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SUMMARY 
 

In medicine, one size does not fit all. Population differences in response, 

including adverse drug reactions (ADRs) are associated with commonly 

prescribed drugs, ranging from anticancers to hormone therapies. Genetic 

diversity in the form of Single Nucleotide Polymorphisms (SNPs) has been 

reported to play a role in this phenomenon. This thesis focuses on identifying 

SNPs that are extremely population differentiated and seeks to utilize the 

genes that carry these SNPs for profiling population differentiation of drug 

response. 

Initially, I evaluated the role of coding SNPs in a multidrug resistance protein, 

the ABCB1. The potential effect of coding SNPs to the homolog 3D structure 

of ABCB1 was accessed based on residue location and conservation status. 

Nonetheless, as ABCB1 is not the only protein that plays a role in drug 

response, I then expanded the study to 750 drug-response genes that are linked 

to 41 conventional drug pharmacokinetic or pharmacodynamic pathways. The 

architecture of SNPs in these genes was elucidated and it was discovered that 

there is an abundant presence of both coding and non-coding genic SNPs. The 

latter are relatively less studied and can potentially affect gene expression, 

RNA structure or stability. Moreover, compared to coding SNPs, more of 

these regulatory SNPs are extremely population-differentiated. Subsequently, 

the next focus was on SNPs that are extremely population differentiated. 

However, the HapMap tag-SNPs data, which totaled 1.4 million SNPs, may 

not be the best representation of all SNPs in the human genome. 
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Therefore, using the genome-wide SNP allele frequencies from the 1000 

Genomes project, I calculated pairwise FST score of 23 million SNPs. Here, 

the main focus was to identify top chromosome differentiated SNPs (tcdSNP) 

in addition to the tcdGenes containing these SNPs. Many pathways that are 

found to be enriched by tcdGenes include those that are connected with highly 

variable phenotypes, such as the olfactory transduction, antigen presentation, 

and immune system-related pathways. 

This genome-wide population genetic differentiation data was then integrated 

with an expanded collection of drug-response genes that are originated from 

four major pharmacogenomics databases. Gene sets information was available 

for a total of 1,151 drugs that are approved by the US Food and Drug 

Administration. Subsequently, tcdGene enrichment analysis with this vast 

collection of drug-response genes was conducted. With this approach, I 

identified drug clusters that are associated with strong population genetic 

differentiation profile between African and other populations, in addition to 

those that are differentiated between the East Asian and European populations. 

Whilst the former is dominated by drugs that are associated with the musculo-

skeletal system anatomical group, the latter cluster is mostly occupied by 

nervous system drugs, including psycholeptics. 

Finally, the vast knowledge that is generated in this thesis is significant as it 

can be utilized for the development of drug population-genetic profiling, 

which can be useful for early prevention of ADR. The novel approach 

employed in this thesis can be replicated in drug clinical trial. This 

information is stored in an SQL database and publicly made available through 

the PharmaSNP web resource that is accessible at http://bit.ly/pharma-snp. 
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Chapter 1. General Introduction 
 

Part of this chapter is adapted from  

Maulana Bachtiar and Caroline G. L. Lee, Current Genetic Medicine Report, 

2013, 1(3):162-170 

This thesis focuses on the study of human genetics diversity that could potentially 

affect population differences in drug response. Drug response in this case, is the 

outcome, whether positive or negative, that an individual exhibits after consuming 

medicine prescribed by a doctor. 

1.1 One size does not fit all 

 

Human diversity, particularly one that arises as a result of genetic differences, is 

manifested at various levels. This includes differential response to xenobiotic or 

external compounds such as drugs, which are not inherently produced and found 

in the human body. The long term vision for developing a personalized approach 

to medicine is to tailor drug prescription according to individual’s need so as to 

optimize outcome and prevent potential adverse drug reaction (ADR) [1]. 

ADRs cases are not uncommon and do not benefit the patient as not only do they 

worsen the clinical outcome, frequent ADR occurrence can translate to higher 

hospitalization cost and is a public health concern [2-5]. In the United States, 

hospitalization cost as a result of ADR-related cases had reached $136 billion in 

2012 [3]. 
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Moreover, variation in the susceptibility of ADR in different populations can also 

affect drug development. At often times, clinical trial is performed in a country 

that has a different population profile to the final destination of the drug. These 

trials may employ subjects who have significant differences in genetic 

background and cultural behavior. Due to such approach in drug testing, it is 

therefore unsurprising to observe unexpected ADR cases of drug that was 

observed to be highly effective during trials. Ideally, a drug should always be 

initially tested in individuals who have similar background to the intended 

population where it is going to be marketed. This pushes for a greater 

involvement of a more diverse clinical trial subjects. However, most of the 

clinical trials are still conducted in developed economies, despite a growing 

number of clinical trials that are now organized in developing countries [6, 7]. 

One reason for this uneven global distribution in drug trial is the extraordinary 

cost that is associated with organizing clinical trials in multiple geographic 

regions. As complexity arises, so does the cost in developing the drug, which will 

have a direct impact to the end consumers, the patients. Therefore, diversity in 

population profiles can be one of the biggest hurdles in the production of effective 

medicine [8]. However, if a drug trial is conducted only with one population few 

could foresee the potential occurrence of side effects in another population. At the 

same time, there is also a concern that when an ADR is observed in one or more 

populations within a complex trial, more potentially effective drug could be 

terminated in the early phase of development. 

One potential solution is to identify the population that is more susceptible to 
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ADR early in the drug development phase. Therefore, ADR can be prevented 

even during clinical trials. In this regard, drug developers would also be saved 

from potential problem that would have surfaced in the early phase of a drug 

development pipeline such as those that are associated with “bad drug” 

candidates. At the same time, they can also expect to expedite approval of 

potential block bluster drugs that will be beneficial for the correct audience. 

Hence in drug development, the big question is: what if we can prioritize trials in 

subject population that are identified to be less susceptible to drug toxicity? And 

what if we can identify drugs that are more population-specific, hence when it 

induces toxicity in one population; we do not have to recall the drug for the other 

population? What is the best way to identify the factor that induces population 

differences in the first place? 

Motivated by these questions, my PhD thesis focuses on addressing population 

differences of drug response and attempted to attack the two above challenges 

using novel pharmacogenomic approaches, for a better medicine. The method that 

is developed throughout the course of this study is aimed to serve as a reliable 

proxy in determining the important factors that account for population differences 

in treatment response. 

1.2 Population Differentiation and Drug Response 

 

Medicine is the epicenter of healthcare. However, population differences in the 

way patients’ response to medication could complicate treatment and elevate the 
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cost associated with healthcare. This problem becomes more significant in 

especially two scenarios. The first is in countries with a strong degree of 

demographic background variation, such as in places that are populated by 

multiracial demographics carrying significant genetic and lifestyle differences. In 

this case, no same treatment can be applied to all individuals and tailoring of dug 

dosage may become a necessity. The other scenario involved drugs that had 

passed clinical trials in country(s) that has a different population profile to the 

intended market.  

Part of the reason for treatment complication is due to unforeseen ADR 

occurrence, as a result of variation in a drug response profile in different 

individuals. These inter-individual differences in drug response are often 

manifested at the population level, where it has been frequently reported that the 

outcome of treatment could be manifested differently in individuals belonging to 

different race or population background [9-12]. It is a common phenomenon and 

can significantly affect the outcome of treatment including those reported in 

anticancers, anticoagulation and beta-blockers [13-16]. Population differences in 

ADR is especially significant if such cases can lead to fatal consequences [17], 

hence it is important to be able to identify the group of patients who are more 

susceptible to this negative side effect of a drug. 

Furthermore, during literature preview, it can also be observed that there are great 

number of studies reporting population differences between the European and 

other populations, particularly Asians or Africans (Fig. 1.1). It is believed that 

there are more studies that were conducted in these population groups, owing to 
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the possibly bigger budget and accessibility of clinical trials information in these 

populations. In the course of this thesis, I had the opportunity to review some of 

the most highly-studied drugs that are associated with population differences, 

which is summarized in a graphic format (Fig 1.1).  
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Figure 1.1 Circular plot showing population differences in response to commonly 
used drugs. The drugs shown are reported to have a different response profile in two or 
more populations. A drug response difference is shown by ribbon joining at least two 
populations. The number of population differences that are involved in a drug response 
profile can be judged by the thickness of the root of the ribbon. Drugs that are reported to 
have only two population differences are shown by thin black/grey lines. References are 
marked by the reference number as published in Maulana Bachtiar and Caroline G. L. 
Lee, Current Genetic Medicine Report, 2013, 1(3):162-170. 

  

Frequently cited to have differences in drug response in different populations, 5-

Fluorouracil (5-FU) is a widely-prescribed chemotherapy in the treatment of 

various cancers. 5-FU, which is a fluoropyrimidine-based drug that is known to be 

associated with hematologic toxicities such as leukopenia and anemia, has been 



 

7 
 

reported to have outcome differences between Europeans and either African 

Americans or East Asians [18-21]. The East Asians were also reported to have a 

different response compared to the Latino or African descents [19]. Individuals 

with a deficient dihydropyrimidine dehydrogenase (DPD/DPYD) were reported to 

be more susceptible to 5-FU-induced hematologic toxicities [22]. 

Another popular drug that exerts population differences in response is warfarin, 

an anticoagulant used to prevent thrombosis and embolism. Patients who are more 

susceptible to ADR are at higher risk of bleeding. Warfarin treatment is best done 

through proper optimization of dosage so that efficacy and patient’s safety can be 

ensured. Furthermore, variation in warfarin response is observed in patients of 

different ethnicities and has been reported albeit not much appreciated [11]. East 

Asians and either European or Latino populations are known to have significant 

difference in optimal warfarin dose, in addition to what is observed between the 

Europeans and either Latinos or Africans [13] (Fig. 1.1, purple ribbons). 

Besides 5-FU and Warfarin, another ‘drug’ that exhibits population difference in 

response is nicotine. Perez-Stable et al argue that ethnic differences in nicotine 

response could have accounted for the observation of ethnic differences in 

tobacco-related disease [23]. The body eliminates nicotine by initially 

metabolizing it into cotinine. Genes that are involved in this metabolism pathway 

is known to carry genetic variations, which is a possible factor of addiction to 

nicotine and tobacco-associated diseases [24]. It has been reported that East 

Asians and Europeans or Africans, in addition to those between the African and 

Latino populations, do have significant variation in their serum cotinine levels 
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[24, 25] (Fig. 1.1, red ribbons). 

Reports on ethnic or population differences in the response of other drugs such as 

codeine, vincristine and b-blockers were also observed, particularly between 

European and the Asian or African populations. Nonetheless, these reports that 

are briefly reviewed in this thesis probably over-represent those cases that are 

seen in developed countries while not highlighting the cases in developing 

economies. Lastly, Appendix 6 provides a non-exhaustive list of studies 

describing differential response to various drug treaments.  

1.3 Genetic Basis behind Population Differences in Drug 

Response 

 

Based on the assumption that any two individuals from the same population has a 

higher chance to be more similar than those from different population 

backgrounds, ‘population differences’ can been used as a proxy of 

‘interindividual differences’. As introduced above, population differentiation is a 

phenomenon that shall not be neglected in medicine as it is a factor that can 

significantly affect outcome. Ideally, no two patients are to be given equal 

treatment as they may respond differently. However economically, individual 

tailoring of treatments is extremely expensive and requires extensive investigation 

on patient’s background hence it is not a standard practice today. 

Drug or xenobiotic response is highly influenced by a number of factors which 

can be broadly categorized into inherent (which includes but is not restricted to 
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genetic predisposition, disease status, age, and weight) and external (such as 

environment condition, socioeconomic status, and education level) factors. Out of 

all these variables that may affect a person’s response to medication, the genetic 

factor is the most prevalent variable. Hypothetically, with the exception of 

somatic mutations, most if not all of our genetic material will stay the same from 

birth to adulthood. For this reason, studying the genetic components that are 

affecting drug response is the most feasible and is the primary driving force of 

pharmacogenomics, the field of study involving genes and gene variants that are 

important in drug-response pathways. 

1.3.1 Single Nucleotide Polymorphisms (SNPs) 
 

Single Nucleotide Polymorphisms (SNPs) are the most abundant form of genetic 

variants in humans, with up to 38 million validated reference SNPs that are 

recorded in the dbSNP (build 137) database [26]. To be classified as SNP, a 

genetic mutation has to be observed in a relatively high frequency (usually more 

than one percent in a particular population). The frequency elevation of these 

mutations is most probably due to natural pressures that had positively selected 

these mutations due to them producing survival or reproductive advantages to the 

organism. 

SNPs residing within genes could potentially affect gene function, depending on 

the location of the sequence variation. Coding region SNPs, particularly those that 

are associated with substitution in a protein amino acid sequence, could 

potentially pose a functional effect to a protein structure or post-translational 
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modification activity [27, 28] (Fig. 1.2). Moreover, when residing in transcription 

binding site, miRNA binding site, or exon/intron splicing regulatory site within 

gene regulatory regions, SNPs could pose functional changes to gene expression 

[29, 30]. 

 

Figure 1.2 SNPs have potential implication for gene function. Those residing in 
regulatory region such as transcription factor binding site (TFBS), miRNA binding site 
(miRBS), intronic splicing regulatory elements (ISRE), exonic splicing enhancer/silencer 
(ESE/S), may affect gene expression. On the other hand, coding SNPs may affect protein 
structure or post-translational modification (PTM), which may be important to protein 
function. 

 

Due to its abundance, SNPs play a significant role in the manifestation of 

population diversity in the human genome. Furthermore, the different 

environmental factors across various geographic regions would have acted as 

selection force throughout human migration and evolution, which could 

negatively or positively select SNPs that are associated with disadvantegous or 

advantageous traits, respectively [39]. Theoretically, these selection forces leave a 

“genomic signature” that can be measured by studying SNPs differentiation 
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pattern in the genome [39]. One way to estimate genomic differentiation between 

populations is by measuring genetic diversity. This thesis utilizes FST statistics in 

estimating population differentiation, which is a measurement that takes into 

account the reduction of heterozygosity in two or more sub-populations, 

compared to the total population heterozygosity level [40]. 

Traditionally, SNP frequencies were obtained by genotyping a targeted DNA 

region that has been previously sequenced. If one is to conduct this over the entire 

genome, not only that it will be a very slow process, the approach could only give 

us a small amount of data that does not represent the overall big picture of 

variants in the genome. Moreover, this candidate-based approach required one to 

develop a prior hypothesis in localizing the region where the SNP resides, hence 

limiting the possibility of finding SNPs that reside in genomic regions that were 

thought to be of less significance. The advent of high thoroughput genotyping 

SNP technology had also enabled scientists to genotype many individuals over a 

relatively shorter period. It is for this reason that the HapMap project was 

initiated, in which a selection of representative ‘tag’ SNPs were genotyped to 

create a haplotype map of the genome [31, 32]. This created a new foundation for 

pharmacogenomics, which can particularly serve as a referral point in association 

studies that involve diverse population backgrounds. 

1.3.2 Pharmacogenomics 
 

Pharmacogenomics is an extension of pharmacogenetics. Whilst the lalter usually 

refers to a study involving a select few SNPs or genes, pharmacogenomics 
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employed a more genome-wide perspective in identifying genetic markers that are 

important in drug response.  In addition, since drug response is highly affected by 

group genes in the pharmacokinetic (PK) and pharmacodynamic (PD) pathways 

(Fig. 1.3), identifying the genes in these pathways would hypothetically give a 

good direction in pin pointing to the SNPs that can be associated with drug 

response differences.  

Following completion of the human genome sequencing, more genes were 

identified to be a component of drug-response PK and PD pathways. These genes 

range from membrane transporters, metabolizers, and drug-target genes that are 

part of a drug PK and PD process. Furthermore, next-generation sequencing 

technology had propelled genomic studies into a higher level. Genomic variants 

including SNPs can be identified by comparison of individuals’ genomic 

sequence, even without the initial mapping of these variants into gene regions 

[33]. Despite its relatively higher initial cost, this technology allows one to start 

with a hypothesis-free approach of identifying SNPs that could be population-

differentiated. These are the SNPs that have significantly different distribution of 

allele frequency in different populations. 
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Figure 1.3 Genes in the Pharmacokinetic (A) and Pharmacodynamic (B) pathways 
that are associated with Warfarin. Genes are represented inside oval shape containers 
whilst drugs and drug metabolites are contained inside purple squares. Drug of significant 
interest is marked with a star. Biological intermediates are contained within green colour 
capsule boxes. In this diagram, a thick arrow indicates a primary route, whereas a thin 
arrow represents a more generic route and the dashed arrow indicates a secondary route. 
A red line indicates a repression phenomenon. This image is reproduced from 
PharmGKB [34].  

 

In 2007, the US Food and Drugs Administration decided to update the labeling for 

the anticoagulant, warfarin. The new label would put dosing recomendation based 

on the genotype of SNPs residing in the VKORC1 and CYP2C9 genes (Fig. 1.3), 

which are associated with warfarin pharmacokinetics [13, 27]. Warfarin is one of 

the best examples of a successful implementation of pharmacogenomics in the 

clinics. 

Besides the VKORC1 and CYP2C9, several other well-reported pharmacogenes 

that are potentially associated with clinical impact include the ABCB1, CYP3A4, 

DPYD, G6PD, and SLCO1B1 [34]. A more exhaustive list of well-known 
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pharmacogenomic associations is accessible at the PharmGKB website 

(www.pharmgkb.org/search/knownPairs.action).  

Nonetheles, translational application of pharmacogenomics in most if not all 

drugs are still far away from realization due to the presence of multifactorial 

components. Currently, one challenge is to find the SNPs that are not only 

associated with population differences, but also the ones affect gene functions and 

drug response. Limitations exist particularly when it comes to applying newly 

discovered pharmacogenomics knowledge to clinics, which is particularly 

associated with the complexity of drug reponse phenotypes in general. 

The vision is to be able to use these genomic variants as predictors to an 

individual’s drug response hence helping us to identify patients who are more 

susceptible to ADRs. Going forward, pharmacogenomics studies would generally 

aim to translate more newly discovered knowledge into clinical application. In 

this thesis, for the purpose of consistency, I will adopt the term 

‘pharmacogenomics’ when referring to any study that involves the genetic basis 

of drug response, regardless of its genomic scale. 

1.4 The Era of Big Data 

 

Today, not only has advancement in next-generation sequencing technology 

provided an abundant wealth of new knowledge, it also poses a new challenge on 

how to systematically catalog, mine and more importantly, study the massive 

amount of data. In the past years, there are efforts in having these data accessible 
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to the general public. Several early initiatives have embarked to provide 

population genetics data, ranging from one that genotyped SNPs in specialized 

candidate genes to one that utilized the tag-SNP approach but in a different set of 

populations. 

The International HapMap Project initially provided genotype data of individuals 

from four representative populations: CEU (Caucasian from Utah, USA), CHB 

(Han Chinese from Beijing, China), JPT (Japanese from Tokyo, Japan), and YRI 

(Yoruban from Ibadan, Nigeria) [35]. It then expanded into genotyping seven 

additional populations, covering 1.4 million SNPs that were genotyped using the 

‘tag’ or regional representative SNP coverage method [36]. As it is not feasible to 

genotype all individuals at one go, the HapMap approach of genotyping 

individual samples from representative of the diverse world populations was seen 

to be a more viable way in obtaining reference allele frequencies. Indeed, the 

HapMap is a good source of reference for allele frequency data. Moreover, it 

inspired the trend of studying global population genetics pattern and its 

relationship with human migration phenomenon. 

The Environmental Genome Project made available the genotype data of SNPs 

residing in genes that ‘interact’ with the environment. These genes have role in 

the DNA repair, metabolism, oxidative stress, apoptosis and several additional 

pathways that are important in the immune system [37]. On the other hand, the 

Singapore Genome Variation Project provided the genotype data of one million 

SNPs from representative individuals who originated from three different racial 

groups that are defined in Singapore: the Chinese, Indian and Malay [38]. 
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These initial efforts however, are faced by several limitations, including the 

unavailability of genome-wide data that can allow one to gauge the ‘true strength’ 

of population differentiation in a drug response gene, compared to other 

background genes. Moreover, the tag SNPs approach that are adopted by the 

HapMap project could have had various ‘genomic blind spots’ that are attributed 

for the lack of information that can represent many regions of the human genome.  

Nonetheless, the advent of next-generation sequencing technology, which allowed 

high-throughput sequencing, greatly expanded the coverage to a whole-genome 

level, in addition to mining sequence information from more individuals. By 

capitalizing this high-throughput platform, the 1000 Genomes Project was 

empowered to produce the whole-genome sequence data of 1,092 individuals who 

originated from the same population groups as those of the HapMap project [33]. 

Phase 1 of the project has resulted in the identification of 38 million SNPs in 

addition to insertion-deletions and structural variants that could have not been 

previously identified using the tag-SNP approach [33]. These SNPs, which have 

been deposited in dbSNP, are extremely useful in pharmacogenomics, in which it 

is now possible to identify the whole-genome SNPs that are population-

differentiated, including those that are important in drug response. 

 

 

 

 



 

17 
 

1.5 General Hypothesis and Aim 

 

My work was conducted based on the notion that population-differentiated SNPs 

are one of the determinants of population differences in drug response. This 

knowledge can serve to empower tomorrow’s medicine, particularly in advancing 

the technology that supports personalized therapy. The general hypothesis is that 

these SNPs could affect drug response variation in individuals originating from 

different background. Having said that however, this thesis does not come with an 

ideal promise that by the end of the last chapter, there will be a direct application 

of personalized medicine. Instead, I aimed to accumulate, integrate, elucidate, and 

package this novel genomic information into an accessible format for determining 

drugs population genetic differentiation profile. 

1.6 The Thesis Structure 

 

This thesis is divided into two broad categories. The initial part, which is covered 

by chapter 2 and 3, presented an attempt to understand the pattern of SNPs in 

drug-response genes. In chapter 2, I presented a detailed study of SNPs that affect 

the ABCB1 protein, an evolutionary conserved yet highly polymorphic membrane 

transporter that is associated with multidrug resistance phenomenon. Because 

drug response is affected by multiple genes, in chapter 3, I then studied the 

general architecture of SNPs in 715 genes important for drug response, which not 

only covered coding SNPs, but also SNPs residing in non-coding regions.  
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The raw data in chapter 3 was derived from the HapMap, which is based on 

microarray technology. As next-generation sequencing technology emerged, I 

then attempted to perform a whole genome calculation of population 

differentiation scores to identify SNPs that could possibly be significant in 

manifesting population differences in drug response. This is the focus of chapter 

4, where by utilizing data from the 1000 Genomes project, SNPs that are 

population-differentiated were identified. With this result, in chapter 5, I then 

specifically utilized the population-differentiated SNPs to study population 

genetic differentiation pattern of more than a thousand drugs. This ‘PharmaSNP’ 

information is then made available in an online resource described in chapter 6. 
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model into the location and 
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2.1 Introduction 

 

Differential response in drug therapies is a common clinical phenomenon with 

human genetic predisposition contributing as a major factor [1]. Single 

Nucleotide Polymorphisms (SNPs) in genes responsible for drug 

pharmacokinetics (PK) or pharmacodynamics (PD) activity are associated 

with variation in drug metabolism, transport and efficacy [2, 3]. Moreover, it 
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has been shown that SNPs could potentially exert certain functional changes to 

drug-response genes [4-6]. The potential effect to which SNPs could implicate 

relies on where they are located in genes [7]. 

This chapter focuses on studying coding SNPs in the ABCB1 multidrug 

resistance protein, a membrane transporter that plays a key role in drug 

pharmacokinetics. Coding SNPs can be categorized into non-synonymous 

(amino acid substituting) and synonymous (non amino acid substituting). The 

potential functional effect of non-synonymous SNPs in ABCB1 depends on the 

relative positioning of the affected amino acids. In this chapter, based on a 

mouse homolog crystal structure, I constructed a 3D protein model that allows 

investigation of these coding SNPs in the ABCB1 protein based on two 

perspectives: amino acid residue location and evolutionary conservation. This 

work was conducted in collaboration with Dr. Steven J. Wolf.  

 

2.2 ABCB1 is involved in multidrug resistance and altered 

drug pharmacokinetics 

 

The ATP Binding Cassette superfamily member protein, ABCB1 (P-

glycoprotein or P-gp / MDR1), has a primary role in the unidirectional 

transport of drugs from the cytoplasm to the extra cellular environment [8]. 

Due to its involvement in resistance to drugs used in treatment of cancer, heart 

disease, AIDS, and epilepsy, this trans-membrane protein is widely referred as 

a multidrug resistance (MDR) protein [9, 10]. It is a phenotype that is often 
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associated with variation in the level of drug efficacy, adverse drug reaction 

(ADR) or alteration in drug-to-drug interaction [11, 12]. 

In drug pharmacokinetic (PK) and drug resistance phenomena, the role of this 

MDR protein is complex as it is often affected by other variables that may 

affect the expression and localization of the ABCB1 protein. For instance, the 

presence of other protein such as the pregnane-X-receptor (PXR), in addition 

to an ABCB1 upregulation, may alter a drug PK [13]. Other studies also 

reported that the family of ABC proteins can be found across the membrane of 

organelles such as lysosomes or endosomes, where drug transport takes place 

for further drug processing within these organelles [14, 15].   

Genetic polymorphisms in drug transporter can potentially affect the drug PK, 

with various studies showing evidence of the impact on drug concentration 

variation in the cerebrospinal fluid or intracellular compartment [16]. 

Furthermore, ABCB1 protein structure and function have been shown to be 

important in its role in multidrug resistance [8, 17]. This role is well 

established since 1976, when the protein was first discovered [18]. Now, 

following the release of protein crystal structure of the closest ABCB1 

mammalian homolog, the mouse Abcb1a [19], the role of genetic 

polymorphisms in altering the protein function can be established further. 

There is great structural and chemical diversity of substrates that are subject to 

ABCB1 protein activity. They are usually small molecules that bind the 

ABCB1 substrate binding region, which are found on the internal surface of 

the protein. This region is a large open cavity that is surrounded by 12 

transmembrane domains (TMDs) and is integrated to the lipid-based cell 

membrane [8, 19].  
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These TMDs are connected with the nucleotide binding domains, where 

hydrolysis of ATP takes place in the cytoplasmic portion of the protein [20, 

21]. ATP binding and hydrolysis in the ABCB1 protein are done at the region 

containing conserved motifs such as the Walker A, Walker B and Signature C 

motifs. In addition, the TMD also accomodates a number of conserved loops, 

including the A-loop, D-loop, H-loop, and Q-loop [22-25] . Most of the ABC 

protein family and homologs are known to carry the same motifs, which is 

proposed to be important in binding ATP when the NBD domains dimerize 

[26]. This dimerization would eventually change ABCB1 conformation, 

resulting in substrate dissociation and efflux from the protein [26, 27]. 

Because ABCB1 is a very active transporter that handles various substrates 

[25], genetic polymorphisms can incur a potentially significant consequence. 

These polymorphisms can arise in the form of amino  acid change or alteration 

in gene expression. This will be more prominent where the sequence changes 

take place at the sites where substrate bind or at regions that are highly 

conserved, including the Nucleotide Binding Domain (NBD), which can affect 

ABCB1 function including drug efflux or small molecules pharmacokinetics. 

A comprehensive literature review summary on the involvement of ABCB1 

coding SNPs in drug responses is provided in Appendix 1.  

 

 

 



 

27 
 

2.3 ABCB1 SNPs as potential contributor to variation in 

individual drug response 

 

There has been much interest surrounding the role of genetic variation in the 

ABCB1 gene in altering protein expression and function. Single Nucleotide 

Polymorphisms (SNPs) is the most common type of genetic variation. As 

introduced in the previous chapter, these SNPs can potentially affect gene 

function depending on the location where they reside. In this chapter, the focus 

is on ABCB1 coding region SNPs, which can alter the protein structure in the 

case of non-synonymous SNPs. On the other hand, non amino acid 

substituting SNP can affect an mRNA sequence, in addition to affecting the 

stability and structure of a RNA transcript. How SNPs evolved, particularly in 

a way that is relevant to ABC proteins, have previously been discussed in 

literature [28, 29]. 

SNPs influence can be apparent in the occurrence of adverse drug reaction, 

drug efficacy difference or multidrug resistance. Using the high resolution 

crystal structure of a mammalian homolog, the Abcb1a, these SNPs can now 

be mapped to the 3D structure, allowing better observation of the location of 

the residue, in addition to conserved regions information and the residues 

within close vicinities, which may also be coding SNPs. Some of these SNPs 

are also implicated with drug pharmacokinetics. The analysis in this chapter is 

also portrayed in a flash movie, that is accessible at 

http://pfs.nus.edu.sg/demo_src/abcb1.html. 
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2.4 Polymorphic ABCB1 is also well conserved protein 

 

The ABCB1 protein is well conserved and is 87% identical to the protein 

sequence of the mouse Abcb1a homolog (Figure 2.1). In order to perform a 

multiple sequence alignment, 11 homologous ABCB1 sequences from 

multiple organisms were obtained from the NCBI Homologene database 

(Table 2.1). Using the ClustalW algorithm, despite its half-transporter status in 

unicellular organism (Sav1866 and MsbaA), it can be observed that the 

sequence of this protein is conserved from E. coli to humans (Fig. 2.2). Here, 

the prefix ‘E’ refers to the exon location of a SNP in the ABCB1 gene 

sequence. Based on the dbSNP database (Build 131), out of 66 coding SNPs in 

total, 24 SNPs are categorized as synonymous (sSNPs – ‘s’ in the Figures and 

Tables), whereas 42 SNPs are considered to be nonsynonymous (nsSNPs – ‘ns’ 

in the Figures and Tables). These ABCB1 coding polymorphisms are 

summarized in Table 2.2 and Table 2.3. When comparing the human and 

mouse protein sequences, it can be observed that all ABCB1 sSNPs residues 

are conserved (Shaded blue in Table 2.2, Fig. 2.2). Furthermore in 11 

organisms, five residues corresponding to sSNPs are found to be conserved. 

These are R442, L554, T558, S565 and I598; which correspond to #s8, #s11, 

#s12, #13 and #s14 respectively in Fig. 2.3C. 

In addition, out of 42 ABCB1 nsSNPs, there are 37 that can be mapped to the 

residues in the mouse crystal structure, which is in accordance with the pair-

wise sequence alignment that was performed with ClustalW (Table 2.2, Fig. 

2.1) [30, 31]. Based on this alignment, it was observed that out of 37 nsSNPs, 

the major amino acid alleles of 31 nsSNPs or 83.7%, are similar between 
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mouse and human (Table 2.2 and Fig. 2.2). In 11 organisms that were 

examined, only two residues from this total of 37 nsSNPs are conserved, 

whilst 12 residues are observed to be similar in 7 or more organisms (Table 

2.2). 

Globally, most of the coding SNPs are perceived to be located in the ABCB1 

NBDs, are located in close vicinity to conserved regions such as the Walker A, 

Walker B and signature motif C (Fig. 2.2, Fig. 2.3B and Fig. 2.3C). One 

nsSNP, E26/3222A>C or the C1074W (ns#27 in Fig. 2.3B) is located inside 

the Walker A motif at the C-terminal NBD (Table 2.2, Fig. 2.2). For every 100 

residues, there are around 6.2 SNPs in the NDBs, whereas in the TMDs, the 

number is almost half, which is 3.7 SNPs. Furthermore, out of a total of 14 

SNPs that are located outside of the NBDs, there are five that are found at the 

protein external surface, while three SNPs are found within the internal 

structure that corresponds to the substrate binding site (Fig. 2.3).  
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Table 2.1 ABCB1 homologous proteins. 

  

# Homologous Protein (Oganisms) 
Length 
(Amino 
Acids) 

Accession 
Number 

1 ABCB1 (Homo sapiens) 1280 NP_000918.2 
2 ABCB1 (Canis lupus familiaris) 1280 NP_001003215.1 
3 Abcb1a (Mus musculus) 1276 NP_035206.2 
4 ABCB1 (Gallus gallus) 1288 NP_990225.1 
5 pgp-1  (Caenorhabditis elegans) 1321 NP_502413.1 
6 Mdr50 (Drosophila melanogaster) 1313 NP_523740.3 
7 PGP18 (Arabidopsis thaliana) 1225 NP_189480.1 
8 pmd1 (Schizosaccharomyces pombe) 1362 NP_588265.1 
9 Sav1866 (Staphylococcus aureus) 578 NP_372390   

10 MsbA (Escherichia coli) 582 NP_415434 
11 PFMDR1 (Plasmodium falciparum) 1419 XP_001351787.1 

 

 

Figure 2.1 Pairwise sequence alignment of the ABCB1 human and mouse 
homologous protein sequences. The SNP numbering is identical to the ones 
used in Table 2.2 . Red and blue indicate position of nonsynonymous and 
synonymous SNPs, respectively. The purple boxes indicate residues 
concurrently housing both nonsynonymous and synonymous SNPs. 
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Figure 2.2 (next page): Homology map derived from the multiple 
sequence alignment of 11 ABCB1 homologs. Black bar height indicates the 
number of identical residues between the 11 homologous sequences at the 
respective amino acid site (between 11 and 0 identical residues may occur). 
sSNPs and nsSNPs whose corresponding residues can be mapped into the 
mouse protein are represented with blue and red dots,  respectively. The C-
terminal portion of the alignment where the bacterial half transporter 
sequences of Sav1866 and MsbA were repeated to produce a full sequence is 
marked with an arrow. This map also depicts the putative P-gp secondary 
structure shown in a linear chain format modified from the Protein Database 
(PDB). Conserved regions essential for protein function are highlighted both 
in the alignment and Abcb1a crystal structure. 
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Table 2.2 Genetic conservation of amino acids corresponding to ABCB1 coding region SNPs. 

 

1 - rs28381804 E3/49T>C (F17L) F17 W16 S16 Y17 Y35 F39 - A42 - - G11 - -

2 - rs41304191 E3/55C>T (L19L) L19 M18 M18 I19 G37 P41 - E44 - - L13 - -

3 - rs76199854 E3/57G>A (L19L) L19 M18 M18 I19 G37 P41 - E44 - - L13 - -

4 - rs9282564 E3/61A>G  (N21D) N21 K20 K20 N21 N39 K43 - H46 - - I15 - -

5 ns1 rs1202183 E5/131A>G (N44S) N44 N43 G43 S55 T70 T81 D16 D88 K10 A21 P50 18.2 38.7

6 ns2 rs41315618 E5/178A>C (I60L) I60 I59 I59 A71 I86 A97 G32 G104 K26 N37 L66 27.3 46.6

7 ns3 rs9282565 E5/239C>A (A80E) A80 A79 A79 V91 I106 I117 G52 Y124 N46 G57 N86 36.4 29.1

8 - rs35810889 E5/266C>T (M89T) - M89 F89 S85 T96 I112 - - - - - - - -

9 ns4 rs61607171 E7/431T>C (I144T) TM2 I144 I145 I140 V152 N168 I176 A98 A172 L93 V97 L124 36.4 40.9

10 ns5 rs61122623 E7/502G>A (V168I) V168 V169 V164 A176 S192 S200 T122 A196 V117 T121 G148 54.5 46.2

11 s1 rs1128500 E8/540C>T (S180S) S180 S181 S176 S188 E204 S212 L136 N208 E129 E133 E160 27.3 42.0

12 ns6 rs60419673  E8/548A>G (N183S) N183 N184 N179 N191 K207 E215 Q139 Q211 K132 A136 S163 27.3 39.9

13 ns7 rs1128501 E8/554G>T (G185V) G185 G186 G181 G193 G209 G217 F141 G213 F134 S138 G165 45.5 40.9
14 s2 rs1128502 E8/555A>T (G185G) G185 G186 G181 G193 G209 G217 F141 G213 F134 S138 G165 45.5 40.9

15 s3 rs2235022 E9/729A>G (E243E) E243 E244 E239 E251 E267 E275 I199 Q271 R192 M196 S223 18.2 33.3

16 s4 rs28381867 E9/738G>A (A246A) A246 A247 A242 A254 R270 M278 E202 V274 A195 T199 Y226 9.1 34.5

17 ns8 rs36008564 E9/781A>G (I261V) C-NBD (Internal) I261 I262 I257 V267 I285 I293 V217 I289 I210 H214 I241 36.4 50.3

18 s5 rs80153317 E10/879T>C (I293I) TM5 I293 I294 I289 I301 L317 M325 L249 I321 R242 S246 F273 18.2 36.3

19 ns9 rs2229109 E12/1199G>A (S400N) N-NBD (Internal) S400 S401 S396 N408 T424 Q439 T355 V428 Q348 T350 H386 18.2 60.7

20 s6 rs1128503 E13/1236C>T (G412G) N-NBD (External) G412 G413 G408 G420 G436 K451 D367 N440 D359 N361 D398 27.3 55.9
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Table 2.2. Genetic conservation of amino acids corresponding to ABCB1 coding region SNPs (con’t). 
  

 

21 s7 rs35068177 E13/1308A>G (T436T) T436 T437 T432 T44 I460 C475 V391 I464 L383 I385 I422 54.5 64.6

22 s8 rs41311775 E15/1326G>A (R442R) R442 R443 R438 R450 R466 R481 R397 R470 R389 R391 R428 100.0 54.5

23 s9 rs35633772 E15/1617C>T (I539I) I539 I540 I535 I547 I563 I578 I494 I576 L486 I489 I571 90.9 65.8

24 s10 rs60247941 E15/1632C>T (A544A) A544 A545 A540 A552 A568 A583 A499 A581 I491 A494 A576 63.6 65.1

25 s11 rs2235012 E15/1662G>C (L554L) L554 L555 L550 L562 L578 L593 L509 L591 L501 L504 L586 100.0 73.6

26 s12 rs56871767 E15/1674G>A (T558T) T558 T559 T554 T566 T582 T597 T513 T595 T505 T508 T590 100.0 78.7

27 s13 rs59697741 E15/1695C>T (S565S) S565 S566 S561 S573 S589 S604 S520 S602 S512 S515 S597 100.0 75.4

28 ns10 rs28381902 E15/1696G>A (E566K) E566 E567 E562 E574 E590 E605 E521 E603 E513 E516 E598 100.0 76.6

29 ns11 rs28381914 E16/1777C>T (R593C) R593 R594 R589 R601 R617 R632 R548 R630 T540 E543 R627 54.5 67.3

30 ns12 rs56107566 E16/1778G>A (R593H ) R593 R594 R589 R601 R617 R632 R548 R630 T540 E543 R627 54.5 67.3

31 s14 rs28381915 E16/1794C>T (I598I) I598 I599 I594 I606 I622 I637 I553 I635 I545 I548 I632 100.0 65.5

32 ns13 rs2235036 E16/1795G>A (A599T) A599 A600 A595 A607 I623 V638 C554 V636 V546 V549 F633 54.5 63.6

33 ns14 rs57001392 E16/1837G>T (D613Y) N-NBD (External) D613 D614 D609 S621 R637 Q652 E568 N650 R560 N563 D677 45.5 60.5

34 - rs35657960 E17/1985T>C (L662R) L662 L663 L658 E671 M694 K698 E615 A708 - - E736 0.0 -

35 - rs35023033 E17/2005C>T (R669C) R669 R670 R665 R678 I702 D705 S662 T715 - - N743 0.0 -

36 - rs59340265 E17/2037C>T (D679D) D679 D680 D675 N688 D712 N715 S632 N725 - - E753 9.1 -

37 ns15 rs41316450 E18/2207T>A (I736K) TM7 I736 I737 V732 I745 M779 I771 V682 I820 I37 L48 V814 72.7 36.7

38 ns16 rs77144566 E19/2281A>C (A761S) TM8 A761 V763 I757 A769 V802 I796 G706 I844 I647 G655 L836 63.6 42.1

39 ns17 rs41305517 E21/2398G>A (D800N) C-NBD (Internal) D800 D801 D796 D808 H841 D835 E745 D883 S108 P112 E875 9.1 45.4

40 ns18 rs2235039 E21/2401G>A (V801M) C-NBD (External) V801 V802 V797 M809 I842 V836 V746 V884 A109 V113 M876 63.6 47.6
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Table 2.2. Genetic conservation of amino acids corresponding to ABCB1 coding region SNPs (con’t). 

  

41 ns19 rs2032581 E22/2485A>G (I829V) I829 I830 T825 T837 I870 T864 V744 S912 I135 S139 L904 45.5 30.2

42 s15 rs28381966 E22/2505A>G (V835V) V835 V836 V831 L843 T876 T870 L780 T918 N141 T145 F911 45.5 33.0

43 ns20 rs28381967 E22/2506A>G (I836V) I836 I837 I832 I844 V877 I871 L781 V919 I142 V146 F911 63.6 28.5

44 ns21 rs36105130  E22/2547A>G (I849M) I849 I850 I845 I857 I890 D884 I794 L932 I155 M159 M924 81.8 44.7

45 s16 rs9282563 E22/2650C>T (L884L) L884 L885 L880 K892 V925 M919 R829 E967 R190 K194 I959 27.3 31.2

46 ns22 rs2032582 E22/2677G>T/A (S893A/T) S893 A894 S889 A901 S934 C928 S838 S976 V199 V203 P982 45.5 35.7
47 ns23 rs56849127 E25/2975G>A (S992N) S992 S993 S988 S1000 T1035 L1027 G937 F1075 V298 T302 M1081 36.4 38.4

48 ns24 rs72552784 E25/2995G>A (A999T) A999 A1000 A995 A1007 A1042 Q1034 V944 T1082 T305 Q309 E1089 27.3 36.5

49 s17 rs2235044 E26/3084G>A (P1028P) P1028 P1029 P1024 P1036 - P1063 P973 V1111 P332 V334 I1117 0.0 33.0

50 ns25 rs28401798 E26/3151C>G (P1051A) P1051 P1052 P1047 K1059 E1093 Q1086 I996 K1135 P355 P357 P1142 18.2 57.6

51 ns26 rs2707944 E26/3188G>C (G1063A) G1063 G1064 G1059 G1071 G1105 G1098 G1008 G1147 G367 G369 K1154 45.5 53.8

52 s18 rs2707943 E26/3189C>G (G1063G) G1063 G1064 G1059 G1071 G1105 G1098 G1008 G1147 G367 G369 K1154 45.5 53.8

53 ns27 rs74755520 E26/3222A>C (C1074W) C-NBD (Internal) C1074 C1075 C1070 C1082 C1116 C1109 S1019 C1158 G378 S380 S1165 63.6 67.8

54 ns28 rs57521326 E26/3262G>A (D1088N) D1088 D1089 D1084 D1096 D1130 D1123 D1033 D1172 D392 D394 D1179 100.0 53.9

55 ns29 rs41309225 E27/3295A>G (K1099E) K1099 K1100 K1095 I1107 S1141 C1134 R1044 V1183 H403 H405 I1237 18.2 38.5

56 ns30 rs55852620 E27/3320A>C (Q1107P) Q1107 Q1108 Q1103 Q1115 E1149 T1142 R1052 N1191 G411 A413 R1245 27.3 43.7

57 ns31 rs35730308 E27/3322T>C (W1108R) W1108 Q1109 W1104 Q1116 H1150 N1143 S1053 D1192 S412 S414 D1246 27.3 43.5

58 s19 rs34748655 E27/3396C>T (A1132A) C-NBD (Internal) A1132 A1133 A1128 A1140 I1174 S1167 M1077 V1216 L436 A438 K1270 27.3 56.8

59 ns32 rs41309228 E27/3410G>T (S1137I ) S1137 S1138 S1133 S1145 P1179 A1172 S1082 S1220 P440 E443 - 18.2 41.8

60 ns33 rs2229107 E27/3421T>A (S1141T) S1141 S1142 S1137 S1149 T1183 T1176 D1086 S1224 D444 R447 T1277 45.5 50.9

61 s20 rs1045642 E27/3435C>T (I1145I) C-NBD (Internal) I1145 I1146 I1141 I1153 V1187 I1180 I1090 M1228 V447 I450 V1281 72.7 57.6
62 ns34 rs59241388 E28/3502A>G (K1168E) K1168 R1169 R1164 R1176 R1210 R1203 C1113 L1251 E470 V473 N1304 27.3 61.9

63 ns35 rs41309231 E29/3669A>T (E1223D) E1223 E1224 E1219 E1231 E1265 E1258 V1168 Q1306 K525 K528 D1359 27.3 60.2

64 s21 rs2235051 E29/3747C>G (G1249G) C-NBD (Internal) G1249 G1250 G1245 G1257 G1291 G1284 G1194 G1332 G551 G554 T1392 63.6 63.0

65 ns36 rs45456698 E29/3751G>A (V1251I) V1251 V1252 V1247 V1259 I1293 V1286 V1196 I1334 I553 I556 V1394 81.8 59.2

66 ns37 rs35721439 E29/3767C>A (T1256K) T1256 T1257 T1252 T1264 T1298 D1291 N1201 T1339 T558 T561 T1399 72.7 59.4
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Table 2.2 (previous page) Note. ^The conservation of residues corresponding to all coding regions SNPs was obtained following multiple 
sequence alignment of 11 confirmed ABCB1 homolog protein sequences. For each species the amino acid, as well as its position in the 
corresponding sequence, is indicated. Corresponding ends of each of the row containing ABCB1 SNPs of a particular pharmacogenomics interest 
are marked by the same colour that were used to highlight their names in Figure 2.3. Highlighted in faded blue are the rows containing 
synonymous SNPs. Shaded in green is the sequence alignment obtained after re-using the same bacterial half-transporter sequence that were 
used for the first half of the alignment. The SNP nomenclature (i.e. ns# (non-synonymous) or s# (synonymous)) is similar to what were used 
throughout this chapter. 
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Figure 2.3 (previous page): (A) A global view of residue conservation 
following the multiple sequence alignment of 11 ABCB1 homologs using 
the ClustalW algorithm (see Table 2.1 and Table 2.2). A heat map with 
differing colors depending on the residue conservation score is shown (blue: 
low conservation, red: high conservation). (B) Global view of amino acid 
residues corresponding to non-synonymous SNPs (prefixed as ‘ns’) and (C) 
synonymous SNPs (prefixed as ‘s’) within the human ABCB1 gene mapped to 
the mouse Abcb1a crystal structure (PDB: 3G5U). Identical residues between 
human and mouse are represented as Blue (sSNPs) and Red (nsSNPs) 
balls/fonts. Those residues that are not homologous are represented as green 
balls/fonts. The conserved Walker A (light blue), Walker B (pink) and  
signature C motifs (dark blue) are also highlighted as coloured lines. Number 
labels correspond with the data/labels in Table 2.2. The residue housing SNPs 
of pharmacogenomics interest are consistently highlighted by the same colours 
in Tables 2.2 and 2.3. 

 

2.5 SNPs associated with protein function or expression 

 

Based on literature review, there are two sSNPs and 12 nsSNPs that are 

associated with the ABCB1 protein function or expression variation (Table 

2.3). However, because they are located outside of the crystalized region of 

the Abcb1a protein, four of the twelve nsSNPs could not be located in the 

protein structure. These are the E3/61A>G, E5/266C>T, E17/1985T>C and 

E17/2005C>T. 
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Table 2.3 ABCB1 coding SNPs and their allele frequencies. 

# rsNo 
SNP (Amino Acid 

Substitution) 

Minor Allele Frequency (%)  Association 
Report(s) 

(Y/N) 
 Asian 

CAU YRI Ref.
CHB JPT 

 1 - rs28381804 E3/49T>C  (F17L) 2.5 0 0 b No   

 2 - rs41304191 E3/55C>T  (L19L) - No   

 3 - rs76199854 E3/57G>A (L19L)     -     No   

 4 - rs9282564 E3/61A>G   (N21D) 

0 0 10 0 a 

Yes   0 19 0 b 

- - 6.5 2.1 c 

 5 ns1 rs1202183 E5/131A>G  (N44S) 
0 0 0 0 a 

No   
- - 0 0 c 

 6 ns2 rs41315618 E5/178A>C  (I60L) - No   

 7 ns3 rs9282565 E5/239C>A  (A80E) 
0 0 0 0 a 

No   
- - 0 2.1 c 

 8 - rs35810889 E5/266C>T (M89T) - Yes   

 9 ns4 rs61607171 E7/431T>C (I144T) - No   

 10 ns5 rs61122623 E7/502G>A (V168I) - No   

 11 s1 rs1128500 E8/540C>T  (S180S) - No   

 12 ns6 rs60419673  E8/548A>G (N183S) - No   

 13 ns7 rs1128501 E8/554G>T  (G185V) - Yes   

 14 s2 rs1128502 E8/555A>T  (G185G) - No   

 15 s3 rs2235022 E9/729A>G  (E243E) 0 0 0 0 a No   
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 16 s4 rs28381867 E9/738G>A  (A246A) 0 0 0 b No   

 17 ns8 rs36008564 E9/781A>G (I261V) - No   

 18 s5 rs80153317 E10/879T>C (I293I)     -     No   

 19 ns9 rs2229109 E12/1199G>A  (S400N) 

0 0 3.3 0 a 

Yes   
0 2.3 0 b 

- - 3.2 2.1 c 
0 - 2.1 0 d 

 20 s6 rs1128503 E13/1236C>T  (G412G) 

68.9 57.8 39.2 12.3 a 

Yes   
68.8 38.6 25 b 

- - 46.8 18.7 c 
66.7 - 47.7 13.6 d 

 21 s7 rs35068177 E13/1308A>G (T436T) - No   

 22 s8 rs41311775 E15/1326G>A  (R442R) - No   

 23 s9 rs35633772 E15/1617C>T (I539I) - No   

 24 s10 rs60247941 E15/1632C>T (A544A) - No   

 25 s11 rs2235012 E15/1662G>C  (L554L) 
0 0 0 2.5 a 

No   
0 0 

1.7 
c 

6.2 

 26 s12 rs56871767 E15/1674G>A (T558T) - No   

 27 s13 rs59697741 E15/1695C>T (S565S) - No   

 28 ns10 rs28381902 E15/1696G>A  (E566K) 
0.6 0.6 1.3 0.5 a 

No   
0 0 0 b 

 29 ns11 rs28381914 E16/1777C>T  (R593C) 0 0 0 b No   

 30 ns12 rs56107566 E16/1778G>A (R593H) - No   

 31 s14 rs28381915 E16/1794C>T  (I598I) - - 0.9 - a No   
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0 2.3 0 b 

 32 ns13 rs2235036 E16/1795G>A  (A599T) 0 0 0 0 a No   

 33 ns14 rs57001392 E16/1837G>T  (D613Y) - No   

 34 - rs35657960 E17/1985T>C (L662R) - Yes   

 35 - rs35023033 E17/2005C>T (R669C) - Yes   

 36 - rs59340265 E17/2037C>T (D679D) - No   

 37 ns15 rs41316450 E18/2207T>A  (I736K) - No   

 38 ns16 rs77144566 E19/2281A>C (A761S)           No   

 39 ns17 rs41305517 E21/2398G>A  (D800N) - No   

 40 ns18 rs2235039 E21/2401G>A  (V801M) 0 0 0 0 a No   

 41 ns19 rs2032581 E22/2485A>G  (I829V) 0 0 0.9 0 a No   

 42 s15 rs28381966 E22/2505A>G  (V835V) 
- - 0.4 - a 

No   
0 2.4 0 b 

 43 ns20 rs28381967 E22/2506A>G  (I836V) 0 0 4.2 b No   

 44 ns21 rs36105130  E22/2547A>G (I849M) - No   

 45 s16 rs9282563 E22/2650C>T  (L884L) 
- - 1.6 0 c 

No   
0 2.3 0 b 

 46 ns22 rs2032582 E22/2677G>T/A (S893A/T)
52.2/15.2 38.6/0 0/0 b 

Yes   
- - 43.5/0 12.5/2.1 c 

 47 ns23 rs56849127 E25/2975G>A (S992N) - No   

 48 ns24 rs72552784 E25/2995G>A (A999T) - No   

 49 s17 rs2235044 E26/3084G>A  (P1028P) 0 0 0 0 a No   

 50 ns25 rs28401798 E26/3151C>G  (P1051A) 0 0 0 b Yes   

 51 ns26 rs2707944 E26/3188G>C  (G1063A) - No   

 52 s18 rs2707943 E26/3189C>G  (G1063G) - No   
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 53 ns27 rs74755520 E26/3222A>C (C1074W)           No   

 54 ns28 rs57521326 E26/3262G>A (D1088N) - Yes   

 55 ns29 rs41309225 E27/3295A>G  (K1099E) - No   

 56 ns30 rs55852620 E27/3320A>C (Q1107P) - No   

 57 ns31 rs35730308 E27/3322T>C (W1108R) - Yes   

 58 s19 rs34748655 E27/3396C>T  (A1132A) - - 0 2.1 c No   

 59 ns32 rs41309228 E27/3410G>T  (S1137I) - No   

 60 ns33 rs2229107 E27/3421T>A  (S1141T) 

0 0 0 4.5 a 

Yes   
0 - 0 13.6 d 

- - 0 10.4 c 

0 0 4.2 b 

 61 s20 rs1045642 E27/3435C>T (I1145I) 

40 47.8 54.2 11.7 a 

Yes   
52.3 54.5 20.8 b 

- - 53.2 20.8 c 
37.5 - 62.5 15.2 d 

 62 ns34 rs59241388 E28/3502A>G (K1168E) - No   

 63 ns35 rs41309231 E29/3669A>T  (E1223D) - No   

 64 s21 rs2235051 E29/3747C>G  (G1249G) - - 0 1.4 c No   

 65 ns36 rs45456698 E29/3751G>A  (V1251I) 0 0 0 b Yes   

 66 ns37 rs35721439 E29/3767C>A (T1256K) - No   

~The corresponding ends of each of the row containing ABCB1 SNPs of a particular pharmacogenomics 
interest are marked by the same colour that were used to highlight their names in Figure 2.3. Highlighted in 
faded blue are the rows containing synonymous SNPs. Minor allele frequency source: HapMap (a), EGP SNPs 
(b), SNP500Cancer (c), PERLEGEN (d). 
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2.6 In 3D structure E13/1236C>T, E22/2677G>T/A and 

E27/3435C>T are located in distant regions and have 

varied conservation 

 

The E13/1236C>T, E22/2677G>T/A and E27/3435C>T are among the SNPs 

that are most extensively studied in ABCB1 pharmacogenetics [32-37]. Not 

only are they present at diverse frequencies across different populations (Table 

2.3), it is also reported that these three SNPs are in high linkage disequilibrium 

[35]. Whilst the E22/2677G>T/A is categorized as nsSNPs (#ns22 in Fig. 

2.3B), the other two SNPs are synonymous in nature (#s6 and #s20 in Fig. 

2.3C). Interestingly, unlike the conventional biallelic SNPs, nsSNP #22, which 

is located at residue 893, exists with three different alleles conferring a Serine 

to Alanine or Threonine substitution. 

By using the 3D structure, the two sSNPs are observed to be located in 

different protein regions (Fig. 2.3C and flash movie at 

http://pfs.nus.edu.sg/demo_src/abcb1.html)), which are located more than 50 

Å apart. They also have a very dissimilar evolutionary conservation level. To 

calculate regional conservation score, amino acid residues within 10 Å of the 

SNP were fetched from the Abcb1a crystal structure. Subsequently, an average 

score of all the individual conservation scores of these residues, in addition to 

the scores of five residues adjacent to them were calculated and assigned to 

the residue of interest. This score was then referred as the regional 

conservation score. Table 2.2 presents the regional conservation scores of the 

ABCB1 coding SNPs. The reason for choosing five amino acids  that are 
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located on either side of each residue was to obtain a finer spread of data, in 

demarcating the regions that have a big difference in conservation scores. 

Synonymous SNP #s6 or the E13/1236C>T, which corresponds to a glycine, is 

located on the external surface within the NBD that is closer to the N-terminal 

(Fig. 2.2 and Fig. 2.3C). This residue is found inside a beta-sheet, between the 

Walker A and A-loop motif, which are separated by 15 and 10 amino acids, 

respectively. In this study, it is observed that the individual conservation score 

of this residue is relatively low (28%), which suggests that there is a 

considerable degree of tolerance for variation in this residue during the protein 

evolution (Table 2.2, Fig. 2.4A). Furthermore, this notion is supported by the 

presence of lysine, aspartic acid and asparagine in residues of the same 

position that is found in other homologous sequences (Table 2.2). They only 

differ from glycine in term of polarity and charge of side chain, in addition to 

being less hydrophobic (-3.5 to -3.9 in compared to -0.4). Because #s6 is 

likely to have an impact at mRNA level, this variation of tolerance is 

postulated to be important in nature. 

The second highly studied sSNP was the E27/3435C>T or #s20, which 

corresponds to I1145I in the protein (Fig. 2.3C). The residue that corresponds 

to this SNP is observed to be highly conserved (73%) in all 11 ABCB1 

homologous protein sequences (Table 2.1 and Table 2.2). Except in C. elegans, 

S. aureus and P. falciparum, which has a valine residue, all other ABCB1 

homologs have isoleucine at the corresponding site to SNP #s20 (Fig. 2.2, 

Table 2.2). In the 3D structure, it can be observed that Ile 1145 is located 

within the internal structure of the NBD that is closer to the C-terminal (Fig. 

2.3B). Because both isoleucine and valine have neutral side chains with non-
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polar and hydrophobic residues, it suggested that these properties are 

important for this site of the protein throughout its evolution. 

Theoretically, E27/3435C>T is similar to E13/1236C>T in term of variability 

as it is at the transcript level that they may exert influence. And it could be 

predicted that in S. pombe, methionine 1228 could have been the result of a 

mutation that took place at the isoleucine codon, from ATC to ATG. Residue 

1145 is located right next to the signature C (Fig. 2.4C), a highly conserved 

motif and functionally important for ATP binding and hydrolysis [38, 39]. The 

regional conservation scores of E13/1236C>T and E27/3435C>T are highly 

similar, 56% and 58%, respectively, despite the variation in their conservation 

level and their opposite NBDs placement. Furthermore, these regions are more 

conserved than the average conservation of other SNPs, with regional 

conservation score of more than 50%. 
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Figure 2.4 Location and conservation of (A) E13/1236C>T (G412G), (B) E22/2677G>T/A (S893A/T) and (C) E27/3435C>T (I1145I). 
Individual residue scores are mapped to the ribbon model with each colour representing a percentage of conservation where 100% is equal to 11 
species expressing the same residue at the corresponding position. A heat map with differing colors depending on the conservation score is 
shown (blue: low conservation, red: high conservation). 
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The E27/3435C>T polymorphism (#s20 in Fig. 2.3C), which corresponds to 

the I1145I is a highly studied SNP of the ABCB1 protein, which is highly 

suggested to affect the protein 3D structure, stability or expression following 

the occurrence of a ribosomal stall during mRNA translation. This ribosomal 

stall is proposed to occur due to the presence of rare codon that changes the 

speed of mRNA translation and protein folding that is facilitated by chaperone 

[6, 40, 41]. This intriguing hypothesis however, is still supported by limited 

evidence. Moreover, rather than focusing on this SNP alone, most of the 

studies had largely been focusing on the SNPs haplotype consisting of #s6, 

#ns22, in addititon to the #s20 itself. 

 

Similar to the #s20, the #ns22, which corresponds to E22/2677G>T/A has a 

higher conservation score than the residues in its vicinity (#ns22 in Fig. 2.3B). 

It is a non-synonymous SNP that is associated with substitution of amino acids 

at residue 893, from Serine to either Alanine or Threonine. Based on the 

regional conservation score of 36% and individual conservation score of  46%, 

the SNP probably lies in a region that was subjected to sequence variation 

throughout the protein evolution (Table 2.2, Fig. 2.4B). Moreover, several 

homologous residues are different to Serine in the polarity of side chains and 

hydrophaty index [42]. These are the Alanine in C. l. Familiaris and G. gullus, 

the cysteine in D. melanogaster, and the Valine in Sav1866 and MsbA. 
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There have been enormous efforts that focus in studying the role of these three 

ABCB1 SNPs in drug response, many of them often yielded conflicting 

conclusion (See Supplementary Table 3 in the published manuscript version). 

Where some studies concluded on the causative role of a single ABCB1 SNP, 

the majority of other studies have reported on the role of the SNP haplotypes. 

With many contradictory conclusion, the real evidence surrounding the 

significant role of the E13/1236C>T, E22/2677G>T/A and E27/3435C>T 

SNPs have therefore been largely controversial. Moreover, reviews on the 

association between ABCB1 polymorphisms and drug pharmacokinetics or 

protein functions have also carried mixed perspectives [10, 16, 43]. 

 

Because inferring a conclusion from many of these studies is not easy, 

especially in terms of ABCB1 pharmacogenetics, the availability of the 3D 

crystal structure provided an opportunity. With the mouse structure, we can 

now evaluate the potential effect of ABCB1 SNPs on the protein structure and 

function. This could complement the design of future functional studies, 

especially in the selection of candidate SNPs. 
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2.7 3D structure reveals that classic G185V polymorphism is 

in close proximity to two other non-synonymous SNPs in 

less evolutionary conserved region 

 

Besides the E13/1236C>T, E22/2677G>T/A and E27/3435C>T SNPs, there 

are several nsSNPs that are associated with drug responses. The majority of 

these SNPs could be mapped to the mammalian Abcb1a crystal structure. 

The E8/554G>T (#ns7), which is a G185V substitution (Fig. 2.3B) is one of 

the non-synonymous SNPs that have been reported to be associated with drug 

response. It is a “classic” polymorphism that induce an amino acid substitution 

from Glycine to Valine at residue 185, and is associated with vinblastine and 

colchicine drug specificity [44]. It is reported that glycine 185 is an important 

component in the alteration of ABCB1 conformation between the drug binding 

and catalytic sites [45]. Atomic detail homology modeling coupled with 

combining dynamics simulation predicted an improved drug efflux as a result 

of non-polar van der Waals force reduction that were supposed to bind 

colchicine near residue 185. Because Valine is bulkier than Glycine, this 

interaction would have been prevented, which increases efflux and 

dissociation [45, 46]. 

As can be observed in the crystal structure (Fig. 2.5 and 2.6), G185V is 

located within a close 3D vicinity to two other nsSNPs, the I144T (#ns4 in Fig. 

2.3B) and N183S (#ns6 in Fig. 2.3B). With the #ns4, the G185V is located 

10.9 Å apart, whilst with the N183S, it is 5.2 Å apart. However, because 

ABCB1 is known to have more than one structural confirmation [19], there is 

a concern that this close proximity may not be observed in a different 
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conformation. To address this, the same SNPs were mapped to the Sav1866 

ADP-bound structure, which is a half transporter found in Staphylococcus 

aureus. Here, it can be observed that the 3D distance between these nsSNPs 

are roughly similar, with 11.3 and 5.3 Å, respectively (Fig. 2.5 and Fig. 2.6). 

With an average score of around 40% for the I144, N183 and G185, the 

individual conservation scores are 36%, 27% and 45%, respectively. Within 

10 Å region, there are only three residues that have conservation score of 80% 

or more. It can therefore be suggested that throughout the protein evolution, 

some degree of variation of residues are tolerated. One should evaluate the 

influence of I144T and N183S on ABCB1 conformation in addition to their 

influence on the role of G185V in protein functional change. 

 However, few studies focus on the role of these three SNPs in drug 

response. In fact, no genotype information is available (Table 2.3). Therefore, 

in order to determine whether drug specificity is influenced by these SNPs, the 

next focus should be in obtaining the genotype information, in addition to the 

haplotype information across different populations. 
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Figure 2.5 Three homologous residues housing I144T, N183S and G185V 
in mouse Abcb1a structure (ATP/ADP free form). The homologous SNP 
amino acid sites are identical between human and mouse. Distances are 
indicated with yellow dashed lines. 

 

 

Figure 2.6 Three homologous residues housing I144T, N183S and G185V 
in Staphylococcus aureus Sav1866 structure (ADP-bound conformation). 
The homologous SNP amino acid sites are non-identical between human and 
S. aureus. Distances are indicated with yellow dashed lines. 
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Figure 2.7 (next page) Location and conservation of (A) E8/554G>T 
(G185V), (B) E12/1199G>A (S400N), (C) E26/3151C>G (P1051A), (D) 
E27/3322T>C (W1108R), (E) E27/3421T>A (S1141T), (F) E29/3751G>A 
(V1251I). Individual residue scores are mapped to the ribbon model with each 
colour representing a percentage of conservation where 100% is equal to 11 
species expressing the same residue at the corresponding position. A heat map 
with differing colors depending on the conservation score is shown (blue: low 
conservation, red: high conservation). 
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2.8 E12/1199G>A (S400N) is evolutionary non-conserved, but 

resides in an evolutionary conserved region  

 

The E12/1199G>A (#ns9 in Fig. 2.3b) nsSNP, which induces an S400N 

residue substitution, has a frequency of less than 4% in Asians. This SNP has 

been previously reported to be influential in drug responses [47-53]. With the 

mouse protein structure, it can be observed that S400N is similarly located as 

Gly 412, which houses the synonymous SNP, E13/1236C>T (Fig. 2.7B and 

see flash movie at http://pfs.nus.edu.sg/demo_src/abcb1.html). It lies within 

the NBD, next to the A-loop (Fig. 2.2 and Fig. 2.8B) at the same turn region as 

Gly 412, in between two beta-sheets. Based on this analysis however, the 

S400 residue is observed to have a relatively low individual conservation 

score (18%), which indicates poor evolutionary conservation that may tolerate 

variation at this position (Table 2.2). At this position, serine is observed only 

in three species: human, canine and mouse. In other species, substitution takes 

place with amino acids having polar side chain, except in yeast where there is 

an occurrence of valine, which is hydrophobic in property. Furthermore, there 

is an interesting observation that this S400 residue is flanked by two residues 

that are completely conserved, with a score of 100% (Fig. 2.7B), in a region of 

relatively high conservation, with a regional conservation score of 60.72% 

(Table 2.2). 
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2.9 Four SNPs that are associated with drug response are 

mapped to the outer surface of C-terminal NBD 

 

Using pair-wise protein sequence alignment, there are four out of eight SNPs 

that are reported to be associated with drug response that could be mapped to 

the crystal structure of the mouse Abcb1a protein (Fig. 2.1) [30, 31]. These 

SNPs are the P1051A, W1108R, S1141T, and V1251I, which corresponds to 

#ns25, #ns31, #ns33, and #ns36, respectively (Fig. 2.3B). These SNPs, which 

reside in the C-terminal Nucleotide Binding Domain, may affect protein 

function if they are reside in close vicinity to the protein surface that is 

important for ATP binding. The outer protein surface may also be important in 

NBDs dimerization, either during ATP binding and hydrolysis or opposing 

NBDs interaction. 

Here, the SNP E26/3151C>G, which corresponds to a P1051A (#ns25) 

substitution is highlighted (Fig. 2.3B and Fig. 2.7C). It is a relatively well 

conserved amino acid substitution, affecting only protein hydropathy. In the 

3D structure, #ns25 is mapped to the C-terminal NBD, at the surface forming 

the ATP binding pocket. The SNP is found to be located between two beta-

sheets, within a turn region, in a fashion that is similar to the S400N 

polymorphism (Fig. 2.7B). SNP P1051A is located close to the A-loop and 

Walker A motif, which are both very conserved and important for ATP 

activity [22, 25]. Moreover, the individual conservation score of the P1051 is 

only 18.2%, albeit residing in a region with around 60% of conservation score 

(Table 2.2, Fig. 2.7C). This suggests that at this residue, variation was well 

tolerated during the protein evolution despite it not being equally tolerated at 
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the neighboring residues. In a yeast-based experiment, it was shown that the 

P1051 polymorphism affects valinomycin resistance, when it occurred in 

diplotype with E22/2677G>T/A [54]. 

Another SNP that has previously been reported to play a role in drug response 

is SNP E27/3421T>A (S1141T) (#ns33) and the E27/3322T>C (W1108R) 

(#ns31) [54, 55]. Based on the assessment using the 3D crystal structure, 

S1141T and W1108R are found at the C-terminal NBD. S1141 resides at the 

external surface, whilst the W1108R is found within the NBD interior (Fig. 

2.3B, 2.7D, 2.7E, and flash movie http://pfs.nus.edu.sg/demo_src/abcb1.html).  

Meanwhile, the E27/3421T>A (S1141T, #ns33) polymorphism, which has a 

relatively high minor allele frequency of more than 4% in Africans, is not 

associated with highly conserved residue and protein region. The individual 

conservation and regional conservation score for this residue is 45.5% and 

50.9%, respectively (Table 2.2). This suggests that throughout the protein 

evolution, there was a good tolerance for a change of residue properties. 

Another non-synonymous polymorphism, which is less conserved than 

S1141T, is the E27/3322T>C (W1108R). This SNP, which is also referred as 

#ns31, corresponds to a less conserved residue (individual conservation score 

= 27.3%) compared to its surroundings (regional conservation score = 43.5%) 

(Table 2.2, Fig. 2.7E). Interestingly, both #ns31 and #ns33 are poorly 

evolutionary conserved and reside in the C-terminal NBD. These SNPs have 

previously been proposed to be associated with ABCB1 substrate 

discrimination [54].  
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Lastly, #ns36 is a non-synonymous polymorphisms that correspond to the 

V1251I substitution (E29/3751G>A) and has been reported to affect 

BODIPY-FL-paclitaxel pharmacokinetics [55]. Using the mouse crystal 

structure, it can be seen that the V1251I is located at the outer side of the C-

terminal NBD (Fig. 2.3B and Fig. 2.7F). The individual conservation score of 

81.8% signifies a highly conserved residue, which is also associated with 

conservative amino acid changes in 4 out of 11 species (Table 2.2). This SNP 

however, is located in a less conserved protein region, with regional 

conservation score of 59.2%, which suggests a relatively high tolerance level 

of change in the neighboring residues. 

Generally, with the exception of E27/3322T>C (W1108R) (#ns31), most of 

these SNPs, which have been reported to have association with ABCB1 

function alteration, are found at the external surface of the protein, specifically 

at the C-terminal NBD. These SNPs are #ns25, #ns33 and ns36, which 

correspond to E26/3151C>G (P1051A), E27/3421T>A and E29/3751G>A 

(V1251I), respectively (Table 2.2, Fig. 2.3B and flash movie at 

http://pfs.nus.edu.sg/demo_src/abcb1.html). Furthermore, all of these SNPs 

have relatively low average conservation scores (below 46%), except for 

#ns36 that has a relatively high individual conservation score of more than 

80%. With the structure information, we can now deduce that all these SNPs 

are located in a region that have a moderate degree of evolutionary 

conservation, between 40 and 60%. 
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2.10 More inclination for nsSNPs to be located at less 

conserved residues 

 

In this chapter, it can be observed that there is some correlation between the 

degree of conservation and SNPs. There is a higher percentage of non-

synonymous SNPs (12%) versus synonymous SNPs (7%) that are associated 

with low individual conservation score (20-30%) (Fig. 2.8A). Based on this 

observation, it can be deduce that there is a tendency for nsSNPs to reside in 

amino acids that are less conserved. Nonetheless, because SNPs are found 

throughout both the non-conserved and conserved protein regions, no clear 

correlation can be deduced between regional conservation scores and the 

overall presence of SNPs in ABCB1 protein (Fig. 2.8B). Here, it is found that 

most of the SNPs (39%) that could be mapped to the protein structure 

correspond to residues having low regional and individual conservation scores 

(Table 2.2). 
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Figure 2.8  Distribution of conservation scores in ABCB1 protein. (A) The distribution of SNP individual conservation scores. (B) Presence 
of ABCB1 coding SNPs as well as the 3D regional conservation scores using the mouse structure. The SNPs that are highlighted in this thesis are 
presented. 
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2.11 Conclusion 

 

In conclusion, out of a total of 66 coding SNPs in the ABCB1 protein, there 

are two sSNP and 12 nsSNPs that have been reported to be associated with 

protein function variation. There are ten SNPs that could be mapped into the 

mouse crystal structure and none of these SNPs are found at the region 

important for substrate binding as illustrated by Aller et al [19]. Here, it was 

observed that the only one of these SNPs that possibly resides within the lipid 

bilayer region is #ns7 or the E8/554G>T (G185V) polymorphism. In addition, 

although residing in a residue that is part of TM10, #ns22 or the 

E22/2677G>T/A (S893A/T) is located between the cytosolic N-terminal NBD 

and the membrane region (Fig. 2.3). The NBD can further be suggested to play 

a significant role in the functioning of ABCB1. This is based on the 

observation that most of the SNPs that are associated with function differences, 

are located at the external surface of the C-terminal NBD, not within the 

internal surface where ATP hydrolysis take place. 

From these 14 SNPs, the genotype data of 8 SNPs indicated diverse frequency 

across various populations. In fact, #ns33 or the E27/3421T>A (S1141T) is 

only observed in the African American population (Table 2.3). Furthermore, 

whilst the conservation scores of these 14 SNPs (except for #ns36 and #ns28) 

are well below average (less than 46%), their regional conservation score only 

reached average level (40-60%). This indicates that variability is somewhat 

tolerated in these regions of ABCB1, which may facilitate the variation of 

substrate specificity of ABCB1 polymorphs. 



 

61 
 

In recent years, studies involving ABCB1 SNPs have grown in number. Many 

of them focus on studying the SNPs association with drug pharmacokinetics. 

However, there has been little clarification of the role of these SNPs over 

variation of drug response. The field is becoming more saturated as 

differences in methodologies and approaches of various group further 

confounded the issue. For instance, the difference in populations that are 

involved in the different studies would add an extra challenge in comparing 

the results of these studies. Hence, such variable must be addressed in future 

study design. 

Moving forward, structural information of a drug response protein will be 

extremely useful, especially to enable more understanding of the potential 

effect of coding SNPs to the protein function. As illustrated in this chapter, 3D 

localization of the nsSNPs to the protein can aid the generation of a more 

knowledge-based hypothesis in functional studies. Moreover, using the 

evolutionary conservation methodology, one is also able to get more insight 

not only on the potential role of these non-synonymous SNPs, but also the 

synonymous SNPs that may exert impact in the mRNA level. Therefore, 

deducing the SNPs location and residue conservation in the 3D crystal 

structure can arguably provide a more accurate and realistic approach in 

visualizing the SNPs, in comparison to using the conventional 2D schematic 

diagram. The study elaborated in this chapter therefore highlighted the 

feasibility of using this approach in other proteins, given 3D crystal structure 

is available. It can also extend interpretation of results that are derived from 

association studies involving SNPs in drug response gene. 
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Nonetheless, this analysis was limited to only protein-coding SNPs in the 

ABCB1, which is only part of the general breath of polymorphisms that can 

affect drug response. Hence, in the next chapter, I present the general 

architecture of SNPs in drug-response pathways, which not only include the 

coding SNPs, but also SNPs residing outside of the exon region. 
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Chapter 3. Architecture of SNPs in Drug Response 
Pathways 

 

3.1 Introduction 

 

Drug response variation is affected by individual's genetic background [1-3]. 

Elucidating the role of SNPs residing in drug-response genes is a central theme in 

many pharmacogenomics studies [4-7]. Moreover, as shown in the previous 

chapter, coding SNPs could affect protein 3D structure, which can potentially 

affect the protein function. There have been studies supporting the potential 

importance of protein-coding region SNPs (cSNPs) in drug response [5-6, 8-10]. 

However more recently, there has been an increasing awareness of the impending 

potential consequence of SNPs that reside on non-coding or regulatory regions 

despite their lack of effects on protein structure [11-13]. The potential functional 

effect of non-coding polymorphisms can be exerted in gene expression level (for 

regulatory SNPs - rSNPs) such as by affecting transcription factor (TF) binding or 

miRNA binding; or in RNA structural level (for structural RNA SNPs - srSNPs) 

by affecting splicing. 

In this chapter, utilising the potentially functional SNPs (pfSNPTM - 

http://pfs.nus.edu.sg/) resource [14], the architecture of rSNPs and srSNPs in 

addition to that of cSNPs in genes responsible for drug response were elucidated. 

In addition, the correlation pattern between SNPs genotype and changes of drug-

response gene expression level was also investigated. 
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The relationship between drug response variation and population differentiation in 

SNP allele frequency has been discussed extensively [2, 15-16]. International 

consortiums that have publicized genotype data of major world populations 

include the HapMap, which genotyped SNPs in 11 populations and the Singapore 

Genome Variation Project (SGVP), which genotyped SNPs in three Asian 

populations in Singapore, a multiracial city-state [17-18]. Using this publicly 

available information, this chapter also reports the pattern of population genetics 

differentiation across conventional drug-response genes. This approach is 

arguably effective in studying the genetic background that is important in drug 

responses, especially when a clinical trial was done in populations that constitute 

a different genetic background. 

Moreover, it is important to note that in many drugs, the PK/PD is a multigenic 

process [19-20]. However, many studies were conducted based on a candidate 

gene or candidate SNP approach, which could disregard other potentially 

important genetic factors affecting the drug response. Nonetheless, there has been 

an effort to systematically organize drug-response genes into biological pathways 

where their specific role on the drug PK/PD is well annotated [20-21]. These 

drug-response pathways (DRPs) represent diverse networks of PK/PD genes that 

are associated with various drug responses. Genes within a DRP may interact and 

regulate the overall therapeutic outcome through various roles such as in drug 

absorption, distribution, metabolism, and excretion.  

In this chapter, I designed a systematic analysis of SNPs in the DRPs using a gene 

functional region-directed approach, one that could reliably detect pattern of 
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SNPs distribution in genes that belong to various DRPs. To my knowledge, at the 

time this study was initiated, a systemic investigation of the pattern of SNP 

architecture such as the gene regional distribution and predicted functional effect 

was not yet available. 

 

3.2 Methods 

 

3.2.1 Drug-response genes & pathways 
 

The drug pathways in this study were mined from the PharmGKB database 

(http://www.pharmgkb.org) [21]. Sixty six pathways that contain genes 

information in the PharmGKB database were used to assemble the set of 715 

drug-response genes that were used for analysis. Pathways that are associated 

with similar drugs were combined, which made up the 41 drug-response pathways 

(DRPs) used in this analyses (Appendix 2). 

3.2.2 Mapping of SNPs to gene region 
 

The SNPs data were obtained from the NCBI dbSNP (build 131) database [30]. A 

total of 10,512,313 SNPs from 22,333 genome genes were extracted for this 

purpose. Out of this total, 497,736 SNPs belong to the 715 drug-response genes. 

The work in this chapter employed the gene functional region-directed approach 

in mapping SNPs to the gene sets, in accordance to NCBI Genome build 37. SNPs 
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are categorised based on their location in genes. For SNPs in non-coding regions, 

the following classification was applied: Promoter for SNPs residing within 

5.5Kb upstream of a gene transcription start site; Intronic for SNPs residing in 

introns; as well as  5’ UTR and 3’ UTR for SNPs residing in the 5’ or 3’ un-

translated mRNA regions. In the coding region (i.e. exons), SNPs that cause 

amino acid substitution during mRNA translation is classified as non-synonymous 

SNPs (nsSNPs). On the other hand, silent or non-amino acid-substituting SNPs 

are referred as synonymous SNPs (sSNPs). SNP density was calculated on 

transcript level and its average was used to define the gene SNP density. 

Using the gene functional region-directed approach the SNP density of 

each gene transcript was calculated according to the following formula: 

 

3.2.3 Potentially Functional SNPs 
 

In studying the SNPs potential functional implication, the information in the 

Potentially Functional SNPs database (pfSNPTM - http://pfs.nus.edu.sg/) was 

utilized [14]. The pfSNP reseource integrated SNPs functional prediction tools 

into a one-stop portal of SNPs predicted functional anottation. The predicted 

functional features in this resource was used to define a SNP into different 

functional categories: Transcription factor (TF) binding sites, miRNA binding 

sites, 3’ UTR conserved regions, splicing regulatory sites, nonsense-mediated 
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decay (NMD), codon usage differentiation, protein deleterious, post-translational 

modification sites, and protein domains. These are summarized in Table 3.1. 

Using the gene functional region-directed approach of SNP mapping, the SNPs’ 

potential functional effect could be derived and the proportion of potentially 

functional SNPs in each gene were calculated. 

 

Table 3.1 Description of tool used for SNP functional categories. 

 

Functional category Tools Description 

TF Binding Sites TF binding site changes 
miRNA Binding Sites miRNA binding site changes 

3' UTR Conserved 3' UTR conserved regions 

Splicing Regulatory Sites 
Exonic splicing enhancer/silencer 
(ESE/ESS), intronic splicing regulatory 
element (ISRE), abberrant splice sites 

Nonsense-mediated Decay 
Nonsense-mediated decay (NMD) 
sequence changes 

Codon Usage Differentiation 
Codon usage differentiation sequence 
changes 

Protein Deleterious 
Polyphen/SNP34/LS-SNP predicted 
deleterious amino acid substitution 

Post-translational Modification 
Sites 

Glycosylation and phosphorylation sites 

Protein Domains Transmembrane domain, Interpro Scan 
 

3.2.4 eQTL analysis 
 

Gene expression data was obtained from the Gene Expression Omnibus (GEO) 

database. The study in this chapter utilised lymphoblastoid cell line (LCL) 

expression data from 144 (43 CEU, 59 CHB-JPT, and 42 YRI) unrelated HapMap 
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individuals performed by Stranger et al (Series GSE6536) [31]. In order to 

capture as many SNPs that could be correlated with differential gene expression, a 

linear regression was performed involving the expression data and their matched-

individuals genotype from three populations (CEU, CHB-JPT and YRI) of the 

1000 Genomes Project pilot phase [32]. The analysis of eQTL was then 

performed with 2.9 million, 2.4 million and 3.6 million SNP-mRNA probe pairs 

in the CEU, CHB-JPT and YRI, respectively. A SNP is categorised as expression-

associated or eQTL if its false discovery rate (FDR)-corrected P-value is less than 

0.05 after performing linear regression. The eQTL variants (n = 37,756) were 

subsequently mapped according to the gene functional region-directed method 

employed in this study. 

 

3.2.5 Population differentiation estimation 
 

The allele frequency was calculated using genotype data from two sources. The 

first originated from the HapMap (Release 27), consisting of 1.4 million SNPs 

that were genotyped from more than a thousand individuals in 11 populations 

[17]. The second came from the Singapore Genome Variation Project (SGVP), 

which genotyped approximately 1.4 million SNPs in 292 individuals from three 

Asian populations [18]. 
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The allele frequency data was used to calculate the estimate measure of SNP 

population differentiation using FST statistics [22]. Only common SNPs that have 

been genotyped in unrelated individuals from all populations were used in the 

calculation of FST, which for this chpater, measure population differentiation 

estimates across all populations. In this analysis, a total of 10 populations from 

the two genotyping sources were combined into four continental groups: Africans 

(consisting of LWK and YRI), Europeans (consisting of CEU and TSI), East 

Asians (consisting of CHB, CHD, CHS and JPT), and South Indians (consisting 

of GIH and INS). Pairwise FST scores within populations belonging to the same 

continental group are all 0.01 or less. An extremely differentiated SNP is defined 

as one having FST score within the top 5% of the whole-genome overall 

population FST distribution. The pathway population differentiation was analyzed 

by determining the proportion of genes that carry one or more extremely 

differentiated SNP in the DRP. 

 

3.2.6 Random sampling simulation 
 

The statistical random sampling simulation was performed in the ‘R’ environment 

(http://www.r-project.org/). For each DRP, the same number of genes was 

sampled and the sampling criteria were set such that only genes having 

approximately similar length (size of transcripts are within the range of what is 

observed in the pathway genes set) to the DRP genes were considered. 

Simulations were run independently for the analysis involving SNP density, 
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proportion of potentially functional SNPs, proportion of genes with eQTL, and 

proportion of genes with high-FST SNPs. 

Each simulation required 10,000-time random sampling repeats before an 

empirical distribution was formed in the individual DRP. Using these results; the 

percentile (Pc) value of each DRP was calculated using the following equation: 

 

Where: 

h = number of sampling observations higher than expected  

l = number of sampling observations lower than expected 

e = number of sampling observations equal to what expected   

 

A Pc value < 0.05 determined significantly non-random observation where 95 

percent of the sampling results fall below the observed value of the DRP. 

Whereas a Pc value > 0.95 depicted the opposite. 
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3.2.7 Drug pathway priority score 
 

For each DRP, the ‘Py score’ was calculated using their SNP architecture 

signatory parameters that were gathered in this study (Table 3.2). The Py score 

was defined according to the following equation. 

Py	Score ൌ

a
9 ൅

b
6 ൅ ቀ

c
6 	*	1.5ቁ ൅ ቀ

d
9 	*	2ቁ ൅ ቀ

e
9 	*	2ቁ ൅ ቀ

f
6 	*	3ቁ ൅ ቀ

g
9 	*	4ቁ ൅ ሺeො	*	2.5ሻ ൅ ൫fመ	*	3.5൯ ൅ ሺgො	*	4.5ሻ

25
 

Table 3.2 Features used for calculating drug pathways prioritization (Py) 
scores. 

Variable Description Weight 

a 
Potentially Functional SNPs                                             

- No. of significant categories 
1 

b 
Expression SNPs                                                               

- No. of significant categories 
1 

c 
Population Differentiation                                                

- No. of significant categories 
1.5 

d 
Expression-associated Potentially Functional SNPs        

- No. of categories with SNPs 
2 

e 
Highly-differentiated Potentially Functional SNPs          

- No. of categories with SNPs 
2 

ê Highest FST 2.5 

 
f 

 

Highly-differentiated Expression-associated SNPs          
- No. of categories with SNPs 

3 

  Highest FST 3.5 

g 
Highly-differentiated & Expression-associated 

Potentially Functional SNPs                                                 
- No. of categories with SNPs 

4 

ĝ Highest FST 4.5 

 

መ݂ 
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The Py score was derived based on the following rationale. The first three 

variables: a, b and c were derived based on the question whether a pathway is 

associated with one or more SNP category enrichment that is above the statistical 

threshold (Pc value < 0.05). Variable a recognizes the presence of enrichment of 

potentially functional SNPs in up to nine pfSNP categories (Table 3.1), which 

also explained the use of 9 as denominator. The subsequent variable, b, takes into 

account the observed enrichment of expression-associated SNPs in up to 6 SNP 

categories (Promoter, 5’ UTR, 3’UTR, Intron, Non-synonymous, and 

Synonymous). Variable c recognizes the presence of enrichment of extremely 

population-differentiated SNPs in up to 6 SNP categories. Whilst variables a and 

b carried an equal weightage of 1, variable c, due to its association with 

population differentiation, was given a heavier weightage of 1.5. 

In addition to recognizing the presence of SNP enrichment in the above variables, 

the subsequent part of the equation accounted the presence of SNPs that can be 

categorized into two or more categories, hence were given twice the weightage of 

the above variables. These are the potentially functional SNPs that are associated 

with variation in gene expression (variable d) or high population differentiation 

FST scores (variable e). Variable f, which was given a greater weightage, 

recognizes the presence of potentially functional SNPs that are also associated 

with gene expression variation. Moreover, the rarity of potentially functional 

SNPs that are also associated with gene expression and extreme population 

differentiation was given an even higher weightage of 4 in variable g. 
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The last three variables, ê, f ̂ and ĝ accounted the highest FST score for SNPs that 

are predicted to be potentially functional (ê) and associated with gene expression 

(f )̂, in addition to expression-associated SNPs that are predicted to be potentially 

functional (ĝ). In taking into account the relevance of their population 

differentiation status, greater weightages were given for these variables. 

3.3 Results 

 

3.3.1 SNP enrichment in drug-response pathways (DRPs) 
 

To evaluate the general distribution of SNPs in 715 drug-response genes retrieved 

from the PharmGKB database, the SNP densities were calculated based on gene 

functional region-directed approach (see methods). Each SNP is mapped to their 

respective genes and classified according to the gene functional region where they 

are located. SNPs in the non-coding region are classified as Promoter (if it is 

located within 5.5 Kbp upstream of the transcription start site), 5’ un-translated 

region (UTR), 3’ UTR, or intronic. SNPs in coding regions are categorized as 

either non-synonymous (nsSNPs, amino acid-substituting) or synonymous 

(sSNPs, non-amino acid-substituting). Table 3.3 presents the SNP densities of 

drug-response genes most commonly found in the DRPs. 

The whole-genome median SNP densities are 7.6, 3.1, 7.6, 6.9, 3.7, and 2.2 

SNPs/Kbp in the Promoter, 5' UTR, Intronic, 3' UTR, nsSNPs and sSNPs 

categories, respectively. When compared to these values, we observed that the 

coding and non-coding regions of the drug-response genes are equally SNP-
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enriched (Fig. 3.1A). In fact, SNPs enrichment in the 5’ UTR and synonymous 

SNP categories are more than 1.5 fold (P-value < 0.001, Mann-Whitney U test). 

SNP enrichment is therefore a widespread occurrence that occurs not only in the 

protein encoding region but also in the gene expression regulatory region of drug-

response genes. 
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Table 3.3 SNP density of the most common genes in drug-response pathways. 

Gene 
NCBI 

ID 
Function 

No. of 
Associated 
Pathways 

SNP Density^ 

Promoter
5' 

UTR 
Intronic

3' 
UTR 

Non-
synonymous

Synonymous

CYP3A4 1576 
Metaboliser 

25 12.55 28.85 10.72 18.23 22.49 2.65 

CYP3A5 1577 17 8.91 68.97 8.01 27.03 11.93 1.99 

ABCB1 5243 Transporter 15 10 19.14 7.94 29.46 12.23 5.98 

CYP2C19 1557 

Metaboliser 

14 11.09 0 10.6 0 23.08 6.11 

CYP2C9 1559 14 14.18 0 12.79 22.04 22.4 7.47 

CYP2D6 1565 10 22.36 22.22 36.01 0 54.25 16.9 

ABCG2 9429 Transporter 10 21.82 18.26 9.66 4.06 8.13 3.05 

CYP1A2 1544 Metaboliser 9 9.09 0 16.41 11.9 19.34 7.09 

ABCC2 1244 Transporter 8 10.36 14.39 13.25 7.3 8.41 4.74 

UGT1A1 54658 

Metaboliser 

8 14.36 0 13.21 13.51 21.85 1.87 

CYP2C8 1558 7 7.64 10.53 10.06 11.24 12.22 1.36 

CYP2B6 1555 6 9.09 0 17.01 36.33 24.39 7.45 

ABCC1 4363 
Transporter 

6 7.09 0 12.15 14.5 4.66 7.16 

ABCC3 8714 6 5.09 0 7.45 6.81 6.18 3.89 

MAPK1 108 
Cellular 

Signalling 
5 4.36 0 8.21 4.98 1.53 3.36 

ADCY2 5594 
cAMP 

formation 
5 7.82 8.33 7.96 6.79 1.85 5.54 

UGT2B7 7364 Metaboliser 5 11.45 0 10.12 35.86 6.92 10.06 

^SNP density is in SNPs/Kbp. The whole-genome median SNP densities are 7.6, 3.1, 7.6, 6.9,  3.7, and 2.2 SNPs/Kbp in 

promoter, 5' UTR, intronic, 3' UTR, nonsynonymous and synonymous categories, respectively 
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Figure 3.1 SNP enrichment in drug-response pathways (DRPs) is seen 
extensively across all gene functional regions. As shown by the median (fold 
versus genomic median) SNP density, genes taking part in drug-response (n = 
715) are generally highly polymorphic from the promoter and intron to the coding 
and un-translated (UTR) regions (A). This enrichment of SNPs is also seen in the 
DRPs (B) where each bar represents DRP SNP enrichment in the gene functional 
region of interest. A heat map of DRP Pc values showed that many DRP Pc 
values are inclining towards zero, which signifies non-random enrichment of 
SNPs (C). In each DRP, the numbers in the blocks represent the enrichment rank 
associated with the specific SNP categories (ie. Syn, NonSyn, 3'UTR, 5'UTR, 
Intron, and Promoter). 

 

As different drugs may target different tissues, metabolized and transported by 

diverse genes, we questioned whether the general SNPs enrichment observed in 

these genes could translate into significant projections of polymorphisms in the 

DRPs that are specific to certain drug types. In order to reduce background noise, 

the 66 PharmGKB PK/PD pathways information was summarized into 41 DRPs 

(Appendix 2). Out of 715 drug-response genes found in the DRPs collection 17 -
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tioare associated with more than 5 pathways (Table 3.3). In fact the drug 

metabolizing enzyme, CYP3A4, is commonly associated with 25 pathways, 

whereas 15 pathways conceal the influential ABCB1 transporter. The individual 

DRP average SNP densities were calculated using the same gene functional 

region-directed approach (Appendix 3). The result indicates that in general, the 

DRPs are SNP-enriched in both the expression regulatory and protein coding SNP 

categories.   

Because of the involvement of multiple genes and pathways, an early concern was 

that such observation could be affected by statistical randomness. Hence for each 

DRP, a 10,000-time statistical sampling simulation was performed using random 

genes. An evaluation if the same SNP enrichment was also observed in the DRP 

random sampling data set (see methods) was then carried out. The results showed 

that in the majority of DRPs, such SNP-enrichment was not observed in the 

random sampling set (Fig. 3.1C). This suggests that the SNP enrichment in the 

DRPs is not a random observation. Out of 41 DRPs, 27 pose a significant Pc 

value in one or more SNP categories representing SNP-enrichment. The DRP Pc 

values – the percentile score of which an observed pathway SNP density falls 

within its own empirical distribution – across all gene functional regions are well 

cumulated into the significant range (Fig. 3.2). Highly polymorphic pathways 

include those associated with taxane, antiplatelet, irinotecan and etoposide drugs, 

where significantly non-random SNP enrichments were observed in four or more 

SNP categories. 
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Figure 3.2 10,000-time statistical sampling simulation with random genes of 
comparable size showed that SNP enrichment across the DRPs are not 
random. 

 

3.3.2 Potentially functional SNPs in DRPs 
 

In order to elucidate the architecture of SNPs potential functional effect, the 

detailed distribution of SNPs in the DRPs were analyzed based on their predicted 

implication for gene functions. Figure 3.3A shows the proportion of potentially 

functional SNPs in the DRPs based on three functional levels of a SNP’s effect: 

expression regulatory (rSNPs), structural RNA (srSNPs) or protein level (cSNPs). 

The result shows the apparent multi-level functional role of SNPs in drug-

response, with potential effects exerted in all levels of the central dogma of 

molecular biology; from gene expression and RNA structure levels to protein 

structure and function levels. 

In this detailed SNP architecture, the relatively high proportion of potentially 

functional SNPs in the DRPs was also revealed (Fig. 3.3A). For the regulatory 

SNPs (rSNPs) category, the potential effect on transcription factor (TF) binding 
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sites is highly prominent compared to that of miRNA binding sites. In the 

structural RNA SNPs (srSNPs) category, a potentially strong influence is exerted 

in RNA splicing regulatory sites, but not in the other functional prediction 

categories (codon usage, 3’ UTR conservation or nonsense-mediated RNA 

decay). Furthermore, 10,000-time statistical sampling simulation showed that the 

high proportion of DRP SNPs in the two functional categories, TF binding and 

splicing regulatory sites alteration, are among the ones with the lowest trend of 

statistical Pc values (Fig. 3.3B). This suggests that the high proportion of TF 

binding and splicing regulatory site SNP categories is not due to random chances. 

On the other hand, in the protein structure and function level, where it is possible 

to observe coding SNPs (cSNPs), a substantial presence of non-synonymous 

SNPs was observed to be associated with protein domains or deleterious sites, but 

not post-translational modification sites (Fig. 3.3A and 3.3B). 

This result suggests for the high prominence of regulatory polymorphisms in drug 

response, which was traditionally less popular than coding SNPs in 

pharmacogenomics. Furthermore, it also signifies a novel pattern of pharmaco-

SNPs functionality, which is now attributed not only by protein variants, but also 

by the high prevalence of expression regulatory and RNA SNPs. 
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Figure 3.3 Potentially functional SNPs in DRPs. (A) The signature of SNPs 
with potential function in drug-response is marked by the relatively large scale of 
regulatory (rSNPs) and structural RNA-affecting SNPs (srSNPs), in addition to 
coding SNPs (cSNPs). In general, the DRPs carry substantial proportion of SNPs 
that are predicted to affect gene functional sites. (B) Among the most significant 
and non-random enrichments (Low Pc values) are in SNPs that could affect 
transcription factor (TF) binding, gene splicing and deleterious amino-acid 
substitutions.  

 

3.3.3 Expression quantitative loci (eQTL) is linked to rSNP and srSNPs in the 
DRPs 

 

This part seeks to evaluate whether potentially functional SNPs in DRPs are 

associated with actual differences in gene expression, a cellular phenotype that 

can be attributed to genetic variations. A correlation analysis between genotype 

and gene expression data of HapMap individuals was performed. The expression 
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data was obtained from gene expression microarray of lymphoblastoid cell lines 

(LCLs) (Series GSE6536 of the Gene Omnibus Database). The matching 

genotype of the same individuals was obtained from the 1000 Genomes pilot 

phase data. A SNP that is associated with differential local gene expression or 

eQTL is defined as one with false discovery rate (FDR) corrected P-value of less 

than 0.05 following linear regression analysis. 

When taking into account SNPs potential function, it was observed that the 

proportion of SNPs that are associated with gene expression is highest in the 

rSNPs and srSNPs categories (Fig. 3.4). In addition, we also observed a relatively 

higher proportion of genes carrying expression-associated rSNPs that alter TF 

binding sites and srSNPs that alter splicing regulatory sites (Fig. 3.5 and Fig. 3.6). 

This result further accentuates the raising importance of rSNPs and srSNPs in 

drug-response. Among the DRPs that carry substantial proportion of this type of 

genes are those that are responsible for drugs such as the methotrexate, thiopurine 

and doxorubicin (Fig. 3.6). 
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Figure 3.4 Higher proportion of DRP genes carrying TF binding and splicing 
regulatory site SNPs that are associated with differential gene expression. 
(Upper panel) The bar represents the collection of 715 drug-response genes. 
(Lower panel) A bar within the SNP category represents one DRP. 
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Figure 3.5 Proportion of genes carrying SNPs as expression quantitative loci 
(eQTL) in  DRPs. 

 

Figure 3.6 Pc values for the proportion of genes carrying SNPs as expression 
quantitative loci  (eQTL) in  DRPs. 
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The result also suggested on the possible co-regulation of drug response by 

regulatory SNPs that are associated with gene expression. It can presumably take 

place in DRPs that are unrelated, yet carrying common drug transporters or 

metabolisers. Out of 41 DRPs, 28 (68%) and 20 (49%) have – in their common 

genes – contained one or more TF-affecting and splicing-affecting SNPs that are 

also eQTL in nature, respectively (Appendix 4). Figure 3.7A presents a schematic 

view of a presumed DRPs co-regulation phenomenon by variants in the two most 

common genes having expression-associated SNPs in their TF binding sites. 

eQTL functional SNPs in the promoter of multi-drug resistance gene, ABCB1 

(rs3747802), as well as phase II metabolising enzyme, UGT1A1 (rs10929302), 

could co-regulate 18 different drug pathways through its effect in gene expression 

regulation. 
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Figure 3.7 Co-regulation of drug response by common regulatory variants in 
drug transporters and metabolizers. Expression-associated promoter TF 
binding site SNPs in ABCB1 and UGT1A1 (A) as well as extremely population-
differentiated splicing SNPs in ABCG2 and CYP3A5 (B) serve in regulating 
multiple DRPs (encapsulated by ovals). These are the most co-shared genes with 
prospective functional SNPs associated to either differential gene expression or 
extreme population difference in the DRPs.  
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3.3.4 High population differentiation in rSNPs and srSNPs of the DRPs 
 

Response to drug therapies are known to vary between different people, especially 

when they originate from populations of different genetic backgrounds. Hence the 

subsequent question was whether there is a distinct population differentiation 

pattern of SNPs within genes of the DRPs. In analyzing the pattern of population 

differentiation in the DRPs, SNP allele frequencies were derived from the 

HapMap (Phase 3) and Singapore Genome Variation Project (SGVP) genotype 

data. The allele frequency data were compiled into four major continental groups: 

Africans, Europeans, East Asians, and South Asians (see methods). For each SNP, 

the FST score was calculated and used to estimate the degree of population 

differentiation using all the available populations [22]. Based on this data, the 

extremely population-differentiated SNPs, are the SNPs in the top 5% of the 

whole-genome FST distribution. These SNPs in the top 5% are observed to have 

FST > 0.3 (Fig. 3.8). 
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Figure 3.8 The distribution of FST scores of SNPs in the human genome. 

 

It could be observed that the majority (78%) of DRPs carry a substantial 

proportion of genes that house one or more extremely population-differentiated 

SNPs, higher than the genome-wide average (proportion genome-wide genes with 

high-FST SNPs = 0.27) (Fig. 3.9A). Following 10,000-time statistical random 

sampling, 11 of the 41 DRPs pose a Pc value of less than 0.05. This includes 

DRPs responsible for the beta-agonist/blocker, antiarrhythmic, bisphosphonate, 

etoposide, and statin drugs. 
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Figure 3.9 Population differentiation in the DRPs. (A) The proportion of genes 
(blue line) carrying one or more highly differentiated SNPs (in top 5% of 
distribution) and their Pc values (black line) across the DRPs. (B) High 
magnitude of highly population-differentiated TF binding and splicing regulatory 
sites-affecting SNPs in DRPs. 

 

Furthermore at the SNP functional level, the magnitude of highly population-

differentiated potentially functional SNPs in the DRPs are more pronounced in TF 

binding site-affecting rSNPs and splicing regulatory site-affecting srSNPs (Figure 

3.9B) across the DRPs, including in those associated with beta-agonist/blocker, 
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antiarrhythmic and statin drugs. However, the gene functional region-directed 

random simulation showed that the pattern of population differentiation in many 

DRPs is less uniform (Fig. 3.10). This is despite the relatively more prominent 

population differentiation in the non-coding category (i.e. Intronic SNPs), but not 

in the coding SNP category. 
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Figure 3.10 High population differentiation can be more obviously seen in 
the non-protein coding regions such as the Intron and UTR categories. A heat 
map of DRP Pc values obtained from 10,000-time statistical sampling. Pc value 
approaching 0 indicates a significant and non-random proportion of genes 
carrying highly differentiated SNPs. In each DRP, the numbers in the blocks 
represent the enrichment rank associated with the specific SNP categories (ie. 
Syn, NonSyn, 3'UTR, 5'UTR, Intron, and Promoter). 

 

Furthermore, the question whether highly-differentiated regulatory variants in 

common drug-response genes could serve to co-regulate unrelated drug pathways 

was also assessed. Common genes that are shared in 32 (78%) of the DRPs are 

shown to carry extremely population-differentiated ‘splicing SNPs’, which 

suggest the potentially high influence of this functional SNP category in drug 

response (Appendix 5). On the other hand, 17 (41%) of the DRPs carry one or 

more high-FST TF binding site variants in their shared common genes. In contrast, 

only 3 (0.07%) DRPs share highly differentiated SNPs affecting protein 

deleterious substitution sites. Highly population-differentiated srSNPs in common 

metabolising enzyme, CYP3A5 (rs776746), as well as the transporter, ABCG2 

(rs2231164 and rs2725267), could co-regulate 20 different DRPs through their 

potential effect on RNA splicing (Fig. 3.7B). 
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3.3.5 Potential translational application and the antiarrhythmic drug as a 
case 

 

To investigate a possible clinical application of using SNPs architecture 

information, a pilot DRP priority scoring strategy (see methods) was designed. 

This score was used to estimate the probable occurrence of drug-response 

variation in a pathway using the features listed in Table 3.2. 

Figure 3.11 showed Py scores of all 41 DRPs in this study sorted from highest to 

lowest. A high Py score would signify a higher potential of having a drug-

response variation event. In addition, several studies that report on events relating 

to drug-response variation among different population groups were also mined 

(Appendix 6). These reports were used to corroborate the Py scores. The result 

demonstrated that as Py score increases, the number of pathway without a 

recognized report on therapy variation decreases (Fig. 3.11). DRP with relatively 

high Py scores would have had reports that indicate on experiencing a response 

difference, except for one DRP (the VEGF pathway) where literature evidence is 

yet to be found. 
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Figure 3.11 The potential implication of human genetic variation to 
differences in drug response. The graph is sorted from high-to-low potential of 
having a drug-response difference based on the DRP Py scores. (Inset) The 
number of pathways with literature evidence that corroborate for the presence of 
drug response variation across different population groups. Red (Y): evidence 
found or green (N): no evidence found. 

 

A highly potential candidate for clinical application would be in the 

antiarrhythmic pathway, where Py score is the highest (Py = 0.29), and where 

previous studies have reported on population differences in response [23-24]. 

Table 3.4 provides the list of antiarrhythmic pathway SNPs that might be useful 

for future pharmacogenetics-based testing. These are SNPs that are relevant for 
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clinical study not only because of their potential functional implication to altering 

gene expression and splicing regulatory sites, but also because of the extreme 

population differentiation signature within them. Four eQTL regulatory SNPs in 

three genes are also present within the antiarrhythmic pathway (Table 3.5). 

Interestingly, SNP rs8022091 in SLC8A3 is the only high-FST SNP that is 

associated to eQTL functional SNPs of the entire 715 drug response genes in this 

study. 
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Table 3.4 Highly population-differentiated potentially functional SNPs in the 
Antiarrhythmic pathway. 

Gene SNP FST Populations Functional Category 

ABCC8 

rs2077655 0.56

AF-EA/SA/EU 

Splicing 

rs2077654 0.51

rs12293228 0.34

ANK2 

rs2272229 0.41

rs17045935 0.41

rs2293324 0.37

rs9307389 0.33

rs3733615 0.32

ATP1A1 rs1407716 0.50 TF Site 

CACNA1D rs6766988 0.57 Splicing 

KCNJ5 rs10790976 0.31 AF-SA/EU TF Site 

KCNQ1 
rs10798 0.33

EA-EU/SA/AF miRNA Binding Site 
rs8234 0.32

LMNA 

rs505058 0.55
AF-EA/SA/EU 

Splicing 

rs547915 0.42

rs2485664 0.33
AF-EA/EU 

rs520973 0.31

SLC8A2 

rs830132 0.36

AF-EA/SA/EU 

rs830134 0.36
TF Site 

SLC8A3 rs8022091 0.31 AF-SA/EU 
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Table 3.5 Potentially functional SNPs in the Antiarrhythmic pathway that are associated with differential 
local gene-expression. 

Gene SNP 
Functional 
Category 

r2 p-value FDR Associated transcript Population

HCN2 
rs34830716 

TF Site 0.444393 1.06E-06 0.00094 NM_198591 (BSG) CEU 
rs35926953 

RYR2 rs2275288 ISRE 0.352726 3.38E-05 0.016806 NM_001035 (RYR2) YRI 

SLC8A3 rs8022091 TF Site 0.248623 5.84E-05 0.008819 NM_182936 (SLC8A3)
CHB & 

JPT 
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3.4 Discussion 

 

In this chapter, the global SNP architecture of pathway genes important in drug 

therapies was deeply analyzed. Using the gene functional region-directed 

approach, this study reveals the high polymorphic property of the DRPs. 

Furthermore, it suggests for the prominence of SNPs with potential implication to 

TF binding, RNA splicing and protein deleterious site. The high presence of 

regulatory and RNA SNPs was also highlighted, in addition to those of coding 

SNPs in the DRPs. 

Clinical variations in therapy are well attributed to differences in the patients’ 

genetic background [1-2]. Using population genotype data, it has been shown that 

the drug-response genes are more differentiated than other genes in the human 

genome [16]. However up to the point when this study was conducted, no report 

described the relevance of population differences to the global architecture of 

SNPs functionality in these genes. In this chapter, it is shown that when 

population differentiation is considered, the magnitude of functional cSNPs in the 

DRPs is lower. The low frequency diversification of functional cSNPs could 

suggest that population differences in drug response may less be affected by SNPs 

acting on a protein structural level. Instead, there is a higher plausibility that these 

population differences in drug response are more affected by SNPs acting on gene 

regulation, as shown by the high prevalence of extremely population-

differentiated rSNPs residing in TF binding sites as well as rsSNPs residing in 
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splicing regulatory regions. This result therefore implies the importance of these 

rSNPs and rsSNPs in drug response. 

Gamazon et al has previously shown that chemotherapeutic drug susceptibility-

associated SNPs are enriched in expression quantitative trait loci (eQTL) [25]. 

This is aligned with the results obtained in this chapter, as it was also observed 

that there are many more DRP genes that house rSNPs and srSNPs associated 

with changes in gene expression profile. In fact, the result presented in this 

chapter could further extend the knowledge that was reported by Gamazon et al, 

by providing a layer of SNPs potential functionality in mind. This implicates the 

rSNPs and srSNPs and their probable significance in regulating the expression of 

genes in the DRP. It is valuable for designing future studies because the insight 

provided here could put more weight on these rSNPs and srSNPs, highlighting 

their equally important role compared to the cSNPs. In fact, my argument is 

parallel to the discussion that was presented by Sadee et al [12]. 

Furthermore, a drug PK/PD process is not an isolated event [19-20], yet many 

pharmacogenetics studies focused only on certain candidate genes in studying the 

role of SNPs in inducing drug response variation. This traditional approach would 

isolate other genes or SNPs within the same pathway, which may be equally 

crucial as the candidate gene or the candidate SNP itself. Here using the DRP-

based approach, it can be shown that the pathways responsible for drug therapies 

are not only highly polymorphic in nature; but also have high magnitude of 

expression-associated or population-differentiated rSNPs and srSNPs. Many of 

these SNPs could have been missed out if one is to use the traditional candidate 
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gene- or SNP-based approach in pharmacogenetics. Hence in this chapter, it is 

shown that the PK/PD pathway-based approach in analyzing the genetic basis of 

drug response is arguably effective, allowing one to gain a deeper understanding 

of the genetic pattern in these drug-response genes. In another word, this gives 

ability to have a ‘helicopter view’ of the polymorphisms residing in these genes 

before we narrow down to study a particular SNP in detail. 

Moreover, with this pathway-based approach, a potential phenomenon in which 

several unrelated DRPs are possibly being regulated by a selected gene could also 

be observed. An rSNP in the ABCB1 transporter (rs3747802) and another one in 

the UGT1A1 metabolizer (rs10929302) are found to be involved in multiple 

DRPs. Respectively, these SNPs are potentially functional in the TF binding on 

the promoter region, in addition to being associated with differential gene 

expression. Furthermore, the rs10929302 or UGT1A1*93 (5’ UR -3136G>A) 

polymorphism has previously been shown to be associated with the different 

susceptibility of Irinotecan-induced toxicity [26-28]. Based on this result, it is 

suggested that this same rSNP could also functionally affect pathways associated 

with other drugs such as etoposide, statin and losartan.  

In addition, this phenomenon is also observed in rSNPs that are population-

differentiated. One high-FST rSNP in the CYP3A5 metaboliser (rs77646) and two 

high-FST rSNPs in the ABCG2 transporter (rs2231164 and rs2725267) have 

potential functional impact on RNA splicing. The SNP significance is supported 

by Zeng et al, who in 2011 reported a candidate gene-based study of 211 

pancreatic cancer patients (137 of whom have had chemotherapy), where the 
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rs2231164 (ABCG2 Intron 14 -46A>G) variant was found to have been associated 

with survival [29]. 

Moving forward, it can therefore be expected that when performing functional 

studies involving a SNP or gene that is commonly involved in multiple drug 

pathways, one could also expect to also see the SNP effect in several different 

drug pathways. The reason is because this SNP is involved in multiple DRPs. 

There is a potential application from this pathway-based potentially functional 

SNPs analysis. Hence, the last part of this chapter presented an attempt to 

prioritize drug pathways based on their potential therapeutic differences. A 

scoring method was developed, taking account of the DRP SNPs potential 

functional and population differentiation status. The different weight applied on 

the variables could assist prioritization using extremities (such as extremely high 

FST SNP in a gene) as an underlying factor. As Py score increases, there are more 

pathways that could be corroborated by reports that support on the presence of 

clinical difference in therapeutic response. In the case of the antiarrhythmic 

pathway, where Py score is the highest, a list of extremely population-

differentiated rSNPs and srSNPs was provided, in addition to those that are 

associated with differential gene expression. Therefore the clinical utility of these 

SNPs can be explored further. 

However, because both the HapMap and Singapore Genome Variation projects 

employed the tag-SNP approach to genotyping SNPs, limitations exist, 

particularly whether these 1.4 million SNPs could serve as the best representative 
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of other SNPs in the drug-response genes, or more, the human genome. In fact, no 

representative SNP method is ideal in pharmacogenomics except one method: by 

studying all SNPs in the human genome. This will be the focus of the next 

chapter. 
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Chapter 4. Population Differentiation Pattern in 
Individuals of the 1000 Genomes Project 

 

 

4.1 Introduction 

 

The previous chapter highlighted the result of studying population differentiation 

pattern of SNPs in conventional drug-response genes. However, there is a 

limitation that these HapMap tag-SNPs may not be the best representatives of all 

SNPs in our genome. Hence in this chapter, with available genome-wide data 

from the 1000 Genomes Project, which at that time had just released its Phase 1 

data, I expanded the analysis to a genome scale. This data would cover all SNPs 

that could be identified from genome sequencing results of thousands of 

individuals. In addition, the data would eventually cover novel genes that may be 

important in drug response, in addition to the ‘conventional’ drug-response genes 

and SNPs that were covered in the previous chapter. 

In this chapter, the main focus is to articulate the novel pattern of genetic 

differentiation in addition to elucidating their potential functional relevance in the 

genomes of individuals that participated in the 1000 Genomes project. During the 

initiation of this thesis, few had deeply investigated this potentially intriguing 

pattern of population differentiation in our genome as prior to the advancement of 

DNA sequencing technology, such data was sparse. The effort that is focused here 
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is based on a novel approach, which to the best of my knowledge, had not been 

adopted in previous studies. Here, using the 1000 Genomes project (Phase 1) data, 

a genome-wide scan of pattern of genetic differentiation is conducted in 14 global 

populations that originated from four different continents: Latin America, Europe, 

Africa, and East Asia.  

I present the identification of ‘top chromosome differentiated SNPs’ (tcdSNPs) 

and the genes that house these SNPs, the ‘tcdGenes’. Many of these SNPs are also 

predicted to have a functional significance. The identification of tcdSNPs had also 

allowed a significant expansion of work that was done in chapter 3 of this thesis, 

whereby using this data, we can now better elucidate the potential routes in which 

population genetic differentiation can contribute to population differences in drug 

response. 

Furthermore, it is intriguing to investigate the biological pathways that are 

affected by population-differentiated genes. Hence towards the last part of this 

chapter, tcdGenes enrichment in biological pathways was investigated. Because 

human phenotype differences are determined by the variation of pathways activity, 

this approach would be extremely relevant in determining the connection between 

differentiation in population genetic architecture with that of phenotype variation 

seen across different populations. By identifying pathways that are enriched by 

tcdGenes, we could point to a possible population differentiation determinant that 

would eventually play role in phenotype differences. 
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4.2 Methods 

4.2.1 Estimating Population Differentiation from 1000 Genomes Data 
 

In this chapter, genome-wide population differentiation was estimated from 

publicly available data that was released by the 1000 Genomes project (Phase 1) 

[1]. This encompasses allele frequency data from 1,092 individuals who are 

originated from 14 different populations, which was derived by the use of the 

VCF tool (version 0.1.9). Based on their geographic origins and genetic 

relatedness, these diverse populations could broadly be clustered based on four 

different continental origins: Africa, East Asia, Latin America, and Europe. 

The African cluster encompasses the ASW (African ancestries from Southwest 

United States), LWK (Luhya individuals in Kenya) and YRI (Yoruba individuals 

in Nigeria). The East Asian populations are CHB (Han Chinese in Beijing, China), 

CHS (Han individuals in Southern China) and JPT (Japanese individuals in Tokyo, 

Japan). Three populations belong to the Latin American group including the CLM 

(Columbian in Medellin, Columbia), MXL (Mexicans in Los Angeles, United 

States) and PUR (Puerto Rican in Puerto Rico). The IBS (Iberian in Spain) lies 

somewhere between the Latin American and European cluster. Lastly, the 

European groups consisted of individuals from the CEU (Northern and Western 

European ancestries in Utah, United States), FIN (Finish in Finland), GBR 

(British in England and Scotland, Great Britain), TSI (Toscani in Italy). 

The SNP allele frequency data was used for the estimation of population 

differentiation using FST statistics [2, 3]. The FST score calculation method 
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employed in this chapter is identical to the one utilized in the previous chapter, 

albeit performed in a significantly bigger data size. Here, FST scores were 

calculated based on population pair comparisons. This was performed using an ‘R’ 

script that was originally constructed for the course of this thesis. The ‘R’ script 

was deployed in the LCFG high performance work stations, in addition to the 

NUS high performance computing cluster across multiple processing nodes. 

4.2.2 Identifying maximum-differentiated SNP clusters in the human genome 
 

The greater SNPs coverage in the 1000 Genomes Project Data has opened the 

possibility of performing a genome-wide analysis of SNPs population-

differentiation, in investigating the population differentiation pattern of the human 

genome. By identifying SNP clusters that contain the ‘maximum-differentiated’ 

SNPs, we could identify chromosome regions that could have been subjected to 

population differentiation or selection process. Here, I have developed a novel 

approach in identifying tcdSNPs that are located within the SNP clusters that are 

assosciated with the maximum FST scores in a given population pair comparison 

across 23 human chromosomes. An algorithm that is based on a ‘roll mean’ 

method was developed to compute the moving average spanning a window size of 

15,000 SNPs, which corresponds to the size of the cluster (Fig. 4.1). A cluster 

carrying SNP associated with the maximum average FST score could be identified 

by reading maximum peak region. The algorithm then mined the top 5% of SNPs 

in this cluster, which carry the highest FST scores in the respective cluster. These 

SNPs are then classified as the 'top chromosome differentiated SNPs' (tcdSNPs). 
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The distribution of FST scores across the SNP gene functional region that is 

presented in this chapter was analysed based on two population pairs from 

different extremes: most similar (CEU-GBR) and least similar (CHS-YRI) 

populations.  
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Figure 4.1 Algorithm for finding maximum-differentiated SNP clusters 

 

4.2.3 Genome-wide SNPs mapping to functional gene regions 
 

SNPs that reside within functional gene region are labelled ‘genic’ SNPs whilst 

those outside of genes are labelled ‘intergenic'. SNPs classification was performed 

using the functional region-directed approach as explained in the previous chapter. 

However, unlike what was performed in the previous chapter, mapping the 1000 

Genomes SNPs to the functional gene regions is more challenging, which is 

attributed mostly to the big data size. In this chapter, NCBI dbSNP build 137 was 
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used as reference, a significant upgrade of SNPs collection to that of build 131. 

The ‘top chromosome differentiated genes’ (tcdGenes) are defined as genes that 

house one or more tcdSNPs. 

4.2.4 tcdGenes enrichment in biological pathways 
 

Population-differentiation in genes in biological pathways could potentially result 

in the variation of phenotypes seen in different population, including drug 

response variation. To investigate this potential impact of population genetic 

differences, several enrichment analyses using a diverse collection of biological 

pathways were performed. In this chapter, the curated pathways information was 

obtained from the Ingenuity Pathway Analysis (IPA), KEGG [4] and Gene 

Ontology (GO) [5] databases. With the exception of the IPA pathway analysis, all 

enrichment analyses were done in the ‘R’ environment by utilising the 

clusterProfiler package (version 1.10.0) [6]. The enrichKEGG function was 

selected for analysing population-differentiated genes enrichment in the KEGG 

pathways, whilst the enrichGO function was used for the analysis involving the 

GO database. For each pathway in the database, all functions will compute the 

enrichment of population-differentiated genes. The ‘enrich’ functions are 

modelled based on the hypergeometric distribution. Enrichment is defined when a 

pathway achieves P-value less than 0.00005, a very stringent cut-off that take 

account the Bonferroni multiple tests error correction. The QIAGEN’s Ingenuity® 

Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) 

was used to conduct the IPA analysis. 
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4.2.5 Population differentiation in pharmacogenomics pathways  
 

In this thesis, my work encompasses the integration of drug pathways or gene sets 

from multiple resources, which will be mainly utilized in the next chapter. Briefly 

for this chapter, the drug-response genes collection was significantly expanded as 

compared to the previous chapter. In addition to annotated genes information 

from the PharmGKB database [7], drug-response genes collection were also 

obtained from the DrugBank [8], ChEMBL (version 13) [9], and the Comparative 

Toxicogenomics Databases (CTD) [10]. Genes in these pharmacogenomics 

pathways were previously curated based on their association with a drug and/or 

other compounds. 

Furthermore, a subset of the tcdGenes are linked to these pharmacogenomic 

pathways. These tcdGenes were then used in pathway enrichment analysis. Each 

pathway is associated with drugs or compounds that were approved by the US 

food and Drug Authority (FDA) and the proportion of such genes in all the 

pharmacogenomics pathways was calculated. 

For each pathway, tcdGenes enrichment analysis was performed using random 

sampling statistical exercise. As performed in the previous chapter, this random 

sampling simulation involved a 10,000 time iterations of random samples from 

the genome, with the same number of genes as found in the pathway. These genes 

would also have to fall within the same size range as the pathway or drug gene set. 

Subsequently, the multiple sampling iterations allowed the formation of an 

approximately normal empirical distribution that is unique for each drug gene sets. 
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Using this distribution, a ‘Z-score’ was derived according to the following 

equation. 

Z	score ൌ
p‐eP
eSD

 

Where: 

p       = proportion of tcdGenes in drug-response gene set 

eP     = average proportion of tcdGenes in empirical distribution of the 

respective drug 

eSD  = standard deviation of empirical distribution of the respective drug 

A high Z-score, particularly one that is higher than 1.96, signifies a non-random 

observation of high proportion of tcdGenes in the drug-response gene set, whereas 

a small Z-score defines a non-significant presence of tcdGenes. 
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4.3 Results 

4.3.1 Population differentiation in different world regions 
 

In this chapter, the SNP data that were utilized mostly originated from the 1000 

Genomes Project. A total of 31,953,064 SNPs are annotated in the NCBI dbSNP 

database (build 137). FST calculations were successful for 22,866,661 SNPs, 

accounting for 71.56 percent of the total number of SNPs mined from the 1000 

Genomes Project. In 28.44 percent of the SNPs, the FST algorithm encountered 

computation error which could possibly be attributed to the presence of mono 

allelic SNPs or variant call error. In comparison to the HapMap SNPs that were 

utilised in chapter three, which publicised up to 1.4 million SNPs, the 1000 

Genomes Project data is 16 times more vast and covered significantly more part 

of the human chromosomes. 

To estimate pairwise differentiation across 14 populations, which equates to 91 

population pairwise combinations, the Weir FST statistics were calculated using 

SNPs allele frequency. The average FST between populations that are originated 

from a more similar geographic region tend to be lower than those that are 

separated by a further geographic distance (Fig. 4.2). For instance, in the 

European population groups, average FST lies between 0.001 and 0.0062. 

Moreover, not only that the CEU-GBR pair is the least differentiated among the 

European population, it is also the most similar population pair of all the other 

populations in the 1000 Genomes Project. On the other extreme, the highest 

differentiation is observed between the East Asian and African populations. The 
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CHS-YRI pair has an average FST of 0.037 and is the most differentiated 

population pair (Fig. 4.2A). Moreover, the results presented in this thesis suggest 

the closer genetic distance between the European populations and the Latino 

populations, but not the East Asian and African population (Fig. 4.2A and 4.2B). 
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Figure 4.2 Population differentiation pattern in 14 global populations that 
participated in the 1000 Genomes Project. (A) The average pairwise FST scores 
computed from SNPs in the top 5% of the population pair FST distribution. (B) 
Population differentiation as seen using a phylogenetic tree that was constructed 
using the average pairwise FST scores of the SNPs within the top 5% of the 
population pair FST distribution. 
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Furthermore, within similar geographic region, the African populations (ASW, 

LWK and YRI) are more diversified, suggesting the stronger presence of ‘local 

differentiation’ that leads to more diversification in Africans. On the other hand, 

there is less local differentiation within the East Asians, Latinos and Europeans 

populations (Fig. 4.2A and 4.2B). This shows high diversity within the African 

populations, in addition to the further genetic separation of this populations group 

compared to the Europeans, Latinos and East Asians. Furthermore, the East Asian 

group of populations, as shown by the shorter branch length, is less diversified 

than the other population groups (Fig. 4.2B). This result suggests the presence of 

lesser genetic diversity in the East Asian populations as compared to that of the 

Africans. In this study, the IBS population is considered as a ‘standalone’ 

population because it is not grouped to any one of the continental population 

cluster due to its relatively low similarity with the other populations. 

 

4.3.2 FST scores distribution in human genes 
 

The underlying hypothesis in this chapter is that outside of gene region, there is 

less potential functional impact that DNA sequence variation could potentially 

exert, hence intergenic SNPs are more susceptible to population differentiation. 

To address this hypothesis, this chapter compared the average population 

differentiation scores between genic and non-genic SNPs, in two most extreme 

population-pairs. The first one is in CHS-YRI, the two most genetically different 
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population (average FST = 0.037), whilst the other pair is the two most genetically 

similar populations CEU-GBR (average FST = 0.001) (Fig. 4.2A). 

In CHS-YRI, the average FST score of non-genic SNPs is significantly higher than 

those in the genic region (P-value < 2.2 x E-16) (Fig. 4.3A). Similarly, in the two 

most similar populations (CEU-GBR), non-genic SNPs also have a significantly 

higher average FST compared to genic SNPs (P-value < 2.2 x E-16). 

  



 

125 
 

 

Figure 4.3 Population differentiation across gene functional regions. (A) 
Significant difference in average FST scores between the genic and intergenic 
regions in both CHS-YRI and CEU-GBR population pairs (P-value < 2.2 x E-16). 
The FST scores distribution across different gene functional regions in these two 
population pairs are shown in (B).  

 

In gene regions, the SNPs are classified based on their location such as promoter, 

5’ UTR, 3’ UTR, intron as well as the coding non-synonymous and coding 

synonymous SNPs. In the CHS-YRI pair, the overall distribution of FST scores 

across these different categories seems to be no different (Fig. 4.3B). A t-test 

performed between the average FST scores of the SNPs in the 5’ UTR and 3’UTR 

yielded a P-value of 0.039 in the CHS-YRI population pair. In the CEU-GBR pair, 

where overall FST scores are much lower than the CHS-YRI pair, significant 

differences in the FST scores distribution is observed between SNPs in the 
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promoter versus 5’ UTR, promoter versus coding non-synonymous, in addition to 

the 5’ UTR versus intron comparison. 

 

4.3.3 Genomic signature of ‘maximum population differentiation’ 
 

Since the 1000 Genomes SNPs data is vastly distributed across the spectrum of 

the human genome, we could perform a genome-wide scan to find the SNPs that 

are associated with ‘maximum population differentiation’. These SNPs were 

identified using an algorithm that was constructed based on a roll-mean function. 

It first computed the moving average FST scores using 15,000 SNPs sliding 

window, which provided a significant noise reduction as compared to smaller 

window size. Subsequently, using these moving average values, group of SNPs 

with the highest moving average were identified. These groups of SNPs are 

referred as ‘chromosome maximum-differentiated SNPs cluster’. 
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Figure 4.4 The roll mean or moving average analysis of population-pair FST scores in chromosome 6. Each graph represents the 
population-pair differentiation pattern of SNPs in chromosome 6. The graphical summary was arranged in accordance to the FST tree 
branching (centre), which represents the average degree of differentiation between one population and another population. Here, the 
population pairwise comparisons were clustered into subgroups based on their general differentiation pattern in the whole genome. 
The y-axis is the moving average value that was calculated from a sliding window of 15,000 SNPs, whilst the x-axis is the index of 
SNPs from the 5’ to the 3’ end of the chromosome. 
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Within these maximum-differentiated SNPs cluster, the algorithm then fetched 

SNPs in the top 5% of the FST distribution of the respective cluster. These SNPs 

are referred as the ‘top chromosome differentiated SNPs’ (tcdSNPs). Figure 4.4 

displays the results of this analysis in chromosome 6, and figure 4.5 presents the 

result across eight representative population pairs. Four pairs represent the 

populations from close (CEU-GBR, CHB-CHS, ASW-LWK, and MXL-CLM) 

and distant (CHS-YRI, IBS-YRI, GBR-YRI, and YRI-JPT) geographical origins, 

respectively. In the former group, there is a consistent occurrence of maximum 

differentiation in the SNPs cluster that is located around the 30 millionth base 

region, which is approximately at locus 6p21 in chromosome 6 (shown as region 

between 400,000 and 600,000 SNP indices in Fig. 4.4 and 4.5).  

However, in the group of population pairs that are originated from  geographically 

distant location (with average FST of more than 0.03), this pattern is not observed. 

This is due to the presence of other high peak regions at these distant population 

pairs. Hence, this 'signal' is stronger in genetically more similar individuals but is 

masked by the presence of other genetic differentiation in more distant population 

groups.  

The result may suggest the potential significance of population genetic 

differentiation in genes located at the 6p21 locus. Morever, because the 

population differentiation pattern is only seen across populations that are 

genetically similar, but not in genetically more different individuals, the result 

could suggests for the presence of population-differentiated genes or chromosome 

region of functional significance that could be exerted in individual level.  
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Figure 4.5 The roll mean or moving average analysis for FST scores in 
chromosome 6 across representative population pairs. The y-axis is the 
moving average value that was calculated from a sliding window of 15,000 SNPs, 
whilst the x-axis is the index of SNPs from the 5’ to the 3’ end of the 
chromosome. 

 

4.3.4 Genes in the maximum-differentiated SNPs clusters 
 

The maximum-differentiated SNPs clusters that are unique to the different 

chromosomes and 91 population-pair combination consisted of 15,000 SNPs. 

Since these genic SNPs are mapped to NCBI genes, the genes that can be 

associated with SNPs in these maximum differentiation clusters could be 

extracted. Through this work, a total of 579,291 tcdSNPs are found to reside 

within the maximum-differentiated SNPs clusters. On average, a human 

chromosome contains 25,186.57 tcdSNPs that are located within maximum-

differentiated SNPs clusters. Chromosome X has the smallest number of tcdSNP 

(17,776 SNPs) whilst Chromosome 16 has the highest number of such SNPs 
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(30,057 SNPs) (Fig. 4.6A). These SNPs have the potential to affect phenotypic 

variation that we can observe in different human populations. 

Out of 579,291 tcdSNPs, 236,679 (41%) can be mapped to a total of 4,355 NCBI-

annotated genes, which are referred to as ‘top chromosome differentiated genes’ 

(tcdGenes). For chromosome 6, there are 181 annotated genes which carry 

tcdSNPs, 35 of them are differentiated between the CEU and GBR in 

chromosome 6 (Appendix 7). For this case, it is observed that there is a high 

number of tcdSNPs in HLA-C, a chromosome 6 gene that encode the MHC class 

I heavy chain receptor type of protein. Depending on its mRNA splice form, the 

HLA-C is potentially affected by ~60 tcdSNPs for the CEU-GBR population pair. 

And these SNPs are scattered on the 5’ upstream and 3’ downstream regions, in 

addition to that of the Exon, Intron and 3’ UTR regions. Another interesting 

observation in chromosome 6 is in the case of the TRIM genes family. Out of 8 

TRIM members in this chromosome, 6 genes carry tcdSNPs. These are TRIM 10, 

TRIM15, TRIM26, TRIM31, TRIM39, and TRIM 40, which could be potentially 

affected by these high FST SNPs. 

Chromosome 6 however, contains relatively lower proportion of tcdGenes. As 

shown in Figure 4.6B, it is the smaller chromosomes that have the highest density 

of such genes. For instance in chromosome 22, there are 257 out of 629 genes 

(41%) that are classified as tcdGenes (Fig. 4.6B). The larger chromosomes, such 

as chromosomes 1, 2 and 3, are less dense in tcdGenes with 261, 224 and 165 

tcdGenes, respectively (Fig. 4.6B). 
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To elucidate the genomic population differentiation pattern, the work in this 

chapter then focused on accessing its significance in three important gene 

functional regions: the regulatory Promoter and 3’ UTR, as well as the protein 

coding region. Subsequently, in investigating the potential functional significance 

of such SNPs, the next step was to filter the tcdSNPs that are predicted to be 

functionally important including in sites that are crucial for transcription factor-

binding, miRNA-binding and protein functional domain. By utilizing the 

potentially functional SNPs (pfSNP) database, it is identified that 48% or 5,394 

out of 11,245 tcdSNPs could potentially be functionally important in the coding 

region (Fig. 4.6C). In the promoter region, there is a higher absolute count of 

tcdSNPs that could be functionally important such as in affecting transcription 

factor binding sites, numbering 22,999 SNPs out of a total number of 78,104 

promoter tcdSNPs (29%). Moreover in the 3’UTR region, 28% or 4,745 out of 

16,956 of tcdSNPs are predicted to be functionally important.  
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Figure 4.6 SNPs in the maximum-differentiated SNPs clusters. (A) Total number of tcdSNPs residing in the 
maximum differentiated SNPs clusters in different chromosomes. (B) The proportion of tcdGenes carrying tcdSNPs is 
displayed by the line chart (primary y-axis). The bar-chart displays the total number of tcdGenes (secondary y-axis). 
(C) tcdSNPs that are potentially functional in the promoter, 3’ UTR and coding gene regions. (D) The proportion of 
tcdSNPs that is potentially functional across the top 10 population pairs. The top three population pairs involved the 
Japanese and African populations. 
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Furthermore, the subject was further examined in different population pairs. With 

16.5% of tcdSNPs that are predicted to be functional, the JPT-YRI is associated 

with the highest proportion of tcdSNPs that are potentially functional (Fig. 4.6D). 

Furthermore as shown in Figure 4.6D, the JPT-LWK and ASW-JPT, which are 

both Japanese-African pairs, respectively have 16.4 and 16.2% of the tcdSNPs 

that are predicted to be functional. The subsequent population pairs with relatively 

high percentage of potentially functional tcdSNPs are the CHB-YRI (16.3%) and 

CHS-LWK (16%), which belong to the Chinese-African pair combination (Fig. 

4.6D). 

In addition, based on the result of this analysis, in East Asians, there is a higher 

proportion of tcdSNPs that are predicted to affect the promoter region as 

compared to the other populations (Fig. 4.7). The top seven population pairs with 

relatively higher proportion of tcdSNPs that are potentially functional in the 

promoter are the combination between East Asians (CHB, CHS and JPT) versus 

any of the European (FIN and GBR), Latin American (PUR and CLM) or African 

(ASW) populations (Fig. 4.7). Furthermore in the 3’ UTR region, with the CLM-

YRI on top, the proportion of potentially functional tcdSNPs are more uniform in 

the top 20 population pairs. For the coding SNPs, the top two populations that 

carry a relatively higher percentage of potentially functional tcdSNPs are the 

combination of LWK and FIN with Mexican.  
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Figure 4.7 The top 20 population pairs based on the proportion of tcdSNPs 
that are potentially functional in the promoter, 3’ UTR and coding regions. 
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4.3.5 Does size matter? 
 

So far in this chapter, it is observed that there is a high proportion of tcdGenes in 

chromosomes that is releatively smaller in size. This prompted the question 

whether there is a correlation between chromosome size and the prevalence of 

population differentiation in the different chromosomes. 

To address this question, an estimate measurement of the prevalence of 

population differentiation was established. This was done using the 'Differentiated 

Population-Pairs Ratio' (DPPR).  DPPR was obtained by counting the total 

number of population-pair differentiation that is observed in a chromosome. The 

raw count was then normalised by the maximum number of differentiated 

population pairs that could have been possibly observed in that chromosome. 

Hence, chromosome with large DPPR is postulated to be more susceptible to 

population differentiation.  

As observed in Figure 4.8A, there is a tendency that the smaller chromsomes have 

relatively high DPPR score. In contrast, it is observed that the larger chromsomes, 

such as chromosomes 1, 2, 3, 4, and 5, have releatively smaller DPPR scores. 

Furthermore, in comparison to the other chromosomes, the smallest chromosome 

22 has the highest DPPR. This signifies higher prevalence of population-pairs that 

are affected by population differentiation in this chromosome. 
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Figure 4.8 Population differentiation and chromosome size - does size matter? Differentiated Population Pairs 
Ratio (DPPR) is the proportion of the count of observation of highly-differentiated population pairs in a chromosome, 
normalized by the total number of population-pair differentiation that could have been possibly observed. (A) Smaller 
chromosomes tend to have larger DPPR as compared to the larger chromosomes. (B) Plotting chromosome size against 
the DPPR produced a negative correlation fit. 
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In addition, to eventually look into the possible correlation between chromosome 

size and the DPPR, a x-y plot was constructed. A negative exponential correlation 

(R2 = 0.3934) is observed when plotting chromosome size against the DPPR (Fig. 

4.8B). Here, it is observed that chromosome 9, which is 141 million basepairs in 

size, has a DPPR of 0.0025409, the lowest of all chromosomes. In comparison, 

chromosome 22 is the chromosome with the highest DPPR (0.0256643), which 

signifies for the more prevalence of population pairs that are affected by the 

tcdGenes. Chromosome 22 is 51 million basepairs in size. 

Figure 4.9 presents the tcdGenes carrying SNPs that are extremely differentiated 

in 30 or more population pairs, which include the OCA2, GABRG3, HERC2, 

HLA-DBR1, and HLA-DBR6. The OCA2 and HERC2 genes especially, are 

known to have been associated with eye colour determination in human. 

4.3.6 Enrichment of tcdGenes in pathways 
  

One method for deducing the potential functional significance of population 

differentiation is to explore the biological pathways that are affected by the 

tcdGenes. In figure 4.10, the KEGG pathways that are enriched by these tcdGenes 

are presented. The analysis had taken into account the grouping of populations 

based on their continental origins. Since the IBS population does not belong to 

any particular continental cluster (Fig. 4.2B), this population is excluded in this 

analysis. In Figure 4.10, the African population group is noted to be associated 

with the highest number of pathways that are significantly enriched by the 

presence of tcdGenes that are extremely differentiated against the other 
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populations. These pathways range from one that is associated with 

Staphylococcus aureus infection to autoimmune thyroid disease pathway. One 

pathway with a significant percentage of tcdGenes only in the African population 

is the Leishmaniasis pathway. Enrichment of tcdGenes in the cell adhesion 

molecules (CAMs) pathway on the other hand, is only significant in the Latin 

Americans. In addition, the data also suggest for the significant enrichment of 

tcdGenes in olfactory transduction pathways in East Asians, Europeans and Latin 

Americans, but not in the African population. 



 

139 
 

 

Figure 4.9 Genes with the highest number of population differentiation occurrence. 
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Figure 4.10 Enrichment of tcdGenes in KEGG pathways. Each column 
represent the significant presence of tcdGenes that are extremely differentiated 
between one group of populations and the rest of the population groups. The 
population groups are AF (Africans - ASW, LWK and YRI); EA (East Asians - 
JPT, CHB, and CHS); EU (Europeans - CEU, GBR, TSI, and FIN); and LA 
(Latin Americans - MXL, CLM and PUR). The size of the circle corresponds to 
the proportion of tcdGenes in the pathway whereas the color signifies the 
enrichment P-value.  

  

Continental Population Group 
AF   EA  EU  LA
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In addition, Figure 4.11 shows the results of GO molecular functions enrichment 

analysis. Based on this observation, there are two molecular function groups 

which are differentiated only in one continental population group. In East Asians 

for instance, the nucleoside and antigen binding-related molecular function 

categories are significantly enriched by tcdGenes (shaded purple). For the Latin 

Americans group, such enrichment can be observed in the molecular functions 

categories that are relevant to carbohydrate binding; transferase activity; 

transferring acyl groups; serine-type endopeptidase activity; transferase activity; 

transferring acyl groups other than amino-acyl groups; protein C-terminus binding; 

and serine-type peptidase activity (shaded brown). Some if not all of the genes in 

these group of molecular functions were previously thought to have been more 

conserved, rather than extremely population-differentiated. Several additional GO 

annotations that are generally enriched by tcdGenes include the MHC class II 

receptor and the general umbrella of the molecular function GO annotation itself 

(shaded green).  

The next part of the enrichment analysis takes account canonical pathways 

collection that are available at the Ingenuity Pathway Analysis (IPA) platform. 

Here, the antigen presentation pathway, with more than 60 percent of it genes 

associated with tcdSNPs, is observed to have the lowest statistical P-value (Fig. 

4.12A). This is followed by the allograft rejection and OX40 signalling pathways. 

Another notable observation is that in this study, most (8 out of top 10) of the top 

pathways with significant enrichment of tcdGenes, are relevant to the immune 
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system. This suggests the importance of population differentiation in these 

‘immune genes’. 

To further assess the pathways enrichment, a deeper stratification based on the 

three SNPs functional gene region categories were conducted. These are SNPs 

that are predicted to be functional in the promoter, 3’ UTR and coding region, 

including their potential functional significance in the respective category. The 

result presented in this part of this chapter suggests a constant enrichment of the 

Antigen Presentation Pathway, OX40 Signalling Pathway and Allograft Rejection 

Signalling Pathway by tcdGenes carrying potentially functional tcdSNPs in the 

promoter (Fig. 4.12B), 3’ UTR (Fig. 4.12C) and coding regions (Fig. 4.12D). 

There is a consistent enrichment pattern, regardless of the SNPs functional 

categories, suggesting the potential importance of population differentiation in 

this group of pathways, which is typically relevant to the immune system and is 

predominated by the HLA genes family. 
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Figure 4.11 Enrichment of tcdGenes based on GO Molecular Function Annotation 
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Figure 4.12 Enrichment of tcdGenes in canonical pathways. The bars signify the enrichment P-value (primary y-
axis) and the line depicts the proportion of such genes in the pathway (secondary y-axis). The analysis was performed 
with pathways that are made available by the QIAGEN’s Ingenuity® Pathway Analysis using all genes carrying 
tcdSNPs (A), in addition to genes carrying tcdSNPs that are also predicted to be functional in the promoter (B), 3’ UTR 
(C) and coding (D) regions.  
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4.3.7 Pharmacogenomics utility 
 

The results obtained in this chapter provided a backbone data for the subsequent 

part of this thesis, in attempting to identify SNPs that are relevant for population 

differentiation of drug response. In this section of the chapter, I would like to 

present a pilot project that can bring us closer towards translational 

pharmacogenomics. 

Here, the focus was to investigate population differentiation of genes that are 

central in pharmacogenomics. In doing so, the first step was to explore whether 

there are any drug-response gene sets that are associated with high presence of 

tcdGenes. Therefore, the pilot work involved investigation of the tcdGenes 

enrichments in a wide array of drug-response gene sets. For each set, a statistical 

random sampling with 10 thousand times iteration was conducted. The 

background genes were obtained from the genome, which consisted of 22.5% 

tcdGenes. In Figure 4.13, drugs/compounds with z-score of more than 1.96, which 

are enriched by tcdgenes are displayed. A drug with high z-score is implied to 

have a non-random enrichment of tcdGenes. Top scoring dugs/compounds (z-

score > 3) include selenium, vitamin E, bortezomib, arsenic trioxide, vorinostat, 

cisplatin, decitabine, pentagastrin, and eight additional drugs. In these drugs, the 

proportion of tcdGenes range from 25 to 100 percent of the drug-response gene 

set. This is relatively higher than the percentage of tcdGenes in the genome 

background (22.5%), which is associated with a z-score of 0.016. 
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Figure 4.13 Enrichment of tcdGenes in drug pathways. 
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The top scoring compound, selenium, has a central role in a number of enzymatic 

reactions in which it acts as a cofactor. Among the sources of this essential 

micronutrient include yeast breads, meats, poultries, fishes, eggs, and milk [11]. 

In this study, out of 1,394 genes that can be associated with selenium, 414 are 

classified as tcdGenes. 

 

4.4 Discussion 

 

The presence of genetic polymorphisms is an important factor that determines 

variation in phenotype. Having a substantial knowledge of  the population 

differentiation pattern of the human genome is essential, before applying this 

genomic architecture for pharmacogenomics purposes. One of the main focuses of 

this chapter was to obtain genome-wide population differentiation data, which can 

be utilized for multiple purposes, including pharmacogenomics. Unlike other 

study predecessors, this thesis chapter did not focus on using the tag SNPs or 

candidate genes approaches in finding population genetic differentiation signature 

in human. Instead, the focus was to elucidate the differentiation pattern using 

most SNPs that have been identified in the human genome. This was achieved by 

computing the FST scores of almost 23 million SNPs in the human genome, based 

on allele frequency data that has been released by the 1000 Genomes Project. 

In addition, because the 1000 Genomes project employed a next-generation 

genome sequencing technology, it allowed the examination of most if not the 
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entire SNPs list from the thousands individuals who participated in this study. 

This is a significant improvement over the tagging SNPs approach as every SNP 

could now ‘democratically represent itself’, rather than be represented by a 

sample of tag SNPs. Hence, with the exception of mono-allelic SNP or those that 

are associated with variant call error, no SNP is left out in this study. This would 

then open up more possibility in finding SNPs that contribute to population 

differentiation. In general, these SNPs are scattered all around the genome, both 

within functional genes and non-genic regions. 

Moreover, in studying the population genetics factor behind drug response 

variation, having an in depth knowledge of the human genome background would 

ensure that no single gene is neglected. Traditionally, pharmacogenomics focuses 

in conventional genes list that are believed to have been associated with drug 

response. However, with the availability of the genome sequences of thousands of 

individuals, we are entering a new era in science and medicine, in which there is a 

potential translational utility of personal genomic information that may have 

arisen from non conventional drug-response genes, which are genes that have not 

been traditionally included in pharmacogenomics studies. In achieving this, the 

initial step was therefore to first elucidate the whole genome genomic pattern that 

contributes to population differences in phenotype. This chapter of my thesis 

examined human population differentiation in the genetic level, and it opened 

more paths for further examinations on the specific genes, pathways or networks 

that could potentially affect a whole range of phenotype differences, including 

drug response. 
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One important contribution of this chapter is in the discovery of novel knowledge 

surrounding population diversity. Here, it is observed that there is relatively less 

differentiation within the East Asian or European populations. In contrast, this 

‘local differentiation’ is greater among the Africans as compared to the other 

population groups. Furthermore, the approach that was adapted in this chapter is 

hypothesis free, which involved a non-guided process of scanning the entire 

genome for SNPs clusters that contain the maximum population-differentiation. A 

significant advantage of this approach is the non-biased identification of the 

chromosome regions that are extremely differentiated in the respective population. 

It also has the potential to decrease false negative rate, as tcdSNPs were identified 

in all chromosomes. In this chapter, the 30 millionth base region of chromosome 

6 or a region surrounding loci 6p21 is identified to be a hotspot of population 

differentiation, particularly between populations that are closely related. The 

presence of population-differentiated SNPs in closely related populations suggests 

that it potentially has more significance in determining differentiation in 

individual level, but not in the population level. In population pairs that are more 

genetically different, this extreme differentiation signature is probably masked by 

the presence of other high FST SNPs that would eventually be differentiated 

anyway, due to natural selection that takes place in parallel with geographic 

divergence during early human migration. Here, the most genetically similar 

population pair, the CEU-GBR, was used as a representative in studying the genes 

that are potentially affected by tcdSNPs in this 30 millionth base region of 

chromosome 6. In this study, 35 genes were identified, including the HLA-C and 



 

150 
 

TRIM gene families, which highlight the possible importance of these genes in 

determining inter-individual differences. 

Moreover, a comparison of the population differentiation pattern of SNPs 

between the genic and intergenic regions could support the existing knowledge in 

the field. It is observed that the intergenic region, which does not affect protein 

structure, is more inclined to carry greater magnitude of population genetic 

differentiation as compared to the gene region. This supports the result of the 

previous chapter (see 3.3.4) where a high population differentiation in regulatory 

regions was observed. Nonetheless, it is worth noting that the statistical 

significance could possibly been achieved as a result of the relatively large sample 

size that was involved in the statistical t-test calculation. 

It is noted that the results presented in this chapter suggest that there is a generally 

higher proportion of tcdSNPs that are potentially functional in the coding region 

despite the lower number of SNPs compared to that of the non-coding region. 

And because they can potentially affect protein function, through the variation in 

protein 3D structure, domain functional and post-translational modification, the 

finding could further suggests on the potential bridge between genetic 

differentiation and the variation that could be seen in phenotype. However, a 

general conclusion on this phenomenon is not advisable at this current stage 

because as shown by the subsequent result, the routes at which these genetic 

differences are translated to variation in gene functions can vary depending on the 

population. For example, East Asians have more potentially functional tcdSNPs in 

the promoter region, such as those residing on transcription factor binding sites. In 
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comparison, the Latin Americans, including the MXL and CLM, have higher 

proportion of potentially functional tcdSNPs in the coding region. 

There is also a possible link between population differentiation and chromosome 

size. Using the differentiated population-pairs ratio (DPPR), it is observed that the 

smaller chromosomes are subjected to more population differentiations. This 

could be related to the chromosome recombination rate, which could be 

dependent on chromosome size [12].  Nonetheless, at the current phase, deducing 

a biological scenario from this observation will be too premature as we need to 

further investigate on the potential causal-and-effect relationship between the 

population differentiation phenomenon and chromosome size. 

Enrichment of tcdGenes in pathways that contribute to human phenotype would 

open up the link between genetic differences and phenotype variation. The 

pathways for olfactory transduction and immune system-related functions, which 

are associated with inter-individual differences in smell and defence mechanism, 

respectively, are enriched by tcdGenes. The identification of olfactory 

transduction and immune system-related pathways is not unexpected because 

these pathways are already known to have great genetic variability [13-15]. And 

this finding could indeed act as a ‘positive control’ that the approach employed 

here is effective in finding tcdGenes. Intriguingly, during the course of work in 

this chapter, it is also observed that pathways that have been traditionally thought 

to be associated with conserved genes were indeed found to be enriched by 

tcdGenes. These enrichments are observed in the cellular mechanism- and 
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metabolic-related pathways including the Cell Adhesion Molecules (CAMs), 

Nucleoside Bindings and Transferase Activities.  

Alleles that pose greater reproductive and/or survival advantage in different 

geographical regions would overtime be positively or negatively selected. In this 

thesis, using population differentiation pattern, it is possible to elucidate more 

patterns that corroborate this assumption. SNPs in the maximum-differentiated 

clusters can potentially determine differences of phenotypes in different 

population. In this chapter, OCA2 is identified as the gene that has the greatest 

number of observation of population-pair differentiation. Its role in the production 

of skin colour determinant is well-studied [16]. Because skin colour is a 

phenotype that is highly differentiated between human populations, this finding 

serves as a concrete example on the effectiveness of the hypothesis-free approach 

in identifying tcdSNPs that are extremely differentiated between diverse 

populations. Furthermore, another gene that is identified to have a high number of 

population-pair differentiations is the HERC2. Similar to OCA2, this gene is 

involved in determining skin colour, in addition to hair and eye pigmentation, 

which are phenotypes that are associated with population or racial differences [17, 

18]. The effectiveness of this approach in identifying tcdSNPs is further 

strengthened by the identification of such SNPs in the HLA loci, which contain 

important immune system genes and is well known for its highly variable nature. 

As a matter of fact, most pathways that are enriched by tcdGenes, including those 

that contain functionally important tcdSNPs, are immune system-associated 

pathways. 
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It is important to note however that despite this intriguing observation of 

population differentiation in human genes, phenotype differences are attributed to 

multifactorial components. Besides inherent factor such as genetic 

polymorphisms, external factors such as socio-economic influence, culture and 

other environmental factors are known to affect human differences. Studying all 

these factors at the same time however, is challenging, hence it is best to answer 

this question a single factor at the time [19, 20]. Due to this reason and because it 

is a more constant variable, studying the genetic factors behind phenotype 

difference is therefore still the most viable option. Genetic polymorphisms are 

known to have been associated with differences in foetal development, immune 

system and environmental response [21]. It is therefore in the interest of my thesis 

to deeply investigate the novel pattern of population differentiation in the human 

genomes. 

Theoretically, the differences in SNPs allele frequency are caused by the variation 

selection pressures during human migrations. This phenomenon contributed to the 

allele frequency differentiation of human populations [21-23], which have been 

associated with the variation of phenotype in different individuals. Hence, 

everyone is different. We carry different traits that are manifested in differences 

of phenotype, including our physical shape, disease susceptibility and drug 

response. The differences that we see across individuals are in turn seen on a 

population level, where population differentiation in human phenotype is seen as 

a common phenomenon.  
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Based on the findings that are presented in this chapter, we could observe the 

complexity of population genetic variation in our genome. As also shown in the 

previous chapter, decoding the genome is not a one layer effort as it involves a 

multilayer work with imagination as the limit. Therefore currently, many of our 

efforts in understanding the pattern of population differentiation in the genome 

would raise more questions for future studies. The strategy is not to bring too 

much complexity as with current limitation, it is not possible to tackle all layers at 

the same time. In this chapter of my thesis, it is possible to discover a novel 

pattern of population genetic differentiation using a simplified strategy of 

scanning the genome for maximum population-differentiated SNPs cluster. This 

contributes one significant foundational layer to the field, which can serve as a 

module for another layer. I envision that in the not-so-distant future, genetic 

polymorphisms can be used as an individual’s molecular identity, which include 

early recognition of drug response profile of a person based on SNPs information. 

The pilot pharmacogenomics work was conducted to serve this purpose, where 

the data that is generated in this chapter was brought forward closer to 

translational impact. As drug therapy often yielded a highly varied clinical 

outcome, identifying drug-response gene sets or pathways that are enriched by 

tcdGenes could provide a new method of prioritizing drugs that have higher 

potential to be associated with response differences. It has been reported in many 

drugs that SNPs are a factor that contribute to the variation of drug metabolism, 

transport and efficacy [24]. 
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For the last part of this chapter, the pilot pharmacogenomics work had 

preliminary identified enrichment of tcdGenes in several widely-used drugs or 

compounds. This include selenium, vitamin E, bortezomib, cisplatin, and 

decitabine. Cisplatin has particularly been reported to be associated with inter-

individual or population differences in response [25-27]. This shall therefore 

bring a spotlight on the potential of this population genomics approach in finding 

the genes that would eventually contribute to exerting phenotype differences 

across populations. And it will be especially significant in pharmacogenomics 

where population differentiation is a major concern. In the next chpater, I will 

utulize the knowledge that has been generated in this chapter to elucidate the 

genomic basis of population differences in drug response.  
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Chapter 5. Elucidating the Genomic Basis of Drug 
Response Variation with Population-
differentiated SNPs 

 

5.1 Introduction 

 

As introduced in the initial part of this thesis, drug response variation is common. 

A drug that is effective in one population may not be equally beneficial when 

prescribed to a population with different background; or worse if it could pose 

adverse drug reaction (ADR). Moreoever as seen in previous chapters, population 

differentiation in the human genome could manifest as a factor that contribute to 

population differences in drug response. 

Using the 1000 Genomes Project data, the results of scanning for genomic 

population differentiation patterns were presented in Chapter 4. These patterns are 

derived from the identification of top chromosome differentiated SNPs (tcdSNPs) 

and the corresponding top chromosome differentiated genes (tcdGenes). These 

tcdSNPs when found in genes that are responsible for drug response, are potential 

factors that could affect drug response variation. Hence in this chapter, using the 

tcdGenes that was obtained from the previous chapter, the focus is narrowed 

down to the genes that have been reported to be associated with drug response. 

The work in this chapter aimed to unleash this potential benefit by utilizing these 

tcdGenes information and developing a prototype pharmacogenomics application. 
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In doing so, drugs that potentially have strong population differentiation profile 

will be identified using their respective gene sets. 

The work in this thesis chapter involves massive integration work of various data 

types. Among them are tcdSNPs and tcdgenes information, in addition to 

pharmacogenomics annotation that allow linking population differentiation 

information of SNPs and genes to various drugs/compounds. In general, the first 

type of information consisted of ‘big-data genomics’. This includes SNPs 

population differentiation scores, which is measured by the FST statistics [1] that 

was derived from individuals who participated in the 1000 Genomes Project. The 

second breadth of information contains drug/compound names that were mined 

from four major databases namely: the PharmGKB [2], DrugBank [3], ChEMBL 

[4], and Comparative Toxicogenomics Database (CTD) [5]. In addition to 

drug/compound names, this information includes annotation of drug 

classifications which was derived from the WHO Anatomical Therapeutic 

Classification (ATC) system. The drug-response gene sets were then created by 

inter-linking these datasets, which allowed the formation of an integrated resource 

called the ‘PharmaSNP’. 

This knowledge integration could serve as a connecting bridge between 

population genomics and pharmacogenomics, in delivering its potential 

translational application. With this approach, it is possible to identify the drugs 

that are linked to significant number of population-differentiated genes (tcdGenes) 

and elucidate the gene sets that could possibly affect drug response variation in 

different populations. The subsequent part of this chapter hence presented the 
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result of drugs clustering based on their population differentiation profile. This 

profile was derived from enrichment analysis of tcdGenes that are linked to these 

drugs. 

5.2 Methods 

 

5.2.1 The ‘next generation’ pharmacogenomics genes and the PharmaSNP 
resource 

 

In this chapter, in addition to using conventional drug-response genes that are 

annotated by the PharmGKB database, the gene-drug association information 

were also obtained from data mining of three other databases namely: DrugBank 

[3], Comparative Toxicogenomics Database (CTD) [5], and ChEMBL [4]. This 

has resulted in the production of ‘next generation’ pharmacogenomics genes that 

encompasses a much greater number of genomic genes and variants that could 

possibly play important role in pharmacogenomics. 

This next generation pharmacogenomics genes collection is stored in the SQL 

database engine and is publicly available in the PharmaSNP resource that was 

constructed in the course of producing this thesis. The PharmaSNP, a PHP-based 

web portal, contains information on genes that have been reported to be 

associated with drug activities such as its pharmacokinetic, pharmacodynamic, 

toxicity and other cellular effects. It is accessible at http://bit.ly/pharma-snp and 

will be elaborated further in the next chapter. 
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In addition, the drug data mining that was performed for the purpose of this 

chapter yielded an extensive list of drugs and compounds. Here, in order to be 

closer towards its translational application, it was decided to adopt an inclusion 

criteria. Only drugs or compounds that have been approved by the U.S. Food and 

Drug Administration (FDA) were included in the analysis. The list of approved 

drugs was obtained from the FDA Approved Drug Products with Therapeutic 

Equivalence Evaluations, which is also referred as the Orange Book [6]. For 

classification purposes, drug names were also associated with the various drug 

types in accordance to the WHO Anatomical Therapeutic Classification (ATC) 

system. These drugs are classified based on the relevant organ or system 

localization of the drug, in addition to other properties including chemical, 

pharmacological and therapeutic information. 

5.2.2 Population genetic differentiation in drug-response genes 
 

Population genetic differentiation was estimated using SNPs allele frequency data 

that have been presented in Chapter 4, which was obtained from the 1000 

Genomes Project (Phase 1) [7, 8]. In this study, the SNPs allele frequency is 

derived from 1,092 unrelated individuals who are originated from 14 global 

populations as described in the previous chapter. For each SNP, pairwise 

population differentiation scores were calculated by the use of FST statistics [1]. 

In this analysis, SNPs that are considered to be extremely population-

differentiated were identified. These SNPs, which are referred as top chromosome 

differentiated SNPs (tcdSNPs), were identified using an algorithm that detects 
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SNPs clusters carrying the highest moving average pairwise FST score across 

chromosomes as of conducted in the previous chapter. Moreover as explained in 

the previous chapter, top chromosome differentiated genes (tcdGenes) are defined 

as those that carry one or more tcdSNPs. Subsequently, a subset of these tcdGenes 

is found in the PharmaSNP database and these would be the drug-response genes 

that are defined as extremely population-differentiated. 

5.2.3 Random sampling enrichment analysis 
 

For all FDA-approved drugs/compounds that can be associated with one or more 

drug-response genes, the enrichment of tcdGenes was analyzed. The drug z-score 

was obtained by performing a 10,000 time random sampling iterations with 

genome genes that are within similar size range. Briefly, for each sampling set, 

the proportion of tcdGenes found in the random sample was recorded. The 

process was repeated 10,000 times, and based on these iterations, an empirical 

distribution specific to the drug in question was generated. The drug z-score was 

derived from the relative position of the observed tcdGenes proportion in this 

empirical distribution, which can be calculated with the following equation.  

Z	score ൌ
p‐eP
eSD

 

Where: 

p = proportion of extremely population-differentiated genes in drug-

response gene set 

eP = average proportion of tcdGenes in empirical distribution of the 
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respective drug  

eSD = standard deviation of empirical distribution of the respective drug 

A drug that is significantly enriched by tcdGenes typically has a z-score of more 

than 1.96 or within the 0.05 percentile of its empirical distribution. On the other 

hand, a drug that is absent by the presence of such genes will typically have low 

z-score. 

5.2.4 Drugs and population cluster analysis 
 

The population genetic data is potentially useful in pharmacogenomics, where a 

drug population differentiation in response could possibly be predicted using the 

enrichment z-scores obtained in the above random sampling exercise. 

Subsequently, a two dimensional matrix was produced using the z-scores of 

multiple drug-response gene sets in 91 population pairs. With this matrix, a 

heatmap that is ordered based on hierarchical clustering of both the drug z-scores 

and population pair differentiation was generated. This was done by utilizing the 

heatmap.2 function available in the gplots R package [9]. 

In order to optimize the method, the heatmap and cluster generation was 

performed in drugs that have no null z-score value. Furthermore, because these z-

scores are derived from a standardized empirical distribution that was generated 

from each set of random samples, no additional scaling was conducted for the 

heatmap generation.  
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The word cloud visualization was performed in wordle.net by utilizing the non-

duplicated names of the drug classes. 

5.3 Results 

5.3.1 Drug-response genes repertoire 
 

The drug and drug-response genes collection were obtained from mining four data 

sources namely Chembl 13, PharmGKB, Comparative Toxicogenomics Database 

(CTD), and DrugBank. Figure 5.1 shows the results of this data mining, in which 

we obtained 10,902 unique drug/compound names in total. In descending order 

the CTD, DrugBank, Chembl 13, and PharmGKB contained 5,900; 4,184; 2,863; 

and 194 drugs or compounds information, respectively (Fig. 5.1). With 997 drug 

names, the overlap is greater between the CTD and Chembl 13 than the rest of the 

databases. 
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Figure 5.1 Drug names obtained from mining four major databases: Chembl 13, 
PharmGKB, Comparative Toxicogenomics Database (CTD), and Drug Bank. 

 

Out of 10,902 drugs in total, 1,511 are approved by the US FDA. These ‘approved 

drugs’ were utilized for analysis of population differentiation pattern in this study. 

From this drug data mining, we were able to collect 16,357 genes that are 

somewhat associated with drugs or compounds available at the four data sources. 

Similarly, the majority of these genes (16,185) are available at the CTD.  

As shown in Figure 5.2, the top 10 compounds with the most number of gene sets 

are cyclosporine (4,188 genes), tretinoin (2,681 genes), estradiol (1,899 genes), 

calcitriol (1,755 genes), arsenic trioxide (1,733 genes), copper (1,427 genes), 

valproic acid (1,426 genes), selenium (1,394 genes), vitamin E (1,369), and 

fluorouracil (1,165 genes). 
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Figure 5.2 Drugs with the highest number of gene sets. 

 

5.3.2 Enrichment of tcdGenes in drug response gene sets 
 

Population differentiation in drug-response genes were estimated by using the FST 

scores of SNPs in these genes. Drug-response genes are considered to be 

extremely population-differentiated if they carry one or more tcdSNPs. These 
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genes are referred as ‘tcdGenes’. Out of 14,166 drug-response genes that were 

successfully mined from the four databases, 3,108 (21.9%) are considered to be 

extremely population-differentiated. Furthermore, with 91 populations that were 

involved in the 1000 Genomes project, it is possible to calculate differentiation 

across 91 pairs of population. Because population differentiation was calculated 

based on a population pair approach, it is possible to identify the genes that are 

extremely population-differentiated in a specific population pair. 

In order to access the significance of tcdGenes in the drug-response gene sets, a 

random sampling simulation was performed. In the previous chapter, the CHS-

YRI and CEU-GBR pairs were identified as the two most distant and most similar 

populations, respectively. Figure 5.3 presents the top 20 drugs-response gene sets 

that are enriched by tcdGenes that are extremely differentiated in the two extreme 

population pairs CHS-YRI and CEU-GBR. In the CHS-YRI pair, where 

population genetic differentiation is the greatest, sincalide, azithromycin, nalidixic 

acid, levofloxacin, and menthol are among the drugs or compounds that are 

enriched by population-differentiated genes. 10,000 times random sampling 

analysis in these five drugs yielded a z-score between 5.07 and 8.21 in menthol 

and sincalide, respectively.  

On the other hand, random sampling analysis with tcdGenes that are extremely 

differentiated in the CEU-GBR population pair yielded different conclusion. In 

this population, enrichment of extremely population-differentiated genes is 

highest in phytonadione, bacitracin, consyntropin, alprostadil, and ammonium 
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chloride (Fig. 5.3). The z-scores of these five drugs range from 4.24 in 

ammonium chloride to 8.3 in phytonadione. 
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Figure 5.3 The top 20 drugs that are enriched by extremely population-
differentiated genes in the two most distant and most similar populations of CHS-
YRI and CEU-GBR, respectively. The proportion of extremely population-
differentiated genes is presented by the shaded area that corresponds to the primary y-
axis. The enrichment z-score is presented by the dotted line that corresponds to the 
secondary y-axis. A z-score greater than 1.96 typically signifies an enrichment of 
extremely population-differentiated genes in the particular drug. 

 

5.3.3 Drugs clustering based on population differentiation profile 
 

In identifying the drugs or group of drugs with similar population differentiation 

profile, this part of my thesis presents a hierarchical cluster analysis. The first step 

involved grouping the populations into their continental groups. In this regard, the 
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ASW, LWK and YRI were grouped into Africans (AF), whilst the JPT, CHS and 

CHB were categorized as East Asians (EA); CEU, GBR, TSI, and FIN as 

Europeans (EU); in addition to the MXL, CLM and PUR which are grouped into 

Latin Americans (LA). The IBS population, due to its relatively low similarity to 

any of the continental group (as seen in section 4.3.1), was excluded in this 

analysis.  

Following categorization of these populations into four continental groups, a 

matrix was constructed, with the continental population pairs and drugs 

positioned as the matrix’s columns and rows, respectively. Figure 5.4 shows a 

heatmap that was generated by utilizing this matrix data as input. Drugs with null 

z-score value in one or more population pair, which could be due to insufficient 

population genetics data, would automatically be excluded from analysis. In this 

heatmap that consists of 141 drugs, both axes were arranged with hierarchical 

clustering method. 
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Figure 5.4 A clustered heat-map generated using the enrichment z-scores of 141 
drugs. Each row in the heat-map represents a drug population differentiation profile, with 
z-scores corresponding to a drug name. These z-scores represent the degree of 
enrichment of tcdGenes that are linked to these drug, in the respective population pairing 
(column).  
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From this result, it can be observed that within continental group comparisons, 

which are consisted of closely related population pairings, most if not all drugs 

are observed to have relatively low z-scores (green colour cells inside yellow 

colour box in the heatmap). With the exception of few compounds such as lithium, 

auranofin and corticotropin, most drugs are not found to be enriched by tcdGenes 

that are differentiated among the EU-EU, AF-AF, LA-LA, and EA-EA within 

continental population pair comparisons. On the other hand, comparisons between 

population pairs that originate from two different continents, such as the EA-EU, 

EA-LA, EU-LA, AF-EA, AF-LA, and AF-EU, showed a number of drugs that are 

significantly enriched by tcdGenes (outside of yellow colour box in heatmap). 

Notably, this enrichment is more frequent in the comparisons involving the 

African populations, such as in the AF-EA, AF-LA and AF-EU group 

comparisons. 

By taking the above observation into consideration, a second clustering step was 

performed. In this step, the hierarchical clustering took account only of the data 

involving different continental pairs, which resulted in the inclusion of 173 drugs. 

As observed in Figure 5.5, cluster analysis with six continental population groups 

(EA-EU, EU-LA, EA-LA, AF-EA, AF-LA, and AF-EU), yielded two distinct 

groups of drugs based on their population genetic differentiation profile. 
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Figure 5.5 A heat-map generated after a second step of cluster analysis. This 
clustered heat-map was generated by including only the z-scores representing enrichment 
of tcdGenes that are specific to different continental population pairs. 
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As shown in Figure 5.5 (inside red colour box), the first cluster consisted of 34 

drugs having a strong differentiation profile between the Africans and other 

continental groups, which are the AF-EA, AF-LA and AF-EU pairs (Fig. 5.6). 

Among the drugs that have extreme population differentiation profile between 

Africans and other continental populations are valdecoxib, atorvastatin, catechin, 

and docetaxel. Furthermore, it can also be observed that when comparing the 

African populations with East Asians, Europeans or Latin Americans, there are 

more drugs that are associated with tcdGenes enrichment between the African and 

European populations (Figure 5.6A, AF-EU column inside yellow box). Such 

population differentiation affect a number of frequently prescribed drugs such as 

imatinib, amiloride, morphine, fluvastatin, olanzapine, dexamethasone, as well as 

the four drugs mentioned above.  

Furthermore, using these 34 drug names, it is possible to observe the frequency of 

drug class that is linked to these drugs. Drug class information is in accordance to 

that of the WHO drug Anatomical Therapeutic Chemical (ATC) classification 

system. Here, the frequency of which a drug class appears in the data is presented 

using a "word cloud" visualization. In this diagram, the bigger the word size the 

more frequent the drug class appears in the data. As can be observed in Figure 

5.6B, in the first level of the ATC classification system, which categorizes drugs 

based on their anatomical main group, drugs that play role in the musculo-skeletal 

system are the most frequently observed in the cluster that shows population 

difference between Africans and other populations. In the therapeutic (Level 2) 

and chemical (Level 3) subgroup classification, the Antiinflammatory and 
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Antirheumatic Products drug category are more dominant than other drugs such 

as Antineoplastic Agents. 
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Figure 5.6 Drugs with a strong differentiation profile between the Africans and 
other continental groups. This cluster is consisted of 34 drugs that are differentiated 
between either the AF-EA, AF-LA or AF-EU continental population pair (A). The right 
panel (B) is a word cloud that is used to visualize the frequency of appearance of the drug 
classes that are associated with these 34 drugs. The word size is influenced by frequency 
of appearance of the drug class. 

 

As shown in Figure 5.5 (inside green colour box), in addition to the drug-response 

gene sets with tcdGene enrichment in Africans, it is also observed that there is a 

second cluster, which consisted of 28 drug-response gene sets that are enriched by 

tcdGenes differentiated between East Asians and Europeans (Figure 5.7A). This 

drug cluster includes several benzodiazepine derivatives (oxazepam, flurazepam, 

temazepam, lorazepam, triazolam, clonazepam, alprazolam, and midazolam) and 

other drugs such as simvastatin, pravastatin, capecitabine, ethanol, pentobarbital, 

carbamazepine, and corticotropin. In the WHO ATC level 1 anatomical main 

group classification, the majority of drugs in this cluster are categorized under 
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Nervous System category, which is then followed by the Antineoplastic and 

Immunomodulating agents. Figure 5.7B also shows that the Psycholeptics as well 

as the Hypnotics and Sedatives drug class are shown to be prominent in the level 

2 and level 3 classifications, respectively. 
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Figure 5.7 Drugs that are enriched by tcdGenes differentiated between East Asian 
and European. This cluster is consisted of 28 drugs (A), many of them are categorized 
under Nervous System drug category (B). 

 

Outside of these two clusters, there are 72 drugs with low population 

differentiation profile (Figure 5.5, inside blue colour box). As a matter of fact, the 

majority of drugs involved in this analysis belong to this group (Figure 5.8A). In 

this cluster, with an exception of low differentiation between Africans and East 

Asians, no significant population differentiation profile is observed in any of the 

other continental populations. This cluster is dominated by drugs acting under the 

Antineoplastic and Immunomodulating Agents in the level 1 WHO ATC 

anatomical main group classification. The presence of Antineoplastic Agents 

therapeutic class further dominates the level 2 and level 3 drug classifications, 

respectively. Among the chemical substances that occur more frequently in this 



 

179 
 

cluster are the Protein kinase inhibitors, Proton pump inhibitors and Other 

antineoplastic agents (Fig. 5.8B).  
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Figure 5.8 Drugs with relatively low enrichment of tcdGenes, which signifies weak 
population differentiation profile. 

 

5.3.4 Genes and SNPs linked to drugs with high population differentiation 
profile 

 

It is postulated that drugs with gene sets enriched by tcdGenes would be more 

likely to have population differences in response. Based on their enrichment z-

scores, the drugs with the strongest tcdGenes enrichment across the six different 

continental population pairs are shown in Table 5.1. In descending order from the 

highest to lowest z-score, the list includes: Penicillamine (z-score = 6.35 – AF-LA 
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/ LWK-CLM; z-score = 3.98 – EA-LA / CHS-MXL), Valdecoxib (z-score = 6.12 

– AF-EA / LWK-JPT), Secobarbital (z-score = 5.69 – EA-EU / JPT-FIN), 

Daunorubicin (z-score = 4.45 – AF-EU / YRI-FIN), and Docetaxel (z-score = 

4.18 – EA-LA / CHS-MXL). The distribution of FST scores in the tcdGenes of 

these drugs are presented in Figure 5.9. 
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Table 5.1 Drugs with the strongest tcdGenes enrichment across six continental 
population pairs. 

Drug 
Cluster 

Drug 
Name 

Z-score 
Population 

Pair 
Continental 

Population Pair 

AF-others Penicillamine 6.35 LWK-CLM AF-LA 

AF-others Valdecoxib 6.12 LWK-JPT AF-EA 

EA-EU Secobarbital 5.69 JPT-FIN EA-EU 

AF-others Daunorubicin 4.45 YRI-FIN AF-EU 

AF-others Docetaxel 4.18 CHS-MXL EA-LA 

AF-others Penicillamine 3.98 TSI-CLM EU-LA 

 

 

 

Figure 5.9 Distribution of FST scores associated with tcdSNPs residing in genes that 
are linked to drugs with the highest tcdGenes enrichment. 
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5.4 Discussion 

 

One primary aim of this work was to accumulate and integrate population 

genomic knowledge that can serve to elucidate the genetic basis of population 

differentiation in drug response. Gene sets containing genes that have previously 

been associated with drug response were collected. These genes are involved in 

pharmacokinetics (PK) and/or pharmacodynamics (PD) pathway. Furthermore, 

the work in this thesis chapter was primarily conducted in parallel to the 

construction of a pharmacogenomics resource containing drug population 

differentiation information. In developing this resource, a total of 10,942 

drug/compound data from four different databases were integrated. Out of this 

total number, 1,511 are approved for therapeutic usage by the FDA. This 

knowledge accumulation is essential in pharmacogenomics, whereby a drug 

potential population differentiation profile is constructed based on its drug-

response gene information. Hence, a comprehensive resource that contains 

information of most if not all known drug-genes relationship is useful, particularly 

for elucidating the drug population genetic profile. 

Traditionally pharmacogenomics studies have adopted a conservative approach. 

Most remain focused on studying specific candidate genes that not only have been 

commonly reported to play significant role in drug response, but also associated 

with variants or SNPs that have high population allele frequency differences [10-

14]. These conventional pharmacogenomics studies had put much emphasis on 

studying absorption, distribution, metabolism, excretion (ADME) genes, which 
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are important to a drug pharmacokinetics. In this thesis however, there is an 

attempt to expand the genes collection to include other possible drug-response 

genes, particularly in a drug pharmacodynamics pathway, where little if any 

information is usually available for most drugs.  

In this thesis chapter, with 4,188 genes in the database, cyclosporine is identified 

as drug with the greatest number of links to drug-response genes. This is then 

followed by tretinoin and estradiol, with 2,861 and 1,899 genes, respectively. The 

inclusion of data from the CTD, a non-conventional pharmacogenomics resource, 

expanded the collection of genes, with those that have been shown to be 

associated with toxic responses. Moreover, the massive compound information 

that is available in the CTD database would also expand the drug collection with 

compounds that are found in food supplements, which may interfere with a 

patient’s response to therapy. It is hoped that the inclusion of these CTD genes 

could increase the possibility in finding more novel pharmacogenomics genes that 

are not only linked to a drug or compound-induced toxicity, but also identified to 

be population-differentiated. Using this novel approach, a significant number of 

drug response genes were collected, many of them are linked to the CTD, a 

toxicogenomics resource [5].  

Several instances of non-drug/compound information that is not found in 

conventional pharmacogenomics resources are copper, selenium and arsenic. For 

example copper, which could be toxic due to its ability in generating reactive 

oxygen species [15], has 1,472 gene information links, the sixth highest of all 

compounds. 
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Subsequently, with this information available, drug-response genes that are 

population-differentiated could be identified. This was done by integrating the 

drug information database with those of tcdSNPs and tcdGenes data that were 

generated in chapter 4. In chapter 4, genes that carry top chromosome 

differentiated SNPs (tcdSNPs) are classified as tcdGenes. A drug 

pharmacogenomics profile, including information on enrichment of tcdGenes that 

could be linked to the drug was generated. Here, it is shown that there are 3,108 

out of 14,166 drug-linked genes that were identified to carry tcdSNPs. This is 

equivalent to 70% of 4,355 tcdGenes in the human genome. One possible reason 

for this high proportion is because of the environmental response role that is 

attributed to the biological function that is associated with these tcdGenes. 

Population differentiation, as estimated by the presence of high FST tcdSNP, could 

arguably be advantageous in genes that are “exposed to environmental” pressures. 

This contributed to our body’s defense mechanism against a wide range of 

xenobiotic substances. 

Furthermore, because different geographic regions would probably exert a 

different range of pressures, human migration and genetic drift may leave a 

distinct population differentiation ‘footprint’ in these tcdGenes. The analysis of 

the top 20 drugs that are enriched by tcdGenes in the two most distant (CHS-YRI) 

and most similar populations (CEU-GBR) shows a different profile. Between the 

CHS and YRI, the proportion of tcdGenes is highest in genes that are linked to 

sincalide, azithromycin and nalidixic acid. On the other hand in the CEU-GBR 

pair, such proportion is highest in genes that are linked to phytonadione, 



 

186 
 

bacitracin and cosyntropin. Due to this population genetic differentiation, the 

drugs that are significantly enriched by these tcdGenes across diverse population 

pairings are believed to carry greater potential in having response differences. 

Nonetheless, one challenge that was encountered in the analysis of 91 population 

pairs and 1,034 drugs/compounds was in finding a method that can delicately 

reveal a novel pattern of population differentiation based on genomic data. In this 

thesis chapter, I presented a two-step hierarchical cluster approach on how we 

could identify a potential drug response pattern using their population genetic 

differentiation profiles. The initial attempt at clustering consisted of 141 drug 

population differentiation profile. In this result, there exist significant presence of 

drugs that are linked to low population differentiation profiles, particularly 

between closely-related populations (populations originated from the same 

continental root). Moreover, because the cluster analysis and heat map generation 

were set to exempt null data, some drugs, more specifically those that have 

insufficient population genetics data for generating z-score using complete 

random sampling analysis in closely-related populations, were not included in this 

initial clustering. For this reason, it was decided to proceed with the second-step 

hierarchical clustering, in which z-score data from closely-related populations 

were excluded. The second tier clustering resulted in the hierarchical grouping of 

173 drugs, 34 of which have strong differentiation profile between Africans and 

other populations. Interestingly, there is a high presence of drugs acting in the 

musculoskeletal system in the cluster that shows population genetic 

differentiation between Africans and other populations. In addition, 28 other 
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drugs were also noted to be in a cluster that is identified to have population 

differences between East Asians and Europeans. Note that the clustering 

methodology itself is not new; however, the application of such approach in 

grouping drugs based on their population differentiation profile is potentially 

novel. Using such technique, we can now identify the drugs that can have 

potential response differences between two different populations.  

In the next step, using their z-scores, drugs with the strongest tcdGenes 

enrichment across six continental pairs were identified. Among these drugs, 

Penicillamine, Daunorubicin and Docetaxel are included in the WHO List of 

Essential Medicines [16]. Whilst both Daunorubicin and Docetaxel serve as 

anticancer agents that work by interfering with mitotic process and DNA 

replication, Penicillamine is a disease modifying anti-rheumatoid drug [17-19]. 

Here, it is identified that the gene set linked to Daunorubicin is enriched by 

tcdgenes that are differentiated between the YRI and FIN populations, which 

belong to the African and European group, respectively. In 2007, Huang et al 

reported that for Daunorubicin, there is significant difference (p-value < 0.05) in 

the effect of drug-induced toxicity between cell lines originated from African and 

European descent as measured by the drug’s  IC50 [20]. Both the African and 

European cell lines were from Yoruban and CEPH populations that participated in 

the HapMap project. These are indeed the same source of populations that were 

later be included in the 1000 Genomes Project, which were also used as the 

primary population genomic data source of this thesis. 
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Furthermore, based on the result presented in this chapter, Docetaxel is identified 

as the drug with the highest enrichment of tcdGenes that are differentiated 

between Southern Chinese (CHS) and Mexicans (MXL). Millward et al had 

previously reported a significant difference in the Docetaxel response rate 

between Asians and Caucasians [21]. Moreover, it was found that ethnicity could 

act as response predictor. In their analysis, it was observed that in contrast to 31% 

Caucasian patients who have had response to Docetaxel, there was significantly 

more Asian patients (65%) who responded to the anticancer drug (P = 0.01). 

When considering the relative genetic closeness between Caucasians and Latin 

Americans (as shown in Chapter 4), the finding that was reported by Millward et 

al is parallel to the z-score analysis involving Docetaxel. 

The results that are presented in this thesis chapter could potentially be applied in 

a drug development pipeline. As discussed in the earlier section of my thesis, 

because a drug that is effective in one individual may not equally be effective in a 

different person, tailoring drug prescription will have an increasing clinical and 

economical benefits in the future. This will be especially more significant in 

certain drug cases that are associated with the occurrence of adverse drug 

reactions (ADRs). It is the long term objective that can be achieved by expanding 

the approach that is developed in this study. Variation in the way patient’s 

response to drug, including ADRs susceptibility has been reported to be a 

significant contributing factor to the increasing cost of healthcare. It was reported 

that the cost of treating drug-related hospitalization in the US had reached $136 

billion [22-24]. 
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To the pharmaceutical industry, the occurrence of ADR in several patients or 

clinical trial volunteers could potentially be damaging to a drug portfolio, leading 

to a potential loss of revenue. For the individual patient, suffering an ADR is 

equivalent to adding an extra layer of burden rather than cure. By identifying the 

group of individuals who are more susceptible to an ADR or toxic reaction, using 

their population information as proxy, we could potentially prevent ADR before it 

happens.  

Furthermore, although drug response differences are attributed to various factors, 

genetic polymorphisms are by far still one of the most promising factor that can 

be used to group patient populations. One reason is because of its constant and 

heritable nature, where a person genetic profile is constant for his or her life span. 

Nonetheless, despite the potentially effective utilization of SNPs that are 

associated with drug response differences in developing a more personalized 

medicine, cost is still a hurdle. For instance, if it must tailor new drug 

development to all variant types in different individuals, drug companies would 

incur an even greater price-tag into its already burgeoning cost in developing a 

drug. This translates to higher cost of medicine.  

Nonetheless, the future of applying personalizing medicine still depends on the 

success of clinical or industrial prototyping of this approach, which harnesses an 

up-to-date knowledge of population genomic information. An attempt to address 

this challenge is presented in the next chapter, where I conclude this thesis with a 

presentation of the PharmaSNP resource. It is a prototype of one stop 
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pharmacogenomics portal that is aimed to utilize the results generated in this 

thesis and deliver its potential for clinical and/or industrial application. 
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Chapter 6. The PharmaSNP Resource of Integrative 
Pharmacogenomics 

 

6.1 Introduction 

 

In this thesis, one key focus is to accumulate new knowledge surrounding human 

population genomic differentiation, particularly those that are important in 

pharmacogenomics. It is also equally important to integrate this data with the 

existing breadh of knowledge, such as SNP, gene and drug information. However 

this alone, would not probably exert much translational significance, especially if 

the information is only stored for the benefits of a specific individual or group. 

Hence in this last chapter, I would like to present the final deliverable of this 

thesis, a pharmacogenomics online resource which publicizes the information that 

has been accumulated in this thesis.  

In delivering translational impact, the results that have been presented in the 

previous chapter are packaged and presented in this 'PharmaSNP' resource, an 

online portal that aims to provide population genetics information of various 

drugs and compounds. The resource, which is currently in its beta format, 

integrated drug, gene and SNPs data that are relevant to elucidating the genomic 

basis behind population differences in drug response. 
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6.2 Developing the PharmaSNP resource 

6.2.1 Data storage 
 

The PharmaSNP resource includes various data that are relevant for profiling 

population differentiation pattern of various drugs/compounds. These data can be 

generally classified or grouped based on the type of information that is stored. 

Similar types of information are stored in a network of tables that are interlinked 

using the relational database approach. For ‘big-data’ computation such as in the 

calculation of FST, the Microsoft SQL Server (Microsoft Corporation, Washington, 

USA) relational database was utilized, where a database connection to the ‘R’ 

statistical programming environment was done. On the other hand, MySQL 

(Oracle Corporation, California, USA) was used for the purpose of publishing the 

data in PharmaSNP website. Table 6.1 summarizes these various data based on 

their respective information class. 

  



 

196 
 

Table 6.1 Data that are integrated in the PharmaSNP resource. 

Information Class Detail Content 

Drug Population 
Differentiation 

Z-score signifying enrichment of tcdGenes in drug-
response gene set 

Drug Classification 
Drug classification based on WHO Anatomical 
Therapeutic Cemical (ATC) classfication system 

Drug-response Genes 
Drug-response genes data accumulated from 
PharmGKB, Chembl13, CTD, and Drug Bank 

tcdGenes 
Top chromosome differentiated genes (tcdGenes) 
information including gene name, NCBI geneID, 
chromosome, and population-differentiation status 

tcdSNPs 
Top chromosome differentiated SNPs (tcdSNPs) 
information including SNP rsID, mRNA-based location 
info, and population-pair FST score 

 

6.2.2 Web development 
 

The PharmaSNP website was developed based on a modular basis (Table 6.2). 

Whilst the first part consists of a data storage module as described in the above 

section, the second module involves a PHP-based query and data presentation 

applications, which connects and presents data on the worldwide web. Because 

PHP is a server-side scripting language, all queries that are performed in 

PharmaSNP are done within the NUS server. For the purpose of PharmaSNP, the 

Sriptcase (Netmake, Brazil) web development platform was used to develop the 

PHP applications. This includes the interactive database query functions, 

summary tables, graphical summaries and detailed information tables that are 

available in the PharmaSNP resource. 
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Table 6.2 Three major modules that form the PharmaSNP resource. 

Module Platform 

Data Storage Microsoft SQL Server, MySQL 
Server-side Scripting  
(Web database query) 

PHP 

Web Content Management 
System (CMS) 

Wordpress 

 

 

 

Figure 6.1 The PharmaSNP web resource allows users to query the 
PharmaSNP database from three initiation points. The website is accessible at 
http://bit.ly/pharma-snp 
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The last module was developed using Wordpress, a content management system 

(CMS) platform that is specially used to manage the PharmaSNP website content, 

allowing the creation of a user-friendly front end (www.wordpress.org). 

Wordpress is built based on MySQL and PHP, hence allowing straight-forward 

structural integration for deploying the PharmaSNP website. This last module, 

which is the most utilized CMS in the world, packages the PharmaSNP resource 

into a presentable website, allowing seamless navigation of the online resource. In 

addition, to serve mobile device users, this module can also adapt to various 

screen resolutions as it implements a responsive frame design. 

6.3 Utilizing PharmaSNP 

 

The prototype release of the PharmaSNP resource is currently accessible through 

the following link http://bit.ly/pharma-snp. When utilizing the beta version of 

PharmaSNP, one could initiate a database query from three different starting 

points (Fig. 6.1). The first one involved querying the PharmaSNP database with a 

drug name, whilst the second entry point would be useful for a database search 

using a gene name. The third initiation point allows PharmaSNP users to obtain 

detailed SNP information that is associated with SNPs linked to drug of interest. 

6.3.1 Search Drug in PharmaSNP Collection 
 

In the first initiation point, one could search the PharmaSNP database using a 

drug name and/or drug type (Fig. 6.2). In addition, information surrounding the 

population pair of interest could also be accounted in the database query by 
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highlighting the relevant population(s). Entering this information into the search 

form would allow one to obtain the population differentiation profile of a drug of 

interest based on the 1000 Genomes data. The following figures that are presented 

in this thesis were captured when a user initiated a database query using the drug 

name that contain the word ‘statin’. The same user was interested to explore the 

population differentiation profile of statin between the Luhya population in 

Webuye, Kenya (LWK) and Mexican Ancestry from Lost Angeles, USA (MEX).  
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Figure 6.2 Search drug from PharmaSNP collection. Users are able to search 
the drug collection that is available at the PharmaSNP database. 

 

Figure 6.3 Summary page that appear once a user submitted a drug search in 
the database. 
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Following a search initiation, the PharmaSNP interface would then bring the user 

to a summary page, where all drug names containing the word ‘statin’ are 

presented (Figure 6.3). In this example, PharmaSNP summarizes population 

genetics data from six statin drugs: atorvastatin, fluvastatin, lovastatin, pravastatin, 

rosuvastatin, and simvastatin. In each drug, a summary is presented for the 

average number of genes that are associated with the drug, the average proportion 

of extremely population-differentiated genes and the maximum z-score signifying 

enrichment of such genes. In addition, an interactive barchart that summarizes the 

information is provided at the bottom of the summary table. When clicked, the 

individual bar in the chart will direct the user to more detailed population 

differentiation information of the drug of interest. 

Figure 6.4 shows what happened after clicking ‘atorvastatin’ on the bar in the 

chart. Here, the users are taken into a more detailed table view of the population 

genetic differentiation profile of atorvastatin. In this case, PharmaSNP would 

present information that is relevant to atorvastatin including the total number of 

genes associated with atorvastatin and the proportion of extremely population-

differentiated genes, which is alongside the population names. For instance, the 

first row of this search results describes that atorvastatin, as an HMG CoA 

reductase inhibitor, is linked with 128 genes in the PharmaSNP database. Out of 

128 genes, 3% carry SNPs that are extremely differentiated between Luhya 

population (LWK, which belongs to the African continent group) and Mexican 

(MEX, which belongs to the Latin American continent group). Moreover, because 
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the z-score of 2.5993 is above the significant threshold of 1.96, these extremely 

population-differentiated genes are considered to be significantly enriched.  

Both the summary and detailed table results that are generated by the PharmaSNP 

database search could be exported in PDF, table, XML or other text file formats. 

The user is also able to customize the display of the search results, in accordance 

to a more specific requirement. This includes advance results sorting based on a 

chosen field, selecting the columns-to-display and performing a quick search from 

the result that has been generated. 
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Figure 6.4 Detailed table view of the drugs’ population genetic differentiation 
profile. 

 

Figure 6.5 The interface that allows one to search the PharmaSNP gene 
collection. 
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6.3.2 Search Gene in PharmaSNP Collection 
 

While the first initiation point allows the user to search using a drug name, the 

second initiation point, will receive a gene name or an NCBI gene ID as input to 

query the PharmaSNP database. The user could also opt to choose to present a 

result only if the gene(s) of interest is extremely population-differentiated (Fig. 

6.5). 

In this particular example, using the PharmaSNP gene query interface, the user 

has attempted to search for pharmacogenomics information that is relevant to any 

gene containing the keyword ‘CYP’ (Fig. 6.5). The user also chose the option to 

show only the genes that are population-differentiated. Figure 6.6 shows what the 

PharmaSNP resource would return when this search was submitted. The table 

summarizes all the CYP genes that are extremely differentiated, in addition to all 

the drug names that are linked to these tcdGenes. For instance in the first row, the 

gene CYP2D6, with an NCBI gene ID of 1565 is extremely differentiated 

between CHB (Han Chinese in Beijing, China) and the CLM (Columbian in 

Medellin, Columbia). Moreover this gene, is linked to the drug bromfenac, which 

is an anti-inflammatory agents, non steroids type; as well as to buspirone, an 

Azaspirodecanedione derivatives (row 2); estrone, a natural and semisynthetic 

estrogen (row 4); and more. 
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Figure 6.6 The search result following submission of the keyword ‘CYP’. 

 

Figure 6.7 To search for the SNPs that are linked to a drug of interest, a user 
may enter the drug name. 
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6.3.3 Obtaining Pharmacogenomics SNP Details 
 

The third interface of the PharmaSNP resource integrates the drugs, genes and 

SNPs data in the database, which allow users to obtain a comprehensive list of 

genes and detailed SNPs information that could be linked to a drug of interest. In 

this illustration, the same user attempted to search pharmacogenomics information 

that are relevant to the keyword of interest, ‘statin’, which is an HMG CoA 

reductase inhibitors (Fig. 6.7). Note that due to the massive data integration that is 

involved, the interface currently serves as a beta version, in which only a subset of 

the results is shown by the query engine. 

When the user entered statin as the keyword, PharmaSNP beta would present a 

sample result that encompasses the drug named lovastatin. The positive sign next 

to the drug name would allow the user to expand the results in which a sample 

population genetics pair differentiation analysis between Luhyans (LWK) and 

Mexican (MEX) is displayed (Fig. 6.8). In this example, the proportion of 

extremely population-differentiated genes between these two populations is 0.06, 

with a significant enrichment z-score of 5.1832. The user could then further 

expand the table to display the extremely population-differentiated genes that are 

involved in this particular drug, in addition to the population pair information. 

Lastly, clicking the expansion side in the gene would then bring the user to a table 

that displays detailed information of SNPs that reside in the gene of interest (Fig. 

6.9).



 

207 
 

 

When the same user expanded the information on the PPARG genes, the SNPs 

within the gene are displayed in addition to their positions in accordance to the 

RNA splicing variants. In the first row instance, a PPARG SNP with reference 

SNP identifier (rs#) of rs709154, is seen to have an FST score of 0.3065 based on 

its allele frequency differentiation between the JPT (Japanese) and YRI (Yoruban) 

populations. Within the PPARG splice variant identified as NM_005037.5, the 

same SNP could be localized in the Intron 5 region, 1,369 away from the 3’ 

intron-exon junction. SNP rs709154 is associated with an A to T nucleotide 

substitution and due to its location, is not considered as a promoter SNP. Using 

this information, a position-centric nomenclature of rs709154 could then be 

derived, which is I-1369A/T. 
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Figure 6.8 The summary page presenting the search results. The user could 
expand the results to display the extremely population-differentiated genes that 
are involved in the drug of interest. 

 

Figure 6.9 To view the SNPs in the gene of interest, another expansion step 
could be performed.  
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Significance and Future Direction 
 

Genetic Diversity, a Great Strength 

Genetic diversity is a great strength. Once deciphered, the information stored in 

our genetic sequence could serve as predictor of population differences in 

phenotype. As illustrated in this thesis, genetic diversity in the form of SNPs in 

drug-response genes, could explain and have the potential to predict response 

profile. By identifying the PharmaSNPs that are linked to a set of drug-response 

genes, a drug population differentiation profile could be constructed (Chapter 6).  

The Impact 

For the pharmaceutical industry, ADR occurrence can potentially damage a drug 

portfolio, leading to a potential loss of revenue. For the patient, an ADR 

occurrence can add extra layer of burden rather than cure. The results presented in 

this thesis can hopefully attack these problems from a population genomic 

perspective. By utilizing the PharmaSNP resource, a drug population genetic 

differentiation profile can be obtained. This allows the early implementation of 

ADR prevention strategy, by identifying the group of drugs or individuals that are 

more susceptible to drug toxicity. The aim is to improve treatment quality and 

concurrently reduce the cost of medicine. 

Moreover, in a drug development pipeline, this novel approach may prove useful 

in identifying the population that could potentially be more susceptible to ADR. I 

propose two future approaches that can potentially be employed before 
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conducting a new drug trial. The first relies on structural similarity with an 

existing drug, whilst the second takes into account any existing or new drug-

response genes information that could be linked to the drug in trial. 

In the first approach, a new drug can be linked with a set of drug-response genes 

of an existing drug that is structurally similar. One would be able to obtain the 

population genetic differentiation profile of a new drug using information from its 

existing counterpart. The population genomic differentiation data in PharmaSNP, 

in addition to the drug-response genes information can be used to obtain a drug 

population genetic differentiation profile. The second approach will 

hypothetically yield a more accurate prediction as drug-response genes 

information is derived from in vitro experiment involving the new drug. For 

instance, functional toxicogenomic studies are to be initially conducted, which 

may yield new genes information. The PharmaSNP resource could then provide 

the SNPs that can be linked to these genes. Using this information, drug 

population genetic differentiation profile can then be obtained. 

Therefore, the information that is derived from PharmaSNP could arguably be 

used before considering to test a drug in one or more populations of interest. It 

may also reduce the potential occurrence of ADR during trial, by identifying the 

population group that is potentially more susceptible to ADR. This may also 

increase the probability of success in developing potentially block buster drugs. 

These two proposed approaches can hopefully contribute to improving the drug 

development pipeline, which can reduce the cost that is associated with multi-
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populations drug trial. The next step following the completion of this thesis is to 

continue developing the PharmaSNP prototype, in addition to optimizing new 

algorithm that can better provide a drug population differentiation profile using 

this population genomics information. 

Nonetheless, whilst it is tempting to conduct a census-scale DNA sequencing in 

profiling all individuals in a country, ethical and economic reasons will still 

provide a continuous hindrance. It is for this reason that in this field, there is a 

greater focus on the study of individual representatives that are originated from 

different population backgrounds [1-3]. The availability of population genetic 

data could eventually serve as a proxy to the individuals that belong to that 

population. And this can be used to infer the inter-individual differences that are 

seen across diverse human populations, an approach that was adopted by the 

HapMap [1], Environment Genome Project [3], and more recently, the 1000 

Genomes Project [2]. One primary assumption is that within the same population, 

individuals are likely to carry more similar gene variants compared to those who 

are originated from a different population.  

This study is also associated with limitations, such as in the potential inheritance 

of error from various external data sources. Addressing these concerns would 

require involvement of more data speacialists who would be able to thoroughly 

assess each data before their interrogation in the Pharma-SNPs database. 
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The Art in Medicine 

I would like to end this thesis with a little bit of history. The word ‘medicine’ is 

derived from ‘medicus’, a latin word that means ‘physicians’ [4]. For centuries, 

the field has touched upon one of the most basic human necessities: to have a 

good health, hence good life. The word ‘Ars medicina’ was then used, which 

means the ‘art of healing’. And more recently, parallel to the accumulation of new 

facts and technology in diagnosing and treating patients, our perception of the 

word ‘medicine’ has been influenced by one important component: science. In 

fact, the current English Oxford Dictionaries recorded medicine as “the science or 

practice of the diagnosis, treatment, and prevention of disease” [5]. I find it 

interesting that the word ‘art’ is not included anymore in today’s decscription. It 

signifies a significant degree of evolution in the field to a more knowledge-based 

method of treating diseases. 

The art component however, shall not be entirely diminished. I believe that as 

medicine progresses, our ability to understand and apply human art can help to 

effectively apply and deliver new scientific discoveries. Therefore, medicine did 

and plausibly still does require a great deal of ‘art’ in its application. In fact, it is 

still arguably a combination between science and art [6]. Indeed, this is what 

provides gravity to my thesis. Here, I presented the scientific accumulation and 

integration of novel knowledge that in the long run, can hopefully be utilized in 

developing new utility for improving therapy. 

As we move forward, pharmacogenomics will and can propel new medical 

innovations; especially in the development of personalized medicine. All in all, 
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the intent is to benefit the consumers, be it the scientists who are investigating, the 

doctors who are applying this knowledge, or the patients who are receiving the 

products. In the last chapter of my thesis, I attempted to package the study results 

into a prototype online resource. It is an art in progress. I believe that the results 

generated from the work presented in this thesis can humbly expand the medicine 

arena to a wide range of new possibilities.   
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Appendices 
 

Appendix 1. SNP centric summary of results from association studies assessing the link between ABCB1 

coding region SNPs and drug pharmacokinetics or response 

No. 
SNP           

(Amino Acid 
Substitution) 

Drug 
Class/Indication 

Drug(s) 
Association

[Ref] Population 
(cohort size)* 

[Ref] Minor Allele Association Notes^^ 

1 
E3/61A>G 
(N21D) 

Immunosuppressants 

Yes [1] In vitro - cell lines. [1] Modulate CsA intracellular accumulation effect. 

No [2] White (73). [2] No influence on CsA pharmacokinetics. 

Opiate analgesic Yes 
[3] NS - Switzerland 
(276). 

[3] Influence methadone plasma level. 

Others/Mixed 
Substrates 

Yes [1] In vitro- cell lines. 
[1] Increase of BODIPYL-FL-paclitaxel intracellular 
accumulation 

No [4] In vitro - cell lines.  
[4] N21D, F103L, S400N, A893S, and A998T on the 
PK of a range of cytotoxic derivatives.  

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs (AED), Antibiotics, Antidepressants, Anti Cancer Agents, 
Cardiac Glycoside, Antiretroviral Therapy (HIV), Statins. 

2 
E5/266C>T 

(M89T) 
Anti Cancer Agents Yes [5] In Vitro - cell lines. 

[5] Increased resistance to daunorubicin, 
doxorubicin, valinomycin, or actinomycin D. 
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No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Cardiac Glycoside, 

Antiretroviral Therapy (HIV), Immunosuppressants, Opiate analgesic, Statins. 

3 
#ns7 

E8/554G>T 
(G185V) 

Anti Cancer Agents Yes 
[6] In vitro - multidrug-
resistant cell lines.  

[6] G185V confer changes in vinblastine and 
colchicine specificity 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Cardiac Glycoside, 
Antiretroviral Therapy (HIV), Immunosuppressants, Opiate analgesic, Statins. 

4 
E12/1199G>A 

(S400N) 

Anti Cancer Agents 
Yes 

[7] In vitro, cell lines; 
[8] NS - Sweden (51); 
[9] Taiwanese (59) 
[10] In vitro - cell lines; 
[11] NS - USA (85); 
[12] In vitro cell lines; 
[7] NS - USA. 

[7] 1199G>T, reduced resistance, variety of drugs; 
[8] 1199G>T/A = paclitaxel response; [9] 2677GG 
and 3435CC = docetaxel side effects, no effect from 
-41A>G, -145C>G, 1236C>T; [10] 1199A = 
increased resistance; [11] IVS9 -44A>G = SN-38 PK 
^^ [12] 2005C>T = lower resistance to paclitaxel and 
etoposide;  [7] T allele is associated with reduced 
resistance to vinblastine, vincristine, paclitaxel, and 
doxorubicin in Leukemia patients. Patients carrying 
the A allele exhibited increased resistance. 

No [13] In vitro, cell lines. [13] Does not affect resistance to doxorubicin 

Antiretroviral Therapy 
(HIV) 

Yes [14] In vitro - cell lines. 
[14] Increased cellular uptake and permeability of 
HIV protease inhibitors 

Immunosuppressants Yes 
[15] Finnish 
Caucasian (103), East 
African (1). 

[15] 1199G>T, 1236C>T, 2677G>T/A, 3435C>T 
haplotypes = CsA PK 

Others/Mixed 
Substrates 

No [4] In vitro - cell lines.  
[4] N21D, F103L, S400N, A893S, and A998T on the 
PK of a range of cytotoxic derivatives.  

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Cardiac Glycoside, Opiate 
analgesic, Statins. 
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5 
#s6        

E13/1236C>T 
(G412G) 

Antibiotics Yes [16] Chinese (18). 
[16] 1236CC = lower cloxacillin Cmax, higher oral 
clearnace, lower urinary excretion. 

Anti Cancer Agents Yes 

[17] African American 
and Caucasian (NA); 
[18] Caucasian (63), 
Asian (2); [19] NS - 
Germany (112). 

[17] MTX toxicity; [18] Irinotecan dose;  [19] 1236CC 
= temozolamide response -assesed with other 
SNPs. 

Immunosuppressants Yes 
[20] Han Chinese 
(103). 

[20] Dose adjusted conc. following renal transplant. 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antidepressants, Cardiac Glycoside, Antiretroviral 
Therapy (HIV), Opiate analgesic, Statins. 

6 
E17/1985T>C 

(L662R) 

Anti Cancer Agents Yes [5] In vitro - cell lines. 
[5] Increased resistance to daunorubicin, 
doxorubicin, valinomycin, or actinomycin D. 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Cardiac Glycoside, 
Antiretroviral Therapy (HIV), Immunosuppressants, Opiate analgesic, Statins. 

7 
E17/2005C>T 

(R669C) 

Anti Cancer Agents Yes 
[5] In vitro - cell lines; 
[12] In Vitro - cell lines. 

[5] Increased resistance to daunorubicin, 
doxorubicin, valinomycin, or actinomycin D; [12] 
Decreased paclitaxel and etoposide resistance. 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Cardiac Glycoside, 
Antiretroviral Therapy (HIV), Immunosuppressants, Opiate analgesic, Statins. 

8 
#ns22 

E22/2677G>T/
A (S893A/T) 

Antidepressants Yes 
[21] NS - Croatia 
(240). 

[21] Olanzapine efficacy. 

Anti Cancer Agents Yes 
[22] In vitro cell lines; 
[23] NS - Australia 
(309). 

[22] Increased vincristine transport with Ser893 and 
Thr893; [23] Taxane response. 
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No 
[24] Central European 
Caucasian (213). 

[24] MTX efficacy. 

Cardiac Glycoside Yes [25] Caucasian (77). 
[25] 2677T/A = digoxin stimulated saliva/serum ratio 
- assessed with other SNPs. 

Immunosuppressants Yes 

[26] NS - Japan (17); 
[27] NS - India (155); 
[28] Han Chinese 
(115). 

[26] TRL induced neurotoxicity; [27] CsA dosage; 
[28] 2677T/A = TRL induced neurotoxicity;  

Statins Yes [29] Caucasian (1507). 
[29] 2677T/A = Pravastatin Efficacy - assessed 
other SNPs 

Others/Mixed 
Substrates 

Yes 

[30] NS - Germany 
(55); [31] Caucasian 
(37), African American 
(23). 

[30] TT/TA = elevated serum concentration-time 
curve values of talinolol; [31] Efflux of digoxin, 
Fexofenadine levels.  

No report for the 
following drug 
classes/indications 

  Antiepileptic Drugs, Antibiotics, Antiretroviral Therapy (HIV), Opiate analgesic.

9 
E26/3151C>G 

(P1051A) 

Others/Mixed 
Substrates 

Yes [5] In vitro - cell lines. 
[5] Influence resistance to valinomycin when in 
diplotype with E22/2677G>T/A (S893A/T). 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Anti Cancer Agents, Cardiac 
Glycoside, Antiretroviral Therapy (HIV), Immunosuppressants, Opiate 
analgesic, Statins 

10 
E27/3322T>C 

(W1108R) 

Anti Cancer Agents No [5] In vitro - cell lines. 
[5] Decrease resistance to daunorubicin, 
doxorubicin, valinomycin, or actinomycin D. 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Cardiac Glycoside, 
Antiretroviral Therapy (HIV), Immunosuppressants, Opiate analgesic, Statins 

11 
E27/3421T>A 

(S1141T) 
Anti Cancer Agents Yes [5] In vitro - cell lines. 

[5] Increased resistance to daunorubicin, 
doxorubicin, valinomycin, or actinomycin D. 
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Immunosuppressants Yes [1] In vitro - cell lines. 
[1] Reduced sensitivity to CsA inhibition of 
BODIPYL-FL-paclitaxel transport. 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Cardiac Glycoside, 
Antiretroviral Therapy (HIV), Opiate analgesic, Statins 

12 
#s20    

E27/3435C>T 
(I1145I) 

Antiepileptic Drugs 

Yes 
[32] NS - Turkey (96); 
[33] NS - France 
(2208). 

[32] Pharmacokinetics of phenytoin; [33] TT = side 
effect from clopidogrel (cardiovascular event at 
1yr).^^ 

No 

[34] NS - Turkey (189); 
[35] Meta analysis 
(3371); [36] NS- 
Turkey (104). 

[34] Drug resistance; [35] Drug efficacy; [36] PK of 
valporic acid. 

Antibiotics No 

[37] Mixed - 
Caucasian (12), Asian 
(5), African American 
(1), NS (1); [38] 
Korean (210). 

[37] Dicloxacillin pharmacokinetics. [38] 
Pantoprazole, amoxycillin and clarithromycin 
efficacy. 

Antidepressants Yes 
[39] "Predominantly 
Caucasian" (160); [40] 
NS - Sweden (116). 

[39] 3435TT risk factor for nortriptyline-induced 
postural hypotension; [40] Olanzapine efficacy. 

Anti Cancer Agents 

Yes 

[41] Caucasian (191), 
Asian (5) African (2) 
Hindustani (3), 
Surinamese (3) and 
Israeli (1); [42] 
Caucasian (73); [43] 
NS - France (23); [44] 
NS - USA (324) [45] 
Northern Irish (184); 
[46] Caucasian (334). 

[41] T allele assoc with adverse side effect after 6 
months. No assoc with drug efficiacy. ^^ [42] TT = 
risk of side effects encephalopathy; [43] Irinotecan 
PK; [44]  TT = adverse side effect; [45] CT = higher 
survival on vincristine, doxorubicin and 
dexamethasone; [46] lower response to epirubicin 
and doxorubicin. 

No 

[47] Chinese (28), 
Malay (3), Indian (1); 
[48] Japanese (145), 
Japanese (197), NS - 

[47] Docetaxel PK; [48] PK or adverse effects of a 
range of drugs. [49] Imatinib response.^^ 
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USA (184); [49] NS - 
Korea (229). 

Cardiac Glycoside 

Yes 

[50] Caucasian (21); 
[51] German (461); 
[52] Japanese (15) 
[53] Japanese (11); 
[54] NS - France (12); 
[55] NS - France (32). 

[50] digoxin plasma levels; [51] TT = increased 
intestinal uptake; [52] lower serum concentration; 
[53] suppression of duodenal absorption of drug; 
[54] TT = higher AUC @ 4 and 24hrs. [55] 3435T = 
volume of distribution, Higher conc. for T variants - 
assessed with other SNPs. 

No 

[56] NS - France (12); 
[57] Meta analysis 
(183); [58] Caucasian 
(77). 

[56, 57] Drug PK; [58] Serum conc.  

Antiretroviral Therapy 
(HIV) 

Yes 

[59] Caucasian (123); 
[60] NS - USA (71); 
[61] NS - Spain (74); 
[62] NS - France (32); 
[63] African (22), 
Caucasian (46) Other 
(8); [64] African (156). 

[59] nelfinavir/efavirenz efficacy and plasma drug 
concentrations; [60] higher nelfinavir plasma levels; 
[61] Plasma levels of atazanavir and risk of 
hyperbilirubinemia; [62] absorption constant of 
indinavir; [63] Drug dependent changes in mean 
HDL-c levels; [64] T allele = protective effect from 
nevirapine induced hepatotoxicity. 

No [65] NS - Finland (17). [65] Saquinavir PK. 

Immunosuppressants Yes 

[66] Black (22), White 
(120), Middle Eastern 
(12), South Asian (26); 
[67] NS - USA (10); 
[68] NS - France (44); 
[69] NS - China (50); 
[70] NS - Iran (88); 
[71] Caucasian (75); 
[72] NS - Turkey (92); 
[73] Chinese (66); [74] 
NS - Italy (50); [75] 
Chinese (66), Malay 
(13), Indian (3); [76] 

[66] CC genotype = minor effect on blood conc. of 
TRL; [67 higher CsA oral clearance; [68] CsA C:D 
ratio and dose requirement; [69] TRL dose 
requirement and dose-adjusted trough levels; [70] 
CsA PK and dose requirements; [71] CsA conc; [72] 
CC = lower dose-adjusted trough TRL conc; [73] 
TRL dosage requirements; [74] TT genotype = CsA 
induced gingival overgrowth; [75] CC genotype = 
higher TRL efflux/lower C:D ratio - due to higher 
protein expression^^; [76] TT = higher TRL C:D ratio 
@ 1-3days. 
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Caucasian (42). 

No 

[77] Caucasian (142); 
[78] NS  - USA (14); 
[79] NS - Japan (69); 
[80] Meta-analysis 
(1036); [81] Chinese - 
(155); [82] NS - Spain 
(53). 

[77] CsA efficacy; [78] CsA PK; [79] TRL C:D 
ratio^^; [80] CsA PK; [81] sirolimus PK; [82] TRL 
dosage requirements. 

Opiate analgesic Yes 
[83] Caucasian - Italy 
(145). 

[83] Morphine efficacy.^^ 

Statins Yes 
[84] NS - Netherlands 
(1255). 

[84] 3435T interacts with CYP3A4*1B and 
subsequently simvastatin and atorvastatin PK - 
assessed with other SNPs. ^^ 

Others/Mixed 
Substrates 

Yes 

[85] NS - Croatia (60); 
[86] Caucasian (80); 
[87] Caucasian (31); 
[88] In Vitro - cell lines. 

[85] Phenobarbital conc. in cerebrospinal fluid; [86] 
CC genotype = cannabis dependence; [87] 
Rhodamine 123 efflux; [88] Altered substrate 
specificity (range of compounds). 

No 

[89] Caucasian (16); 
[90] NS - Turkey (58); 
[91] Japanese (12); 
[92] Japanese (80); 
[93] Caucasian (20). 

[89] loperamide disposition or CNS effects; [90] 
Losartan disposition^^; [91] Telmisartan PK^^; [92] 
Phenolic MPA glucuronide PK; [93] fexofenadine 
PK. 
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13 
E29/3751G>A 

(V1251I) 

Immunosuppressants Yes [1] In vitro - cell lines. 
[1] Modulate CsA effect on the intercellular 
accumulation of BODIPY-FL-paclitaxel transport. 

No report for the 
following drug 
classes/indications 

  
Antiepileptic Drugs, Antibiotics, Antidepressants, Anti Cancer Agents, Cardiac 
Glycoside, Antiretroviral Therapy (HIV), Opiate analgesic, Statins 

14 

Haplotype 
consisting of 
two or all of 

SNPs: 
E13/1236C>T, 
E22/2677G>T/

A and 
E27/3435C>T 

Antiepileptic Drugs 

Yes 
[94] In vitro - Cell 
Lines; [95] Caucasian 
(289). 

[94] PK of various AEDs; [95] 3435TT and 2677TT = 
reduced drug resistance. 

No 

[49] Korean (193); [96] 
North Indian (325); 
[97] Caucasian (463); 
[98] Indian (369). 

[49, 96-98] Drug efficacy/response.^^ 

Antibiotics Yes [99] Han Chinese (20). 
[99] 2677TT and 3435TT = lower azithromycin 
plasma conc, higher Tmax, lower AUC. 

Antidepressants 
Yes 

[100] NS - Germany 
(15); [101] Japanese 
(68); [102] NS - Italy 
(60). 

[100] 2677G>T influences citalopram plasma and 
CSF conc, 3435C>T does not; [101] Paroxetine 
efficacy; [102] 3435CC = higher clozapine dose 
required to equal plasma conc. 

No 
[103] NS - Croatia 
(127). 

[103] Paroxetine efficacy. 

Anti Cancer Agents Yes 

[104] Japanese (145); 
[105] NS - USA (73); 
[106] NS - Singapore 
(62); [1] In vitro - cell 
lines; [107] Han 
Chinese (69); [108] 
Korean (118); [109] 
Han Chinese (54); 
[110] NS - Germany 
(1047), Spain (49); 
[111] NS - Korea 

[104] TTT = reduced clearance of irinotecan; [105] 
docataxel side effects; [106] doxorubicin PK; [1] 
paclitaxel transport; [107] Vinorelbine outcome; 
[108] 2677 genotype = 
hematological/gastrointestinal toxicities; [109] 
docetaxel-cisplatin efficacy; [110] lower 
mitoxantrone efflux.^^ [111] 3435CT = shorter OS, 
2677GG = paclitaxel/doxorubicin resistance; [112] 
Adverse side effects, 3435CT and TT genotypes = 
mucositis, 2677T/A = diarrhea; [113] Imatinib 
efficacy. 
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(121); [112] Korean 
(161); [113] NS - 
France (90). 

No 
[114] NS - France 
(42). 

[114] Erlotinib PK.^^ 

Cardiac Glycoside Yes 

[115] Caucasian (687); 
[116] NS - Japan (15); 
[117] Caucasian (25), 
African (6), Asian (1); 
[117] NS - 
Netherlands (195); 
[119] Han Chinese 
(20). 

[115] 3435TT = higher Cmax and AUC, 
2677T/3435T = higher AUC, 2677G/3435C = lower 
AUC; [116] 2677GG/3435CC = bioavailability; [117] 
3435T and 2677T = higher conc. [118] TTT 
genotype = higher serum conc in the elderly; [119] 
PK differs between TTT-TTT and TGC-CGC 
carriers.  

Antiretroviral Therapy 
(HIV) 

Yes 

[120] Caucasian (118); 
[121] African American 
(13), Hispanic (4), 
Asian (1), Caucasian 
(13). 

[120] 3435CT/2677TT = lower atazanavir levels; 
[121] CGC predicts slower oral clearance of 
atazanavir an ritonavir. 

No 

[122] NS - USA (103), 
[123] NS - Belgium 
(53); [124] NS - Spain 
(115). 

[122] atazanavir or lopinavir trough concentrations; 
[123] Lopinavir PK^^; [124] Tenofovir induced 
kidney tubular dysfunction^^. 
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Immunosuppressants 

Yes 

[125] Chinese (106), 
Malay (92) and Indian 
(91); [126] Caucasian 
(73), African (7), 
Indian (1); [127] NS - 
USA. (65); [54] 
Caucasian (91); [128] 
NS - Canada (69); 
[129] NS - China 
(129); [130] NS - 
Netherlands (104); 
[131] Caucasian - 
Czech Republic (832); 
[132] Chinese (112); 
[133] Caucasian (38), 
Asian (10) and 3 Black 
Caribbean; [134] NS - 
Portugal (30). 

[125] TTT = CsA PK - higher AUC and Cmax; [126] 
2677T allele = TRL PK and dose requirements, 
2677T/3434T = dose requirements; [127] 
2677T/3434T = TRL blood conc. @ 6 and 12 
months; [54]. TRL dosage requirements; [128] 
2677GG/3435CC = CsA exposure @ 1 wk only; 
[129] CsA blood conc. [130] CsA oral bioavailibilty in 
children; [131] TRL/Cyclosporin efficacy - risk of 
acute rejection^^; [132] CGC, TGT and TTC 
genotypes assoc with CsA conc; [133] TTT = TRL 
induced nephrotoxicity, higher dose adjusted pre-
dose conc.; [134] higher TRL conc. with 1236T and 
2677T/A alleles. 

No 

[135] Caucasian (82), 
African (2), South 
Asian (1); [136] 
Korean (29); [137] 
Caucasian (95); [138] 
NS - China (104); 
[139] NS - Norway 
(25); [140] NS - 
Switzerland (19);[141] 
NS - France (136); 
[142] NS - Belgium 
(29); [143] Japanese 
(63); [144] Korean 
(568); [145] Caucasian 
(32); [146] Caucasian 
(50); [147] Caucasian 
(192). 

[135] Sirolimus and TRL PK and dose 
requirements^^; [136] TRL PK; 24. TRL PK; [137] 
TRL PK; [138] TRL PK^^; [139] CsA PK; [140] CsA 
PK in PBMCs; [141] TRL efficacy^^; [142] 
TRL/Fluconazole PK; [143] TRL PK^^; [144] TRL 
PK^^; [145] TRL dosage requirements^^; [146] TRL 
PK^^; [147] TRL and CsA PK, efficacy or 
nephrotoxicity. 
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Opiate analgesic Yes 

[148] (138) Sephardic 
(Western Europe, 
Balkans and Morocco) 
(39%), Ashkenazi 
(Central and Eastern 
Europe) (22%), 
Oriental (Iraq, Iran, 
Yemen and Syria) 
(16%), mixed (13%) 
and unknown (10%); 
[149] Japanese (32). 

[148] Methadone dose requirement; [149] 2677G 
and 3435C = reduced chance of vomiting. 

Statins 

Yes 
[150] Finnish (534); 
[151] Caucasian (85); 
5. Korean (28). 

[150] Simvastatin and Atorvastatin PK; [151] TTT 
and CGT = Simvastatin Efficacy; 5. 2677TT/3435TT 
= atorvastatin lactone, 2-hydroxyatorvastatin and 2-
hydroxyatorvastatin lactone PK. 

No [152] Caucasian (20). 
[152] Fluvastatin, pravastatin, lovastatin, and 
rosuvastatin PK. 

Others/Mixed 
Substrates 

Yes 

[153] Caucasians (46); 
[154] Han Chinese 
(24); [155] In vitro - 
cell lines; [156] Korean 
(33). 

[153] TTT haplotype = lower plasma concentration 
of the active metabolite of risperidone, 9-
hydroxyrisperidone; [154] TT/TT and GT/CT = lower 
AUC, TT/TT = higher oral clearnce of Verapamil; 
[155] 2677G>T assoc. with Ibutilide resistance. 
3435T associated with disrupted protein trafficking - 
reversed with fexofenadine; [156] 2677AA/3435CC 
= lower plasma conc. of fexofenadine. 

No 

[157] Korean (104); 
[158] Korean (30); 
[159] Han Chinese 
(24); [160] Korean 
(10); [161] Japanese 
(95); [162] Japanese 
(65); [163] In vitro - 
cell lines.  

[157] Cilostazol PK^^; [158] Rebamipide PK; [159] 
Valacyclovir absorption; [160] verapamil PK; [161] 
Prednisolone efficacy; [162] Prednisolone PK; [163] 
verapamil, digoxin, vinblastine and cyclosporin A 
PK. 
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Studies are grouped according to the substrates investigated. *The racial background of the cohort population is indicated. In the event that the 
study did not specify the racial background, an NS (Not Specified) is stated along with the country in which the study was conducted. ^^ 
Indicates that SNPs or SNP haplotypes located in other genes, including CYP3A4, CYP3A5 or other ABC proteins were associated with drug 
pharmacokinetics/response to an equal or greater extent than those of ABCB1. 

Notes on drug classes: 

Antiepileptic Drugs (AED)  
Includes phenytoin, carbamazepine, lamotrigine, phenobarbital, valproic acid, levetiracetam, 
and gabapentin. 

Antibiotics  Includes dicloxacillin, amoxicillin, clarithromycin and azithromycin 

Antidepressants  Includes citalopram, clozapine, paroxetine, venlafaxine, mirtazapine. 

Anti Cancer Agents                                              
(antimetabolite, general cytotoxics, tyrosine 
kinase inhibitors)   

Includes methotrexate (MTX), docetaxel, irinotecan, doxorubicin, daunorubicin, vincristine, 
dexamethasone, epirubicin, imatinib, temozolamide, paclitaxel, cisplatin, mitoxantrone, and 
erlotinib. 

Cardiac Glycoside Includes digoxin 

Antiretroviral Therapy (HIV) 
Includes nelfinavir, efavirenz, atazanavir, indinavir, nevirapine, saquinavir, ritonavir, lopinavir, 
and tenofovir. 

Immunosuppressants Includes tacrolimus (TRL), cyclosporin A (CsA), and sirolimus.  

Opiate analgesic  Includes Methadone and Morphine. 

Statins 
Includes simvastatin, atorvastatin, pravastatin, fluvastatin, pravastatin, lovastatin, and 
rosuvastatin. 

Others/Mixed Substrates  
Includes telmisartan, phenobarbital, cannabis, rhodamine 123, loperamide, losartan, 
telmisatan, phenolic MPA glucuronide, talinolol, digoxin, fexofenadine, verapamil, and 
ibutilide. 
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Appendix 2. Drug pathways curated by the PharmGKB database 

ID 
Drug-response 

Pathway 
Total 
Genes 

PharmGKB Pathway 
No. 

Genes 
Associated Tissue(s) of 

Expression 
Associated Drug(s) 

1 ACE inhibitor  19 ACE inhibitor pathway 19 Non-tissue specific Ace Inhibitors, Plain 

2 Anti diabetic 33 

Anti diabetic drug pathway (Nateglinide PK) 3 Liver Nateglinide 

Anti diabetic drug pathway (Potassium 
channel inhibitors PD) 

29 Pancreatic β cells 

Chlorpropamide, 
gliclazide, glimepiride, 
glipizide, nateglinide, 

repaglinide, tolbutamide 
Anti diabetic drug pathway (Repaglinide PK) 3 Liver Repaglinide 

3 Anti estrogen  19 

Anti estrogen pathway (Aromatase inhibitor) 5 
Adrenals, ovary, peripheral 
tissues, liver & circulation, 

breast  

Anti estrogen drugs 
inhibiting aromatase-
mediated synthesis 

Anti estrogen pathway (Estrogen 
metabolism) 

11 Liver and peripheral tissues Anti estrogen 

Anti estrogen pathway (Summary) 4 Breast tissues 

Anastrozole, estradiol, 
estrogens, estrone, 

exemestane, letrozole, 
raloxifene, tamoxifen, 

toremifene 

Anti estrogen pathway (Tamoxifen PK) 6 Liver and breast tissues 
Raloxifene, tamoxifen, 

toremifene 

4 Antiarrhythmic 59 Antiarrhythmic Drug Pathways 59 Cardiomyocyte 

Amiodarone, 
antiarrhythmics, class i 
and iii, arsenic trioxide, 
cisapride, disopyramide, 

dofetilide, droperidol, 
flecainide, halofantrine, 
haloperidol, ibutilide, 

lidocaine, mesoridazine, 



 

245 
 

methadone, mexiletine, 
pentamidine, pimozide, 

procainamide, 
propafenone, quinidine, 

sotalol, sparfloxacin, 
thioridazine, tocainide 

5 Antiplatelet 9 Antiplatelet Drug Clopidogrel Pathway (PK) 9 Liver, intestine, platelet Clopidogrel 

6 Benzodiazepine  25 

Benzodiazepine pathway (PD) 14 
Presynaptic/postsynaptic 

neurons 
Benzodiazepine  

Benzodiazepine pathway (PK) 19 

  

Alprazolam, 
bromazepam, 

clonazepam, diazepam, 
flunitrazepam, 

flurazepam, lorazepam, 
midazolam, oxazepam, 
temazepam, triazolam 

7 
Beta-agonist and 
beta-blocker  

71 Beta-agonist and beta-blocker Pathway 71 Airways 
Albuterol, 

metaproterenol, fenoterol, 
salmeterol, formoterol 

8 Bisphosphonate  23 Bisphosphonate Pathway 23 Osteoclasts 

Alendronate, clodronate, 
etidronic acid, 

ibandronate, pamidronate, 
risedronate, tiludronate, 

zoledronate 

9 Celecoxib  27 Celecoxib (Celebrex) Pathway 27   

Acetaminophen, aspirin, 
bromfenac, celecoxib, 
diclofenac, etodolac, 

fenoprofen, flurbiprofen, 
ibuprofen, indomethacin, 

ketoprofen, ketorolac, 
meclofenamic acid, 

mefenamic acid, 
meloxicam, nabumetone, 

naproxen, oxaprozin, 
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phenylbutazone, 
piroxicam, rofecoxib, 

valdecoxib 

10 Citalopram 4 Citalopram (PK) 4 Liver, intestine Citalopram 

11 
Codeine and 
morphine 

9 Codeine and Morphine Pathway (PK) 9 Liver Codeine, morphine 

12 Cyclophosphamide  24 

 
Cyclophosphamide Pathway 17 

Non-tissue specific cancer 
cells Cyclophosphamide 

Cyclophosphamide Pathway (PK) 7 Liver 

13 Doxorubicin 74 

Doxorubicin (Cancer PD) 18 Cancer cells Doxorubicin 

Doxorubicin (Cardio PD) 15 Cardiomyocyte 
Dexrazoxane, 
doxorubicin 

Doxorubicin Pathway 56   
Doxorubicin 

Doxorubicin (PK) 22   

14 EGFR inhibitors  66 EGFR Inhibitor Pathway (PD) 66 Non-tissue specific cancer 
cells 

Cetuximab, erlotinib, 
gefitinib, lapatinib 

15 Erlotinib  8 Erlotinib Pathway (PK) 8 Erlotinib 

16 Etoposide  16 Etoposide Pathway 16   
Antineoplastic agents, 

dexamethasone, 
etoposide, rifampin 

17 Fluoropyrimidine 33 
Fluoropyrimidine (PD) 10 

Non-tissue specific cancer 
cells Capecitabine, 

fluorouracil, tegafur 
Fluoropyrimidine (PK) 24   

18 Gefitinib 8 Gefitinib Pathway (PK) 8   Gefitinib 

19 Gemcitabine  10 Gemcitabine Pathway 10 
Non-tissue specific cancer 

cells 
Antineoplastic agents, 

gemcitabine 

20 
Glucocorticoid and 
inflammatory 

16 
Glucocorticoid and Inflammatory genes 
Pathway (HPA axis) 

7 
Hypothalamic pituitary 

adrenal axis 

Corticotropin, 
dexamethasone, 
glucocorticoids 
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Glucocorticoid and Inflammatory genes 
Pathway (PD) 

9 
CNS and peripheral tissues 

(heart, lung, vasculature, and 
gut) 

Budesonide, cortisone 
acetate, dexamethasone, 

glucocorticoids, 
mifepristone, prednisone 

Glucocorticoid and Inflammatory genes 
Pathway (Regulation) 

0#     

21 Ifosfamide  19 
Ifosfamide Pathway 13 

Non-tissue specific cancer 
cells 

Antineoplastic agents, 
ifosfamide 

Ifosfamide Pathway (PK) 6 Liver Ifosfamide 

22 Imatinib 12 Imatinib 12 Blood, intestine, liver Dasatinib, imatinib 

23 
Imipramine 
desipramine 

4 Imipramine Desipramine Pathway (PK) 4 
Liver 

Desipramine, imipramine 

24 Irinotecan  23 
Irinotecan pathway 14 

Antineoplastic agents, 
irinotecan 

Irinotecan Pathway (Cancer) 19 
Non-tissue specific cancer 

cells 
Irinotecan 

25 Losartan 5 Losartan (PK) 5 Liver Losartan 

26 Methotrexate  30 Methotrexate Pathway 30   

Antineoplastic agents, 
cyanocobalamin, folic 

acid, leucovorin, 
methotrexate, pyridoxine 

27 Nicotine 34 

Nicotine Pathway 10 Liver 

Nicotine Nicotine PD Pathway (Chromaffin Cell) 4 chromaffin cells 
Nicotine PD Pathway (Dopaminergic 
Neuron) 

21 dopaminergic neurons 

28 Phenytoin 10 Phenytoin PK Pathway 10 Liver Phenytoin 

29 
Platelet 
aggregation 

56 Platelet Aggregation Pathway (PD) 56 Platelet 
Abciximab, aspirin, 

clopidogrel, eptifibatide, 
ticlopidine, tirofiban 

30 Platinum  45 Platinum Pathway 45   
Antineoplastic agents, 
cisplatin, oxaliplatin,  

platinum 

31 
Proton pump 
inhibitor 

53 Proton Pump Inhibitor (PD) 50   
Esomeprazole, 

lansoprazole, omeprazole, 
pantoprazole, rabeprazole 
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Proton Pump Inhibitor (PK) 3   Omeprazole 

32 RAAS 20 
Renin-Angiotensin-Aldosterone-System-
acting Drug Pathway 

20   

Ace Inhibitors, Plain, 
Aldosterone antagonists, 
aliskiren, Angiotensin II 
Antagonists, benazepril, 
candesartan, captopril, 

cilazapril, enalapril, 
eplerenone, eprosartan, 
fosinopril, irbesartan, 
lisinopril, loratadine, 
losartan, moexipril, 

olmesartan, perindopril, 
quinapril, ramipril, 

spirapril, spironolactone, 
tasosartan, telmisartan, 
trandolapril, valsartan 

33 SSRI 33 
Selective Serotonin Reuptake Inhibitors 
(SSRI) Pathway 

28 
Presynaptic/postsynaptic 

neurons 
Citalopram, fluoxetine, 
paroxetine, sertraline 

SSRI Fluoxetine Pathway (PK) 5 Liver Fluoxetine 

34 Statin   46 

Statin Pathway (Atorvastatin Lovastatin and 
Simvastatin PK) 

14 Liver, intestine 
Atorvastatin, lovastatin, 

simvastatin 

Statin Pathway (Cholesterol and Lipoprotein 
Transport PD) 

27 
Liver, enterocyte, peripheral 

tissue 

Atorvastatin, fluvastatin, 
hmg coa reductase 

inhibitors, lovastatin, 
pravastatin, rosuvastatin, 

simvastatin 
Statin Pathway (Fluvastatin PK) 13 Liver, intestine Fluvastatin 

Statin Pathway (PK) 19 
Liver, intestine, kidney 

Atorvastatin, fluvastatin, 
hmg coa reductase 

inhibitors, lovastatin, 
pravastatin, rosuvastatin, 

simvastatin 
Statin Pathway (Pravastatin PK) 9 Pravastatin 

Statin Pathway (Rosuvastatin PK) 4 Liver, intestine Rosuvastatin 
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35 Sympathetic nerve   31 

Sympathetic Nerve Pathway (Neuroeffector 
Junction) 

22 Neuroeffector junction 

Acebutolol, atenolol, 
Beta Blocking Agents, 
brimonidine, clonidine, 
desipramine, disulfiram, 
dobutamine, dopamine, 
epinephrine, esmolol, 

formoterol, guanfacine, 
isoproterenol, l-

methyldopa, 
methoxamine, 

metoprolol, nadolol, 
norepinephrine, 
orciprenaline, 

phenoxybenzamine, 
phentolamine, 

phenylephrine, prazosin, 
propranolol, ritodrine, 
salbutamol, salmeterol, 

selective beta-2-
adrenoreceptor agonists, 

terazosin, terbutaline, 
timolol, tolazoline, 

yohimbine 

Sympathetic Nerve Pathway (Pre- and Post-
Ganglionic Junction) 

13 Sympathetic neuronal junction 
Acetylcholine, carbachol, 

carbidopa, metyrosine, 
nicotine, trimethaphan 

36 Taxane  16 Taxane Pathway 16   Docetaxel, paclitaxel 

37 Tenofovir adefovir  7 Tenofovir Adefovir pathway 7 Kidney 
Adefovir dipivoxil, 

tenofovir 

38 Thiopurine  33 Thiopurine Pathway 33   

Antineoplastic agents, 
azathioprine, folic acid, 

mercaptopurine, 
thioguanine 

39 VEGF  65 VEGF Pathway 65 Endothelial cell 
Antineoplastic agents, 

bevacizumab, semaxanib, 
sorafenib, vatalanib 
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40 Vinca alkaloids 10 Vinca Alkaloids (PK) 10 

Liver 

Vincristine 

41 Warfarin   24 
Warfarin Pathway (PD) 15 

Warfarin 
Warfarin Pathway (PK) 9 

#The Glucocorticoid and Inflammatory genes Pathway (Regulation) of the PharmGKB did not have gene index that could be 
mapped into the NCBI Gene database 
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Appendix 3. SNP density of the drug-response pathways 

ID Drug Response Pathway 

SNP Density / Kbp 

P
ro

m
ot

er
 

In
tr

on
 

5'
 U

T
R

 

3'
 U

T
R

 

N
on

-s
yn

on
ym

ou
s 

S
yn

on
ym

ou
s 

1 ACE inhibitor  8.81 10.13 9.40 8.06 6.46 4.53
2 Anti diabetic 8.42 8.50 8.45 12.09 6.76 3.71
3 Anti estrogen 11.44 12.46 12.72 11.53 14.45 7.08
4 Antiarrhythmic 8.61 7.87 10.85 11.26 6.31 4.11
5 Antiplatelet 10.79 12.32 25.83 18.76 17.18 5.52
6 Benzodiazepine 10.60 9.62 9.14 9.07 9.55 4.47
7 Beta-agonist and beta-blocker 7.83 7.78 5.65 11.77 3.88 3.68
8 Bisphosphonate 8.74 9.90 9.13 11.18 8.51 4.13
9 Celecoxib 10.24 11.55 12.43 15.10 10.39 5.35

10 Citalopram 14.00 16.32 17.55 11.92 28.01 7.91
11 Codeine and morphine 11.98 13.65 10.57 16.16 18.59 6.24
12 Cyclophosphamide 10.27 11.01 11.82 14.27 12.05 5.69
13 Doxorubicin 10.04 10.30 12.66 16.81 11.52 5.44
14 EGFR inhibitors 7.77 8.23 6.11 9.84 3.98 3.34
15 Erlotinib 12.32 10.87 18.22 16.54 15.72 3.40
16 Etoposide 10.50 10.45 15.86 16.59 10.57 4.78
17 Fluoropyrimidine 9.72 11.38 18.39 14.18 6.78 4.55

18 
 

Gefitinib 
 

 
14.39

13.33 19.68 14.71 21.51 5.92

19 Gemcitabine 10.46 9.59 32.46 12.18 6.71 3.60
20 Glucocorticoid and inflammatory 8.02 8.69 9.54 9.55 4.08 3.23
21 Ifosfamide 10.28 11.20 13.26 16.70 12.43 5.73
22 Imatinib 12.00 12.45 16.21 16.37 16.40 5.93
23 Imipramine desipramine 13.77 18.44 12.77 7.53 29.79 8.19
24 Irinotecan 10.43 10.59 19.33 19.64 13.94 4.27
25 Losartan 12.51 11.66 7.16 21.98 16.58 5.89
26 Methotrexate 9.62 10.07 12.73 10.42 5.64 4.03
27 Nicotine 9.17 10.51 4.07 15.31 8.86 6.13
28 Phenytoin 10.98 11.20 12.67 13.96 18.82 4.16
29 Platelet aggregation 8.61 10.18 7.01 13.22 9.08 4.62
30 Platinum 8.96 8.96 10.69 14.86 10.65 3.64
31 Proton pump inhibitor 8.46 8.49 6.45 11.71 4.73 3.18
32 RAAS 8.66 10.07 9.36 7.61 6.21 4.49
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33 SSRI 8.20 8.62 9.56 8.01 7.56 4.52
34 Statin 10.92 11.36 14.67 12.99 12.65 4.65
35 Sympathetic nerve 9.77 7.50 9.04 14.08 7.00 5.06
36 Taxane 10.57 12.55 16.88 15.73 8.97 4.38
37 Tenofovir adefovir 8.21 8.18 17.72 9.89 7.21 4.34
38 Thiopurine 9.27 9.55 11.44 11.47 6.48 4.28
39 VEGF 8.53 9.40 7.56 11.00 4.39 3.90
40 Vinca alkaloids 8.67 9.79 15.91 13.83 8.21 3.39
41 Warfarin 9.91 10.22 9.67 12.75 10.38 4.55
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Appendix 4. Common DRP genes housing one or more expression-associated functional SNPs 

 

ID Pathway 

Expression-associated potentially functional SNPs in Common Genes 
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1 ACE inhibitor  

  

    
RYR2 
(rs2275288) 

          

2 Anti diabetic                   

3 Anti estrogen 
UGT1A1 
(rs10929302) 

                

4 Antiarrhythmic                   

5 Antiplatelet 
ABCB1 
(rs3747802) 

                

6 Benzodiazepine                   
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7 
Beta-agonist and 

beta-blocker 
      

GNAS 
(rs919196), 
PLCB2 
(rs2229690, 
rs12439272) 

          

8 Bisphosphonate                   

9 Celecoxib 
PTGS1 
(rs10985624) 

PTGS1 
(rs10306189, 
rs10306190) 

  

AKR1C3 
(rs34376012)
, PTGS1 
(rs10306173, 
rs3842803) 

          

10 Citalopram 
ABCB1 
(rs3747802) 

                

11 
Codeine and 

morphine 

ABCB1 
(rs3747802), 
UGT1A1 
(rs10929302) 

                

12 Cyclophosphamide 

AKR1A1 
(rs11211139, 
rs9147), 
ERCC1 
(rs3212935) 

    

AKR1A1 
(rs2088102), 
ERCC1 
(rs3212955, 
rs3212935, 
rs2298881, 
rs3212978) 

          

13 Doxorubicin 

ABCB1 
(rs3747802), 
AKR1A1 
(rs11211139, 
rs9147), 
GSTM1 
(rs4147563, 
rs4147563), 
GSTP1 
(rs7927381, 
rs1871041) 

    

RYR2 
(rs2275288), 
TOP2B 
(rs11709485, 
rs10510570, 
rs11712723, 
rs17016894) 
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14 

 

EGFR inhibitors 

MAPK8 
(rs10857561), 
SOS1 
(rs10165968) 

    

MAP2K2 
(rs2289859), 
MAPK8 
(rs2289805), 
SOS1 
(rs963730, 
rs10190377, 
rs7565814) 

          

15 Erlotinib 

ABCB1 
(rs3747802), 
UGT1A1 
(rs10929302) 

                

16 Etoposide 

ABCB1 
(rs3747802), 
GSTM1 
(rs4147563, 
rs4147563), 
GSTP1 
(rs7927381, 
rs1871041), 
PTGS1 
(rs10985624),  
UGT1A1 
(rs10929302) 

PTGS1 
(rs10306189, 
rs10306190) 

  

PTGS1 
(rs10306173, 
rs3842803), 
TOP2B 
(rs11709485, 
rs10510570, 
rs11712723, 
rs17016894) 

          

17 Fluoropyrimidine 
SLC29A1 
(rs3734701) 

TYMS 
(rs699517) 

  

SLC29A1 
(rs1128930), 
TYMS 
(rs1059394, 
rs2612098, 
rs2853532, 
rs2853534, 
rs2853537, 
rs2853740) 

          

18 Gefitinib 
ABCB1 
(rs3747802) 

               

19 Gemcitabine 
SLC29A1 
(rs3734701) 

    
SLC29A1 
(rs1128930) 
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20 
Glucocorticoid and 

inflammatory 
                  

21 Ifosfamide 
AKR1A1 
(rs11211139, 
rs9147) 

    
AKR1A1 
(rs2088102) 

          

22 Imatinib 
ABCB1 
(rs3747802) 

                

23 
Imipramine 
desipramine 

                  

24 Irinotecan 

ABCB1 
(rs3747802),  
UGT1A1 
(rs10929302) 

    
XRCC1 
(rs762507) 

  
XRCC1 
(rs3547) 

      

25 Losartan 
 UGT1A1 
(rs10929302) 

                

26 Methotrexate 

ABCB1 
(rs3747802), 
MTRR 
(rs162028, 
rs162029, 
rs162030, 
rs16879248, 
rs16879259, 
rs2966952, 
rs326118, 
rs3733781), 
SHMT1(rs643
333, 
rs2688052) 

SHMT1 
(rs12952556), 
TYMS 
(rs699517) 

MTRR 
(rs9332), 
SHMT1 
(rs12952556) 

MTRR 
(rs12347, 
rs161869, 
rs161870, 
rs162037, 
rs2303081, 
rs3776454), 
SHMT1 
(rs672356), 
TYMS 
(rs1059394, 
rs2612098, 
rs2853532, 
rs2853534, 
rs2853537, 
rs2853740) 

  
MTRR 
(rs12347) 

MTRR 
(rs10380) 

  
MTRR 
(rs10380) 

27 Nicotine                   

28 Phenytoin 
 UGT1A1 
(rs10929302) 

                

29 
Platelet 

aggregation 
PTGS1 
(rs10985624) 

PTGS1 
(rs10306189, 
rs10306190) 

  
PTGS1 
(rs10306173, 
rs3842803) 
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30 Platinum 

ERCC1 
(rs3212935), 
GSTM1 
(rs4147563, 
rs4147563), 
GSTP1 
(rs7927381, 
rs1871041) 

    

ERCC1 
(rs3212955, 
rs3212935, 
rs2298881, 
rs3212978), 
XRCC1 
(rs762507) 

  
XRCC1 
(rs3547) 

      

31 
Proton pump 

inhibitor 
ABCB1 
(rs3747802) 

    
PLCB2 
(rs2229690, 
rs12439272) 

          

32 RAAS                   

33 SSRI       

GNAS 
(rs919196), 
PLCB2 
(rs2229690, 
rs12439272) 

          

34 Statin 

ABCB1 
(rs3747802),  
UGT1A1 
(rs10929302) 

    
SLCO1B3 
(rs17680137, 
rs7973653) 

    
SLCO1B3 
(rs60140950) 

    

35 Sympathetic nerve                   

36 Taxane 
ABCB1 
(rs3747802) 

    
SLCO1B3 
(rs17680137, 
rs7973653) 

    
SLCO1B3 
(rs60140950) 

    

37 Tenofovir adefovir                   

38 Thiopurine 

GSTM1 
(rs4147563, 
rs4147563), 
MTRR 
(rs162028, 
rs162029, 
rs162030, 
rs16879248, 
rs16879259, 
rs2966952, 

SHMT1 
(rs12952556), 
TYMS 
(rs699517) 

MTRR 
(rs9332), 
SHMT1 
(rs12952556) 

MTRR 
(rs12347, 
rs161869, 
rs161870, 
rs162037, 
rs2303081, 
rs3776454), 
SHMT1 
(rs672356), 
SLC29A1 

  
MTRR 
(rs12347) 

MTRR 
(rs10380) 

  
MTRR 
(rs10380) 
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rs326118, 
rs3733781), 
SHMT1(rs643
333, 
rs2688052), 
SLC29A1 
(rs3734701) 

(rs1128930), 
TYMS 
(rs1059394, 
rs2612098, 
rs2853532, 
rs2853534, 
rs2853537, 
rs2853740) 

39 VEGF 

MAPK8 
(rs10857561),  
SOS1 
(rs10165968) 

    

MAP2K2 
(rs2289859), 
MAPK8 
(rs2289805), 
SOS1 
(rs963730, 
rs10190377, 
rs7565814)

          

40 Vinca alkaloids 
ABCB1 
(rs3747802) 

                

41 Warfarin 
ABCB1 
(rs3747802) 
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Appendix 5. Common DRP genes housing one or more highly-differentiated  functional SNPs 

 

ID Pathway 

Highly-differentiated Potentially Functional SNPs in Common Genes 
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T
F

 B
in

di
ng

 S
it

es
 

m
iR

N
A

 B
in

di
ng

 S
ite

s 

3'
 U

T
R

 C
on

se
rv

ed
 

S
pl

ic
in

g 
R

eg
ul

at
or

y 
S

ite
s 

N
on

se
ns

e-
m

ed
ia

te
d 

D
ec

ay
 

C
od

on
 U

sa
ge

 D
if

n.
 

P
ro

te
in

 D
el

et
er

io
us

 

P
os

t T
ra

ns
la

tio
n 

M
od

if
. S

it
es

 

P
ro

te
in

 D
om

ai
ns

 

1 ACE inhibitor                    

2 Anti diabetic 
AKT1 
(rs2494752) 

    

ABCC8 
(rs2077654, 
rs12293228, 
rs2077655), 
CACNA1D 
(rs6766988) 

          

3 Anti estrogen 
CYP1B1 
(rs162556) 

  
CYP1B1 
(rs2855658) 

CYP1B1 
(rs1056837), 
CYP3A5 
(rs776746) 
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4 Antiarrhythmic       

ABCC8 
(rs2077654, 
rs12293228, 
rs2077655), 
CACNA1D 
(rs6766988) 

          

5 Antiplatelet       
CYP3A5 
(rs776746) 

          

6 Benzodiazepine       
CYP3A5 
(rs776746) 

          

7 
Beta-agonist and 

beta-blocker 

ADCY6 
(rs9668292), 
ADCY9(rs2532
001, 
rs11076808), 
PRKCG 
(rs2545046) 

    

ADCY2 
(rs326145), 
ADCY6 
(rs3729980), 
ADCY9 
(rs2072346), 
CACNA1B 
(rs6559261, 
rs7874239, 
rs7865267), 
CACNA1D 
(rs6766988), 
PLCB4 
(rs7267438, 
rs1028338), 
PRKCH 
(rs2296274) 

    
ADCY8 
(rs1327
8912) 

  
ADCY8 
(rs13278912) 

8 Bisphosphonate 
VDR 
(rs11568820) 

    

FDFT1 
(rs4841600, 
rs2409836, 
rs10903343) 

          

9 Celecoxib 

AKT1 
(rs2494752), 
PTGS2 
(rs2143416) 

    

CYP3A5 
(rs776746), 
PTGS1 (rs5788, 
rs10306150) 

          

10 Citalopram                   
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11 
Codeine and 

morphine 
                  

12 Cyclophosphamide 

ADH4 
(rs3762894, 
rs1800759), 
ADH5 
(rs1312200), 
ALDH2 
(rs886205) 

    

ADH1A 
(rs3819197), 
CYP3A5 
(rs776746) 

          

13 Doxorubicin 

MLH1 
(rs9311149), 
RALBP1 
(rs7245045) 

    

ABCG2 
(rs2231164, 
rs2725267), 
CYP3A5 
(rs776746), TOP1 
(rs2235362) 

          

 

14 

 

EGFR inhibitors 

AKT1 
(rs2494752), 
GRB2 
(rs930296, 
rs4789193, 
rs930297),  
MAP2K2 
(rs7258783), 
PRKCG 
(rs2545046) 

    
PLCG2 
(rs4611451, 
rs4258608) 

          

15 Erlotinib       

ABCG2 
(rs2231164, 
rs2725267), 
CYP3A5 
(rs776746) 

          

16 Etoposide 

PTGS2 
(rs2143416), 
VDR 
(rs11568820) 

    

CYP3A5 
(rs776746), 
PTGS1 (rs5788, 
rs10306150) 

          

17 Fluoropyrimidine 
RRM1 
(rs1561876, 
rs3794050, 

    
ABCG2 
(rs2231164, 
rs2725267), DHFR 
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rs1465952, 
rs1662162) 

(rs10072026) 

18 Gefitinib       

ABCG2 
(rs2231164, 
rs2725267), 
CYP3A5 
(rs776746) 

          

19 Gemcitabine 

RRM1 
(rs1561876, 
rs3794050, 
rs1465952, 
rs1662162) 

                

20 
Glucocorticoid and 

inflammatory 
                  

21 Ifosfamide 

ADH4 
(rs3762894, 
rs1800759), 
ADH5 
(rs1312200), 
ALDH2 
(rs886205) 

    

ADH1A 
(rs3819197), 
CYP3A5 
(rs776746) 

          

22 Imatinib       

ABCG2 
(rs2231164, 
rs2725267), 
CYP3A5 
(rs776746) 

          

23 
Imipramine 
desipramine 

                  

24 Irinotecan       

ABCG2 
(rs2231164, 
rs2725267), 
CYP3A5 
(rs776746), TOP1 
(rs2235362) 

          

25 Losartan                   
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26 Methotrexate       

ABCG2 
(rs2231164, 
rs2725267), DHFR 
(rs10072026), 
SLC22A8 
(rs4149181) 

          

27 Nicotine       

ADCY2 
(rs326145), 
SLC18A2 
(rs363333) 

          

28 Phenytoin       
CYP3A5 
(rs776746) 

          

29 
Platelet 

aggregation 
      

ADCY2 
(rs326145), 
PLCB4 
(rs7267438, 
rs1028338), 
PLCG2 
(rs4611451, 
rs4258608), 
PTGS1 (rs5788, 
rs10306150) 

    
ADCY8 
(rs1327
8912) 

  
ADCY8 
(rs13278912) 

30 Platinum 
MLH1 
(rs9311149) 

    
ABCG2 
(rs2231164, 
rs2725267) 

          

31 
Proton pump 

inhibitor 

ADCY6 
(rs9668292), 
ADCY9 
(rs2532001, 
rs11076808), 
PRKCG 
(rs2545046) 

    

ADCY2 
(rs326145), 
ADCY6 
(rs3729980), 
ADCY9 
(rs2072346), 
PLCB4 
(rs7267438, 
rs1028338), 
PLCG2 
(rs4611451, 
rs4258608), 

    
ADCY8 
(rs1327
8912) 

  
ADCY8 
(rs13278912) 
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PRKCH 
(rs2296274) 

32 RAAS                   

33 SSRI       

ADCY2 
(rs326145), 
CYP3A5 
(rs776746), 
PLCB4 
(rs7267438, 
rs1028338), 
SLC18A2 
(rs363333) 

          

34 Statin       

ABCG2 
(rs2231164, 
rs2725267), 
CYP3A5 
(rs776746), 
FDFT1 
(rs4841600, 
rs2409836, 
rs10903343), 
SLC22A8 
(rs4149181), 
SLCO1B3 
(rs3764006) 

          

35 Sympathetic nerve       

CACNA1B 
(rs6559261, 
rs7874239, 
rs7865267), 
SLC18A2 
(rs363333) 
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36 Taxane 
CYP1B1 
(rs162556) 

  
CYP1B1 
(rs2855658) 

ABCG2 
(rs2231164, 
rs2725267), 
CYP1B1 
(rs1056837), 
CYP3A5 
(rs776746), 
SLCO1B3 
(rs3764006) 

          

37 Tenofovir adefovir       
SLC22A8 
(rs4149181) 

          

38 Thiopurine       
DHFR 
(rs10072026) 

          

39 VEGF 

AKT1 
(rs2494752), 
GRB2 
(rs930296, 
rs4789193, 
rs930297), 
MAP2K2 
(rs7258783), 
PRKCG 
(rs2545046) 

    

PLCG2 
(rs4611451, 
rs4258608), 
PRKCH 
(rs2296274) 

          

40 Vinca alkaloids 
RALBP1 
(rs7245045) 

    
CYP3A5 
(rs776746) 

          

41 Warfarin                   
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Appendix 6. Studies describing drug-response variation   
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Remark Author(s)  
Journal 
Information 

ACE 
inhibitor  

ACE inhibitor 
pathway 

ACE 
inhibitors 

ASW_CEU 
 

CEU ASW   
Whites had greater BP 
reduction with enalapril 
than blacks 

Exner et al  

N Engl J Med. 
2001 May 
3;344(18):1351-
7. 

ACE inhibitor 
pathway 

ACE 
inhibitors 

ASW_CEU 
 

CEU ASW   

Lesser Response to 
Angiotensin-
Converting–Enzyme 
Inhibitor Therapy in 
Black as Compared 
with White Patients 
with Left Ventricular 
Dysfunction 

Exner et al  

N Engl J Med 
2001; 344:1351-
1357May 3, 
2001 

ACE inhibitor 
pathway 

Enalapril ASW_CEU 
 

CEU ASW   
 

Exner et al  

N Engl J Med. 
2001 May 
3;344(18):1351-
7. 

ACE inhibitor 
pathway 

Angiotensin I ASW_CEU 
 

CEU ASW   

Black subjects required 
twice as much 
angiotensin I as 
Caucasian subjects to 
achieve similar DBP 
elevations 

Joubert  

Eur J Clin 
Pharmacol. 
1990;39(2):183-
5. 

ACE inhibitor 
pathway 

ACE 
inhibitors 

CHB_CEU 
   

CHB 
The high incidence and 
greater odds ratio of 

Woo et al  
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cough among Chinese 
patients taking ACE 
inhibitors 
raises the possibility of 
an enhanced 
susceptibility to this 
adverse effect among 
the Chinese. 

ACE inhibitor 
pathway 

Captopril ASW_CEU 
 

CEU ASW   
Antihypertensive effect greater in 
Whites 

 

Br J Clin 
Pharmacol. 
1982;14 Suppl 
2:97S-101S. 

ACE inhibitor 
pathway 

Enalapril CHS_MAS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

ACE inhibitor 
pathway 

Enalapril CHS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

ACE inhibitor 
pathway 

Enalapril MAS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Anti 
diabetic 

Anti diabetic 
drug pathway 
(Potassium 
channel 
inhibitors PD) 

Insulin CEU_GIH 
 

GIH CEU   
 

Becker et al  
Clin 
Pharmacokinet. 
2008;47(1):7-20. 

Anti diabetic 
drug pathway 
(Potassium 
channel 
inhibitors PD) 

Insulin CHB_GIH 
 

GIH CHB   

The time of onset of 
insulin effect was 
approximately 10 
minutes earlier in the 
Indian subjects 

Becker et al  
Clin 
Pharmacokinet. 
2008;47(1):7-20. 

 

Anti estrogen
 

Anti estrogen 
pathway 
(Aromatase 
inhibitor) 

Ethinyl 
estradiol 

Nigeria, Singapore, Sri Lanka, and 
United States 

  

Sex hormone 
concentrations were 
reported as being 
highest in women from 
Southeast Asia 

Bennink HJ  

Eur J Contracept 
Reprod Health 
Care. 2000 Sep;5 
Suppl 2:12-20. 

Anti estrogen Estrogen CHB_CEU CEU CHB   Caucasians more Massart F  Gynecol 
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pathway 
(Aromatase 
inhibitor) 

estrogen-sensitive than 
other human races 

Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen 
pathway 
(Aromatase 
inhibitor) 

Estrogen CEU_MEX 
 

CEU MEX   
Caucasians more 
estrogen-sensitive than 
other human races 

Massart F  
Gynecol 
Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen 
pathway 
(Aromatase 
inhibitor) 

Estrogen CEU_YRI 
 

CEU YRI   
Caucasians more 
estrogen-sensitive than 
other human races 

Massart F  
Gynecol 
Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen 
pathway 
(Estrogen 
metabolism) 

Ethinyl 
estradiol 

Nigeria, Singapore, Sri Lanka, and 
United States 

  

Sex hormone 
concentrations were 
reported as being 
highest in women from 
Southeast Asia

Bennink HJ  

Eur J Contracept 
Reprod Health 
Care. 2000 Sep;5 
Suppl 2:12-20. 

Anti estrogen 
pathway 
(Estrogen 
metabolism) 

Estrogen CHB_CEU 
 

CEU CHB   
Caucasians more 
estrogen-sensitive than 
other human races 

Massart F  
Gynecol 
Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen 
pathway 
(Estrogen 
metabolism) 

Estrogen CEU_MEX 
 

CEU MEX   
Caucasians more 
estrogen-sensitive than 
other human races 

Massart F  
Gynecol 
Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen 
pathway 
(Estrogen 
metabolism) 

Estrogen CEU_YRI 
 

CEU YRI   
Caucasians more 
estrogen-sensitive than 
other human races 

Massart F  
Gynecol 
Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen 
pathway 
(Summary) 

Ethinyl 
estradiol 

Nigeria, Singapore, Sri Lanka, and 
United States 

  

Sex hormone 
concentrations were 
reported as being 
highest in women from 
Southeast Asia 

Bennink HJ  

Eur J Contracept 
Reprod Health 
Care. 2000 Sep;5 
Suppl 2:12-20. 

Anti estrogen 
pathway 
(Summary) 

Estrogen CHB_CEU 
 

CEU CHB   
Caucasians more 
estrogen-sensitive than 
other human races 

Massart F  
Gynecol 
Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen Estrogen CEU_MEX CEU MEX   Caucasians more Massart F  Gynecol 
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pathway 
(Summary) 

estrogen-sensitive than 
other human races 

Endocrinol. 2005 
Jan;20(1):36-44. 

Anti estrogen 
pathway 
(Summary) 

Estrogen CEU_YRI 
 

CEU YRI   
Caucasians more 
estrogen-sensitive than 
other human races 

Massart F  
Gynecol 
Endocrinol. 2005 
Jan;20(1):36-44. 

Anti-
arrhythmic 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol CHB_CEU/ASW CHB 
CEU/
ASW 

  

These results suggest 
that the metabolism and 
disposition of 
haloperidol and reduced 
haloperidol could differ 
among ethnic 
populations 

Jann et al  
Psychiatry Res. 
1989 
Oct;30(1):45-52. 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol 
CHB_"Other 
populations" 

CHB 
"Other 
populations" 

The Chinese group 
differed from the other 
ethnic populations 

Jann et al  

Prog 
Neuropsychopha
rmacol Biol 
Psychiatry. 1992 
Mar;16(2):193-
202. 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol ASIAN_CEU CHB CEU   

The results were similar 
between the two Asian 
groups but significantly 
different between 
Caucasians and Asians. 

Lin et al  

J Clin 
Psychopharmaco
l. 1988 
Jun;8(3):195-
201. 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol CHB_CEU 
 

CHB CEU   

Chinese schizophrenic 
patients (in the People's 
Republic of China) had 
52% higher plasma 
haloperidol 
concentrations than 
U.S. non-Asian 
schizophrenic patients. 

Potkin et al  

Psychiatry Res. 
1984 
Jun;12(2):167-
72. 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol CHB_ASW 
 

CHB ASW   

Chinese patients were 
shown to produce 40–
50% higher plasma 
haloperidol 
concentrations 
compared to non-

Poolsup et al  

J Clin Pharm 
Ther. 2000 
Jun;25(3):197-
220. 
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Chinese patients 
(Caucasians and blacks) 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol CHB_CEU 
 

CHB CEU   

Chinese patients were 
shown to produce 40–
50% higher plasma 
haloperidol 
concentrations 
compared to non-
Chinese patients 
(Caucasians and blacks) 

Poolsup et al  

J Clin Pharm 
Ther. 2000 
Jun;25(3):197-
220. 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol CHB_CEU 
 

CHB CEU   

Chinese patients were 
shown to produce 40–
50% higher plasma 
haloperidol 
concentrations 
compared to non-
Chinese patients 
(Caucasians and blacks) 

Poolsup et al  

J Clin Pharm 
Ther. 2000 
Jun;25(3):197-
220. 

Anti-
arrhythmic 
Drug 
Pathways 

Haloperidol CHB_CEU 
 

CHB CEU   

The higher haloperidol 
levels noted in Chinese 
may be explained by 
the lower clearance in 
this population 
(6·17 ml/min/kg) ( 120) 
compared with 
Caucasians reported in 
the literature 
(10·8 ml/min/kg) 
( 121). 

Poolsup et al  

J Clin Pharm 
Ther. 2000 
Jun;25(3):197-
220. 

Antiplatelet 

Antiplatelet 
Drug 
Clopidogrel 
Pathway (PK) 

Calcium 
channel 
blockers 

ASW_CEU 
 

ASW CEU   
Different reduction of 
blood pressure 

Brewster et al  

Ann Intern Med. 
2004 Oct 
19;141(8):614-
27. 

Benzo-
diazepine  

Benzo-
diazepine 
pathway (PD) 

Adinazolam CHB_ASW 
 

CHB ASW   
Greater exposure of 
adinazolam in Asians 

Ajir et al  

Psychopharmaco
logy (Berl). 1997 
Feb;129(3):265-
70. 
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Benzoiazepine 
pathway (PD) 

Adinazolam CHB_CEU 
 

CHB CEU   
Greater exposure of 
adinazolam in Asians 

Ajir et al  

Psychopharmaco
logy (Berl). 1997 
Feb;129(3):265-
70. 

Benzoiazepine 
pathway (PD) 

Adinazolam JPT_ASW 
 

JPT ASW   
Greater exposure of 
adinazolam in Asians 

Ajir et al  

Psychopharmaco
logy (Berl). 1997 
Feb;129(3):265-
70. 

Benzoiazepine 
pathway (PD) 

Adinazolam JPT_CEU 
 

JPT CEU   
Greater exposure of 
adinazolam in Asians 

Ajir et al  

Psychopharmaco
logy (Berl). 1997 
Feb;129(3):265-
70. 

Benzoiazepine 
pathway (PD) 

Benzodiazepi
nes, 
Alprazolam 

CHB_CEU 
 

CHB CEU   
 

Ghoneim et al  

Clin Pharmacol 
Ther. 1981 
Jun;29(6):749-
56.

Benzoiazepine 
pathway (PD) 

Triazolam CEU_GIH 
 

GIH CEU   
Higher Cmax was 
observed in Asians 

Kinirons et al  
Br J Clin 
Pharmacol. 1996 
Jan;41(1):69-72. 

Benzoiazepine 
pathway (PD) 

Diazepam CHB_CEU 
 

CHB CEU   

Greater volume of 
distribution and 
clearance in Caucasians 
than Chinese 

Kumana et al  

Eur J Clin 
Pharmacol. 
1987;32(2):211-
5. 

Benzoiazepine 
pathway (PD) 

Alprazolam CHB_CEU 
 

CHB CEU   
Lower CLo, CLs in 
Asians than Caucasians 

Lin et al  

Psychopharmaco
logy (Berl). 
1988;96(3):365-
9. 

Benzoiazepine 
pathway (PD) 

Alprazolam CHB_CEU 
 

CHB CEU   

Ethnic pharmacokinetic 
differences between 
Caucasians and Asians 
(30% greater AUC after 
oral dosing and 25% 
after IV in Asians) 

Lin et al  

Psychopharmaco
logy (Berl). 
1988;96(3):365-
9. 

Benzoiazepine 
pathway (PD) 

Midazolam JPT_CEU 
 

JPT CEU   

25% lower systemic 
clearance of midazolam 
in Japanese as 
compared to Caucasians 

Tateishi et al  

Clin Pharmacol 
Ther. 2001 
May;69(5):333-
9. 
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Benzoiazepine 
pathway (PD) 

Midazolam ASW_CEU 
ASW_
CEU   

  
Similar CL, CL/F, F in 
African- and Caucasian 
Americans 

Wandel et al  
Clin Pharmacol 
Ther. 2000 
Jul;68(1):82-91. 

Benzoiazepine 
pathway (PD) 

Diazepam CHB_CEU 
 

CHB CEU   

Lower clearance for 
diazepam in Chinese of 
the EM phenotype for 
S-mephenytoin versus 
historical controls 

Zhang et al  

Clin Pharmacol 
Ther. 1990 
Nov;48(5):496-
502. 

Benzoiazepine 
pathway (PD) 

Triazolam CEU_GIH 
   

  
Similar CLo, CLm in 
Asian Indians and 
Caucasians 

Kinirons et al  
Br J Clin 
Pharmacol. 1996 
Jan;41(1):69-72. 

Benzo-
diazepine 
pathway (PK) 

Benzo-
diazepines, 
Alprazolam 

CHB_CEU 
 

CHB CEU   
 

Ghoneim et al  

Clin Pharmacol 
Ther. 1981 
Jun;29(6):749-
56. 

Benzo-
diazepine 
pathway (PK) 

Triazolam CEU_GIH 
 

GIH CEU   
Higher Cmax was 
observed in Asians 

Kinirons et al  
Br J Clin 
Pharmacol. 1996 
Jan;41(1):69-72. 

Benzo-
diazepine 
pathway (PK) 

Diazepam CHB_CEU 
 

CHB CEU   

Greater volume of 
distribution and 
clearance in Caucasians 
than Chinese 

Kumana et al  

Eur J Clin 
Pharmacol. 
1987;32(2):211-
5. 

Benzo-
diazepine 
pathway (PK) 

Alprazolam CHB_CEU 
 

CHB CEU   
Lower CLo, CLs in 
Asians than Caucasians 

Lin et al  

Psychopharmaco
logy (Berl). 
1988;96(3):365-
9. 

Benzo-
diazepine 
pathway (PK) 

Alprazolam CHB_CEU 
 

CHB CEU   

Ethnic pharmacokinetic 
differences between 
Caucasians and Asians 
(30% greater AUC after 
oral dosing and 25% 
after IV in Asians) 

Lin et al  

Psychopharmaco
logy (Berl). 
1988;96(3):365-
9. 

Benzo-
diazepine 
pathway (PK) 

Midazolam JPT_CEU 
 

JPT CEU   

25% lower systemic 
clearance of midazolam 
in Japanese as 
compared to Caucasians 

Tateishi et al  

Clin Pharmacol 
Ther. 2001 
May;69(5):333-
9. 

Benzo- Midazolam ASW_CEU ASW_   Similar CL, CL/F, F in Wandel et al  Clin Pharmacol 
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diazepine 
pathway (PK) 

CEU African- and Caucasian 
Americans 

Ther. 2000 
Jul;68(1):82-91. 

Benzo-
diazepine 
pathway (PK) 

Diazepam CHB_CEU 
 

CHB CEU   

Lower clearance for 
diazepam in Chinese of 
the EM phenotype for 
S-mephenytoin versus 
historical controls 

Zhang et al  

Clin Pharmacol 
Ther. 1990 
Nov;48(5):496-
502. 

Benzo-
diazepine 
pathway (PK) 

Triazolam CEU_GIH 
   

  
Similar CLo, CLm in 
Asian Indians and 
Caucasians 

Kinirons et al  
Br J Clin 
Pharmacol. 1996 
Jan;41(1):69-72. 

Beta-
agonist and 
beta-
blocker  

Beta-agonist 
and beta-
blocker 
Pathway 

Propranolol MAS_CHS 
 

MAS CHS   

Malays to have 
significantly greater 
propranolol responses 
compared to Chinese 
healthy male subjects 

Rasool et al  

Int J Clin 
Pharmacol Ther. 
2000 
May;38(5):260-
9. 

Beta-agonist 
and beta-
blocker 
Pathway 

propranolol CHB_CEU 
 

CHB CEU   

Altered sensitivity to 
and clearance of 
propranolol in men of 
Chinese descent as 
compared with 
American whites 

Zhou et al  
N Engl J Med. 
1989 Mar 
2;320(9):565-70. 

Beta-agonist 
and beta-
blocker 
Pathway 

propranolol CHB_CEU 
 

CHB CEU   

Chinese men had a 2- to 
3-fold greater 
sensitivity to 
propranolol's effect on 
heart rate and a 10-fold 
greater sensitivity to the 

BP effect than 
Caucasian men. 

Zhou et al  
N Engl J Med. 
1989 Mar 
2;320(9):565-70. 

Beta-agonist 
and beta-
blocker 
Pathway 

Propranolol ASW_CEU 
 

CEU ASW   
Antihypertensive effect greater in 
Whites 

 
JAMA. 1982 Oct 
22;248(16):1996
-2003. 

Beta-agonist 
and beta-
blocker 
Pathway 

Propranolol CHB_CEU 
 

CHB CEU   
Chinese twice as sensitive to effects on 
blood pressure and heart rate 

 
JAMA. 1982 Oct 
22;248(16):1996
-2003. 
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Beta-agonist 
and beta-
blocker 
Pathway 

Propranolol ASW_CEU 
 

CEU ASW   

As evidenced by these results, 
propranolol is as efficacious as HCTZ in 
whites, but HCTZ is more effective than 
propranolol in African Americans 24 

 
JAMA. 1982 Oct 
22;248(16):1996
-2003. 

Celecoxib  

Celecoxib 
(Celebrex) 
Pathway 

Acetaminoph
en / 
paracetamol 

CEU_YRI 
 

CEU YRI   

Recovery of 
mercapturic acid and 
cysteine conjugates of 
acetaminophen was 
found to be 9.3% in 
Caucasians compared 
With only 5.2% and 
4.4% in Ghanaians and 
Kenyans, respectively 

Critchley et al  

Br J Clin 
Pharmacol. 1986 
Dec;22(6):649-
57. 

Celecoxib 
(Celebrex) 
Pathway 

COX-2 
Inhibitors 
(Celecoxib) 

ASW_CEU 
 

ASW CEU   

Approximately 40% 
higher AUC and 11% 
lower apparent 
clearance in Blacks 
compared to Whites 

Davies et al  

Clin 
Pharmacokinet. 
2000 
Mar;38(3):225-
42. 

Celecoxib 
(Celebrex) 
Pathway 

Caffeine CHB_CEU 
   

  

The 7-demethylation 
and 8-hydroxylation 
activities were found to 
be different between 
Asians and Caucasians 

Grant et al  

Clin Pharmacol 
Ther. 1983 
May;33(5):591-
602. 

Celecoxib 
(Celebrex) 
Pathway 

NSAIDs 
(Ibuprofen) 

ASW_CEU 
   

ASW 

Suggested that Black
patients should be 
monitored for an 
increase in adverse 
effects of NSAIDs in 
the presence of 
histamine H2 receptor 
antagonists 

Small et al  
Clin Pharm. 
1989 
Jul;8(7):471-2. 

Celecoxib 
(Celebrex) 
Pathway 

Diclofenac CHS_MAS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Celecoxib 
(Celebrex) 
Pathway 

Diclofenac CHS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 
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Celecoxib 
(Celebrex) 
Pathway 

Diclofenac MAS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Celecoxib 
(Celebrex) 
Pathway 

Naproxen CHS_MAS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Celecoxib 
(Celebrex) 
Pathway 

Naproxen CHS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Celecoxib 
(Celebrex) 
Pathway 

Naproxen MAS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Codeine 
and 
morphine 

Codeine and 
Morphine 
Pathway (PK) 

Opioid 
(codeine, 
morphine and 
pethidine) 

CHB_CEU 
   

CHB 

Some differences in 
metabolism between 
Chinese and 
Caucasians. 

Lee et al  

Anaesth 
Intensive Care. 
1997 
Dec;25(6):665-
70. 

Codeine and 
Morphine 
Pathway (PK) 

Codeine CHB_CEU 
 

CEU CHB   

Chinese were less able 
to metabolize codeine 
particularly by 
glucuronidation, 
compared with 
Caucasians 

Yue et al  
Br J Clin 
Pharmacol. 1991 
Jun;31(6):643-7. 

Codeine and 
Morphine 
Pathway (PK) 

Codeine CHB_JPT 
 

JPT CHB   

Chinese metabolized 
codeine less effectively 
than Japanese and 
Koreans 

Yue et al  
Pharmacogenetic
s. 1995 
Jun;5(3):173-7. 

Codeine and 
Morphine 
Pathway (PK) 

Codeine CHB_JPT 
 

JPT CHB   

Chinese metabolized 
codeine less effectively 
than Japanese and 
Koreans 

Yue et al  
Pharmacogenetic
s. 1995 
Jun;5(3):173-7. 

Codeine and 
Morphine 
Pathway (PK) 

Morphine CHB_CEU 
 

CEU CHB   

Caucasians more 
sensitive to the 
cardiovascular and 
rerespiratory effects of 
morphine than Chinese. 
Chinese less sensitive 

Zhou et al  

Clin Pharmacol 
Ther. 1993 
Nov;54(5):507-
13. 
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to its gastrointestinal 
side effects 

Codeine and 
Morphine 
Pathway (PK) 

Morphine CHB_CEU 
 

CHB CEU   

Apparent clearance of 
morphine significantly 
higher in Chinese than 
in Caucasians 

Zhou et al  

Clin Pharmacol 
Ther. 1993 
Nov;54(5):507-
13. 

Cyclophos
phamide  

Cyclo-
phosphamide 
Pathway 

Cyclophosph
amide 

ASW_CEU 
 

CEU ASW   

Renal survival was 
significantly worse in 
blacks compared with 
white patients. 

Dooley et al  
Kidney Int. 1997 
Apr;51(4):1188-
95. 

Cyclo-
phosphamide 
Pathway 

Cyclophosph
amide 

JPT_CEU 
   

JPT 
 

Ma B  
Radiother Oncol. 
2002 
Feb;62(2):185-9. 

Cyclo-
phosphamide 
Pathway (PK) 

Cyclophosph
amide 

ASW_CEU 
 

CEU ASW   

Renal survival was 
significantly worse in 
blacks compared with 
white patients. 

Dooley et al  
Kidney Int. 1997 
Apr;51(4):1188-
95. 

Cyclo-
phosphamide 
Pathway (PK) 

cyclophospha
mide 

JPT_CEU 
   

JPT 
 

Ma B  
Radiother Oncol. 
2002 
Feb;62(2):185-9. 

Doxoru-
bicin 

Doxorubicin 
Pathway 

Doxorubicin ASW_CEU 
   

ASW 
Increased cardiotoxicity 
in AA 

Hershman et 
al 

 

J Clin Oncol. 
2005 Sep 
20;23(27):6639-
46. 

Doxorubicin 
Pathway 

Doxorubicin ASW_CEU 
   

ASW 
Increased cardiotoxicity 
in AA 

Hershman et 
al 

 

J Clin Oncol. 
2005 Sep 
20;23(27):6639-
46. 

 

EGFR inhibit
 

EGFR 
Inhibitor 
Pathway (PD) 

Erlotinib JPT_CEU 
 

JPT CEU   

Higher response to 
gefitinib and erlotinib 
in patients of Asian 
origin 

Calvo et al  

J Clin Oncol. 
2006 May 
10;24(14):2158-
63. 

EGFR 
Inhibitor 
Pathway (PD) 

Gefitinib JPT_CEU 
 

JPT CEU   

Higher response to 
gefitinib and erlotinib 
in patients of Asian 
origin 

Calvo et al  

J Clin Oncol. 
2006 May 
10;24(14):2158-
63. 

EGFR EGFR JPT_CEU JPT CEU   The response rates to Fukuoka et  J Clin Oncol. 
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Inhibitor 
Pathway (PD) 

antagonists 
(NSCLC, 
erlotinib) 

treatment with these 
agents are higher in 
Asians than Caucasians, 
but highest in Asian 
females with tumours 
of adenocarcinoma 
histology who have 
never smoked. 

al; Kris et al 2003 Jun 
15;21(12):2237-
46. Epub 2003 
May 14; JAMA. 
2003 Oct 
22;290(16):2149
-58 

EGFR 
Inhibitor 
Pathway (PD) 

EGFR 
inhibitors 

JPT_CEU 
 

JPT CEU   
 

Thatcher et al  

Lancet. 2005 Oct 
29-Nov 
4;366(9496):152
7-37. 

Erlotinib  
Erlotinib 
Pathway (PK) 

EGFR 
antagonists 
(NSCLC, 
erlotinib) 

JPT_CEU 
   

  

The response rates to 
treatment with these 
agents are higher in 
Asians than Caucasians, 
but highest in Asian 
females with tumours 
of adenocarcinoma 
histology who have 
never smoked. 

Fukuoka et 
al; Kris et al 

 

J Clin Oncol. 
2003 Jun 
15;21(12):2237-
46. Epub 2003 
May 14; JAMA. 
2003 Oct 
22;290(16):2149
-58 

Etoposide  
Etoposide 
Pathway 

Cisplatin and 
irinotecan/eto
poside 

JPT_CEU 
   

JPT 

Much greater toxicity is 
experienced by 
Japanese patients 
treated with cisplatin 
and either irinotecan or 
etoposide as Compared 
to similarly treated 
Caucasian patients 

Phan et al  

Expert Opin 
Drug Metab 
Toxicol. 2009 
Mar;5(3):243-57. 

Fluoropyri
midine 

Fluoro-
pyrimidine 
(PK) 

5-fluorouracil ASW_CEU 
   

ASW 
Hematologic toxicities 
more common in AA > 
CAU; 

McCollum et 
al 

 
J Natl Cancer 
Inst. 2002 Aug 
7;94(15):1160-7. 

Fluoro-
pyrimidine 
(PK) 

5-fluorouracil ASW_CEU 
   

CEU 

Overall incidence of 
any toxicity was 
actually lower in 
African Americans 
compared with 

McCollum et 
al 

 
J Natl Cancer 
Inst. 2002 Aug 
7;94(15):1160-7. 
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Caucasians (P = 0.005) 

Fluoro-
pyrimidine 
(PK) 

irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Fluoro-
pyrimidine 
(PK) 

irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Fluoro-
pyrimidine 
(PK) 

irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Fluoro-
pyrimidine 
(PK) 

irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Glucocortic
oid and 
inflammato
ry 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(HPA axis) 

Glucocorticoi
ds 

ASW_CEU 
   

ASW 

Race-dependent 
clinically significant 
adverse effects (steroid-
associated diabetes) 

Tornatore et 
al 

 
Transplantation. 
1995 Mar 
15;59(5):729-36. 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(HPA axis) 

Glucocorticoi
ds 
(methylpredni
solone) 

ASW_CEU 
 

ASW CEU   
Almost 50% lower 
clearance in the Black 
population 

Tornatore et 
al 

 
Pharmacotherapy
. 1993 Sep-
Oct;13(5):481-6. 

Glucocorticoid 
and 

Nicotine 
ASW_ME
X  

ASW CEU   
Blacks have a higher 
exposure to nicotine 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 
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Inflammatory 
genes Pathway 
(PD) 

and cotinine than 
Caucasians and 
Mexican Americans 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(PD) 

Nicotine ASW_CEU 
 

ASW MEX   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(PD) 

Glucocorticoi
ds 

ASW_CEU 
   

ASW 

Race-dependent 
clinically significant 
adverse effects (steroid-
associated diabetes) 

Tornatore et 
al 

 
Transplantation. 
1995 Mar 
15;59(5):729-36. 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(PD) 

Glucocorticoi
ds 
(methylpredni
solone) 

ASW_CEU 
 

ASW CEU   
Almost 50% lower 
clearance in the Black 
population 

Tornatore et 
al 

 
Pharmacotherapy
. 1993 Sep-
Oct;13(5):481-6. 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(Regulation) 

Nicotine 
ASW_ME
X  

ASW CEU   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(Regulation) 

Nicotine ASW_CEU 
 

ASW MEX   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 
(Regulation) 

Glucocorticoi
ds 

ASW_CEU 
   

ASW 

Race-dependent 
clinically significant 
adverse effects (steroid-
associated diabetes) 

Tornatore et 
al 

 
Transplantation. 
1995 Mar 
15;59(5):729-36. 

Glucocorticoid 
and 
Inflammatory 
genes Pathway 

Glucocorticoi
ds 
(methylpredni
solone) 

ASW_CEU 
 

ASW CEU   
Almost 50% lower 
clearance in the Black 
population 

Tornatore et 
al 

 
Pharmacotherapy
. 1993 Sep-
Oct;13(5):481-6. 



   

280 
 

(Regulation) 

Ifosfamide  

Ifosfamide 
Pathway 

Ifosfamide JPT_CEU 
   

  

CYP2C19 is involved 
in the metabolism of 
cyclophosphamide, 
ifosfamide, S-
mephenytoin, R-
warfarin and 
antidepressants, all of 
which are commonly 
used in cancer patients. 

Phan et al  

Expert Opin 
Drug Metab 
Toxicol. 2009 
Mar;5(3):243-57. 

Ifosfamide 
Pathway (PK) 

Ifosfamide JPT_CEU 
   

  

CYP2C19 is involved 
in the metabolism of 
cyclophosphamide, 
ifosfamide, S-
mephenytoin, R-
warfarin and 
antidepressants, all of 
which are commonly 
used in cancer patients. 

Phan et al  

Expert Opin 
Drug Metab 
Toxicol. 2009 
Mar;5(3):243-57. 

Imatinib 
Imatinib 
pathway 

Desatinib Asians_CEU
Asian-
CEU   

  

Results from 55 Asian 
and 615 non-Asian 
patients demonstrated 
that the efficacy and 
safety of dasatinib was 
comparable. Dasatinib 
was well tolerated, with 
no observed toxicities 
exclusive to Asian 
patients. A higher 
incidence of adverse 
events and lower rate of 
response observed 
among Asian patients 
with myeloid blast 
phase CML reflected 
the aggressive nature of 
the disease. 

Kim et al  
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Imipramine 
desi-
pramine 

Imipramine 
Desipramine 
Pathway (PK) 

Clomipramin
e, doxepin, 
imipramine 

Barbados and Saudi 
Arabia   

  

Higher plasma levels 
for tricyclic 
antidepresantidepressan
ts in patients from 
Barbados 
(clomipramine) or 
Saudi Arabia (doxepin 
or imipramine) 
in patients from 
Barbados 
(clomipramine)102 or 

El Yazigi et 
al 

 
Pharm Res 
1987;4: S87 

Imipramine 
Desipramine 
Pathway (PK) 

Clomipramin
e, doxepin, 
imipramine 

Barbados and Saudi 
Arabia   

  

Higher plasma levels 
for tricyclic 
antidepresantidepressan
ts in patients from 
Barbados 
(clomipramine) or 
Saudi Arabia (doxepin 
or imipramine) 
in patients from 
Barbados 
(clomipramine)102 or 

Mahy  GE  
West Indian Med 
J. 1978 
Jun;27(2):75-80. 

Imipramine 
Desipramine 
Pathway (PK) 

Desipramine CHB_CEU 
   

  

Mean total clearance of 
DMI ( CLDMI ) from 
plasma was 
significantly (P less 
than 0.05) higher in the 
Caucasians (123 +/- 57 
l/h) than in the Chinese 
(73.5 +/- 38.8 l/h). 

Rudorfer et al  

Br J Clin 
Pharmacol. 1984 
April; 17(4): 
433–440.  

Irinotecan  
Irinotecan 
Pathway 

Cisplatin and 
irinotecan/eto
poside 

JPT_CEU 
   

JPT 

Much greater toxicity is 
experienced by 
Japanese patients 
treated with cisplatin 
and either irinotecan or 
etoposide as compared 
to similarly treated 

Phan et al  

Expert Opin 
Drug Metab 
Toxicol. 2009 
Mar;5(3):243-57. 
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Caucasian patients 

Irinotecan 
Pathway 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 

Carboplatin, 
paclitaxel, 
cisplatin, 
irinotecan, 
etopopside 

JPT_CEU 
   

JPT 

Neutropenia in patients 
receiving a combination 
of platinum and 
antimicrotubule agents 
may be more severe in 
Japanese than in 
Europeans and 
Americans 

Sekine et al  

Br J Cancer. 
2008 Dec 
2;99(11):1757-
62. Epub 2008 
Nov 4. 

Irinotecan 
Pathway 
(Cancer) 

Cisplatin and 
irinotecan/eto
poside 

JPT_CEU 
   

JPT 

much greater toxicity is 
experienced by 
Japanese patients 
treated with cisplatin 

Phan et al  

Expert Opin 
Drug Metab 
Toxicol. 2009 
Mar;5(3):243-57. 
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and either irinotecan or 
etoposide as compared 
to similarly treated 
Caucasian patients 

Irinotecan 
Pathway 
(Cancer) 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 
(Cancer) 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 
(Cancer) 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 
(Cancer) 

Irinotecan/flu
orouracil, 
fluorouracil/o
xaliplatin, or 
irinotecan/ox
aliplatin 

ASW_CEU 
   

ASW 
Response rate and 
adverse events vary 
considerably by race 

Sanoff et al  

J Clin Oncol. 
2009 Sep 
1;27(25):4109-
15. Epub 2009 
Jul 27. 

Irinotecan 
Pathway 
(Cancer) 

Carboplatin, 
paclitaxel, 
cisplatin, 
irinotecan, 
etopopside 

JPT_CEU 
   

JPT 

Neutropenia in patients 
receiving a combination 
of platinum and 
antimicrotubule agents 
may be more severe in 
Japanese than in 
Europeans and 
Americans 

Sekine et al  

Br J Cancer. 
2008 Dec 
2;99(11):1757-
62. Epub 2008 
Nov 4. 

Irinotecan Irinotecan JPT_CEU JPT Different grade of Sekine et al  Br J Cancer. 
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Pathway 
(Cancer) 

toxicity 2008 Dec 
2;99(11):1757-
62. Epub 2008 
Nov 4. 

Metho-
trexate  

Methotrexate Methotrexate ASW_CEU 
   

ASW 

The presence of the C 
allele at the 
exon 7 rs4846051 SNP 
was associated with a 
higher mean 
toxicity score among 
African-Americans than 
Caucasians 
(0.371 v 0.078, 
p=0.050). The presence 
of at least one copy 
of haplotype 4 (which 
contains the rs4846051 
C allele) was 
also associated with a 
higher toxicity score 
among the African- 
Americans (p=0.03). 

Hughes et al  

Ann Rheum Dis. 
2006 
Sep;65(9):1213-
8. Epub 2006 Jan 
26. 

Methotrexate Methotrexate ASW_CEU 
   

  

Methotrexate (MTX) 
pathway gene 
polymorphisms and 
their effects on MTX 
toxicity in Caucasian 
and African American 
patients with 
rheumatoid arthritis. 

Ranganathan 
et al 

 

J Rheumatol. 
2008 
Apr;35(4):572-9. 
Epub 2008 Mar 
15. 

Nicotine 

Nicotine 
Pathway 

Nicotine 
ASW_ME
X  

ASW CEU   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Nicotine 
Pathway 

Nicotine ASW_CEU 
 

ASW MEX   
Blacks have a higher 
exposure to nicotine 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 
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and cotinine than 
Caucasians and 
Mexican Americans 

Nicotine 
Pathway 

Nicotine ASW_CEU 
 

ASW CEU   

Total clearance of 
cotinine, the fractional 
conversion of nicotine 
to cotinine, and the 
metabolic clearance of 
nicotine to cotinine 
were all significantly 
lower in Blacks than in 
Caucasians 

Ethnic 
differences in 
N-
glucuronidati
on of nicotine 
and cotinine. 

 

J Pharmacol Exp 
Ther. 1999 
Dec;291(3):1196
-203. 

Nicotine 
Pathway 

Nicotine JPT_ASW 
 

ASW JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97

Nicotine 
Pathway 

Nicotine JPT_CEU 
 

CEU JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97. 

Nicotine 
Pathway 

Nicotine JPT_KOREAN 
KOREA
N 

JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Nicotine PD 
Pathway 
(Chromaffin 
Cell) 

Nicotine 
ASW_ME
X  

ASW CEU   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Nicotine PD 
Pathway 
(Chromaffin 
Cell) 

Nicotine ASW_CEU 
 

ASW MEX   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Nicotine PD 
Pathway 
(Chromaffin 

Nicotine ASW_CEU 
 

ASW CEU   
Total clearance of 
cotinine, the fractional 
conversion of nicotine 

Ethnic 
differences in 
N-

 
J Pharmacol Exp 
Ther. 1999 
Dec;291(3):1196
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Cell) to cotinine, and the 
metabolic clearance of 
nicotine to cotinine 
were all significantly 
lower in Blacks than in 
Caucasians 

glucuronidati
on of nicotine 
and cotinine. 

-203. 

Nicotine PD 
Pathway 
(Chromaffin 
Cell) 

Nicotine JPT_ASW 
 

ASW JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Nicotine PD 
Pathway 
(Chromaffin 
Cell) 

Nicotine JPT_CEU 
 

CEU JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Nicotine PD 
Pathway 
(Chromaffin 
Cell) 

Nicotine JPT_KOREAN 
KORE
AN 

JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Nicotine PD 
Pathway 
(Dopaminergic 
Neuron) 

Nicotine 
ASW_ME
X  

ASW CEU   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Nicotine PD 
Pathway 
(Dopaminergic 
Neuron) 

Nicotine ASW_CEU 
 

ASW MEX   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Nicotine PD 
Pathway 
(Dopaminergic 
Neuron) 

Nicotine ASW_CEU 
 

ASW CEU   

Total clearance of 
cotinine, the fractional 
conversion of nicotine 
to cotinine, and the 
metabolic clearance of 
nicotine to cotinine 
were all significantly 
lower in Blacks than in 
Caucasians 

Ethnic 
differences in 
N-
glucuronidati
on of nicotine 
and cotinine. 

 

J Pharmacol Exp 
Ther. 1999 
Dec;291(3):1196
-203. 
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Nicotine PD 
Pathway 
(Dopaminergic 
Neuron) 

Nicotine JPT_ASW 
 

ASW JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Nicotine PD 
Pathway 
(Dopaminergic 
Neuron) 

Nicotine JPT_CEU 
 

CEU JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Nicotine PD 
Pathway 
(Dopaminergic 
Neuron) 

Nicotine JPT_KOREAN 
KORE
AN 

JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Phenytoin 

Phenytoin PK 
Pathway 

Phenytoin JPT_CEU 
 

JPT CEU   

Approximately  four- to 
fivefold more Asians 
are "slow" phenytoin 
metabolizers

Bertilsson et 
al 

 

Clin Pharmacol 
Ther. 1993 
May;53(5):608-
10.

Phenytoin PK 
Pathway 

Phenytoin ASW_CEU 
 

ASW CEU   

Phenytoin metabolism 
is slowed in Black as 
compared to Caucasian 
individuals 

Edeki et al  
Drug Metab Rev. 
1995;27(3):449-
69. 

Platelet 
aggregation 

Platelet 
Aggregation 
Pathway (PD) 

Calcium 
channel 
blockers 

ASW_CEU 
 

ASW CEU   
Different reduction of 
blood pressure 

Brewster et al  

Ann Intern Med. 
2004 Oct 
19;141(8):614-
27. 

Platinum  

Platinum 
Pathway 

Cisplatin and 
irinotecan/eto
poside 

JPT_CEU 
   

JPT 
 

Phan et al  

Expert Opin 
Drug Metab 
Toxicol. 2009 
Mar;5(3):243-57. 

Platinum 
Pathway 

Carboplatin 
and paclitaxel 

JPT_CEU 
   

JPT 

To support this 
approach, they have 
published data 
comparing toxicity and 
response for similar 
chemotherapy regimens 
used in Asian and 
Caucasian cohorts 

Sekine et al  

Lung Cancer. 
2006 
Aug;53(2):157-
64. Epub 2006 
Jun 15. 

Platinum Carboplatin, JPT_CEU JPT Neutropenia in patients Sekine et al  Br J Cancer. 
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Pathway paclitaxel, 
cisplatin, 
irinotecan, 
etopopside 

receiving a combination 
of platinum and 
antimicrotubule agents 
may be more severe in 
Japanese than in 
Europeans and 
Americans 

2008 Dec 
2;99(11):1757-
62. Epub 2008 
Nov 4. 

Platinum 
Pathway 

Paclitaxel JPT_CEU 
 

JPT CEU   
Paclitaxel sensitivity in 
cancer cells 

Kwon et al  

Cancer Lett. 
2009 May 
18;277(2):155-
63. Epub 2009 
Jan 12. 

Proton 
pump 
inhibitor 

Proton Pump 
Inhibitor (PD) 

Omeprazole CHB_CEU 
 

CHB CEU   

The AUC values noted 
in the Chinese group 
were significantly 
higher than those in the 
Caucasian group 

Caraco et al  

Clin Pharmacol 
Ther. 1996 
Aug;60(2):157-
67. 

Proton Pump 
Inhibitor (PK) 

Omeprazole CHB_CEU 
 

CHB CEU   

The AUC values noted 
in the Chinese group 
were significantly 
higher than those in the 
Caucasian group 

Caraco et al  

Clin Pharmacol 
Ther. 1996 
Aug;60(2):157-
67. 

RAAS 

Renin-
Angiotensin-
Aldosterone-
System-acting 
Drug Pathway 

Enalapril ASW_CEU 
 

CEU ASW   

Hypertension and 
hospitalization for heart 
failure reduced in 
Whites but not in 
Blacks with left 
ventricular dysfunction 

Exner et al  

N Engl J Med. 
2001 May 
3;344(18):1351-
7. 

Renin-
Angiotensin-
Aldosterone-
System-acting 
Drug Pathway 

Captopril/Can
desartan 

ASW_CEU 
 

CEU ASW   

White individuals 
demonstrated a strong, 
significant correlation 
between responses to 
these drugs (r = 0.78, P 
= 0.008) and a 
significantly greater 
increase in the renal 
plasma flow in response 

Forman et al  
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to candesartan 
compared with 
captopril 

Renin-
Angiotensin-
Aldosterone-
System-acting 
Drug Pathway 

Enalapril CHS_MAS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Renin-
Angiotensin-
Aldosterone-
System-acting 
Drug Pathway 

Enalapril CHS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

Renin-
Angiotensin-
Aldosterone-
System-acting 
Drug Pathway 

Enalapril MAS_INS 
   

  
Ethnic distribution of ADR reports 
showed statistically significant 
difference with the general population 

 

SSRI 

Selective 
Serotonin 
Reuptake 
Inhibitors 
(SSRI) 
Pathway 

Fluoxetine Latinos-ASW-CEU CEU ASW   

Attrition was greater 
among Latinos than 
either blacks or whites. 
Black patients were 
more likely than whites 
to be nonresponders to 
fluoxetine. Latinos 
were more likely to 
respond to placebo 
compared with blacks 
and whites. 

Wagner et al  
Psychiatr Serv 
49:239-240, 
February 1998 

Statin   

Statin Pathway 
(Atorvastatin 
Lovastatin and 
Simvastatin 
PK) 

Statins CHB_CEU 
 

CHB CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(Atorvastatin 
Lovastatin and 

Statins JPT_CEU 
 

JPT CEU   
Higher plasma levels of 
statins in Asians 
compared with 

Liao JK  
Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
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Simvastatin 
PK) 

Caucasians Epub 2006 Dec 
15. 

Statin Pathway 
(Cholesterol 
and 
Lipoprotein 
Transport PD) 

Statins CHB_CEU 
 

CHB CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(Cholesterol 
and 
Lipoprotein 
Transport PD) 

Statins JPT_CEU 
 

JPT CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(Fluvastatin 
PK) 

Statins CHB_CEU 
 

CHB CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(Fluvastatin 
PK) 

Statins JPT_CEU 
 

JPT CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(PK) 

Statins CHB_CEU 
 

CHB CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(PK) 

Statins JPT_CEU 
 

JPT CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(Pravastatin 
PK) 

Statins CHB_CEU 
 

CHB CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 
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Statin Pathway 
(Pravastatin 
PK) 

Statins JPT_CEU 
 

JPT CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(Rosuvastatin 
PK) 

Statins CHB_CEU 
 

CHB CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Statin Pathway 
(Rosuvastatin 
PK) 

Statins JPT_CEU 
 

JPT CEU   

Higher plasma levels of 
statins in Asians 
compared with 
Caucasians 

Liao JK  

Am J Cardiol. 
2007 Feb 
1;99(3):410-4. 
Epub 2006 Dec 
15. 

Sympa-
thetic nerve  

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Isoproterenol ASW_CEU 
 

CEU ASW   

Vasodilation response 
to isoproterenol 
markedly lower in 
Blacks 

Johnson et al  
J Cardiovasc 
Pharmacol. 1995 
Jan;25(1):90-6. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Propranolol MAS_CHS 
 

MAS CHS   

Malays to have 
significantly greater 
propranolol responses 
compared to Chinese 
healthy male subjects 

Rasool et al  

Int J Clin 
Pharmacol Ther. 
2000 
May;38(5):260-
9. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Nitroglycerin ASW_CEU 
 

CEU ASW   

Lower transdermal 
availability of 
nitroglycerin in 4 Black 
subjects as opposed to 
12 Caucasian and Asian 
subjects 

Williams et al  
Pharm Res. 1991 
Jun;8(6):744-9. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Nitroglycerin ASW_CEU 
 

CHB ASW   

Lower transdermal 
availability of 
nitroglycerin in 4 Black 
subjects as opposed to 
12 Caucasian and Asian 
subjects 

Williams et al  
Pharm Res. 1991 
Jun;8(6):744-9. 
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Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Nitroglycerin ASW_CEU 
 

JPT ASW   

Lower transdermal 
availability of 
nitroglycerin in 4 Black 
subjects as opposed to 
12 Caucasian and Asian 
subjects 

Williams et al  
Pharm Res. 1991 
Jun;8(6):744-9. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Propranolol CHB_CEU 
 

CHB CEU   

Chinese men had a 2- to 
3-fold greater 
sensitivity to 
propranolol's effect on 
heart rate and a 10-fold 
greater sensitivity to the 

BP effect than 
Caucasian men. 

Zhou et al  
N Engl J Med. 
1989 Mar 
2;320(9):565-70. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Beta-blockers ASW_CEU 
 

ASW CEU   Different reduction of blood pressure  
JAMA. 1982 Oct 
22;248(16):2004
-11. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Beta-blockers ASW_CEU 
 

ASW CEU   Different reduction of blood pressure  
JAMA. 1982 Oct 
22;248(16):2004
-11. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Propranolol ASW_CEU 
 

CEU ASW   
Antihypertensive effect greater in 
Whites 

 
JAMA. 1982 Oct 
22;248(16):1996
-2003. 

Sympathetic 
Nerve 
Pathway 
(Neuroeffector 
Junction) 

Propranolol CHB_CEU 
 

CHB CEU   
Chinese twice as sensitive to effects on 
blood pressure and heart rate 

 
JAMA. 1982 Oct 
22;248(16):1996
-2003. 

Sympathetic 
Nerve 
Pathway (Pre- 

Nicotine 
ASW_ME
X  

ASW CEU   
Blacks have a higher 
exposure to nicotine 
and cotinine than 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 
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and Post-
Ganglionic 
Junction) 

Caucasians and 
Mexican Americans 

Sympathetic 
Nerve 
Pathway (Pre- 
and Post-
Ganglionic 
Junction) 

Nicotine ASW_CEU 
 

ASW MEX   

Blacks have a higher 
exposure to nicotine 
and cotinine than 
Caucasians and 
Mexican Americans 

Caraballo et 
al 

 
JAMA. 1998 Jul 
8;280(2):135-9. 

Sympathetic 
Nerve 
Pathway (Pre- 
and Post-
Ganglionic 
Junction) 

Nicotine ASW_CEU 
 

ASW CEU   

Total clearance of 
cotinine, the fractional 
conversion of nicotine 
to cotinine, and the 
metabolic clearance of 
nicotine to cotinine 
were all significantly 
lower in Blacks than in 
Caucasians 

Ethnic 
differences in 
N-
glucuronidati
on of nicotine 
and cotinine. 

 

J Pharmacol Exp 
Ther. 1999 
Dec;291(3):1196
-203. 

Sympathetic 
Nerve 
Pathway (Pre- 
and Post-
Ganglionic 
Junction) 

Nicotine JPT_ASW 
 

ASW JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Sympathetic 
Nerve 
Pathway (Pre- 
and Post-
Ganglionic 
Junction) 

Nicotine JPT_CEU 
 

CEU JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Sympathetic 
Nerve 
Pathway (Pre- 
and Post-
Ganglionic 
Junction) 

Nicotine JPT_KOREAN 
KORE
AN 

JPT   

Decrease nicotine-to-
cotinine metabolism in 
Japanese compared to 
other pops 

Nakajima et 
al 

 

Clin Pharmacol 
Ther. 2006 
Sep;80(3):282-
97 

Taxane  Taxane Docetaxel ASW_CEU CEU-   Docetaxel clearance Lewis et al  Clin Cancer Res 
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Pathway ASW and its associated 
myelosuppression were 
similar in African-
American and 
Caucasian cancer 
patients.  

June 1, 2007 13; 
3302  

Taxane 
Pathway 

Carboplatin 
and paclitaxel 

JPT_CEU 
   

JPT 

To support this 
approach, they have 
published data 
comparing toxicity and 
response for similar 
chemotherapy regimens 
used in Asian and 
Caucasian cohorts 

Sekine et al  

Lung Cancer. 
2006 
Aug;53(2):157-
64. Epub 2006 
Jun 15. 

Taxane 
Pathway 

Carboplatin, 
paclitaxel, 
cisplatin, 
irinotecan, 
etopopside 

JPT_CEU 
   

JPT 

Neutropenia in patients 
receiving a combination 
of platinum and 
antimicrotubule agents 
may be more severe in 
Japanese than in 
Europeans and 
Americans 

Sekine et al  

Br J Cancer. 
2008 Dec 
2;99(11):1757-
62. Epub 2008 
Nov 4. 

Taxane 
Pathway 

Paclitaxel JPT_CEU 
 

JPT CEU   
paclitaxel sensitivity in 
cancer cells 

Kwon et al  

Cancer Lett. 
2009 May 
18;277(2):155-
63. Epub 2009 
Jan 12. 

Tenofovir 
adefovir  

Tenofovir 
Adefovir 
pathway 

Adefovir 
dipivoxil 

CHB_CEU 
CHB-
CEU   

  

There were no 
significant differences 
in treatment response 
between Asians and 
Caucasians. Adefovir 
dipivoxil was well 
tolerated and no 
resistance developed up 
to week 48 in both 
racial groups 

Lim et al  
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Thiopurine  

Thiopurine 
Pathway 

Azathioprine ASW_CEU 
 

ASW CEU   

Racial differences are 
likely to be a minor 
determinant in 
concentrations; 
however, a greater 
percentage of Japanese 
and African-Americans 
display increased 
TPMT activity 

Chocair et al  
Q J Med. 1993 
Jun;86(6):359-
63. 

Thiopurine 
Pathway 

Azathioprine JPT_CEU 
 

JPT CEU   

Racial differences are 
likely to be a minor 
determinant in 
concentrations; 
however, a greater 
percentage of Japanese 
and African-Americans 
display increased 
TPMT activity 
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Appendix 7. Functional gene region distribution of chromosome 6 tcd SNPs in the CEU-GBR population 
pair 

 

Gene 
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 U

T
R

  

3'
 D

R
 Exon Intron 

NA 
Grand 
Total 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 13 14 19 

ATAT1       1                               3                   4 

  NM_001031722.2                                       1                   1 

  NM_001254952.1                                       1                   1 

  NM_014046.3       1                                                   1 

  NM_024909.2                                       1                   1 

C6orf136 3 1   11                       2                           17 

  NM_001031722.2       3                                                   3 

  NM_001109938.2 1                             1                           2 

  NM_001161376.1 1                             1                           2 

  NM_001164239.1       3                                                   3 

  NM_001254952.1       1                                                   1 

  NM_003587.4       3                                                   3 

  NM_024909.2       1                                                   1 

  NM_145029.3 1 1                                                       2 

C6orf15 8     9 3                                                 20 

  NM_001264.4       8                                                   8 

  NM_014068.2 8                                                         8 

  NM_014070.2       1 3                                                 4 

CCHCR1                                               3           3 

  NM_001105563.1                                               1           1 
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  NM_001105564.1                                               1           1 

  NM_019052.3                                               1           1 

CDSN 37 12 18 1   10                 30                             108 

  NM_001264.4   12 18 1   10                                               41 

  NM_014068.2 2                           30                             32 

  NM_014070.2 35                                                         35 

DDR1 18                               3 1 1 1       2 2 2       30 

  NM_001202521.1 2                               1             1           4 

  NM_001202522.1 2                               1             1           4 

  NM_001202523.1 4                                 1             1         6 

  NM_001954.4 4                                     1           1       6 

  NM_013993.2 4                                   1             1       6 

  NM_013994.2 2                               1               1         4 

DHX16 4     9                                 2             2   17 

  NM_001109938.2       1                                                   1 

  NM_001134870.1       3                                                   3 

  NM_001161376.1       1                                                   1 

  NM_001164239.1 2                                       1             1   4 

  NM_003587.4 2                                       1             1   4 

  NM_133471.3       3                                                   3 

  NM_145029.3       1                                                   1 

DPCR1 3 2 1   2                   4                             12 

  NM_080870.3 3 2 1   2                   4                             12 

FLOT1                                   5       15               20 

  NM_005803.2                                   5       15               20 

GTF2H4 1     6                                                   7 

  NM_001202521.1       1                                                   1 

  NM_001202522.1       1                                                   1 

  NM_001202523.1       1                                                   1 
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  NM_001517.4 1                                                         1 

  NM_001954.4       1                                                   1 

  NM_013993.2       1                                                   1 

  NM_013994.2       1                                                   1 

HCG18 27                                                         27 

  NM_001199119.1 3                                                         3 

  NM_021253.3 12                                                         12 

  NM_172016.2 12                                                         12 

HLA-C 16   2 6     6 10 4   4         9 12 14 27 6 6               1 123 

  NM_001243042.1 8   1 2     3 5 2   2         4 6 7 13 3 3                 59 

  NM_002117.5 8   1 4     3 5 2   2         5 6 7 14 3 3               1 64 

MDC1 2     1                     1                       1     5 

  NM_014641.2       1                     1                       1     3 

  NM_178014.2 2                                                         2 

MRPS18B 1                                 1                       2 

  NM_002714.3 1                                                         1 

  NM_014046.3                                   1                       1 

MUC21 1   3     1                                               5 

  NM_001010909.2     3     1                                               4 

  NM_001198815.1 1                                                         1 

MUC22                             1 6                           7 

  NM_001198815.1                             1 6                           7 

POU5F1       4                     1 2                           7 

  NM_001077511.1       2                                                   2 

  NM_001173531.1                               1                           1 

  NM_002701.4                               1                           1 

  NM_007109.2       2                                                   2 

  NM_203289.4                             1                             1 

PPP1R10                               1           1               2 



   

303 
 

  NM_002714.3                               1           1               2 

PPP1R11 2     14                                                   16 

  NM_001278785.1       2                                                   2 

  NM_001278786.1       2                                                   2 

  NM_014596.5       2                                                   2 

  NM_021959.2 2                                                         2 

  NM_025236.3       3                                                   3 

  NM_170769.2       3                                                   3 

  NM_170783.3       2                                                   2 

PPP1R18       15 3                   3                             21 

  NM_001134870.1                             3                             3 

  NM_001270707.1       3                                                   3 

  NM_001270708.1       3                                                   3 

  NM_001270709.1       3                                                   3 

  NM_001270710.1       3                                                   3 

  NM_007243.2       3                                                   3 

  NM_133471.3         3                                                 3 

PRR3 1                             1 1                         3 

  NM_001077497.2                               1                           1 

  NM_005275.3 1                                                         1 

  NM_025263.3                                 1                         1 

PSORS1C1 1   1 18                         4                         24 

  NM_001105563.1       5                                                   5 

  NM_001105564.1       5                                                   5 

  NM_014068.2     1                           4                         5 

  NM_014069.2 1     3                                                   4 

  NM_019052.3       5                                                   5 

PTMAP1                                       9                   9 

  NM_001031722.2                                       3                   3 
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  NM_001254952.1                                       3                   3 

  NM_024909.2                                       3                   3 

RNF39       2                     2                             4 

  NM_021959.2       2                                                   2 

  NM_025236.3                             1                             1 

  NM_170769.2                             1                             1 

RPP21 6   7 40         14     1   5     6 3       2 1             85 

  NM_001199119.1     1 1               1   5               2 1             11 

  NM_001199120.1 2   1 1         7               2 1                       14 

  NM_001199121.1 2   4 1                         2 1                       10 

  NM_021253.3       18                                                   18 

  NM_024839.2 2   1 1         7               2 1                       14 

  NM_172016.2       18                                                   18 

SFTA2 5                                                         5 

  NM_205854.2 5                                                         5 

TRIM10 6 2 26 21                                                   55 

  NM_006778.3   1 13 1                                                   15 

  NM_033229.2 6                                                         6 

  NM_052828.2   1 13 1                                                   15 

  NM_138700.3       19                                                   19 

TRIM15 12                           1       1                     14 

  NM_006778.3 6                                                         6 

  NM_033229.2                             1       1                     2 

  NM_052828.2 6                                                         6 

TRIM26   6 2 2       4             2 6 4 1 11 10                   48 

  NM_001242783.1   6 1 1                     1 4   1 10                     24 

  NM_003449.4     1 1       4             1 2 4   1 10                   24 

TRIM31                                     3 7                   10 

  NM_007028.3                                     3 7                   10 
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TRIM39 31 4   6           1   1 1       3   6 4                   57 

  NM_001199119.1 8                 1             3     4                   16 

  NM_001199120.1 5                                                         5 

  NM_001199121.1 5                                                         5 

  NM_021253.3 4 2   3                 1           3                     13 

  NM_024839.2 5                                                         5 

  NM_172016.2 4 2   3               1             3                     13 

TRIM39-RPP21 12   3 16         14 1   2 1 5                               54 

  NM_001199119.1                   1   1   5                               7 

  NM_001199120.1 4               7                                         11 

  NM_001199121.1 4   3                                                     7 

  NM_021253.3       8                 1                                 9 

  NM_024839.2 4               7                                         11 

  NM_172016.2       8               1                                   9 

TRIM40 6 29 1 22         1           8 2   1                       70 

  NM_006778.3       10                                                   10 

  NM_052828.2       10                                                   10 

  NM_138700.3 6 29 1 2         1           8 2   1                       50 

VARS2   2   2   4                                       1 2     11 

  NM_001167733.1   2                                               1       3 

  NM_001167734.1           2                                         1     3 

  NM_001517.4       2                                                   2 

  NM_020442.4           2                                         1     3 

ZNRD1 2                               1 3                       6 

  NM_001278785.1                                   1                       1 

  NM_001278786.1                                   1                       1 

  NM_014596.5                                   1                       1 

  NM_021959.2 2                                                         2 

  NM_170783.3                                 1                         1 
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