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LOCAL RIGIDITY OF INFINITE-DIMENSIONAL
TEICHMÜLLER SPACES

A. FLETCHER

Abstract

This paper presents a rigidity theorem for infinite-dimensional Bergman spaces of hyperbolic
Riemann surfaces, which states that the Bergman space A1(M), for such a Riemann surface M ,
is isomorphic to the Banach space of summable sequence, l1. This implies that whenever M and
N are Riemann surfaces that are not analytically finite, and in particular are not necessarily
homeomorphic, then A1(M) is isomorphic to A1(N). It is known from V. Markovic that if there
is a linear isometry between A1(M) and A1(N), for two Riemann surfaces M and N of non-
exceptional type, then this isometry is induced by a conformal mapping between M and N . As a
corollary to this rigidity theorem presented here, taking the Banach duals of A1(M) and l1 shows
that the space of holomorphic quadratic differentials on M , Q(M), is isomorphic to the Banach
space of bounded sequences, l∞. As a consequence of this theorem and the Bers embedding, the
Teichmüller spaces of such Riemann surfaces are locally bi-Lipschitz equivalent.

1. Definitions and Introduction

In this paper, M will be a hyperbolic Riemann surface with the unit disc as its
universal cover, and Γ is the covering group such that M � D/Γ. The Banach space
L1(M) is the space of measurable functions on M with norm ‖ϕ‖1 =

�
M
|ϕ| <∞.

Unless confusion arises, ‖ϕ‖ will mean ‖ϕ‖1 in this paper. The Bergman space
A1(M) ⊂ L1(M) is the Banach space of holomorphic functions integrable on M .
The Bers space Q(M) is the Banach space of holomorphic quadratic differentials
on M with norm

‖ϕ‖Q = sup
z∈M

ρ−2
M (z)|ϕ(z)| <∞,

where ϕ ∈ Q and ρM is the hyperbolic density on M . The space of absolutely
summable sequences is

l1 =
{

(a0, a1, . . . ) : ai ∈ C,

∞∑
i=0

|ai| <∞
}
,

and the space of bounded sequences is

l∞ =
{

(a0, a1, . . . ) : ai ∈ C, sup
i
|ai| <∞

}
.

The space (l1)n is the n-dimensional subspace of l1 with all terms, except possibly
the first n, being 0.

For Banach spaces X1, X2, . . . with norms ‖xi‖i (for xi ∈ Xi) and p > 0, it is
possible to form the Banach space (X1 ⊕ X2 ⊕ . . . )p, with elements of the form
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(x1, x2, . . . ), for xi ∈ Xi, and norm given by

‖(x1, x2, . . . )‖p =
( ∞∑

i=1

‖xi‖pi
)1/p

.

In a Banach space Z, a subspace X of Z is said to be complemented if there
exists another subspace Y of Z such that the direct sum decomposition Z = X⊕Y
can be formed.

In [6], Lindenstrauss and Pelczynski showed that for the unit disc D, the Bergman
space Ap(D) is isomorphic to lp for 1 � p <∞ by using techniques from functional
analysis and the fact that there is a bounded linear projection from Lp(D) onto
Ap(D). In this paper, these techniques are adapted to extend their result to cover
infinite-dimensional Bergman spaces of hyperbolic Riemann surfaces.

Coifman and Rochberg, in their paper [1], proved that there exists a sequence
of points ζ1, ζ2, . . . in D such that if f ∈ A1(D), then there are complex numbers
λ1, λ2, . . . that give a decomposition of f by

f(z) =
∞∑

i=1

λiϕi(z) (1.1)

where the ϕi are given by

ϕi(z) =
(1− |ζi|2)2
(1 − ζiz)4

and
∑∞

i=1 |λi| < C1‖f‖, for some universal constant C1. For a given f , the choice
of λ1, λ2, . . . may not be unique. Conversely, if

∑∞
i=1 |λi| < ∞, then f given

by the formula in (1.1) is in A1(D), and ‖f‖ � C2

∑∞
i=1 |λi| for some universal

constant C2. If the points ζ1, ζ2, . . . could be chosen so that each f ∈ A1(D)
had a unique representation of the form (1.1), then there would be an explicit
isomorphism between A1(D) and l1 in terms of the coefficients of the expansion,
and the corresponding ϕi would be a basis for A1(D). It is an open question as to
whether this can be done. Coifman and Rochberg actually proved their theorem for
a wider class of domains than D and also for a wider range of p, that is, 0 < p <∞
instead of just the p = 1 case outlined above.

An explicit basis for A1(D) is given in a paper by Wojtaszczyk [10], where spline
systems are used to construct unconditional bases for the classical Hardy spaces,
Hp(D), for 0 < p � 1. These systems also turn out to be bases for Bergman spaces
Ap(D) for 0 < p � 1, and characterising elements of the Bergman spaces as the
coefficients of their expansion in terms of these bases gives an explicit isomorphism
between Ap(D) and lp for 0 < p � 1.

Moving onto Riemann surfaces, a Riemann surface M is said to be of finite
analytic type if it can be obtained from a compact Riemann surface of finite genus g
by deleting a finite number, n, of points. A Riemann surface of finite analytic type
is of non-exceptional type if it is hyperbolic or, equivalently, if 2g − 2 + n > 0.
Using the Riemann–Roch theorem, it can be shown, see for example [3], that the
dimension of the Bergman space A1(M) is finite if and only if M is of finite analytic
type. If M is of non-exceptional finite analytic type, with genus g and n punctures,
then the dimension of A1(M) is given by 3g − 3 + n.

This result says that the condition in the main theorem of this paper, that the
dimension of A1(M) is infinite, only precludes those M of finite analytic type.
The main theorem is as follows.
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Theorem (Theorem 2.6). If M is a hyperbolic Riemann surface with
dimA1(M) =∞, then A1(M) is isomorphic to the sequence space l1.

An outline of the proof is given below.
(1) For a suitable disjoint subdivision M1,M2, . . . of the Riemann surface M ,

define the surjective linear operator

R : L1(M)→ (L1(M1)⊕ L1(M2)⊕ . . . )1,
which acts by R(f) = (R1(f), R2(f), . . . ) where Ri is the restriction map given by
Ri(f) = f |Mi .

(2) There exist projections Pi of L1(Mi) onto itself that satisfy:
(i) ‖Pi‖ � 1;
(ii) Pi(L1(Mi)) is isometric to (l1)αi for some integer αi;
(iii) ‖(Pi ◦Ri −Ri)|A1(M)‖ � εi for a given εi > 0.

(3) The space Λ = (P1(L1(M1))⊕ P2(L1(M2))⊕ . . . ) is isometric to l1.
(4) The map T : R(A1(M)) → Λ given by component-wise projecting with the

Pi satisfies ‖T − I‖ �
∑∞

i=1 εi where I is the identity on R(A1(M)).
(5) Functional analysis theory then shows that if the εi are made small enough,

then T (R(A1(M))) is complemented in Λ, and since Λ is isometric to l1, it follows
that A1(M) is isomorphic to l1. This relies on the theorem of Pelczynski, given
in [5], which states that every infinite-dimensional complemented subspace of lp for
1 � p <∞ is isomorphic to lp, and completes the proof.

If two spaces are isomorphic, then their respective Banach duals are also
isomorphic. It is well known that the Banach dual of l1 is the sequence space l∞,
and it is also known (see, for example [7]) that the Banach dual of A1(M) is Q(M).
This characterisation of the Banach duals of the spaces in Theorem 2.6 gives the
following corollary.

Theorem (Theorem 2.7). If M is a hyperbolic Riemann surface with
dimA1(M) =∞, then Q(M) is isomorphic to the sequence space l∞.

This theorem has applications to Teichmüller theory which will be briefly out-
lined. For a fuller discussion and relevant definitions, refer to § 3. However, the
Teichmüller space T (M) of a Riemann surface M is biholomorphically equivalent,
via the Bers embedding, to a subdomain of Q(M). Therefore, Theorem 2.7 can be
used to draw certain conclusions about T (M) in the case where M is of infinite
analytic type.

The situation when M is of non-exceptional finite analytic type is as follows.
As stated earlier, the Riemann–Roch theorem gives the dimension of A1(M) as
3g − 3 + n. Since Q(M) can be identified with the Banach dual of A1(M), then
Q(M) also has dimension 3g − 3 + n. In this case, T (M) is biholomorphically
equivalent to a subdomain of C3g−3+n.

Before outlining the application of Theorem 2.7 to the case where M is of infinite
analytic type, recall that a Lipschitz mapping f between two metric spaces X1, X2

with metrics d1, d2 satisfies the following condition for x, y ∈ X1, and constants
C,α independent of x and y:

d2(f(x), f(y)) � Cd1(x, y)α. (1.2)
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A mapping f is bi-Lipschitz if f and its inverse are both Lipschitz, and is locally
bi-Lipschitz if every x ∈ X1 has a neighbourhood on which f satisfies a Lipschitz
condition.

The Bers embedding is actually a locally bi-Lipschitz map with respect to the
Teichmüller metric on Teichmüller space, T (M), and the metric arising from the
Bers norm on the Bers space, Q(M). Since an isomorphism is locally bi-Lipschitz,
it follows that Q(M) and l∞ are locally bi-Lipschitz equivalent spaces, which gives
rise to the following theorem.

Theorem (Theorem 3.2). If M � D/Γ and N � D/Γ1 are two hyperbolic
Riemann surfaces with infinite-dimensional Bergman spaces, then their Teichmüller
spaces are locally bi-Lipschitz equivalent.

Theorem 2.6 shows that if M and N are two Riemann surfaces with infinite-
dimensional Bergman spaces, then there exists an isomorphism between their
Bergman spaces, since both A1(M) and A1(N) are isomorphic with l1. Consider the
following counterpoint to this result. A map between Bergman spaces T : A1(M)→
A1(N) is said to be geometric if there exists a conformal map α : M → N and a
complex number θ ∈ C with |θ| = 1 such that for all ϕ ∈ A1(N),

T−1(ϕ) = θ(ϕ ◦ α)(α′)2.

In [8], Markovic proved the following theorem.

Theorem A. Suppose that M and N are Riemann surfaces of non-exceptional
type. Let T : A1(M) → A1(N) be a surjective linear isometry. Then the isometry
T is geometric. The surfaces M and N are conformally related and therefore
homeomorphic.

From Theorem 2.6, if A1(M) and A1(N) are infinite dimensional, then they
will be isomorphic. However, they cannot be isometric, according to Theorem A,
unless M and N are conformally equivalent. Finally, the following conjecture is an
interesting question on the global structure of Teichmüller space.

Conjecture B. If two Teichmüller spaces, of finite or infinite dimension, are
globally bi-Lipschitz equivalent, then they are conformally equivalent.

2. Isomorphism of infinite-dimensional Bergman spaces with sequence space l1

Sections 2.1–2.4 deal with the material needed for the proof of the main theorem
of the section, Theorem 2.6. The theorem itself and its proof are given in § 2.5.

2.1. Bergman kernels

The material in this section can be found in, for example, [2] or [3]. The Bergman
kernel on D× D is given by

K(z, ζ) =
1

(1− zζ)4 ,

and satisfies the following properties:
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(i) K(z, ζ) = K(ζ, z);
(ii) for every Möbius transformation f : D→ D,

K(f(z), f(ζ))f ′(z)2f ′(ζ)2 = K(z, ζ);

(iii)
�

D
|K(z, ζ)| dx dy � πρ2(ζ);

(iv) for every f ∈ A1(D),

f(z) =
3
π

�
D

ρ−2(ζ)K(z, ζ)f(ζ) dξ dη

where ρ(z) = 2(1 − |z|2)−1 is the hyperbolic density on D, and ξ, η are
coordinates in the ζ-plane;

(v) for each ζ ∈ D,
sup
z∈D

|K(z, ζ)|ρ−2(z) <∞.

Proof of these facts. The first property is obvious from the definition of K.
The second property follows from an elementary calculation. For the third property,
consider

g(ζ) =
�

D

|K(z, ζ)| dx dy

and observe that under the change of variable ζ 	→ f(ζ), for a Möbius transforma-
tion f : D→ D, we have g(f(ζ))|f ′(ζ)|2 = g(ζ). Therefore, g(ζ) can be determined
by evaluating g(0). Since g(0) = π, this gives the third property with equality.
For the fourth property, consider first the mean value property for harmonic
functions, that is, for r < 1,

f(0) =
1
2π

�2π

0

f(reiθ) dθ.

Hence,

f(0)
�1

0

(1− r2)r dr =
1
2π

�2π

0

�1

0

(1− r2)rf(reiθ) dr dθ,

since f is integrable in D. This can now be rewritten as

f(0) =
3
π

�
D

ρ−2(ζ)K(0, ζ)f(ζ) dξ dη,

and the invariance properties of ρ and K under Möbius transformations give the
general formula. The final property is obvious from the definitions of K and ρ.

A group Γ of self-homeomorphisms of D acts properly discontinuously on D if,
for all compact sets K ⊆ D, the set {A ∈ Γ : A(K) ∩ K} is finite. A group Γ of
holomorphic self-homeomorphisms of D that acts properly discontinuously on D is
called a Fuchsian group.

Every hyperbolic Riemann surface M has the disc D as its universal cover, that
is, there is a Fuchsian covering group Γ such that M � D/Γ. Now, given such a
covering group Γ, form the Poincare theta series given by

F (z, ζ) =
∑
γ∈Γ

K(γ(z), ζ)γ′(z)2.

The series for F (z, ζ) converges absolutely and uniformly on compact subsets of
D to a function holomorphic in z, antiholomorphic in ζ and satisfies:
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(i) F (z, ζ) = F (ζ, z);
(ii) for γ ∈ Γ, F (γ(z), ζ)γ′(z)2 = F (z, ζ);
(iii) for A in the normaliser of Γ, F (A(z), A(ζ))A′(z)2A′(ζ)2 = F (z, ζ);
(iv) for every holomorphic quadratic differential ψ ∈ A1(D/Γ) that respects the

group Γ,

ψ(z) =
3
π

�
D/Γ

ρ−2(ζ)F (z, ζ)ψ(ζ) dξ dη;

(v) for a fixed |ζ| < 1,

sup
z∈D

|F (z, ζ)ρ−2(z)| <∞.

Remark. For the details of the proof, see [2]. The important fourth point, the
integral reproducing formula, reduces to the case for the disc by the invariance of
F (z, ζ) and ρ(z) under the action of Γ.

For a hyperbolic Riemann surface M � D/Γ, there is a universal covering map
π : D→M such that π ◦ γ = π, for all γ ∈ Γ. Pick a fundamental region Ω of D/M
so that π|Ω is injective, and denote now π|Ω by π without confusion. The hyperbolic
density ρM for the surface M is defined by ρM (π(z))|π′(z)| = ρ(z).

Define the kernel function for M by

KM (π(z), π(ζ))π′(z)2π′(ζ)2 = F (z, ζ).

Lemma 2.1. The kernel function KM : M ×M → C defined above is holomor-
phic in the first argument, antiholomorphic in the second argument and satisfies
the following properties (here µ, ν ∈M):

(i) KM (µ, ν) = KM (ν, µ);
(ii) for every conformal f : M →M , KM (f(µ), f(ν))f ′(µ)2f ′(ν)2 = KM (µ, ν);
(iii)

�
M
|KM (µ, ν)| dµ � πρ2

M (ν);
(iv) for every ϕ ∈ A1(M),

ϕ(µ) =
3
π

�
M

ρ−2
M (ν)KM (µ, ν)ϕ(ν) dν;

(v) for each fixed ν ∈M ,

sup
µ∈M

|KM (µ, ν)|ρ−2
M (µ) <∞.

Proof. Most of the properties follow from the analogous properties of F (see [2]),
and here we will just prove the third property since it will be used shortly:�

M

|KM (π(z), ν)| dν =
�
Ω

|KM (π(z), π(ζ))| |π′(ζ)2| dζ

=
�
Ω

|F (z, ζ)| |π′(z)−2| dζ � |π′(z)−2|
�

D

|K(z, ζ)| dζ
� π|π′(z)−2|ρ(z)2 = πρM (π(z))2,

where ν = π(ζ) for ζ ∈ Ω, a fundamental region for M in D. This completes the
proof.
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Define the linear map P : L1(M)→ A1(M) by

(P (ϕ))(µ) =
3
π

�
M

ρ−2
M (ν)KM (µ, ν)ϕ(ν) dν (2.1)

for µ, ν ∈ M . For any ϕ ∈ L1(M), it is clear that the integral formula for P (ϕ)
means that P (ϕ) will be holomorphic, so the image of P is indeed A1(M).

Theorem 2.2. There exists a bounded linear projection θ : L1(M)→ A1(M),
given by θ : ϕ 	→ P (ϕ) for ϕ ∈ L1(M).

Proof. The map θ is clearly linear, and bounded, since

‖P (ϕ)‖ =
�
M

|P (ϕ(µ))| dµ =
3
π

�
M


�
M

ρ−2
M (ν)KM (µ, ν)ϕ(ν) dν

 dµ
�

�
M

(�
M

|KM (µ, ν)| dµ
)
ρ−2

M (ν)|ϕ(ν)| dν

by Fubini’s theorem, which we can apply by the fifth property in Lemma 2.1, and
then using the third property of Lemma 2.1 gives

‖P (ϕ)‖ � 3
�
M

|ϕ(ν)| dν.

Hence, ‖θ‖ � 3. The integral reproducing formula given in (2.1) shows that θ|A1(M)

is the identity, θ2 = θ, and so θ is a projection.

2.2. Subdividing Riemann surfaces

This section contains a recipe for subdividing a Riemann surface into a disjoint
union of relatively compact subsets.

For every p ∈ M , there exists an open subset Up ⊂ M containing p, and a
chart πp such that πp(Up) is a disc in C and πp(p) = 0. Let Vp be an open simply
connected set in M whose closure is contained in Up, so that in particular πp(Vp)
is a relatively compact subset of πp(Up).

As p varies through M , (Vp)p∈M forms an open cover of M , and it is possible to
find a countable subset p1, p2, . . . such that

M =
∞⋃

i=1

Vpi .

Now modify the subsets Vpi to give a disjoint partition of M in the following way:
define M1 = Vp1 , and then inductively,

Mn = Vpn

∖(n−1⋃
i=1

Vpi

)
.

2.3. Compactness of restriction operators

Proposition 2.3. Let K be a relatively compact subset of D. Then the restric-
tion operator RK : A1(D) → A1(K), given by R(f) = f |K for f ∈ A1(D), is
compact.

Proof. The restriction operator RK is compact if and only if for every bounded
sequence fn ∈ A1(D), the sequence RK(fn) has a convergent subsequence.
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For z ∈ D, let d(z, ∂D) be the shortest Euclidean distance from z to the boundary
of D, and similarly let d(K, ∂D) = infz∈K d(z, ∂D). The Cauchy integral formula
gives

|f(z0)| � 1
πt2

�2π

0

� t

0

|f(z0 + reiθ)|r dr dθ

for t < d(z0, ∂D) and f ∈ A1(D). Therefore,

|f(z0)|(πt2) �
�

D

|f |,

and this holds for t < d(z0, ∂D), so in particular, for any z0 ∈ K,

|f(z0)| � 1
π(d(K, ∂D))2

�
D

|f |. (2.2)

Now, let fn be a bounded sequence in A1(D) and without loss of generality,
‖fn‖ � 1 for all n. We can find a relatively compact subset Ω ⊂ D such that
K ⊂ Ω. Since ‖fn‖ � 1, (2.2) implies that |fn(z)| � CΩ for all n, for all z ∈ Ω, and
where

CΩ = (π(d(K, ∂D))2)−1.

This shows that RΩ(fn) is uniformly bounded on Ω, which means that RΩ(fn)
is a normal family (see, for example, [9]). Hence, there is a subsequence RΩ(fnk

)
that converges uniformly on compact subsets of Ω and, in particular, uniformly
on K. Uniform convergence implies convergence in the L1 norm, so there exists
some function g ∈ A1(K) such that RK(fnk

)→ g.

Recall that given a Riemann surface M , we have a disjoint partition from § 2.2
of M =

⊔∞
i=1Mi.

Corollary 2.4. Let Ri : A1(M) → A1(Mi) be the restriction operator given
by Ri(f) = f |Mi for f ∈ A1(M). Then Ri is a compact operator.

Proof. With the notation of § 2.2, Mi ⊂ Upi , and πpi(Mi) is a relatively com-
pact subset of the disc πpi(Upi) ⊂ C. The function f̃ = f ◦ (πpi)−1 defined
on πpi(Upi) is analytic, so it is possible to lift functions in A1(Upi) to functions
in A1(πpi(Upi)). By the previous proposition, the restriction operator given by
Rπpi

(Mi) : A1(πpi (Upi)) → A1(πpi(Mi)) is compact, and so Ri must also be com-
pact.

2.4. Projections on L1

In this section, we consider Ω to be a simply connected, relatively compact subset
of a Riemann surface M , but, via the Riemann map, we can for simplicity assume
that Ω is a bounded simply connected plane domain. Subdivide Ω into a finite
number of subsets, Ω1, . . . ,Ωn. For a given f ∈ L1(Ω), define λi to be

�
Ωi
f . We have

n∑
i=1

|λi| =
n∑

i=1


�
Ωi

f

 �
�
Ω

|f | <∞.
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Define the map P : L1(Ω)→ L1(Ω) by

P (f) =
n∑

i=1

λi

m(Ωi)
1Ωi ,

where 1Ωi denotes the indicator function of Ωi, and m is the usual two-dimensional
Lebesgue measure of Ωi. The map P is clearly linear and bounded (‖P‖ � 1 in
fact), and also a projection, since P 2 = P .

We can define a map µ : P (L1(Ω))→ (l1)n given by

µ(P (f)) = (λ1, . . . , λn, 0, . . . ).

Now, ‖µ(P (f))‖l1 =
∑n

i=1 |λi|. Also,

‖P (f)‖1 =
�
Ω

|P (f)| =
�
Ω


n∑

i=1

λi

m(Ωi)
1Ωi

 =
n∑

i=1

�
Ωi

 λi

m(Ωi)

 =
n∑

i=1

|λi|

since the supports of 1Ωi are disjoint. Hence, µ is isometric, and so P (L1(Ω)) is
isometric to (l1)n.

We now give a discussion to show that we can find a fine enough subdivision
of Ω so that for the corresponding projection P , ‖P (f) − f‖ < ε for f ∈ A1(Ω)
with ‖f‖ � 1. Since Ω is relatively compact in M , sup{|f(z)|} is bounded, where
the supremum is taken over all f ∈ A1(M) with ‖f‖ � 1 and over all z ∈ Ω
(recall the proof of Proposition 2.3). This means that

Θ = {f |Ω : f ∈ A1(M), ‖f‖ � 1}
is a normal family, and hence is equicontinuous; that is, for all f ∈ Θ and for
all ε > 0, there exists a δ > 0 such that if |z − z0| < δ, for z, z0 ∈ Ω, then
|f(z)− f(z0)| < ε.

If B(zi, δ) is a ball centred at zi of Euclidean radius δ, then for any holomorphic
function f , �

B(zi,δ)

f = f(zi).

If, now, Ω is subdivided into Ω1, . . . ,Ωn, with each Ωi ⊂ B(zi, δ) for some zi, and
P is the corresponding projection to this subdivision, then�

Ωi

|f − P (f)| �
�
B(zi,δ)

|f(z)− f(zi)| < εm(B(z0, δ))

recalling that m(B(zi, δ)) is the area of B(zi, δ), and noting that the last inequality
follows from the equicontinuity of Θ. Hence,�

Ω

|f − P (f)| < εm(Ω)

and since we are assuming that m(Ω) is finite, and ε can be made as small
as required, then we have the desired conclusion that ‖P − I‖ can be as small as
desired for P corresponding to a suitably fine subdivision of Ω.

The following proposition will be needed for the proof of Theorem 2.6.

Proposition 2.5. Let S be a projection on a Banach space X . There exists
an ε > 0 small enough so that if T is another projection on X satisfying

‖(T − I)|Im(S)‖ < ε (2.3)
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where I is the identity operator, and Im(S) denotes the image of S, then there is a
projection from X onto Im(T ◦ S).

Proof. Let f ∈ Im(T ◦ S), then by definition f = T (g) for some g ∈ Im(S).
Equation (2.3) implies that if we consider the operator T restricted to have domain
Im(S) and range Im(T ◦ S), then we can find a left inverse T̃ : Im(T ◦ S)→ Im(S)
for T , that is, if h ∈ Im(S), then

T̃ ◦ T (h) = h.

In particular, T̃ (f) = T̃ (T (g)) = g. Since T is a projection, ‖T ‖ � 1, which implies
that T̃ is bounded, and ‖g‖ � ‖T̃‖ ‖f‖. By the triangle inequality, and recalling
f ∈ Im(T ◦ S),

‖S(f)− f‖ � ‖S(f)− g‖+ ‖g − f‖. (2.4)

However, since f = T (g), we can use (2.3) to write the second term on the right-
hand side of (2.4) as

‖g − f‖ = ‖g − T (g)‖ < ε‖g‖ � ε‖T̃‖ ‖f‖. (2.5)

Since g ∈ Im(S), and since S is a projection, we have S(g) = g. Thus, the first term
on the right-hand side of (2.4) becomes

‖S(f)− g‖ = ‖S(f)− S(g)‖ � ‖S‖ ‖f − g‖ � ε‖S‖ ‖T̃‖ ‖f‖,
by using (2.5). Therefore,

‖S(f)− f‖ � ε(1 + ‖S‖)‖T̃‖ ‖f‖.
Since S is a projection, it is bounded, and we know from above that T̃ is bounded.
Therefore, for ε small enough, we can find a left inverse for S on Im(T ◦ S).
Since S restricted to Im(T ◦S) is invertible, and T restricted to Im(S) is invertible,
it follows that Im(S ◦ T ◦ S) = Im(S). Therefore, there exists an operator S̃ :
Im(S)→ Im(T ◦ S) such that for any h ∈ Im(T ◦ S),

S̃ ◦ S(h) = h.

In conclusion, S̃ ◦ S is a projection from X onto Im(T ◦ S), since it is bounded,
linear, an idempotent and has image Im(T ◦ S).

2.5. Theorem 2.6 and its proof

We are now ready to state our main theorem.

Theorem 2.6. If M is a hyperbolic Riemann surface with dimA1(M) = ∞,
then A1(M) is isomorphic to the sequence space l1.

Proof. Given a surface M , subdivide M into relatively compact subsets Mi

as described in § 2.2, so that M =
⊔∞

i=1Mi. Let Ri : L1(M) → L1(Mi) be the
restriction map given by Ri(f) = f |Mi , for f ∈ L1(M).

Define the operator R : L1(M)→ (L1(M1)⊕ L1(M2)⊕ . . . )1 by

R(f) = (R1(f), R2(f), . . . ),
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for f ∈ L1(M). The operator R is isometric, since

‖R(f)‖ :=
∞∑

i=1

‖Ri(f)‖ =
∞∑

i=1

�
Mi

|f | =
�
M

|f | = ‖f‖,

and R is also clearly surjective. By the considerations in § 2.3, Ri|A1(M) is a compact
operator. Let ∆ = {f ∈ A1(M) : ‖f‖ � 1}. Then Ri(∆) is a totally bounded set
in L1(Mi) by the compactness of Ri|A1(M). Now, given εi > 0, by considerations
in § 2.4, we can find a projection Pi of L1(Mi) into itself satisfying ‖Pi‖ � 1,
Pi(L1(Mi)) is isometric to (l1)αi for some αi ∈ Z+, and ‖Pi(Ri(f)) − Ri(f)‖ � εi
for all f ∈ ∆.

Let Λ = (P1(L1(M1))⊕ P2(L1(M2))⊕ . . . )1, a subspace of (L1(M1)⊕L1(M2)⊕
. . . )1. Since each Pi(L1(Mi)) is isometric to (l1)αi for some αi ∈ Z+, Λ is isometric
to l1. Define the operator T : R(A1(M))→ Λ by

T (R1(f), R2(f), . . . ) = (P1(R1(f)), P2(R2(f)), . . . ).

Since the dimension of A1(M) is infinite, R(A1(M)) also must be infinite dimen-
sional. We also have

‖T (ξ)− ξ‖ �
( ∞∑

i=1

εi

)
‖ξ‖

for ξ ∈ R(A1(M)), and so given ε > 0, it is possible to choose the (εi)i so that
‖T (ξ)− ξ‖ < ε‖ξ‖, for ξ ∈ R(A1(M)).

By Theorem 2.2, there exists a bounded linear projection θ : L1(M) → A1(M).
Therefore, there is a bounded linear projection θ̃ : R(L1(M)) → R(A1(M)), given
by

θ̃(R1(f), R2(f), . . . ) = (R1(θ(f)), R2(θ(f)), . . . )

which is clearly linear, bounded and satisfies θ̃2 = θ̃. Therefore, R(A1(M)) is
complemented in R(L1(M)). Thus, by Proposition 2.5, if ε is small enough,
T (R(A1(M))) is complemented in R(L1(M)) and, in particular, Λ.

If ε < 1, then ‖T − I‖ < 1, and by a standard result, T is thus invertible and an
isomorphism. Every infinite-dimensional complemented subspace of l1 is isomorphic
to l1 (see [5]), and so A1(M) is isomorphic to l1.

Remark. Since this paper concentrates on the applications of Theorem 2.6 to
Teichmüller theory in § 3, only the result that A1(M) is isomorphic to l1, for M of
infinite analytic type, is presented. However, the technique used in the proof can
be adapted to show that, for such a Riemann surface M , Ap(M) is isomorphic to
lp for 1 � p <∞.

Let αΓ : A1(M) → l1 be the isomorphism in Theorem 2.6. This induces an
isomorphism of the Banach duals α∗

Γ : (l1)∗ → (A1(M))∗. It is well known that
the Banach dual of l1 can be identified with l∞. Furthermore, let Ω be a plane
domain whose boundary consists of at least three distinct finite points. Then to
each bounded linear functional Φ on A1(Ω), there corresponds a unique g ∈ Q(Ω)
such that

Φ(f) =
�
Ω

ρ−2
Ω (w)f(w)g(w) du dv
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for all f ∈ A1(Ω). Moreover, 1
3‖g‖Q � ‖Φ‖ � ‖g‖Q. Thus, if M is a hyperbolic

Riemann surface, then the Banach dual of A1(M) can be identified with Q(M).
A proof of this result can be found in, for example, [7]. This immediately gives us
the following results.

Theorem 2.7. If M is a hyperbolic Riemann surface with dimA1(M) = ∞,
then Q(M) is isomorphic to the sequence space l∞.

Corollary 2.8. If M and N are two hyperbolic Riemann surfaces with
infinite-dimensional Berman spaces, then A1(M) and A1(N) are isomorphic, and
Q(M) and Q(N) are isomorphic.

3. Application to Teichmüller theory

We first give a brief introduction to Teichmüller theory in § 3.1, and in particular
the Bers embedding of Teichmüller space in § 3.2. This material can be found in
greater detail in, for example, [3] or [4]. Section 3.3 gives the proof that infinite-
dimensional Teichmüller spaces are locally bi-Lipschitz equivalent.

3.1. Teichmüller spaces

If Ω ⊂ C is a plane domain, a homeomorphism f : Ω→ f(Ω) is quasiconformal if
there exists k < 1 such that f has locally integrable distributional derivatives fz, fz

on Ω and |fz| � k|fz| almost everywhere on Ω. The map f is thenK-quasiconformal,
where K = (1 + k)/1− k. If k is the smallest such that the condition above is
satisfied, then K(f) = (1 + k)/(1− k).

The complex dilatation of f is µ(z) = fz(z)/fz(z). For a general µ ∈ L∞(Ω) satis-
fying ‖µ‖∞ < 1, the Beltrami equation is fz(z) = µ(z)fz(z). The Beltrami equation
can be solved by a quasiconformal map, which is unique up to post-composition
by a Möbius transformation. Hence, there is a one-to-one correspondence between
Möbius equivalent classes of quasiconformal homeomorphisms of Ω and the open
unit ball B(Ω) of L∞(Ω).

Quasiconformality is a well-defined notion for Riemann surfaces and, in this case,
Beltrami differentials are (−1, 1) differential forms on Riemann surfaces. If f0 :
M → N0 and f1 : M → N1 are quasiconformal maps from the Riemann surface M
to the Riemann surfaces N0 and N1, then f0 is Teichmüller equivalent to f1 if there
exists a conformal map g : N0 → N1, and a homotopy through quasiconformal
self-maps ht, for 0 � t � 1, of M such that h0 is the identity, h1 = f−1

1 ◦ g ◦ f0
and ht(p) = p for all 0 � t � 1 and for all p ∈ ∂M . Teichmüller space T (M) is the
space of equivalence classes of all quasiconformal maps on M under the Teichmüller
equivalence relation.

The definition of Teichmüller space can also be formulated in terms of Beltrami
differentials in B(M), the open unit ball of L∞(M). In that case, two Beltrami dif-
ferentials are Teichmüller equivalent if the corresponding quasiconformal mappings
obtained from solving the Beltrami equation are Teichmüller equivalent. Denote by
[f ] (respectively [µ]) the Teichmüller class of a quasiconformal map f (or Beltrami
differential µ).

The Teichmüller distance on T (M) is given by

d([f ], [g]) = 1
2 inf logK(f̃ ◦ (g̃)−1)
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where the infimum is taken over all quasiconformal maps in the equivalence classes
of f and g. It turns out that the Teichmüller metric is the same as the Kobayashi
metric, which is defined as the largest (pseudo-)metric on T (M) such that holo-
morphic mappings are non-increasing.

3.2. The Bers embedding

Let B(Γ) = {µ ∈ L∞(D) : µ(z) = µ(γ(z))γ′(z)/γ′(z), γ ∈ Γ, ‖µ‖∞ < 1} be the
open unit ball of Beltrami differentials which respect the group Γ. IfM � D/Γ, then
µ ∈ B(Γ) if and only if there is a µ̂ ∈ B(M) such that µ̂(π(z)) = µ(z)π′(z)/π′(z).
In this section B(Γ), T (Γ), and so on, will be used.

Denote by wµ the unique quasiconformal self-map of D with Beltrami coefficient
µ and fixing 1,−1, i. By standard theory, wµ extends continuously to ∂D. Denote
by wµ the quasiconformal self-map of C with Beltrami coefficient µ in D and 0 in
C \D, and which fixes 1,−1, i. Restricted to C \D, wµ is conformal. It is true that
wµ = wν if and only if wµ = wν .

The Schwarzian derivative of an analytic function f is defined by

S(f)(z) =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

If µ ∈ B(Γ), then S(wµ)(z) = ϕ is a holomorphic quadratic differential for Γ on
C \ D.

Recall that the Bers space Q(Γ) on a plane domain Ω, conformally equivalent
to D, is the space of holomorphic functions ϕ in Ω such that ϕ(γ(z))γ′(z)2 =
ϕ(z) for all z ∈ Ω and γ ∈ Γ, and also with finite Bers norm, that is, ‖ϕ‖Q =
supz∈Ω |ϕ|ρ−2

Ω (z) <∞, where ρΩ is the hyperbolic density on Ω.
Let Φ be the map on B(Γ) defined by Φ(µ) = S(wµ). The map Φ induces a

one-to-one map Φ̃ : T (Γ) → Q(Γ), which is called the Bers embedding. The Bers
embedding maps T (Γ) onto an open set in Q(Γ), which is contained in the ball of
radius 3

2 in the Bers norm. Also, the image contains the ball of radius 1
2 .

If UΓ = {[µ] ∈ T (Γ) : d([0], [µ]) < 1
2 log 2}, where [0] is the Teichmüller class of

the identity map, then Φ̃|UΓ is a homeomorphism onto an open set contained in the
ball of radius 1

2 and containing the ball of radius 1
6 in the Bers norm. So Φ̃ gives a

local coordinate near the origin of Teichmüller space.
It is possible to find charts for a neighbourhood of any point of Teichmüller space

in the following way. Let [µ] ∈ T (Γ), and let Γ1 = wµ ◦Γ◦ (wµ)−1 (recall that wµ is
the quasiconformal self-map of D fixing 1,−1, i). The Bers spaces Q(Γ) and Q(Γ1)
are isomorphic.

Let Φ̃1 be the chart for T (Γ1) in Q(Γ1) described above. The maps Φ̃1 and Φ̃
both give local coordinates, if they are restricted to neighbourhoods of Teichmüller
distance less than 1

2 log 2 from the origin in their respective spaces, T (Γ) and T (Γ1).
The map F : [ν] 	→ [σ], where wσ = wν ◦ wµ, is an isometric isomorphism from
T (Γ1) to T (Γ), which maps the equivalence class of the identity in T (Γ1) to the
equivalence class of wµ in T (Γ). Thus, a chart for the neighbourhood of the origin in
T (Γ1) is a chart for the neighbourhood of [µ] in T (Γ). Where these charts overlap,
the corresponding transition maps are holomorphic, which implies that Teichmüller
space T (Γ) is a complex Banach manifold modelled on Q(Γ).

With respect to this structure on T (Γ), the Bers embedding Φ̃ : T (Γ) → Q(Γ)
is a biholomorphic mapping. In particular, with respect to the Teichmüller metric
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on T (Γ) and the metric arising from the Bers norm on Q(Γ), the Bers embedding
is a locally bi-Lipschitz mapping (recall (1.2) for the definition of a bi-Lipschitz
mapping).

3.3. Locally bi-Lipschitz equivalent Teichmüller spaces

We have the following situation,

Φ̃ : T (Γ) ↪→ Q(Γ), α∗
Γ : Q(Γ)→ l∞

where the image of Φ̃ is contained in Q(Γ). Since Φ̃ is a locally bi-Lipschitz mapping,
there exists a neighbourhood, XΓ, of the identity class in T (Γ) such that Φ̃|XΓ is
bi-Lipschitz. Since α∗

Γ is an isomorphism, XΓ is mapped onto a neighbourhood of
the origin of l∞ by α∗

Γ ◦ Φ̃. If YΓ = (α∗
Γ ◦ Φ̃)(XΓ), then XΓ and YΓ are bi-Lipschitz

equivalent.
Note that in any statement where the term ‘bi-Lipschitz’ is used, this also implies

that ‘homeomorphic’ holds for that statement. For example, XΓ and YΓ are home-
omorphic.

Lemma 3.1. If M � D/Γ and N � D/Γ1 are two hyperbolic Riemann surfaces
with infinite-dimensional Bergman spaces, then a neighbourhood of the identity
class in T (Γ) is bi-Lipschitz equivalent to a neighbourhood of the identity class in
T (Γ1).

Proof. Consider the neighbourhoods of the identity class in the respective
Teichmüller spaces given by XΓ and XΓ1 , and consider their images in l∞ under
the respective maps α∗

Γ ◦ Φ̃ and α∗
Γ1
◦ Φ̃1, given by YΓ and YΓ1 .

T (Γ) Φ̃−→ Q(Γ)
α∗

Γ−−→ l∞
α∗

Γ1←−− Q(Γ1)
Φ̃1←−− T (Γ1).

The sets YΓ and YΓ1 are both open neighbourhoods of the origin in l∞, and so
Y := YΓ ∩ YΓ1 is also an open neighbourhood of the origin. Since α∗

Γ ◦ Φ̃ is a bi-
Lipschitz mapping of XΓ, it has an inverse on Y , and ((α∗

Γ ◦ Φ̃)−1)(Y ) ⊆ XΓ is an
open neighbourhood of the origin in T (Γ).

Thus, (α∗
Γ1
◦ Φ̃1) ◦ (α∗

Γ ◦ Φ̃)−1 is a bi-Lipschitz mapping from a neighbourhood
of the identity class in T (Γ), namely ((α∗

Γ ◦ Φ̃)−1)(Y ), to a neighbourhood of the
identity class in T (Γ1), namely (α∗

Γ1
◦ Φ̃1)(Y ).

Theorem 3.2. If M � D/Γ and N � D/Γ1 are two hyperbolic Riemann
surfaces with infinite-dimensional Bergman spaces, then their Teichmüller spaces
are locally bi-Lipschitz equivalent.

Proof. Recall the discussion in § 3.2, which says that a chart for the neighbour-
hood of the identity class in T (wµ ◦Γ ◦ (wµ)−1) is a chart for the neighbourhood of
[µ] in T (Γ). Thus, charts for any [µ] ∈ T (Γ) and [ν] ∈ T (Γ1) correspond to charts
for the respective identity classes in T (wµ ◦ Γ ◦ (wµ)−1) and T (wν ◦ Γ1 ◦ (wν)−1).

Lemma 3.1 gives a bi-Lipschitz mapping between neighbourhoods of these two
identity classes, and hence we have a bi-Lipschitz mapping between neighbourhoods
of [µ] ∈ T (Γ) and [ν] ∈ T (Γ1).
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