the subspace [43] extracted from the feature tracks (preferably longer than

50 frames). This method achieves similar quality to the full 3D methods, while re-

ducing the requirement from 3D reconstruction to long feature trajectories. It has

been transferred to Adobe After Effects as a video stabilization function named “Warp

Stabilizer”. Recently, Liu et al.[58] extended the subspace method to deal with stereo-

scopic videos. The core ideas of subspace [57] is one of the representative work in

2.5D methods.

Subspace Video Stabilization

Given a set of 2D point trajectories, we seek to find the appropriate positions for these

points at the output frame to stabilize the video. The trajectories can be concatenated
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Filter each trajectory independently Filter the eigen-trajectories

Figure 2.2: Subspace Low-path filtering. Left: filter each trajectory independently

introduce artifacts as ignoring of 3D information. Right: filter eigen-trajecotries in the

subspace. The figures are borrowed from [56].

into a trajectory matrix M :

M2N×F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1 x1

2 ... x1
F

y11 y12 ... y1F

.

xN
1 xN

2 ... xN
F

yN1 yN2 ... yNF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

with N features per frame and F frames in total. If a low-pass filter is directly ap-

plied to this matrix, distortion would happen as independently smoothing feature tra-

jectories breakdown the relationship between points. Figure 2.2 left shows such an

example. To maintain this relationship during the smoothing, a subspace constraint

is proposed. In general, motion trajectories from a perspective camera will lie on a

non-linear manifold[81, 34]. It is possible to approximate the manifold locally with a

linear subspace. Irani [44] showed that the trajectory matrix should have at most rank

9. This low-rank constraint implied that the trajectory matrix M can be factored into
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the product of two low-rank matrices:

M2n×k ≈ W � (C2n×rEr×k) (2.8)

where W is a binary mask matrix indicating missing data, and � means component-

wise multiplication. E is the eigen-trajectories and C contains the coefficient for the

linear combination. If we apply a smooth operation K, it can be further derived:

M̂ = W � (CE)K = W � C(EK) = W � CÊ (2.9)

which means we first filtering the eigen-trajectories E to obtain Ê, and then obtain a

new sub matrix M̂2n×k by multiplying Ê with the original coefficient matrix C. Output

frames can be obtained by content-preserving warp guided by the control points in

M and M̂ . Figure 2.2 right shows an example. With the subspace constraint, the

relationship between features are appropriately preserved.

2.4 Rolling Shutter

Rolling shutter methods estimate and correct inter-row motion caused by the row-

parallel readout. Prior works designed different parametric inter-row motion mod-

els, including a per-row translation model [51, 5] and 3D rotation model [25, 26].

Karpenko et al.[49, 40] used dedicated hardware – the gyroscope on mobile devices,

to correct the rolling shutter effects in real-time. Recently, Grundmann et al.[38] pro-

posed a calibration-free homography mixture model, which shows significant improve-

ment. In the following, we introduce the work of Grundmann et al.[38].
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Figure 2.3: Homography-mixture model is consisted of multiple homographies de-

fined over blocks of scanlines. To avoid discontinuities across scanlines, Neighboring

homographies are well regularized during the model estimation.

Homography Mixture

A single 2D linear transformation is not enough to describe the non-linear motions be-

tween rolling shutter neighboring frames. Grundmann et al.[38] proposed a homography-

mixture model to handle the non-linear transformations. As shown in Figure 2.3,

Homography-mixture consisted of multiple sub-homographies.

To avoid discontinuities across blocks, homographies are smoothly interpolated by

neighboring homographies using Gaussian weights.

Hx :=
m∑
k=1

Hkwk(x). (2.10)

where wk(x) is a gaussian weight centered around the middle of each block k.

Estimation (x, y) = ([x1, x2, 1]
T , [y1, y2, 1]

T ), a pair of matched feature points have

the following relation after homography transformation.

0 = y ⊗Hxx = y ⊗
m∑
k=1

Hkwk(x)x =
m∑
k=1

wk(x) · y ⊗Hkx (2.11)
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where ⊗ denotes the cross product. The equation can be rewritten as a set of 2 linear

independent equations:

Ak
xhk :=

⎛
⎜⎝0T −xT y2x

T

xT 0T −y1x
T

⎞
⎟⎠hk (2.12)

where hk is the vector formed by concatenating the columns of Hk. Combining all k

homographies yields a 2× 9k linear constraint

(w1(x)A
1
x...wk(x)A

k
x)

⎛
⎜⎜⎜⎜⎝
h1

.

hk

⎞
⎟⎟⎟⎟⎠ = Axh = 0 (2.13)

Aggregating all feature matches yields a linear system. After obtaining the homography-

mixture for every frame, the path planning stratagem is similar to L1-based method by

replacing a single homography path with multiple-homographies paths.
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Chapter 3

Video Stabilization by a Depth

Camera

3.1 Introduction

Existing video stabilization methods are limited by two key issues. First, methods

relied on homography based frame registration such as [50, 64], suffer from image

distortion when there are significant depth changes in a scene. In principle, a homog-

raphy can register two frames only when the scene is flat, or when there is no camera

translation at all. These two conditions are not precisely true in most real videos, and

can cause serious distortions in the stabilized results, especially when the distance be-

tween scene objects and camera is small such as indoor scenes. Second, long feature

tracks are difficult to obtain in scenes with severe occlusion, sudden camera rotation,

motion blur, or textureless objects (e.g. white walls in indoor scenes). Hence, methods

requiring feature tracking such as [56, 57] tend to fail in these challenging cases.

We propose to address these two challenging problems using additional depth sen-
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sors. Depth sensors such as the Kinect camera are cheap, compact and widely avail-

able in the market. This additional depth information provides video stabilization with

a much robust solution in camera motion estimation and frame warping. Since we

have depth information, we can estimate an accurate camera pose for each frame by

only performing motion estimation between every two consecutive frames. Thus, our

method does not rely on fragile feature tracking, or structure-from-motion algorithms

[41]. According to our knowledge, this is the first to exploit depth sensors for video

stabilization.

Since the depth measure from sensors (e.g., Kinect) is noisy, incomplete and low

resolution at each frame, directly applying depth for stabilization is nontrivial. To

achieve this goal, we first combine color and depth images to robustly compute 3D

camera motion. We match corresponding 2D feature points between two neighboring

frames, and use their depths to estimate relative camera motion. We then smooth the

recovered 3D camera trajectories following cinematography principles [32], which re-

moves both high frequency camera jitters and low frequency shakes. Since the depth

measure is incomplete, the novel video frames cannot be generated by directly project-

ing 3D scene points (generated from the depth image) according to the new camera

poses. To solve this problem, we generate a dense nonlinear motion field by combing

3D projection and 2D image warping to create the final results.

3.2 Indoor Challenge Cases

Before going to the details of our method, we first highlight two key challenges to

previous video stabilization methods, which commonly exist in indoor scenes. Indoor

scenes are particularly important, because many amateur videos (such as family event,
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(a) (b) (c) (d)

Figure 3.1: Results of Cube example. From top to bottom are two sample frames from

(a) original video,(b) 2D stabilization method [39], (c) 3D stabilization method [57]

and (d) our approach. We can notice clear shear and wobble distortions at the first-aid

box and cubes on results (b) and (c), compared with our results.

party, shopping, etc) are captured in indoors. Many of previous methods employed 2D

transformations such as similarity [50], affine or homography [64],[39] transforma-

tions to register neighboring frames. However, these simple motion models are invalid

when there are large depth changes in the scene, especially when the scene is close

to the camera. Figure 5.18 shows such an example where three cubes in front of a

wall are captured by a handheld video camera. The first row shows two frames of the

original shaky video. The second row are the corresponding frames from the video

stabilized according to [39]. To produce the results for comparison, we uploaded our

videos to Youtube (http://www.youtube.com) with the stabilize feature enabled. The

uploaded videos are stabilized by the website server according to the method in [64].

We then downloaded the results for comparison. The results from youtube are clearly

distorted. For example, the first-aid box on the left image is subject to a shearing map-

ping. This is because the sudden depth change between the cubes and the wall makes

homography based registration invalid. For a comparison, the same frames from the
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video stabilized by our method are shown in the last row. Our method is free from this

distortion by exploiting rough depth information from a depth camera.

3D video stabilization methods such as [15, 56, 91] require feature correspon-

dence in different frames for robust 3D reconstruction. Methods based on feature track

smoothing such as [50, 57]also need long tracks of feature points. As commented in

[57], typically, features should be tracked for about 50 frames to make their algorithm

robust. However, robust tracking of feature points is a difficult problem, which could

be affected by textureless regions, sudden camera rotation or severe occlusion. The

third row of Figure 5.18 shows the results from [57]. To produce the results, we used

the stabilize motion with subspace warp in the Adobe After Effects CS5.5 with default

parameters (50% smoothness and Rolling shutter automatic reducing) to generate re-

sults of [57]. Most of the tracked feature points locate on the foreground cubes, which

leads to wobble artifacts on the background first-aid box.

To further demonstrate the tracking difficulty, we show two typical amateur videos

in Figure 3.2. Each row shows two frames from one video. The video in the first

row has quick rotation, while the one in the second row suffers from severe occlusion

caused by pedestrians.We overlay the trajectories of tracked feature points. Here we

used the KLT tracker [63] to trace detected SURF features [7]. On each trajectory,

the red points are the feature positions in tracked frames. When rotation or occlusion

happens, both the number of tracked feature points and the length of feature tracks

drop significantly, which makes feature tracking based video stabilization fragile. The

average lengthes of feature tracks in the left two images are 10 and 23 frames. In

comparison, the average lengthes in the right are 6 and 2 frames. The numbers of

tracked points are also reduced from 248 and 158 on the left to 21 and 37 on the

right. With an additional depth camera, we compute camera motion between any two
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Figure 3.2: Feature point tracking in amateur videos is difficult. Each row shows two

frames in a video with quick rotation (top row) or severe occlusion (bottom row). Both

the number of tracked points and the length of the feature tracks drop significantly.

consecutive frames from corresponding pixels with known depth. This method does

not require long feature tracks. Hence, we avoid this challenging tracking problem.

3.3 Our Method

The input to our method is a video with an accompany depth image for each frame.

In developing our algorithm, we use the Kinect camera in indoor scenes for data cap-

turing, though other depth sensors might also be used. Similar to most of the video

stabilization methods, our method includes mainly three steps. We first estimate the

3D camera motion from neighboring color and depth images. Since we have depth
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information, we do not require long feature tracks for 3D reconstruction. Once the

3D camera trajectory is known, we smooth it following [39] to reduce both high fre-

quency jitters and low frequency shakes. We then generate video frames according

to the smoothed camera poses, again by combing information from color and depth

images.

3.3.1 Camera Motion Estimation

We begin by recovering camera motion in the original shaky video. Our input are the

video frames I1, I2, · · ·, In. and their corresponding depth images P1, P2, · · ·, Pn.

measured in local camera coordinate system. We seek to estimate a 4×4 matrix Ct at

each time t that represents the camera pose in a global coordinate system, i.e.

Ct =

⎛
⎜⎝Rt Ot

0 1

⎞
⎟⎠

Here, Rt and Ot are the 3×3 rotation matrix and 3×1 translation vectors represent-

ing the camera orientation and position in the global coordinate system respectively.

As shown in Figure 3.3, the relative camera motion at time t can be represented by

a 3D Euclidean transformation Ht satisfying Ct = Ct−1Ht. Ht has similar form as Ct,

where

Ht =

⎛
⎜⎝R̂t Ôt

0 1

⎞
⎟⎠

Here, R̂t, Ôt are the rotation and translation components of Ht. We set the world

coordinate system at the first frame. Hence, camera poses can be computed by chaining

the relative motions between consecutive frames as Ct = H1H2...Ht.
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Figure 3.3: Camera motion estimation from corresponding 3D points between two

consecutive frames. pt and pt−1 are coordinates of the same 3D point in two local

camera coordinate systems. The Euclidean transformation Ht between two cameras

can be estimated from corresponding 3D points.

To estimate Ht, we first detect and match SURF features [7] between two frames

It−1 and It. Since depth images are incomplete (shown on the grayscale image in

Figure 5.5(a)), some matched feature points might not have depth recorded. Here, we

only choose those corresponding feature points whose depths in both Pt-1 and Pt are

known. Each pair of correspondence introduces a constraint about Ht as, R̂tpt−1+Ôt =

pt. As illustrated in Figure 3.3, pt, pt−1 are the coordinates of the same 3D point in the

two local camera coordinate systems of the frame t and t - 1 respectively.

Suppose N pairs of features are collected, we can then estimate Ht (i.e. R̂t, Ôt) by
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minimizing
N∑
i=1

ρ(‖R̂tpt−1 + Ôt − pt‖2). (3.1)

Here,ρ(·) is the M-estimator (we use the Tukey bi-weight function [95]) for robust

estimation defined as

ρ(x) =

⎧⎪⎨
⎪⎩
β2/6(1− [1− (x/β)2]3) if |x| ≤ β

β2/6 otherwise.

Equation 3.1 is minimized by the standard iteratively reweighted least squares

(IRLS) method [95]. During the computation, RANSAC is also applied to skip out-

liers. Specifically, we repetitively draw three randompairs of corresponding points at a

time to solve Equation 1 until we find the largest set of inliers. We then solve Equation

3.1 again with all inliers to decide the camera motion. For computation efficiency, dur-

ing the random sampling, we set β = +∞ (i.e. without using M-estimator), while we

set β as the standard deviation of the fitting residual in all inliers in the final estimation.

3.3.2 Camera Trajectory Smoothing

We smooth the estimated camera trajectory for stable motion. We follow [39] to adopt

cinematography principles to remove both high frequency jitters and low frequency

shakes. The smoothed camera trajectory should be a combination of constant, linear

and parabolic motion. Note that the key difference from [39] is that we work with

real 3D camera poses (i.e. orientations and positions), while [39] used a series of

homogrpahies to indicate the camera motion.

We represent the camera rotationmatrix Rt by its quaternions, which offer a better

representation for interpolation than Eulerian angles. For notation simplicity, we still
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Figure 3.4: Camera trajectory smoothing results. The red and green curves show tra-

jectories before and after smoothing respectively.

denote these quaternions by Rt. We then concatenate the 4D quaternions Rt and the

3D translation vector Ot to a 7D vector Ft to represent the camera pose at time t. The

optimal camera trajectory is obtained by minimizing the following objective function,

E(F ) = w1|D(F1)|1 + w2|D2(F )|1 + w3|D3(F )|1

where |D(F )|1,w2|D2(F )|1,w3|D3(F )|1 are the L-1 norms of the first order, second

order and third order camera pose derivatives respectively. We set w1 = 10,w2 =

1,w3 = 100 for all our examples. The optimization is solved by linear programming

with the first camera pose F1 unchanged. Following [39], we also require new camera

poses to be close to the original ones. Specifically we require the angles in Rt do

not change more than 3 degrees and the components in Ot do not change more than

20(20mm). Figure 3.4 shows the camera trajectories before and after smoothing in red

and green respectively.
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Figure 3.5: Video frame generation pipeline. We use the color and depth images in (a)

to generate the projection (b) and the motion field (c). Many pixels are missing because

of the incomplete depth image. Hence, we warp the color image by the Content-

preserving warp [9] in (d) according to the green control points and a regular grid.

This warping generate a color image (e) and a motion field (f). We then generate a

complete motion field (g) by fusing (c) and (f). The final video frame (h) is created by

warping the original frame with (g).

3.3.3 Video Frame Generation

Once we obtain the stabilized camera poses, we are ready to synthesize the output

video. In principle, if the depth sensor returns a dense and complete depth for each

pixel, we can generate the stabilized frame by simply projecting all 3D points ac-

cording to smoothed camera poses. However, the depth image is often incomplete,

as shown by the grayscale images in Figure 5.5 (a). Figure 5.5 5 (b) shows a pro-

jection of the 3D points (generated from the color and depth image in Figure 5.5) to

the stabilized video frame, where many pixels are missing because of the incomplete

depth map. Hence, we apply the Content-preserving image warping [56] to fill-in these

missing regions.

To seamlessly blend results from projecting 3D points and image warping, we use

morphological dilation operator to create a r-pixel width (r = 1.5% of image width in

our experiments) buffer band surrounding all missing regions. We use all pixels in this
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Figure 3.6: Left: control points and image grid for content preserving warp. Right:

illustration for motion interpolation.

band as control points for image warping, so that the warping will be as consistent

as possible with the projection. Figure 5.5 (d) shows the green control points and

the image warping grid (a clearer version is provided in the left of Figure 3.6). We

combine these two methods in the band by linearly interpolating the two motion fields

introduced by them.

Motion field from depth images. We project pixels with depth measure according

to the smoothed camera pose. Given the original camera pose Ct and its smoothed

pose C
′
t , we can compute the image coordinates of a 3D point p in both original and

stabilized video frames. The difference between these two coordinates gives a motion

vector, which maps a pixel from original video to the stabilized one. Specifically, the

motion vector v for a 3D point p is obtained by: v = KRt[I|Ot]p − KR
′
t[I|O′

t]p,

where K is the camera intrinsic matrix, Rt,Ot and R
′
t,O

′
t are the original and smoothed

camera orientation and position respectively. In this way, we obtain a motion field M1
t

that covers all pixels with depth measure, as shown in Figure 5.5 (c).
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Motion field from image warping. To fill in missing regions, we take all pixels

in the buffer band as control points for the content-preserving warp. Basically, we

partition the original image into 10× 10 regular grid. Here we adopt the same energy

equation E = Ed + αEs described in [56], where α is the relative weight of data

term Ed and smoothness term Es. We set α = 1 in our implementation. The data

term Ed comes from the projected 3D points, we only choose the points located on the

boundary of the missing region (green lines of Figure 5.5 (d) and Figure 3.6 on the

left). Smoothness term Es controls the rigidity of the gird. The energy equation can

be minimized by solving a sparse linear system. After we get the motion of the grid

vertices, the motion of a pixel is then computed by bilinear interpolation of the motion

vectors at its four grid vertices. This generates another motion field M2
t , which covers

all pixels without depth measure and the buffer band as show in Figure 5.5 (f).

Motion fields blending. We then linearly blend M1
t and M2

t in the buffer band.

Specifically, the motion of a pixel in the band is computed by linearly interpolating

the motion of its two nearest neighbors at the two sides of the band. As shown on the

right of Figure 3.6, A,B are two pixels on the two sides of the band with minimum

distance (dA, dB respectively) to the black pixel in consideration. vA, vB are the mo-

tion vectors of A and B, which are computed from projecting 3D points and image

warping respectively. We linearly interpolate these two vectors in the band to blend

M1
t and M2

t . For example, the motion of the black pixel is computed as

vB · dA/(dB + dA) + vA · dB/(dA + dB)
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Figure 5.5 (g) shows the interpolated motion from (c) and (f). Once the motion field is

obtained for the whole frame, we use it to warp the original video frame to create the

stabilized frame as shown in Figure 5.5 (h).

3.4 Experiments

We evaluated our method with some challenging videos captured by a Kinect camera.

To avoid the calibration between the color and depth cameras, we used the embed-

ded color camera in Kinect whose calibration is known.1 All our videos have resolu-

tion of 640×480. Figure 5.18 and Figure 3.10 compare our results with two state-of-

artmethods described in [39] and [57]. In both figures, from the top to the bottom, the

four rows for each example are sample frames of the original video, stabilized video

according to [39], [57] and our method respectively. For easy reference, we name

these examples in Figure 5.18 and Figure 3.10 as Cube and Boy. The Cube and Boy

examples showed a nearby scene with sudden depth change, which made the homog-

raphy based frame registration in [39] fail. Hence, severe geometric distortions were

observed in these results (please notice the shear distortion on the first-aid box in the

Cube example, and on the bookshelf in the Boy example). The content-preserving

warp in [57] is more robust to depth changes. However, the large textureless wall in

the Cube example had few tracked feature points, which caused wobble effect in the

result. (Note that tracked feature points were used as control points for warping in

[57]. Similar artifacts were reported in [56] when the image feature points distributed

unequally over the image.) Though more feature points can be tracked in the Boy ex-

ample, it was not stabilized well by [57], perhaps because the dynamic scene confused

1We use OpenNI SDK for our implementation
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(a) (b) (c)

Figure 3.7: Comparison with [57]. Each row shows one example. Columns from left

to right: (a)sample frames from original video, (b)stabilized video according to [57]

and (c)our method. Please notice the sudden zooming artifacts circled in blue of the

first example and warping distortion of the other two examples in (b).

the subspace analysis. In comparison, our method took advantage of the depth and

generated better results on these examples.

Figure 3.7 providesmore comparisonwith 3D stabilization method [57]. The first

example of Figure 7 contains severe occlusion, where people walked through and

blocked the whole frame. It is challenging for [57] because of tracking failures caused

by severe occlusion. The region circled in blue had inconsistent motion in the sta-

bilized video (Please refer to our project website). The second and third example of

Figure 3.7 contain quick camera rotation. This causes shear artifacts on the whole
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(a) (b) (c)

Figure 3.8: Comparison with [39]. Each row shows one example. Columns from left

to right: (a) sample frames from original video, (b) stabilized video according to [39]

and (c) our method. Please notice the wobble on the background in (b).

scene. Furthermore the warping distortion produces a large empty area. Figure 3.8

shows three examples with severe geometric distortion produced by method [39]. The

depth change makes the homography based registration fail. The simple linear model

cannot describe variations of depth in these scenario. Please notice the shear distortion

on the background in Figure 3.8 (b).

Limitations We observe several limitations of our approach, which point out the

direction for future study. First, our method does not consider the rolling shutter effects
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Figure 3.9: Additional results under different indoor environment from our video sta-

bilization, which are shown in the project page.

of both the color camera and the depth camera, which sometimes make the camera

motion estimation imprecise and lead to some high frequency jitters in the results.

Second, our current implementation is limited to the Kinect camera, which only works

in indoor scenes. But we believe the same algorithm can be also applied to time-of-

flight cameras in outdoor environments.

3.5 Conclusion

We studied two challenges in video stabilization, namely sudden depth change which

makes 2D motion model imprecise and tracking failure which causes 3D stabilization

fail. We solved these problems with an additional depth sensor, which provides a

depth measure for each video frame. We exploited this rough depth information to

improve both camera motion estimation and frame warping. Our results demonstrated

the effectiveness of the proposed method.
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(a)

(b)

(c)

(d)

Figure 3.10: Results on the Boy examples. From top to bottom, the four rows are sam-

ple frames from (a) original video, (b) stabilized video according to [39], (c) stabilized

video according to [57] and (d) our method.
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Chapter 4

Bundled Camera Paths for Video

Stabilization

4.1 Introduction

A video captured with a hand-held device (e.g., a cell-phone or a portable camcorder)

often appears remarkably shaky and undirected. In the previous chapter, we introduced

a stabilization method captured by a depth sensor. It is of great practical importance to

focus on the traditional devices such as mobile phones, tablets and camcorders.

Prior video stabilization methods synthesized a new stabilized video by estimating

and smoothing 2D camera motion or 3D camera motion. In general, 2D methods are

more robust and faster because they only estimate a linear transformation (affine or

homography) between consecutive frames. But the 2D linear motion model is too

weak to fundamentally handle the parallax caused by non-trivial depth variation in the

scene. On the contrary, the 3D methods can deal with the parallax in principle and

generate strongly stabilized results. However, their motion model estimation is less
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robust to various degenerations such as feature tracking failure, motion blur, camera

zooming, and rapid rotation. Briefly, 2D methods are more robust but may sacrifice

quality (e.g., introducing unpleasant geometrical distortion or producing less stabilized

output), while 3D methods can achieve high-quality results but are more fragile.

This work aims at the same goal of robust high-quality result but from an opposite

direction: we propose a more powerful 2D camera motion model. Specifically, we

present bundled camera paths model which maintains multiple, spatially-variant cam-

era paths. In other words, each different location in the video has its own camera path.

This flexible model allows us to fundamentally deal with nonlinear motion caused by

parallax and rolling shutter effects. At the same time, the model enjoys the robust-

ness and simplicity of 2D methods, because it only requires feature correspondences

between two consecutive frames.

Our bundled camera paths model is built on two novel components: a warping-

based motion representation (and estimation), and an adaptive space-time path smooth-

ing. The first component represents the motion between two consecutive frames by

mesh-based, spatially-variant homographies (Figure 4.1 1(b)) with a ss-similar-as-

possible regularization constraint [42, 71]. This constraint is critical because estimat-

ing a model with such a high degree of freedom is usually risky in the cases of insuffi-

cient features or large occlusions. To the best of our knowledge, this is the first work to

employ the mesh-based as-similar-as-possible regularization for spatially-variant mo-

tion estimation in video stabilization. Notice that the as-similar-as-possible warping

was used in [56, 57] for video stabilization. But we directly use the mesh vertices as

the motion model itself. No intermediate representation is used, such as 3D recon-

struction [56] et al. or subspace [57].

Based on the proposed motion representation, we construct a bundle of camera
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(a) a single global path (b) our bundled paths

Figure 4.1: Comparison between traditional 2D stabilization (a single global camera

path) and our bundled camera paths stabilization. We plot the camera trajectories (vi-

sualized by the y-axis translation over time) and show the original path (red) and the

smoothed path (blue) for both methods. Our bundled paths rely on a 2D mesh-based

motion representation, and are smoothed in space-time.

paths, each of which is the concatenation of local homographies at the same grid

cell over time (Figure 4.1 1(b)). Our second component smooths all bundled cam-

era paths as a whole to maintain both spatial and temporal coherences. Furthermore,

to avoid excessive cropping/geometrical distortion and approximate cinematography

favored path, we adopt a discontinuity-preserving idea similar to bilateral filtering [82]

to adaptively control the strength of smoothing.

For a quantitative evaluation, we provide a comprehensive dataset (including both

public examples and our own video clips of different kinds of motions). We show

that our new 2D method is comparable to or outperforms other competitive 2D or 3D

methods.

4.2 Bundled Camera Paths

In this section, we introduce our warping-based motion model and bundled camera

paths.
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Figure 4.2: (a) Parameterization of the motion between two frames by a regular grid

mesh, where a pair of matched features (p, p̂) should be represented by the same bilin-

ear interpolation of their four enclosing vertices. (b) The as-similar-as-possible term

requires each triangle v̂, v̂0, v̂1 to follow a similarity transformation.

4.2.1 Warping-based Motion Model

We propose using an image warping model to represent the motion between consecu-

tive video frames, which provides stronger modeling power than conventional single,

2D linear transformations. We adopt the warping model in [42, 56], though more

general models such as ‘moving-least-square’ [71] or parameterized optical flow [69]

might be used.

Model At each frame, we define a uniform grid mesh as illustrated in Figure 4.2.

The motion is represented by an (unknown) warping of the grid mesh to register two

frames (in fact, their corresponding feature points). We require matched features (e.g..,

p and p̂ in Figure 4.2) to share the same bilinear interpolation of the four corners of

the enclosing grid cell after warping. At the i-th grid cell, the warping from frame t to

frame t+1 introduces a homography Fi(t), which can be determined from the motion

of the four enclosing vertices. Thus, the warping-based motion model is actually a set

of spatially-variant homographies on a 2D grid.

Note that this highly flexible model is able to handle parallax. It is between global

42



homography and per-pixel optical flow. However, estimating a model with such a high

degree of freedom is very risky because we may not have sufficient features (due to

textureless regions or occlusions) in every cell.

Regularization To address this challenge, we propose imposing a shape-preserving

(i.e.., “as-similar-as-possible” [42]) constraint. The combination of the shape-preserving

and mesh representation together provides two kinds of regularizations: 1) for each

cell, the fitted homography should be biased toward a reduced similarity (or rigid)

transformation; 2) the intrinsic connection of the mesh (two neighboring mesh cells

share two vertices) enforces a first-order continuity constraint. They can help to prop-

agate or fill in information from regions with sufficient features to other regions.

Finally, we estimate the motion by minimizing two energy terms: a data term for

matching features, and a shape-preserving term for enforcing regularization.

4.2.2 Model Estimation

We first describe our basic method by following [56], and later extend it for better

robustness in the next subsection.

Data term As shown in Figure 4.2, suppose {p, p̂} is the p-th matched feature pair from

frame t to frame t+ 1. The feature p can be represented by a 2D bilinear interpolation

of the four vertices Vp = [v1p, v
2
p, v

3
p, v

4
p] of the enclosing grid cell: p = Vpwp, where

wp = [w1
p, w

2
p, w

3
p, w

4
p]

� are interpolation weights that sum to 1. We expect that the

corresponding feature p̂ can be represented by the same weights of the warped grid

vertices V̂p = [v̂1p, v̂
2
p, v̂

3
p, v̂

4
p]. Therefore the data term is defined as

Ed(V̂ ) =
∑

p
||V̂pwp − p̂||2. (4.1)
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with shape-preserving no shape-preserving

Figure 4.3: Comparison of motion estimation with and without the shape-preserving

term.

Here V̂ contains all the warped grid vertices. Solving V̂ determines the warping of the

grid.

Shape-preserving term We use the same shape-preserving term as [56] involving all

vertices in V̂ ,

Es(V̂ ) =
∑
v̂

‖v̂ − v̂1 − sR90(v̂0 − v̂1)‖2, R90 =

⎡
⎢⎣ 0 1

−1 0

⎤
⎥⎦ , (4.2)

where s = ‖v − v1‖/‖v0 − v1‖ is a known scalar computed from the initial mesh. This

shape-preserving term requires the triangle of neighboring vertices v, v0, v1 to follow a

similarity transformation. Linearly combining two terms forms our final energy E(V̂ ):

E(V̂ ) = Ed(V̂ ) + αEs(V̂ ), (4.3)

where α is an important weight to control the amount of regularization. We will discuss

how to adaptively determine it later. Since the energy E(V̂ ) is quadratic, the warped

mesh V̂ can be easily solved by a sparse linear system solver.

Estimating homographies After having a new mesh, we can estimate each local ho-
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Figure 4.4: Our method automatically chooses an appropriate α for different scenes:

(a) a scene free of occlusion; (b) a scene with severe occlusion.

mography Fi(t) in the grid cell i of frame t by solving a linear equation:

V̂i = Fi(t)Vi, (4.4)

where Vi and V̂i are the four vertices before and after the warping.

Figure 4.3 shows the warped mesh grid according to the estimated motion. Left

and right are the results with and without the shape-preserving term. It is clear that the

regularization term helps maintain a smooth varying mesh representation.

45



4.2.3 Robust Estimation

We further generalize our motion estimation to make it more robust.

Outlier rejection We reject incorrectly matched features at two scales. At the coarse

scale (the whole image), we apply RANSAC algorithm [24] to fit a global homography

F̄ (t) and discard features by a relatively large threshold on fitting error (6% image

width). At the fine scale (4×4 sub-images), we apply RANSAC again to reject features

by a relatively small threshold (2% image width).

Pre-warping To facilitate the warping estimation, we use global homography F̄ (t)

to bring matching features closer. We then solve the warping to estimate the residual

motion, which generates a homography F ′
i (t) at each grid cell. The final homography

Fi(t) is simply computed as F ′
i (t)×F̄ (t). Note that this coarse-to-fine strategy has been

used in [56] for image synthesis and proven effective in motion estimation literature

[11].

Adaptive regularization A good regularization should be adaptive to image content.

For example, if reliable features are uniformly distributed over the whole image, we

should trust the data term more and use a smaller weight α in Equation (4.3) for a

weaker regularization. But when there is occlusion or insufficient features, we prefer

stronger regularization as the data term is less reliable. To implement this strategy, we

adaptively set α per frame, based on two errors: fitting error eh and smoothness error

es.

The fitting error eh is the average residual of the feature matching under the es-

timated homographies, i.e., eh = 1
n

∑
p ‖Fp × p− p̂‖2, where Fp is the homography

in the cell containing p, and n is the number of feature pairs. The smoothness error

es measures the similarity (L2 distance) between neighboring local homographies by
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Figure 4.5: Left: the estimated warping mesh from all feature points. Right: we

exclude all the features in the orange box when estimating the warping model. A

similar mesh can be obtained despite the lack of features.

es = β
∑

j∈Ωi
‖Fi − Fj‖2, where Ωi consists of the neighboring cells of i. Here, the

homography matrix is normalized so that sum of all its elements is one. We empirically

set β = 0.01, since it makes the scale of eh and es similar on most of the examples.

Then we define the combined error as e = eh + es. We equally discretize α into 10

values between 0.3 and 3. We perform the model estimation using every discretized

value and select the model with minimum error e.

As shown in Figure 4.4(a), for simple scenes with smooth depth variation, neigh-

boring cells tend to have similar homographies. So we choose a small α(=0.9) to

better minimize the data error. On the contrary, for scenes with large occlusion (Fig-

ure 4.4(b)), neighboring local homographies are less similar. The smoothness error can

be significantly reduced by increasing α. So our system will automatically choose a

large α(=3.0) to ensure consistent local motion.

Finally, we show an example in Figure 4.5 to verify the strength of the regularization

of our method. In this example, we compare two meshes estimated using all features

and a subset of features. Two similar results indicate our method can robustly deal

with regions of insufficient features.
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4.2.4 Bundled Camera Paths

With estimated local homographies, we can define a bundle of spatially-variant camera

paths for the whole video. Let Ci(t) be the camera pose of the grid cell i at frame t. It

can be written as:

Ci(t) = Ci(t− 1)Fi(t− 1),⇒ Ci(t) = Fi(0)Fi(1) · · ·Fi(t− 1),

where {Fi(0), ..., Fi(t − 1)} are estimated local homographies at the same grid cell i,

as shown in Figure 4.6 (a). We call these spatially-variant paths as “bundled camera

paths”. In the next section, we describe how we smoothen these bundled paths for

video stabilization.

4.3 Path Optimization

We first describe our smoothing method for a single camera path, and extend it to a

bundle of camera paths.

4.3.1 Optimizing a Single Path

A good camera path smoothing should consider multiple competing factors: removing

jitters, avoiding excessive cropping, and minimizing various geometrical distortions

(shearing/skewing, wobble). To reach a desired balance, we propose an optimization-

based framework taking all factors into account.
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Figure 4.6: (a) Bundled camera paths. (b) Relationships among original path {C(t)},

smoothed path {P (t)}, and transformations {B(t)}

Formulation Given an original path C = {C(t)}, we seek an optimized path P =

{P (t)} by minimizing the following function:

O ({P (t)}) =∑
t

(‖P (t)− C(t)‖2 + λt

∑
r∈Ωt

ωt,r (C) · ‖P (t)− P (r)‖2), (4.5)

where Ωt are the neighborhood at frame t. The other terms are:

• data term ‖P (t)− C(t)‖2 enforcing the new camera path to be close to the orig-

inal one to reduce cropping and distortion;

• smoothness term ‖P (t)− P (r)‖2 stabilizing the path;

• weight ωt,r (C) to preserve motion discontinuities under fast panning/rotation or

scene transition;

• parameter λt to balance the above two terms.
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Since Equation (4.5) is quadratic, we can solve it with any linear system solver. Here,

we use a Jacobi-based iterative solver [9]:

P (ξ+1)(t) =
1

γ
C(t) +

∑
r∈Ωt,r �=t

2λtωt,r

γ
P (ξ)(r), (4.6)

where γ = 1+2λt

∑
r∈Ωt,r �=tωt,r, and ξ is an iteration index. At initialization, P (0)(t) =

C(t). Once we obtain the optimized path P, we compute the warping transform

B(t) = C−1(t)P (t) to warp the original video frame to the stabilized result (Figure

4.6(b)).

Discontinuity-preserving The adaptive weight ωt,r is important to preserve motion

discontinuity. We follow the idea of bilateral filter [82] and design it by two Gaussian

functions:

ωt,r = Gt (‖r − t‖) ·Gm (‖C(r)− C(t)‖) , (4.7)

where Gt() gives larger weight to the nearby frames. Gm() measures the changes of

two camera poses.

We use a large kernel to ensure successful suppression of both high-frequency jit-

ters (e.g., handshake) and low-frequency bounces (e.g., walking). In our implemen-

tation, we set Ωt to 60 neighboring frames and the standard deviation of Gt() to 10.

In contrast, previous low-pass filtering based methods [64] typically need a smaller

amount of support (e.g., 10 frames) to avoid aggressive cropping and distortion. But

such a small kernel is often insufficient in suppressing low frequency bounces.

The reason why we can use a larger kernel lies in Gm(). In video stabilization, for

rapid camera motion (e.g, caused by fast panning or scene transition), an inappropriate
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Figure 4.7: Comparison of with and without adaptive weights Gm() for a video with

rapid camera panning. The camera paths on the top plot the x-translation over time.
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amount of smoothing may lead to excessive cropping, as shown in Figure 4.7. In this

case, the camera pans quickly, and naı̈ve Gaussian smoothing (second row) causes the

camera path to significantly deviate from its original path, as indicated by the dashed

lines in the left plot on top. The corresponding frames shown on the second row will

require large cropping. Our adaptive term Gm() preserves the sudden camera motions

to a certain degree. The result from our adaptive smoothing (bottom row) produces

much less cropping.

To measure the camera motion, we use the change in translation components μx(t),

μy(t) extracted from the camera pose C(t), namely |μx(t)− μx(r)|+ |μy(t)− μy(r)|.
The frame translation μx(t), μy(t) can describe most camera motions in practice except

for an in-plane rotation or scale around the principal axis.

Cropping and distortion control The above adaptive term ωt,r can give us a certain

amount of ability to control cropping and distortion. However, the user may want to

have strict control on the cropping ratio and distortion. In principle, we could formulate

a constrained optimization to address this issue. But it may be too complex to be solved

or reproduced.

In this work, we resort to a simple but effective method - adaptively adjust the

parameter λt for each frame. We first run the optimization with a global fixed λt = λ

(empirically set to 5) and then check the cropping ratio and distortion of every frame.

For any frame that does not satisfy the user requirements (cropping ratio or distortion is

smaller than a pre-defined threshold), we decrease its parameter λt by a step (1/10λt)

and re-run the optimization. Note, according to Equation 4.6, a smaller λ will make

the optimized path closer to the original one, which has less cropping and distortions.

The procedure is iterated until all frames satisfy the requirements.
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We measure the cropping ratio and distortion from the warping transform B(t) =

C−1(t)P (t). The anisotropic scaling of B(t) measures the distortion. It can be com-

puted by the ratio of the two largest eigenvalues of the affine part of B(t) [41]. We

use B(t) to compute the overlapping area of the original video frame and the stabi-

lized frame. The cropping ratio is the ratio of this area and the original frame area. In

our experiments, we require the cropping ratio to be larger than 0.8, and the distortion

score to be larger than 0.95 for all examples. In principle, we can further measure the

perspective distortion by the two perspective components in B(t). But we empirically

find they are always too small when compared with the affine components and do not

include them.

4.3.2 Optimizing Bundled Paths

Our motion model generates a bundle of camera paths. If these paths are optimized

independently, neighboring paths could be less consistent, which may generate distor-

tion in the final rendered video. Hence, we do a space-time optimization of all paths

by minimizing the following objective function

∑
i

O ({Pi(t)}) +
∑
t

∑
j∈N(i)

‖Pi(t)− Pj(t)‖2, (4.8)

where N(i) includes eight neighbors of the grid cell i.

The first term is the objective function in Equation (4.5) for each single path, and

the second term enforces the smoothness between neighboring paths. This optimiza-

tion is also quadratic and the optimum result can be obtained by solving a large sparse
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linear system. Again, our solution is updated by a Jacobi-based iteration [9]:

P
(ξ+1)
i (t) =

1

γ′ (Ci(t) +
∑
r∈Ωt
r �=t

2λtwt,rP
(ξ)
i (r) +

∑
j∈N(i)
j �=i

2P
(ξ)
j (t)),

where

γ′ = 2λt

∑
r∈Ωt,r �=t

wt,r + 2N(i)− 1.

We typically iterate 20 times to optimize camera paths.

During optimization, the motion-adaptive term Gm(·) is evaluated at individual

cells, since different cells have different motion. In comparison, λt is determined from

the global path (generated by concatenating the pre-warping global homographies),

because it controls the overall cropping and distortion. Then, we use λt to optimize the

camera paths in all cells.

Result synthesis After path optimization, we compute the warping matrix Bi(t) for

each cell i by Bi(t) = C−1
i (t)Pi(t). We then apply Bi(t) to warp the i-th cell at the

t-th frame to generate the final output video. Usually, applying Bi(t) directly generates

good results. This is because our motion estimation ensures first order smoothness of

the original paths. Furthermore, the bundled optimization in Equation (4.8) requires

nearby optimized paths to be similar. Thus, the smoothness is naturally satisfied by

Bi(t) most of the time. Sometimes, there are slight distortions (e.g.., seams of about

1-pixel width), in which case we perform a bilinear interpolation to fix them.
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4.3.3 Correcting Rolling Shutter Effects

Our bundled paths model can naturally handle rolling shutter effects without pre-

calibration. The principle of our method is similar to that of [38]. Our system does

rolling shutter correction while simultaneously stabilizing the video. In a shaky video,

a rolling shutter causes spatially variant high frequency jitters. When smoothing the

camera paths, we simultaneously rectify rolling shutter effects and other jitters caused

by camera shake.

4.4 Results

We run our method on an Intel i7 3.2GHZ Quad-Core machine with 8G RAM. We

extract 400-600 SURF features [7] per frame. For motion estimation, we always divide

the video frame to 16×16 cells. For a video of 1280×720 resolution, our un-optimized

system takes 392 milliseconds to process a frame (around 2.5fps). Specifically, we

spend 300ms, 50ms, 12ms and 30ms to extract features, estimate motion, optimize

camera paths and render the final result. All original and result videos are provided on

our webpage1.

4.4.1 Algorithm Validation

We first verify the effectiveness of different components of the proposed approach.

A Global Path vs. Bundled Paths For the example in Figure 4.1, the result accord-

ing to a global path has remaining jitters in some image regions. This is because the

parallax makes the global homography motion model invalid, therefore some image

1http://www.liushuaicheng.org/SIGGRAPH2013/index.htm
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(a) original video frame (b) YouTube result

(c) our result (d) homography mixtures (our implementation)

Figure 4.8: Comparison with the homography mixture models in Grundmann et al.

[38]. (a) A sample frame in the original video. (b) The output frame produced by

YouTube Stabilizer. (c) The result produced by our method. (d) The result produced

using our implementation of homography mixture[38] (with the same bundled path

smoothing).

regions cannot be stabilized very well. But our bundled paths can handle this kind of

typical situation. Please refer to our accompanying video for a visual comparison.

Spatially-variant Homographies vs. Homography Mixture Grundmann et al. [38]

proposed a homography mixture model for rolling shutter correction. They divide

a video frame into a 1D array of horizontal blocks, and use a Gaussian mixture of

homographies for each block. This model is beyond a single 2D transformation and

able to partially handle parallax.

Compared with our 2D mesh-based, spatially-variant homographies, this model

has two limitations: 1) it does not address horizontal depth variation; 2) it uses weaker

feature points (which apply lower threshold level for feature detection) and a simple
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Gaussian mixture for the regularization. Weaker feature points may result in larger

fitting errors and the ability to use simple Gaussian smoothing is limited.

Figure 4.8 shows a comparison of these two models. In this example, the scene has

horizontal depth variation and the sky region lacks feature points. Figure 4.8 (a) is the

result of using YouTube Stabilizer (integrated Homography Mixture feature). We can

observe severe geometrical distortions. To further verify our observation, we replace

our spatially-variant model with the homography mixture model (our implementation)

in our framework and generate the result in Figure 4.8 (d), where we observe similar

distortion. In comparison, our warping-based motion estimation can fundamentally

handle depth variation (not limited to vertical direction). Our result (Figure 4.8 (c))

does not suffer from such distortion.

Rolling Shutter Handling Figure 5.15 compares our methods with [38] on two ex-

ample videos from their paper. Our model accounts for frame distortions such as skew

(left example) and local wobble (right example). More examples are included in the

supplementary video, which shows we achieve similar results on correcting rolling

shutter distortion as [38].

4.4.2 Quantitative Evaluation

To quantitatively evaluate and measure the result from different aspects, we define

three objective metrics.

Cropping and distortion Our first two metrics measure cropping ratio and global

distortion. We first fit a global homography at each frame between input video and

output video. We then compute the cropping ratio and distortion for each frame. The
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input frames [Grundmann et al. 2012] our results

Figure 4.9: Two rolling shutter removal examples using our method and [Grundmann

et al. 2012 [38]]. Our results are on par with that from [Grundmann et al. 2012 [38]].
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cropping ratio can be directly computed from the scale component of the homography.

There is one global cropping ratio for the whole sequence, and each frame provides

an estimation. We average these estimations at all frames as the final metric. The

distortion is computed as defined in Section 4.3.1. Because any distortion in a single

frame will destroy the perfection of the whole result, we choose their minimum across

the whole sequence as the final metric. This “worst-case” metric allows us to easily

see whether the whole result video is completely successful. For a good result, both

metrics should be close to 1.

Stability The third metric measures the stability of the result. Designing a good

metric is non-trivial because it is hard to compare two different videos. We suggest

an empirically good metric using frequency analysis on estimated 2D motion from a

video. Our basic assumption is that the more energy is contained in the low frequency

part of the motion, the more stable a video is.

Computationally, we estimate our bundled camera paths to approximate the true

motion (optical flow) in a video. We do not smooth out anything after the estimation.

Then, we extract translation and rotation components from each path. Each compo-

nent is a 1D temporal signal. Finally, we evaluate the energy percentage of the low

frequency components (expect for DC component) in these 1D signals to measure the

stability.

Specifically, we take a few of the lowest (empirically set as from the 2nd to the 6th)

frequencies and calculate the energy percentage over full frequencies (excluded by the

DC component). Similar to the distortion, we take the smallest measurement among

the translation and rotation as the final metric. For a good result, the metric should

approach 1 here as well.
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4.4.3 Comparison with Publicly Available Results

The purpose of this comparison is to test whether our results are comparable with (if

not better than) previous “successful” results in [56, 57, 35, 39]. We collect eleven test

videos from these papers (thumbnails in Figure 4.10), and compare our results with

their published results (all from authors’ project webpages).

Overall, all methods generate similar stability both subjectively and quantitatively

(Figure 4.10) on these examples, while our results are slightly better on some videos

in terms of cropping ratio and distortion.

For video (2)-(4), 3D stabilization [56] achieves the best stability and distortion

scores. It suggests that 3D methods are the first choice (in term of stability and distor-

tion error), when the 3D motion can be successfully estimated. Although our results

are slightly worse in stability, the visual difference is quite small (please verify from the

supplementary video). Furthermore, the aggressive smoothing in 3D methods some-

times leads to an output FOV that is too small as demonstrated by the cropping score.

Our method manages to provide a good trade-off. For video (5-9), [57], [35], and our

method achieve similar stability, while our method is slightly better in cropping and

distortion. For video (10-11)1, our method outperforms the L1-optimization [39] in

stability (slightly), cropping ratio, and distortion scores.

Figure 4.11 highlights the most challenging video (10) in this dataset. Liu et al. [57]

refer this example as a failure case because a single subspace cannot account for the

feature trajectories on both the face and the background. Their results have visible

distortion. [39] produced better result on this example. But in the video result, we still

observe large temporal distortion on the background region. (See our accompanying

1To better measure stability on background motion (caused by camera shake), we use a manual

foreground mask to exclude foreground motion.

60



1 2 3 4 5 6 7 8 9 10 11 

st
ab

ili
ty

 
cr

op
pi

ng
 

di
st

or
tio

n 

[Liu et al. 2009] [Liu et al. 2011] [Goldstein and Fattal 2012] [Grundmann et al. 2011] Ours 

0.5
0.6
0.7
0.8
0.9

1

0.5
0.6
0.7
0.8
0.9

1

0.5
0.6
0.7
0.8
0.9

1

Figure 4.10: Quantitative comparison with existing stabilization techniques on pub-

licly available data.

[Liu et al. 2011]input our result

Figure 4.11: Comparison with a failure case of prior methods.

video.) In comparison, our method can successfully handle this example (achieve best

in terms of all three metrics) because the warping-based motion model can represent

this complicated motion.

4.4.4 Comparison with the State-of-the-Art Systems

Due to no publicly available implementation of previous works, we compare our sys-

tem with two well-known commercial systems – YouTube Stabilizer and ‘Warp Stabi-

lizer’ in Adobe After Effects CS6. The YouTube Stabilizer is based on the combination

of the L1-norm path optimization [39] and homography mixtures [38]. The ‘Warp Sta-
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bilizer’ in Adobe After Effects is largely based on subspace stabilization [57]. We

understand that commercial products are often different from a given research sys-

tem. But we believe these two systems represent the essential elements of research

conducted in this field, and the comparison makes sense for examining strengths or

weaknesses and robustness (for various videos using a set of fixed parameters) of our

system.

Dataset We assemble a comprehensive dataset of 174 short videos (10 ∼ 60 sec-

onds) from previous publications, Internet, and our own captures. To know the strength

and weakness of a method in different situations, we roughly divide our data into 7

categories based on camera motion and scene type. They are: (I) simple, (II) quick ro-

tation, (III) zooming, (IV) large parallax, (V) driving, (VI) crowd, and (VII) running.

YouTube Stabilizer is a parameter-free online tool. But ‘Warp Stabilizer’ is an

interactive system, and the user might carefully tune a few parameters. Here, we wish

to examine its robustness as an automatic tool by fixing its parameters. We use the

example videos in [57] to decide the best parameters. Finally, we choose the default

parameters (smoothness: 50%, ‘Smooth Motion’ and ‘Subspace Warp’) to produce

results.

Quantitative Comparison For each category, we compute the average metrics and

standard deviation of three systems (Figure 4.12 (a)). We discuss the results with

regard to each system in detail below.

All three systems perform well in category (I) “simple”, since this category contains

videos with relatively smooth camera motion and mild depth variations. Though our

method has a minor advantage, the users can safely choose any of three to get a desired
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result.

Among the remaining categories, we want to highlight the category (IV) “large

parallax”. The three systems achieve similar stability, while our system is clearly

better in terms of distortion. We show two examples in Figure 4.12 (b) and (c) for

visual comparison of our system and the YouTube Stabilizer. These examples show

the limitation of a 1D array of homography mixtures – it cannot model depth changes

in horizontal direction. Warp Stabilizer also generates some shearing/skewing artifacts

in some video frames, though in principle this 3D method should be able to handle

parallax. Figure 4.12 (d) shows such an example (please note the shearing of the

bookshelf). This is probably due to the subspace analysis failure caused by occlusion.

Our method succeeds in all of these examples. Comparison in this category clearly

demonstrates the advantages of our warping-based motion model in dealing with a

large parallax.

Categories (II–III) contain quick rotation or zooming, which are challenging cases

for methods requiring long feature tracking. ‘Warp Stabilizer’ often generates signif-

icant cropping. Figure 4.12(e) is such an example. To alleviate this problem, we try

to interactively tune its smoothing parameters. When applying a weaker smoothing,

however, we find its result becomes shaky. In comparison, our method generates sta-

ble results with much less cropping. For categories (V–VII), the three systems generate

similar stability levels (‘Warp Stabilizer’ is slightly better in category VII), while our

system is consistently better with respect to either cropping ratio or distortion control.

We notice that our method generates relatively smaller standard deviations of the

three metrics for all categories. It suggests that our method generates more consistent

results from various inputs.
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User Study We further conduct a user study with 40 participants to evaluate and

compare our method with the YouTube Stabilizer and the ’Warp Stabilizer’ in Adobe

AfterEffects CS6. Every participant is required to evaluate results on 28 different input

videos (randomly sampled from our dataset), in which there are 4 videos for each cate-

gory mentioned above (The 4 video are prepared in the way that two of them compare

our result to YouTube Stabilizer, and the other two to ’Warp Stabilizer’). In the user

study, we use the scheme of forced two-alternative choice. Every participant is asked

to pick a better one between the results of our method and YouTube Stabilizer, or be-

tween the results of our method and the ’Warp Stabilizer’. These videos are displayed

to the subjects in a random order. The subjects are unaware of the video categories.

Neither do they know which technique is used to produce the stabilized results. Fig-

ure 4.13 (a) shows such an interface for the user study. The original video is displayed

on the top. The two stabilized ones are shown side-by-side below. Users can simul-

taneously play input video and both two results to better examine the difference. And

these videos can be played back and forth, or be paused at a certain frame to help users

carefully make their decision. The user can also play each of these videos individually

to examine their quality without other distractions. We ask users to disregard differ-

ences in aspect ratio, or sharpness since each one may undergo different video codecs

or further post-processing which makes uniform treatment difficult.

The user study results are shown in Figure 4.13 (b). For each category, we show

the average percentage of user preference. In general, the majority of all users showed

significant preference towards our results when compared to any of the other two sys-

tems respectively. In particular, the participants prefer the overall quality of our results

for category (IV) “large parallax” over YouTube Stabilizer (72% vs. 28%) and ‘Warp

Stabilizer’ (69% vs. 31%). The result is consistent with our metric evaluation. For
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category (II–III) containing quick rotation or zooming, users show a strong bias in

preference toward our results over ‘Warp Stabilizer’ (93% vs. 7% for rotation, 83%

vs. 17% for zooming). This is possibly due to the significant cropping in the results of

’Warp Stabilizer’. For categories (V–VII), more participants prefer our results to the

other two systems, although the three systems generate similar stability levels accord-

ing to our stability metric. It is likely because of the superior distortion and cropping

control in our method. In category (I) “simple”, users express similar preference to-

ward three results.

After the user study, we also ask all participants to articulate the criteria for their

feedbacks. We conclude the main criteria for unacceptable videos: 1) the video gets

a smaller field of view or even contains frames with visible empty (black) area; 2)

the video presents structure distortions in individual frames; 3) the motions in some

video frames vibrate or oscillate; 4) the scene transition looks abrupt or not smoothed

in the video. From these criteria, our proposed metrics can be partially related with hu-

man preferences. And both quantitative evaluation and user study results consistently

indicate our system performs better than the other two systems.

4.4.5 Limitations and Discussion

We find that when 3D reconstruction is successful, 3D methods often generate the best

results. However, our system is more robust as we do not require feature tracking,

and it produces comparable or only slightly worse results. It is interesting to note that

our adaptive path optimization can also be applied to path smoothing for 3D meth-

ods [56, 57, 35], which often use low-pass filtering (Gaussian smoothing), or curve

fitting for path planning. In comparison, our adaptive camera path smoothing tech-
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nique can automatically adjust the smoothness strength by considering discontinuity

and distortion. We show such an example video on our project webpage.

There are cases where the warping-based motion model fails to handle severe oc-

clusions or dis-occlusions, especially when combined with rolling shutter effects. Our

warping-based motion model chooses a large α to enforce strong coherence between

grid cells. In this way, we can minimize the geometrical distortion, but at the same

time, we sacrifice motion accuracy and eventually the stability of the result. In general,

we find geometrical distortion is more disruptive than some slight remaining jitters.

Our path optimization does not strictly follow cinematography rules, which may

be desirable in certain applications. But our discontinuity-preservation optimization

produces visually pleasing results in most examples. If necessary, we could apply the

strategy in [32] as a post-process to solve this problem. We also do not deal with mo-

tion blur. Sometimes, the stabilized results contain visible blur artifacts. This problem

can be addressed by the recent work [20].

4.5 Conclusion

We have presented a new 2D video stabilization method with a bundled camera paths

model. The proposed method can simultaneously generate comparable results to 3D

methods while keeping merits of 2D methods. Using image warping techniques for

motion representation is an interesting finding. In the future, we would extend this

kind of representation to other video-based applications.
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Figure 4.12: Comparisons with two popular systems: YouTube Stabilizer and Adobe

After Effect “Warp Stabilizer”. Top: quantitative comparisons by three metrics: crop-

ping (C), distortion (D) and stability (S). Bottom: some sample video frames for visual

comparisons.
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Figure 4.13: (a) Pair-wise comparison interface for user study. (b) User study results

by comparing our method with two popular systems: YouTube Stabilizer and Adobe

After Effect “Warp Stabilizer”.

68



Chapter 5

SteadyFlow: Spatially Smooth Optical

Flow for Video Stabilization

5.1 Introduction

Video stabilization results heavily rely on the adopted motion model. Some meth-

ods assume a parametric 2D motion model (such as homography [65] or a mixture

of homography [38, 61]) between consecutive frames. These methods are robust but

have limited power to deal with spatially variant motion. Feature trajectories pro-

vide more flexible non-parametric 2D motion representation. Some recent methods

[57, 35]achieve good stabilization results by smoothing feature trajectories. However,

dealing with feature trajectories is complicated. Feature trajectories are often spatially

sparse and unevenly distributed. They might end or start at any frame of the video.

Furthermore, obtaining long trajectories is hard in consumer videos (e.g.,due to rapid

camera panning or motion blur).

Dense 2D motion field (such as optical flow) is a more flexible and powerful motion
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model. When the optical flow is spatially smooth, we find that smoothing feature

trajectories can be well approximated by smoothing pixel profiles, which are motion

vectors collected at the same pixel location over time. In other words, we can smooth

pixel profiles instead of smoothing feature trajectories. No feature tracking is required.

All the pixel profiles begin at the first frame and end at the last frame. This is a

much desired property for robust stabilization of consumer videos. The optical flow

of a general video could be rather discontinuous, especially on moving objects and

strong depth edges. Therefore, we require to modify the raw optical flow to get a

SteadyFlow. The SteadyFlow is a close approximation of the optical flow, by enforcing

strong spatial smoothness, so that we can simply smooth the pixel profiles extracted

from the SteadyFlow to stabilize the original video. We initialize the SteadyFlow by

traditional optical flow and identify discontinuous motion vectors by a spatial-temporal

analysis. These discontinuous flows are removed and missing regions are filled in by

motion completion. We evaluate our method on different types of challenging videos.

The experiment results demonstrate the robustness of our technique.

5.2 SteadyFlow Model

In this section, we introduce the concept of pixel profiles. We will further explain

why a shaky video can be stabilized by directly smoothing the pixel profiles of the

SteadyFlow. Then we demonstrate the SteadyFlow model and the advantages over

feature trajectories.
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Figure 5.1: Feature trajectory vs. pixel profile. A feature trajectory tracks a scene point

while a pixel profile collects motion vectors at the same pixel location.

Figure 5.2: A simple static scene (from [35]) with gradual depth variations and its

optical flow. This video can be stabilized by smoothing all the pixel profiles extracted

from its optical flow.

5.2.1 Pixel Profiles vs. Feature Trajectories

A pixel profile consists of motion vectors collected at the same pixel location. In

comparison, a feature trajectory follows the motion of a scene point. Figure 5.1 shows

a feature trajectory and a pixel profile starting at the pixel A in frame t−1. The feature

trajectory follows the movement from pixel A in frame t− 1 to pixel B in frame t, and

then to pixel C in frame t + 1. In comparison, the pixel profile collects motions at a

fixed pixel location A over time.
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Figure 5.3: Histogram of the difference between feature trajectories and pixel profiles

on static backgrounds and dynamic objects.

5.2.2 Stabilization by Smoothing Pixel Profiles

We begin with a simple example. Figure 5.2 shows an video of static scene with

gradual depth changes. Its optical flow is spatially smooth as shown on the right side.

We simply smooth all the pixel profiles extracted at every pixel location (the technique

of smoothing will be presented in Section 5.4). In this way, we can obtain a well

stabled output video. This suggests that a video can be stabilized by smoothing pixel

profiles.

To understand that, we examine 108 videos in a publicly available dataset1. We

compute optical flows between all consecutive frames on these videos. We also run a

KLT tracker[63] to all videos to get feature trajectories. We further manually mark out

moving objects in all video frames assisted by Adobe After Effect CS6 Roto brush. In

this way, we collect 14,662 trajectories on static backgrounds and 5,595 trajectories on

dynamic objects with the length no less than 60 frames. We compare the difference

between a feature trajectory and the pixel profile which begins from the starting point

1http://www.liushuaicheng.org/SIGGRAPH2013/index.htm
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of the trajectory. The difference is evaluated as the average of all motion vector differ-

ences between the feature trajectory and the pixel profile at corresponding frames. The

histogram of this difference for all trajectories is shown in Figure 5.3. In Figure 5.3(a),

we can see over 90% of feature trajectories on static backgrounds are very similar to

their corresponding pixel profiles (less than 0.1-pixel motion difference). This sug-

gests that smoothing the feature trajectories can be well approximated by smoothing

the pixel profiles. In comparison, as shown in Figure 5.3 (b), the difference between a

feature trajectory and its corresponding pixel profile is large on moving objects.

5.2.3 SteadyFlow

The analysis in Figure 5.3 (b) suggests that pixel profiles can be very different from

feature trajectories sometimes. In Figure 5.4 (a) and (c), we show two videos with

more complicated optical flow fields to study this problem further. As we can see,

the flow vectors are discontinuous on the walking person and strong depth edges. If

we smooth the pixel profiles of the raw optical flow, we observe severe image distor-

tions, as illustrated in the close-up views. This indicates that smoothing pixel profile

generates poor results on discontinuous flows.

We seek to modify the raw optical flow to get a SteadyFlow. The SteadyFlow

should satisfy two properties. First, it should be close to the raw optical flow. Second,

it should be spatially smooth to avoid distortions. With these properties, a video can be

stabilized by smoothing all its pixel profiles collected from the SteadyFlow. In Figure

5.4 (b) and (d), we show the results by smoothing the pixel profiles generated from the

SteadyFlow (shown on the right side). The results are free from artifacts.

Note that a simple Gaussian smoothing of the raw optical flow is insufficient, as the
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(a) smoothing pixel profiles collected from raw optical flow (with dynamic object)

(b) smoothing pixel profiles collected from our SteadyFlow 

(d) smoothing pixel profiles collected from our SteadyFlow 

(c) smoothing pixel profiles collected from raw optical flow (with depth edge)

Figure 5.4: Comparisons between optical flow and our SteadyFlow. (a) and (c): On

the left side, we show the videos stabilized by smoothing the pixel profiles according

to the raw optical flow. Please see the distortions highlighted in close-up views. The

optical flow field is visualized on the right side. (b) and (d): Corresponding results

according to our SteadyFlow.
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smoothing will propagate the motions on the moving objects to the background, which

decreases the frame registration accuracy and generates temporal wobbles nearby the

moving object. Instead, we identify, discard discontinuous flow vectors, and fill in

missing flows to satisfy the two desired properties of SteadyFlow. The details will be

presented in Section 5.3.2 and Section 5.3.3.

5.2.4 Advantages over Feature Trajectories

In video stabilization, the pixel profiles are superior to the feature trajectories for sev-

eral reasons. First, the pixel profiles are spatially and temporally dense. In comparison,

feature trajectories are sparse, unevenly distributed, and would reach out of the video

frame. So it is much harder to design a good filter to smooth feature trajectories. Sec-

ond, accurate long feature trajectories are difficult to obtain. Though we might get

dense feature trajectories by frame-by-frame tracing optical flow, these feature trajec-

tories suffer from significant drifting errors [21]. Third, smoothing feature trajectories

independently would introduce severe distortions. Some extra constraints (e.g. sub-

space projection [57]) are required before smoothing. In comparison, as we will see

later, pixel profiles can be smoothed individually as long as the flow field is spatially

smooth.

Pixel profiles rely on the quality of optical flows. Optical flow estimation is often

imprecise at textureless regions and object boundaries. In most of the time, textureless

regions have few structure, so that they introduce little visible distortions. The inaccu-

racy of flows at object boundaries is largely alleviated by our discontinuity abolition

and motion completion.
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          Motion Completion

       Pixel Profile Stabilization

Rendering Final Result
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Figure 5.5: Pipeline of SteadyFlow stabilization.

5.3 SteadyFlow Estimation

Our stabilization system pipeline is illustrated in Figure 5.5. We first initialize the

SteadyFlow by a robust optical flow estimation. To enforce spatial smoothness, we

then identify discontinuous motion vectors and overwrite them by interpolating the

motion vectors from neighboring pixels. Then, pixel profiles based stabilization is ap-

plied on the SteadyFlow. We adopt an iterative approach to increase the accuracy

of SteadyFlow estimation. The final result is rendered according to the stabilized

SteadyFlow.
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5.3.1 Initialization

We initialize the SteadyFlow with a robust optical flow estimation. We first estimate a

global homography transformation from the matched KLT features [63] between two

video frames. We align them accordingly, and then apply the optical flow algorithm

described in [53] to compute the residual motion field. The SteadyFlow is initialized

as the summation of the residual optical flow and the motion displacements introduced

by the global homography.

5.3.2 Discontinuity Identification

A possible solution to detect different motions is to adopt the motion segmentation

techniques [74]. However, motion segmentation itself is a difficult problem. Many

methods require long feature trajectories. Though there are two-frame-based motion

segmentation techniques[23, 68], typically it is still challenging to deal with large fore-

ground objects due to insufficient motion contrast between neighboring frames.

In Figure 5.6, we show the limitation of a recent motion segmentation method

[12] on a shaky video. The left-side portions of background features are incorrectly

assigned to the foreground face.

We introduce a novel spatial-temporal analysis to identify pixels with discontin-

uous flow vectors. These pixels are viewed as ‘outlier’ pixels. We use an outliers

mask Mt(p) to record if pixel p at frame t is ’outlier’ (e.g. Mt(p) = 0) or not (ie,

Mt(p) = 1). In the spatial domain, we threshold the gradient magnitude of raw op-

tical flow to identify discontinuous regions. Once the magnitude at p is larger than

the threshold (0.1 in our experiment), p is considered as ’outlier’. The spatial analysis

can only detect boundary pixels on moving objects, because the motion vectors within
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(a) input frame (b) motion segmentation result

Figure 5.6: Failure of motion segmentation. (a) a sample input video frame. (b) the

motion segmentation results by [12]. Points in the same color are segmented together.

a moving object is often coherent, though they are different from the motions on the

background. Therefore, we will further adopt a temporal analysis to identify them.

The temporal analysis examines the accumulated motion vectors ct(p) =
∑

t ut(p),

where ut(p) is the motion vector on pixel p at frame t, to decide if p is ‘outlier’. It is

based on the observation that, in a stable video, the accumulated motion vectors ct(p)

should be smooth over time, except on moving objects and strong depth edges. Fig-

ure 5.19 shows a stabilized video and the accumulated motion vectors at two pixel

positions. The pixel (marked by a white star) always lies on the static background.

Its accumulated motion vectors generate a smooth trajectory over time (shown in Fig-

ure 5.19 (b)). In comparison, as shown in Figure 5.19 (a), the trajectory of accumulated

motion vectors at the other pixel (marked by a white dot) has significant amount of high

frequencies at the beginning, because a moving person passes through that pixel in the

first few frames. Its trajectory becomes smooth when the person moves away. We
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compute the outlier mask Mt(p) as:

Mt(p) =

⎧⎪⎨
⎪⎩

0, (‖ct(p)− G⊗ ct(p)‖ > ε)

1, otherwise.
(5.1)

where G is a Gaussian filter (with default standard deviation 3) and ε uses adaptive

threshold (described in Section 5.3.4).

5.3.3 Motion Completion

We collect all the pixels with discontinuous motions to form a outlier mask. Motion

vectors within the mask are discarded. We then complete it in a similar way as [60]

by the ‘as-similar-as-possible’ warping [56, 57]. Basically, we take the pixels on the

mask boundary as control points, and fill in the motion field by warping 2D meshes

grids with the grid size 40 × 40 pixels. Mathematically, it amounts to minimizing the

energy E(V ) = Ed(V )+Es(V ). We take the same smoothness Es as described in [56]

to maintain the rigidity of the grid. The data term Ed is defined as:

Ed(V ) =
∑

p
M(p) · ||V πp − (p+ up)||. (5.2)

Here,the grids vertices are indicated by V . The vector up is the initial optical flow at

the pixel p, such that (p, p + up) form a pair of control points. The parameter πp is

the bilinear coordinate, e.g. p = Vpπp, where Vp is the 4 grid vertices enclosing p.

For more detailed explanation and justification, please refer to [60, 56]. This energy is

minimized by solving a sparse linear equations system. We use bilinear interpolation to

compute the motion vector of every pixel according to the motion of the grid vertices.
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(a) original frame (b) raw flow

(c) meshes for motion completion (d) our SteadyFlow

Figure 5.7: Example of motion completion. (a) A frame from input video. (b) The raw

optical flow. (c) Warped mesh estimated from background samples. The white region

shows the outlier mask. (d) SteadyFlow after rewrite the discontinuous motion vectors.

Figure 5.7 shows the estimated SteadyFlow. The missing regions in the flow field

(white regions in Figure 5.7 (c)) corresponds to dynamic objects,depth edges (e.g.

flows on tree branches) and image boundary pixels with inaccurate raw optical flows.

The motion vectors in the missing regions are interpolated from their neighboring pix-

els. In this way, we generate the SteadyFlow as shown in Figure 5.7 (d).

The raw optical flow field might also be smoothed by strong Gaussian smooth.

However, Gaussian smooth propagates the foreground motion to background pixels.

This makes the frame registration fail at background and causes strong temporal wob-

ble artifacts in the stabilized video.
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5.3.4 Iterative Refinement

Note that our temporal analysis for the estimation of outliers mask requires a stable

video. As shown in Figure 5.19 (c) and (d), the trajectories generated on the original

shaky video is discontinuous everywhere. In practice, we obtain an initial outlier mask

Mt estimated from the shaky video only by spatial analysis of discontinuous flow vec-

tors. Then we apply an iterative scheme to alternatively refine the outlier mask Mt. At

each iteration, the first step is to exclude outliers and fill in the missing regions of the

input SteadyFlow according to the mask Mt. The motion completion is described in

Section 5.3.3. The second step is to stabilize the SteadyFlow, which will be described

in Section 5.4. In the third step, the stabilized SteadyFlow is then used to further refine

Mt by temporal analysis of discontinuous flow vectors as described in Section 5.3.2.

Since our temporal analysis is more suitable for stable videos, we may consider adap-

tive threshold (1 + α1/n)ε used in Equation 5.1 to assign a conservative threshold in

the beginning. Here, n is the iteration index and α = 20, ε = 0.2 is used in our experi-

ment. We iterate the whole three steps to finally generate the stabilized result. We use

5 iterations in our experiments empirically.

5.4 Pixel Profiles based Stabilization

We here derive the stabilization algorithm that smoothes the pixel profiles extracted

from the SteadyFlow. Let Ut , St be the SteadyFlow estimated from frame t to frame

t − 1 in the input video and stabilized video respectively. The smoothing is achieved
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by minimizing the following objective function similar to [61]:

O({Pt}) =
∑
t

(
‖Pt −Ct‖2 + λ

∑
r∈Ωt

wt,r‖Pt −Pr‖2
)
, (5.3)

where Ct =
∑

t Ut is the field of accumulated motion vectors of the input video.

Similarly, we have Pt =
∑

t St of the stabilized video. The first term requires the

stabilized video staying close to its original to avoid excessive cropping, while the

second term enforces temporal smoothness.

There are three differences from path optimization in [61]. First, since SteadyFlow

itself enforces strong spatial smoothness, we do not require any spatial smoothness

constraint in Eqn 5.3. Second, the weight wt,r only involves the spatial Gaussian func-

tion wt,r = exp(−||r − t||2/(Ωt/3)
2) rather than a bilateral weight. To adaptively

handle different motion magnitudes, we adopt an adaptive temporal window Ωt in

our smoothing (to be discussed in Section 5.4.1). Third, the P and C here are non-

parametric accumulated motion vectors instead of parametric models (e.g. homogra-

phies).

Likewise, we can further obtain iterative solution by:

P
(ξ+1)
t =

1

γ

(
Ct + λ

∑
r∈Ωt,r �=t

wt,rP
(ξ)
r

)
, (5.4)

where the scalar γ = 1 + λ
∑

r wt,r and ξ is an iteration index (by default, ξ = 10).

After optimization, we will warp the original input video frame to the stabilized frame

by a dense flow field Bt = Pt − Ct. We can further derive the relationship between
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Ut

Bt-1 Bt

St

Figure 5.8: Flow fields in our stabilization. Ut present SteadyFlow between input

frames; Bt represent warping from input frame to output frame; St represent flow field

between output frames.

Bt and Ut, St as:

Ut +Bt−1 = Bt + St ⇒ St = Ut +Bt−1 −Bt. (5.5)

5.4.1 Adaptive Window Selection

Our smoothing technique requires a feature trajectories to be similar to its correspond-

ing pixel profile within the temple window Ωt. We adaptively adjust the size of Ωt to

deal with motion velocity changes in the video. Specifically, as shown in Figure 5.9,

the SteadyFlow is assumed to be spatially smooth within a window (denoted by the
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t t+1 t+rt-1t-r . . . . . .

A
dt-r

dt+r

Figure 5.9: Estimation of adaptive temporal window size Ωt in Equation 5.3. The

window size Ωt is selected such that the feature trajectory (denoted by the red line) is

always within the predetermined yellow box.

yellow box) of the size(2τ + 1) × (2τ + 1), centered at pixel A. Within the win-

dow, smoothing the feature trajectory (denoted by the solid red line) can be well ap-

proximated by smoothing the pixel profile (denoted by the dish blue line). Once the

trajectory goes outside the window, e.g. dt−r > τ (τ = 20 in our implementation),

it would introduce non-negligible errors to the approximation. So we estimate Ωt for

each pixel in a pixel profile to ensure the feature trajectory started at that pixel is within

(2τ + 1) × (2τ + 1) for all frames in Ωt. The feature trajectory here is approximated

by tracing the optical flows. For instance, in Figure 5.9, the window for point A is

Ωt(A) = [t − 1, t + r]. To avoid spatial distortion, it is necessary to choose a global

smooth window Ωt for all pixels in the frame t. So we take the intersection of the win-

dows at all pixels to determine the final temporal support for frame t. With the help of

dynamic window, we can handle videos with quick camera motion e.g. quick rotation,

fast zooming.
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5.5 Results

We evaluated our method on some challenging examples from publicly available videos

in prior publications to facilitate comparisons. These example videos include large par-

allax, dynamic objects, large depth variations, and rolling shutter effects.

Our system takes 1.5 second to process a video frame (640 × 360 pixels) on a

laptop with 2.3GHz CPU and 4G RAM. The computation bottleneck is the optical

flow estimation (1.1 second per frame), which could be significantly speed up by GPU

implementations. Our outliers mask estimation takes 0.34 second on each frame. It is

independent per-pixel computation and can be parallelized easily.

Videos with Large Dynamic Objects This is a challenging case for previous 2D

video stabilization methods. A large portion of corresponding image features are on

the foreground moving objects. Previous methods often rely on RANSAC to exclude

these points to estimate the background 2D motion.

Figure 5.10 shows a synthetic example. We compared our method with a simple

2D technique that adopts homography fitting with RANSAC for motion estimation. In

Figure 5.10 (a), we can see that RANSAC cannot exclude all the outliers, which cause

distortions in the results as shown in (c). In comparison, our SteadyFlow estimation can

exclude all the undesirable motion vectors on the foreground object (see Figure 5.10

(b)) and produce better stabilization result in (d). To further know how our SteadyFlow

estimation extract outlier masks for this example, Figure 5.11 shows the intermediate

masks at each iteration.

In addition, we borrow four videos (shown in Figure 5.12) with remarkable dy-

namic objects from [57], [35] and [61], which are reported as failure cases. The large

moving object (a person) in the first video (shown in Figure 5.12 (a)) breaks feature
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trajectories, and makes feature-track-based method (like [57]) fail. The examples in

Figure 5.12 (b) and (c) clearly consist of two motion layers. For both examples, our

method can identify distracting foreground objects despite their large image size. This

ensures a successful SteadyFlow estimation and superior stabilization results. The

recent ‘Bundled-Paths’ method [61] fits a 2D grid of homographies to model more

complicated 2D motion. This method enforces stronger spatial smoothness at dynamic

scenes, which reduces their model representation capability. Thus, it produces artifacts

on the example shown in Figure 5.12 (d). In comparison, our SteadyFlow is power-

ful to exclude dynamic objects and can maintain the ability of modelling complicated

motion. As a result, we can produce better results.

Videos with Large Depth Change We further evaluate our method on two videos

with large depth changes, one video come from [56] and another captured by ourselves.

Our 2D method achieved results of similar visual quality to 3D method. The video

thumbnails are shown in Figure 5.13. We compared our results with that of a traditional

2D method [64] (using our implementation). As can be seen from the accompany

video, the results from [64] contain jitters at some image regions. We further compare

with indoor videos captured by Kinect[60].

Videos Captured by Kinect An additional depth camera simplifies the stabilization

problem as demonstrated in [60]. It produces superior stabilization results to other

methods on challenging indoor videos with large depth variations. We applied our

method on two videos from that paper (see sample frames in Figure 5.14). For both

examples, we only used the RGB video as the input and achieved comparable results

as reported in [60].
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(a) (b)

(c)

(d)

Figure 5.10: Comparison with single homography based stabilization. (a) Inliers after

RANSAC based homography fitting. (b) Inlier motion vectors after our outlier mask

detection. (c) and (d) are results from the single homography based method and our

method respectively.

Videos with Rolling Shutter Effects Rolling shutter effects of CMOS sensors cause

spatial variant motions in videos. Our method can model rolling shutter effects as spa-

tially variant high frequency jitters. It can simultaneously rectify rolling shutter ef-

fects when smoothing camera shakes. Figure 5.15 shows two rolling shutter videos

borrowed from [38]. Our method produced similar quality as other state-of-art tech-

niques [5, 49, 38, 61].

Comparison with State-of-art System We further compared our system with two

well-known commercial systems on our captured videos. One system is the YouTube

Stabilizer, which is built upon the L1-optimization method [39] and the homography
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Input 1st iteration 2nd iteration

3rd iteration 4th iteration 5th iteration

Figure 5.11: Estimated masks during each iteration of optimization on a synthetic

example.

mixture method [38]. We uploaded our videos to YouTube and downloaded the au-

tomatically stabilized results. Another system is the Adobe After Effects CS6 ‘Warp

Stabilizer’, which is based on the subspace stabilization method [57]. Since it is an

interactive tool, we try our best to generate results with the best perceptual quality.

Figure 5.16 shows the comparison with YouTube Stabilizer. We can see remark-

able structure distortions at the pole, which has discontinuous depth changes. In com-

parison, our SteadyFlow estimation masks out these depth changes and fill in by the

neighboring motions. Thus our result is stable and free from distortions.

Figure 5.17 shows the comparison with the ‘Warp Stabilizer’ in After Effects CS6.

In this example, the moving train makes the feature-trajectory-based subspace anal-

ysis fail. As a result, shearing/skewing distortions are visible in their result. Our

SteadyFlow estimation excludes motion vectors on the train to obtain a spatially co-

herent motion field for stabilization. Our result is free from distortions, though it might

not be physically correct.

88



(a) (b)

(c) (d)

Figure 5.12: Failure examples reported in (a) and (b) Subspace stabilization [57], (b)

Epipolar [35], (d) Bundled-Paths [61].

Limitation During the experiment, we noticed that the size of the foreground is cru-

cial to a successful result. Our spatial-temporal analysis fails to distinguish foreground

and background when videos contain dominant foreground objects. These objects con-

sistently occupy more than half area of a frame and exsit for a long time. The stabi-

lization will be applied on the foreground instead of background, or keep switching.

Figure 5.18 shows two failure cases.
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Figure 5.13: Two videos with large depth change for the comparison with traditional

2D stabilization.

Figure 5.14: Two test videos borrowed from [60].

Figure 5.15: Two rolling shutter videos borrowed from [38].
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(a) YouTube result (b) our result

Figure 5.16: Comparison with YouTube Stabilizer. The red arrow indicates structure

distortions in YouTube results.

(a) ‘Warp Stabilizer’ result (b) our result

Figure 5.17: Comparison with Adobe After Effects CS6 ‘Warp Stabilizer’. We can

notice the global shearing/skewing in ‘Warp Stabilizer’ results.

Figure 5.18: Failure cases. Videos contain dominant foreground.
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Figure 5.19: We identify discontinuous motion vectors by analyzing if the trajectory

of accumulated motion vectors on a pixel profile is temporally smooth. We show four

frames from a stabilized video. (a) and (b) are the trajectories of the accumulated

motion vectors evaluated at the pixels marked by white dot and white star. (c) and (d)

are the trajectories at the corresponding positions on the input video. The temporal

locations of these 4 frames are denoted in the trajectories by dots with the same color

as the frame border.
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5.6 Conclusion

We propose a novel motion representation, SteadyFlow, for video stabilization. Due

to the strong spatial coherence in the SteadyFlow, we can simply smooth each mo-

tion profile independently without considering the spatial smoothness [61] or subspace

constraint [60]. Our method is more robust than previous 2D or 3D methods. Its gen-

eral motion model allows stabilizing challenging videos with large parallax, dynamic

objects, rolling-shutter effects, etc.
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Chapter 6

Conclusions

6.1 Chapter Summaries

In this thesis, we have proposed several solutions to the problem of video stabilization.

In chapter 1, we introduced the problem of video stabilization and discussed the chal-

lenges related to this topic. We showed that the large depth variation and large moving

objects were challenging issues for camera motion estimation. We demonstrated the

importance of handling quick camera motions. We also introduced the rolling shutter

effects and motion blur as two common accompany issues related to video stabiliza-

tion. We further demonstrated the kind of artifacts caused by these challenges on

various video stabilization methods.

According to the adopted motion models, video stabilization methods can be cat-

egorized into 2D, 3D and 2.5D . In chapter 2, we revisited most related video stabi-

lization approaches based on these categories. The contribution of this thesis consists

of three novel methods, video captured by a depth camera, bundled camera paths and

SteadyFlow for video stabilization, with the first targets on depth camera and the latter
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two focus on casual shot videos by traditional hand-held devices. They are presented

in chapter 3,4 and 5.

Chapter 3 presented the method for video stabilization with a depth camera. We

studied two challenges in video stabilization, namely large depth changes in the in-

door environment which make 2D motion model imprecise and tracking failures which

cause 3D stabilization to fail. We proposed to use an additional depth sensor such as

a Kinect camera to address these challenging cases. Though the depth image is noisy,

incomplete and low resolution, it facilitates both camera motion estimation and frame

warping, which makes the video stabilization a better posed problem. We combined

color and depth images to robustly compute 3D camera motion. We matched 2D fea-

tures between neighboring frames, and used their depths to estimate relative camera

motion. We then smoothed the recovered 3D camera trajectories following cinematog-

raphy principles. For the novel view synthesize, we generated a dense non-linear mo-

tion field to combine 3D projection and 2D image warping.

Chapter 4 presented a new 2D video stabilization method with a bundled camera

paths model. The proposed method can simultaneously generate comparable results

to 3D methods while keeping merits of 2D methods. We proposed to use ’as-similar-

as-possible’ warping approach to model the motion between neighboring frames. We

divided frames into cells blocks, each of which contains its own camera path, thus all

the cells form a bundled camera paths on the whole video. This spatial variant mo-

tion representation could handle scenes with large depth variation. We also introduced

a path smoothing method to handle quick camera motion(e.g., quick camera rotation

and zooming). This adaptive-based smoothing strategy could find a good balance be-

tween stability and cropping size. The evaluation on a large variety of consumer videos

demonstrated the merits of our method.
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Chapter 5 presented a novel motion model, SteadyFlow, to represent the motion

between neighboring frames for video stabilization. A Steadyflow was a special op-

tical flow by enforcing strong spatial coherence. We proposed the concept of a pixel

profile which are motion vectors collected at the same pixel location in the SteadyFlow

over time. With strong spatial smoothness, a feature trajectory could be well approx-

imated by a pixel profile. Thus we could smooth pixel profiles to stabilize a video.

Compared to feature trajectories, pixel profiles were spatially and temporally dense

and could be smoothed independently without considering the spatial smoothness or

subspace constraints. We estimated optical flow between neighboring frames,which is

followed by a special-temporal analysis to exclude discontinuous depth and large mov-

ing objects. We then inpainted these regions by the surrounding optical flow to obtain

the SteadyFlow. We demonstrated the advantages of the SteadyFlow by stabilizing

challenging consumer videos with large parallax, dynamic objects and rolling-shutter

effects,etc.

6.2 Future Research

There are several future research directions for the work presented in the thesis. One

is robustly handling large moving objects. When video contains dominate foreground

objects, existing method fails to distinguish foreground and background. These objects

consistently occupy more than half area of a frame and exist for a long time. The

stabilization will be applied on the foreground instead of the background. Advanced

motion segmentation should be incorporated to work together with video stabilization

or some user interaction[4] are also favored to this problem.

Video blurring can severely influence the quality of feature matching or tracking. It
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also damages the quality of a stabilized video. Video deblurring[19] targets on turning

blurry frames into sharp ones. In fact, the blurring is ”amplified” when viewed in the

stabilized results. This is mainly due to the change of camera motion with unchanged

frame blur directions. In general, video stabilization and video deblurring are two

related problems. There are potentials that these two problems can be solved together.

It is also worth to explore the possibility to stabilize a video with the help of hard-

ware devices(e.g., gyroscopes[49]). Nowadays, video stabilization methods are either

purely based on software as a post processing method or based on hardware for real-

time applications. We can design some hybrid approaches to combine the benifits

from both. For realtime applications, we need to design a new path smoothing strategy

because we can only look at previous camera paths with unknown future frames.

Our mesh-based motion model described in the Bundled camera path[61] can be

used for other applications. In general, this motion model can be applied for problems

requiring image registration. For example, image/video denoising[13, 14, 16, 18, 54,

94, 93], super resolution[31, 78, 59, 55, 6, 28, 73, 8], content-aware resizing[88, 83, 84,

87, 89], HDR imaging[48, 36, 72, 80, 47] mosaics/panoramas[75, 77, 2, 3, 10, 30, 52].

On this note, we would like to conclude this thesis.
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