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Summary
Dislocation slip and martensitic phase transformation are two impor-

tant deformation mechanisms in shape memory alloys (SMAs) and the

interaction between them a�ects the pseudoelasticity and shape memory

e�ect behaviors. These influence the reversibility behavior and also ac-

tuation behavior of SMAs under cyclic loadings. To reduce irreversibility

and improve actuation behavior, a lot of studies have been conducted in

the recent years. The aim of this study is to model the dislocation slip

and phase transformation mechanisms in micro-scale and investigate the

micro-structural e�ects of (i) dislocations on martensitic transformation,

(ii) phase transformation on dislocation slip and (iii) interaction of both

phenomenon on the total reversibility of SMA.

In the first part of this study, the two-dimensional discrete dislocation

dynamic was used to model the plastic deformation in the BCC structure.

Furthermore, a two dimensional discrete transformation method was de-

veloped for the simulation of martensitic transformation in the same scale

as dislocation slip. The discrete transformation framework is based on

the kinetics of austenite-martensite interface by computing the thermo-

mechanical driving force on the transformation interface. Therefore it is

capable of simulating the two-way phase transformation under thermo-

mechanical loading. The main results show the e�ect of dislocations on

irreversibility of SMAs and the reduction in plastic strain by multiple cy-
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SUMMARY

cling processes. The existence of dislocations also a�ects the occurrence of

the phase transformation in lower stresses.

In the second part of this study, the interaction between plasticity and

phase transformation was modeled in macroscopic scale. The constitutive

equations were presented by considering the transformation induced plastic

deformation in addition to martensitic transformation and plasticity. The

model was numerically implemented in VUMAT subroutine and it was ap-

plied in three-dimensional finite element simulations in ABAQUS package.

The comparison of results with experiments shows the validity of the model

to predict the mechanical behavior of SMAs under thermo-mechanical load-

ing in macro-scale applications.

Overall, this study is a micro-mechanics investigation on the interaction

between plasticity and phase transformation. It also suggests some of the

possible processes to improve the reversibility behavior of shape memory

alloys.
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Chapter 1

Introduction

Shape memory alloys (SMAs) are kinds of metallic materials that are able

to regain an initial shape by applying appropriate thermal or mechanical

loads. The first SMA was discovered in 1951 by Chang and Read [1]. Then,

it rapidly attracted the attention of material scientists due to its unique

functional behaviors. The particular behaviors of SMAs are the ”shape

memory e�ect” and ”superelasticity” which are caused by the mechanism

of martensitic phase transformation. The shape-memory e�ect (SME) is

a phenomenon to recover from the deformation of martensitic phase com-

pletely by heating up the material to austenitic phase. Pseudoelasticity or

superelasticity is an isothermal behavior due to the stress-induced marten-

sitic transformation when the material is originally in austenitic phase. Due

to these properties, SMAs are employed in di�erent applications such as ac-

tuators and sensors in aerospace, oil and gas, automation, and biomedical

1



CHAPTER 1. INTRODUCTION

industries [2–5].

1.1 Interaction between martensitic trans-

formation and plasticity

Martensitic transformation is a di�usion-less solid-solid transformation be-

tween a higher symmetry parent phase named austenite and a lower sym-

metry product phase named martensite. It is caused by shear distortion

of the atomistic structure along a specific plane named habit plane. The

martensitic transformation is reversible because the atomic structure of

austenitic phase is obtainable by heating up the martensitic phase. The

martensitic transformation causes the recoverable inelastic strain with hys-

teric behavior under cyclic thermo-mechanical loading.

The transformation hysteresis under thermal and mechanical cyclic

loading are illustrated schematically in Figures 1.1a and 1.1b. In these

figures, (M
s

) and (M
f

) are martensite start and martensite finish temper-

atures which are the temperatures at which transformation from austenite

to martensite begins and finishes, respectively. Similarly, (A
s

) and (A
f

)

are the austenite start and finish temperatures, respectively [6].

In addition to martensitic transformation, dislocation plasticity is an-

other deformation mechanism which a�ects the performance of the SMAs

[7–10]. The coupling of plasticity and transformation in SMAs produces ir-

2
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Figure 1.1: Schematic of transformation hysteresis. (a): Typical strain-
temperature curve, where �T is temperature hysteresis, (b) Isothermal stress-
strain curve describing superelasticity, where �‡ is stress hysteresis.

recoverable strain and reduces the work output under cyclic loading. This

poor stability under thermal cyclic loading is experimentally illustrated

in [11–14]. As it is explained in [3] and shown in Figure 1.2, the recov-

erable strain is due to the transformation from austenite to detwinned

martensite and mechanical elastic strain, while the irrecoverable strain is

due to the plastic deformation under thermal cycling when external trac-

tion is prescribed. Furthermore, the instability during superelasticity is

reported in [15–18]. As it is illustrated schematically in Figure 1.3 and

discussed in [3], the material is originally in the austenite phase and the

inelastic recoverable strain is due to the transformation and detwinning of

the martensitic phase, while the irrecoverable strain at the end of unloading

is due to the plastic strain that is generated under loading and unloading

processes.

In addition to the e�ect of plastic deformation on the cyclic behavior of

3



CHAPTER 1. INTRODUCTION

−100 −50 0 50 100

0

2

4

6

8

10

S
tr

ai
n 

(%
)

Temperature (˚C)

Ti−50.1%Ni; [123] Orientation; 823K, 1.5h

 

 

Plastic strain

Figure 1.2: Plastic strain in Ti-50.1at.% Ni single crystal in the [1 2 3] orientation
under thermal cycling and constant stress 175 MPa [14].
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Figure 1.3: Plastic deformation of NiTi sample under mechanical loading at con-
stant applied temperature of 100¶C [16].

SMAs, there are other mechanisms that may occur simultaneously with the

phase transformation. One of these mechanisms is transformation-induced

4



CHAPTER 1. INTRODUCTION

plasticity (TRIP) that explains the generation of plastic strain during the

martensitic transformation. It is known as the e�ect of transformation

on the dislocation dynamics. Although TRIP is firstly explained in some

steel alloys [19–21], the appearance of TRIP in SMAs is also discussed in

literature [22–24]. It is indicated that the local stress fields of martensitic

transformation may a�ect the activation of plastic mechanisms. It is an im-

portant issue for SMAs that shows irreversible strain during cyclic loading

where the external stress is lower than yield stress of the material.

Furthermore, the dislocations in the structure of SMAs may a�ect the

motion and nucleation of the martensitic regions. It is explained that the

local stress field which is produced by dislocations influences the mechanism

of phase transformation. However, according to the experimental reports,

it is still unclear whether the dislocations assist the martensitic transfor-

mation (so called dislocation-induced transformation) [25, 26] or resist the

growth of the martensite-austenite interface [27,28].

1.2 Rationale and Aims

By increasing the application of devices made from SMAs, many investiga-

tions on physical behavior of SMAs have been performed recently. With the

development of the computational facilities in the last two decades, many

di�erent numerical models have been presented to simulate the thermo-

mechanical behavior of SMAs. These models vary from constitutive mod-
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eling in macro-scale (e.g., [29, 30]) to atomistic simulation in nano-scale

(e.g., [31,32]). The phenomenological continuum models are useful to sim-

ulate the large-scale three dimensional devices. Furthermore, they are ca-

pable of solving problems with complicated geometry. However, the contin-

uum models are unable to capture the physical mechanisms that occurred

in microstructure of SMA during phase transformation and plastic defor-

mations.

Discrete dislocation dynamic gives the opportunity to model the mi-

crostructure of plastic deformation by considering the nucleation, motion,

and annihilation of dislocations [33, 34]. Shi et al. [35] combined the dis-

crete dislocation method with a proposed discrete transformation model

to simulate the e�ect of phase transformation on plasticity in the TRIP

steels. However their model is unable to predict reversible transformation

in SMAs, and also it is unable to simulate the response of material under

thermal loading. It is clear that the two-way martensitic transformation

and the thermal cyclic loading are the crucial elements to study the behav-

ior of SMAs. Therefore, in this study, a modified discrete transformation

model for SMAs is coupled with discrete dislocation method to present

a new discrete dislocation-transformation framework. This framework is

capable of simulating the two-way shape memory behavior of SMA under

thermo-mechanical loadings. Then, the model is applied to study the mi-

crostructure of the interaction between phase transformation and austenitic

6



CHAPTER 1. INTRODUCTION

plasticity under cyclic thermal and mechanical loading for both single and

multi crystal samples of SMA. The study about the interaction between

martensitic transformation and plasticity includes the e�ect of dislocation

on phase transformation and the influence of transformation on dislocation

plasticity as well as e�ects of both mechanisms on the mechanical behavior

of SMA under cyclic thermo-mechanical loadings. Moreover, the e�ects of

grain boundaries and grain sizes on the martensitic growth and dislocation

plasticity are studied by modeling the multi-crystalline samples with the

proposed discrete dislocation-transformation framework.

Furthermore, in the macro-scale level, most of the available continuum

models do not consider the transformation-indiced plasticity (TRIP) as

an active deformation mechanisms for SMAs. However, it is previously

explained how plastic deformations may a�ect the SMA stability under

cyclic loading. Therefore, a continuum model in macro-scale is presented

such that the phenomenological formulations are qualitatively linked with

the discrete dislocation-transformation results. This model is applied to

simulate the industrial applications of SMA by considering the interaction

between plasticity and phase transformation.

This thesis focuses on the simulation of interaction between plasticity

and martensitic transformation in SMA. Therefore, the experimental ob-

servations of other researchers are taken to understand the physics and

verify some of the numerical results.

7
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1.3 Outline of the thesis

In this chapter the importance of shape memory alloys and the necessity of

modeling the interaction between plasticity and phase transformation for

SMAs are presented. Furthermore, the strategies to model the behaviors

of SMA are discussed briefly. In Chapter 2, a comprehensive literature

review on the background of SMAs and deformation mechanisms in shape

memory alloys are presented.

The discrete dislocation-transformation method and the numerical im-

plementations for modeling the micro-scale behavior of shape memory al-

loys are presented in Chapter 3. This chapter includes the equations to

calculate the local stress, strain, and displacement fields due to the dislo-

cations and martensitic inclusions as well as rules for dislocation dynamics,

and nucleation, growth, and annihilation of martensitic transformation un-

der thermo-mechanical loading.

The discrete dislocation-transformation model which is developed in

Chapter 3 is used in Chapter 4 to simulate the behavior of single-crystalline

NiTi. Thus, the isothermal pseudoelasticity and two-way shape memory

e�ect behaviors of single-crystalline sample are simulated under thermo-

mechanical loadings and the interaction between martensitic transforma-

tion and plasticity is investigated in the microstructure of the single-crystal

samples. Moreover, the behavior of SMAs under multi-cyclic thermal and

mechanical loadings is studied in this chapter.

8
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Furthermore, in Chapter 5, the results of simulation of multi-crystalline

NiTi under thermo-mechanical loadings are presented. The interaction be-

tween plasticity and phase transformation in the presence of grain bound-

aries is analyzed in this chapter. Moreover, the orientation e�ect, grain

size e�ects, and the interaction of grain boundaries on dislocation dynamic

and martensitic transformation are studied in this section.

A phenomenological continuum model is presented in Chapter 6 to

model the mechanical behavior of SMAs in macro-scale including the in-

teraction between plasticity and phase transformation. This model is used

to simulate the large-scale and industrial application of SMAs. It is worth

mentioning that although this study is not a multi-scale analysis, the phe-

nomenological rules in this chapter are linked with the results from mi-

crostructural simulation qualitatively.

Although each chapter has an individual conclusion, the overview of

the whole study, the significant results of each chapter, and possible future

works are presented in Chapter 7.

1.4 General scheme of notations

In this thesis all the notations are according to the following scheme:

• Scalars are written as lowercase italic letters (e.g., a, b),

• First-order tensors are written as bold lowercase italic letters (e.g.,
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a, b),

• Second-order tensors are written as bold uppercase italic letters (e.g.,

A, B), except for the stress and strain tensors that bold lowercase

Greek letters are used (i.e., ‡, and Á),

• Fourth-order tensors are written as blackboard bold uppercase letters

(e.g., A, B),

• The inner product is indicated by a single dot between quantities

(e.g., a.b, A.B),

• The tensor product is indicated similar to a ¢ b and A ¢ B,

• The product of two tensor is denoted like: (e.g., Ab, AB).

10



Chapter 2

Literature review

The importance of the investigation of interaction between martensitic

transformation and plasticity for shape memory alloys was presented in

Chapter 1. A more comprehensive review on the background of SMAs,

their industrial applications, di�erent active deformation mechanisms un-

der thermo-mechanical loadings, and simulation strategies to investigate

the behavior of SMAs are presented in this chapter.

2.1 Background of shape memory alloys

Shape memory alloys (SMAs) have the ability to recover from the macro-

scopic strain under thermo-mechanical loading. Furthermore, they can

consume and dissipate energy and show reversible and hysteric behavior

when they are under cyclic thermal and/or mechanical loadings. These

significant properties attracted a lot of attention to use SMAs in industrial
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applications.

The first SMA (Au-Cd) was discovered at 1951 by Chang and Read [1]

but the rise of attention towards shape memory alloys was during the dis-

covery of NiTi at early 1960s by Buehler et al. [36,37]. Nitinol is a famous

name for NiTi, because NiTi was firstly discovered in a lab with the name

”Nickel Titanium Naval Ordnance Laboratory”. Since then, many inves-

tigations have been done on the metallurgy of SMAs and their di�erent

industrial applications. Currently, NiTi is one of the most favored SMAs

for medical and non-medical applications [2,38–41]. However, the transfor-

mation temperature of binary NiTi varies between ≠50¶C to +110¶C [42]

and it is not suitable to use in high temperature applications in aerospace

and power generation industries. On the other hand, recent researches

show that alloying binary NiTi with more than 10% of Pd, Pt, Hf, or Zr

increases the transformation temperatures to values up to 500¶C [43–49].

The SMAs with transformation temperatures above 100¶C are called high

temperature shape memory alloys (HTSMAs). There is also another type

of shape memory alloys that is induced by magnetic fields. This alloy is

called ferromagnetic shape memory alloy (FSMA) or magnetic shape mem-

ory alloy (MSMA) and has attracted a lot of attention due to their faster

and more e�cient magnetic-induced response in comparison with other

SMAs [50–53].
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2.1.1 Shape memory e�ect and pseudoelasticity

A shape memory alloy experiences a di�usion-less and solid-solid trans-

formation between two di�erent crystal structures. The phase at higher

temperature is called austenite or parent phase and it has cubic crystalline

structure. The structure at lower temperature is called martensite or prod-

uct phase and the crystalline structure is di�erent for various types of SMAs

for example, the crystal of NiTi in martensitic phase has monoclinic shape.

When the martensitic phase is heated, it starts to transform to austenite at

a special temperature A
s

. It is called the austenite start temperature. The

temperature at which material is transformed fully to austenite is called

A
f

. Similarly, M
s

and M
f

are the martensite start and finish temperatures

at which the austenitic phase begins and finishes to transform to martensite

as the temperature is decreased [37].
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Figure 2.1: One way shape memory e�ect under thermo-mechanical loading.

The shape memory e�ect (SME) and superelasticity (SE) are the unique
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properties of SMAs which are due to the martensitic transformation phe-

nomena under thermal and/or mechanical loading. The ability to recover

from the deformation which is applied to the material in martensitic phase

(low temperature) by heating to the austenitic phase, is called the one-

way shape memory e�ect (OWSME). The Schematic of the one-way shape

memory e�ect including the structural changes is presented in Figure 2.1.

Furthermore, the two-way shape memory e�ect (TWSME) is characterized

by the reversible shape change of SMA on both heating and cooling which

is only possible after employing training procedure. The schematic of the

two-way shape memory e�ect is shown in Figure 2.2.

Superelasticity (pseudoelasticity) is the ability of SMAs to recover the

original shape after an isothermal loading-unloading process. It is associ-

ated with inelastic and recoverable strain which is caused by stress-induced

transformation. The material should be initially in the austenitic phase

where the temperature is above A
f

and lower than M
d

. M
d

is the temper-

ature that the required energy for stress-induced transformation is equal

to the energy for dislocation slip [54]. Therefore above M
d

, SMA expe-

riences dislocation slip similar to the other metallic alloys with no phase

transformation. The schematic of the superelasticity behavior of SMAs is

illustrated in Figure 2.3.
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Figure 2.2: Schematic of two-way shape memory e�ect after experiencing train-
ing under applied stress: (a) The strain-temperature behavior (b) The stress-
temperature diagram.

2.1.2 Applications of shape memory alloys

As mentioned earlier, shape memory e�ect (SME) and superelasticity (SE)

are the significant properties of SMAs that make them useful in diverse

applications. For example, the SMAs are used as actuators because the

SME behavior generates motion or strain when the device is under stress

[55]. SMAs are employed in many di�erent fields but here we divide the
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Figure 2.3: Schematic of isothermal pseudoelasticity: (a) The stress-strain dia-
gram, (b) The stress-temperature diagram.

applications in three main groups of automotive, medical, and aerospace

applications.

In the history of shape memory alloy, one of the first applications of

SMAs was implant in dentistry [56,57]. Although SMAs are more expensive

than steel, they quickly replace stainless steel in biomedical applications.

High corrosion resistance, non-magnetic behavior, operation temperature

around the human body temperature, and bio-compatibility with bones
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and tissues are the main benefits of using the SMAs in the biomedical

field [58–60]. SMAs also use in medical devices such as stents, guide wires,

and eyeglass frames. The more complete reviews on medical applications

of SMAs are presented in [50,61].

One of the other applications of SMA is in the automotive industry be-

cause the actuators and sensors made by SMAs are used in di�erent parts

of present-day vehicles [50, 62]. Using SMA actuators has benefits in com-

parison to other type of actuators due to the smaller, lighter, and cheaper

components. The sensors and actuators can be used in exterior parts and

body, as well as in the motor of the vehicle [63,64]. Most of the applications

in the exterior parts are covered by the binary NiTi because the working

temperatures of NiTi devices are near environment temperature. However,

the actuators and the sensors working inside or on the frame of the engine

need to work in higher temperatures than room temperature. Therefore,

high temperature shape memory alloys are used for these applications [65].

Using HTSMA actuators makes the design more expensive, and it causes

challenges related to brittleness, stability and fatigue strength.

SMAs are also applied as actuator wires, vibration dampers, connec-

tors, manipulator, and torque tubes in aerospace applications [3, 66, 67].

Although the devices are expensive for most of the cases, they have been ap-

plied widely in jet engines and aircraft wings during the last decade [2,68].

Furthermore, the significant mechanical properties of SMAs presented them
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as a solution for problems in high dynamic load and space situations.

Although aerospace, automotive, and medical fields are well-known as

the main industries that SMAs have applications, there are many other

situations that SMAs are used or they are proposed as a solution for a

problem. These applications vary from actuators in robotic [69, 70] to

vibration controller with pseudoelastic behavior in civil structures [71,72].

In the recent years, the oil and gas industry also shows interests in using

SMA actuators [73]. However, the high operating temperatures for these

devices limited the SMAs to high temperature shape memory alloys in this

industry.

2.2 Response of SMA under thermo-mechanical

loading

As discussed earlier, martensitic transformation can be activated by both

thermal and mechanical loading. Therefore, it is sometime categorized

as temperature-induced transformation and stress-induced transformation.

The temperature-induced transformation occurs when the SMA is under

suitable temperature cycling with or without external stresses. The stress-

induced transformation takes place when SMA experiences appropriate ex-

ternal forces under isothermal condition. In the following sections, the

mechanical behaviors of SMA under di�erent loading conditions are dis-
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cussed.

2.2.1 Temperature cycling (under stress or stress free)

In this kind of loading, the material is assumed to be in austenitic phase

at high temperature. Then it transforms to martensitic phase by cooling

to a specific temperature and it transforms back to austenite by heating

to the initial temperature. Furthermore, the dislocation slip in austenitic

phase can a�ect the behavior of SMA under thermal cycling. Miyazaki et

al. [74] observed that the generated dislocations under temperature cycling

can delay the phase transformation. Hamilton et al. [14] illustrated that

when the bias applied stress is more than 150 MPa, the thermal cycling

of NiTi is not fully recoverable. However, it has been shown that, for the

specific SMAs that the generation and motion of dislocations are di�cult,

the temperature cycling is fully reversible [75, 76]. For example, Hamilton

et al. [14] showed that aged NiTi has more resistance to plasticity, and the

thermal cycles under di�erent applied stress are recoverable for aged NiTi.

In addition to the macroscopic behavior of SMA, some researchers ob-

served the existence of dislocations in the microstructure of SMAs ex-

perimentally. It was recently observed that dislocations are created in

austenitic phase after phase transformation [26,74,77–79]. Pelton et al. [78]

performed some microstructural study on SMAs undergoing thermal cy-

cling. They observed that the dislocation density in austenitic phase in-
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creases from 1012m≠2 in a quench specimen to 5◊1014m≠2 after 100 thermal

cycles. Simon [79] also suggested a mechanism to explain the generation of

dislocations that are induced by transformation. Figure 2.4 shows a sample

TEM result that is captured from the microstructure of SMA [78].

Figure 2.4: Large array of dislocation loops in the cubic austenite phase of the
Ni50.5Ti49 specimens after one thermal cycle. The image is directly from [78].

2.2.2 Isothermal mechanical loading at Af < ◊ < Md

When the SMA is loaded mechanically at constant temperature (A
f

<

◊ < M
d

), the stress-induced transformation occurs. The local stress due

to the external loading and local field of transformation can generate and

drive dislocations along the slip planes. Therefore, the dislocation slip

causes residual strain after each loading-unloading cycles. This behavior is

observed experimentally in the stress-strain responses of the SMAs [54,75,
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80,81] as well as microscopic evidences in TEM analysis [76,82–84].

Shaw [80] and Miyazaki et al. [54] are the first researchers who stud-

ied the macroscopic behavior of pseduelasticity under uni-axial loading for

NiTi. Strnadel et al. [81] also studied the stress-strain cyclic behavior of

NiTi and NiTiCu, and investigated the plasticity of austenitic phase under

mechanical loading.

The plastic strain is always undesirable for actuation behavior of SMAs.

Therefor, many e�orts have been done to prevent or reduce the plastic de-

formation of SMAs under cyclic loading. There are di�erent solutions to

minimize the dislocation slip such as adding precipitations to microstruc-

ture [83] and grain refinement [85, 86]. Sehitoglu et al. [75] showed that

creating Ni-rich NiTi alloys increases the slip resistance and decreases the

residual strain in pseudoelasticity. Gall et all [83] also investigated the ef-

fect of Ti
3

Ni
4

precipitant in NiTi. They concluded that the smaller size

of precipitants can reduce the dislocation generation and plastic strain in

pseudoelasticity cycle.

Perkin [87] was one of the first scientists who studied the microstructure

of SMAs. He indicated the importance of the interaction between dislo-

cations and martensitic transformation in shape memory alloys. Norfleet

et al. [82] illustrated the generation of dislocations during the marten-

sitic transformation in NiTi micropillars with STEM experiments. He then

studied the e�ect of specimen size on dislocation plasticity. Delville et
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al. [84] investigated the e�ect of grain size on dislocation slip by TEM ex-

periments. They observed that the dislocation density is higher in bigger

grain size samples. Furthermore, they concluded that the e�ect of disloca-

tion slip on pseudoelasticity is increasing when the temperature is higher.

Ibarra et al. [26] studied the structure of dislocations after stress-induced

transformation mechanism in CuALNi single crystal. They divided the

generated dislocations into two groups. The first group of dislocations are

generated at austenite-martensite interface, working as obstacles against

the transformation. The second group consists of dislocations from plastic

deformation in martensite that help the phase transformation. Figure 2.5

shows a sample TEM result which captured the dislocation tangles after

superelasticity [84].

The interaction between dislocations and transformation has been a

challenging discussion among researchers for many years. Some scien-

tists proposed that the dislocations assist the nucleation and motion of

martensitic transformation [25, 26]. However, there are many studies that

show the resistance role of dislocations against martensitic transforma-

tion [27, 28, 88–90]. Furthermore, it was also observed in the experiments

that phase transformation induces the nucleation of dislocations [74,77].
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Figure 2.5: The accumulation of dislocations along slip planes in NiTi wire after
10 superelastic cycles. The image is directly from [84].

2.3 Methods to simulate SMA behavior

As discussed in Chapter 1, there are many models from atomistic scale to

the continuum level to simulate the mechanical behavior of shape memory

alloys. In the first part of this thesis, a discrete dislocation-transformation

model is presented to model the interaction between plasticity and phase

transformation in the SMAs. It is then used to model the behavior of single

and multi crystal NiTi. In the second part of this thesis, a continuum level

model is presented to model the mechanical behavior of SMAs at macro-

scale level. In the following a review on the both methods used in the

literature is presented.
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2.3.1 Discrete dislocation-transformation model

The discrete dislocation-transformation method is incorporated from two

di�erent models: (i) discrete dislocation and (ii) discrete transformation.

The discrete dislocation dynamic (DDD) is a method to simulate the dy-

namics of dislocations to predict the plastic behavior of crystalline metals

at the micro-scale level. To keep the compatibility with the applied models,

the discrete transformation is proposed to model the martensitic transfor-

mation at the same scale level as discrete dislocation works.

The discrete dislocation is a method to study the nucleation and motion

of dislocations. Therefore, it is applied to model the plasticity in microscale

without considering the atomistic scale of crystalline metals. In the discrete

dislocation dynamic models the dislocations are considered as line defects

in elastic domain [91, 92]. Then the constitutive dynamics equations are

presented to estimate the position and the formation of dislocations in each

time step based on the local stress field.

Many researches have been performed in the field of the discrete dislo-

cation dynamics in the last decade [33, 34, 93–95]. Some of these models

simulate the three dimensional behavior of dislocations and estimate the

behavior of material by looking at all slip planes interacting with each other

[96–101]. Although this kind of modeling is in agreement with the physical

view of the crystalline microstructure, the computational cost is a big issue

for them. Furthermore, according to the crystallography of the metals, dis-
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locations tend to move in some specific planes and directions (energetically

minimum) which are called slip systems. Therefore, some researchers tried

to simplify the model into the two-dimensional method which looks directly

at the motion of the dislocations in slip planes [34,96,102–104]. They elim-

inated the rest of the three dimensional shape of the structure which has

less e�ects on dislocation motions [34]. Changing from three-dimensional

simulation to two-dimensional model reduces the computational costs while

the prediction of plasticity behavior is still accurate [96].

In addition to dislocation plasticity, phase transformation is another

significant deformation mechanism in shape memory alloys. Due to the

larger values of transformation strain in comparison to the plastic strain,

many researchers considered only phase transformation as the nonlinear

deformation process and ignored the plastic behavior of SMAs. Ezaz et

al. [105] showed that the slip planes in BCC structure of austenitic NiTi

are active, therefore the transformation and plasticity may a�ect each other

and also the total mechanical behavior of shape memory alloy. Shi et al [35,

106] used the discrete dislocation dynamic method for modeling plasticity

and the discrete transformation method to model the phase transformation

in TRIP steel. Although they model the e�ects of phase transformation

on dislocation plasticity in TRIP steels, they did not model the two-way

phase transformation which occurs in SMAs. Furthermore, their model

was unable to include temperature e�ects and thermal cycling as important
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factors that a�ect the response of SMAs.

Recently, Kundin et al. [107,108] developed a three-dimensional microelastic-

plastic phase field model to study the incoherent transformation and plas-

tic accommodation and relaxation. They have improved the classical phase

field model of a micro-elastic case by adding the nucleation and accommo-

dation of dislocations in austenitic phase and their e�ect on martensitic

transformation. Although their model does not include the gliding and

motion of the dislocations in the microstructure, calculating dislocation

densities and elastic energy fields of dislocations are significant parts of

their study that allow them to present the model for three-dimensional

cases.

2.3.2 Continuum macro-scale model

As discussed in previous section, the discrete dislocation-transformation

method simulates the mechanical behavior of SMAs by considering the

physical phenomena in the microstructure. Therefore, it gives a good phys-

ical view about the deformation mechanisms in SMAs. However, it is not

computationally possible to model a real three dimensional component with

this method. To have a more useful model for macro-scale applications, the

continuum method is applied to model the plasticity and the phase trans-

formation.

Continuum modeling of the shape memory e�ect and pseudoelasticity
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has been the subject of many researches. There are many phenomeno-

logical models that simulate the stress-induced and temperature-induced

transformation without e�ect of plastic deformations [109–114]. However,

they just assumed the phase transformation to be the main deformation

mechanism and they did not consider the plastic behavior in the models.

Also, the importance of irrecoverable strain in shape memory alloys at-

tracted many works to include the phenomenological modeling of plasticity

for SMAs. Tanaka et al. [115] studied the instability of SMAs under ther-

mal and mechanical loading. Bo and Lagoudas [22] was one of the first

studies that considered plastic deformation during superelasticity behavior

at the continuum level. Thereafter, many other phenomenological models

are proposed for plasticity of SMAs under thermo-mechanical cyclic load-

ings [23,116–122].

Further investigations on the mechanism of plasticity in TRIP steel and

SMAs showed that extra dislocation slip is induced by martensitic transfor-

mation in these materials. It is called the transformation-induced plasticity

or TRIP strain [20]. Due to the larger number of applications of steel in

the industry in comparison to SMAs, the first studies and phenomenologi-

cal modeling of TRIP have been done on steel [19,123–125]. However, the

phenomenological relations to model the TRIP strain in ductile material

including SMAs are presented in [126–128].

Finally, the continuum investigations of the interaction between plas-
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ticity and phase transformation in SMAs are divided to two groups. In

the first group, the continuum model of the interaction between plasticity

and phase transformation is applied by considering the redistribution of

stress field due to the phase transformation [30,129]. In the second group,

researchers represented phenomenological equations to include the e�ects

of dislocations on martensitic generations [130–132]. Manchiraju and An-

derson recently have presented a micromechanics finite element study on

the interaction between phase transformation and plasticity [133,134].

In the following chapters, the discrete dislcoation-transformation method

is presented and then the single crystal and polycrystal NiTi is simulated

under thermo-mechanical loading. Finally the phenomenological consti-

tutive model and the simulations of macro-scale samples are presented in

Chapter 6.
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Chapter 3

Two-dimensional discrete

dislocation-transformation

method

An overview of the discrete dislocation-transformation method and the as-

sumptions that are made during the implementation process are presented

in this chapter. The discrete dislocation-transformation model is applied to

simulate the interaction between dislocation slip plasticity and martensitic

transformation in shape memory alloys (SMAs) under thermo-mechanical

loading.
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3.1 Discrete dislocation-transformation

The discrete dislocation-transformation model is developed by combining

the discrete-dislocation method and the theory of martensitic transforma-

tion in the micro-structure. The first mechanism is applied to model the

plastic deformation in the microstructure. Next, the discrete-transformation

method is used to simulate the martensitic transformation at the same mod-

eling scale of the discrete dislocation method. The region is assumed to be

linear elastic that occupies � with boundary ˆ�. The domain is initially in

a stress-free and dislocation-free austenitic phase with random dislocation

and transformation sources. Then, the specimen is subjected to prescribed

displacement and traction as

Y
_____]

_____[

u
0

= u
0

(x, t) on ˆ�
u

,

t
0

= t
0

(x, t) on ˆ�
t

,

(3.1)

where ˆ�
u

and ˆ�
t

denotes the part of boundary that prescribed displace-

ment and traction are applied, respectively. The deformation process is

assumed to be quasi-static which involves small strain. Therefore, an equi-

librium problem is solved in each time step. Moreover, the dislocations are

line defects which are nucleated and moved in the elastic domain. Fur-

thermore, the transformed (martensitic) regions are assumed to nucleate

and grow as elliptical-shaped inclusions during thermo-mechanical loading
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process. The dislocation density and martensitic volume fraction at a given

time are defined by fld(t) = N

d
(t)

�

and ’(t) =
qk

i=1 �

m
i

�

, respectively, where

Nd(t) is the total number of dislocations and q
k

i=1

�m

i

is the total area of

martensitic region at time t.

In the current discrete dislocation-transformation method, the analy-

sis of deformation mechanisms at time t consists of three computational

stages. In the first step, the stress, strain and displacement fields are found

for the current configuration of dislocations arrangement and martensitic

inclusions. Then, the Peach–Koehler force (driving force for each disloca-

tion) and driving force for martensitic transformation interfaces are calcu-

lated. Finally, the change of dislocations structure and martensitic plates

are determined by defining the constitutive equations for the nucleation,

motion and annihilation of dislocations, and the nucleation, growth and

annihilation (in reverse transformation) of the martensitic plates.

The stress, strain and displacement states of a configuration including

dislocations and martensitic plates under prescribed boundary conditions

are computed with the decomposition method presented in [34,35]. There-

fore, the problem is decomposed into three sub-problems: (i) dislocations

in an infinite elastic medium, (ii) martensitic regions as inclusions in an

infinite medium, and (iii) a complementary problem in the finite medium

to satisfy the applied boundary conditions. Therefore, the stress, strain,

and displacement fields of the total problem can be mathematically written
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as Y

___________]

___________[

‡ = ‡d + ‡m + ‡c,

Á = Ád + Ám + Ác,

u = ud + um + uc,

(3.2)

where all the parameters with d, m, and c superscripts show the fields due

to the dislocations, martensitic plates, and the complementary problem,

respectively. The schematic of the above decomposition is illustrated in

Figure 3.1.

u on ∂Ω
u

t on ∂Ω
t

u
c

t
c

= ++

Original  Problem Dislocation  Problem Transformation  Problem Complementary  Problem

Figure 3.1: Dividing the problem into three sub-problems: interacting dislocations
in infinite region, martensitic inclusions in infinite medium, and complementary
problem.

If there are Nd numbers of dislocations and Nm numbers of martensitic

inclusions in the medium at time t, the fields in equation (3.2) are written

as a summation of states from each individual dislocations and martensitic

regions as Y
___________]

___________[

‡d =
N

dq
i=1

‡d

i

,

Ád =
N

dq
i=1

Ád

i

,

ud =
N

dq
i=1

ud

i

,

(3.3)
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Y
____________]

____________[

‡m =
N

mq
j=1

‡m

j

,

Ám =
N

mq
j=1

Ám

j

,

um =
N

mq
j=1

um

j

,

(3.4)

where i and j subscripts determine the individual dislocations and marten-

sitic regions, respectively. It is worth mentioning that all above terms

(dislocations and transformations fields) are determined analytically in in-

finite medium. This is followed by numerical solution of complementary

problem to satisfy boundary conditions of the original finite domain.

3.1.1 Fields due to the dislocations

The focus in this study is on the two-dimensional plane-strain problem

with edge dislocations in an infinite, isotropic and homogeneous domain,

where the line direction of dislocations is perpendicular to the plane of

deformation. Furthermore, each dislocation core is a singular point; there-

fore, all fields are computed analytically outside of the dislocation core as

mentioned in [34].

It is assumed that the Burgers vector bi of each dislocation is repre-

sented in the x direction and the slip plane normal is assumed in the y

direction. Therefore, as it is illustrated schematically in Figure 3.2, for

each point positioned at (X,Y ) in the plane, the displacement and stress
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fields due to the dislocation i positioned at (Xi,Yi) are given by [91,92] as

ud

i

(x, y) =

Q

ccca

ud

i

vd

i

R

dddb =

Q

ccca

b

i

2fi(1≠‹)

{1

2

�x�y

(�x)

2
+(�y)

2 ≠ (1 ≠ ‹) tan≠1(�x

�y

)}

b

i

2fi(1≠‹)

{1

2

(�y)

2

(�x)

2
+(�y)

2 ≠ 1

4

(1 ≠ 2‹) ln (�x)

2
+(�y)

2

(b

i
)

2 }

R

dddb ,

(3.5)Y
___________]

___________[

‡d

i

|
xx

= ≠ µb

i

2fi(1≠‹)

�y[3(�x)

2
+(�y)

2
]

[(�x)

2
+(�y)

2
]

2 ,

‡d

i

|
yy

= µb

i

2fi(1≠‹)

�y[(�x)

2≠(�y)

2
]

[(�x)

2
+(�y)

2
]

2 ,

‡d

i

|
xy

= µb

i

2fi(1≠‹)

�x[(�x)

2≠(�y)

2
]

[(�x)

2
+(�y)

2
]

2 ,

(3.6)

where ‡
i

|
xx

, ‡
i

|
yy

, and ‡
i

|
xy

are in-plane stress field components, �x =

X ≠ Xi, and �y = Y ≠ Yi.

∆y

∆x

dislocation i: (X
i
,Y
i
)

u
i
d

arbitrary 
point in space : 

(X,Y) 

n

b

Figure 3.2: Schematic of displacement field at each point due to the dislocation i.

In this study, it is also considered that the Burgers vector of disloca-

tions in the austenite and martensite regions are the same; therefore, the

constitutive relation for stress and strain fields of dislocations depends only
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on the location of dislocations and it is expressed as

‡d

i

:=

Y
_____]

_____[

CaÁd

i

for i œ Aa,

CmÁd

i

for i œ Am,

(3.7)

where Ca and Cm are fourth-order sti�ness tensors of austenite and marten-

site phases and Aa and Am are the set of dislocations in the austenite and

martensitic regions, respectively.

3.1.2 Fields due to the martensitic area

According to equations (3.4), the stress, strain, and displacement fields due

to the martensitic regions in infinite domain are the summation of fields for

each individual jth region. Based on the physical observation [135–137] and

work by Shi. et al. [35], it is considered here that each martensitic region

is an elliptical shape under constrained condition. Each jth martensitic

ellipse occupies �m

j

in an infinite medium with sti�ness tensor Cm. The

rest of domain (R2 ≠�m

j

) is in austenite phase with sti�ness tensor Ca. For

isotropic-elastic cases

C
p

= 1
3(3Ÿp ≠ 2µp)I ¢ I + 2µpI, (3.8)

where Ÿp and µp are bulk and shear modulus of phase p, respectively, where

p may be p = a or p = m for austenitic and martensitic phases. Further-
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more, I and I are second and fourth order identity tensors.

The martensitic phase transformation is the change of crystallogra-

phy from the parent phase (austenite) to the product phase (martensite).

This transformation is from the body center cubic (BCC) structure in

austenite to twin related monoclinic in martensite for NiTi shape mem-

ory alloy. There are 192 possible transformation systems under the un-

constrained condition, including the di�erent variants of twins for austen-

ite�monoclinic transformation. Each transformation system is character-

ized by a pair of vectors a and m, where a is the transformation strain

vector and m is the habit plane normal [138] that is normal to the austenite-

martensite interface. The schematic of unconstrained phase transformation

is shown in Figure 3.3a.

From the theory of martensitic phase transformation [138, 139], the

change in crystal structure under unconstrained and small strain condi-

tions is described by transformation strain and it is expressed as

Átr := 1
2(a ¢ m + m ¢ a). (3.9)

In this study the specimen is assumed in plane-strain. Therefore, both

dislocation motion and phase transformation occur in a plane with normal

vector [≠1 0 1]. Only, two transformation systems of all 192 possible

systems which are of common occurrence in experiments are assumed to
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be representative of transformation systems. Although these two systems

are not in the loaded plane, to keep the problem consistent with plane-

strain condition, it is considered that the transformation systems lie in

the loaded plane similar to the slip planes. This keeps the transformation

problem consistent with the plane-strain condition and also the dislocation

dynamics problem.

m

a

AusteniteMartensitic 
twins

Habit plane

(a)

m

a

midplane

Austenite
(Ω-Ω

m
)

Martensite
(Ω

m
)

n

m

(b)

Figure 3.3: Schematic diagram of unconstrained and constrained austenite-twinned
martensite structure: (a) Unconstrained phase transformation, and (b) Con-
strained phase transformation.

As it is mentioned before, the cross section of the martensitic region is

considered as an elliptical shape under constrained condition. The schematic

of constrained martensitic phase and transformation systems is shown in

Figure 3.3b. As can be seen in the Figure 3.3b, the habit-plane normal

is changing around the ellipse surface. In this study, the transformation

systems of unconstrained case are used as the eigen-strain of martensitic

inclusions. Furthermore, the habit-plane normal n̨ in the constrained case

is applied as the normal of the martensite-austenite interface at each point

on the interface.
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The transformation strain of jth martensitic plate consists of a dilation

term with magnitude ” in the direction of the normal n̨ and a shape strain

term with magnitude of “ in the direction perpendicular to the uncon-

strained habit plane normal m̨. Therefore, ” = a
j

· m
j

and “ = a
j

· m‹
j

and the in-plane transformation strain is reformulated as

Átr

j

:= 1
2“(m‹

j

¢ m + m ¢ m‹
j

) + ”(m
j

¢ m
j

), (3.10)

where m
j

is the unit vector oriented perpendicular to the major semi-axis

of ellipse and m‹
j

is a unit vector parallel to major semi axis of ellipse, as

shown in Figure 3.3b.

By considering the martensitic regions as elliptical inclusions, the stress

field ‡m

j

inside and outside of martensitic region is calculated by the eigen-

strain of inclusion. The eigen-strain is due to the transformation strain

and the di�erence between elastic behavior of martensitic and austenitic

phases. Therefore, the eigen-strain is uniform as the transformation strain

is uniform. The described fields can be calculated according to Eshelby

solution using the equivalent inclusion method [140, 141]. For brevity, the

stress and strain fields of martensitic inclusion are presented here and the

complete analytical solution is elaborated in the Appendix B.

The constitutive relations between stress and strain both inside and
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outside of the jth inclusion with eigen-strain equal to Ám

j

are expressed as

‡m

j

:=

Y
_____]

_____[

CaÁm

j

in R2 ≠ �m

j

,

Cm(Ám

j

≠ Átr

j

) in �m

j

.

(3.11)

For the interior points of the jth martensitic inclusion, it can be shown

that

Y
_____]

_____[

Ám

j

= S[(Cm ≠ Ca)S + Ca]≠1CmÁtr

j

in �m

j

,

‡m

j

= Ca(S ≠ I)[(Cm ≠ Ca)S + Ca]≠1CmÁtr

j

in �m

j

,

(3.12)

where S is the fourth order Eshelby’s tensor for interior points [141]. To cal-

culate the fields for the exterior points, the analytical solution is explained

in Appendix B. However, the decomposition method that is suggested by

Tanaka and Mura [142] is applied here to calculate the fields at exterior

points of martensitic zone.

According to Tanaka and Mura [142], the uniform stress field ‡
in

for

the interior points is found first. Then, the problem is decomposed into

two separate problems: (i) a stress free void case with the stress equal to

≠‡
in

at infinity, and (ii) a uniform domain without void or inclusion where

stress is ‡
in

at infinity. The schematic of this decomposition is illustrated

in Figure 3.4. The first problem is a void case which is solved by the

Mushkelishvili’s potentials. Therefore, if the stress field at the interior
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points of the inclusion is ‡

in

= Ca(S ≠ I)[(Cm ≠ Ca)S + Ca]≠1CmÁtr

j

, and

the solution of stress field for the void problem is ‡v, then the total stress

field for exterior points is expressed as

‡m

j

= ‡
in

+ ‡v in R2 ≠ �m

j

. (3.13)

Ca

= +

σ
∞
= -σ

in

VoidInclusion

σ
∞
= σ

in

Ca Ca

σ
∞
= 0

σ
 
= σ

in

σ
 
= 0 

Figure 3.4: Schematic for the decomposition problem to find the stress field of
exterior points.

3.1.3 Complementary fields

As it is illustrated in Figure 3.1 and discussed in the previous sections,

the complementary field is added to the decomposition problem to satisfy

the original boundary conditions of the domain and the inhomogeneity of

martensitic areas. The procedure is explained by Shi et al. [35] and it is

described as follows:
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The equilibrium outside of dislocation cores states that

div‡ = 0 in �ú, (3.14)

where the stress-strain-displacement relations in linear, homogeneous, and

elastic domain are

Y
___________]

___________[

‡ =

Y
_____]

_____[

CaÁ in �aú,

Cm(Á ≠ Átr

j

) in �mú
j

, j = 1, ..., Nm,

Á = 1

2

(“u + “uT ) in �ú,

(3.15)

where the star superscript domains (*) indicate the domains excluding the

dislocation cores. Thus according to the decomposition (3.2), the comple-

mentary field is stated as:

div‡c = 0 in �ú, (3.16)

Y
___________]

___________[

‡c =

Y
_____]

_____[

CaÁc + P d

a

in �aú,

CmÁc + P m

j

+ P d

j

in �mú
j

, j = 1, ..., Nm,

Ác = 1

2

(“uc + (“uc)T ) in �ú,

(3.17)

where P d

a

, P m

j

, and P d

j

are polarization stresses to correct the stress field

of dislocations and inclusions due to the di�erence in elastic properties
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between the austenite and martensite. They are formulated according to

[35] as

Y
____________]

____________[

P d

a

:= (Ca ≠ Cm) q
jœA

m
Ád

j

in �aú,

P m

j

:= (Cm ≠ Ca)
N

mq

l=1,l ”=j

Ám

l

in �mú, j = 1, ..., Nm,

P d

j

:= (Cm ≠ Ca) q
jœA

m
Ám

j

in �mú, j = 1, ..., Nm,

(3.18)

where Aa and Am indicate the set of dislocations in the austenite and

martensitic regions. It is clear that if the austenitic and martensitic phases

have the same elastic properties, all the polarization stresses in the equation

(3.17) will be zero.

The boundary conditions for complementary problem based on decom-

position (3.2) are

Y
_____]

_____[

uc := u
0

≠ ud ≠ um on ˆ�
u

,

tc := t
0

≠ td ≠ tm on ˆ�
t

,

(3.19)

where tc = ‡cn, td = ‡dn, tm = ‡mn and n is the outward unit vector

normal to ˆ�.

The above linear elastic boundary value problem is solved numerically

in each time step. Generally to consider inhomogeneity in finite element

implementation, it is necessary to assign austenite and martensite sti�ness
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to specific elements and re-mesh the domain at each time step. However, if

the sti�nesses of austenite and martensite are equal then the polarization

stresses vanish. In this study, as the main objective is to see the interac-

tion between transformation and plasticity, the inhomogeneity plays a very

small role in comparison to transformation strain. Therefore, the di�erence

between austenite and martensite sti�ness is neglected in this study.

3.2 Two dimensional dislocation dynamic

The nucleation and motion of dislocations in the microstructure are the

main mechanisms for plastic deformation in crystalline metals. In the last

decades, many research has been done to model the plasticity mechanism

by studying the dynamic behavior of dislocations [33, 143, 144]. Van der

Giessen and Needleman [34] presented the two dimensional plane strain dis-

crete dislocation method. The loading plane in the model is the plane which

contains the slip lines and edge dislocations. Furthermore, the constitutive

rules for nucleation, motion, pinning, and annihilation of dislocations were

explained.

In this work, the model presented by Van Der Giessen in [34] is followed.

The domain is considered as a two dimensional plane-strain region with

edge dislocations as line singularities. The dislocation loops are modeled

as edge dipoles and are restricted to glide in the slip planes and along

slip directions. Furthermore, in some steps, dislocation dynamics occur
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with martensitic phase transformation. Therefore, some assumptions are

taken in the current study. The dislocation sources in martensite region

are deactivated, and dislocations in martensite regions are frozen (because

there is no significant observation on dislocation plasticity in martensite).

The gliding of ith dislocation with i = 1, . . . , Nd, characterized by slip

plane normal n
i

and burgers vector b
i

, is determined by Peach-Koehler

force, fd

i

. Peach-Koehler force is the force conjugate to the motion of

dislocations that changes the potential energy of the body �. The Peach-

Koehler force is defined as the shear component of the total stress field

at the ith dislocation position excluding the singular stress ‡d

i

of the ith

dislocation on the slip system b
i

, n
i

:

fd

i

:= (‡ ≠ ‡d

i

) · (b
i

¢ n
i

). (3.20)

The evolution of dislocation structure during deformation process is

presented as (i) nucleation of dislocation pairs from discrete sources, (ii)

motion of dislocations along slip planes, (iii) pinning of the dislocations at

obstacles, and (iv) annihilation of dislocations with opposite sign. Each of

these processes are formulated based on the [34].

44



CHAPTER 3. TWO-DIMENSIONAL DISCRETE
DISLOCATION-TRANSFORMATION METHOD
3.2.1 Dislocation nucleation

New dislocation dipoles are generated through the operation of two dimen-

sional Frank-Read sources which are random discrete source points in the

domain. When magnitude of Peach-Koehler force at the ith source point

exceeds a critical value (f cr

i

) during a time period (t
nuc

), two dislocations

with opposite Burgers vector are generated. The above situation can be

formulated as
1

t
nuc

⁄
t+tnuc

t

|fd

i

|dt Ø f cr

i

. (3.21)

The schematic of two dimensional dislocation nucleation is illustrated in

Figure 3.5 [34]. The distance between the two new dislocations is defined

as it grantees that the resolved shear stress on each of them balances the

attractive shear stress that two dislocations exert on each other. Therefore,

based on the calculation presented in [34]

L
nuc

= µ

2fi(1 ≠ ‹)
b

i

· cr

i

, (3.22)

where · cr

i

:= f

cr
i
bi

is the critical resolved shear stress and b
i

:= b
i

· n
i

is the

magnitude of Burgers vector b
i

.

3.2.2 Dislocation gliding, pinning and annihilation

The motion of ith dislocation is controlled by Peach-Koehler force that is

calculated in equation (3.20). Thus, the kinetic relation for gliding of the
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+b
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Frank-Read source

Figure 3.5: Schematic of two dimensional dislocation generation from Frank-Read
sources.

ith dislocation can be written as

Y
_____]

_____[

vd

i

= f

d
i

Bd
, if 0 Æ |vd

i

|Æ vd

max

,

vd

i

= vd

max

if |vd

i

|> vd

max

,

(3.23)

where B
d

is a drag coe�cient which is mainly from phonon drag in metallic

microstructures. vd

i

is the velocity of ith dislocation along slip plane, and

vd

max

is a cut-o� value for the dislocation velocity. The motion of dislocation

in reality is a�ected by the types of obstacles. In two-dimensions, it is

modeled by putting random obstacles with obstacles’ strength ·
obs

and the

pinned dislocations at obstacles can be released if the resolved shear stress

exceeds the ·
obs

.

The dislocations of opposite Burgers’ vectors in the same slip plane

may annihilated each other if they come close to each other. In the two

dimensional model, the annihilation occurs when the distance between two

opposite singed dislocations is less than a material-dependent distance (L
e

)
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that is assumed as L

e

= 6b
i

(the same value that Van der Giessen assumed

in [34]).

3.3 Transformation kinetic

The configuration of phase transformation at the time (t + �t) will be up-

dated based on the field state at the time (t). The method that is described

here is based on the two dimensional discrete transformation for nucleation

and growth of the martensitic regions that was presented in [35] for phase

transformation in TRIP steels. However that model has the restriction on

modeling the reverse transformation in SMAs. The other limitation is that

it just worked under mechanical loads. Therefore, the following model ex-

plains diminishing and elimination of martensitic region in the backward

transformation (martensiteæaustenite), as well as nucleation and growth

of martensitic region in the forward transformation (austeniteæmartensite)

under thermo-mechanical loading.

Abeyaratne and Knowles [145, 146] presented the formulation to find

the local driving force on austenite/martensite interface. The driving force

caused the forward or backward phase transformation. This framework is

used here to calculate the driving force on the interface.

If a martensitic region �m

j

is considered to be surrounded by austenitic

domain with boundary surface Sm

j

between them together with the small

deformation consideration, the transformation driving force on each point
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on Sm

j

is given by

f tr

j

:= fl[[Â]] ≠ È‡Ín · [[Á]]n, (3.24)

where fl is the mass density and Â is the Helmholtz free energy per unit

mass. [[ ]] sign shows the jump between the austenitic and martensitic

phases at the interface (Sm

j

). Therefore, [[Â]] := Âa ≠ Âm is the jump of

Helmholtz free energy between austenite and martensite phases and [[Á]] :=

Á+ ≠ Á≠ is the jump of strain across the austenite-martensite interface.

Furthermore, È‡Í := 1

2

(‡++‡≠) is the average of stress across the interface.

Although the stress and strain fields are not continuous across the in-

terface (‡+ ”= ‡≠ and Á+ ”= Á≠), the displacement field and traction vector

are continuous across the interface Sm

j

(u+ = u≠ and ‡+n = ‡≠n). As the

elastic strains on both sides of the interface are small, the jump in strain

tensor is estimated to the negative of transformation strain

[[Á]] ¥ ≠Átr
j . (3.25)

Finally, during thermo-mechanical loading, according to Shi et al. [35]

and [145–147], the local transformation driving force is expressed as

f tr

j

= ‡±n · Átr

j

n + 1
2D

a‡+ · ‡+ ≠ 1
2D

m‡≠ · ‡≠ ≠ fl⁄

◊
T

(◊ ≠ ◊
T

), (3.26)

48



CHAPTER 3. TWO-DIMENSIONAL DISCRETE
DISLOCATION-TRANSFORMATION METHOD
where ‡ is the local stress tensor, ◊ is temperature, ⁄ is transformation

latent heat, and ◊
T

is so called transformation temperature and is defined

as ◊
T

:= (A
s

+ M
s

)/2. A
s

and M
s

are temperatures where the material

starts to transform to austenite and marensite phases, respectively. It is

worth mentioning that as the martensitic region is in elliptical shape, the

curvature of the interface, and the actual habit plane normal n are used.

3.3.1 Nucleation of martensitic regions in forward

transformation

The new martensitic regions are generated from the random transformation

source points in the di�erent transformation systems. The transformation

driving force for the jth source point is defined according to equation (3.26)

fnuc

j

= ‡ · Átr

j

≠ fl⁄

◊
T

(◊ ≠ ◊
T

). (3.27)

Clearly, the martensitic nucleation occurs at the source j when the nucle-

ation driving force exceeds a local critical value (f cr

j

)

fnuc

j

Ø f cr

j

. (3.28)

When the above condition is satisfied, an elliptical embryo with semi-axes

c
0

and d
0

is generated in the domain and the source j will be deleted.
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3.3.2 Growth and shrinkage of martensitic regions in

forward and backward transformation

The method to model the growth of martensitic transformation in this

study is the modification of the method presented in [35]. Here, the reverse

phase transformation rules with negative driving forces are added. The

growth and shrinkage of the elliptical martensitic regions are modeled by

defining the velocity of tips of the ellipse. Furthermore, without reducing

from the physical meaning of the transformation, it is assumed that the

aspect ratio of ellipses during transformation is constant (e := d

c

=constant).

In general the constitutive relation between value of transformation

driving force (f tr

j

(x)) around Sm

j

defines the normal velocity (V
n

(x)) of

each point on the interface. However, this constitutive assumption cannot

always keep the martensitic region in elliptical geometry. Therefore, the

e�ective values at the tips are considered for the ellipse evolution equation

by satisfying the following conditions: (i) the total dissipation of point-

wise growth relation be the same as e�ective driving force growth, (ii)

the aspect ratio of ellipse is kept constant. The schematic of elliptical

martensite regions and the martensitic growth which is modeled here is

illustrated in Figure 3.6.

If Dq

j

is the total dissipation due to the transformation when the tip (q)
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Vn(x) = normal velocity at each interface point

Tip 1Tip 2

Tip 1 = mobile

Tip 2 = fixed

V
1

n(x) = normal velocity when tip 2 is fixed

v1
tip

Tip 1 = fixed

Tip 2 = mobile

V
2

n(x) = normal velocity when tip 1 is fixed

v2
tip

c

d e=c/d = constant

Figure 3.6: The schematic of the growth of elliptical martensitic regions.

moves and the opposite tip is held fixed

Dq

j

=
⁄

Sj

f tr

j

V (q)

n

ds, (3.29)

where V (q)

n

= V (q)

n

(x) is normal velocity in each point at austenite/martensite

interface and q = 1, 2. The V (q)

n

(x) is reformulated as

V (q)

n

= w(q)v
(q)

tip

, (3.30)
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where v

(1)

tip

and v
(2)

tip

are velocity of tips 1 and 2 when the opposite one is

kept fixed, and w(1) and w(2) are weighting functions independent of v
(1)

tip

and v
(2)

tip

. The weighting functions connect the distribution of the normal

velocity on the interface to velocity of the tips. The value of w(q) is 1 at

tip q and zero in the opposite tip. Then from equations (3.29) and (3.30)

Dq

j

=
⁄

Sj

f tr

j

w(q)v
(q)

tip

ds =
A⁄

Sj

f tr

j

w(q)ds

B

v
(q)

tip

. (3.31)

Then, it is supposed that the normal velocity on the interface and the

driving force has a linear relation as

Bf tr

j

= V (q)

n

, (3.32)

where B is a drag coe�cient for martensitic interface motion. From equa-

tions (3.29) and (3.32)

Dq

j

=
⁄

Sj

1
B

V (q)

n

2

ds =
⁄

Sj

1
B

w(q)

2

v
(q)

tip

2

ds. (3.33)

By defining – =
s

Sj

1

B

w(q)

2

ds, it is summarized

Dq

j

= –v
(q)

tip

2

. (3.34)

An e�ective driving force at tip (q) is defined such that the dissipation
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of martensitic transformation is the same as the dissipation of martensitic

transformation when tip (q) is moved and the opposite tip is fixed. By

substituting the change rate of martensitic area with d�

(q)

dt

= fiecv
(q)

tip

, we

obtain

Dq

j

= f̄ (q)v
(q)

tip

(fiec) . (3.35)

By using equations (3.34) and (3.35) it gives f̄ (q)v
(q)

tip

(fiec) = –v
(q)

tip

2

and

f̄ (q) =
⁄

Sj

f tr

j

w(q)(x)ds. (3.36)

Therefore, the following e�ective kinetic relation is proposed for the two

way martensitic phase transformation

Y
_____]

_____[

v
(q)

tip

= ¯

f

(q)

B

if 0 Æ |v(q)

tip

|< v
max

,

v
(q)

tip

= v
max

sign(f̄ (q)) if v
max

Æ |v(q)

tip

|.

(3.37)

3.3.3 Elimination of martensitic regions

During the reverse phase transformation (martensitic to austenitic phase),

the jth elliptical martensitic region is reduced in size based on kinetic

relation of tips as discussed in the previous part. The shrinking is continued

until the size of the jth region be equal or less than the embryo dimensions

(d
0

and c
0

). Then, this martensitic region will be eliminated from the

structure completely.
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3.4 Conclusions

During the kinetically interaction between dislocations and transforma-

tions, the following assumptions were considered: (i) the dislocations that

are nucleated and have moved in the asutenitic region would be fixed if

they reach a martensite region, (ii) dislocation sources inside martensitic

regions are deactivated and no new dipoles are nucleated in the martensitic

phase, and (iii) the solution process is an explicit procedure and it means

that by using the states and fields of system at time t the structure of

sample will be updated for time t + �t.

The method described in this section is used to model the interaction

between plasticity and martensitic phase transformation in SMAs. Typical

length scale for this method is much smaller than continuum mechanics

and much larger than three-dimensional atomistic simulation. Hence, both

plastic and phase transformation mechanisms are modeled by suggested

constitutive rules for nucleation, motion and annihilation of dislocations

and transformations in micro-structure.
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Chapter 4

Simulation of Single crystal

NiTi

The two dimensional discrete-dislocation-transformation framework that

is developed in chapter 3 is applied to model the mechanical behavior of

single crystal NiTi shape memory alloy. This particular shape memory

alloy is selected as a material sample because it is the commonly used

SMA in applications [148]. This chapter presents the results for isothermal

mechanical loading in section 4.1 and thermo-mechanical loading in section

4.2. The behavior of material is also investigated under multiple mechanical

and thermal cyclic loadings
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4.1 Isothermal mechanical loading of single

crystal NiTi

In the following simulations, temperature is kept constant and behavior of

the specimen is investigated under mechanical loading. To find the di�er-

ent parameters which a�ect the thermo-mechanical behavior of material,

the problem is solved under three di�erent assumptions: (i) fully austenitic

plastic loading, (ii) stress-induced martensitic transformation with the plas-

tic deformation neglected, and (iii) martensitic transformation interacting

with dislocation plasticity. The assumption for each loading case is dis-

cussed in the related section.

4.1.1 Problem assumptions and material parameters

For all of the simulations in this section, it is assumed that the material is

loaded in two-dimensional plane strain condition in (1̄ 0 1) plane. This

plane is perpendicular to three slip planes which are considered according

to [149] for BCC structures. (1 2 1)[1 1̄ 1], (1̄ 2 1̄)[1̄ 1̄ 1̄] and

(1 0 1)[0 1 0] are the slip systems which represent the movement of

edge dislocations. The loading plane and slip systems are illustrated in

Figure 4.1.

The martensitic transformation in NiTi is from BCC austenitic struc-

ture to monoclinic crystal. As discussed in Chapter 3, among all possible
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slip plane 1: (1  2  1)slip plane 2: (-1  2  -1)

slip plane 3: (1  0  1)

loading plane: (-1  0  1)

[0  1  0]

[0  0  1]

[1  0  1]

[0  1  0]

[1  0  1]

loading plane

35 14590

Figure 4.1: Schematic of slip planes and plane-strain loading plane for BCC crystal
[149].

transformation systems in three-dimensional space, two systems are con-

sidered such that the habit plane normal m and strain vector a are per-

pendicular to loading plane normal (1̄ 0 1). The single crystal domain

including slip planes and transformation regions are presented schemati-

cally in Figure 4.2.

The initial phase of the specimens is fully austenite in stress-free and

dislocation-free configuration. Furthermore, dislocation sources are ran-
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x
1

x
2

L

H

Figure 4.2: Schematic of single crystal problem including slip and transformation
systems.

domly distributed on slip planes that are spaced 100◊b apart, where b is

the magnitude of Burgurs vector. The strength of each dislocation source is

also assigned randomly with the Gaussian distribution scheme. The loca-

tion and strength of transformation sources are defined in the similar way,

with consideration of habit planes instead of slip planes. Furthermore, the

minimum possible distance between two martensitic sources is also defined

as 2 ◊ d
0

where d
0

is the semi-major axis of the martensitic embryo. The

critical value for nucleation f cr

j

of jth transformation source, is specified

by considering the fact that the transformation nucleation has taken place

in time t if the new martensitic embryo can grow in the next time step.

Therefore, the critical nucleation driving force is the one which results the

above mechanism. Furthermore, the parameters of transformation strain

(”, “) are assumed to be scaled by a factor of 0.1 of the actual crystallogra-
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phy values. The purpose is to keep the total deformation and numbers of

dislocations that are nucleated during the process within computationally

tractable range. This assumption limited the maximum recoverable inelas-

tic strain that the material can experience. Table 4.1 presents a summary

of the material parameters for NiTi SMA which are used in the simulations.

Table 4.1: Material Parameters of NiTi.

Elastic Constants [150]
E

M

¥ E
A

= 62 ◊ 109 Pa
‹

M

¥ ‹
A

= 0.33
Density: fl = 6500 Kg/m3

Discrete Dislocation Properties [34, 151]
Burgers vector: b = 0.25 nm
nucleation time: t

nuc

= 10 ns
Drag coe�cient: B

d

= 10≠4 Pa.s
Cut o� value for velocity: vd

max

= 20 m/s
Source Strength: · cr (Gaussian) mean= 195 MPa , std.dev= 40 MPa

Discrete Transformation Properties [150,151]
M

f

= 51¶C M
s

= 71¶C A
s

= 92¶C A
f

= 105¶C
Transformation strain: “ = 0.11 and ” = 3.4 ◊ 10≠3

Latent heat: ⁄ = 130 Mj/m3

Cut o� of tips velocity: vm

max

= 4800 m/s
Drag coe�cient of transformation: B

m

= 40 Pa.s
Source Strength: f cr (Gaussian) mean= 6 MPa , std.dev= 1.2 MPa

The dimension of the specimen in this study is 2µm ◊ 2µm, and it is

subjected to the plane strain uni-axial loading. The boundary conditions
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and loading information are mentioned in equation (4.1).

Y
_________________]

_________________[

u
1

(x
1

= 0, t) = 0, t
2

(x
1

= 0, t) = 0,

u
1

(x
1

= L, t) = LÁ̇t, t
2

(x
1

= L, t) = 0,

t
1

(x
2

= 0, t) = 0, t
2

(x
2

= 0, t) = 0,

t
1

(x
2

= H, t) = 0, t
2

(x
2

= H, t) = 0,

(4.1)

where Á̇ is the applied strain rate, H is height, and L is length of the

specimen, as it is shown schematically in Figure 4.2.

4.1.2 Plasticity in austenitic phase

The isothermal mechanical loading to observe plastic deformation in the

austenitic phases is simulated in this section. The temperature is chosen

and kept constant such that the specimen deforms plastically in austenitic

phase before occurrence of stress-induced transformation. To satisfy this

condition, the temperature of specimen should be higher than the marten-

sitic transformation temperature M
d

[152]. M
d

> A
f

is the temperature at

which the energy for stress-induced martensitic transformation is equal to

the energy for austenitic plastic deformation. M
d

= 120¶C for NiTi [11];

therefore, the temperature in these simulations is selected to be higher than

120¶C. The discrete dislocation method is used to simulate the plastic de-

formation of austenitic NiTi with no martensitic transformation.
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The displacement-control loading is characterized by strain rate along

the loading process. Due to the computation time limitation, the strain rate

in discrete dislocation problems is much higher than the real experimental

values. Therefore, it is important to select a strain rate for loading that

provides reasonable results with acceptable computation costs. Thus, to

explore the e�ect of displacement loading rate on the results, a number of

parametric analysis were performed in di�erent strain rates. The results

of simulations with strain rates 105s≠1, 104s≠1, 5 ◊ 103s≠1, 2.5 ◊ 103s≠1,

and 103s≠1 are presented in Figure 4.3. As can be seen in this figure,

the strain rate of 105s≠1 is too high to predict the plastic deformation.

However, the mechanical behavior of the specimens shows less dependency

on strain rates when the loading rate is reduced to lower strain rates such

as 5 ◊ 103s≠1, 2.5 ◊ 103s≠1, and 103s≠1. Therefore, to have a model of

plasticity at acceptable computational cost, the strain rate of 5 ◊ 103s≠1 is

applied for the subsequent problems.

Although the dislocation source density is one of the material param-

eters, a number of parametric analysis were conducted to investigate the

e�ect of this parameter on the results. Di�erent simulations, considering

the dislocation source densities as 10µm≠2, 20µm≠2, 30µm≠2, and 40µm≠2,

are implemented and Figure 4.4 shows the comparison between the results.

As illustrated in this figure, except fld

source

= 10µm≠2, the other dislocation

source densities such as 20µm≠2, 30µm≠2, and 40µm≠2 resulted in the re-
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Figure 4.3: E�ect of strain rate on stress-strain response in fld

source

= 20µm≠2.

sponses falling within a close range. Therefore, fld

source

= 30µm≠2 in the

simulations is su�cient to provide a good prediction of results in addition

to acceptable computational time.

Finally in this section, the specimen is loaded to 0.01 strain, followed by

an unloading process. Figures 4.5a and 4.5b show the stress-strain response

of austenitic plastic deformation and the variation of dislocation density

during the loading/unloading processes, respectively. The predicted me-

chanical response illustrates the dislocation slip plasticity followed by elas-

tic loading similar to plasticity mechanism of the other crystalline metals.

It is worth mentioning that, this simulation is an observation of disloca-

tion slip mechanism in NiTi when the martensitic transformation has not
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Figure 4.4: E�ect of dislocation source density on the stress-strain response in
Á̇ = 5 ◊ 103s≠1.

taken place in the micro-structure. Therefore the results presented in Fig-

ure 4.5 will be discussed more comprehensively in the next section where it

will be compared with situations including the martensitic transformation

mechanism.

4.1.3 Stress-induced martensitic transformation in ab-

sence of plastic deformations

The next group of isothermal simulations are designed at a temperature

that the stress-induced martensitic transformation occurs and the pseudo-

elastic response is investigated by mechanical loading and unloading path.

Therefore, the temperature is kept constant above A
f

but less than M
d

:
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Figure 4.5: The elastic plastic response of austenitic NiTi.

A
f

< ◊ < M
d

. It means that the material is initially in austenitic phase

with stable cubic B2 structure. To have a better observation of the inter-

action between dislocations and martensitic interface, in this section the

simulation is implemented without considering the dislocation plasticity.

In the next section, the same problem with the e�ect of dislocation slip is

solved. Therefore, the dislocation source density is kept at zero here and

no dislocation nucleation and gliding are observed.

Similar to the parametric study of dislocation source densities in the pre-

vious section, the e�ects of applied strain rate and transformation source

densities on martensitic transformation mechanism are revealed in Figures

4.6 and 4.7, respectively. The results presented in Figures 4.6a and 4.6b

indicate that the loading rate does not influence the stress and marten-

sitic volume fraction values. Therefore, the choice of Á̇ = 5 ◊ 103s≠1 gives
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reasonable results as well as an acceptable computational time.
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Figure 4.6: E�ect of applied strain rate on discrete transformation model during
the pseudoelasticity mechanism.

As defined in chapter 3, the martensitic transformation is generated

from initial random transformation sources. The transformation source

density is a user defined parameter that influences the computation time.

However, results in Figure 4.7a and 4.7b demonstrate that the value of

martensitic volume fraction and stress are fairly independent of transfor-

mation source density. Furthermore, the comparison of martensitic volume

fraction in Figure 4.7b shows an interesting result that the transformation

source density does not alter the maximum accessible volume of martensitic

area in the simulation. Therefore the choice of flm

source

= 8µm≠2 maintains

both reasonable results and acceptable computation costs in the discrete

transformation problems.

The pseudo-elastic behavior of NiTi in the absence of dislocations is
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Figure 4.7: E�ect of transformation sources on discrete transformation problem.

illustrated in Figure 4.8. It is shown that the loading and unloading pro-

cesses are completely reversible and there is no residual strain at the end

of one cycle loading. It is also indicated in Figure 4.8b that the material

transformed to martensite during loading and transformed back to austen-

ite completely after unloading to the original state. There are no remaining

martensitic regions in the system after backward transformation.

The results presented in Figure 4.8 will be used in the next section where

the dislocation plasticity is taken into account during the pseudo-elasticity

mechanism. The comparison of material behavior with and without dislo-

cations will be presented in that section.
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Figure 4.8: Two way shape memory e�ect with out considering dislocation slip.

4.1.4 Interaction between martensitic transformation

and dislocation plasticity

After illustrating the stress-induced martensitic transformation in absence

of dislocation plasticity in the previous section, the e�ect of dislocation

slip is considered along with the pseudo-elastic behavior of the single crys-

tal NiTi. The material is considered initially in austenitic phase, and

it contains random dislocation and transformation sources. Therefore,

dipoles and martensitic regions can be generated during isothermal load-

ing; A
f

< ◊ < M
d

. The mechanical responses of single crystal NiTi under

isothermal mechanical loading is presented in Figures 4.9a – 4.9c.

The stress-strain response in Figure 4.9a shows that the loading/unloading

cycle is not fully reversible in this case, and there are some residual strain
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Figure 4.9: The pseudoelasticity behavior of NiTi a�ecting by dislocation slip
mechanism for the case with: fld

source

= 30µm≠2, flm

source

= 8µm≠2, and strain-
rate= 5 ◊ 103s≠1.

after the unloading process. The residual strain is due to the remaining

martensitic phases and dislocation slips. To analyze the reasons of the

irreversibility, the change of martensitic volume fraction and dislocation

density are given in Figures 4.9b and 4.9c, where the dashed line in all

figures represents the backward transformation (unloading). It can be seen

that a small fraction of martensitic region remained in the domain after
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unloading, as the dashed line did not touch the solid line at strain near

0.002. Furthermore, it is shown in Figure 4.9c that dislocation dipoles are

generated and moved in the domain. They cause the generation of plastic

strain that remained at the end of the loading-unloading process.

In the following, the particular e�ect of dislocation plasticity on trans-

formation mechanism and the e�ect of phase transformation on dislocation

slip in SMAs are presented in Figures 4.10, 4.11, and 4.12. In Figure 4.10,

only the forward transformation part of pseudo-elastic behavior of NiTi,

with and without dislocation slip, are compared. It can be seen in Figures

4.10a and 4.10b that, in both simulations, the martensitic transformation

begun at the same stress. This implies that the nucleation of marensitic

regions is not a�ected by dislocation dipoles. It is because the threshold

stress of dislocation nucleation is higher than the threshold stress for gen-

eration of transformation. Hence, when the first martensitic inclusion is

nucleated, there is no dipole in the domain. This result also encourages

us to continue loading and unloading process for more cycles. Then, it is

possible to investigate the e�ects of remaining dislocations from the earlier

cycles on the behavior of material in the later cycles. The results of this

model are presented in section 4.1.5.

It also can be seen in Figure 4.10b that the material has transformed

more in absence of dislocation plasticity after 0.01 strain loading, implying

that the existence of dislocations in the system resisted the martensitic
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growth. Finally, Figures 4.10a and 4.10b show that, although the trans-

formation is less in the presence of dislocations, the stress-strain curve lies

under the one for transformation-only case. This is because some energy is

dissipated due to the dislocation plasticity, when the e�ect of dislocation

slip is taken into account.
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Figure 4.10: The e�ect of dislocation plasticity on the forward transformation
(loading).

The comparison of pseudo-elasticity behavior of the specimen with and

without dislocation slip mechanism is presented in Figure 4.11. As can

be seen in Figures 4.11a and 4.11b, the dislocation plasticity causes some

irreversible strain in the loading-unloading problem, while it is completely

reversible without dislocation e�ects. This is in addition to the interact-

ing e�ect that dislocations have on the growth of martensitic interface

discussed previously. Furthermore, Figures 4.11c and 4.11d demonstrate

that, although the reverse transformation began at a lower value in pres-
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ence of dislocations, it could not transform completely back to austenite at

the end of unloading and some small values of martensitic area remained

in the domain.

Strai
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Figure 4.11: Comparison of pseudoelasticity behavior for models with and without
considering dislocation slip. In plot (b) and (d), there is no dislocation slip while
in (a) and (c) both transformation and plasticity occur.

To discuss the particular e�ect of phase transformation on the disloca-

tion slip mechanism, the results of austenitic plasticity problem that was

presented in section 4.1.2 is compared with results of transformation with
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plasticity. This comparison is illustrated in Figure 4.12.

As it is shown in Figure 4.12a, the average stress response of the plas-

ticity model lies higher than that with both transformation and plasticity.

This provides clear evidence that the combination of transformation and

dislocation slip causes more relaxation than plasticity mechanism only. Fur-

thermore, Figure 4.12b demonstrates that, the dislocation density is much

higher when there is no transformation in the system. This behavior is due

to the assumption that there is no dislocation nucleation and dislocation

motion in the martensitic area. Therefore, the dislocation sources that are

in martensitic regions at time t is turned inactive.

0 0.002 0.004 0.006 0.008 0.01
0

50

100

150

200

250

300

350

400

450

Strain

St
re

ss
 (M

Pa
)

 

 

Only dislocation plasticity
Transformation and plasticity

(a)

0 0.002 0.004 0.006 0.008 0.01
0

20

40

60

80

100

120

140

Strain

D
is

lo
tio

n 
de

ns
ity

 (1
/µ

m
2 )

 

 

Only dislocation plasticity
Transformation and plasticity

(b)

Figure 4.12: The e�ect of martensitic transformation on dislocation slip plasticity.

Furthermore, to have a better understanding about the interaction

between plasticity and martensitic transformation, a comparison of mi-

crostructure for these three cases (no plasticity, no transformation, and
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plasticity and transformation together) is illustrated in Figure 4.13. The

dislocation and martensitic distributions are plotted in Figures 4.13a, 4.13b,

and 4.13c as well as average stress contour at the end of loading step. It can

be seen in this figure that the dislocations and martensitic regions a�ect

the homogeneity of stress in the domain.

4.1.5 Mechanical cyclic loading

As discussed in the previous section, the local stresses of dislocations a�ect

the nucleation of martensitic transformation in the domain. It was not

possible to study this e�ect with only one cycle of loading. Therefore,

the loading-unloading process is repeated for six cycles here. It is worth

mentioning that all the dislocations that remained at the end of one cycle,

are transfered to the next cyclic loading.
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Figure 4.13: The distribution of average stress, dislocations, and martensitic re-
gions at the end of loading path for : (a) only plasticity, (b) only transformation,
and (c) plasticity and transformation together cases.
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Figure 4.14: Isothermal mechanical loading of single crystal NiTi during 6 cycles.

Figure 4.14 shows the stress-strain behavior of the single crystal NiTi
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during six isothermal mechanical cycles. The results suggested that the

average stress in which the martensitic transformation begins, is decreased

when the material experienced more loading cycles. This implies the e�ect

of local stress of dislocations on the nucleation of transformation areas.

The changes of the critical transformation stress and residual strain

during the six loading cycles are presented in Figures 4.15a and 4.15b.

Figure 4.15a indicates that the martensitic phase is nucleated at a lower

stress level when the number of cycles increases. This behavior is due to

the e�ect of dislocations, which are generated in previous cycles, on the

local stress around transformation sources. Furthermore, as can be seen in

Figure 4.15b, the amount of residual strain during first cycle is higher than

that in the next cycles, and it suggests that multiple cycling can be as a

process to make SMAs more stable under thermo-mechanical loading. This

behavior is explained by e�ect of dislocation accumulation in the system

which causes hardening in the material.

4.2 Thermo-mechanical loading of single crys-

tal NiTi

Two-way shape memory e�ect is another behavior that causes SMAs as

applicable materials for actuation responses. In this section the behavior of

single crystal NiTi is investigated under thermal cyclic loading and constant
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Figure 4.15: Comparison of (a) critical transformation stress and (b) remain strain
in di�erent mechanical cycles.

external stress. To model this behavior, the temperature of material is

switched between initial temperature (T
1

> A
f

) and the low temperature

(T
2

< M
f

) when the domain is under constant stress (50 MPa, 150 MPa,

300 MPa). To study the interaction between plasticity and martensitic

phase transformation on two-way shape memory e�ect, results in 4.2.1 are

presented without the e�ect of dislocation slip while results in section 4.2.2

included dislocation plasticity mechanisms. Finally, in section 4.2.3, the

response of material experiencing six cyclic loads is investigated. In all

simulations, the thermal expansion strain is subtracted from the results as

it has no e�ect in illustrating two-way shape memory e�ects.
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4.2.1 Two way shape memory e�ect in the absence of

dislocation plasticity

To study the two-way shape memory e�ect in the absence of dislocation

plasticity, the dislocation source points are removed from the specimens.

This guarantees that no dislocation is generated in the domain. Then, con-

stant traction of 50 MPa is applied on the specimen and the temperature

is reduced from 120¶C to 40¶C, and then is heated back to 120¶C for back-

ward transformation. The results are presented in Figures 4.16 and 4.17.
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Figure 4.16: E�ect of di�erent transformation sources on discrete transformation
model during thermal loading.

In Figure 4.16, a parametric study is done to be assured that the trans-

formation source density that was chosen previously (flm

source

= 8µm≠2), is a

proper choice. The changes of strain and martensitic volume fraction with
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respect to temperature for di�erent transformation source densities are il-

lustrated in Figures 4.16a and 4.16b. The comparison from Figure 4.16b

provides a clear evidence that changing the transformation source density

from 5 to 15 does not a�ect the maximum marensitic volume fraction that

may be generated in the domain. Therefore, flm

source

= 8µm≠2 is used in the

next simulations to have both reasonable accuracy and acceptable compu-

tational time.
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Figure 4.17: Two-way behavior of SMA under thermal loading in absence of dis-
location plasticity.

The two-way shape memory e�ect of NiTi in absence of dislocation

slip mechanism is presented in Figures 4.17a and 4.17b. As can be seen

in Figure 4.17b, the martensitic volume fraction is increased from zero

to 0.25 during cooling process and is declined back to zero after heating

the specimen. It shows that the transformation is fully reversible, and no

irreversibility is expected to occur in strain-temperature response. Figure
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4.17a confirms the expected result and there is no residual strain after

one thermal cycle loading. Furthermore, the average stress contour and

martensitic distribution at the end of forward transformation is illustrated

in Figure 4.18. It can be seen in Figure 4.18 that the stress field is not

homogeneous in the domain due to the existence of martensitic regions.

The simulations repeated for other applied stresses of 150 MPa and 300

MPa give the similar responses. These results are used in next section

where they are compared with results of simulations that are considered

with dislocation plasticity.
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Figure 4.18: The distribution of martensitic regions and average stress at the end
of forward transformation for temperature-induced martensitic transformation in
absence of dislocation plasticity.
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4.2.2 Interaction between thermally activated phase

transformation and dislocation plasticity

In this section the two-way shape memory e�ect behavior of NiTi is investi-

gated when the domain contains random dislocation sources. The discrete-

dislocation-transformation framework is used to simulate the response of

material to thermal cycle loading. Similar to the previous section, the

specimen is cooled from T1 > A
f

to T
2

< M
f

and is heated back from T
2

to T
1

when it is under constant applied traction. The strain-temperature

responses are presented in Figures 4.19a, 4.19b, and 4.19c when the spec-

imens are under 50, 150, and 300 MPa applied traction, respectively. It

should be mentioned that all the strain-temperature curves are calibrated

to begin from zero strain. This gives a better comparison between responses

in di�erent tractions.

It can be seen in Figure 4.19a, that the material is fully reversible

under thermal cyclic loading when the applied traction is low. However,

when the applied traction on the model is increased to 150 MPa and 300

MPa in Figures 4.19b and 4.19c, there is some residual strain at the end

of thermal cyclic loading. These results indicate that although 300 MPa

is lower than the dislocation nucleation strength (≥400 MPa), the local

stresses are increased in some locations inside the domain due to the nu-

cleation and growth of martensitic regions, lead to dislocation generation.

Therefore, the reversibility of actuation behavior is a�ected by dislocation

81



CHAPTER 4. SIMULATION OF SINGLE CRYSTAL NITI

40 50 60 70 80 90 100 110 120
0

1

2

3

4

5

6

x 10
−3

Temperature(
°
C)

S
tr

ai
n

 

 

Cooling

Heating

(a) 50 MPa

40 50 60 70 80 90 100 110 120
0

1

2

3

4

5

6

x 10
−3

Temperature(
°
C)

S
tr

ai
n

 

 

Cooling

Heating

(b) 150 MPa

40 50 60 70 80 90 100 110 120
0

1

2

3

4

5

6

x 10
−3

Temperature(
°
C)

S
tr

ai
n

 

 

Cooling

Heating

(c) 300 MPa

Figure 4.19: Interaction between martensitic transformation and dislocation plas-
ticity under thermal cyclic loading.

slip at higher applied stresses. This is similar to the experimental results

from [105].

The above findings indicate that the martensitic regions activate the

nucleation of dipoles and dislocation slip mechanisms which in turn influ-

ences the two-way shape memory e�ect of SMAs. In the next section, the
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e�ect of accumulated dislocations will be studied by simulating the thermal

cyclic loading over six cycles.

4.2.3 Thermal cyclic loading

In this part, the same models as section 4.2.2 are loaded for six thermal

cycles. The reason to do this is to investigate the behavior of material after

accumulation of dislocations. Figure 4.20 presents the strain-temperature

response of single crystal NiTi under six thermal cycles loading. It can

be seen that the temperature in which the martensitic nucleation occurs is

increasing when the number of cycles are increasing. This is due to the local

stress of the accumulated dislocations that are generated in the previous

cycles. This slight increase in mantensitic start temperature during the

first six loading cycles is illustrated more clear in Figure 4.21. It can be

explained that the mechanism of transformation nucleation is a thermo-

mechanical process; therefore, at higher stress states, the martensitic phase

is nucleated in higher temperatures.

In this study due to the computational cost it was not possible to go

through large numbers of cycles (e.g. 100 cycles). However, the thermal

cycling under external applied stress is a known mechanism of stabilization

to reach a fully reversible two-way shape memory e�ect (2WSME) in shape

memory alloys [153,154].
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Figure 4.20: Thermo-mechanical loading of single crystal NiTi during 6 thermal
cycles when the applied traction is 300 MPa.
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Figure 4.21: E�ect of thermal cycling on martensitic start temperature.

4.3 Conclusions

Although the two-dimensional discrete-dislocation-transformation model

has some limitations, this model provides useful information about the in-

teraction between plasticity and martensitic phase transformation in shape

memory alloys.

The mechanical and thermal cycling of single crystal NiTi show the

e�ects of dislocations on irreversible pseudo-elastic behavior and two-way

shape memory e�ects. Furthermore, the local stress fields of dislocations

would lead the nucleation of transformation after repeated cyclic loading.

The martensitic transformation also has opposing e�ects on dislocation

plasticity. On one hand, as shown in the results in Figures 4.17 and 4.19,

the local stress fields at the transformed area activates the nucleation and
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motion of dislocations when the applied stress is much lower than the dis-

location strength. On the other hand, the martensitic-austenitic interface

acts as resistance to the movement of dislocations and it reduces the num-

ber of nucleated dislocations and their motion, as shown in Figure 4.12.
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Chapter 5

Simulation of multi-crystalline

NiTi

Polycrystalline metals are materials composed of numerous grains with dif-

ferent sizes and orientations. These grains are connected to each other via

grain boundaries across which the orientation of the crystals changes. The

material behavior of single and polycrystalline shape memory alloys are dif-

ferent with each other. In single crystals, the behavior is highly dependent

on the direction of loading and crystal orientation while the polycrystalline

SMA shows less anisotropic behavior. Furthermore, the grain boundaries

have a resistance role on the dislocation slip and the growth of transfor-

mation regions. A schematic of a polycrystalline structure is illustrated in

Figure 5.1.

The material behavior of single-crystal NiTi under thermo-mechanical
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sample grain boundary

sample grains with
 different orientations

Figure 5.1: The schematic of a polycrystalline structure with grain boundaries.

loading was investigated in chapter 4 using the discrete dislocation-transformation

method. However, it is impossible to predict the behavior of metallic de-

vices by modeling the single crystal structure. Therefore, in this chapter

the behavior of the untextured multi crystalline NiTi is investigated by

discrete dislocation-transformation model under thermo-mechanical load-

ing. An untextured polycrystalline structure consists of randomly oriented

grains.

5.1 Discrete dislocation-transformation model

for multi-crystal NiTi

The discrete dislocation-transformation method that was presented in Chap-

ter 3, is applied in this section to model the mechanical behavior of multi-

crystalline NiTi. The loading conditions and the material constants are the
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same as single-crystal model which is described in Chapter 4. However, In

the multi-crystalline model, there are numerous grains that are attached to-

gether with grain boundaries. Therefore, a new assumption about the grain

boundaries is necessary. It is considered that the dislocations and marten-

sitic areas which are nucleated and grown inside a grain cannot pass the

grain boundaries. It is an extra limitation to stop the martensitic growth

and the dislocations motion. Figure 5.2 shows a schematic of pinning the

dislocations and martensitic regions in grain boundaries. Furthermore, in

martensitic region

dislocations

Figure 5.2: Schematic of dislocation and transformation pinning at grain bound-
aries.

this study, each multi-crystalline structure is considered to be composed of

grains of same size and square shape. Then, the orientation of each grain

is assigned randomly. This assumption allows us to investigate the e�ect of

crystal orientation and grain boundary density on the mechanical behavior

of multi-crystalline NiTi. Moreover, due to the computational limitations,

the number of grains are limited to a maximum 16 grains. Therefore, we
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called the structures multi-crystalline instead of polycrystalline structure.

The schematic of a multi-crystalline specimen including nine grains is il-

lustrated in Figure 5.3.

random slip and 
transformation 

orientations

Figure 5.3: Schematic of a specimen with nine randomly oriented and square shape
grains.

5.2 Isothermal mechanical loading of multi-

crystalline NiTi

The material constants of NiTi in this section are the same as Chapter 4

and the method is the discrete dislocation-transformation framework that

is explained in Chapter 3. Although the specimens here are made from

multi grains, the boundary conditions are the same as single crystal model.

In this section, the multi-crystalline NiTi is loaded mechanically when the

temperature is constant. Then the e�ects of grain size and orientation
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on the pseudoelasicity behavior of NiTi are investigated. The results are

presented and categorized in the following sections: (i) grain orientation

e�ect and (ii) grain size e�ect.

5.2.1 Grain orientation e�ects

As shown in previous chapters, the Peach-Koehler driving force of dislo-

cations and dislocation sources is a function of the angle between loading

direction and crystal orientations. Therefore, it is expected that the dif-

ferent grains in multi-crystalline materials experience di�erent dislocation

history. In shape memory alloys, the transformation mechanism is also ori-

entation dependent. Therefore, the martensitic nucleation and the growth

of transformation interface are a�ected by the grain orientation. This inho-

mogeneity of dislocations and martensitic regions cause the inhomogeneity

of stress field through the domain.

In this part of the study, the following simulations are designed to check

whether the discrete dislocation-transformation model, which is described

in Chapters 3 and 4, is able to capture the grain orientation e�ect in the

multi-crystalline SMA. Therefore, it is schematically depicted in Figure

5.4, the mechanical responses of four cases are studied under isothermal

mechanical loading. Each case is a combination of two grains: the orien-

tation of the first grain in each case is kept the same while the orientation

of the second grain is defined by rotating it with respect to the first by
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zero, 15, 30, and 45 degree for cases 1 to 4, respectively, as schematically

illustrated in Figure 5.4.
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Figure 5.4: Schematic of grain orientation problem.

The comparison of the stress-strain curve of the above four cases under

isothermal mechanical loading is compared in Figure 5.5. As expected,

Figure 5.5 shows the di�erent mechanical response for the four cases due

to the di�erent orientation of grains. However, it is not clear yet that this

variation of results is due to the di�erence of dislocation slip directions or

transformation systems or both of them. To find out the answer of this

question, the change of dislocation density and martensitic volume fraction

during the loading is compared for the above four cases in Figures 5.6 and

5.7, respectively.
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Figure 5.5: The comparison of stress-strain response of di�erent grain orientation.
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Figure 5.6: The comparison of dislocation density of di�erent grain orientations.
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Figure 5.7: The comparison of the martensitic volume fraction of di�erent grain
orientation.

As seen in Figure 5.6, the change in dislocation density due to mechan-

ical loading is di�erent for case 1 to case 4. The variation of dislocation

density for specimens with di�erent slip orientations is in agreement with

the fact that for a grain, the plastic response is orientation dependent. It

also means that the dislocation nucleation and motion has di�erent activity

in di�erent orientations. Furthermore, the above result confirms that our

discrete dislocation-transformation method is able to capture the e�ect of

slip system orientations.

To investigate the e�ect of transformation system orientations on the

mechanical response of the SMA, the change of the martensitic volume frac-

tion for specimens 1 to 4 under isothermal mechanical loading is compared
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in Figure 5.7. The value of martensitic volume fraction (’) shows how

much the martensitic regions grow in each of the cases. Therefore, it can

be concluded that the grain orientation has clear e�ect on the nucleation

and growth of the martensitic phase and again our discrete dislocation-

transformation framework is able to show the e�ect of grain orientations

on the transformation mechanism.

It is also worth mentioning that although the discussed results in this

section show the grain orientation e�ect, it is not possible to compare

the activeness of the di�erent orientations with each other. It is due to

the fact that in addition to the grain orientations, other factors such as

transformation-plasticity interaction and the computational assumptions

also influence on the results. For example, based on the assumption that

is explained in previous sections, the dislocations cannot be generated in

the martensitic regions. Therefore, specimen 1 which experiences more

martensitic transformation in Figure 5.7 has less active sources for the

nucleation of dislocations and as a result has a lower dislocation density in

Figure 5.6.

Furthermore, the dislocations and martensitic regions distribution as

well as average stress in the domain at the end of the loading pass is

illustrated in Figure 5.8. As can be seen in this Figures 5.8a to 5.8d, the

configuration of dislocations and martensitic regions is clearly di�erent for

di�erent orientations.
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Figure 5.8: The comparison of average stress contour plot plus dislocations and
martensitic distributions at the end of loading path for : (a) Case 1, (b) Case 2,
(c) Case 3, and (d) Case 4.
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5.2.2 Grain size e�ect (Hall–Petch e�ect)

The grain size is another important issue related to the polycrystalline

metals. The e�ect of grain size on the mechanical behavior of metals was

first proposed by Hall and Petch [155, 156], therefore the grain size e�ect

is also called ”Hall-Petch e�ect”. There are a lot of studies that investi-

gate the grain size e�ect in polycrystalline structure experimentally and

computationally [157–159]. Shi et al. [106] have studied the e�ect of grain

size on the transformation-induced plasticity in TRIP steels by discrete

dislocation-transformation model. It was observed that the grain bound-

aries play the obstacle role against the dislocation motion. It is clear that

the smaller grain sizes means higher grain boundary density and more resis-

tance against dislocation motions. Therefore, the finer grain size materials

exhibit higher strength behavior in comparison with course grain polycrys-

talline structure.

In this section the e�ect of grain size on the mechanical behavior of

multi-crystalline NiTi is investigated. The mechanical behavior of NiTi

is a combination of plasticity and phase transformation. Therefore, in

the following simulations the grain size e�ect is studied on the marten-

sitic transformation as well as the dislocation plasticity. To do this, three

multi-crystalline domains which are made of 4, 9, and 16 square shape

grains, respectively, are loaded mechanically under isothermal condition.

Furthermore, the orientation of each grain in multi-crystalline structure
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4 μm

4 μmSample 1 
grain size = 2 μm

Sample 2 
grain size = 1.33 μm

Sample 3 
grain size = 1 μm

Figure 5.9: The schematic of models to study grain size e�ect.

are assigned randomly. The schematic of the multi-grain domain to study

the Hall-Petch e�ect is presented in Figure 5.9.

In Figure 5.10, the mechanical response of the three multi-crystalline

domains with di�erent grain sizes under isothermal mechanical loading are

compared together. As shown in this figure, the specimens with finer grains
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Figure 5.10: Comparison of stress-strain response for di�erent grain sizes.

shows harder mechanical behavior. The small grain sample has higher grain

boundary densities; therefore, it shows more resistance against dislocation

motion and phase transformation. To have a better understanding about

the e�ect of grain boundaries on the dislocation dynamic and transforma-

tion growth, the evolution of dislocation density and martensitic volume

fraction are compared for simulations with di�erent grain sizes. These are

illustrated in Figures 5.11 and 5.12, respectively.

Fundamentally, work hardening is quantified by increasing the number

of dislocations. As can be seen in Figure 5.11, the size of the grains af-

fect the dislocation density in the domain. The smaller grain specimens

have more grain boundaries and the likelihood of dislocations reaching the

99



CHAPTER 5. SIMULATION OF MULTI-CRYSTALLINE NITI

0 0.002 0.004 0.006 0.008 0.01
0

20

40

60

80

100

120

Strain

D
isl

oc
at

io
n 

de
ns

ity
 ( 
µ

m
2  )

 

 
grain size = 2 µm
grain size = 1.3 µm
grain size = 1 µm

Figure 5.11: Comparison of dislocation density-strain response for di�erent grain
sizes.
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Figure 5.12: Comparison of martensitic volume fraction-strain response for di�er-
ent grain sizes.
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grains and having pinned there is increased. Therefore, the sample with

higher dislocation density in Figure 5.11 shows harder response in Figure

5.10. This result also confirms that our discrete dislocation-transformation

framework has the ability to simulate the Hall-Petch e�ect in polycrys-

talline structures.

Figure 5.12 shows the particular e�ect of grain boundaries on the phase

transformation in multi-crystalline NiTi. As illustrated in this figure, the

samples with finer grains show less martensitic transformation. This re-

sults is in accordance with the assumption which is considered in the be-

ginning of this chapter. Based on this assumption, the martensitic re-

gions stop growing by reaching the grain boundaries. Therefore, the re-

sistance against martensitic growth increases in multi-crystalline samples

with smaller grains.

Finally, the average stress contour and the distribution of dislocations

and martensitic regions for di�erent samples with di�erent grain sizes are

presented in Figure 5.13. As you can see in Figures 5.13a to 5.13c, the

sample with finer grains (Sample 3) has more dislocation pile ups in grain

boundaries. Moreover, it is observed that the dislocation slip and marten-

sitic transformation are not the same in all the grains. It is due to the

di�erent orientations of the grains in multi-crystalline structure.
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Figure 5.13: The comparison of average stress contour plot plus dislocations and
martensitic distributions at the end of loading path for di�erent grain size samples
: (a) grain size=2µm, (b) grain size=1.33µm, and (c) grain size=1µm.
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5.3 Thermal cycling loading of multi-crystal

NiTi

Similar to the simulation of single-crystalline NiTi, the mechanical behav-

ior of multi-crystalline SMA is studied under thermal cyclic loading and

constant external stresses in this section. These simulations are performed

to observe the shape memory e�ect in multi-crystalline NiTi and the e�ect

of grain orientations and grain sizes on this behavior. At first, the orienta-

tion dependence of the material under temperature cycling is investigated

in Figure 5.14a to 5.14c. In these simulations, four samples with di�erent

orientation which are described in Figure 5.4, are cooled from austenite to

martensitic phase and then heated back to the initial temperature when

they are under constant uni-axial stress.

Furthermore, the dislocation and martensitic regions as well as aver-

age stress contour for double-grain samples with di�erent orientations are

illustrated in Figure 5.15. These distributions are plotted for the lowest

temperature during the thermal cyclic simulation. Similar to isothermal

mechanical loading, it can be seen in Figures 5.15a to 5.15d that the dis-

tribution of dislocations and martensitic regions are clearly di�erent for

samples with di�erent orientations.
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Figure 5.14: The grain orientation e�ect on the double grained NiTi under tem-
perature cycling and 300 MPa uni-axial stress.
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Figure 5.15: The comparison of average stress contour plot plus dislocations and
martensitic distributions at the lowest temperature during thermal cyclic simula-
tions for : (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4.

As expected and it is shown in Figure 5.14a, the grain orientation a�ects
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the shape memory response of the multi-crystalline SMA under tempera-

ture cyclic loading. Furthermore, Figures 5.14b and 5.14c show the e�ect

of di�erent orientations on the dislocation density and martensitic vol-

ume fraction which represent plasticity and transformation mechanisms,

respectively. It is observed that the activeness of slip and transformation

systems are changed when the grain orientation is changed. However, the

grain orientations have more e�ect on the plasticity mechanism in com-

parison to transformation mechanisms. The reason is that the mechanical

loading (uni-axial applied stress) is the only driving force for the plastic

deformation while both thermal and mechanical loadings cause martensitic

transformation. It is clear that the thermal driving force in transformation

is independent of orientation of the grains.

The grain size e�ect on thermal cyclic loading of multi-crystalline NiTi

is also illustrated in Figures 5.16a to 5.16c. As can be seen in Figure 5.16a,

the specimen with larger grain size deformed more than specimens with

smaller grain sizes during cooling and heating. Furthermore, to study the

grain size e�ect on both transformation and plasticity mechanisms, the evo-

lution of martensitic volume fraction and dislocation density are compared

for di�erent grain sizes in Figures 5.16b and 5.16c, respectively. Further-

more, the average stress contour as well as distribution of dislocations and

martensitic regions for di�erent grain sizes are illustrated in Figure 5.17.
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Figure 5.16: The grain size e�ect on the shape memory behavior of multi-crystalline
NiTi under temperature cyclic loading.
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Figure 5.17: The comparison of average stress contour plot plus dislocations and
martensitic distributions at the lowest temperature during temperature cyclic
simulation for di�erent grain size samples : (a) grain size=2µm, (b) grain
size=1.33µm, and (c) grain size=1µm.
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Figure 5.16b represents that the material transformed less in finer grain

samples. It is because of the fact that by reducing the size of grains, the

density of grain boundaries increased and each grain boundary works as a

resistance wall against the growth of transformation interface.

Moreover, Figure 5.16c illustrates that the dislocation density and as

a result, plastic strain is higher in specimens with larger grain size. At

a glance, it is against the fact that grain boundaries cause the increase

of dislocations and hence work hardening. However, looking deeply into

Figure 5.16c it is notable that dislocation generation is induced by phase

transformation around the temperature of 70¶C and before martensitic

transformation there is no dislocation dynamics. It means that the plastic

mechanism here is activated by the local stress field generated by marten-

sitic regions. Therefore, the sample with higher transformation growth

(grain size= 2 µm in Figure 5.16b) shows higher dislocation density in Fig-

ure 5.16c. For brevity, a simple flowchart of the mechanism happening in

these simulations is shown in Figure 5.18.

Finally, the shape memory behavior of a multi-crystalline sample made

from nine grains, is studied under temperature cycling and two di�erent

uni-axial stresses equal to 50 MPa and 300 MPA. The results are presented

in Figure 5.19. As shown in Figures 5.19b and 5.19d, in both models, the

martensitic regions transformed back completely by heating to the initial

temperature in austenite phase. This means there is no residual strain due
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Figure 5.18: A simple flowchart to explain the e�ects of transformation-induced
plasticity and grain size on the dislocation density of the samples when they are
under thermal cycling.

to the remaining martensitic phase after thermal cyclic loading. However,

Figures 5.19a and 5.19c illustrate some none-reversible strain after ther-

mal cycling in both sample. This remaining strain is due to dislocation

plasticity which is induced mainly by the martensitic transformation. It

is observed that the plastic strain for the sample under 300 MPa external

stress is bigger than that of the sample under 50 MPA applied stress. It

is due to the fact that, the Peach-Koehler force (driving force for disloca-

tion generation and motion) is computed by local stress field which is a

combination of stress field of martensitic regions (which is similar for both

sample) and the external stresses.
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Figure 5.19: The mechanical response of multiple-crystalline NiTi under tempera-
ture cycling behavior and di�erent uni-axial applied stress.

5.4 Conclusions

In this chapter the behavior of multi-crystalline SMA under thermo-mechanical

loading is studied with the discrete dislocation-transformation model. The

orientation e�ect and grain size e�ect were investigated when the speci-

mens experienced isothermal mechanical loading and thermal cycling. It is

concluded that the grain orientation is an important factor for both trans-

formation and slip systems. Therefore, to reduced the anisotropic behavior
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of the model it is crucial to use polycrystalline simulation for larger scales.

Furthermore, as the grain boundaries have a resistance against disloca-

tion motion and martensitic growth, the grain size study is important for

predicting the behavior of multi-crystalline SMA. The results in this chap-

ter shows that the material with finer grains shows harder behavior when

isothermal mechanical loading is applied. However under temperature cy-

cling loading where the external applied stress is less the than yield stress,

the sample with smaller grain shows less dislocation densities. It is due

to the fact that, the plastic deformation is induced by the transformation

and the specimen with finer grain experienced less transformation, and the

grain boundaries in finer grained specimen shows more resistance against

the martensitic growth.

Although the multi-crystalline samples in this chapter are limited to

domains with maximum 16 grains due to the computational cost, the re-

sults show some fundamental phenomenon about polycrystalline structure.

Therefore, it can be used for larger scale specimens with more grains in the

future.
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Chapter 6

Macro scale modeling of shape

memory alloys

In the previous chapters, the behavior of single and multi-crystalline shape

memory alloy were studied with discrete dislocation-transformation method.

The nucleation and motion of dislocations in addition to generation and

growth of martensitic regions were modeled in micro-scale domains. Al-

though the discrete dislocation-transformation method described the be-

havior of SMAs under thermo-mechanical loading well, it is not suitable

for modeling the large-scale application of SMAs. In this chapter a three-

dimensional constitutive model based on the isotropic plasticity considera-

tion is presented to predict the mechanical behavior of SMAs. This model

is also capable simulating the response of SMA at high temperatures with

creep as a rate-dependent deformation mechanism being activated.
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The constitutive equations are implemented in a finite element program

(ABAQUS) by writing an explicit user-material subroutine and then the

coupled temperature-displacement problems are solved with this finite el-

ement method solver. Then, the results from numerical simulations are

compared with experimental data for a ternary high temperature shape

memory alloy (Ti-Ni-Pd) during temperature cycling tests under di�erent

external stress and di�erent temperature rates. High temperature shape

memory alloys (HTSMA) are kinds of SMAs with high transformation tem-

peratures usually above 100¶C. The main di�erence between HTSMAs and

ordinary SMAs is the ability of going through this transformation process

at higher temperatures and therefore, they extend the application range

of these materials to high temperatures such as jet engine and oil and gas

industry.

In comparison to the ordinary shape memory alloys, the deformation

behavior of HTSMAs is more complicated due to the value of thermal en-

ergy at high temperatures. At high temperatures, the yield stress (‡
Y

)

decreases in both austenite and martensite phases. Therefore, the small

resistance to plastic deformation a�ects the level of irrecoverable strain in

HTSMAs. Furthermore, in HTSMAs the transformation temperatures usu-

ally lie in the range of 0.3-0.5 of melting temperature where the viscoplastic

behavior is observed in metallic materials. Hence, viscoplastisty and trans-

formation occur together at a specific range of temperature and stresses.
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Moreover, the internal stresses due to the martensitic transformation may

cause transformation-induced plasticity. Recently, some experiments were

done on Ti-Pd-Ni alloys and the coexistence of transformation strain and

irrecoverable plastic strains were observed [160–163].

It is worth mentioning that although the results from the previous chap-

ters are not used in the continuum model quantitatively, the observation

from micro-scale modeling is applied qualitatively to suggest appropriate

phenomenological equations for the deformation mechanisms.

6.1 Constitutive equations based on isotropic

plasticity

A three dimensional constitutive model is developed in this section to

describe the behavior of SMA under thermo-mechanical loading. The

isotropic elasto-viscoplasticity theory is used here to model the coexistence

of plastic deformation and phase transformation. The proposed model can

cover two-way shape memory behavior and super-elasticity but cannot be

used for martensitic reorientation/detwinning. For more information about

the latter, one can refer to the work of [150].

The governing variable in the constitutive models are taken as: (i) the

Helmholtz free energy per reference volume, Â; (ii) the Cauchy stress, T;

(iii) the deformation gradient F with (detF) > 0; (iv) elastic deformation
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gradient, Fe with (detFe) > 0; (v) inelastic deformation gradient due to the

A¡M transformation and plasticity in austenite and martensite, Finel and

we know F = FeFinel ; (vi) absolute temperature, ◊; (vii) total martensite

volume fraction, ›; with 0 Æ › Æ 1; (viii) heat flux per unit referential area,

q.

Furthermore, the continuum body is considered to occupy a region R
0

in reference configuration with n
0

the outward unit normal of the boundary

ˆR
0

.

As mentioned, the elastic deformation gradient can be found as

Fe = FFinel

≠1
, (6.1)

and from polar decomposition theory, the elastic deformation gradient can

be decompose as elastic stretch and rotation parts,

Fe = ReUe, (6.2)

where Re = Re

≠T and Ue = Ue

T are orthogonal elastic rotation tensor and

symmetric elastic stretch tensor, respectively. By considering Ce = Fe

T Fe,

the Lagrangian measure of strain is expressed as

Ee = 1/2 (Ce ≠ 1) , (6.3)
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where Ce is the elastic right Cauchy-Green strain and Ee is elastic Green

strain tensor.

The total velocity gradient is given by

L © ḞF≠1 = Le + FeLinelFe

≠1
, (6.4)

where Le = ḞeFe

≠1 is elastic velocity gradient and Linel = ḞinelFinel

≠1 is

inelastic velocity gradient. We also decompose Linel = Dinel + Winel where

Dinel = Sym
1
Linel

2
is the plastic stretching rate and Winel = Skew

1
Linel

2

represents the plastic rotation rate. Furthermore, in the current constitu-

tive equations, some assumption are considered as follows.

(i) According to the work of [164], it is assumed that for isotropic metal-

lic plasticity Winel = 0 means that the inelastic flow is irrotational, and

therefore Linel = Dinel.

(ii) It is considered that (detFinel) = 1 , Dinel is purely deviatoric.

From second law of thermodynamics S·Ḟ≠q
0

· Grad(◊)

◊

≠‘̇+◊÷̇ Ø 0, where

‘ is internal energy per unit reference volume and ÷ represents entropy per

unit reference volume and by defining Â = ‘ ≠ ÷◊ it results in

S · Ḟ ≠ q
0

· Grad(◊)
◊

≠ Â̇ ≠ ÷◊̇ Ø 0, (6.5)

and

S · (ḞeFinel + FeḞinel) ≠ q
0

· Grad(◊)
◊

≠ Â̇ ≠ ÷◊̇ Ø 0, (6.6)
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where S is first Piola Kirchho� stress tensor and is defined as S = (detF)TF≠T

where T is Cauchy stress tensor. Therefore the second law of thermody-

namic will be rewritten as:

(detF) T · Le + (detF) Fe

T TFe

≠T · Linel ≠ q
0

· Grad(◊)
◊

≠ Â̇ ≠ ÷◊̇ Ø 0. (6.7)

It is recalled that Ee = 1/2
1
Fe

T Fe ≠ 1
2

and Ėe = Fe

T DeFe. Therefore,

for the first term of second law of thermodynamics in inequality (6.7), it is

written as (detF)T · Le = (detF)T · De = (detF)T · Fe

≠T ĖeFe

≠1 . Then by

defining Tú = (detF)Fe

≠1TFe

≠T the second law of thermodynamics can be

simplified as

Tú · Ėe + CeTú · Dinel ≠ q
0

· Grad(◊)
◊

≠ Â̇ ≠ ÷◊̇ Ø 0. (6.8)

It is considered in this study that the mechanism of inelastic deformation

includes the martensitic transformation, plasticity in austenite phases and

also plasticity induced by martensitic transformation. Therefore the inelas-

tic velocity gradient Dinel is decomposed as

Dinel = Dt + (1 ≠ ›)Dvp

A

+ Dtp, (6.9)

where Dt is inelastic distortion rate due to transformation and Dvp

A

is in-

elastic distortion rate due to plasticity in austenitic phase and Dtp is dis-
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tortion rate due to the transformation induced plasticity that each of them

are defined as Y
___________]

___________[

Dt =
Ò

3

2

Á̄t

q
2

i=1

›̇
i

N
i

,

Dvp

A

=
Ò

3

2

Á̇vp

A

N
A

,

Dtp =
Ò

3

2

Á̇tpN
tp

,

(6.10)

where ›̇
1

Ø 0 and ›̇
2

Æ 0 denoted the forward and reverse martensitic

transformation rates, respectively, and N
1

and N
2

are forward and reverse

flow direction respectively and Á̄t is the maximum transformation strain for

martensitic transformation which is a physical properties of SMAs.

From the microscopic point of view, the reverse transformation is lim-

ited by the forward transformation history to recover the crystallography of

the deformation which is induced during forward transformation. There-

fore N
2

is defined here based on forward flow direction (N
1

) according

to [29,165]:

N
2

= B
|B| with Ḃ = Dt. (6.11)

Furthermore N
A

is austenite plastic flow directions and ‘̇vp

A

is the austenitic

plastic strain rate and Á̇tp is transformation induced plastic strain rate.

With substitution of decomposed form of Dinel in second law of thermody-
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namic, the inequality (6.8) is simplified as

Tú ·Ėe +CeTú ·Dt +CeTú ·
Ó
(1 ≠ ›)Dvp

A

+ Dtp

Ô
≠q

0

· Grad(◊)
◊

≠ Â̇≠÷◊̇ Ø 0.

(6.12)

The Helmholtz free energy per unit reference volume Â, is defined as

Â = ‚Â (Ee, ◊, ›) = ‚Âe (Ee, ◊) + ‚Â◊ (◊) + ‚Â› (◊, ›) . (6.13)

Therefore, the time derivative of free energy is

Â̇ = ˆÂ

ˆEe

· Ėe + ˆÂ

ˆ◊
◊̇ + ˆÂ

ˆ›
›̇. (6.14)

By substituting equation (6.14) in inequality (6.12) and doing some sim-

plification we have

A

Tú · Ėe ≠ ˆÂ

ˆEe

B

· Ėe ≠
A

÷ + ˆÂ

ˆ◊

B

◊̇ +
Q

aCeTú ·
Û

3
2 Á̄t

2ÿ

i=1

›̇
i

N
i

≠ ˆÂ

ˆ›
›̇

R

b

+CeTú ·
Ó
(1 ≠ ›)Dvp

A

+ Dtp

Ô
≠ q

0

· Grad(◊)
◊

Ø 0.

(6.15)

By using the principle of equipresence it is shown that,

Tú = ˆÂ

ˆEe

, (6.16)

÷ = ≠ˆÂ

ˆ◊
, (6.17)
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Q

aCeTú ·
Û

3
2 Á̄t

2ÿ

i=1

›̇
i

N
i

≠ ˆÂ

ˆ›
›̇

R

b + CeTú ·
Ó
(1 ≠ ›)Dvp

A

+ Dtp

Ô

≠q
0

· Grad(◊)
◊

Ø 0. (6.18)

Equation (6.16) is the stress-strain constitutive law and equation (6.17)

is the constitutive relation for entropy and inequality (6.18) is the total

dissipation that is always non-negative. It is assumed that

≠ q
0

· Grad(◊)
◊

Ø 0, (6.19)

Q

aCeTú ·
Û

3
2 Á̄t

2ÿ

i=1

›̇
i

N
i

≠ ˆÂ

ˆ›
›̇

R

b Ø 0, (6.20)

Y
_____]

_____[

CeTú · {(1 ≠ ›)Dvp

A

} Ø 0

CeTú · Dtp Ø 0.

(6.21)

Inequality (6.19) is the dissipation due to heat conduction and inequality

(6.20) is the dissipation due to phase transformation and finally inequal-

ities (6.21) are the dissipation due to austenite plastic deformation and

transformation induced plasticity.

In this study, the Helmholtz free energy density, Â = ‚Â (Ee, ◊, ›) is

considered to be constructed of three parts,

Â = ‚Â (Ee, ◊, ›) = ‚Âe (Ee, ◊) + ‚Â◊ (◊) + ‚Â› (◊, ›) . (6.22)
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Then the terms of the Helmholtz free energy per unit reference volume, Â

is assumed in the forms of

‚Âe (Ee, ◊) = 1
2Ee · C [Ee] ≠ A (◊ ≠ ◊

0

) · C [Ee] , (6.23)

‚Â◊ (◊) = c (◊ ≠ ◊
0

) ≠ c◊ ln
A

◊

◊
0

B

, (6.24)

‚Â› (◊, ›) = ⁄
T

◊
T

(◊ ≠ ◊
T

) › + 1
2h›2. (6.25)

Here ‚Âe denotes the classical thermo-elastic free energy density, where C

is the symmetric forth-order elastic modulus tensor, A is the symmetric

second order thermal expansion tensor and ◊
0

is the reference temperature.

Furthermore, ‚Â◊ is thermal portion of free energy density where c is the spe-

cific heat per unit volume. Finally, ‚Â› represents the austenite/martensite

phase transformation energy where ⁄
T

is the latent heat of phase trans-

formation, h is the transformation hardening factor and ◊
T

= Ms+As
2

is

transformation temperature and M
s

is the martensite start temperature

and A
s

is the austenite start temperature.

From equation (6.16), the stress measurement Tú is presented by

Tú = ˆÂ

ˆEe

= C (Ee ≠ A (◊ ≠ ◊
0

)) . (6.26)

Substituting equation (6.22) in equation (6.17), the constitutive equation

122



CHAPTER 6. MACRO SCALE MODELING OF SHAPE MEMORY
ALLOYS
for entropy density is found as

÷ = ≠ˆÂ

ˆ◊
= A · C [Ee] + c◊ ln

A
◊

◊
0

B

≠ ⁄
T

◊
T

›. (6.27)

It is assumed that the material obeys Fourier’s law of heat conduction

therefore, from ≠q
0

· Grad(◊)

◊

Ø 0 it is expressed as

q
0

= ≠KGrad(◊), (6.28)

where K is the thermal conductivity tensor.

The other dissipation parts presented in inequalities (6.20) and (6.21)

are due to the martensitic transformation and the plasticity in austenitic

phase and the plasticity due to phase transformation respectively. For

dissipation because of transformation,
1
CeTú ·

Ò
3

2

Á̄t

q
2

i=1

›̇
i

N
i

≠ ˆÂ

ˆ›

›̇
2

Ø 0

it is shown as

f
1

›̇
1

Ø 0 whenever ›̇
1

”= 0, (6.29)

where f
1

©
1Ò

3

2

Á̄t (CeTú) · N
1

≠ ˆÂ

ˆ›

2
denotes the driving force for forward

transformation, and

f
2

›̇
2

Ø 0 whenever ›̇
2

”= 0, (6.30)

where f
2

©
1Ò

3

2

Á̄t (CeTú) · N
2

≠ ˆÂ

ˆ›

2
denotes the driving force for reverse

transformation. As mentioned before, we have assumed that det(Finel) = 1,
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therefore Dinel, Dt, Dvp

A

, and Dtp are purely deviatoric and as a result the

inequalities (6.29) and (6.30) are rewritten as

f
1

©
Q

a
Û

3
2 Á̄tdev (CeTú) · N

1

≠ ⁄
T

◊
T

(◊ ≠ ◊
T

) ≠ h›

R

b , (6.31)

f
2

©
Q

a
Û

3
2 Á̄tdev (CeTú) · N

2

≠ ⁄
T

◊
T

(◊ ≠ ◊
T

) ≠ h›

R

b . (6.32)

It is considered that f
1,2

= f
c

‚g
1
›̇

2
where, ‚g

1
›̇

2
> 0 for ›̇ > 0 and ‚g

1
›̇

2
< 0

for ›̇ < 0, then since |N
i

| = 1 it is shown as

Û
3
2 Á̄tdev (CeTú) · N

1

= ⁄
T

◊
T

(◊ ≠ ◊
T

) + h› + f
c

‚g
1
›̇

2
, (6.33)

therefore,

Û
3
2 Á̄tdev (CeTú) =

I
⁄

T

◊
T

(◊ ≠ ◊
T

) + h› + f
c

‚g
1
›̇

2J

N
1

. (6.34)

Since |N
1

| = 1, taking the magnitude on both sides of equation (6.34) it is

obtained

N
1

= dev (CeTú)
|dev (CeTú)| , (6.35)

and

‡Á̄t ≠ ⁄
T

◊
T

(◊ ≠ ◊
T

) ≠ h› = f
c

‚g
1
›̇

2
, (6.36)

where ‡ =
---
Ò

3

2

dev (CeTú)
--- and f

1,2

is defined as driving force for forward

124



CHAPTER 6. MACRO SCALE MODELING OF SHAPE MEMORY
ALLOYS
and reverse phase transformation,

f
1,2

= ‡Á̄t ≠ ⁄
T

◊
T

(◊ ≠ ◊
T

) ≠ h›. (6.37)

According to work done by [166] on the rate-dependent and isotropic metal

plasticity the ‚g
1
›̇

2
is assumed in the form of

‚g
1
›̇

2
=

Q

a

---›̇
---

›̇
0

R

b
m≠1 A

›̇

›̇
0

B

. (6.38)

Therefore, the kinetic relation for martensitic volume fraction › is deter-

mined as

›̇ = sign (f) ›̇
0

A
|f |
f

c

B 1
m

, (6.39)

where m is the rate sensitivity factor for phase transformation, ›̇
0

> 0 is the

reference martensite or austenite generation rate and f
c

is the resistance to

transformation.

For the dissipation part due to plasticity in austenite and transforma-

tion induced plasticity, CeTú ·
Ó
(1 ≠ ›)Dvp

A

+ Dtp

Ô
Ø 0 , it is considered

that

det(Fvp

A

) = 1 ∆ trace(Dvp

A

) = 0 ∆ Dvp

A

= dev(Dvp

A

),

det(Ftp) = 1 ∆ trace(Dtp) = 0 ∆ Dtp

M

= dev(Dtp).
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Therefore, the inequality (6.21) is rewritten as

Y
_____]

_____[

(CeTú)
dev

· (Dvp

A

)
dev

Ø 0,

(CeTú)
dev

·
1
Dtp

2

dev

Ø 0.

(6.40)

To solve inequalities (6.40) it is considered that, N
A

= N
tp

= N
3

therefore

Y
_____]

_____[

(Dvp

A

)
dev

= k‘̇
p

A

N
3

,

1
Dtp

2

dev

= k‘̇
tpN

3

.

(6.41)

and

(CeTú)
dev

=
Ó
(1 ≠ ›)k‘̇

p

A

+ k‘̇
tp

Ô
N

3

, (6.42)

also as |N
3

|=1. Hence,

|(CeTú)
dev

| =
Ó
(1 ≠ ›)kÁ̇

p

A

+ kÁ̇
tp

Ô
, (6.43)

and

N
3

= (CeTú)
dev

|(CeTú)
dev

| . (6.44)

As the plastic mechanisms in austenite phase is fully dissipative it is ob-

tained that Y
_____]

_____[

·
1
Á̇

p

A

2
> 0,

·
1
Á̇

tp

2
> 0.

(6.45)
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where · = k |(CeTú)
dev

|, k =
Ò

3

2

, and Á̇
p

A

and Á̇
tp are plastic strain rate.

Then to specify the kinetic rate-dependent relation for isotropic metal plas-

ticity, it is defined that

· = S
aË

exp
1

≠Qa

R◊

2È
n

A
Á̇

p

A

Á̇
0

B
(n≠1)

A
Á̇

p

A

Á̇
0

B

. (6.46)

Therefore, the kinetic equation to find plastic strain in austenitic phase is

expressed as

Á̇
p

A

= Á̇
0

sign (·)
3

·

S
a

4 1
n

exp
3≠Q

a

R◊

4
, (6.47)

where n is rate sensitivity factor, Á̇
0

is the reference strain rate, Q
A

is the

activation energy for austenite and R is the Stefan-Boltzmann constant

and S
a

is the plastic resistance in austenite phase.

The kinetic equation to predict the plastic strain rate that is occurred

due to the martensitic transformation is suggested by Leblond [167] as

Á̇
tp = Á̇tp

0

3
·

S
a

4
, (6.48)

where

Á̇tp

0

= ”„̇ (›) g (·) , (6.49)

where ” is volumetric change of crystals between austenitic and martensitic

phases and is found by microstructure calculation on crystals. „ (›) is a

function of martensitic volume fraction which increase from zero to one
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during transformation from austenite to martensite and is assumed as:

„ (›) = › (1 ≠ ln ›) and g (·) is a function to describe the nonlinearity of

relation between Á̇tp

0

and · and is suggested by Leblond [167] as

g (·) =

Y
_____]

_____[

1 if ·

Sa
< 1

2

,

1 + a
1

·

Sa
≠ 1

2

2
, if ·

Sa
> 1

2

.

(6.50)

A model to update the plasticity resistance of austenite phase is defined

as

Ṡ
a

= d
2a

Á̇
p

A

, (6.51)

From the first law of thermodynamics, S · Ḟ ≠ Divq
0

+ r = ‘̇ and since

‘ = Â + ÷◊ and ‘̇ = Â̇ + ÷̇◊ + ÷◊̇ it is obtained that

S · Ḟ ≠ Divq
0

+ r ≠ Â̇ ≠ ÷̇◊ ≠ ÷◊̇ = 0. (6.52)

where r is the heat supply per unit reference volume. Then with substitut-

ing the terms and doing some simplification, it will be

(6.53)

A

Tú ≠ ˆÂ

ˆEe

B

· Ėe ≠
A

÷ + ˆÂ

ˆ◊

B

◊̇ +
Q

aCeTú ·
Û

3
2 Á̄t

2ÿ

i=1

›̇
i

N
i

≠ ⁄
T

◊
T

(◊ ≠ ◊
T

) ›̇ ≠ h››̇

R

b +

CeTú ·
Ó
(1 ≠ ›)Dvp

A

+ Dtp

Ô
≠ Divq

0

+ r = ÷̇◊,
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and it is reduced to

(6.54)

Q

aCeTú ·
Û

3
2 Á̄t

2ÿ

i=1

›̇
i

N
i

≠ ⁄
T

◊
T

(◊ ≠ ◊
T

) ›̇ ≠

h››̇

R

b + CeTú ·
Ó
(1 ≠ ›)Dvp

A

+ Dtp

Ô
≠ Divq

0

+ r = ÷̇◊.

Then the rate of entropy is found by the constitutive equation (6.27)

÷̇ =
˙

A · C [Ee] + c ln
A

◊

◊
0

B

≠ ⁄
T

◊
T

› = A · C
Ë
Ėe

È
+ c

◊̇

◊
≠ ⁄

T

◊
T

›̇, (6.55)

and by substituting equation (6.55) in equation (6.54) it is obtained

c◊̇ = ≠A · C
Ë
Ėe

È
◊ ≠ Divq

0

+ r +
Q

aCeTú ·
Û

3
2 Á̄t

2ÿ

i=1

›̇
i

N
i

≠ ⁄
T

◊

◊
T

›̇ ≠ h››̇

R

b +

CeTú ·
Ó
(1 ≠ ›)Dvp

A

+ Dtp

Ô
,

(6.56)

where the first term is the elastic heat generation, the second term is the

heat conduction, the third is the heat source, the fourth term is because of

transformation dissipation and finally the last term is the plastic dissipation

in the austenitic phase.

A time integration algorithm is developed to implement constitutive

equations for SMAs in ABAQUS/Explicit by writing an explicit user ma-

terial subroutine (VUMAT). The time integration algorithm using for im-

plementation code is presented in appendix A.
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6.2 Calibration of the model

The material which is used in this section for the model is a shape mem-

ory alloy with the composition of Ti
50

Pd
30

Ni
20

. This material is selected

because of its transformation temperature which is as follow: martensitic

finish = 223¶C, martensitic start = 234¶C, austenitic start = 235¶C and

austenitic finish = 245¶C [162]. These transformation temperatures are

between 200¶C and 300¶C, which lie in the range of 0.3-0.35 of the alloy’s

melting temperature. It is shown that in this range of temperature, the

creep mechanism in metallic alloys is activated [11,168].

To study the actuation behavior of Ti
50

Pd
30

Ni
20

, it is crucial to inves-

tigate the occurrence of martensitic transformation and plasticity simul-

taneously during thermal cycling loads. Some of the material parameters

are defined based on the literatures [162,163] and some of them have been

found by fitting the results from one dimensional constitutive equations

by the uni-axial thermal cycling experiments. Figure 6.1 and 6.2 show

these comparisons at 100 MPa and 300 MPa external applied stresses and

thermal changes between 370¶C and 100¶C to the find fitting parameters

where the temperature rate during cooling and heating is 5 ¶
C

min

. A sum-

mary of all material constants and fitting parameters for Ti
50

Pd
30

Ni
20

is

presented in Table 6.1. This data is used for the three dimensional simula-

tion to model the coexistence of phase transformation and plasticity during

thermal actuation behavior.
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Table 6.1: Material Parameters of Ti50Pd30Ni20.

Thermo elastic behavior [162]
E

A

= 32GPa E
M

= 57GPa
‹

A

= ‹
M

= 0.33 –
A

= –
M

= 2.5 ◊ 10≠51/¶C

Transformation properties [162,163]
Á̄t ¥ 0.015 Latent heat:⁄

T

= 58.6MJ/m3

M
f

= 223¶C M
s

= 234¶C A
s

= 235¶C A
f

= 245¶C
m = 0.02 ›̇

0

= 0.001 h = 7

Plasticity in Austenite [162]
n = 0.24 Q

a

= 263KJ/mol Á
0

= 106 R = 0.00831
S

A

= 300 MPa

Transformation induced Plasticity
” = 0.0067 a = 2
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Figure 6.1: comparison of strain-temperature behavior of the Ti50Pd30Ni20 speci-
men thermally cycled at 100 MPa applied stress.
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Figure 6.2: comparison of strain-temperature behavior of the Ti50Pd30Ni20 speci-
men thermally cycled at 300 MPa applied stress.

6.3 Three-dimensional computational anal-

ysis

The coupled temperature-displacement simulations are modeled by using

finite element in ABAQUS software to observe the actuation behavior of

Ti
50

Pd
30

Ni
20

. It includes the coexistence of martensitic transformation,

plasticity in austenite, and transformation induced plasticity (TRIP). The

cylindrical specimens and spring coil are the three-dimensional examples

which are presented in the next sections.
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6.3.1 Example 1: Cylinder under thermal cycling

This problem consists of compression loading of a solid cylinder with 7mm

diameter and 14mm height and it is in accordance with experimental data

available. In these experiments, each specimen was heated to 100¶C under

no-load condition and subsequently loaded to the desired stress level in

the martensitic state. The specimen was then heated to a temperature of

370¶C while holding the stress constant. From this point, three consecutive

thermal cycles were conducted by cooling and subsequently heating the

specimen between 100 and 370¶C [162]. The grips are considered as rigid

surfaces and the Abaqus contact algorithm is applied to model the grip-

cylinder contact. The friction coe�cient is assumed as 0.2 and the external

stress is applied on the rigid grips. Finally the temperature is changed at

the rate of 5 ¶C/min on the external surfaces. The schematic of the three-

dimensional model of cylinder which is under thermal cycling and constant

compression stress along the axial direction is presented in Figure 6.3.

The cylindrical specimens are under temperature cyclic loading between

370¶C and 100¶C with the temperature rate of 5¶C/min when they are un-

der compression with applied stresses of 50 MPa, 100 MPa, 200 MPa,

300 MPa and 400 MPa for di�erent tests. The comparison of strain-

temperature response that is predicted by the three dimensional simula-

tions and experiments for di�erent applied stresses is presented in Figures

6.4 to 6.8.
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Figure 6.3: 3D view of cylinder model to study the behavior of the Ti50Pd30Ni20
specimen thermally cycled at 200 MPa applied stress on axial direction and tem-
perature rate of 5¶C/min.
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Figure 6.4: Comparison of 3D simulation and experiments for strain-temperature
behavior of the Ti50Pd30Ni20 specimen thermally cycled at 50 MPa applied stress.
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Figure 6.5: Comparison of 3D simulation and experiments for strain-temperature
behavior of the Ti50Pd30Ni20 specimen thermally cycled at 100 MPa applied stress.
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Figure 6.6: Comparison of 3D simulation and experiments for strain-temperature
behavior of the Ti50Pd30Ni20 specimen thermally cycled at 200 MPa applied stress.

As seen in Figures 6.4 to 6.8, the three dimensional isotropic based

constitutive equations can predict the actuator behavior of Ti
50

Pd
30

Ni
20

. It
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Figure 6.7: Comparison of 3D simulation and experiments for strain-temperature
behavior of the Ti50Pd30Ni20 specimen thermally cycled at 300 MPa applied stress.
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Figure 6.8: Comparison of 3D simulation and experiments for strain-temperature
behavior of the Ti50Pd30Ni20 specimen thermally cycled at 400 MPa applied stress.

is shown in Figure 6.4 that the transformation induced plasticity is an active

deformation mechanism when the applied stress is small. It is because the
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local stress due to the martensitic transformation is much higher than the

external stresses.

Mart. Vol. Frac (%)

(a)

Mart. Vol. Frac (%)

(b)

Mart. Vol. Frac (%)

(c)

Mart. Vol. Frac (%)

(d)

Figure 6.9: The evolution of martensitic volume fraction during forward and back-
ward transformation: (a) ◊ = 370¶C, forward transformation, (b) ◊ = 232¶C, for-
ward transformation, (c) ◊ = 100¶C, backward transformation, and (d) ◊ = 270¶C,
backward transformation.

The distribution of martensitic volume fraction and Mises stress during

forward and backward transformation for the sample under thermal cycling
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Figure 6.10: The distribution of mises stress during forward and backward trans-
formation: (a) ◊ = 370¶C, forward transformation, (b) ◊ = 232¶C, forward trans-
formation, (c) ◊ = 100¶C, backward transformation, and (d) ◊ = 270¶C, backward
transformation.

and 200 MPa compression stress are presented in Figures 6.9 and 6.10,

respectively. It is illustrated in the these figures that the distribution of

stress and the martensitic volume fraction are not homogeneous. This

heterogeneity is created by the friction contact between cylinder and rigid
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grips.

6.3.2 Example 2: Actuation response of a spring

One of the main applications of high temperature shape memory alloys is

actuation behavior. In this section the response of a helical spring that

is made from Ti
50

Pd
30

Ni
20

that is applied in thermally induced actuators

is investigated. In this model, the coil diameter is 12.7 mm and the wire

diameter is 0.5 mm with spring pitch of 2.8 mm. The three-dimensional

C3D8T which is suitable for coupled temperature-displacement situation

is applied to solve the problem. The single coil spring is modeled while the

environment temperature is changing between 200¶C and 320¶C with the

rate of 5¶C/min and the spring is under 0.25 N axial force when the other

end is fixed. The model is presented in Figure 6.11 and the displacement-

temperature response of the spring is presented in Figure 6.12.

Z

Y

X

Thermal loads on 

the external surface

F=0.25 N

Figure 6.11: 3D view of an one coil spring of the Ti50Pd30Ni20 specimen thermally
cycled with temperature rate of 5¶C/min.
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As can be seen in Figure 6.12, when the spring heated back to the

initial temperature, the material fully transformed back to austenite but the

specimen still shows the irrecoverable strain. The recoverable response of

the actuator is a�ected by the irrecoverable viscoplastic and transformation

induced plasticity (TRIP).
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Figure 6.12: Displacement-Temperature behavior of the Ti50Pd30Ni20 spring, ther-
mally cycled with temperature rate of 5¶C/min.

6.4 Linking the micro-scale simulations with

macro-scale modeling

As mentioned at the beginning of this chapter, although the discrete dislocation-

transformation framework (presented in Chapters 3-5) and isotropic based

constitutive model (presented in this chapter) are not linked together quan-

titatively, there are some relations between the results of the micro-scale

simulations and the suggested phenomenological equations in the macro-
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scale model. To relate these two models, some comparisons between results

calculated by both methods under certain assumptions, are performed in

this section.

The predicted strain-temperature responses of NiTi under thermal cy-

cling and a 300 MPa constant applied stress by both methods are compared

here. The following considerations are made to compare results from the

two models: (i) The material behavior of NiTi is applied in the contin-

uum model expect for maximum transformation strain that is scaled by a

factor of 0.1 so that it is the same as discrete dislocation-transformation

model. (ii) According to the discrete dislocation-transformation model, the

NiTi transforms to a maximum 25% of martensitic phase with this method.

Therefore, this limit is applied to the macroscopic model. (iii) As the im-

portant terms in our study are plasticity and transformation strains, the

thermal expansion strain is subtracted from both simulations. (iv) The

heating and cooling rate is assumed to be high enough to avoid any vis-

coplasticity in austenite phase, but it is not as high as the temperature rate

in discrete dislocation-transformation model.

The comparison between strain-temperature results of the discrete dislocation-

transformation method and isotropic continuum model is presented in Fig-

ure 6.13. As can be seen in this figure, by applying the above assumptions,

the results show a similar trend with comparable values. However, there

are some phenomenological equations and fitting parameters in the con-
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Figure 6.13: The comparison of predicted strain-temperature response by discrete
dislocation-transformation framework and continuum model for NiTi under ther-
mal cycling and 300 MPa applied stress.

tinuum model which describe the physical phenomena in microstructure.

One of these phenomena is transformation-induced plasticity which is a

result of interaction between martensitic transformation and dislocation

slip. This phenomena is modeled by a suggested phenomenological model

(equations (6.49) and (6.50)) and material parameter ”a”. The e�ect of

changing ”a” factor on the results is illustrated in Figure 6.14. As can be

seen in this figure, the ”a” factor is a material parameter that has direct

e�ect on transformation-induced plastic(TRIP) strain. Therefore, it can

be concluded, that the dislocation-transformation interaction and TRIP

strain are linked together qualitatively. Furthermore, although the multi-
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scale simulation is not the aim of this study, it can be suggested as a future

work to calculate ”a” parameter or update the phenomenological equation

from the discrete dislocation-transformation method and then used in the

continuum model.
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Figure 6.14: The comparison of predicted strain-temperature response by discrete
dislocation-transformation framework and continuum model for NiTi and e�ect of
material parameter ”a” on the results.

The other physical phenomena which is illustrated in Figure 6.15 is the

resistance of grain boundaries and dislocation arrays on the transformation

growth. This phenomena is also modeled with the material parameter ”h”

in the continuum model ( equation (6.37) ) to fit the slope of the martensitic

transformation. Again, it can be suggested to compute the ”h” factor based

on to the results from the discrete dislocation-transformation simulations
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of polycrystalline NiTi as a multi-scale model in future.
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Figure 6.15: The comparison of predicted strain-temperature response by discrete
dislocation-transformation framework and continuum model for NiTi and e�ect of
material parameter ”h” on the results.

6.5 Conclusions

In this chapter, an isotropic-plasticity-based constitutive equation is pre-

sented for investigation of the coexistence between plasticity and marten-

sitic transformation in high temperature shape memory alloys. Then, the

three-dimensional constitutive equations are implemented in a commercial

FEM software (ABAQUS) by writing an explicit user subroutine to model

the mechanical behavior of Ti
50

Pd
30

Ni
20

. Some coupled displacement-
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temperature simulations under thermal cycling and constant compression

stresses are designed. To verify the predicted theoretical results, they are

compared with physical experiments data from [162,169].

The comparison of results with experimental data firstly shows us the

validity of the presented constitutive equation for SMAs after calculating

the material constant. Therefore, this model can be used to predict the

thermo-mechanical behavior of SMAs such as Ti
50

Pd
30

Ni
20

. It also can

be applied to study and design of the macro-scale engineering applica-

tion. Furthermore, it is concluded that, for shape memory alloys in high

temperatures, the phase transformation occurs in the temperatures that

the creep mechanisms and transformation induced plasticity (TRIP) have

been activated. Therefore some irrecoverable strains occur during phase

transformation and also during plasticity in austenite that a�ects on the

actuation behavior of the thermally induced actuators that are made from

these materials.

Finally, the comparison between strain-temperature results of the dis-

crete dislocation-transformation method and isotropic continuum model

under special assumptions shows the qualitative link between two meth-

ods. It is also shown how some of the fitting parameters in continuum

model represent physical phenomena in microstructure of SMA. However,

the multi-scale modeling of the material is out of the scope of this study

and the two methods are not linked together quantitatively.
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Conclusions and future work

In this thesis, the interaction between dislocation slip plasticity and marten-

sitic phase transformation has been investigated. This interaction includes

the e�ects of martensitic transformation on dislocation plasticity (called

transformation-induced plasticity) and e�ects of dislocations on the gener-

ation and growth of martensitic regions. These phenomena were modeled

by discrete dislocation-transformation method in microstructure and the

continuum model in macro-scale. The results have shown that the plas-

tic strain due to the dislocation slip mechanism a�ects the reversibility of

shape memory alloys during thermal or mechanical cycles that influences

the actuation behavior of SMAs. Furthermore, the results have better ex-

planatory power for illustrating the important factors that influence the

two-way shape memory e�ect and pseudo-elasticity behaviors. The results

also provide new perspective to modify the behavior of shape memory alloys
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for thermal actuation application.

In Chapter 3, the discrete dislocation-transformation method was pre-

sented for the shape memory alloys. This model is capable of simulating the

two-way martensitic transformation under mechanical and thermal loading.

Therefore, this method can be used for modeling the cyclic behavior of

SMAs. Although the presented discrete dislocation-transformation frame-

work is restricted to two-dimensional models, it gives an acceptable estima-

tion of total behavior of the material due to the nature of slip and trans-

formation systems. The validity of two-dimensional discrete dislocation-

transformation model for simulating the dislocation slips and phase trans-

formation mechanisms are discussed further in [35,96].

In Chapter 4, a two-dimensional single crystal region of NiTi shape

memory alloy was modeled by the discrete dislocation-transformation method.

The specimen was loaded under cyclic mechanical and thermal loading.

The results indicated the e�ect of dislocation slip on total cyclic behavior

of SMAs as well as the e�ects of dislocation on the generation and growth

of transformation regions. Furthermore, the martensitic transformation in-

fluenced the local stresses and thus a�ected the dislocation nucleation and

slip mechanisms. The results showed that the sample in the presence of

dislocations transforms less in comparison to the one without dislocations

and it means that the dislocations play the obstacle role against martensitic

growth. However, when the specimen experiences multi-cycle loadings, the

147



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

remaining dislocations from one cycle helps the generation of martensitic

regions in subsequent cycles. Therefore, dislocations play both resisting

and assisting role for martensitic transformation depending on the loading

states.

It was also shown that for thermal cyclic test under low applied tractions

(lower than critical slip stress), the dislocation systems were activated at

the beginning of transformations. These results provide a clear conclusion

that the phase transformation in shape memory alloys changes the local

stress in specimen, and it a�ects the dislocation slip mechanism. Moreover,

the solid-solid phase boundaries between austenite and martensite phases

play a role similar to grain boundaries and resist the dislocation motions.

In Chapter 5, a two dimensional multi-crystalline sample of NiTi shape

memory alloy was simulated by the discrete dislocation-transformation

framework which was used to model the single crystal material. The re-

sults illustrate the e�ect of di�erent structural orientations on the thermo-

mechanical response of the SMAs. It was explained that both dislocation

slip and martensitic transformation are orientation dependent. Therefore,

changing the orientation of one grain in a double-grain sample changes the

mechanical response of the specimen during loading.

Furthermore, the e�ect of grain size and grain boundary densities on

the two-way shape memory e�ect and super-elasticity were studied. The

grain boundaries works as an obstacle against the dislocation motion and
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martensitic growth. Therefore, the smaller grain specimens contain more

dislocations and less martensitic volume fraction and as a result shows

harder response. These results also confirms that our discrete dislocation-

transformation framework has the ability to simulate the Hall-Petch e�ect

in polycrystalline structures.

Due to computational limitations, the number of grains was limited to

a maximum of sixteen grains. Although the real polycrystalline model have

to include hundreds or thousands of grains, the current model is useful to

investigate the orientation and grain boundary e�ects by looking directly

at the dislocation dynamics and transformation in the microstructure.

In Chapter 6, the three-dimensional constitutive equations for model-

ing the interaction of plasticity and phase transformation in macro-scale

are presented. The macroscopic simulations can be used to model the large

scale of specimen and therefore it is useful to model the real industrial appli-

cations. Then, the results from the simulation of the Ti
50

Pd
30

Ni
20

systems

were compared with the experimental results from the literature. The re-

sults and comparison validated the constitutive model for this kind of shape

memory alloys. As the results illustrated, transformation-induced plastic-

ity is an important mechanism that a�ects the reversibility of Ti
50

Pd
30

Ni
20

under thermal cyclic loading although the applied external stress is lower

than yield stress of the material.
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7.1 Suggestion for future works

Based on the studies and results described in this thesis, some further re-

search projects can be suggested based on discrete dislocation-transformation

method and application of this method for shape memory alloys.

• In this study, the two-dimensional formulation for discrete dislocation

and transformation were considered. This assumption was because of

the intrinsic behavior of dislocation dynamic and martensitic trans-

formation which occurs in plane geometries. This framework can

predict the behavior of SMAs correctly because the mechanism of

dislocation slip and transformation occur in slip planes and habit

planes respectively. However, developing the three-dimensional dis-

crete dislocation-transformation framework is an interesting area for

future research.

• It would also be interesting to develop a multi-scale modeling on

SMAs by exporting some material parameters from the discrete dislocation-

transformation model from the microstructure modeling and import-

ing them to the three-dimensional continuum model. This may be

helpful to have a complete framework to model the 3D macro-scale

application by considering the important factors in microstructure.

• In this study, we have investigated the grain size e�ect in multi-

crystalline samples. It includes the resistance of grain boundaries in
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front of dislocation motions and martensitic growth. Recently, it has

been shown experimentally that the size of single crystalline samples

influences martensitic transformation as well as dislocation plastic-

ity [170, 171]. Furthermore, the nature of our discrete dislocation-

transformation method makes it a good tool to study this phenomenon

in the microstructure. Therefore, one interesting future work may be

the study of the sample size e�ect in single-crystalline shape memory

alloys.

• As indicated, the dislocation dynamic mechanism is limited to dislo-

cations slip in this study. However, other plasticity mechanism such

as dislocation climb can be added to the current model. Therefore,

the study the interaction between dislocation climb and martensitic

transformation is a suggestion for future work. The result of these

simulations will be useful for high temperature shape memory alloys

where creep mechanism is a�ecting martensitic transformation.
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P. Sandvik, and W. Serlo. In vivo biocompatibility evaluation of
nickel-titanium shape memory metal alloy: muscle and perineural tis-
sue responses and encapsule membrane thickness. Journal of Biomed-
ical Materials Research, 41(3):481–8, 1998.

[61] T.W. Duerig, A. Pelton, and D. Stöckel. An overview of nitinol
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Appendix A

Time integration procedure for

the isotropic based

constitutive model

An explicit time integration procedure is developed to implement the three

dimensional constitutive equations. Then, the explicit user subroutine VU-

MAT is written to use as an input file for ABAQUS explicit package. With

t denoting the current time, �t is an infinitesimal time increment, and

· = t + �t is the new time. The algorithm is as follows:

Given: (1)
Ó
F (t) , F (·) , ◊ (t) , ◊ (·) , T (t) , Finel (t) , S

A

(t) , S
M

(t)
Ô
; (2)

{› (t)}; (3) {B (t) , N
1

(t) , N
2

(t)}.

Calculate: (1)
Ó
T (·) , Finel (·) , S

A

(·) , S
M

(·)
Ô
; (2) {› (·)};

(3) {B (·) , N
1

(·) , N
2

(·)}.
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ISOTROPIC BASED CONSTITUTIVE MODEL

The steps used to calculate the above unknowns are presented in con-

tinue.

Step 1: Calculate the elastic strain Ee (t):

Fe (t) = F (t) Finel

≠1 (t) , (A.1)

Ce (t) = Fe

T (t) Fe (t) , (A.2)

Ee (t) = 1
2 (Ce (t) ≠ 1) ≠ A (◊ (t) ≠ ◊

0

) . (A.3)

Step 2: Calculate the stress Tú (t):

Tú (t) = CEe (t) . (A.4)

Step 3: Calculate the inelastic strain increment �Áinel (t):

‡̄ (t) =
Û

3
2 |(Ce (t) Tú (t))

dev

| , (A.5)

f (t) = Á̄t

A

‡̄ (t) ≠ ⁄
T

◊
T

(◊ (t) ≠ ◊
T

) ≠ h› (t)
B

, (A.6)

›̇ (t) = sign (f (t)) ›̇
0

(t)
A

|f (t)|
f

c

B 1
m

, (A.7)

�Át (t) = Á̄t�› (t) , (A.8)

�Áp

A

(t) = �Á
0

sign (‡ (t))
A

‡ (t)
S

a

(t)

B 1
n

exp

A
≠Q

a

R◊ (t)

B

, (A.9)
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�Átp = �Átp

0

A
‡

S
a

(t)

B

, (A.10)

�Áinel (t) = �Át (t) + (1 ≠ ›)�Áp

A

(t) + �Átp (t) . (A.11)

Step 4: Update the inelastic deformation gradient Finel (·):

Finel (·) =
Ó
1 + Dinel (t) � (t)

Ô
Finel (t) , (A.12)

Dinel (t) =
Û

3
2

1
Á̄t�›

1

(t) N
1

(t) + Á̄t�›
2

(t) N
2

(t)
2

+
Û

3
2

1
(1 ≠ ›)�Áp

A

(t) + �Átp (t)
2

N
3

(t) , (A.13)

N
1

(t) = Tú
dev

(t)
|Tú

dev

(t)| , (A.14)

N
2

(t) = B (t)
|B (t)| , (A.15)

N
3

(t) = Tú
dev

(t)
|Tú

dev

(t)| . (A.16)

Step 5: Update the tensor B (·):

B (·) = B (t) +
Û

3
2

2ÿ

i=1

�›
i

(t) N
i

(t) . (A.17)

Step 6: Calculate the elastic strain Ee (·):

Fe (·) = F (·) Finel

≠1 (·) , (A.18)
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Ce (·) = Fe

T (·) Fe (·) , (A.19)

Ee (·) = 1
2 (Ce (·) ≠ 1) ≠ A (◊ (·) ≠ ◊

0

) . (A.20)

Step 7: Update the resistance to plastic flow S
a

(·) and S
m

(·):

S
a

(·) = S
a

(t) + d
2a

�Áp

A

(t) . (A.21)

Step 8: Update the stress Tú (·):

Tú (·) = CEe (·) . (A.22)

Step 9: Calculate the Cauchy stress T (·):

T (·) = 1
det (Fe (·))Fe (·) Tú (·) Fe

T (·) . (A.23)
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Appendix B

Evaluation of Eshelby solution

for inside and outside of

cylindrical ellipse inclusion

In this section the analytical solution to find the displacement field u
i

(x),

strain field Á
ij

(x), and stress field ‡
ij

(x) for points inside and outside of a

cylindrical ellipse inclusion are presented. Mura [141] defined the inclusion

as a sub-domain � that is surrounded by the matrix which occupies D ≠�.

Then, the general form of the displacement, strain, and stress field for

points inside and outside of the inclusion are presented as

u
i

(x) = ≠C
jkmn

⁄

�

Áú
mn

(xÕ)G
ij.k

(x ≠ xÕ)dxÕ, (B.1)
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Á
ij

(x) = ≠1
2

⁄

�

C
klmn

Áú
mn

(xÕ)(G
ik,lj

(x ≠ xÕ) + G
jk,li

(x ≠ xÕ))dxÕ, (B.2)

‡
ij

(x) = ≠C
ijkl

(
⁄

�

C
pqmn

Áú
mn

(xÕ)G
kp,ql

(x ≠ xÕ)dxÕ + Áú
kl

(xÕ)), (B.3)

where C
ijkl

is the sti�ness tensor and it is assumed that the sti�ness of

inside and outside of inclusion are the same, G
ij

is Green’s tensor function,

x is the position vector and xÕ is the position vector of a point source, Áú

is the eigenstrain in � and it is zero in D ≠ �.

One of the important results of Eshelby is that the strain and stress

field is uniform for interior points of an ellipsoidal inclusion. For brevity

the proof that is presented in [140,141] is not repeated here.

In the next sections the close forms of Eshelby solution for interior and

exterior points of an ellipsoidal inclusions are presented. It is assumed that

the domain of ellipsoidal � is

x2

1

a2

1

+ x2

2

a2

2

+ x2

3

a2

3

Æ 1, (B.4)

where a
1

, a
2

, and a
3

are ellipsoidal diameters. Furthermore, according

to [141] the Green’s function for isotropic materials is

G
ij.k

(x ≠ xÕ) = 1
16fiµ(1 ≠ ‹) |x ≠ xÕ|

C

(3 ≠ 4‹)”
ij

+ (x
i

≠ x
i

Õ)(x
j

≠ x
j

Õ)
|x ≠ xÕ|2

D

.

(B.5)
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B.1 Interior points

If the eigenstrain of the inclusion is constant and as Eshelby proved the

strain and stress field inside the ellipsoidal inclusion are uniform, the Áú can

be out of the integration in equation (B.2). Therefore, for interior points:

Á
ij

(x) = S
ijkl

Áú
kl

for x œ �, (B.6)

where S
ijkl

is called the Eshelby tensor and it is constant for interior points

of the inclusion. Mura [141] showed the forth order Eshelby tensor in the

form of Y
_______________________]

_______________________[

S
ijkl

= S
jikl

= S
ijlk

,

S
1111

= 3

8fi(1≠‹)

a2

1

I
11

+ 1≠2‹

8fi(1≠‹)

I
1

,

S
1122

= 1

8fi(1≠‹)

a2

2

I
12

≠ 1≠2‹

8fi(1≠‹)

I
1

,

S
1133

= 3

8fi(1≠‹)

a2

3

I
13

≠ 1≠2‹

8fi(1≠‹)

I
1

,

S
1212

= a

2
1+a

2
2

16fi(1≠‹)

I
12

+ 1≠2‹

16fi(1≠‹)

(I
1

+ I
2

),

(B.7)

and the all other components can be found by cyclic permutation. The

component which can not found by this way are zero. Furthermore I
i

and
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I

ij

are integrals which are presented by Routh [172] as

Y
___________]

___________[

I
1

= 2fia
1

a
2

a
3

s Œ
0

ds

(a

2
1+s)�(s)

,

I
11

= 2fia
1

a
2

a
3

s Œ
0

ds

(a

2
1+s)

2
�(s)

,

I
12

= 2fia
1

a
2

a
3

s Œ
0

ds

(a

2
1+s)(a

2
2+s)�(s)

,

(B.8)

where �(s) = (a2

1

+ s) 1
2 (a2

2

+ s) 1
2 (a2

3

+ s) 1
2 and s is the integration variable.

The rest integrals will be found by cyclic permutation. If it is considered

a
1

> a
2

> a
3

, then the above integrals are rewritten in the standard ellip-

tical [173]:

Y
_____]

_____[

I
1

= 4fia1a2a3

(a

2
1≠a

2
2)(a

2
1≠a

2
3)

1
2

{F (◊, k) ≠ E(◊, k)} ,

I
3

= 4fia1a2a3

(a

2
2≠a

2
3)(a

2
1≠a

2
3)

1
2

;
a2(a

2
1≠a

2
3)

1
2

a1a3
≠ E(◊, k)

<
,

(B.9)

where Y
_____]

_____[

F (◊, k) =
s

◊

0

dw

(1≠k

2
sin

2
w)

1
2
,

E(◊, k) =
s

◊

0

(1 ≠ k2sin2w) 1
2 dw,

(B.10)

and Y
_____]

_____[

◊ = sin≠1(1 ≠ a

2
3

a

2
1
) 1

2 ,

k =
Ó

(a

2
1≠a

2
2)

(a

2
1≠a

2
3)

Ô 1
2

.

(B.11)

Mura [141] combined (B.8) to (B.11) and simplified the relationship
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between I

i

and I
ij

as:

Y
_________________]

_________________[

I
1

+ I
2

+ I
3

= 4fi,

3I
11

+ I
12

+ I
13

= 4fi

a

2
1
,

3a2

1

I
11

+ a2

2

I
12

+ a2

3

I
13

= 3I
1

,

I
12

= I2≠I1
a

2
1≠a

2
2
.

(B.12)

Then for the special case of the elliptical cylinder (a
3

æ Œ), the above

integrals for the interior points are simplified to

Y
______________________________________________]

______________________________________________[

I
1

= 4fia2
a1+a2

,

I
2

= 4fia1
a1+a2

,

I
3

= 0,

I
12

= 4fi

(a1+a2)

2 ,

3I
11

= 4fi

(a1)

2 ≠ I
12

,

3I
22

= 4fi

(a2)

2 ≠ I
12

,

I
13

= I1
a

2
3

= 0,

I
23

= I2
a

2
3

= 0,

I
33

= 0

a

2
3

= 0,

(B.13)
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and the components of Eshelby tensor for interior points are

Y
_______________________________________________________________]

_______________________________________________________________[

S
1111

= 1

2(1≠‹)

Ó
a

2
2+2a1a2

(a1+a2)

2 + (1 ≠ 2‹) a2
a1+a2

Ô
,

S
2222

= 1

2(1≠‹)

Ó
a

2
1+2a1a2

(a1+a2)

2 + (1 ≠ 2‹) a1
a1+a2

Ô
,

S
3333

= 0,

S
1122

= 1

2(1≠‹)

Ó
a

2
2

(a1+a2)

2 ≠ (1 ≠ 2‹) a2
a1+a2

Ô
,

S
2233

= 1

2(1≠‹)

2‹a1
a1+a2

,

S
3311

= 0,

S
1133

= 1

2(1≠‹)

2‹a2
a1+a2

,

S
2211

= 1

2(1≠‹)

Ó
a

2
1

(a1+a2)

2 ≠ (1 ≠ 2‹) a1
a1+a2

Ô
,

S
3322

= 0,

S
1212

= 1

2(1≠‹)

Ó
a

2
1+a

2
2

2(a1+a2)

2 + 1≠2‹

2

Ô
,

S
2323

= a1
2(a1+a2)

,

S
2323

= a2
2(a1+a2)

.

(B.14)

Therefore by having the eigenstrain the close form of strain and stress fields

for interior points can be found by:

Y
_____]

_____[

Á
ij

= S
ijkl

Áú
kl

,

‡
ij

= C
ijkl

Á
kl

.

(B.15)
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B.2 Exterior points

When the point is outside of ellipsoidal inclusion the strain and stress fields

are not uniform therefore, the solution is slightly di�erent with interior

points. As the eigenstrain (Áú) for the exterior points are the same as

interior points, the equation (B.2) can be written in the form of

Á
ij

(x) = D
ijkl

(x)Áú
kl

, (B.16)

where it is shown in [141] that

8fi(1 ≠ ‹)D
ijkl

(x) = 8fi(1 ≠ ‹)S
ijkl

(⁄) + 2‹”
kl

x
i

I
I,j

(⁄)

+(1 ≠ ‹){”
il

x
k

I
K,j

(⁄) + ”
jl

x
k

I
k,i

(⁄) + ”
ik

x
l

I
L,j

(⁄) + ”
jk

x
l

I
L,i

(⁄)}

≠”
ij

x
k

[I
K

(⁄) ≠ a2

I

I
KI

(⁄)]
,l

≠ (”
ik

x
j

+ ”
jk

x
i

)[I
J

(⁄) ≠ a2

I

I
IJ

(⁄)]
,l

≠(”
il

x
j

+ ”
jl

x
i

)[I
J

(⁄) ≠ a2

I

I
IJ

(⁄)]
,k

≠ x
i

x
j

[I
J

(⁄) ≠ a2

I

I
IJ

(⁄)]
,lk

. (B.17)

In the expression (B.17) only the repeated lower case indices are summed

over while the upper case indices are the same number as lower case but

without any summation. ”
ij

is the Dirak delta and ⁄ is a parameter for

exterior points which is defined as the largest positive root of

x2

1

a2

1

+ ⁄
+ x2

2

a2

2

+ ⁄
+ x2

3

a2

3

+ ⁄
= 1. (B.18)
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Equation (B.18) describes an imaginary ellipsoid which is constructed

to include the exterior points. It is clear that for the interior points ⁄ = 0.

I
i

and I
ij

are similar to what is defined in equation (B.8) but the lower

limit of the integral is ⁄. To find D
ijkl

(x), I
i

and I
ij

as well as their first

and second-ordered derivation in respect to x
i

are needed. I
i

and I
ij

can

be found like equations (B.9) and (B.12)

Y
_______________________]

_______________________[

I
1

(⁄) = 4fia1a2a3

(a

2
1≠a

2
2)(a

2
1≠a

2
3)

1
2

{F (◊(⁄), k) ≠ E(◊(⁄), k)} ,

I
3

(⁄) = 4fia1a2a3

(a

2
2≠a

2
3)(a

2
1≠a

2
3)

1
2

I
(a

2
2+⁄)(a

2
1≠a

2
3)

1
2

r
k

(a

2
k+⁄)

1
2

≠ E(◊(⁄), k)
J

,

I
2

(⁄) = 4fia1a2a3r
k

(a

2
k+⁄)

1
2

≠ I
1

(⁄) ≠ I
3

(⁄),

I
ij

(⁄) = ≠ Ii(⁄)≠Ij(⁄)

(a

2
i ≠a

2
j )

for i ”= j,

I
ii

(⁄) = 4fia1a2a3

3(a

2
i +⁄)

r
k

(a

2
k+⁄)

1
2

≠
q

j
Iij(⁄)

3

no summation on i,

(B.19)

where F (◊(⁄), k) and E(◊(⁄), k) are the same as equation (B.10) but ◊ has

been modified to ◊(⁄) and calculated as

◊ = sin≠1(a2

1

≠ a2

3

a2

1

+ ⁄
) 1

2 . (B.20)

Mura calculate the first and second-order derivation of I
i

and I
ij

inte-
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grals as
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(B.21)

Also from equation (B.18) the first and second derivative of ⁄(x) is calcu-

lated as Y
_____]

_____[

⁄
,j

= 2xi
a

2
I+⁄

/ xjxj

(a

2
J +⁄)

2 ,

⁄
,ij

= Fi,j≠⁄,iC,j

C

,

(B.22)

where Y
_____]

_____[

F
i

= 2xi
a

2
I+⁄

,

C = xixi
(a

2
I+⁄)

2 .

(B.23)

By substituting equations (B.19) and (B.21) in equation (B.17) D
ijkl

(x)

can be found.

Furthermore, Jin et al [174] used the analytical formulation by Ju and

Sun [175] for Eshelby solution for point outside of the ellipsoidal inclusion

and then presented a close form expression for the elastic fields of exterior

points. According to Ju and sun [175] n = n(n
1

, n
2

.n
3

) is outward unit

normal at point x on the imaginary ellipsoidal surface. Then the D
ijkl

(x)
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is rewritten as
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(B.24)

The Q functions are presented as
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(B.25)

where

fl
M

(⁄) = a
MÒ

a2

M

+ ⁄
. (B.26)

The close-form of Eshelby tensor for exterior points of elliptical inclusion

is obtained by letting a
3

æ Œ. Therefore, n
3

= 0 and fl
3

= 1. Then the ⁄,
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, and n
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are simplified as
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and Y
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By using equation (B.19) and above consideration for elliptic cylindrical

inclusion the close form of I integrals are
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By substitution of equation (B.30) into equation (B.25) and then in

(B.24) the components of the close form of the Eshelby tensor for exterior

points (D
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(x)) are presented as
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Therefore, for the exterior points the strain and stress fields can be calcu-

lated by Y
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As can be seen in [141], the displacement field for points inside and

outside of the inclusion is given by
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where „ and Â are defined as

Y
_____]

_____[

„(x) =
s

�

|x ≠ xÕ| dxÕ,

Â(x) =
s

�

1

|x≠x

Õ|dxÕ.

(B.35)

Then the above integrals are expressed in the form of elliptic integrals (I
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Mura [141] has expressed „
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and Â
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in terms of I
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and I
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and their first

order derivatives as
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Then by substituting (B.38) in (B.34) the displacement field u
i

(x) for in-

terior and exterior points of elliptical inclusion will be expressed in close

form.
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