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Summary

This thesis develops a framework to quantitatively model the concept of resilience in

general supply systems design problems that can be cast as linear programming models.

First, we build a general notion of resilience measures from the decision-making perspec-

tive. Specifically, we use a penalty cost function to measure the supply system’s service

quality by comparing it with a given tolerance level. We then propose the formal defini-

tion of resilience measure as a mapping from a space of uncertain penalty positions to a

range of nonnegative numbers. An axiomatic framework is used to describe the salient

characteristics of resilience measures that reflect the decision-makers risk attitude and

at the same time preserve computational tractability. After giving some examples of such

resilience measures, we propose two different approaches of constructing new resilience

measures from a decision-making and computational perspective respectively. We next

focus on two important applications to illustrate the efficiency of the resilience measure

based framework. In the energy supply system application, no distributional information

is available at the planning stage, and we adopt the idea of adjustable uncertainty sets

for the construction of resilience index. We then develop efficient algorithms for evalua-

tion of the resilience index defined by various types of adjustable uncertainty sets, and

extend it to a design optimization problem which aims to maximize the resilience of

the energy supply system. In the telecommunication network application, historical data

are available at the planning stage. We model uncertain demands as ambiguous random

variables with known first- and second-order moments. We then propose a design model

based on two-stage robust optimization modelling for maximizing the resilience of the

resulting telecommunication network and present a class of tractable approximations to

solve it. All the computational results suggest the superiority of our proposed resilience

measure based approach over traditional methods in terms of supply system’s service

quality.
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Chapter 1

Introduction

1.1 Background

We consider “Supply System” as a system that delivers one or multiple commodities

from supply sides to demand sides. In real world applications, various forms of supply

systems appear in various disciplines as diverse as logistics (supply chain), telecommuni-

cation, transportation, power generation, natural gas routing, potable water distribution,

to name a few. These supply systems differ from each other in a thousand ways, but

share a similar network structure. More precisely, the whole system consists of separated

nodes (categorized either by their physical locations or by their logical relationships)

and arcs linking different nodes. Among all these nodes, some of which are sources at

which the commodity is injected into the system. Correspondingly, some nodes are sinks

at which consumption takes place. Normally, either affected by physical restriction or the

intrinsic demand pattern, some pairs of sources and sinks locate in a long distance with

each other such that directly routing the commodity from source to sink is expensive.

If that is the case, some intermediate nodes are necessary for transition, storage and

processing purposes. Let’s take the supply chain system as an example (Figure 1.1)1. The

sources are the suppliers that provide the necessary raw materials. The raw materials are

1Source: http://annanagurney.blogspot.sg/2012/01/how-us-can-compete-and-win-in-global.html
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Figure 1.1: An illustrative supply chain system

then transported to the manufacturers to produce the final products. Then the qualified

products are transported to different distribution centers (DCs), which can be regarded

as intermediate nodes. Finally, products are transported to demand markets upon placed

orders. In supply chain system, we move raw materials or the final products through com-

mon transportation vehicles such as ship, railway, or airline. Therefore, these different

means of transportation play as arcs linking different nodes in the system.

Efficient decision making is necessary to guarantee the sustainability of the supply

system’s service in fulfilling customers’ demands. Typically, two types of critical decisions

are involved during the planing and operating of the supply system. At the planning

stage, managers have to make strategic decisions determining the topology structure

of supply system. Let’s take the supply chain system as an example again. At the very

beginning, the managers have to properly choose the suppliers to form a long-term

agreement on raw material supply. Meanwhile, they have to choose the location and

capacity of the manufacturing sites and distribution centers. After all these decisions

being made, the topology of the supply chain network is fixed and no more temporary

changes are allowed during the operational stage. At the operational stage, managers
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have to make the operational decisions to fulfill the demands at different sinks. For

supply chain network, the operational decisions consist of determining the order quantity

from suppliers and the shipment quantities from manufacturers to distribution centers

and that from distribution centers to the final markets. Generally, these two stages of

decisions conflict to each to some extent. In the planning stage the managers tend to

investment less, which would in return affect the quality of service at the operational

stage. To overcome this obstacle, many researchers consider these two types of decisions

jointly to build integrated mathematical optimization models for decision supporting.

This mathematical optimization based approach has been extensively studied in different

disciplines of supply system and we refer it as the classical approach.

In real world applications, it is well accepted that data are always subject to uncer-

tainty when critical decisions need to be made. In the planning stage of the supply chain

system, the actual demand amount at the final demand markets and the actual supply

amount of raw material suppliers can not be precisely known. In natural gas supply

network, supply disruptions can occur due to unforeseen circumstances such as natural

disasters, geopolitical crises and terrorist attacks, etc. These kind of uncertainties are

inevitable in nature and failing to plan for them in an appropriate way can lead to se-

vere degradation in service quality. Therefore, questions of how to measure the supply

system’s ability of mitigating the impact of uncertainties and how to design a supply

system which is resilient against these uncertainties have received significant interest in

supply security. This is especially true for supply systems of critical resources such that its

quality of service is our first concern. The ultimate goal of this thesis is to develop a math-

ematical optimization based approach to provide efficient decision support in designing

resilient supply systems. To achieve this, a fundamental step is to develop a unifying

framework for quantitative and rigorous modeling of supply system resilience. Indeed,

our framework of modeling supply system resilience is motivated by the the definition of

resilience proposed in the UK Energy Research Centre (UKERC) white paper (Chaudry

et al., 2011): “Resilience is the capacity of an energy system to tolerate disturbance and

3



to continue to deliver affordable energy services to consumers. A resilient energy system

can speedily recover from shocks and can provide alternative means of satisfying energy

service needs in the event of changed external circumstances.”

In summary, this thesis aims to address three fundamental issues: (i) how to model

the uncertainty arising from noisy and incomplete data, (ii) how to develop a general

approach to quantify the supply system’s resilience, i.e., how well the supply system

serves the demands under uncertainty, (iii) and how to develop practically efficient

methods to compute and optimize supply system resilience, which would be conducive

to solving the design problem. Theoretically, we consider an optimization problem to

be tractable if it can be solved in polynomial time (e.g., via interior point method or

ellipsoid method). To my knowledge, this is the case if the optimization problem can be

formulated into standard convex optimization problems, such as Linear Program (LP),

Second Order Cone Program (SOCP), and Linear Matrix Inequality (LMI), that can be

solved by off-the-shelf solvers. Here “practically efficient” means that we can solve the

corresponding problem by limited number of tractable optimization problems such that

the total computational time would not be too large for moderate sized problem. In the

following we will explain how we address the proposed three issues in details, followed

by which the outline of the thesis will be presented.

1.2 Research Objectives

While uncertainty has been addressed in different disciplines of supply systems from dif-

ferent perspectives (e.g. Carvalho et al., 2014 for natural gas supply system; Georgiadis

et al., 2011 for supply chain system; Qadrdan et al., 2014 for electricity supply system),

their approaches are far from perfect in modeling uncertainty and identifying the supply

system’s resilience. As stated, our fundamental goal is to develop a unifying framework

of modeling system resilience which can provide efficient decision support in designing

resilient supply systems. More specifically, this thesis is to:

4



1. Build an explicit model of uncertainty which will reflect some real world concerns.

In the literature, people tend to apply the two stage Stochastic Programming (SP) ap-

proach of modeling uncertainty as random variables with given distribution (Dantzig,

1955). However, the exact distribution of the uncertainty is rarely known in reality. This

has rekindled recent interests in the Robust Optimization (RO) paradigm as an alterna-

tive approach of addressing data uncertainty. Instead of assuming the exact distribution

of uncertainty, RO decides an uncertainty set defining all the realizations for which the

decision maker is willing to be prepared. A critical criticism on RO is its conservatism

because it totally ignores the distributional knowledge of uncertainty, which could be

partially available in some cases. In this thesis, we use an ambiguous model of uncer-

tainty as a compromise of the stochastic model of uncertainty in SP and the uncertainty

set based model of uncertainty in RO. Specifically, we model the primitive uncertain

variables as ambiguous random variables that their joint distribution is known to be-

long to a family of distributions specified by some distributional information such as

mean, support, and covariance matrix. Our proposed ambiguous model of uncertainty is

consistent with the distributionally robust optimization paradigm which aims to bridge

the gap between SP and RO. It is worth pointing out that when only support infor-

mation W of the random vector z̃ is available, i.e., the specified distributional family

P =
{
P ∈M(W) : EP

(
1{z̃∈W}

)
= 1
}

, our proposed ambiguous model of uncertainty re-

covers to the classical RO approach and thenceforth constitutes a generalization of the

classical RO approach.

2. Build a quantitative and rigorous approach of measuring supply system resilience,

which will reflect the supply system’s ability of continuing its service under uncertainty

whilst at the same time capture the decision maker’s attitude towards uncertainty. To do

this, we consider to map the supply system’s service quality to a scalar value and give

the formal definition of resilience measure as a family of these mappings. Instead of

defining a unique resilience measure, we propose an axiomatic framework for describing

the salient characteristics of resilience measures. Specifically, we measure the supply
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system resilience by evaluating the random penalty cost function which uniquely depends

on the random demand loss vector. We then construct the axiomatic framework by

several axioms which are stimulated from some basic and reasonable intuitions. This

proposed axiomatic framework enables us to choose specific resilience measure according

to specific concerns.

3. Develop practically efficient algorithms for the computation and optimization of

resilience measures. Specifically, we apply our resilience measure based framework to

two specific applications. In the first application, we consider energy supply system in

which supply disruptions are the major source of uncertainty. Since rare distributional

knowledge of the supply realizations is available in this case, we adopt the RO approach

of addressing uncertainty. More precisely, we define the resilience index as the size of

largest adjustable uncertainty set containing no unacceptable event of supply realizations

and develop efficient solution algorithms to compute the resilience index for cardinality-

constrained adjustable uncertainty sets. Based on this, we also study the design problem

maximizing the energy supply system’s resilience with limited investment budget. In the

next application we consider telecommunication network resilience under demand uncer-

tainty, where vast amount of historical demand data are available at the planning stage.

In this case we model the demands as ambiguous random variables with known support

and moments (first- and second-order moments). To this end, we use the distributionally-

ambiguous shortfall awareness measure to address both the distributional ambiguity and

computational tractability. Since the telecommunication network design problem is gen-

erally difficult to solve, we propose decision rule based approximation of the proposed

resilient telecommunication network design model.

The remainder of this thesis is organized as follows. In Chapter 2 the related literature

is reviewed. In Chapter 3 we build the fundamental framework of defining supply system

resilience measure. Chapter 4 investigates the construction of specific resilience measure.

In particular, we propose two approaches of building resilience measures: from subjec-

tively specified reference measures or simply from adjustable uncertainty sets. Chapter

6



5 considers the resilience related issues of energy supply system. Chapter 6 deals with

the resilience of telecommunication network. Chapter 7 concludes the whole thesis and

gives some lights on future research.
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Chapter 2

Literature Review

2.1 Optimization under Uncertainty

In classical mathematical optimization, we seek to minimize (or maximize) an objective

function subject to a set of constraints as follows:

min f0(x,a0)

s.t. fi(x,ai) ≥ 0 : ∀i ∈ I,
(2.1)

where x is the vector of decision variables and ai : i ∈ I ∪ {0} are the parameters which

are primarily assumed to be deterministic.

When parameters in the objective function are uncertain, we are unlike to obtain

the “real” optimal solution. When parameters in the constraints differ from the assumed

nominal values, the computed “optimal solution” might not even satisfy all the con-

straints. The stochastic programming approach might be the first attempt of addressing

parameter uncertainties in optimization problems. Specifically, stochastic programming

assumes that the joint distribution of the parameters ã = (ãi)i∈I∪{0}, denoted as Q, is

precisely given. Based on this, stochastic programming adopts the two-stage based mod-

eling framework which is an important building block in the literature of optimization

under uncertainty. In particular, we classify the decision variables x into two categories:

9



the here and now decisions x1 which should be made prior to the realization of the ã,

and the wait and see decisions x2 which can be adjusted after realizing the exact values

of ã. Generally, the first stage cost is independent of the realized uncertainty and we

thenceforth can decompose the original objective as f0(x,a0) = f̂0(x1) + f̌0(x2,a0). The

stochastic programming version of the original optimization problem (2.1) is them given

as:

min f̂0(x1) + EQ [Q(x1, ã)] , (2.2)

where ã = (ãi)i∈I∪{0} now becomes a random vector and the expectation is taken

with respect to its joint distribution Q. For each realization of ã, Q(x1, ã) is the optimal

objective value of the following optimization problem:

Q(x1, ã) , min f̌0(x2, ã0)

s.t. fi(x1,x2, ãi) ≥ 0 : ∀i ∈ I.

Comprehensive introduction to stochastic programming can be found in Birge and Lou-

veaux (2011); Shapiro and Ruszczyński (2003).

The two stage SP model (2.2) is expressively rich and has been widely applied in the

supply chain literature. However, there are some fundamental drawbacks. In practice, we

can rarely obtain the actual distribution of the uncertainties. Besides, even if the precise

distribution is known, the corresponding SP model is computationally challenging to

solve. In addition, in the absence of some structural property of the SP model, some

popular solution methods of SP model such as Sampling Average Approximation (SAA)

may yield meaningless first stage solutions x∗1 that its corresponding recourse problem

Q(x∗1, ã) is infeasible for some realizations of ã. To overcome these shortcomings, Soys-

ter (1973) establishes the robust optimization scheme as an alternative approach of

addressing data uncertainty by replacing probability distributions with specified uncer-

tainty set. Attracted by the tractable representation of the robust counterpart by either

Lagrange duality (e.g., Ben-Tal et al., 2009) or Fenchel duality (Ben-Tal et al., 2012),

10



robust optimization has witnessed an explosive growth in recent years (See Ben-Tal and

Nemirovski, 1998, 1999, 2000; Bertsimas and Sim, 2003, 2004; El Ghaoui and Lebret,

1997; El Ghaoui et al., 1998 for classical robust counterpart and Ben-Tal et al., 2004

for adjustable robust counterpart). Extensive review about RO is given in Ben-Tal et al.

(2009); Bertsimas et al. (2011). However, it has been observed that when some level of

distributional knowledge of the uncertainty is available, RO may yield overly conservative

solutions.

To overcome both the over specificity of SP and the conservatism of RO, a new variant

of optimization scheme, which is named as distributionally robust optimization approach

has been promoted. In distributionally robust optimization, we assume the probability

distribution Q itself be uncertain. In particular, the distributionally robust optimization

version of the two stage SP model (2.2) is given as:

min f̂0(x1) + sup
Q∈F

EQ [Q(x1, ã)] , (2.3)

where F is the ambiguity set of distributions. Unlike classical SP or RO, the distribu-

tionally robust optimization approach address the decision maker’s attitudes towards

both risk (exposure to uncertain outcomes whose probability distribution is known) and

ambiguity (exposure to uncertainty about the probability distribution of the outcomes).

Recently, the duality results on moment problems (Bertsimas and Popescu, 2005; Isii,

1962; Popescu, 2005) have motivated a growing body of research on distributionally

robust optimization with the belief that the distributionally robust version of the clas-

sical optimization model (2.1) is tractable for specific ambiguity set F and constraints

{fi}i∈I . Ghaoui et al. (2003) study a portfolio optimization problem of minimizing the

worst-case Value at Risk under the assumption that only bounds on the mean and co-

variance matrix of the returns are known. Calafiore and El Ghaoui (2006) extend this

result to linear optimization problem with ambiguous chance constraints in which the

underlying distribution is only known to belong to a family of distributions specified by

11



mean, covariance matrix and support. Erdoğan and Iyengar (2006) propose a robust

sampling approach to approximate the joint ambiguous chance constraint problem in

which the underlying distribution family F is defined by Prohorov metric. These works on

single stage distributionally robust optimization has also stimulated some new thoughts

on the complicated two stage problem (2.3). Bertsimas et al. (2010) study two stage

distributionally robust linear programs with given mean and covariance. They show

that this problem is NP-Hard if uncertainty impacts the right hand side of the recourse

problem and build semidefinite programs to solve it for the special case that uncertainty

only affects the objective function. Delage and Ye (2010) provide an ellipsoid method

based polynomial time algorithm of the two stage distributionally robust optimization

program with the ambiguity set specified by uncertain mean and covariance matrix. As

a side result, then also give a data-driven approach of constructing the ambiguity set of

distributions. Tractable approximations by linear decision rules or its advanced versions

are proposed in Chen et al. (2007); Goh and Sim (2010); Kuhn et al. (2011), in which

the ambiguity sets are specified by mean, support, covariance matrix and/or directional

deviations.

2.2 Supply Chain Management under Supply Uncertainty

The literature of supply chain management is rich. In this section we review some

of the related works that consider supply uncertainty. Typically, supply uncertainty is

modeled as yield uncertainty or capacity uncertainty where the supply quantity various

stochastically, or lead-time uncertainty where stochasticity presents in order lead time,

or supply chain disruption under which some suppliers in the supply chain system stop

functioning during the entire period of disruption. These forms of supply uncertainty are

not distinct to each other since we can regard the supply chain disruption as the extreme

case of yield uncertainty with a Bernoulli random yield. We refer the readers to Grosfeld-

Nir and Gerchak (2004) for a review on yield uncertainty and to Zipkin (2000) for a
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textbook on inventory management under lead-time uncertainty. Indeed, the abstract

concept of supply chain disruption has been addressed in a wide range of supply chain

management related applications. Basically, these applications can be divided into three

major categories: inventory management models, facility location models and the joint

location-inventory models.

The studies by Parlar and Berkin (1991) and Berk and Arreola-Risa (1994) are re-

garded as early works that incorporate supply disruption in the EOQ model, although

there might be earlier ones. Snyder (2006) propose a convex approximation of Berk

and Arreola-Risa’s model. His approximation behaves similarly to the simple EOQ cost

function and thus a close-form solution of the optimal inventory policy can be derived.

Based on this, Qi et al. (2009) further build an extended model by considering supply

disruptions at both supplier and retailer with proper approximation of the cost function.

Beside these EOQ model based studies, supply disruptions are also investigated from

some other perspectives. For instance, supply disruption is embedded in different inven-

tory systems. The impact of supply disruptions in (Q, r) inventory system is studied in

Parlar (1997) and Mohebbi (2003). Dada et al. (2007) extend the newsvendor model by

considering multiple unreliable suppliers which might be subject to supply disruptions.

In addition, simulation methods are also proposed to study the effect of supply disruption

(Schmitt and Singh, 2009, 2012; Snyder and Shen, 2006).

Supply disruption is also considered in the facility location problem. Snyder and

Daskin (2005) consider two reliability based extensions of the the classical fixed-charge

location problem and the p-median problem, in which the facilities are subject to failure

with the same disruption probability. Their models assume that the customers can be

reassigned to alternate distribution centers (DC) in the case that their originally assigned

DC is disrupted. In their model, a weighted sum of the nominal cost when no disruption

occurs and the expected additional transportation cost caused by reassignment in pres-

ence of disruptions is minimized. One typical critique of Snyder and Daskin’s approach is

on its uniform disruption probability assumption, which is hardly suitable for many real
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cases. Several approaches have been proposed to relax the uniform disruption probabil-

ity assumption, such as enumerating all the possible disruption scenarios (Snyder et al.,

2006), using nonlinear mixed integer formulations (Cui et al., 2010; Berman et al., 2007)

and applying the continuum approximation by assuming that customers are uniformly

spread (Cui et al., 2010; Li and Ouyang, 2010).

Motivated by the intuition that jointly considering the location and inventory deci-

sions can save total cost, integrated supply chain design problems have been studied

recently. Qi et al. (2010) consider a joint location-inventory model in which supply dis-

ruptions can occur both at suppliers and retailers. Basically, their approach of modeling

supply disruption is the same as that in Qi et al. (2009) and its impact is reflected in the

working inventory cost. Different from Qi et al. (2010) in which the customers are not al-

lowed to be temporarily reassigned to other non-disrupted retailer when its pre-assigned

DC is disrupted, Mak and Shen (2012) studies this problem by allowing customers to be

reassigned after disruptions occur. Snyder et al. (2010) gives a comprehensive review.

2.3 Robust Network Design

With the beautiful interplay between the constraints and the geometry of the uncertainty

set, RO has provided computationally scalable antidotes for various difficult problems.

This is especially true for the network design problem. Atamtürk and Zhang (2007)

develop a two-stage modeling framework of robust network flow and design problem,

in which part of the network flows along with the arc capacities are determined in the

first stage, and the rest of the flows are determined in the second stage. Extensions to

multi-commodity are also presented. However, the proposed two stage robust network

flow formulation is generally NP-Hard and does not inherit an efficient exact method to

solve. Instead, the authors propose an approximation method.

To our knowledge, Atamtürk and Zhang (2007) is the only work dealing with general

network flow problem. The rest of the literature mainly focus on the specific application
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on telecommunication network, in which the capacities of the arcs should be determined

to fulfill multiple pairwise demands. Specifically, we choose to minimize the capital ex-

penditures such that there exists a capacity-feasible, multi-commodity flow routing that

can accommodate all realized demands. When the demands are precisely known, i.e., de-

terministic, this problem and its related multi-commodity network model extension have

been well studied in the literature (see Atamtürk, 2002; Bienstock et al., 1998; Bienstock

and Günlük, 1996; Dahl and Stoer, 1998; Frangioni and Gendron, 2009; Günlük, 1999;

Raack et al., 2011, and the references therein).

To address demand uncertainty, which constitutes the major source of uncertainty in

telecommunication network design, the robust telecommunication network design prob-

lem aims to find a capacity installation with minimum possible capital expenditures such

that the resulting network is operational for any demand values residing in a prescribed

uncertainty set. In the robust telecommunication network design literature, polyhedral un-

certainty (Lemaréchal et al., 2010) sets are commonly used due to its simplicity. Chekuri

et al. (2007); Gupta et al. (2001) report that the design problem is NP-Hard for gen-

eral polyhedral uncertainty sets. Ben-Ameur and Kerivin (2005) propose an vertices

enumeration based algorithm to this NP-Hard problem.

There have been various efforts to overcome the computational difficulties by lim-

iting the flexibility of routing solutions, and using simple uncertainty sets such as the

hose model and the Γ−model. For example, the oblivious (or static) routing policy re-

stricts the routing of a commodity at each arc to be a linear function of the realized

demand value of this commodity. As a consequence, for each demand commodity, a

set of routes is designated to carry a fixed proportion of the realized demand, and the

value of this proportion is independent of the any realized demand values. To address

demand uncertainty, the hose model, which assumes that only the upper bounds of the

sum of incoming and outgoing traffic is known, is popularly used in virtual private net-

work (VPN) design problems due to its ease of specification and the resulting model

simplicity. Altın et al. (2007) develop a mixed-integer programming (MIP) model for
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VPN design and propose a branch-and-price-and-cut algorithm to solve it. By applying a

decomposition property obtained from projecting out flow variables, Altın et al. (2011)

simplify the resulting polyhedral analysis with metric inequalities, based on which they

simplify the branch-and-price-and-cut algorithm. Koster et al. (2013) investigate the

computational aspects of the robust network design problem with the more complicated

Γ−model of uncertainty (Bertsimas and Sim, 2003, 2004), which is effective in address-

ing demand uncertainty when only the ranges of the demand values of each commodity

are given. Lee et al. (2012) also use the Γ−model for the robust network design problem

with discrete capacity installation and unsplittable flows. Other than the conservative

oblivious routing policy, more flexible routing policies is also studied (see Ben-Ameur,

2007; Scutellà, 2009). We also note that there has been some progress in investigating

the relationship between oblivious routing policy and the fully flexible dynamic routing

(Mudchanatongsuk et al., 2007; Poss and Raack, 2012).
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Chapter 3

Axiomatic Framework of Resilience

Measure

In this chapter we give a formal definition of resilience measure following the abstract

approach of target based satisficing measure. In particular, we develop an axiomatic

definition of resilience measures to guarantee the consistency with intuitions on the

target oriented decision trend.

First, we give our implicit model of supply system uncertainty to motivate the defini-

tion of resilience measure. Let z̃ be a vector of primitive uncertain variables constituting

the source of uncertainty involved in the design and operations supply systems. Through-

out this thesis, we interchangeably use the notation with tilde sign (e.g., ṽ) or a function

of z̃ (e.g., v(z̃)) to denote a random scalar for simplicity of representation. Suppose that

z̃ is an ambiguous random vector defined on a measurable space (Ω,F ,P), where Ω is

the sample space, F is the corresponding σ−algebra of events and P corresponds to the

actual probability distribution defined on (Ω,F). Without loss of generality, we assume

that the sample space Ω is convex and compact (If not, we can replace it with its convex

hull and the results still go through). To address distributional ambiguity, we also assume

that P is not precisely known.
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As previously stated, resilience corresponds to the system’s ability of continuing its

service under uncertainty. To measure the service quality of a given supply system G, we

introduce a penalty function denoting the total penalty cost associated with unfulfilled

demands, which is of course uncertain and we denote it as φG(z̃). In the context of

this thesis, we specifically call the penalty cost function φG(z̃) as penalty position and

abbreviate it by φ(z̃) when it is not necessary to distinguish different supply systems.

Our fundamental philosophy of quantifying supply system resilience is to relate every

penalty position φ(z̃) to a real number and use that real number to quantify its resilience.

A typical critique might be that measuring supply system resilience by a single number

may lead to a loss of information about the stochastic system performance φ(z̃). However,

many actual decisions about supply systems in practice fundamentally involve ranking

the resilience of different systems. Therefore, we can benefit by the simplicity of this

single number and use it as the decision criterion when designing the supply system.

To this end, we carry our definition of resilience measure as a consistent mapping

from a space of penalty position V to an interval [0, ρ̄]. In this thesis, we originally specify

V as the set of penalty positions defined as piece-wise affine functions as:

V ,

{
ṽ

∣∣∣∣∃vi ≥ 0, vi0 : i ∈ I such that ṽ = max
i∈I

{
vi0 + v′iz̃

}}
. (3.1)

The space V is expressive enough and possesses some nice properties that can make our

analysis intact:

1. For every ṽ ∈ V and a scalar a ∈ <, we have ṽ + a ∈ V.

2. For every ṽ ∈ V and θ ≥ 0, we have θṽ ∈ V.

3. For every ṽ1, ṽ2 ∈ V, we have ṽ1 + ṽ2 ∈ V and max{ṽ1, ṽ2} ∈ V.

In real world decision making, it is prevalent that decision maker is primarily con-

cerned about attaining the target other than maximizing his outcome. Simon built the

well-known bounded rationality model in Simon (1955) to interpret this target oriented
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decision trend and coins the term satisficing to describe this behavior in Simon (1959).

This satisficing behavior enjoys ample empirical justifications (see Mao, 1970; Payne

et al., 1980, 1981) and has stimulated new decision criteria named as satisficing and as-

piration measures which admit preference diversification (Brown and Sim, 2009; Brown

et al., 2012). To embody the target oriented decision trend, we denote by τ0 as the thresh-

old of maximum acceptable level of demand loss penalty (or tolerance level). Therefore,

we consider the performance of the system as acceptable whenever φ(z̃) ≤ τ0 and not

acceptable otherwise (For rest exposition in this chapter, if not specified, we can assume

that τ0 = 0 by embedding τ0 within the penalty position φ(z̃)).

Perhaps the most common candidate that admits the satisficing trend is the suc-

cess probability P(φ(z̃) ≤ 0). However, the success probability is not appropriate in our

context because firstly, its evaluation requires precise distributional information of the

uncertainty, which is not available when critical decisions need to be made. Even if the

distributional information is precisely known, its evaluation and optimization is generally

intractable (Nemirovski and Shapiro, 2006 show that evaluating the success probability

of a linear constraint on uniformly and independently distributed random variables is

NP-Hard). Brown and Sim (2009) propose a general notion of “probability-like” mea-

sures which are natural to specify. They also pointed out that when such measures are

quasi-concave, optimization of which can be approached by computationally tractable

methods. Chen and Sim (2009) propose a goal-driven model that encompasses the suc-

cess probability and the expected level of under-performance. This goal driven objective,

also named as shortfall awareness measure, is closely related to the quasi-concave con-

ditional value-at-risk (CVaR) satisficing measure so that computational tractability can

be approached. However, adopting the shortfall aspiration criterion in our case of mea-

suring system resilience also poses some issues as follows. First, as in the case of success

probability, the evaluation of the shortfall aspiration criterion also requires distributional

information on the uncertainty. Even though tractable robust approximations can be gen-

erated using partial distributional information, for complex problems where second stage
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actions are involved (such as in our case, where second stage actions refer to uncertainty

recovery and mitigation actions), further approximations such as affine decision rules

(or enhanced version) are required. These approximations would question the accuracy

of the resilience measure, which is primarily adopted to rank resilience of different sys-

tems. In light of these, we return to consider the basic qualifying characteristics of such

probability-like performance measures using an axiomatic definition below in order to

develop resilience measures suitable for our purpose, instead of restricting our attention

to a specific one such as the shortfall awareness measure.

Definition 3.1. A mapping ρ : V 7−→ [0, ρ̄], where ρ̄ ∈ (0,+∞), is a resilience measure if

the following axioms hold for every ṽ1, ṽ2 ∈ V:

1. Satisfaction: ρ(0) = ρ̄ and ρ(1) = 0.

2. Monotonicity: For ṽ1, ṽ2 ∈ V, if v1(z̃) ≤ v2(z̃) : ∀z̃ ∈ Ω, we have ρ(ṽ1) ≥ ρ(ṽ2).

3. Left continuity: For ṽ ∈ V, we have lim
a↓0

ρ(ṽ − a) = ρ(ṽ).

4. Scale invariance: If α > 0, ṽ ∈ V, then ρ(αṽ) = ρ(ṽ).

5. Quasi-concavity: For ṽ1, ṽ2 ∈ V and 0 ≤ θ ≤ 1, we have ρ(θṽ1 + (1 − θ)ṽ2) ≥

min{ρ(ṽ1), ρ(ṽ2)}.

In addition, we say that ρ(·) is computationally proper if the following holds:

• For all ṽ1, ṽ2 ∈ V, we have ρ(max{ṽ1, ṽ2}) = min{ρ(ṽ1), ρ(ṽ2)}.

The first three axioms are naturally adapted from characteristics of the probability-

like measures in Brown and Sim (2009) termed also as satisficing measures. In particular,

the satisfaction condition in Axiom 1 states that all the penalty positions that are always

nonpositive should be mostly preferred, while the positions that are always positive

should be least preferred. The monotonicity property in Axiom 2 states the intuitive

reasoning that when one system “A” always outperforms the other system “B”, then “A”
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should never be less preferred as “B”. More importantly, it is worth stressing that the

monotonicity is also consistent with the first and second order stochastic dominance,

which are widely used in decision theory as an alternative of the risk neutral decision

criterion. The left continuity property in Axiom 3 means if we reduce the demand loss

penalty by a small amount, the gain in terms of supply system resilience should approach

zero at the limit. The scale invariance property in Axiom 4 suggests that, when comparing

systems, mere differences in absolute units and scales should not influence its resilience

evaluation. This axiom is much based on the intuition that re-scaling the penalty position,

by changing the cost unit, or by adding several completely correlated penalty positions,

would not change our attitude towards the system resilience.

The quasi-concavity in Axiom 5, and computational properness are carried out to

rule out some measures like success probability, which we have pointed out to be com-

putationally prohibited. Indeed, these two properties admit the potentials of simplifying

the optimization and the evaluation of resilience measures. For instance, consider the

problem of selecting the most “resilient” supply system from a convex space C using ρ(G)

as:

ρ∗ , max{ρ(G) : G ∈ C}.

It is commonly known that developing a computationally efficient method to find a

feasible solution that lies in a convex set is relatively easier than non-convex sets. When

quasi-concavity holds, the set

S(γ) = {G : ρ(G) ≥ γ}

is convex, and hence, we assume that there exists a computationally tractable oracle of

finding a feasible solution in the convex set S(γ). We then can solve ρ∗ as a sequence of

tractable problems with certain accuracy by bisection on ρ∗, provided that 0 ≤ ρ∗ ≤ ρ̄.

The quasi-concavity property admits the tractability of optimizing resilience measure,
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while the computationally properness simplifies its evaluation. By the monotonicity of

resilience measure ρ(·) (Axiom 3), we deduce that ρ(v(z̃)) ≤ mini∈I{ρ(vi0 + v′iz̃)} for

all v(z̃) = maxi∈I {vi0 + v′iz̃} : vi ≥ 0. When ρ(·) is computationally proper, the equality

holds so that the resilience measure of the complex penalty position v(z̃) can be simplified

to the simple affine penalty positions {vi0 + v′iz̃}i∈I .

Indeed, our general notion of resilience measure does not single out any specific

resilience measure. (While our proposed resilience measure is actually a coherent satis-

ficing measure by replacing ṽ with −ṽ, we specifically call it resilience measure in the

context of this thesis.) We now provide a few important examples which are commonly

used in the literature. It is worth stressing that, most of them (except the distributionally-

ambiguous forms of resilience measure) depend uniquely on the actual distribution of

the penalty position ṽ, which is also named as law-invariant. The law-invariant resilience

measures are generally difficult to compute because multi-dimensional integration is

computational intractable. Coincidently, they also do not possess the additional compu-

tational properness property.

Example 1. (Shortfall awareness measure): The shortfall awareness measure in Chen

and Sim (2009) is motivated by a convex approximation of the success probability P(ṽ ≤

0). Specifically, for every t > 0, we have the following inequality:

P(ṽ ≤ 0) = EP
(
1(−∞,0](ṽ)

)
≤ EP

(
1− (ṽ/t+ 1)+

)
= 1− EP(ṽ/t+ 1)+.

The value of t plays as the degree of shortfall for the upside risk ṽ > 0. By selecting the

infimum of this bound for t in (0,+∞), Chen and Sim propose the shortfall awareness

measure as:

ρSAM(ṽ) = 1− inf
t>0

EP(ṽ/t+ 1)+.
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It is not difficult to prove that the shortfall awareness measure is indeed a resilience

measure by checking all of these five axioms. In addition, they point out that the shortfall

aspiration awareness measure is connected to the CVaR measure as

ρSAM(ṽ) = sup {γ ∈ (0, 1) : CVaRP(ṽ, γ) ≤ 0} ,

where

CVaRP(ṽ, γ) = inf
ν∈<

{
ν +

EP(ṽ − ν)+

1− γ

}
.

Example 2. (Distributionally-ambiguous shortfall awareness measure): Instead of as-

suming precise knowledge of the distribution, Zhu and Fukushima (2009) consider the

distributionally-ambiguous case that P is only known to belong to a family of distribution

F. Therefore, we give the definition of distributionally-ambiguous shortfall awareness

measure as

ρDSAM(ṽ,F) = sup

{
γ ∈ (0, 1) : sup

P∈F
CVaRP(ṽ, γ) ≤ 0

}
.

In fact, for any law-invariant resilience measure, the corresponding distributionally-

ambiguous version of resilience measure specified by a closed convex family of prob-

ability measure F remains a resilience measure. This is because all the five axioms are

preserved when the supremum operator is placed over a closed convex distribution

family. Therefore, the distributionally-ambiguous shortfall awareness measure is also a

resilience measure when F is closed and convex.

Example 3. (Bernstein approximation based measure): Nemirovski and Shapiro (2006)

state that for every t > 0, if ln (EP[exp{ṽ/t}]) ≤ t ln(1− γ), we then have the following

probability bound
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P(ṽ ≤ 0) = P(exp{ṽ} ≤ 1)

= 1− P(exp{ṽ} > 1)

≥ 1− EP[exp{ṽ/t}] Markov’s Inequality

≥ 1− (1− γ)

= γ.

Since the infimum operator on t ∈ (0,+∞) would not affect the result, we have the

following implication on the Bernstein approximation of success probability:

inf
t>0
{t ln (EP[exp{ṽ/t}])− t ln(1− γ)} ≤ 0 implies P(ṽ ≤ 0) ≥ γ.

Motivated by this, the Bernstein approximation based measure defined as

ρBAM(ṽ) = sup

{
γ ∈ (0, 1) : inf

t>0
{t ln (EP[exp{ṽ/t}])− t ln(1− γ)} ≤ 0

}

also satisfies the axioms of resilience measure. Similarly, we can also construct a

distributionally-ambiguous Bernstein approximation based measure ρDBAM(·) by

specifying a family of probability measure F.

Since CVaR is the tightest law-invariant convex approximation of VaR, it is worth stressing

that the following inequality holds:

ρBAM(ṽ) ≤ ρSAM(ṽ) ≤ P(ṽ ≤ 0).

Actually the result that CVaR is tighter than Bernstein approximation can also be derived

from the simple inequality x+ ≤ t exp(x/t− 1) : ∀t > 0, x ∈ <. Based on this, we have

CVaRP(ṽ, γ) = inf
ν∈<

{
ν +

EP(ṽ − ν)+

1− γ

}
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≤ inf
ν∈<

inf
t>0

{
ν +

1

1− γ tEP [exp((ṽ − ν)/t− 1)]

}
= inf

t>0
inf
ν∈<

{
ν +

1

1− γ tEP [exp((ṽ − ν)/t− 1)]

}
= inf

t>0
{t ln (EP[exp{ṽ/t}])− t ln(1− γ)} .

Example 4. (One side moment based measure): Choi et al. (2011) define an important

law-invariant coherent risk measure

µOSM(ṽ, γ) = EP(ṽ) + γ
[
EP
(
(ṽ − EP(ṽ))+

)p]1/p
,

where γ ∈ [0, 1], p ≥ 1. The one side moment based measure is a generalization of the

mean variance risk measure (when p = 2, it is exactly the mean variance measure).

This risk measure is also special case of mean-risk functions which are usually expressed

as a risk neutral term plus a weighted factor of variability. The value of γ reflects the

degree of risk aversion and the p-th semideviation is used to measure the variability of

the outcome.

Since, the one side moment based measure is a coherent risk measure for γ ∈ [0, 1], p ≥ 1,

its dual presentation

ρOSM = sup {γ ∈ [0, 1] : µOSM(ṽ, γ) ≤ 0}

is a resilience measure. Similarly, the distributionally-ambiguous one side moment based

measure ρDOSM(·) is also a resilience measure.
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Chapter 4

Constructing Resilience Measure

The wide range of resilience measures allows us to choose one according to our specific

considerations. In this chapter, we illustrate two different approaches of constructing

resilience measures, either by subjective references or by adjustable uncertainty sets.

4.1 Resilience Measures and Subjective References

In practice, decision-makers may possess specific opinions on penalty positions that

reflect their risk attitude and preferences. We now propose a general approach to incor-

porate such preferences to synthesize resilience measures that are consistent with the

axioms presented in Definition 3.1. We assume that the decision-maker is behaviorally

modeled with a reference function Ψ : X 7−→ [0, ρ̄], where X is defined as a “reference

space” of penalty positions. The reference function Ψ(·) may be solicited by inquiring the

decision-maker’s scores on the real interval [0, ρ̄] for a set of penalty positions. A score of

0 means ‘worst possible’ resilience and ρ̄ means ‘best possible’ resilience. To construct a

new resilience measure that satisfies all the axioms, it might be inappropriate to directly

use the reference function Ψ(·) because the decision maker might not be aware of con-

sistently following the axioms when they are about to give the scores of the reference

penalty positions. Therefore, the problem of how to synthesis a resilience measure that
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satisfies the axioms and preserve as much information of the reference function Ψ(·) as

possible is crucial. We now focus, in the rest of this section, the important problem of

extending Ψ(·) to a quasi-concave resilience measure ρΨ(·) that is defined on a larger

(extended) space V. We assume X and V are sub-spaces of L∞(Ω,F ,P), the family of

bounded random variables on (Ω,F ,P). We also assume that X is closed under of con-

stant addition, i.e., x̃ ∈ X ⇒ x̃ + a ∈ X : ∀a ∈ <. A basic artifact of interest in the

synthesis of a resilience measure is that of a “support” of a given penalty position ṽ ∈ V,

defined in the following.

Definition 4.1. Supports of a penalty position: Suppose that we have a family X of

bounded random variables which is closed by under constant translation. We consider

a family, indexed by the elements of X , of nonnegative real numbers χ = χ(x̃) : x̃ ∈ X ,

all of them but a finite number being positive. We state that the pair (χ, a), where a is a

real number, “supports” the random penalty position ṽ ∈ V if

ṽ ≤
∑
x̃∈X

χ(x̃)x̃− a.

In addition, we denote by SX (ṽ) as the set of all pairs of (χ, a) that support ṽ on X .

Intuitively, the definition of a support allows us to construct upper approximations

of penalty positions in the space V using non-negative affine combinations of finite

referenced penalty positions in X . Specifically, χ is an infinite dimension vector that the

elements in it are the coefficients of a nonnegative combination of the elements in space

X . By adding a constant shifting amount a, we finally construct an upper approximation

of each ṽ ∈ V as
∑
x̃∈X

χ(x̃)x̃− a. Our definition of “support” is adapted from Artzner et al.

(1999), who use nonnegative combination of “standard risk” to bound from below other

risk positions. Inspired by the similarity between the penalty positions in our case and

the risk positions in finance, we adjust our concept of “support” accordingly by bounding

the penalty position from above by a positive combination of several reference penalty

positions. Motivated by the above definition, we will show in Theorem 4.1 that when
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the reference measure Ψ(·) fulfills the consistency condition defined in the following, we

can extend it to a resilience measure ρΨ(·) on V.

Definition 4.2. Consistency condition: Given a mapping Ψ : X 7−→ [0, ρ̄], we say that

Ψ(·) fulfills the consistency condition if for every γ > 0, we have

inf
(χ,a)∈SX (1)

{∑
x̃∈X

χ(x̃)µ(x̃, γ)− a
}
> 0,

where µ(x̃, γ) := inf{a : Ψ(x̃ − a) ≥ γ}, for every x̃ ∈ X and γ ∈ [0, ρ̄]. We define

inf ∅ =∞ and 0 · inf ∅ = 0 as a convention.

Remark 4.1. Here µ(·, γ) describes a dual characterization of Ψ(·). This format of dual

characterization has been widely used to connect two different ways of measuring risk in

finance. For example, when Ψ(·) is the success probability of P(x̃ ≤ 0), the corresponding

µ(·, γ) gives the classical risk of value-at-risk. More generally, when Ψ gives a satisficing

measure, µ(·, γ) gives a family of risk measures which is nondecreasing in γ.

Remark 4.2. Actually, the term “1” appears in the above equation can be replaced by any

positive constant penalty positions because the left hand side in the equation is positive

homogeneous. This condition is mainly specified to guarantee the axiom of satisfaction

in resilience measure. The detailed explanation can be induced in the proof of Theorem

4.1.

We now give an important lemma on left continuity, which is useful for the proof of

Theorem (4.1), as follows:

Lemma 4.1. Given a mapping µ : L∞(Ω,F ,P)× [0, ρ̄] 7−→ < such that:

1. µ(ṽ, γ) is nondecreasing in γ: for every ṽ ∈ L∞(Ω,F ,P), γ1, γ2 ∈ [0, ρ̄], γ1 < γ2, we

have µ(ṽ, γ1) ≤ µ(ṽ, γ2).

2. µ(ṽ, γ) is semi-nondecreasing in ṽ: for every γ ∈ [0, ρ̄], a > 0, we have µ(ṽ − a, γ) ≤

µ(ṽ, γ).
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3. µ(ṽ, γ) is uniformly left continuous: for every ṽ ∈ L∞(Ω,F ,P) and δ > 0, there exists

ε̂ > 0 such that |µ(ṽ − a, γ)− µ(ṽ, γ)| < δ for every γ ∈ [0, ρ̄], a ∈ [0, ε̂].

Then the mapping ρ : L∞(Ω,F ,P) 7−→ [0, ρ̄] defined by

ρ(ṽ) = sup{γ : µ(ṽ, γ) ≤ 0}

follows the left continuity property.

Proof. Observe that µ(ṽ, γ) is semi-nondecreasing in ṽ, easily we have ρ(ṽ − a) ≥ ρ(ṽ)

indicating that lima↓0 ρ(ṽ − a) ≥ ρ(ṽ). Hence, it suffices to show that for every sequence

{ak}k=1,2,··· ↓ 0 and positive number ε, there exists a positive integer N such that

ρ(ṽ − ak) ≤ ρ(ṽ) + ε : ∀k ≥ N (4.1)

By the definition of ρ(·), we have µ(ṽ, γ) > 0 for every γ > ρ(ṽ). Regarding to the fact

that µ(ṽ, γ) is nondecreasing in γ, we surely can find δ > 0 for every positive ε such that

the implication

µ(ṽ, γ) ≤ δ =⇒ γ ≤ ρ(ṽ) + ε

holds. Note that µ(ṽ, γ) is uniformly left continuous, there exists ε̂ > 0 such that |µ(ṽ −

a, γ)−µ(ṽ, γ)| < δ : ∀a ∈ [0, ε̂] and γ ∈ [0, ρ̄]. Hence, for every a ∈ [0, ε̂], if µ(ṽ−a, γ) ≤ 0,

we have

µ(ṽ, γ) ≤ µ(ṽ − a, γ) + δ ≤ δ

indicating γ ≤ ρ(ṽ)+ε. The arbitrariness of γ suggests that ρ(ṽ−a) ≤ ρ(ṽ)+ε : ∀a ∈ [0, ε̂].

Recall that ak ↓ 0, it is obvious that (4.1) holds.
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Theorem 4.1. Given a family of bounded random variables X ⊆ L∞(Ω,F ,P) which is

closed by any constant translation, and a mapping Ψ : X 7−→ [0, ρ̄]. Define µ(x̃, γ) :=

inf{a : Ψ(x̃− a) ≥ γ} for every x̃ ∈ X and γ ∈ [0, ρ̄]. The following equation:

ρΨ(ṽ) = sup

{
γ : inf

(χ,a)∈SX (ṽ)

{∑
x̃∈X

χ(x̃)µ(x̃, γ)− a
}
≤ 0

}
(4.2)

defines a resilience measure ρΨ(·) if and only if Ψ(·) fulfills the consistency condition in

Definition 4.2. Moreover, ρΨ is the smallest quasi-concave resilience measure ρ(·) on V such

that ρ ≥ Ψ on X .

Proof. 1. The necessity of consistency condition follows straightforwardly from ρΨ(1) =

0. We next show the sufficiency in 2-6, i.e., ρΨ(·) is a resilience measure if the consistency

condition given in Definition 4.2 holds.

2. Since (0, 0) is a support of 0 on X , we have ρΨ(0) = ρ̄ because 0 · µ(x̃, γ) = 0.

Meanwhile, the consistency condition ensures ρΨ(1) = 0. Consequently, the satisfaction

axiom holds.

3. Suppose ṽ1 ≤ ṽ2, then we have SX (ṽ1) ⊇ SX (ṽ2), which implies the following

inequality for every γ ∈ [0, ρ̄]:

inf
(χ,a)∈SX (ṽ1)

{∑
x̃∈X

χ(x̃)µ(x̃, γ)− a
}
≤ inf

(χ,a)∈SX (ṽ2)

{∑
x̃∈X

χ(x̃)µ(x̃, γ)− a
}
.

Consequently, we can verify that ρΨ(ṽ1) ≥ ρΨ(ṽ2), i.e, ρΨ(·) satisfies the monotonicity.

4. Define û(ṽ, γ) := inf
(χ,a)∈SX (ṽ)

{∑
x̃∈X χ(x̃)µ(x̃, γ)− a

}
. Since µ̂(ṽ−t, γ) = µ̂(ṽ, γ)−t,

it is not hard to verify that µ̂(ṽ, γ) fulfills the required properties of µ(ṽ, γ) in Lemma 4.1.

Recall that ρΨ(ṽ) = sup{γ : µ̂(ṽ, γ) ≤ 0}, the left continuity holds according to Lemma

4.1.

5. Since (χ, a) ∈ SX (ṽ) if and only if (αχ, αa) ∈ SX (αṽ), ρΨ(·) is scale invariant.

6. To show the quasi-concavity, it suffices to show ρΨ(ṽ1 + ṽ2) ≥ min{ρΨ(ṽ1), ρΨ(ṽ2)}

due to the fact that ρΨ(·) is scale invariant. Recall that if (χ1, a1) ∈ SX (ṽ1) and (χ2, a2) ∈
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SX (ṽ2), there must be (χ1 + χ2, a1 + a2) ∈ SX (ṽ1 + ṽ2). We then can deduce that

µ̂(ṽ1 + ṽ2, γ) ≤ µ̂(ṽ1, γ) + µ̂(ṽ2, γ), for every γ ∈ [0, ρ̄]. Hence, if µ̂(ṽ1, γ) ≤ 0 and

µ̂(ṽ2, γ) ≤ 0 we surely have µ̂(ṽ1 + ṽ2, γ) ≤ 0 implying ρΨ(ṽ1 + ṽ2) ≥ γ. By letting γ

converge to min{ρΨ(ṽ1), ρΨ(ṽ2)}, we have ρΨ(ṽ1 + ṽ2) ≥ min{ρΨ(ṽ1), ρΨ(ṽ2)}.

7. We now show the rest part. Given a resilience measure ρ(·) such that ρ(·) ≥ Ψ(·)

on X . Since ρ(·) follows left continuity, to prove ρΨ ≤ ρ on V, it suffices to show that

ρΨ(ṽ) ≤ ρ(ṽ − ε) for every ṽ ∈ V and ε > 0. Observe that for every γ ∈ [0, ρ̄] such that

µ̂(ṽ, γ) ≤ 0, certainly we can find (χ, a) ∈ SX (ṽ) such that the following inequality holds

∑
x̃∈X

χ(x̃)µ(x̃, γ)− a < ε0

for arbitrarily small ε0 > 0. By the definition of µ(x̃, γ) : x̃ ∈ X , the arbitrariness of ε0

ensures that we can find a family of positive numbers ε(x̃) > 0 such that

Ψ(x̃− µ(x̃, γ)− ε(x)) ≥ γ : x̃ ∈ X ;
∑
x̃∈X

χ(x̃)ε(x̃) + ε0 < ε

Hence, by monotonicity of ρ(·) we have

ρ(ṽ − ε) ≥ ρ(ṽ − ∑
x̃∈X

χ(x̃)ε(x̃)− ε0) Because
∑
x̃∈X

χ(x̃)ε(x̃) + ε0 < ε

≥ ρ
( ∑
x̃∈X

χ(x̃)x̃− ∑
x̃∈X

χ(x̃)ε(x̃)− (a+ ε0)

)
: (χ, a) ∈ SX (ṽ)

≥ ρ
( ∑
x̃∈X

χ(x̃) [x̃− µ(x̃, γ)− ε(x̃)]

)
≥ min

χ(x̃)>0
{ρ(x̃− µ(x̃, γ)− ε(x̃))} Quasi-concavity of ρ(·)

≥ min
χ(x̃)>0

{Ψ(x̃− µ(x̃, γ)− ε(x̃))} ≥ γ

Hence we have ρΨ(ṽ) = sup{γ : µ̂(ṽ, γ) ≤ 0} ≤ ρ(ṽ − ε) completing the proof of

ρ(ṽ) ≥ ρΨ(ṽ).

The intuition of relating the extended resilience measure ρΨ(·) in (4.2) to the refer-

ence function Ψ(·) can be viewed by the concept of “support”. In fact, the dual repre-
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sentation µ(x̃, γ) can be interpreted as the minimum constant shifting amount to make

the original position x̃ be γ resilient in terms of the reference measure Ψ(·). Similarly,

from the definition of “support”, the constant a can be interpreted as the possible con-

stant shifting amount of the nonnegative combination
∑
x̃∈X

χ(x̃)x̃ to bound ṽ from above.

Therefore, if we disregard the internal infimum operation in equation (4.2), the inequal-

ity χ(x̃)µ(x̃, γ) − a ≤ 0 means that the weighted summation of the “standard” shift

amount by Ψ(·) should not be greater than the maximum possible shifting amount a.

More precisely, let us assume that the infimum operations of defining ρΨ(·) and µ(·, γ)

can be achieved exactly for sake of clarity (which of course is not always true in real

cases). In other words, we assume that Ψ(x̃ − µ(x̃, γ)) = γ : ∀γ and, for γ∗ = ρΨ(ṽ),

there ∃(χ, a) ∈ SX (ṽ) such that
∑
x̃∈X

χ(x̃)µ(x̃, γ∗) − a ≤ 0. It is not hard to see that

ṽ ≤ ∑
x̃∈X

χ(x̃)x̃− a ≤ ∑
x̃∈X

χ(x̃)(x̃− µ(x̃, γ∗)). Note that Ψ(x̃− µ(x̃, γ∗)) = γ∗, our princi-

ple of constructing ρΨ(·) is that we think ṽ is γ-resilient if and only if we can bound it

from above by a nonnegative linear combination of γ-resilient (by Ψ(·)) penalty positions

in the reference space X .

Remark 4.3. Indeed, the intuitive interpretation of the consistency condition may not

be straightforward, beyond the fact that it is a necessary condition for the satisfaction

property of ρΨ(·) in (4.2). At the same time, the consistency condition is weaker than

the axioms in resilience measure (necessary but not sufficient). Therefore, one important

implication of the extension is that we can build resilience measures with assistance

of reference measures which are less restrictive. Moreover, if we apply Theorem 4.1 to

(X ,Ψ) = (V, ρ), we have the following corollary:

Corollary 4.1 ρ : V 7−→ [0, ρ̄] is a resilience measure if and only if it is of the form ρΨ(·)

defined as (4.2) for a mapping Ψ : V 7−→ [0, ρ̄] that fulfills the consistency condition

given in Definition 4.2.
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4.2 Resilience Measures and Adjustable Uncertainty Sets

Though equation (4.2) gives precisely the extended resilience measure by subjective ref-

erences, a practical issue arises that the computation of ρ(·) is generally difficult because

we need to search the overall set of support functions (χ, a) ∈ SX (ṽ). In the following, we

will propose an adjustable uncertainty sets based representation of resilience measure.

This result is particularly important because we can then concentrate on uncertainty

sets for choosing and studying resilience measures, and leverage on existing robust opti-

mization technology for computational purposes. Furthermore, the robust optimization

constructs require very little distributional assumptions on the uncertainties, which are

quite suitable for the modeling of uncertainties in our context.

The intuition of relating resilience measure to uncertainty sets is quite straightfor-

ward. By considering Uṽ as the set of z̃ such that v(z̃) ≤ 0, we can then think of relating

the resilience measure of ṽ to the “size” of this uncertainty set Uṽ. In the following we

will show that this indeed yields resilience measures consistent with our axiomatic de-

scription in Definition 3.1. Before that we first give an auxiliary lemma on regular cones

in conic optimization.

Lemma 4.2. Suppose that ρ : V 7−→ [0, ρ̄], where V is defined in (3.1), is a resilience

measure, then for all γ ∈ [0, ρ̄], the set

K(γ) =
{

(v, t) : v ≥ 0, ρ(v′z̃− t) ≥ γ
}

is a regular cone which is closed, convex, pointed and has a non-empty interior.

Proof. The positive homogeneity of K(γ) comes straightforwardly from the scale invari-

ance property of ρ(·). It is also not hard to see that K(γ) is closed and pointed cone by
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its definition. For any (v1, t1), (v2, t2) ∈ K(γ) and θ ∈ [0, 1], we observe that

ρ ((θv1 + (1− θ)v2)′z̃− (θt1 + (1− θ)t2))

= ρ(θ(v′1z̃− t1) + (1− θ)(v′2z̃− t2))

≥ min {ρ(v′1z̃− t1), ρ(v′2z̃− t2)}

≥ γ.

where the first inequality is because ρ(·) is quasi-concave. Hence (θv1 + (1− θ)v2, θt1 +

(1− θ)t2) ∈ K(γ), which verifies the convexity.

Recall that the sample space Ω is compact, which means sup
z∈Ω
‖z‖∞ is bounded above

by a finite number ~, where ‖ · ‖∞ is the commonly known Maximum norm. For every

v ≥ 0 and t ≥ ~‖v‖1, we observe that

max
z̃∈Ω
{v′z̃− t} ≤ ~‖v‖1 − t ≤ 0,

where ‖ · ‖ is the commonly known polynomial norm with p = 1. Hence, we have

ρ(v′z̃ − t) ≥ ρ(0) ≥ γ and therefore the cone {(v, t) : v ≥ 0, t ≥ ~‖v‖1} is a subset of

K(γ). As a consequence, K(γ) has non-empty interior.

The following Theorem 4.2 suggests that every computationally proper resilience

measure has an equivalent adjustable uncertainty set based representation. Moreover,

if we further restrict the family of nondecreasing uncertainty sets {Ω(γ)}γ∈[0,ρ̄] to be

subsets of the support set Ω, we then can construct a computationally proper resilience

measure in the reverse way.

Theorem 4.2. For every computationally proper resilience measure ρ : V 7−→ [0, ρ̄], we

have

ρ(ṽ) =


0 if min

z̃∈Ω
v(z̃) > 0

sup {γ : sup {v(z̃) : z̃ ∈ Ω(γ)} ≤ 0} otherwise,
(4.3)

35



where

Ω(γ) =

{
z : sup

v≥0

{
v′z : ρ(v′z̃− 1) ≥ γ

}
≤ 1

}
(4.4)

is nondecreasing in γ and convex. Moreover, for every family of nondeceasing sets

{Ω(γ)}γ∈[0,ρ̄] such that Ω(γ) ⊆ Ω : γ ∈ [0, ρ̄] (here, nondecreasing means Ω(γ1) ⊆ Ω(γ2) :

∀γ1 ≤ γ2), the corresponding mapping ρ(·) defined in (4.3) is a computationally proper

resilience measure on V.

Proof. We first show that all computationally proper resilience measure ρ(·) can be ex-

pressed as (4.3) with the specified adjustable uncertainty set Ω(γ) defined as (4.4). By

Lemma 4.2 we know that the set K(γ) = {(v, t) : v ≥ 0, ρ(v′z̃− t) ≥ γ} is a regular cone

for every γ ∈ (0, ρ̄]. Therefore, its dual cone

K∗(γ) = {(z, s) |〈(z, s), (v, t)〉 ≥ 0 : ∀(v, t) ∈ K(γ)}

is also a regular cone and thus we can make use of the strong conic duality theorem

to yield our desired result. Suppose that the penalty position ṽ can be expressed as the

piece-wise linear form as v(z̃) = maxi∈I {vi0 + v′iz̃}, where vi ≥ 0. We then have

ρ(v(z̃)) = sup{γ : ρ(v(z̃)) ≥ γ}

= sup {γ : inf{t : ρ(v(z̃)− t) ≥ γ} ≤ 0} left continuity

= sup {γ : {inf{t : ρ(v′iz̃− (t− vi0)) ≥ γ} ≤ 0 : i ∈ I}} computationally proper

= sup {γ : {inf{t : (vi, t− vi0) ∈ K(γ)} ≤ 0 : i ∈ I}}

= sup
{
γ :
{

inf{t : (0, 1)t �K(γ) (−vi, vi0)} ≤ 0 : i ∈ I
}}

= sup {γ : {sup{v′iz + svi0 : (−z, s) ∈ K∗(γ), s = 1} ≤ 0 : i ∈ I}} strong conic duality

= sup

{
γ : max

i∈I
{sup{v′iz + vi0 : (−z, 1) ∈ K∗(γ)}} ≤ 0

}
= sup

{
γ : sup

{
max
i∈I
{v′iz + vi0} : (−z, 1) ∈ K∗(γ)

}
≤ 0

}
= sup {γ : sup {v(z̃) : (−z, 1) ∈ K∗(γ)} ≤ 0}

= sup

{
γ : sup

z∈Ω(γ)
{v(z̃)} ≤ 0

}
,
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where Ω(γ) is the uncertainty set defined as Ω(γ) = {z : (−z, 1) ∈ K∗(γ)}.

Hence, it suffices to show that Ω(γ) is exactly the same as that in (4.4), which is

verified as follows:

Ω(γ) = {z : (−z, 1) ∈ K∗(γ)}

= {z : {〈(−z, 1), (v, t)〉 ≥ 0 : ∀(v, t) ∈ K(γ)}}

= {z : {t ≥ v′z : ∀ρ(v′z̃− t) ≥ γ,v ≥ 0}}

= {z : {1 ≥ v′z : ∀ρ(v′z̃− 1) ≥ γ,v ≥ 0}}

=

{
z : max

v≥0
{v′z : ρ(v′z̃− 1) ≥ γ} ≤ 1

}
.

It is not hard to verify the monotonicity of Ω(γ) : γ ∈ [0, ρ̄]. The convexity of Ω(γ) can

be verified by making use of the quasiconcavity of ρ(·).

We now show the reverse direction.

1. Satisfaction: Clear.

2. Monotonicity: Suppose ṽ1 ≤ ṽ2 : ∀z̃ ∈ Ω. Let γk be an increasing sequence that

converge to ρ(ṽ2). Note that Ω(γk) is a subset of Ω, it follows that

sup{v1(z̃) : z̃ ∈ Ω(γk)} ≤ sup{v2(z̃) : z̃ ∈ Ω(γk)} ≤ 0,

which implies ρ(ṽ1) ≥ γk : ∀k. Hence, ρ(ṽ1) ≥ ρ(ṽ2) by letting the right hand side of the

inequality γk approach to ρ(ṽ2).

3. Left continuity: Observe that µ(ṽ, γ) = max{v(z̃) : z̃ ∈ Ω(γ)} is translation in-

variant for ṽ, we can conclude that µ(ṽ, γ) is semi-nondecreasing and uniformly left

continuous. Meanwhile, µ(ṽ, γ) is also nondecreasing in γ. Thus we can verify its left

continuity of ρ(·) according to Lemma 4.1.

4. Scale invariance: Clear.
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5. Quasi-concavity: Observe that for every ṽ1, ṽ2 ∈ V, θ ∈ [0, 1], γ ∈ [0, ρ̄], the follow-

ing implication holds:

sup
z̃∈Ω(γ)

{θv1(z̃) + (1− θ)v2(z̃)} ≤ max

{
sup

z̃∈Ω(γ)
{v1(z̃)}, sup

z̃∈Ω(γ)
{v2(z̃)}

}
.

Based on this, we can verify the quasi-concavity via arguments similar to those in the

proof of the monotoncity.

6. Finally, we need to show the computational properness of ρ(·). That is, for every

ṽ = max
i∈I

ṽi,

ρ(ṽ) = min
i∈I
{ρ(ṽi)}. (4.5)

Observe that

ρ(ṽ) = sup

{
γ : sup

z̃∈Ω(γ)

{
max
i∈I
{ṽi}

}
≤ 0

}

= sup

{
γ : max

i∈I

{
sup

z̃∈Ω(γ)
{ṽi}

}
≤ 0

}

= sup

{
γ :

{
sup

z̃∈Ω(γ)
{ṽi} ≤ 0 : i ∈ I

}}
≤ sup {γ : {γ ≤ ρ(ṽi) : i ∈ I}}

= min
i∈I
{ρ(ṽi)}.

In addition, let us construct an increasing sequence {γk}k=1,2,··· that converges to

min
i∈I
{ρ(ṽi)}. Observe that

sup
z̃∈Ω(γk)

{ṽ} = sup
z̃∈Ω(γk)

{
max
i∈I
{ṽi}

}
= max

i∈I

{
sup

z̃∈Ω(γk)
{ṽi}

}
≤ 0,

we finally have ρ(ṽ) ≥ min
i∈I
{ρ(ṽi)} completing the proof of (4.5).

From equation (4.3) we can see that, if we regard the case v(z̃) ≤ 0 as acceptable

and v(z̃) > 0 as unacceptable in a target oriented manner, we can express every compu-

tationally proper resilience measure as the largest size of adjustable uncertainty set Ω(γ)

that contains no unacceptable uncertainty realizations. In addition, the inner part of this
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equation sup{v(z̃) : z̃ ∈ Ω(γ)} is indeed a robust optimization representation, which mo-

tivates the possibility of leveraging robust optimization techniques for the computation

of resilience measure. To do this, we need to obtain an explicit representation of the

adjustable uncertainty set {Ω(γ)}γ∈[0,ρ̄] via (4.4). In fact, we can achieve this by imposing

some structural assumptions on the probability space (Ω,F ,P) and the underlying space

V. To demonstrate this, we now introduce an important lemma.

Lemma 4.3. For every convex and closed set Z ∈ <n, we have the following result:

{
z : sup

v≥0

{
z′v : max

z∈Z
v′z ≤ 1

}
≤ 1

}
=
{
z : ∃ž ∈ Ž, z ≤ ž

}
,

where Ž = CH{Z ∪ {0}}.

Proof. Denote by ZL and ZR as the set on the left side and right side, respectively.

Observe that for every v ≥ 0, we have

max
z∈ZR

v′z ≤ max
z∈Ž

v′z

= max
z∈Z

max
λ∈[0,1]

v′(λz + (1− λ)0)

≤ max
z∈Z

v′z.

In addition, we also have

max
z∈ZR

v′z ≥ max
z∈Z

v′z

because Z ⊆ Ž ⊆ ZR. Hence, max
z∈ZR

v′z = max
z∈Z

v′z : ∀v ≥ 0. Consequently, we deduce

that

ZL =

{
z : sup

v

{
z′v : max

z∈ZR

v′z ≤ 1

}
≤ 1

}
,

which implies that ZR ⊆ ZL.

To prove the reverse side ZL ⊆ ZR, we assume by contradiction that ∃z∗ ∈ ZL such

that z∗ /∈ ZR. Because ZR is closed, it follows from the separating hyperplane theorem

39



that

∃v∗ ∈ <nsuch that z∗′v∗ > max
z∈ZR

v∗′z.

Hence, v∗ ≥ 0 (Otherwise the right hand side is infinity). Because 0 ∈ ZR, certainly one

of the following two cases hold.

a) max
z∈ZR

v∗′z = 0. Because z∗′v∗ > 0 and max
z∈ZR

(θv∗)′z = 0 : ∀θ ≥ 0, we have

sup
v

{
z∗′v : max

z∈ZR

v′z ≤ 1

}
≥ sup

θ≥0

{
(θz∗)′v∗

}
= +∞

indicating a contradiction that z∗ /∈ ZL.

b) max
z∈ZR

v∗′z > 0. There exists θ > 0 such that max
z∈ZR

(θv∗)′z = 1. Thus,

sup
v

{
z∗′v : max

z∈ZR

v′z ≤ 1

}
≥ z∗′(θv∗) > max

z∈ZR

(θv∗)′z = 1,

which indicates a contradiction that z∗ /∈ ZL.

Proposition 4.1. Suppose that random vector z̃ follows a discrete distribution on sample

space Ω = {zi}i=1,··· ,S with uncertain probability P(z̃ = zi) = αi which is only known to

reside in a convex closed set Fα. In addition, let the penalty position space reduce to the

set of affine functions, i.e., V = {ṽ = v0 + v′z̃ : v ≥ 0, v0 ∈ <}. Then we can express the

distributionally-ambiguous shortfall awareness measure ρDSAM(ṽ) defined on V in the form

of (4.3) with adjustable uncertainty sets

Ω(γ) =


z :

∃u ∈ <S , (α, λ) ∈ Πα

z ≤∑S
i=1 uizi∑S

i=1 ui = λ

0 ≤ u ≤ 1
1−γα


,

where

Πα = {(α, λ) : α/λ ∈ Fα, 0 < λ ≤ 1} ∪ {(α, 0) : α ∈ Fα}.
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Similarly, the distributionally-ambiguous one side moment based measure ρDOSM(ṽ) defined

on V can also be represented as the form of (4.3) with adjustable uncertainty sets

Ω(γ) =


z :

∃ẑ ∈ <n,u ∈ <S+,α ∈ Fα, λ ∈ [0, 1]

z ≤
(
λ− γ∑S

i=1 ui

)
ẑ + γ

S∑
i=1

uizi

ẑ =
S∑
i=1

αizi, ‖α−1/p ◦ u‖q ≤ λ


,

where
1

p
+

1

q
= 1.

Proof. Because ρDSAM(·) and ρDOSM(·) satisfy all the properties except the computational

properness, representation (4.3) in Theorem 4.2 also holds if we restrict the space of

penalty positions V = {ṽ = v0 + v′z̃ : v ≥ 0, v0 ∈ <}.

1. Observe that

ρDSAM(v′z̃− 1) ≥ γ

⇔ max
α

min
ν

{
ν +

1

1− γ
S∑
i=1

αiyi : yi + ν ≥ v′zi, yi ≥ 0

}
≤ 1

⇔ max
α,u

{
v′(

S∑
i=1

uizi) :
S∑
i=1

ui = 1,0 ≤ u ≤ 1
1−γα,α ∈ Fα

}
≤ 1.

Let us define a set

Z = {
S∑
i=1

uizi :
S∑
i=1

ui = 1,0 ≤ u ≤ 1

1− γα,α ∈ Fα}.

By the definition of convex hull, we can deduce that for every element z ∈ CH{Z ∪ {0}},

∃λ ∈ [0, 1], ž ∈ Z such that

z = λž + (1− λ)0.

Therefore, if λ > 0, we surely can find u ∈ <S+ such that

z =
∑S

i=1 uizi,
∑S

i=1 ui = λ,0 ≤ u ≤ 1
1−γα,α/λ ∈ Fα.
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Consequently, we have

CH{Z ∪ {0}} =


z :

∃u ∈ <S , (α, λ) ∈ Πα

z =
∑S

i=1 uizi∑S
i=1 ui = λ

0 ≤ u ≤ 1
1−γα


.

The result for the distributionally-ambiguous shortfall awareness measure follows di-

rectly from (4.4) by applying Lemma 4.3 for Z.

2. For fixed α, let ẑ =
S∑
i=1

αizi, we have

ρOSM(v′z̃− 1) ≥ γ

⇔ µOSM(v′z̃− 1, γ) ≤ 0

⇔ min
y≥0
{v′ẑ + γ‖α1/p ◦ y‖p : yi ≥ v′(ẑ− zi)} ≤ 1

⇔ min
y≥0

{
max

δ≥0,‖δ‖q≤1

{
v′ẑ + γ(α1/p ◦ δ)′y

}
: yi ≥ v′(ẑ− zi)

}
≤ 1

⇔ max
δ≥0,‖δ‖q≤1

{
min
y≥0

{
v′ẑ + γ(α1/p ◦ δ)′y : yi ≥ v′(ẑ− zi)

}}
≤ 1

⇔ max
δ≥0,‖δ‖q≤1

max
u≥0

{
v′ẑ + γ

∑S
i=1 ui(v

′zi − v′ẑ)
}
≤ 1 (LP duality)

⇔ max

{
v′
((

1− γ∑S
i=1 ui

)
ẑ + γ

∑S
i=1 uizi

)
: u ≥ 0, ‖α−1/pu‖q ≤ 1

}
≤ 1,

where the exchange of “min” and “max” follows from Sion’s minimax theorem (Sion,

1957). The result is similar for the distributionally-ambiguous one side moment measure

ρDOSM(·) by letting the probability vector α be uncertain. According to the equation

of the budget uncertainty sets (4.4), the result follows directly by letting the set Z in

Lemma 4.3 be

Z =

{(
1− γ

S∑
i=1

ui

)
ẑ + γ

S∑
i=1

uizi : ẑ =
S∑
i=1

αizi,u ≥ 0, ‖α−1/pu‖q ≤ 1,α ∈ Fα

}
.
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It seems from the above result that we can construct the corresponding adjustable

uncertainty sets for every specific resilience measure and use these uncertainty sets for

the computation and optimization of the original resilience measure. Unfortunately, this

approach seems a mirage due to various reasons. First of all, the specification of these

adjustable uncertainty sets depends explicitly on the structure of the probability space.

Thus, we can not say much of the resulting uncertainty sets without any specific assump-

tions on it. Even if the assumptions on the probability space are acceptable, two technical

difficulties remain. One issue arises from the fact that the evaluation of these measures

for the piece-wise linear penalty positions in V in (3.1) is generally difficult. To achieve

this, one typical approach is to approximate them by linear positions (e.g. affine decision

rule approximations) but the quality of the approximation is unknown. Besides, even if

we restrict our attention to linear penalty positions V = {ṽ = v0 + v′z̃ : v ≥ 0, v0 ∈ <}

only, the computational difficulty remains due to the complex structure of the resulting

uncertainty sets given in Proposition 4.1.

An exciting news is that the opposite direction of Theorem 4.2 suggests us a new

way of constructing new resilience measures by specifying adjustable uncertainty sets.

Even though the proposed approach requires Ω(γ) to be subset of the support Ω, this

restriction would not lose much generality from the intuition that we do not need to

protect against realizations of uncertainty z̃ that do not belong to the support Ω. To make

the evaluation of the constructed resilience measure tractable, a nature choice is to use

the intersection of a closed convex body Υ(γ) and the support space Ω. Mathematically,

Ω(γ) = {z : ‖z− c‖` ≤ κ(γ)}︸ ︷︷ ︸
Υ(γ)

∩Ω, (4.6)

where ‖ · ‖`, indexed by `, is a general norm defined in <n such that Υ(γ) is a compact

set, κ(·) is a nonnegative valued increasing function on [0, ρ̄] and c is the central point
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of Υ(γ). For technical reasons, we further assume that the cone

Π , cl {(z, t) : t ≥ ‖z‖`} (4.7)

is a regular cone which is closed, convex, pointed with a non-empty interior. The notion of

relating popular uncertainty sets to general norms here is much in the spirit of Bertsimas

et al. (2004); Bertsimas and Sim (2006); Chen et al. (2007). Here we give examples

of some commonly used norms along with two fundamental principles of constructing

new norms based on current ones, by which we can express most uncertainty sets in the

literature as the form of Υ(γ) in (4.6):

1. The most commonly used norm is the polynomial norm ‖z‖p : p ∈ <+ ∪ {+∞}.

2. An invertible linear mapping Q can define a new norm from the current one as

‖z‖`′ := ‖Qz‖`.

• The box uncertainty set z ≤ z ≤ z̄ (e.g. Ang et al., 2012; Sy et al., 2012). Let Q :=

2κ(γ)(diag(z̄ − z))−1, c = z + z̄, then the norm based representation ‖z‖Q−∞ :=

‖Qz‖∞ gives the box uncertainty set in the form of Υ(γ).

• The ellipsoid uncertainty set ‖Q(z− c)‖2 ≤ 1. Let the ellipsoidal norm ‖z‖Q−2 :=

κ(γ)‖Qz‖2. Then it can be expressed as the form of Υ(γ).

3. The intersection of multiple given norms ‖z‖∩i`i = maxi{‖z‖`i} defines a new

norm.

• In Ben-Tal and Nemirovski (1999), they consider the intersection of multiple el-

lipsoidal norms ‖z‖` := maxi{‖z‖Qi−2} to model the uncertainty set of the linear

programming parameters.

• In Ben-Tal and Nemirovski (2000) they consider the intersection of ‖ · ‖2 and ‖ · ‖∞
as the generalized norm ‖z‖` := max{‖z‖2,Γ‖z‖∞}.
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M

· · · · · ·

Figure 4.1: An example of a supply system

• In Bertsimas and Sim (2003) and Bertsimas and Sim (2004) they consider the

intersection of ‖ · ‖1 and ‖ · ‖∞ as the generalized norm ‖z‖` := max{ 1
Γ‖z‖1, ‖z‖∞}

to bound the uncertain parameters.

By choosing the norm based uncertainty set (4.6), we can quickly calculate the re-

silience measure of some simple supply systems. Let’s consider a simplified one period

inventory rationing system, which consists of a manufacturer and n customers depicted

in Figure 4.1. In this system, the manufacturer has to fulfill its customers as much as

possible with limited stock s. When the stock amount is not enough to satisfy all its

customers, a rationing solution is necessary. Specifically, if we denote di as the demand

amount of customer i and τi as the corresponding shortage cost. Without loss of gen-

erality, we assume that τ1 ≥ τ2, · · · ,≥ τn. Then, the linear programming model of the

optimal rationing policy minimizing total penalties is:

min τ ′e

s.t.
n∑
i=1

xi ≤ s

xi + ei ≥ di : i = 1, · · · , n

x ≥ 0

e ≥ 0.
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Let the total shortage cost in the above LP be the penalty function we considered.

Suppose that uncertainty in this inventory rationing system only affects the stock level

by s = b0 − b′1z̃. If we measure the system resilience %(G) by the resilience measure

defined by adjustable uncertain sets (4.6) with Ω = <n, the supply system resilience is

then given by:

%(G) = κ−1

b0 + ℘(τ0)− b′1c−
n∑
i=1

di

‖b1‖`∗

 ,

where κ−1(·) is the inverse function of κ(·), c is the central point of Υ(γ) in (4.6), τ0 is

the tolerance level of penalty,

‖h‖`∗ , max
z̃∈Ω(γ)

h′z : ∀h ∈ <n,

and

℘(τ0) =


τ0/τ1 if τ0 ≤ τ1d1

j−1∑
i=1

di + (τ0 −
j−1∑
i=1

τidi)/dj if
j−1∑
i=1

τidi < τ0 ≤
j∑
i=1

τidi : j = 2, · · · , n
n∑
i=1

di Otherwise.
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Chapter 5

Energy Supply System Resilience

under Supply Disruptions

The sharp increase in energy consumption has motivated the surge in energy supply secu-

rity and resilience against supply disruptions, which usually result from some unexpected

crises such as natural disasters, geopolitical crises and terrorist, etc. To my knowledge,

most proposed methods on energy system resilience remain at a fairly qualitative level

based on intuition and hindsight developed from past case studies or scenario based anal-

ysis. There is thus strong impetus to develop more quantitative and rigorous modeling

of energy supply resilience concepts suitable for effective decision support. In this chap-

ter we apply the previously proposed resilience measure based approach to investigate

energy supply system resilience under supply disruptions. In particular, Section 5.1 gives

the definition of resilience index by relating energy supply system resilience to adjustable

uncertainty sets based resilience measure of the uncertain penalty function. Section 5.2

discusses the computation of the proposed resilience index, and develop efficient algo-

rithms for evaluating resilience index defined by various types of adjustable uncertainty

sets. In Section 5.3, we investigate the design problem by optimizing the resilience index

with limited investment budget. In Section 5.4, we present numerical experiments on

natural gas supply system. Section 5.5 presents some concluding remarks.
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5.1 Modeling Energy Supply System Resilience

We consider an energy supply system of interest that can be modeled as a generalized

linear network with n nodes and m arcs. Let As ∈ <n1×m, Ad ∈ <n2×m be the arc-

incidence matrices describing the supply network structure, s ∈ <n1 be the supply levels

on n1 supply nodes, d ∈ <n2 be the set of demand levels on n2 demand nodes, and

x ∈ <m be the flow levels in the supply network. The following linear programming (LP)

model of the energy supply problem is of interest in this chapter:

min
x,e

τ ′e

s.t. Asx + w = s

Adx + e = d

Gx ≥ g

x, e,w ≥ 0,

(5.1)

where w and e are defined as supply surplus and unfulfilled demands respectively, and

τ ′e is the penalty cost associated with unfulfilled e. In addition, parameters G and g are

used to model other system constraints (e.g., flow balance at transfer nodes, flow capaci-

ties restrictions, gas pipeline pressure constraints) depending on the specific application.

Hence, given a set of supply s ∈ <n1 and demands d ∈ <n2 , model (5.1) is solved to

achieve a load-flow plan that minimizes total penalty cost on demand shortages. From

system resilience point of view, the solution in the above can also be seen as a mitigating

response to minimize the impact of supply disruptions in s ∈ <n1 . Model (5.1) can also

be extended by embedding multiple time periods or multiple commodities, etc., using

simple formulation techniques applied to classical network flow models. We refer the

readers to Ahuja et al. (1993) for a comprehensive description of these extensions. The

focus of our work in this chapter are problems that can be reasonably modeled in the

format in (5.1), since such models are the basis of many existing legacy decision-support

tools for supply planning problems.
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Remark 5.1. In this chapter we only consider energy supply systems in which the routing

operations can be formulated or approximately solved by LP models of the form (5.1).

This restriction originates from the difficulty of evaluating the subsequently proposed

resilience index. Indeed, the extension of the framework of resilience measure from this

LP model to more general and complicated optimization models (e.g., nonlinear or even

nonconvex problems) is not clear and this might be one of the future research directions.

For simplicity of representation, we re-write the network flow model (5.1) as

min
x,y

τ ′y

s.t. Ax + y = b

Gx ≥ g

x,y ≥ 0

(5.2)

with y = (w; e),b = (s; d) (here τ = (0, τ ), we repeat this notation for notational

convenience ).

Energy supply disruptions can arise from events such as extreme weather conditions,

over extraction, failure of critical infrastructure, or political situations, etc., which are

often difficult to predict in advance. In reality, the precise probability specifications of

their occurrences are also often not available (or not even appropriate). Here we model

the uncertain supply disruption levels using a set of primitive uncertain variables z̃,

which are ambiguous random variables defined on measure space (Ω,F ,P) as described

in Chapter 3. Since energy supply disruptions rarely happen, it is nearly impossible for

us to obtain any distributional information on it and thus we assume that P is totally

unknown. In addition, we assume that supply disruptions can only affect supply-demand

parameters b (denoted as b(z̃)) in model (5.2). Without loss of generality, we further

make the following assumption:

Assumption 5.1. For all z̃ ∈ Ω, the corresponding network flow model (5.2) is feasible and

bounded.
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The supply losses at various supply nodes may also be correlated. To address this,

define a load matrix B such that we can express the uncertain supply-demand vector

as b(z̃) = b − Bz̃, where b is the supply-demand vector under nominal condition (no

disruption occurs). Without loss of generality, we normalize the support set Ω as [0, 1]n,

where n is the dimension of z̃. Because supply disruptions are undesirable events that

tend to reduce the supply levels, we further assume that the elements in the first n1 rows

of B are nonnegative. The demand vector d corresponds to the threshold of minimum

required demand quantity, which is assumed to be deterministic throughout this chapter.

Therefore, the elements in row n1 to row n1+n2 are all zero. We denote the energy supply

system of interest as G, distinguished by its system model parameters (A,G,B,b,g). The

demand loss penalty function φG(z̃) under supply scenario z̃ is then given as

φG(z̃) = min
x,y

τ ′y

s.t. Ax + y = b−Bz̃

Gx ≥ g

x,y ≥ 0.

(5.3)

By Assumption 5.1, (5.3) is bounded and feasible for all z̃ ∈ Ω. Then strong duality

holds indicating that we can compute φ(z̃) exactly by the following dual problem:

φ(z̃) = max
π,µ

b
′
π − π′Bz̃ + g′µ

s.t. A′π + G′µ ≤ 0

π ≤ τ

µ ≥ 0.

(5.4)

Observe that the optimality of (5.4) can be reached at one extreme point of its the

feasible region. Let us define Y as the feasible region of (5.4) and the corresponding set

of extreme points as Ȳ = {(πi,µi)}i=1,··· ,I . Then we can deduce that

φ(z̃) = max
i=1,··· ,I

{
b
′
πi + g′µi − (B′πi)

′z̃
}
,
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and hence, φ(z̃) is a piece-wise linear convex function in z̃. In other words, we can

express it as φ(z̃) = maxi∈I {vi0 + v′iz̃}, by denoting vi0 = b
′
πi + g′µi,vi = −B′πi, I =

{1, · · · , I}. Note that the first n1 elements of τ equal to zero. Hence we have vi =

−B′πi ≥ −B′τ = 0 implying that φ(z̃) is exactly an element of the specific penalty

position space V defined in (3.1). Therefore, we can measure the resilience of energy

supply system %(G) by a resilience measure ρ(·) defined on penalty position space V in

(3.1). Specifically, if we define ρ(·) as (4.3) with adjustable uncertainty sets {Ω(γ)}γ∈[0,ρ̄],

we give the following definition of resilience index.

Definition 5.1. Suppose that we have a family of convex and closed adjustable un-

certainty sets {Ω(γ) ⊆ Ω}γ∈[0,ρ̄] : ρ̄ ∈ (0,+∞), which is nondecreasing in γ. Then the

following mapping % : G 7−→ [0, ρ̄], defines a resilience index of energy supply system G:

%(G) =


0 if min

z̃
φG(z̃) > τ0

sup{γ : ψ(γ) ≤ τ0} otherwise,
(5.5)

where

ψ(γ) = sup
z̃∈Ω(γ)

φG(z̃).

5.2 Evaluating Resilience Index

In the following subsections we consider the computation of %(G) defined by different

families of adjustable uncertainty sets {Ω(γ)}γ∈[0,ρ̄]. Specifically, Subsection 5.2.1 consid-

ers general norm based uncertainty sets (4.6). In Subsection 5.2.2 we investigate two

specific families of adjustable uncertainty sets: the box uncertainty set and the cardinality

uncertainty set.

5.2.1 General Method by Extreme Points Enumeration

Note that %(G) = sup{γ : ψ(γ) ≤ 0} and ψ(γ) is non-decreasing in γ, we can evaluate

the resilience index %(G) using a bisection procedure on γ within ε accuracy, provided
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that an effective routine of asserting whether ψ(γ) ≤ 0 or not is available. Thus, the

evaluation of ψ(γ), which corresponds to the maximum (worst-case) penalty function

value realization over all supply realizations z̃ ∈ Ω(γ), is of key importance. It can be

observed from the dual representation of φ(z̃) in (5.4) that

ψ(γ) = −τ0 + max
z̃∈Ω(γ)

max
π,µ

b
′
π − π′Bz̃ + g′µ

s.t. A′π + G′µ ≤ 0

π ≤ τ

µ ≥ 0.

(5.6)

When 0 ∈ int{Υ(γ)}, the dual norm ‖ · ‖`∗ defined as

‖h‖`∗ , max
z̃∈Ω(γ)

h′z : ∀h ∈ <n

is a norm and the worst case penalty function ψ(γ) can be expressed as:

ψ(γ) = max
{

b
′
π + g′µ+ ‖ −B′π‖`∗ : (π,µ) ∈ Y

}
.

It is well-known that the general norm maximization over a bounded polyhedron is

NP-Hard (see Bodlaender et al., 1990; Mangasarian and Shiau, 1986). Thus, we believe

that the general problem of computing ψ(γ) is also hard because a norm type objective

function is involved. Note that the dual problem (5.4) is bounded and feasible for all

z̃ ∈ Ω (by Assumption 5.1), which indicates that, for every z̃ ∈ Ω, there exists an extreme

point reaching optimality of (5.4). Hence, in the case that all the extreme points are

explicitly known to us (Assumption 5.2 below), the problem can be slightly simplified.

Assumption 5.2. The extreme points set Y = {(π1,µ1), · · · , (πI ,µI)} is explicitly known.

Remark 5.2. Although the problem of generating all extreme points of a polyhedron is

also NP-Hard (see Dyer, 1983; Khachiyan et al., 2008), many practical algorithms can

efficiently solve it. Among those are pivot-based algorithm in Avis and Fukuda (1992),
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improved reverse search algorithm in Avis (2000), primal-dual methods in Bremner et al.

(1998) and others. Therefore, the abovementioned assumption is reasonable if we can

leverage on the existing techniques to enumerate all the extreme points.

The next result provides a conic optimization reformulation of the sub-problem

{ψ(γ) ≤ 0} as follows:

Theorem 5.1. Under Assumption 5.2, the sub-problem of asserting {ψ(γ) ≤ 0} or not is

equivalent to the following feasibility problem:



∃pi,qi ∈ <n, ti ∈ < such that

b
′
πi + g′µi + c′pi + 1′qi + κ(γ)ti ≤ τ0

pi + qi + B′πi ≥ 0

(−pi, ti) ∈ Π∗,qi ≥ 0

: i = 1, · · · , I


, (5.7)

where Π∗ is the dual cone of Π defined in (4.7).

Proof. Since cone Π is a regular cone which is closed, convex, pointed and has a non-

empty interior, we can make use of strong conic duality.

Observe that for every h ∈ <n, we have

max
z∈Υ(γ)

h′z

= max {h′z : (z− c, κ(γ)) ∈ Π}

= max {h′z : (z, 0)− (c,−κ(γ)) ∈ Π}

=︸︷︷︸
(a)

min{〈(−c, κ(γ)), (υ, t)〉 : υ = −h, (υ, t) ∈ Π∗}

= min{c′h + κ(γ)t : (−h, t) ∈ Π∗},

where the equality (a) is due to the strong conic duality of regular cones Π and Π∗. It

follows that

max
z∈Ω(γ)

h′z
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= max
{
h′z : z = z1 = z2, z1 ∈ Υ(γ), z2 ∈ Ω

}
= max

z,z1,z2

{
min
p,q

{
h′z + p′(z1 − z) + q′(z2 − z)

}
: z1 ∈ Υ(γ), z2 ∈ Ω

}
=︸︷︷︸
(b)

min
p,q

{
max
z,z1,z2

{
(h− p− q)′z + p′z1 + q′z2 : z1 ∈ Υ(γ), z2 ∈ Ω

}}

= min
p+q=h

{
max
z1,z2

{
p′z1 + q′z2 : z1 ∈ Υ(γ), z2 ∈ Ω

}}
= min

p+q=h

{
max
z1

{
p′z1 + 1′q+ : z1 ∈ Υ(γ)

}}
= min

p+q=h

{
min
t

{
c′p + κ(γ)t+ 1′q+ : (−p, t) ∈ Π∗

}}
= min

p,q,t

{
c′p + κ(γ)t+ 1′q : (−p, t) ∈ Π∗,p + q ≥ h,q ≥ 0

}
,

where the interchange of “max” and “min” in (b) is due to the Sion’s minimax theorem

(Sion, 1957). Specifically, we observe that the continuous objective (h−p−q)′z+p′z1 +

q′z2 is quasiconvex (actually bi-linear) in p,q and quasiconcave (actually bi-linear) in

z, z1, z2. In addition, the set Υ(γ) and Ω are convex and compact and thus we can deduce

(b) according to Sion’s minimax theorem. Recall that the counterpart {ψ(γ) ≤ τ0} is

equivalent to

b
′
πi + g′µi + max

z∈Ω(γ)
h′z̃ ≤ τ0 : i = 1, · · · , I.

So, we can easily show the equivalence by augmenting πi,pi,qi for i = 1, · · · , I.

Remark 5.3. When the actual norm ‖·‖` is constructed by transformations introduced in

Section 4.2 (invertible linear mapping or intersection) from rational polynomial norms

‖ · ‖p : p ∈ R+ ∪ +∞, we can reformulate the conic feasible constraint (−pi, ti) ∈ Π∗

by several second order cone constraints. Therefore, (5.7) can be reformulated into a

second order cone program which can be solved efficiently by interior point methods. For

the modeling details, we refer the readers to Alizadeh and Goldfarb (2003) on second

order cone formulation of general rational norms ‖ · ‖p and to Ben-Tal and Nemirovski

(1999) on second order cone reformulation of new norms defined by above mentioned

transformations (invertible linear mapping and intersection).
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5.2.2 Box Uncertainty Set and Cardinality Uncertainty Set

When the number of extreme points is extremely large, the conic formulation (5.7) be-

comes computationally hard due to huge number of constraints. To overcome this, we

sacrifice some level of modeling generality by considering two specific types of adjustable

uncertainty sets: the box uncertainty set and the cardinality uncertainty set. The sim-

plicity of these two types of uncertainty sets leads us practically efficient methods of

computing the proposed supply resilience index.

With a subjective guess that P(z̃i ≤ zi(γ)) = γ : γ ∈ [0, 1], we define a family

of nondecreasing mappings zi(γ) : [0, 1] 7−→ [0, 1] such that zi(0) = 0, zi(1) = 1 for

i = 1, · · · , n. Based on this, we define the box uncertainty set as:

Ω(γ) = {z ∈ <n |0 ≤ zi ≤ zi(γ) : i = 1, · · · , n} . (5.8)

Notice that, for the box uncertainty set (5.8), the worst-case demand loss penalty occurs

when z̃i reaches the upper bound, i.e., z̃ = z(γ). The evaluation of ψ(γ) with Ω(γ)

defined as (5.8) reduces to the following single linear programming problem:

ψ(γ) = min
x,y

τ ′y − τ0

s.t. Ax + y = b−Bz(γ)

Gx ≥ g

x,y ≥ 0.

We now turn to the following cardinality uncertainty set, which is an adaption of the

“budget of uncertainty” model in Bertsimas and Sim (2003, 2004):

Ω(γ) =

{
z ∈ <n

∣∣∣∣∣
n∑
i=1

zi ≤ γ, zi ∈ [0, 1] : i = 1, · · · , n
}
. (5.9)

Here γ takes value from [0, n]. When γ = 0, we are actually considering the nominal

supply case. The γ = n case corresponds to the worst supply case. Indeed, if n is total
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the number of supply nodes, the resilience index has the intuitive interpretation as the

maximum number of supply nodes that can be completely destroyed before compromis-

ing the tolerance target τ0. In Proposition 5.1, we will illustrate how the computation

of ψ(γ) defined in (5.6) can be reformulated into mixed-integer programs (MIP), for

integer valued γ and non-integer valued γ.

Proposition 5.1. When the adjustable uncertainty set Ω(γ) is given by (5.9), we can

reformulate ψ(γ) defined in (5.6) into mixed-integer programs as follows:

1. When γ is an integer, we can compute ψ(γ) by

ψ(γ) = −τ0 + max
π,µ,h,z,$

1′$ + b
′
π + g′µ

A′π + G′µ ≤ 0

h + B′π = 0

1′z = γ

$ ≤ h

$ ≤Mz

π ≤ τ

µ ≥ 0

z ∈ {0, 1}n,

(5.10)

where M is a sufficiently large constant. Moreover, the optimal solution of (5.10) gives the

optimal solution of (5.6) as (π,µ, z).

2. When γ is not integer, then we can compute ψ(γ) by

ψ(γ) = −τ0 + max
π,µ,h,z,z†,$,$†

1′($ +$†) + b
′
π + g′µ

A′π + G′µ ≤ 0

h + B′π = 0

1′z = bγc

1′z† = 1
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$ ≤ h (5.11)

$ ≤Mz

$† ≤ (γ − bγc)h

$† ≤Mz†

z + z† ≤ 1

π ≤ τ

µ ≥ 0

z, z† ∈ {0, 1}n,

where M is a sufficiently large constant. Moreover, the optimal solution of (5.11) gives the

optimal solution of (5.6) as (π,µ, z + (γ − bγc)z†).

Proof. We present the proof of (b) here only because the integer case is analogous and

simpler. Because the dual problem (5.4) is always feasible and bounded, the optimal

value of (5.6) remains the same by restricting z̃ to be one extreme point of Ω(γ). For

every extreme point z̃ and a feasible solution (π,µ) ∈ Y, we next show that we can

construct a feasible solution of (5.11) such that their corresponding objective value

equals. In particular, we can define (z, z†,$,$†,h) as:

z = bz̃c

z† =
1

γ − bγc(z̃− z)

h = −B′π

$ = diag(z)h

$† = diag(z̃− z)h.

Conversely, we can also construct a feasible solution of (5.6) based on a given feasible

solution of (5.11). Therefore, these two problems are equivalent.
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Although commercial software such as CPLEX and MOSEK enable us to quickly solve

single mixed-integer program in moderate size, solving the above MIPs repeatedly in a

binary search scheme can still be extremely time-consuming when high accuracy of %(G)

is required. Note that formulation (5.10) is relatively simpler than (5.11) because less

integer variables are involved, we consider the following modified binary search scheme

of computing the integer part of %(G) using (5.10) only.

Algorithm 1 Binary search algorithm
Input: A routine that solves Model (5.6) optimally for any integer γ ∈ [1, n].
Output: An integer k = b%(G)c.

1. Set γL := 0, γU := n, l = 0

2. Check the value γU − γL.

If γU − γL = 1, output b%(G)c := γL, terminate the algorithm.

Else Go to Step 3.

3. Set γ = bγL+γU
2 c and compute ψ(γ) by (5.10).

If ψ(γ) = 0, update γL := γ.

Else, update γU = γ.

Update l := l + 1 and go back to Step 2.

Our next result reports the computational performance of Algorithm 1.

Proposition 5.2. Suppose that the worst case demand loss penalty ψ(γ) given in (5.6)

is defined by cardinality uncertainty set (5.9) and %(G) ∈ [0, n), then Algorithm 1 can

compute the exact value of b%(G)c by solving at most dlog2(n)e sub-problems of the form

(5.6).

Proof. Obviously γL and γU are always integers when performing the algorithm. In

addition, it is not difficult to verify that %(G) ∈ [γL, γU ) and γU − γL ≤ 2dlog2(n)e−l at

the l th iteration by induction. As a consequence, the algorithm terminates after at most

dlog2(n)e iterations and γL gives the value of b%(G)c upon the termination criterion.
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Algorithm 1 gives the integer part of %(G). To compute the exact value, we first study

some geometry properties of function ψ(·).

Proposition 5.3. Define Ω(γ) as (5.9), function ψ(·) given by (5.6) is nondecreasing and

convex in the interval [k, k + 1] for any integer k ∈ [0, n).

Proof. The nondecreasing property is clear because {Ω(γ)}γ∈[0,n] is nondecreasing.

To prove the convexity, it suffices to show that for any γ = θγ1 + (1− θ)γ2 : γ1, γ2 ∈

[k, k + 1], θ ∈ (0, 1), we have

ψ(γ) ≤ θψ(γ1) + (1− θ)ψ(γ2). (5.12)

As discussed, we can express ψ(γ) as the form maxi∈I{vi0 + v′iz̃}. Suppose that z is

the extreme point that ψ(γ) = φ(z). Let the index i∗ = arg max
i

(vi0 + v′iz). (If multiple

indices attain the maximum, we arbitrarily select one of them). Let us define z1, z2 as:

z1 = bzc+
γ1 − bγc
γ − bγc (z− bzc)

z2 = bzc+
γ2 − bγc
γ − bγc (z− bzc).

It is not hard to see that z1 ∈ Ω(γ1), z2 ∈ Ω(γ2) and z = θz1 + (1 − θ)z2. Thus, we can

conclude that

ψ(γ) = vi∗0 + v′i∗z

= θ(vi∗0 + v′i∗z1) + (1− θ)(vi∗0 + v′i∗z2)

≤ θφ(z1) + (1− θ)φ(z2)

≤ θψ(γ1) + (1− θ)ψ(γ2),

which verifies the convexity of ψ(·) in [k, k + 1].

It is well-known that for any nondecreasing and differentiable function ψ(·), we can

apply the Newton-Raphson method to find the γ† such that ψ(γ†) = 0 iteratively when

its gradient is given (here ψ(·) is a one dimension function, the gradient is also the
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first order derivative). Furthermore, this method converges when ψ(·) is convex. The

convexity of ψ(·) encourages us to apply gradient-based method to calculate %(G). Since

ψ(·) is continuous but not necessarily differentiable, we modify the Newton-Raphson

method by using sub-gradients. The adapted “gradient-based” search algorithm is given

as follows:

Algorithm 2 Gradient based search algorithm
Input: An integer k such that %(G) ∈ [k, k + 1), and a routine that solves model (5.6)
with cardinality uncertainty set (5.9) for every γ ∈ [k, k + 1].
Output: An real number γ† = %(G).

1. Set l := 0, γl = k + 1.

2. Solve ψ(γl) in (5.6) by the routine, and extract the corresponding optimal solution
(π,µ).

3. If ψ(γl) = 0, output γ† := γl, terminate the algorithm.

4. Otherwise, compute the nonnegative vector h = −B′π, and sort the elements of

h in a noninceasing order as hi1 ≥ hi2 · · ·hik ≥ · · · ≥ hn2 . Let γ := γl −
ψ(γl)

hik+1

.

Update l := l + 1, γl = γ. Go to Step 2.

Actually, hik+1
is always positive whenever we find that ψ(γk) > 0 (this claim is a

concomitant result of Theorem 5.2, which follows directly from (−B′π)k+1 > 0). Figure

5.1 gives a graphical illustration of the iterative procedure of Algorithm 2. In each

iteration, we compute the value of ψ(γl) using and its corresponding sub-gradient of ψ(·)

in [k, k+ 1] by hik+1
(see Lemma 5.1 below). With this sub-gradient, we then update the

iteration by the linear approximation of ψ(γ) (The dash-dotted line). Fortunately, our

proposed “gradient-based” search algorithm can give the exact value of %(G) within a

finite number of iterations, which is suggested in Theorem 5.2.

Lemma 5.1. For every iteration (the lth iteration) of performing Algorithm 2 such that

ψ(γl) > 0, the corresponding optimal solution (π,µ) gives a sub-gradient of ψ(·) in [k, k+1]
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γ

y

k k + 1ρ(G)

ψ(γl)

y = ψ(γ)

γlγl+1

ψ(γl+1)

y = ψ(γl) + hik+1
(γ − γl)

Figure 5.1: A graphical illustration of the “gradient-based” search algorithm. The solid
line is ψ(γ), the dashed dotted line gives a lower linear approximation based on the
computed sub-gradient hik+1

.

by

ψ(γ) ≥ ψ(γl) + hik+1
(γ − γl) : ∀γ ∈ [k, k + 1],

where hik+1
is the same as what we defined in Algorithm 2.

Proof. According to the definition of ψ(γ) : γ ∈ [k, k + 1], we have

ψ(γ) ≥ max
z̃∈Ω(γ)

b
′
π + g′µ+ (−B′π)′z̃

= max
z̃∈Ω(γ)

b
′
π + g′µ+ h′z̃

= b
′
π + g′µ+

k∑
t=1

hit + (γ − k)hik+1

= b
′
π + g′µ+

k∑
t=1

hit + (γl − k)hik+1
+ (γ − γl)hik+1

= ψ(γl) + hik+1
(γ − γl),

where the first inequality is because (π,µ) is a feasible solution of (5.6). This finishes

the proof of the lemma.

We now present an elementary result on the existence of sharper gradient upon

computed optimal solution (π,µ), which is a fundamental auxiliary lemma for a rigorous

61



proof of the convergence of the gradient based search algorithm. For ease of exposition,

we denote by (h)γ as the dγeth largest entry of h for every vector h ∈ <n (If there exist

multiple entries that attain the dγeth largest, we break ties by arbitrarily select one of

them), and define two auxiliary functions

β(h, γ) = max
z̃∈Ω(γ)

h′z̃

η(π,µ, γ) = b
′
π + g′µ+ β(−B′π, γ),

where Ω(γ) is the cardinality uncertainty set defined in (5.9).

It follows directly from the definition that

β(h, γ) =

dγe−1∑
i=1

(h)i + (γ − bγc)(h)γ : h ∈ <n, γ ∈ < (5.13)

and

β(αh, γ) = αβ(h, γ) : α ≥ 0,h ∈ <n, γ ∈ [0, n]

β(h1 + h2, γ) ≤ β(h1, γ) + β(h2, γ) : h1,h2 ∈ <n, γ ∈ [0, n].
(5.14)

Lemma 5.2. For any γ ∈ (k, k+ 1), where k is an integer in [0, n− 1]. Suppose that (π,µ)

is an optimal solution of (5.6) such that ψ(γ) = η(π,µ, γ), then there exists (π†,µ†) ∈ Ȳ

such that
(−B′π†)k+1 ≥ (−B′π)k+1

η(π†,µ†, γ) = η(π,µ, γ).

Proof. We begin with an elementary result on the geometry of polyhedron that every

element in a polyhedron can be expressed as a convex combination of its extreme points

plus a nonnegative combination of its extreme rays. Based on this, we can express the

optimal solution (π,µ) as

(π,µ) =
∑

j∈J1∪J2

λj(πj ,µj) : λj > 0,∀j ∈ J1 ∪ J2;
∑
j∈J1

λj = 1,
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where J1 and J2 are index sets such that (πj ,µj) corresponds to extreme point for ∀j ∈ J1

and extreme ray for ∀j ∈ J2. By applying (5.14), we have the following inequality:

β

∑
j∈J

θjhj , γ

 ≤∑
j∈J

θjβ (hj , γ) . (5.15)

for every θj ≥ 0 : j ∈ J . Recall that, for every fixed z̃ ∈ Ω, LP (5.6) is bounded under

Assumption 5.1. Thus, the objective gain along any extreme ray is nonpositive. It follows

that for every j ∈ J2,

η(πj ,µj , n) = b
′
πj + g′µj − (B′π)′1 ≤ 0.

As assumed, (π,µ) gives the optimal value ψ(γ). Hence,

ψ(γ)

= η(π,µ, γ)

= b
′
( ∑
j∈J1∪J2

λjπj

)
+ g′

( ∑
j∈J1∪J2

λjµj

)
+ β

(
− ∑
j∈J1∪J2

λjB
′πj , γ

)
≤ ∑

j∈J1∪J2

λj

(
b
′
πj + g′µj + β(−B′πj , γ)

)
≤ ∑

j∈J1

λjη(πj ,µj , γ) +
∑
j∈J2

λjη(πj ,µj , n)

≤ ∑
j∈J1

λjη(πj ,µj , γ)

≤ ∑
j∈J1

λjψ(γ)

= ψ(γ),

where the first inequality is because (5.15), the second inequality follows from B′πj ≤

0 : ∀j ∈ J2 and the third inequality follows from η(πj ,µj , n) ≤ 0 : ∀j ∈ J2. Because the

left side coincides with the right side, all the involved inequalities should be tight and

we further have

η(πj ,µj , γ) = η(π,µ, γ) : ∀j ∈ J1 (5.16)
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β(−B′π, γ) =
∑

j∈J1∪J2

λjβ(−B′πj , γ) (5.17)

β(−B′πj , γ) = β(−B′πj , n) : ∀j ∈ J2. (5.18)

For t = 1, · · · , k + 1, let it be the index that −B′itπ = (−B′π)t, where Bit denotes the

itth column of the matrix B (We break ties by arbitrarily select one of them if multiple

columns attain the same value). According to (5.13) and (5.17), we have

β(−B′π, γ)

=
k∑
t=1

(−B′π)t + (γ − k)(−B′π)k+1

=
k∑
t=1

(−B′itπ) + (γ − k)(−B′ik+1
π)

=
∑

j∈J1∪J2

λj

[
k∑
t=1

(−B′itπj) + (γ − k)(−B′ik+1
πj)

]
≤ ∑

j∈J1∪J2

λjβ(−B′πj , γ)

= β(−B′π, γ).

Therefore, the involved inequality should be tight and we further can deduce that

β(−B′πj , γ) =

k∑
t=1

(−B′itπj) + (γ − k)(−B′ik+1
πj) : ∀j ∈ J1 ∪ J2.

Note that k < γ < k + 1 indicating that the right hand side would be smaller than

β(−B′πj , γ) if (−B′ik+1
πj) > min

t=1,··· ,k
{(−B′itπj)}. Thus, certainly we have

(−B′πj)k+1 ≥ (−B′ik+1
πj) : ∀j ∈ J1 ∪ J2.

Furthermore, note from (5.18) that β(−B′πj , γ) = β(−B′πj , n) for every j ∈ J2, we

have

−B′ik+1
πj = 0 : ∀j ∈ J2.
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Let j∗ ∈ J1 be the index such that −B′ik+1
πj∗ = max

j∈J1

{−B′ik+1
πj}. Therefore, we have

(−B′π)k+1

= −B′ik+1
π

=
∑

j∈J1∪J2

λj(−B′ik+1
πj)

=
∑
j∈J1

λj(−B′ik+1
πj)

≤
∑
j∈J1

λj(−B′ik+1
πj∗)

= (−B′ik+1
πj∗)

≤ (−B′πj∗)k+1.

Along with (5.16), we can deduce that (π†,µ†) := (πj∗ ,µj∗) gives the exact extreme

point we attempt to find.

Theorem 5.2. Suppose that the resilience index %(·) is defined by cardinality uncertainty

set (5.9) and %(G) ∈ [k, k + 1), where k is an integer given as the input of Algorithm 2.

Then Algorithm 2 would terminate in at most I steps with its output γ† = %(G), where I is

the number of extreme points of Y.

Proof. Let {γl}l=0,1,··· be the sequence of γ generated by the “gradient-based” search

algorithm (If the algorithm stops at the l∗th iteration, we let γl = γl∗ for l ≥ l∗).

It is not difficult to see that the function η(·) possesses the following “first-order” type

equation

η(π,µ, γ − δ) = η(π,µ, γ)− δ · (−B′π)γ

for every 0 ≤ δ ≤ γ−bγc. Hence, ψ(·) is left continuous which indicates that ψ(%(G)) = 0.

Observe that (5.4) is always bounded and feasible for all z̃ ∈ Ω, the optimality can

be reached at one extreme point of the feasible region. Thus, we can replace the feasible
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region of (5.4) Y with the convex hull of the extreme points set Ȳ, denoted as CH(Ȳ),

without affecting optimality. Thus, we have

ψ(γ) = max
(π,µ)∈CH(Ȳ)

η(π,µ, γ)− τ0.

We then complete the proof by showing the following two claims:

Claim (a): For all l ∈ Z we have γl ≥ %(G).

Claim (b): There exists l∗ <∞, l∗ ∈ Z such that ψ(γl∗) = 0.

We first prove (a) by induction.

Suppose that it holds for l and γl > %(G), or equivalently, ψ(γl) > 0 (Otherwise we

have γl+1 = γl ≥ %(G) completing the induction step). For simplicity of representation

we denote by (π,µ) as the computed optimal solution of (5.6) for γ = γl, i.e., ψ(γl) =

η(π,µ, γl)− τ0.

Observe that if (−B′π)k+1 ≤ 0, we have

ψ(k)

≥ η(π,µ, k)− τ0

= η(π,µ, γl)− (γl − k)(−B′π)k+1 − τ0

≥ η(π,µ, γl)− τ0

= ψ(γl) > 0

contradicting the fact that k ≤ %(G).

Hence, we have (−B′π)k+1 > 0. In addition, we observe that, for any 0 < ε ≤

γl − γl+1,

ψ(γl+1 + ε)

= max
(π,µ)∈CH(Ȳ)

η(π,µ, γl+1 + ε)− τ0

≥ η(π,µ, γl+1 + ε)− τ0
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= η(π,µ, γl)− (γl − γl+1 − ε) · (−B′π)k+1 − τ0

= ψ(γl)− (γl − γl+1 − ε) · (−B′π)k+1

= ψ(γl)−
(

ψ(γl)

(−B′π)k+1

− ε
)
· (−B′π)k+1

= ε ·
(
−B′π

)
k+1

> 0.

The arbitrariness of ε indicates that γl+1 ≥ %(G), which completes the induction step.

We now show (b), we assume by the way of contradiction that the claim does not

hold, or equivalently, ψ(γl) > 0 : ∀l ∈ Z+. To give a contradiction, it suffices to show the

following claim because Ȳ is actually a finite set.

Claim (c): There exists a sequence of sets {Yl ⊆ Ȳ}l=1,···, such that

|Yl| = l − 1

η(π,µ, γ)− τ0 ≤ 0 : ∀(π,µ) ∈ Yl, γ ≤ γl.

Obviously (c) holds for l = 1 by letting Y1 = ∅. We next prove it by induction. Assume

that (c) holds for l. For notational simplicity, we denote by (π,µ) as the corresponding

computed optimal solution of the case γ = γl. By Lemma 5.2, we can find (π†,µ†) ∈ Ȳ

such that

η(π†,µ†, γl) = η(π,µ, γl) > τ0;

(−B′π†)k+1 ≥ (−B′π)k+1.

By the induced assumption that (c) holds for l, we can deduce that (π†,µ†) /∈ Yl.

Defining Yl+1 = Yl ∪ {(π†,µ†)}, it is obvious that Yl+1 ⊆ Ȳ and |Yl+1| = l + 1. We also

observe that,

η(π†,µ†, γl+1)
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= η(π†,µ†, γl)− (γ − γl+1) · (−B′π†)k+1

= η(π,µ, γl)− (γ − γl+1) · (−B′π†)k+1

≤ η(π,µ, γl)− (γ − γl+1) · (−B′π)k+1

= ψ(γl+1) + τ0 − (γ − γl+1) · (−B′π)k+1

= τ0,

which means that Yl+1 is exactly the set we are trying to find. Hence, claim (c) holds for

l + 1 completing the induction step.

Remark 5.4. Note that I can be exponentially large, which means that Theorem 5.2

fails to guarantee the computational efficiency of Algorithm 2. However, in our tested ex-

periments, only one or two additional iterations are necessary for algorithm termination.

Thus, we can compute %(G) by solving roughly dlog2(n)e MIPs. In practice, the value of

n is not very large, this further suggests that our method is practically acceptable for

moderate sized industrial problems.

5.3 Designing Resilient Energy Supply System

A practical problem of interest is improving the resilience of a given energy supply system.

Let us denote by u as the investment actions, and G(u) as the corresponding energy

supply system under u. We now consider the problem of maximizing the supply resilience

index of G(u) over the investment decision space U , the mathematical formulation of

which is given as:

max
u

ρ(G(u))

s.t. Q(u) ≤ B

u ∈ U ,

(5.19)

68



where Q(u) is the total cost associated with investment decision u and B is the available

investment budget at the planning stage.

Remark 5.5. In (5.19), we maximize the energy supply system resilience within a given

investment budget. This modeling approach is different from those in the energy lit-

erature dealing with design and procurement problems, where typically, a sum of the

investment cost and the expected operational cost is minimized. Such approaches how-

ever have several drawbacks in our context, in contrast to our proposed model. First,

minimizing a total cost objective may make trade-offs that are difficult to justify when

dealing with losses associated with severe disruptions, since a consensus on the mone-

tary values attached with social costs needs to be established, which can be challenging.

Furthermore, minimizing the expected total costs requires a prior specification of the

uncertainties, either the probability distributions or the supports of the uncertainty sets.

This can be difficult to solicit from stakeholders in practice. Also, the investment bud-

get is a one-time cost incurred during the investment stage, and the operational cost

is realized over a long time study period, so their accounting is of rather different in

nature. Finally, as we argued, the supply disruptions are rare events that can not be

predicted precisely, thus the operating cost under supply disruptions is uncertain and can

not be explicitly evaluated. Consequently, a small deviation on the estimated probability

of supply disruptions might drive the computed investment decision far from optimal.

Applying a binary search on γ, problem (5.19) can be decomposed into a sequence

of the following sub-problems:

Find u ∈ U :
ρ(G(u)) ≥ γ

Q(u) ≤ B

 . (5.20)

Generally, problem (5.20) is still intractable due to the inherent dependency between

supply network parameters (A,G,B,b,g) and the investment decision u. To simplify it,

we make two implicit assumptions.
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Assumption 5.3. There exist investment independent matrix F and vector f such that the

total demand loss penalty of energy supply system G(u) under disruption realization z̃ can

be computed by

φG(u)(z̃) = min
x,y

τ ′y

s.t. Ax + y = b−Bz̃

Gx ≥ g

Fx ≤ Uu + f

x,y ≥ 0.

Assumption 5.4. We can specify an investment independent worst case scenario set

Z(γ) = {zl}l=1,··· ,L, which is independent of the investment decision u ∈ U , such that

max
z̃∈Ω(γ)

φG(u)(z̃) = max
z̃∈Z(γ)

φG(u)(z̃).

Remark 5.6. In Section 5.4, we will illustrate how this auxiliary linear program model

in Assumption 5.3 can be constructed. The proposed modeling tricks can be extended

to general energy supply system problems, which indicates this assumption is not quite

practically limiting. Assumption 5.4 is motivated by the computational benefits of the

box uncertainty set and the cardinality uncertainty set. For the box uncertainty set, the

worst case scenario set reduces to the singleton {z(γ)}. For the cardinality uncertainty

set or a general polytope, the set of its extreme points gives the investment independent

worst case scenario set. For complicated uncertainty sets such as ellipsoid or intersection

of multiple ellipsoids that we can not specify an investment decision independent worst

case set of finite cardinality, we may approximate it by an inner polytope to give an

upper bound and a circumscribed polytope to give a lower bound of the corresponding

resilience index, respectively.

We next show that under these two assumptions, the sub-problem (5.20) can be

solved via a deterministic mixed-integer program.
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Proposition 5.4. Under Assumption 5.3 and Assumption 5.4 with specified (F, f) and

Z(γ) = {zl}l=1,··· ,L, (5.20) is equivalent to



Find u ∈ U :

τ ′yl ≤ τ0 : l = 1, · · · , L

Axl + yl = b−Bzl : l = 1, · · · , L

Gxl ≥ g : l = 1, · · · , L

Fxl ≤ Uu + f : l = 1, · · · , L

xl,yl ≥ 0 : l = 1, · · · , L

Q(u) ≤ B


Proof. Because ρ(G(u)) ≤ γ ⇐⇒ max

z̃∈Ω(γ)
φG(u)(z̃), the modeling equivalence follows

straightforwardly from Assumption 5.3 and 5.4.

5.4 Application and Computational Experiments

The design and operations of natural gas networks is a very important industrial prob-

lem that has been extensively studied from different perspectives (e.g., Babonneau et al.,

2012; De Wolf and Smeers, 1996, 2000; Martin et al., 2006). However, few of the stud-

ies in the literature consider the impact of gas supply disruptions. Indeed, gas supply

disruptions can cause severe economic and social losses so that the resilience of natural

gas network should be highlighted (see chap. 6 of Chaudry et al., 2011, for instances of

natural gas supply disruptions). In this section, we apply our proposed supply resilience

index to natural gas supply networks. The results illustrate how the resilience index can

reveal and improve the system performance under natural gas supply disruptions.

In the following computational studies, all related optimization models are imple-

mented in a MATLAB 2012 platform which calls the commercial software CPLEX 12.3 to

solve. In addition, all the programs run on a PC with Windows 7 operating system, 8 GB

RAM and Intel Dual Core i5-2500 CPU with 3.30GHz.

71



Figure 5.2: Illustration of the natural gas network

sp1

p1

j1

p2

sp2

j2

p3

sp3

c3c1 c2

dc1 dc2 dc3

5.4.1 Linear Programming Model of Natural Gas Transmission Network

We consider a natural gas supply network G = (N ,A) with node set N and arc set A.

Node is an abstract object referring to a collection of physical infrastructures in a city

or a specific region, arc denotes a pipeline linking a pair of nodes. Typically, there are

three types of nodes in a natural gas supply network: gas supply nodes, junction nodes

and gas demand nodes. Gas supply nodes are gas fields or import terminals in which the

natural gas is injected into the system. Before flowing to the final market, the natural gas

is transported to the junction nodes. In reality, the gas from different supply nodes has

different chemical compositions, the junction nodes also play a role of mixing natural

gas with different quality into a homogeneous one. For simplicity of modeling, we treat

the natural gas flows through the system as a homogeneous one. The gas demand nodes

denote the cities or regions where natural gas is consumed or traded. Figure 5.2 gives a

schematic view of a natural gas network.
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When modeling the natural gas operations, the fundamental flow balance condition

should hold. In particular, we write it as:

∑
a∈δ+(G,i)

x(a)−
∑

a∈δ−(G,i)

x(a)


≥ −si(z̃) : i ∈ P

= 0 : i ∈ J

≥ di − ei : i ∈ D

(5.21)

where ei is a nonnegative auxiliary variable denoting the demand loss at i ∈ D, δ+(G, i)

and δ−(G, i) denote the set of arcs into and out of node i ∈ N , respectively, P, J and D

denote the set of gas supply nodes, junction nodes and gas demand nodes, respectively.

Moreover, we denote by si(z̃) as the uncertain gas supply at supply node i ∈ P and

denote by di as the gas demand at demand node i ∈ D. To address supply disruptions,

we model the uncertain gas supply as:

si(z̃) = si − ŝiz̃i : i ∈ P,

where z̃i is a primitive random variable with support [0, 1].

Aside from the flow balance constraints, the upper and lower bound of pressure level

at each node should also be enforced.

ri ≤ ri ≤ ri : i ∈ N (5.22)

Assumption 5.5. In the natural gas supply network, we have r̄i < +∞ : ∀i ∈ N . In

addition, for any pair of nodes i ∈ N , j ∈ δ−(G, i), we have r̄i ≥ r̄j and ri ≥ rj . In

addition,
⋂
i∈N [ri, r̄i] 6= ∅.

Remark 5.7. Assumption 5.5 is necessary for us to specify the value of parameters r̄i

and ri for all i ∈ N , which is helpful for the simplification of the problem. For instance,

suppose there exist a supply node “A” and a junction node “B” which are linked by a

pipeline. The gas pressure at “A” actually should be lower than a certain upper bound r̄A
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due to the limitation of the compressor at field “A”. On the contrary, there is no specific

requirement for the pressure level at “B”, which means r̄B = +∞. For any feasible

flow solution with certain pressure value rA and rB, rB should not be greater than rA

(otherwise the gas would goes from “B” to “A”). Therefore, we would not clear out any

feasible flow solution if we set r̄B = R̄A instead of r̄B = +∞. In reality, the gas pressure

at all production fields has a finite upper bound r̄i < +∞ due to physical limitations, so

we can assume all the r̄i in the network is finite. The argument on the pressure lower

bound ri : i ∈ N is similar.

In addition, the Weymouth equation that expresses the physical relationship between

the gas flow amount along a pipeline and pressure levels at both sides of that pipeline

should also be included. Here we use the most commonly used form of Weymouth

equation as follows:

xij = Cij
√
r2
i − r2

j ,Wij(ri, rj) : (i, j) ∈ A,

where Cij is a constant depending on the physical condition of the pipeline such as tem-

perature, pipeline length and diameter, etc; ri and rj denote the pressure level at node

i and j, respectively. The Weymouth equation states that the natural gas would only go

from one node with higher pressure to the one with lower pressure, and the correspond-

ing flow amount is proportion to the square root of the pressure square difference. To

overcome the non-linearity caused by the Weymouth equation, we approximate it by its

first order Taylor expansion around several breakpoints (ri = RI, ro = RO).

Wij 'Wij(RI,RO) +
ðW
ðri

(ri −RI) +
ðW
ðrj

(rj −RO)

= Cij
√
RI2 −RO2 +

RI × Cij√
RI2 −RO2

(ri −RI)− RO × Cij√
RI2 −RO2

(rj −RO)

= Cij
√
RI2 −RO2 − Cij

RI2 −RO2

√
RI2 −RO2

+ Cij

(
RI√

RI2 −RO2
ri −

RO√
RI2 −RO2

rj

)
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= Cij

(
RI√

RI2 −RO2
ri −

RO√
RI2 −RO2

rj

)
.

Combining the above Taylor approximation at different pairs of (RI,RO), we can

approximate the Weymouth equation with several linear constraints. For convenience of

representation, we express them as

x(i,j) − gijlri + hijlrj ≤ 0 : (i, j) ∈ A, l ∈ L, (5.23)

where L is the set of breakpoints.

Remark 5.8. The coefficients in (5.23) are determined by the selected break points

(RIijl, ROijl), the selection of which would of course affect the approximation accuracy

of the Weymouth equation. The most straightforward way is letting the break points

uniformly divide the feasible pressure interval [ri, ri] and
[
rj , rj

]
by setting RIijl =

ri +
l − 1

|L| − 1
(ri − ri) , ROijl = rj +

l − 1

|L| − 1

(
rj − rj

)
l ∈ L.

In our tested experiments, we let the penalty function be the total demand loss and

its corresponding target level is set to be zero. In summary, the minimum demand loss

model for a given natural gas transmission network G is given as the following LP:

min
∑
i∈D

ei

s.t. (5.21), (5.22), (5.23)

x ≥ 0

e ≥ 0.

5.4.2 Resilient Natural Gas Network Design

When considering the design problem, we denote by A as the set of potentially installed

pipelines and by N as the set of potentially installed nodes. We define design vector

u ∈ {0, 1}|A|+|N |, where ui denotes the investment decision of building the corresponding

pipeline for i ∈ A and the corresponding node for i ∈ N . For modeling purpose, we
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denote an auxiliary network G as the one with investment decision u = 1. Thus, the

minimum possible total demand loss of for network G(u) under gas supply realization

s(z̃), denoted as Q(u, z̃), can be computed by the following a deterministic optimization

problem:

Q(u, z̃) , min
∑
i∈D

ei

s.t. (5.21), (5.22), (5.23)∑
a∈δ−(G,i)

xa ≤ siui : i ∈ P ∩N

∑
a∈δ+(G,i)

xa ≤ sui : i ∈ J ∩N

xa ≤ sua : a ∈ A ∩A

x ≥ 0

e ≥ 0,

(5.24)

where s =
∑

i∈P si. By abbreviating the three added constraints into vector form as

Fx ≤ Uu, formulation (5.24) gives exactly an investment decision independent linear

formulation as what we described in Assumption 5.3. If the selected resilience index is

built by adjustable uncertainty set (5.8) or (5.9), we therefore can resolve the design

problem with respect to their investment decision independent worst case sets.

5.4.3 Experiment Settings and Numerical Results

Resilience index & system performance

We now investigate the relevance of our proposed supply resilience index and the energy

supply system’s stochastic system performance under supply disruptions. For illustration,

we give a gas network with two supply nodes A and B, two demand nodes C and D.

The gas supply at node A is sA = 75 − 30z̃1, and supply at node B is sB = 60 − 20z̃2,

where z̃1, z̃2 are random variables fluctuate in [0, 1]. The gas demand at node C and D is

dC = dD = 50. Two network designs (a) and (b), given in Figure 5.3, are considered. In

design (a) all the supply nodes and demand nodes are linked by a junction node J1, while
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Figure 5.3: Example of a gas network consisting of two supply nodes and two demand
nodes

A

J1

B

C D

(a)

A

J2

B

C D

(b)

design (b) uses a different junction node J2. The corresponding experiment parameters

are presented in Table 5.1. The difference of these two designs in the mathematical

model is only reflected by the corresponding Weymouth constants. As we can see in the

table, the Weymouth constants from node A and B to J1 are higher than that from node

A and B to J2. Differently, the constants of the pipelines linking J1 to node C and node

D is lower than that of J2. The weymouth constant is affected by the pipeline diameter,

distance, and some other factors (like the external temperature). The differences in the

weymouth is usually caused by every aspect of the transmission network, such as the

junction node location, and the investment effort on every pipeline. A simple physical

interpretation of the differences of these two designs might be that the junction node

J1 is closer to the supply nodes A and B whereas node J2 is closer to the demand side.

Due to the limitation that we can not enumerate all the possible instances, we use this

case for illustration only (we also test some other parameter settings, the results are

consistent with this illustrative example).

Even though the size of the network is small, comparing their system performances

against supply disruptions is not a trivial task. In this experiment, 100 pairs of pressure

77



Table 5.1: Design parameters: “IP” denotes inlet pressure level, “OP” denotes outlet
pressure level and Ca denotes the corresponding Weymouth Constant.

Max IP Min IP Max OP Min OP Ca
A to J1 200 180 160 140 0.62
B to J1 180 160 160 140 0.52
J1 to C 160 140 120 100 0.41
J1 to D 160 140 120 100 0.41
A to J2 200 180 160 140 0.46
B to J2 180 160 160 140 0.54
J2 to C 160 140 120 100 0.45
J2 to D 160 140 120 100 0.45

break points at each arc are used for accurate approximation. Based on this, the computed

cardinality uncertainty set based resilience indexes of design (a) and design (b) are 0.73

and 0.97, respectively. Therefore, design (b) is preferred with consideration of resilience

related issues.

The stochastic system performance suggests this resilience index based comparison.

To evaluate the system’s stochastic performance, we draw the system performance pro-

file using Monte Carlo simulation via a sample of 10,000 supply scenarios z̃i. For all

tested experiments, if not specified, two sample distributions are tested to investigate

the stochastic system performance: uniform distribution U(0, 1) and normal distribution

N(0.5, 0.22) (the standard deviation 0.2 ensures that z̃ lies in [0, 1]). We list the mean,

standard deviation (StDev), success probability (Suc Prob), 95% VaR, 95% CVaR, 90%

VaR, 90% CVaR and 95% CVaR of the total demand loss in Table 5.2. Let TDL be the total

demand loss, then “Suc Prob” gives P(TDL ≤ 0),α-VaR gives inf{t : P(TDL > t) ≤ 1−α},

and α-CVaR gives inft

{
t+

E (TDL− t)+

1− α

}
for every α ∈ (0, 1). As we can see, the sys-

tem performance of design (b) dominates design (a) for all of these statistics, especially

for the success probability (more than 10% higher than (a)). The results are consistent

for other tested distributions and experiment parameters, the difference in stochastic

system performance is significant when the difference in resilience index is larger than

0.15.
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Table 5.2: Summary statistics for design (a) and design (b)

Normal data Uniform data
Design (a) Design (b) Design (a) Design (b)

Mean 0.4757 0.2776 1.3618 0.9377
StDev 1.3627 1.2018 2.5706 2.4591
Suc Prob 78.95% 91.31 % 65.43% 80.34%
90% VaR 1.7104 0.0000 4.8991 4.0911
95% VaR 3.2187 1.9941 7.1273 7.1233
90% CVaR 3.9108 2.7728 7.7167 7.6123
95% CVaR 5.4025 4.8304 9.7166 9.7114

Computational performance of “gradient-based” search method

We now study the practical performance of the “gradient-based” search algorithm. For

each individual experiment setting, we test the computational time of sub-problem (5.6)

and the number of additional iterations for algorithm termination, provided with b%(G)c.

Specifically, we consider a natural gas network with m supply nodes, one junction node

and m demand nodes, where m varies from 5 to 15. For each m, we randomly generate

the problem parameters. More precisely, we generate si using a uniform distribution

on the interval [60, 80], ŝi on [0.3si, 0.5si]. Similarly, we randomly generate di on inter-

val [45, 60], the Weymouth constant on [0.55, 0.75], pressure bounds on [180, 200] [bar],

[140, 160] and [100, 120] for gas supply nodes, junction nodes and gas demand nodes, re-

spectively. The linear model is built using 25 pairs of equally broken pressure breakpoints

for the Weymouth equation. With these settings, we can ensure that the nominal oper-

ational problem (the gas supply takes si at each supply node i ∈ P) for each randomly

generated experiments is feasible.

To compute the supply resilience index, we need to solve a sequence of sub-problems

(5.6), by either the MIP model (5.10) or (5.11). Intuitively, (5.6) is the most difficult

when γ = bm2 c + 1
2 . Actually, it takes less than 10 seconds to solve an instance of (5.6)

for m = 15, γ = 7.5. Therefore, we can roughly give an upper bound of the total time

required to compute the resilience index when m = 15 as (dlog2 15e + δ) ∗ 10 seconds,

where δ is the number of additional iterations required after b%(G)c is given. If δ is not
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Table 5.3: Running time and the number of iterations required when applying Algorithm
2, 50 instances are tested for the evaluation of mean and standard deviation.

No. of iterations Computational Time (sec)
m Mean StDev Mean StDev
5 1.14 0.3505 0.1262 0.0510
7 1.22 0.4647 0.1827 0.1146
9 1.10 0.3030 0.2980 0.1238
11 1.32 0.5127 0.7592 0.4466
13 1.44 0.7329 1.7377 1.1118
15 1.46 0.6131 6.3008 3.0944

too large, our proposed method of evaluating the resilience index can easily handle

moderate problems in practice (The natural gas network example in De Wolf and Smeers

(2000) has 20 nodes and 24 arcs, which has a smaller problem size than our example of

m = 15).

We next investigate the value of δ for various m. For example, we randomly conduct

15 instances of experiment for the case that m = 10. Among all these 15 instances, δ = 1

for 3 instances, δ = 1 for 10 instances and δ = 0 for 2 instances (the zero value takes

when the network is fully resilient for the worst case). Table 5.3 presents the statistics

of the running time and δ estimated by 50 replications (here the running time only

includes the computational time of applying the “gradient-based” algorithm after b%(G)c

is given). The result shows that there is no significant increasing trend in the number

of iterations when m increases, i.e., we can believe that δ tends to be bounded by some

constant, which suggests the practical efficiency of our proposed method of computing

%(G) defined by cardinality uncertainty set (5.9).

Example of a design problem

We now compare design optimization problem using our proposed supply resilience index

with two benchmark approaches: the nominal value based approach and the stochastic

programming approach. The nominal value approach is based on the deterministic design
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and procurement problem in literature which minimizes the total cost (investment cost

plus the procurement cost) under the assumption that the gas supply equals its nominal

value si : ∀i ∈ P. In other words, we solve the following problem:

min
∑
i∈P

ci(si − êi) + q′u

s.t.(5.22), (5.23)

Fx ≤ Uu

q′u ≤ B

∑
a∈δ+(G,i)

x(a)−
∑

a∈δ−(G,i)

x(a)


= −si + êi : i ∈ P

= 0 : i ∈ J

≥ di : i ∈ D

x ≥ 0, ê ≥ 0.

In the above model, ci denotes the unit gas price (or drilling cost) at potential gas

supply node i ∈ P, B denotes the total available amount of investment budget and

q′u gives the total investment cost associated with investment decision u. We carry out

the nominal value approach for comparison because it is commonly used in the natural

gas literature. To benchmark the performance of our proposed resilience optimization

design model, we also use a stochastic programming approach to maximize the success

probability of achieving zero penalty positions via sample average approximations (SAA).

More precisely, when K generalized samples of uncertainty z̃j : j = 1, · · · , N is given,

the SAA approach solves the following optimization problem:

max
u,pj

1

N
pj

s.t. Q(u, z̃j) ≤M(1− pj) : j = 1, · · · , N

q′u ≤ B,
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where M is a constant which is sufficiently large so that the constraint Q(u, z̃j) ≤

M(1− pj) would force pj = 0 when Q(u, z̃j) > 0. Thus, the proposed SAA method aims

to find a design maximizing the estimated success probability.

We now turn to the problem of designing a natural gas network with 5 potential

supply nodes, 2 potential junction nodes, and 5 given gas demand nodes. The experi-

ment data is randomly generated to avoid uniqueness. In particular, si is independently

and randomly generated by uniform distribution on [60, 100], ŝi on [0.25si, 0.35si], di on

[45, 55], Cij on [0.4, 0.8], pressure bounds ri and ri on [180, 200][bar], [140, 160][bar] and

[100, 120][bar] for gas supply nodes, junction nodes and gas demand nodes, respectively.

Installation cost is randomly generated on [35, 45], [20, 30] and [10, 15] for gas supply

nodes junction nodes and pipeline, respectively. Finally, to apply the nominal value de-

sign approach, we generate the unit gas price ci on [0.2, 0.6] by the same randomness rule.

Moreover, we test the experiment on various investment budget B in [B,B]. The lower

bound B denotes the minimum budget required to make the design and procurement

problem feasible, which means the comparison among different approaches is unneces-

sary when the available budget B < B because lacking of budget. The upper bound B̄

denotes the minimum investment budget required when the gas supply reaches its lowest

possible value si − ŝi : i ∈ P, which means any comparison when B ≥ B is unnecessary

because we can design a system that is fully resilient against the worst supply case.

For our resilience index approach, we test it for both the box uncertainty set (5.8)

(where z̃i(γ) := γ) and cardinality uncertainty set (5.9). Generally, the stochastic pro-

gramming approach is expected to outperform the resilience index optimization when

the number of samples is sufficiently large because it uses more distributional informa-

tion. However, due to the curse of dimensionality, the computational time of the SAA

model would exponentially increase with respect to the used sample size. To make the

comparison fair, we test the SAA with 50 samples under exact distribution so that both

the SAA model and our proposed resilience index model can solve a design instance

within several minutes.
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Table 5.4 and 5.5 summarize the statistics of the stochastic system performances of

these methods, for one specific randomly generated test experiment. All these statistics

are estimated from a randomly generalized sample of 10,000 realizations. In these

two tables, “SRI-B” denotes the supply resilience index using the box uncertainty set,

“SRI-C” denotes the supply resilience index using the cardinality uncertainty set, “SAA-

U” denotes the SAA method using uniform randomized data, and “NV” is short for the

nominal value approach of the design problem. It can be observed that the nominal value

approach performs worst among all these methods, and the improvement of system

performance by increasing the investment budget is negligible. Conversely, both the

supply resilience index approach and the SAA approach can attain significant system

performance improvement upon additional investment budget. Not surprisingly, the SAA

method also performs well except the extreme case of B = B. More precisely, its average

performance is quite close to the resilience index optimization by box uncertainty set in

terms of these statistics. This indicates that our proposed resilience index based approach

is as comparable as the SAA method under exact distribution. However, in the case

that the exact distribution is unknown, it is not difficult to imagine that our approach

would be a better choice because the performance of the SAA method highly depends

on the quality of generated samples. The computational result in Chen and Sim (2009)

shows that the advantage of SAA method would disappear when a wrong distribution is

assumed.

It is worth noting that, for low investment budget (B − B)/(B − B) < 0.6, the box

uncertainty set based resilience index lead us to solutions providing better system per-

formance than the cardinality uncertainty based one. The opposite is observed for large

investment budget (B −B)/(B −B) > 0.6. In this experiment, the overall performance

of the box uncertainty set based resilience index is generally better than the cardinality

set based one. A possible explanation is that the exact support information is known

and the two tested distributions are quite consistent with the assumption of the box

uncertainty set. In the case that only limited data is available to specify the support set
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and the underlying distribution of uncertainty is different, the cardinality uncertainty

might be a better choice.

We also observe sudden changes in system performance of the “SRI-B” and “SRI-C”

when we increase the investment budget (the break point is 0.4 for “SRI-B” and 0.6 for

“SRI-C”). This phenomenon can be explained through the discrete system cost structure.

In particular, the investment cost would suddenly change if we build an additional new

node or pipeline. When the total available amount of investment budget is below some

break point, we are not capable of installing all the critical nodes and arcs. As a con-

sequence, the system performance would be poor due to lack of gas supply or pipeline

capacity. In contrast, when the budget exceeds the breakpoint, all the critical installa-

tions can be made and thus the system would be capable of most uncertainty realizations,

which results in a sudden change in system performance. Indeed, the main change in

the investment decisions around the breakpoints is the installation of a new gas supply

node, which would significantly improve the gas supply amount.

This result is also suggested in Table 5.6, in which the real value of supply resilience

index of design solutions obtained by different methods (both the resilience index-

cardinality and resilience index-box are computed). As we can see, a sudden change

in system resilience index for both method is also observed at break points 0.4 and

0.6, respectively. In the table, the ratio r = (B −B)/(B −B) is the normalized budget

level. “SAA-U” and “SAA-N” correspond to SAA method using uniformly and normally

distributed data, respectively. ”SRI-B” and “SRI-C” denote the resilience index optimiza-

tion defined by box uncertainty set and the cardinality uncertainty set, respectively. Not

surprisingly, the resilience optimization model that optimizes the correct resilience index

dominates the others for every B. When the budget amount B goes close to B̄, the

specific choice of resilience index does not affect the result significantly. For example, if

we choose to maximize the resilience index by box uncertainty set, the derived optimal

solution also has a high valued cardinality uncertainty set based resilience index (close

to the optimal one) when B is close to B̄. In this specific case, B = 1.286B, which
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means the system can reach full resilience by only additional more 28.65% of the least

required budget B. If we look back to the stochastic system performance, approximately

15% additional investment ((B −B)/(B −B) = 0.6) can help us find a design that has

close stochastic system performance as the fully resilient one. Apparently, the trend in

supply resilience index with respect to the investment budget varies from case to case.

For each individual case, by querying the curve of resilience index on investment budget,

the decision maker can decide the amount of the investment budget B accordingly.

5.5 Conclusion

By relating to resilience measures of the uncertain demand loss penalty function, we

give a formal definition of supply resilience index to measure energy supply system’s

resilience against supply disruptions in this chapter. Based on that, a general algorithm

of computing resilience index defined by general adjustable uncertainty sets is proposed.

Besides, to circumvent the computational difficulty resulting from exponentially large

number of extreme points, we consider two special families of adjustable uncertainty

sets and develop specific algorithms to evaluate the corresponding resilience indexes. We

also investigate the problem of design a resilient supply system, in which the investment

decisions must be made before the realization of any uncertainty. As the general design

problem is computationally difficult, we propose a solution procedure by making two

implicit assumptions.

The computational experiments on the natural gas transmission network illustrate

the advantage of the resilience index. In the first computational experiment on a simple

natural gas network, we explore that the resilience index is highly relevant to the stochas-

tic system performances. Besides, the second experiment illustrates that our proposed

“gradient-based” search method is practically efficient for moderate sized problems, de-

spite the NP-Hardness of the general problem. The last experiment shows the superiority

of our proposed method to the traditional approach.
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49.4314
40.6376

40.8279
40.9187

0.0000
0.0000

0.0000
0.0000

0.0000

C
VaR

0.9

N
V

53.3267
50.4733

50.7424
50.3686

50.5170
50.8671

50.4694
50.6903

50.5925
50.5111

50.4604
SA

A
-N

246.3670
42.4525

50.6373
42.3459

1.2092
1.2289

9.0304
0.0245

1.3330
0.2201

0.1768
SR

I-B
53.3267

42.4608
42.8999

42.3214
1.1942

1.2380
0.7778

0.0713
0.0774

0.0210
0.0000

SR
I-C

53.3267
42.4608

50.6609
42.3214

42.2932
42.3511

0.7778
0.0245

0.0513
0.0006

0.0000

C
VaR

0.95

N
V

57.0485
54.2218

54.6219
54.4012

54.4204
54.6741

54.1173
54.6890

54.5360
54.3437

54.2799
SA

A
-N

246.3670
46.2893

54.5753
46.6300

2.1938
2.2456

12.2035
0.0490

2.4152
0.4397

0.3532
SR

I-B
57.0485

46.2875
47.0527

46.6132
2.1721

2.2662
1.5540

0.1424
0.1547

0.0419
0.0000

SR
I-C

57.0485
46.2875

54.5930
46.6132

46.3629
46.1243

1.5540
0.0490

0.1025
0.0012

0.0000

86



Ta
bl

e
5.

5:
Su

m
m

ar
y

st
at

is
ti

cs
sy

st
em

pe
rf

or
m

an
ce

un
de

r
un

if
or

m
di

st
ri

bu
te

d
da

ta
.

St
at

is
ti

c
M

et
ho

d
(B
−
B

)/
(B
−
B

)
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

M
ea

n

N
V

34
.9

53
3

30
.9

61
9

31
.0

63
2

30
.9

23
5

31
.1

09
4

30
.9

80
6

31
.0

93
2

30
.8

48
3

30
.7

30
3

31
.1

23
4

31
.0

34
1

SA
A

-U
24

6.
36

70
23

.1
78

8
28

.4
71

5
20

.5
46

9
0.

60
80

0.
64

52
0.

51
09

0.
07

50
0.

06
44

0.
03

38
0.

24
98

SR
I-

B
34

.9
53

3
23

.1
56

1
22

.9
90

8
20

.5
34

8
0.

60
97

0.
64

49
0.

50
59

0.
10

23
0.

04
87

0.
05

15
0.

00
00

SR
I-

C
34

.9
53

3
23

.1
56

1
28

.4
76

4
20

.5
34

8
20

.6
37

9
20

.4
90

0
0.

50
59

0.
07

51
0.

03
24

0.
03

19
0.

00
00

Su
c

Pr
ob

N
V

0.
00

09
0.

02
67

0.
02

41
0.

02
50

0.
02

68
0.

02
83

0.
02

82
0.

02
61

0.
02

64
0.

02
77

0.
02

87
SA

A
-U

0.
00

00
0.

10
44

0.
06

31
0.

17
16

0.
74

32
0.

74
53

0.
88

67
0.

98
57

0.
98

50
0.

99
34

0.
95

78
SR

I-
B

0.
00

09
0.

10
45

0.
09

74
0.

17
20

0.
74

39
0.

74
48

0.
88

85
0.

97
28

0.
98

49
0.

98
56

1.
00

00
SR

I-
C

0.
00

09
0.

10
45

0.
06

53
0.

17
20

0.
16

25
0.

17
41

0.
88

85
0.

98
59

0.
99

26
0.

99
36

1.
00

00

Va
R

0.
9

N
V

54
.7

01
4

52
.6

40
0

52
.6

51
3

52
.4

52
1

52
.7

00
8

53
.1

56
0

52
.8

34
7

52
.3

46
8

52
.3

36
0

52
.5

40
2

52
.4

99
6

SA
A

-U
24

6.
36

70
45

.1
97

0
51

.9
93

4
44

.4
20

2
2.

14
01

2.
18

93
0.

60
13

0.
00

00
0.

00
00

0.
00

00
0.

00
00

SR
I-

B
54

.7
01

4
45

.1
52

7
45

.1
57

1
44

.3
29

9
2.

15
19

2.
19

51
0.

53
66

0.
00

00
0.

00
00

0.
00

00
0.

00
00

SR
I-

C
54

.7
01

4
45

.1
52

7
52

.0
09

7
44

.3
29

9
43

.9
42

2
44

.2
73

5
0.

53
66

0.
00

00
0.

00
00

0.
00

00
0.

00
00

Va
R

0.
95

N
V

60
.4

95
8

58
.7

55
7

58
.2

63
9

58
.3

86
3

58
.3

40
5

58
.8

22
7

58
.8

22
9

57
.7

28
1

57
.6

60
2

58
.3

48
9

58
.2

00
3

SA
A

-U
24

6.
36

70
51

.1
36

8
58

.2
15

9
50

.7
03

1
3.

78
06

4.
15

04
3.

67
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

SR
I-

B
60

.4
95

8
51

.0
44

2
51

.2
53

5
50

.6
12

2
3.

80
25

4.
16

55
3.

66
51

0.
00

00
0.

00
00

0.
00

00
0.

00
00

SR
I-

C
60

.4
95

8
51

.0
44

2
58

.2
63

9
50

.6
12

2
50

.8
41

7
50

.8
85

5
3.

66
51

0.
00

00
0.

00
00

0.
00

00
0.

00
00

C
Va

R
0.

9

N
V

61
.7

13
4

60
.1

00
1

59
.9

10
9

59
.8

11
3

59
.7

09
7

60
.2

28
7

60
.2

11
8

59
.6

46
1

59
.2

96
9

59
.7

40
1

59
.8

43
9

SA
A

-U
24

6.
36

70
52

.8
49

5
59

.7
31

8
52

.3
17

3
4.

82
43

5.
14

72
5.

06
27

0.
74

90
0.

64
36

0.
33

81
2.

49
54

SR
I-

B
61

.7
13

4
52

.7
95

7
53

.0
03

1
52

.2
36

0
4.

84
13

5.
14

12
5.

02
20

1.
02

17
0.

48
68

0.
51

44
0.

00
00

SR
I-

C
61

.7
13

4
52

.7
95

7
59

.7
92

3
52

.2
36

0
52

.1
32

6
52

.2
88

7
5.

02
20

0.
75

07
0.

32
33

0.
31

82
0.

00
00

C
Va

R
0.

95

N
V

66
.1

62
9

64
.8

28
2

64
.6

22
7

64
.5

67
2

64
.1

44
1

64
.6

30
2

64
.8

46
7

64
.4

76
0

63
.7

94
5

64
.2

53
6

64
.6

15
3

SA
A

-U
24

6.
36

70
57

.7
96

8
64

.5
55

6
57

.2
74

1
6.

78
23

7.
23

69
8.

12
12

1.
49

65
1.

28
59

0.
67

56
4.

98
58

SR
I-

B
66

.1
62

9
57

.7
47

0
57

.9
68

9
57

.1
96

7
6.

80
65

7.
22

49
8.

09
20

2.
04

13
0.

97
25

1.
02

77
0.

00
00

SR
I-

C
66

.1
62

9
57

.7
47

0
64

.6
22

7
57

.1
96

7
57

.2
05

1
57

.2
47

4
8.

09
20

1.
49

99
0.

64
60

0.
63

58
0.

00
00

87



Table 5.6: Supply resilience index under different B.

Resilience index (Box)
r NV SAA-N SAA-U SRI-B SRI-C
0.0 0.0278 0.0005 0.0005 0.0278 0.0239
0.1 0.1685 0.3042 0.3091 0.3091 0.3081
0.2 0.1685 0.2476 0.2476 0.3081 0.2476
0.3 0.1685 0.3354 0.3354 0.3354 0.3354
0.4 0.1685 0.7319 0.7319 0.7280 0.3354
0.5 0.1685 0.7319 0.7319 0.7280 0.3354
0.6 0.1685 0.6353 0.7798 0.7798 0.7798
0.7 0.1685 0.8286 0.8286 0.8286 0.8286
0.8 0.1685 0.7319 0.8286 0.8374 0.8384
0.9 0.1685 0.7749 0.8384 0.8374 0.8384
1.0 0.1685 0.7749 0.7749 1.0000 1.0000

Resilience index (Cardinality)
r NV SAA-N SAA-U SRI-B SRI-C
0.0 0.0235 0.0003 0.0003 0.0235 0.0244
0.1 0.3140 0.2994 0.4886 0.4886 0.4932
0.2 0.3140 0.6772 0.4898 0.4886 0.6787
0.3 0.3140 0.9616 0.9616 0.9616 0.9619
0.4 0.3140 0.8731 0.8731 0.8731 0.9619
0.5 0.3140 0.8731 0.8731 0.8731 0.9619
0.6 0.3140 0.9647 1.5610 1.5576 1.5610
0.7 0.3140 2.6181 2.6181 1.8625 2.6221
0.8 0.3140 0.8731 2.6181 2.5449 3.2666
0.9 0.3140 2.3721 3.2681 2.5449 3.2666
1.0 0.3140 2.7640 2.3721 5.0000 5.0000
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Chapter 6

Telecommunication Network

Resilience under Ambiguous

Demands

As we reviewed in Chapter 2, the telecommunication network design literature tends

to address demand uncertainty via robust models. A drawback of the robust model is

its conservatism because it totally ignores the distributional knowledge of uncertainty,

which can be obtained from substantial historical data. In addition, the robust models

in the cited works implicitly do not allow demand shortages to happen. In practice

however, since large demand peaks can occur with non-zero probability, some demand

shortfalls are expected (and do happen), and may be tolerable if below a certain level.

In this chapter, we apply our proposed framework of resilience measure as a quantitative

way of measuring telecommunication network’s service quality to address these issues.

To achieve this, we introduce a penalty function that captures the demand shortage

penalties, and relate the network resilience to the uncertain penalty functions using the

popular distributionally-ambiguous shortfall awareness measure. To this end, we propose

a capacity design model that optimizes the telecommunication network resilience, with
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respect to an investment budget. An important novelty of the model is the use of a family

of routing decision rules we term as the improved affine decision rules that generalizes

those in the recent literature. We develop tractable approximations of this problem based

on linear matrix inequalities, and show rigorously how the proposed approximation is

less conservative than existing solutions. finally, computational studies are performed

to demonstrate the effectiveness of our proposed model compared to some existing

approaches.

The rest of this chapter is organized as follows. Section 6.1 introduces the path-

flow based formulation of the routing problem along with the second stage problem of

minimizing total penalty cost, which is introduced in Babonneau et al. (2009); Ouorou

and Vial (2007) as an alternative of the network flow formulation. In Section 6.2, we

motivate the resilience index via distributionally-ambiguous shortfall awareness measure

and formulate the resilient telecommunication network design model. In Section 6.3,

we build tractable approximations of the proposed model via decision rules. Section

6.4 describes an alternative reformulation of the resilience index based on which the

resilient telecommunication network design model can be approximately solved by a

single optimization model. Section 6.5 reports the computational results and Section 6.6

concludes this chapter.

6.1 Path Flow Formulation of Telecommunication Network

We consider a telecommunication network described by a directed graph G = (V,A) in

which pairwise demand occurs. In other words, each demand commodity k ∈ K is asso-

ciated with a pair of nodes: source and destination nodes. In most practical situations,

the demand vector d = (dk)k∈K changes over time and is thus uncertain (denoted as

d̃). To avoid the conservatism of the robust optimization approach and address distribu-

tional ambiguity at the same time, we assume that d̃ fluctuates in its support D and its
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underlying distribution P belongs to the distribution family

F =
{
P ∈M(D) : EP(1) = 1,EP(d̃) = µ,EP

(
d̃d̃′
)

= µµ′ + Σ
}
, (6.1)

where M(D) is the set of finite Borel measures supported by D. Let K = |K| and A = |A|.

For notational convenience, we sometimes replace K or A by [K] or [A] when they are

referred as index sets of vector or matrix components. Without loss of much generality,

we further assume that D ⊆ <K+ is closed and bounded. This assumption is based on a

reasonable guess that the real demand amount d̃k of commodity k should be bounded

below some finite value.

Remark 6.1. The mean vector µ and the covariance matrix Σ of the uncertain demand

vector d̃ are assumed to be known here. This assumption is consistent with the real cases

because we can estimate them in high accuracy by large amount of historical data.

Remark 6.2. Indeed, the general problem of determining whether there exists a distri-

bution P that is consistent with the support set D along with the first- and second-order

moments (µ,Σ) is difficult. However, this problem is beyond the scope of this study and

we only simply assume that F is not empty and the provided moment information (µ,Σ)

do not further restrict the support set D. In other words, for every d ∈ D, we can find

P ∈ F such that P(d̃ = d) > 0. By this assumption, we can express the distributionally

ambiguous inequality infP∈F P(w0+w′d̃ ≥ 0) = 1 as a robust form w0+w′d̃ ≥ 0 : ∀d̃ ∈ D.

For simplicity of representation, we formulate the telecommunication network design

problem in a path flow based pattern. Specifically, we assume that, for each commodity

k ∈ K, the set of possible paths going from source node to destination node is explicitly

known as P(k). Let N be the cardinality of all these commodity-path pairs. We term a

path flow routing z ∈ <N+ of the graph G as a routing solution sending zkp amount of

commodity k ∈ K along the path p ∈ Pk. Indeed, two sets of important decisions are

involved in telecommunication network design. At the very beginning of the planning
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stage, we have to determine the capacity of every arc a ∈ A. Here we consider contin-

uous capacity installation for model simplicity. We denote by x ∈ <A+ as the capacity

installation. Let ZR(x) be the set of path flows respecting the capacity installation x such

that the corresponding total flow amount passing through each arc a does not exceed its

capacity xa. Specifically, ZR(x) can be expressed as:

ZR(x) =

z ∈ <N+

∣∣∣∣∣∣
∑
k∈K

∑
p∈Pk

δpazkp ≤ xa : a ∈ A

 ,

where δpa equals 1 if arc a is involved in path p and 0 otherwise. Once the capacity

installation decision is made, it is not allowed to be changed during the operation. After

the uncertain demand vector d̃ is realized, we have to make the recourse decisions of

routing the flows to match the demand. Let ZS(d̃) be the set of path flows supporting

demand realization d̃, which can also be expressed as:

ZS(d̃) =

z ∈ <N+

∣∣∣∣∣∣
∑
p∈Pk

zkp ≥ d̃k : k ∈ K

 .

Therefore, the routing decision is actually finding a feasible path flow z ∈ ZR(x)∩ZS(d̃).

Remark 6.3. The justification on using the path-flow formulation instead of the standard

multi-commodity network flow formulation is as follows. First, the path-flow formula-

tion is more adaptable to complicated decision rules such as affine decision rule and

improved affine decision rule (see Section 6.3). On the other hand, if we extend the

multi-commodity network flow model with affine decision rule, the resulting counter-

part of applying affine decision rule becomes much more complicated due to the large

number of involved robust constraints. Secondly, actual telecommunication networks

in practice are quite sparse and its dimension is of reasonable size (with tens of nodes

and tens of arcs). Thus, the specification of the path set Pk can be enumerated within

reasonable time because the number of available paths from each source node to its

destination node is small.
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It is worth stressing that, for some x and d̃ ∈ D, we cannot find a feasible capacity

solution z simultaneously respects x and supports d̃. This is especially true when the

original investment budget is not enough and/or realized demand amount is very high.

In these cases, demand shortage occurs. Failing to accounting for the demand shortage

in the proposed model would affect the its validation.

In the literature, researchers choose to skip this issue by considering smaller un-

certainty sets, which are also named as budget uncertainty sets D(γ). However, their

robust approaches face some crucial drawbacks. Firstly, the robust design is sensitive

to the selected uncertainty sets D(γ) but there is no universal guideline of specifying

them (The Γ−model requires the uncertainty be symmetrically distributed, which might

be inconsistent with real situations). Secondly, in telecommunication network design

problem, vast historical data are available to support the design decisions, which means

that it is possible for the decision maker to access certain distributional properties of

the uncertain demands. Thus, the robust approach may give overly conservative design

solutions because it ignores the stochastic nature of the uncertainty. Also, as previously

stated, they do not accept any demand shortages.

To address these issues, we relax the supporting constraint by introducing shortage

variable sk. Also, we use pk(sk) to denote the penalty cost of sk demand loss of commod-

ity k. Here pk(·) : k ∈ K is a continuous function possessing the following properties:

1. s ≤ 0⇒ pk(s) = 0 : k ∈ K.

2. pk(·) : k ∈ K is nondecreasing and convex in [0,∞).

A natural choice is to let the penalty functions be nondecreasing piecewise-affine func-

tions, which arise naturally under practical situations. Due to the fact that the piecewise-

affine functions are most commonly used to approximate general convex functions, we
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can also treat them as approximations of the penalty functions. Specifically, we express

them as:

pk(s) = max
m∈[M ]

{pkms+ qkm} ,

where [M ] denote the index set {1, · · · ,M} of the function pieces, and maxm∈[M ]{qkm} ≥

0. We further assume that 0 < pk1 < · · · < pkM without loss of generality.

Consequently, we can formulate the recourse problem of finding the optimal path

flow that minimizes the total penalty cost as follows:

Q
(
x, d̃

)
, min

∑
k∈K

pk(sk)

s.t.
∑
p∈Pk

zkp + sk ≥ d̃k : k ∈ K

z ∈ ZR(x), s ∈ <K+ .

(6.2)

It is worth stressing that the flow routing cost is not involved in the cost function. This

is because firstly, our main interest relies on modeling the impact of demand shortage

so that only the demand shortage cost should be involved. Secondly, due to the nature

of telecommunication network, the overall routing cost is insensitive to the routing

solutions and we thenceforth can regard it as a constant.

6.2 Telecommunication Network Resilience by Distributionally-

ambiguous Shortfall Awareness Measure

The distributionally-ambiguous shortfall awareness measure ρDSAM(·,F) given in Chap-

ter 3 is favored because it simultaneously addresses distributional ambiguity and tail risk.

Here we revisit its definition for convenience of reading. Given every ṽ ∈ L∞(D,F ,P),

ρDSAM(·,F) is defined as:

ρDSAM(ṽ,F) = sup

{
γ ∈ (0, 1) : sup

P∈F
CVaRP(ṽ, γ) ≤ 0

}
,

94



where

CVaRP(ṽ, γ) = inf
ν

{
ν +

EP(ṽ − ν)+

1− γ

}
.

Therefore, similar to the energy supply system, we define the resilience index

of a telecommunication network with capacity installation x by relating it to the

distributionally-ambiguous shortfall awareness measure as

%(G,x) , ρDSAM

(
Q
(
x, d̃

)
− τ,F

)
.

Based on this, we formulate the resilient telecommunication network design model as:

Z∗0 = max %(G,x)

s.t. c′x ≤ B

x ≥ 0

(6.3)

In model (6.3), c is the cost vector so that c′x gives the total investment cost associated

with capacity installation decision x. Through this model we attempt to find an optimal

capacity installation decision x within investment budget limit B such that the resilience

index of the resulting telecommunication network is maximized. Unfortunately, model

(6.3) is difficult to solve in general due to the complex relationship between its resilience

index %(G,x) and the capacity installation x. To do this, we can decompose it into a

sequence of the following sub-problems by performing a binary search on γ ∈ (0, 1)

upon checking whether its optimal objective value exceeds B or not:

min
x

c′x

s.t. x ∈ X (γ).

Here X (γ) denotes the set of γ-admissible capacity installation such that the resulting

telecommunication network is at least γ-resilient. A mathematical expression is given as

X (γ) ,
{

x ∈ <A+ : ΨF(Q(x, d̃), γ) ≤ τ
}
, (6.4)
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where ΨF(·, γ) denotes the distributionally-ambiguous conditional value of risk (CVaR).

In other words, for every ṽ such that ṽ ∈ L∞(D,F ,P) for every P ∈ F, we have

ΨF(ṽ, γ) = sup
P∈F

CVaRP(ṽ, γ). (6.5)

Still, computational difficulty remains because a compact reformulation of the set

X (γ) is not clear. Therefore, proper approximations of the recourse problem objective

Q(x, d̃) are necessary to obtain tractable approximations of X (γ), which are exactly what

we are going to discuss in the subsequent section.

6.3 Decision Rule Based Approximations of X (γ)

Consider an extreme case that the penalty functions pk(s) : k ∈ K equals 0 if s ≤ 0 and

approaches to +∞ otherwise. Then for every γ ∈ (0, 1), X (γ) denotes the set of capacity

installations s such that ZR(x)∩ZS(d̃) is always not empty for every d̃ ∈ D. However, it

is known that the problem of determining a given capacity installation x belongs to X (γ)

or not is NP-Complete (Chekuri et al., 2007). Therefore, unless coNP=P, it is impossible

to construct a compact formulation of X (γ). To overcome this computational difficulty,

one possible way is to add proper restrictions on the path flow solutions z to approximate

the complex function Q(x, d̃).

For representation simplicity, we first give several important notations on decision

rules. For every integer n ∈ Z+, we defineM(n) as the set of functions as:

M(n) , {f : D 7−→ <n} .

Similarly, we define the parameterized family of functions S(k) : k ∈ K as:

S(k) , {f : D 7−→ < : ∃w ∈ < such that f(d) = wdk} ,
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and the family of affine functions L(n) as:

L(n) ,
{
f : D 7−→ <n : ∃(w0,W) ∈ <n ×<n×K such that f(d) = w0 + Wd

}
.

From now on, we concentrate on decision rule based approximation of the set X (γ).

To do this, we give the following proposition of conducting an equivalent representation

of the distributionally-ambiguous CVaR measure ΨF(·, γ) defined in (6.5).

Proposition 6.1. For every capacity installation decision x ∈ <A+ and γ ∈ (0, 1), the

distributionally-ambiguous CVaR of Q(x, d̃) with respect to distribution family F can also

be equivalently expressed as

Ψ(Q(x, d̃), γ) = inf
ν∈<

sup
P∈F

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}
.

Proof. Observe that Q(x, d̃) ∈ [0, p∗], where p∗ = max

{∑
k∈K

pk(d̃) : d̃ ∈ D
}
∈ [0,+∞)

due to the fact that the support set D is bounded. Therefore the set of minima ν∗ ∈ [0, p∗].

It can be seen that

CVaRP(Q(x, d̃), γ) = min
ν∈[0,p∗]

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}
.

Therefore, it follows immediately from the stochastic saddle point theorem (Natarajan

et al., 2009; Shapiro and Kleywegt, 2002) that

Ψ(Q(x, d̃), γ) = sup
P∈F

min
ν∈[0,p∗]

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}
= min

ν∈[0,p∗]
sup
P∈F

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}
≥ min

ν∈<
sup
P∈F

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}
.

On the other hand, the reverse direction of this inequality can be induced from the well

known min-max inequality.
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Specifically, we observe that

Ψ(Q(x, d̃), γ)

= sup
P∈F

min
ν∈<

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}
≤ min

ν∈<
sup
P∈F

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}
.

Consequently, the result can be verified by these two inequalities.

Proposition 6.1 gives a relatively tractable formulation of the distributionally-

ambiguous CVaR. Before defining the decision rule based representation of X (γ), we first

give two auxiliary index sets Φ̂ , {(k, p) : k ∈ K, p ∈ Pk}, Φ̌ , {(k,m) : k ∈ K,m ∈ [M ]}.

By introducing auxiliary decision variables (t, ν, θ), X (γ) can be equivalently expressed

as

X (γ) =



x ∈ <A+ :

∃(z, s, t, θ) ∈M(N + 2K + 1), ν ∈ <

s.t. ν +
1

1− γ sup
P∈F

EP[θ(d̃)] ≤ τ∑
k∈K

tk(d̃)− ν ≤ θ(d̃)

pkmsk(d̃) + qkm ≤ tk(d̃) : (k,m) ∈ Φ̌∑
p∈Pk

zkp(d̃) + sk(d̃) ≥ d̃k : k ∈ K

∑
(k,p)∈Φ̂

δpazkp(d̃) ≤ xa : a ∈ A

zkp(d̃) ≥ 0 : (k, p) ∈ Φ̂

sk(d̃) ≥ 0 : k ∈ K

θ(d̃) ≥ 0



(6.6)

The freedom of choosing the decision variables (z, s, t, θ) in the decision spaceM(N +

2K + 1) constitutes the computational difficulties. If we narrow down the decision

space M(1) by simple decision rules such as S(k) or L(1), we can obtain tractable

approximations.
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6.3.1 Oblivious Routing Policy and Affine Routing Policy

Many works in the literature (e.g. Altın et al., 2007, 2011; Koster et al., 2013; Mud-

chanatongsuk et al., 2007; Lee et al., 2012) consider a simple version of the recourse

problem Q(x, d̃) by restricting the commodity-flow routing solution to be a linear func-

tion of the demand d̃k, which is known as oblivious routing policy or static routing policy.

In the context of our flow path based formulation, the static routing policy forces the

decision variables zkp(d̃) and sk(d̃) to belong to S(k) instead of M(1). By further re-

stricting tk(d̃) = t0k + t1kd̃k and θ(d̃) ∈ L(1), we obtain an oblivious routing policy based

approximation of X (γ) as

XORP (γ) =



x ∈ <A+ :

∃ν, {θ0,θ}, {z0
kp}(k,p)∈Φ̂, {sk, t0k, t1k}k∈K

s.t. ν +
1

1− γ (θ0 + θ′µ) ≤ τ∑
k∈K

t0k − ν − θ0 + (t1 − θ)d̃ ≤ 0 : ∀d̃ ∈ D

qkm − t0k + (pkmsk − t1k)d̃k ≤ 0 : ∀d̃k ∈ Dk, (k,m) ∈ Φ̌∑
p∈Pk

z0
kp + sk ≥ 1 : k ∈ K

∑
(k,p)∈Φ̂

δpaz
0
kpd̃k ≤ xa : ∀d̃ ∈ D, a ∈ A

θ0 + θ′d̃ ≥ 0 : ∀d̃ ∈ D,



(6.7)

where we define t1 , (t1k)k∈K, Dk , {d : ∃d̃ ∈ D, d = d̃k}.

The above formulation of XORP (γ) is a standard robust counterpart based formula-

tion, which can be solved using Lagrange duality (see Ben-Tal et al., 2009) for a wide

range of uncertainty sets D. Specifically, if D is a polyhedron, XORP (γ) can be expressed

by linear constraints and thenceforth min{c′x : x ∈ XORP (γ)} reduces to a simple linear

optimization problem. However, a critical issue is the conservatism. To address this, a less

conservative approximation named affine routing policy is introduced in (Lemaréchal
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et al., 2010; Ouorou, 2011; Poss and Raack, 2012). Instead of restricting the path flow

solution zkp be a portion of the realized demand component d̃k, affine decision rules

allows it to be an affine function of all the components of the realized demand d̃. More

precisely, we let the variables (z, s, t, θ) in (6.6) be affine functions of the demand vector

d̃, i.e., (z, s, t, θ) ∈ L(N + 2K + 1).

Hence, we construct the affine routing policy based approximation of X (γ) as

XARP (γ) =



x ∈ <A+ :

∃ν, {θ0,θ}, {z0
kp, zkp}(k,p)∈Φ̂, {s0

k, sk, t
0
k, tk}k∈K

s.t. ν +
1

1− γ (θ0 + θ′µ) ≤ τ∑
k∈K

t0k − ν − θ0 + (
∑
k∈K

tk − θ)′d̃ ≤ 0 : ∀d̃ ∈ D

pkms
0
k + qkm − t0k + (pkmsk − tk)

′d̃ ≤ 0 : ∀d̃ ∈ D, (k,m) ∈ Φ̌∑
p∈Pk

z0
kp + s0

k + (sk +
∑
p∈Pk

zkp)
′d̃ ≥ d̃k : ∀d̃ ∈ D, k ∈ K

∑
(k,p)∈Φ̂

δpaz
0
kp + (

∑
(k,p)∈Φ̂

δpazkp)
′d̃ ≤ xa : ∀d̃ ∈ D, a ∈ A

z0
kp + z′kpd̃ ≥ 0 : ∀d̃ ∈ D, (k, p) ∈ Φ̂

s0
k + s′kd̃ ≥ 0 : ∀d̃ ∈ D, k ∈ K

θ0 + θ′d̃ ≥ 0 : ∀d̃ ∈ D.


(6.8)

Note the fact that S(k) ⊆ L(1) ⊆ M(1), we have the following elementary result

about these two approximations.

Proposition 6.2. The tractable sets XORP (γ) and XARP (γ) give two conservative approxi-

mation of X (γ), and we have XORP (γ) ⊆ XARP (γ) ⊆ X (γ).

Proof. XORP (γ) ⊆ XARP (γ) follows straightforwardly from the fact that oblivious rout-

ing solution is a specific instance of the affine routing solution. To complete the proof,

it suffices to show that XARP (γ) ⊆ X (γ). For any feasible solution of the feasibility
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formulation (6.8), it can be seen that

z∗kp(d̃) = z0
kp(d̃) + z′kpd̃ : (k, p) ∈ Φ̂

s∗k(d̃) = s0
k + s′kd̃ : k ∈ K

t∗k(d̃) = t0k + t′kd̃ : k ∈ K

θ∗(d̃) = θ0 + θ′d̃

ν∗ = ν

is a feasible solution of (6.6). Hence, XARP (γ) ⊆ X (γ) completing the proof.

6.3.2 Improved Affine Decision Rule Based Approximation

Both the oblivious routing policy and affine routing policy give rise to tractable approxi-

mations of X (γ). It can be seen that only the first moment information µ appears in the

resulting formulation, which means that these approximations are as tight as the ones

for a larger distributional family F† =
{
P ∈M(D) : EP(1) = 1,EP(d̃) = µ

}
. To make use

of the covariance matrix Σ, we now provide an improved affine decision rule based

approximation as

XIARP (γ) =



x ∈ <A+ :

∃ν ∈ <; {zkp(d̃)}(k,p)∈Φ̂ ∈ L(N)

{hkm(d̃)}(k,m)∈Φ̌ ∈ L(|Φ̌|)

{sk(d̃), tk(d̃), rk(d̃)}k∈K ∈ L(K)

s.t. ν +
1

1− γ g (ν, z, s, t,h, r) ≤ τ∑
p∈Pk

zkp(d̃) + sk(d̃) ≥ d̃k : ∀d̃ ∈ D, k ∈ K

∑
(k,p)∈Φ̂

δpazkp(d̃) ≤ xa : ∀d̃ ∈ D, a ∈ A

zkp(d̃) ≥ 0 : ∀d̃ ∈ D, (k, p) ∈ Φ̂



, (6.9)
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where we define the auxiliary function g as

g(ν, z, s, t,h, r) , sup
P∈F

EP

∑
k∈K

tk(d̃) +
∑

(k,m)∈Φ̌

hkm(d̃) +
∑
k∈K

pkMrk(d̃)− ν

+

+
∑

(k,m)∈Φ̌

sup
P∈F

EP

(
pkmsk(d̃) + qkm − tk(d̃)− hkm(d̃)

)+

+
∑

(k,m)∈Φ̌

sup
P∈F

EP

(
−hkm(d̃)

)+
+
∑
k∈K

pkM sup
P∈F

EP

(
−rk(d̃)

)+

+
∑
k∈K

pkM sup
P∈F

EP

(
−sk(d̃)− rk(d̃)

)+
.

(6.10)

To explore the connection between XIARP (γ) and X (γ), we first present two important

lemmas.

Lemma 6.1. (Chen et al., 2010; Goh and Hall, 2013) For every scalar-valued convex

piece-wise linear function V (d̃) = max
m∈[M ]

{
pms(d̃) +qm

}
, where s(d̃) ∈ M(1). We can

equivalently express V (d̃) as

V (d̃) = min

t(d̃) +
∑
m∈[M ]

(
pms(d̃) + qm − t(d̃)

)+
: t(d̃) ∈M(1)

 .

Lemma 6.2. For every y(d̃) ∈M(1) and {xi(d̃)}i∈[I] ∈M(I), we have

y(d̃) +
∑
i∈[I]

(
xi(d̃)

)+

+

= min

{∑
i∈[I]

((
−hi(d̃)

)+
+
(
xi(d̃)− hi(d̃)

)+
)

+

y(d̃) +
∑
i∈[I]

hi(d̃)

+

: {hi(d̃)}i∈[I] ∈M(I)

}

Proof. According to the proof of Theorem 4 in See and Sim (2010), the inequality

y +
∑
i∈[I]

(xi)
+

+

≤
∑
i∈[I]

(
(−hi)+ + (xi − hi)+)+

y +
∑
i∈[I]

hi

+
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holds for every y, {xi, hi}i∈[I] ∈ <. Hence, the left hand side of the proposed equality is

less than or equal to the right hand side. In addition, by letting h∗i (d̃) =
(
x∗i (d̃)

)+
, we

have

y(d̃) +
∑
i∈[I]

(
xi(d̃)

)+

+

=
∑
i∈[I]

((
−h∗i (d̃)

)+
+
(
xi(d̃)− h∗i (d̃)

)+
)

+

y(d̃) +
∑
i∈[I]

h∗i (d̃)

+

indicating that the left hand side is greater than or equal to the right hand side of the

proposed equality. Hence, the equality holds.

Proposition 6.3. For every γ ∈ (0, 1), XIARP (γ) constitutes a conservative approximation

of X (γ) and is tighter than XARP (γ). More precisely, we have XARP (γ) ⊆ XIARP (γ) ⊆

X (γ).

Proof. Note the fact that for every x ∈ XARP (γ), we define the following variables from

its associated feasible variables ν, {θ0,θ}, {z0
kp, zkp}(k,p)∈Φ̂, {s0

k, sk, t
0
k, tk}k∈K in (6.8) as

z∗kp(d̃) = z0
kp(d̃) + z′kpd̃ : (k, p) ∈ Φ̂

s∗k(d̃) = s0
k + s′kd̃ : k ∈ K

t∗k(d̃) = t0k + t′kd̃ : k ∈ K

h∗km(d̃) = 0 : (k,m) ∈ Φ̌

r∗k(d̃) = 0 : k ∈ K

ν∗ = ν.

It can be seen that all the nonlinear terms from row two to the end of the function g(·)

in (6.10) vanish and we therefore have

g(ν∗, z∗, s∗, t∗,h∗, r∗) = sup
P∈F

EP

(∑
k∈K

t∗k(d̃)− ν
)+
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≤ sup
P∈F

EP(θ0 + θ′d̃)

= θ0 + θ′µ.

Hence, we can conclude that ν + 1
1−γ g(ν∗, z∗, s∗, t∗, r∗,h∗) ≤ τ indicating that x ∈

XIARP (γ). Hence, we can conclude that XARP (γ) ⊆ XIARP (γ).

We next show the rest part that XIARP (γ) ⊆ X (γ).

For every x ∈ XIARP (γ) with its associated feasible affine solutions ν ∈ <, (z, s, t,h, r) ∈

L in (6.9). It is not hard to see that

z∗kp = zkp(d̃) : ∀(k, p) ∈ Φ̂

s∗k = sk(d̃) +
(
−sk(d̃)

)+
: ∀k ∈ K

is a feasible solution of the recourse problem (6.2) with respect to x. As a consequence,

we have Q(x, d̃) ≤∑k∈K pk(s
∗
k). Therefore, we have

ΨF(Q(x, d̃), γ)

= inf
ν∈<

sup
P∈F

{
ν +

1

1− γEP(Q(x, d̃)− ν)+

}

≤ inf
ν∈<

sup
P∈F

{
ν +

1

1− γEP

(∑
k∈K

pk(s
∗
k)− ν

)+}

≤ ν +
1

1− γ sup
P∈F

EP

(∑
k∈K

pk(s
∗
k)− ν

)+

≤ ν +
1

1− γ sup
P∈F

EP

(
−ν +

∑
k∈K

max
m∈[M ]

{pkmsk(d̃) + qkm}+
∑
k∈K

pkM

(
−sk(d̃)

)+
)+

≤ ν +
1

1− γ sup
P∈F

EP

(∑
k∈K

tk(d̃)− ν +
∑

(k,m)∈Φ̌

(
pkmsk(d̃) + qkm − tk(d̃)

)+

+
∑
k∈K

pkM

(
−sk(d̃)

)+
)+

≤ ν +
1

1− γ g(ν, z, s, t,h, r)

≤ τ.
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The first equality follows directly from Proposition 6.1. The third inequality results from

the assumption that pkM ≥ pkm : ∀m ∈ [M ]. The forth inequality is an immediate

consequence of applying Lemma 6.1. The second last inequality results from Lemma 6.2;

we also make use the fact that the operator supP∈F EP(·) satisfies sub-additivity to obtain

the second last inequality. Finally, the last inequality is clear because (ν, z, s, t,h, r) is a

feasible solution of (6.9) with respect to x. According to the definition of X (γ) in (6.4),

we then can conclude that x ∈ X (γ) completing the proof that XIARP (γ) ⊆ X (γ).

Proposition 6.3 states that XIARP (γ) constitutes a less conservative approximation

of X (γ) than XARP (γ). Unfortunately, it is less tractable due to the distributionally-

ambiguous expectation over the truncated term (·)+. Let us define χ(w0,w) ,

supP∈F EP

(
w0 + w′d̃

)+
. It is known from Murty and Kabadi (1987) that the compu-

tation of χ(·, ·) is generally NP-Hard. Therefore, tractable approximation of χ(·, ·) is

necessary to build tractable approximation of XIARP (γ).

6.3.3 Tractable Approximation of χ(·, ·)

To obtain tractable approximation, we consider the case that D = [d,d]. For more com-

plicated set D, this can be achieved by relaxing D to D1 × · · · × DK : Dk , {d : ∃d̃ ∈

D, d = d̃k}). In the following we give two alternative approximations. The first one

can be represented as a second order cone program (SOCP), which possesses consid-

erably computational efficiency in both theory and practice. The second bound can be

represented in terms of linear matrix inequality (LMI).

Lemma 6.3. Chen and Sim (2009); Goh and Sim (2010) Suppose that the support D =

[d,d] and the distribution family F =

{
P ∈ M(D) : EP(1) = 1,EP(d̃) = µ,EP(d̃d̃′) =

µµ′ + Σ

}
, in which Σ � 0, then we have

χ(w0,w) ≤ π(w0,w) , minθ1 + θ2 + θ3

s.t. w10 + u′1(d− µ) + v′1(µ− d) ≤ θ1
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0 ≤ θ1

u′2(d− µ) + v′2(µ− d) ≤ θ2

w20 ≤ θ2

1

2

(
w30 +

√
w2

30 + ‖Σ1/2w3‖22
)
≤ θ3

u1 − v1 − u2 + v2 + w3 = w

w10 + w20 + w30 = w0 + w′µ, (6.11)

Lemma 6.4. Suppose D = [d,d] and F =

{
P ∈ M(D) : EP(1) = 1,EP(d̃) = µ,EP(d̃d̃′)

= µµ′ + Σ

}
, in which Σ � 0. We obtain a tractable upper bound of χ(w0,w) in terms of

LMI as

χ(w0,w) ≤ η(w0,w) , min
u,v≥0

{
u′(d− µ) + v′(µ− d) + η†(w0 − u′d + v′d,w + u− v)

}
,

(6.12)

where η†(w0,w) is LMI representable as

η†(w0,w) , inf
M∈SK+1,u,v,β1,β2

〈Ω,M〉

s.t. M <
K∑
k=1

β1kMk

M <
K∑
k=1

β2kMk +

 0 1
2(w − u + v)

1
2(w − u + v)′ w0 + u′d− v′d


u,v,β1,β2 ≥ 0.

(6.13)

Here {Mk}k∈[K] ∈ SK+1 are symmetric matrices defined as

Mk(k, k) = −1,Mk(k,K) = Mk(K, k) =
1

2
(dk + dk);

Mk(K,K) = −dkdk,Mk(i, j) = 0 : ∀i, j ∈ [K] \ {k,K},
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and we define Ω as

Ω =

µµ′ + Σ µ

µ′ 1

 .

Proof. We first prove that χ(w0,w) ≤ η†(w0,w). Note χ(w0,w) is the worst case expec-

tation of (w0 + w′d̃)+ with respect to distribution family F, which is a classical problem

of moments that can be equivalently expressed as an infinite-dimensional linear program

with respect to the probability density function p(ξ̃) of the distribution P

χ(w0,w) = sup

∫
[d,d]

max{0, w0 + w′ξ̃}p(ξ̃) d(ξ̃)

s.t.
∫

[d,d]

[
ξ̃′ 1
]′ [
ξ̃′ 1
]
p(ξ̃) d(ξ̃) = Ω

p(ξ̃) ≥ 0 : ∀ξ̃ ∈ [d,d].

Associating dual variables M ∈ SK+1 with respect to Ω we obtain its equivalent dual

formulation

χ(w0,w) = inf 〈Ω,M〉

s.t.
[
ξ̃′ 1
]
M
[
ξ̃′ 1
]′
≥ 0 : ∀ξ̃ ∈ [d,d][

ξ̃′ 1
]
M
[
ξ̃′ 1
]′
≥ w0 + w′ξ̃ : ∀ξ̃ ∈ [d,d].

(6.14)

Since Σ � 0, the moment information matrix Ω resides in the interior of the space of

feasible ones. This slater type condition enforces strong duality (Bertsimas and Popescu,

2005; Popescu, 2005; Zuluaga and Peña, 2005) and we therefore can deduce that its

optimal value coincides with χ(w0,w).

Note that when ξ̃ ∈ [d,d], we have

[
ξ̃′ 1
]
β1kMk

[
ξ̃′ 1
]′
≥ 0 : ∀k ∈ [K]

for all β1 = (β1k)k∈[K] ≥ 0.
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Hence, it can be seen that the following constraint

[
ξ̃′ 1
]

M
[
ξ̃′ 1
]′
≥
[
ξ̃′ 1
]∑

k∈[K]

β1kMk

[ξ̃′ 1]′ : ∀ξ̃ ∈ <K
gives a conservative approximation of the semi-infinite constraint

[
ξ̃′ 1
]

M
[
ξ̃′ 1
]′
≥ 0 : ∀ξ̃ ∈ [d,d].

Similarly, for all u,v,β2 ≥ 0, the following constraint

[
ξ̃′ 1
]
M
[
ξ̃′ 1
]′
≥ w0 + w′ξ̃ + u′(d− ξ̃) + v′(ξ̃ − d)+[
ξ̃′ 1
] (∑

k∈[K] β2kMk

) [
ξ̃′ 1
]′

: ∀ξ̃ ∈ <K

gives a conservative approximation of the second semi-infinite constraint of (6.14)

[
ξ̃′ 1
]

M
[
ξ̃′ 1
]′
≥ w0 + w′ξ̃ : ∀ξ̃ ∈ [d,d].

Hence, for all u,v,β2 ≥ 0, a matrix M ∈ SK+1 satisfying

M <
K∑
k=1

β1kMk,M <
K∑
k=1

β2kMk +

 0 1
2(w − u + v)

1
2(w − u + v)′ w0 + u′d− v′d


is feasible in (6.14).

The arbitrariness in choosing u,v,β1,β2 ≥ 0 states that η†(·, ·) is actually a mini-

mization problem with a decision space smaller than that of χ(·, ·), which indicates that

χ(w0,w) ≤ η†(w0,w) : ∀(w0,w) ∈ <K+1

In addition, we observe that when d̃ ∈ [d,d]

u′(d− d̃) ≥ 0,v′(d̃− d) ≥ 0
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holds for all u,v ≥ 0. Therefore, it can be seen that

χ(w0,w)

= sup
P∈F

EP(w0 + w′d̃)+

= sup
P∈F

EP

(
w0 + w′d̃− u′(d− d̃)− v′(d̃− d) + u′(d− d̃) + v′(d̃− d)

)+

≤ sup
P∈F

EP

(
w0 − u′d + v′d + (w + u− v)′ d̃

)+
+ sup

P∈F
EP

(
u′(d− d̃) + v′(d̃− d)

)
= χ

(
w0 − u′d + v′d,w + u− v

)
+ u′(d− µ) + v′(µ− d)

≤ u′(d− µ) + v′(µ− d) + η†(w0 − u′d + v′d,w + u− v).

The arbitrariness of u,v enforces the inequality χ(w0,w) ≤ η(w0,w).

WhenK = 1, the LMI based bound η(·, ·) is tight because the proposed approximation

of the semi-infinite constraints in (6.14) turns to be equivalent due to the famous S-

lemma. This indicates that η(·, ·) is tighter than π(·, ·) when K = 1. In fact, η(·, ·) is

always tighter than π(·, ·) for every K ∈ Z+. In order to prove this tightness, we give the

following closed form of a specific LMI.

Lemma 6.5. For Σ � 0,µ ∈ <K and (w0,w) ∈ <K+1, we have

inf

〈Ω,M〉 : M < 0,M <

 0 1
2w

1
2w′ w0

 ,M ∈ SK+1


=

1

2

(
w0 + w′µ+

√
(w0 + w′µ)2 + w′Σw

)
,

where we define Ω as

Ω =

 µµ′ + Σ µ

µ′ 1

 .
Proof. Let Fξ be the family of distributions of random vector ξ̃ such that the first- and

second-order moments are µ and Σ, i.e.,

Fξ =

{
P ∈M(<K) : EP

([
ξ̃′ 1
]′ [
ξ̃′ 1
])

= Ω

}
.
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For (w0,w) ∈ <K+1, let µ = w0 + w′µ and σ =
√

w′Σw. Then clearly the distribution of

w0 + w′ξ̃ belongs to the distribution family of random scalar ṽ defined as

Fv =
{
P ∈M(<) : EP(1) = 1,EP(ṽ) = µ,EP(ṽ2) = µ2 + σ2

}
.

From the general projection property (Theorem 1 of Popescu (2007)), we have

sup
P∈Fξ

EP(w0 + w′ξ̃)+ = sup
P∈Fv

EP(ṽ)+. (6.15)

The left side of the above equation can equivalently be expressed as an infinite-

dimensional linear program with respect to its probability density function p(ξ̃) as:

sup
P∈Fξ

EP(w0 + w′ξ̃)+ = sup

∫
<K

max{0, w0 + w′ξ̃}p(ξ̃) dξ̃

s.t.
∫
<K

[
ξ̃′ 1
]′ [
ξ̃′ 1
]
p(ξ̃) dξ̃ = Ω

p(ξ̃) ≥ 0 : ∀ξ̃ ∈ <K

By introducing dual variables M ∈ SK+1 corresponding to the (K + 1) × (K + 1) con-

straints, we obtain its equivalent dual formulation of this infinite-dimensional linear

program by strong duality condition

sup
P∈Fξ

EP(w0 + w′ξ̃)+ = inf 〈Ω,M〉

s.t.
[
ξ̃′ 1
]

M
[
ξ̃′ 1
]′
≥ 0 : ∀ξ̃ ∈ <K[

ξ̃′ 1
]

M
[
ξ̃′ 1
]′
≥ w0 + w′ξ̃ : ∀ξ̃ ∈ <K .

We can therefore expressed supP∈Fξ
EP(w0 + w′ξ̃)+ as:

sup
P∈Fξ

EP(w0 + w′ξ̃)+ = inf

〈Ω,M〉 : M < 0,M <

 0 1
2w

1
2w′ w0


 ,
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which is exactly the left side of our claimed equation. Recall equation (6.15), it suffices

to show

sup
P∈Fv

EP(ṽ)+ =
1

2

(
µ+

√
µ2 + σ2

)
.

Observe that ṽ+ ≤ 1

4
√
µ2+σ2

(
ṽ +

√
µ2 + σ2

)2
for every ṽ ∈ <, we certainly have

sup
P∈Fv

EP(ṽ)+ ≤ 1

4
√
µ2 + σ2

sup
P∈Fv

EP

(
ṽ +

√
µ2 + σ2

)2
=

1

2

(
µ+

√
µ2 + σ2

)
.

In addition, Let ṽ be a random variable such that

ṽ =


√
µ2 + σ2 w.p.

µ+
√
µ2 + σ2

2
√
µ2 + σ2

−
√
µ2 + σ2 w.p.

−µ+
√
µ2 + σ2

2
√
µ2 + σ2

.

It is no hard to see that E(ṽ) = µ, E(ṽ)2 = µ2 + σ2 and E(ṽ)+ = 1
2

(
µ+

√
µ2 + σ2

)
.

Hence,

sup
P∈Fv

EP(ṽ)+ ≥ 1

2

(
µ+

√
µ2 + σ2

)
;

the claim follows.

Proposition 6.4. Suppose D = [d,d] and F =

{
P ∈ M(D) : EP(1) = 1,EP(d̃) = µ,

EP(d̃d̃′) = µµ′ + Σ

}
, in which Σ � 0. For every (w0,w) ∈ <K+1, we can deduce that

χ(w0,w) ≤ η(w0,w) ≤ π(w0,w),

where π(·, ·) and η(·, ·) are given in (6.11) and (6.12), respectively.

Proof. We first show the following elementary result:

π(w0,w) = min
u1,v1,u2,v2≥0

{
1

2

(
w0 + u′1d− v′1d + u′2d− v′2d
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+ (w − u1 + v1 − u2 + v2)′µ+

√(
w0 + u′1d− v′1d− u′2d + v′2d + ω′µ

)2
+ ω′Σω

)}
,

(6.16)

where we define ω as ω = w − u1 + v1 + u2 − v2.

For the special case µ = 0, the right hand side of the above equation is exactly the

same as the bound of χ(·, ·) provided in Theorem 1(a) of Chen et al. (2008). To keep our

proof self-contained, here we prove this result in a different way. If we fix the variables

u1,v1,u2,v2, the minimum objective function of (6.11) reduces to

min

{
(w10 + a)+ + max{w20, b}+

1

2
(w30 +

√
w2

30 + ω′Σω)

: w10 + w20 + w30 = w0 + w′µ

}
,

where a = u′1(d−µ) + v′1(µ− d), b = u′2(d−µ) + v′2(µ− d). It can be seen that, when

we fix a, b, we obtain the minima at

w∗10 = −a

w∗20 = b

w∗30 = w0 + w′µ+ a− b = w0 + u′1d− v′1d− u′2d + v′2d + ω′µ,

and its corresponding objective value coincides with the right hand side of (6.16) when

fixing u1,v1,u2,v2. This completes the proof of (6.16).

Consider the LMI representation of (6.13). Note the fact that the variables

(M,u,v,β1,β2) satisfying

M < 0

M <

 0 1
2(w − u + v)

1
2(w − u + v)′ w0 + u′d− v′d


β1 = β2 = 0
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u,v ≥ 0

is feasible for (6.13). Hence, we have

η†(w0,w)

≤ min
M∈SK ,u1,v1≥0

〈Ω,M〉 : M < 0,M <

 0 1
2(w − u1 + v1)

1
2(w − u1 + v1)′ w0 + u′1d− v′1d




= min
u1,v1≥0

{
1

2

(
w0 + u′1d− v′1d + (w − u1 + v1)′µ+√(

w0 + u′1d− v′1d + (w − u1 + v1)′µ
)2

+ (w − u1 + v1)′Σ(w − u1 + v1)

)}
.

The equality is the consequence of applying Lemma 6.5 by letting w := w−u1 + v1 and

w0 := w0 + u′1d− v′1d. It follows that

η(w0,w)

= min
u2,v2≥0

{
u′2(d− µ) + v′2(µ− d) + η†(w0 − u2d + v′2d,w + u2 − v2)

}
≤ min

u1,v1,u2,v2≥0

{
u′2(d− µ) + v′2(µ− d) +

1

2

(
w0 − u′2d + v′2d + u′1d− v′1d

+ (w + u2 − v2 − u1 + v1)′µ+

√(
w0 − u′2d + v′2d + u′1d− v′1d + ω′µ

)2
+ ω′Σω

)}
= min

u1,v1,u2,v2≥0

{
1

2

(
w0 + u′1d− v′1d + u′2d− v′2d + (w − u1 + v1 − u2 + v2)′µ

+

√(
w0 + u′1d− v′1d− u′2d + v′2d + ω′µ

)2
+ ω′Σω

)}
= π(w0,w).

The last equality above is due to (6.16). The claim follows.

By using these bounds, we can obtain tractable approximations of XIARP (γ). Specif-

ically, let us denote by X SOCPIARP (γ) and XLMI
IARP (γ) as the approximated sets associated

with SOCP based bound π(·, ·) and η(·, ·), respectively. In fact, we can conclude that both

approximations are less conservative than XARP (γ).
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Proposition 6.5. For every γ ∈ (0, 1), we have XARP (γ) ⊆ X SOCPIARP (γ) ⊆ XLMI
IARP (γ) ⊆

XIARP (γ).

Proof. It follows directly from Proposition 6.4 that

X SOCPIARP (γ) ⊆ XLMI
IARP (γ) ⊆ XIARP (γ).

To prove the rest part XARP (γ) ⊆ X SOCPIARP (γ), we denote by ĝ(ν, z, s, t,h, r) as the corre-

sponding approximation of function g(ν, z, s, t,h, r) using bound π(·, ·). We observe that

π(·, ·) possesses two elementary properties:

1. If w0 + w′d̃ ≤ 0 : ∀d̃ ∈ [d,d], then π(w0,w) = 0.

2. If w0 + w′d̃ ≥ 0 : ∀d̃ ∈ [d,d], then π(w0,w) = w0 + w′µ.

The proof of these two properties closely follows to Theorem 1(c) in Chen et al.

(2008) by considering the equivalent formulation (6.16).

If w0 + w′d̃ ≤ 0 : ∀d̃ ∈ [d, d], let u1 = w+,v1 = w−,u2 = v2 = 0. It is not hard to

see that

w = u1 − v1

w0 + u′1d− v′1d = max
d̃∈[d,d]

{
w0 + w′d̃

}
≤ 0.

Hence,

0 ≤ π(w0,w) ≤ 1

2

(
w0 + u′1d− v′1d +

√(
w0 + u′1d− v′1d

)2)
= 0

indicating that π(w0,w) = 0.

Similarly, when w0 + w′d̃ ≥ 0 : ∀d̃ ∈ [d,d] then let u1 = v1 = 0,u2 = w−,v2 = w+.

We can also deduce the following inequality, which verifies property 2:

w0+w′µ ≤ π(w0,w) ≤ 1

2

(
w0 + u′2d− v′2d + 2w′µ+

√(
w0 − u′2d + v′2d

)2)
= w0+w′µ.
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Note the fact that for every x ∈ XARP (γ), we define the following variables from its

associated feasible variables ν, {θ0,θ}, {z0
kp, zkp}(k,p)∈Φ̂, {s0

k, sk, t
0
k, tk}k∈K in (6.8) as

z∗kp(d̃) = z0
kp(d̃) + z′kpd̃ : (k, p) ∈ Φ̂

s∗k(d̃) = s0
k + s′kd̃ : k ∈ K

t∗k(d̃) = t0k + t′kd̃ : k ∈ K

h∗km(d̃) = 0 : (k,m) ∈ Φ̌

r∗k(d̃) = 0 : k ∈ K

ν∗ = ν.

It can be seen that all the nonlinear terms appears in rows two to three of ĝ vanishes

and we therefore have

ĝ(ν∗, z∗, s∗, t∗, r∗,h∗)

= π

(∑
k∈K

t0k − ν,
∑
k∈K

tk

)

≤ π(θ0,θ) + π

(∑
k∈K

t0k − ν − θ0,
∑
k∈K

tk − θ
)

= π(θ0,θ)

= θ0 + θ′µ.

The second last equality is due to the first property of π(·, ·) and the last equality is

because its second property. Hence, we can conclude that ν+ 1
1−γ ĝ(ν∗, z∗, s∗, t∗, r∗,h∗) ≤

τ indicating that x ∈ X SOCPIARP (γ). Consequently, the claim XARP (γ) ⊆ X SOCPIARP (γ) follows.
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6.4 A Single Convex Formulation of the Resilience Index

So far, we manage to build tractable approximations of X (γ) such that the original

problem (6.3) can be approximately solved by a sequence of sub-problems

min c′x

s.t. x ∈ X̂ (γ)

with X̂ (γ) being a tractable approximation of X (γ). Hence, the overall computational

time might be high if high accuracy of the optimal objective γ∗ is required because

we have to solve the sub-problem in many times. In this section we show that under

mild conditions, the original problem can be approximately solved by a single convex

optimization problem with its computational complexity the same as that of the above

sub-problem. The following result gives an equivalent representation of the resilience

index.

Proposition 6.6. Let us define ρSAM(ṽ,P) , sup {γ : CVaRP(ṽ, γ) ≤ 0} for every ṽ ∈

L∞(D,F ,P). Suppose that for every P ∈ F, ρSAM

(
Q(x, d̃)− τ,P

)
∈ (0, 1). Then,

%(G,x) = ρDSAM

(
Q(x, d̃)− τ,F

)
= sup

α≥0
inf
P∈F

EP

(
min

{
1, α

(
τ −Q(x, d̃)

)})
.

In addition, the optimal α value in the right hand side of the above equality resides in

(0,+∞).

Proof. We first show the following equality:

ρDSAM(ṽ,F) = inf
P∈F
{ρSAM(ṽ,P)} . (6.17)

Denote by γL and γR as the left side and right side of the above equality, respectively. We

complete the proof of γL = γR by two separate parts.
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a) γR ≤ γL. Suppose by contradiction that γR > γL, or equivalently, ∃ε > 0 such that

γR > γL + ε. By definition we can deduce that ρSAM(ṽ,P) > γL + ε for every P ∈ F. It

follows that for every P ∈ F, CVaRP(ṽ, γL + ε) ≤ 0 indicating that supP∈F CVaRP(ṽ, γL +

ε) ≤ 0. Consequently, we have γL = ρDSAM(ṽ,F) ≥ γL + ε which is impossible. In

conclusion, we have γR ≤ γL.

b) γL ≤ γR. Similarly, we assume by contradiction that there exists ε > 0 such that

γL > γR + ε. It follows from the definition of γL that supP∈F CVaRP(ṽ, γR + ε) ≤ 0.

Hence, for every P ∈ F we have ρSAM(ṽ,P) ≥ γR + ε indicating that γR =

infP∈F {ρSAM(ṽ,P) ≥ γR + ε}. This contradiction leads to the claim γL ≤ γR.

From (6.17) we directly deduce that %(G,x) = infP∈F{ρSAM(Q(x, d̃) − τ,P)}. For

every P ∈ F, it follow from ρSAM(Q(x, d̃) − τ,P) ∈ (0, 1) that P(Q(x, d̃) > τ) > 0, or

equivalently ∃ε > 0 such that P(Q(x, d̃) ≥ τ + ε) > 0.

Observe that for every P ∈ F,

ρSAM(Q(x, d̃)− τ,P) = sup
γ

{
γ : CVaRP(Q(x, d̃)− τ, γ) ≤ 0

}
= sup

γ,ν

{
γ : ν +

1

1− γEP

(
Q(x, d̃)− τ − ν

)+
≤ 0

}
=︸︷︷︸
(a)

sup
γ,ν

{
γ :

1

1− γEP

(
Q(x, d̃)− τ + ν

)+
≤ ν, ν > 0

}

= sup
γ

{
γ : γ ≤ 1− inf

ν>0
EP

(
1

ν
(Q(x, d̃)− τ) + 1

)+
}

= sup
ν>0

EP

(
min

{
1

ν
(τ −Q(x, d̃)), 1

})
=︸︷︷︸
(b)

sup
α≥0

EP

(
min{1, α(τ −Q(x, d̃))}

)
.

Because P
(
Q(x, d̃) > τ

)
> 0, we have EP

(
Q(x, d̃)− τ

)+
> 0. Therefore, ν +

1

1− γEP

(
Q(x, d̃)− τ − ν

)+
≤ 0 implying ν < 0. Hence, equality (a) is enforced by

substituting ν with −ν. Because ρSAM(Q(x, d̃) − τ,P) ∈ (0, 1), the optimal α value α∗
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should be positive. Observe that

0 ≤ EP

(
min{1, α∗(τ −Q(x, d̃))}

)
≤
(

1− P
(
Q(x, d̃) ≥ τ + ε

))
− P

(
Q(x, d̃) ≥ τ + ε

)
α∗ε,

we then have

α∗ ≤ 1

εP
(
Q(x, d̃) ≥ τ + ε

) (1− P
(
Q(x, d̃) ≥ τ + ε

))
.

Hence, the additional relaxation from α > 0, α < +∞ to α ≥ 0 would not affect its

maximum value. This implies equality (b). Therefore, we have

%(G,x) = inf
P∈F

sup
α≥0

EP

(
min{1, α(τ −Q(x, d̃))}

)
= sup

α≥0
inf
P∈F

EP

(
min

{
1, α(τ −Q

(
x, d̃)

)})
.

The second equality is due to the stochastic saddle point theorem in Shapiro and Kleywegt

(2002). The first claim is verified. Moreover, since the right side of the above equation

takes value in (0, 1), we can deduce that α∗ > 0. Meanwhile, for distribution P such that

P(Q(x, d̃) ≥ τ + ε) > 0, we have α∗ ≤ (
1− P(Q(x, d̃) ≥ τ + ε)

)
/
(
P(Q(x, d̃) ≥ τ + ε)ε

)
< +∞. All

the claims are verified.

By replacing the objective function %(G,x) by sup
α≥0

inf
P∈F

EP

(
min

{
1, α(τ −Q

(
x, d̃)

)})
,

we can solve the following distributionally robust model instead of (6.3):

Ẑ∗0 = max
x,α

inf
P∈F

EP

(
min{1, α(τ −Q(x, d̃))}

)
s.t. c′x ≤ B

x ≥ 0, α ≥ 0

(6.18)

It can be seen from Proposition 6.6 that Z∗0 and Ẑ∗0 coincide except in the degenerate

cases (In these degenerate cases, %(G,x) equals to 0 or 1. The 0 cases can be identified by
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checking min
d̃∈D
Q(x, d̃) > τ , and the 1 cases can be identified by checking max

d̃∈D
Q(x, d̃) ≤

τ). Model (6.18) can be formulated into a single optimization problem via variables

substitution from x := αx. This formulation can avoid the binary search scheme in the

computation of the resilience index and thus has the potential of reducing the overall

computational effort.

It is also worth pointing out that (6.18) is still intractable because the appearance of

nonlinear term EP(·)+ in the objective function and the nonlinear penalty cost structure

pk(sk) : k ∈ K. Nonetheless, tractable approximation can be obtained by using decision

rules. The principles of deriving these approximations are nearly the same as what we

have discussed for the convex set X (γ) in Section 6.3. For instance, if we apply the

improved affine routing policy, we can approximately solve (6.18) via the following

optimization problem:

Ẑ∗IARP =1−

min sup
P∈F

EP

1− ατ +
∑
k∈K

tk(d̃) +
∑

(k,m)∈Φ̌

hkm(d̃) +
∑
k∈K

pkMrk(d̃)

+

+
∑

(k,m)∈Φ̌

sup
P∈F

EP

(
pkmsk(d̃) + αqkm − tk(d̃)− hkm(d̃)

)+

+
∑

(k,m)∈Φ̌

sup
P∈F

EP

(
−hkm(d̃)

)+
+
∑
k∈K

pkM sup
P∈F

EP

(
−rk(d̃)

)+

+
∑
k∈K

pkM sup
P∈F

EP

(
−sk(d̃)− rk(d̃)

)+

s.t.{zkp(d̃)}(k,p)∈Φ̂ ∈ L(N)

{hkm(d̃)}(k,m)∈Φ̌ ∈ L(|Φ̌|)

{sk(d̃), tk(d̃), rk(d̃)}k∈K ∈ L(K)∑
p∈Pk

zkp(d̃) + sk(d̃) ≥ αd̃k : ∀d̃ ∈ D, k ∈ K
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∑
(k,p)∈Φ̂

δpazkp(d̃) ≤ xa : ∀d̃ ∈ D, a ∈ A

zkp(d̃) ≥ 0 : ∀d̃ ∈ D, (k, p) ∈ Φ̂

c′x ≤ Bα

α ≥ 0

x ≥ 0.

Indeed, we can also obtain the inequality Ẑ∗IARP ≤ Ẑ∗0 . The proof is similar to that

of Proposition 6.3 and hence omitted.

6.5 Computational Studies

In this section, we conduct some computational experiments to study the following is-

sues of interest. First, we investigate the performance improvement of using additional

moment information over the traditional uncertainty set based approach. Second, we

investigate if our proposed distributionally-ambiguous shortfall awareness measure can

provide reasonable design solution under uncertainty. In the first experiment, we inves-

tigate the value of moment information in providing less conservative solutions. The

improved affine routing policy is believed to be less sensitive to the specified support set

D because the incorporated second moment information would play a role of correcting

the errors in support set specification. The second experiment focuses on the general

telecommunication network design problem and compares the performances of three

different design strategies.

We consider the general problem of designing a telecommunication network under

demand uncertainty, and compare our proposed strategy with two benchmark solution

strategies: (1) the robust optimization approach of maximizing the budget of uncertainty

(MaBU) and (2) minimizing the expected total cost (MiETC) using a sample average ap-

proximation scheme. The robust approach is favored in the literature because it requires
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less information on the uncertainty and its resulting robust counterpart is relatively eas-

ier to solve (see Altın et al., 2007, 2011; Lee et al., 2012; Lemaréchal et al., 2010; Koster

et al., 2010, 2011a,b, 2013, and the references therein). In contrast, MiETC is based on

a Utopian assumption that the distributional information of the under demand vector d̃

is precisely known, which is unrealistic in practice.

Maximizing budget of uncertainty With the belief that the uncertain vector d̃ symmet-

rically resides in [µ− d̂,µ+ d̂], Bertsimas and Sim (2003, 2004) introduce the budget of

uncertainty Γ and define budget uncertainty sets as DΓ =
{

d :
∑

k∈K
|dk−µk|
d̂k

≤ Γ
}

. For

fixed Γ value, the robust telecommunication network design problem is formulated as:

min c′x

s.t. max
d̃∈DΓ

∑
(k,p)∈Φ̂

δpaz
0
kpd̃k ≤ xa : ∀a ∈ A

∑
p∈Pk

z0
kp = 1 : ∀k ∈ K

z0
kp ≥ 0 : ∀(k, p) ∈ Φ̂.

The above model aims to find a minimum cost capacity installation x such that, for every

demand vector d̃ ∈ DΓ, we can always find a path flow solution that simultaneously

supports d̃ and respects capacity installation x. It is worth noting that oblivious routing

policy zkp = z0
kpd̃k is adopted for model simplicity. When limited investment budget B is

available, we slightly modify the model objective to maximize the budget of uncertainty

Γ. A precise formulation is given as:

Γ∗ = max Γ

s.t. c′x ≤ B

max
d̃∈DΓ

∑
(k,p)∈Φ̂

δpaz
0
kpd̃k ≤ xa : ∀a ∈ A

∑
p∈Pk

z0
kp = 1 : ∀k ∈ K

z0
kp ≥ 0 : ∀(k, p) ∈ Φ̂.
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Minimizing expected total cost For fixed capacity installation x, the penalty cost de-

pends critically on the demand vector d̃ and thus the total cost is uncertain. A typical

decision criterion is to find a capacity installation such that the total expected cost is mini-

mized. To make the comparison fair, the investment budget B is also imposed. Therefore,

we give the MiETC model as:

min c′x + EP

[
Q(x, d̃)

]
s.t. c′x ≤ B.

The above problem is intractable because multi-dimensional integration is involved in

computing the expectation of nonlinear term Q(x, d̃), which is believed to be intractable

in general (see Nemirovski and Shapiro, 2006). Suppose that the precise distribution of

d̃ is known and we have a random sample of L outcomes
{
dl
}
l∈[L]

from this distribution.

We adopt the following sampling average approximation scheme to solve it.

min c′x +
1

L

∑
l∈[L]

Q(x,dl)

s.t. c′x ≤ B.

It is noted that the success probability P(Q(x, d̃) ≤ τ) is also commonly used as a

decision criterion. However, it is highly intractable because it is non-convex such that the

corresponding sampling average approximation scheme leads to MIP formulation. We

exclude this criterion in comparison because calculation time would be quite long even

for a small sample size. For our proposed distributionally-ambiguous shortfall aspiration

awareness measure approach, we solve model (6.3) in a binary search scheme by using

the improved affine routing policy, i.e., we approximate X (γ) with XIARP (γ).

All the involved optimization problems are coded in MATLAB 2012 platform by

calling the commercial software CPLEX 12.3 as the solver. The program is running on

an Intel Dual Core i5-2500 PC with 8 GB RAM and 3.30 GHz CPU. The improved affine

routing policy and the SOCP bound π(·, ·) is modeled using the MATLAB toolbox ROME

(Goh and Sim, 2011).
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Figure 6.1: A simple telecommunication network with four nodes.

A B

C

D

6.5.1 Value of Moment Information

Bertsimas and Sim (2004) report that the Γ-model of uncertainty perform well when the

random vector d̃ is symmetrically distributed in the specified support D = [µ− d̂,µ+ d̂]

with mean µ. However, this is hardly the case under many real situations. Without the

exact distribution of uncertainty, the only source of estimating D is observed data or

some descriptive statistics. Hence, errors in the specified D are inevitable and therefore

the quality and robustness of the solution obtained by the robust approach would be

affected. Unlike the pure robust optimization approach, our proposed distributionally

robust approach exploit moment information on the uncertainty, which is believed to

reduce the impact of the errors in support estimation.

To verify this, we consider a telecommunication network with four nodes A, B, C and

D (see Figure 6.1). There are two communication demands in this network: pairwise

commodities AC and AD. In this experiment, we assume that the demand amount of

these two commodities are d̃AC = µ + ξ̃ and d̃AD = µ − ξ̃, where ξ̃ is a random scalar
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that follows a two point distribution as:

P
(
ξ̃ = ξ

)
=


β if ξ = − 1

β

1− β if ξ =
1

1− β .

Furthermore, we also assume that only the first- and second-order moments of the ran-

dom variable ξ̃ are known to the decision maker. Specifically, ξ̃ is known to be a random

scalar with zero mean and a standard deviation of σ =
1√

β(1− β)
.

In the absence of data, we implicitly assume that the support of ξ̃ is [−3σ, 3σ] based

on a normal approximation. Indeed, this specified support set is corrupted by estimation

error resulting from the assumed symmetric normal distribution. When β is smaller than
1

2
, ξ̃ is asymmetrically distributed and the value of

1

β
reflects its level of asymmetry. Now

let us consider a simple telecommunication network design problem of minimizing the

total expected demand loss as:

min E
[
max

{(
µ− x1 + ξ̃

)+
+
(
µ− x2 − ξ̃

)+
, (2µ− x3)+

}]
s.t. x1 + x2 + x3 ≤ B

x ≥ 0,

where x1, x2 and x3 denote the capacity of arc BC, BD and AB, respectively. We set

the mean demand µ = 10, installation cost vector c = 1 and the investment budget

B = 4µ + ισ in this experiment. Since the exact distribution of ξ̃ is assumed to be

unknown, we adopt the distributionally robust approach by applying Lemma 6.2 with

the π(·, ·) bound as follows:

min y + π
(
−y + h0

1 + h0
2, h

1
1 + h1

2

)
+ π

(
−h0

1,−h1
1

)
+ π

(
−h0

2,−h1
2

)
+ π

(
µ− x1 − h0

1, 1− h1
1

)
+ π

(
µ− x2 − h0

2,−1− h1
2

)
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s.t. y ≥ 2µ− x3

x1 + x2 + x3 ≤ B

x1, x2, x3, y ≥ 0,

where the variables h0
1, h

1
1, h

0
2, h

1
2 are used to construct affine decision rules h1(ξ̃) =

h0
1 + h1

1ξ̃ and h2(ξ̃) = h0
2 + h1

2 when applying Lemma 6.2.

We also compute the actual optimal design with exact distributional information as a

Utopian benchmark. We term it as the stochastic approach for simplicity. Provided with

the exact distributional information of ξ̃, the corresponding optimal design can be solved

by the following linear program:

min βl1 + (1− β)l2

s.t. l1 ≥ 2µ− x3

l1 ≥ y1
1 + y2

1

y1
1 ≥ µ−

1

β
− x1

y2
1 ≥ µ+

1

β
− x2

l2 ≥ 2µ− x3

l2 ≥ y1
2 + y2

2

y1
2 ≥ µ+

1

1− β − x1

y2
2 ≥ µ−

1

1− β − x2

y1
1, y

2
1, y

1
2, y

2
2, l1, l2 ≥ 0,

where l1 and l2 denote the total demand loss corresponding to the realized scenarios

ξ̃ = − 1

β
and ξ̃ =

1

1− β , respectively.
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It can be seen that the MaBU approach is infeasible when ι < 0. When ι ≥ 0, the

optimal solution is (µ+ ισ/3, µ+ ισ/3, 2µ+ ισ/3). To make the comparison fair, we vary

ι from 0.1 to 1 (When ι is large, the total expected demand loss is zero for all three meth-

ods). Table 6.1, 6.2 and 6.3 summarize the normal approximation based 95% confidence

interval of the expected total demand loss estimated by 10,000 randomly generated

instances for each tested parameter setting under each design strategy. In terms of the

estimated average total demand loss, we observe that the stochastic approach performs

best for most tested instances (The exceptions that 1/β = 2, ι = 0.2, 0.8, 0.9 is due to

the sampling error). This is straightforward because the stochastic approach aims to find

the “real” optimal design minimizing the expected total demand loss. The gap between

the MaBU approach and the stochastic approach consists of two parts: the optimality

gap caused by the conservative worst-case scheme and the one caused by the estimation

error of the support set. Not surprisingly, our proposed approach outperforms the MaBU

approach for all the tested instances. This suggest our preliminary conjecture that the

first- and second-order moment information can reduce the optimality gap caused by

the estimation error of the support set. We also normalize the performance ratio by

letting the stochastic approach as 1 to make the comparison clear, and plot the expected

total demand loss ratio for each design strategies in Figure 6.2. The value of first- and

second-order moment information can be viewed as the relative improvement of the

proposed approach against the MaBU approach. An apparent increasing trend of the

value of moment information is observed when the level of distributional asymmetry of

the uncertainty (value of 1/β) increases. Therefore, we can deduce the intuition that the

value of the moment information increases when the discrepancy between the actual

and estimated support sets increases.

6.5.2 Computation Study of Telecommunication Network Design Problem

We next consider the general telecommunication network design problem. Since the

introduction of decision rule increase the problem complexity with many new decision
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variables, one typical concern is that how much time is required for our proposed method

to solve a typical real sized telecommunication network problem? Benefited from the

linear capacity setting, our method can solve the network instances dfn-bwin and polska

in Orlowski et al. (2010) by less than 10 minutes. However, it is reported in Lee et al.

(2012) that their proposed branch-and-price-and-cut method is not able to solve them to

optimality in one hour. This means that our proposed method is competitive to existing

methods and we do not need to worry too much about its computational performance.

Our main concern is, how would our proposed approach address the stochastic sys-

tem performance compared with the benchmarks? To make the comparison fair, we

test them by various problem instances and report their overall performances. Since

the computation of the stochastic system performance requires a lot of replications, our

tested samples are of small scale so that the overall simulation time would not be huge.

More precisely, we randomly generate the arcs of the telecommunication networks to

form a tree structure, which is sparse and the available path for each pairwise demand

is unique. In the following we briefly discuss our experiment data generation proce-

dure. We consider 100 instances of telecommunication networks to estimate the average

performance of each design strategy. Due to the long computational time required to

estimate the stochastic system performance with 10,000 samples, we use a smaller test

set of 1,000 demand scenarios for each telecommunication network instance. To form a

tree structure, we randomly generate the arcs of the telecommunication network by the

following procedure. We design a network with 10 nodes by adding them to the network

one by one. For each new added node, we randomly assign an arc linking it to one of the

previously added node set. Finally, we obtain a random tree such that the path linking

each node pairs is uniquely defined.

For each tree instance, we randomly generate the problem parameters. The capac-

ity installation cost rate of each arc is randomly generated from a uniform distribution

between 0 and 2. In addition, we randomly select 15 of the 45 node pairs as the de-

mand pairs. For each pairwise demand, we assume the demand amount d̃k fluctuates in
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[µk − 3σk, µk + 3σk], where the mean demand µk is randomly generated from a uniform

distribution between 10 and 20, and the corresponding standard deviation is generated

from 0 to µk/3. For modeling simplicity, the associated penalty function is assumed to

be a linear function of the actual demand loss amount, where the penalty rate is also

randomly generated from 0.5 to 1.5. In this experiment, we artificially set the investment

budget B = (BL +BU ) /2, where BL and BU correspond to the minimum investment

budget required to support the extreme demand scenarios d and d, respectively. To

choose the total penalty tolerance level τ , we obtain the optimal design x∗N minimizing

the total penalty cost under the nominal case that the demand d̃ = µ, and choose τ as

the 40% quantile of the stochastic penalty cost profile with the design solution x∗N when

the uncertain demands are normally and independently distributed.

For each network instance, we randomly generate 1,000 sets of demand realiza-

tions following our assumed distributions. More precisely, we test two subcases: (a)

the independent case where the demands are independently distributed (b) the cor-

related case where the demands follows a multivariate normal distribution such that

the correlation matrices are generated by MATLAB command gallery(’randcorr’,n). For

the independent case, we test both the normal distribution and the uniform distribu-

tion. We calculate the optimal design solution under three design strategies: the pro-

posed DSAM approach, the MaBU and MiETC approach. With the help of the 1,000

randomized realizations, we estimate the normalized expected penalty value EPV =

1
τE(Q(x, d̃)), success probability SuP = P(Q(x, d̃) ≤ τ), normalized expected penalty

overrun EPO = 1
τE(Q(x, d̃) − τ)+ and the normalized conditional expected penalty

overrun CEPO = 1
τE
(
Q(x, d̃)− τ

∣∣∣Q(x, d̃) > τ
)

.

Table 6.4 summarizes the 95% confidence interval derived by normal approximation

for the independent case. The results indicate that the proposed DSAM approach gives

the largest EPV, but provides designs with significantly higher success probability, lower

EPO and CEPO than the MaBU approach. It can be seen that the general performance

of the MiETC approach is the best among all these three strategies. It is worthwhile to
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highlight that our DSAM approach performs competitively well with the MiETC approach,

which assumes the distributional information on the uncertainty is precisely known. We

then compare the results for the correlated case in Table 6.5. As we can see, our proposed

DSAM approach gives the best performance among all these three design strategies in

terms of all performance measures. In summary, our proposed DSAM approach is as

comparable when the demands are independently distributed, and dominates both the

MaBU and MiETC design strategies when demands are correlated.

6.6 Conclusion

In this chapter, we consider the resilience of telecommunication network under demand

uncertainty. Different from the pure robust approach in the literature, we assume that

the stochastic nature of the demand is partially known. More precisely, we assume that

the distribution of the demand vector is known to reside in a family of distributions de-

scribed by known support, first- and second-order moments. Our assumption on demand

uncertainty is more reasonable than the purely uncertainty set based robust approach in

the literature because vast historical demand data is available at the designing stage.

Attracted by the advantages of the distributionally-ambiguous shortfall aspiration

measure in addressing tail risk, distributional ambiguity and computational tractability,

we adopt it to describe the telecommunication network resilience against demand fluc-

tuation. Based on this, we build a mathematical model of designing telecommunication

network with maximized resilience under given investment budget, and derive tractable

approximations to solve it via decision rules. To make use of the second-order moment

information, we propose the improved affine routing policy via the approximation of

the truncated expectation. Our result gives several important insights on this problem.

First, the incorporation of the moment information in the improved affine routing policy

provides us less conservative solutions than the simply uncertainty set based robust ap-

proach. This is especially true when the support of the uncertainty is not precisely true.
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Second, our computational study suggests that our proposed distributionally-ambiguous

shortfall aspiration measure based approach gives design solutions with higher stochas-

tic performance than the pure robust approach in the literature. Additionally, when

demands are correlated, its performance can be even better than the stochastic approach

based on the Utopian assumption of precise distributional information.

6.7 Attached Tables and Figures
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Figure 6.2: Performance ratio when ι varies.
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Table
6.1:

Expected
totaldem

and
loss

under
the

M
aB

U
approach.

ι
1/β

0.1
0.2

0.3
0.4

0.5
2

1
.93

3
3±

3.77E-15
1
.86

6
7±

2.44E-15
1.8000±

6.66E-15
1
.7333±

3.11E-15
1.6667±

4.22E-15
3

1
.93

3
1±

0.0139
1
.86

0
3±

0.0139
1.7770±

0.0138
1
.7117±

0.0138
1.6495±

0.0139
4

1
.93

4
2±

0.0228
1
.84

3
4±

0.0226
1.7771±

0.0227
1
.6929±

0.0226
1.6239±

0.0227
5

1
.90

2
4±

0.0292
1
.82

6
6±

0.0293
1.7125±

0.0288
1
.6438±

0.0291
1.6115±

0.0298
6

1
.89

1
0±

0.0347
1
.80

0
6±

0.0347
1.7530±

0.0354
1
.6784±

0.0357
1.5443±

0.0349
7

1
.90

7
9±

0.0401
1
.79

4
6±

0.0397
1.7034±

0.0398
1
.6011±

0.0397
1.5770±

0.0411
8

1
.92

1
8±

0.0450
1
.84

4
4±

0.0455
1.7244±

0.0450
1
.6215±

0.0450
1.4940±

0.0444
9

1
.91

8
3±

0.0491
1
.81

2
2±

0.0491
1.6652±

0.0481
1
.5670±

0.0483
1.4775±

0.0487
10

1
.88

8
0±

0.0523
1
.77

6
0±

0.0522
1.6907±

0.0529
1
.5582±

0.0523
1.4844±

0.0533
ι

1/β
0.6

0.7
0.8

0.9
1.0

2
1.6000±

4.88E-15
1.5333±

2.44E-15
1.4667±

2.00E-15
1.4000±

4.66E-15
1.3333±

3.11E-15
3

1.5763±
0.0139

1.5102±
0.0139

1.4398±
0.0139

1.3552±
0.0138

1.2984±
0.0139

4
1.5365±

0.0226
1.4470±

0.0225
1.3719±

0.0225
1.3013±

0.0226
1.2182±

0.0225
5

1.5079±
0.0295

1.4095±
0.0293

1.3382±
0.0295

1.2305±
0.0291

1.1764±
0.0295

6
1.4645±

0.0351
1.3693±

0.0350
1.2856±

0.0351
1.1779±

0.0348
1.1115±

0.0352
7

1.4684±
0.0408

1.3241±
0.0398

1.2464±
0.0402

1.1336±
0.0398

1.0582±
0.0402

8
1.4021±

0.0446
1.3096±

0.0448
1.2396±

0.0455
1.0757±

0.0441
0.9784±

0.0441
9

1.3895±
0.0491

1.2330±
0.0479

1.1222±
0.0478

1.0437±
0.0485

0.9605±
0.0490

10
1.3378±

0.0524
1.2507±

0.0530
1.0667±

0.0511
0.9893±

0.0520
0.8667±

0.0517
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Table
6.3:

Expected
totaldem

and
loss

under
the

stochastic
approach.

ι
1/
β

0.1
0.2

0.3
0.4

0.5
2

1
.8

863±
0.0372

1.816
2±

0.0353
1.6796±

0.0333
1.5990±

0.0314
1
.4961±

0.0294
3

1
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0.0397
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4
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5

1
.1

772±
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0.0407
1
.0375±
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Table 6.4: Performances of various design strategies with independent demand data.

Design strategy
Distribution Statistics MaBU MiETC DSAM

Uniform

EPV% 54.2463±2.8737 51.0159±3.0521 60.5178±3.4795
SuP% 81.8236±1.9984 93.1618±2.4597 92.0389±2.1190
EPO% 12.4588±2.5853 2.7757±0.9894 2.1246±0.8508
CEPO% 65.8669±7.8372 36.9605±3.0086 25.0758±2.9870

Normal

EPV% 50.1014±3.3775 48.1088±3.2631 61.9610±4.0301
SuP% 85.8830±2.1626 94.5669±2.6797 94.8313±2.6551
EPO% 8.3534±1.8404 2.5547±0.5531 3.0787±0.8542
CEPO% 63.0541±7.5636 48.5796±4.5150 57.7021±6.1889

Table 6.5: Performances of various design strategies with correlated demand data.

Statistics MaBU MiETC DSAM
EPV% 52.6688±3.1413 50.1989±3.7035 58.1434±4.2612
SuP% 84.3762±1.8985 88.7171±2.2926 96.8481±1.2366
EPO% 12.3472±1.8469 6.8683±2.5688 0.6123±0.4558
CEPO% 76.7690±10.2357 84.5170±13.0536 19.3711± 4.3178
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Chapter 7

Conclusion and Future Research

The fundamental goal of this thesis is to build a quantitative framework of modeling

supply systems resilience. In particular, our analytic framework relies on a network flow

based LP model and thus our framework is restricted to specific supply systems with a

network structure and the operational actions of mitigating the impact of uncertainty

can be formulated as an LP. The specific contributions are summarized as follows.

In Chapter 3, an axiomatic framework of defining resilience measures is proposed

by analyzing the uncertain demand loss penalty function. More precisely, these five ax-

ioms are carried to address both the target oriented decision trend and computational

tractability. The target oriented decision trend, which is also termed as “satisficing” trend,

possesses strong justification in decision theory and has recently received a surge interest

in the area of decision under uncertainty. In addition, the proposed five axioms them-

selves do not single out any specific type of resilience measure so that we can adjust it

accordingly.

Chapter 4 explores two generic approaches of constructing new resilience measures.

We build an explicit approach of extending resilience measure from certain reference

measures by making use of the concept of “supporting” in finance. This approach enables

us to incorporate the decision maker’s specific risk attitudes towards penalty positions

in the synthesized resilience measures. We then show the fundamental result that, if
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the reference measure fulfills the consistency condition, the corresponding extended

mapping on the extended space is indeed a resilience measure which admits preference

for diversification. We then proposed an adjustable uncertainty set based representation

for resilience measures in Theorem 4.2. More precisely, every computationally proper

resilience measure has an explicitly robust optimization representation and conversely,

this robust optimization format of expression uniquely defines a computationally proper

resilience measure with properly specified adjustable uncertainty sets. This result is of

crucial importance of connecting resilience measure to robust optimization. Even though

we cannot say much about the structure of the corresponding adjustable uncertainty

set without assuming a structural form of the resilience measure and the underlying

probability space (Ω,F ,P), the reverse direction of Theorem 4.2 gives us a generic way

of constructing resilience measures by simply specifying adjustable uncertainty sets. This

result takes a major step towards the computation of resilience because we can take

advantage of the robust optimization paradigm.

In chapter 5, we apply our resilience measure based framework to study energy sup-

ply system resilience against supply disruptions. In particular, we give the definition of

resilience index by relating the energy supply system resilience to a resilience measure

on the uncertain penalty position towards a certain tolerance level. Since supply disrup-

tions are really hard to predict, we consider resilience measure defined by adjustable

uncertainty sets. To this end, we investigate algorithms of computing the resilience index.

By making use of vertex enumeration, a conic optimization based algorithm was firstly

proposed to compute resilience measure generated by general norm based adjustable

uncertainty sets. After that, to circumvent the computational difficulty of the general

algorithm, we considered two special families of adjustable uncertainty sets: the box un-

certainty set and the cardinality uncertainty set. The box uncertainty set is favored due to

its simplicity. When some degree of basic information on the uncertainty is available, car-

nality uncertainty set is preferred from the modeling perspective. The complex structure

of the carnality uncertainty set challenged the efficiency of pure binary search scheme.
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We then develop practically efficient solution algorithms for cardinality-constrained un-

certainty set case, and extend our framework to design optimization problem of max-

imizing the supply system resilience index over the whole decision space. Finally, we

conduct numerical studies using a natural gas supply network application to verify the

effectiveness of the proposed resilience index approach. The first experiment shows that

the proposed resilience measure offers an interesting relevance to the stochastic system

performances. Besides, even though the computation of resilience measure is generally

NP-Hard, the second experiment shows that gradient-based” search method can handle

moderate sized problems. The third experiment demonstrates the superiority of our pro-

posed method to the traditional approach when natural gas supply disruptions present.

Moreover, its stochastic performance is also as comparable as the stochastic method with

concise distributional information of the uncertainty.

Chapter 6 applies our proposed framework of resilience measure to telecommunica-

tion network design problem. The primary goal is to provide a more flexible alternative

of the traditional robust telecommunication network design problem which allows no

demand shortage and might lead to overly conservative solutions due to the ignorance

of the distributional knowledge. Similar to the energy supply system application, we

also propose the same concept of resilience index to measure the telecommunication

network’s service quality with fluctuated demands. In this application, our major concern

is on the design of telecommunication network. To avoid the conservatism suffered by

the robust telecommunication network design approach due to lack of distributional

information, we model the demands as ambiguous random variables with known first-

and second-order moments and support. To address this ambiguous demand model and

achieve computationally tractability at the same time, we adopt the distributionally-

ambiguous shortfall awareness measure to build the resilience index. We then build a

design model for maximizing the resilience index of the resulting telecommunication

network with continuous capacity installation. To achieve tight and tractable approxima-

tions of this problem, we then propose a class of improved affine decision rule models.

139



Our computational experiments illustrate that our proposed resilience measure based

approach can provide solution with better stochastic performance than the conventional

robust network design method.

These thesis can be regarded as an opening work of adopting mathematical optimiza-

tion methods (especially optimization under uncertainty paradigm) to build an analytic

framework of modeling supply system resilience against unpredictable uncertainties,

which is important but not well studied in the literature. On the whole a number of

contributions have been achieved in this thesis. Nevertheless, some further research is

necessary to extend our work. Here I list some possible topics for future extension.

In this thesis we restrict our attention to supply system with a network structure and

its corresponding operational problem of delivering the service can be formulated or

approximately solved by LP models. The network structure restriction is necessary for

explicit quantitative analysis. In contrast, the LP model assumption is purely made from

the computational concerns. Hence, the extension from this LP model to more general

and complicated optimization models (e.g., nonlinear or even nonconvex problems)

could be one of the future research directions. Of course there is no free lunch in the

world, the computation and optimization of the resilience index would definitely be

more difficult. Therefore, new analytic or approximation techniques are necessary for

this extension.

In the two separate applications, uncertainties are adopted to address supply disrup-

tions or demand fluctuations. That means, the right hand side of the linear programming

model is affected by uncertainty. Indeed, it is necessary to extend our work to cases in

which the supply system is subject to unknown attacks (such as terrorist attack) such

that the intrinsic structure of the supply system is subject to (removing some critical

arcs of the network). This extension has significant importance, especially for network

planning of critical resources such as ambulances or blood banks. In fact, some specific

instances of this problem has been studied in the literature, such as the robust maximum

flow problem proposed in Bertsimas et al. (2013b) and the network interdiction problem
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considered in Bertsimas et al. (2013a). These two problems are known to be difficult to

solve, which means that the new extended problem would also be difficult because it is

more general. Therefore, it would be interesting to find some useful approximations of

this new extended problem.
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