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Abstract. We study the existence of solutions g to the functional inequality f ≤ g
◦ T − g + β, where f is a prescribed continuous function, T is a weakly expanding
transformation of the circle having an indifferent fixed point, and β is the maximum ergodic
average of f . Using a method due to T. Bousch, we show that continuous solutions g
always exist when the Hölder exponent of f is close to 1. In the converse direction, we
construct explicit examples of continuous functions f with low Hölder exponent for which
no continuous solution g exists. We give sharp estimates on the best possible Hölder
regularity of a solution g given the Hölder regularity of f .

1. Introduction
Let T : X→ X be a discrete dynamical system, and let MT be the set of all Borel
probability measures which are invariant under the map T . For a given continuous function
f : X→ R, we define the maximum ergodic average β( f ) by

β( f )= sup
µ∈MT

∫
f dµ,

and say that ν ∈MT is a maximizing measure for f if it satisfies
∫

f dν = β( f ). The
study of maximizing measures has recently become the focus of significant research
interest. While early articles of Bousch and Jenkinson [2, 14] were motivated by abstract
questions concerning the geometric structure of the set of measures MT , questions relating
to maximizing measures have also appeared in research into chaotic control [13, 25],
Livšic-type theorems [6], thermodynamic formalism [9, 15, 16], Tetris heaps [7], and the
Lagarias–Wang finiteness conjecture in linear algebra [7].

This article is concerned with a key technical tool that arises in the study of maximizing
measures, which we call the Mañé–Conze–Guivarc’h lemma. A lemma of this type
takes the following form: given a continuous function f : X→ R with some prescribed
regularity, under suitable dynamical hypotheses there exists a continuous function
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g : X→ R with the property that f ≤ g ◦ T − g + β( f ). This relation is equivalent to the
statement that there exists a continuous g such that sup( f + g − g ◦ T )= β( f ). Conze
and Guivarc’h’s version of this lemma may be found in the unpublished manuscript [10].
It has been noted that theorems of a similar character occur in the field of optimal control,
e.g. [1, 17]; this relationship is examined in Bousch’s preprint [5].

We briefly describe the immediate implications of this result. First, let us rewrite the
aforementioned inequality in the form f = g ◦ T − g + β( f )− r , where r is continuous
and satisfies r ≥ 0. We then obtain

∫
f dν = β( f )−

∫
r dν for every ν ∈MT , and

so ν is maximizing for f if and only if
∫

r dµ= 0. Since r(x)≥ 0 for all x , we
conclude that the maximizing measures of f are precisely those invariant measures ν
whose support lies in the compact set r−1(0). This leads to the subordination principle
described by Bousch [3]: if invariant measures µ, ν satisfy supp ν ⊆ supp µ and µ is a
maximizing measure for f , then the ‘subordinate’ measure ν is maximizing also. It has
been shown that this subordination principle can fail to hold when the regularity of f is
relaxed [6].

A particularly interesting application of the Mañé–Conze–Guivarc’h lemma is a
recent result of Bousch [4] which shows that for dynamical systems satisfying a
Mañé–Conze–Guivarc’h lemma, measures supported on periodic orbits are the only
maximizing measures that persist under Lipschitz perturbations of the observable f .
A similar result was previously shown by G. Yuan and B. R. Hunt under more
restrictive dynamical assumptions [25]. Mañé–Conze–Guivarc’h-type lemmas have
also been found useful in circumstances that are not a priori related to maximizing
measures [20].

When T : X→ X is an expanding map, a subshift of finite type or an Anosov
diffeomorphism, and f : X→ R is Hölder continuous, it is known that we can always find
g : X→ R Hölder continuous such that f ≤ g ◦ T − g + β( f ) is satisfied [3, 11, 19, 22].
The purpose of the present article is to examine the extension of this result to a simple
class of non-uniformly hyperbolic dynamical systems on the circle, namely the case
in which T is uniformly expanding except in the neighbourhood of a weakly repelling
fixed point.

Previously, it was shown by Souza [23] that for an expanding map T : [0, 1] → [0, 1]
with a weakly repelling fixed point, a Mañé–Conze–Guivarc’h lemma can be proved when
f is Hölder continuous and monotone in some neighbourhood of the indifferent fixed point
z, and additionally satisfies

∫
f dν− < f (z) <

∫
f dν+ for some ν−, ν+ ∈MT . Prior

to the research described in this article, S. Branton had shown that when f is Lipschitz
continuous, Souza’s conditions may be removed [8]. In this article, using a different
method from that of S. Branton, we study the case in which f is Hölder and prove a
complementary result showing that solutions can fail to exist in certain situations where f
is Hölder continuous with exponent close to 0.

Let T= R mod Z, with metric d inherited from the standard metric on R. The precise
class of maps T : T→ T which we study is defined as follows.

Definition 1.1. For each α > 0, we say that a continuous function T : T→ T is an
expanding map of Manneville–Pomeau type α if it fixes 0, is differentiable with derivative
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greater than 1 in the interval T \ {0}, and satisfies

T ′(x)= 1+ ξ xα + o(xα) as x→ 0+,

lim inf
x→1−

T ′(x) > 1

for some ξ > 0.

The archetypal map T represented by this definition is the Manneville–Pomeau map
defined by x 7→ x + x1+α mod 1. Expanding maps of Manneville–Pomeau type are
studied in, for example, [12, 18, 24].

For each γ ∈ (0, 1], let Hγ denote the space of all γ -Hölder continuous real-valued
functions on the circle T, and define | f |γ = supx 6=y | f (x)− f (y)|/d(x, y)γ for f ∈ Hγ .
The set Hγ is a Banach space when equipped with the norm ‖ · ‖γ given by ‖ f ‖γ :=
| f |∞ + | f |γ . Using a method based on Young towers, S. Branton proved the following.

THEOREM. [8] Let T : T→ T be an expanding map of Manneville–Pomeau type α ∈
(0, 1). Then for every f ∈ H1 and δ ∈ (0, 1− α) there exists g ∈ H1−α−δ such that
f ≤ g ◦ T − g + β( f ).

We are able to establish the following result.

THEOREM 1. Let T : T→ T be an expanding map of Manneville–Pomeau type α ∈ (0, 1),
and suppose that α < γ ≤ 1. Then for every f ∈ Hγ there exists g ∈ Hγ−α such that
f ≤ g ◦ T − g + β( f ). In addition, the function g satisfies the functional equation

g(x)+ β( f )= max
T y=x

[ f (y)+ g(y)] .

Furthermore, we are able to show that Theorem 1 is sharp both in the regularity of f
and in the regularity of g.

THEOREM 2. Let T : T→ T be an expanding map of Manneville–Pomeau type α ∈ (0, 1),
and suppose that 0< α < γ ≤ 1. Then the following hold:
(a) there exists f ∈ Hγ such that if f ≤ g ◦ T − g + β( f ) for g ∈ Hθ , then θ ≤ γ − α;
(b) there exists f ∈ Hα such that f ≤ g ◦ T − g + β( f ) is not satisfied for any

continuous function g.

In a recent article, T. Bousch proved the following theorem, which extends a result of
Yuan and Hunt [25].

THEOREM. [4] Let T : X→ X be a continuous surjection of a compact metric space.
Suppose that for all f ∈ H1, there exists g ∈ H1 such that f ≤ g ◦ T − g + β( f ) and
|g|1 ≤ C | f |1 for some C > 0 independent of f . Suppose also that µ ∈MT is a
maximizing measure for every element of some non-empty open set U ⊂ H1. Then µ is
supported on a periodic orbit of T .

We remark that while uniformly expanding dynamical systems have been shown to
satisfy the hypotheses of this theorem (see [3, 11, 22]), Theorem 2(a) demonstrates that the
required hypotheses do not hold for maps of Manneville–Pomeau type.
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2. Proof of Theorem 1
We use a fixed-point method that was employed in the work of Bousch [2, 4]. We begin
with the following lemma.

LEMMA 2.1. Let T be of Manneville–Pomeau type α, and take z1, z2 ∈ T with d(z1, z2)

sufficiently small. Then

d(T z1, T z2)≥ d(z1, z2)(1+ C0 d(z1, z2)
α)

for some constant C0 that depends only on T .

Proof. We consider separately two cases depending on whether the shortest arc connecting
z1 and z2 does or does not contain 0.

We begin with the latter case. Choose representatives a1, a2 ∈ [0, 1) of z1, z2 ∈ T,
respectively, assuming without loss of generality that 0≤ a1 ≤ a2 < 1. If d(z1, z2) is small
enough, then

d(T z1, T z2) =

∫ z2

z1

|T ′(s)| ds ≥
∫ a2

a1

1+ ρ0sα ds

≥ (a2 − a1)+ ρ1(a2 − a1)
1+α
= d(z1, z2)+ ρ1 d(z1, z2)

1+α

for some small ρ0, ρ1 > 0 not depending on z1 and z2. This completes the proof in
this case.

Now suppose that 0 lies in the arc connecting z1 and z2, with the triple (z1, 0, z2)

being positively oriented. Arguing as previously, we have d(T z2, 0)≥ d(z2, 0)
+ ρ1d(z2, 0)1+α . Since T has derivative bounded away from 1 in any small interval of
the form (−δ, 0), there is a ρ2 > 0 such that d(T z1, 0)≥ (1+ ρ2)d(z1, 0) when d(z1, 0)
is small enough. Combining these estimates yields

d(T z1, T z2)= d(T z1, 0)+ d(0, T z2)≥ d(z1, z2)+ ρ1 d(z2, 0)1+α + ρ2 d(z1, 0).

If we take C0 =min{ρ1/21+α, ρ2/2}, then by separating the cases d(z1, 0)≥ d(z2, 0) and
d(z1, 0)≤ d(z2, 0) we obtain

ρ1 d(z2, 0)1+α + ρ2 d(z1, 0)≥ C0 d(z1, z2)
1+α

for every sufficiently close choice of z1 and z2 separated by 0. Combining the above two
inequalities completes the proof. 2

LEMMA 2.2. Let T be of Manneville–Pomeau type α, and let γ ∈ (α, 1]. Then there
exists Cγ > 0 with the following property: for every x1, x2, y1 ∈ T with T y1 = x1, we
may choose y2 ∈ T−1

{x2} such that

d(y1, y2)
γ−α
+ Cγ d(y1, y2)

γ
≤ d(x1, x2)

γ−α. (1)

Proof. Given x1, x2, y1 ∈ T with T y1 = x1, we claim that there exists y2 ∈ T−1
{x2} such

that
d(y1, y2)(1+ ρ3 d(y1, y2)

α)≤ d(x1, x2) (2)

for some ρ3 > 0 independent of x1, x2, y1. Taking ρ4 = (1+ ρ3)
γ−α
− 1> 0, we have

(1+ ρ3t)γ−α ≥ 1+ ρ4t for all t ∈ [0, 1]. Applying this to (2) yields (1) with Cγ = ρ4.
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We now prove the claim. We begin by noting that T expands sufficiently long intervals
by a uniform factor: for every δ > 0, there exists Kδ > 0 such that if d(x1, x2)≥ δ, then y2

may be chosen with
(1+ Kδ) d(y1, y2)≤ d(x1, x2).

Thus, given some fixed δ > 0, (2) holds for every case in which d(x1, x2)≥ δ by taking
ρ3 ≤ Kδ . On the other hand, if d(x1, x2) < δ for some sufficiently small fixed δ > 0, then
we may choose y2 ∈ T−1

{x2} with d(y1, y2)≤ d(x1, x2) < δ and apply Lemma 2.1 to
obtain

d(y1, y2)(1+ C0 d(y1, y2)
α)≤ d(x1, x2),

so that taking ρ3 =min{Kδ, C0} completes the proof. 2

We now prove Theorem 1. Let γ ∈ (α, 1] and define a subset of C(T) by

K = {g ∈ Hγ−α : |g|γ−α ≤ C−1
γ | f |γ },

where Cγ > 0 is as in Lemma 2.2. Let K0 = K/R, the set of equivalence classes of
elements of K modulo addition of a constant. Clearly, K0 is compact with respect
to uniform distance. For each g ∈ K , define L f g ∈ C(T) by (L f g)(x)=maxT y=x

( f + g)(y). We assert that L f is a continuous transformation of K with respect to uniform
distance.

Given x1, x2 ∈ T and g ∈ K , choose y1 ∈ T−1x1 such that (L f g)(x1)= ( f + g)(y1).
Invoking Lemma 2.2, we may choose y2 ∈ T−1x2 such that (1) holds and therefore

(L f g)(x1)− (L f g)(x2) ≤ ( f + g)(y1)− ( f + g)(y2)

≤ | f |γ d(y1, y2)
γ
+ |g|γ−α d(y1, y2)

γ−α

≤ C−1
γ | f |γ d(x1, x2)

γ−α.

We conclude that |L f g|γ−α ≤ C−1
γ | f |γ for all g ∈ K and therefore L f K ⊆ K . A simple

argument shows that |L f g1 − L f g2|∞ ≤ |g1 − g2|∞ for g1, g2 ∈ K so that L f is a
continuous transformation of K . It follows that L f induces a continuous transformation
of K0. Hence, by the Schauder–Tychonoff theorem, there exists h ∈ K such that L f h = h
mod R. Let b ∈ R be chosen such that h(x)= b +maxT y=x ( f + h)(y) for all x ∈ T; a
simple argument as in [2] shows that b = β( f ). The proof of Theorem 1 is complete.

3. Proof of Theorem 2
In this section we shall take the liberty of using the fundamental domain [0, 1) as a model
for T and treating T as a [0, 1)→ [0, 1) map in the obvious fashion. Let u1 =min{u ∈
(0, 1) : T u = 0} and define a sequence (un)n≥1 in [0, 1) by un :=min{u ∈ (0, 1) : T u =
un−1}. We require two simple lemmas.

LEMMA 3.1. There is C1 > 1 such that for all n ≥ 1,

C−1
1 n−1−1/α

≤ un − un+1 ≤ C1n−1−1/α

and
C−1

1 n−1/α
≤ un ≤ C1n−1/α.
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Proof. This follows from the relation T un − un = ξu1+α
n + o(un)

1+α in a fairly
straightforward fashion; see, for instance, [24]. 2

LEMMA 3.2. Let f : [0, 1)→ R. Assume f (0)= 0, and suppose that there is C > 0 such
that for all κ ∈ (0, 1),

| f (κ)| ≤ Cκγ1

and

sup
x,y∈[κ,1]

x 6=y

| f (x)− f (y)|

|x − y|
≤ Cκ−γ2 ,

where γ1, γ2 > 0 and γ1 + γ2 ≥ 1. Then f is γ1/(γ1 + γ2)-Hölder continuous throughout
[0, 1).

Proof. Let 0≤ x < y < 1, and let λ= y−γ1−γ2(y − x) and γ = γ1/(γ1 + γ2). If λ > 1/2,
then yγ1+γ2 < 2(y − x) and hence

| f (x)− f (y)| ≤ | f (x)| + | f (y)| ≤ 2Cyγ1 < 21+γC |y − x |γ .

Otherwise, y − x = λyγ1+γ2 ≤ λy ≤ y/2; so 0< y ≤ 2x and hence

| f (x)− f (y)| ≤ Cx−γ2(y − x)1−γ (y − x)γ

= Cλ1−γ
(

y

x

)γ2

(y − x)γ ≤ 2γ−1+γ2C(y − x)γ ,

as required. 2

3.1. Proof of part (a). Given 0< α < γ ≤ 1, let Kγ = C1
∑
∞

n=2 n−γ /α <∞. Define
f by f (x)= xγ for all x ∈ [0, u3], by f (x)=−K for all x ∈ [u2, u1], and by linear
interpolation in the intervals [u3, u2] and [u1, 1) subject to the constraint limx→1 f (x)= 0
which ensures that f yields a continuous function T→ R. Note that f (x)≤ uγk when
uk+1 ≤ x ≤ uk and that f ∈ Hγ .

We claim that β( f )= 0. Since the Dirac measure δ0 is invariant and f (0)= 0, it is clear
that β( f )≥ 0. By a lemma of Peres [21], there exists x ∈ T such that

∑n−1
j=0 f (T j x)≥

nβ( f ) for all n ≥ 0; so to prove that β( f )≤ 0, it is sufficient to show that for each
x ∈ [0, 1] we may find v(x) > 0 such that

∑v(x)−1
j=0 f (T j x)≤ 0.

If x = 0 or x ∈ [u2, 1), then clearly we may take v(x)= 1. Otherwise, we have
x ∈ [ur+1, ur ] for some r ≥ 2. Applying Lemma 3.1, we obtain

r∑
j=0

f (T j x)≤
r−2∑
j=0

(T j x)γ − K ≤
r∑

k=2

uγk − K ≤ C1

∞∑
k=2

k−γ /α − K = 0,

so that taking v(x)= r + 1 proves the claim.
Now suppose that f ≤ g ◦ T − g + β( f ), where g ∈ Hθ . For every n > 0 and r ≥ 3,

we have

g(un+r )+

n−1∑
j=0

f (T j un+r )≤ g(T nun+r )
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and hence

g(ur )≥

r+n∑
k=r+1

f (uk)+ g(un+r )≥ C−1
1

r+n∑
k=r+1

k−γ /α + g(un+r ).

Taking the limit as n→∞ gives

g(ur )≥ C−1
1

∞∑
k=r+1

k−γ /α + g(0)≥ C̃r1−γ /α
+ g(0),

and therefore
C̃r−1−γ /α

≤ |g(0)− g(ur )| ≤ |g|θuθr ≤ |g|θCθ
1 r−θ/α

for every r ≥ 3. We deduce that θ ≤ γ − α. 2

3.2. Proof of part (b). Define f (0)= 0, f (x)= 0 for all x ∈ [u1, 1) and, for each n ≥ 0,

f (u24n )= f (u24n+2)= 0,

f (u24n+1)=−2−4n,

f (u24n+3)= τ2−4n,

where τ ∈ (0, 1) is a real number to be fixed later. Extend f to the whole of [0, 1) by
interpolating linearly in each interval [u24n+k+1 , u24n+k ].

We will show that f is α-Hölder. Suppose that u24n+4 ≤ κ ≤ u24n for some n ≥ 0; then

| f (κ)|< 2−4n
≤ Cα

1 uα24n ≤ Cα
1 κ

α. (3)

We must estimate the Lipschitz norm of f in the interval [κ, 1). To do this, we require the
simple lower bound

u2r+1 − u2r =

2r
−1∑
`=0

u2r+`+1 − u2r+` ≥

2r+1
−1∑

k=2r

C−1
1 k−1−1/α

≥ C̃(2−r/α
− 2−(r+1)/α)≥ C̃2−r/α

for all r > 0, where we have used Lemma 3.1. It follows that when u24n+4 ≤ κ ≤ u24n , the
gradient of f in [κ, 1) is bounded by

sup
0≤k≤n
0≤`<4

2−4k

|u24k+`+1 − u24k+` |
≤ sup

0≤k≤n
0≤`<4

2−4k

C̃2−(4k+`)/α
= C̃2−4k+4k/α

≤ C̃κα−1. (4)

Combining estimates (3) and (4) with Lemma 3.2, we deduce that f ∈ Hα .
We next compute β( f ). Since f (0)= 0 and the Dirac measure δ0 is T -invariant, we

have β( f )≥ 0. To prove that β( f )= 0, we proceed as in part (a) by showing that for each
x ∈ [0, 1), there is v(x) > 0 such that

∑v(x)−1
j=0 f (T j x)≤ 0.

If x ≥ u2 or x = 0 or u24n+2 ≤ x ≤ u24n for some n > 0, then f (x)≤ 0 and we may take
v(x)= 1. We therefore restrict our attention to the case in which u24n+4 < x < u24n+2 for
some n ≥ 0. Assuming this, suppose that

u24n+2+k+1 ≤ x ≤ u24n+2+k,

http://journals.cambridge.org
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where 0≤ k < 24n+4
− 24n+2. We choose v(x)= k + 24n+1

+ 2. First we note that

k∑
j=0

f (T j x)≤ τk2−4n
≤ 12τ. (5)

Using the monotonicity of f in [u24n+1 , u24n ], we obtain

k+24n+1
+1∑

j=k+1

f (T j x) ≤
24n+1∑
`=0

f (u24n+1+`)=−

24n+1∑
`=1

2−4n |u24n+1 − u24n+1+`|

|u24n+1 − u24n+2 |

≤ −

24n+1∑
`=1

2−4nu−1
24n+1(u24n+1 − u24n+1+`)

≤ −C−1
1 2−1/α−4n+4n/α

24n+1∑
`=1

`−1∑
j=0

(u24n+1+ j − u24n+1+ j+1)

≤ −C−2
1 2−1/α−4n+4n/α

24n+1∑
`=1

`2−(4n+2)(1+1/α)

≤ −
1

C2
122+3/α

2−8n
24n+1∑
`=1

`≤−
1

C2
1 25+2/α

=−ε < 0,

say, where we have twice used Lemma 3.1. Combining this estimate with (5), we deduce
that

∑v(x)−1
j=0 f (T j x)≤max {0, 12τ − ε} for each x ∈ [0, 1); thus, if τ is taken smaller

than ε/12, then β( f )= 0.
Our final task is to show that the relation f ≤ g ◦ T − g + β( f ) is impossible for

continuous g. Following the method of the preceding estimate, for each n > 0 we have

24n+3∑
`=24n+2

f (u`) ≥ τ
24n+2∑
`=1

2−4n |u24n+2 − u24n+2+`|

|u24n+2 − u24n+3 |

≥ τ C̃2−4n+4n/α
24n+2∑
`=1

`−1∑
j=0

(u24n+2+ j − u24n+2+ j+1)

≥ τ C̃2−8n
24n+2∑
`=1

`≥ δτ > 0,

say. Suppose now that f ≤ g ◦ T − g + β( f ) is satisfied; then for each n > 0 we have

g(u24n+2)≥ g(u24n+3)+

24n+3
−24n+2∑

j=0

f (T j u24n+3)≥ g(u24n+3)+ δτ .

If g is continuous at 0, letting n→∞ then yields

g(0)≥ g(0)+ δτ > g(0),

which is a contradiction. 2
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II. Astérisque 287(xix) (2003), 135–146.
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