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SUMMARY

Software maintenance takes up the major cost of a software project. When changes are made

on software, extensive testing and debugging activities are performed to preserve software quality.

Most of the existing testing and debugging techniques only focus on the current software version

while ignoring previous program versions. However, we observe that previous software versions

can be exploited to benefit these techniques in the following ways: (i) previous software versions

serve as the reference for the current version with respect to unchanged software behavior, and (ii)

previous analysis results can be reused given that they are not affected by software changes. We also

observe that the recent advance in dynamic symbolic execution provides the adequate machinery for

building semantic analysis techniques. Built upon these observations, we present several techniques

for maintaining software quality in software evolution.

This thesis consists of the following five parts. First, we develop a test-suite augmentation

technique based on code changes. We generate a test-input that has different outputs in the previous

and current programs. The generated test-input can be helpful for comprehending program changes

as well as testing the changed functionality of the program. Guided by program control structure

and program changes, our technique was shown to be efficient in generating change-exposing test

cases. Second, we present DARWIN, a debugging technique for evolving programs. When a bug

is found through testing, we use DARWIN to locate the root cause of the bug. While using path

condition to extract program semantics, our debugging technique could be more accurate than

syntactic based approaches. Moreover, our DARWIN technique is also applicable to two entirely

different implementations of the same specification. Third, we present a path partitioning technique

that improves the state-of-the-art in dynamic symbolic execution. Program paths with the same

input-output relationship are grouped in the same partition that is captured by relevant-slice condition.

By improving dynamic symbolic execution, our debugging technique DARWIN achieves better

x



efficiency and more accurate results. Fourth, we present the notion of change contracts, a contract

language to document user intention of changes. Program requirement plays the most critical role in

any testing and debugging activities. Unfortunately, a large volume of code does not come with any

formal requirements, leaving program contract checking with full requirement unrealistic. Assuming

that previous program versions are thoroughly tested, our proposed changed contract allows the

users to only specify the changed program behavior. We have confirmed the usability of change

contract via a user study with real-world program changes. Finally, we present a technique to localize

program failure causes due to evolving execution environments.

As evidenced by comprehensive user studies and experiments on real-life programs, our proposed

approaches ease various tasks in maintaining software quality, thereby helping to produce quality

software in the face of never-ending software evolution.
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CHAPTER I

Introduction

Software correctness is the top concern in the life-cycle of any software. The issue of software

correctness exists in every step of the software life-cycle, including the initial requirement engineering,

software writing, testing, debugging and bug-fixing. Failing to provide software correctness leads

to costly remedial actions. It was estimated that software defects cost 59.5 billion in the Unites

States annually [12]. In addition to economic cost, software defects may also cause severe damage to

human lives. For example, a software bug in the radiation therapy device Therac-25 caused the death

of at least five people and the injury of many more people [70].

Software usually undergoes continuous changes throughout its life. For example, on average,

there is a change to the collection of software from Apache Software Foundation [10] every 6 minutes.

The reasons of software changes are diverse. Software might be changed to accommodate the demand

of new features. Software might also be changed to fix defects that were made earlier. Changes

made to software are unavoidable and consume a large portion of the total software cost. It has been

shown that about 75% of the total software cost goes to software maintenance cost [44]. Maintaining

software correctness is challenging in this never-ending software evolution process. Even when

software is perfectly correct with respect to previous requirements before a change is made, the

changed software might be incorrect due to the change. The change can break existing functionality.

The implementation of a new feature can also be flawed. Unsurprisingly, even bug-fixes are not

always perfect, which leads to new bugs. A recent study showed that 14.8% to 24.4% of the bug-fixes

in operating system code are buggy [122].

Various methods exist for guaranteeing software correctness in different stages of software

construction. Immediately after software is written, static checking can be performed. Type checking,
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being the most basic static checking, has become the integral functionality of any compiler for

strongly-typed programming languages. In addition to basic type checking, extended static checking

(ESC) [42] has been proposed. In ESC, the implementation of a program is checked against the

program requirements, which are given in pre/post-condition format. With the help of program

requirements, it has been shown that ESC is able to find errors that are beyond the capability of

basic type checking. In contrast to static checking, testing executes a program and checks whether

the output is expected in order to find software bugs. Testing could be performed at different levels

of abstraction. Unit testing focuses on the functionality of a unit, which is usually a function or a

class. After the testing on each individual unit is done, system testing checks the functionality of the

entire system as a whole. Once a bug is detected through testing, the process of debugging is started

to locate the root-cause of the bug. If the root-cause of the bug can be located through debugging,

programmers will fix the program and continue with the testing phase to check whether the bug-fix is

correct as well as whether any other bugs still exist.

Testing and debugging techniques for evolving programs should make full usage of previous

program versions. Although existing change-unaware testing and debugging techniques can be

applied on the changed program, opportunities to exploit the previous versions for better results

have often been ignored. For example, one major headache in debugging is finding a good reference

execution — an execution that is close to the failing execution but passes. Debugging techniques

usually search for the reference execution within the same program but with different program

inputs [89, 110, 59]. If such techniques are applied to regression debugging, the perfect reference —

execution in previous program versions with the same program input, is unfortunately ignored. As

our research has shown, by taking previous version as the reference, a much more effective debugging

technique can be built.

As another example, program contracts have been shown be to very useful in providing the

oracle of correctness in testing and debugging activities [113, 37]. However, the large body of

programs without associated contracts has prevented wide usage of program contracts. In the context

of software evolution where the previous program versions have been extensively tested, we only

need to provide the “contracts” for program changes as the previous versions implicitly serve as the

contracts of unchanged program behavior.

As shown in the aforementioned scenarios, previous program versions provide valuable infor-
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mation for the quality assurance of the current program version. We observe that previous software

versions can benefit the analysis of evolving software in the following two respects: (i) previous

software versions serve as the reference of the current version for unchanged software behavior, and

(ii) previous analysis results can be reused given that they are not affected by software changes.

In the few existing regression debugging techniques, syntactic analysis is the dominant tool

being used (e.g. Delta debugging [123]). When applied on program evolution problems, syntactic

analysis has to align the source codes (or execution traces) from different program versions. The

alignment is usually done through heuristics (e.g. shortest edit distance) leading to errors in the

analysis. Moreover, syntactic analysis is unable to identify semantically-equivalent program changes,

leading to more noise in the analysis results. Recent advance in symbolic execution [51] provides

excellent opportunities for precise semantic analysis across program versions feasible. In particular,

path condition computed over a trace abstracts the semantics of computation in the trace into a logical

formula. Precise comparison of logical formulae can be done efficiently by Satisfiability Modulo

Theory (SMT) solvers.

Goal of this thesis. The overall goal of the research in this thesis is to improve the current

techniques on detecting and localizing software regression errors. To detect regression errors, we

aim to automatically generate test cases that reflect regression errors. To localize regression errors,

we aim to reduce the manual debugging effort of programmers by providing them with a small

set of program statements that are most suspicious to be the bug cause. While trying to develop

techniques that advance state of the art, we want to investigate how information from previous

program versions can be leveraged and how recent advances in automated theorem proving and

Satisfiability Modulo Theory (SMT) constraint solving can be exploited. To achieve the goal,

we propose several techniques for detecting and localizing software regression errors in software

evolution in this thesis. Our techniques span across different stages of the software development

process, including requirement formulation, testing and debugging.

In particular, we make the following contributions in this thesis:

• We propose a test-suite augmentation technique for evolving programs. Our technique tries

to automatically generate test cases to expose the semantic changes introduced by syntactic

changes. A test case generated by our technique has different outputs in the previous program
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version and the changed program version. Thus, the execution of the test case clearly explains

the effect of program changes via concrete executions. Our technique uses targeted path

exploration to first reach the program change and then propagate the effect of the change.

During the propagation process, the execution of previous program version is always used as a

reference to judge whether the effect of change is propagated. Our proposed notion of change-

effect propagation tree helps us identify three different types of propagation termination. For

each type, a solution is presented to carry forward the change effect.

• We propose a semantic analysis based regression debugging technique —DARWIN. The goal

of DARWIN is to locate the root-causes of regression bugs. Different from existing syntactic

analysis based techniques, DARWIN uses path condition as the semantic abstraction of an

execution trace. By comparing path conditions from different program versions, we identify

only semantic-changing differences across program versions. Through semantic analysis,

DARWIN has been shown to achieve precise debugging results. Interestingly, as DARWIN

is based on semantic analysis, it may still be applicable when the buggy program and the

reference program are two entirely different implementations of the same specification.

• We propose a novel symbolic execution technique at the level of relevant slice and explore its

usage in several program analysis tasks including path exploration, debugging and test-suite

augmentation. The relevant slice condition generated during our symbolic execution technique

enhances path condition by concentrating on input-output relationship. With the help of slicing,

computation that does not affect program output is not included in the relevant slice condition.

From another perspective, one relevant slice condition captures many different program paths

sharing the same input-output relationship. We show that our technique can boost many

dynamic symbolic execution based techniques where program output is the focus. We have

proved the soundness of relevant-slice condition in capturing input-output relationship and

the completeness of a path exploration algorithm based on relevant slice condition. Using

relevant slicing condition as the underlying semantic analysis tool, our DARWIN technique is

improved in both efficiency and effectiveness.

• We propose the notion of change contract to satisfy the need of a contract language for evolving

programs. The correctness of any program is defined by its specification. However, providing
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full program contracts has always been a laborious task. Change contract alleviates this task

by allowing users to specify only the changed program behavior. As a contract language for

program changes, change contract has extensive usage in the presence of software evolution. In

testing, change contract serves as the oracle to differentiate intended changes from real software

regressions. In debugging, change contract provides the knowledge of correct behavior for the

program being debugged. We have developed our change contract language for Java based on

Java Modeling Language. We have also built a dynamic checking tool for the change contract

language, which checks at runtime whether the program behavior satisfies its corresponding

change contract.

• We propose a technique to debug program failures due to changes in a program’s execution

environment. The program’s interaction with the reference environment (where the program

passes) is first recorded. We then employ a systematic search process based on a semi-replay

mechanism, which helps us locate the failure-inducing environment differences between the

reference environment and the environment where the program fails.

Impact on current state of practice. Our proposed techniques can assist programmers in various

tasks of detecting and localizing software regression errors, thereby helping programmers to build

more reliable software with less regression errors. In the testing stage, with our test-generation

technique, software regression errors can be detected with less manual effort from programmers.

Instead of trying to come up with test cases to detect regression errors, programmers only need

to check whether the generated tests reflect regression errors. In the debugging stage, with our

DARWIN tool, programmers only need to examine the most suspicious statements as pointed out by

DARWIN. With software change contracts, programmers could try to prevent software regression

errors in the first place. Collectively, our techniques provide practical support for programmers in the

never-ending battle with software regression errors.

Implications for future research. Through the studies in this thesis, we also demonstrate through

concrete techniques that (i) previous program versions, when fully utilized, are of tremendous value

in analyzing evolving software, and (ii) semantic analysis techniques such as dynamic symbolic

execution are powerful instruments for evolving software analysis. This thesis provides the following
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implications for future research on detecting and localizing software regression errors: (i) techniques

on detecting regression errors should focus on the changed program portion and its program depen-

dencies, and (ii) when analyzing program changes, symbolic execution methods can help expose the

semantic effect of the changes.

The remaining of this thesis is organized as follows. We first discuss the background knowledge

and related work of this thesis in Chapter II and Chapter III. In Chapter IV, we present our test-suite

augmentation technique that generates test cases to expose program changes. In chapter V, we

propose a regression debugging technique – DARWIN which leverage dynamic symbolic execution

as the semantic analysis tool. Chapter VI improves dynamic symbolic execution by focusing on input-

output relationship of a program and proposes the notion of relevant-slice condition. Various usage of

relevant-slice condition including path exploration and debugging is also discussed in Chapter VI. In

Chapter 7.1, we present the change contract language that specifies the intended behavior of program

changes. Our debugging technique for locating failure-inducing program execution environment is

then presented in Chapter 7.2. Finally, Chapter VIII concludes this thesis and discusses some future

research directions that can further extend this thesis.
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CHAPTER II

Background

In this chapter, we recap the essential background knowledge for this thesis including two main

parts: (i) control flow analysis and program dependency analysis, and (ii) symbolic execution.

2.1 Control Flow Analysis and Program Dependency Analysis

Basic control flow analysis and program dependency analysis [19, 18] has become the fundamen-

tal mechanism in many program analysis tasks, such as compiler optimization and program slicing.

In this section, we give definitions of the basic concepts used in control flow analysis and program

dependency analysis together with some illustrative examples.

Definition 2.1 (Basic Block). A basic block is a maximal sequence of program statements where the

execution of the first statement implies the execution of all remaining statements in the basic block.

1 int x, y;// x and y are both input variables
2 int o; // o is the output variable
3 scanf("%d",&x);
4 scanf("%d",&y);
5 if (x > 0){
6 y = y +1;
7 if (y > 0){
8 o = 10;
9 }else{
10 o = 20;
11 }
12 }else{
13 o = 30;
14 }

Figure 2.1: A sample program to illustrate basic concepts
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3 scanf("%d",&x);
4 scanf("%d",&y);

5 if (x > 0){

6 y = y +1;
7 if (y > 0){

8 o = 10; 10 o = 20;

13 o = 30;

ENTRY

EXIT

FT

FT

Figure 2.2: Control flow graph of the program in Figure 2.1

Definition 2.2 (Control Flow Graph (CFG)). A control flow graph G = (V, E) of a program P is

a directed graph with each vertex v ∈ V representing a basic block of program P and each edge

(v1, v2) ∈ E, where v1, v2 ∈ V , representing the flow from the basic block of v1 to the basic block

of v2. Typically, for the ease of analysis, two auxiliary vertices ENTRY (denoting the only point

where control can enter the program) and EXIT (denoting the only point where control can leave the

program) are added in a control flow graph.

As an example, the control flow graph of the program in Figure 2.1 is shown in Figure 2.2. A

label on an edge represents the direction (T stands for true, and F stands for false) of the conditional

branch that makes the edge traversed. For example, the edge from basic block {6, 7} to basic block

{8} can only be traversed when the branch1 in line 7 is evaluated to true.

Definition 2.3 (Feasible Path). A program path π is feasible iff. there is at least one program input

that traverses π.

Therefore, a program path π is infeasible iff. there is no program input that traverses π.

1In this thesis, when the context is clear, we use “branch” to also refer to the test condition in a branching statement.

8



Definition 2.4 (Pre-dominator). A basic block vd is a pre-dominator of a basic block v iff. all paths

from ENTRY to v have to pass through vd.

Definition 2.5 (Post-dominator). A basic block vd is a post-dominator of a basic block v iff. all paths

from v to EXIT have to pass through vd.

The above definitions of dominance are also applicable to program statements.

Definition 2.6 (Static Control Dependency). A statement v is statically control dependent on a

branching statement b iff. (i) there is a nonnull path from b to v such that v post-dominates every

node between b and v, and (ii) v does not post-dominate b [46]

Based on the definition of control dependency, we can construct control dependence graph of a

program.

Definition 2.7 (Control Dependence Graph (CDG)). A control dependence graph G = (V, E) of a

program P is a directed graph with each vertex v ∈ V representing a statement of program P and

each edge (v1, v2) ∈ E, where v1, v2 ∈ E, representing that v2 is control dependent on v1.

Figure 2.3 shows the control dependence graph of the program in Figure 2.1.

Definition 2.8 (Static Data Dependency). A statement s is statically data dependent on a statement

sd iff. (i) there exists a variable x used in s such that x is defined in sd, and (ii) there exists a a path

from sd to s that does not contain any definition of variable x.

Different from static dependencies, dynamic dependencies concerns about the dependence

relationship between statement instances during runtime.

Definition 2.9 (Dynamic Control Dependency). Given an execution trace π and two statements α

and β, a statement instance αi of α is dynamically control dependent on a statement instance βj of

β in π iff. (i) α is statically control dependent on β, and (ii) βj is executed before αi in π, and (iii)

there does not exist any statement instance γk (whose static statement is γ) between βj and αi such

that (a) α is statically control dependent on γ (γ could be the same as β), and (b) γk is executed

before αi in π.

9



3 scanf("%d",&x);

6 y = y +1;

8 o = 10; 10 o = 20;

13 o = 30;

ENTRY

FT

FT

5 if (x > 0){4 scanf("%d",&y);

7 if (y > 0){

T

Figure 2.3: Control dependence graph of the program in Figure 2.1

Definition 2.10 (Dynamic Data Dependency). Given an execution trace π and two statements α and

β, a statement instance αi of α is dynamically data dependent on a statement instance βj of β in π

iff. (i) there exists a variable x such that x is defined in βj and used in αi, and (ii) there does not

exist any statement instance γk (whose static statement is γ) between βj and αi such that γk defines

variable x.

2.2 Symbolic Execution and Dynamic Path Exploration

Symbolic execution was first proposed for program testing [66]. According to whether concrete

executions are involved, symbolic execution techniques can be classified into either (i) static symbolic

execution where no concrete execution is involved [66, 31] or (ii) dynamic symbolic execution where

concrete execution is involved [51, 97]. We first explain the process of static symbolic execution. As

opposed to concrete execution, symbolic execution takes symbolic program inputs. During symbolic

execution, the program state is also maintained as symbolic and updated along program paths. For

each variable in the program state, the symbolic value of the variable is represented as an expression

of the symbolic input variables whose concrete values are not defined. When a branch is met during

symbolic execution, both directions of the branch are tried out. The order of paths being traversed

is subjective to the strategy of each symbolic execution technique. At every branch, we compute a

branch constraint, which is a formula over the program’s input variables which must be satisfied for

the branch to be evaluated in the same direction as in the traversed path. For each path traversed in
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Table 2.1: An example of dynamic symbolic execution and path condition computation for the

program in Figure 2.1

Execution trace of Concrete stores Symbolic stores Path condition

〈x == 1, y == 1〉
3 scanf(“%d”, &x); {x → 1, y → undef} {x → xs, y → undef} true

4 scanf(“%d”, &y); {x → 1, y → 1} {x → xs, y → ys} true

5 if(x > 0){ {x → 1, y → 1} {x → xs, y → ys} (xs > 0)
6 y = y + 1; {x → 1, y → 2} {x → xs, y → ys + 1} (xs > 0)
7 if(y > 0){ {x → 1, y → 2} {x → xs, y → ys + 1} (xs > 0) ∧ (ys + 1 > 0)
8 o = 10; {x → 1, y → 2} {x → xs, y → ys + 1} (xs > 0) ∧ (ys + 1 > 0)

symbolic execution, a path condition is also maintained. The path condition of a path captures the set

of inputs that traverse the path. More specifically, we have the following definition of path condition.

Definition 2.11 (Path condition). Given a program P , let π be a path in P . The path condition of π,

say pcπ is a quantifier free first order logic formula which is satisfied by exactly the set of inputs that

exercise π in program P .

The satisfiability of a path condition is closely related to the feasibility of a path. In particular, a

path is feasible iff. the corresponding path condition is satisfiable.

The result of symbolic execution is a set of executed paths and their corresponding path conditions.

Concrete test cases traversing a particular path can be derived by solving the path condition of that

path through SMT solvers. For each path, the symbolic values of program outputs, which are

expressions of symbolic input variables, are also computed.

In the past decade, there has been a spurt of research on dynamic symbolic execution [51, 97].

Different from static symbolic execution, dynamic symbolic execution is driven by the concrete

execution of concrete inputs2. In dynamic symbolic execution, we first execute the analyzed program

with concrete input and derive the trace of the concrete execution. We then treat the program inputs

as symbolic and propagate the symbolic program states along the trace. This is similar to static

symbolic execution except that the path to be traversed is defined by the concrete execution trace. As

in static symbolic execution, we can also compute path condition of the traversed path in dynamic

symbolic execution.

We now use an example to illustrate the process of dynamic symbolic execution and path

2Hence, dynamic symbolic execution is sometimes called “concolic” (concrete and symbolic) execution by researchers.
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condition computation. Let us take the example program in Figure 2.1 and input 〈x == 1, y == 1〉.
We use xs and ys to denote the symbolic inputs of this program. The computation process is shown

in Table 2.1. After executing each line, we show the concrete stores and the symbolic stores of the

variables. In the last column, we show the path condition gathered up to the corresponding line.

If a conditional branch is executed, the generated branch constraint is accumulated into the path

condition as shown in the last column. For example, after line 6 is executed, the accumulated path

condition is (xs > 0). Since line 7 is a conditional branch, the branch constraint (ys + 1 > 0) is

generated and added into the path condition. So after executing line 7, the path condition becomes

(xs > 0) ∧ (ys + 1 > 0). The final path condition is simply the conjunction of all the branch

constraints. In this example, two branch constraints (xs > 0) and (ys + 1 > 0) are generated from

line 5 and line 7 respectively. Taking the conjunction of the two branch constraints, the final path

condition is simply pc = (xs > 0) ∧ (ys + 1 > 0). The path condition computed in this way

only contains input variables. The path condition can guarantee that any input satisfying the path

condition will follow the same path as 〈x == 1, y == 1〉. Although path condition is a conjunction

of branch constraints, the assignments executed in the trace are also taken into consideration in the

path condition. As we can see in the example, the assignment in line 6 is considered when computing

path condition. The assignment in line 6 first affects the symbolic store of y. When y is used in the

condition in line 7, the symbolic store of y is used to compose the branch constraints. If there is an

error in line 6, the error can affect the branch constraint generated in line 7 and therefore affect the

path condition.

Different program paths can be explored iteratively through dynamic symbolic execution [51, 97].

As explained earlier, a path condition is a conjunction of different branch conditions along the path.

Suppose we have a path condition pc = ψ1 ∧ ψ2 ∧ . . . ∧ ψn that is computed from the execution of

input t along path π. We can construct formulae of the form ψ1 ∧ ψ2 ∧ . . .∧ ψi−1 ∧¬ψi, 1 ≤ i ≤ n.

If any of the above formulae is satisfiable, the input that satisfies the formula will drive the program

to another path. More specifically, if an input t′ satisfies ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi, the execution

of t′ will follow a path π′, whose first i − 1 branch instances are evaluated to the same directions

as those in path π and the ith branch instance is evaluated to different direction from the ith branch

instance in path π. By iterating the above process, different program paths can be gradually explored.

The derivation of concrete program inputs from path conditions or modified path conditions
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is done through Satisfiability Modulo Theory (SMT) solvers. The path conditions as well as the

modified path conditions are in the form of quantifier-free first order logic formula. Program

input variables constitute the free variables of the path conditions. All free variables are implicitly

existential quantified. Given a formula (e.g. path condition), an SMT solver may yield the following

three types of result: (i) the formula is unsatisfiable, and (ii) the formula is satisfiable, and (iii) the

SMT solver is unable to determine the satisfiability of the formula. In the case that the formula is

determined to be satisfiable by the SMT solver, values of all the free variables that make the formula

evaluated to true are also given. When the formula is a path condition whose free variables are input

variables, the valuation of the free variables corresponds to a concrete program input. If the formula

is determined to be unsatisfiable, that deviating path is in fact infeasible. If the SMT solver is unable

to determine the satisfiability of a formula, some under-approximation can be done to simplify the

formula as explained in the next paragraph.

Ideally, a symbolic execution engine should precisely model the semantics of every instruction

and the SMT solvers should be able to solve any generated path condition formulae. However,

this is hardly possible due the complexity of instruction set (e.g., X86 i386 instruction set) and

lack of efficient solving theory for certain operations (e.g., multiplication). An useful technique to

overcome these difficulties is to do under-approximation when precise modeling or efficient SMT

solving is unavailable. One typical scenario is when dealing with the values returned from native

calls in Java programs. Java native calls are calls to functions implemented in other languages. If

symbolic execution is implemented at the Java virtual machine level, the native functions cannot

be symbolically executed. Hence, the symbolic return values of native calls cannot be precisely

modeled. In under-approximation, the return values from native calls are concretized using the

their corresponding values at runtime. Another typical scenario is when certain operations are not

supported by SMT solvers. Suppose we have an SMT solver that only supports linear arithmetic

operations. Given a formula x ∗ y > x − z, we could concretize the variable y using its runtime

value. The SMT solver can then solve the concretized formula.
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CHAPTER III

Related Work

In this chapter, we will discuss past research that most closely relates to this thesis. We first

review existing research on software testing in the context of software evolution, including regression

testing and test-suite augmentation. Then we recap the research on different software debugging

techniques such as slicing, statistical debugging, delta debugging, etc. Subsequently, we will discuss

the past research on program change comprehension. In the end, we will discuss existing research on

software contracts.

3.1 Testing of Evolving Programs

After a program is changed, program testing is employed to maintain the correctness of the

changed program. We will discuss two major research topics in the area of evolving program testing

- regression testing and test suite augmentation.

3.1.1 Regression testing

To test evolving programs, there have been several research efforts under the banner of “regression

testing”. Even though regression testing in general refers to any testing process intended to detect

software regressions (where a program’s functionality stops working after some change), often

regression testing amounts to retesting of tests from an existing test suite. In the past, there have been

several research directions that go beyond retesting all of the tests of an existing test suite. One stream

of work has focused on test selection [34, 91] – selecting a subset of tests from existing test suite

for running on the modified program. Another stream of work proposes test prioritization [45, 101]
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–ordering tests in an existing test suite to better meet testing objectives of the changed program.

Researchers have also studied test suite reduction in regression testing. A test can be obsolete for

mainly two reasons: (i) the tested functionality has been removed from the software; (ii) the tested

functionality can also be tested by other test cases. Harrold et al. have built a general framework for

eliminating test cases [54]. The technique requires the association of test cases and test requirements.

The core idea of their technique is to incrementally select test cases that satisfy the largest number

of remaining test requirements. During test suite reduction, the fault detection ability of the test

suite should not be reduced. Wong et al. [115] gave an empirical study on the effect of test case

elimination. Their experimental results showed that the effect of removing some redundant test cases

has little effect on the fault detection ability of the test suite.

Recent research by Jin et al. [60] advanced regression testing by automatically generating test

cases to stress program changes. When a program is changed, a set of unit test cases concentrating

on the changed portion of the program is automatically generated. These test cases are executed on

both the unchanged and changed programs. Any observed behavioral differences between the two

versions are analyzed and presented to the user for further insepction.

3.1.2 Test suite augmentation

While the goal of regression testing is to maintain the correctness of existing functionality, the

correctness of new features introduced by changes should also be checked through testing. To this

end, recent research projects [92, 105, 121] have proposed test suite augmentation — developing

new tests to stress test the effect of the program changes.

The technique proposed by Santelices et al. [92] focuses on generating criteria for test suite

augmentation. Their technique starts from the change and generates a criterion, satisfying which

guarantees that the change effect is propagated up to certain distance. Their result can either be used

to select test cases from a large test pool or be used as the criteria to drive test generation techniques.

The technique requires an input that reaches the change, but how such an input is obtained is not

considered in their paper. Automatically constructing a change-reaching input could be difficult for

large programs with a huge number of control flow paths. The authors later extended this technique by

checking the satisfaction of the criteria at runtime without generating the full criteria beforehand [95].

In this way, the technique saves expensive symbolic effort and achieves better efficiency.
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Another line of research on test suite augmentation employs dynamic symbolic execution as the

underlying technique. Dynamic symbolic execution techniques from Directed Automated Random

Testing (DART [51]) were originally designed to explore program paths with no specific focus on

program changes. Recently, based on DART, some test suite augmentation techniques [105, 121] for

evolving programs have been proposed. The technique by Taneja et al. [105] integrates heuristics in

dynamic path exploration to avoid paths that do not stress the program changes. These heuristics

include pruning paths that cannot lead to any change and avoid paths that are unlikely to propagate

effects of changes. The technique proposed by Xu and Rothermel [121] identifies “dangerous edges”

affected by the change in control flow graph. Subsequently, heuristics (built on top of symbolic

execution using DART) are used to stress these edges. However, after the dangerous edges are

identified, the entire analysis is carried out in the changed program. It is important to note that any

test suite augmentation technique that analyzes only one program version is unlikely to find test cases

to stress the changes.

Apart from dynamic symbolic execution, researchers have also employed genetic programming

techniques in test suite augmentation [119]. In addition, Xu et al. [120] empirically compared

different factors affecting the effectiveness of test suite augmentation techniques, such as the use of

existing/new tests and the underlying test generation technique (genetic programming or dynamic

symbolic execution).

3.2 Program Debugging

Researchers have paid a large amount of effort to promote the effectiveness of automated

debugging techniques. In this section, we discuss a few major debugging techniques from past

research.

3.2.1 Program slicing

Program slicing [114] computes a subset of the program that may affect the selected slicing

criterion, which is a set of program statements. Program slicing can be either static or dynamic [109,

114]. A program slice is computed by traversing data dependency and control dependency in the

program. In the case of dynamic backward slicing, the program execution trace needs to be stored.
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For a non-trivial program, the execution trace can be huge. The JSlice tool [109] handles this problem

by compressing the trace online and performing the slicing directly on the compressed trace. Some

recent research of program slicing focused on reducing the size of slicing result [111, 118, 100, 127]

without loosing the most relevant program statements.

Dynamic program slice only contains program statements that affect the slicing criteria through

data and control dependence. However, researchers have found that some statements affect the slicing

criteria indirectly by not being executed. This is captured as potential dependence. Researchers have

proposed relevant slicing by taking potential dependence into consideration [16, 53].

3.2.2 Statistical debugging

Given a buggy program and a test-suite, we would expect some test cases fail and most of the test

cases pass. Statistical debugging is built on the assumption that exercising the buggy statements and

exposing buggy behavior are strongly correlated. Various metrics have been proposed to measure the

likelihood of a statement being buggy [13, 62]. Typically, the more often a statement is executed

in failing runs (and the less often it is executed in passing runs), the higher suspiciousness score is

assigned to the statement. To leverage field data, Liblit et al. proposed to collect those statistical

information from end-users [71]. A sparse sampling method is designed to reduce the overhead

incurred on end-users and persevere the confidentiality of user data.

Apart from program statements [61], statistical debugging has been applied to many aspects

of programs, including branches [73], instrumented predicates [72] as well as a combination of

branches, statements and def-use pairs [96].

3.2.3 Delta debugging

Delta Debugging was first introduced by Andreas Zeller [123]. Initially, delta debugging

targeted differences between two program versions. Suppose we have two program versions, delta

debugging applies binary search on the the differences between these two versions until a small set

of bug-inducing changes are identified.

Binary search makes delta debugging very efficient when the change set is large. However, some

program changes may be correlated. One straightforward example is that a new program variable

is added, followed by some statements using it. The variable definition must be applied together
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with the variable usage. A key observation in delta debugging is that by dividing the changes into

smaller subsets, the chance of getting an inconsistent program decreases. In the extreme case, this

may involve enumerating the changes one by one.

Since the initial research of delta debugging on source code, it has been extended to work on

program inputs [125], program execution states [124] and thread schedules [36]. Recently, Misherghi

and Su extended delta debugging on program input with hierarchical support [79]. If the input is

highly structured, their approach can work more efficiently by quickly pruning away unrelated input

portions.

Delta debugging has also been applied to isolate interactions between the components of a

program [82, 30]. The Jinsi tool [30] captures and replays the inter/intra-components interactions in

a system. Through delta debugging, Jinsi is able to isolate a failure-inducing sequence of method

calls.

3.2.4 Other software debugging techniques

Apart from the aforementioned debugging techniques, many debugging techniques proceed by

comparing the failing run with passing runs in the hope that the differences can reveal the cause of the

failure [89, 110, 59]. The reference passing runs are thus critical for the accuracy of these techniques.

Renieris and Reiss [89] propose to select the reference passing run that is most close to the failing

run from a large pool of runs. The work of Wang and Roychoudhury [110] automatically generates

the reference passing runs by systematically deviating from the failing run. Reserchers have also

proposed to generate the reference passing runs by switching predicates in the programs [126] or by

replacing values in the programs [59]. Most recently, Sumner et al. [104] empirically compared

the advantages and disadvantages of different debugging techniques that are based on execution

comparison.

Along a completely different direction, DebugAdvisor [22] assists the debugging process by

searching for past debugging experience of similar bugs in the existing bug database. This is based

on the observation that programmers tend to get useful hints from the solutions of past similar

bugs. Given a current bug to resolve, similar previous bugs are selected according to the context

information, including core dump, debugger output, etc.

The recent advance in SMT solving and dynamic symbolic execution has also found their
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application in software debugging. Given a failing program execution where the post-condition of the

program is violated, the approach proposed by Jose and Majumdar [63] first converts a failing trace

into a trace formula which captures all the operations along the trace. The trace formula together

with the post-condition constitute an unsatisfiable formula. The approach then computes the minimal

unsatisfiable core of the full formula (trace formula and post-condition) as the potential root causes of

the bug. Intuitively, the unsatisfiable core contains program fragments that prevent the post-condition

from being satisfied. These program fragments are likely to contain the bug. Recently, Chandra et

al. proposed the angelic debugging approach [33]. The core idea of angelic debugging is to find the

program statements that can be modified to rectify the program. Since modifying these program

statements can lead to the correction of the program, they are more suspicious of being the bug

causes.

3.2.5 Locating defects in execution environment

Program failures are not only caused by bugs in programs themselves but also by defects in their

execution environments. Most of the existing research on localizing defects in execution environment

has been focused on configuration errors. More specifically, errors in configuration files have been

the major targets. Attariyan et al. [23] proposed a technique based on information flow analysis

to locate the root cause of configuration errors. The approach instruments application binaries to

monitor the information flow at runtime and uses this information to detect the relationship between

erroneous behavior and errors in configuration files. The work from Su et al. [103, 102] also targets

at misconfiguration problem. They use speculative execution to examine the effect of configurations

and roll-back to earlier configurations when necessary.

Holmes et al. [55] have pointed out that a developer can evolve a program’s behaviors not only

by changing the program’s source code but also by altering the execution environment. The authors

have also introduced a program partitioning approach for categorizing program changes with regards

to the program’s behaviors. As such, the approach is able to tell the developers which groups of

changes deserve deeper developer attention. The approach, however, does not focus on locating

changes in the environment that are related to an observable error.

Recently, Clause and Orso [38] proposed a record and replay technique to support debugging

of field failures. Their technique first records the interaction between program and its execution
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environment. The recorded interaction is then replayed during debugging so that the exact failure can

be reproduced. The technique intercepts all the software interactions with the environment through

the OS and produces an execution recording that consists of an event log and a set of environment

data. As such, the execution can be replayed without the need of the original execution environment.

3.3 Program Change Comprehension

Researchers have also studied the issues in comprehending program changes [98] and have

designed various techniques to support program change comprehension. Program differencing

methods [56, 21] try to identify changes across two program versions. Past research has improved

upon traditional text based differencing methods by taking program structure into consideration.

For example, JDiff [21] compares the control flow graphs of the two versions, whereas Horwitz’s

approach [56] compares the program dependence graphs across program versions. The recent

iDiff [80] approach represents a program as a graph of entities (classes and methods) and utilize the

interaction among program entities to improve program matching. Researchers have also tried to

ease program change comprehension by observing changes at different abstraction level. Jackson and

Ladd [58] propose to identify changes in input-output dependence chains in programs. The LSdiff

tool [65, 74] summarizes the differences between two program versions as structural changes.

To comprehend program changes, change impact analysis has also been studied in the past [88,

81, 14]. Typically, change impact analysis techniques follow program dependency from the changed

code in order to compute all the impacted program entities. By leveraging the coverage data of

test cases, change impact analysis techniques can also infer the set of test cases that are affected by

program changes [88, 81]. For each impacted test case, the Chianti change impact analysis tool [88]

also compute the set of changes affecting the behavior of the test case.

3.4 Dynamic Symbolic Execution

Symbolic execution was first proposed for program testing [66]. The behavior of many inputs

sharing the same program path is represented by the behavior of one symbolic input in symbolic

execution. Therefore, symbolic execution avoids redundant testing with inputs that behave the same.

The practical usage of symbolic execution has been hindered by many obstacles, such as insufficient
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support from SMT solvers and imprecise modeling of complex program semantics. Recently, there

is a spurt of research on dynamic symbolic execution [51, 97] and its usage on path exploration. By

performing symbolic execution along program paths of concrete inputs, dynamic symbolic execution

can always under-approximate by concretizing some symbolic values with their runtime values when

it meets obstacles.

There exist several approaches that focus on improving the efficiency of dynamic path exploration.

To avoid repeating symbolic execution of the same function, function summaries are generated and

used when these functions are called [49]. When the input of a program is highly structured, the

grammar of the input can be used to avoid generating large amount of invalid inputs [50]. Researchers

have also used the notion of “path equivalence” to alleviate the path explosion problem. However,

which paths are considered equivalent vary in different approaches. The difference in the definition

of path equivalence originates from the different goals of these approaches. The goal of Boonstoppel

et al. [26] is to explore all possible program states. Based on this goal, two paths are equivalent if

the symbolic states of all live variables are the same. The goal of Kenneth [76] is to reach some

critical locations in a program. Therefore, two paths are equivalent if they cannot reach any critical

locations for the same reason (blocked by the same condition). Santelices and Harrold propose the

notion of path family to capture equivalent program paths [94]. A program is statically decomposed

into several path families, where each path family contains several paths that share similar behavior.

Instead of analyzing each path individually, a program can be analyzed at the granularity of path

family. The authors also propose the notion of “path family condition” for each path family, which

could characterize that path family.

Differential symbolic execution [84] aims at efficiently computing semantic summaries of

program changes. Given the previous program version and the current version, unchanged program

portions are abstracted as uninterpreted functions. Symbolic execution is then performed on the two

program versions after the abstraction takes place. By representing common program portions as

uninterpreted functions, differential symbolic execution can concentrate on the program changes and

compute concise summaries of program changes.

More recently, Directed incremental Symbolic Execution (DiSE) [85] was proposed to avoid

redundant path exploration after program changes. The core observation is that some paths are not

affected by program changes and hence these paths do not need to be re-explored after program
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changes. Therefore, by avoiding exploration of unchanged paths, DiSE can achieve better efficiency

on the changed program as compared to techniques that try to explore all paths of the changed

program.

Csallner et al. proposed Dysy [40] to generate program invariants through dynamic path explo-

ration. For each path explored, the path condition serves as a pre-condition and the symbolic program

output is treated as a post-condition. Thus, each explored path produces a program invariant which is

defined as such a (pre-condition, post-condition) pair.

3.5 Software Contracts

Design by contract [78] was proposed by Bertrand Meyer and first realized in Eiffel programming

language [77]. In the simplest form of design by contract, each method has its contract in the form of

pre-condition and post-condition. A method has to guarantee its own post-condition whenever its

pre-condition is satisfied. When a method invocation happens, it is then the caller’s responsibility

to guarantee the callee’s pre-condition. Apart from Eiffel, Spec# [25] also incorporates design-by-

contract into its core language. Different from Eiffel and Spec#, JML provides program contracts for

the existing Java programming language [69, 68].

Inspired by the concept of Design by Contract, several research projects have focused on checking

program code w.r.t. program contracts. Extended Static Checking [42, 47, 39, 24] aims at automated

program contract checking at compile time. In extended static checking, verification conditions

are generated from program code and the program contracts; these verification conditions are

dispensed via automated theorem provers. Runtime assertion checking of contracts has also been

studied [35]. In a typical runtime assertion checking system, program contracts are translated into

checkable assertions and compiled into the associated program. By executing these assertions, the

original program contracts are checked. The recently proposed hybrid checking approach [106]

combines the power of static and dynamic checking of contracts. In this approach, a runtime assertion

corresponding to a program contract is inserted into the compiled program and checked at runtime

only when it cannot be statically proved to be true.
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CHAPTER IV

Test Generation to Expose Changes in Evolving Programs

Regression testing is one of the most commonly known software engineering activities for

developing reliable software. In simple terms, it stresses “program changes” as a program evolves

from one version to another, checking whether new functionality introduced by the changes is correct

and whether the changes result in errors in existing functionality. Often, regression testing involves

re-testing using a new test-suite containing both existing test cases and new test cases as the program

evolves.

For re-testing with existing test cases, because the test-suite of a program is often huge, it is

inefficient to test the changed program with all existing test cases. Most of the past research efforts

in regression testing focus on this inefficiency issue and provide solutions via test selection [34, 91]

(selecting a subset of the tests to be run) or test prioritization [45, 101] (changing the order in which

a set of given tests is run).

However, the evolution of a program often involves addition of new functionality, and thus the

test-suite should also evolve with the evolution of the program. In this aspect, the key challenge is

to generate test cases related to the changes. Recent work [92, 105, 121, 75] has studied test-suite

augmentation for evolving software. The main task in test-suite augmentation is to find new test

cases that stress the program changes and affect the program output. Suppose a program P (with a

test-suite T ) evolves to a program P ′, i.e., P is changed to produce P ′. A test-suite augmentation

method should generate test cases that make the effect of the changes visible in terms of observable

program output. If these test cases do not appear in the existing test-suite T , we add them to T .

Let us now examine an intuitive way of generating test cases for stressing program changes.

Consider an output variable out in programs P and P ′, and let the inputs of P and P ′ be in1, in2,

23



. . ., and ink. By performing a strongest post-condition computation (using symbolic execution) on

program P , we represent the output variable out in P as a formula ϕ(in1, in2, . . . , ink). Similarly,

by performing a strongest post-condition computation on program P ′, we represent the variable out

in P ′ as another formula ϕ′(in1, in2, . . . , ink). We can then solve

ϕ(in1, in2, . . . , ink) 	= ϕ′(in1, in2, . . . , ink)

and the solutions are test cases (assignments of values to inputs in1, in2, . . . , ink) that make the

output values different in the two programs.

Although the above approach is straightforward, it does not scale. Since we need to perform

static symbolic execution on the program (rather than dynamic symbolic execution on an execution

path of the program), it is difficult for the approach to scale up to large real-world programs. In

this chapter, we develop a scalable approach for test-suite augmentation. Our approach builds on

the execute-infect-propagate (PIE) paradigm [108]: the new tests should (i) execute the program

changes, (ii) infect the program state, and (iii) propagate the infection to the output.

From a high level, our approach works in two steps. The first step is to generate an input

satisfying the execute property in the PIE paradigm. Given a change c (in source code from one

program version to another), we find a path that reaches c in the control flow graph. We then perform

dynamic symbolic execution along the path to find an input t that makes the program execute the

path leading to c. The second step of our approach aims to generate test cases that satisfy the infect

and propagate properties, in addition to the execute property. Since any infection in program states

is reflected as different variable values (after the change) in the two program versions, we observe

that state infection and propagation may be avoided if (i) variables affected (directly/indirectly) by a

program change are defined but not used, or (ii) the uses of affected variable cannot propagate the

change effect forward (by affecting other variables). If an assignment of some affected variable v is

not used in the execution of test t, we find a new test t′ (aided by symbolic execution along a path)

that can execute the uses of v. If the use of variable v does not propagate the change effect forward,

we find a new test t′ that can propagate the effect in v.

The preceding describes our method in a nutshell. The key to the method’s efficiency lies in

our strategy in avoiding symbolic execution on programs. Our approach performs every symbolic
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execution along a program path. Note that symbolic execution along a program path has additional

overhead in enumerating and searching for the “right” path. We use various analysis methods to

guide us to the “right” path. When trying to execute the change, the shortest path in the control

dependency graph guides us to efficiently locate and construct a path to the change. When trying

to propagate the change effect, we identify the reasons for which the propagation terminates, and

propagate the change effect to program output while detecting branch correlations on-the-fly (which

allows us to avoid infeasible program paths).

Performing symbolic execution along a path also helps us avoid the memory alias problem: since

the symbolic execution is along a program path, all memory references are disambiguated.

In our experiments, we tried our test-case generation approach on two programs: tcas, a small

program with multiple versions (each encoding a different change) from the SIR repository [43] and

libPNG, a large-scale library for manipulating PNG images (27977 lines of code). For both the

subject programs, our method successfully generated test cases that stress the changes (by producing

different program outputs) for almost all the program versions.

4.1 Motivating Example

In this section, we motivate the problem of test case generation in evolving programs with an

example.

Figure 4.1 shows an example of evolving programs. In the example program shown in Figure 4.1a,

the variable x is the input variable and the variable o is the output variable. The change is at line

8, where the assignment of variable y is changed from 3 to 2. We now need to synthesize a test

case that stresses this change. Figure 4.1b and Figure 4.1c show the control-flow graph (CFG)

and control-dependency graph (CDG) of the example program, respectively, in which the changed

statement is marked in dark color.

In order to test the change, we need test cases that can drive the program to the changed statement

in P ′, and can result in an output of P ′ different from that of P .

Reaching the change Suppose we have the following test case for the original program P : x = -1.

The execution trace of the test case x = -1 in the changed program is {5, 7, 13, 14, 16, 19}, which

does not cover the change at line 8. Note that there are two branches in the trace, namely line 7 and
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1 int x ; /∗ Input v a r i a b l e ∗/
2 int y ;
3 int o ; /∗ Output v a r i a b l e ∗/
4
5 input (x ) ;
6
7 i f ( x > 0) {
8 y = 3 ; // change : y = 2;
9 i f ( x − y > 0)

10 o = y ;
11 else
12 o = 0 ;
13 } else
14 o = −1;
15
16 i f ( x > 20)
17 o = 10 ;
18
19 output ( o ) ;

(a) Example Program

ENTRY

EXIT
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7
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8

10 12

19
17
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16

(b) Control Flow Graph
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(c) Control Dependence Graph

Figure 4.1: A motivating example to illustrate our test generation approach.

line 16. If we execute these branches differently, we may drive P ′ to reach the change. However,

some of the branches, such as line 16, do not help to reach the change. We use the CDG to identify

such branches. From the CDG in figure 4.1c, we can see that node 7 can determine whether the

change (node 8) is executed, while node 16 cannot. So we want to execute branch 7 differently. This

analysis (for finding which branch to evaluate differently) can be automated via traversal of the CDG.

In this example, we construct the formula (x > 0) by flipping the evaluation of the branch in line 7.

Solving this formula x > 0, we get an input, say x = 1, that stresses the change.

Affecting program output Using the new input x = 1 to test both program versions, we get the

same program output 0. Even though the change is executed, its effect is not propagated into the

program output. We can see that propagation of the change effect (y = 2) stops at the branch in line 9

— this branch is evaluated to false in both the program versions for x = 1. To propagate the effect of

the program change past this branch, we need the branch to be evaluated differently in P and P ′,

which is expressed in the following symbolic formula.

(x > 0) ∧ (x − 2 > 0) ∧ ¬(x − 3 > 0)

An x satisfying this formula will execute the change, and evaluate the branch in line 9 differently in

the two program versions. This gives us the answer x = 3. Executing P and P ′ using the input x = 3,

26



we find that the program output is different in both program versions. Thus, we have generated a test

case which executes the change, and propagates its effect to the program output.

4.2 Our Approach

Assumptions. In this chapter, we assume that all changes are independent and none of the changes

is inside a loop. The meaning of independence is that the execution, infection and propagation of a

change is not affected by whether other changes are executed. This assumption allows us to handle

each change at a time.

Our goal is to generate test cases that make the effect of software changes observable through

difference in program outputs. A test case for regression testing should drive the changed program to

execute the changes, and the program states affected by the changes should result in difference in

program outputs.

To meet the above requirements, our approach uses symbolic execution on program traces to

guide the exploration of program paths. The exploration in our approach is guided by the execute-

infect-propagate philosophy (execute the change, infect program state and propagate the infection

to output), instead of program path coverage. Our approach is divided into two steps. First, given

a program change, we use symbolic execution to find the constraints on program input variables

that need be satisfied to execute the change. Second, given the constraints (and sample test inputs)

generated in the first step, we tune the sample test inputs into test cases that not only execute the

change but also propagate the effect of the change to the program output.

We now explain these two steps in Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Driving the program to reach the changes

Our approach iteratively constructs the change-reaching test inputs using symbolic execution.

In each iteration, a new test input is generated to drive the program execution closer to the targeted

change. This process continues until we get a test input that executes the given program change.

The basic intuition of this step is as follows. We run the test-suite TP of the old program P on

the changed program P ′. If any test t ∈ TP executes the changed statement stmt in the changed

program P ′, we return t. Otherwise, we collect the path condition of P ′ when it processes t and
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Algorithm 4.1 Reaching the change

1: Input:
2: P P ′ : original and modified program

3: Tp : The existing test-suite for P
4: Output:
5: tnew: A test case that reaches the difference between P and P ′

6: unexpanded = ∅
7: S = ∅
8: stmt = ... // this is the changed statement

9: CDGp′ = computeCDG(P ′)
10: Gstmt = computeDistGraph(CDGP ′ , stmt)
11:

12: // step1: run the existing test-suite

13: for all t ∈ Tp do
14: ret = Execute(P ′, t)
15: if ret �= null then
16: return ret
17: end if
18: end for
19: // step2: construct new test case

20: while unexpanded �= ∅ and not timeout do
21: select ϕ ∈ unexpanded with minimum distance

22: remove ϕ from unexpanded
23: let ϕ = (ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk)
24: construct θ = (ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ¬ψk)
25: solve θ
26: if θ is satisfiable then
27: let tθ be an input that satisfies θ
28: ret = Execute(P ′, tθ)
29: if ret �= null then
30: return ret
31: end if
32: end if
33: end while
34: return null
35:

36: procedure Execute(P ′, t)
37: execute P ′ with input t
38: let f = (ψ1 ∧ ψ2 ∧ . . . ∧ ψm) be the path condition

39: for all i from 1 to m do
40: ϕi

def
= ψ1 ∧ . . . ψi ∧ ψi+1

41: if dist(ψi+1) = 0 then
42: return t
43: end if
44: if dist(ψi+1) �= ∞ and ϕi /∈ S then
45: S

⋃
= ϕi

46: unexpanded
⋃

= ϕi

47: end if
48: end for
49: return null
50: end procedure
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manipulate the path condition to generate a new input that “advances” the execution in P ′ towards

the changed statement stmt.

Assume the path corresponding the test input t is π, which does not reach the changed statement

stmt, and π’s path condition is ψ1 ∧ ψ2 ∧ . . . ψm. We look for inputs that can make P ′ deviate from

π to reach stmt. The deviation can be made at any of the branches along π. If an input makes P ′

deviate from π at the k-th branch, it must satisfy the following condition:

ψ1 ∧ . . . ∧ ψk−1 ∧ ¬ψk

That is, the new input satisfies the first k − 1 branching conditions of π, but does not satisfy the k-th

branching condition. If it is satisfiable1, we can generate an input ti satisfying the formula. The new

input ti leads to a different path, which can potentially make P ′ reach the target.

One of the major challenges faced by this intuitive solution is to handle the large number of

branching conditions. The intuitive solution cannot handle large-scale software with limited time and

computing resources. To address this problem, we observe that the negation of certain branching

conditions cannot help to reach the change. For example, in our motivating example described

in Section 4.1 (illustrated in Figure 4.1), negating the branch condition at line 16 will not help to

drive the execution closer to the change. Therefore, we need to measure whether the negation of a

branch condition can drive the execution in P ′ closer to the change. In our approach, the measure

of closeness or proximity of a path π (w.r.t. the change stmt) is given by the length of the chain of

control dependencies that need to be traversed from π in order to reach the change stmt.

In this step, we are working with program paths that have not yet reached the change stmt. The

path conditions of such paths are referred to as partial path conditions (abbreviated as PPC) in our

terminology. The term “partial” specifically emphasizes that the change has not yet been reached.

Also, note that the path condition of any program path π is a quantifier-free first order logic formula

satisfied by all test inputs that drive P ′ to execute along π. The notion of partial path conditions is

central to our approach. Since we are trying to construct a feasible program path (i.e., exercised by at

least one program input) in the changed program P ′ that terminates at the given change stmt, our

method works by constructing a path that gets “closer” to the change. These partial path conditions

1Note that this formula may be unsatisfiable. In that case, other deviations will be tried out based on heuristics explained

later.
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Figure 4.2: Summary of Algorithm 4.1

are then explored to see whether they can reach the changed statement stmt, otherwise we explore

further deviations from these partial path conditions of ti in a similar way (i.e., by negating the last

branch condition). This, in essence, is the heart of our algorithm for reaching the changed statement.

Algorithm 4.1 captures the core method for generating a change-reaching test case. The inputs to

the algorithm are: the old program P , the changed program P ′, and the test-suite TP for program P .

There is a single change between the programs P and P ′, that is, P and P ′ differ via a unit change

statement stmt. The output of the algorithm is a test input tnew that executes this changed statement

stmt. The elements in set S and unexpanded are PPCs (partial path conditions). Set S is used to

maintain all the PPCs we have seen to avoid redundancy. Set unexpanded contains all the PPCs

that have not been tried out. In the algorithm, the CDG of P ′ is first computed, then the distance

from each node to stmt is computed from the CDG of P ′. This is shown by the function dist in the

algorithm. Thus, let b be a program branch in the changed program P ′ whose condition is ψ. Then

dist(ψ) is the shortest path from b to the changed statement in the static inter-procedural control

dependency graph of P ′. The distance for a PPC ϕi (ϕi = ψ1 ∧ . . . ψi ∧ ψi+1) is the same as the

distance of the last branch condition in ϕi, that is, dist(ϕi) = dist(ψi+1).

The algorithm first looks for a change-reaching test case in the existing test-suite T . If no existing

test case can reach the target, our algorithm iteratively constructs such a test case in the second step.

In each iteration of the second step, we choose a PPC that is closest to the target from the PPCs that
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have not been tried out. By deviating at the last branch of the path, we try to get closer to the target

in each iteration.

From the description of Algorithm 4.1, we see that it is similar to the generational search strategy

used in SAGE [52]. In SAGE, given a path π for a test, new paths are explored by negating each

branch in π, similar to our algorithm. The main difference between our method and SAGE is in the

way that we choose the branches to negate. Given a set of partial path conditions (obtained from the

path condition ψ1 ∧ . . . ∧ ψm of a program path)

{ψ1 ∧ . . . ∧ ψi ∧ ψi+1 | 0 ≤ i < m}

we use the distance between ψk and the changed statement stmt to prioritize the selection of the

branch condition to negate. The distance between ψk and stmt is defined as the weighted shortest

path from the program branch contributing to ψk to the changed statement stmt in the static inter-

procedural control dependency graph of the changed program P ′. If the k-th branch condition has

the smallest distance from stmt, it will be negated first.

4.2.2 Propagating the effect of a change to program outputs

Executing the changed statement is not sufficient for reflecting the change in the output. A

change should first affect some program states, and the effect of the change should be seen from the

output (via propagation of the affected states). In reality, a program can have a large number of paths.

Therefore, any propagation technique is either path insensitive and hence imprecise, or path sensitive

but not scalable to large programs. In this section, we propose a practical technique for propagating

the effect of the change in an iterative way.

Why a change may not propagate to output To build a method that propagates the effect of a

change to output, we investigate common reasons for which propagation failed to reach the output.

We use P and P ′ to denote the original program and changed program respectively. The execution

trace of input t in program P is denoted as trace(P, t). For a variable definition statement instance

s′, we say the defined variable is “affected” when it has different value from the value defined in s.

Statements s and s′ are aligned statements in trace(P, t) and trace(P ′, t) respectively. Note that
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the effect of a change could have propagated to certain distance before the propagation stops. So

we do not need to start the propagation from the change each time, we only need to intervene when

the effect stops propagating in the execution. The change cannot affect the output when none of the

affected variables can affect the output. Suppose an affected variable v is defined in s′ in trace(P ′, t),

the reasons that the different value in v stops propagating, may now be enumerated as follows.

• The uses of v are never executed before v is redefined in trace(P ′, t). As an example, consider

the program in our example.

y = 2; /* originally y = 3; */

if (x > 0){ o = y;} else { o = 0;}

Here, the changed statement affects the definition of y. However, in the execution trace for the

input x = 0 (and thus x > 0 is false), the use of this definition is never executed. The output

variable o is not affected by the change.

• Uses of v are executed before v is redefined in trace(P ′, t), but the use cannot result in other

affected variable. As an example, consider the following program. Let x be the input, and o

be the output of this program fragment.

y = 2; /* originally y = 3; */

if (x - y > 0){ o = y;} else { o = 0;}

Here y is the variable whose definition is affected by the change. The use of the definition is

also executed in the form of the condition (x-y > 0). However, for input x = 0, it does not

make a difference in the control flow and the subsequently calculated output value for o.

Propagating changes to the output We handle the two reasons for which the effect of a change

may not propagate to the program output as follows. If the uses of the affected variables are not

executed in an execution trace π, we drive the program execution towards the use statements. This is

achieved via a method similar to Algorithm 4.1, where we set the use statements as the target, instead

of the changed statement.
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In the second case, the uses of the affected variables are executed in the trace but no program

variables are affected by the use. Suppose the affected variable v is defined in statement instance s′,

and v is subsequently used in statement instance m′. Obviously, m′ was not able to propagate the

effect of v forward. According to the type of m′, we use the following steps to propagate the effect

in v.

• If m′ is a variable definition statement, we compute the so-called “transfer condition” [90]

(Definition 4.12 below) of the statement. Intuitively, the transfer condition of an expression is

the condition under which the value of the expression will be different if one of its operands is

different. Given the transfer condition, we use it in symbolic execution to compute a test input

which propagates the effect of the change, while following the same path.

Definition 4.12 (Transfer condition). The transfer condition for exp = oprand1 op oprand2

with respect to oprand1 is the condition under which exp has different value if oprand1 has

different value.

For example the transfer condition of x + y is true since if either operand is different, the

sum is different. On the other hand, the transfer condition of x * y is y 	= 0 for a change in

x.

• If m′ is an branch and v is used as the condition in m′, we compute the condition which

makes m and m′ to be evaluated differently in the two programs P and P ′ in order to produce

different outputs in P and P ′ (m and m′ are aligned statements in trace(P, t) and trace(P ′, t)

). We use symbolic execution to find an input that reaches m in programs P and m′ in P ′ and

then evaluates m and m′ differently in the two programs.

Algorithm for Propagating Change The algorithm for propagating change effects is shown in

Algorithm 4.2. The algorithm iteratively calls procedure Propagate to construct a new input that can

propagate the change effect forward. The procedure Propagate first executes P and P ′ using the

input t. Then it analyzes the execution traces of P and P ′. An important concept here is the change

effect propagation tree (CEPT) calculated by CPTree at line 11.

Definition 4.13 (Change effect propagation tree). Given a unit change, a CEPT CT is defined

as follows. The nodes of a CEPT are statement instances in the changed program P ′. There is
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an edge from α′ to β′ in CT if and only if (i) β′ is dependent on α′ (either control dependence

or data dependence) (ii) the operands of β′ have different values than those of β, where β is the

corresponding statement of β′ in P . Each leaf node in the CEPT is a place where the change effect

propagation terminates.

Note that the CEPT defined above is a polytree [83]. A polytree is a restricted DAG (Directed

Acyclic Graph). While a DAG allows multiple undirected paths between two nodes as long as

they do not form directed cycle, a polytree allows at most one undirected path between any two

nodes. Compared to nodes in a tree, a node in a polytree can have more than one parent node, which

represents that more than one operand in a statement is affected by the change.

Identifying terminating locations of effect propagation The CEPT is computed by dynamic

forward slicing. During slicing, our approach compares the operand values of corresponding

statement instances in both programs to determine whether the change effect has stopped propagating.

If the operand values of a statement instance s′ in P ′ are the same as those of the corresponding

statement instance s in P , s′ will not be included in the propagation tree, because it will not cause

differences in the output. In other words, the change effect does not propagate to s′.

When comparing the operand values of corresponding statement instances in both P and P ′, if s′

of P ′ has no corresponding statement instance in P , the operands for s′ are treated as different from

those in P . To compare the operand values, we use trace alignment to find the corresponding statement

instance s (in execution trace of P ) of s′ (in execution trace of P ′), which is the align(P, P ′, t)

function in Algorithm 4.2. For simplicity, we use sat(ϕ) to represent an input instance that satisfies

ϕ.

Propagating change effects further According to the type of the leaf nodes in the change effect

propagation tree, we use different methods to drive the propagation of the change effect forward. If

an affected variable is defined but never used, the procedure PropNouse is called. In this procedure,

we first use def-use analysis to identify all the use locations of the defined variable, and use our

Algorithm 4.1 to reach at least one of these locations.

If an affected variable is used but does not propagate the effect forward, according to the type

of the use statement s′, two different procedures are used for propagation. If the statement s′ is a
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Figure 4.3: Component view of our approach (CEPT = Change Effect Propagation Tree, CDG =

Control Dependency Graph).

variable-definition statement and the defined variable is used, it can only become leaf node (of CEPT)

when the transfer condition is not satisfied. Procedure PropTransfer is invoked in this case. In this

procedure, we first use symbolic execution to compute the transfer condition TC. Then we get a

new input that satisfies TC by solving the formula f ′ ∧ TC where f ′ is the partial path condition up

to s′. If an affected variable is used as the condition in a branch, it becomes a leaf node when the

branch is evaluated the same in both versions. In this case, we use PropCjmp to execute the branch

differently in two versions. If the procedure Propagate cannot generate a change stressing test input

by analyzing the new program version, we apply Propagate to the old program version.

4.3 Implementation

We implemented our approach on the x86 platform based on the BitBlaze [99] binary analysis

framework. We show the component view of our implementation in Figure 4.3, where the components

used in our solution are shown as boxes, and the data used by the components are shown as italic

labels of edges. Some of the important intermediate data are shown in ovals.

SMT formula solving is used extensively throughout our approach. We used the Boolector SMT

solver [28] for all our formula solving tasks.
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Algorithm 4.2 Propagate the change effect

1: Input:
2: t: a change reaching input

3: P P ′: original and modified program

4: Output:
5: tnew: a input that have different output in P and P ′

6: procedure Propagate(P , P ′, t)
7: align(P, P ′, t)
8: let stmt be the difference between P and P ′

9: execute t in P ′ and P to get the execution traces

10: T = CPTree(stmt, P ′, P, t)
11: for all leaf node s′ in CT do
12: if s′ is a variable definition statement then
13: if variable defined by s′ is not used in t’s trace then
14: ret = PropNouse(s′)
15: else
16: ret = PropTransfer(s′)
17: end if
18: else
19: ret = PropCjmp(s′)
20: end if
21: if ret �= null then
22: return ret
23: end if
24: end for
25: return null
26: end procedure
27: procedure PropNouse(s′)
28: U = useSet(s′) // All first uses of the definition of s′

29: for all u ∈ U do
30: execute Algorithm 4.1 using u as the target

31: let ret be the return value from Algorithm 4.1

32: if ret �= null then
33: return ret
34: end if
35: end for
36: return null
37: end procedure
38: procedure PropTransfer(s′)
39: compute the transfer condition TC for s′

40: let the partial path condition up to s′ be f ′

41: if f ′ ∧ TC is satisfiable then
42: return sat(f ′ ∧ TC)
43: else
44: return null
45: end if
46: end procedure
47: procedure PropCjmp(s′)
48: let s be the corresponding statement instance for s′ in P

49: let the partial path condition up to s′ for t in P ′ be f ′ = ψ′1 ∧ . . . ψ′i′ ∧ ψ′i′+1, the path condition up to s for t in

P be f = ψ1 ∧ . . . ψi ∧ ψi+1

50: let ϕ = f ∧ ψ′1 ∧ . . . ψ′i′ ∧ ¬ψ′i′+1

51: let ϕ′ = f ′ ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1

52: if ϕ is satisfiable then
53: return sat(ϕ)
54: else if ϕ′ is satisfiable then
55: return sat(ϕ′)
56: else
57: return null
58: end if
59: end procedure
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4.3.1 Architecture of our implementation

Reaching changes The top portion of Figure 4.3 illustrates the implementation of the first step of

our approach: finding inputs to reach the change. Our approach first computes the static control-flow

dependency graph (CDG): it uses the ERESI tool [2] to generate the static CFG, and then uses our

module CDG builder to compute the inter-procedural CDG and distance graph from the static CFG.

The distance from a node v to the target is defined as the shortest path from v to target in weighted

CDG. In a weighted CDG, auxiliary edges (such as function call to the start of the called function)

are associated with weight 0. All other edges have weight of 1. We use Dijkstra’s algorithm to

compute the distance of all nodes (to the change) using one pass of the algorithm.

Next, our approach iteratively constructs an input to reach the change. Given the binary P ′ and

a test case t, our approach generates an execution trace of P ′ using BitBlaze’s TEMU component.

TEMU is a whole-system emulator based on QEMU [4]. It emulates a PC system, which runs

operating systems such as Windows and Linux. TEMU supports logging instructions executed in

the emulated PC and tracking instruction operands that are dependent on program inputs (tainted

operands) using taint analysis. Next, our approach uses BitBlaze’s analysis component, VINE, to

generate the path condition of the execution trace. The path condition is represented by VINE’s

intermediate language.

With the CDG and path condition, our approach uses our change-reaching input generation

module to select a branching condition to negate based on the distance to the change statement in

the CDG. It then generates a new input that drives P ′ to execute closer to the change. If P ′ reaches

the change using the new input, our approach continues to the next step. Otherwise, the above

process is repeated using the new input until it generates an input that leads P ′ to execute the changed

statement.

Propagating effects of changes The bottom portion of Figure 4.3 illustrates the implementation of

the second step of our approach: finding inputs to propagate the effects of the change to the program

output. If the input generated in the previous step (the input that reaches and executes the change)

cannot affect the output, our approach uses it to generate an execution trace of P ′ and compute the

path condition. Then, our approach generates the Change Effect Propagation Tree or CEPT (refer

Def. 4.13) to decide how to further propagate the change effect towards the output.
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As described in our algorithm 4.2, trace alignment is needed to compute the CEPT. Our approach

views each trace as an instruction sequence, and aligns the traces of P and P ′ using minimum editing

distance. From the alignment result, we compare the operand values of P ′ with the corresponding

instructions in P , which is required by our approach to decide whether a node is a leaf node in

computing CEPT. For def-use analysis, we implemented a simple def-use analysis module without

pointer aliasing support.

With the above information, our approach constructs the CEPT by performing forward slicing on

the x86 instruction trace. Each instruction is treated as a statement in the slice. One of the practical

challenges is caused by memory and register allocation in different program traces. The memory

addresses of the same variable in two binary versions are often allocated differently by compiler or

loader. Therefore, when such addresses become the instruction operands, the aligned instructions

will have different operand values. For example, mov EAX, [EBX] will have different EBX value

if the variable pointed to by the EBX is allocated at different addresses in the traces of P and P ′.

However, the difference in memory address does not imply a different program state, which is defined

by the contents of variables, instead of addresses of variables. Similar issue happens with the stack

registers ESP and EBP. To address this problem, our approach does not treat difference in memory

address operands and stack register operands as different program states.

4.3.2 SMT solving optimizations

We note that in Algorithm 4.1 (for constructing an input which reaches the change), many

of the formulae ψ1 ∧ . . . ∧ ψk−1 ∧ ¬ψk constructed for reaching the changed statement may be

unsatisfiable. For example, when there is no dynamic data dependence chain between ψk and input

variables (along the path which results in the partial path condition ψ1∧ . . .∧ψk−1∧ψk), the formula

ψ1 ∧ . . . ∧ ψk−1 ∧ ¬ψk is unsatisfiable. Naturally there is no point in submitting such formulae to

the SMT solver. In this way, we reduce a significant amount of SMT queries, which leads to more

than 90% reduction of SMT solving queries in our experiments.

4.3.3 Handling branch correlations

Most of the SMT formulae used in our algorithms are based on path condition. We noticed some

branches along the path could be correlated. Suppose the branch we are trying to negate is bβ , there
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is an earlier branch bα that is correlated with bβ . This correlation could make the constructed formula

unsatisfiable. We handle the common cases of “immediate conflicts” between (branch, branch) and

(assignment, branch) pairs as follows.

1. if(x>2){ ... // x is not modified here}

if(x<0){ //target }

Given a trace for say x == 3 which evaluates the first branch to true and the second branch

to false, suppose we want to flip the evaluation of the second branch statement to reach the

target. However evaluating x > 2 to true and then x < 0 to true constitutes an infeasible

path in the control flow graph.

Solution: When we solve formula θ = (ψ1 ∧ ψ2 ∧ . . . ∧ ¬ψk), if the branch corresponding

to ψk is bk, we perform a backward slicing on the trace from bk. All the branch conditions

that are not in the slice are removed from the path condition θ. In this way, we keep all the

branches that are relevant for reaching bk, and we also keep all the statements that are used for

computing the branch condition. At the same time, branches that are not essential for reaching

bk but may prevent the negation of bk are removed from the slice.

2. if(x>0){ y = 1; } else{ y = 0; }

if(y){ //target }

For the input x = 0, we can see y is set to 0 from the execution trace. To reach the target, we

need to negate the first branch that the definition of y is dependent on.

Solution: If we find a branch condition ψk is not “tainted” (dependent on the input via a chain

of data dependencies), we cannot directly negate this branch. Suppose the last definition of

ψk’s variables in the trace is def , we use backward slicing to find all tainted branches that def

is dependent on. By negating one of these branches, we may evaluate ψk differently.

4.4 Evaluation

To examine the efficacy of our approach, we evaluated our approach using two subject programs.

In this section, we report our empirical evaluation results.
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4.4.1 Experience with tcas

The first program we used to evaluate our approach was tcas from the SIR repository [43].

Tcas is an aircraft collision avoidance system. It has an original version (the golden program) and

41 changed versions with seeded bugs, exactly one line of a change for each bug. The tcas program

from SIR reads inputs from command line, we modified the program to read inputs from a file. To

stress our test generation method fully, we took an initial test-suite with only one randomly generated

test case in this case study. Then we apply Algorithm 4.1 on this test-suite to generate test cases

reaching the change.

Our technique uses 80 runs to reach all the 41 changes, about two runs to reach one change

on average. Out of the 41 versions, in 8 versions, the inputs generated by Algorithm 4.1 already

produced different program outputs; thus change effect propagation is not needed in these cases.

These inputs are returned by our approach as the test cases to augment the test-suite.

The remaining 33 buggy versions of tcas needs to go through change effect propagation (as

shown in Algorithm 4.2), to generate test cases. Our approach successfully generated test cases

that show different program outputs (w.r.t the original tcas program) in 31 out of the 33 program

versions. In the remaining two program versions, because of incorrect program alignment at line 7 of

algorithm 4.2, the CEPT was not computed correctly. The node where change effect propagation

terminates was not identified as a leaf node in the incorrect CEPT.

Now we discuss two cases where change effect propagation are needed in tcas. Through these

examples, we show that how our techniques propagate the change effect forward towards the output.

Affected variable defined but not used. Figure 4.4 shows an example in version 3 of tcas,

in which the change effect cannot propagate because the affected variable intent not known is

defined but not used. Note that in the example code, one line of source code is treated as multiple

instructions in our technique. In the example, because the operator is changed from && to ||, the

variable intent not known is evaluated to different values in two different versions in execution.

However, because the value of tcas equipped is false, the variable intent not known is never used

after its definition (note that a && is defined using short circuit evaluation, that is, if the first operand

is false, the second operand is not used). To propagate the effect of the change, we employ our
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//original version
intent_not_known = Two_of_Three_Reports_Valid
&& Other_RAC == NO_INTENT;

alt_sep = UNRESOLVED;
if (enabled && ((tcas_equipped
&& intent_not_known) || !tcas_equipped))

//changed version
intent_not_known = Two_of_Three_Reports_Valid
|| Other_RAC == NO_INTENT; /* logic change */

alt_sep = UNRESOLVED;
if (enabled && ((tcas_equipped
&& intent_not_known) || !tcas_equipped))

Figure 4.4: Variable intent not known defined but not used

//orginal version
enabled = High_Confidence
&&(Own_Tracked_Alt_Rate <= 600)
&&(Cur_Vertical_Sep > MAXALTDIFF);

//changed version
enabled = High_Confidence
&&(Own_Tracked_Alt_Rate <= 700)
&&(Cur_Vertical_Sep > MAXALTDIFF);

Figure 4.5: Propagation stops because of branches

algorithm 4.1 to reach the statements where intent not known is used. Algorithm 4.1 negated the

value of tcas equipped to execute the condition test on intent not known.

Propagation stops because of branches. From our experience in the experiments, it is very com-

mon that the propagation terminates because of a branch is evaluated similarly in both versions. Fig-

ure 4.5 shows the case in version 13 of tcas. The value compared with Own Tracked Alt Rate

is changed from 600 to 700. Only when Own Tracked Alt Rate is in (600, 700], the effect

of the change propagates. Through symbolic execution, our technique found a value 604 for

Own Tracked Alt Rate such that variable enabled is evaluated to different values in two versions.

Comparison with [105]. We compare our results with [105] — the only work that generates test

cases to stress program changes. Other research efforts on this topic, such as [92], generate criteria

for propagating effects of changes, but they do not generate test cases to reach and stress a program

change. Therefore, we cannot compare our experimental results directly with those of [92].
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In [105], they build their work based on PIE model. They provide heuristics to avoid exploring

paths that (i) cannot lead to execution of the change (ii) cannot lead to state infection (iii) cannot lead

to affected state propagation.

To compare with [105], we used the result from first 11 changed versions of the tcas program,

the same versions used in the evaluation of [105]. For each version, our technique started with a

random generated input, and interactively generated new inputs to reach the change. The technique

in [105] used 95 runs in total to reach all the 11 changes. In contrast, our technique used only 32 runs

to reach all the 11 changes. Note that we compare the number of runs for reaching the change, not

the number of runs for propagating the change effect to the output. This is because, [105] does not

report the number of runs for propagating the effect of the change to the output. Our technique can

generate change-reaching inputs with much fewer runs, because the path exploration in our technique

is guided by a target. We use the notion of distance in the control dependency graph to prioritize

exploring shorter paths to the change.

In addition to the number of runs reported above, our technique also made less number of calls

to the SMT solver. We used data tainting method to identify branches that cannot be executed

differently, as is described in Section 4.3.2. In our experiments, we found that this optimization led

to significant reduction in the number of calls to the SMT solver. More than 90% branch conditions

are not tainted, and thus can be eliminated, in both of our case studies.

4.4.2 Experience with libPNG

In our second case study, we studied the changes between two versions of the libPNG program.

LibPNG is a open-source library for manipulating PNG image files. It supports almost all the

features of PNG file format. We used two consecutive versions from libPNG, v1.2.20 and v1.2.21.

Each version has a large code base, running into around 28000 lines of code (23.3% of which are

executed in our experiments).

We first remove all the obvious syntactic changes that do not affect the semantics of the program.

After removing these changes, we are left with 10 changes. Each of these 10 changes are independent.

Therefore, we can construct intermediate versions of libPNG by applying the 10 changes to version

v1.2.20 one by one. We use ci to denote change i and use v0 to v10 to denote the intermediate

versions (Version v0 is v1.2.20 and v10 is v1.2.21). Version vi is obtained by applying ci on Version
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//original version
png_byte red_high =
(trans_value->red > 8) & 0xff;

//changed version
png_byte red_high =
(trans_value->red >> 8) & 0xff;

Figure 4.6: An example change from libPNG

vi−1. Because the changes are not correlated, if a change ci can affect the output in vi−1 and vi, it

can also affect the output in v1.2.20 and v1.2.21.

Instead of randomly generating test inputs, we used the PngSuite [107] as the test-suite for

evaluating Algorithm 4.1 on libPNG. PngSuite is a large collection of PNG files to test PNG

applications. The creator of PngSuite aims to represent all the PNG formats when the suite was

created in 1998. Because libPNG has been evolving with the evolution of PNG specification, some

new features in libPNG cannot be fully tested by PngSuite any more. This is the exact situation

where test-suite augmentation is needed due to program evolution.

LibPNG comes with a test driver to show how the library should be used. We modified the

test driver to make the changes statically reachable. We tried to make the changes to the test driver

minimal.

Eight out of all ten changes were reached by existing test cases in the PngSuite. For the remaining

two changes, our algorithm was able to construct new PNG files that can drive the execution to the

changes. A PNG file consists of multiple chunks with different information. Each chunk contains

chunk type, chunk length, checksum, and the chunk data. Most functions in libPNG are chunk-

specific. For example, a function for handling chunk of type iTXt is only called when there is a

chunk of type iTXt in the input PNG file. These two changes appeared in functions that handle the

iTXt chunk type. Since iTXt only appears in v1.2 of PNG specification, which was released in

1999, no PNG files in PngSuite (created in 1998) were able to test these two changes. Our algorithm

automatically generated test inputs of the iTXt type.

After finishing Algorithm 4.1 for all the ten changes, we got ten change-reaching inputs (one

for each change). Each of these ten inputs can only guarantee the corresponding change being

executed, but they may not necessarily affect the program output. In fact, we found that out of the
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ten change-reaching inputs, seven affect the program output (that is, the output is different for these

inputs in the two program versions), and the remaining three do not. Among these seven changes,

six changes are bug fixes, and the other is a content change in the output message. We show one

example of a bug fix in Figure 4.6. In the example, the bit-wise right shift operator 
 was mistyped

as greater than operator > in the buggy version (original version). With the bug fix, the variable

red high had different values in two versions. This variable was later used to compute a PNG file

as the program output. The output was already different because of this change, so change effect

propagation was not needed in this case.

Three out of the ten change reaching test inputs needed to go through change effect propagation

(Algorithm 4.2 in our approach). By employing Algorithm 4.2, we succeeded in altering two of these

three change-reaching inputs, to produce test inputs which execute the change, and propagate its

effect to the program output. In other words, we constructed a PNG file which executes the change

and manifests its effect by producing different outputs in the two versions of libPNG.

For the last program change, we did not succeed in generating a change-stressing input. The

change-effect propagation stopped at a conditional jump in this case. The formula constructed

was not satisfiable because of branch correlation. The heuristics proposed by us to handle branch

correlation (see Section 4.3.3) did not allow us to construct a satisfiable formula in this case. This is

because, our heuristics handle “immediate” (branch, branch) and (assignment, branch) conflicts. It

does not handle “transitive conflicts” where the branch correlation cannot be explained by a pair of as-

signments/branches. For example consider the code fragment x = 1; y = x; if (y > 2)

Here the direction of evaluation of y > 2 is fixed by the past two assignments, but there does not

exist any pair of statements which can explain the infeasibility of the sequence of statements being

executed for any input.

In summary, there are ten changes in our experiment with libPNG, our technique succeeded

for nine of them. In the first step of our technique, we successfully get ten change-reaching inputs

for all the changes. Eight of these ten inputs are from existing test-suite, the other two inputs are

generated by our Algorithm 1. In the second step of our technique, our Algorithm 2 modifies the

results from the first step to get inputs that have different output because of the changes. The second

step succeeded on nine changes and failed on only one change.
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4.5 Threats to Validity

One main threat to validity is the the choice of subject programs in our evaluation. We chose

two subject programs with different sizes and used different setting for the initial test-suite. More

experiments would help better evaluate our technique.

In our experiments with libPNG, we had to modify the original test driver to make all changes

reachable. While modifying the test driver, we try to keep the changes minimal.

According to the PIE model, program state infection has to happen after a program change is

executed. Our technique does not focus on state infection as we observed that program state infection

typically happens immediately after the change is executed. However, in general, there might be

cases where state infection does not always happen together with the execution of program change.

Our technique compares the program state based on the aligned execution traces. Currently, the

trace alignment is based on the minimum edit distance. Other trace alignment techniques that exploit

program structures could potentially give more precise results.

4.6 Summary

In this chapter, we present a test-suite augmentation method which stresses program changes. To

stress a change c in a program, our technique automatically generates a new test case t that gives

different outputs in two versions. Our technique works mainly in two steps. In the first step, we use

distance in Control Dependency Graph to guide our path exploration towards the change. After a

change-reaching input is constructed, our technique use change effect propagation tree to identify

why a change cannot affect output, and then propagate its effect accordingly.

In the case of correct refactorings, we expect the technique to not generate any new inputs. Since

such a change does not result in different program state, our test-suite augmentation method indeed

does not generate any change-stressing inputs in such a case.

We have implemented our technique in a toolset based on BitBlaze [99]. To test the efficacy of

our technique, we performed two case studies on tcas and libPNG. For almost all the changes we

studied, our tool was able to generate a new test case that stresses the change and causes difference

in program outputs. Compared with existing test-suite augmentation techniques, our technique is

more goal-directed since we: (i) employ metrics like distance in the control dependency graph to
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reach the change quickly (this enables us to find a short program path to the change), and (ii) employ

heuristics to handle correlated branches while propagating the effect of program change to output

(this enables us to avoid searching through many infeasible program paths).
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CHAPTER V

DARWIN: An Approach for Debugging Evolving Programs

As programs evolve from old versions to new versions, bugs are also constantly introduced in

programs. Existing functionality could be broken by program changes, which is referred as software

regression. The implementation of new program features may also contain defects. As mentioned

earlier, many bug-fixes have been shown to be incorrect in real-life software projects.

Locating regression bugs has always been a notoriously difficult task. When a program is

changed to a new version, usually most functionality of the program is to be preserved in the new

version. If any of these functionality is accidentally broken, a regression bug occurs. Note that we

do not require the full program requirements to stay unchanged, we only require the requirements

for bug-manifesting inputs to be unchanged. The debugging process will only focus on inputs that

can manifest the bug. A bug is considered to be regression bug whenever the specification for the

bug-manifesting inputs is unchanged.

Problem Statement Specifically, we seek to solve the following debugging problem in this chapter.

Let program P ′ be a buggy program whose buggy behavior can be manifested by input t. Let

program P be the reference program on which the behavior of input t is correct, and P and P ′ are

supposed to produce the same output for input t. Our goal is to find a set of program fragments in

either P ′ or P that are responsible for the failing execution of input t in program P ′.

We assume that the program requirements vis-a-vis existing features of the program do not

change. However, in reality, program requirement do change over time. In that case, our technique is

unable to differentiate software regression errors from intended program changes based on changed

requirements. We will discusses this assumption more thoroughly in Section 5.5.
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For regression bugs, the previous program version serves as an excellent reference when debug-

ging the current buggy version, because the same program requirement is satisfied by the previous

program version but not by the current buggy program version. An intuitive approach is to compare

the execution trace of the bug-manifesting input from the previous program version and its execution

trace from current program version. However, such syntax-based approach is unable to differentiate

the semantics-preserving program changes from semantics-altering program changes. For example,

even though switching the order of two independent statements may not result in any change in

program semantics, a simple trace comparison approach will still report the trace differences caused

by switching the statements as potential causes of the regression bug.

We propose a novel semantics-based regression debugging technique — DARWIN. Our proposed

DARWIN approach employs semantic comparison as opposed to simple syntactic comparison. Our

semantic comparison of two executions is based on the path conditions extracted from the execution

traces. We notice that the path condition of an execution trace contains information of how the

program output is computed. On the other hand, different from execution traces, path conditions are

quantifier-free first order logic formulae, comparison of which assists us to automatically filter out

logically equivalent computations even though they are syntactically different. As we will explain

later in this chapter, DARWIN may still be applicable even when the reference program P and the

buggy program P ′ are two entirely different implementation of the same specification.

5.1 Overview

In this section, we illustrate our DARWIN debugging technique using an example shown in

Figure 5.1. The reference program is shown in Figure 5.1a, and the buggy program is shown in

Figure 5.1b. Both programs have the same input variables {x, y} and the same output variable out.

Let us assume that the program requirement is not changed from the program in Figure 5.1a to the

program in Figure 5.1b. Thus, for the same input, the current program in Figure 5.1b is supposed to

produce the same output as the output of the program in Figure 5.1b. However, we observe that the

output for input 〈x == 5, y == 5〉 in the current program is unexpected. The bug lies in line 6 of

the program in Figure 5.1b, where the correct statement should be if(x-y >=0). Assuming that
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the root-cause of the bug is unknown, our goal is to find the statements that are most likely to be the

root-cause.

1 int x, y, out;
2 scanf("%d%d", &x, &y);
3 out = 0;
4 if(x+y == 10){
5 if(y < 8){
6 if(x > 4){
7 out = 1;
8 }else{
9 out = -1;

10 }
11 }
12 }
13 printf("%d", out);

(a) Previous program

1 int x, y, out;
2 scanf("%d%d", &x, &y);
3 out = 0;
4 if(y < 8){
5 if(x+y == 10){
6 if(x - y >= 1){
7 out = 1;
8 }else{
9 out = -1;

10 }
11 }
12 }
13 printf("%d", out);

(b) Current program

Figure 5.1: Sample programs (the program in Figure 5.1b contains a regression error in line 6, which

should be if(x-y >=0))

scanf("%d%d", &x, &y);
out = 0;
if(x+y == 10){
if(y < 8){
if(x > 4){
out = 1;
printf("%d", out);

scanf("%d%d", &x, &y);
out = 0;
if(y < 8 ){
if(x +y == 10){
if(x – y >=1 ){
out = -1;
printf("%d", out);

(a) (b)

Figure 5.2: Execution traces of input 〈x == 5, y == 5〉 for the programs in Figure 5.1

Let us first examine the effectiveness of trace comparison on the above programs. We first collect

the execution traces of input 〈x == 5, y == 5〉 on the two programs. The execution traces are

shown in Figure 5.2. All the differences in the execution traces are highlighted in grey background to

the user for further inspection. Even though only one statement is buggy, all executed statements

in lines 4-9 are highlighted, which unnecessarily increases the programmer’s manual inspection

effort. Through this example, we notice two problems of trace comparison: i) we need to align the

two execution traces from two different programs based on heuristics (e.g. shortest edit distance)

during trace comparison. Any inaccuracy in the trace alignment will introduce false positives in

49



the debugging result, and ii) trace comparison is unable to infer the semantic equivalence of two

statements when they are syntactically different even though they are indeed equivalent in semantics.

Presenting semantic equivalent statements across versions as potential bug causes only increases the

manual effort of users in examining the automatic debugging result.

Different from the simple trace comparison approach, our DARWIN approach uses semantic

comparison of the two executions based on path conditions. Let us first compute the path conditions

of the input on the two program versions. We denote the path conditions from the previous version

and current version as pc and pc′ respectively. Following the steps in Chapter II, we get pc =

(x + y == 10)∧ (y < 8)∧ (x > 4) and pc′ = (y < 8)∧ (x + y == 10)∧¬(x− y >= 1). As the

path condition is a conjunction of branch conditions, we use the following method to pinpoint the

bug-causing branch condition, thereby locating the root cause of the bug. We construct the following

formulae, each one of which represents a possible deviation (due to the negation of the last branch

condition) from the path condition pc′.

• pc ∧ ¬(y < 8)

• pc ∧ (y < 8) ∧ ¬(x + y == 10)

• pc ∧ (y < 8) ∧ (x + y == 10) ∧ (x − y >= 1)

If any formula is satisfiable, the branch of the negated branch condition (the last branch condition)

represents one semantic difference between the execution of input 〈x == 5, y == 5〉 in program

P and the execution of the same input in program P ′. The branch is considered as one suspicious

root cause of the regression error. For the above formulae, we find that only the last formula

pc∧ (y < 8)∧ (x+y == 10)∧ (x−y >= 1) is satisfiable. Hence, the branch if(x - y >= 1)

in line 6 of the buggy program is considered as the potential root-cause. This concludes the process

of DARWIN on the example and indeed it has found the root-cause of the bug.

To further explain the intuition behind our approach, let us consider the execution of a test

input t′ where t′ |= pc ∧ (y < 8) ∧ (x + y == 10) ∧ (x − y >= 1). For simplicity, let

us use t to represent the initial buggy input 〈x == 5, y == 5〉. We then have t′ |= pc and

t′ |= (y < 8) ∧ (x + y == 10) ∧ (x − y >= 1). Given that t′ |= pc, the execution of input t′ will

follow the same path as that of our initial buggy input t in the previous program version. In the
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changed program version, the execution of input t′ will follow the same path as that of our initial

test input before the negated branch. Upon executing the negated branch, the executions of inputs t

and t′ start to differ. Without any change in semantics, the two inputs following the same path in

previous program P should also follow the same program path in the changed program P ′. Thus, the

difference in execution paths of inputs t and t′ in program P ′ signal changes in program semantics.

Based on this intuition, our technique captures the semantic changes by reporting the branches where

path deviations are possible as shown in the aforementioned example.

The technique we have discussed so far can only points to branch statements as the potential

root causes of the bug. Thus, our technique is inherently suitable for bugs in program control flow.

For data flow bugs that affect program control flow, our technique will point to locations where the

program control flow is affected. In Section 5.2.3, we present a predicate instrumentation technique

that allows our technique to directly locate the root causes of data flow bugs.

In summary, our DARWIN debugging approach proceeds as follows. Let us denote the reference

program as P , the buggy program as P ′, and the buggy input as t.

1. We first symbolically execute input t on programs P and P ′ and compute the path conditions

pc and pc′ of the two executions respectively.

2. If pc∧¬pc′ is satisfiable, we find the branch conditions in pc′ that are not subsumed by pc (this

process will be explained in details in Section 5.2). These branch conditions represent compu-

tation in program P ′ that does not occur in the execution of program P . The corresponding

branches of all these branch conditions are considered as the potential bug causes.

3. If pc ∧ ¬pc′ is not satisfiable but pc′ ∧ ¬pc is satisfiable, we find the branch conditions in pc

that are not subsumed by pc′. These branch conditions represent computation in program P

that does not occur in the execution of program P ′. The corresponding branches of all these

branch conditions are considered as the potential bug causes. These program fragments in

the trace of program P with no semantic equivalent fragments in the trace of P ′ help us find

code-missing errors in the program P ′.

4. If pc ∧ ¬pc′ and pc′ ∧ ¬pc are both unsatisfiable, our techniques fails. In this case, the two
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path conditions are equivalent, pc == pc′. Hence, our technique based on comparing two path

conditions is unable to locate any potential bug cause.

5.2 Detailed Methodology

In this section, we present the detailed methodology of our DARWIN debugging technique. We

start with the core approach of semantically comparing two executions through path conditions.

Then, we present a set of formula simplification rules that drastically boost the efficiency of our

technique. Finally, we propose to use predicate instrumentation to uncover bugs that are not reflected

in path conditions by default.

Notations We use the following notations in the upcoming discussion. Let ψ be a branch condition,

we use BrI(ψ) to denote the branch instance from which ψ is computed. We then use Br(ψ) to

denote the static branch in the source code of the branch instance BrI(ψ).

5.2.1 Core method

Given the failing input t in the current buggy program P ′, we use semantic comparison of path

conditions to locate the root-cause of the bug. Let π and π′ be the execution traces of input t in

programs P and P ′ respectively. We then compute the path condition of π and π′. Let us denote

the path conditions as pc and pc′. Instead of comparing the traces directly, we compare the path

conditions pc and pc′. The path conditions are both quantifier-free first order logic formulae on the

program input variables. On a coarse-grained level, we can compare whether two path conditions

are logically equivalent. However, our goal is to locate the bugs through comparing path conditions.

Hence, a more fine-grained comparison is required.

Each path condition is a conjunction of a sequence of branch conditions. Let us denote the

path condition pc′ as pc′ = ψ1 ∧ ψ2 . . . ψm. Intuitively, we try to find any branch condition in pc′

that is not subsumed by pc. That is, we try to find each ψi such that ¬(pc ⇒ ψi). However, we

should also pay attention to the order of branch conditions in pc′. A branch condition only has its

meaning when the corresponding branch instance can be executed. Before executing the branch
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corresponding ψi, all branches before the branch of ψi are executed. Therefore, to assure that the

branch of ψi is executed, we need to require ψ1 ∧ ψ2 ∧ . . .∧i−1 to be true. Together with the

aforementioned condition, we consider a branch condition in pc′ one difference between pc′ and

pc iff. (¬(pc ⇒ ψi)) ∧ (ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1) is true. The above formula can be reduced to the

following

θi
def
= pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi

If θi is satisfiable, the branch Br(ψi) is considered as a difference between the two executions and

thus a candidate of the bug root-cause. In the end, the following set of statements will be presented

as potential bug causes.

{Br(ψi)|pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi is satisfiable}

Since there are m branch conditions in pc′, there could be at most m entries in the above set. We

have described the process of finding suspicious buggy locations in program P ′. If we cannot find

the root-cause of the bug in the current program P ′ through the above process, we use a similar

process to find the semantic differences in the path condition pc. Let us denote the path condition pc

as pc = ϕ1 ∧ ϕ2 . . . ∧ ϕn. We then solve the following n formulae

ωi
def
= pc′ ∧ ϕ1 ∧ . . . ϕi−1 ∧ ¬ϕi

For any ωi that is satisfiable, we put the branch Br(ϕi), which is in program P , into the set of

suspicious program locations. Therefore, DARWIN will produce the following set of statements in

program P to help explain the bug.

{Br(ϕi)|pc′ ∧ ϕ1 ∧ . . . ϕi−1 ∧ ¬ϕi is satisfiable}

In the case that pc and pc′ are equivalent, DARWIN fails to locate any potential bug cause.

Input validation Due to the complexity of computing path conditions for real-life programs and

the limited ability of SMT solvers, we need to make under-approximation when computing path

conditions and solving them using SMT solvers. For example, suppose we have an SMT solver
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that only support linear operations. The branch condition of if(x * y)>0 will not be supported

by the solver if x and y are both symbolic. Let pc be the ideal path condition for path π and let

p̃c be the computed path condition of path π. When p̃c is an under-approximation of pc, we have

the following relation: for any input t′, if t′ |= p̃c, then t′ |= pc. Recall that we solve m formulae

that are in the form of θi
def
= pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi. Due to the negation on ψi, the computed

θi is neither under-approximation or over-approximation of the precise θi. Therefore, to eliminate

any error introduced by the approximation, we verify the solution of θi through concrete program

execution. Suppose input t′ satisfies θi. According to the definition of θi, t |= pc, which means

that when executing input t on program P , the program should follow path π. Similarly, since

t′ |= ψ1∧ . . . ψi−1∧¬ψi, the execution of input t′ in program P ′ should evaluate all branch instances

in {BrI(ψk)|1 ≤ k ≤ i − 1} to the same directions as in path π′ and evaluate the branch instance

BrI(ψi) to different direction. Suppose we get an alternate input t′ when solving θ̃i. We then

validate that t′ is indeed an solution of θi by concretely executing t′ in programs P and P ′ and check

whether the programs follow the desired paths. That is, (i) the execution of t′ in program P follows

the same path as the path of t, and (ii) the execution of t′ evaluates all branch instances BrI(ψk),

1 ≤ k ≤ i − 1 to the same direction as in the trace of t in P ′ and evaluates BrI(ψi) to different

direction.

Prioritizing suspicious causes We propose the following technique to prioritize the suspicious

root-causes, thereby further improving the effectiveness of our technique. When an formula θi

is satisfiable, we get an alternate input by solving it. Therefore, each statement in the set of

potential root causes has an associated alternate program input. Our prioritization technique is based

on the passing/failing status of the alternate input. We prioritize the branches whose associated

inputs are passing. That is, if by solving θi we get input t′, and the program P ′ passes when

executing input t′, then the branch Br(ψi) is assigned with high priority. If an input t′ satisfy

θi
def
= pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi, the programs P and P ′ should follow certain paths when executing

t′. Specifically, the program P ′ should follow the same path as the path of input t before the branch

BrI(ψi) is met. On the branch BrI(ψi), the inputs t and t′ drive the branch to different directions

in P ′. The intuition behind this heuristic is that by negating the branch Br(ψi), we have converted

a failing execution (with input t) into a passing execution (with input t′), then the branch Br(ψi)
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is more likely to be the root-cause of the bug. Similar ideas have also been presented in previous

research (e.g. predicate switching [126]). Note that to apply this heuristic, an oracle (either automated

or manual) checking whether an execution passes has to exist. As observed in our experiments, even

without an automated oracle, the number of executions to check is usually small and manageable for

programmers.

5.2.2 Formula simplification

Our DARWIN technique involves extensive satisfiability checking of formulae using Satisfiability

Modulo Theory (SMT) solvers. Thus, the scalability of our method depends on the scalability of

formula solving. We propose several techniques to improve the efficiency of formula solving specific

to our problem domain.

Checking for unsatisfiable sub-formula. Recall that we are trying to solve formulae of the form

pc∧¬pc′ where pc and pc′ are the path conditions collected from two program versions for a given test

input t. Assuming pc′ def
= (ψ1∧ψ2 . . .∧ψm) we solve the m formulae θi

def
= pc∧ψ1∧. . . ψi−1∧¬ψi.

The key problem we face now is that the SMT solver may take substantial time to solve each of the θi

formula. We note that common programming practices may make ψ1 ∧ . . . ψi−1 ∧ ¬ψi unsatisfiable.

For example, consider a check c being repeated many times in a program code. Clearly if ψj (for

some j ≤ i) and ψi are both c, an SMT solver will very quickly conclude that ψ1 ∧ . . . ψi−1 ∧¬ψi is

unsatisfiable. In such situation, we do not need to solve the larger formula pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi.

Overall, instead of directly dispatching θi to the SMT solver (to check the satisfiability of θi) - we

first dispatch ψ1 ∧ . . . ψi−1 ∧ ¬ψi to the SMT solver and try to see whether the SMT solver declares

it to be unsatisfiable within a short time bound. Our experience indicates that this is often the case,

and in such a situation we do not need to solve the bigger formula θi ≡ pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi.

Slicing out unrelated symbolic variables. Secondly, using dynamic slicing, we can find the subset

of symbolic input bytes that can affect the only branch (contributing to ψi) that we want to execute

differently in both program versions. For unrelated symbolic input bytes, we use their value from the

concrete execution when constructing the alternate inputs. Using concrete values for certain portions

of our input greatly simplifies the formulae we need to solve and reduces the burden on the SMT

solver.
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We now describe the steps we employ to reduce the amount of time taken in checking satisfiability

of θi.

1. We impose a short time bound (say 10 seconds), and within this time bound we let the solver

check whether ψ1 ∧ . . . ψi−1 ∧ ¬ψi is satisfiable. If the solver says that ψ1 ∧ . . . ψi−1 ∧ ¬ψi

is unsatisfiable, clearly θi is not satisfiable. If the solver does not terminate within the time

bound or says that ψ1 ∧ . . . ψi−1 ∧ ¬ψi is satisfiable — we continue with the following steps.

2. We perform slicing on the (assembly level) execution trace π′ corresponding to path condition

pc′ to find out the set of input bytes that ψi is dependent on. This is done as follows. Note that

ψi is a primitive constraint corresponding to some branch instance b in the execution trace.

Due to traceability links between sub-formula in the path condition and branches contributing

to these formulae we can find the branch b contributing to ψi. Let l be the control location

corresponding to b and V ars be the variables appearing in the constraint ψi. We perform

dynamic slicing [67, 17, 112] w.r.t. the slicing criterion (l, V ars) on the assembly level

execution trace π′ corresponding to path condition pc′. During the traversal of the execution

trace, the dynamic slicing algorithm maintains (i) a set of instruction instances (the slice), (ii) a

set of variables δ whose values need to be explained. At the end of the slicing, we inspect the

set of input fields (or bytes) which appear in δ. These are the input bytes on which ψi depends

in the trace for pc′. Let this set of input bytes be Ini+1.

3. We assign all input bytes not appearing in Ini+1 to the actual values used in the concrete

execution of the test input t being debugged. We also use forward constant propagation along

the execution trace π′ to propagate these concrete values to other program variables (which do

not correspond to program input). This greatly simplifies pc as well as ψ1∧. . . ψi−1∧¬ψi since

many of the variables in the formulae get instantiated to concrete values. Let the simplified

formulae be called pcsimplified and (ψ1 ∧ . . . ψi−1 ∧ ¬ψi)simplified.

4. We check the satisfiability of (ψ1 ∧ . . . ψi−1 ∧ ¬ψi)simplified. If it is unsatisfiable, we can

stop. Otherwise, we go to the next (and final) step.

5. Finally we solve the simplified formula pcsimplified ∧ (ψ1 ∧ . . . ψi−1 ∧ ¬ψi)simplified using

an SMT solver.
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After concretizing the input bytes other than those in Ini+1 and propagating constants, the

formulae to be solved are greatly simplified owing to instantiation. This greatly reduces the solution

time.

5.2.3 Predicate instrumentation

The core method described in Section 5.2.1 could only points us to branches in the programs as

the bug candidates. Hence, errors that only affect program data flow but not control flow could not

be detected using our core debugging method. We propose to use predicate instrumentation [71, 72]

to introduce additional control flow that reflects information of the program data flow. We instrument

the following two types of predicates in the programs being debugged.

1. For each function return value, we instrument predicates checking whether the return value is

null if it is of pointer type and checking the sign of the return value if the type is integer.

2. For any variable x, before any assignment to variable x, we instrument predicates checking

whether other x == y for any variable y that i) shares the same type with variable x and ii) is

live at the instrumentation location.

With the instrumented predicates, our DARWIN technique could find bugs in the program data

flow that do not affect the program control flow originally. On the other hand, the benefit does

come with the instrumentation cost, which is less than 20% in term of the increased trace size (see

Section 5.4.7).

5.3 Implementation

We now describe our implementation setup. The overall architecture of DARWIN is summarized

in Figure 5.3. We built DARWIN based on the BitBlaze platform [99]. Most of the modules used by

DARWIN are contained in the recent open-source release of BitBlaze. However, BitBlaze does not

have the modules for formula manipulation and optimization. We built these modules for DARWIN

on our own.
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5.3.1 Generating alternate inputs

DARWIN uses a symbolic execution engine for computing the path condition of a given program

execution. Our execution engine is a part of the BitBlaze platform [99], which works on x86 binaries.

Given an input, the platform concretely executes the program on the specific input and records

the trace. It then performs symbolic execution to compute the path condition of the concrete trace

recorded. The path condition represents a constraint denoting the set of inputs which execute the

concrete trace.

The concrete execution is carried out by TEMU, a whole-system emulator based on QEMU [4].

TEMU can run Windows and Linux as its guest operating system, enabling us to analyze both

Windows and Linux binaries. After the concrete execution, TEMU generates a trace of instructions

executed by the program. The trace is also annotated with input dependence information, for example,

whether the operand of an instruction is dependent on input (an operand is dependent on the input

if there is a data dependence chain from the operand to an input). TEMU allows users to specify

several types of inputs, such as network inputs, files, and keyboard inputs.

The path condition calculation is performed by the VINE component of BitBlaze. It first defines

the bytes in the program input as symbolic variables: each byte in the input is a distinct variable. Then,

it makes a forward pass through the trace recorded by TEMU, considering only tainted instructions

i.e. instructions whose operands are (directly or transitively) dependent on the program input (via

data dependencies). Note that such dependency information is present as annotations in the trace

recorded by TEMU. For each tainted instruction in the trace, VINE translates the instruction to a

sequence of statements in its own intermediate language, where the semantics of each instruction is

preserved [27]. This translation helps the VINE tool deal with the complexity of the x86 instruction

set. Finally, VINE performs a traversal of the trace in the intermediate language to compute the path

condition.

Two points need to be noted about the BitBlaze execution engine, and its interplay with our

debugging framework. First, the concrete and symbolic execution engines work on x86 binaries.

Our path conditions are also computed at the level of binaries, rather than source code — thereby

capturing the precise semantics of the program execution. On the other hand, the set of potential

bug causes is computed at the level of source code for ease of understanding (by the programmer).
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Figure 5.3: Architecture of our DARWIN toolkit. It takes an old program P , a new program P ′ and

a test input t which passes in P but fails in P ′. The output is a report explaining the

behavior of test t. The entire flow is automated.

Secondly, the variables appearing in the path condition correspond to the different bytes of the

program input.

Given program versions P , P ′ and a test input t which passes in P and fails in P ′ — we compute

the path conditions pc, pc′ of input t in programs P , P ′. In fact, the symbolic execution engine in

BitBlaze constructs these path conditions as formulae in the well-known SMT-LIB[87] format. The

SMT-LIB format is supported by all the solvers that participated in the SMT annual competition.

Thus, expressing the path conditions in the SMT-LIB format allows us to leverage a lot of state-of-

the-art SMT solvers. It also allows us to benefit from the ongoing improvement in the solving ability

of the existing solvers — we can use whichever solver is currently the fastest. The solver we are

currently using is Boolector [28], the winner of the SMT competition in 2009 for quantifier free

formulae with bitvectors, arrays and uninterpreted functions (the QF AUFBV category). Indeed

this is suitable for us, since our formulae do not have universal quantification and any variable is

implicitly existentially quantified.
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5.3.2 Reporting root causes

Given the solutions of pc∧¬pc′ we first validate them. In case we find pc∧¬pc′ to be unsatisfiable

or none of the solutions of pc ∧ ¬pc′ can be validated, we solve pc′ ∧ ¬pc in a similar fashion. By

following the steps mentioned in the previous section (solving either pc ∧ ¬pc′ or pc′ ∧ ¬pc), we

obtain a set of branches at the assembly level as potential root causes of the bug. Using standard

compiler level debug information, these can be reverse translated back to lines in source code.

Accuracy of our reports We now discuss some low-level issues which make a substantial differ-

ence to the accuracy of our results. Given the path conditions pc and pc′, let pc′ = (ψ1∧ψ2∧. . .∧ψm)

where ψi are primitive constraints. As mentioned in the previous section, we solve the m formulae

{θi | 0 ≤ i < m} where θi
def
= pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi. The VINE symbolic execution engine

ensures that the path conditions contain only constraints from branches which are dependent on

the program input. In practice, this greatly cuts down on the number of ψi constraints, and hence

the number of θi formulae that need to be dispatched to the SMT solver. Since each θi formula

contributes at most one statement in our report, we get a smaller sized report by reducing the number

of θi. As mentioned in Section 5.2.1, if the number of root causes is still high (due to large number

of alternate inputs), we prioritize statements obtained from successful alternate inputs over other

statements since these are more likely to reveal the real root cause.

5.4 Debugging Experience

We report our experience in using DARWIN to locate error causes in real-life case studies.

5.4.1 Experience with libPNG

We first describe our experience in debugging the libPNG open source library [3], a library for

reading and writing PNG images. We used a previous version of the library (1.0.7) as the buggy

version. This version contains a known security vulnerability, which was subsequently identified

and fixed in later releases. A PNG image that exploits this vulnerability is also available online.

As the reference implementation or stable version, we used the version in which the vulnerability
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was fixed (1.2.21). Assuming this vulnerability was a regression bug, we used our tool to see if the

vulnerability could be accurately localized.

The bug we localized is a remotely exploitable stack-based buffer overrun error in libPNG.

Under certain situations, the libPNG code misses a length check on PNG data prior to filling a buffer

on the stack using the PNG data. Since the length check is missing, a buffer overrun may occur. What

is worse, such a bug may be remotely exploited by emailing a bad PNG file to another user who uses

a graphical e-mail client for decoding PNGs with a vulnerable libPNG. In Figure 5.4, we show a

code fragment of libPNG showing the error in question. If the first condition !(png ptr->mode

& PNG HAVE PLTE) is true, the length check is missed, leading to a buffer overrun error. A fix

to the error is to convert the else if in Figure 5.4 to an if. In other words, whenever the length

check succeeds, the control should return.

if (!(png_ptr->mode & PNG_HAVE_PLTE))
{

png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette)
{

png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;

}

Figure 5.4: Buggy code fragment from libPNG

We now explain some of the issues we face in localizing such a bug using approaches other than

ours. Suppose we have the buggy libPNG program and a bad PNG image which causes a crash due

to the above error. If we want to perform program differencing methods (such as source code “diff”)

to localize the bug, there are 1589 differences in 28 files. Manually inspecting these differences

requires a lot of effort. Existing Semantic diff [58, 88, 56, 20] techniques based on program control

and data structures could only provide limited help to the manual inspection. Because of the very

large number of source code differences, the number of semantic differences would still be large.

Moreover, given a coarse-grained semantic difference such as method change[88], one still needs to

inspect more details to tell whether this change indeed causes the bug.

If we want to localize the error by an analysis of the erroneous execution trace starting from the

observable error — it is very hard to even define the observable error. Even if the buffer being overrun
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is somehow defined as the observable error, tracking program dependencies from the observable

error can be problematic for the following reason. The libPNG library is used by a client which

inputs an image, performs computation and outputs to a buffer (the one that is overrun due to error

inside libPNG). In this case, we are debugging the sum total of the client along with the libPNG

library. Since almost all statements in the client program and many statements in libPNG involve

manipulation of the buffer being overrun itself — a dynamic slicing approach will highlight almost

the entire client program as well as large parts of the libPNG library.

If we want to employ statistical bug isolation methods (which instrument predicates and correlate

failed executions with predicate outcomes), the key is to instrument the “right predicate”. In this case,

the predicates in question (such as !(png ptr->mode & PNG HAVE PLTE) ) contain pointers

and fields. Hence they would be hard to guess using current statistical debugging methods which

usually consider predicates involving return values and scalar variables.

If we want to perform debugging by comparing the failing trace with a passing trace from the

same program P ′, we two two choices. First, we can compare the trace of the bad PNG image (which

exposes the error) with the trace of a good PNG image (which does not show the error). The question

then is how do we get the good PNG image? Even if we have a pool of good PNG images from

which we choose one – making the “right” choice becomes critical to the accuracy of root cause

analysis. Second, we can compare the trace of the bad PNG image from program P and the the trace

of the bad PNG image from program P ′. In this case, any executed program changes would show up

in the differences of the traces.

Different from the existing techniques, DARWIN uses semantic analysis to effectively locate the

bug root-cause. Specifically, DARWIN first computes the path conditions of the bad PNG image

on the two libPNG versions 1.0.7 and 1.2.21. Let these be pcbuggy and pcfixed respectively. We

find that pcfixed ∧ ¬pcbuggy is unsatisfiable, so we solve for pcbuggy ∧ ¬pcfixed. By solving this

formula we get 9 branches. All these 9 branches passed the input validation process, hence we report

9 statements as potential root causes.

We prioritize these 9 statements as follows. Among the 9 alternate inputs of these 9 statements,

we find out which of them are successful i.e., the program output for a successful input should be

the same in both the program versions. Only one of our 9 alternate inputs is found to be successful.

The branch instruction contributed (to the result) by this input corresponds to the branch length >
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(png uint 32) png ptr->num palette thereby pointing directly to the cause of failure. This

branch is (mistakenly) not executed in the buggy libPNG version 1.0.7

Discovering New Errors Interestingly, in the process of this debugging we found other potential

problems in libPNG. As mentioned earlier, DARWIN obtained 9 alternate inputs, only one of which

exhibits bug-free behavior, and pointed us to the error. Interestingly, the other branch instructions

point us to other deviations between the two versions of libPNG. For example, by following one of

these 8 instructions we find that the two versions of libPNG use different functions to retrieve the

length field of a chunk from the input. In version 1.0.7, we have

length = png get uint 32(chunk length);

while in version 1.2.21 we have

length = png get uint 31(chunk length);

In particular, the code for png get uint 31 is as follows.

png_get_uint_31(png_structp png_ptr, png_bytep buf)
{

png_uint_32 i = png_get_uint_32(buf);
if (i > PNG_UINT_31_MAX)

png_error(png_ptr, "PNG unsigned integer out of range.");
return (i);

}

Thus, png get uint 31 first uses png get uint 32 and then performs a length check. If

png get uint 32 is directly used to find the length of a chunk, a length check w.r.t. the constant

PNG UINT 31 MAX is missing. We also report the branch instruction containing this missing length

check, thereby pointing to another potential error in libPNG.

5.4.2 Experience with miniweb-apache

In our second case study, we study the web-server miniweb [57], an optimized HTTP server

implementation which focuses on low resource consumption. The input query whose behavior we

debugged was a simple HTTP GET request for a file, the specific query being “GET x”. Ideally, we

would expect miniweb to report an error as x is not a valid request URI (a valid request URI should
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start with ‘/’). However, miniweb does not report any errors, and returns the file index.html.

We then attempt to localize the root cause of this observable error.

We found that even the latest version of miniweb contains the error. Therefore, we cannot

choose another version of miniweb as the reference implementation. We chose another HTTP

server apache [1] as the reference implementation. Apache is a well-known open-source secure

HTTP server for Unix and Windows. Since both apache and miniweb implement the HTTP

protocol, they should behave similarly for any input accepted by both implementations. Further,

apache does not exhibit the bug we are trying to fix. It reports an error on encountering the input

query “GET x”.

We generate the path conditions of “GET x” in both apache and miniweb. Let these be

fapache and fminiweb respectively. We find fapache ∧ ¬fminiweb to be unsatisfiable. However, by

solving fminiweb ∧ ¬fapache we can get alternate input queries. By following our methodology

described in Section 5.2, we get exactly 5 potential root causes whose corresponding alternate inputs

are:

GET /, GET \, GET *, GET . and GET %

Based these 5 branches, we were able to localize the bug immediately. The miniweb program

does not check for ’/’ in GET queries and treats the query “GET x” similar to “GET /” thereby

returning the file index.html.

Discovering New Errors Only one of our five alternate inputs was successful, exhibiting the same

output in both program versions. The branch instruction corresponding to this input pointed us to

the missing check for ’/’. The other statements pointed us to other missing checks in miniweb.

Indeed, we can locate that apache contains checks for each of these 5 characters while miniweb

misses the check for all 5 of them, leading to potential errors.

In a Broader Perspective Our experiments with apache-miniweb also give us a broader per-

spective on the applicability of our method. Even if all versions of a program exhibit a given error

(as was the case with miniweb), we can still use DARWIN to localize the error. We only need a

reference program which is intended to behave similarly to the program being debugged, and does
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not exhibit the bug being localized. In our experiments, the apache web-server was the reference

program.

5.4.3 Experience with savant-apache

Savant [5] is a full-featured open-source web-server for Windows. We notice that savant

does not report any errors when faced with an input query of the form “GOT /index.html”, a

typo from the valid HTTP GET request “GET /index.html”. We cannot choose another version

of savant as the reference program because the latest version of savant also exhibits this error.

As reference program, we choose the apache webserver, which reports an error for the query “GOT

/index.html”. Both savant and apache implement the HTTP protocol, and are expected to

behave similarly.

In this case study, DARWIN found 46 branches. Out of these, the associated alternate input

of only one branch is successful, that is, the input produces the same output in both savant and

apache. This is the input “GET /index.html”. The corresponding branch pinpointed the error

to missing checks in savant. The savant program does not check for all the three letters ‘G’, ‘E’,

‘T’ in HTTP GET requests for HTTP protocol version HTTP/0.9 (which is the default assumed since

we do not explicitly specify a HTTP protocol version in the query “GOT /index.html”). Indeed,

we found that savant reports an error if we provide “GOT /index.html HTTP/1.0” as input.

In HTTP/0.9 there is only one command, namely GET. The error lies in the fact that savant does

not check for the string “GET”, and assumes any given string to be the GET command.

Discussion Our experiments with savant also illustrate another additional feature of DARWIN

— the ability to rectify program inputs. The process of alternate input generation in DARWIN can

help correct errors in an almost correct program input such as the input “GOT /index.html”. In

this case, the input fix was easy and could have been done manually as well. In the future, we plan to

conduct experiments with programs like web browsers to see if an almost correct HTML file (where

the incorrectness in the file is hard-to-see) can get rectified through alternate input generation.
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Table 5.1: Properties of the subject programs

Programs LOC Trace size # Branches # Tainted

(# instructions) in trace instructions

libPNG v1.0.7 31,164 87,336 13,635 2999

libPNG v1.2.21 36,776 108,769 15,472 2592

Miniweb 2,838 270,856 26,201 331

Savant 8,730 121,714 16,212 1613

Apache 358,379 60,380 5,388 264

(miniweb) (miniweb) (miniweb)

74,002 (savant) 9,672 (savant) 6889 (savant)

TCPflow (unpatched) 895 56838 7210 7753

TCPflow (patched) 934 58079 7375 7860

5.4.4 Experience with TCPflow

We use two versions of the TCPflow program, namely TCPflow 0.21.ds1-2 and the same

version with the patch 10 extra-opts.diff, which is supposed to provide the user with some

extra options. TCP is the most popular transport layer protocol and TCPflow is a program which

captures and displays data sent through TCP connections. The statistics about the TCPflow program

are given in Table 5.1.

The TCPflow program is designed to help users analyze TCP packets over the network. If we

capture the raw TCP packets transmitted over the network — there is a TCP header inside each TCP

packet. Inside each raw packet, we also have the header for the network layer protocol (usually the

IP protocol). Thus, it is non-trivial to manually distinguish which parts in a raw packet correspond to

the real data being transmitted. Moreover, there can be multiple active TCP connections at the same

time. As a result, it is hard to determine which packets are from the same connection. TCPflow is a

program which solves these problems. It analyzes the raw data (TCP packets) from TCP connections

and outputs the actual data being transmitted over the network. A TCP connection is associated

with source IP address, destination IP address, source port and destination port. The output from

TCPflow is also classified by the connections.

TCPflow can read input both from network and file. If the input is from network, then it

captures the data that is being transmitted and analyzes the data. In our experiment, the input is from

a file which is generated by tcpdump.
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47 45 54 20 2F 69 6E  64 65 78 24 68 74 6D 20 0D  |GET /index.htm .|
0A 0D 0A                                       |...             |

00 47 45 54 20 2F 69 6E  64 65 78 24 68 74 6D 20  |.GET /index.htm |

Output from the unpatched version of TCPflow

0D 0A 0D 0A                                       |....            |

Output from the patched version of TCPflow

Figure 5.5: Output from the TCPflow program

The bug we investigate is introduced by the patch 10 extra-opts.diff. We provided two

packets from the same connection to TCPflow: an SYN packet to setup the connection and a simple

HTTP request packet. Figure 5.5 shows the output from both versions of the TCPflow program,

where only the HTTP request payload is shown, and the headers from TCP layer and IP layer are

excluded.

// unpatched version of the TCPflow
void handle_tcp (packet_t packet) {

if( this packet has no data) {
return;

}
if ((state = find_flow_state(current_flow)) == NULL)

state = create_flow_state(flow, seq);
offset = seq - state->ins;
//write data from offset;

}
// patched version of the TCPflow
void handle_tcp (packet_t packet) {

if( this packet has no data) {
if ((state = find_flow_state(current_flow)) == NULL)

state = create_flow_state(flow, seq);
return;

}
offset = seq - state->ins;
//write data from offset;

}

Figure 5.6: Schematic Code fragment from TCPflow

The two versions of TCPflow we use are TCPflow 0.21.ds1-2 and the same version with

the patch 10 extra-opts.diff. Although the patch is supposed to provide some extra options

to the user, it actually introduces a bug into the code. Figure 5.6 is a simplified code pattern from

TCPflow. For each TCP connection, a struct named flow state t is used in the program to

maintain some data associated with the connection. The program processes the packets one by one
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from the start to the end. So, for our program input, the SYN packet is processed before the data

packet. The bug appears because the manner in which empty packets are handled is changed by the

patch.

In the unpatched version of the program, if we see an empty packet and no other packets from the

same connection have been seen before, the packet is simply ignored (the struct flow state t for

the connection is not created at all). However in the patched version, empty packets are not ignored

(the struct flow state t for the TCP connection is still created). Note that in TCP connections,

each transmitted packet has a sequence number which is used by the sliding window protocol to

make sure the packet is transmitted to the destination. In our case the sequence number of the data

packet is just the sequence number of the SYN packet increased by one. Given a TCP connection,

the corresponding struct flow state t has one critical member field named ins which is used to

store the initial sequence number the program has seen for this connection. When a flow state t

is created, ins is assigned with the sequence number of the current packet being handled.

Since the SYN packet has no data inside and the manner of handling such packets are different in

the two program versions, the flow state t are created with different ins values in two program

versions. In the un-patched version, because the SYN packet is ignored, the flow state t is only

created when the data packet is seen, so the ins field is equal to the sequence number of the data

packet. In the patched version, the flow state t for this connection is created when the SYN

is seen, so the ins field is equal to the sequence number of the SYN packet. Note that the ins

field is later used to calculate the offset in the output file when the data is written out. The offset is

calculated via the statement

offset = seq - state->ins;

where seq is the sequence number of the packet being written. So, while writing the data packet in

the unpatched version, the value of seq is equal to the value of state->ins; they are both set to

the sequence number of the data packet. However, in the patched version, the seq is the sequence

of the data packet, the state->ins is the sequence of the SYN packet. So the offset is 1 in the

patched version, making the program write from the second byte in the output file. As a result there

is an additional 0x00 (in the first byte of the buggy output) as shown in Figure 5.5.

Once again, we emphasize the bug we described above (and detected using DARWIN) is a
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real-life bug appearing in a patch of the TCPflow program. The bug happens because the authors

of TCPflow forgot to modify the update of state->ins field after the manner of handling empty

packets was changed. In fact, this bug is only observed when the input to TCPflow contains at least

one empty packet. When we attempted to localize the root cause of this bug using DARWIN the

root causes we reported were extremely accurate. Only 6 statements are reported as potential root

causes from and one of them points to a branch condition which checks for empty packets.

Over and above the accuracy, making DARWIN work on the TCPflow program presented

us with a substantial challenge in terms of scalability. Although the TCPflow program contains

only 1000 lines of code, its path condition size was the largest among all our four case studies

(see Table 5.1). Part of the reason for this comes from the frequent usage of libraries during the

execution of TCPflow. The execution of the libraries bloats up the trace size and creates substantial

time overheads for symbolic execution. Recall that we are trying to solve a formula of the form

pcunpatched ∧¬pcpatched where pcunpatched, pcpatched are the path conditions of our chosen program

input on the un-patched and patched versions of TCPflow. Assuming pcpatched ≡ ψ1∧ψ2∧. . .∧ψm,

we actually solve m formulae {θi | 0 < i ≤ m} where

θi
def
= pcunpatched ∧ ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi

Without the optimizations mentioned in Section 5.2.2, solving each θi takes up to 30 minutes, and

there are around 2000 θi formulae to solve!!

Let us now examine the impact of the different optimizations mentioned in Section 5.2.2. In

the experiment with Tcpflow, we use one additional optimization technique to further shorten the

formula solving time. We only solve those θi formulae where ψi corresponds to a branch in the

source code. The effect of this technique is discussed in the next paragraph. By considering only θi

formulae from the source code, there are still 86 formulae left to solve. The estimated time to solve

these formulae comes to 2 days (since the solving of each θi formulae in the TCPflow program

seems to take about 30 minutes). However, recall that in the first step of our formula simplification

(see Section 5.2.2), we check whether ψ1 ∧ . . . ψi−1 ∧ ¬ψi is satisfiable in a time-bounded fashion.

In other words, we set a time limit (10 seconds for our experiments), and see how many of the θi

formulae can be proved to be unsatisfiable within this time limit. Clearly, if ψ1 ∧ . . . ψi−1 ∧ ¬ψi
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is unsatisfiable, θi cannot be satisfiable! We find that 64 out of the 86 formulae are proved to be

unsatisfiable in this fashion. Thus, we are left with (86 − 64), that is, 22 formulae to solve. The time

to solve these formulae without any further optimization comes to around 12 hours. As mentioned

in Section 5.2.2, we further employ dynamic slicing and constant propagation to reduce the burden

of the SMT solver. By using all of the formula simplification steps mentioned in Section 5.2.2,

the total time taken by the SMT solver is reduced to only 10 minutes. The total debugging time

(which includes tracing as well) comes to 33 minutes. The final result from DARWIN contains only

6 statements including the line containing the error cause.

5.4.5 Experiment with latent bug

In this section, we report our experience with a latent injected bug to show a special feature of

our debugging method. We want to demonstrate the scenario where the actual bug exists in the old

stable program, however it only gets manifested in the new changed program. Note that in such

scenarios change analysis based debugging methods such as [123] will not work — since they seek

to report a subset of the changes (between the old and new programs) as the cause of error. For trace

comparison method in the same program, the issue of generating/selecting the trace to compare still

exists. However our method, being based on semantic analysis of the old and new programs, can still

locate the error cause.

if((state->ins != seq) && !(IS_SET(flags, TH_ACK))){
return; /* ERROR here: should be printf("Warning: xxxxxx\n"); */

}

Figure 5.7: Injected bug in TCPflow

We use the unpatched and patched versions of the TCPflow program as described in Section

5.4.4. The injected bug is shown in Figure 5.7. The code in Figure 5.7 is injected in both versions of

TCPflow. In the unpatched version of TCPflow, whenever the code is executed, state->ins

is always equal to seq, the second condition !(IS SET(flags, TH ACK)) is never evaluated

and the return statement is never executed. However, in the patched version, because of other

code modifications, state->ins can be not equal to seq. As a result, the return statement is

executed, manifesting the error.

Although we have the same buggy code in both versions, the injected code is actually executed
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Table 5.2: Performance of DARWIN’s extended debugging method(m=minutes, s=seconds)

Programs Time in Time in Time in Time in Total

step 1 step 2 step 3 steps 4&5 Time

libPNG(v1.0.7-v1.2.21) 3m 57s 1m 49s 7m 44s 4s 13m 34s

Miniweb-Apache 2m 4s 1m 1s 2m 42s 1s 5m 48s

Savant-Apache 2m 27s 1m 11s 5m 2s 10s 8m 50s

TCPflow(unpatched-patched) 7m 9s 57s 20m12s 3m32s 31m 50s

differently in the two versions. This difference is caused by other modifications in the patched

version. Change analysis based delta debugging [123] cannot expose such error causes since the

error is in a line which was not changed across versions.

Using DARWIN, the difference in program executions is captured in the path conditions

pcunpatched and pcpatched of the unpatched/patched program versions. The branch !(IS SET(flags,

TH ACK)) appears in pcpatched but not in pcunpatched. So, our technique is able to construct an

alternate input that satisfies pcunpatched ∧ ¬pcpatched by negating the branch !(IS SET(flags,

TH ACK)). Thus one of our θi formulae corresponds to a deviation in the branch !(IS SET(flags,

TH ACK)), since this is a branch recorded in the path condition. This deviation results in !(IS SET(flags,

TH ACK)) being selected as a potential root cause. On the whole, we identify 10 potential root

causes. Clearly, the inclusion of the branch !(IS SET(flags, TH ACK)) as a potential root

cause helps the programmer diagnose the issue.

5.4.6 Performance of our debugging method

In this section, we evaluate the performance of our debugging method. The properties of our

subject programs in terms of trace size and other statistics appear in Table 5.1.

Recall from Section 5.2.2 that our debugging method with formula simplification involves five

steps. The steps are: (i) constructing and checking the satisfiability of the ψ1 ∧ . . . ψi−1 ∧ ¬ψi

(ii) slicing on the f ′ (iii) concretize all the inputs that are not in the slicing result and perform

constant propagation, (iv) check the satisfiability of the simplified formula ψ1 ∧ . . . ψi−1 ∧ ¬ψi after

constant propagation (v) solving the simplified formula pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi (if the simplified

ψ1 ∧ . . . ψi−1 ∧ ¬ψi is found to be satisfiable in step iv).

Table 5.2 summarizes the time taken in these steps by DARWIN for all programs including
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TCPflow. The input validation only compares whether two execution traces are the same or

different, no formula generation is needed. It takes hardly any time to validate the inputs in all our

case studies.

In the first step of our method, we construct the path conditions in the two program versions,

and then construct several formulae θi. We also use a very short time to check the satisfiability of

ψ1 ∧ . . . ψi−1 ∧¬ψi. We count the time taken to generate the traces and raw path conditions into this

step. The total time taken in this step was less than 7 minutes in all the case studies. In the second

step, we use dynamic slicing to find out the relevant input bytes for each formula. The time taken

is less then 2 minutes in all the case studies. In the third step, we concretize all the irrelevant input

bytes and perform constant propagation to simplify the formulae. The time taken by this step was

less than 21 minutes in all our case studies. In the last two steps, we first check the satisfiability of

the simplified formula ψ1 ∧ . . . ψi−1 ∧ ¬ψi after constant propagation. If it is satisfiable, we solve

the whole formula pc ∧ ψ1 ∧ . . . ψi−1 ∧ ¬ψi (which also has been greatly simplified by now due to

constant propagation). The time taken by this step was less than 4 minutes in all the case studies.

Overall, DARWIN took less than 32 minutes in all the case studies.

5.4.7 Additional overheads due to predicate instrumentation

Our debugging method is most suited for debugging branch errors (errors in program branches)

and code-missing errors. For errors in assignments, our technique needs to be augmented with

predicate instrumentation as discussed in Section 5.2.3. Our predicate instrumentation is geared

to expose assignment errors as mentioned in Section 5.2.3. We introduce branches with branch

conditions checking the following —

• function return values at each function return site, and

• binary constraints describing equality of a program variable x with other variables of the same

type, at each assignment to x. Thus, if x, y are of the same type — we introduce branches to

check x == y.

Table 5.3 shows the overhead for our predicate instrumentation. The additional branches and

instructions are introduced because of our predicate instrumentation. We only show the numbers

for TCPflow (a program with high instrumentation overhead) and miniweb (a program with low
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instrumentation overhead). The overhead in terms of number of additional branches and instructions

is less than 20%. The instrumentation is done at source code level, and hence library code is not

instrumented. This also prevents the instrumentation overhead from blowing up.

Table 5.3: Overhead of Predicate Instrumentation

Programs Additional branches (%) Additional Instructions (%)

TCPflow 17.78% 16.48%
Miniweb 4.06% 3.83%

5.5 Threats to Validity

In this section, we discuss certain threats to validity of the results presented in this chapter. This

also clarifies any implicit assumptions on which our debugging method may be built.

• One key assumption of our approach is the program requirements vis-a-vis the buggy input

do not change. The program requirements for the buggy input define the supposed behavior

of the program execution with the buggy input. In reality, what commonly happens is that

the program requirements vis-a-vis existing features do not change (although new features

may be added). In such a case, our assumption is guaranteed to be satisfied. In fact a typical

scenario where DARWIN is applicable may be described as follows. A program version P

evolves to a new program version P ′ because the customers want some new features to be

added. However in trying to program the new features, the code for the old features mistakenly

gets affected. Thus, a test case t which used to pass in program P , fails in the new program

P ′. In other words, in going from program P to program P ′ there is code evolution but no

evolution of requirements. The requirements for the old features (those supported by both P

and P ′) remain unchanged. DARWIN is most suited to explain and root-cause such errors

resulting from code evolution.

Note that the above assumption does not conflict with our claim that DARWIN works with

two different implementation of the same specification. Suppose P and P ′ are two different

implementations such as miniweb and apache. As long as the behavior of the buggy input
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is supposed to be the same in both P and P ′, we can use P as a reference implementation to

debug P ′.

To illustrate the issue with a more concrete example, consider a banking system P supporting

some basic features like “login”, “logout”, “view balance” and so on. Suppose now the

customers of the banking system demand a new feature for transferring funds between accounts.

In trying to implement this system and produce a new banking system P ′, the programmer may

make mistakes and incorrectly modify the account balance. As a result, the “view balance”

functionality, which used to work correctly earlier, may not work correctly any more, leading to

an observable error. DARWIN is most suited for explaining the root-cause of such observable

errors. Consider an alternate scenario where the requirements of the banking system itself

being changed. Suppose the “view balance” functionality earlier used to be interpreted as

viewing of the account balance, and is now changed to display the account balance for current

accounts and displays the account balance minus $50 (the minimum deposit) for savings

accounts. In this situation, the requirements of the “view balance” feature itself has changed.

DARWIN approach is not suited to explain any errors resulting from such evolution of software

requirements.

• Path conditions serve as the basis of our debugging technique. In particular, the approach

hinges on the observation that the path conditions pc, pc′ of the test input t being debugged are

different in the two program versions. What if pc and pc′ are logically equivalent? This means

that the effect of the error being debugged is not observable by a difference in control flow.

Our DARWIN approach is not inherently suited to explain such errors. Thus, the approach is

most suited for explaining errors that manifest as changes in control flow. In Section 5.2.3, we

proposed some methods to introduce more control flow paths to handle assignment errors that

do not affect control flow. Even with heavy instrumentation, our solution cannot guarantee

that all such errors will be correctly diagnosed.

• Regarding the scalability of our technique, the size of generated SMT formula largely depends

on the number of tainted instructions in the execution trace. This is because only the tainted

instructions are analyzed in the path condition generation and all subsequent steps of our tool.

From our experience in the experiments, we found that the number of tainted instructions
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depends on the input size as well as the size of the program. Since SMT solving is extensively

used in our approach, the scalability of our approach is also directly tied to the scalability

of the SMT solvers. We believe that there are generally two ways to increase the scalability

of our approach. First, we can use various methods to reduce our SMT formula size. The

high-level idea is to remove something unrelated. In the chapter, we have presented a means

that concretizes some unrelated input bytes and backward slices out unrelated components.

For a particular program, the user may know which modules/functions are trustable. These

information can be used to reduce the formula size further. If a program has large structured

input, the technique from [125] would be useful to simplify the input before applying our tool.

Secondly, the scalability of the SMT solvers is increasing all the time. This could also benefit

our approach.

• Although our DARWIN tool is built based on the C binary executables, our technique can be

generalized to other programming languages. As we will see in Chapter VI, the DARWIN

technique is also implemented for Java. As long as the errors can affect program flow and

program requirements vis-a-vis the buggy input are the same, our technique should apply.

• Finally, there are some limitations regarding our experiments. Long program execution with

large input size would produce large SMT formulae. We did not perform any experiments on

programs of this kind. For programs with large structured inputs, we suggested that some input

simplification techniques should be adopted. We did not perform any experiments to evaluate

the effectiveness of these simplification techniques on DARWIN. For errors in assignment, one

may need to follow dependency links to find the root cause if our instrumentation technique

in section 5.2.3 is not used. Some manual code inspection is needed in this case. We did not

perform any case studies to evaluate this manual effort. However, as suggested by the result in

subsection 5.4.7, the instrumentation overhead is affordable. Therefore, users could employ

the instrumentation technique to expose errors in assignment.

5.6 Summary

In this chapter, we presented DARWIN a debugging methodology and tool for evolving programs.

DARWIN takes in two programs and explains the behavior of a test input which passes in the stable
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program, while failing in the buggy program. The stable program and buggy program can be two

completely different implementations of the same specification. DARWIN handles hard-to-explain

code missing errors by pointing to code in the stable program. We have conducted experiments

using four real world applications such as the Apache web server, libPNG (a library for manipulating

PNG images), and TCPflow (a program for displaying data sent through TCP connections). Our

experience with real-life case studies demonstrates the utility of our method for localizing real bugs.

Developers are often faced with hard-to-locate bugs when a large software system changes from

one version to another. As long as the program requirements vis-a-vis existing features do not change,

DARWIN can truly be an useful automatic debugging assistant for developers.

The alternate inputs generated by our method can also help detect new errors, apart from

localizing a given observable error. This can also help test-suite augmentation of evolving programs

— when a program changes we can find out potentially new test cases to be tested for stressing the

change.
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CHAPTER VI

Path Exploration based on Symbolic Output

Our proposed DARWIN method focused on path condition for software debugging. While

providing a unique opportunity to explore dynamic symbolic execution for debugging, it also raises

the question about the level at which the symbolic execution should be performed. In DARWIN,

symbolic execution is performed at the path level. However, we note that debugging only concerns

about whether output is expected whereas a full path contains computation that do not affect the

“unexpected output”. The example in Figure 6.1 explains one such scenario.

Suppose the observed value of x in Figure 6.1b is unexpected for inp1 == inp2 == 0

because of a “bug” in line 2 (say, the condition should be inp1 >= 0). The path condition of the

above input in the current program is pc′ = ¬(inp1 > 0) ∧ ¬(inp2 > 0), while the path condition

of the above input in the previous program is pc = ¬(inp1 >= 0) ∧ ¬(inp2 > 0). In our DARWIN

technique, the two path conditions pc and pc′ are compared to localize the cause of the regression

error. However, it is clear that the constraint ¬(inp2 > 0) corresponding to the branch in line 6 is

1 ... // input inp1, inp2
2 if (inp1 >= 0)
3 x = inp1 + 1;
4 else
5 x = inp1 - 1;
6 if (inp2 > 0)
7 y = inp2 + 1
8 else
9 y = inp2 - 1;
10 ... // output x, y

(a) Previous program

1 ... // input inp1, inp2
2 if (inp1 > 0)
3 x = inp1 + 1;
4 else
5 x = inp1 - 1;
6 if (inp2 > 0)
7 y = inp2 + 1
8 else
9 y = inp2 - 1;
10 ... // output x, y

(b) Current program

Figure 6.1: An example of computation unrelated to observable error
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unrelated to the observable error (unexpected value of x). Although our DARWIN technique can

still locate the root-cause of the regression bug, unnecessary effort is wasted in symbolic execution

and SMT solving due to the inclusion of the branch constraint from line 6 that is unrelated to the

observable error. Instead, we could remove the branch constraint ¬(inp2 > 0) from the two path

conditions and compare the “reduced path conditions”: ¬(inp1 > 0) and ¬(inp1 >= 0). By

following the same method as in DARWIN, we could locate the error cause with less effort by

comparing the “reduced path conditions”. In general, taking out branch constraints unrelated to the

observable error from path conditions not only helps save the effort required in symbolic execution

but also helps reduce unnecessary noise the debugging results.

Similar issues appear in symbolic execution based software testing, e.g. Directed Automated

Random Testing or DART [51] which try to achieve path coverage in test-suite construction. While

focusing on checking the correctness of the program output in testing, a program output can be

defined as a symbolic expression in terms of the program inputs. Thus, given a program P , instead

of enumerating all program paths, we can seek to enumerate all the different possible symbolic

expressions which describe how the output will be computed in terms of the inputs. Of course, the

symbolic expression defining the output (in terms of the inputs) will be different along different

program paths. However, we expect that the number of such symbolic expressions to be substantially

lower than the number of program paths. In other words, a large number of paths can be considered

“equivalent” since the symbolic expressions describing the output are the same.

We now use an example to demonstrate the opportunity brought by this new persecutive in

software testing.

To illustrate our observation, let us consider the program in Figure 6.2. The output variable out

can be summarized as follows.

• If x − y > 0 and x + y > 10, then out == x

• If x − y ≤ 0 and x + y > 10, then out == y

• If x + y ≤ 10, then out == 2

The summary given in the preceding forms a “semantic signature” of the program as far as the

output variable out is concerned. Note that there are only three cases in the semantic signature -
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1 int foo(int x, int y, int z){//input variables
2 int out; // output variable
3 int a;
4 int b = 2;
5 if(x - y > 0) //b1
6 a = x;
7 else
8 a = y;
9 if(x + y > 10) //b2
10 b = a;
11 if(z*z > 3) //b3
12 System.out.println("square(z) > 3");
13 else
14 System.out.println("square(z) <= 3");
15 out = b;
16 return out; //slicing criteria
17 }

Figure 6.2: An example program

whereas there are eight paths in the program. Thus, such a semantic signature can be much more

concise than an enumeration of all paths.

In this chapter, we develop a method to compute a semantic signature for a given program

by performing symbolic execution at the level of relevant slice [53]. Our semantic signature is

computed via dynamic path exploration. While exploring the paths of a program, we establish a

natural partitioning of paths on-the-fly based on program dependencies - such that only one path

in a partition is explored. Thus, for the example program in Figure 6.2 only three execution traces

corresponding to the three cases will be explored. For test-suite construction, we can then construct

only three tests corresponding to the three cases in the semantic signature.

Our path partitioning method is based on the notion of “path equivalence”. We consider two

program paths to be “equivalent” if they have the same relevant slice with respect to the program

output. A relevant slice is the transitive closure of dynamic data, control and potential dependencies.

Data and control dependencies capture statements which affect the output by getting executed; on

the other hand, potential dependencies capture statements which affect the program output by not

getting executed. In Figure 6.2, even if line 10 is not executed, the assignment to out in line 15 is

potentially dependent on the branch in line 9. This is to capture the fact that if line 9 is evaluated

differently, the assignment in line 10 will be executed leading different values flowing to the variable

out in line 15. We base our path partitioning on relevant slices to capture all possible flows into the
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output variable - whether by the execution of certain statements or their non-execution.

The contributions of this chapter can be summarized as follows. We present a mechanism to

partition program paths based on the program output. The grouping of paths is done by efficient

dynamic path exploration - where paths sharing the same relevant slice naturally get grouped

together. We show that our smart path exploration is much more time efficient as opposed to full

path exploration via path enumeration. Our efficient path exploration method has immediate benefits

in software testing. Since our path exploration naturally groups several paths together - it is much

more efficient than the full path exploration (as in Directed Automated Random Testing or DART)

as evidenced by experiments. Moreover, since several paths are grouped as “equivalent” in our

method (meaning that these paths compute the output similarly), the test-suite generated from our

path exploration will also be concise.

Secondly, we show the application of our path partitioning method in reasoning about program

versions, in particular, for debugging the root-cause of software regressions. While trying to introduce

new features to a program, existing functionality often breaks. Given two program versions P, P ′

and a test t which passes in P while failing in P ′ — we seek to find a bug report explaining the

root cause of the failure of t in P ′. In chapter V, we presented the DARWIN approach for root

causing software regressions. The DARWIN approach constructs and composes the path conditions

of test t in program versions P, P ′ in trying to come up with a bug report explaining an observed

regression. In this work, we show that computing and composing the logical condition over a relevant

slice (also called relevant-slice condition throughout the chapter) produces more pin-pointed bug

reports in a shorter time — as opposed to computing and composing path conditions. The reason

for obtaining shorter bug reports in lesser time comes from the path conditions containing irrelevant

information which are filtered out in relevant-slice conditions. Hence relevant-slice conditions are

smaller formulae, which are constructed and solved (via Satisfiability Modulo Theory solvers) more

efficiently.

Finally, we show two applications of the “semantic signature” produced by our path partitioning

method. We first apply the “semantic signature” on test-suite augmentation, which is to augment the

existing test-suite after a program changes. We compare the semantic signatures of the previous and

current program versions. Differences in the signatures lead to test cases that have different outputs

in the two versions. These test cases are used to augment the existing test-suite.
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6.1 Overview

We begin with a few definitions. Let us first define slice conditions, which are path conditions

computed over slices.

Definition 6.14 (Dynamic Slice Condition). Given a program P , a test input t and a slicing criteria

C — let π be the execution trace of t in P . Let π |C denote the projection of π w.r.t. the dynamic

slice of C in π. In other words, a statement instance s in π is included in the projection π |C if and

only if s is in the backward dynamic slice of C on π. The dynamic slice condition of C in π is the

path condition computed over the projected trace π |C .

Slice conditions are weaker than path conditions, that is, pcπ ⇒ dsc(π,C) where dsc(π,C) is the

dynamic slice condition of any slicing criteria C in π. We now refine dynamic slice condition to

relevant-slice condition - the central concept behind our path partitioning. But first, let us recall the

notion of potential dependencies and relevant slices [15, 53].

Definition 6.15 (Potential Dependence [15]). Given an execution trace π, let s be a statement

instance and br be a branch instance that is before s in π. We say that s is potentially dependent on

br iff. there exists a variable v used in s such that (i) v is not defined between br and s in trace π but

there exists another path σ from br to s along which v is defined, and (ii) evaluating br differently

may cause this untraversed path σ to be executed.

An example of potential dependence for the program in Figure 6.2 is shown in Figure 6.3.

We now introduce the notion of a relevant slice, and relevant-slice condition, a logical formula

computed over a relevant slice.

Definition 6.16 (Relevant slice). Given an execution trace π and a slicing criteria C in π, the

relevant slice in π w.r.t. C contains a statement instance s in π iff. C � s where� denotes the

transitive closure of dynamic data, control and potential dependence.

Note that our definition of relevant slice is slightly different from the standard definition of

relevant slice [15, 53]. In standard relevant slicing algorithm, if a statement instance s is included

only by potential dependence, the statement instances that are only control dependent by s are not

included in the relevant slice. We have removed this restriction to simplify the definition of relevant
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Figure 6.3: Example of potential dependence. The solid arrows denote the execution path. According

to Definition 6.15, (i) the variable b is not defined between line 9 and line 15 but there

exists a path (though line 10) along which b is defined, and (ii) evaluating the branch at

line 9 differently may cause the path through line 10 to be executed. Therefore, line 15 is

potentially dependent on line 9.

slice, it is simply the transitive closure of three kinds of program dependencies — dynamic data

dependencies, dynamic control dependencies and potential dependencies. In the rest of this chapter,

all appearances of relevant slice and relevant-slice condition refer to this simplified definition of

relevant slice.

Definition 6.17 (Relevant slice condition). Given an execution trace π and a slicing criteria C in π,

the relevant slice condition in π w.r.t. criterion C is the path condition computed over the statement

instances of π which are included in the relevant slice of C in π.

1 int foo(int x){ //input variable
2 int a = 0;
3 x = x - 1;
4 if(x > 0)
5 a = 1;
6 out = a;
7 return out;
8 }

Figure 6.4: Example to show path condition and relevant-slice condition computation

We take the example program in Figure 6.4 to show that the effect of assignments is also

considered in relevant-slice condition computation (just as assignments are considered in path
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condition computation). Let the slicing criteria be the value of out in line 7. The relevant slice for

input 〈x == 0〉 is [2,3,4,6,7] and the corresponding relevant-slice condition is ¬(x − 1 > 0). That

is, the effect of the assignment in line 3 is considered.

We use the simple program in Figure 6.2 to illustrate the advantage of using relevant-slice

condition in dynamic path exploration. The slicing criterion is the variable out at line 16. Since

each statement is executed once, we do not distinguish between different execution instances of the

same statement in this example.

We use the executed branch sequence annotated with directions to represent an execution trace.

For example, the trace for input 〈x == 6, y == 2, z == 2〉 of the program in Figure 6.2 is denoted

as [b1t, b2f , b3t]. Let us take the input 〈x == 6, y == 2, z == 2〉 to see the differences between

path condition, dynamic slice condition and relevant-slice condition. Given the trace [b1t, b2f , b3t]

corresponding to input 〈x == 6, y == 2, z == 2〉, the path condition along this execution is

(x − y > 0) ∧ ¬(x + y > 10) ∧ (z ∗ z > 3).

For the execution path of 〈x == 6, y == 2, z == 2〉, the dynamic backward slice result w.r.t.

the slicing criteria at line 16 is [4,15,16] - it contains no branches. The path condition computed over

the statements in the dynamic slice (or the dynamic slice condition) is simply the formula true.

Different from dynamic backward slicing, relevant slicing also includes the statement instances

that could potentially affect the slicing criteria. For example, if evaluating a branch differently could

affect the slicing criteria — such a branch is included in the relevant slice, even though it is not

contained in the dynamic backward slice. In the example program, the branch at line 9 can potentially

affect the value of out in the slicing criteria. This is because if the branch in line 9 is evaluated

differently (to true), the variable b is re-defined (in line 10) which affects the output variable out.

Hence the relevant slice contains line 9. The entire relevant slice is [4,9,15,16], and the relevant-slice

condition on it is ¬(x + y > 10). Any input t satisfying the relevant-slice condition ¬(x + y > 10)

has the same symbolic expression for the output out, which in this case turns out be the constant

value 2.

As mentioned earlier, program paths can be partitioned based on the input-output relation.

Relevant-slice condition perfectly serves this purpose. If two paths have the same relevant slice with

output being the slicing criteria, then they have the same input-output relation. The path partitions of

the program in Figure 6.2 are shown in Figure 6.5. The grey nodes in Figure 6.5 are the statements
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Figure 6.5: Path partitions of the example in Figure 6.2

that are contained in the relevant slice w.r.t. to the unique slicing criteria at line 16 in Figure 6.2. As

we can see from Figure 6.5, based on the relevant slice, we can group the eight program paths into

three path partitions.

Just like the DART approach [51] uses path conditions to dynamically explore paths in a program,

relevant-slice condition can be used to explore the possible symbolic expressions that the program

output can be assigned to. How would such an exploration proceed? Suppose we simply use relevant-

slice condition to replace path condition in DART’s path exploration. Given a relevant-slice condition

ψ1 ∧ψ2 ∧ . . .∧ψk−1 ∧ψk — we construct k sub-formulae of the form of ψ1 ∧ψ2 . . .∧ψi−1 ∧¬ψi,

where 1 ≤ i ≤ k. The path exploration is done by solving these formulae to get new inputs and

iteratively applying this process to the new inputs. Note that each sub-formula shares a common

prefix with the relevant-slice condition. Now, we examine the effectiveness of this simple solution on

the program in Figure 6.2. Depth-first exploration strategy is used, and path exploration terminates

when no new sub-formulae are generated. Let the initial input be 〈x == 6, y == 2, z == 2〉, the

path for this input is [b1t, b2f , b3t]. The entire path exploration process is shown in Table 6.1. The

“from” column of Table 6.1 can be understood as follows. If the “from” column contains α.β, it

means that the current input is generated by negating the βth branch constraint of the relevant-slice

condition in the αth row.
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Recall that we expect the following three symbolic expressions for out to be explored.

• x − y > 0 ∧ x + y > 10 : out == x

• ¬(x − y > 0) ∧ x + y > 10: out == y

• ¬(x + y > 10): out == 2

As we can see from Table 6.1, no path having relevant-slice condition ¬(x − y > 0) ∧ (x + y > 10)

is explored. Therefore, this feasible relevant-slice condition is missed by the exploration process.

In addition, the relevant-slice condition ¬(x + y > 10) is explored several times. Thus, we cannot

simply replace path condition with relevant-slice condition in DART’s path exploration.

Let us examine closely what went wrong in the path exploration of Table 6.1. In particular, the

input in the third row is generated by negating the second branch condition of the relevant-slice

condition in second row in Table 6.1. That is, when we solve (x − y > 0) ∧ ¬(x + y > 10),

we get an input 〈x == 6, y == 2, z == 2〉 whose relevant-slice condition is ¬(x + y > 10).

The branch condition (x − y > 0) disappears in the new relevant-slice condition because the

corresponding branch is not contained in the relevant slice anymore. In contrast, DART follows

certain path-prefixing properties — if ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ψi is the prefix of a path condition (for

some program input), the path condition of any input satisfying ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi will have

ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi as a prefix. Such a property does not hold for relevant-slice condition.

Hence, simply replacing path condition with relevant-slice condition in DART not only causes

redundant path exploration but also makes the exploration incomplete (in terms of possible symbolic

expressions that the output variable may assume).

We have developed a path exploration method which avoids the aforementioned problems. While

exploring (groups of) paths based on relevant-slice condition, our method re-orders the constraints

in the relevant-slice condition. The path exploration is based on reordered relevant-slice condition.

A reordered relevant-slice condition satisfies the following property (which also holds for path

conditions): if ψ1∧ψ2 . . .∧ψi−1∧ψi is a prefix of a reordered relevant-slice condition, the reordered

relevant-slice condition of any input satisfying ψ1∧ψ2 . . .∧ψi−1∧¬ψi has ψ1∧ψ2 . . .∧ψi−1∧¬ψi

as a prefix.
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Table 6.1: Path exploration based on relevant-slice conditions for example in Figure 6.2

No. From Input Path RSC Path condition

1 〈6, 2, 2〉 [b1t, b2f , b3t] ¬(x + y > 10) (x − y > 0) ∧ ¬(x + y > 10) ∧ (z ∗ z > 3)
2 1.1 〈6, 5, 2〉 [b1t, b2t, b3t] (x − y > 0) ∧ (x + y > 10) (x − y > 0) ∧ (x + y > 10) ∧ (z ∗ z > 3)
3 2.2 〈6, 2, 2〉 [b1t, b2f , b3t] ¬(x + y > 10) (x − y > 0) ∧ ¬(x + y > 10) ∧ (z ∗ z > 3)
4 2.1 〈2, 6, 2〉 [b1f , b2f , b3t] ¬(x + y > 10) ¬(x − y > 0) ∧ ¬(x + y > 10) ∧ (z ∗ z > 3)

Table 6.2: Path exploration based on reordered relevant-slice conditions for example in Figure 6.2

No. From Input Path RSC Reordered RSC

1 〈6, 2, 2〉 [b1t, b2f , b3t] ¬(x + y > 10) ¬(x + y > 10)
2 1.1 〈6, 5, 2〉 [b1t, b2t, b3t] (x − y > 0) ∧ (x + y > 10) (x + y > 10) ∧ (x − y > 0)
3 2.2 〈5, 6, 2〉 [b1f , b2t, b3t] ¬(x − y > 0) ∧ (x + y > 10) (x + y > 10) ∧ ¬(x − y > 0)

6.2 Our Approach

In this section, we give our path exploration algorithm based on relevant-slice condition. We

then give theorems on the completeness of our path exploration algorithm. Throughout this chapter,

we assume that the slicing criteria is in a basic block that post-dominates the entry of the program.

More discussion of this assumption is provided at the beginning of Section 6.2.2.

First we introduce the following notations.

Notations We use C to denote the unique slicing criteria. When used in a dynamic context, C

refers to the last executed instance of the slicing criteria. Given a test case t, we use π(t) to denote

the execution path of t. We use rs(sc, π) to denote the relevant slice on path π w.r.t. slicing criteria

sc. We use rsc(sc, π) to denote the relevant slice condition on path π w.r.t. slicing criteria sc. We

use reordered rsc(sc, π) to denote the reordered sequence of rsc(sc, π). We use br(ψ) to denote

the branch instance of a branch condition ψ. We use bc(b) to denote the branch condition generated

by b. Given a relevant-slice condition or reordered relevant-slice condition θ and a branch condition

ψ, we use θ\ψ to denote the result of removing ψ from θ. Recall that θ is a conjunction of branch

conditions. If ψ is contained in θ, ψ is deleted from the conjunction to get θ\ψ. Otherwise, θ\ψ is

the same as θ.
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6.2.1 Path exploration algorithm

We now present our path exploration method which operates on a given program P . All relevant

slices and relevant-slice conditions are calculated on the same program P with respect to a slicing

criteria C (which refers to the program output).

We group paths based on relevant-slice condition. As explained in the last section, a DART-like

search based on relevant-slice conditions is incomplete, that is, not all possible symbolic expressions

that the output may assume will be covered. For this reason, we reorder the relevant-slice conditions.

Our path exploration algorithm RSCExplore is shown in Algorithm 6.1. The core of the algorithm

is the reorder procedure, which reorders the relevant-slice conditions. When we compute the relevant-

slice condition, we get a sequence of branch conditions – ordered according to the sequence in which

they are traversed. We use the reorder function to reorder the branch conditions, after which the

path exploration will be performed based on the reordered sequence of branch conditions.

The reorder procedure is given in Algorithm 6.1. The reordering works in a quick-sort-like

fashion. In each call to reorder, we split the to-be-reordered sequence into two sub-sequences.

Suppose the last branch condition in the sequence is from branch instance bk. Then bk is used as the

“pivot” in the splitting process. If a branch instance b is in the backward relevant slice of bk, then the

branch condition of b is placed before the branch condition of bk. Otherwise, the branch condition of

b is placed after the branch condition of bk. Then we recursively call the reorder procedure to reorder

the two sub-sequences.

We show the reorder procedure in action in Figure 6.6. Note that our reordering is done on

branch conditions in a relevant-slice condition. Since there is a unique branch condition for each

branch instance in the execution trace, the example in Figure 6.6 is on branch instances for simplicity.

On the left of Figure 6.6, the dependencies among all the branch instances are provided. If there is an

arrow from bj to bi, then bi is in the relevant slice of bj. The “pivot” in each reorder step is marked

in dark; the other branches are reordered w.r.t. to the “pivot”. For example, initially b6 is the pivot

and we reorder b1, . . . b5 depending on whether they are in the relevant slice of b6.

In Algorithm 6.1, we use a stack to maintain the to-be-explored partial relevant-slice conditions.

The main algorithm keeps on processing the formulae in the stack when it is not empty. In each

iteration, the algorithm pops out one partial relevant-slice condition from the stack, and checks
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Algorithm 6.1 RSCExplore:path exploration using relevant-slice condition
1: Input:
2: P : The program to test

3: t : An initial test case for P
4: C : A slicing criterion

5: Output:
6: T : A test-suite for P
7:

8: Stack = null // The stack of partial rsc to be explored

9: Execute(t, 0)
10: while Stack is not empty do
11: let 〈f, j〉 = pop(Stack)
12: if f is satisfiable then
13: let μ be one input that satisfies f
14: put μ into T
15: Execute(μ, j)
16: end if
17: end while
18: return T
19:

20: procedure Execute(t, n)

21: execute t in P and compute relevant-slice condition rsc w.r.t. C
22: let rsc = ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ψm

23: let rsc′ = reorder(rsc)
24: suppose rsc′ = ψ′1 ∧ ψ′2 ∧ . . . ∧ ψ′m−1 ∧ ψ′m
25: for all i from n+1 to m do
26: let h = (ψ′1 ∧ ψ′2 ∧ . . . ∧ ψ′i−1 ∧ ¬ψ′i)
27: push 〈h, i〉 into Stack
28: end for
29: return
30: end procedure
31:

32: procedure reorder(seq)

33: if |seq| ≤ 1 then
34: return seq
35: end if
36: let seq be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk

37: seq1 = true, seq2 = true
38: for all i from 1 to k-1 do
39: if br(ψi) is in relevant slice of br(ψk) then
40: seq1 = seq1 ∧ ψi

41: else
42: seq2 = seq2 ∧ ψi

43: end if
44: end for
45: return reorder(seq1) ∧ ψk ∧ reorder(seq2)

46: end procedure
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Algorithm 6.2 Augmented reorder

1: procedure reorder(seq, p)

2: let seq be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk

3: if |seq| == 1 then
4: assign the priority of b(ψ1) as p@[b(ψ1)]
5: end if
6: if |seq| ≤ 1 then
7: return seq
8: end if
9: seq1 = true, seq2 = true

10: for all i from 1 to k-1 do
11: if b(ψi) is in relevant slice of b(ψk) then
12: seq1 = seq1 ∧ ψi

13: else
14: seq2 = seq2 ∧ ψi

15: end if
16: end for
17: assign the priority of b(ψk) as p@[b(ψk)]
18: seq′1 = reorder(seq1, p@[b(ψk)])
19: seq′2 = reorder(seq2, p)
20: return seq′1 ∧ ψk ∧ seq′2
21: end procedure

b1 b2 b3 b4 b5 b6

(a) Dependencies among branch instances

(Arrows denote both direct and indirect de-

pendencies).

b1 b2 b3 b4 b5 b6

b1 b3 b6 b5 b4 b2

b1 b3 b2 b4 b5

b5 b4 b2

b2 b4

b4 b2

b1 b3 b6 b2 b4 b5

b1 b3

b5 b2 b4

(b) Reorder process. Each arrow represents one single reorder

step. The “pivot” nodes are highlighted in grey.

Figure 6.6: Reorder process for relevant slice condition from relevant slice [b1,b2,b3,b4,b5,b6]
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whether it is satisfiable or not. If it is satisfiable, we get a new input μ by solving the formula. The

new input μ could lead to some unexplored relevant-slice condition. The relevant-slice condition for

the execution trace of input μ is then explored, as shown by the procedure Execute in Algorithm 6.1.

Given the execution trace of μ, the relevant-slice condition over this trace w.r.t. the slicing criteria

C is first computed. The relevant-slice condition is reordered using the reorder procedure, and the

to-be-explored partial relevant-slice conditions are pushed into the stack.

The second parameter of Execute is used to avoid redundancy in path search. When Execute is

called with parameters t and n, let the reordered relevant-slice condition reordered rsc(C, π(t)) be

ψ′1∧ψ′2∧ . . .∧ψ′m−1∧ψ′m. For any partial relevant-slice condition ϕi = ψ′1∧ψ′2∧ . . .∧ψ′i−1∧¬ψ′i,

1 ≤ i ≤ n ≤ m, we know that ϕi has been pushed into the stack a-priori. So the for-loop in the

Execute procedure starts from n + 1 to avoid these explored partial relevant-slice conditions.

The path exploration of Algorithm 6.1 when employed on the program in Figure 6.2 leads to

the relevant-slice conditions shown in Table 6.2. If the “from” column of Table 6.2 contains α.β,

it means that the current input is generated by negating the βth branch constraint of the reordered

relevant-slice condition in the αth row. The path exploration based the reordered relevant-slice

condition explores all possible relevant-slice conditions of the program.

We now use the same example program in Figure 6.2 to explain that our technique is different

from employing path condition based path exploration on the static slice of the program. Given

a slicing criteria, we could first perform static slicing on the program with respect to the slicing

criteria. Since the static slicing result is also a complete program, we can enumerate all paths of the

static slice. Applying this approach on the program in Figure 6.2, the static slice result contains all

lines except for lines 11-14. As there are two branches in the static slice, path exploration based

on path condition explores all four feasible paths. In contrast, our technique generates only three

relevant-slice conditions as shown in Table 6.2.

6.2.2 Proofs

Assumptions We assume that the SMT solver used to solve relevant-slice conditions is sound and

complete (more discussion on this assumption is given in Section 6.5). As mentioned earlier, we

assume that the slicing criteria is in a basic block that post-dominates the entry of the program —

this is the location of the program output. This assumption makes sure that the slicing criteria is
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int foo(int x){
if(x > 0){

return x+1;//slicing criteria
else

return x+2;//slicing criteria
}

(a) Program before transformation

int foo(int x){
int ret;
if(x > 0){

ret = x+1;
else

ret = x+2;
return ret;//slicing criteria

}

(b) Program after transformation

Figure 6.7: Example of program transformation that makes the slicing criteria post-dominates the

program entry

executed for any program inputs. If a program does not satisfy this assumption, a simple program

transformation can produce an equivalent program that meets this assumption. We give one example

of transformation in Figure 6.7. If the program contains multiple outputs, the slicing criteria can

simply be a set of primitive criteria of the form

〈output variable, output location〉

Note that slicing can be performed on such a criteria (which is a set) without any change to our

method.

Execution Index In the following proofs as well as our implementation, we need to align/compare

different paths. Hence, it is critical to determine whether two statement instances from different

paths are the same. We use the concept of execution index [117], which is defined as:

Definition 6.18 (Execution Index [117]). Given a program P , the index of an execution trace π of

P , denoted as EIπ, is a function of execution points in π, that satisfies: ∀ two execution points x 	=
y, EIπ(x) 	= EIπ(y).

Two statement instances in different paths are the same iff. they have exactly the same “execution

index”. Given two paths π and σ and a statement instance s in π, we say s also appears in σ iff. in σ

there is a statement instance s′ such that EIπ(s) == EIσ(s′). In its simplest form, we use the path

from root to s in the Dynamic Control Dependence Graph of π as the execution index of s in π.

91



Additional Notations Used in Proofs Over and above the notations introduced earlier, we use

the following notations in our proofs. The immediate post-dominator of a branch b is denoted as

postdom(b). We use →d to denote dynamic data dependence, and →c to denote dynamic control

dependence. We use →p to denote potential dependence. We use �d to denote transitive data

dependence and�c to denote transitive control dependence. When no subscript is specified, we use

→ to denote any type of direct dependence and� to denote the transitive closure of →.

We use�s to denote a special kind of transitive dependence. Let u be a statement instance and

b be a branch instance in path π, then u�s b, iff. (i) there exist a variable v used at u, (ii) there is no

definition of v between postdom(b) and u and (iii) there is at least one static definition of v that is

statically transitively control dependent on the static branch of b. There could potentially many static

definitions of v that are statically transitively control dependent on static branch of b. Depending

on whether these definitions of v are executed, there are two different scenarios when u �s b. If

all the definitions of v are not executed, then u is potentially dependent on b. Otherwise, u is data

dependent on the last definition of v (say it is d), and d is control dependent on b. In both cases, there

is a dependence chain from u to b.

Transformations For the ease of our proofs, we statically transform any program in the following

way. Note that the transformations do not affect the program semantics, and do not impact the

generality of our proofs. (i) We add a dummy statement nop at the start of the program. The

statement nop means no operation. (ii) If the slicing criteria (output statement(s)) are not a branch,

we add a dummy branch that contains a dummy use for each variable appearing in the output

statement(s). We use this branch as the slicing criterion C.

6.2.2.1 Priority sequence and shortened priority sequence

We need to prove the following property for relevant-slice condition: if ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ψi

is a prefix of a reordered reordered rsc(C, t), the reordered relevant-slice condition of any input t′

satisfying ψ1∧ψ2 . . .∧ψi−1∧¬ψi has ψ1∧ψ2 . . .∧ψi−1∧¬ψi as a prefix. There are two important

facts to prove:(i) Each b(ψk), 1 ≤ k ≤ i, is included in the relevant slice in path π(t′). (ii) The relative

order of branch conditions in ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi is not changed. To prove these two facts, we

need to find out what is not changed between reordered rsc(C, t′) and reordered rsc(C, t). In the
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following, we define a shortened priority sequence sp(b) for each branch instance b. The shortened

priority sequence has the following two properties:

1. Let t and t′ be two inputs. Suppose ψ1∧ψ2∧. . .∧ψi−1∧ψi is a prefix of reordered rsc(C, π(t)).

If t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1, then sp(b(ψi)) is the same in π(t) and π(t′).

2. Let bx and by be two branch instances in path π(t). If bc(bx) is reordered before bc(by) by the

reorder algorithm in Algorithm 6.2, then sp(bx) > sp(by).

The first property means that the shortened priority sequence for the corresponding branch instance of

each branch condition in ψ1∧ψ2∧ . . .∧ψi−1∧ψi is not changed between reordered rsc(C, t′) and

reordered rsc(C, t). The second property means that the shortened priority sequence essentially

defines the order of branch conditions in a reordered relevant-slice condition. We explain how the

shortened priority sequence is computed in the following.

To define the shortened priority sequence, we define the priority sequence first. In Algorithm 6.2,

we have an augmented reorder algorithm. When reorder is invoked from Execute, the value for the

second parameter of the augmented reorder procedure is an empty list. The @ symbol in Algorithm

6.2 means list concatenation. Given the same parameters, the augmented reorder algorithm computes

the same reordered sequence as the one in Algorithm 6.1. In the augmented reorder procedure, a

priority sequence is computed for each branch instance along with the reorder process. Recall that

the reorder process is done in a quick-sort-like fashion. When we divide the input sequence of the

reorder procedure using ψk as the “pivot”, if b(ψi) is in the relevant slice of b(ψk), then b(ψk) is

added to the end of the priority sequence of b(ψi).

Let t be an input and bx be a branch instance in path π(t). Let the priority number for bx in π(t)

be p(bx) = [b̂1
x, b̂2

x, . . . , b̂σ
x]. From this priority sequence, we form a new shortened priority sequence

sp(bx) by selecting only the branches b̂i
x such that b̂i

x satisfies: there does not exists any b̂j
x in p(bx)

such that b̂i
x �c b̂j

x. We denote the new shortened priority sequence as sp(bx) = [b1
x, . . . , bα

x ].

Note that the last branch instance in both p(bx) and sp(bx) is always bx itself. Because of our

transformation, if bk is in rs(C, π(t)), then the first branch instance in both p(bx) and sp(bx) is from

the slicing criteria C.

Let bx and by be two branch instances in path π(t). If bc(bx) is reordered before bc(by), then

one of the following two cases must be true: (i) There is a branch instance b in p(bx), where b is
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Figure 6.8: Structure of the proofs

after by in time order and b 	� by. (ii) by � bx. In the first case, when b is used as the “pivot” in

reorder algorithm, bc(bx) is reordered before bc(by). In the second case, since by � bx, then bx

should always be before by in the entire reorder process.

Suppose sp(bx) = [b1
x, b2

x, . . . , bα
x ] and sp(by) = [b1

y, b
2
y, . . . , b

β
y ]. Let k be the maximal number

that satisfies: for each i, i ≤ k, bi
x == bi

y. Then we say sp(bx) > sp(by) if either (i) k == min(α, β)

and by � bx or (ii) k < min(α, β) and bk+1
y �c bk+1

x or (iii) k < min(α, β), bk+1
x 	�c bk+1

y ∧
bk+1
y 	�c bk+1

x and bk+1
x is after bk+1

y in time order. By this definition, it is impossible to have both

sp(bx) > sp(by) and sp(by) > sp(bx).

6.2.2.2 Proof structure

We prove two theorems in this chapter about relevant-slice condition and our path exploration

algorithm based on relevant-slice condition. The proof structure is shown in Figure 6.8. For ease of

understanding, we give the outline of our proofs and the relations between lemmas and theorems in

the following.

In Theorem 6.1, we show that a relevant-slice condition could guarantee the unique symbolic

values of the variables used in the slicing criteria. Symbolic value can be computed by dynamic

94



symbolic execution. Each symbolic value is an expression in terms of the program inputs. Let s

be a statement instance in the path of input t, and v be a variable used in s. The symbolic value

of v in s is a expression in terms of input variables. If the symbolic value of v is concretized with

t, it must be the same as the value of v in s when the program is run concretely with input t. To

prove Theorem 6.1, we actually prove the stronger Lemma 6.2. Let t and t′ be two inputs and s be a

statement instance in π(t). In Lemma 6.2, we show that if t′ |= rsc(s, π(t)), then the relevant slice

w.r.t. s in π(t′) would be exactly the same as that in π(t). Theorem 6.1 could be easily derived from

Lemma 6.2.

In Theorem 6.2, given any feasible path π, we show that our path exploration algorithm would

explore a path π′ that shares the same relevant-slice condition with π. This is concretized by showing

that the algorithm gradually gets a sequence of relevant-slice conditions with each one closer to the

relevant-slice condition of π than the previous one. Recall that the path exploration process is by

iteratively negating a branch condition in a relevant-slice condition. Suppose we solve ϕ to get a

new input t′, we need to prove that the relevant-slice condition on π(t′) still contains ϕ as a prefix.

Otherwise, the path exploration process would be out of order. Although this is obviously true for path

condition, it is not for relevant-slice condition. According to the result of relevant slice, some branch

constraints do not appear in relevant-slice condition even they are in path condition. This important

property of reordered relevant-slice condition is proved in Lemma 6.12. Let t and t′ be two inputs. In

Lemma 6.12, we prove that if t′ |= ψ1∧ψ2∧. . .∧ψi−1∧¬ψi, where ψ1∧ψ2∧. . .∧ψi−1∧ψi is a prefix

of reodered rsc(C, π(t)), then reordered rsc(C, π(t′)) must contain ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi

as a prefix. Let the target reordered relevant-slice condition be g = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn−1 ∧ ϕn and

reodered rsc(C, π(t)) be f . If the first different branch condition between f and g is at location k,

we prove that ψk == ¬ϕk in Lemma 6.11. Combining with 6.12, we show that we could indeed get

closer to π (having longer common prefix with reordered rsc(C, π) ) by negating the kth branch

condition in f . All the lemmas from Lemma 6.3 to Lemma 6.10 are used to gradually prove Lemma

6.11 and Lemma 6.12.

6.2.2.3 Full proofs

Lemma 6.1. Let t and t′ be two inputs and s be a statement instance in π(t). Suppose s is not in

π(t′). Let bs be the last branch instance in π(t) that satisfies: s �c bs and bs is in both π(t) and
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π(t′). Then bs is evaluated differently in π(t) and π(t′).

Proof. Let the control dependence chain from s to bs in π(t) be s �c b →c bs, where b →c bs is

the last link in s�c bs. Note that b could be same as s. Assume to the contrary that bs is evaluated

to the same direction in π(t) and π(t′). Then b must also be executed in π(t′). Therefore, b also

satisfies: s �c b and b is in both π(t) and π(t′). Since b is after bs in time order, this contradicts

that bs is the last branch instance that satisfy this condition. Therefore, bs is evaluated to different

directions in π(t) and π(t′).

Lemma 6.2. Let t and t′ be two inputs and s be a statement instance in π(t). If t′ |= rsc(s, π(t)),

then s will be executed in π(t′) , the variables used in s in π(t′) will have the same symbolic values

as in π(t), rs(s, π(t′)) is exactly the same as rs(s, π(t)) and each branch instance in rs(s, π(t)) is

evaluated to the same direction in π(t) and π(t′).

Proof. We prove this lemma by induction. Given the path π(t), suppose it is a sequence [s0, s1, . . . , sn−1, sn].

Initial Step: According to our transformation, the statement instance s0 must be from nop. Then

rsc(s0, π(t)) is true. It is obvious that s0 satisfies Lemma 6.2.

Inductive Step: The induction hypothesis is: for each statement sj , j < i, sj satisfies Lemma

6.2. We need to prove that si also satisfies Lemma 6.2.

First we prove that si will be executed in π(t′). Let sj be the statement prior to si such that

si →c sj . Then each statement in rs(sj , π(t)) is also in rs(si, π(t)). So we have rsc(si, π(t)) ⇒
rsc(sj , π(t)). Since t′ |= rsc(si, π(t)), t′ |= rsc(sj , π(t)). By the induction hypothesis , sj will be

executed to the same direction in π(t) and π(t′). This implies that si will be executed in π(t′).

The core of the inductive step is to prove that rs(si, π(t′)) is exactly the same as rs(si, π(t)).

This is proved in two directions. (i) If si � s′ in π(t′), then si � s′ in π(t). (ii) If si � s′ in π(t),

then si � s′ in π(t′).

Now, we prove that given any statement instance s′ in π(t′), if si � s′ in π(t′), then it must also

be si � s′ in π(t). Suppose in π(t′), si → sk � s′ where sk is another statement instance in π(t′).

We first prove that si → sk in π(t) in two steps: (i) sk appears in π(t). (ii) si → sk in π(t).

We first prove that sk appears in π(t). We prove this by contradiction. Assume to the contrary

that sk does not appear in π(t). We find the last control dependence ancestor of sk that is in both
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π(t) and π(t′). Let this statement be su. This means that su is the last statement in both π(t) and

π(t′) such that sk is transitively control dependent on su in both the execution traces π(t), π(t′).

According to Lemma 6.1, the branch in su must be evaluated differently in π(t) and π(t′).

According to the type of si → sk in π(t′) we have the following cases.

• (a) si →c sk. The existence of si in π(t) contradicts that sk is not in π(t).

• (b) si →d sk or si →p sk. In this case, the existence of si in both paths π(t), π(t′) indicates

that si 	�c su in π(t′) since su is evaluated differently in π(t) and π(t′). Similarly, si 	�c su

in π(t). This means that si appears after postdom(su) in both execution traces π(t), π(t′).

Suppose si →d sk or si →p sk in π(t′) is caused by the use of variable v at si (in case

of multiple such variables, we choose one randomly). There should be no definition of v

between postdom(su) and si in π(t). Otherwise the definition would also appear in π(t′),

making si →d sk or si →p sk impossible in π(t′). In π(t), according to the definition of

�s, si �s su in π(t). Therefore, su is in the relevant slice of si in π(t). By the induction

hypothesis , su is then evaluated to the same direction in π(t) and π(t′), contradicting our

original assumption that su is evaluated differently in π(t) and π(t′).

Therefore, in both cases, we achieve a contradiction - thereby establishing that sk must appear in

π(t).

Given that sk is in π(t), we prove that si → sk in π(t). According to the type of si → sk in π(t′)

we have the following cases. (a) si →c sk in π(t′). — The existence of si and sk in π(t) already

shows that si →c sk. (b) si →d sk or si →p sk in π(t′). — Suppose the dependence between si and

sk is caused by the use of variable v (in case of multiple such variables, we choose one randomly)

at si in π(t′). Then si 	→ sk could only happen in π(t) because v is redefined by another statement

instance between sk and si in π(t). Suppose the last definition of v before si in π(t) is at statement

instance sn. So we have si → sn in π(t). By the induction hypothesis, sn will be executed in π(t′).

The variable v will still be redefined by sn in π(t′), which contradicts that si →d sk or si →p sk in

π(t′). Therefore, we have proved that in both case, si → sk in π(t).

We have now proved that si → sk in π(t). According to induction hypothesis, the relevant slice

of sk is the same in π(t) and π(t′), that is, rs(sk, π(t)) == rs(sk, π(t′)). Thus, for any statement

instance s′ such that sk � s′ in π(t′) — we must have sk � s′ in π(t). Therefore, si → sk � s′ in
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π(t). Thus, we have proved that given any statement instance s′ in π(t′), if si � s′ in π(t′), then it

must also be si � s′ in π(t).

Next, we prove that given a statement instance s′ in π(t), if si � s′ in π(t), then it must also

be si � s′ in π(t′). Suppose si → sj � s′ in π(t). According to induction hypothesis, sj appears

in π(t′) and sj � s′ in π(t′). So we only need to prove that si → sj in π(t′). According to the

dependence type of si → sj , we have the following two cases.

• (a) si →c sj in π(t). The existence of both si and sj already implies that si →c sj in π(t′).

• (b) si →d sj or si →p sj in π(t). We need to prove that the dependence between si and sj

still appears in π(t′). Suppose si →d sj or si →p sj in π(t) is caused by the use of variable v

at si. We prove si →d sj or si →p sj in π(t′) by contradiction. Assume to the contrary that

this is not the case in π(t′). This could only happen if v is redefined between sj and si in π(t′).

Suppose the last definition of v before si in π(t′) is statement instance sn, so si →d sn in π(t′).

We have already established that for any statement instance s′ in π(t′), if si � s′ in π(t′),

then it must also be si � s′ in π(t). Thus, sn must also appear in π(t), and si →d sn in π(t).

This contradicts that si →d sj or si →p sj in π(t) (simply by the definition of dynamic data

dependencies and potential dependencies). So if si →d sj or si →p sj is in π(t), si →d sj or

si →p sj is also in π(t′),

Therefore, we have proved by induction that rs(si, π(t′)) is exactly the same as rs(si, π(t)) (induc-

tive step).

Since the entire slice of si is exactly the same in two paths, the symbolic values of the

variables used in si must be exactly the same in π(t) and π(t′). Suppose si uses α variables

v1, v2, . . . , vα−1, vα to define variable s̄i. Let the corresponding definition of these variables be at

si
1, s

i
2, . . . , s

i
α−1, s

i
α. Note that each definition si

x, 1 ≤ x ≤ α, is same in both π(t′) and π(t) since

si
x is in the relevant slice of si. According the induction hypothesis, the symbolic value of each vx is

the same in π(t) and π(t′), where 1 ≤ x ≤ α. Moreover, the definition of s̄i is computed in exactly

the same way (using the same operations) from v1, v2, . . . , vα−1, vα in π(t) and π(t′). Therefore, the

symbolic value of s̄i in si is the same in π(t) and π(t′). We know that t′ |= rsc(si, π(t)). Therefore,

t′ should satisfy the branch constraints corresponding to the branches appearing in the relevant slice
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rs(si, π(t)) == rs(siπ(t′)). Therefore each branch instance in rs(si, π(t)) is evaluated to the same

direction in π(t) and π(t′). This completes the proof.

Theorem 6.1. If the relevant-slice conditions of two paths π1 and π2 w.r.t. C are the same, then the

variables used in the slicing criteria C have the same symbolic values in π1 and π2.

Proof. Let t1 and t2 be two test inputs whose execution traces are π1 and π2 respectively. According

to the theorem statement, we have rsc(C, π1) == rsc(C, π2). Since t2 |= rsc(C, π2), t2 |=
rsc(C, π1). According to Lemma 6.2, the symbolic values of the variables used in C are exactly the

same in π(t2) and π(t1), where π(t2) == π2 and π(t1) == π1. Therefore, the variables used in the

slicing criteria C have the same symbolic values in π1 and π2. This completes the proof.

Lemma 6.3. Let t and t′ be two inputs, given a branch instance b in π(t), if t′ |= rsc(b, π(t))\bc(b),
b will be executed in π(t′) and the variables used in b in π(t′) would have the same symbolic values

as in π(t).

Lemma 6.4. Let t be an input. Let reordered rsc(C, π(t)) be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk in path

π(t). Then for any i, 1 ≤ i ≤ k, ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ⇒ rsc(b(ψi), π(t))\ψi.

Lemma 6.5. Let bx and by be two branch instances in path π(t). If bc(bx) is reordered before bc(by)

by the reorder algorithm in Algorithm 6.2, then the shortened priority sequences sp(bx) > sp(by).

Proof. Suppose sp(bx) is [b1
x, b2

x, . . . , bα−1
x , bα

x ] and sp(by) is [b1
y, b

2
y, . . . , b

β−1
y , bβ

y ]. When sp(bx) 	=
sp(by), let k be the maximal number that satisfies: for each i, i ≤ k, bi

x == bi
y.

If k == min(α, β), it must be either k == α or k == β. If k == α, then we have

bx == bα
x == bk

x == bk
y and bk

y � by. Therefore, we have bx � by, which could not be possible

when bc(bx) is reordered before bc(by). Therefore, when k == min(α, β), it must be k == β and

by � bx.

If k < min(α, β), we enumerate the relation between bk+1
x and bk+1

y .

1. bk+1
y �c bk+1

x . This is possible.

2. bk+1
x �c bk+1

y . We prove that it is not possible to have bc(bx) being reordered before bc(by).

This is proved through (i) bk+1
y 	� bx (ii) There is no branch b after bk+1

y such that b is in

p(bx), but b 	� by. We first prove bk+1
y 	� bx by contradiction. Assume to the contrary that
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bk+1
y � bx. According to the process of computing p(bx), if bk+1

y � bx and bk+1
x �c bk+1

y ,

then bk+1
y is in p(bx). However, according to the definition of sp(bx), if bk+1

x �c bk+1
y and

bk+1
y is in p(bx), then bk+1

x is not in sp(bx). This contradicts that bk+1
x is in sp(bx). Next, we

prove that there is no branch b after bk+1
y such that b is in p(bx), but b 	� by. This is obvious

since for each b after bk+1
y and b is in p(bx), we have b� bk+1

x � bk+1
y � by, contradicting

b 	� by. Therefore, we know that there is no branch b after bk+1
y such that by is reordered after

bx by using b as the “pivot”. So when bc(bk+1
y ) is used as the “pivot” in the reorder algorithm,

either bc(bx) is already after bc(bk+1
y ) hence after bc(by), or bc(bx) is still before bc(bk+1

y ). If

bc(bx) is still before bc(bk+1
y ), given the “pivot” bc(bk+1

y ) and the fact that bk+1
y 	� bx, bc(bx)

will be reordered after bc(bk+1
y ) hence after bc(by). This contradicts that bc(bx) is before

bc(by).

3. bk+1
x 	�c bk+1

y ∧ bk+1
y 	�c bk+1

x . We prove that bk+1
x is after bk+1

y in time order using

contradiction. Assume to the contrary that bk+1
x is before bk+1

y in time order. According

to whether bk+1
y is transitively dependent on bk+1

x , we have the following two cases: (i)

bk+1
y � bk+1

x , then there is at least one branch b that is between postdom(bk+1
x ) and bk

x

such that b is in sp(bx). this contradicts that the (k + 1)th element in sp(bx) is bk+1
x . (ii)

bk+1
y 	� bk+1

x . We first show bk+1
y 	� bx. Assume to the contrary that bk+1

y � bx. Then

when bk+1
y is used as the “pivot” in the reorder process, bx is before bk+1

y and bk+1
x is after

bk+1
y . Therefore, bx and bk+1

x are in two different sub-sequences, making it impossible to

have bk+1
x in the shortened priority sequence of bx. This contradicts that bk+1

x is in sp(bx).

Given bk+1
y 	� bx, when bk+1

y is used as the “pivot” in the reorder process, either bc(bx) is

already after bc(bk+1
y ) hence after bc(by), or bc(bx) is still before bc(bk+1

y ). If bc(bx) is still

before bc(bk+1
y ), given the “pivot” bc(bk+1

y ), bc(bx) will be reordered after bc(bk+1
y ) hence

after bc(by). This contradicts that bc(bx) is before bc(by). So it is impossible to have bk+1
x

before bk+1
y in either case.

So we have either (i) k == min(α, β) and by � bx or (ii) k < min(α, β) and bk+1
y �c bk+1

x .

or (iii) k < min(α, β) and bk+1
x 	�c bk+1

y ∧ bk+1
y 	�c bk+1

x and bk+1
x is after bk+1

y in time order. This

is exactly the definition of sp(bx) > sp(by).

100



Lemma 6.6. Let t be an input and b and bk be two branch instances in π(t). Suppose in π(t), sp(bk)

is [b1
k, b

2
k, . . . , b

i
k]. If bj

k � b, where 1 ≤ j < i, and postdom(b) is after postdom(bj+1
k ), then bc(b)

is before bc(bk) in reordered rsc(C, π(t)).

Proof. We first prove that b is not in p(bk). Based on the possible position of b in π(t), we have the

following two cases:(i) b is after postdom(bj+1
k ). Since bj

k � b, b could only be between bj
k and

postdom(bj+1
k ). According to the process of computing the shortened priority sequence, any branch

instances between bj
k and postdom(bj+1

k ) cannot be in p(bk). (ii) b is before postdom(bj+1
k ). Since

postdom(b) is after postdom(bj+1
k ), it must be bj+1

k �c b. Therefore, we have bj+1
k �c b and b is

in p(bk). This cannot happen given bj+1
k is in sp(bk).

According to the reorder algorithm, if bc(bk) is reordered before bc(b) and b is not in p(bk),

then there must be a branch instance b̂u
k in p(bk) such that b̂u

k is after b and b̂u
k 	� b. We will prove

that such a b̂u
k cannot exist. Such a b̂u

k should be after postdom(b), otherwise b̂u
k �c b. Since

postdom(b) is after postdom(bj+1
k ), b̂u

k is after postdom(bj+1
k ). However if b̂u

k in p(bk) is after

postdom(bj+1
k ), b̂u

k � bj
k � b. So it is not possible to have any b̂u

k in p(bk) such that b̂u
k is after b

and b̂u
k 	� b. This means that bc(bk) cannot be reordered before bc(b). Therefore, bc(b) is before

bc(bk) in reordered rsc(C, π(t)).

Lemma 6.7. Let t and t′ be two inputs. Let the reordered relevant-slice condition in π(t) be

reordered rsc(C, π(t)) = ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ψi. Then if t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk, k ≤ i, for

any j, 1 ≤ j ≤ k, b(ψj) is evaluated to the same direction in π(t) and π(t′).

Lemma 6.8. Let t and t′ be two inputs. Suppose ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk is a prefix of

reordered rsc(C, π(t)). Let b(ψk) be bk. Suppose the shortened priority sequence for bk in

π(t) is sp(bk) = [b1
k, b

2
k, . . . , b

i
k], where bi

k == bk. If t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, then (i) For any j,

1 ≤ j ≤ i, bj
k also appears in π(t′). (ii) For any j, 1 ≤ j < i, each statement that is between bj

k and

postdom(bj+1
k ) in rs(bj

k, π(t′)) is also in rs(bj
k, π(t)). (iii) For any j, 1 ≤ j < i, each statement

that is between bj
k and postdom(bj+1

k ) in rs(bj
k, π(t)) is also in rs(bj

k, π(t′)).

Proof. We prove the claims in the lemma one by one.

For any j, 1 ≤ j ≤ i, bj
k also appears in π(t′). Suppose bj

k →c b. Since bj
k →c b, we have

bj
k � b and postdom(bc) after bj

k hence after postdom(bj+1
k ). According to Lemma 6.6, bc(b)
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is reordered before bc(bk)(same as ψk) in reordered rsc(C, π(t)). This means that the branch

condition of b is actually one of the ψm, where m ≤ k − 1. Since t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1,

according to Lemma 6.7, b will be evaluated to the same direction in π(t) and π(t′). So bj
k is also

executed in π(t′).

For any j, 1 ≤ j < i, each statement that is between bj
k and postdom(bj+1

k ) in rs(bj
k, π(t′))

is also in rs(bj
k, π(t)). We prove this by contradiction. Assume to the contrary that there is an s in

π(t′), where s ∈ rs(bj
k, π(t′)) and s is between bj

k and postdom(bj+1
k ), but s is not in rs(bj

k, π(t)).

There must exist two nodes s1 and s2 in bj
k � s in π(t′) such that bj

k � s1 in π(t), but s1 	→ s2 in

π(t). If it is not the case, then in π(t) we have bj
k � s. We prove s1 → s2 to draw the contradiction

in two steps: (i) s2 appears in π(t). (ii) s1 → s2.

We first prove that s2 appears in π(t). According to the dependence type from s1 to s2 in π(t′),

we have the following two cases:(i) s1 →c s2. the existence of s1 in π(t) shows that s2 also exists

in π(t). (ii) s1 →d s2 or s1 →p s2. Assume to the contrary that s2 does not appear in π(t). We

find the last control ancestor s3 of s2 that is in both π(t) and π(t′). According to Lemma 6.1, s3 is

evaluated to different directions in π(t) and π(t′). Suppose s1 →d s2 or s1 →p s2 is caused by the

use of variable v at s1(in case of multiple such variables, we choose one randomly). There should be

no definition of v between postdom(s3) and s1 in π(t). Otherwise, that definition would be kept in

π(t′), making s1 → s2 impossible in π(t′). According to the definition of�s, s1 �s s3 in π(t).

Therefore, we have bj
k � s1� s3 in π(t). Because s2�c s3, postdom(s3) is after s2 and hence

after postdom(bj+1
k ) in π(t′). Since the relative time order of any two statement instances does not

change across different paths, the existence of both s3 and bj+1
k in π(t) indicates that postdom(s3)

is after postdom(bj+1
k ) in π(t). According to Lemma 6.6, bc(s3) is reordered before bc(bk)(same as

ψk) in reordered rsc(C, π(t)). Since t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, according to Lemma 6.7, s3 is

evaluated to the same direction in π(t) and π(t′). However, this contradicts that s3 is evaluated to

different directions in π(t) and π(t′).

Then, we show s1 → s2 in π(t). According to the dependence type from s1 to s2 in π(t′),

we have the following two cases: (i) s1 →c s2. The existence of s1 and s2 already shows that

s1 →c s2 in π(t). (ii) s1 →d s2 or s1 →p s2. Assume to the contrary that s1 	→ s2 in π(t).

Suppose s1 →d s2 or s1 →p s2 is caused by the use of variable v at s1(in case of multiple such

variables, we just choose one randomly). Therefore, s1 	→ s2 in π(t) could only be v is redefined
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by some statement instance between s1 and s2 in π(t). We denote this statement instance as s4.

Suppose s4 is control dependent on s5 in π(t), we have bj
k � s4 � s5 and postdom(s5) after

s4 hence after postdom(bj+1
k ). According to Lemma 6.6, bc(s5) is reordered before bc(bk) in

reordered rsc(C, π(t)). Since t′ |= ψ1 ∧ψ2 ∧ . . .∧ψk−1, according to Lemma 6.7, s5 is evaluated

to the same direction in π(t) and π(t′). Therefore, s4 will be executed in π(t′). This contradicts that

s1 →d s2 or s1 →p s2 in π(t′).

For any j, 1 ≤ j < i, each statement that is between bj
k and postdom(bj+1

k ) in rs(bj
k, π(t))

is also in rs(bj
k, π(t′)). For a statement s that is in rs(bj

k) and is between bj
k and postdom(bj+1

k ), We

first prove that s exists in π(t′). For any branch instance bc such that s�c bc, we have bj
k � s� bc

and postdom(bc) after s hence after postdom(bj+1
k ). According to Lemma 6.6, bc(bc) is reordered

before bc(bk)(same as ψk) in reordered rsc(C, π(t)). Since t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, according

to Lemma 6.7, bc is evaluated to the same direction in π(t) and π(t′). Therefore, s will be executed

in π(t′).

Then, we prove that bj
k � s in π(t′). Assume to the contrary that this is not the case. There must

exist two nodes s1 and s2 in bj
k � s in π(t) such that bj

k � s1 in π(t), but s1 	→ s2 in π(t′). If it

is not the case, then in π(t′) we have bj
k � s. According the proof in the last paragraph, s1 and s2

are both executed in π(t′). According to the dependence type from s1 to s2 in π(t), we have the

following two cases:(i) s1 →c s2. The existence of s1 and s2 already shows that s1 →c s2 in π(t′).

(ii) s1 →d s2 or s1 →p s2. Suppose s1 →d s2 or s1 →p s2 in π(t) is caused by the use of variable

v at s1(in case of multiple such variables, we just choose one randomly). Therefore, s1 	→ s2 in

π(t′) could only be v is redefined by some statement instance between s1 and s2 in π(t′). We denote

this statement instance as s4. According to the above proof, s4 also exists in π(t). Therefore, v

should also be redefined by s4 in π(t), contradicting that s1 →d s2 or s1 →p s2 in π(t).

Lemma 6.9. Let t and t′ be two inputs. Suppose ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk is a prefix of

reordered rsc(C, π(t)). If t′ |= ψ1 ∧ψ2 ∧ . . .∧ψk−1, then sp(b(ψk)) is the same in π(t) and π(t′).

Proof. Let b(ψk) be bk. Suppose the shortened priority sequence for bk in π(t) is sp(bk) =

[b1
k, b

2
k, . . . , b

i
k], where bi

k == bk.

We prove sp(b(ψk)) is also [b1
k, b

2
k, . . . , b

i
k] in π(t′) in the following steps:(i) We prove that

bj
k � bj+1

k for each j, 1 ≤ j < i, in π(t′). (ii) We prove that each bj
k is in p(bk) in π(t′). (iii) We
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prove that for any branch instance in p(bk) in π(t′), either it is transitively control dependent on some

bj
k, where bj

k is in sp(bk) in π(t) or it is some bj
k. (iv) We show that for each bj

k in π(t′), if bj
k �c bc

then bc is not contained in p(bk) in π(t′).

We first show that bj
k � bj+1

k in π(t′), where 1 ≤ j < i. Since bj
k � bj+1

k and bj
k 	�c bj+1

k in

π(t), there must be a statement instance s between postdom(bj+1
k ) and bj

k in π(t) such that bj
k � s

and s�s bj+1
k . Note that such an s could be the same as bj

k. Suppose s�s bj+1
k is caused by the use

of variable v at s(in case of multiple such variables, we choose one randomly). As proved in Lemma

6.8, between postdom(bj+1
k ) and bj

k, rs(bj
k, π(t′)) is exactly the same as rs(bj

k, π(t)). Therefore,

bj
k � s in π(t′) and there is not definition of v between postdom(bj+1

k ) and s in π(t′). According to

the definition of�s, s �s bj+1
k is irrespective of the direction of bj+1

k . So in π(t′), we also have

s�s bj+1
k . So we have bj

k � bj+1
k in π(t′).

Next, we prove that each bj
k is in p(bk) in π(t′), where 1 ≤ j ≤ k. Assume to the contrary

that this is not the case. Since ψk is in reorderd rsc(C, π(t)), b(ψk)(same as bk) is in rs(C, π(t)).

Then the first element in sp(bk) must be from C. According to the proof in last paragraph, b1
k � bk

in π(t′). Therefore, the first element of p(bk) in π(t′) would still be from C, which is b1
k. So b1

k

is in p(bk) in π(t′). For j > 1, suppose bj
k is the first one in sp(bk) in π(t) that is not in p(bk) in

π(t′). Therefore, we have bj−1
k is in p(bk) in π(t′). According to the process of computing p(bk),

there must be some “pivot” b (including bj
k) between bj−1

k and bj
k, where bj−1

k � b and b 	� bj
k and

b � bk in π(t′). According to the proof in last paragraph, we have bj−1
k � bj

k and bj
k � bk in

π(t′). Therefore, b could not be the same as bj
k, meaning b could only be after bj

k and before bj−1
k .

According to the possible locations of b, we have the following two cases: (i) b is between bj
k and

postdom(bj
k). If b is between bj

k and postdom(bj
k), then b �c bj

k, contradicting that b 	� bj
k. (ii)

b is between postdom(bj
k) and bj−1

k . As shown in Lemma 6.8, rs(bj−1
k , π(t′)) is exactly the same

as rs(bj−1
k , π(t)) between bj−1

k and bj
k. Since we have b 	� bj

k in π(t), b 	� bj
k in π(t′) either. This

contradicts that b� bj
k in π(t′). In each case, we get a contradiction showing that the assumption is

wrong. So we have bj
k is in p(bk) in π(t′).

Then, we prove that for any given branch instance in p(bk) in π(t′), either this branch instance is

transitively control dependent on some bj
k, where bj

k is in sp(bk) in π(t), or it is some bj
k. This is the

same as: for any branch b, if b is not between any pair of bj
k and postdom(bj

k), 1 < j ≤ i, then b

cannot be in p(bk) in π(t′). Note that j > 1 is because the range between b1
k and postdom(b1

k) is
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after the slicing criteria C(same as b1
k) in time order. Assume to the contrary that such a b exists, then

b must be between some bj
k and postdom(bj+1

k ). According to Lemma 6.8, between postdom(bj+1
k )

and bj
k, rs(bj

k, π(t′)) is exactly the same as rs(bj
k, π(t)), then such b is also in π(t). According to the

process of computing p(bk), b is contained in p(bk) in π(t), contradicting that p(bk) does not contain

any branches that are between postdom(bj+1
k ) and bj

k. Therefore, we have proved that such b could

not exist.

Finally, we show that for each bj
k in π(t′), if bj

k �c bc then bc is not contained in p(bk) in

π(t′). Assume to the contrary that there exists a bc, bj
k �c bc and bc is contained in p(bk) in π(t′).

According to proof in the last paragraph bc must be either transitively dependent on some bi
k or bc is

the same as bi
k. In either case, we have bj

k �c bi
k in π(t′). Recall that control dependence between

two statement instances are preserved across paths as long as the two statement instances both exist.

Since bj
k and bi

k are also in π(t), we have bj
k �c bi

k in π(t). Therefore bj
k can not be in sp(bk) in

π(t), contradicting that bj
k is in sp(bk) in π(t).

According to the process of computing shortened priority sequence, sp(bk) in π(t′) would be

[b1
k, b

2
k, . . . , b

i
k].

Lemma 6.10. Let t be an input and bx be a branch instance in rs(C, π(t)). If the shortened priority

sequence of bx in π(t) is sp(bx) = [b1
x, . . . , bα

x ], then for any i, 1 ≤ i < α, bi
x � bi+1

x . This

essentially means that there is a dependence chain from slicing criteria to bx, which means bx will be

included in rs(C, π(t)).

Lemma 6.11. Let π1 and π2 be two paths. Let f and g be reordered rsc(C, π1) reordered rsc(C, π2)

respectively. Suppose f is ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕj−1 ∧ ϕj and g is ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ψi. If the first

different branch condition between f and g is at location k, then ϕk == ¬ψk.

Proof. We first show that b(ϕk) and b(ψk) must be the same. We prove this by contradiction.

Assume to the contrary that b(ϕk) and b(ψk) are different. Let b(ϕk) be bx and b(ψk) be by. Since

the first different branch condition between f and g is at location k, ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk−1 (same

as ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1) is satisfied by the input of both paths. , Since the input of π1 satisfy

ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk−1, by is contained in rs(C, π1) according to Lemma 6.10. The branch condition

bc(by) should not be in ψ1 ∧ ψ2 ∧ . . .∧ ψk−1, which is the same as ϕ1 ∧ ϕ2 ∧ . . .∧ ϕk−1. So bc(by)

could only be after bc(bx)(same as ϕk) in reordered rsc(C, π1). Similarly, bc(bx) could only be
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after bc(by) in reordered rsc(C, π2). According to Lemma 6.5, we have sp(bx) > sp(by) from π1.

Similarly we have sp(by) > sp(bx) from π2. This contradicts that the shortened priority sequences

are the same in both paths by Lemma 6.9. So b(ϕk) and b(ψk) must be the same.

According to Lemma 6.3 and 6.4, ϕ1 ∧ϕ2 ∧ . . .∧ϕk−1 can guarantee that the symbolic values of

the variables used at b(ϕk)(same as b(ψk)) are the same in π1 and π2. So ϕk could only be different

from ψk if the branch b(ϕk) and b(ψk) are evaluated to different directions in π1 and π2. So we have

ϕk == ¬ψk.

Lemma 6.12. Let t and t′ be two inputs. If t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi, where ψ1 ∧ ψ2 ∧
. . . ∧ ψi−1 ∧ ψi is a prefix of reodered rsc(C, π(t)), then reordered rsc(C, π(t′)) must contain

ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi as a prefix.

Proof. We will prove the following properties of π(t′):

• Each b(ψk), 1 ≤ k ≤ i, in π(t) is executed in π(t′) and the variables used in each b(ψk) have

the same symbolic values in π(t) and π(t′).

• Each b(ψk), 1 ≤ k ≤ i, in π(t) is contained in rs(π(t′)).

• The order of the branch conditions is the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi in π(t′).

• The first i branch conditions of reodered rsc(C, π(t)) must be from the branch instances

{b(ψk)|1 ≤ k ≤ i}.

Each b(ψk), 1 ≤ k ≤ i, in π(t) is executed in π(t′) and the variables used in each b(ψk)

have the same symbolic values in π(t) and π(t′). Since k ≤ i, so ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi ⇒
ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1. According to Lemma 6.3 and 6.4, each b(ψk) in π(t) is executed and the

variables used in each b(ψk) have the same symbolic values in π(t) and π(t′).

Each b(ψk), 1 ≤ k ≤ i, in π(t) is contained in rs(π(t′)). Since k ≤ i, so ψ1 ∧ ψ2 ∧ . . . ∧
ψi−1 ∧ ¬ψi ⇒ ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1. According to Lemma 6.10, each b(ψk) in π(t) is contained in

rs(π(t′)).

The order of the branch conditions is the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi in π(t′). Let

ψj and ψk be any two branch conditions in ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi, where 1 ≤ j < k ≤ i.

According to Lemma 6.6, if ψj is before ψk, then sp(b(ψj)) > sp(b(ψk)). According to Lemma
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6.9, the priority sequence of b(ψj) and b(ψk) in π(t′) are the same as those in π(t) respectively.

Therefore in π(t′), we also have sp(b(ψj)) > sp(b(ψk)). This shows that the relative order of any

two branch conditions in ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi are the same π(t) and π(t′). Therefore, the

order of the branch conditions is the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi. in π(t′).

The direction of each branch instance is restricted by the corresponding branch condition in

ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi.

The first i branch conditions of reodered rsc(C, π(t)) must be from the branch instances

{b(ψk)|1 ≤ k ≤ i}. Assume to the contrary that this is not the case. Let ϕ be the first branch

condition whose branch instance is not in {b(ψk)|1 ≤ k ≤ i} and ϕ is one of the first i branch

conditions in reordered rsc(C, π(t′)). According to the above proof, all the branch conditions

before ϕ are satisfied by t. Therefore, according to Lemma 6.9, b(ϕ) appears in π(t). Since

sp(ϕ) > sp(ψi), this contradicts that b(ϕ) does not appear in {b(ψk)|1 ≤ k ≤ i}.

According to the above proved properties, reordered rsc(C, π(t′)) must contain ψ1 ∧ ψ2 ∧
. . . ∧ ψi−1 ∧ ¬ψi as a prefix.

We now prove the completeness of our path search method.

Theorem 6.2. Given a program P and an execution trace π(t) for input t in P , Algorithm 6.1

must explore an execution trace π(t′) for some input t′ such that π(t) and π(t′) share the same

relevant-slice condition (irrespective of the initial test input with which Algorithm 6.1 is started) —

provided the total number of relevant-slice conditions in P is bounded.

Proof. Consider any input t in program P , its execution trace π(t) and the associated reordered

relevant-slice condition g. We use dist(f, g) to denote the distance from f to g where f is also

a reordered relevant-slice condition of some path. Suppose f = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕj−1 ∧ ϕj and

g = ψ1 ∧ψ2 ∧ . . .∧ψi−1 ∧ψi. Let k be the number such that (i) for all m ≤ k we have ϕm == ψm,

and (ii) either k == min(i, j) or ϕk+1 	= ψk+1.

We first show that when k == min(i, j), it must be that f == g. Without losing generality, let

us assume to the contrary that f 	= g and k == j, which means that i > j. If an input tf satisfies

f , then tf |= ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕj−1 ∧ ϕj , which is the same as tf |= ψ1 ∧ ψ2 ∧ . . . ∧ ψj−1 ∧ ψj .

According to the proof of Lemma 6.9, b(ψj+1) must appear in the trace π(tf ), which contradicts that

the first k branch conditions in f and g are the same and the length of f is only k.
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We now define the distance on reordered relevant-slice conditions. Given two reordered relevant-

slice conditions f and g, we define dist(f, g) ≡ 1 − k
i . When dist(f, g) == 0, f and g are the

same. The definition of dist is asymmetric, that is, dist(f, g) 	= dist(g, f) is possible.

In Algorithm 6.1, we maintain a fcurrent which has the closest distance to g among all the

explored relevant-slice conditions. Suppose fcurrent = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕj−1 ∧ ϕj and g =

ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ψi. Suppose the first different branch condition between fcurrent and g is at

location k+1. When fcurrent is explored, the partial relevant-slice condition ϕ1∧ϕ2∧. . .∧ϕk∧¬ϕk+1

is pushed into the stack. This formula will be eventually processed by our path search algorithm,

provided the total number of relevant-slice conditions is bounded in program P .

According to Lemma 6.11, ¬ϕk+1 == ψk+1. It is clear that ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1 is

the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1. Note that g = ψ1 ∧ ψ2 ∧ . . . ∧ ψi is satisfiable, as g is

the relevant-slice condition of a feasible path π(t). Since k < i (fcurrent and g are same up to

the first k conjuncts), g ⇒ ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1. Since g is satisfiable, ϕ1 ∧ ϕ2 ∧ . . . ∧
ϕk ∧ ¬ϕk+1 (same as ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1) is also satisfiable. Let t0 be an input which

satisfies ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1, that is t0 |= ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1. Using Lemma

6.12 we get that reordered rsc(C, π(t0)) contains ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1 (which is same

as ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1) as a prefix. By the definition of distance dist, the distance from

reordered rsc(C, π(t0)) to g should be

dist(reordered rsc(C, π(t0)), g) ≤ 1 − k + 1
i

< 1 − k

i

Replacing fcurrent with reordered rsc(C, π(t0)) will therefore decrease dist(fcurrent, g). Thus,

from fcurrent our path search algorithm moves to the execution trace for input t0 in one step. Since

g contains only i conjuncts, we need at most i such steps to make dist(fcurrent, g) to be 0. When

dist(fcurrent, g) == 0, we have a path π(t′) that has the same reordered relevant-slice condition

with g (such a t′ can be found since in each step of replacing fcurrent we obtain a feasible execution

trace which is executed by at least one program input). Since the reordered relevant-slice conditions

of π(t) and π(t′) are identical, therefore the relevant-slice conditions of π(t) and π(t′) must be

identical.
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6.3 Implementation

In this section, we discuss our combined infra-structure for symbolic execution and dependency

analysis of Java programs.

Our implementation is based on JSlice[112]1. JSlice is an open-source dynamic slicing tool

working on Java bytecode. We have extended JSlice to compute relevant-slice conditions. The

architecture of our extended JSlice is shown in Figure 6.9. The “Operand Stack” in Figure 6.9 stands

for the stack of operands in a method activation frame. The recorded execution trace of JSlice does

not contain operand stack information. This is a design choice for keeping the trace compact. During

slicing, we need to recover the execution stack from a recorded trace to derive operation on stack

variables. For example, given an iload instruction (loading integer to the top of current stack), we

need the operand stack to know which stack variable is modified. Different from stack variables,

operations of heap variables are directly recorded in execution trace.

JSlice keeps the collected trace in a compressed form to achieve scalability. The compression

is online — as the trace is generated it is simultaneously compressed. The slicing algorithm then

works directly on the compressed trace. We design our extension of JSlice to retain this feature (of

analyzing compressed traces without decompression).

In Figure 6.9, relevant slicing and symbolic execution are separated for ease of understanding.

However, we do not need the entire relevant slicing result to start computing relevant-slice condition

in the implementation. The process of constructing the relevant-slice condition is done along with

the backward relevant slicing to achieve efficiency. Since the relevant slicing process is backward,

we also compute the relevant slice condition via a backward symbolic execution which starts from

the slicing criteria and stops at the beginning of the trace.

For backward symbolic execution, we keep a set of symbolic values whose definitions have not

been encountered and need to be explained later in the backward symbolic execution process. The

symbolic value of a variable v is explained by either an assignment to v or by program input to v.

Let us take the sample program in Figure 6.2 to show our backward symbolic execution on a relevant

slice. Note that although we show this example at the source code level, our implementation is at

the Java bytecode level. Suppose the input is 〈x == 6, y == 5, z == 2〉. The relevant slice for the

1http://jslice.sourceforge.net/
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Figure 6.9: Architecture of relevant-slice condition computation

Table 6.3: Backward symbolic execution example

Relevant slice Symbolic values To be explained variables Relevant slice condition

16 return out; { } { out } true

15 out = b; { out → b } { b } true

10 b = a; {out → a, b → a } { a } true

9 if(x+y > 10) {out → a, b → a } {a, x, y } x + y > 10
6 a = x; {out → x, b → x, a → x } { x, y } x + y > 10
5 if(x-y >0) {out → x, b → x, a → x } { x, y } x − y > 0 ∧ x + y > 10

execution trace of this input is [5, 6, 9, 10, 15, 16]. Backward symbolic execution along this relevant

slice is shown in Table 6.3. The set of to-be-explained variables are shown in the third column of

Table 6.3.

To construct the relevant-slice conditions, we need to precisely represent the semantics of

each bytecode type in the generated formulae. There are more than 200 different bytecode types

in the Java Virtual Machine instruction set, and all of them are handled in our implementation.

Our implementation also handles native method calls. However, due to the JSlice version that our

implementation is based on, currently we cannot handle programs with multi-threading and reflection.
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In the original implementation of JSlice, the concrete operand values of most executed instructions

are not stored in the compressed trace as they are not needed in the slicing process. However, these

values are needed when the semantics of some operations cannot be precisely modelled. In such cases,

we have to under-approximate the generated path condition/relevant-slice condition by concretizing

certain symbolic values in the relevant-slice condition. For example, Java allows a program to use

libraries written in other languages through native method call. Since the native calls cannot be traced

in Java Virtual Machine, the symbolic return values from native calls cannot be precisely modelled.

In this case, we simply concretize the symbolic return value from a native call using the concrete

return value of the native call (therefore, the concrete return value of native calls are traced in our

implementation).

As mentioned in Section 6.2, we need to reorder the branch conditions in a relevant-slice

condition in our path exploration process. Let rs(C, π) be the relevant slice on trace π w.r.t. the

slicing criteria C. Let rsc(C, π) be the relevant-slice condition computed on rs(C, π). To reorder

the branch conditions in rsc(C, π) using the reorder procedure shown in Algorithm 6.1, we need to

compute a relevant slice using each branch instance in rs(C, π) as the slicing criteria. Suppose there

are m branch instances in rs(C, π), our implementation traverses the trace π for m times to compute

the m relevant slices. In future, we plan to speed up this process, by computing all m relevant slices

at the same time of computing rs(C, π). We also observe that there are a lot similarities among the

slices w.r.t. different branch instances (used as slicing criteria) in the same trace. For example, if a

branch instance bi is in the relevant slice of branch instance bj , then the relevant slice w.r.t. bi is a

subset of the relevant slice w.r.t. bj . In future, we could exploit the similarities among these slices to

further reduce the cost of our reorder procedure.

Our execution engine is a combined infra-structure for dynamic dependency analysis and dynamic

symbolic execution. Thus, apart from computing relevant-slice conditions, we can simply disable the

dependency analysis in our engine to compute path conditions. The path conditions and relevant-slice

conditions generated from our tool are in the SMT-LIB format2, which can be solved by various

Satisfiability Modulo Theory or SMT solvers. In our implementation, we choose Z3 [41]3 as the

SMT solver for our tool.

2http://www.smt-lib.org/
3http://research.microsoft.com/en-us/um/redmond/projects/z3/
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6.4 Experiments

In the following, we first compare our relevant-slice condition based path exploration method

with path condition based path exploration. We then present two applications of relevant-slice

conditions in: i) the debugging of evolving programs and ii) test-suite augmentation.

Algorithm 6.3 PCExplore:path exploration using path condition

1: Input:
2: P : The program to test

3: t : An initial test case for P
4: Output:
5: T : A test-suite for P
6:

7: Stack = null // The stack of partial PC to be explored

8: Execute(t, 0)
9: while Stack is not empty do

10: let 〈f, j〉 = pop(Stack)
11: if f is satisfiable then
12: let μ be one input that satisfies f
13: put μ into T
14: Execute(μ, j)
15: end if
16: end while
17: return T
18:

19: procedure Execute(t, n)

20: execute t in P and compute path condition pc
21: let pc = ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ψm

22: for all i from n+1 to m do
23: let h = (ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi)
24: push 〈h, i〉 into Stack
25: end for
26: return
27: end procedure

6.4.1 Path exploration

We compare our path exploration algorithm RSCExplore in Algorithm 6.1 with the PCExplore

shown in Algorithm 6.3. The PCExplore algorithm closely resembles our RSCExplore algorithm in

Algorithm 6.1. The main difference is that PCExplore uses path condition instead of relevant-slice

condition. Because of using path condition, neither slicing nor reordering takes place in PCExplore.

The subject programs shown in Table 6.4 are from SIR [43] repository. Tcas and Schedule are

originally written in C language, we manually translate them into Java language. For Tcas and

Schedule, the slicing criteria are set as the final program outputs. For the other three data-structure
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Table 6.4: Experiments in full program exploration

Subject prog. Size (LOC) RSC coverage
Time #Testcases Avg. formula size #Solver calls

RSC PC RSC PC RSC PC RSC PC

Tcas 113 100% 6.3s 13.1s 29 88 5744 64810 412 939

BinarySearchTree 175 75% 6.1s 58.6s 64 453 3836 49266 163 3188

OrdSet 211 79% 2.1s 7.4s 12 59 6444 55461 96 293

Schedule 257 100% 0.3s 15.4s 3 75 1808 13728 13 932

DisjointSet 102 100% 20.8s 64.8s 69 278 7643 170533 1192 3855

1 int foo(int x, int y){ //input
2 int out; //output
3 int a[2] = {0,1};
4 if(x > 0)
5 System.out.println("x is greater than zero");
6 if(a[x]>0){
7 if(y > 0)
8 out = 1;
9 else
10 out = -1;
11 }else{
12 out = 0;
13 }
14 return out;//slicing criteria
15 }

Figure 6.10: Example of imprecise array modelling

programs, the slicing criteria are set as the outputs of the test drivers4. The lines of code (LOC) in

each program are also shown in Table 6.4.

The completeness of exploration is difficult to achieve in practice for several reasons. Two of the

main reasons are (i) the limited power of current SMT solvers and (ii) imprecise modeling of program

semantics for symbolic execution. Because of these two reasons, our technique may miss a certain

relevant-slice condition rsci when PCExplore can explore a path whose relevant-slice condition is

rsci. More discussion of the incompleteness of SMT solvers is provided in Section 6.5. In the next

paragraph, we explain how imprecise modeling of array can cause our implementation to be not as

complete as PCExplore in terms of relevant-slice condition coverage.

Consider the example program in Figure 6.10. The branch in line 6 uses a[x] in its branch

condition. In our current implementation, we concretize symbolic array index using the value

observed at execution time. Suppose the initial input for the program in Figure 6.10 in both our

4These test drivers are written by us.
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method RSCExplore and PCExplore is 〈x == 0, y == 0〉. When computing the branch condition

of line 6 for input 〈x == 0, y == 0〉, we concretize the symbolic value of x using 0, which

is the value of x in line 6 when executing the program with input 〈x == 0, y == 0〉. After

concretization, the branch condition of line 6 is ¬(a[0] > 0), which is reduced to true. Thus, due to

the concretization of symbolic array index, the branch at line 6 cannot contribute a branch condition

to either path condition or relevant-slice condition. The path condition and relevant-slice condition

for 〈x == 0, y == 0〉 are ¬(x > 0) and true respectively. Since the relevant-slice condition for the

initial input 〈x == 0, y == 0〉 is true (containing no branch condition), our technique terminates.

However, some relevant-slice conditions are missed by our technique. In particular, the relevant-slice

conditions of paths that evaluate branch at line 6 to false are missed. In contrast, PCExplore could

explore all feasible paths (hence all relevant-slice conditions) of the program in Figure 6.10. If arrays

are modelled precisely, this problem will disappear.

The “RSC coverage” column in Table 6.4 measures how much incompleteness in relevant-

slice condition coverage is introduced by the imprecise modelling of program semantics in our

implementation. The numbers in the “RSC coverage” column are computed as follows. Let the

program being explored be P . We employ PCExplore on P to explore program paths and construct

a test-suite TPCExplore which covers the set of all paths in P covered by PCExplore. For each test

case t in TPCExplore, we compute the relevant-slice condition on the execution trace of t and put

this relevant-slice condition into a set SPCExplore. Similarly, we generate a test-suite TRSCExplore for

program P using our path exploration method RSCExplore. For each test case t in TRSCExplore, we

compute the relevant-slice condition on the execution trace of t and put this relevant-slice condition

into a set SRSCExplore. Then the “RSC coverage” column in Table 6.4 is
|SRSCExplore|
|SPCExplore| . As shown in

Table 6.4, our method cannot always achieve 100 percent relevant slice coverage as compared to

PCExplore due to the imprecise modelling of program semantics in our implementation.

In columns 4-11 of Table 6.4, we compare the time, number of generated test cases, formula size

and number of solver calls between our method RSCExplore and PCExplore. The formula size is

measured by the number of bytes in the SMT-LIB formula file. For getting these numbers, both our

method (RSC) and the PCExplore method are run to completion, and the running time is recorded.

Note that the time reported in Table 6.4 includes the time taken in every steps of our method and

PCExplore. For example, the time taken by our method includes the time for program execution,
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relevant slicing, relevant-slice condition computation, branch condition reordering, formula solving,

etc. As shown in Table 6.4, our technique takes much less time than PCExplore. The efficiency

comes from several sources. First, since we use relevant-slice condition instead of path condition, the

formula size of our approach is much smaller than that of PCExplore. This reduces the time taken by

the solver. Second, the number of different relevant-slice conditions is considerably smaller than the

number of path conditions. This reduces both the number of executions and the number of solver

calls.

Figure 6.11 compares the relevant-slice condition coverage of our Algorithm 6.1 with PCExplore

under the same time limit. Note that PCExplore intends to achieve path coverage. However, as we

have observed - several paths may have the same input-output relationship, and testing is always

done by checking outputs. We check the number of relevant-slice conditions that are covered by

the paths explored in PCExplore. As shown in Figure 6.11, our technique gets higher relevant-slice

condition coverage then PCExplore when the given time is short.

6.4.2 Debugging of evolving programs

The obvious application of relevant-slice conditions is in software testing - it groups program

paths and can be used to efficiently generate a concise test-suite. We now show another application

of relevant-slice conditions namely in our DARWIN debugging technique as presented in Chapter V.

Recall that DARWIN compares the path conditions pc and pc′ to reason about the root causes of

regression errors. We observe that the path conditions pc and pc′ in the above method can be replaced

by relevant-slice conditions. Path condition is not “goal-directed” — it contains the constraints of

branches which are not “related” to the observable error. In particular, a path condition will typically

contain constraints for branches which are not in the dynamic or relevant slice of the observable

error.

Thus, due to the inherent parallelism in sequential programs, path conditions contain constraints

for branches which are not in the slice of the observed error. Composing these path conditions for

debugging then allows for such “unrelated” branches to be incorporated into the bug report (which is

output by the debugging method). Indeed including these “unrelated” branch constraints increases

the burden on the SMT solvers invoked by the DARWIN method, both in terms of the size of the
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Figure 6.11: Relevant-slice condition coverage comparison
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Table 6.5: DARWIN debugging results (LOC stands for Lines of Code)

Subject prog. Stable version Buggy version Diff
Time Debugging results

PC RSC PC RSC

JLex 1.2.1 (7290 LOC) 1.1.1 (6984 LOC) 518 LOC 543 min 15 min 50 LOC 3 LOC

JTopas 0.8 (4514 LOC) 0.7 (5754 LOC) 2489 LOC 81 min 5 min 4 LOC 4 LOC

NanoXML 2.1(4947 LOC) 2.2 (5244 LOC) 2496 LOC 2m56s 43s 8 LOC 6 LOC

formulae and the number of the formulae to solve. In addition, these “unrelated” branch constraints

also introduce some false positives into the bug report produced by the DARWIN method.

Replacing path condition with relevant-slice condition in the DARWIN method resolves these

issues. Thus, given a test case t that passes in the old version program P but fails in the new

version program P ′ — we now compute rsc and rsc′, the relevant-slice conditions of t in P and P ′

respectively. We then solve rsc ∧ ¬rsc′ in a manner similar to the solving of pc ∧ ¬pc′ in DARWIN

(where pc, pc′ were the path conditions of t in programs P, P ′).

We compare the debugging result of DARWIN using relevant-slice conditions with the original

DARWIN method (which uses path conditions) in Table 6.5.

Both methods are fully automated. We did not use the same SIR programs as used in Section

6.4.1 because debugging regression errors for SIR programs is usually trivial. This is because the

difference between two SIR program versions is usually small. The first subject program being used

is JLex5. JLex is a lexical analyzer generator written in Java. We use version 1.2.1 of JLex as

the stable version, and version 1.1.1 as the buggy version. There are 6984 and 7290 lines of code

in version 1.1.1 and version 1.2.2 respectively. The changes across version 1.1.1 and version 1.2.1

consist of 518 lines of code. In particular, the version 1.1.1 of JLex cannot recognize ‘\r’ as the

newline symbol, while in version 1.2.1 this bug is fixed. We use an input file manifesting this bug.

The experimental results from DARWIN using relevant-slice conditions vs. the original DARWIN

method appears in Table 6.5. The original DARWIN method, which uses path conditions, takes 543

minutes (or 9 hours) to perform the debugging. The result of DARWIN is a bug report containing 50

lines of code, which are highlighted to the programmer as potential root-causes of the observable

error. In contrast, DARWIN using relevant-slice condition takes only 15 minutes. The result is a

bug report containing only 3 lines of code — potential root causes of the observed error. Indeed,

5http://www.cs.princeton.edu/˜appel/modern/java/JLex/
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the actual error root-cause lies in one of these three lines of code. Thus, by using relevant-slice

conditions inside our DARWIN debugging method - we could avoid 47 false positives among the

potential error causes which are reported to the programmer. Moreover, there is a huge savings in the

debugging time (15 minutes vs 9 hours) which comes from the relevant-slice conditions being much

smaller than path conditions.

We also conducted experiments using JTopas 6 as the subject program. JTopas is a Java

library for parsing arbitrary text data. We use version 0.8 of JTopas as the stable version, and

version 0.7 as the buggy version. There are 5754 and 4514 lines of code in version 0.7 and version

0.8 respectively. JTopas allows users to customize whitespace characters (i.e. characters that

are considered as whitespace characters) by using function setWhitespaces. JTopas also uses a

boolean field defaultWhitespaces to control whether the default whitespace characters are used or

the user-customized whitespace characters are used. To use the customized whitespace characters,

defaultWhitespaces has to be set to false. Unfortunately, the buggy JTopas-0.7 does not reset

the member defaultWhitespaces leading to the default whitespace characters still being used instead

of the customized ones although the user has specified the custom whitespace characters. In our

experiment, we customize whitespace characters to {‘ ’, ‘\r’,‘\t’} ({‘ ’, ‘\n’, ‘\r’,‘\t’} by default)

and use an input file manifesting the aforementioned bug. The debugging results of DARWIN

using path condition and DARWIN using relevant-slice condition are shown in Table 6.5. The

results from the original DARWIN method (using path condition) and DARWIN using relevant-

slice condition are both four lines of code. They both contain the location where ‘\n’ is treated

differently between the two versions. The pinpointed location shows that the stable version does not

consider ‘\n’ as a whitespace. In contrast, the buggy version still treats ‘\n’ as a whitespace because

defaultWhitespaces is true (even though whitespace characters have already been customized). From

this clue, the programmer could easily infer that the member defaultWhitespaces was not assigned

to the correct value. Although using relevant-slice condition does not eliminate any false positives in

the debugging result, it does reduce the time taken by DARWIN from 81 minutes to 5 minutes.

Lastly, we applied DARWIN technique on a regression bug in NanoXML 7. NanoXML is a

simple XML file parser. A regression bug happened when NanoXML was changed from version 2.1

6http://jtopas.sourceforge.net/jtopas/index.html
7http://devkix.com/nanoxml.php
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public int getProperty(String key, int defaultValue)
{

String val=(String)attributes.get(key);
if (val == null) {

return defaultValue;
} else {

try {
return parseInt(val);

} catch (NumberFormatException e) {
throw invalidValue(key, val);

}
}

}
(a) getProperty in NanoXML-2.1

public int getProperty(String name, int defaultValue)
{

return getIntAttribute(name, defaultValue);
}
public int getIntAttribute(String name, int defaultValue)
{

String value=(String)attributes.get(name);
if (value == null) {

return defaultValue;
} else {

try {
return parseInt(name); //bug

} catch (NumberFormatException e) {
throw invalidValue(name, value);

}
}

}
(b) getProperty in NanoXML-2.2

Figure 6.12: Regression bug in NanoXML-2.2

to version 2.2. The simplified source code of the bug is shown in Figure 6.12. Given a property name

of an XML element as specified in the parameter, the getProperty method is used to get the

integer-typed value of the property. The implementation of getProperty method was changed

from version 2.1 to 2.2. In particular, in version 2.2, the code was restructured and getProperty

method was implemented by simply calling another method getIntAttribute. Unfortunately,

the implementation of method getIntAttribute contains a bug. The bug lies in the second

return statement in Figure 6.12b. Instead of return parseInt(name), it should be return

parseInt(value). We applied our DARWIN debugging technique with version 2.1 as the

reference version and version 2.2 as the buggy version. Version 2.1 and version 2.2 of NanoXML
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have 4947 and 5244 lines of code respectively, and there are 2496 different lines of code between

these two versions. The original path-condition-based DARWIN technique took 2 minutes and

56 seconds to generate a bug report with 8 lines of source code. In contrast, DARWIN technique

using relevant-slice condition only took 43 seconds to generate a bug report with 6 lines. Both the

debugging time and the debugging result were improved.

6.4.3 Test-suite augmentation

Test-suite needs to be augmented when old test-suite no longer meets the test requirement due

to program changes [93, 120]. Suppose a program P is changed to program P ′. We can employ

PCExplore to generate a set of change-exposing test cases to augment the existing test suite. More

specifically, we can first apply PCExplore to get signatures of program P and P ′ separately. Suppose

the signature for program P is Sig(P ), which is a set of path condition and symbolic output value

pairs. For each path π explored by PCExplore, we add 〈pc(π), symout(π)〉 into Sig(P ), where

pc(π) denotes the path condition along path π and symout(π) denotes the symbolic value of output

computed on π. Similarly, we compute the signature for program P ′ as Sig(P ′). We could try to

generate a test case for each formula f(πi, πj)
def= (pc(πi) ∧ pc(πj) ∧ symout(πi) 	= symout(πj)),

where 〈pc(πi), symout(πi)〉 ∈ Sig(P ) and 〈pc(πj), symout(πj)〉 ∈ Sig(P ′). If f(πi, πj) is

satisfiable, its solution is guaranteed to have different output in program P and P ′ according to

the definition of f(πi, πj). We then enumerate all possible values of i and j which make f(πi, πj)

satisfiable. Whenever f(πi, πj) is satisfiable, its solution is put into a set TPCExplore. Through this

process, we get a set of test cases in TPCExplore. These test cases in TPCExplore expose the semantic

changes between the two programs.

As we have seen in this chapter, we could use the relevant-slice condition to efficiently generate a

more concise signature for a program. When using relevant-slice condition to generate the signature,

each element in Sig(P ) becomes 〈rsc(π), symout(π)〉, where rsc(π) is the relevant slice condition

along path π. We also need to change the definition of f(πi, πj) accordingly. For signatures

generated using relevant-slice condition, we define f(πi, πj) as f(πi, πj)
def= (rsc(πi) ∧ rsc(πj) ∧

symout(πi) 	= symout(πj)). By solving all the possible instances of f(πi, πj), we get a set of test

cases TRSCExplore. As path exploration based on relevant-slice condition does not lose any precision

when generating the signature, TRSCExplore has the same change-exposing ability than TPCExplore.
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On the other hand, path exploration based on relevant-slice condition is much more efficient than

PCExplore, which makes computing TRSCExplore much less costly than computing TPCExplore.

1 int foo(int x, int y, int z){
2 int out; // output variable
3 int a;
4 int b = 2;
5 if(x - y > 0) //b1
6 a = x;
7 else
8 a = y;
9 if(x + y > 10) //b2
10 b = a;
11 if(z*z > 3) //b3
12 System.out.println("square(z)>3");
13 else
14 System.out.println("square(z)<=3");
15 out = b;
16 return out; //slicing criteria
17}

(a) Original Program

1 int foo(int x, int y, int z){
2 int out; // output variable
3 int a;
4 int b = 2;
5 if(x - y > 2) //b1, changed
6 a = x;
7 else
8 a = y;
9 if(x + y > 10) //b2
10 b = a;
11 if(z*z > 3) //b3
12 System.out.println("square(z)>3");
13 else
14 System.out.println("square(z)<=3");
15 out = b;
16 return out; //slicing criteria
17}

(b) Changed Program

Figure 6.13: Sample programs for test-suite augmentation

We now show the process of computing TRSCExplore in action using the programs in Figure 6.13

as an example. The program in Figure 6.13a is the same as the program in Figure 6.2. Figure 6.13b

contains a changed version of the program in Figure 6.13a. The branch at line 5 is changed from

if(x-y>0) to if(x-y >2). As mentioned earlier, the program in Figure 6.13a has the following

signature
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• (x − y > 0) ∧ (x + y > 10) ⇒ out == x

• (x − y ≤ 0) ∧ (x + y > 10) ⇒ out == y

• (x + y ≤ 10) ⇒ out == 2

The signature of the changed program in Figure 6.13b is as follows,

• (x − y > 2) ∧ (x + y > 10) ⇒ out == x

• (x − y ≤ 2) ∧ (x + y > 10) ⇒ out == y

• (x + y ≤ 10) ⇒ out == 2

Following the aforementioned process of generating TRSCExplore, after removing unsatisfiable

formulae, only the following formula is satisfiable

((x − y > 0) ∧ (x + y > 10)) ∧ ((x − y ≤ 2) ∧ (x + y > 10)) ∧ (x 	= y)

By generating a test input from this formula, we get TRSCExplore as {〈x == 6, y == 5〉} (The input

variable z is not bounded and can be any integer value). Programs P in Figure 6.13a and P ′ in Figure

6.13b produce different output when given this input.

We compared the change-exposing ability of TPCExplore and TRSCExplore using tcas from SIR

as the benchmark. There are 41 versions of tcas with seeded bugs. Each one of these 41 versions

has only one change from the original program. Among them, two versions always crash with

array out of bound exceptions after being translated from C to Java. These two versions are not

considered in our experiment. For each version i, we use the original program as P and version i

as P ′. Then we compute the two set of test cases TPCExplore and TRSCExplore based on P and P ′. We

compare the change-exposing ability of TPCExplore and TRSCExplore. We observe that whenever the

number of change-exposing inputs in TPCExplore is not zero, the number of change-exposing inputs in

TRSCExplore is not zero. This shows that using relevant-slice condition to explore the program does

not change the ability of generating change-exposing inputs. On the other hand, redundant path

exploration is avoided, which improves the efficiency of the approach. Overall, the time taken to

generate TRSCExplore is 20.8% of the time taken to generate TPCExplore in the experiment with tcas.
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We have also discussed a test-suite augmentation technique in Chapter IV where a PIE (Propagate-

Infect-Execute) based approach was discussed. We now compare the two techniques. First, the

technique in Chapter IV could only handle one program change at a time where the technique we

discuss here could function irrespective to the number of program changes. Second, in Chapter IV,

we try to generate only one test case for one change where our technique based on relevant-slice

conditions tries to generate many test cases that could expose the changes in different manners. Last,

on the scalability aspect, the technique in Chapter IV is more scalable as various heuristics are used

in trying to generate only one test case.

6.5 Threats to Validity

Internal threats An internal threat to validity comes from potential bugs in our implementation.

We note that the slicing functionality of JSlice is thoroughly tested and has been widely used in

both academia and industry. Another threat to validity comes from the subject program selection in

the evaluation. Studies on more subject programs could help better assess the effectiveness of our

technique.

Program crashes Our path exploration does not try to cover all paths. Instead, we try to group paths

based on symbolic outputs. This is done with the goal of test-suite construction, where testing will

expose possible failures in the program. However, failure of a test case does not only come from unex-

pected outputs - it can also come from program crashes. Thus, for the paths which we do not explore

if they contain program crashes - these will not be exposed by the test-suite computed by our tech-

nique. For example, given if(x>0){p[i] = 0;}, it is possible that the branch is never evaluated

to true in our exploration process, hence any possible ArrayIndexOutOfBoundsException

in the access to p[i] will not be spotted by the generated test-suite. For branches that are not in the

relevant slice of any trace, our technique do not guarantee that both directions of the branch will be

explored. Realistically, our test-suite construction could be supplemented by techniques to statically

detect possible program crashes, such as memory errors [116].

Approximation of relevant slice Due to the conservative nature of static analysis used in comput-

ing relevant slice, our technique may over-approximate the potential dependencies and hence the
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relevant slice. Since more branches will appear in the over-approximate relevant slice (than what

should appear in the actual relevant slice), therefore the computed relevant-slice conditions from the

over-approximated relevant slice will be stronger than the relevant-slice conditions that would have

been computed from the actual relevant slice. In that case, we may explore more than one paths that

have the same relevant-slice condition. Consider the following program.

101 if(x > 0){

102 p.num = 0;

103 }

104 out = q.num;

Suppose p and q never alias each other. If the static analysis cannot determine the non-alias

between p and q, line 104 is potential dependent on line 101 when the branch at line 101 is evaluated

to false. Therefore, the branch at line 101 is included in relevant slice and our technique will try to

explore both directions of the branch at line 101, which is unnecessary. Note that this strengthening

of relevant-slice condition only causes duplicated exploration of some relevant-slice conditions, it

does not affect the completeness claim of our technique.

Different output types and multiple outputs Programs produce outputs in various ways including

return value, side-effect on heap variables, direct interaction with files, etc. Our technique naturally

considers all these output types of outputs on users’ demand. When multiple outputs exist, users

simply need to include all these outputs in the slicing criteria. Consequently, the computed relevant

slices contain all statements affecting at least one of the outputs. However, including more outputs in

slicing criteria increases the size of relevant slices and relevant slice conditions, which reduces the

effectiveness of our technique. Let us use the example in Figure 6.2 to illustrate this issue. In our

earlier discussion, we have been considering the return statement in line 16 as the slicing criteria.

Suppose now we also want to consider the two printing statements in line 12 and 14 as outputs.

We first need to transform the program into the program in Figure 6.14, so that the slicing criteria

post-dominate the program entry. After the transformation, both line 17 and line 18 in Figure 6.14

are set as slicing criteria. Applying our technique, our tool generates the following summary with 6

entries as opposed to the 3-entry summary shown earlier when only the return statement is set as the

slicing criteria.

• If x− y > 0 and x + y > 10 and z ∗ z > 3, then s == "square(z) > 3" and out == x
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1 int foo(int x, int y, int z){//input variables
2 int out; // output variable
3 String s = null;
4 int a;
5 int b = 2;
6 if(x - y > 0) //b1
7 a = x;
8 else
9 a = y;
10 if(x + y > 10) //b2
11 b = a;
12 if(z*z > 3) //b3
13 s = "square(z) > 3";
14 else
15 s = "square(z) <= 3";
16 out = b;
17 System.out.println(s); //slicing criteria
18 return out; //slicing criteria
19 }

Figure 6.14: Sample program with multiple outputs

• If x−y > 0 and x+y > 10 and z ∗z ≤ 3, then s == "square(z) <= 3" and out == x

• If x− y ≤ 0 and x + y > 10 and z ∗ z > 3, then s == "square(z) > 3" and out == y

• If x−y ≤ 0 and x+y > 10 and z ∗z ≤ 3, then s == "square(z) <= 3" and out == y

• If x + y ≤ 10 and z ∗ z > 3, then s == "square(z) > 3" and out == 2

• If x + y ≤ 10 and z ∗ z ≤ 3, then s == "square(z) <= 3" and out == 2

With more outputs, our technique is less efficient. However, for the above program, our technique is

still more efficient than full path exploration, which will exercise all eight paths.

Scalability issues Apart from considering more outputs, lack of inherent parallelism in a program

also reduces the effectiveness of our technique. If a program contains little inherent parallelism, the

relevant slice of an input t may contain the majority of the execution trace of input t. In such case, the

improvement of our technique over path exploration based on path condition is limited. Although our

technique considerably improves the efficiency of the path exploration, the path explosion problem

still exists. In the worst case, the number of relevant-slice conditions grows exponentially with the

number of branches in the program.
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1 int foo(int i){ //input variable
2 int a[2];
3 int out = 0;//output variable
4 a[0] = 0;
5 a[1] = 1;
6 if(a[i] > 0){
7 out = 2;
8 }
9 return out;
10 }

Figure 6.15: Example program of imprecise array modelling

SMT solver support The proofs presented in Section 6.2.2 assume that the underlying SMT solver

is both sound and complete. The SMT solvers we have used are sound. That is, if the solver declares

that a formula is satisfiable (unsatisfiable), then the formula is indeed satisfiable (unsatisfiable). We

now examine the completeness aspect of the assumption. In general, off-the-shelf SMT solvers are

not complete for relevant-slice conditions generated from real programs. However, SMT solvers

could be complete for formulae within certain theories. For example, the STP [48] solver is sound

and complete for quantifier-free formulae in the theory of bit-vectors and arrays. Therefore, if

a subject program only uses fixed-size integer variables and the fixed-size integers are modeled

as bitvector arrays, the STP solver then acts as a decision procedure for such formulae. In our

experiment, Z3 is used as the underlying SMT solver. Z3 is not complete for non-liner integer

operations. Although being incomplete, various heuristics incorporated into Z3 have been shown to

be effective for solving formulae with non-liner integer operations in practice. Z3 has three types of

output: sat, unsat and unknown. The sat output indicates that the formula is satisfiable and

the unsat output indicates that the formula is unsatisfiable. The unknown output suggests that

Z3 fails due to incompleteness. However, we did not observe any unknown output from Z3 in our

evaluation presented in Section 6.4. If incompleteness of the underlying SMT solver occurs, our path

exploration could be incomplete.

Modeling of bytecode semantics in implementation Finally, we note that the completeness proof

of Algorithm 6.1 in Section 6.2.2 also assumes that the semantics of the different program statement

executed in a trace is precisely modeled in the computed relevant-slice condition of that execution

trace. However, in our implementation, certain program features are not precisely modeled, which
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causes our path exploration to be incomplete. In particular, polymorphism and arrays are not precisely

modeled in our current implementation. Let us consider the example program in Figure 6.15. Suppose

the slicing criteria is at line 9. The precise relevant-slice condition for the execution trace of input

i == 0 is i ≥ 0 ∧ i < 2 ∧ a[i] > 0 ∧ ((i == 0 ∧ a[i] == 0) ∨ (i == 1 ∧ a[i] == 1)).

To get this precise relevant-slice condition, we need to trace all the possible assignments to any

element of array a[]. However, in our implementation, we compute an approximated relevant-slice

condition by concretizing the array index of any array reference as is done in other dynamic symbolic

execution engine, such as BitBlaze [99]. Therefore, the approximated relevant-slice condition we

get is a[1] > 0, which could be reduced to true in this example. Because of this approximation,

exploration then misses the case that the branch at line 6 could be evaluated to false.

6.6 Summary

In this chapter, we have presented a novel path exploration method based on symbolic program

outputs. Our path exploration dynamically groups paths on-the-fly, where two paths that have the

same symbolic output are grouped together. Given such a path partitioning, we can generate a test

case from each partition. This enables us to efficiently obtain a concise test-suite which stresses all

possible input-output relationships in the program.

We experimentally compare the efficiency and coverage of our method with respect to path

search method based on symbolic execution. The path partitioning computed by our method can be

exploited in various other software engineering activities. We have shown its use in the debugging of

errors introduced by program changes, that is, in root-causing observable software regressions. By

comparing the path partitioning in two program versions, we infer the semantic differences across

the versions, leading to precise root cause identification. We have also shown the use of our method

in test-suite augmentation. We generate test-cases to augment existing test-suite by focusing on the

different partitions across two program versions.
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CHAPTER VII

Other Work

In this chapter, we present two more techniques to further extend our solutions on detecting and

localizing software regression errors.

First, we present a language for intended semantics of program changes – software change

contracts. In our test generation and DARWIN debugging work, one important piece of missing

information is the intended semantics of program changes. Without knowing the intended semantics

of program changes, our proposed techniques are restricted. For test generation, we are unable to

tell whether the generated test cases signal regression errors or they actually witness the intended

changes of programmers. For our DARWIN debugging technique, we had to assume that the program

requirements vis-a-vis existing features of the program do not change when the intended requirement

changes are unavailable. If the program requirements are indeed changed, false positives will be

generated by DARWIN. Our proposed change contracts come into rescue for the aforementioned

issues. The intended semantics of program changes can be expressed formally in change contracts

and used to check the correctness of real code changes as we will illustrate in this chapter.

Second, we present a technique to localize failure-inducing changes in execution environments.

We have mainly focused on software regression errors in the application programs in previous

chapters. However, software may also fail due to problems in the underlying execution environments

(e.g., operating systems). In this work, we try to localize the root causes of software failure caused

by evolving execution environments.
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7.1 Software Change Contracts

In this section, we propose the notion of “change contracts” to deal with incorrect program

changes. Change contracts specify the intended semantic change corresponding to changes in

program code. When the actual program changes break what is documented in the change contract,

an inconsistency can be detected. If the change contract is properly written, such an inconsistency

points out incorrect program changes. Therefore, with the help of change contracts, an incorrect

program change can be detected and corrected - prior to checking in such incorrect changes into the

code repository.

The concept of change contract is inspired by Design by Contract programming [77, 25]. In

Design by Contract programming, programs are checked against contracts to enable early error

detection. Contracts typically appear in the form of pre- and post-condition of methods, as well as

invariant properties whose correctness is preserved by the method execution. However, this early

error detection comes at the cost of manually written contracts. This is probably the main reason

for the lack of adoption of “design by contract” : programmers are reluctant to write non-trivial

specifications.

Compared to program contracts which are recommended in design by contract programming,

our change contracts are designed to specify only the intention of change in program behavior rather

than the full program behavior. In fact, to detect regression errors, no change contract is required

at all; we can simply have a default contract which says that the program output after the change

should be same as the output before the change. As our experiments show, checking such default

change contracts (which does not involve any effort from the programmer) can help reveal many

subtle program errors.

The fact that change contracts are easier to write than program contracts comes from the intrinsic

nature of change contracts. Program contracts are often specified as pre- and post-conditions of

methods. Thus, they specify what a program method does, about which the programmer may not

always have deep understanding (unfortunately!) in real-life. In contrast, a change contract specifies

how the functionality of a program method is changed with respect to the old program. The common

behavior between two programs, which is usually dominant, does not need to be specified in the

change contract. Besides, we allow users to write change contracts at multiple levels of precision.
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The more precise a change contract is, the more checking is done by our system. The users can

choose the level of precision at will. Finally, we note that there exists a large body of code today

which completely lacks any formal specification. The concept of change contracts also provides a

pragmatic way of adding specifications of intended behavior on top of this huge code base lacking

formal specifications.

The rest of this section is organized as follows. We first propose the notion of change contracts to

prevent incorrect program changes. Then, we design a change contract language for Java programs.

Our language extends the Java Modeling Language or JML with specific keywords to relate behaviors

of program versions. We present the formal semantics of our change contract language. We also show

via user studies how various kinds of real life program changes can be specified using our change

contract language. Real-life changes from three large Java open source programs (Ant, JMeter, log4j)

were investigated in the user studies. In total, users wrote 52 change contracts in our user study. We

did not meet any change that cannot be expressed using our change contract language. Last but not

the least, we design and implement a system for dynamically checking change contracts by building

on top of the Run-time Assertion Checker of JML. We found 10 real-life incorrect changes from the

same programs (Ant, JMeter, log4j) and wrote change contracts for them. All 10 incorrect changes

are detected by the Run-time Assertion Checker via the change contracts.

7.1.1 Overview

We now show a series of code changes made on a file of a well-known build automation software,

Apache Ant [9], and explain how our change contract language and its supporting tool can help with

the development and maintenance of programs that change over time.

Figure 7.1 shows in reverse chronological order how a method checkIncludePatterns in

file DirectoryScanner.java of Ant was changed over time. The program in Figure 7.1a is a bug-fixed

version of the program in Figure 7.1b. The problem was that null could be assigned to variable f at

line 3 when method findFile failed to find file name c in the base directory b in a case-insensitive

way as indicated by the last boolean value. As a result, an NPE (i.e., NullPointerException) was

raised at line 4 before. While the fix for NPE is usually as simple as adding a conditional guard as

shown in the figure, NPE is pervasive in most Java programs as one of the most common causes of

errors. Interestingly, this particular bug was reported by developer Curt while the fix was made by
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1 void checkIncludePatterns(){
2 . . .
3 File f=findFile(b,c,false);
4 if(f!=null && f.exists()){
5 . . .
6 }

(a) Current version, bug is fixed

1 void checkIncludePatterns(){
2 . . .
3 File f=findFile(b,c,false);
4 if(f.exists()){
5 . . .
6 }

(b) Buggy version

1 void checkIncludePatterns(){
2 . . .
3 File f=findFileCaseInsensitive(b,c);
4 if(f.exists()){
5 . . .
6 }

(c) Original version

Figure 7.1: Reverse chronological change history; the topmost one is the latest one

another developer Stefan. Indeed, it is common to see that problems missed by the original developer

or a maintainer are found by other developers or even end-users.

In fact, the above NPE is a regression error resulted from a previous change; the same problem

did not occur until that previous change was made by yet another developer Matthew. The program

version in Figure 7.1c shows what the same method looked like before an NPE-causing change

had been made. Notice that a different method findFileCaseInsensitive was called then

instead of findFile. In Figure 7.1c, method findFile is used only in a case-sensitive way, and a

case-insensitive search is performed by findFileCaseInsensitive. A regression-error-causing

change was made when these two methods were merged into a new method findFile where its last

boolean parameter is used to choose a case-sensitivity mode.

Now notice that the conditional guard at line 4 in Figure 7.1c does not yet check whether f is null.

Nevertheless, an NPE did not occur in the original version in Figure 7.1c. The reason of this difference

is that when there is no file name c in base directory b, the merged method findFile in Figure 7.1b
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1 //@ changed_behavior
2 //@ when_signaled (NullPointerException)
3 //@ findFile(b,c,false)==null;
4 //@ signals (NullPointerException) false;
5 void checkIncludePatterns() {
6 . . .
7 File f=findFile(b,c,false);
8 if(f!=null && f.exists()){
9 . . .

10 }

Figure 7.2: An annotated change contract for the latest change

returns null whereas findFileCaseInsensitive in the original version as shown in Figure 7.1c

creates a fresh dummy object of type File. 1 Apparently, it seems that the developer mistakenly

assumed that the merged method findFile, when its boolean parameter is set false to indicate

case-insensitivity, always behaves in the same way as the removed findFileCaseInsensitive

did in the previous version. It is, however, difficult to put the entire blame on the developer because

without proper tool support most developers are likely to make similar mistakes.

We now show how change contract can help deal with program changes described above in

various ways. A change contract is essentially a formal specification about intended program changes.

Like other formal specifications, change contracts can be used as unambiguous documentation. For

example, Curt who found the aforementioned unexpected NPE could have reported the NPE problem

with the change contract shown in Figure 7.2. The given annotation describes the following two

things. (i) First, line 2˜3 describes that there exists a certain input that caused the previous version to

signal an NPE; when that NPE was signaled, the boolean expression at the end of the when ensured

clause indicates that the NPE is caused by the null return value from the findFile method. (ii)

Second, line 4 describes that the current version cannot signal an NPE as indicated by signals

(NullPointerException) false when given the same input as signaled the NPE before. Once

such a change contract is written, Stefan, who is in charge of maintaining this part of code, should be

able to understand the NPE problem.

Our change contract is not only unambiguously understandable but also automatically checkable.

With the help of a supporting tool provided by us, developers can check whether their code changes

indeed match intended changes expressed as change contracts. Thus, change contracts function as

1It is created by new File(b,c).
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method-specification ::= spec-case [also spec-case]∗
spec-case ::= changed behavior [spec-clause]∗
spec-clause ::= requires pred | ensures pred | signals Exception-Type pred

| when ensured pred | when signaled pred

exp ::= . . . | quantified-exp | \result | \old(exp) | \prev(exp)

Figure 7.3: Core change contract language

test oracles for intended changes.

Our supporting tool automatically checks not only whether intended changes are made to the

updated version, but also whether unintended changes are mistakenly made. Note that unintended

changes can cause regression errors. When an input does not match any given change contracts,

previous method and current method are assumed to behave exactly the same for that input by default.

Exploiting our by-default-equal assumption, the regression error of our running example could have

been detected earlier. When merging two methods that find a file, the changes made to method

checkIncludePatterns are merely auxiliary, and its behavior was supposed to remain the same.

This is the case where our by-default-equal assumption can be exploited to the extreme; no change

contract needs to be provided and any behavioral changes are reported as unexpected changes. Our

tool can detect such unexpected changes caused by programmer’s mistakes.

7.1.2 Change contract language and semantics

We now present the change contract language and its semantics. Our change contract language is

built on top of JML (Java Modeling Language) [29], which is the de facto standard program contract

language for Java. JML, being a full-fledged specification language, has various language features.

We will only discuss the core language of JML that is essential for understanding change contract.

Following the JML convention, change contract for a method should be written immediately before

the method definition and enclosed in special comments //@ ... or /*@ ... */.

Figure 7.3 shows the core language of our change contract. The keywords in bold are added

for change contracts. The change contract for a method starts with a method-specification. Each

method-specification could have several specification cases (spec-case). Under each specification

case, there are different specification clauses (spec-clause) describing different aspects of the intended

program changes. We now illustrate the meaning of each specification clauses.
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The requires, signals, ensures clauses are all inherited from JML. The clause requires

pred states that the given change contract only concerns program behavior when the pred is true.

Note that the meaning of requires clause is different when used in program contract, requires

pred means that the caller of the method is responsible to guarantee that pred is true.

In general, a Java method can terminate by either throwing an exception or returning to the caller

normally. The signals and ensures clauses allow the users to specify the condition that has to

be satisfied in each case of method termination respectively. The clause signals Exception-Type

pred dictates that the method must terminate by throwing an exception of type Exception-Type and

satisfy pred at the same time. On the other hand, ensures pred dictates that the method must

terminate normally (without throwing any exception) and the program state must satisfy pred when

the method terminates.

Similar to ensures and signals, we introduce when ensured and when signaled in

change contract to specify the termination condition of the previous version method. Apart from

specifying the termination condition, these two clauses also serve similar goals as the requires

clause. That is, the change contract only concerns program behavior change when the condition

specified in when ensured clause or when signaled clause is satisfied.

In change contract, we need to express the program state at different time. Either the program

state before executing the method or the program state after executing the method can be expressed.

In ensures and signals clauses, without any modifier, an expression refers to the program state

after executing the method. To specify the value of an expression before executing the method, the

modifier \old(...) has to be used. Since the requires clause states the pre-condition, \old(...) can

be omitted for any expression in the requires clause without any ambiguity.

Since change contract expresses changes across two program versions, when an expression is

used in change contract, we need to declare which version it refers to. To this end, we introduce the

modifier \prev(...) in change contract. By default, if \prev(...) is not used, an expression refers to its

state in the current version. To refer to its value in the previous version, the modifier \prev(...) has to

be used.

Combining the time modifier \old(...) and the version modifier \prev(...), for any given expression

E, we can have the following expressions referring the value of E in different time and different

versions: (i) E without any modifier refers to the value of E in current version after the program
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is executed; (ii) \prev(E) refers to the value of E in previous program version after the program is

executed; (iii) \old(E) refers to the value of E in the current version before the program is executed;

(iv) \old(\prev(E)) or \prev(\old(E)) refers to the value of E in the previous version before the

program is executed. Recall that we always assume the two program versions start with the same

program state. Therefore, the value of E before the program is executed is the same in the previous

version and current version. That is, \old(\prev(E)) == \prev(\old(E)) == \old(E).

We use the example in Figure 7.4 to illustrate the value of an expression under different modifiers.

Suppose the value of num before executing method foo is 1. In change contract, num without any

modifier is 3 as it refers to the value of num in the current version after method foo is executed. The

expression \old(num) refers to the value of num before the method foo is executed (the version is

unimportant as both versions have the same program state before the method is executed). In this

example, the value of \old(num) is 1. The expression \prev(num) refers to the value of num after the

method foo is executed in the previous version. Hence, the value of \prev(num) is 2 in this example.

int num = 1;
void foo(){

num = num + 1;
}

(a) Previous version

int num = 1;
void foo(){

num = num + 2;
}

(b) Current version

Figure 7.4: The value of an expression under different modifiers

7.1.2.1 Semantics of a change-specification case

We now present the semantics of a change-specification case consisting of method-specification

clauses. Note that not all clauses need to be present in a change-specification case. When a certain

type of clause is omitted, a default clause is used. For example, if there is no requires clause in a

given specification case, we insert the default clause requires true;. The default clause of each

clause type is shown in Table 7.1. We treat the empty contract separately as will be explained in

Section 7.1.2.3.

For the sake of explanation, consider the following complete change-specification case for

method m. In the below, Greek letters denote predicates, and two subscripted T s represent exception
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Table 7.1: Default clauses of a change contract

Clause Type Default Clause

requires requires true;

when ensured when ensured true;

when signaled when signaled (Exception) true;

ensures ensures true;

signals signals (Exception) true;

types (i.e., subtypes of java.lang.Exception). Lastly, variables x1 and x2 are scoped to θ and

θ′, respectively.

/*@ changed_behavior
@ requires ϕ;
@ when_ensured ψ;
@ when_signaled (T1 x1) θ;
@ ensures ψ′;
@ signals (T2 x2) θ′;
@*/

The above specification should be read as follows: when started with a pre-state satisfying ϕ,

if the previous version of m satisfies ψ at its normal termination and θ at its abnormal termination

raising an exception of type T1, respectively, then the current version of m should satisfy ψ′ at its

normal termination and θ′ at its abnormal termination raising an exception of type T2, respectively.

The following verification condition provides the meaning of the given change specification more

formally:

ϕ ∧ (wp(m1, ψ) ∨ ŵp(m1, T1, θ)) ⇒ wp(m2, ψ
′) ∨ ŵp(m2, T2, θ

′)

In the above, the previous and the current versions of method m are distinguished as m1 and m2. We

use two weakest-precondition notations wp(m, ψ) for method m and its normal post-condition ψ,

and ŵp(m, T, θ) for m’s abnormal post-condition θ and exception type T . The latter makes it sure

that a raised exception is of type T before asserting θ; i.e., ŵp(m, T, θ) ⇔ ((x instanceof T ) ⇒

wp(m, θ)), where x refers to a raised exception. For the sake of simplicity, we assume methods m1 and

m2 have only two exit points, one for normal termination and the other one for abnormal termination.

As usual, all free variables appearing in the verification condition are assumed to be universally

quantified. Our change contract checker disallows the verification condition to be vacuously true by
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issuing a warning when the left-hand side of the verification condition, ϕ∧(wp(m1, ψ)∨ŵp(m1, T1, θ)),

becomes false.

For the convenience of users, multiple instances of the same type clause are allowed to be

included in a change specification case. When multiple instances of the same type clause exist,

we reduce them to its semantically equivalent form with a single clause in a standard way by ba-

sically conjoining predicates of the same type. For example, writing requires ϕ1;requires

ϕ2;when ensured ψ1;when ensured ψ2;ensures ψ′
1;ensures ψ′

2; is equivalent to writing

requires ϕ1 ∧ ϕ2;when ensured ψ1 ∧ ψ2;ensures ψ′
1 ∧ ψ′

2;. Similarly, signals (T1 x1)

θ′1;signals (T2 x2) θ′2; is equivalent to a single clause signals (Exception x) ((x instanceof

T1) ⇒ θ′1)∧((x instanceof T2)⇒ θ′2);. Multiple instances of when signaled are reduced in

the same way.

7.1.2.2 By-default-equal rule

Program development is done gradually through many changes and bug-fixes only alter a small

buggy portion of the program. Therefore, when a change is made, some program behavior is changed

with most of the existing program behavior unchanged. Making sure that no undesired change is

introduced is as important for assuring ourselves that all the changes are performed correctly. To this

end, our change contract assumes that all program behavior is unchanged unless explicitly specified.

Given the following change contract,

/*@ changed_behavior
@ requires ϕ;
@ when_ensured ψ;
@ when_signaled (T1 x1) θ;
@ ensures ψ′;
@ signals (T2 x2) θ′;
@*/

the previous program and current program should have the same behavior when ϕ∧(wp(m1, ψ)∨
ŵp(m1, T1, θ)) is false. That is, the above change contract only specifies how the program should

change when ϕ∧ (wp(m1, ψ)∨ ŵp(m1, T1, θ)) is true. When the behavior of an input is unspecified

in change contract (this is true iff. the input could make ϕ ∧ (wp(m1, ψ) ∨ ŵp(m1, T1, θ)) false),

our by-default-equal rule requires the program behavior to be unchanged from previous to current

version.
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7.1.2.3 Empty change contract

When no change contract is provided, nothing about the program change is specified. Following

the discussion about by-default-equal rule, we assume that the program behavior is not changed for

any program inputs.

Our by-default-equal rule and treatment of the empty change contract allows users to focus

only on the changed program behavior when writing change contract. On the other hand, undesired

program behavior changes causing regression errors are detected automatically by the default rules

without requiring any manual effort.

7.1.3 Writing change contracts

Change contracts mainly concern two aspects of program behavior – (i) under what conditions the

program behavior changes (the pre-condition for the change), (ii) exactly how the program behavior

changes (the post-condition after the change). We now discuss how these aspects of program changes

are covered by writing of change contracts.

Specifying pre-conditions Usually when a method is changed, the behavior change is limited to

only a sub-domain of its input space. We provide two ways to specify the input domains that contains

behavior changes.

We can directly specify the set of inputs whose behavior is changed by specifying constraints

on the inputs (including parameters, fields and global variables). The change contract then only

concerns the inputs that satisfy the specified constraints. The keyword requires in JML serves

this purpose. A change contract specification with requires E where E is an boolean expression

on the method inputs means that we only focus on inputs that satisfy E. As mentioned in Section

7.1.2.1, a change contract comes equipped with pre-condition captured by a requires clause.

Apart from directly using requires, we can also specify the change contract pre-condition indi-

rectly via when ensured and when signaled (the post-condition of the previous method). Sup-

pose we have when ensured E1 in a change contract. It is equivalent to specifying requires

E2where E2 is the weakest pre-condition computed on the previous method with respect to E1. Thus,

when ensured and when signaled can indirectly specify method pre-conditions. Figure 7.5

shows an example in which using when ensured is more convenient (than using a requires
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clause) for specifying the pre-condition. In this example, if requires clause is used to specify the

pre-condition, a complicated condition under which the else branch is executed has to be used.

Instead, the complicated pre-condition can be simply specified using when ensured clause on the

post-state of previous method as shown in Figure 7.5c.

Set m(String s){
if(/*complex predicate on s*/)
return new HashSet();
else
return new TreeSet();

}

(a) Previous program

Set m(String s){
if(/*complex predicate on s*/)
return new HashSet();
else
return new TreeSet().add(s);

}

(b) Current program

/*@changed_behavior
@ when_ensured \result instanceof TreeSet;
@ ensures \result.size() == \prev(\result).

size() + 1;
@*/

(c) Change contract

Figure 7.5: An example of using previous result in pre-condition

Specifying behavior changes In general, there are two different styles to specify the behavioral

changes of a method. We can either specify the behavior of previous and current methods separately

or the relation of their behaviors can be specified.

We first discuss the approach that the behavior of previous and current methods are separately

specified. The behavior of the current method can be specified using ensures or signals JML

clauses. Similarly, the behavior of previous method can be specified using when ensured clause

and when signaled clauses. Apart from specifying the behavior separately, a relation of the
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current program behavior and previous program behavior can be used to specify how the current

program behavior is different with respect to previous program behavior. This can be achieved in

change contract language through a combination of ensures (or signals) and \prev. Let us

take the example in Figure 7.5. The change contract in Figure 7.5 is specified as a relation between

the method return value of previous version and that of current version. Alternatively, the current

method return value and previous method return value can be separately specified as follows.

/*@ changed_behavior
@ when_ensured \result instanceof TreeSet;
@ when_ensured \result.size() == 0;
@ ensures \result.size() == 1;
@*/

Behavior-preserving changes Some program changes actually preserve program behavior. One

common type of behavior-preserving change is code refactoring, which can used to increase program’s

manageability and extensibility. Programmers also make changes with functionality preserving goals

such as increasing program performance, reducing memory consumption and so on. As far as

the program’s functional behavior is not changed, we consider it as behavior-preserving change in

this section. If a program’s behavior is incidentally changed when behavior-preserving change is

intended, a regression bug is introduced. Regression testing has been widely adopted to prevent

regression errors. However, without knowing programmers’ intention, it is difficult to classify a

behavior change as a regression bug or an intended feature. Our notion of change contracts seeks to

fill this gap. When behavior-preserving changes are made, no change contract needs to be written. By

not providing any change contract, the default-equal assumption is activated. Any behavior change is

clearly a regression bug, and it can be detected automatically by our checker - as evidenced by our

experiments.

Another commonly occurring situation is that new fields are added in a class and only operations

on the new fields are added. In this case, regression errors can also be prevented using the default-

equal assumption. When new fields are added/removed, the default-equal assumption guarantees

that the common fields and method result have the same value in the previous version and current

version.
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7.1.4 Change contract checking

Change contracts are checkable. As practiced in program contracts, various levels of checking

are possible from lightweight runtime assertion checking (RAC) to heavyweight full static program

verification (FSPV) and extended static checking (ESC) in between. Each level of checking has its

own strength and weakness. In general, the degree of completeness of checking increases toward

the FSPV side while the degree of easiness in usage and automation increases toward the RAC side.

Currently, our tool supports RAC because RAC has been recognized as the most essential support

for many well-known Design-by-Contract languages such as Eiffel [77] and JML [29]. As will be

shown in Section 7.1.6, our change contract checker was used to detect incorrect changes that caused

regression errors in various Apache software.

Recall that by default we assume an empty change contract. Even when no explicit change

contract is given, we can check behavioral equivalence between the previous and the current versions.

Thus, non-trivial behaviorial equivalence checking between program versions can be achieved with

an empty change contract (whereas no checking can be achieved with empty program contracts!).

To automatically check a given change contract, we reduce the problem of change contract

checking to the well-established problem of program contract checking. More specifically, our

change contract checking is performed in three steps. (i) We first run the previous and the current

versions of a program, and log program states at a few checkpoints. These checkpoints consist of the

entry of the method under investigation, and exits of the previous and the current versions of that

method. (ii) We then generate a helper program annotated with program contracts (i.e., ordinary JML

specifications) translated from a given change contract. In Figure 7.6, we use an example to illustrate

the helper program generation. Figure 7.6b shows a helper class A we generate to check behavioral

changes occurring when previous-version class C shown in the left of Figure 7.6a is changed to the

current one shown in the right of Figure 7.6a. Notice that method test of the generated helper class

A is annotated with an ordinary JML specification resembling the given change contract shown in

Figure 7.6a. A prominent difference between the original change contract and the generated JML

specification is that the latter uses generated fields instead of the original expressions (e.g., mod res

instead of \result). These generated fields represent the program states logged in the previous

step. Detailed explanation about generated fields and rules for helper generation will be provided
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shortly. Such helper program generation is performed in a way that the helper program passes the

checking for the translated program contract iff. code changes occurred in the target program passes

the checking of a given change contract. (iii) Finally, in the last step, we perform run-time assertion

checking (RAC) on the generated helper program using a RAC facility of OpenJML [11], a JML

tool-suite built on Oracle’s OpenJDK.

// previous class // current class
class C { class C {
int f; int f;

//@changed_behavior
//@ requires \prev(f) > 0;
//@ ensures \result == \prev(\result)+x;
//@ ensures \latest(x);

public int m(){ public int m(int x){
return f; return f+x;
} }
} }

(a) Previous class and current class

// helper class
class A {

int old_f, prev_f, mod_f;
int old_x, prev_x, mod_x;
int prev__res, mod__res;
C old_this, prev_this, mod_this;
Exception prev__expt, mode__expt;

//@normal_behavior
//@ requires prev_f > 0;
//@ ensures mod__res == prev__res+mod_x;
//@ ensures true;

public static void main(String[] a)
{ /* First, init fields */ test(); }

}

(b) Generated helper class

Figure 7.6: An example of helper class generation. A generated helper class shown in Figure 7.6b;

its fields and JML specification are translated from the user programs shown Figure 7.6a.

Our tool automatically performs the above three steps. First, to log program states, we use
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AspectJ [64], a popular tool supporting aspect-oriented programming for Java. Using call pointcuts

of AspectJ, our tool logs program states at the aforementioned designated checkpoints before and

after method calls. These program states include the states of receiver object, method arguments,

and method results. Next, our extension of OpenJML parses a given change contract and generates a

helper class following our generation rules described below. In the following description, we assume

that method m of class C is annotated with a change contract, and a helper class A is generated.

• If C has a field f with type T, helper class A has three fields old f, prev f and mod f of type

T to respectively represent the value of f before m enters, after the previous version m exits,

and after the current version m exists.

• Similarly, if method m of C has a parameter p with type T, A has three fields old p, prev p

and mod p of type T.

• To represent receiver states, A also has three fields old this, prev this, and mod this of

type C.

• If method m has a non-void return type T, A has two fields prev res and mod res of type T.

Note that we need only two fields in this case because there is no return value at the entry of a

method.

• Similarly, A has two fields prev expt and mod expt of type Exception to represent the

exceptions thrown.

• Lastly, A has only two methods main and test.

Method main of the last item of the above list performs two tasks. It (1) first initializes all

the fields described above using the program states logged at the previous step, and then (2) calls

method test. Meanwhile, method test is annotated with a translated program contract made up of

the fields described in the preceding. The only purpose of adding test is to execute its annotated

program contract through a RAC facility, and hence its body is empty. To obtain such translated

program contract of test, we use the translation rules of Table 7.2. In the table, the notation

ϕ[x �→ x′] is used to denote that free variables x appearing in ϕ are replaced with x′. While most

of translation rules are obvious, \latest and \deprecated expressions are transformed to either
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Table 7.2: Translation rules for change contract runtime checking

change contract program contract

changed behavior normal behavior

\old(x) old x

\prev(x) prev x

x mod x

\prev(\result) prev res

\result mod res

\latest(x) true or false

\deprecated(x) true or false

when ensured ϕ requires ϕ

when signaled requires

(T x) ϕ (prev expt instanceof T)

&& ϕ[x �→ prev expt]

signals (T x) ϕ ensures

(mod expt instanceof T)

&& ϕ[x �→ mod expt]

true or false depending on the comparison result of abstract syntax trees for the previous and the

current versions of the method.

Finally, our tool compiles a generated helper class with the RAC option of OpenJML turned on.

Running the compiled code effectively checks the translated JML specification in the helper program,

and its failure amounts to detecting a mismatch between actual code changes and the intended change

expressed via the change contract. When the test input does not match any of the specification case

in change contracts, the default-equal assumption is checked by checking whether all post-states of

fields and method return values are the same in the previous version and current version.

7.1.5 Implementation of change contract runtime checking

We have implemented runtime assertion checking for change contact following the design in

Section 7.1.4. The architecture of our tool is shown in Figure 7.7. Recall that to check the change

contract of a method m, we generate a helper program. The checking of change contract of method

m is done by checking the program contract of the test method in the helper program. OpenJML
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Figure 7.7: The architecture of change contract runtime checker

[11] is used in both the generation of helper program and program contract checking of the helper

program. OpenJML is a set of tools that support both runtime assertion checking and static checking

of Java programs annotated with JML. Based on OpenJDK, OpenJML supports the latest version of

Java and JML standard.

To generate the helper program, we parse both the reference program version and the changed

program version into ASTs using OpenJML. The fields and method body of the helper program are

derived from the ASTs. Apart from the helper program itself, we also need to generate the program

contract for its test method. The program contract is translated from the change contract of the

changed method under study. We extended OpenJML to parse the extensions of JML introduced by

change contract. The translation of change contract to program contract follows the rules mentioned

in Section 7.1.4. Finally, we use OpenJML to check the standard JML-format program contract of

the helper program.

When the unchanged and changed methods are executed, we need to log the program state

that will be passed to the helper program. The logging of program state is done through Aspect

programming using AspectJ. We instrument at both the beginning and end of the method to collect
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the states of surrounding object, arguments and method results. The collected states are stored into

XML files and are later read by the helper program. We also log any program state modification to

check the default-equivalent assumption. When the test input does not match any of the specification

case in change contracts, we check whether the modified program states are the same.

7.1.6 Evaluation

We evaluate change contract and our change contract language in two different aspects. We first

focus on the expressiveness and usability of change contract language. Following this, we evaluate

the efficacy of change contract in detecting incorrect program changes.

Three open source Java programs — Ant, JMeter and log4j are used in our evaluation. All of these

are widely used large-scale java programs (Ant and JMeter have more than 100,000 lines of code

each, and log4j has around 13,000 lines of code). Ant is the de facto standard Java build automation

tool that helps manage the build process. JMeter is used to test the behavior and performance of

various servers, such as HTTP and POP3. Log4j is a Java library that eases the logging process in

Java.

We evaluate the following two research questions (RQ).

RQ1: Can change contracts describe real-life changes? We have conducted user studies to

answer the above research questions. Two users participated in this user study. Both users are

second-year Master’s students majoring in computer science. Before the user study, they both have

no knowledge on program contract and JML. The users are asked to first understand the programs as

well as the changes across different versions. Based on their full understanding of the changes, they

wrote change contracts. Note that the change contracts are written based on real changes rather than

the intention of these changes. Another experiment in which change contracts are written based on

the programmer’s intention to prevent incorrect changes is presented later.

We select changes from the Bugzilla database of each Java project. Only entries with patch files

are selected. Each selected entry contains a set of discussions and some patch files containing the

program changes. Note that other types of changes also exist in the Bugzilla database apart from

bug-fixes. For example, new feature requests constantly appear in the Bugzilla database. We select

changes in this way because the developers’ comments and discussions in Bugzilla provide great help
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Table 7.3: User study results on expressiveness and useability of change contract language

Subject prog. Changes
Applicable Changes Not Applicable

Refactoring Behavior diff Add/Delete Not understood Not supported Non-code

Ant 43 4 13 15 3 3 5

JMeter 17 1 5 6 1 4 0

log4j 20 2 6 7 1 0 4

for understanding the changes. As these programs and changes are not written by the users, these

detailed discussion logs are indeed very important for the users to understand the changes correctly.

The user study results are summarized in Table 7.3. The “Add/Delete” column denotes changes

that involve adding or deleting fields, methods or parameters. There are some changes involving

library calls that are not open-source. Without the source code of the libraries, the users are not

able to fully understand the effect of the changes. The amount of these changes is given in the “Not

understood” column. The last two columns show the changes that are not applicable for this user

study. The “Not supported” column contains changes that are currently not supported by change

contract, such as changes in synchronization in multi-threaded programs. The “Non-code” column

shows changes that are not inside Java source code files. For example, a change in XML file is

considered as non-code change. In total, 52 change contracts were written for the changes in column

“Behavior diff” and “Add/Delete”. No change contract needs to be written for re-factoring changes

as it is covered by the default equivalence assumption. In the process of writing change contracts,

except the changes in synchronization of multi-threaded programs, the users did not observe any case

where changes cannot be expressed using change contracts.

Feedback from users We got the following feedback from users in this study.

• It is difficult to write change contract when the change happens on local variables that have long

dependence chain from inputs and outputs. The users have to manually follow the program

dependence chain to figure out under which condition the change is executed and how the

change affects output. The users also suggested that program dependence tracking (such as the

dependency analysis performed by a slicing tool) could reduce this manual effort.

• More time is spent on understanding the programs and changes than writing change contracts.

This is however partly because the users did not write these programs themselves.
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• Common changes seen in the user study are bug-fixes (typically fixing unexpected exceptions)

and adding new features by adding new fields and methods. Changes in method signature and

deletion of fields/methods are infrequent.

RQ 2: How effective are change contracts in terms of detecting incorrect changes? In the

previous study, users write change contracts based on their understanding of the real program

changes. Thus, if users do not make any mistake either in understanding the program changes or in

witting change contracts, the programs should always be consistent with the written change contracts.

However, change contracts, as designed, should reflect the intention of program changes. Only when

change contracts contain the intention of program changes, incorrect changes are possible to be

detected by change contracts.

We use the following approach to find incorrect program changes and the intended changes from

real-life software repositories. Similar approach has been used in existing research to find incorrect

bug-fixes in operating systems [122]. We start with a bug-fix in the repository. Let v3 be the version

where a bug is fixed. We search backward in the repository to find where the bug fixed in v3 is

introduced. If the bug resides in method m, we only need to focus on the changes that touched method

m. Suppose we find that a change from version v1 to version v2 introduced the bug. We select the

cases where the change from v1 to v2 clearly an incorrect change (By doing this, we avoid the cases

where the change is correct but it reveals a latent bug). When the programmer made changes in v1,

the intended resultant program should be the bug-free program v3. The programmer’s intention

when changing version v1 to v2 is then captured by the differences between version v1 and v3.

Incorrect changes and their corresponding intended changes are found in the three open source

Java programs using the aforementioned method. Change contracts are then written based on the

intention of changes instead of the real program changes. Original incorrect program changes are

checked against the written change contracts. A test case stressing the incorrect change is required

in the Runtime checking method mentioned in Section 7.1.4. We write unit tests with the goal of

stressing these incorrect changes.

Results from using change contracts to detect incorrect changes are shown in Table 7.4. We

studied 10 incorrect changes in the repositories of Ant, JMeter and log4j. All incorrect changes are

detected by the written change contracts.
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Table 7.4: Checking of change contracts on incorrect changes

Subject prog. Changes Detected Undetected

Ant 5 5 0

JMeter 3 3 0

log4j 2 2 0

7.1.7 Threats to validity

We had only two participants in our user study, and both users had similar background (Masters

students with no prior knowledge on program contracts). More participants with different background

would allow us to better assess the usability of our change contract language.

When evaluating the effectiveness of change contracts in detecting incorrect changes, we wrote

the change contract and test cases on our own. In general, change contract written by programmers

may contain mistakes which will reduce the effectiveness of change contracts. In our experiments,

the test cases are written intentionally to stress the incorrect change. The effectiveness of change

contracts will also be reduced when ideal test cases are not available during dynamic checking.

Another threat to validity in our evaluation is the subject programs selected. Our selected

programs are mainly mainstream large open-source projects. Our technique could be better evaluated

with more subject programs having different characteristics.

7.1.8 Summary

In this section, we propose the notion of ”change contracts” as the specification of intended

program changes. Incorrect changes can be easily detected when checked with respect to their change

contracts. Since change contracts only focus on behavior differences across program versions, they

can be easier to write than program contracts. In particular, owing to the default-equal assumption,

regression errors can be detected without the need for writing any change contracts. Based on JML,

we have designed a full annotation language for specifying intended changes in Java programs. We

present the precise formal semantics of our annotation language for specifying change contracts.

Several concrete examples are given to illustrate the usage of change contracts. We have also

proposed a runtime checking method for change contract and implemented it based on the runtime

assertion checker of JML. Through a user study on three Java open source projects (Ant, JMeter,
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log4j), we find that our change contract language is expressive and usable. In addition, all 10 incorrect

changes found in our experiments are detected by their change contracts.

Over and above our technical contributions, we believe that the concept of change contract takes

us one-step closer to the overarching goal of writing quality software. We conjecture that change

contracts can be used in (at least) the following scenarios.

• Early detection of incorrect program changes. We have discussed this scenario in this section.

Either the programmer or the tester writes change contracts to make sure that program changes

are correct.

• Serving as program change requirement. Change contracts can be written (potentially by

programmers) prior to making changes in code. In this case, the change contracts serve as

formal requirements for program changes.

• Providing formal change logs. Programmers often maintain change logs in natural language,

to document the changes being made to programs. Sometimes, the change logs are inconsistent

with real program changes. The inconsistency is hard to discover and causes serious confusion

for other colleague programmers. This problem can be solved if checkable change contracts

are used in change logs.

• Change contract and previous program version jointly form the oracle for testing the current

program. In case the intended program behavior is not changed, we can use the output from

previous program version for the purpose of testing the current program version. However, if

the intended program behavior changes, the expected output of the current program can be

found from the change contract as well as the previous program version’s output.

• Change contracts can help in test suite augmentation. Current test suite augmentation ap-

proaches often focus on syntactic changes (e.g. [86]) to generate a test case which executes

a syntactic change and propagates it to the output. However, there may exist many possible

dependency chains across which a change’s effect can be propagated only some of which

violate the intended change. Capturing the intended change as change contracts can thus help

in more accurate test suite augmentation.
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Figure 7.8: Relations between application, library, OS kernel and outside environments

7.2 Locating Failure-Inducing Environment Changes

In this section, we propose a technique to localize failure-inducing environment changes. Pro-

grams could fail not only due to bugs in themselves, but also due to their execution environment.

According to a study by Chandra et al. [32], around 56% of faults in Apache depend on execution

environment. Browsing through the Ubuntu bug list [8] reveals that many bugs are also environmental-

related. More specifically, these bugs occur due to some changes in the Operating System (OS)

environments. It is quite common that an application works perfectly in one OS environment but

fails in another OS environment. As operating systems become increasingly complicated, debugging

those operating system induced errors is a challenging task.

Figure 7.8 shows the relationship between applications and the operating system. An application

has access to services provided by the OS kernel through system calls. System calls are defined in

the Application Binary Interface (ABI) of an OS. The system calls allow the application to invoke

kernel services to perform privileged tasks on behalf of the application, such as read or write a file,

issue a control command to a device, create a new process, allocate memory and so on. Generally,

systems also provide libraries that sit between the OS kernel and a normal application to increase

portability, for example the glibc library. In this way, the application is less dependent on the OS

kernel. The application communicates with the library functions through library calls. Figure 7.8 also

shows that the OS kernel acts as an interface between an application and the outside environment
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to enable an application to interact with the user (or the network or the file system) to perform its

intended function. As such, the operating system plays an important part in defining an application’s

behavior. Even when the input and the program is fixed, the behavior of a program P with an input t

can still be affected by a lot of factors in the operating system. For example, dynamic libraries can be

implemented differently which leads to implicit semantic difference. A more common case is that

the content of some configuration file might be different from one environment to another.

The problem we tackle can be formalized as follows.

Problem Statement: Suppose we have an application program P , an input t, and two OS

environments E and E′. The execution of P with input t succeeds in E but fails in E′. In this

section, we are trying to explain the failure of P in E′ by discovering a subset δ of the changes in

ΔE = E′\E. Of course, we try to minimize δ to make our result precise and meaningful.

Assumptions We assume that the application is statically linked. This assumption allows us to

focus on the interaction between the application and operating systems without worrying about

the changes in dynamic libraries. We also assume that there is only one critical system call that

is responsible for the failure of the application. Finally, we assume that the program execution is

deterministic.

Building on the assumptions that P does not change, only the OS environment changes, the

different behaviors of P in E and E′ are completely determined by communications between the

program and the underlying OS environment through system call interface. One intuitive solution to

the above problem would be to compare the interface communication through the system calls. For

each executed system call, we can record the return value and the side effect of the system calls. For

each system call syscall, we record it as syscall = 〈num, paras, ret, side effect〉. The num is

the system call number. Parameters and the return values are recorded in paras and ret respectively.

The side-effect of the system call (if any) is recorded in side effect . In this section, side-effect of a

system call refers to the side-effect in the user space unless otherwise specified. The communications

through system calls can be represented using a sequence seq 〈syscall1, syscall2, . . ., syscalln〉.
Two sequences of system calls can be compared. There are several difficulties in employing this

approach. First, there can be a large number of differences between the two sequences(of system

calls) if the two environments are very much different. However, only a very small subset of the
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differences could be the root cause of the failure. In this case, finding the root cause is a tedious

task. Secondly, aligning the two sequences is another error-prone task. Moreover, as the execution

environments are different, there might be some system calls in one sequence with no matching

system calls in the other. This makes comparing the two sequences more complicated.

We propose a record-replay technique to solve the aforementioned problem. There have been a

lot of existing record-replay research in the literature. However, none of the existing techniques is

suitable for our task. Most of the existing record-replay techniques replay the execution using the

entire recorded data in the same OS environment. On the other hand, we are trying to identify a small

subset of the data that constitutes the reason of the failure. Hence, we want to selectively change

part of a failing environment and test whether the program succeed. More specifically, we need a

technique which enables us to partially replay (for successful environment) and partially execute (for

the failing environment) the application. When a system call is replayed, the effect of the system call

on the running application is as if the system call is executed in the environment where the system

call is recorded. Unfortunately, none of the existing techniques handles such partial replay with

recorded data from a different environment. Moreover, there are a few challenges in such a partial

replay. One of these arises from the dependency between system calls. Figure 7.9 gives a concrete

example: the read system call is dependent on the file descriptor returned by the open system call.

Consequently, in selective replay they have to be replayed or executed together. If only the open is

replayed and the read is executed, the reading from undefined file descriptor will result in errors.

Another problem is caused by the complex trace of system calls which makes it difficult to locate the

root cause. Therefore, we need an efficient selective replay strategy to enable fast localization of a

system call which contributes to the root of the failure. Our selective replay approach is designed to

overcome these challenges. The proposed record-replay technique tracks system call dependencies to

avoid inconsistent system state. Our technique uses binary-search to fast localize the failure-inducing

environment change in a complex system call sequence.

The contributions of this section are as follows:

• We propose a Semi-replay technique which allows partial replaying and partial executing

an application. The proposed technique enables efficient fault localization in the context of

changing OS environment.
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1 #include <unistd.h>
2 int main(int argc, char *argv[]){
3 int fd;
4 char[128] data;
5 char* config_file = "/path/to/config_file";
6 fd = open(config_file,O_RDONLY);
7 read(fd,data,128);
8 if(check_format(data)){
9 close(fd);
10 exit(1);//error
11 }else{
12 close(fd);
13 exit(0);
14 }
15 }

Figure 7.9: An example of defects in execution environment

• We implemented our technique for Linux based on Valgrind.

• We conducted case studies on three real life bugs to evaluate the effectiveness of the proposed

technique. In all three cases, our technique is able to locate the change in OS environment that

causes the bug.

7.2.1 Overview

We now give an overview of our approach through a motivating example. Let us consider the

program P in Figure 7.9. This program opens a configuration file (line 6), reads data from the file

(line 7) and checks the format of the data (line 8). The check format() function in P checks

whether the data read from the file satisfies some pre-defined format. Suppose the program in Figure

7.9 succeeds in environment E but fails in environment E′. We assume that the failed execution of

P in E′ is caused by the configuration file in E′ which does not follow the pre-defined format. Our

debugging method works as follows.

We first record the system call sequences of P in E and use it to identify the problematic system

call of P in E′. Suppose the sequence seq = 〈openE , readE〉 has been recorded when executing P

in E, where openE and readE denote the system calls open and read in execution environment

E respectively.

To identify the root cause of the failed execution of P in E we “selectively” execute seq in E′.
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Figure 7.10: Dependencies among system calls. Each circle represents one system call. Arrows

denote dependencies among system calls.

First we replay the first half of seq in E′ and execute the remaining half in E′, which means the

system call openE will be replayed in E′ and the system call read will be executed in E′. To replay

a system call, we instrument the program executable file to intercept all the system calls and their

return values and resulting side effects. Therefore, when executing P in E′, whenever the system

call open is invoked, we will replace its return values and side effects with the one recorded for

openE . However, when the system call openE is replayed and the system call read is executed in

E′, the program execution would become inconsistent because of the dependency between openE

and readE . More specifically, the open in line 6 is not executed since it is only replayed in E′. As a

result, the read in line 7 would fail when being executed in E′ because the file descriptor fd is not

initialized. This program failure is caused by the dependency between the read in line 7 and the

open in line 6.

To avoid inconsistent program state caused by system call dependencies, we track the effects of

system calls on the kernel state, such as initializing file descriptor in an open system call. By doing

this, we are able to detect that when we replay the open in E′, we also need to execute it in E′ so

as to generate the desired kernel state and more importantly, to enable the execution of read in E′.

However, when executing P in E′, the recorded value for openE is still used as the return value for

open in line 6.

Replaying openE , and executing read for the execution of P in E′, the execution fails. Conse-

quently, we are able to deduce that the root cause of the failed execution lies in the second half of

seq which is being executed in E′. As the second half contains only readE , we are able to locate
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readE as the system call which causes the failed execution of P in E′. We then further analyze

from here. A simple comparison of the return values and side-effects recorded between the two

executions reveals that when the system call read is executed, the contents of the file are different

in two executions. This comparison enables us to conclude that the root cause of the failed execution

of P in E′ is caused by the wrong file format of the file provided in E′.

7.2.2 Our approach

Given a single-threaded deterministic program, the expected behavior of the program execution

can be determined by three factors: (i) the program input (ii) the executed code and (iii) the

environment. In this section, we assume that the program is compiled statically, which means all

the libraries must be included during compile time. This guarantees that the entire executable is

fixed. Therefore, the behavior of the program is only determined by (i) the program input and (ii) the

interface communications through system calls. We also assume that same program input is used

in the two executions. If for the two executions, one fails and one passes, then the problem lies in

the interface communication with the underlying OS. Based on this, we devise a selective replay

technique called Semi-replay to locate the changes in the underlying OS which causes the failed

execution.

We are able to monitor almost all the interactions between a program and the execution environ-

ment by monitoring the system calls made by a program. For example, all file access, network access

and even access to system time are done though system calls. Building our technique on system

call, not only can we detect semantic changes in system call implementations, but also detect other

environment changes reflected by system calls.

Given a program P and an input t, let E′ be an environment where P fails to execute with t . Let

the executed system call sequence of P in E′ be

〈syscall′1, syscall′2, . . . , syscall′n−1, syscall′n〉

Algorithm 7.1 returns a number r such that syscall′r causes the failure of P in E′. The following

properties are satisfied by syscall′r:

1. Program P fails when 〈syscall′1, syscall′2, . . . , syscall′r−1〉 is replayed in Semi-replay.
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2. Program P passes when 〈syscall′1, syscall′2, . . . , syscall′r〉 is replayed in Semi-replay.

In Semi-replay, system call dependencies cause unexpected program failure if they are not handled

properly. In particular, suppose an executed system call syscallj is dependent on a replayed system

call syscalli. System call syscallj definitely fails if syscalli is only replayed but not executed. In

this case, we need to handle the replay of syscalli differently. The following sub-sections defines

and illustrates system call dependencies and then presents the Semi-replay technique through the

Locate cause algorithm in Algorithm 7.1.

7.2.2.1 System call dependencies

We say that a system call syscallj is dynamically dependent on syscalli when information flow

from syscalli to syscallj and denote as syscallj → syscalli. More formally, syscallj → syscalli

iff. syscallj is transitively dependent on syscalli via a chain of dynamic data dependencies. For

example read→ open, which means the read system call is dependent on the open system call

as the file descriptor returned by the read system call is used by the open system call.

System call dependencies lead to unexpected program behavior during Semi-replay if dependent

system calls are not being replayed or executed together. Figure 7.10 illustrates dependencies

among system calls. Suppose we want to replay the first k system calls and execute the rest in E′.

Obviously, dependent system calls that all belong to the “replay” or “execute” half do not cause any

unexpected program behavior. However, if there is a system call syscallj in the “execute” half which

is dependent on a system call syscalli in the “replay” half, then syscallj will fail because syscalli

is only replayed but not executed. The problem is caused by the inconsistent assumption on system

state by syscallj . The system call syscallj assumes the existence of some kernel state modified by

syscalli. However, the modification of kernel state by syscalli is not regenerated when syscalli is

replayed.
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Algorithm 7.1 Locate cause
1: INPUT:
2: R // recorded syscall sequence in a successful run

3: P //program being debugged

4: E′ // an environment that P fails in

5:

6: start = 0
7: end = n
8: while end − start > 1 do
9: ret = Semi-replay(P, E′, R, (end + start)/2)

10: if ret then
11: end = (end + start)/2
12: else
13: start = (end + start)/2
14: end if
15: end while
16: return end
17:

18: procedure Semi-replay(P, E′, R, k)

19: let R be 〈syscall1, syscall2, ...syscalln〉
20: i = 0
21: execute P in E′

22: while a syscall is encountered in the execution do
23: i = i + 1
24: if i ≤ k then
25: if check dep(i, k, R) then
26: execute the syscall

27: overwrite syscall results using syscalli
28: else
29: replay the syscall using syscalli
30: end if
31: else
32: execute the syscall in E′

33: end if
34: end while
35: if execution passes then
36: return true
37: else
38: return false
39: end if
40: end procedure
41:

42: procedure check dep(i, k, R)

43: let R be 〈syscall1, syscall2, ...syscalln〉
44: for all j from k + 1 to n do
45: if syscallj is dependent on syscalli then
46: return true
47: end if
48: end for
49: return false
50: end procedure

158



7.2.2.2 Algorithms

We now explain in details the Locate cause algorithm. Given a recorded system call sequence

generated by the successful execution of P in E, the algorithm returns the index of a system call in

the sequence which is the root cause of the failed execution of P in E′. The Locate cause algorithm

resembles a binary search algorithm. The main part of the algorithm is the Semi-replay procedure.

The basic idea of the algorithm is as follows. The algorithm first takes the mid-point of the sequence

and tries to replay the first half of the system call sequence (line 25-30) and execute the remaining

half (line 32). We refer to the first half as the R-half and the second half as the E-half and the index

defining these two halves as k. There are two possibilities:

1. The execution passes (line 36): The Semi-replay procedure returns true, which means that

the root cause of the failure of P in E′ must be located in the R-half. This is because executing

the E-half does not cause the failure. In this case, the Locate cause algorithm minimizes the

the search for the problematic system call in the R-half by dividing this half further into two

halves, moving the index k upwards to the mid-point of the R-half and iteratively calling the

Semi-replay procedure. As k is now moved to the mid-point of the R-half, the Semi-replay

procedure will replay only the first half of R-half and execute the second half of R-half plus

E-half.

2. The execution fails (line 38): The Semi-replay procedure returns false which means that the

root cause of the failure of P in E′ must be located in the E-half. This is because when we

execute the E-half of system calls in E′, the execution fails. In this case, the Locate cause

algorithm minimizes the search for the problematic system call in the E-half by dividing the

E-half further into two halves, moving the index k downwards to the mid-point of the E-half

and then iteratively calling the Semi-replay procedure. As k is now moved to the mid-point

of the E-half, the Semi-replay procedure will replay the R-half plus the first half of E-half

and execute the second half of E-half.

This process continues until a single system call is located which causes a failed execution.

One key procedure in this algorithm is check dep(i, k, R). This is very important as executing a

sequence of system calls involves handling dependency between system calls. For each system call
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Figure 7.11: Flow of handling system calls in our implementation

syscalli being replayed, which means in the R-half, this procedure searches in the E-half for all the

system calls that are dependent on the syscalli. If there are some system calls that are dependent on

syscalli, then syscalli need to be executed as well to regenerate the side-effects and returned values

to be used later by the dependent system calls.

Another important feature of the Semi-replay algorithm is that a prefix of system call sequence

is always replayed and the suffix is executed. This feature is based on the fact that it is almost

impossible to execute a prefix of a system call sequence and replay the suffix. This is because

executing a prefix of a system call sequence could possibly drive the program execution to a totally

different path from the recorded execution. Consequently, the recorded suffix does not match the

executed prefix; thus making replaying of the suffix impossible.

7.2.3 Implementation

The proposed approach is implemented as a plug-in of Valgrind[6]. Valgrind[6] is a widely

used dynamic binary analysis tool. To capture the communication between an application and the

underlying execution environment, we leverage the Valgrind API to instrument the application’s

binaries. The instrumentation is designed to capture all system calls between an application and the
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OS. For each system call, the return values and the side-effects are recorded.

The process of handling systems call is shown in Figure 7.11. Our plug-in provides two modes

namely record mode and replay mode. In record mode, whenever a system call is encountered, the

system call is executed directly by the OS kernel. When the execution of the system is completed,

we record 〈num, retval, side effect〉 into our record file. The num and retval are the system call

number and the return value of this system call respectively. The side effect contains other changes

to the memory space of the executed program. For example, a read stores the read data into the

buffer pointed to by the parameter of the system call. In this case, the content in the buffer is recorded

after the system call’s execution completes.

In the the replay mode, the plug-in takes as input a sequence of recorded system calls and only

replays a prefix of the system call sequence as mentioned in Algorithm 7.1. When a system call

syscalli is replayed, we first check whether syscalli is being dependent on by any other system

calls that are to be executed. If yes, then the system call syscalli is both executed and replayed;

that is we first execute the system to make the kernel state consistent and then use the recorded data

to overwrite the return values and side-effects of the system call. If the system call syscalli is not

being dependent on by any system calls that are to be executed, then the system call syscalli is only

replayed with the recorded data without getting executed in the kernel.

There are some system calls that we did not fully implement. For these un-handled system calls,

we simply execute them in both record mode and replay mode. Our techniques cannot deal with

failures caused by these un-handled system calls.

7.2.4 Experiments

We report our experience in using the proposed technique to locate failure-inducing environment

changes in real-life case studies. We present the results of our experiments in evaluating the

effectiveness of our method.

Given a recorded system call sequence with length N , our technique only takes log(N) executions

to finish. In each following case study, our technique takes less than one minute to find the problematic

system call. The record files are less than 10MB in all three cases.
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7.2.4.1 Experience with MPD

Music Player Daemon (MPD) [7] is a server-side application which allows remote access for

playing music. MPD comes with a client program, which is a console based jukebox commander.

Clients may communicate with the server remotely over an intranet or over the Internet. To start

MPD, a folder named “mpd” must be created under /var/run/. In this folder, files including the pid

file will be stored.

We run MPD in two different OS environments: (E) Ubuntu 9.04 with X service and (E′) Ubuntu

8.04 in shell mode without X service. When running MPD in E, we were able to start and use the

application. However, when running in E′, we were unable to start the application and encountered

the following error message:

Starting Music Player Daemon: could not open pid_file

"/var/run/mpd/pid" for writing: No such file or directory failed.

This program failure can be manually fixed by creating the folder and setting proper permission

so that the pid file can be created and MPD can be started. However, this does not fix the problem

permanently because the bug occurs everytime the system is rebooted and it is unclear what is the

root cause of this bug. Without using any debugging tool, it is difficult for the user to diagnose the

root cause of this problem.

We applied the Locate cause algorithm in Section 3.2 to locate the root cause of this problem.

We collected the system call sequence when executing MPD in E. The sequence consists of 1038

system calls. We then run Locate cause on the sequence of system calls, it returns the 7th system

call as the root cause of this problem, which is: open. This system call suggests that MPD assumes the

existence of the path /var/run/ so the application straight away creates a pid file under the directory

/var/run/mpd/ everytime the system is rebooted. However, under the execution environment E′, the

path /var/run/ is not automatically mounted which caused the failed execution of MPD.

7.2.4.2 Experience with VSFTPD

VSFTPD is an FTP server daemon that runs on most current Unix-based operating systems.

To allow anonymous user access in VSFTPD, one needs to create an anonymous FTP user and
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set appropriate permissions. According to the VSFTPD document, there are two ways to enable

anonymous user access in the VSFTPD configuration file vsftp.conf:

1. set anonymous enable=YES in vsftp.conf

2. create an user list file named vsftpd.user list containing the “anonymous”, and then

set user list enable=YES in vsftp.conf

However, to use the second way, the local enable has to be set to YES in vsftp.conf.

In both environments E and E′, Ubuntu version 8.04 is used. In the reference environment E,

anonymous enable=YES is set in vsftp.conf to allow anonymous users. In the environment E′

where VSFTPD fails, anonymous enable is set to NO and user list enable is set to YES

in vsftp.conf. However, since local enable is not set to YES in vsftp.conf, anonymous users

are not allowed in environment E′. An anonymous access attempt in E′ gets the following error

message:

530 Permission denied. Login failed

This error message is too general and does not help much in figuring out the real cause of this

problem.

We use our technique to locate the cause of this denied anonymous user access in E′. In this case

study, the OS versions are the same in the two environments. The environment changes lie in the

configuration used to enable anonymous user. We run the application in the successful environment

E and used our tool to record the executed sequence of system calls. There were 26 system calls

altogether that have been recorded. We then applied the Locate cause algorithm in Section 3.2 and

located the 2nd system call read, which caused the failed login of anonymous users. We further

investigated from this system call. We found that it was the content of the file read by the system call

read that caused the failed execution of the program. We checked the file read by the system call and

found out that it was the configuration file vsftpd .conf which was read. By comparing the content of

the two configuration files, one in E and one in E′, we were able to figure out the difference in the

configuration file that caused of the failed login with the anonymous user.
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7.2.4.3 Experience with Miniweb

Miniweb [57] is an efficient light-weight web sever. Miniweb listens to a certain port of the

OS for incoming HTTP requests. Either the port is specified by a command line option to Miniweb

or the default port 80 is used. When the port used by Miniweb is already occupied, Miniweb fails

to start with the following error message, which does not provide sufficient clue to locate the root

cause of this problem:

Error starting instance #0 Failed to launch miniweb Shutting down

instance 0

In our experiment, we run Miniweb in two different environments: (E) Ubuntu 8.04 with the

port used by Miniweb not occupied. (E′) Ubuntu 8.04 with the port used by Miniweb occupied.

Using our technique, we record the system call sequences when Miniweb is executed in E.

The successful execution of Miniweb in E returns a sequence of 16 system calls. Note that as

Miniweb is a web-server, it will keep on running and generating a lot more system calls. Therefore,

to successfully conduct this case study, we have to manually kill the process after it has started

successfully. We then used this recorded sequence to locate the cause of failing to start Miniweb

in E′. To tell whether Miniweb runs successfully, we check whether Miniweb is still running

after it is started for a certain time (say 5 seconds). If Miniweb is still running after 5 seconds,

we terminate Miniweb and deem the execution to be successful. Otherwise, Miniweb must have

failed to start. Applying the Algorithm 7.1 in Section 3.2, we located a system call socketcall as

the cause of the failure of Miniweb in E′. This socketcall system call is at the 7th place in the

recorded sequence. The format of the socketcall system call is as follows:

int socketcall(int call, unsigned long *args);

where call determines which socket function to invoke, args is a pointer pointing to a block

containing the actual arguments which are passed through to the appropriate call. For the socketcall

we located, parameter call indicated that it is a bind operation. The args contained information

about which port to bind and some other information. In the recorded (successful) execution, the

socketcall system call returns 0 indicating that the operation is successful. However, in the
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failed execution, socketcall returned the error code 98, which corresponds to EADDRINUSE in

error.h. EADDRINUSE means that the “address is already in used”, which is root cause of the

failed execution of Miniweb in environment E′.

7.2.5 Limitations

In this section, we assume that the program only use static libraries. The applicability of our

technique is greatly reduced by this restriction. Allowing dynamic libraries give rise to a lot of

challenges especially when different implementations of a dynamic libraries are used in different

environments.

We only focused on single-thread deterministic program in this section. Therefore, if a bug is

caused by non-deterministic signal and interrupt, our technique is not able to handle it.

The result of our technique is dependent on the closeness between the faulty environment and

the reference environment. If the faulty environment is intended to be configured differently from the

reference environment, the result from our technique may not be very useful.

Currently, only explicit system call dependency (e.g., the dependency between open and read)

is handled. Handling of implicit system call dependency is not supported. In addition, our technique

only functions when there is one system call that is responsible for the failure of the application.

Our debugging technique works at the system call interface layer. Therefore, we can only provide

some suspicious system calls as the result of our technique. In some situations, the located system

call does not provide enough detailed information to help debugging. For example, if a program uses

one read system call to read a large faulty configuration file, our technique can only pinpoint this

read system call. In this case, the user needs to look into the large configuration file to figure out the

root cause of the program failure.

7.2.6 Summary

In this section, we have presented the Semi-replay method for locating the failure-inducing

environment changes. Our approach takes in a program and two different OS environments where

the execution of the program fails in one environment and passes in another. The proposed approach

then locates a system call which is able to explain the failed execution of the program. Our approach

captures the system call interface between an application and the underlying OS environment
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generated during the successful execution. The recorded system call sequence is then used to debug

the failed execution of the application under another faulty OS environment. We have applied the

proposed approach in three real-life case studies which give evidences to show the utility of our

technique in debugging real bugs. The system call located by our approach can be used to easily

identify the root cause of an error.
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CHAPTER VIII

Conclusion

We conclude the thesis in this chapter. First, we summarize the contribution of the thesis. We

then discuss some research directions that can be studied in the future.

8.1 Concluding Remarks

Software is always undergoing changes. Software is changed to adapt to new environment, meet

new requirement and fix defects. In this process, maintaining the correctness of software is vitally

important and extremely challenging. In this thesis, we target at reducing software errors in the

context of software evolution. To this end, we build a series of semantic analysis based techniques

ranging from requirement specification, to test-case generation and to regression debugging. Our

techniques take full advantage of having previous program versions in analyzing evolving software,

thereby achieving greater effectiveness and efficiency.

In particular, we have made the following contributions in this thesis.

• a test suite augmentation technique that generates test cases to expose the effects of program

changes. It efficiently generates these test cases by gradually modifying test inputs to first

reach program changes and then propagate the effects of program changes to program outputs.

• a regression debugging technique — DARWIN that semantically reasons about the root causes

of regression errors in software evolution. Taking advantage of dynamic symbolic execution,

DARWIN generates precise debugging results on real-life bugs.

• a novel symbolic execution technique at the level of program slice that naturally partitions
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program paths based on their input-output relationship. We have also studied its application in

dynamic path exploration, test-suite augmentation and regression debugging.

• a change contract language that allows the users to specify the intended effect of program

changes. Change contracts containing the intention of users can provide great help in detecting

and removing incorrect program changes.

• a debugging technique to localize defects in evolving software execution environment.

By fully utilizing the information from previous program versions, our proposed semantic

analysis based techniques have advanced state-of-the-art software quality maintenance process in

software evolution and have brought us closer to the ultimate goal of continuously providing quality

software.

8.2 Future Work

One possible avenue of future work is to study efficient test-suite augmentation techniques for

multiple program changes. We have studied the test-suite augmentation problem for a single change.

Our technique could also be applied when multiple changes exist but do not interact with each

other. When change interaction exists among multiple changes, test-suite augmentation becomes

challenging. The effect of one change might be counteracted by another change. One change

may take effects only when another change is exercised. Therefore, change interaction has to be

considered for test-suite augmentation with multiple changes. However, the number of possible

change interactions grows exponentially with the number of changes, without even considering

different instances of changes due to loops. One possible solution to the combinatorial explosion

would be to identify and only focus on “representative” change interactions.

Our proposed DARWIN debugging technique assumes that program requirement regarding the

buggy input does not change. However, program requirements do change over time to adapt to new

environment, meet new user need and so on. Therefore, a direct extension of DARWIN is to take

evolving program requirements into consideration. Debugging evolving programs in presence of

requirement evolution is a more challenging problem. When the program requirement is changed, the

previous program version cannot serve as the perfect reference implementation anymore. Different
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program behavior between previous version and current version can be either buggy or intended

for requirement changes. An unexpected behavior in the current program might be caused by code

changes, or requirement changes, or even both. Different causes may lead to different debugging

techniques. Therefore, figuring out the cause in terms of code change and/or requirement change is

critical for debugging evolving programs with requirement changes. It is interesting to investigate

the degree of help that our change contract language can provide in this regard.

Finally, there exist opportunities to improve the run-time checking of our change contract

language. In our study, a unit test case has to be provided by the user during runtime checking.

Ideally, these test cases could be automatically generated. However, existing test generation tools

are not specifically designed to generate test cases for checking change contracts. We believe that

these tools could be augmented by considering change contracts, thereby generating useful test cases

for runtime checking. The users can then be relieved from the manual effort of creating test cases

for runtime checking. Apart from runtime checking, change contract can also be checked statically.

Similar to static checking of program contracts, previous and current program versions as well as

change contracts can be translated into verification condition, which can be checked using SMT

solvers. The efficiency of static checking is heavily dependent on SMT solvers. One way to ease

the burden on the underlying SMT solver is to represent the unchanged program portions using

un-interpreted functions as in differential symbolic execution [84]. In this way, static checking could

be more efficient by focusing on changed program portions.
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