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Summary

Original and modified variants of the Ghost Solid Method (GSM) are pro-

posed for application to the boundary conditions at the solid-solid inter-

face of isotropic linearly elastic, as well as elastic-plastic materials, in a

Lagrangian framework. The methods are discussed for one dimensional as

well as two dimensional settings with slip and no-slip conditions. The ef-

fect of using different solvers for these methods is discussed. It is shown, in

the presence of the wave propagation through the solid-solid mediums, the

original GSM can lead to large numerical errors in the solution, either in

the form of large oscillations in stress and velocity at the interface, or signif-

icant deviations from the exact solution. A scheme for prediction of these

errors at the interface is also introduced. The other two variants of GSM

proposed, however, can remove the large numerical errors that may rise at

the interface. Numerous numerical examples in one and two-dimensional

settings are provided attesting to the viability and effectiveness of the GSM

for treating wave propagation at the solid-solid interface.
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Chapter 1

Introduction

Fluid Structure Interaction (FSI) modeling has gained significant interest

among the research community in recent years. FSI modeling has been

the subject of investigation in various areas, including but not limited to

offshore oil and gas exploration and production industries [3–9], aerospace

industries [10–15], geophysical wave propagation modeling [16–19], biomed-

ical fields [20–27], and many more.

Systems with fluid solid interactions, and in general multi-medium sys-

tems, may involve the presence of various phases of material, namely fluid

phase (liquid and gas), and solid phase. As a result, various interactions

can be considered: liquid-liquid, gas-liquid, gas-gas, fluid-solid, and solid-

solid interactions. Therefore, a robust, reliable, consistent, and coherent

approach that can numerically model all these interactions is highly desir-

able.
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CHAPTER 1. INTRODUCTION

Various research attempts have been made to obtain numerical methods

which can simulate multi-medium interactions [28–33]. Due to the presence

of mixed cells, existing multi-medium methods may have to make numerous

assumptions about the shape and behavior of the interface. For example,

the Volume-of-Fluid (VOF) method [34, 35], despite being a conservative

method, diffuses the interface. Level set method [36, 37] has been exten-

sively used [28,36–46] to preserve the interface sharp. However, this method

is intrinsically not conservative. There are other attempts for simulating

multi-medium problems such as the moment-of-fluid (MOF) methods [47],

interface reconstruction-VOF methods [48], or the phase-field method [49].

Single medium solvers have matured significantly over the years. Vari-

ous groups, in the research community, have implemented different single

medium solvers, and tested them for their specific fields of application. Any

technique that can reliably combine these single medium solvers, for multi-

medium problems, in a mathematically consistent manner can be regarded

as a significant development.

This work seeks to develop the Ghost Solid Methods (GSMs) to faith-

fully simulate and capture the boundary conditions at the interface for

the elastic-elastic and elastic-plastic solid-solid interaction problems. Once

combined with the Ghost Fluid Method counterparts, it shall be discussed

that this can facilitate a consistent and truly multi-medium modeling of

fluid and several layers of solid interaction using ghost nodes.
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CHAPTER 1. INTRODUCTION

The Ghost Fluid Method (GFM) was first proposed in a pioneering

work by Fedkiw et al. [2] for multi-material flows. The GFM can be easily

extended to multi-dimensions and be applied to fairly complex geometries.

The application of this method is simpler than other competing methods

such as the Immersed Interface Method [50–57], or even the Immersed

Boundary Method [58–61]. At the same time, the GFM keeps the solver

intact. Due to its inherent simplicity, the GFM became very popular among

the research community. To the date of the writing of this manuscript, this

pioneering work has been cited over a thousand times by various authors.

In Chapter 2, we will briefly review the major approaches to solve for

multi-medium problems. We will discuss various available methods and

their respective advantages and disadvantages. This can enable the reader

to appreciate the reason why the Ghost Solid Methods are the subject of

this study.

In Chapter 3, we will introduce the Ghost Solid Methods for the one-

dimensional elastic solids. Three variations of the method will be in-

troduced, namely the Original Ghost Solid Method (OGSM), the Modi-

fied Ghost Solid Method (MGSM), and the Double Riemann Ghost Solid

Method (DRGSM). It will be discussed that the OGSM, despite its simplic-

ity to implement, is highly problem related and can cause large numerical

errors. We will discuss the source of these errors. We will explain that

using a higher order solver, not only will not rectify the problem, but also

3



CHAPTER 1. INTRODUCTION

makes the problem even worse. The MGSM will be derived to minimize

these numerical errors. The DRGSM is designed after a GFM counter part.

However, it will be shown that it does not provide much benefit over the

MGSM. We will also present a very simple to use criterion, which we call

ϑ-criterion, to self-check the results obtained using the OGSM results.

In Chapter 4, we will extend the GSM methods to two-dimensional

settings for the elastic-elastic solid-solid interactions. We will explain that,

in multi-dimensions, the interfacial conditions can vary according to the

problem. We will explain two major (and idealized) conditions, namely

the no-slip and the perfect slip conditions. The implementation of the

GSMs for these conditions will be discussed. It will be shown that the

large numerical errors due to the OGSM are also present in the multi-

dimensions. Moreover, it will be shown that the ϑ-criterion can also be used

in multi-dimensions. Furthermore, in our numerical experiment section of

the chapter, we show the method applied to multi-dimensions. We show

the comparison of the developed methods against the analytical solution.

Moreover, convergence studies and error analysis of the results have been

included in the numerical studies.

In Chapter 5, we will develop the GSM methods for the elastic-plastic

solid-solid interactions. The discontinuities in elastic-plastic interactions

can be more complicated compared to the elastic-elastic interactions. It

will be shown, that the OGSM method can lead to large numerical errors
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for the elastic-plastic interactions just as well. Sometimes, these errors

are more severe compared to the elastic-elastic interactions, while at other

times they may be less pronounced. In either scenario, the ϑ-criterion can

successfully predict the stability or the large numerical errors due to the

OGSM. The MGSM method will be derived to minimize these large errors.

It is shown that the MGSM can successfully rectify the large numerical

errors due to the OGSM.

In Chapter 6, we develop the GSM methods for the elastic-plastic solid-

solid interactions in two-dimensional space. We will discuss the details

how these methods can be extended to multi-dimensional settings. More-

over, the two idealized interface conditions are studied for the elastic-plastic

solid-solid interactions. We will show that the OGSM results can also suf-

fer from large numerical errors for the case of elastic-plastic deformations.

The solution obtained using the OGSM, and MGSM results are compared

against the results obtained by the method proposed by Zwas [62]. The

error analysis and the convergence studies for the numerical experiments

in multi-dimension are presented in this chapter. The error analysis shows

that the solution obtained using the MGSM is monotonically convergent,

however, the accuracy of the results are less than first order.

In Chapter 7, we will summarize the findings in this work. In the end,

we provide a series of suggestions for future lines of research based on this

work.

5



Chapter 2

Literature Review

In this chapter, we will present a brief review of the multi-medium problems

and the methods generally used to treat the interfacial conditions. We will

go over the methods used for multi-medium interactions. Furthermore, we

will discuss the strong and weak points of these methods accordingly.

2.1 Coupling Approaches

Various methods have been developed by various researches for solving

multi-medium/interfacial problems. These methods may be significantly

varied. Schäfer suggested these approaches to be classified as either strong

or weak [63,64].

The term “weak coupling” refers to the partitioned approaches where

the solver for each field is independent of the other fields. The coupling is

achieved by passing the force and displacement between the solvers back

6
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and forth and trying to satisfy the interfacial conditions. This may be done

through an iterative predictor-corrector approach. This approach gives the

user the flexibility to use the solver of choice for each field.

The term “strong coupling” refers to monolithic approaches where the

solver is extensively modified such that the unknowns are calculated simul-

taneously for all the fields by properly constructing the coupled equations.

These methods are usually more stable, with higher convergence rates.

However, once implemented, it is not easy to change the solver for each

medium. Many approaches have also been proposed that are neither fully

monolithic and not completely partitioned: middle-ground approaches that

have the advantages of the both mentioned approaches. A schematic of this

classification can be seen in Fig. 2.1.

Fluid Solid

Weak Coupling

Strong Coupling

General Robust

Figure 2.1: A schematic of different coupling approaches and their characteristics.
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2.1.1 Weak Coupling Approaches

Weak coupling, or partitioned coupling, approaches are very popular as

they allow for the use of separate solver codes on each side of the inter-

face. As a result, these methods provide for a way to use readily available

solvers for each field as black-box solvers. This makes them very versa-

tile and can provide significant advantages in improving the efficiency of

the computational systems. It is proposed that the partitioned approaches

can themselves be categorized into “loose partitioned coupling approaches”

versus the “strong partitioned coupling approaches” [65].

Loose partitioned coupling, or sequentially staggered approaches, are

referred to the methods that implement a single step solution of each field

per time-step. This makes these methods very computationally efficient.

For instance, Flippa and Park proposed the formulation and computer im-

plementation of a loose coupling approach for two-field problems governed

by semi-discrete second-order coupled differential equations [66]. Their

approach can be applied to structure-fluid, structure-soil and structure-

structure interactions. However, despite their wider range of applicability

and their ease of implementation, it is noticed that these methods can lead

to numerical instabilities when the density ratio between the two fields

is significantly high. Moreover, it has been shown that these instabilities

can depend on the geometry of the solution domain [67–69]. It appears

that sequential coupling schemes, even if one uses implicit schemes to solve

8
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each field, have an inherent explicit characteristic [65]. Moreover, it has

been observed that the instability in these schemes cannot be overcome by

reducing the time-step as the instability is inherent to the scheme. This

inherent instability has been named ‘artificial added mass effect’ [65]. The

reason is that, for the sequentially staggered approaches, the interfacial

forces depend on the predicted interfacial displacements, rather than the

correct value of the interfacial displacements. Hence, the interfacial forces

always suffer from numerical errors which results in the instability of these

schemes.

To overcome the instability problems in sequentially partitioned schemes,

‘strong partitioned coupling approaches’ have been introduced. This is

achieved by iterating back and forth, between the solvers for each field,

to satisfy the interface conditions, in order to achieve higher accuracy and

stability in the solution. Karlo and Tezduyar [70] proposed a finite ele-

ment based method for 3D simulation of fluid-structure interactions. Their

fluid solver is based on the stabilized finite element formulation and the

structural dynamic solver is based on a Lagrangian description of motion.

They solve the non-linear equations iteratively. Wall et al. [71] proposed

a strong partitioned coupling approach for FSI problems with free surface.

They introduce an implicit partitioned free surface and they embed it in a

strong coupling FSI solver. They calculate the elevation by a dimensionally

reduced pseudo-structural approach. The stability of their method is com-
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parable to a fully implicit approach. See [21, 72–77] for other works which

have attempted to develop various strong partitioned coupled approaches.

2.1.2 Strong Coupling Approaches

Strong partitioned approaches are much more robust and powerful in com-

parison to the loose partitioned approaches. However, these methods may

require substantial numerical effort to obtain a converged solution in the

presence of added mass effects [78]. The efforts and the computational

needs required for these schemes have motivated the development of mono-

lithic schemes. In these schemes, all the unknowns are solved for, simulta-

neously. This means that the field solvers can no longer be decoupled. This

ensures that the computational requirements are minimal and the methods

remain stable.

Heil proposed a monolithic approach for the solution of large-displacement

fluids-structure problems by Newton’s method [79]. He proposes a block-

triangular approximation of the Jacobian matrix. Schur complement is

used as the preconditioner for the GMRES solver. He shows that although

the suggested preconditioners are not suitable for the Newton method, they

act efficiently for the GMRES iterative solver.

Hübner et al. developed a solution procedure for FSI problems [80].

They used the geometrically nonlinear elastodynamics model for the struc-

tural field, and assumed the fluid field to be governed by the incompressible

10
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Navier-Stokes. Then, they applied the space-time finite element method

to both fields to obtain a uniform discretization. Velocity variables were

used as dependent variables for both fields. They used a weighted residual

formulation to enforce the interface conditions. Their formulation enabled

them to solve the fluid, solid, and interfacial conditions in one single step.

They could obtain a very stable solution for strongly nonlinear interactions.

Bazilevs et al. [81] proposed a non-uniform ration B-splines-based iso-

geometric FSI formulation which couples the incompressible fluids with

non-linear elastic-solids. Their formulation is designed to allow for large

structural displacements. The resulting formulation is a fully coupled FSI

problem which can solve the fluid, structural, and interfacial unknowns in

a single step. They have successfully applied their method to problems

involving arterial blood flow to simulate the fluid-structure interactions in

these problems.

Liu et al. [82] have developed a second-order time accurate scheme for

solving FSI problems. They used the so-called Combined Field with Ex-

plicit Interface (CFEI) which advances the formulation based on the ALE

approach with finite element formulation. They showed that their method

is stable for any density ratio. This makes their method specially suitable

for problems with strong added mass effects. See [78,83,84,84–87] for more

works on the monolithic approaches.

Although monolithic approaches can provide stable solutions for a wide
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range of multi-medium problems, they require a single-step formulation of

the solution of the coupled problem. This does not allow for decoupling

of the fields. Consequently, matured solvers cannot be readily employed

to be used with monolithic approaches. Moreover, if one has already im-

plemented a certain field setup (e.g. incompressible fluid and elastic solid

interaction) it is not easy to change one field for another (e.g. change

incompressible fluid into compressible fluid) without changing the entire

formulation. Moreover, it is not easy to change the interfacial conditions

without changing the formulation itself. This makes the application of the

monolithic schemes confined to the problem that they are developed for.

2.1.3 Other Methods

Various attempts have been made to develop methods that are suitable

for multi-medium problems and at the same time need are not necessarily

fully monolithic or fully-partitioned approaches. This means that the fields

are decoupled using special techniques that will make the coupling more

stable, and at the same time, satisfy the interfacial conditions as accurately

as possible.

Zhang and LeVeque proposed an immersed interface method for the

acoustic wave equations with discontinuous coefficients [51]. In this method,

the acoustic wave is considered to be traveling through a heterogeneous me-

dia. They use high-resolution flux-limiter methods on a Cartesian grid. On

12
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the grid points which are far from the interface, standard finite difference

methods are used. For the computational cells which the interface passes

through them, tailor series expansions are applied and jump conditions are

satisfied over the tailor approximations to calculate derivatives and their

jumps. This enables them to construct the final discretization scheme. The

resulting scheme boasts a second order accuracy even when the interface is

not aligned with the grid. However, in order to calculate the coefficients one

needs to solve a system of equations. For example, for the acoustic equa-

tions in a 2D setting, a system of 54 unknowns needs to be solved. This

system of linear equations may also vary according to the jump conditions

at the interface which further complicates the method. See [50, 52, 53, 55],

for further details on the immersed interface method the.

In 2002, Peskin introduced the Immersed Boundary Method (IBM) for

fluid-solid interaction problems [59]. In that work, he develops the IBM for

the problems which involve Eulerian as well as Lagrangian variables. In

the method motivated by the IBM, the Eulerian variables are considered to

exist on a fixed Cartesian grid, while the Lagrangian variables are defined

on a curvilinear mesh that can freely move over the Cartesian Eulerian

grid. In such problems, the variables are derived from the principal of least

action are connected through a Dirac delta function. In the IBM method,

the interaction equations are satisfied using a smoothed Dirac delta func-

tion which introduces an approximation to the exact solution. Using this

13



CHAPTER 2. LITERATURE REVIEW

method the distinction between the fluid dynamics and the elasticity is

blurred. An important feature of the method is that the Eulerian and the

Lagrangian grids do not have to be related at all. Which makes this method

very desirable for FSI problems.

In 1979, Hirt and Nichols developed the Volume of Fluid (VOF) method

based on the concept of the fractional volume of the fluid [34]. VOF can

detect intersecting free boundaries automatically. Despite being a conser-

vative method, due to the averaging nature of the VOF, it tends to diffuse

the interface. In an attempt to recover the sharpness of the interface the

interface reconstruction-VOF method have been developed [48].

In 1982, Fix developed the Phase-Field Method (PFM) [49]. This

method was originally developed for the Stefan problems. In this method,

an auxiliary phase function is defined which can take two distinct values

in each phase. Hence, the interface is implicitly defined by the presence of

the phase function. Then, the interface conditions are captured implicitly

by introducing a set of partial differential equations to advance the whole

system including the phase-function. A characteristic of the phase-field ap-

proach is that the phase-function changes smoothly around the interface,

and can keep the interface sharp only in the limit.

Level set method [36, 37] has been extensively used [28, 36–46] to pre-

serve the interface sharp. The concept of the Level-set method is that an

auxiliary function is defined, were the level-set zero of this function repre-
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sents the interface in the problem. The interface movement is captured by

advancing the auxiliary function which is usually a signed-distance function

through a time marching PDE by using the velocity field as the extension

velocity. The level-set zero of the problem always represent the location of

the interface. This method can keep the interface very sharp, however, it is

intrinsically not conservative. Moreover, the level-set function after some

time marching, for problems with high deformation looses its quality and

needs to be reconstructed.

2.1.4 The Ghost Fluid Methods

In a pioneering work, Fedkiw et al. [2] introduced the Ghost Fluid Method

(GFM) for multi-material flows. The GFM can be easily extended to

multi-dimensions and be applied to fairly complex geometries. The ap-

plication of this method is simpler than other competing methods such as

the Immersed Interface Method [50–57], or even the Immersed Boundary

Method [58–61]. At the same time, the GFM keeps the solver intact like

staggered approaches. Due to its inherent simplicity, the GFM became

very popular among the research community. To the date of the writing

of this dissertation, this pioneering work has been cited over a thousand

times by various authors. Subsequently, another version of the method was

developed in particular for gas-water flow by Fedkiw [88]; this is nominally

referred here to as the gas-water GFM. To facilitate subsequent discussion,
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the above-mentioned GFM in [2] is referred to here as the original GFM

(OGFM) to distinguish it from other modified versions. These character-

istic features of OGFM have led to development of similar methods for

simulating multi-medium flow [89–92].

Apart from the simplicity, the OGFM appears to be rather problem

related. It has been shown that the OGFM is not quite suitable for extreme

conditions like the case of high speed jet impact problems and can lead to

large numerical errors [93]. This is largely attributed to the fact that the

OGFM essentially does not take into account the effect of wave interaction

at the interface and the different material properties. To overcome the

limitation, Liu et al. [1] proposed the modified GFM (MGFM) algorithm.

Subsequent to that, the real GFM (RGFM) was developed by Wang et

al. [94] as a variant of MGFM-based algorithm. The latter two MGFMs

have been successfully applied to different extreme cases of gas-gas, gas-

water, and even fluid-structure problems [1, 44, 93–97]. It is fairly clear

that the MGFMs are much less problem-related and can be used much

more extensively.

Although as mentioned, there has been various attempts to address the

shortcomings of the OGFM through development of modified versions of

the GFM, no apparent systematic study of the error, and no criterion for

predicting when large errors may occur due to the GFM has been pro-

posed. Moreover, despite the apparent success in the application to the
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various multi-medium problems, there appears no attempt to explore the

applicability of the Ghost Methods to purely solid-solid interaction. These

two key factors mostly provide the motivation of the present work.

This work seeks to develop the Ghost Solid Methods (GSMs) to faith-

fully simulate and capture the boundary conditions at the interface for the

elastic-elastic and elastic-plastic solid-solid interaction problems. It shall

be shown that this can facilitate a consistent and truly multi-medium mod-

eling of fluid and several layers of solid interaction using ghost nodes.

Moreover, we shall present a simple criterion which can successfully

predict the large numerical errors that may occur due to the use of the

OGSM. The importance of this criterion, once satisfied, lies in the fact

that it can add a level of reliability to the result that are obtained by the

much simpler OGSM.

2.2 The Eulerian vs. the Lagrangian Ap-

proach

There are two major approaches for modeling solid-solid interactions: using

an Eulerian frame of reference, or a Lagrangian frame of reference. The

Eulerian framework has the advantage that no regeneration of the mesh

is required throughout the computational process. However, the challenge

is that all physical boundaries should be somehow tracked through the
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mesh, as they may not be fixed in this frame [98]. Moreover, tracking

the interface needs special attention. This may require the use of level-

set methods [36] or any other accurate front tracking techniques [99, 100].

On the other hand, the Lagrangian framework does not require tracking

of the boundaries through the mesh. This is due to the fact that the

boundaries of the solid are usually Lagrangian points. Moreover, most of

the engineering measuring devices for solids, like strain-gages, are attached

to the solid considered to be in a Lagrangian framework for ease of reference

and comparison. The only possible drawback for the Lagrangian framework

is that the computer codes developed under this framework may regularly

require mesh regeneration. However, as in work in which the deformations

are assumed to be reasonably limited, the necessity for mesh regeneration

will be minimal. Therefore, the Lagrangian framework has been used in

this work.
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Chapter 3

One Dimensional

Elastic-Elastic Solid

Interactions

In this chapter1, the one-dimensional elastic solid-solid interaction is in-

vestigated. We start with the Original Ghost Solid Method (OGSM), to

be followed by two variants in the form of Modified Ghost Solid Method

(MGSM) and Double Riemann Ghost Solid Method (DRGSM). The ad-

vantages and possible disadvantages of each of these methods are discussed

and compared. These numerical methods are then validated and compared

using numerical experiments.
1Part of this chapter has been presented in the 1D section of the journal paper, “The

ghost solid method for the elastic solid-solid interface” [101] by Kaboudian and Khoo.
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3.1 Governing Equation

The Cauchy equation of motion at any point inside a solid can be written

in tensor notation as:

ρbi + σji,j − ρai = 0 (3.1)

where ρ is density of the material, −→b is the body force, σ is the stress tensor,

and −→a is the acceleration. Considering the body forces are negligible,

equation (3.1) can be simplified to

σji,j − ρai = 0. (3.2)

For the case of pure shear, in a one dimensional setting, one can further

simplify equation (3.2) to

∂σ

∂x
− ρ∂u

∂t
= 0. (3.3)

In this work, for the closure of the system, Hooke’s law is used as the

constitutive equation. For 1D isotropic linearly elastic solid, it can be

written as

σ = E
∂ε

∂x
(3.4)
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where ε is the displacement in x-direction, and E is the modulus of elas-

ticity. If equation (3.4) is differentiated with respect to time, this leads

to:

∂σ

∂t
= E

∂

∂t

(
∂ε

∂x

)
= E

∂

∂x

(
∂ε

∂t

)
= E

∂u

∂x
(3.5)

since

u = ∂ε

∂t
.

By using equations (3.3) and (3.5), the governing equation for pressure

wave propagation, in a semi-infinite isotropic linearly elastic solid, can be

formulated as
∂U

∂t
+ ∂F (U)

∂x
= 0 (3.6)

in conservative form, or the following non-conservative form given as

∂U

∂t
+ A

∂U

∂x
= 0 (3.7)

where

U =

u
p

 , F =

p/ρ
Eu

 , A =

 0 1/ρ

E 0

.

Here, u is the velocity in the x-direction, p = −σ, ρ is the density of the

solid, and E is the modulus of elasticity. It is noticed that c =
√

E
ρ

is the

21



CHAPTER 3. ONE DIMENSIONAL ELASTIC-ELASTIC SOLID
INTERACTIONS

speed of sound in the elastic solid [102].

3.2 The Riemann Problem for the Linearly

Elastic Solid-Solid Interface

The Riemann problem is given as

∂U

∂t
+ A

∂U

∂x
= 0, U(x, 0) =


UL x < xI

UR x > xI

(3.8)

where xI is a reference length for the problem. For the solid-solid interac-

tion problem, xI can be considered as the location of the interface. The

subscripts L and R refer to the values on the left and right side of the

interface, respectively. The subscript I refers to the interfacial values.

The objective is to find the values of UI = U(xI , 0). One can now solve

the stated Riemann problem as illustrated in Figure (3.1).

x

t

Solid 1 Solid 2

I

R
L

IR
IL

Figure 3.1: Riemann problem in (x, t) plane raised in the impact of two solid rods

In the leftward wave region, the information propagates along the char-

acteristic x/t = cL. Therefore, in this region, the following characteristic
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equation holds true:

d

dt

(
p+ EL

cL
u
)

= 0 ⇒ dp+ EL
cL
du = 0. (3.9)

Similarly, in the rightward wave region, the information propagates along-

side the characteristic line x/t = −cR. Therefore, in this region, the fol-

lowing characteristic equation can be considered. That is,

d

dt

(
p− ER

cR
u
)

= 0 ⇒ dp− ER
cR
du = 0. (3.10)

Now, one can integrate (3.9) as

∫ pIL

pL

dp+ EL
cL

∫ uIL

uL

du = 0 ⇒ (pIL
− pL) + EL

cL
(uIL
− uL) = 0 (3.11)

and (3.10) as

∫ pIR

pR

dp−ER
cR

∫ uIR

uR

du = 0 ⇒ (pIR
− pR)−ER

cR
(uIR

− uR) = 0. (3.12)

The subscripts IL and IR refer to the interfacial values when integrated on

the leftward and rightward wave regions, respectively. With continuity, we

have
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uIL
= uIR

= uI , pIL
= pIL

= pI . (3.13)

Using (3.11), (3.12), and (3.13), one can derive at the interfacial values uI

and uL as

uI = cLcR(pL − pR) + ELcRuL + ERcLuR
ELcR + ERcL

(3.14)

and

pI = pL −
EL
cL

(
cLcR(pL − pR) + ELcR(uR − uL)

ELcR + ERcL

)
. (3.15)

This Riemann solver is used below in conjunction with the proposed nu-

merical methods. One key issue is the assignment of the appropriate real

values for the leftward and rightward regions, and selection of the (numer-

ical) interface.

3.3 The First Order Godunov Solver for a

Homogeneous Elastic Medium

In this section, we will briefly explain the first order Godunov solver [102]

for the one dimensional homogeneous elastic solid medium. We start from
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the governing equation in the conservative form which is:

∂U

∂t
+ ∂F (U)

∂x
= 0. (3.16)

We assume that the solution at the time step t = tn is known at every

grid point, 1 ≤ i ≤ N , where N is the number of grid points. This nodal

value is represented by Un
i . In the finite volume sense, in order to obtain the

solution at time step t = tn+1, the following discretization can be employed:

Un+1
i − Un

i

∆t + Fi+1/2 − Fi−1/2

∆x = 0, (3.17)

where Fi+1/2 and Fi−1/2 are the flux on cell borders. A schematic of this

computational cell can be seen in Fig. 3.2. Here, we will discuss the calcu-

i− 1/2 i+ 1/2

i− 1 i i+ 1

Figure 3.2: Schematics of the nodes i− 1 to i and the cell boundaries.

lation of the numerical flux at xi+1/2 with the assumption of a homogeneous

medium. In a first order Godunov scheme, the flux at i+ 1/2 is calculated

by assuming that U1+1/2 is the solution of the following Riemann problem

at xi+1/2:

Un(x) =


Un
i for x < xi

Un
i+1 for x > xi

, A(x) = Ai = A. (3.18)
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By comparing the above mentioned Riemann problem with the general

Riemann problem solved in Sec. 3.2, and after some simple algebraic ma-

nipulation, we can obtain the solution at xi+1/2 which is

u1+1/2 = c(pi − pi+1) + E(ui + ui+i)
2E , (3.19)

and

pi+1/2 = c(pi + pi+1) + E(ui − ui+1)
2c . (3.20)

Now that Ui+1/2 is determined, we can easily determine the Godunov flux

which is

Fi+1/2 = AUi+1/2. (3.21)

Using a similar technique, or simply shifting the subscripts in the above

solution, we can obtain Fi−1/2. For further details on the theory of the

Godunov scheme or different implementations of this method, you can refer

to the works of Toro [102] or Xiao [62].

3.4 GSM-Based Algorithms

3.4.1 Outline of Various Ghost Solid Methods

For the Ghost Solid Method (GSM)-based algorithms, we shall assume that

the solution at time t = tn is known. In the implementation, usually a band

of 2 to 5 grid points is defined as ghost nodes, in the neighbourhood of the
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solid-solid interface. At each ghost node, ghost solid and real solid are

both present. In the GSM-based algorithm for a multi-medium interaction

problem, one has to solve for two separate 1-medium Riemann problems at

each time step. One is for the left solid medium with the following initial

conditions

∂U

∂t
+ A

∂U

∂x
= 0, U(x, 0) =


Un
L x < xI

U∗R x > xI

. (3.22)

Here, the ‘∗’ sign is used to represent the ghost status at t = tn. Equation

(3.22) solves the Riemann problem from the first grid node on the left to

the ghost node on the right of the interface. Similarly, the other Riemann

problem for the right solid medium is given as

∂U

∂t
+ A

∂U

∂x
= 0, U(x, 0) =


U∗L x < xI

Un
R x > xI

. (3.23)

It solves from the ghost node on the left of the interface to the last node

on the right. To solve the above mentioned (3.22) and (3.23) Riemann

problems, it is essential to assign the values of U∗R and U∗L on their respective

ghost nodes properly. Once these ghost values are defined, at the time step

t = tn, any desired solid solver can be used to advance the solution of (3.22)

and (3.23) independently.

Depending on the method which is used to define these values on the
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ghost nodes, various methods of GSM are therefore developed. Three types

of GSM-based algorithms are proposed and formulated below. It is worth-

while, however, to reiterate the lemma by Liu et al [103]:

Lemma The GSM Riemann problems (3.22) and (3.23) provide a solu-

tion which is identical to that of the Riemann Problem (3.8) in their re-

spective solid fields, provided that their ghost solid states are respectively

defined as the exact interfacial states, U∗L = UIL
and U∗R = UIR

.

3.4.2 On the Original Ghost Solid Method (OGSM)

This method follows the pioneering work by Fedkiw [2, 88] on ghost fluid

method. Here, the local real solid velocity and stress are simply copied to

the corresponding ghost solid nodes. The Young modulus as well as the

speed of sound is copied from the real solid to its corresponding ghost solid

node, on the other side of the interface. By assuming that the interface lies

between node i and i + 1, and a band of 3-5 ghost nodes on each side of

interface, this method can be formulated as:

U∗L|x=xj
= Un

j , A∗j = Ai+1, i− 4 ≤ j ≤ i

U∗R|x=xj
= Un

j , A∗j = Ai, i+ 1 ≤ j ≤ i+ 5
. (3.24)

Figure (3.3) illustrates the process of defining the ghost nodes on the right

hand side of the interface. The simplicity lies in that no Riemann problem

needs to be solved to define the values of ghost nodes. Moreover, no system
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Figure 3.3: Schematic illustration of OGSM for defining ghost solid status for
medium 1.

of linear equations need to be solved along with the solid solver in com-

parison to other methods such as the Immersed Interface Method [51] (the

IIM requires solving a system of 12 equations for 12 unknowns in 1D, and

54 equation for 54 unknowns in 2D). However, as will be discussed below,

under certain settings it can, and will, result in non-physical oscillations in

the velocity as well as the stress waves.

In the following section on numerical experiments, it is shown the

OGSM can lead to non-physical oscillations even for first-order methods.

It is further demonstrated that these oscillations can become even more

severe using the higher order schemes.

3.4.3 On the Modified Ghost Solid Method (MGSM)

Here, we assume the modulus of elasticity and the speed of sound are copied

from real solid to its corresponding ghost solid nodes on the other side of

the interface. We shall define the ghost node values such that the interfacial

values predicted by the left and right single mediums will be identical to
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that of the multi-medium problem. In other words, we shall ensure the

solutions to the problems (3.22) and (3.23) for the interfacial values are

identical to those of (3.8).

Considering the left medium and the ghost nodes on the right side of

the interface, similar to Section 3.2, characteristic analysis of (3.22) reveals:

(pI − pL) + EL
cL

(uI − uL) = 0, (3.25)

in the leftward wave region, and

(pI − p∗R)− EL
cL

(uI − u∗R) = 0, (3.26)

in the rightward region. uI and pI are the interfacial values obtained in

Section 3.2. It can be seen that equations (3.25) and (3.11) are identical.

Hence, equation (3.25) is automatically satisfied. Moreover, it is clear that

equation (3.26) will be satisfied if u∗R = uI and p∗R = pI . Using a similar

analysis for the right medium, and the ghost solid nodes on the left side of

the interface, we can conclude that u∗L = uI and p∗L = pI .

Now, assuming that the interface lies between the nodes i and i+1, the

interfacial values of velocity and stress can be approximated by assuming

that

UL = Un
i , UR = Un

i+1 (3.27)
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and similarly

AL = Ai, AR = Ai+1 (3.28)

as in Section 3.2. The approximate interfacial values of uI and pI can be

calculated using equations (3.14) and (3.15) as

uI = cici+1(pni − pni+1) + Eici+1u
n
i + Ei+1ciu

n
i+1

Eici+1 + Ei+1ci
(3.29)

pI = pni −
Ei
ci

(
cici+1(pni − pni+1) + Eici+1(uni+1 − uni )

Eici+1 + Ei+1ci

)
. (3.30)

Therefore, the ghost nodes can be defined as:

U∗L|x=xj
= UI , A∗j = Ai+1, i− 4 ≤ j ≤ i

U∗R|x=xj
= UI , A∗j = Ai, i+ 1 ≤ j ≤ i+ 5

. (3.31)

Figure 3.4 illustrates the method schematically. One may note that the

same values of uI and pI are used for both the left and right ghost nodes.

This means that only a single Riemann problem needs to be solved in order

to define the ghost node values.

By numerical experiment, it will be shown that this method can greatly

mitigate or effectively eliminate the non-physical oscillations seen for the

OGSM. The disadvantage of this method vis-a-vis the OGSM is that it
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Figure 3.4: Schematic illustration of MGSM for defining the ghost solid on the
right side of the interface

involves solving for a Riemann problem at the interface.

3.4.4 On the Stability of the OGSM and MGSM

For the instability of the numerical solution to be caused by, or associated

with, the use of the GSMs, and not by the solid solver of choice, the leading

numerical error must be traced to the implemented GSMs. Here, we will

follow the Lax-Richtmyer stability analysis [104,105].

As the effects of the GSMs are sensed closest to the interface at each

time step, it is reasonable to assume that the maximum error, due to the

GSMs, may occur at the interface. As discussed in Section 3.4.3, if the

MGSM is employed, UI from the MGSM and the multi-medium solution

will be identical. Hence, the error incurred due the MGSM will be theo-

retically zero, if the exact solution of the Riemann problem is used. Con-

sequently, the stability of the solution will be unconditionally associated
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with the stability of the single medium solver employed; i.e. ||En||∞ will

not be determined by the use of MGSM. Similarly, we can conclude if an

approximate Riemann solver is used, the stability of the solution will be de-

termined by both the approximate Riemann solver and the single medium

solver employed together with the MGSM.

However, if the OGSM is employed, the interfacial values calculated,

from the left and right mediums, are not necessarily identical to those of the

exact solution of the multi-medium problem. Using the ghost solid-values,

and the multi-medium Riemann problem values, the error in velocity, at

the interface, for the left medium is:

|EuIL
| =

∣∣∣∣( cRcL

ELcR+ERcL
− c2

L

2ELcL

)
(pL − pR)+(

ELcR

ELcR+ERcL
− 1

2

)
uL+(

ERcL

ELcR+ERcL
− 1

2

)
uR
∣∣∣ .

(3.32)

As it can be seen, the above error has no upper bound in general. We

can obtain similar relations for stress in the left medium. Moreover, we

can obtain similar results for the right medium. This means that the error

due to the use of the OGSM can be generally unbounded and lead to

instabilities. In other words, ||En||∞ may be determined by and associated

with the error incurred by the OGSM. These large errors may become

evident in the form of spurious oscillations, or complete instabilities in

the solution, even when a first order solid solver is used. Higher order
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schemes may tend to switch to lower order schemes, specifically a first

order scheme, which is required by the Godunov theorem, to avoid spurious

oscillations [102] in the presence of large discontinuities. As a result, the use

of a higher order scheme, may not be successful in rectifying the instabilities

caused by the use of the OGSM.

If we want to minimize this error for the OGSM, we derive at the

special case of the acoustic impedance matching where the error given by

(3.32), and equivalents of it, will become zero and the stability becomes

synonymous with the stability of the solid solver employed for the single

medium. In this special case, the calculated interfacial values from the left

and right medium become identical to those of the multi-medium problem.

Moreover, it will be the only case where the interfacial values from the

left and right mediums become identical. The special case of the acoustic

impedance matching and its stable characteristics can be used as reference

and guide to predict the stability of the (more general) OGSM. To quantify,

a much simpler dimensionless parameter, ϑ, (than that of equivalents of

(3.32) made applicable for both velocity and stress) is proposed:

ϑ = max
(
|uIL − uIR|
|uIL|+ |uIR|

,
|pIL − pIR|
|pIL|+ |pIR|

)
(3.33)

where the subscript IL and IR refer to the interfacial values obtained from

the left and right single medium solutions, respectively. The ϑ value quanti-

fies how close the numerical situation is to the acoustic impedance matching
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case. Our extensive numerical tests indicate that the maximum permissi-

ble value of ϑ, before non-physical oscillations are observed, is ϑcrit ≈ 0.1.

The above discussion not only explains the origin/reason for possible non-

physical oscillations, but also provides a means forward to determine the

applicability of the OGSM. For the latter, one can ascertain beforehand if

ϑ is within the permissible range to ensure the non-physical oscillations are

kept to an acceptable level as time progresses. If at any time step ϑ exceeds

the value of 0.1, the OGSM as applied to across the interface can no longer

be considered as a viable approach at that time step. One may then need

an alternative GSM at that time step. Subsequently, if the value of ϑ drops

below 0.1, the OGSM can be reinstated for use due to its simplicity.

It is worth noting that calculation of ϑ is not computationally expensive,

specially, if a TVD solver is used; the first order fluxes may be readily

available to calculate ϑ.

3.4.5 On the Double Riemann Ghost Solid Method

(DRGSM)

This is a variant of the MGSM. A similar variant MGFM was recently de-

veloped by Liu et al. [103] to capture the fluid-solid interaction due to very

strong shock impacting the interface in the Eulerian-Lagrangian coupling.

Here, instead of solving a single Riemann problem at the interface, a sepa-

rate Riemann problem is defined and solved for each side of the interface.
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To obtain the ghost values on the ghost nodes, one has to solve the approx-

imate Riemann problem by assuming that the interface lies on the ghost

node just beside the actual interface. This interface can be referred to as

a ghost interface. Next, using the real values of its neighbouring nodes

a Riemann problem is formulated. As soon as this Riemann problem is

solved for the ghost node that lies just beside the interface, the values of

U = [u p]T on this node can be copied to its corresponding ghost nodes.

Similar to Section 3.4.3, it is assumed that the actual interface lies

between the nodes i and i + 1. To obtain the values of U∗R, in (3.8), the

following Riemann problem is defined:

∂U

∂t
+ A

∂U

∂x
= 0, U(x, t = tn) =


Un
i x < xi+1

Un
i+2 x > xi+1

. (3.34)

The physical properties of problem (3.39) are defined as

A(x) =


Ai x < xi+1

Ai+2 x > xi+1

. (3.35)

Figure 3.5 illustrates the position of the ghost interface as well as the closest

ghost node to the actual interface. One can then solve for the values of u

and p on the node i + 1. By comparing equations (3.34) and (3.35) with

36



CHAPTER 3. ONE DIMENSIONAL ELASTIC-ELASTIC SOLID
INTERACTIONS

i− 2 i− 1 i i+ 1 i+ 2 i+ 3

Left Medium Right Medium

actual interface
ghost interface
real solid node

ghost node closest to inteface

Figure 3.5: Schematic illustration of position of the ghost interface and the ghost
node closest to the interface in order to define the ghost nodes on the right hand
side of the interface for Medium 1.

the problem (3.8), one can solve for the solution at the ghost interface:

uIR
= cici+2(pni − pni+2) + Eici+2u

n
i + Ei+2ciu

n
i+2

Eici+2 + Ei+2ci
(3.36)

and

pIR
= pni −

Ei
ci

(
cici+2(pni − pni+2) + Eici+2(uni+2 − uni )

Eici+2 + Ei+2ci

)
(3.37)

where the index IR refers to the values on the ghost interface applicable

on the node on the right side of the interface. In this setting, this index

refers to the ghost interface at the location x = xi+1. Using these values,

one can then properly define values for the rest of the ghost nodes on the

right side:

U∗R|j =

uIR

pIR

 , Aj = Ai i+ 1 ≤ j ≤ i+ 5 . (3.38)
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Similarly, one can then define the following Riemann problem for the

node just on the left side of the interface. Assuming that the ghost interface

lies on the node i, we have

∂U

∂t
+ A

∂U

∂x
= 0, U(x, t = tn) =


Un
i−1 x < xi

Un
i+1 x > xi

(3.39)

and the material properties as

A(x) =


Ai−1 x < xi

Ai+1 x > xi

. (3.40)

Therefore, by comparing (3.39) and (3.40) with (3.8) one can get the solu-

tion for the ghost interface at x = xi:

uIL
= ci−1ci+1(pni−1 − pni+1) + Ei−1ci+1u

n
i + Ei+1ci−1u

n
i+1

Ei−1ci+1 + Ei+1ci−1
(3.41)

and

pIL
= pni−1 −

Ei−1

ci−1

(
ci−1ci+1(pni−1 − pni+1) + Ei−1ci+1(uni+1 − uni−1)

Ei−1ci+1 + Ei+1ci−1

)
(3.42)

where the subscript IL refers to the ghost interface on the left hand side of

38



CHAPTER 3. ONE DIMENSIONAL ELASTIC-ELASTIC SOLID
INTERACTIONS

the real interface. Next, these values are copied to the ghost nodes on the

left hand side of the interface:

U∗L|j =

uIL

pIL

 , Aj = Ai+1 i− 4 ≤ j ≤ i. (3.43)

i− 2 i− 1 i i+ 1 i+ 2 i+ 3

Left Medium Right Medium

(a)

actual interface
ghost interface
real solid node

ghost node closest to inteface

ghost solid node

Ei, ci

uIR, pIR

Left Medium Right Medium

i− 2 i− 1 i i+ 1 i+ 2 i+ 3

(b)

Ei+1, ci+1

uIL, pIL

Figure 3.6: Schematic illustration of the definition of the ghost properties in
DRGSM method, for (a) the ghost nodes on the right side of the interface, and
(b) the ghost nodes on the left hand side of the interface

Figure 3.6 shows schematically how the ghost properties are copied to

the ghost nodes on the right and left side of the interface.

3.5 Numerical Experiments

Numerical experiments below will show that DRGSM is able to eliminate

the non-physical oscillations which occur for the GSM. However, comparing

to the MGSM and GSM, this method is more complicated and involved.

Numerical experiments will also show that the improvements are not so

significant when compared to MGSM, despite the greater effort required.

In the following numerical experiments, all computations are carried
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out in non-dimensional form and the solid mediums on each side of the

interface are considered to be homogeneous, isotropic, and linearly elastic

solids.

3.5.1 Test Example 1: On Possible Non-Physical Os-

cillations on the Use of OGSM and the Critical

ϑ Value

This experiment is designed to show the non-physical oscillations which

may rise due to the use of the OGSM. Moreover, as a test example, it

indicates broadly how the critical permissible ϑ value of 0.1 has been de-

termined. The domain of the solution is [0, 10] and the interface is located

at xI = 5. The initial velocity u(x, 0) = 1 for x ∈ [0, 5] and zero other-

wise, and the initial normal stress p(x, 0) is zero for all x. The boundary

conditions are u(0, t) = 1 and u(10, t) = 0.

Two sets of material properties are assumed:

1. ρL = 1, and EL = 1 on the left hand side of the interface, and

ρR = 1.4 and ER = 1.4 on the right side are;

2. ρL = 1, and EL = 1 on the left hand side of the interface, and ρR = 5

and ER = 5 on the right side;

The first-order Godunov method is used as the solid solver for each solid

medium with the spatial discretization of ∆x = 0.01. The maximum CFL
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Figure 3.7: Test Example 1: Comparison of the velocity and stress profiles between
the exact solution, OGSM, MGSM, DRGSM and CLAWPACK (ρL = 1, EL = 1,
ρR = 1.4, ER = 1.4, and tf = 0.3)

number [61] is considered to be (cmax∆t/∆x = 0.98).

Figure 3.7 to shows the velocity and stress profile for the first set of

materials at tf = 0.3, calculated using the OGSM, MGSM, and DRGSM.

The results are compared against the analytical as well as the CLAWPACK

[106] solution. The calculated value of ϑ (introduced in Section 3.4.4) for

this problem when the OGSM is employed reaches a maximum value of

0.09 and remains below 0.1 (the proposed critical value ϑcrit) for all time

steps. The results for the OGSM concur well with the analysis and there

is no observed oscillation in the velocity and stress predictions.

Figure 3.8 shows the solution obtained for the second set of data at

tf = 0.3. For almost all the time steps, the calculated value of ϑ when the

OGSM is employed varies between 1.0 and 0.1. Thus, it exceeds the pro-

posed critical value of 0.1 employed to avoid any non-physical oscillation.
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Figure 3.8: Test Example 1: Comparison of the velocity and stress profiles between
the exact solution, OGSM, MGSM, DRGSM, and CLAWPACK (ρL = 1, EL = 1,
ρR = 5, ER = 5, and tf = 0.3)

In Figure 3.8, the employment of OGSM has lead to severe non-physical

oscillation in the stress and velocity distributions. However, these oscilla-

tions are completely removed when either MGSM or DRGSM is employed.

It is interesting to note that the MGSM and DRGSM, in Figures 3.7 and

3.8, enable a better concurrence with the analytical solution compared to

the solution from CLAWPACK [106].

This test indicates the applicability of the ϑ-criterion as well as the

maximum permissible value of ϑ. It shows how the combination of the

material properties of the interacting solids can lead to non-physical oscil-

lations when the OGSM is employed. We have carried out numerous other

tests for various material properties and shock conditions and found that

the proposed critical value of ϑ ≈ 0.1 serves as a good guide to determine

if the application of the OGSM will likely lead to non-physical oscillations.
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3.5.2 Test Example 2: On the Effect of the Incident

Wave

This experiment is designed to show the non-physical oscillations which

may rise due to the effect of an incident wave on the interface when one

applies the OGSM. Moreover, it indicates the robustness of the ϑ-criterion

and the applicability of the ϑcrit ≈ 0.1.

The domain of the solution is [0, 10] and the interface is located at

xI = 5. The material properties of the mediums are ρL = 1 and EL = 1 on

the left hand side of the interface, and ρR = 5 and ER = 5 on the right side.

The spatial discretization is ∆x = 0.5 and the maximum CFL number is

0.99. The initial condition for this problem is p(x, 0) = u(x, 0) = 0. The

boundary conditions are p(10,t)=0 and

p(0, t) =


t/tr 0 ≤ t ≤ tr

1 otherwise

(3.44)

where two cases of the reference time tr = 0.1 and tr = 0.2 are considered.

The solution is obtained for the final time tf = 8. Figure 3.9 shows the

stress and velocity profiles with the reference time of tr = 0.2 in eqn (3.44).

The ϑ parameter, when the OGSM is employed, is always below ϑcrit ≈

0.1 for all the time steps, except for only three time steps that reaches a

maximum of 0.5 at t = 5 when the wave impacts on the interface. After
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Figure 3.9: Test Example 2: Comparison of the velocity stress profiles between
the exact solution, OGSM, MGSM, DRGSM, and CLAWPACK (ρL = 1, EL = 1,
ρR = 5, ER = 5, the final time tf = 8, and reference time of tr = 0.2.)

these three time steps, ϑ quickly drops below ϑcrit ≈ 0.1. Although there

are no apparent non-physical oscillations in the OGSM solutions of velocity

and stress profile, the above mentioned three time steps have led to a

perceptible numerical error in the velocity and stress profile when compared

against the exact solution. The MGSM and DRGSM solutions remain

stable, and have a good agreement with the analytical solution as well as

CLAWPACK.

Figure 3.10 shows the stress and velocity profiles with the reference

time of tr = 0.1 in eqn (3.44). The ϑ parameter, when the OGSM is

employed, is always below ϑcrit ≈ 0.1 for all the time steps until t =

5 when the wave impacts on the interface. Then, it spikes to 0.5 and

then increases to 0.55 and slowly descends below ϑcrit ≈ 0.1 after 11 time

steps. This figure indicates severe oscillations in the stress and velocity
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Figure 3.10: Test Example 2: Comparison of the velocity and stress profiles be-
tween the exact solution, OGSM, MGSM and DRGSM (ρL = 1, EL = 1, ρR = 5,
ER = 5, the final time tf = 8, and reference time of tr = 0.1.)

profiles when the OGSM is employed. The MGSM and DRGSM solutions

remain stable. Moreover, they concur well with analytical solution and

CLAWPACK. These test examples show the importance of the impacting

wave, on the interface, on the non-physical oscillations that may rise due

to the employment of the OGSM. Moreover, it indicates the applicability

and robustness of the ϑ-criterion. It is worth mentioning that we have

carried out many more tests for various material properties and various

types of waves impacting the interface and found that the proposed critical

value of ϑ ≈ 0.1 serves as a good guide to determine if the OGSM leads to

oscillations.
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3.5.3 Test Example 3: On the Effect of Solver

This numerical experiment is designed to compare the effect of the solver on

the results obtained by OGSM and MGSM. The domain of the solution is

[0, 10] and the interface is located at xI = 5. The initial velocity and stress

u(x, 0) is 1 for x ∈ [0, 5] and zero otherwise. The boundary conditions are

p(0, t) = 1 and p(10, t) = 0. The material properties on the left hand side

of the interface are ρL = 1, and EL = 1, and on the right side are ρR = 5

and ER = 10. The spatial discretization is ∆x = 0.01. The solution

is obtained for tf = 0.3. Firstly, the first-order Godunov is used as the

solver. Next, the second-order MUSCL solver [102,107] is used. Then, the

obtained results are compared for these two solvers.

It is noticed that the maximum calculated value of ϑ for this problem

is close to 1.0 and far exceeds the ϑcrit ≈ 0.1. It can be seen, in Figure

3.11, that using OGSM leads to non-physical oscillations in the stress and

velocity profiles. Furthermore, it is noticed that using the higher order

method in fact intensifies the non-physical oscillations associated with the

OGSM method.

It is clear that the order of the numerical solver does not affect the

inherent characteristics of the OGSM. Figure 3.12 shows that even as the

order of accuracy of the solver is increased, the MGSM continues to remain

stable with a solution which concurs well with the analysis.

Finally, when no GSM is used (i.e. the boundary conditions are applied
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Figure 3.11: Test Example 3: Velocity and normal stress profiles obtained using
OGSM (at tf = 0.3).

Figure 3.12: Test Example 3: Velocity profile obtained using MGSM (at tf = 0.3).
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directly) with the specified CFL number, both the first order Godunov

and the MUSCL solver will become completely unstable. The order of

maximum numerical error for velocity and normal stress will be 10E11 to

10E12.

3.5.4 Under the Special Case of Acoustic Impedance

Matching Conditions

The acoustic impedance or the characteristic acoustic impedance is a material

property defined as

Z = ρc. (3.45)

If the acoustic impedance of two different materials is the same, the incident wave

at the interface of the materials in contact should just pass through, without any

reflection at the interface [16].

Moreover, for elastic solid-solid interactions under the acoustic impedance

matching conditions, if the ϑ value is calculated analytically, it is found that

ϑ = 0 regardless of the shock wave conditions hitting the interface. Therefore,

it is interesting to test the validity of the OGSM as applied to the two numeri-

cal problems with matched acoustic impedance shown below in Test Exmple 3.

Likewise, it would be interesting to see how the MGSM and DRGSM perform.

The material properties of the two mediums are ρL = 1 and EL = 1 for the

left solid and ρR = 2 and ER = 0.5 for the right medium. Hence, both the left

and right mediums have a unit acoustic impedance. The domain of the solution
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Figure 3.13: Test Example 4: Velocity and stress profile obtained using a MUSCL
solver together with OGSM, MGSM, DRGSM, and a second order CLAWPACK
solver (at tf = 1.2).

is x ∈ [0, 10] and the interface is at xI = 5. GSMs are applied and a second

order MUSCL solver is used to solve for the elastic solid governing equation.

Test Example 4: A unit pulse hitting the interface

The initial conditions for this case are:

u(x, 0) = p(x, 0) =


1 4 ≤ x ≤ 5

0 otherwise
,

and the boundary conditions case are p(0, t) = p(10, t) = 0. The solution is

obtained for tf = 1.2. The grid size is ∆x = 0.01.

The calculated value of ϑ remains identically zero for all the time steps, which

is less than ϑcrit ≈ 0.1. From Figure 3.13, it is clear that all the wave energy

passes through unimpeded and that no wave is reflected at the interface. All the

proposed GSMs remain stable and are actually successful, in properly capturing
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Figure 3.14: Test Example 5: Velocity and stress profile obtained using a MUSCL
solver together with OGSM, MGSM, and DRGSM (at tf = 7).

the solid-solid interaction, in this acoustic impedance matching test.

Test Example 5: A sinusoidal wave hitting the interface

The initial conditions for this case are p(x, 0) = u(x, 0) = 0, and the boundary

conditions for this case are p(0, t) = sin(4πt) and p(10, t) = 0. The grid size is

∆xL = 0.02 and ∆xR = 0.01, for the left and right medium, respectively. The

solution is obtained for tf = 7.

In this experiment, the calculated value of ϑ remains identically zero for all

the time steps, which is less than ϑcrit ≈ 0.1. Figure 3.14 clearly indicates that no

non-physical oscillation is observed for any of the proposed GSMs. Furthermore,

it is noted that all the wave energy passes through and no wave is reflected at the
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interface. The proposed GSMs are successful in properly capturing the solid-solid

interaction.

3.5.5 Test Example 6: On a general wave propagation

The material properties of the interacting mediums are ρL = 1 and EL = 1

for the left solid and ρR = 4 and ER = 2 for the right medium. The initial

conditions for this case are p(x, 0) = u(x, 0) = 0. The boundary conditions for

this case are

p(0, t) =



0.2 t ≤ 1

0.8t− 0.6 1 < t ≤ 2

1 2 < t

p(10, t) = 0

.

GSMs are applied and second order MUSCL solver is used to solve for the elastic

solid governing equation. The grid size is ∆x = 0.04, the CFL number is 0.98,

and the solution is obtained for tf = 8.

The calculated value of ϑ for this experiment is either less than 0.1 or close

to zero for almost all time steps, except only for only five time steps at t = 5 that

reaches a maximum of 0.31 which is greater than ϑcrit ≈ 0.1. Since the shocks

which hit the interface are not very strong and there is supposedly adequate

numerical viscosity to damp out these non-physical oscillations, ϑ quickly falls

below ϑcrit ≈ 0.1 for the rest of the temporal calculations. Figure 3.15 at tf =

8 shows that although the oscillations are no longer apparent, the numerical

inaccuracies introduced when ϑ exceeds 0.1 at the mentioned time steps, have

51



CHAPTER 3. ONE DIMENSIONAL ELASTIC-ELASTIC SOLID
INTERACTIONS

Figure 3.15: Test Example 6: Velocity and stress profile obtained using a MUSCL
solver together with OGSM, MGSM, DRGSM, and CLAWPACK (at tf = 8) with
the grid size ∆x = 0.04. Only, every third grid point is plotted to show the
difference between the OGSM and MGSM results.
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led to slightly less accurate solution than the MGSM (where no oscillation is

found throughout) in comparison to the analytical solution. In this figure, where

the DRGSM is employed, it can provide more accurate results for the reflected

waves similar to MGSM compared to the OGSM. Still, the DRGSM can result in

a slightly yet perceptible time lead as the wave passes through the interface (see

Figure 3.15). Moreover, in the vicinity of large discontinuities in the solution,

it is observed that all the GSMs concur slightly better with the exact solution

compared to CLAWPACK.

3.6 Conclusion for Chapter 3

Three variants of the ghost solid method were developed for the elastic-elastic

solid-solid interactions. It was discussed that these methods are all considerably

simple to implement, and they keep the solid solver intact.

It was shown that the Original Ghost Solid Method (OGSM) is the simplest

variant of the GSMs to implement. No Riemann problem at the interface needs to

be solve for this method. However, it was discussed that the OGSM is a highly

problem related method which can, and will, lead to large numerical errors.

Various cases that OGSM can fail were studied. The source of these errors were

studied, and subsequently, ϑ-criterion was proposed as a means to detect these

errors, for all these cases. This criterion also serves as a measure of reliability

of the OGSM results. It was discussed that if the ϑ values remains below an

empirical critical value of ϑcrit = 0.1, the results obtained using the OGSM are

considered reliable. Otherwise, the result may suffer from large numerical errors.
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Undoubtedly, depending on the reliability requirements, one can impose a more

stringent limit for this criterion instead of the proposed value of ϑcrit = 0.1.

It was also discussed that using a higher order elastic solid solver cannot

eliminate the large numerical errors due to the OGSM. In fact, the use of a

higher order solver will lead to more pronounced numerical errors caused by the

OGSM. It was argued that increasing the accuracy of the solver, can reduce the

stability of the solver due to the Godunov theorem.

The Modified Ghost Solid Method (MGSM) and the Double Riemann Ghost

Solid Method (DRGSM) were developed. These methods were shown to be

reliable alternatives for the OGSM. They were shown to be able to successfully

and robustly remove the large numerical errors that would manifest in the form

of non-physical oscillations. They are not problem related and they remain stable

in all the cases that the implementation of the OGSM would result in instability

and large errors in the solution. However, it is worthwhile to mention that the

MGSM required solving a Riemann problem at the interface at each time step,

while the DRGSM requires solving two Riemann problems at each time step.

This adds to the complexity of these methods, as compared to the OGSM.

The special case of acoustic impedance matching of the solids was studied.

It was shown, for this special case, all the proposed variants of the GSM re-

main stable and the results closely agree with the analytical solution. It was

found that the ϑ-value remains identically zero which makes the OGSM stable.

For the case of acoustic impedance matching of the fluids, it was previously

observed that the OGFM can lead to non-physical oscillations at the interface.

Our studies show that the ϑ-value for the acoustic matching of the fluids reaches
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a maximum of 1.0 which is ten times larger than the prescribed value. Hence,

the OGFM fails. However, for the acoustic impedance matching of the solids,

ϑ is identically zero. So, the ϑ-criterion successfully explains the difference of

the behavior of the OGSM and OGFM. In other words, this criterion shows that

acoustic impedance matching is not necessarily the cause of the numerical errors.

However, a combination of factors can lead to large numerical errors. Regard-

less, of the combination of factors which lead to numerical errors, ϑ-criterion can

successfully detect these errors.
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Chapter 4

Two Dimensional

Elastic-Elastic Solid

Interactions

In this chapter1, by using the techniques developed in Chapter 3, in the normal

direction of the interface, one can readily extend to multi-dimensional GSM-

based algorithms. One should note, however, that there are additional boundary

conditions, more specifically the slip and the no-slip boundary conditions along

the interface not applicable for the 1-D problem.
1Part of this chapter has been presented in the 2D section of the journal paper, “The

ghost solid method for the elastic solid-solid interface” [101] by Kaboudian and Khoo.

56



CHAPTER 4. TWO DIMENSIONAL ELASTIC-ELASTIC SOLID
INTERACTIONS

4.1 Governing Equation

The governing equation for an isotropic, linearly elastic solid, in a Cartesian

frame of reference, can be formulated as the following, in the conservative form.

∂U

∂t
+ ∂F (U)

∂x
+ ∂G(U)

∂y
= 0, (4.1)

Here,

U =



ρux

ρuy

σxx

σyy

σxy


F (U) =



σxx

σxy

ρα2ux

(α2 − 2β2)ρux

ρβ2uy


G(U) =



σxy

σyy

(α2 − 2β2)ρuy

ρα2uy

ρβ2ux


(4.2)

where, ρ is the density, ux and uy are velocity at of each point in x and y

direction, respectively; σxx and σyy are the normal components of the stress

tensor in x and y direction; σxy is the tangential component of the stress and α

and β are the longitudinal and transverse wave speeds, respectively. These are

α =
√

2µ+ λ

ρ
β =

√
µ

ρ
(4.3)

where µ and λ are the Lamé constants.

Equation (4.1) can be written in the normal-tangential frame of reference,

(η-ξ), as
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∂U

∂t
+ ∂F (U)

∂η
+ ∂G(U)

∂ξ
= 0. (4.4)

Here, the variables η and ξ are used to denote normal and tangential coordinates

(see Figure 4.1). Under this framework,

Figure 4.1: η-ξ frame of reference

U =



ρu

ρv

σηη

σξξ

σξη


F (U) =



σηη

σξη

ρα2u

(α2 − 2β2)ρu

ρβ2v


G(U) =



σξη

σξξ

(α2 − 2β2)ρv

ρα2v

ρβ2u


(4.5)

where u is the velocity in the normal direction (η), v is the velocity in the

tangential direction (ξ), and σηη, σξξ , and σξη are the stress components in the

normal-tangential coordinate reference frame.
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4.2 No-Slip and Perfect-Slip Conditions at

the Interface

Different boundary conditions can arise at the interface. We shall only discuss

the no-slip and perfect-slip boundary conditions.

4.2.1 No-Slip Condition at the Interface

If the two solids cannot slide at the interface and in the absence of any gap at

the interface, then a no-slip boundary condition is appropriate.

The no-gap-formation at the interface implies the continuity of the normal

velocity u at the interface

uIL
= uIR

= uI . (4.6)

Moreover, it means that the normal component of the traction can be non-zero,

and equal for both solids. Consequently, the boundary force balance implies

σηη
IL

= σηη
IR

= σηη
I
. (4.7)

The no-sliding between the two solids suggests that the relative tangential ve-

locity is zero at the interface. Hence, the tangential velocity v will be continuous

across the interface

vIL
= vIR

= vI . (4.8)
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It also implies that the tangential component of the traction can be non-zero

and equal for both solids. Subsequently, boundary force balance leads to

σξη
IL

= σξη
IR

= σξη
I
. (4.9)

4.2.2 Perfect-Slip Condition at the Interface

For this interfacial boundary condition, no gap is allowed to be formed at the

interface. However, the solids can slide against each other.

Similar to the previous section, the requirement of an absence of gap at the

interface leads to conditions identical to (4.6) and (4.7) for the normal velocity

(u) and the stress component (p). However, allowing the solids to slide, without

any friction at the interface, will render conditions (4.8) and (4.9) inapplicable.

4.2.3 Coupled and Uncoupled Variables

Consider a variable χ. The subscripts IL and IR are used to indicate if an

interfacial value is calculated on the left or right side of the interface, respectively.

If due to the boundary conditions at x, there exists a relation κ such that

κ(χIL
, χIR

) = 0, (4.10)

then χ is considered to be a coupled variable across the interface at that point.

Otherwise, it is uncoupled.
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4.3 On the 2D OGSM

Here, the extension of the OGSM method given in Section 3.4.2 is presented.

Similar to its 1D counterpart, it can be easily applied in practice. Following

Fedkiw [2, 88], for the coupled variables one has to copy the values of the real

nodes to the ghost nodes in the same region just like for the one-dimensional

setting. Variables which are not coupled across the interface, such as material

properties, are generally discontinuous and need to be extrapolated across the

interface into the ghost nodes.

4.3.1 The OGSM for the No-Slip Condition at the

Interface

Conditions (4.6), (4.7), (4.8), and (4.9) must be satisfied at the interface for the

values of u, σηη, v, and σξη. Moreover, the Cauchy equation of motion must hold

which constraints the admissible values of σξξ. As such, the variable U can be

considered as a coupled variable. To define the ghost values U∗L and U∗R, one has

to simply copy the values of Un at each time step from the closest real node, on

the same side of the interface, to the corresponding ghost node.

Figure 4.2: (a) presence of real and ghost solid nodes on the left hand side and the
right hand side of the interface, respectively and (b) presence of real solid nodes
on both sides of the interface
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In Figure 4.2, consider the ghost node A on the right hand side of the inter-

face. In order to define the ghost values at this node, one has to first find the

closest real node, B. As soon as this node is found, one can use a simple copy

to define the ghost values as

U∗R|A = UB. (4.11)

To circumvent a lengthy search process, it is possible to define the location

of the ghost nodes such that they coincide with real solid nodes. In this way,

only a simple copy is necessary for defining the ghost values.

4.3.2 The OGSM for the Perfect-Slip Condition at

the Interface

According to section 4.2.2, for this case, only the conditions (4.6) and (4.7) need

to be satisfied at the interface. As such, the only coupled variables are u and

σηη. Hence, at the time step t = tn only the values of un and σnηη need to be

copied from the closest real node to the ghost node. The values of vn, σnξξ, and

σnξη, as well as the material properties need to be extrapolated from the real

nodes, across the interface, into the ghost nodes.

4.4 On the 2D MGSM

This is the extension of MGSM in 1-D which was developed in Section 3.4.3. One

has to construct and solve an appropriate Riemann problem to determine the

62



CHAPTER 4. TWO DIMENSIONAL ELASTIC-ELASTIC SOLID
INTERACTIONS

values of the coupled variables at the interface to be copied to the ghost nodes.

In addition, special attention needs to be paid to σξξ, the normal component of

the stress tensor, which is in the tangential direction of the interface. Similar

to OGSM, the uncoupled variables are extrapolated across the interface into the

ghost nodes.

The interfacial points are Lagrangian points and their locations are known

at each time step. The locus of the interfacial points forms a curve. If the

coordinates of the interfacial points are (XI , YI) and S is the parametrization

variable used to parametrize the curve, the unit normal to the interface (N) is

given by

N = (∂YI
∂S

i− ∂XI

∂S
j)/

√
∂XI

∂S

2
+ ∂YI
∂S

2
(4.12)

where i and j are the unit vectors in x-y coordinate system.

Considering node A (see Figure 4.3), which is just bordering the interface, we

have the UL = UA. Next, we search for the nodes B and C on the other side of

the interface, which are bordering the right side of the interface, such that they

are closest to the normal η exiting node A, and each one is on either side of it.

Interpolation between UB and UC is required to calculate the value U on the right

side of the interface, on the normal η, according to the distance of B and C from

η. This interpolated value will be used as UR. Wang et al [94] have provided a

correction algorithm for the values on the real side, specially for critical problems

such as shock impedance matching for compressible flow. However, our critical

tests in shock impedance matching indicate that such corrections are not quite
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essential for the elastic solid-solid interactions. Otherwise, one may adopt [94]

which has been shown to be reasonably robust.

A

B

C

η

ΩL

ΩR

Γ

Figure 4.3: Schematics of the real nodes on both sides of the interface to define
the Riemann problem

Next, we shall define the following Riemann problem in the perpendicular

direction to the interface,

∂U

∂t
+ ∂F (U)

∂η
= 0

U(η, t = tn) =


UnL η < 0

UnR η > 0

. (4.13)

4.4.1 On the No-Slip Condition at the Interface and

MGSM

By integrating the characteristics equations of the Riemann problem (4.13), and

applying the conditions (4.6) and (4.7), we obtain

uI = 1
ρLαL + ρRαR

(
σηη

L
− σηη

R
+ ρLαLuL + ρRαRuR

)
, (4.14)
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σηη
I

= 1
ρLαL + ρRαR

[
ρLαLσηηR

+ ρRαRσηηL
+ ρLαLρRαR (uL − uR)

]
,

(4.15)

vI = 1
ρLβL + ρRβR

(
σξη

L
− σξη

R
+ ρLβLvL + ρRβRvR

)
, (4.16)

and

σξη
I

= 1
ρLβL + ρRβR

[
ρLβLσξη

R
+ ρRβRσξη

L
+ ρLβLρRαR (vL − vR)

]
. (4.17)

Integrating the zero characteristic of the equation (4.13) on the left side results

in

qIL
= qL + γL

α2
L

(pI − pL). (4.18)

However, if it is integrated on the right hand side, one can get

qIR
= qR + γR

α2
R

(pI − pR). (4.19)

Using the obtained values of uI , vI , pI , qIL
, qIR

and τI , one can then construct

UIL
and UIR

as

UIL
=



uI

vI

pI

qIL

τI


and UIR

=



uI

vI

pI

qIR

τI


. (4.20)
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R1

R2

G
η1

η2

ΩL

Ω∗
R

Γ

Figure 4.4: The Riemann values on the normals η1 and η2 are interpolated to
define the values over the ghost node G.

Once values of UIL
are calculated, one can define the ghost nodes by inter-

polating the values on the normals to the ghost nodes on the right hand side of

the interface. For example to define the values on the node G in Fig. 4.4, we

interpolate the values of UIL
on η1 and η2 to determine UG, based on its distance

from the normals. Material properties of node R1 and R2 are extrapolated to

the ghost node G. In a similar manner, UIR
values will be copied to the proper

ghost nodes on the left side of the interface.

4.4.2 On the Slip Condition at the Interface and MGSM

Here, only the conditions (4.6) and (4.7) must be satisfied for this type of inter-

face condition. Hence, only the values of u and p are coupled.

Similar to Section (4.4.1), uI and σηη
I

are identical to Eqns. (4.14) and

(4.15), respectively. Moreover, the zero characteristic of Eqn. (4.13) are inte-

grated on the left and right side of the interface to obtain results identical to

Eqns. (4.18) and (4.19).

The values of uI and σηη
I

are then copied to the ghost nodes on the right

hand side and left hand side of the interface which are closest to the normal line

that exits at the point where they are calculated. In a similar manner, σξξ
IL

and
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σξξ
IR

values will be copied to the proper ghost nodes on the right side and the

left side of the interface, respectively.

The values of uncoupled variables, v, σξη, and material properties are ex-

trapolated across the interface, accordingly.

4.5 Numerical Experiments

4.5.1 Test Example 1: 2D Experiment-1

In this section, a numerical experiment is devised to compare OGSM and MGSM

for a 2D problem. The setup of the experiment is such that it is identical to a 1D

problem, in the normal direction of the interface. The results are calculated in

the x-y coordinate. However, they are converted to ξ-η directions and then re-

plotted for ease of comparison to the 1-D solution, also to ascertain the viability

of the 2-D solution.

The primary interest is in studying the robustness of GSMs for capturing in-

terface interactions. The solution domain is chosen as Ω = {(x, y)|x ∈ [0, 10] and y ∈ [−5, 6]},

however, the results are only plotted for the region y ∈ [0, 1] to eliminate the

effects of top and bottom boundary conditions on the solution. The interface is

defined by the line y = 5.5 − x. The boundary conditions at the left and right

boundaries are

ux(0, y) = uy(0, y) = ux(10, y) = uy(10, y) = 0,

and the initial conditions are
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u(x, y, 0) = σηη(x, y, 0) =


1 (5.5−

√
2/2− x) ≤ y ≤ (5.5− x)

0 otherwise

∀(x, y) ∈ Ω, v(x, y, 0) = σξξ(x, y, 0) = σξη(x, y, 0) = 0.

The material properties of the left medium are ρL = 1, αL = 1, and βL = 0.3;

and those of the right medium are ρR = 5, αL = 1, and βL = 0.3.

A second order MUSCL solver together with a grid size of ∆x = ∆y = 0.05

and CFL number of 0.58 is employed for solving the elastic solid equation in

each medium. The solution is obtained at tf = 1. Both the OGSM and MGSM

are tested for no-slip and perfect slip conditions at the interface.

The calculated value of ϑ for this test is close to 1 for almost all the time

steps which is greater than ϑcrit ≈ 0.1. As such, this will lead to non-physical

oscillations for the OGSM.

In Figures 4.5 and 4.6, the velocity and stress profiles obtained using OGSM

and MGSM for the no-slip condition at the interface, respectively, are shown. It

is clear that quantities of computed u, σηη and σξξ suffer from non-physical oscil-

lations when the OGSM is used which lends support to the proposed ϑ-criterion.

It can be seen that the MGSM has successfully removed these mentioned oscil-

lations.

Next, Figures 4.7 and 4.8 show the velocity and stress profiles obtained using

OGSM and MGSM for the slip condition at the interface. It can be observed

that the computed u, σηη and σξξ suffer from non-physical oscillations when the

OGSM is employed. It is noticed, however, the MGSM does not suffer from any
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(a) σηη using MGSM

(b) σξξ using MGSM

(c) σξη using MGSM

(d) σηη using OGSM

(e) σξξ using OGSM

(f) σξη using OGSM

Figure 4.5: Test Example 1: Comparison of the stress component results obtained
using OGSM and MGSM for no-slip condition (tf = 1)

of these oscillations.

It is apparent that both methods, for both the no-slip and the slip interface

conditions, can predict the zero value of v and σξη reasonably well. However, it

should be noted that due to the construct of the experiment, all of these values

are consistently zero in the entire domain. Hence, minimum error is incurred

while still using the OGSM (zero values were copied to the ghost nodes for both

MGSM and OGSM). This situation will differ in a general problem.
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(a) u using MGSM

(b) v using MGSM

(c) u using OGSM

(d) v using OGSM

Figure 4.6: Test Example 1: Comparison of the velocity component results ob-
tained using OGSM and MGSM for no-slip condition (tf = 1)

Finally, Figure 4.9 compares the 2D results against the analytic equivalent

1D solution, along the normal direction to the interface. It can be seen when

the MGSM is employed, the numerical results agree with the analytical solution

to a much greater extent. However, the numerical results when the OGSM is

employed suffer from severe non-physical oscillations close to the interface. These

non-physical oscillations are rectified when the MGSM is employed.

4.5.2 Test Example 2: 2D Experiment-2

In this section, a numerical experiment is designed to study the robustness of the

GSMs as well as their stability when they are applied to more complex geometry

and stress wave interactions.

The solution domain is Ω = {(x, y)|x ∈ [0, 10] and y ∈ [0, 10]} which com-
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(a) σηη using MGSM

(b) σξξ using MGSM

(c) σξη using MGSM

(d) σηη using OGSM

(e) σξξ using OGSM

(f) σξη using OGSM

Figure 4.7: Test Example 1: Comparison of the stress component results obtained
using OGSM and MGSM for perfect slip condition (tf = 1)

prises two solids

Ω1 = {(x, y)|x < 5 and y < (x+ 1) and y > (9− x)}

and

Ω2 = Ω− Ω1.

The material properties are ρ1 = 5, α1 = 1, β1 = 0.3, ρ2 = 1, α2 = 1, and β2 =
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(a) u using MGSM

(b) v using MGSM

(c) u using OGSM

(d) v using OGSM

Figure 4.8: Test Example 1: Comparison of the velocity component results ob-
tained using OGSM and MGSM for slip condition (tf = 1)

0.3. The initial conditions ux = σxx = 1 when x ∈ [3, 4] and zero otherwise, and

uy = σyy = σxy = 0 everywhere in the domain. Fig. 4.10 shows the schematic

of the problem setup. The dark shaded triangle shows Ω1 and anywhere outside

this triangle is Ω2. The lightly shaded area represents the non-zero region of

the initial condition. The arrow in this figure shows the initial direction of the

incident wave.

On the left and right boundaries, free surface conditions are imposed, and

on the top and bottom boundaries, symmetry conditions are assumed. No slip

condition is assumed at the interface of the two solids. A second order MUSCL

solver is used together with a grid size of ∆x = ∆y = 0.01 and a CFL number

of 0.65. The solution is obtained for t = 1.5.

The calculated value of ϑ for this test is close to 1 for almost all the time
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(a) No-Slip Condition (b) Slip Condition

Figure 4.9: Test Example 1: Normal velocity and normal stress along the line
y = x − 2.5 with respect to the normal coordinate, η. Results are obtained for
tf = 1.

steps which is greater than ϑcrit ≈ 0.1. As such, this will lead to non-physical

oscillations for the OGSM.

The problem setting provides y = 5 as the line of symmetry. Full calculations

are carried out with no assumption of symmetry in the methods. Figure 4.11

shows that the MGSM gives a very stable and smooth solution for σxy while a

good symmetry is preserved about y = 5. However, it is observed the OGSM

is completely unstable. This further attests to the applicability and robustness

of the MGSM in comparison to the OGSM when it is applied to more complex

geometries and wave interactions.
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Ω1 Ω2

(5,4)

(5,6)

(4,5)

Figure 4.10: Test Example 2: Domain setup and the non-zero region of the initial
condition.

4.5.3 Test Example 3: Circular wave interacting with

a straight interface

This numerical example is designed to show the applicability of the MGSM in

dealing with an expanding wave interacting with a straight interface. Further-

more, we will study the mesh convergence rate for the MGSM.

The material properties for this case are:

ρ(x) =


1 x < 7

5 x > 7
, α(x) = 1, β(x) = 0.3. (4.21)

The initial conditions are

u(x, 0) = v(x, 0) = σxy(x, 0) = 0 σxx = σyy =


1 (x− 6.5)2 + y2 < 1

0 otherwise
.

(4.22)

A schematics of the domain setup and the initial conditions can be seen in
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(a) MGSM (b) OGSM

Figure 4.11: Test Example 2: Contour plots of σxy when the MGSM and the
OGSM are employed. Solution is obtained for t = 1.5.

(6.5,0)

x = 7

Ω1 Ω2

Figure 4.12: Test Example 3: Domain setup and the non-zero section of the initial
condition

Fig. 4.12. This setup provides an axis of symmetry along the line y = 0. The

CFL number is 0.55 and the results are obtained for tf = 1.0. The mesh size in

Figs. 4.13 to 4.14 is ∆x = ∆y = 2.5× 10−2.

Fig. 4.13 shows the velocity contours for this problem, obtained using the

MGSM method with no-slip conditions applied at the interface. As it can be

seen the results have a perfect line of symmetry along the line y = 0 and the

contours are smooth without any numerical oscillations or wiggles.
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Figure 4.13: Test Example 3: Contour plots of velocity u and v obtained using the
MGSM method. The results are obtained for tf = 1.0.
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Figure 4.14: Test Example 3: Contour plots of normal and tangential components
of stress obtained using the MGSM method. The results are obtained for tf = 1.0.

Fig. 4.14 shows the stress contours for the normal and tangential component

of the stress obtained using the MGSM. One may notice that the symmetry

along the line y = 0 is preserved while the solution remains smooth and free

from numerical oscillations.

Fig. 4.15 shows the maximum numerical error for the calculated unknowns

over the solution domain vs. various mesh sizes. As it can be seen the maximum

error monotonically decreases with mesh refinement. However, the slope of the

error line indicates a below first-order accuracy for this problem.
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Figure 4.15: Test Example 3: Maximum numerical error for each variable at time
tf = 1.0 against various mesh sizes. The results are obtained using the MGSM
method.

4.5.4 Test Example 4: Circular wave interacting with

a straight interface

This case is very similar to the previous case with a small modification that the

wave is expanding and hitting a denser material behind the wave. The density

ratio between the material is slightly smaller compared to the previous case.

Similar to the previous case, we will study the mesh convergence rate for the

MGSM.

The material properties for this case are:

ρ(x) =


3 x < 6

1 x > 6
, α(x) = 1, β(x) = 0.3. (4.23)
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The initial conditions are

u(x, 0) = v(x, 0) = σxy(x, 0) = 0 σxx = σyy =


1 (x− 6.5)2 + y2 < 1

0 otherwise
.

(4.24)

A schematics of the domain setup and the initial conditions can be seen in Fig.

(6.5,0)

Ω1Ω2

x = 6

Figure 4.16: Test Example 4: Domain setup and the non-zero section of the initial
condition

4.16. This setup provides an axis of symmetry along the line y = 0. The CFL

number is 0.55 and the results are obtained for tf = 1.0. The mesh size in Figs.

4.17 to 4.18 is ∆x = ∆y = 2.5× 10−2.
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Figure 4.17: Test Example 4: Contour plots of velocity u and v obtained using the
MGSM method. The results are obtained for tf = 1.0.
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Figure 4.18: Test Example 4: Contour plots of normal and tangential components
of stress obtained using the MGSM method. The results are obtained for tf = 1.0.

Figs. 4.17 and 4.18 show the contour plots of velocity and stress components,

respectively. The results are obtained using the MGSM together with a FOG

solid solver. It can be seen that the results show symmetry along the line y = 0.

It can be seen the results are free from large numerical oscillations and have

produced smooth contours of the solution.
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Figure 4.19: Test Example 4: Maximum numerical error for each variable at time
tf = 1.0 against various mesh sizes. The results are obtained using the MGSM
method.

Fig. 4.19 shows the maximum error incurred in calculating the velocities and
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stresses, over the solution domain, when the MGSM is applied, against three

mesh sizes. The slope of the error line indicates the MGSM results together

with the FOG provide a first order method in two dimensional settings.

4.6 Conclusion for Chapter 4

The Original Ghost Solid Method (OGSM) and the Modified Ghost Solid Method

(MGSM) for the elastic-elastic interactions at the solid-solid interface were pre-

sented in this chapter. The methods were developed for two types of interface

conditions, namely the no-slip condition and the perfect slip condition.

It was discussed that the OGSM is simple to implement in the multi-dimensions.

However, it can suffer from large numerical oscillations, in multi-dimensions, sim-

ilar to the 1D settings. Moreover, it was shown that the MGSM can successfully

eliminate these large numerical errors; although, implementation of this method

can be more complicated compared to the OGSM. It was discussed that both

OGSM and MGSM are simpler to implement as compared to the immersed in-

terface method.

Moreover, ϑ-criterion was shown to be able to successfully predict the large

numerical errors that can occur due to the use of the OGSM.

The robustness of the MGSM in dealing with more complex geometries,

which may include sharp geometrical corners and complex wave interactions,

was demonstrated through a numerical experiment. Convergence studies, car-

ried in the numerical experiments presented in this chapter indicate that the

MGSM monotonically converges to the analytical solution. Depending on the
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shape of the interface, and complexity of the waves, the accuracy of the overall

numerical solution when combined with a first order solver, can be up-to first

order accurate.
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Chapter 5

One Dimensional

Elastic-Plastic Solid

Interactions

In this chapter, the one-dimensional elastic-plastic interaction is investigated.

We start with the Original Ghost Solid Method (OGSM), to be followed by the

Modified Ghost Solid Method (MGSM). The advantages and possible disadvan-

tages of each of these methods are discussed and compared. Finally, the OGSM

and MGSM are validated and compared using numerical experiments.
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5.1 Governing Equation

The Cauchy equation of motion at any point inside a solid can be written, in

tensor notation, as

ρbi + σji,j − ρai = 0 (5.1)

where ρ is the density of the material, b is the body force, σ is the stress, and a

is the acceleration. Assuming the body forces are negligible, equation (5.1), can

be simplified to

σji,j − ρai = 0. (5.2)

For the case of pure shear, in a one-dimensional setting, equation (5.2) can be

further simplified to

∂σ

∂x
− ρ∂u

∂t
= 0. (5.3)

In this work, for the closure of the system, modified Hook’s law is employed as

the constitutive equation. For 1D elastic-plastic solid, it can be written as

dε = 1 + h

E
dσ (5.4)

where ε is the displacement in x-direction, and E is the modulus of elasticity,

and h = h(κ) is the called the plastic factor:

h =


0, when |σ + dσ| ≤ κ;

E/Ep(κ)− 1 when |σ + dσ| > κ;
(5.5)
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where κ is the current yield. Substituting equation (5.4) into (5.3) to eliminate

ε, we can obtain:

∂U
∂t

= A∂U
∂x

(5.6)

where

U =

 u

σ

 , A =

 0 1/ρ

E/(1 + h) 0

 . (5.7)

Equation (5.6) is used as the governing equation for 1D elastic-plastic solid

behavior.

5.2 The Elastic-Plastic Riemann Problem

The Riemann problem is given as

∂U
∂t

= A∂U
∂x

, U(x, 0) =


UL when x < xI

UR when x > xI

(5.8)

where xI is a reference length for the problem. For the solid-solid interaction

problem, xI is considered as the location of the interface. The subscripts L and

R refer to the values on the left and right of the interface, and the subscript I

refers to the interfacial values.

The objective in solving the Riemann problem is to find the value of UI =

U(xI , 0). We can now solve this problem as illustrated in Figure 5.1.

Assuming that the left and right regions are homogeneous states, the simple

wave solution can be found for equation (5.6), for which U is a function of
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x

t

Solid 1 Solid 2

I

R
L

IR
IL

Figure 5.1: Riemann problem in (x, t) plain in the impact of two solid rods.

c = x/t only. Therefore, we can rewrite equation (5.6) as:

(I− cA)dU = 0, (5.9)

where c is a free parameter. However, the following equation must be satisfied

so that equation (5.9) can maintain a non-trivial solution, dU = 0:

det(I− cA) = 0, (5.10)

where “det” is the determinant operator. If we solve equation (5.10) for c we

can obtain:

c(κ) = ±
√

E

ρ[1 + h(κ)] . (5.11)

The positive sign of the solution (5.11) is for the rightward running waves and

the negative sign is for the leftward running waves. As such, in the leftward

wave region, the information propagates along the characteristic x/t = cL(κ) =√
E/(ρ[1 + h(κ)]) of a rightward running wave. Therefore, in this region the
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following characteristic equation holds true:

du = dσ

ρLcL(κ) . (5.12)

Similarly, in the rightward wave region, the information propagates alongside the

characteristic line x/t = −cR(κ) = −
√
E/(ρ[1 + h(κ)]). Hence, in this region,

the following characteristic equation can be considered. That is,

du = − dσ

ρRcR(κ) . (5.13)

Now, we can integrate (5.12) from the state L to IL as:

uIL
= uL +

∫ σIL

σL

dσ

ρLcL(κ) ; (5.14)

and (5.13) from R to IR as:

uIR
= uR −

∫ σIR

σR

dσ

ρRcR(κ) . (5.15)

Continuity and balance of force imply

uIL
= uIR

= uI , σIL
= σIR

= σI . (5.16)

Therefore, Eqns. (5.14) and (5.15) can be rewritten as:

uI = uL +
∫ σI

σL

dσ

ρLcL(κ) , (5.17)
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and

uI = uR −
∫ σI

σR

dσ

ρRcR(κ) . (5.18)

Using Eqns. (5.17) and (5.18), we can obtain:

∫ σI

σL

dσ

ρLcL(κ) +
∫ σI

σR

dσ

ρRcR(κ) = uR − uL. (5.19)

Equation (5.19) can be solved for σI using an iterative method (e.g. the Newton

method [108]). Once σI is determined, either of the equations (5.17) or (5.18)

can be used to calculate uI .

The solution to the Riemann problem discussed here is used below in con-

junction with the proposed numerical methods. A key issue is the assignment

of the appropriate values for the leftward and rightward regions in the Riemann

problem which will be discussed in more detail in Section 5.3.4.

5.3 GSM Based Algorithms

In this section, we shall discuss the GSM-based algorithms for the elastic-plastic

interactions of solids. We will provide the broad outline of these methods.

87



CHAPTER 5. ONE DIMENSIONAL ELASTIC-PLASTIC SOLID
INTERACTIONS

5.3.1 Outline of various GSMs

Similar to Section 3.4.1, for the GSM-based algorithms, we shall assume that

the solution at time t = tn is known, that is:

∂U
∂t

= A∂U
∂x

,

U(x, tn) =


Un
L(x) if x < xI

Un
R(x) if x > xI

, A(x, tn) =


An
L(x) if x < xI

An
R(x) if x > xI

.

(5.20)

In the implementation, usually a band of 1 to 5 grid points is defined as ghost

nodes in the neighborhood of the solid-solid interface. Note that the minimum

number of required ghost nodes, which in a particular application may be only

one ghost node or even more than 5 ghost nodes, depends on the computational

stencil of the single medium solver which is employed. At each point, both ghost

solid and real solid are present. We shall assume that the solid-solid interaction

is between a left (subscript L) and a right (subscript R) medium. In the GSM-

based algorithms for a multi-medium interaction problem, one has to solve for a

1-medium Riemann problem for each of the medium, at each time step. One is

for the left solid medium with the following initial conditions

∂U
∂t

= A∂U
∂x

,

U(x, tn) =


Un
L(x) if x < xI

U∗R(x) if x > xI

, A(x, tn) =


An
L(x) if x < xI

A∗R(x) if x > xI

.

(5.21)
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Here, the ∗ sign is used to represent the ghost solid status at t = tn. Equation

(5.21) solves the elastic-plastic problem from the first grid node on the left to

the ghost node(s) on the right side of the interface. Similarly, the other Riemann

problem for the right solid medium is given as:

∂U
∂t

= A∂U
∂x

,

U(x, tn) =


U∗L(x) if x < xI

Un
R(x) if x > xI

, A(x, tn) =


A∗L(x) if x < xI

An
R(x) if x > xI

.

(5.22)

Equation (5.22) solves for the elastic-plastic problem, from the ghost node on

the left of the interface to the last node on the right. It is essential to properly

define the ghost values, at the nodes on the left and right side of the interface,

for the solution at the real nodes in the equations (5.21) and (5.22) so as to

converge to the solution of the multi-medium elastic-plastic problem.

Depending on the method used to define the ghost values on the ghost nodes,

two variations of the GSMs are introduced for the elastic-plastic interface.

5.3.2 Coupled and Uncoupled Variables

Consider a variable χ. The subscripts IL and IR are used to indicate if an

interfacial value is calculated on the left or right side of the interface, respectively.

If due to the boundary conditions at x, there exists a relation Γ such that

Γ(χIL
, χIR

) = 0, (5.23)
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then χ is considered to be a coupled variable across the interface at that point.

Otherwise, it is uncoupled.

For example, due to continuity at the interface, we have

uIL
= uIR

; (5.24)

and, due to the balance of force at the interface, we have

σIL
= σIR

. (5.25)

Therefore, u and σ are considered to be coupled variables. However, modulus of

elasticity (E), density (ρ), the plastic factor (h), and the current yield (κ) are

not connected through boundary conditions across the interface. Hence, they

are considered as uncoupled variables.

5.3.3 On the Original GSM for the elastic-plastic in-

terface

Similar to Section 3.4.2, this method follows the pioneering works by Fedkiw et.

al. [2, 88] on the ghost fluid method. Here, the coupled variables, namely the

local real solid velocity (u) and stress (σ), are simply copied to the corresponding

ghost solid nodes from the real nodes at that location. The uncoupled variables,

namely modulus of elasticity (E), density (ρ), the plastic factor (h), and the

current yield (κ) are extrapolated from the real solid nodes to the ghost solid

nodes, on the other side of the interface. For illustration, see Fig. 5.2. By
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assuming that the interface lies between the nodes i and i + 1, and depending

on the single medium solver employed, considering a band of 1 to 5 ghost nodes,

on each side of the interface, this method can be formulated as:

U∗L(xj) = Un
j , A∗j = Ai + 1, i− 4 ≤ j ≤ i

U∗R(xj) = Un
j , A∗j = Ai, i+ 1 ≤ j ≤ i+ 5 .

(5.26)

Figure 5.2 schematically illustrates the process of defining the ghost nodes

on the right and left hand side of the interface.

i− 2 i− 1 i

i+ 1 i+ 2 i+ 3
real solid node

ghost solid node

Interface

Left Medium Right Medium

E
h
κ
ρ

[
u
σ

] [
u
σ

] [
u
σ

] [
u
σ

] [
u
σ

] [
u
σ

]

i− 2 i− 1 i

i+ 1 i+ 2 i+ 3

Interface

Left Medium Right Medium

E
h
κ
ρ

Figure 5.2: Schematics of the original ghost solid method.

As was discussed earlier, in Section 3.4.2, the simplicity of this method lies

in that no Riemann problem needs to be solved at the interface to define the

value of the ghost nodes. Moreover, no system of equations needs to be solved

along with the solid solver in comparison to methods such as the Immersed

Interface Method [51]. However, similar to the elastic-elastic interactions, as

will be discussed below, under certain conditions it can, and usually will, result

in large numerical errors.
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5.3.4 On the Modified GSM for the elastic-plastic in-

terface

Here, we take the modulus of elasticity, density, the plastic factor, and the

current yield as uncoupled variables and are copied from the real solid nodes to

its corresponding ghost solid nodes on the other side of the interface (see Figure

5.3). We shall define the coupled variables, over the ghost nodes (U∗ values),

such that the interfacial values predicted by the left and right single mediums

(Eqns. (5.21) and (5.22)) will be identical to the interfacial values which are

calculated by the multi-medium problem (5.20).

Similar to Section 5.2, we assume uI and σI are interfacial values. Consider

the left medium together with the ghost nodes on the right side of the interface.

On the left side of the interface, for the rightward running waves, we have:

uI = uL +
∫ σI

σL

dσ

ρLcL(κ) ; (5.27)

and in the rightward region, for the leftwards running waves we have:

uI = u∗R −
∫ σI

σ∗
R

dσ

ρLcL(κ) . (5.28)

Our objective is to define u∗R and σ∗R such that the interfacial values, uI and

σI , obtained from Eqns. (5.27) and (5.28) are identical to the solution obtained

from Eqns. (5.17) and (5.18). To achieve this objective, we assume that the uI

and σI are the solution of the Eqns. (5.17) and (5.18). Then, we shall define u∗R

and σ∗R such that this solution also satisfies Eqns. (5.27) and (5.28).
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It is noted that the Eqns. (5.17) and (5.27) are identical. So, if uI and σI

are the solution of the Eqns. (5.17) and (5.18), then, this solution automatically

satisfies Eqn. (5.27). It can be seen, if u∗R = uI and σ∗R = σI , this solution also

satisfies Eqn. (5.27) automatically.

Next and similarly, consider the right medium together with the ghost nodes

on the left side of the interface. On the left side of the interface, for the rightward

running waves, we have:

uI = u∗L +
∫ σI

σ∗
L

dσ

ρRcR(κ) ; (5.29)

and in the rightward region, for the leftwards running waves, we have:

uI = uR −
∫ σI

σR

dσ

ρRcR(κ) . (5.30)

We shall aim to define u∗L and σ∗L such that the interfacial values, uI and σI ,

obtained from Eqns. (5.29) and (5.30) are identical to the solution obtained

from Eqns. (5.17) and (5.18). To achieve this objective, we assume that the uI

and σI are the solution of the Eqns. (5.17) and (5.18). Then, we shall define u∗L

and σ∗L such that this solution also satisfies Eqns. (5.29) and (5.30).

It is noted that the Eqns. (5.18) and (5.30) are identical. So, if uI and σI

are the solution of the Eqns. (5.17) and (5.18), then this solution automatically

satisfies Eqn. (5.30). It can be seen that if u∗L = uI and σ∗L = σI , this solution

also satisfies Eqn. (5.29) automatically.

Now, assuming that the interface lies between the nodes i and i + 1, the
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interfacial values of velocity and stress can be approximated by assuming that

UL = Un
i , UR = Un

i+1, (5.31)

and similarly

AL = An
i , AR = An

i+1. (5.32)

Using the values in (5.31) and (5.32), the solution for the multi-medium Riemann

problem, provided in Section 5.2, can be obtained. Subsequently, using the

interfacial values UI , the ghost nodal values can be fully defined as:

U∗L(xj) = UI , A∗L(xj) = Ai+1, i− 4 ≤ j ≤ i

U∗R(xj) = UI , A∗R(xj) = Ai, i+ 1 ≤ j ≤ i+ 5
. (5.33)
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Figure 5.3: Schematic illustration of the MGSM.

Figure 5.3 illustrates this method schematically. Similar to the elastic-elastic

interactions, only a single Riemann problem is solved to define the ghost nodes,

both on the left and right side of the interface.

By numerical experiment, it will be shown that this method can greatly

decrease or eliminate the non-physical oscillations seen for the OGSM. The only

disadvantage of the this method vis-a-vis the OGSM is that it involves solving
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for a Riemann problem at the interface, at each time step.

5.3.5 On the error due to the OGSM and MGSM and

their stability

Here, we will follow the analysis which was introduced in Section 3.4.4. It was

discussed, if the leading numerical error is traced to the implemented GSMs, the

instability of the numerical solution will be associated with, or caused by the use

of the GSMs. We shall follow the Lax-Richtmyer stability analysis [104,105].

We shall assume that the largest due to the use of the GSMs may occur

right at the interface. This is due to the fact the effects of using GSMs occur in

the cut cells. In Section 5.3.4, we compared the UI from the MGSM calculation

vis-a-vis the multi-medium solution. As such, the error incurred due the use of

the MGSM, if the exact solution of the Riemann problem is used, will be theo-

retically zero. Consequently, the stability of the solution will be unconditionally

associated with the stability of the single medium solver employed; i.e. ||En||∞

will not be determined via the use of MGSM. Similarly, one can conclude, if an

approximate Riemann solver is used for calculating the interfacial values with

the MGSM, the stability of the solution will be determined via both the approx-

imate Riemann solver and the single medium solver employed together with the

MGSM.

On the other hand, when the OGSM is employed, the interfacial values which

are calculated from the left and right mediums are not necessarily identical to

those of the exact solution of the multi-medium problem. Here, the maximum
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error in interfacial velocity with the OGSM is:

||EuI ||∞ = max{|uI − uIR|, |uI − uIL|}. (5.34)

Similarly, the maximum error due to OGSM, in the stress at the interface is:

||EσI ||∞ = max{|σI − σIR|, |σI − σIL|}. (5.35)

Here, the index I denotes the interfacial value of the exact solution of the multi-

medium problem. The subscript IL and IR refer to the interfacial values ob-

tained from the left and right single medium solutions, respectively.

To obtain uIL and σIL the equations

uIL = uL +
∫ σIL

σL

dσ

ρLcL(κ) , (5.36)

and

uIL = uR −
∫ σIL

σR

dσ

ρLcL(κ) . (5.37)

must be solved simultaneously. Similarly, to determine uIR and σIR we need to

simultaneously solve

uIR = uL +
∫ σIR

σL

dσ

ρRcR(κ) , (5.38)

and

uIR = uR −
∫ σIR

σR

dσ

ρRcR(κ) . (5.39)

As can be seen, the error incurred in (5.34) and (5.35) has strictly no upper
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bound. As such, this unbound error can lead to instabilities, if the OGSM is

employed. In other words, ||En||∞ may be associated with the error incurred by

the OGSM. One may observe these large errors either in the form of spurious os-

cillations, extreme deviation from the analytical solution, or complete instability

in the solution. One can be tempted to use higher order single medium solvers

to rectify these errors. However, due to the Godunov theorem [102], higher order

schemes tend to switch to lower order schemes, specifically a first order one, to

avoid the spurious oscillations. Consequently, the use of higher order schemes

cannot successfully address the large numerical errors and instabilities due to

the use of the OGSM.

It is noted that when

||EuI ||∞ = ||EσI ||∞ = 0, (5.40)

the errors associated with the OGSM are minimized. By comparing (5.40) with

(5.34) and (5.35), one can get the conditions

uIR = uIL = uI , and σIR = σIL = σI , (5.41)

which are the error minimizing conditions. If the conditions in (5.41) are satis-

fied, the errors in (5.34) and (5.35) will be identically zero. Thus, the stability of

the problem becomes synonymous with the stability of the solid solver employed

for the single medium. These conditions and their stability characteristics can

be used as reference and guide to predict the stability of the (more general)
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OGSM. To quantify, a much simpler dimensionless parameter, ϑ, is proposed

and applicable for both the velocity and stress:

ϑ = max
( |uIL − uIR|
|uIL|+ |uIR|

,
|pIL − pIR|
|pIL|+ |pIR|

)
. (5.42)

The ϑ value quantifies how close the numerical solution is to the conditions in

(5.41). The range of ϑ is [0, 1]. Our extensive numerical tests indicate that

the maximum permissible value of ϑ, before clearly perceptible non-physical

oscillations are observed, is ϑcrit ≈ 0.1. The above discussion not only explains

the origin/reason for possible large numerical errors, but also provides a means

forward to determine when the OGSM results are reliable. For the latter, one can

establish beforehand if ϑ is within the permissible range to ensure the numerical

errors are kept to an acceptable level as time progresses. If at any time step, ϑ

exceeds the maximum permissible value, the OGSM can no longer be considered

as a suitable approach. One may use an alternative GSM at that particular

time step. Subsequently, if the value of ϑ drops below 0.1, the OGSM can be

reinstated for use due to its simplicity.

It is worthwhile to mention that a more stringent limit for ϑcrit can be

used depending the accuracy desired. Moreover, the calculation of ϑ is not

computationally expensive, as the first order fluxes may be readily available to

calculate ϑ, specially if a TVD solver is used.
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5.4 Numerical Experiments

In this section, various numerical experiments are presented to study various

aspects of the original and modified GSMs. In our experiments, it is assumed

that the materials obey either a linearly elastic, linearly plastic, work hardening

stress-strain relationship given by

E =


E0 when σ < κ

Ep when σ ≥ κ
, (5.43)

where E0 is the elastic modulus, Ep is the plastic modulus during plastic loading,

σ is the current stress, and κ is the current yield stress; or, the solid materials

obey the linearly elastic, power-law work-hardening plastic stress strain relation-

ship given by

1
Ep(κ) = α

E

(
κ

κ0

)α−1
(5.44)

where κ is the current yield stress and κ0 is the initial yield stress of the material;

and α is a material parameter.

5.4.1 Test Example 1: On the possible large numeri-

cal errors due to the use of the OGSM

It was earlier seen when OGSM is employed to apply the interface conditions, at

the elastic-elastic interface, large errors can occur as non-physical oscillations.

Elastic-plastic deformations can transform energy into plastic deformation. If

OGSM is employed to model the elastic-plastic solid-solid interface, under certain
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situations it can lead to large errors. However, due to the dissipative nature

of the elastic-plastic phenomenon, the errors may or may not manifest in the

form of uncontrolled large non-physical oscillations. This example is designed to

show that when using the OGSM with elastic-plastic model, the large numerical

errors can be in the form large deviations from the solution and not numerical

oscillations.

The domain of the solution is [−5, 5] and the interface is located at xI =

0. The initial velocity is u(x, 0) = 1 when x ∈ [−5, 0] and is zero otherwise.

The initial normal stress σ(x, 0) = 0 everywhere in the domain. The boundary

conditions are u(−5, t) = 1 and u(5, t) = 0. The grid size is ∆x = 0.01 and

CFL=0.95.

We assume the solid materials obey the linearly elastic, power-law work

hardening relation, given by Eqn. (5.44).

Four sets of material properties are assumed:

1. Set #1.1: ρL = EL = 1, on the left side of the interface, and ρR = ER =

1.4 on the right side; the elastic limit for the left and right medium is

considered to be κL = κR = 10.

2. Set #1.2: ρL = EL = 1, on the left side of the interface, and ρR = ER =

1.4 on the right side; the elastic limit for the left and right medium is

considered κL = κR = 0.5.

3. Set #1.3: ρL = EL = 1, on the left side of the interface, and ρR =

ER = 5 on the right side; the elastic limit for the left and right medium is

considered to be κL = κR = 10.
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4. Set #1.4: ρL = EL = 1, on the left side of the interface, and ρR = ER =

1.4 on the right side; the elastic limit for the left and right medium is

considered κL = κR = 0.75.

Figure 5.4: Test Example Set #1.1: velocity and stress profile. Solution is obtained
for tf = 0.3.

Figure 5.4 shows the velocity and stress profile at tf = 0.3 for the first

material set (Set #1.1). Under this setting, there will only be elastic-elastic

interactions as the stress does not reach the yield stress. The maximum ob-

served ϑ value is ϑmax = .02, at the 4th time step which is well below the

prescribed/suggested critical value of ϑcrit = 0.1. No significant numerical error

is observed in the stress profile when either OGSM or MGSM is applied, when

the results are compared against the Method-of-Characteristics1 (MOC) which

is a semi-analytical solution.
1For more information on the Method-of-Characteristics (MOC), one can consult the

article by Sarra A. Scott [109], the books by Courant et al [110] and by F. John [111],
the tech report by Evans [112], the handbooks by Polianin [113, 114], or the classroom
notes by M. Delgado [115]. As such, the detailed calculation is not repeated here.
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Figure 5.5: Test Example Set #1.2: velocity and stress profile. Solution is obtained
for tf = 0.3.

Figure 5.5 shows the velocity and stress profile for the second set of materials

(Set #1.2), and the solution is obtained for tf = 0.3. In this setting, plastic

deformation is observed as the stress exceeds the yield stress in both the left

and right mediums. It is found that ϑmax = .07 occurs at the third time step

and is still 30% below the prescribed critical value of ϑcrit = 0.1. No critical

instability is observed. However, it can be seen that MGSM still performs better

in predicting the reflected plastic wave from the interface for both the stress and

velocity profile when compared against the profiles obtained by the Method-of-

Characteristics (MOC).

Figure 5.6 shows the velocity and stress profile for the third set of materials

(Set #1.3), and the solution is obtained for tf = 0.2. The maximum observed

ϑ-value is ϑmax = 1 at the 3rd and 4th time steps which is ten times larger

than the maximum permissible value of ϑcrit = 0.1. All the stress values remain

below the yield stress of the materials in the left and right medium, and hence,
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Figure 5.6: Test Example Set #1.3: velocity and stress profile. Solution is obtained
for tf = 0.2.

the deformation is elastic in both mediums. It can be seen that the OGSM has

led to large deviation in the velocity and stress profile from the semi-analytical

solution while the MGSM has remained stable and accurate.

Figure 5.7: Test Example Set #1.4: velocity and stress profile. Solution is obtained
for tf = 0.2.

Figure 5.7 shows the velocity and stress profile for the fourth set of materials
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(Set #1.4), and the solution is obtained for tf = 0.2. The maximum observed

ϑ-value is ϑmax = 0.36 at the 3rd time step which is well above the maximum

permissible value of ϑcrit = 0.1. The stress at the interface is above the yield

stress in both the left and right mediums, and hence causes a plastic wave to

propagate in both mediums. It can be seen that the OGSM has caused large

errors in both the velocity and stress profiles while MGSM remains stable and

provides results which agree well with the Method-of-Characteristics (MOC).

Although, it seems that the errors in OGSM predictions for the elastic-plastic

case are not as large as the elastic-elastic interaction case, when the ϑ values are

well above the prescribed maximum permissible value ϑcrit, the numerical predic-

tions of the OGSM have shown clear deviations from the semi-analytical results.

Whether the numerical errors are in the form of the form of physical oscillations

or deviations from the physical solution, the ϑ-criterion can successfully predict

these errors.

5.4.2 Test Example 2: On the possible numerical os-

cillations due to OGSM

When OGSM is employed for the elastic-plastic interface, it can cause large errors

in the form of numerical oscillations. This test is designed to show an elastic wave

impacting on the interface and hence causing elastic-plastic deformation in both

mediums. Propagation of elastic-plastic waves is studied in both mediums in this

experiment. In this example, the large numerical errors due to the OGSM occur

in the form of oscillations (observed as time progresses) and general instabilities
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in the solution.

Domain of the solution is [−4, 4] and the interface is located at xI = 0.

The initial condition are u(x, 0) = σ(x, 0) = 0, everywhere in the domain. The

boundary conditions are σ(−4, t) = −u(−4, t) = 3 and σ(4, t) = u(4, t) = 0. The

mesh size is assumed to be ∆x = 0.05 and the CFL=0.99.

We shall assume the solid materials obey the linearly elastic, power-law work

hardening relation, given by Eqn. (5.44). We consider two material sets:

1. Set #2.1: ρL = EL = 1, on the left side of the interface, and ρR = 12 and

ER = 8 on the right side; the elastic limit for the left and right medium is

considered to be κL = κR = 10.

2. Set #2.2: ρL = EL = 1, on the left side of the interface, and ρR = 12 and

ER = 8 on the right side; the elastic limit for the left and right medium is

considered to be κL = κR = 3; αL = αR = 3.

In this way, the material Set #2.1 will only undergo elastic-elastic interactions,

as a control set, while the second material Set #2.2 experiences elastic-plastic

interactions.

Figure 5.8 shows the velocity and stress profile for the Set #2.1 at the time

of tf = 5.5. The predicted stresses are well below the yield stress. Hence,

the interaction at the interface is completely elastic. The maximum ϑ value is

1.0 at t = 4.06. After the incident wave impacts on the interface the ϑ value

remains above the critical value of 0.1 and oscillates between 0.26 and 1. As it

can be seen the results obtained using the OGSM are unstable, with very large

numerical errors in the form of large amplitude oscillations observed in the stress
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Figure 5.8: Test Example Set #2.1: velocity and stress profile. Solution is obtained
for tf = 5.5.

an velocity at the interface as time progresses, while the MGSM remains stable

and concurs well with the MOC. In this case, the use of the OGSM has rendered

the results completely unreliable.

Figure 5.9: Test Example Set #2.2: velocity and stress profile. Solution is obtained
for tf = 5.5.

Figure 5.9 shows the velocity and stress profile for the Set #2.2 at the time

106



CHAPTER 5. ONE DIMENSIONAL ELASTIC-PLASTIC SOLID
INTERACTIONS

of tf = 5.5. In this scenario, the stress values at the interface exceed the elastic

limit and a plastic wave is formed at the interface which propagates to the left

and right medium. The ϑ value exceeds the prescribed maximum permissible

value of 0.1 by reaching 0.57 at t = 4.06, and continues to grow until it reaches

a maximum of 1.0 at t = 4.8. As it can be seen the results obtained using the

OGSM suffer from large numerical errors in both the stress and velocity profiles,

which is consistent with the predictions of the ϑ-criterion. In particular, the

numerical errors in the stress profile manifest as oscillations too. These large

errors make the OGSM results practically unreliable. It is also noticed that the

MGSM remains stable and the results obtained agree very well with the method

of characteristics (MOC). As it was earlier discussed in Section 5.3.5, in this case

the stability of the MGSM is synonymous as the stability of the elastic-plastic

solver employed in the problem.

5.4.3 Test Example 3: Loading history discontinuity

and the performance of GSMs

There can be occasions whereby a discontinuity in a problem is only due to

different loading histories, e.g. parts of the solid can undergo work hardening.

In this experiment, the solids are assumed to obey the linearly elastic, power-

law work hardening relation, given by Eqn. (5.44). The material properties are:
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Left Solid:



ρ = 1.0

E = 1.0

α = 3

κ0 = 1.0

Right Solid:



ρ = 1.0

E = 1.0

α = 3

κ0 = 0.9

.

The initial conditions are:

u(x, 0) = −σ(x, 0) =


1.0, x ∈ [−1.5, 0.5]

0, otherwise
.

The interface is at xI = 0 and the solids on the left and right side of it extend

indefinitely in the left and right directions, respectively. The grid size is taken

to be ∆x = 0.005 and the CFL number is 0.96. The solution is obtained for

tf = 2.0.

Figure 5.10: Test Example #3: velocity and stress profile. Solution is obtained for
tf = 2.0. For clarity, every second grid point is used for plotting.

In this numerical experiment, the rightward moving wave will cause elastic-
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plastic deformations in the right medium as the stress level is above the yield

stress. It is observed that ϑ value reaches a maximum value of 0.01 which is

well below the prescribed maximum permissible value of ϑcrit = 0.1. Figure 5.10

shows the velocity and stress profile in the domain at the time tf = 2.0. As it

can be seen, the GSMs can successfully apply the interface conditions without

causing any additional numerical errors which confirms the predictions by the

ϑ-stability criterion. The results obtained by both GSMs agree with the (semi-

analytical) results obtained using the MOC.

5.4.4 Test Example 4: Under the special case of acous-

tic impedance matching conditions in the elastic-

plastic region

In Section 3.5.4, the special case of acoustic impedance matching conditions was

presented for the elastic-elastic interactions. In this section, the material prop-

erties are carefully chosen to achieve acoustic impedance matching conditions

when one of the media undergoes plastic loading.

In this experiment, it is assumed that the materials obey a linearly elastic,

linearly plastic, work hardening stress-strain relationship given by Eqn. (5.43).

Two sets of problems are considered:

1. Set #4.1: The solution is obtained for tf = 0.35 and the material proper-
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ties are:

Left Solid:



ρ = 2.0

E0 = 0.5

Ep = 0.4

κ = 2.0

Right Solid:



ρ = 1.0

E0 = 1.1

Ep = 1.0

κ = 0.1

.

2. Set #4.2: the solution is obtained for tf = 0.2 and the material properties

are:

Left Solid:



ρ = 1.0

E0 = 1.0

Ep = 0.8

κ = 2

Right Solid:



ρ = 2.0

E0 = 0.55

Ep = 0.5

κ = 0.1

.

The initial conditions for both cases are:

u(x, 0) = −σ(x, 0) =


1− 0.5x, x ∈ [−0.2, 0]

0, otherwise
. (5.45)

The interface is located at xI = 0 while the left and right solids extend indefi-

nitely to the left and right, respectively. The grid size is ∆x = 0.001, and the

CFL number is assumed to be 0.99.

The wave is rightward moving. As it enters the right medium, Set #4.1

and #4.2 are designed such that the right solid undergoes plastic loading at the

interface until the wave passes through. In the left medium, the stress levels
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Figure 5.11: Test Example S #4.1: velocity and stress profile. Solution is obtained
for tf = 0.35. For clarity, every second grid point is used for plotting.

are well below the yield and the solid undergoes elastic unloading. The elastic

acoustic impedance in the left medium matches the plastic acoustic impedance in

the right medium. Hence, acoustic impedance matching conditions are achieved

in this interaction.

Figure 5.11 shows the velocity and stress profile for Set #4.1. It can be seen

the wave passes through without any reflection at the interface. The maximum

observed ϑ in this setting is 0.0025 which is well below the maximum permissible

limit of 0.1. It is observed that the OGSM remains stable in this setting.

Figure 5.12 shows the velocity and stress profile for set #4.2. It is observed

the wave passes through without any reflection at the interface. The maximum

observed ϑ in this setting is 0.0012 which is well below the maximum permissible

limit of 0.1. It is observed that the OGSM remains stable under this setting.

From the above, it is clear that both GSMs are successful in predicting

the acoustic impedance matching case and their results agree with the results
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Figure 5.12: Test Example Set #4.2: velocity and stress profile. Solution is ob-
tained for tf = 0.2.

obtained using the MOC.

5.4.5 Test Example 5: On a general wave interacting

with the interface in the elastic-plastic region

In this case, a general wave propagation problem is studied. We assume the solid

materials obey linearly elastic, power-law work-hardening plastic stress strain

relationship given by Eqn. (5.44). The material properties on the left and right

side of the interface are:

Left Solid:



ρ = 1.0

E = 1.0

α = 3

κ0 = 1.5

Right Solid:



ρ = 12.0

E = 8.0

α = 3

κ0 = 1.5

.
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The interface is located at xI = 0 and the solution domain is x ∈ [−4, 4]. Zero

initial conditions are assumed throughout the domain. The boundary conditions

are:

σ(−4, t) =



0.2, t ≤ 1

0.8t− 0.6, 1 < t ≤ 2

1.0, t > 2

, and σ(4, t) = 0. (5.46)

Grid size is ∆x = 0.01 and the CFL number is 0.995. The solution is obtained

for tf = 7.0.

Figure 5.13: Test Example #5: velocity and stress profile. Solution is obtained for
tf = 7.0.

Figure 5.13 shows the stress and velocity profile. As soon as the rightward

moving wave hits the interface, ϑ value exceeds the prescribed maximum per-

missible value of 0.1 and reaches 1.0 at t = 4.00. As it can be seen, the results

obtained using the OGSM suffer significantly from the non-physical oscillations

both in the velocity and stress profile while the MGSM results remain stable.
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This confirms the predictions of the ϑ-criterion. Moreover, the MGSM results

agree well with the results from the method of characteristics.

5.5 Conclusion for Chapter 5

The ghost solid methods for the elastic-plastic deformations are presented in

this chapter. It is shown, under certain conditions, the OGSM can lead to

large numerical errors which may or may not be in the form of non-physical

oscillations. The ϑ-criterion was shown to successfully predict these errors in all

settings. The MGSM has been shown to robustly perform and to be stable in

all cases that the OGSM fails.

The OGSM and MGSM are also presented for the special case of the acoustic

impedance matching conditions. Both exhibit robust performance, similar to

that found for the elastic-elastic interactions in Chapter 3. It is also shown that,

under these conditions, the ϑ-criterion successfully predicts the OGSM to remain

stable.
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Chapter 6

Two Dimensional

Elastic-Plastic Solid

Interactions

By using the techniques developed in Chapter 5, in the normal direction of the

interface, one can readily extend to multi-dimensional GSM-based algorithms.

One should note, however, that there are additional boundary conditions, more

specifically the slip and the non-slip boundary conditions along the interface not

applicable for the 1-D problem. We shall concentrate on the plain strain problem

and develop our methods for the mentioned interface conditions.
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6.1 Elastic-Plastic Loading Path

On the discussion on two dimensional elastic-plastic solid interaction, it is worth-

while to briefly review the fundamental theory of plasticity. We shall consider

an isotropic work-hardening solid, which follows the von Mises’ theory of plastic-

ity [62]. Under plastic deformation, the deviatoric stress, Skl ≡ σkl −
1
3σmmδkl,

satisfies the von Mises’ yield condition

1
2SklSkl − κ

2 = 0, (6.1)

where κ is the current yield stress. It is worthwhile to emphasize that although

all three normal stresses, σxx, σyy, and σzz are present in our discussions, it is

assumed there is no variation along the z-axis and hence the problem is still two

dimensional. The plastic strain component increment is

dεpkl = Skldχ, (6.2)

where dχ is a multiplier which is determined by the 1D simple shear curve.

The plastic shear strain increment, dγp, and the shear stress increment, dτ , are

related by

d
(
γp

2

)
= h

2µdτ, (h = µ

µp
− 1), (6.3)

where µ is the elastic shear modulus, µp = µp(τ) is the plastic shear modulus,

which is the slope of the τ = τ(γ) curve in the plastic range, and h is the plastic

factor. One can determine dχ by applying equations (6.1) and (6.2) to this shear
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problem. Then, equation (6.3) becomes:

dεpkl = h

2µ
Skl
κ

dκ. (6.4)

The Ducker hypothesis, for truly plastic deformation, implies that the plastic

strain components increment vector dεpkl is normal to the yield surface given by

the equation (6.1) [116]. Moreover, the angle ψ between the vectors dSkl and

dεpkl is acute,

− π

2 ≤ ψ ≤
π

2 , (6.5)

see Figure 6.1.

Skl

τ

0

κ

dǫpkl

dSkl

ψ

Figure 6.1: Schematics of Ducker’s hypothesis

A challenge arising in the computation is to determine the angle ψ. Any

angle that satisfies the equation (6.5) is physically admissible and hence the

simplest one ψ ≡ 0 is chosen to carry out our analysis and discussion [62]. As

a result, the direction of dSkl will be normal to the yield surface. This implies

that

dSkl
Skl

= dκ
κ
, (6.6)
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and consequently, equation (6.4) becomes

dεpkl = h

2µdSkl. (6.7)

For the materials under consideration, the volume change is elastic [62], thus

depkl = dεpkl, (6.8)

where ekl is the deviatoric strain, and dekl is its increment. Subsequently, the

elastic-plastic constitutive equation becomes

dekl = deekl + depkl = 1 + h

2µ dSkl. (6.9)

We shall use equation (6.9) as the constitutive equation in this chapter. Let us

Skl

τ

0

κi

i
*

µ
µp

Ŝkl

Figure 6.2: The schematics of an elastic-plastic stress loading path example.

study the elastic-plastic loading path, in Figure 6.2, as an example. Initially,

the yield surface radius is κi. The initial state of the loading is represented by

the point i which is inside the yield surface. After loading, the system will reach
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a final state Ŝkl outside the yield surface κi. The above condition ensures that

there is only a unique path, instead of otherwise many different paths, from i to

Ŝkl, i.e.,

Sikl
µ−−→ S∗kl

µp−−−→ Ŝkl, (6.10)

where the ∗ superscript shows the state on the initial yield surface κi, which is

the intersection of a radial ray that passes through the origin and the final state

Ŝkl.

One can rewrite the von Misses yield equation (6.1) as

1
3[(p− r)2 + (q − r)2 − (p− r)(q − r)] + τ2 = κ2, (6.11)

where p ≡ σxx, q ≡ σyy, and r ≡ σzz are the used for the normal stress com-

p− r

τ

0

κi

*

(p̂− r̂, τ̂)
µp

i
µ

Figure 6.3: The schematics of elastic-plastic stress loading path in the (p − r, τ)
space

ponents, and τ ≡ σxy is the shear stress component. The loading path problem

can be discussed either in the Skl space (Figure 6.2) or the (p− r, q− r, τ) space

(Figure 6.3). In order to avoid confusion of indices of the computational cells

and the stress component, we shall choose to study the loading path in the latter
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system, (p− r, q− r, τ) space. As it can be seen in Figure 6.3 the yield surface is

an ellipsoid. Consequently, the plastic loading path, from the above mentioned

assumption, i.e., the direction of (dp− dr, dq − dr, dτ), will no longer be in the

normal to the ellipsoid yield surface. However, as the transformation from the

Skl to (p − r, q − r, τ) is linear, the plastic loading path will coincide with the

ray that passes through the origin of the stress space [62]. If point i shows the

initial state, the point (p̂− r̂, q̂ − r̂, τ̂) shows the final state, then the point ∗ is

the intersection of the yield surface κi and the ray that passes through the origin

and the final state.

6.2 Governing Equation

The governing equations for plain strain problem of elastic-plastic solids are

A∂p
∂t

= ∂f
∂x

+ ∂g
∂y
, (6.12)

where

A =



ρ

ρ

1
3K

1+h
2µ

1+h
2µ

1+h
µ



,
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p =



u

v

p+ q + r

p− r

q − r

τ



, f =



p

τ

u

u

0

v



, g =



τ

q

v

0

v

u



.

In the above equation, K is the bulk modulus, and A is a diagonal matrix which

its zeros are omitted for clarity. The third equation of the Eqn. (6.12) is obtained

by assuming linear elastic changes of the volume (Section 6.1), while the fourth

to sixth are derived from Eqn. (6.9) using the plain strain condition [62]. It is

noted that the strain components do not appear explicitly in equation (6.12).

Consequently, less computer storage is required.

Equation (6.12), can also be rewritten as:

∂U
∂t

= A∂U
∂η

+ B∂U
∂ξ

, (6.13)

where,

U =



uη

uξ

σηη

σξξ

σrr

σξη



, A =



0 0 1/ρ 0 0 0

0 0 0 0 0 1/ρ

K + 4µ/[3(1 + h)] 0 0 0 0 0

K − 4µ/[3(1 + h)] 0 0 0 0 0

K − 4µ/[3(1 + h)] 0 0 0 0 0

0 µ/(1 + h) 0 0 0 0



,
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B =



0 0 0 0 0 1/ρ

0 0 0 1/ρ 0 0

0 K − 2µ/[3(1 + h)] 0 0 0 0

0 K + 2µ/[3(1 + h)] 0 0 0 0

0 K − 4µ/[3(1 + h)] 0 0 0 0

µ/(1 + h) 0 0 0 0



.

Here, η and ξ are the normal and tangential directions to the interface (see

Figure 6.4).

ξ

η

interface

Figure 6.4: Schematic of η-ξ coordinate system

6.3 No-Slip and Perfect-Slip Conditions at

the Interface

Different boundary conditions can arise at the interface. Similar to Chapter 4,

we shall only discuss the no-slip and perfect-slip boundary conditions.
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6.3.1 No-Slip Condition at the Interface

If the two solids cannot slide at the interface and in the absence of any gap at

the interface, then a no-slip boundary condition is appropriate.

The no-gap-formation at the interface implies the continuity of the normal

velocity uη at the interface

uIR
η = uIR

η = uIη, (6.14)

where the superscripts IL and IR are used to indicate if an interfacial value is cal-

culated on the left or right side of the interface, respectively, while a superscript

I is used to denote the case whereby these values are identical.

Moreover, the no-gap-formation condition means that the normal component

of the traction can be non-zero, and equal for both solids. Consequently, the

boundary force balance implies

σIL
ηη = σIR

ηη = σIηη, (6.15)

The no-sliding between the two solids suggests that the relative tangential

velocity is zero at the interface. Hence, the tangential velocity uξ will be contin-

uous across the interface

uIL
ξ = uIR

ξ = uIξ . (6.16)

It also implies that the tangential component of the traction can be non-zero

and equal for both solids. Subsequently, boundary force balance leads to
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σIL
ξη = σIR

ξη = σIξη. (6.17)

6.3.2 Perfect-Slip Condition at the Interface

For this interfacial boundary condition, no gap is allowed to be formed at the

interface. However, the solids can slide against each other.

Similar to the previous section, the requirement of an absence of gap at the

interface leads to conditions identical to (6.14) and (6.15) for the normal velocity

(u) and the stress component (p). However, allowing the solids to slide, without

any friction at the interface, will render conditions (6.16) and (6.17) inapplicable.

6.3.3 Coupled and Uncoupled Variables

Consider a variable χ. The superscripts IL and IR are used to indicate if an

interfacial value is calculated on the left or right side of the interface, respectively.

If due to the boundary conditions at x, there exists a relation κ such that

κ(χIL , χIR) = 0, (6.18)

then χ is considered to be a coupled variable across the interface at that point.

Otherwise, it is uncoupled.
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6.4 On the 2D OGSM

Here, we present the extension of the OGSM method given in Chapter 5. As

earlier mentioned, the OGSM can be simply implemented in practice. Following

the pioneering works by Fedkiw [2,88], one has to copy the coupled variable from

the real nodes to the ghost nodes in the same region. Uncoupled variables, such

as the material properties or loading history, must be extrapolated across the

interface into the ghost nodes.

6.4.1 The OGSM for the No-Slip Condition at the

Interface

Conditions (6.14), (6.15), (6.16), and (6.17) imply the variables uη, σηη, uξ, and

σξη are coupled. Moreover, the Cauchy equation of motion restricts the admis-

sible values of σξξ and σrr which makes these variables coupled. Consequently,

vector U is a coupled variable, as each and every element of it is coupled. To

define the ghost values U∗L and U∗R, the values of Un are copied from the closest

real node, on the same side of the interface, to the corresponding ghost node, at

each time step.

Figure 6.5: (a) presence of real and ghost solid nodes on the left hand side and the
right hand side of the interface, respectively and (b) presence of real solid nodes
on both sides of the interface
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Consider a ghost node A on the right side of the interface. The closest real

node on the same side of the interface is denoted as B (see Figure 6.5). To define

the ghost values, one has to copy the coupled variables from B to A; that is

U∗R|A = UB. (6.19)

It is worthwhile to mention that one can define the location of the ghost solid

nodes such that they coincide with real solid nodes. In this way, only a simple

copy is necessary for defining the ghost values, and a lengthy search process can

be avoided.

There are no boundary conditions to connect the material properties, as

well as the loading history, on the left and right side of the interface. Hence,

according to Section 6.3.3, they are the uncoupled variables. These variables are

extrapolated from the real nodes, across the interface, over to the ghost nodes.

6.4.2 The OGSM for the Perfect-Slip Condition at

the Interface

According to Section 6.3.2, for this case, only the conditions (6.14) and (6.15)

need to be satisfied at the interface. As such, the only coupled variables are uη

and σηη. Hence, at each time step, only uη and σηη need to be copied from the

closest real node to the ghost node. The values of uξ, σξξ, σrr, and σξη, as well

as the material properties and loading history need to be extrapolated from the

real nodes, across the interface, into the ghost nodes.
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6.5 On the 2D MGSM

This section is on the extension of MGSM in 1D which was developed in Section

5.3.4 to 2D. We shall extend the one dimensional MGSM in the normal direction

to the interface. One has to define and solve an appropriate Riemann problem in

the normal direction to the interface. Once the Riemann problem is solved and

the interfacial values are obtained, the coupled variables will be copied from the

interfacial solution, in the normal direction to the interface, to the ghost nodes

which are along the normal to the interface. If a ghost node lies between two

normals to the interface, the coupled variables can be interpolated between the

interfacial values on the normals. The uncoupled variables will be extrapolated

from the real nodes into the ghost nodes on the other side of the interface.

To define the Riemann problem, one needs to know the appropriate left and

right values of the interface, namely UL and UR. Moreover, the direction of the

normal to the interface needs to be known at each point on the interface. For

more information on how to determine the direction of the normal, UL and UR,

refer to Section 4.4.

Once UL and UR are determined, we shall define the following Riemann

problem in the perpendicular direction to the interface,

∂U
∂t

= A∂U
∂η

, (6.20)

where

U(η, t = tn) =


Un
L η < 0

Un
R η > 0

. (6.21)
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Characteristic analysis of the problem 6.20 leads to the following equation

∂w
∂t
− Λ∂w

∂η
= 0 (6.22)

where

w(η, tn) =


wn
L η < 0

wn
R η > 0

. (6.23)

Here, w is the vector of eigen variables,

w = ℵU, (6.24)

where ℵ is the left eigen matrix of A:

ℵ =



0 0 (2µ− 3K)/(4µ+ 3K) 0 1 0

0 0 (2µ− 3K)/(4µ+ 3K) 1 0 0

0 √
ρµ/2 0 0 0 1/2

0 −√ρµ/2 0 0 0 1/2
(3K − 2µ)√ρ
2
√

9K + 12µ 0 3K − 2µ
3K + 4µ 0 0 0

(−3K + 2µ)√ρ
2
√

9K + 12µ 0 3K − 2µ
3K + 4µ 0 0 0



.

(6.25)
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Hence, one can calculate w to be

w =



(2µ− 3K)σηη/(4µ+ 3K) + σrr

(2µ− 3K)σηη/(4µ+ 3K) + σξξ

(σξη + uξ
√
ρµ)/2

(σξη − uξ
√
ρµ)/2

(3K − 2µ)
(
3σηη + uη

√
ρ(9K + 12µ)

)
/ (18K + 24µ)

(3K − 2µ)
(
3σηη − uη

√
ρ(9K + 12µ)

)
/ (18K + 24µ)



. (6.26)

Λ is the diagonal matrix of eigenvalues that is calculated by

Λ = ℵAℵ−1. (6.27)

The result of the above matrix operation is a diagonal matrix whose zeros which

are not on the major diagonal are removed for clarity:

Λ =



0

0

−
√
µ/ρ √

µ/ρ

−
√

(K + 4µ/3)/ρ √
(K + 4µ/3)/ρ



. (6.28)

The equations with positive eigenvalues correspond to leftward moving waves

while the negative ones correspond to the rightward moving waves.

By integrating the characteristics equations (6.22) of the Riemann problem
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(6.20), we have

wIL = CLL(wL +
∫ IL

L
dw) + CRL(wR +

∫ IL

R
dw), (6.29)

where C’s are diagonal matrices. Each nonzero element of CLL correspond to

a negative or zero eigenvalue of the matrix Λ, whereas each nonzero element of

CRL corresponds to a positive eigenvalue, that is:

CLL =



1

1

0

1

0

1



, and CRL =



0

0

1

0

1

0



. (6.30)

The nonzero elements of the above matrices which are not on the major diagonal

are omitted for clarity.

Similarly, one can obtain

wIR = CLR(wL +
∫ IR

L
dw) + CRR(wR +

∫ IR

R
dw), (6.31)

Each nonzero element of CLR correspond to a negative eigenvalue of the ma-

trix Λ, whereas each nonzero element of CRL corresponds to a positive or zero
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eigenvalue, that is:

CLR =



0

0

0

1

0

1



, and CRR =



1

1

1

0

1

0



. (6.32)

6.5.1 On the No-Slip Condition at the Interface and

MGSM

The integrations (6.29) and (6.31) together with the conditions (6.14) to (6.17)

introduced in Section 6.3.1 one can solve for the UIL and UIR . As the final

loading conditions are unknown beforehand, one may need to use an iterative

method to determine the correct loading path. This can be done by initially

assuming the loading to be purely elastic. This way one can obtain the p̂IL and

p̂IR . Then, on each side of the interface, we can check if elastic-limit has been

surpassed, i.e. if

κ̂ = 1
3[(σ̂ηη − σ̂rr)2 + (σ̂ξξ − σ̂rr)2 − (σ̂ηη − σ̂rr)(σ̂ξξ − σ̂rr)] + σ̂2

ηξ ≤ κ2 (6.33)

is true, then the loading on that side is purely elastic. Consequently, ĥ = 0, and

the integrals will have their usual close form.

If equation (6.33) is not satisfied on any side of the interface, then plastic
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deformation will occur on that side. Let us say the it is not satisfied on the left

side of the interface. In this case, we need to first calculate the point ∗ which is:

(σ∗ηη − σ∗rr)IL = (σ̂ηη − σ̂rr)IL

κ̂IL
κL

(σ∗ξξ − σ∗rr)IL = (σ̂ξξ − σ̂rr)IL

κ̂IL
κL

(σ∗ξη)IL =
σ̂∗ξη
κ̂IL

κL

, (6.34)

where κL is the current yield surface, on the left side of the interface. Henceforth,

the loading on the left side of the interface will be

wL
elastic µL−−−−−−−→ (w∗)IL

plastic µL−−−−−−−→ ŵIL . (6.35)

Next, the integration in (6.31) becomes

∫ wIL

wL

dw = (w∗)IL −wL +
∫ ŵIL

(w∗)IL

dw. (6.36)

Using the above-mentioned integral in the integration (6.31), and resolving for

the ŵ, on the left and right side of the interface, one can get a better approx-

imation for the interfacial values. By repeating this procedure, one can get a

converged solution for UIL and UIR .

It is worthwhile to mention that as the velocities uη and uξ are calculated

by solving the continuity equations and only depend on the density, it is not

required to calculate the equivalent ∗-values for them and their current values

can be used as they are, in the iterative solution for the UIL and UIR .

Once the iterative solver is converged and the values of UIL and UIR are
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calculated, the UIL is copied to the ghost nodes on the right hand side of the

interface which are closest to the normal line that exits the point where UIL

was computed for. In a similar manner, UIR values will be copied to the proper

ghost nodes on the left side of the interface.

6.5.2 On the Slip Condition at the Interface and MGSM

Here, only the conditions (6.14) and (6.15) must be satisfied for this type of

interface condition. Hence, only uη and σηη are deemed as coupled variables.

Similar to Section 6.5.1, uIη and σIηη are identical to the values as obtained in

the same section. Moreover, the zero characteristic of Eqn. (6.22) are integrated

on the left and right side of the interface to obtain results identical to solutions

obtained for σIL
ξξ , σIR

ξξ , σIL
rr , and σIR

rr .

The values of uIη and σIηη are then copied to the ghost nodes on the right

hand side and left hand side of the interface which are closest to the normal line

that exits at the point where they are calculated. In a similar manner, (σIL
ξξ ,

σIL
rr ) and (σIR

ξξ , σIR
rr ) values will be copied to the proper ghost nodes on the right

side and left side of the interface, respectively.

The values of uncoupled variables, uξ, σξη, and material properties (including

loading history) are extrapolated across the interface, accordingly.
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6.6 Numerical Experiments

6.6.1 Test Example 1: Elastic-Plastic Interaction of

Stress Waves Impacting on a Vertical Interface

In this numerical experiment, the accuracy and robustness of the OGSM and

MGSM are compared. It will be shown that the multi-dimensional OGSM,

similar to its one-dimensional counterpart can and will lead to non-physical

oscillation.

The solution domain is chosen as Ω = {(x, y)|x ∈ [0, 10] and y ∈ [−5, 5]}.

The interface is defined by the line x = 5. No-slip condition is assumed at the

interface of the two solids.

The initial conditions are

u(x, y, 0) =


1 where x < 5

0 where x > 5
, (6.37)

and

v(x, y, 0) = p(x, y, 0) = q(x, y, 0) = r(x, y, 0) = τ(x, y, 0) = 0. (6.38)

The boundary conditions are u(0, y, t) = 1 and v(0, y, t) = 0 on the left

boundary, u(10, y, t) = v(10, y, t) = 0 on the right boundary, and zero traction

on the bottom and top boundaries of the domain.

The material properties of the left medium are ρL = 1, KL = 0.7, µL = 0.8,

(µp) = 0.6 and κL = 0.7 whereas the material properties for the right medium
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are ρR = 3, KR = 2 µR = 2.5, (µp)R = 2.2 and κR = 0.7.

The grid size is ∆x = ∆y = 0.05. A first order solver is employed and the

CFL number is 0.9. The solution is obtained for t = 0.45. The calculated value

(a) u using the OGSM

(b) σxx using the OGSM

(c) σxx + σyy + σzz using the OGSM

(d) σxx − σzz using the OGSM

(e) u using the MGSM

(f) σxx using the MGSM

(g) σxx + σyy + σzz using the MGSM

(h) σxx − σzz using the MGSM

Figure 6.6: Test Example 1: Comparison of the non-zero components of velocity
and stress results, obtained using the OGSM and MGSM for non-slip condition at
the interface for t = 0.45.

of ϑ for this test is close to 1.0 which is greater than ϑcrit ≈ 0.1, for almost all
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the time steps. As such, this will lead to non-physical oscillations for the OGSM.

Figure 6.6 compares the non-zero components of the velocity and stress results,

obtained using the OGSM and MGSM for non-slip condition at the interface.

The solution is obtained for t = 0.45. As it can be clearly seen the use of OGSM

has lead to non-physical oscillations in the results of the velocity in x direction, u,

and nonzero components of the stress as predicted by the ϑ-criterion. However,

it is noticed that the MGSM has successfully removed these oscillations and

remains stable.

(a) v using the OGSM

(b) σyy − σzz using the OGSM

(c) σxy using the OGSM

(d) v using the MGSM

(e) σyy − σzz using the MGSM

(f) σxy using the MGSM

Figure 6.7: Test Example 1: Comparison of the zero components of velocity and
stress results, obtained using the OGSM and MGSM for non-slip condition at the
interface for t = 0.45.
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Figure 6.7 shows the component of velocity in the y direction, v, and the

components of stress which are theoretically zero; they remain numerically close

to zero (within the bounds of the numerical error), when either the OGSM or

the MGSM is used. However, it is worthwhile to mention, this is not synony-

mous with the robustness or accuracy of the OGSM results, as the non-zero

components suffer significantly from numerical oscillations.

(a) u

(b) σxx

(c) σxx + σyy + σzz

(d) σxx − σzz

Figure 6.8: Test Example 1: Comparison of the nonzero components of velocity
and stress, with MGSM, OGSM, and Zwas with a first order Godunov type solver,
along the y = 0 plane.

Figure 6.8 shows the comparison between the results obtained using the

MGSM, OGSM, and Zwas method with a first order Godunov type elastic-plastic

scheme [62]. It can be seen that MGSM provides an almost perfect agreement

137



CHAPTER 6. TWO DIMENSIONAL ELASTIC-PLASTIC SOLID
INTERACTIONS

with the Zwas method. However, large deviations from the Zwas method is

evident when the OGSM is employed.

These results support the robustness of the MGSM in comparison to the

OGSM. Moreover, it shows that the ϑ-criterion can successfully predict the large

numerical errors that may rise due to the use of the OGSM.

6.6.2 Test Example 2: Application of the GSMs to a

More Complex Geometrical Setting

This experiment is designed to further show the robustness of the MGSM in

dealing with more complex geometrical settings.

The solution domain is chosen as Ω = {(x, y)|x ∈ [0, 10] and y ∈ [−5, 5]}.

The interface is a pentagon with its vertices located at the coordinates (6,0),

(6.5,1), (7.5,0.5), (7.5,-0.5), and (6.5,-1). The pentagon is shown in Figure 6.9,

where Ω1 is the area outside of the pentagon which represents the first solid,

and Ω2 is the area confined by the boundaries of the pentagon which represents

the second solid. Note that Ω1 ∪ Ω2 = Ω. A no-slip condition is assumed at the

interface of the two solids.

The initial conditions are

u(x, y, 0) = p(x, y, 0) =


1 5 < x < 6

0 otherwise
, (6.39)

and

v(x, y, 0) = q(x, y, 0) = r(x, y, 0) = τ(x, y, 0) = 0. (6.40)
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Ω1

Ω2(6,0)

(6.5,1)

(7.5,0.5)

(7.5,-0.5)

(6.5,-1)

Figure 6.9: Test Example 2: A pentagonal setup is used for this problem

The boundary conditions are u(0, y, t) = 1 and v(0, y, t) = 0 on the left

boundary, u(10, y, t) = v(10, y, t) = 0 on the right boundary, and zero traction

on the bottom and top boundaries of the domain.

The material properties of the first solid as in Ω1 are ρL = 1, KL = 0.7,

µL = 0.8, (µp) = 0.6 and κL = 0.7 whereas the material properties for the

second solid on Ω2 are ρR = 3, KR = 2 µR = 2.5, (µp)R = 2.2 and κR = 0.7.

The grid size is ∆x = ∆y = 6.25 × 10−3. A first order solver is employed

and the CFL number is 0.51, and the solution is obtained for t = 1.5.

The setup of this experiment dictates the line y = 0 as an axis of symmetry.

We expect to get increasingly symmetrical results w.r.t this line with a more

accurate method.

The rightward moving wave causes elastic-plastic deformations in both of

the interacting solids. The transmitted waves partly pass through the top edges

of the pentagon and are partly reflected. These partial reflection of the waves

create a complex wave pattern which needs to be accurately modeled.

The ϑ value remains below the prescribed permissible value of ϑcrit = 0.1.
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(a) u - MGSM
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(b) v - MGSM
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(c) u - OGSM
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(d) v - OGSM

Figure 6.10: Test Example 2: Contour plots of velocity u and v obtained using the
MGSM and OGSM method. The results are obtained for tf = 1.5.

We expect the results obtained using the OGSM to remain stable. Fig. 6.10

show the contours of u and v components of velocity obtained using the OGSM

and MGSM. It is noted that the results obtained using OGSM and MGSM agree

closely with the symmetrical nature of the problem. Fig. 6.11 shows contour

plots of the stress components obtained using the OGSM and MGSM. It can be

seen that both results maintain close symmetry along the line y = 0. However,

it can be seen the stress contours obtained using the MGSM are sharper in

comparison to the results of the OGSM which are slightly smeared close to the

interface.
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(a) σxx - MGSM
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(b) σyy - MGSM
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(c) σxy - MGSM
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(d) σxx - OGSM
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(e) σyy - OGSM
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(f) σxy - OGSM

Figure 6.11: Test Example 2: Contour plots of normal and tangential components
of stress obtained using the MGSM and OGSM method. The results are obtained
for tf = 1.5.

Moreover, the geometrical setting of this problem, involves several sharp

corners of the pentagon. It is noted, even in the presence of these sharp corners,

the GSMs remain stable.
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Figure 6.12: Test Example 2: Maximum numerical error for each variable at time
tf = 1.0 against various mesh sizes. The results are obtained using the MGSM
method.

Fig. ?? shows the maximum error incurred in the calculations of the un-

knowns over the entire solution domain, against various mesh sizes, when the

MGSM is employed. It is noted that the solution is monotonically converging.

However, the order of accuracy less than first order (O(∆x0.2)).

This experiment attests to the robustness and viability of the MGSM in

dealing with more complex geometries and wave interactions. Moreover, it shows

that the ϑ-criterion is a reliable method to predict when the results of the OGSM

are no-longer reliable.

6.6.3 Test Example 3: Wave interacting with a cir-

cular interface

This experiment is designed to test MGSM dealing with wave interacting with

a circular interface. This will determine if the MGSM can be applied to curve

interfaces. In the end, we will also provide the error analysis for this experiment.
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The solution domain is chosen as Ω = {(x, y)|x ∈ [0, 10] and y ∈ [−5, 5]}.

The interface is a unit circle with its center at (7.5,0). Ω1 is the area outside

the circle which represents the first solid, and Ω2 is the area confined by the

boundaries of the circle which represents the second solid. Note that Ω1∪Ω2 = Ω.

A no-slip condition is assumed at the interface of the two solids.

The material properties of the first solid as in Ω1 are ρL = 1, KL = 0.7,

µL = 0.8, (µp) = 0.6 and κL = 0.7 whereas the material properties for the

second solid on Ω2 are ρR = 5, KR = 2 µR = 2.5, (µp)R = 2.2 and κR = 0.7.

The initial conditions for this case are:

u(x, 0) = σxx =


1 5 < x < 7

0 otherwise
, v(x, 0) = σyy(x, 0) = σxy(x, 0) = 0.

(6.41)

A schematics of the problem setup can be seen in Fig. 6.13. This setup provides

Ω2

x = 7x = 5

Ω1

Figure 6.13: Test Example 3: Domain setup and the non-zero section of the initial
condition

for an axis of symmetry along the line y = 0.

The grid size in this problem is ∆x = ∆y = 5 × 10−2. The CFL number

used is 0.51. A FOG method is used together with the MGSM method at the
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circular interface. The solution is obtained for tf = 1.0.
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Figure 6.14: Test Example 3: Contour plots of velocity u and v obtained using the
MGSM method. The results are obtained for tf = 1.0.
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(b) σxy

Figure 6.15: Test Example 3: Contour plots of normal and tangential components
of stress obtained using the MGSM method. The results are obtained for tf = 1.0.

The rightward traveling wave hits the circular interface and partially passes

through and partially is reflected the interface. The transmitted wave is later

reflected on the other side of the circular interface, creating a complex interaction

pattern. Figs. 6.14 and 6.15 show the velocity and stress contours obtained using

the MGSM, respectively. It can be seen that the axis of symmetry, y = 0, is

accurately maintained. The contour lines remain smooth without any numerical

oscillations.
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Figure 6.16: Test Example 3: Maximum numerical error for each variable at time
tf = 1.0 against various mesh sizes. The results are obtained using the MGSM
method.

Fig. 6.16 shows the maximum numerical error incurred in calculating the

velocity and stresses in the solution domain while the MGSM is applied for three

different mesh sizes. As it can be seen the errors are monotonically decreasing

with mesh refinement. The order of accuracy from the convergence rates is found

to be almost O(∆x0.5) which is less than a first order accuracy.

6.7 Conclusion for Chapter 6

In this chapter, two GSM-based algorithms were developed for the wave inter-

action at the solid-solid medium, with each medium governed by an isotropic

elastic-plastic solid material. The OGSM method does not involve any Riemann

solver to define the ghost values and hence is very easy to apply. However, it

should be noted that the method can lead to severe non-physical oscillations

in predicting the stress and velocity values. The ϑ-criterion was shown to be

a reliable approach in predicting large numerical errors that may occur due to

145



CHAPTER 6. TWO DIMENSIONAL ELASTIC-PLASTIC SOLID
INTERACTIONS

the OGSM. The MGSM developed in this chapter was shown to successfully and

completely remove the non-physical oscillations seen when employing the OGSM.

As such, no addition of numerical viscosity is necessary when the MGSM is em-

ployed. This also means that a larger possible time step can be used and the

wave front will still be fairly sharp. It was also shown that MGSM can robustly

be used in dealing with more complex geometries and wave interactions. Error

analysis in these cases indicate that the MGSM results monotonically converge

to the solution of the problem. When combined with a first order single medium

solver, for the cases that we have studied, this accuracy is lower than first order.
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Conclusion

In this thesis, three variants of the ghost solid method were developed for the

elastic-elastic and elastic-plastic solid-solid interactions. It was discussed that

these methods are all considerably simple to implement, and they can be used

together with a single medium solid solver of choice without the necessity to

modify the single medium solid solver. These methods, when used along with

their Ghost Fluid Method counterparts, potentially can provide for a coherent

and consistent approach for simulating truly multi-medium problems which may

involve several different layers of solids and fluids.

It was shown that the Original Ghost Solid Method (OGSM) is the most

simple variant of the GSMs to implement. No Riemann problem at the interface

needs to be solved. However, it was discussed that the OGSM is a highly problem

related method which can, and will, lead to large numerical errors. Various

cases for elastic-elastic and elastic-plastic solid-solid interactions were discussed

and studied where OGSM fails and leads to large numerical errors. The source
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of these errors were studied, and subsequently, ϑ-criterion was proposed as a

simple means to predict these errors, for all these cases. The ϑ-criterion also

serves a yet more important purpose: it can be used as a measure of reliability

of the OGSM results. It was discussed that if the ϑ-values remain below an

empirical critical value of ϑcrit = 0.1, the results obtained using the OGSM are

considered reliable. Otherwise, the result may suffer from large numerical errors.

Undoubtedly, depending on the reliability requirements, one can impose a more

stringent limit for this criterion instead of the proposed value of ϑcrit = 0.1. This

criterion can be very useful, as OGSM is very simple to implement and can be

extended into multi-dimensions. Moreover, it is not computationally expensive

as no Riemann solver is required to be solved at the interface.

It was also discussed that using a higher order solid solver cannot eliminate

the large numerical errors due to the OGSM. In fact, the use of a higher order

solver will lead to more pronounced numerical errors caused by the OGSM. It

was argued that increasing the accuracy of the solver, can reduce the stability

of the solver due to the Godunov theorem.

The Modified Ghost Solid Method (MGSM) and the Double Riemann Ghost

Solid Method (DRGSM) were developed. These methods were shown to be

reliable alternatives for the OGSM. They were shown to be able to successfully

and robustly remove the large numerical errors that would manifest in the form

of non-physical oscillations. They are not problem related and remain stable in

all the cases that the implementation of the OGSM would result in instability

and large errors in the solution. However, it is worthwhile to mention that the

MGSM required solving a Riemann problem at the interface at each time step,
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while the DRGSM requires solving two Riemann problems at each time step.

This adds to the complexity of these methods, as compared to the OGSM.

Moreover, our extensive tests shows very little improvements when DRGSM

is used as compared to the MGSM results, despite its added complexity. This

means that the MGSM and solving a single Riemann problem at the interface is

computationally more reasonable.

The special case of acoustic impedance matching of the solids were studied for

both the elastic and elastic-plastic deformations. It was shown, for this special

case, all the proposed variants of the GSM remain stable and the results closely

agree with the analytical solution. It was shown that, for this case, the ϑ-value

remains identically zero which makes the OGSM stable. For the case of acoustic

impedance matching of the fluids, it was previously observed that the OGFM

can lead to non-physical oscillations at the interface. Our studies show that the

ϑ-value for the acoustic matching of the fluids reaches a maximum of 1.0 which

is ten times larger than the prescribed value. Hence, the OGFM fails. However,

for the acoustic impedance matching of the solids, ϑ is identically zero. So, the

ϑ-criterion successfully explains the difference of the behavior of the OGSM and

OGFM. In other words, this criterion shows that acoustic impedance matching

is not necessarily the cause of the numerical errors1. However, a combination

of factors can lead to large numerical errors. Regardless, of the combination of

factors which lead to numerical errors, ϑ-criterion can successfully detect these

errors.

Moreover, the elastic model and elastic-plastic model and their effect on the
1For more information, please see the Appendix.
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GSMs were studied. It was observed that, on a case-by-case basis, the OGSM

can perform better or worse for the elastic-plastic model. However, in all cases,

the ϑ-criterion could correctly detect if the OGSM results are reliable.

The OGSM and MGSM were extended to 2D settings for the elastic-elastic

and elastic-plastic solid-solid interface. Two types of interface conditions were

considered, namely the no-slip condition and perfect-slip condition. The GSMs

were developed for these two types of interface conditions. Their performance

were also studied through numerical experiments. It was shown that the numer-

ical errors observed in one-dimensional settings can and will also occur in multi-

dimensions. Moreover, through numerical experiments it was shown that the

MGSM performs robustly in multi-dimensions. Using numerical experiments, it

was presented that the MGSM can be used in problems with complex geometries

which involve complicated wave interactions. Error analysis and convergence

analysis of the numerical experiments indicate that the MGSM monotonically

converges to the analytical solution. Unfortunately, it was shown that the ac-

curacy of the solution, once combined with a first order solver, can be less than

first order.

7.1 Future Work

The following topics are suggested for future works to follow up the current

research.

• A comprehensive study of the application of the GSMs and GFMs to

multi-medium problems with several layers of fluids and solids.
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• The GSMs and GFMs are known to be non-conservative methods. De-

velopment of conservative variants of the methods, or development of a

criterion to measure conservation band of the GSMs can be beneficial for

conservation sensitive problems.

• Composite materials [117] have gained significant attention in various

fields, including but not limited to aerospace industries [118–120], oil and

gas industries [121], and many more. Performance study of the GSMs and

GFMs for numerical study of composite materials can be beneficial for

numerical research in this field.

• Functionally graded materials (FGMs) [122, 123] are composite materials

whose material properties changes gradually by gradual changes in the

composition and micro-structure of the material. They can be designed for

specific functions and application. A comprehensive study of the feasibility

and robustness of the GFMs and GSMs for simulation of dynamic behavior

of the FGMs in their interactions with other mediums is suggested.
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[73] M.Á. Fernández and M. Moubachir. A newton method using exact ja-

cobians for solving fluid–structure coupling. Computers & Structures,

83(2):127–142, 2005.

[74] J. Vierendeels, L. Lanoye, J. Degroote, and P. Verdonck. Implicit coupling

of partitioned fluid-structure interaction problems with reduced order mod-

els. Computers & Structures, 85(11):970–976, 2007.
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Appendix A

Applicability of the ϑ-criterion

to the OGFM

The Original Ghost Fluid Method (OGFM) with isentropic fix has been shown

not to work consistently and efficiently when applied to strong shocks impacting

on a material interface [1]. Liu et al studied the causes of such inapplicability [1].

Here, we shall briefly discuss the applicability of the ϑ-criterion, introduced in

Sections 3.4.4 and 5.3.5, in predicting such problems for the OGFM.

A.1 The Original GFM on Shock Refraction

Here, we shall follow the 1D analysis presented by Liu et al [1]. The 1D Euler

equation can be formulated as

∂U
∂t

+ ∂F(U)
∂x

= 0, (A.1)
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where U = [ρ, ρu,E]T , F(U) = [ρu, ρu2 + p, (E+ p)u]T , ρ is the density, u is the

velocity, p is the pressure, and E is the total energy which is given by

E = ρe+ ρu2/2. (A.2)

Here, e is the specific internal energy. The Mie-Gruneison family of equations of

state (EOS), used for the closure of the system, are formulated as

ρe = f(ρ)p+ g(ρ), (A.3)

where f and g are functions of density and heat conductivity [2]. We shall use

the γ-law for perfect gases which implies f = 1/(γ − 1) and g = 0.

We shall now consider two of the cases studied by Liu et al [1] where OGSM

leads to large errors. We consider a shock wave impacting the interface from

medium 2 (see Figure A.1).

Figure A.1: (a) Before shock refraction. (b) After shock refraction [1].

A constant pressure and velocity profile which is identical over both mediums,

denoted by p1 and u1, is assumed initially. Eqn. A.1 is the governing equation,
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and the following initial conditions are assumed:

U|t=0 =



U4, x < x0s,

U02, x0s < x < x0,

U01, x > x0,

. (A.4)

Here, U4, U02, and U01 represent the status behind the incident shock, the status

ahead of the incident shock, and the initial status of medium 1, respectively. x0s

and x0 denote the initial locations of shock front and the interface, respectively.

The Rankine-Hugoniot jump conditions are satisfied for the incident shock, which

is

F(U4)− F(U02) = s4(U4 −U02), (A.5)

where s4 is the speed of the incident shock. Isentropic fix is applied and a MUSCL

scheme is used. The domain of solution is [0, 1], the grid size is ∆x = 0.005 and

is uniform over the domain. A CFL number of 0.9 is employed.

A.1.1 Numerical Examples on Application of the OGFM

Case 1: Strong shock on a gas-gas interface

The initial flow conditions for this case are p1 = 1.0, u1 = 0.0, ρ01 = 0.1, ρ02 =

1.0, γ1 = 1.4 and γ2 = 1.6667. The incident shock strength is p4/p1 = 100.0. The

Rankine-Hugniot jump conditions are used to determine the parameters behind

and ahead of the shock. The initial locations of the interface, and the incident

wave-front are x0 = 0.4 and x0s = 0.3, respectively. The solution was obtained

for 200 time steps, and the results of the last time step are compared against the
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analytical solution (see Figure A.2). It can be seen in Figure A.2 there are large

Figure A.2: Case 1: comparison of velocity (top left), pressure (top right), den-
sity (bottom left), and entropy (bottom right) profiles obtained using the OGFM
against analytical solution [1].

numerical errors both in the location of the wave front and also in the velocity,

pressure, density, and entropy profiles when the solution is compared against the

analytical results.

The error analysis of this problem was carried out by Liu et al [1]. Figure

A.3 shows the comparison of the conservation errors between the OGFM and

MGFM. The ϑ value calculated using these results, indicate a ϑmax = 1.0 has

been reached which is 10 times larger the maximum permissible value of ϑcrit =

0.1. Henceforth, the criterion is breached, and subsequently, large discrepancies

between the numerical results using the OGSM and the analytical solution are
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(a) (b)

(c)

Figure A.3: Case 1: comparison of (a) mass conservation error, (b) momentum
conservation error, and (c) energy conservation error between the original GFM
(OGFM) and the modified GFM (MGFM) [1].

observed.

Case 2: Shock impedance matching on a gas-gas interface

In solid-solid interactions, it was observed that under acoustic impedance match-

ing conditions, the incident wave passes through without any wave reflection at

the interface when the OGSM was employed. ϑ values remained identically

zero, which predicted agreement between the analytical solution and the OGSM

results, which was observed in the numerical experiments.
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However, in fluid-fluid interactions, the story plays out differently and the

OGFM leads to a reflected wave at the interface which does not agree with

the analytical solution. We shall show that the ϑ-criterion can still successfully

predict these discrepancies.

This case is specifically designed to enforce a condition that the refracted

wave produces no reflection at the interface. In other words, shock impedance

matching conditions are satisfied. The incident shock strength is p4/p1 = 100.

The flow parameters, chosen according to the following critical condition

(γ1 − 1)ρ01
(γ2 − 1)ρ02

= 1 + τ2p4/p1
1 + τ1p4/p1

, (A.6)

are p1 = 1.0, u1 = 0.0, ρ02 = 0.8236907, ρ01 = 1.0, γ2 = 5/3, and γ1 =

1.2. Here, τ = (γ + 1)/(γ − 1). The initial location of the shock front and

interface is x0s = x0 = 0.2. A MUSCL-solver has been employed, together with

the original GFM, and 200 time steps of computations have been carried out.

Our calculations indicate that a ϑmax = 1.0 has been reached which exceeds

the maximum permissible value of ϑcrit = 0.1. As such, it is predicted that

large numerical errors may occur in the results. Figure A.4 shows the velocity,

pressure, and density profiles for the final time step of the calculations. As earlier

mentioned, for this case, there should be no shock reflection at the interface.

However, as can be seen in this figure, a clear reflected non-physical hump in

the velocity profile, and a non-physical depression in the pressure and density

profiles can be observed in the results obtained with the OGFM. Moreover, the

OGFM has also lead to over-prediction of density in the transmitted wave. This
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(a) (b)

(c)

Figure A.4: Case 2: comparison of (a) velocity, (b) pressure, and (c) density profiles
between the original GFM (OGFM) and the analytical solution [1].

confirms that once the ϑ-criterion is breached, the results obtained using the

OGFM are no longer reliable.

Our calculations indicate that for all the cases presented in the work by Liu

et al [1] where OGFM leads to large numerical errors, the ϑ-criterion has been

breached. This indicates that the ϑ-criterion can be used as a simple and robust

means to determine when the results obtained using the OGFM are no longer

reliable.
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Case 3: the OGFM with no large errors

In this numerical example, we shall study a case whereby the OGFM works

well with no oscillations. In this way, we can further test the robustness of the

ϑ-criterion. This problem is taken from [2].

A γ-gas law has been assumed to solve for a simple one phase problem. For

this fluid, γ = 1.4. The flow properties on the left and right of the interface

are ρL = 2 kg/m3, ρR = 1 kg/m3, pL = 9.8 × 105 Pa, pR = 2.45 × 105 Pa, and

uL = uR = 0 m/s. The domain of the solution is 4 m long, and 100 grid points

have been considered. The initial location of the interface is between the 50th

and 51st grid points. The solution was obtained for the final time of tf = 0.0022

s.

(a) density (ρ)

(b) velocity (u)

(c) pressure (p)

(d) entropy (s)

Figure A.5: Case 3: comparison of the Original Ghost Fluid Method (OGFM)
(circles) and the analytical solution (solid line) [2].
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Our calculations indicate that for this test example ϑ value remains below

ϑcrit = 0.1 during the computations. According to the ϑ-criterion, no large

numerical errors are expected to appear in the solution obtained by the OGFM.

As can be seen in Figure A.5, the numerical results follow the analytical solution

very well. This further attests that the ϑ-criterion can be a good measure as to

how reliable the OGFM results are.
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