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Summary 

Nanoscale size and geometry effects play important roles in determining the properties 

of graphene nanostructures.  On one hand, graphene nanoribbons with armchair edges 

(AGNRs) possess bandgaps that are strongly dependent on the ribbon width.  On the 

other hand, the zigzag edge of graphene supports a spin-polarized edge state around the 

Fermi level EF.  We wonder what phenomena would appear if we combine AGNRs and 

zigzag edges into a single nanostructure?  

We designed a junction where a narrow AGNR is sandwiched in-between two wide 

AGNR-leads and naturally incorporating zigzag edges at the interfaces.  We find that 

when the middle AGNR is in the 3p+2 family, the junction exhibits two transmission 

peaks that are independent of the length of the narrow AGNR segment.  This is 

unexpected from the quantum confinement effect, which predicts that the energy of a 

confined state approaches EF as the ribbon gets longer.  

By investigating the eigenchannel wavefunctions, we revealed that this length-

independence behavior arises from the locally repeating pattern in the wavefunction.  

We proved from mathematical induction that an eigenstate containing at least three 

locally repeating units in the eigenwavefunction pattern has an invariant eigenenergy 

as the structure lengthens. Although a periodic wavefunction pattern is straightforward 

in an infinite periodic structure, it can hardly be preserved when the structural 

symmetry is broken.  A locally repeating pattern can be preserved here because of the 

zigzag edges serving as sources/drains, so that electrons are not confined within the 

AGNR segment.  However, the zigzag edge state is able to provide electrons only for 

states near EF, which explains why such length-independent transmission peaks are 

observed only for 3p+2-AGNRs, but not for other AGNRs with much larger gaps.   
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The length-independent transmission makes AGNR-junctions excellent molecular 

wires exhibiting an invariant conductance as the wire lengthens.  This solves a big 

problem as traditional molecular wires suffer from fast exponential decay of 

conductance with wire length.   

We further find that these states are bonding and antibonding couplings of two Fermi 

level states.  The original state originates from the zigzag edge and extends into the 

middle AGNR within the same sub-lattice.  Such extension results in a non-decaying 

state in 3p+2-AGNRs and an exponentially decaying evanescent state in 3p- and 3p+1-

AGNRs.  

The extension into an AGNR overcomes the localized nature of the zigzag edge state, 

potentially leading to many interesting phenomena.  For example, in the symmetric 

AGNR-junction we studied, zigzag edges at two interfaces are coupled across the 

AGNR in-between them.  Such coupling results in perfect transmission channels 

showing length-independent transmission peaks in 3p+2-AGNRs.  We further 

demonstrate that these channels can be destroyed if we break the degeneracy of the two 

extended states by applying opposite spin-polarizations. In this way, we can obtain a 

large magnetoresistance reaching ~900%.   

The AGNR-junctions also show excellent properties making them suitable for 

achieving negative differential resistance (NDR) with low on-site voltage and high 

peak-to-valley ratio.  By utilizing a semiconducting AGNR as the leads, we can drive 

the transmission peak close to EF into the gap of leads and obtain NDR via the resonant 

tunneling mechanism.  
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Chapter 1. Introduction 

1.1 Size and Geometry Effects in Graphene Nanostructures 

Graphene is a two-dimensional material consisting of carbon atoms linked together 

within a single layer in a hexagonal honeycomb lattice, as shown in Fig. 1.1 (a)  [1-3].  

The reciprocal lattice of graphene is also hexagonal, the first Brillouin Zone (BZ) of 

which is shown in Fig. 1.1 (b).   

 

Fig. 1.1 (a) Atomic structure of graphene in real space, where the yellow and gray balls 

represent carbon atoms on the A- and B-sublattices, and a is the lattice constant.  (b) 

The reciprocal lattice of graphene, where   
  

   
, and   

  

  
          

  

  
       .  (c) The   bandstructure from tight-binding calculations, adapted from 

Ref. [4]. Copyright Institute of Physics.  (d) The density of states of graphene, adapted 

from Ref. [5].  Copyright Institute of Physics. 

 

 

This unique carbon lattice determines graphene as a zero-gap semiconductor with the 

conduction band and the valence band touching each other at the 6 Dirac points   and 
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   (Fig. 1.1 (c)) [6, 7].  Most interestingly, the dispersion relation close to the Dirac 

points is linear, which leads to zero effective mass for electrons and holes, thus an 

extremely high Fermi velocity vF ~ 10
6
 m/s.  The density of states (DOS) vanishes at 

the Fermi level EF (Fig. 1.1 (d)). 

Although graphene possesses many outstanding properties, its application in 

semiconductor-based electronics is greatly limited by the fact that there is no bandgap. 

Cutting the two-dimensional (2D) graphene into a quasi-one-dimensional (quasi-1D) 

nanoribbon is a good way to open a gap via the quantum size confinement effect across 

the width.  Finite termination of graphene results in two types of natural edge 

geometries: armchair edge and zigzag edge.  Accordingly, a typical graphene 

nanoribbon (GNR) could be terminated with either armchair or zigzag edges on both 

sides and they are  referred to as an AGNR or a ZGNR.  Figure 1.2 (a) and (c) show 

examples of an AGNR and a ZGNR, where each dangling bond at the edge Carbon 

atoms is passviated with one Hydrogen atom.  Following previous convention, we refer 

to an AGNR with n carbon atoms across its width as n-AGNR and a ZGNR with m 

zigzag-shaped chains across its width as m-ZGNR.  The ribbons shown in Fig. 1.2 (a) 

and (c) are 5-AGNR and 4-ZGNR, respectively.  As we will review in the next few 

sections, the difference in edge geometry brings many differences between the 

electronic properties of AGNRs and ZGNRs.   

The reciprocal space of graphene is two-dimensional and continuous. By cutting the 2D 

graphene into a quasi-1D GNR, the wave vector corresponding to the width dimension 

of the ribbon    is quantized into discrete   
 
 values due to quantum confinement effect, 

whereas the wave vector corresponding to the longitudinal dimension of the GNR    

remains continuous.  As a result, the reciprocal space of a quasi-1D GNR is composed 

http://en.wikipedia.org/wiki/Effective_mass_(solid-state_physics)
http://en.wikipedia.org/wiki/Electron_hole
http://en.wikipedia.org/wiki/Fermi_velocity
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of 1D lines along the continuous    direction and with discrete   
 

 values, that slices 

through the 2D reciprocal space of graphene.   

 

Fig. 1.2 (a) Atomic structure of 5-AGNR, where the yellow (gray) balls represent 

carbon atoms on the A(B)-sublattice and the white balls represent passivating Hydrogen 

atoms. (b) The reciprocal space of a quasi-1D AGNR, indicated by the parallel dashed 

blue lines within the 2D reciprocal space of graphene. The shaded region indicates an 

alternative reduced BZ of graphene [8]. (c) Atomic structure of 4-ZGNR.  (d) The 

continues wave vector    and quantized wave vector    for ZGNRs, within the 2D 

reciprocal space of graphene. The length unit cells in AGNRs and ZGNRs are     and 

 , respectively. 

 

The continuous    vector of AGNRs turns out to be along the direction from Γ point to 

M point, while that of ZGNRs turns out to be along the direction from Γ point to K 

point (Fig. 1.2 (b) and (d)).  The Dirac K points in graphene reciprocal lattice are then 

folded onto the Γ point (     ) and     
  

  
    

  

  
  points of the quasi-1D 

reciprocal space of AGNRs and ZGNRs, respectively.  The parallel dashed blue lines in 

Fig. 1.2 (b) indicate the slicing planes (normal to the paper) for an AGNR.  In this way, 

the global bandstructure of a quasi-1D AGNR can be surmised by projecting the 2D 
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bandstructure of graphene onto these parallel planes.  For the case of ZGNRs, the 

quantized   
 
 values depend on the longitudinal wave vector   , so the slicing planes 

are slightly curved, rather than being flat [9, 10].  Moreover, one quantized   
 

 value of 

m-ZGNR involves an imaginary part within the region            , where 

          
 

        
                  .  This imaginary   

 
 gives rise to a 

partial flat band and a localized edge state. 

According to the slicing principle reviewed above,  a GNR would be metallic (gap = 0) 

if its reciprocal space includes any Dirac point, and semiconducting otherwise.  The 

reciprocal space of ZGNRs will always include a Dirac point at          , thus 

ZGNRs are metallic without considering magnetic effect that opens a gap [11, 12].  On 

the other hand, the flat slicing planes for n-AGNR will pass through a Dirac point if and 

only if n = 3p+2, where p is a positive integer.  Therefore, the nearest neighbor tight-

binding model predicts that 3p+2-AGNRs are metallic, whereas 3p- and 3p+1-AGNRs 

are semiconducting [8, 11, 13-17].  However, if edge deformation due to Peierls’ 

distortion is taken into account, 3p+2-AGNRs also exhibit a small gap [12]. 

1.1.1 The Family Behavior of AGNRs 

This family behavior of AGNRs can be understood by simply considering an AGNR as 

a quantum well with hard walls (vacuum) on both sides and examining how   
 

 is 

quantized within this quantum well  [9, 10, 17], as illustrated in Fig. 1.3.  For each sub-

lattice A and B, we represent the width dimension wavefunction component at an 

atomic site on the i
th 

row as       and      , respectively.  We may apply the hard 

wall boundary condition by requiring  
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Fig. 1.3 Illustration of viewing n-AGNR as a quantum well between two hard walls. a 

is the lattice constant of graphene. 

 

We choose the simple quantum well solution                         , which 

already satisfies the boundary condition at one hard wall              .  By 

letting                                   , we obtain       

       , where   is an integer.  Therefore, the wave vector across the width is 

quantized to 

  
  

   

      
                                       

  
 
 would cut through a Dirac point if   

  
   

      
 

  

  
, which requires that      

 .  Since     for a real AGNR, we usually represent this metallicity requirement as 

      ,                                              
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For example, when n = 5, the 2D  -band of graphene reduces to 5 1D sub-bands 

corresponding to 5 discrete   
 

 values within (0, 2 /a):   /3a, 2 /3a,  , 4 /3a, and 

5 /3a, where both 2 /3a and 4 /3a pass through the Dirac point. 

Figure 1.4 (a-c) shows the tight-binding bandstructures and DOSs of AGNRs with 

various widths.  When the AGNR is as wide as n = 30, the bandstructure closely 

resembles the projection of the 2D graphene bandstructure onto the armchair axis (Fig. 

1.4 (d)), except for a very small gap opening.  As the AGNR becomes narrower, the 

number of bands is gradually reduced due to quantization effects.  Consistent with the 

hard wall model we reviewed above, the bandstructures and DOSs indicate clearly that 

AGNRs with width        (Fig. 1.4 (b)) are metallic, whereas AGNRs with 

widths      (Fig. 1.4 (c)) and        (Fig. 1.4 (a)) are semiconducting.   

 

Fig. 1.4 Tight-binding band structure and Density of States of n-AGNRs with width n = 

(a) 4, (b) 5, and (c) 30, adapted from Ref. [5]. Copyright Institute of Physics. The 

energy E is scaled by the tight-binding hopping integral t = 2.75eV.  (d) The projected 

band structure of 2D graphene onto an armchair axis, reprinted with permission from 

Ref. [13]. Copyright (1996) by the American Physical Society. Dashed lines at π and –π 

indicate the boundary of the first BZ. Note that k in all these figures is in unit of 

     
  

, rather than Å
-1

   

 

Later, the 3p+2-AGNRs were found to be also semiconducting by both first-principles 

[12] and tight-binding [17] analysis considering shorter bonds at the armchair edges.  

Figure 1.5 shows the bandgaps of all three families of AGNRs as a function of width by 

both local density approximation (LDA) [12] and with GW corrections included [18].  

For all three families, the bandgap decays as the ribbon becomes wider, consistent with 
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the quantum confinement effect.  Experimental results also confirm that energy gaps do 

increase with decreasing ribbon width [19].   

 

Fig. 1.5 The bandgaps of three families of n-AGNRs as a function of width by first 

principles and GW calculations, reprinted with permission from Ref. [18].  Copyright 

(2007) by the American Physical Society.   

 

These AGNRs can now be synthesized from bottom-up approaches with well controlled 

widths [20-24].   

1.1.2 The Dirac Point State in 3p+2-AGNRs 

The Γ point state in metallic 3p+2-AGNRs stems from the Dirac point state in graphene 

by zone folding (Fig. 1.2 (b)).  This Dirac point state is predicted to show a very 

interesting pattern: the probability density disappears at every third row of carbon 

atoms counting from the edge [8], as illustrated in Fig. 1.6.  Such interesting pattern is a 

characteristic feature of the Γ point state in 3p+2-AGNRs.  It has been recognized in 

the literature since 1987 [17, 25-27] and recently observed in the experimental STM 

image of 14-AGNR [23], as shown in  Fig. 1.6 (b). 
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Fig. 1.6 (a) The electron density pattern of the analytical tight-binding state at the Dirac 

point in 11-AGNR.   = lattice constant. (b) The electron scattering pattern visualized 

with Scanning Tunneling Microscope (left) and corresponding DFT simulations (right) 

in 14-AGNR, adapted from Ref. [23] with permission. 

 

Such an interesting pattern with a line node every three carbon rows can be understood 

as a standing wave formed by intervalley backscattering of the Fermi electrons 

(electrons at the Fermi energy) scattered off the armchair-edges on both sides of a 

3p+2-AGNR [8]. The Fermi electrons at Dirac point K is backscattered to another 

Dirac point K’ (see Fig. 1.2 (b)).  The incoming and scattered electron waves then 

interfere to form a standing wave.  The wave vector difference between these two 

waves is          (Fig. 1.2 (b)), resulting in a wavelength of              for 

the resulting standing wave.       is exactly three rows of carbon atoms across the 

width of AGNR, consistent with the standing wave pattern shown in Fig. 1.6.   

Such a standing wave does not exist in AGNRs of other families (      ), since 

there is no Fermi electrons available in those semiconducting AGNRs.  However, it is 

predicted that for a state slightly away from the Dirac point by   , the densities at the 

       row is proportional to           .  Therefore, as   increases or as we go to the 
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inner region from the armchair edge, the density at the        row gradually increases 

[8].  As a result, the periodic absence of probability density at the        row is not 

seen for   being sufficiently away from the armchair edge.  The STM image in Fig. 1.7 

shows clearly that the density at the        row is suppressed for     and the 

appreciable density appears for    . 

 
Fig. 1.7  STM topography showing quantum interference at a regular armchair edge of 

a graphene monolayer, adapted with permission from Ref. [28]. Copyright (2010) 

American Chemical Society. 

1.1.3 The Zigzag Edge State  

From the review in previous sections, we see that the electronic properties of AGNRs 

are determined mainly by the quantization effect across the width.  The armchair edges 

introduce little effect except a slight increase of bandgaps due to edge deformation.  In 

contrast to the relatively inactive armchair edge, the zigzag edge supports an interesting 

edge state around EF, that is localized along the edge and decays towards the inner 

region, as illustrated in Fig. 1.9 [11].  The edge state results in a partial flat band and a 

large DOS around EF for ZGNRs, as shown in Fig. 1.8 (a-c).  The partial flat band starts 

from       and gets flatter with increasing ZGNR width.  It reaches around 

        for a sufficiently wide 30-ZGNR (Fig. 1.8 (c)).  There is no such partial flat 
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band in the projection of graphene bandstructure onto the zigzag axis (Fig. 1.8 (d)), 

indicating that the partial flat band is not originated from intrinsic states in graphene.  

 

Fig. 1.8 (a-c) Tight-binding band structure E(k) and Density of States D(E) of (a) 4-

ZGNR, (b) 5-ZGNR,  and (c) 30-ZGNR, adapted from Ref. [5].  Copyright Institute of 

Physics.  The energy E is scaled by the tight-binding hopping integral t = 2.75eV.  (d) 

The projected band structure of graphene onto the zigzag axis, reprinted with 

permission from Ref. [13].  Copyright (1996) by the American Physical Society. 

Dashed lines at π and –π indicate the boundary of the first BZ.  Note that k in all these 

figures is in unit of a
-1

, rather than Å
-1

  

 

The emergence of the puzzling zigzag edge state can be understood by analytically 

solving the tight-binding Hamiltonian of a semi-infinite graphene sheet with a zigzag 

edge termination [11], as indicated in Fig. 1.9.  Considering the translational symmetry, 

we can start constructing the analytic solution for the edge state by letting the Bloch 

components of the linear combination of atomic orbitals (LCAO) be …, 

                           … on successive edge sites, where   donates a site location 

on the edge (see  Fig. 1.9 (a)).   

We consider the Schrödinger equation       of the whole system and look for 

tight-binding form solution                  as a linear combination of the basis 

π-orbitals localized on each atomic site i of the graphene nanostructure. Then the 

Schrödinger equation can be written in matrix multiplication form as 

 

       
     
     

 

  

 

 

 

  

  

 
  

  

   

 

 

  

  

 
  

  

       (1.4) 
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where     is the hopping integral between atoms i and j.   

Each row i of the Schrödinger equation (1.4) reads  

                                        (1.5) 

Here, only interactions between nearest neighbors (nn) are taken into account, which is 

sufficient to describe the essential physics of π-electrons in graphene [29].  

As the value of     between nearest neighbors is identical over the whole structure, it is 

straightforward that for an eigenwavefunction   to satisfy the Schrödinger equation at 

    (at the Fermi energy), we would require 

                                   (1.6) 

for all atoms. Namely, the sum of wavefunction coefficients on all nearest neighbors of 

any carbon atom has to vanish [11].   

 

Fig. 1.9  (a) Analytical form of the edge state for a semi-infinite graphene sheet with a 

zigzag edge.  The bold line indicates the zigzag edge, and A, B, C indicates the atomic 

sites. (b-e) Charge density plot for analytical solution of the edge state, when    (b) 

   , (c)      , (d)      , and (e)      . The radius of each circle in (a-e) is 

proportional to the charge density on each site. This figure is adapted from [5].  

Copyright Institute of Physics. 

 

Applying the sum rule to atomic sites A, B, and C in Fig. 1.9 (a), we have 

                              (1.7a) 

                              (1.7b) 
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                                      (1.7c) 

We can easily solve this to obtain that 

                                 (1.8a) 

                                (1.8b) 

                                  (1.8c) 

If we start from the zigzag chain with m=1 to solve further inside, we would 

successively obtain the same form of solution: the wavefunction component at each 

non-nodal site of the m
th

 zigzag chain from the edge is proportional to           

    . The convergence condition requires that                . Otherwise, the 

state would diverge in a semi-infinite graphene sheet.  This convergence condition 

defines the region              , where the partial flat band appears.  As a result, 

the state is decaying from the edge towards the inner region following a power law, 

with the decaying rate depending on the wave number  .  As shown in Fig. 1.9 (b-e), 

the state is completely localized at the edge for       and gradually becomes a 

extended state at        , which is nothing but the Dirac point state. 

The edge state is reasonably robust even if the graphene edge does not have a clear 

zigzag shape [13].  In fact, a general edge structure that is not parallel to the armchair 

edge can have a zero-energy edge state, which was shown by analogy to the condition 

of the zero-energy Andreev bound state in an unconventional superconductor [30].  

Recent studies have demonstrated the robustness of the edge state against changes in 

their size and geometry [31-33].  Nevertheless, the edge state does require a sp
2
-

configuration at the zigzag edge atoms, which is necessary to preserve the   electron 
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orbital. According to this principle, we can destroy the edge state by passivating each 

carbon atom at the zigzag edge with two (rather than one) Hydrogen atoms [34]. 

This robust edge state is also spin-polarized, it plays an important role in the magnetic 

properties of nano size graphene systems since it contributes significantly to the DOS 

near EF.  The existence of this magnetic state has been confirmed using mean field 

theory [11, 35-42], the density matrix renormalization group for the Hubbard model 

[43], and density functional theory [12, 44].  This magnetic edge state has induced 

many interesting phenomena, such as half-metallicity [45], spin-polarized transmission 

[46], spin-filtering and rectifying behaviors [47], large magnetoresistance [48-53], spin-

valve effect [54, 55], and negative differential conductance [56].                  

This edge-localized state has been observed in recent experiments using scanning 

tunneling microscopy [57-60] and high-resolution angle-resolved photoemission 

spectroscopy (ARPES) [61].  Figure 1.10 shows one example of the experimentally 

observed zigzag edge state localized along the two edges of a GNR on Au (111). 

 

Fig. 1.10 Left panel: Constant-current STM image of a monolayer GNR on Au (111) at 

room temperature. Inset shows the indicated line profile. Right panel: Higher resolution 

STM image of a GNR at T = 7K (greyscale height map).  This figure is adapted with 

permission from Ref. [60], copyright (2011). 
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The localized nature offers the zigzag edge state many intriguing properties including 

the magnetic ordering and perfectly conducting channels along the zigzag edge 

dimension [30].  On the other hand, it also prevents the state from interacting with other 

states that are located away from the edge.    

1.2 Bonding and Antibonding Molecular Orbitals  

In molecular orbital theory, bonding and antibonding orbitals are formed when isolated 

atomic orbitals (AO) combine to form molecules.  Here, we illustrate this using an 

example of two 1s atomic orbitals of the Hydrogen atom, as shown in Fig. 1.11. When 

the two Hydrogen atoms are well isolated, there is no interaction between them, and 

they are at the same energy level. As the two hydrogen atoms approach one another, 

their atomic orbitals start to overlap. Therefore, the two atomic orbitals interact with 

each other and split into two molecular orbitals (MO) belonging to the pair.   

 

Fig. 1.11 Schematic illustration of two 1s atomic orbitals of the Hydrogen atom 

forming the bonding and antibonding molecular orbitals. 

 

One of the MO comes from addition of the two atomic orbitals.  It is lower in energy 

than the original atomic level, thus is more stable and promoting the bonding of two 

hydrogen atoms into hydrogen molecule H2.  Therefore, this MO is termed bonding 

MO. The other MO comes from subtraction of the two atomic orbitals and is higher in 
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energy than the original atomic level. This MO therefore is unstable and termed 

antibonding MO.  As a result of the addition and subtraction, the wavefunction pattern 

of the bonding MO is symmetric whereas that of the antibonding MO is antisymmetric.  

The energy splitting ∆E between the bonding and antibonding MOs is determined by 

the coupling strength, which is strongly related to the overlap of the two atomic orbitals. 

1.3 Motivation  

As we have reviewed in Section 1.1, nanoscale size and geometry introduce many 

interesting effects into the electronic and magnetic properties of graphene 

nanostructures.  Firstly, AGNRs show bandgaps mainly determined by their width.  In 

particular, 3p+2-AGNRs involve a Dirac point state that shows an interesting node on 

every third row.  Secondly, the graphene zigzag edge supports an edge state around EF 

that is localized along the edge.  If we combine the two geometries AGNR and zigzag 

edge into a single nanostructure, we expect to see more interesting phenomena.  One 

good design of such a single structure could be a junction made of AGNRs of different 

widths and naturally incorporating zigzag edges at the interface, as shown in Fig. 1.12 

(a).  In such a junction, the AGNRs and the zigzag edge may interact with each other to 

produce new interesting phenomena.  

1.3.1 Preliminary Results  

Previous to our work, Dr. Young-Woo Son has studied the transmission properties of 

such an AGNR-junction from tight-binding approach.  More specifically, the system for 

transport study is composed of a narrow AGNR segment sandwiched in-between two 

semi-infinite wider AGNRs (serving as the leads) and incorporating zigzag edges at the 

interfaces.  Figure 1.12 (a) gives an example of such a system, i.e. a 5-AGNR segment 
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sandwiched between two semi-infinite 23-AGNRs with two zigzag edged interfaces; 

we call this a 23-5-23-AGNR Z-Z junction.  As we will introduce in Chapter 5, if the 

junction involves one zigzag edged interface and one armchair-edged, we will call it a 

Z-A junction.  

 

 

Fig. 1.12 (a) A junction made of a 5-AGNR segment sandwiched between two semi-

infinite 23-AGNR leads and incorporating two zigzag edged interfaces (23-5-23-AGNR 

Z-Z junction). The red lines indicate the zigzag edges at the two interfaces.  The black 

box indicates one unit cell within the 5-AGNR region, and the length of the 5-AGNR 

segment l = 5 unit cells.  (b) Transmission curves of the 23-5-23-AGNR Z-Z junction 

with l varying from 1 to 5 unit cells, calculated by Dr. Young-Woo Son from tight-

binding approach. Black arrows indicate two interesting peaks that do not depend on l.  

These results are unpublished, and we are adapting them here with permission from Dr. 

Young-Woo Son. 

 

In particular, Dr. Son studied how the transmission curve varies as the length of the 

middle AGNR l increases.  Figure 1.12 (b) shows the TB transmission results of the 23-

5-23-AGNR Z-Z junction.  As l increases, the quantum confinement effect becomes 

weaker, hence the energy levels of molecular orbitals inside the 5-AGNR reduces 

towards the Fermi level.  Therefore, the corresponding resonant transmission peaks 

should also shift towards the Fermi level.  Most of the transmission peaks follow this 

trend, such as the Lorentzian-shaped peaks within the ranges of (±1, ±0.25) eV in Fig. 

1.12 (b).  However, there are two sharp peaks immediately below and above EF in the 
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23-5-23-AGNR Z-Z junction (indicated by black arrows in Fig. 1.12 (b)) that are 

almost independent of l.  

1.3.2 Objective of the Current Ph.D Project   

We are very curious of why the two transmission peaks are l-independent.  This could 

be another interesting phenomenon arising from the nanoscale size and geometry 

effects.  Therefore, we extended the research as a Ph.D project to explore the origin of 

this anomalous behavior.  With the two l-independent peaks as a starting point, we hope 

we could obtain a complete understanding of the junction combining AGNRs and 

zigzag edges into a single structure, with a focus on any new phenomenon arising from 

the interaction of these two geometries.    

In addition, the length-independent transmission spectrum suggests that the junction 

could sustain an invariant conductance with respect to length.  As we know, molecular 

wires constitute the basic circuitry for nanoscale electronic devices [62].  However, 

most molecular wires studied to date are single molecule junctions [63-69], where the 

low-bias conductance G decays exponentially with the length l of the molecule, G ~ exp(-βl) 

[62-67, 69, 70], for molecular wires shorter than ~3 nm [63].  This exponential decay with 

length is a signature of off-resonant tunneling through evanescent states in the molecular wire 

close to the Fermi level [69, 71-73].  The promising potential application of AGNR-junctions 

as perfect molecular wires greatly increases our motivation to further investigate the electronic 

and transport properties of these junctions.  

1.3.3 Thesis Outline 

The current thesis is organized as follows: 
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In Chapter 1, we have reviewed several size and geometry induced electronic properties 

in graphene nanostructures, including the family behaviour of AGNRs and the zigzag 

edge state.  We then introduced our motivation of studying a junction involving both 

AGNRs and zigzag edges and some preliminary transport results by Dr. Son’s 

involving two very interesting length-independent transmission peaks. 

In Chapter 2, we will review the calculation methods used in this Ph.D project, 

including how we construct the TB Hamiltonian, the density function theory, and two 

approaches to calculate the transport properties: scattering-state approach and non-

equilibrium green’s function approach.  

In Chapter 3, we will present some of our further studies on the bandstructures and 

wavefunction of AGNRs.  In particular, we will show a double bands feature in 3p+1-

AGNRs and explain its origin from the quantization effect across the width of AGNR. 

We will also discuss how the “3j” wavefunction pattern is affected if we consider the 

deformation at the armchair edges of 3p+2-AGNRs.  These AGNR results are good 

references for later discussion the AGNR-junctions in Chapters 4-9.  

In Chapter 4, we answered “why the two transmission peaks are length-independent?” 

from both a mathematical approach analyzing the wavefunction pattern, and the 

physical origin attributed to the zigzag edges.  

In Chapter 5, we further demonstrated that the two length-independent peaks arise from 

the bonding and antibonding coupling of two original states.  The original states 

originates from the zigzag edge and extends into the middle AGNR within the same 

sublattice. 



Chapter 1.  Introduction 

19 
 

In Chapter 6, we showed that the extension of the zigzag edge state into the middle 

AGNR results in a real non-decaying state in 3p+2-AGNRs and a decaying evanescent 

state in 3p- and 3p+1-AGNRs. 

In Chapter 7 and 8, we demonstrated two applications of the AGNR-junction: Large 

magnetoresistance based on the bonding and antibonding coupling principle and 

negative differential resistance based on the two peaks close to EF and the gap in the 

AGNR leads.  

Finally, we give a short conclusion and propose possible directions worth future 

investigation in Chapter 9.  
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Chapter 2. Calculation Methodology 

2.1 Tight-Binding Hamiltonian   

Consider a system where electrons are tightly bound to the atoms, i.e. the orbital    of 

each electron is strongly localized at an atom, then we can use    as the basis and 

approximate the solution to the whole system as a linear combination of these atomic 

orbitals (LCAO)   

                                                                   (2.1) 

 

Substituting this form of wavefunction into the Schrödinger equation for the whole 

system      , we get 

                                                                      (2.2) 

 

We can obtain each element     of the Hamiltonian    by multiplying    
   on both 

sides of Eqn.(2.2) 

                                                (2.3) 

Assuming the Hamiltonian as a sum of all the atomic Hamiltonians    (Hamiltonians 

for isolated atoms) perturbed by the crystal field of other atoms       , then each 

diagonal  element  

                                                                    (2.4) 
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is the atomic energy    plus a shift due to the crystal field of other atoms       .  The 

shift is usually small since the atomic orbitals       are strongly localized (tightly bound) 

on atom i. 

The off-diagonal matrix element             
 
          

  is the hopping integral 

that couples the atomic orbitals       and       together.  It is closely related to the 

overlapping between the atomic orbitals            .  This value is larger when 

orbitals    and    are spatially closer to each other, and becomes negligible when    

and    are separated far away.  In many cases, the matrix elements     and     are 

found from either first-principles calculations or experimental data.  For example, the 

hopping integral between nearest neighbours of the  -orbitals in graphene is found to 

be        [29].  We then solve the Tight-Binding (TB) Hamiltonian matrix to find the 

eigenenergies Em and vector form eigenwavefunctions                  , where m 

is the index of the eigen-solution.  

In the present Ph.D project, we used this tight-binding model to calculate the 

eigenstates of graphene nanostructures under periodic boundary conditions, including 

perfect AGNRs (see Section 3.4) and AGNR Z-Z junctions.  We consider interactions 

between nearest neighbours only, which is sufficient to describe the essential physics of 

graphene  -electrons [12, 29].  Figure 2.1 shows a ladder representation of the 23-5-23-

AGNR Z-Z junction.  Each body atom has three nearest neighbours: on the top, bottom, 

and left/right, while each edge atom has only two nearest neighbours.  We apply the 

periodic boundary condition along the length direction (z direction in Fig. 2.1) by 

making atoms at the most left column to be neighbouring with atoms at the most right 

column.  The length of 23-AGNR segment is 8 unit cells, which we found is enough to 

screen effects from the other zigzag edge over the 23-AGNR from our convergence 
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tests.  As the unit cell of this periodic structure contains a huge number of atoms N, the 

Hamiltonian matrix is of dimension N×N.  We use MATLAB to solve the Hamiltonian 

and obtain the eigenenergies and eigenwavefunctions at Γ-point. 

 

Fig. 2.1 Ladder form representation of the 23-5-23-AGNR Z-Z junction under periodic 

boundary condition.  Each point represents an atomic site and each horizontal or 

vertical segment between the atomic sites represents the coupling between nearest 

neighbours.   

 

In fully relaxed graphene structures, the bond lengths at the armchair edge (blue bonds 

in Fig. 2.1) are shorter than bond lengths at the inner region by 3.5%, which is 

energetically favourable due to the Peierls’ distortion effect [12].  This 3.5% shortage in 

bond length corresponds to a 12% increase in hopping integral.  The TB Hamiltonian 

can easily take this edge deformation effect into account by using a slightly larger 
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hopping integral of                          between atoms at the armchair 

edge.  

2.2 Density Functional Theory 

Many of the properties of atoms, molecules, and solids may be understood by solving 

the time-independent Schrödinger equation 

               (2.5) 

where the non-relativistic many-body Hamiltonian can be represented by five terms: 

                                                 

           
  

   
  

 

 

 
  

  
   

 

 

   
    

           
  

 

                         
      

           
    

   
  

               

                  

The indices     run over the nuclei, and     run over the electrons.    is the nuclear 

number,   is the elementary charge, and    and   are the masses of the nuclei and 

electrons respectively. 

Solving Eqn. (2.6) for a system of many particles is intractable in practice. Fortunately, 

many approximations are proposed to reduce the many-body problem to a single-

particle one, the first of which is the Born-Oppenheimer approximation. 

2.2.1 The Born-Oppenheimer Approximation 

Since nuclei are thousands of times more massive than electrons, they are nearly fixed 

with respect to electron motion. The wavefunction can thus be separated as  

                            (2.7) 
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In this frozen nuclei approach, the electronic wavefunction          depends only 

parametrically on the nuclear coordinates   , and satisfies the Schrödinger equation for 

electrons 

  
  

  
   

 
    

    

                
  

           
                                 (2.8) 

whereas       is a wavefunction of the nuclear coordinates only and satisfies 

   
  

   
  

 
    

      

                                             (2.9)  

After adopting the Born-Oppenheimer approximation, the many-body problem is 

reduced to the solution of the dynamic electrons in the background of frozen nuclei.  

This however is still difficult to solve. Many approaches can further reduce the 

equation to a single electron scenario, such as the Hartree Fock approximation and 

density functional theory. 

2.2.2 Density Functional Theory 

Density functional theory (DFT) describes the properties of the system using 

functionals that only depend on the electron density     . For a system with    

electrons, the density is defined as:  

                
  
                    

  
 
        

           (2.10)   

where the density is normalized according to  

                     (2.11)     

Let us consider the electronic part of the Schrödinger equation (2.8) again, with the 

Hamiltonian written here in atomic units: 
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Let us first start by calculating the expectation value of      

                                                  

                              
  

       

  

 

  

 

          
  

 
        

                                

We can then expand the sum over the electronic index i and separate the integral over 

the variable in the Columbic terms from the others 

      

 
 
 
  

  

       
                          

  
  

       
                             

 
 
 
   

 

                   

For each term in Eqn. (2.14), the second integral is equal to the electron density as 

defined in Eqn. (2.10), differing by a factor of      . By changing the variable of 

integration and summing over the term, the electron-nucleus energy can be written as  

                        
  

      
  

  

 

                                          

This linear functional form     can be extended to      that includes any single-body 

external potential terms such as an applied electric field. 

 Using the same derivation technique for the electron-electron interaction, 
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where            is the two-particle density. We can write this term as the product of 

one-electron densities plus an unknown correction term that arises from electron 

correlations: 

                                     (2.17) 

The electron-electron interaction energy can now be written as 

    
 

 
 

         

      
                           

The first term is known as the Hartree energy, and the correction term is generally non-

negligible. 

In order to approximate the kinetic energy term, we have to introduce the Kohn-Sham 

orbitals   , defined as single-particle orbitals whose collective ground-state density is 

the same as the real system. 

              
  

 

                            

The kinetic energy T can then be written as the kinetic energy of the Kohn-Sham 

orbitals plus a correction  

  
 

 
    

                

  

 

                   

While the kinetic energy cannot be differentiated directly with respect to the density 

     it can be minimized with respect to the orbitals       which is equivalent to 

minimizing with respect to     . 
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The sum of the two unknown terms      and    is called the exchange-correlation 

energy    . It plays crucial role in DFT and we will later introduce some 

approximations to this term. The total energy as a functional of      can now be 

written as 

                            

 
 

 
     

                          

  

 

 
 

 
 

         

      
                         

2.2.3 The Hohenberg-Kohn theorems 

Before introducing the Kohn-Sham equations, we will first prove two theorems put 

forward by Hohenberg and Kohn in 1964 [74] that made DFT possible. The first 

theorem legitimizes the use of electron density as a variable instead of wavefunctions. 

 

Theorem 1. The external potential         is a unique functional of the ground state 

electron density      . 

Proof. Assume that there exist two external potentials      and       differing by more 

than a trivial constant, that result in the same ground state electron density,      . Let 

their distinct Hamiltonians be    and     and the wavefunctions   and   , respectrively. 

Due to the variational principle, the ground state energies satisfy the following 

inequalities: 

                                                        

                                                             
                            (2.22) 

and 
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                                                                                                          (2.23) 

Adding Eqns. (2.22) and (2.23), we obtain 

     
    

           (2.24) 

which is clearly a contradiction. Hence the theorem is proven by reduction ad 

absurdum. 

The second theorem provides the energy variation principle. 

Theorem 2. A universal functional for the energy    can be defined in terms of the 

electron density. The exact ground state is the global minimum value of this functional. 

Proof. The ground state energy is determined uniquely by the ground state density, 

    . A different density,       will necessarily give a higher energy by variational 

principle  

                                       (2.25) 

It follows that the electron density that minimized the energy is then the ground state 

density. 

2.2.4 The Kohn-Sham Equations 

Using the Hohenberg-Kohn theorem, the ground-state electron density is the density 

that minimizes the energy functional E[n] (defined in equation (2.21)) with the 

normalizing constraint equation (2.11) that the total number of electrons is conserved. 

Mathematically, 
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                           (2.26) 

where µ is the Lagrangian multiplier. If we define an effective potential that is the 

functional derivative of all the energy terms in equation (2.21), that is  

               
 

     
              

            
    

      
   

    

     
                               

We can obtain the Euler equation from Eqn. (2.26) as  

     

     
                                           

Equation (2.28) is precisely the same equation obtained for a system of non-interacting 

electrons moving in an external potential. Hence for a given external potential           , 

to find the ground-state density       that satisfies equation (2.28), we simply solve the 

one-electron Schrödinger equations 

                                  (2.29) 

Hence, eqns. (2.27), (2.19), and (2.29) can be solved consistently. 

The total energy of the system can be computed using the following flow-chart Fig. 2.2 . 
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Fig. 2.2 Self-consistent procedures for the calculation of total energy using DFT. 

2.2.5 Local Density Approximation 

While the exact functionals for the exchange and correlation are not known in general, 

there are several approximations that reproduce certain physical quantities quite 

accurately.  The simplest one is the local density approximation (LDA), which assumes 

that the exchange correlation energy per electron           is equal to that of a 

homogeneous electron gas that has the same density at the same point r.  Therefore, 

   
            

                             

LDA assumes that the exchange-correlation energy functional is purely local, hence 

ignoring corrections to the     due to nearby inhomogenities in     . It is herefore very 

surprising that calculations performed using LDA have been so successful.  This is 

partially due to the fact that the LDA gives the correct sum rule to the exchange 
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correlation, whereas it typically overestimates exchange    and underestimates 

correlation   . We shall employ LDA, and the spin-polarized version throughout the 

calculations. 

2.2.6 Local Spin Density Approximation 

The extension of LDA to spin polarized systems is straightforward. Firstly we can 

define electron densities for the spin-up and spin-down states as : 

          
     

   

   , 

                   
     

   

          (2.31) 

And we can introduce the total charge and magnetization: 

                ,                    ,        (2.32) 

The quantization axis is usually chosen as the z axis.  

The total energy is now a functional of the up and down charge densities, but more 

conveniently expressed in terms of n and m: 

                                 (2.33) 

We can now exploit the properties 

     

       
 

     

       
        , 

     

       
        , 

     

       
              (2.34) 

And calculate the functional derivatives to get the Hamiltonian. The Kohn-Sham 

equations become 
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where 

       
         

     
           

         

     
               

Magnetism stems from the exchange-correlation functional, where one spin is more 

energetically favourable than the other (as under a magnetic field). This is called the 

local spin-density approximation, or LSDA. The spin-polarized exchange functional is 

obtained from the unpolarized case as  

  
            

                     
 

 
  

                        (2.36) 

where 

  
           

                 (2.37) 

The correlation functional can be obtained from the interpolation of polarized and 

unpolarized functionals: 

  
              

                  
          

                    (2.38) 

where   is a smooth interpolating function of the polarization  

  
    

    
 

             

             
              

2.2.7 Implementation of DFT on this Project 

In this Ph.D project, we use the DFT implemented in the Spanish Initiative for 

Electronic Simulations with Thousands of Atoms (SIESTA) [75], which utilizes 
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atomic-orbitals as basis-set.  We use a double-ζ basis-set, which we have tested to be 

accurate enough for carbon systems.  We use the LDA for the exchange-correlation 

functional. All edge carbon atoms in the graphene structures are passviated with a H 

atom and the structure is fully relaxed until the forces on atoms are less than 0.01 eV/Å.   

2.3 Electrical Transport Calculation 

In each step of the self-consistent calculation within DFT, a standard procedure to solve 

the Kohn-Sham equation and obtain the electron density n(r) is to project the equation 

into a set of basis functions   , thus transforming it into a matrix eigenvalue problem 

(see Section 2.1, especially Eqns. (2.1) to (2.3), for more details) 

                     (2.40) 

where               and            . 

For an isolated system or a unit cell of a periodic system, the Hamiltonian matrix is 

finite, thus solvable via standard linear algebra packages.   

However, when we probe the transport property of a nanostructure, we need at least 

two semi-infinite leads connected to the nanostructure, as illustrated in Fig. 2.3. One 

lead is put at a lower chemical potential    while the other is put at a higher chemical 

potential   , so that electrons will be driven by the bias voltage              to 

transport from one lead to the other.  For such an open system, the reduction of system 

size is less obvious.  The trick here is to separate the system into two lead regions and a 

central region, so that we can solve the Hamiltonian for the leads as bulks, and then use 

these solutions as matching boundary conditions for the central region.  The central 

region should include large enough parts of the leads to screen the effects from 
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presence of the surfaces of the leads, the nanostructure, and the voltage drop, so that the 

remaining lead regions outside the central region could be in the same situation as in an 

equivalent bulk.  

 

Fig. 2.3 An example of the 2-lead system: a 5-AGNR segment coupled seamlessly to 

two semi-infinite 23-AGNR leads.  The regions 0, 1 (  ), and 2 (  ) represent the central 

region, the intermediate region and the bulk region on the left (right) side. 

 

 

Here, we describe two approaches in obtaining the electron density      in the central 

region of a 2-leads system: the scattering-state approach and the non-equilibrium 

Green’s function (NEGF) approach. 

2.3.1 The Scattering-State Approach 

The scattering-state approach [76] directly calculates all the eigenstates of the 2-leads 

system, and integrate all the occupied scattering and bound states up to the chemical 

potentials    and    to obtain      as: 

     

            

   
      

 

      

   
        

  

  
 

             

   
      

 

      

   
        

  

  
                     

           (2.41) 
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Here, the factor 2 accounts for the number of spins,       

   
    (      

   
   ) is the density 

of states per spin in the left (right) lead, and       is the occupation number of the 

bound state    at energy   . 

In principle, the scattering-states can be obtained in a similar way as calculating the 

transmission probability of a square potential barrier, as described in many textbooks 

(e.g. [77]). Namely, we first solve different regions separately to obtain general 

solutions, then determine the final solution by letting wavefunctions match at the 

interfaces between different regions.   

The situation in a real nanostructure with two leads is more complicated because of the 

many unknown potential terms arising from all the nuclei and electrons in the system, 

which we have to determine self-consistently using DFT.  We divide the 2-leads system 

into 5 regions as shown in Fig. 2.3: the central region that contains the nanostructure 

and enough parts of the leads (region 0), two intermediate regions that are the first unit 

cells of the leads (regions 1 and   ), and two semi-infinite bulk regions (regions u and   , 

with u = 2, 3, 4, …).  

As the first step, we solve each lead using standard DFT calculations by considering 

only one unit cell (2 or   ) under periodic boundary condition, and obtain all 

eigenwavefunctions at each energy E of a continuous energy spectrum. Each 

eigenwavefunction is in the form of a linear combination of the    atomic basis-

functions within one unit cell, with all the coefficients constituting a vector (  
   

   
   

 

    
   

      

   
  or (  

    
   

    
     

    
      

    
 . 

Then, we use the solutions of the leads to calculate the central and intermediate regions. 

The matrix form Kohn-Sham equation for the central and intermediate regions are 
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for the i
th

 orbital (      ) in the central region, 

    
    

  

   

  
   

     
    

  

   

  
   

     
    

  

   

  
   

                

for the i
th

 orbital (      ) in the intermediate region on the left side, and 

    
     

  

   

  
   

     
      

   

   

  
    

     
      

   

   

  
    

                

for the i
th

 orbital (       ) in the intermediate region on the right side. Here,  

   
    

          
   

                             (2.43) 

represents the interaction between the i
th

 orbital in the unit cell   of region x and the j
th

 

orbital in the unit cell     of region y, and   
   

 represent the coefficient of the j
th

 orbital 

in region x. 

The effects from the leads are involved in the terms     
      

     
   

 and 

    
         

     
    

, where   
   

 and   
    

 are known from solutions of the leads.  We are left 

with only           undetermined coefficients, which is same as the total number 

of equations. Given all the potential terms in    
    

, we can solve these           

equations to obtain the coefficients on the           atoms in the resistive and 

intermediate regions.  
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All the             coefficients together form the scattering-state       

   
      or 

      

   
     , representing a wavefunction coming from the Left or Right lead at energy 

E, with a wave number   in the transport dimension and a wave vector    in the 

transverse dimension. Besides these scattering-states coming from one lead, there may 

also exists bound states          within the central region.  Such states can be solved 

by letting   
   

   
    

   in Eqn. (2.42).  

After obtaining all the scattering-states and bound states, we then use Eqn. (2.41) to 

obtain the electron density     .  After that, we calculate effective potential in    
    

 

from      and go to the next loop of the self-consistent calculation until convergence is 

reached.  In particular, the Hartree potential in the central region is uniquely determined 

by the Poisson equation inside the region and the values on the boundary planes 

between the central region and the intermediate regions.  The Hartree potentials inside 

the intermediate and bulk regions are obtained from the separate lead calculations.  

Note that the central region has to contain large enough parts of the leads so that 

voltage drop occurs within the central region. 

Once self-consistence is reached, we can determine the transmission probability 

              from the scattering-states, and integrate all the transmission probabilities 

within the voltage bias to obtain the current  

      
    

 
                

  

  

 

where               represents the average over k. The flow chart of this scattering-

state calculation is shown in Fig. 2.4. 
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Fig. 2.4  Flow chart for the DFT self-consistent calculation of a 2-lead system from the 

Scattering-State approach.  

 

This scattering-state approach can be implemented in any localized-orbital-based DFT 

code.  For calculations in the present thesis, we have used this method as implemented 

in SCARLET [76].  

2.3.2  Non-Equilibrium Green’s Function 

Instead of calculating the scattering-states, the non-equilibrium green’s function 

method obtains the electron density      from the spectral-density operator [78] 
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By integrating       over all occupied energies, we obtain the total density  

                 
 

  

             

where   is the Fermi distribution function and   is the chemical potential of the system. 

Then the spatial electron density      can be evaluated by taking the trace of the 

density matrix    as 

                            

According to the Sokhotski-Plemelj theorem    
 

      
         where    is an 

infinitesimal positive number [79, 80], the spectral density       can be obtained from 

the (retarded) Green’s function  

      
 

        

                

as   

       
 

 
                        

We transform Eqns. (2.45), (2.46), and (2.44) into matrix form by projecting the 

operators into basis functions        . 
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where   represents an identity matrix.  As the spectral-density      is usually a rapidly 

varying function along the axis  , the integration in         over   is replaced by an 

equivalent contour integration in the complex plane. The problem of calculating      

now is converted to the matrix inversion in Eqn. (2.47a).  Because the 2-lead system is 

infinite, the matrix to be inverted is also of infinite dimension.  However, the electron 

density in the leads can be calculated separately as a standard DFT bulk calculation, 

and we only have to solve      in the central region.  Since the basis functions         

are localized, we only need to calculate a sub-matrix of the Green’s function in the 

central region plus a few layers of the leads. 

Self  Energy 

The Hamiltonian matrix for the whole 2-lead system can be written as 

   

       
         

       

  

where the sub-matrixes    ,    ,     represent the Hamiltonian for the left lead, the 

central region, and the right lead, respectively.         
  and        

  

represent the coupling between the central region and the left or right lead.  

If there were no interaction between the central region and the leads, the total 

Hamiltonian is block diagonal, and the unperturbed Green’s functions will be 
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From these unperturbed Green’s functions, we can obtain the perturbed Green’s 

function through the Dyson’s equation 

       
     

                        

where     and    are the self energies of the two leads  

         
    

                

         
    

               

We can solve Eqns. (2.47) and (2.48) to obtain [81, 82] 

                          
    

        
    

  
  

             

Green’s Functions of the Leads 

In order to obtain     according to Eqn. (2.49), we need to obtain the unperturbed 

Green’s functions of the leads    
  and    

 , which could not be obtained from matrix 

inversion because the corresponding Hamiltonians     and     are of infinite 

dimension.  However, since the leads are periodic,    
  and    

  can be approximated 

using a recursive algorithm.   

We divide the lead into unit cells   ,       , …, of an appropriate size so that only 

neighboring unit cells can interact. Thus, the Hamiltonian     could be written as 

periodic blocks along the diagonal 
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where      
      

=     
   and      

      
   can be obtained by the 

separate lead calculation as a bulk. 

We can then build up a recursive approximation of    
  as 

     

    
              

      
 
  

 

     

    
              

      
      

     

    
     

  
  

 

     

    
              

      
      

     

    
     

  
  

                    

where the superscript     represents the order of approximation.  We can then solve the 

unperturbed Green’s function of both leads recursively until it is converged.  

Finite Bias 

When a bias    is applied, the two leads will be at different chemical potentials    and 

  . Assuming      , we can divide the density matrix    into an equilibrium part      

with energies below both chemical potentials and a non-equilibrium part       with 

energy in-between the two chemical potentials 
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Here,        represents the spectral-density contributed from the right lead.  It can be 

obtained from the Green’s function and the self energy of the right lead as [83, 84] 

                                      

     can be calculated in the same way as for the case without bias voltage, where we 

can use the complex contour integration technique.  However,        is not an 

analytical function, so the integral in Eqn.         can not be extended into the 

complex plane. It has to be calculated along the real   axis, and a dense grid of energy 

points has to be used to account for the rapid variation of       .  For large bias, this 

real axis integration is the most time consuming part of the calculation. 

Effective Potential and Self-Consistent Loop 

So far, we have been discussing algorithms to calculate the electron density      from 

the Hamiltonian H via Green’s function approach in both zero bias and finite bias cases. 

The other half of one self-consistent loop is to calculate the Hamiltonian as a functional 

of the electron density     .  Most terms in the Hamiltonian can be calculated 

following the standard procedures presented in Section 2.2 Density Function Theory.  

However, we need to take special consideration for the Hartree potential term 

(electrostatic potential from electron charge density), especially when a finite bias is 

applied.  The Hartree potential is calculated from the Poisson’s equation  
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Poisson’s equation requires a boundary condition to fix the solutions, as it is a 2
nd

-order 

differential equation.  For the lead calculations, we use periodic boundary conditions, 

which determines the Hartree potential with a floating additive constant.  When a bias 

   is applied, we align the Hartree potential in the left and right lead with a difference 

of    . The Hartree potentials in the two leads then define the boundary conditions to 

solve for the Hartree potential in the central region.  

The self-consistent calculation combining NEGF and DFT to obtain the electronic 

structure of the 2-lead system can be summarized in the flowchart in Fig. 2.5. 

 

Fig. 2.5 Flow chart for the DFT-NEGF combined self-consistent calculation of a 2-lead 

system.  
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Transmission Probability and Current 

Once self-consistency is reached, we can get the transmission probability from the 

Green’s function as  [81, 84] 

                                                 

We can then calculate the current by integrating the transmission probability of all 

occupied states 

  
  

 
                        

 

  

            

This NEGF method has been implemented in many software packages, including 

McDCAL [85], TranSIESTA [83], and ATK.  NEGF calculations in the present thesis 

are performed using TranSIESTA. 
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Chapter 3. Bandstructures and Wavefunctions in 

three Families of AGNRs 

Before discussing the wide-narrow-wide-AGNR junction, we first present some results 

on the bandstructures and wavefunctions in three families of AGNRs. We will refer 

back to these results when we analyze the AGNR-junctions in later chapters. 

As we have reviewed in Section 1.1, AGNRs are classified into three families 

according to its width n = 3p, 3p+1, or 3p+2. Tight-Binding calculations predict that 

3p+2-AGNRs are metallic while 3p- and 3p+1-AGNRs are semiconducting.  Such 

family behavior can be understood from the simple quantization approach [17] we 

reviewed in Section 1.1.1, where the transverse wavenumber is quantized into discrete 

values   
            . We can surmise the bandstructure of an n-AGNR as the 

projections of graphene bands onto these   
 

 values. It happens that   
 

 would cut 

through a Dirac point at          if       , so 3p+2-AGNRs have no gap.                                                                           

Later DFT calculations predicted an increase in the gaps for all three families of 

AGNRs, which means 3p+2-AGNRs become semiconducting too.  Such increase of 

gap can be reproduced from an analytical Tight-Binding approach considering the edge 

deformation effect (Peierls’ distortion effect) [12].  

3.1 Double Bands in 3p+1-AGNRs 

Figure 3.1 shows the DFT bandstructures of n-AGNRs with n = 3 to 14.  We see 

obviously that the gaps of 3p+2-AGNRs are much smaller than that of 3p- and 3p+1-

AGNRs. Within each family, the gap decreases with increasing ribbon width n, 
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consistent with previous studies.  Focusing on the bands near the gap, we see another 

trend on both the occupied and the unoccupied side: each 3p+1-AGNR has two bands 

at similar energies (indicated by the red boxes in Fig. 3.1), while each 3p- or 3p+2-

AGNR has only one single band near EF.  For description convenience, we refer to the 

two bands in each 3p+1-AGNR as double bands. To our knowledge, such double bands 

feature has neither been pointed out nor explained so far.  Here, we explain this 

property from the quantization approach we introduced in Section 1.1.1. 

 

Fig. 3.1 Band structures of hydrogen passivated n-AGNRs with n varying from 3 to 14, 

obtained by DFT calculations implemented in ATK [75] with double-zeta polarized 

basis-set. The zero energy is set at Fermi level.  The red boxes indicate the double 

bands in 3p+1-AGNRs. 
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3.2 Γ-point Wavefunctions of AGNRs  

In order to find out the origin of each band near EF, especially the double bands in 

3p+1-AGNRs, we calculated the Γ-point eigenwavefunctions of these single or double 

bands, as visualized in Fig. 3.2.  For description convenience, we refer to the Gamma-

point wavefunction Orbital of the Lowest Unoccupied band as LUGO, and the 

Gamma-point wavefunction Orbital of the Highest Occupied band as HOGO.  

Accordingly, we refer to the Gamma-point wavefunction Orbital of the second, third, 

fourth, …, and n
th

 Lowest Unoccupied (Highest Occupied) band as LUGO+1 (HOGO-

1), LUGO+2 (HOGO-2), LUGO+3 (HOGO-3), … , and LUGO+(n-1) (HOGO-(n-1)), 

respectively.   

First of all, the AGNRs within the same family show similar wavefunction patterns.  

For example, the HOGOs and LUGOs of 3p+2-AGNRs all exhibit a “3j” pattern [8]: 

absence of wavefunction distribution on the (3j)
th

 rows of carbon atoms, where j = 

positive integer (see Section 1.1.2 for details). Secondly, the HOGO-1 (LUGO+1) of 7-

AGNR looks like two HOGOs (LUGOs) of 3-AGNR separated by an empty carbon 

row in the middle.  The HOGO-1 (LUGO+1) of 13-AGNR also looks like two HOGOs 

(LUGOs) of 6-AGNR separated by an empty carbon row in the middle. This similarity 

implies that the second lowest unoccupied (second highest occupied) band in 3p+1-

AGNRs could have similar a origin as the lowest unoccupied (highest occupied) band 

in 3p-ANGRs. 
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Fig. 3.2 The Γ-point eigenwavefunctions of AGNRs for the bands near the Fermi level.  

HOGO (LUGO) and HOGO-1 (LUGO+1) represent the Gamma-point wavefunction 

Orbital of the Highest Occupied (Lowest Unoccupied) and the second Highest 
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Occupied (Lowest Unoccupied) bands, respectively. The red and blue color represent 

positive and negative isosurfaces of the wavefunction, respectively. 

3.3 Understanding from the Quantization Approach 

Next, we examine the origin of each band of AGNRs in the 2D π- and π*-bands of 

graphene based on the quantization approach. We take 4-AGNR, 5-AGNR, and 6-

AGNR as examples and indicate their unoccupied bands in Fig. 3.3 as horizontal lines 

slicing the 2D π*-band of graphene.  5-AGNR has a quantized   value (        ) 

slicing through the K point exactly, while 4-AGNR and 6-AGNR do not have any 

quantized   value slicing through a Dirac point.  

Since we are interested on bands near EF, we focus on the region near K point.  For 4-

AGNR, the two quantized   values nearest to K point are 3/15 and 6/15 (in units of  

    ).  One of them is below K point by 2/15, while the other is above K point by 1/15.  

In other words, the    value below K point is two times further to K point than the    

value above K point.  In fact, this is true for all 3p+1-AGNRs. A 3p+2-AGNR has a 

quantized    
   

        
  1/3 cutting through the K point, but a 3p+1-AGNR has no 

such    value cutting through any Dirac point. For a 3p+1-AGNR, the two quantized 

   values nearest to K point are  
 

        
  and  

   

        
 , the former one is below K 

point by 
    

            
 while the latter one is above K point by 

   

            
.  It is clear 

that the former one is two times further from K point than the later one. 

On the other hand, the energy contours of graphene π*-band near K point are triangular, 

with the energy minimum located at the K point (Fig. 3.3).  Due to this triangular shape, 

the energy contours are sparser below the K point and denser above the K point 

(looking along the vertical line with      ).   
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Fig. 3.3 2D energy contour plot of the graphene π*-band and its projection onto discrete 

   values for 4-, 5-, and 6-AGNRs.  The dashed black box on the right panel indicates 

the reduced Brillouin Zone, and is zoomed-in on the left panel.  

 

The two effects 1) “in 3p+1-AGNRs, the band immediately below K point is further to 

K point than the band immediately above K point” and 2) “the graphene energy 

contours are sparser below K point than above K point” roughly offset each other.  As 

a result, the lowest and second lowest unoccupied bands in each 3p+1-AGNR turn out 

to be at quite similar energies, especially at and near      . This is also true for the 
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occupied bands, and explains the double bands feature observed in 3p+1-AGNRs  (Fig. 

3.1). 

For 6-AGNR, the two quantized   values nearest to K point are 6/21 and 9/21 (see Fig. 

3.3), so the    above K point is further to K point than the    below K point, which is 

true for all 3p-AGNRs.  In addition, the energy contours above K point are denser.  The 

two effects add together and make the lowest and the second lowest unoccupied bands 

in a 3p-AGNR at quite different energies.  So there is no double bands observed in 3p-

AGNRs. 

We also note from this quantization analysis that the lowest unoccupied band (highest 

occupied band) in a 3p-AGNR originates from graphene π*-band (π-band) immediately 

below the K point, at a   value similar as that of the second lowest unoccupied band 

(second highest occupied band) in a 3p+1-AGNR.  This explains why the LUGO+1 

(HOGO-1) in 3p+1-AGNRs look similar as the LUGO (HOGO) in 3p-AGNRs (Fig. 

3.2).  By the same argument, we expect that the HOGO (LUGO) in 3p+1-AGNRs 

would also look similar as the HOGO-1 (LUGO+1) in 3p-AGNRs.  

3.4 The “3j” Pattern under Edge Deformation 

As we have reviewed in Section 1.1.2, the HOGO and LUGO of 3p+2-AGNRs exhibit 

an interesting “3j” pattern: absence of electron density on every third carbon row. This 

pattern has been recognized in the literature since 1987 [17, 25-27], and recently 

predicted analytically from tight-binding approach to be existing at EF. The analytical 

TB approach ignores the deformation at the armchair edges [8]. In reality, as AGNRs 

energetically favor a deformation at the edge due to Peierls’ distortion effect, which 
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opens a small gap in 3p+2-AGNRs [12], we wonder can the “3j” wavefunction pattern 

survive by considering the edge deformation effect?   

The physical origin of the “3j” pattern is a standing wave with wavelength        

formed by intervalley backscattering of Fermi electrons scattered off the armchair 

edges on both sides of a 3p+2-AGNR [8].  From this point of view, we expect that once 

the electron energy is away from EF, the wavelength   of this standing wave would also 

deviate from 3a/2.   

In fact, such “3j” pattern is still observed experimentally in 14-AGNR, but with a very 

low resolution, as shown in Fig. 1.6 (b) left panel [23], where we believe edges are 

deformed. Our DFT calculated HOGOs and LUGOs of fully relaxed and hydrogen-

passivated 5-AGNR, 8-AGNR, and 11-AGNR (Fig. 3.2) also indicate a preservation of 

this “3j” pattern.  However, if we plot these wavefunctions with much smaller 

isosurfaces, as shown in Fig. 3.4 (d) and Fig. 3.5 (d), we could see some density of 

states on the 3
rd

 and 9
th

 rows of 11-AGNR.  However, in the middle row of the AGNRs, 

i.e. the 3
rd

 row of 5-AGNR and the 6
th

 row of 11-AGNR, there is still almost no density 

of states.     

To get a further insight into such DFT calculated patterns, we solved the nearest-

neighboring TB Hamiltonian (see Section 1.1.3) with and without considering the edge 

deformation effect.  Figure 3.4 (a-b) and Fig. 3.5 (a-b) show the HOGOs of 5-AGNR 

and 11-AGNR, respectively.  Without considering the edge deformation effect, the 

HOGOs of 5-AGNR (Fig. 3.4 (a)) and 11-AGNR (Fig. 3.5 (a)) are both at EF and both 

show a perfect “3j” pattern (coefficients on carbon atomic sites in the (3j)
th

 rows are 

exactly zero), which is consistent with previous analytical prediction [8]. Moreover, the 

non-zero coefficients on other atoms are of the same magnitude.  
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Fig. 3.4 (a-b) The HOGO of 5-AGNR by solving the tight-binding Hamiltonian with 

nearest neighbor (nn) approximation. In (a), we used a uniform hopping parameter 

           for the whole structure, whereas in (b) we used                

         for               , and        for the rest    .  The radius of the red/blue 

spheres indicate the magnitude of the TB wavefunction coefficient at each atomic site 

with a +/- sign, and the figures on the left show the exact values of these coefficients. 

(c-d) The HOGO of hydrogen-passivated 5-AGNR (c) without and (d) with relaxation 

calculated using SIESTA with double-zeta basis-set. For clarity, we showed the 

wavefunction on only one of the two sublattices.  
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Fig. 3.5 (a-b) The HOGO of 11-AGNR by solving the tight-biding Hamiltonian with 

nearest neighbor (nn) approximations. In (a), we used a uniform hopping parameter 

       for the whole structure, whereas in (b) we used          for                 , 

and        for the rest.  The radius of the red/blue spheres indicate the magnitude of 

the TB wavefunction coefficient at each atomic site with a +/- sign (they are 

exaggerated to show the differences), and the figures on the left show the exact values 

of these coefficients. The two small figures at the bottom of (b) show the zooming-in at 

energy ranges of (±0.23, ±0.27) eV. (c-d) The HOGO of hydrogen-passivated 11-

AGNR (c) without and (d) with relaxation, calculated using SIESTA with double-zeta 
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basis-set, with isosurface = +/- 0.01. For clarity, we showed the wavefunction on only 

one of the two sublattices.  

 

As we take a 3.5% decrease [12] for bond lengths at the armchair edges into 

consideration (Fig. 3.4 (b) and Fig. 3.5 (b)), the HOGO changes in many aspects: 

Firstly, the energy levels are shifted to 0.1571eV and 0.0774eV below EF, for 5-AGNR 

and 11-AGNR respectively.  These energy levels agree very well with the DFT 

calculated energy levels for hydrogen-passivated 5-AGNR and 11-AGNR without 

relaxation (Fig. 3.4 (c) and Fig. 3.5 (c)).  After the hydrogen-passivated AGNRs are 

fully relaxed, their energy levels are shifted further down by a small amount, but the 

wavefunction patterns remain almost the same (Fig. 3.4 (d) and Fig. 3.5 (d)).                   

Secondly, the coefficients on carbon atoms in the 3
rd

 and 9
th

 rows of 11-AGNR deviate 

from zero, while the coefficients on the middle row (6
th

 row of 11-AGNR and 3
rd

 row 

of 5-AGNR) are still almost zero.  These coefficients on the (3j)
th

 rows are consistent 

with our DFT results (Fig. 3.4 (c-d) and Fig. 3.5 (c-d)).   

Thirdly, the coefficients on atoms in the (non-3j)
th

 rows are no longer of the same 

magnitude.  Instead, both the positive coefficients and the negative coefficients are 

increasing in magnitude from one armchair edge towards the other edge. The absence 

of coefficients on the middle row is a result of cancellation of the symmetrically 

increasing coefficients from both armchair edges.    

Next, let’s use the TB results to understand the changes in energy and wavefunction 

pattern due to the deformation at the armchair edges. According to Eqn. (1.4), we can 

obtain the eigenenergy as 

                         (3.1) 
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for     .   

For the case without edge deformation, the HOGOs of 5-AGNR and 11-AGNR both 

exhibit a perfect “3j” pattern. In such a pattern, each carbon atom has only two effective 

nearest neighbours with non-zero coefficients, that are of the same magnitude but 

opposite sign. In addition,     is uniform over the whole structure since all the bond 

lengths are considered to be the same. Therefore,  

                  (3.2) 

for all carbon atoms i.  This means that a perfect “3j” pattern gives an eigenenergy of 

exactly zero. 

As the bond lengths at the armchair edges become shorter, a perfect “3j” pattern can no 

longer be a solution to the TB Hamiltonian.  Would it be, the eigenenergy obtained via 

Eqn. (3.1) from an atom i in the inner region is E = 0, but the eigenenergy obtained 

from an atom j at the armchair edge would be     as the hopping parameter with one 

of j’s two neighbours increases.  Let’s demonstrate this using the edge atom 1 in 11-

AGNR shown in Fig. 3.5 (b) as an example,       increases as the bond between atom 

1 and atom 12 shortens, so the sum                 deviates from zero. 

To balance the increase in      , the magnitude of coefficient at the edge atom     has 

to decrease, while the magnitude of coefficient at atoms on the second row    has to 

increase. Therefore, the wavefunction pattern adjusts itself to fit into an eigen-solution 

of the modified Hamiltonian with eigenenergy lower than the Fermi level, which 

stabilizes the structure. What we obtained in Fig. 3.4 (b) and Fig. 3.5 (b) are these 

eigen-solutions.  
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3.5 Chapter Summary 

In this chapter, we showed the double bands feature in 3p+1-AGNRs and provided an 

explanation from the quantization approach. This also explains the similarity between 

HOGO-1s (LUGO+1s) of 3p+1-AGNRs and HOGOs (LUGOs) of 3p-AGNRs.  We 

also discussed the effects of deformations at the armchair edges of a 3p+2-AGNR, 

including 1) a small gap opens between HOGO and LUGO and 2) slight deviation of 

the wavefunction pattern from the perfect “3j” pattern.  In particular, the electron 

density on the (3j)
th

 carbon rows (except the middle row) becomes non-zero, but they 

are still very small compared to electron density on the (non-3j)
th

 rows. 
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Chapter 4. Length-Independent Transmission Peaks 

We are greatly motivated by the interesting transmission curves of AGNR junctions 

calculated from tight-binding approaches by Dr. Son (Section 1.3), so we performed a 

very thorough and systematical investigation on why the transmission peaks are 

independent of the length of the middle ribbon.  In this chapter, we present an 

explanation for this anomalous phenomena.  Most of the contents in this chapter are 

published in Ref. [86], and we are using them with permission from Elsevier. 

4.1 DFT and Tight-Binding Results  

First of all, we used density functional theory (DFT) to calculate the transmission of a 

23-5-23-AGNR Z-Z junction with varying l.  Figure 4.1 (a) shows the structure we 

studied, where each dangling bond at the edges is passivated with one hydrogen atom. 

The DFT transmission curves with varying l (Fig. 4.1 (b)) are consistent with the 

preliminary tight-binding results (Fig. 1.12 (b)). 
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Fig. 4.1 (a) Atomic structure of 23-5-23-AGNR junction with two zigzag edge 

interfaces (denoted by red lines).  The length of the 5-AGNR segment l = 5 unit cells.  

(b) Transmission curves of the junction shown in (a) with varying l, calculated from 

first-principles scattering-state approach as implemented in SCARLET [76].  (c-f) Real 

parts of eigenchannel wavefunction isosurfaces with isovalue = +/- 0.025, calculated 

using SCARLET at peaks 1-4 (see  (b)) of the junction with l = 8.  The imaginary parts 

(not shown) show similar features.  The insets in (e) and (d) show the HOGO and 

LUGO of perfect 5-AGNR
1
 with isovalue = +/- 0.03, calculated using SIESTA [75].  

The arrow in (e) indicates insertion of an extra unit and is discussed in Section 4.2.1. 

This figure is reprinted from Ref. [86], with permission from Elsevier. 

                                                           
1
 same as those shown in Fig. 3.2. 
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4.1.1 Quantum Confinement Effect 

Since the 5-AGNR between the two semi-infinite 23-AGNRs is essentially a segment 

with finite length l, it is instructive to visualize it as a “molecule” that is strongly 

coupled to the leads. As a result, the continuous band structure of a perfect 5-AGNR 

reduces to a finite number of discrete states in the 5-AGNR “molecule”.  These discrete 

states couple to the electrodes to result in resonant transmission peaks.  The 

transmission probability reaches the maximum value of T = 1 at the resonant energy of 

the state and decays at energies away from the resonant energy, forming a Lorentzian-

shaped transmission peak.  As l increases, the eigenenergies of these discrete states are 

expected to shift closer towards EF
2
 because of a weaker quantum confinement effect.  

Therefore, we expect the corresponding resonant transmission peaks also approach EF 

as l increases.  Furthermore, the lifetime of these states (the coupling strength to the 

leads) should decrease as the molecular wire gets longer, leading to a narrowing of the 

associated transmission peaks.  

4.1.2 Anomalous Length Behavior 

The four transmission peaks 3, 4, 5, and 6 in Fig. 4.1 (b) follow exactly the expected l-

dependence – approaching to EF and becoming narrower, as l increases.  In contrast, 

both the energies and widths of the frontier transmission peaks 1 and 2 closest to EF 

show negligible dependence on l. 

We wonder would the energies of the two anomalous peaks 1 and 2 vary if l is 

sufficiently long? As further increasing l is challenging for DFT, we use nearest 

neighbor tight-binding model (Section 2.1) to extend our study on the eigenenergies of 

                                                           
2
 The Fermi level of a 2-lead system is the charge neutrality level in the leads. 
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corresponding states in a periodic structure (bulk with the structure shown in Fig. 4.1 

(a) as the unit cell) with l varying from 1 up to 50 unit cells.  As shown in Fig. 4.2, the 

tight-binding eigenenergies agree well with the DFT results.  As l increases, the 

eigenenergies of the states away from EF (green square symbols) shift closer to EF and 

asymptotically approach some constant values, consistent with the quantum 

confinement effect.  In contrast, the eigenenergies of the frontier states, remarkably, are 

almost invariant.  The DFT and TB results indicate that with appropriate doping or 

gating, one can achieve large length-independent near-resonant transmission.  What is 

the origin of these anomalous peaks?   

 

Fig. 4.2 Eigenenergies of the two l-independent states (blue circle) and two typical l-

dependent states (green square) of 23-5-23-AGNR periodic structure (bulk with the 

structure in Fig. 4.1 (a) as the unit cell
3
) as a function of l obtained by (i) tight-binding 

model (hollow symbols) and (ii) DFT (solid symbols), reprinted from Ref. [86] with 

permission from Elsevier. 

4.2 Origin of the Anomalous Transmission Peaks 

The eigenchannel wavefunctions of the almost l-independent peaks (Fig. 4.1 (d-e)) 

resemble the HOGO and LUGO of perfect 5-AGNR (see Section 3.2) coupled 

seamlessly to the zigzag edge state [11].  In particular, the periodic pattern of 

                                                           
3
The length of 23-AGNR = 8 unit cells. 
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wavefunction in a perfect 5-AGNR is well preserved when the 5-AGNR becomes a 

segment in-between two 23-AGNR leads.  In contrast, such periodic pattern is not 

present in eigenwavefunctions of the usual l-dependent peaks 3 to 6 (see e.g. Fig. 4.1 

(c) and (f)).  The preservation of the periodic wavefunction pattern indicates that 

electrons in these states behave similarly as if they were in an infinite 5-AGNR.  

Specifically, it seems electrons are not confined within the finite 5-AGNR segment.  

This is attributed to the Fermi level zigzag edge state essentially serving as an electron 

source or drain for states near EF.  For states further away from EF (e.g. peaks 3 to 6), 

there is no such source or drain of electrons, thus confinement effect comes into effect.  

In addition, if we remove the zigzag edges, such anomalous peaks also disappear (see 

Section 5.1), confirming the necessity of the edge state as an electron source or drain 

for these near-EF states.   

4.2.1 The Length Independence of Peak Energy 

To quantitatively explain the length-independence of the resonant energy, we provide a 

proof by mathematical induction in Appendix A, and elucidate the key ideas here.  The 

essential physics is: (1) the wavefunction exhibits a locally repeating pattern in the 5-

AGNR region, and (2) local interactions are sufficient to account for the physics of 

these states.   

We claim that for a 23-5-23-AGNR Z-Z structure with length of l = m unit cells, there 

exists an eigenstate containing m locally repeating units within the 5-AGNR region and 

this eigenstate has eigenenergy E independent of l.  Figure 4.3 (a) clearly shows that for 

l = 3, the occupied frontier state is locally repeating in the 5-AGNR region (Fig. 4.1 (d-

e) qualitatively show the same feature for l = 8).  Next, suppose for l = m, we have a 
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frontier state                   that is locally repeating in the 5-AGNR region, 

with eigenenergy E.  The Schrödinger equation of this system in matrix form is  

    
   

 

  
   

    
   

                   

where atom index i runs over all atoms in the structure.  Including local interactions 

within the nearest-neighboring unit cells is more than enough to describe the physics of 

graphene [12, 29].  Therefore,       for all neighbors j beyond the nearest unit cells 

of i.  Then for l = m+1, we can construct a state      that is identical to   , but with 

an extra repeating unit in the 5-AGNR region (see Fig. 4.1 (e) showing the insertion of 

one extra repeating unit in the 5-AGNR region) and being renormalized.  Since only 

local interactions are important,      is a solution to the Hamiltonian        with the 

same eigenenergy E  

    
     

 

  
     

    
     

                   

This can be seen by considering two groups of carbon atoms in the structure with l = 

m+1. The first group consists of atoms inherited from the structure with length l = m, 

and the second group consists of atoms within the extra unit.  For an atom i in the first 

group, both ci and cj do not change except a scaling down by the renormalization factor 

λ.  The tight-binding hopping interactions     between atom i and its neighbors j also 

remain the same.  Therefore, all these atoms satisfy the Schrödinger Eqn.(4.2).  For 

atoms in the second group, since the set of this extra unit plus its local neighbors is just 

a copy of another set in the first group, all atoms in this group also satisfy the 

Schrödinger Eqn.(4.2).  A more detailed analysis can be found in Appendix A. 

We see from the induction proof that the length-independence of eigenenergies is 

determined by the existence of locally repeating units in the wavefunction.  This crucial 
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point is further illustrated in Fig. 4.3, where the frontier almost l-independent state has 

locally repeating units in the 5-AGNR region for l varying from 3 up to 50 unit cells, 

while the l-dependent state does not. A periodic wavefunction pattern is straightforward 

in an infinite periodic structure (see e.g. wavefunctions of perfect AGNRs in Fig. 3.2), 

but can hardly be preserved if the structure becomes a short segment.  A locally 

repeating pattern can be unusually preserved in the 23-5-23-AGNR junction because, 

the zigzag edges serve as sources and drains so that electrons essentially do not 

experience a confinement effect. In contrast, for a typical junction, such as oligophenyl-

diamine wires attached to gold electrodes [69], the symmetry in the transport dimension 

is broken by the termination at the two ends, hence the structure cannot support states 

with locally repeating units.   
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Fig. 4.3 Eigenwavefuntion coefficient ci as a function of atom index i for the 23-5-23-

AGNR Z-Z periodic structure, obtained by solving the nearest neighbour TB 

Hamiltonian.  (a) The atomic structure with l = 3 to illustrate the atom index i.  We 
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count the carbon atoms along the zigzag-shaped chains from bottom to top, and chain 

after chain from left  to right, as indicated by the green dash line in (a). The red and 

blue isosurfaces represent the wavefunction of the occupied l-independent state 

calculated using SIESTA.  (b) Coefficients for the occupied l-independent state with l = 

3.  (c) Zoom-in of (b) over the 5-AGNR region with a length of three units.  (d-e) 

Coefficients for the (d) occupied l-independent and an (e) occupied l-dependent state 

with l = 50.  (b-d) are reprinted from Ref. [86] with permission from Elsevier. 

4.2.2 The Length Independence of Peak Width 

Next, to understand why the width of transmission peaks remains the same as l 

increases, we examine how the wavefunction distribution along the length varies with 

increasing l.  Figure 4.4 shows that as l increases from 2 to 9 unit cells, the weight of 

the wavefunction at the zigzag edges decreases significantly, while that in the 23-

AGNR and 5-AGNR regions show only a minimal decrease
4
.  This implies that, as the 

5-AGNR lengthens, the zigzag edges serve as a “source” of electrons to enable these 

frontier wavefunctions to spread out into the longer ribbon without affecting weight of 

wavefunction in the 23-AGNR region. Therefore, as l increases, the coupling of the 

state to the 23-AGNR leads remains almost the same, which determines that the width 

of transmission peaks remains approximately constant. 

 

Fig. 4.4 Spatial profile of lateral-averaged absolute square of the occupied l-

independent state for the 23-5-23-AGNR Z-Z periodic structure, obtained from DFT, as 

a function of the transport dimension z. The wavefunctions for structures with different 

                                                           
4
 This is approximately consistent with the induction argument above where the wavefunction 

changes by an overall normalization factor, because the wavefunction has a much larger weight 

on the zigzag edges. 
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l are aligned at one of the zigzag edge interfaces. The unoccupied l-independent state 

shows similar features. This figure is reprinted from Ref. [86] with permission from 

Elsevier.  

4.3 Chapter Conclusion 

We find that these almost l-independent frontier transmission peaks still persistent 

when the 5-AGNR is transversely shifted across the width (along the x direction in Fig. 

4.1 (a)).  Our tight-binding model and DFT results show that these unusual transport 

properties for the 23-5-23-AGNR junction can also be generalized to other AGNR-

junction with the middle AGNR in the 3p+2 family, but not observed in AGNR-

junctions with the middle AGNR in 3p and 3p+1 families.  For example, we have 

verified using DFT that 23-11-23- and 35-17-35-AGNR Z-Z junctions also exhibit 

nearly length-independent transmission peaks close to EF. This family behavior is 

consistent with the fact that states near EF is only available in 3p+2-AGNRs (see 

Section 1.1) [12].  Further studies on the family behavior are presented in Chapter 6.  
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Chapter 5. Bonding and Antibonding Coupling 

We have demonstrated in Chapter 4 that the two zigzag edge interfaces play a 

significant role in liberating electrons from being confined within the 5-AGNR segment, 

which leads to the eigenenergies being independent of the length of 5-AGNR segment.  

Since there are two zigzag edge interfaces in the AGNR Z-Z junction, and the 

wavefunctions of the anomalous states show localization on both zigzag edge interfaces 

(see Fig. 4.1 (d-e)), we wonder: are both zigzag edge interfaces necessary for the 

anomalous states?  

5.1 Necessity of the Zigzag Edges  

To separate the role of each zigzag edge interface, we designed a reference structure 

with one zigzag edge interface plus one armchair edge interface, which we refer as a Z-

A junction, as shown in Fig. 5.1 (b).  We plot the transmission curves of both Z-Z and 

Z-A junctions with the same length l = 3 in Fig. 5.1 (c). The Z-Z junction shows two 

resonant transmission peaks close to EF, at -0.16eV and 0.12eV, which are identified as 

the anomalous l-independent peaks from their energies and eigenchannel wavefunctions, 

whereas the Z-A junction does not have such transmission peaks.  This comparison 

clearly demonstrates that zigzag edges on both interfaces of the junction are required 

for the anomalous peaks. 
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Fig. 5.1 (a-b) Atomic structures of AGNR-junctions with two zigzag edge interfaces 

(Z-Z structure) and one zigzag edge interface plus one armchair edge interface (Z-A 

structure). The length of the middle 5-AGNR segment is 3 unit cells for both structures. 

(c) Transmission curves of junctions shown in (a-b).  Inset of (c): real parts of the 

eigenchannel wavefunction isosurfaces with isovalue = +/- 0.025 at the two 

transmission peaks (the imaginary parts show the same features). 

5.2 The Bonding and Antibonding Coupling  

We also note that the eigenchannel wavefunction of the occupied anomalous peak (at -

0.16eV) is symmetric with respect to a plane normal to and through the center of the 

two-dimensional structure, as indicated by the black dashed line in Fig. 5.1 (c) inset.  

On the other hand, the unoccupied eigenchannel wavefunction (at 0.12eV) is 

antisymmetric with respect to the same plane.  The symmetric and antisymmetric 

wavefunction patterns plus the necessity of both zigzag edge interfaces strongly suggest 
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that the two anomalous states arise from bonding and antibonding combinations of two 

“original” states.  In addition, we expect the original states should be close to or at EF 

and related to the zigzag edges (see Section 1.2 for a review on bonding and 

antibonding theory).   

Representing the original states using    and   , then the bonding and antibonding 

combinations would be 

                          (5.1) 

                         (5.2) 

   and     are present as the HOMO-1 and LUMO+1 of the 23-5-23-AGNR periodic 

structure, as shown in Fig. 5.2 (a-b).   

 

Fig. 5.2 (a-b) The HOMO-1 and LUMO+1 eigenwavefunctions of the 23-5-23-AGNR 

Z-Z periodic structure, at energies of EF - 0.150eV and EF + 0.135eV, respectively. We 

refer to these states as the bonding state    and the antibonding state    . The dashed 

line represent a plan normal to the cut through the centre of the structure.  (c-d) Original 

“zigzag + AGNR” states deduced from the bonding and antibonding states by    

             and                . For all wavefunction isosurfaces, 

isovalue = +/- 0.025. 
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According to eqns. (5.1) and (5.2), we can deduce the “original” states from    and 

    as                 and                .  These deduced “original” states 

are plotted in Fig. 5.2 (c-d).  Visually,  
 
 and  

 
 look like the usual zigzag edge state 

extending seamlessly into the 5-AGNR segment without any spatial decay.  Such non-

decaying extension seems a very unusual behavior since the zigzag edge state is well-

known to be localized along the zigzag edge [11], as we reviewed in Section 1.1.3.  

Based on this distribution property, we refer to  
 
 and  

 
 a “zigzag + AGNR” state.   

5.3 “Zigzag + AGNR” State in Real Structures  

So far, we have only observed the “zigzag + AGNR” states in their bonding and 

antibonding coupled form, i.e.    and     in the Z-Z structure.  By replacing one of 

the two sp
2
-terminated zigzag edge interfaces with an armchair edge interface (Fig. 5.3 

(a)) or a sp
3
-terminated zigzag edge interface (Fig. 5.3 (b)), one of the “zigzag + 

AGNR” states would be destroyed, thus allowing us to observe the remaining “zigzag + 

AGNR” state at EF in our DFT calculations, as shown in Fig. 5.3.  The “zigzag + 

AGNR” state in both structures does not decay over the 5-AGNR region.  These 

observations further confirms our prediction of the “zigzag + AGNR” state. 
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Fig. 5.3 The “zigzag + AGNR” state observed as a Fermi level eigenwavefunction, 

obtained using DFT under periodic boundary condition in 23-5-23-AGNR junctions 

with one sp
2
-terminated zigag edge interface plus one (a) armchair edge interface or (b) 

sp
3
-terminated zigzag edge interface

5
.   

5.4 Consistence with the Length-Independence Theory  

As reviewed in Section 1.2, the energy splitting between    and     is determined 

mainly by the overlapping between the two original states    and   .  As l increases, 

the overlapping region of    and    seems to increase, which would result in a larger 

energy splitting. However, the eigenenergies of     and     are demonstrated to be 

almost independent of l in Chapter 4. How are these two facts consistent with each 

other? 

                                                           
5
 We note from our DFT calculations that the triangular shaped wavefunction localizations at 

the two sp
3
-terminated zigzag edges in (b) is typical for this type of edge, and it does not extend 

into the narrow AGNR. 
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To understand this better, we can partition the eigenenergy of a state into energy 

contributed by coupling between different pairs of atoms from a tight-binding 

approach.  For simplicity, we now use the nearest neighbor approximation which well 

reproduces the DFT results [12, 29].   Specifically, we can express the eigenenergy E as 

                                      (5.3) 

 

Then 

      
 
                                           (5.4) 

where    is the energy contributed by each atom   by interacting with all of its nearest 

neighbours j 

     
       

   
      

   
                  (5.5) 

Taking    and     of 23-5-AGNR Z-Z periodic structure as an example, we plot the 

eigenenergy contributed by different groups of atoms in Fig. 5.4.  The eigenenergy E 

obtained by summing up    of all atoms as a function of l (blue curves in Fig. 5.4) are 

exactly the same as the bonding and antibonding state eigenenergy we solved (shown in 

Fig. 4.2).  As l increases, the magnitude of eigenenergy contributed from the 5-AGNR 

region (green curves in Fig. 5.4) increases.  Therefore, this is consistent with the 

intuitive interpretation that increased overlapping between    and    would result in 

larger energy splitting.  However, the magnitude of eigenenergies contributed from the 

23-AGNR region (red curves in Fig. 5.4) decreases with increasing l due to the 

significant scaling down of all coefficients ci, and this compensates most of the increase 

in magnitude of eigenenergies contributed from the 5-AGNR region.  Specifically, as 

the 5-AGNR becomes longer, a portion of the state transfers from the 23-AGNR region 

to the 5-AGNR region.  



Chapter 5. Bonding and Antibonding Coupling  

 
75 

 

 

 

 

Fig. 5.4 Top panel: atomic structure of the 23-5-23-AGNR Z-Z structure with l = 9 unit 

cells. The isosurface (isovalue = +/- 0.025) shows the bonding state calculated using 

SIESTA.  Bottom panel: eigenenergies of the (below EF) bonding and (above EF) 

antibonding states of 23-5-23-AGNR Z-Z periodic structure contributed by different 

groups of atoms.  Each layer consists of one zigzag-shaped carbon chain across the 

width of AGNR, as labelled in the atomic structure. 

 

Figure 5.4 also indicates that the energy contributed from the 23-AGNR is mainly 

coming from the first two layers capped by the zigzag edge interface.  This observation 

is consistent with the fact that the state decays very fast from the zigzag edge towards 

the inner region of 23-AGNR.   

5.5 Chapter Summary 

We have demonstrated in this chapter that zigzag edges on both interfaces of the 

AGNR junction are necessary for the anomalous states, as they are bonding and 
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antibonding couplings of two original zigzag edge derived states. We have observed the 

original “zigzag + AGNR” state in real structures. We have also showed that the 

bonding and antibonding coupling interpretation is consistent with the length-

independence property we presented in Chapter 4.   
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Chapter 6. Extension of the Zigzag Edge State into 

an AGNR: Family Dependence 

As we have reviewed in Section 1.1.3, the zigzag edge state decays into the inner 

graphene region capped by the zigzag edge (we define this region as the “backland” of 

the zigzag edge).  Such decaying behavior could be understood from the tight-binding 

based nearest-neighboring sum rule [11].  Then, can the zigzag edge state extend into a 

region outside its backland, that is beyond the applicability of the nearest-neighboring 

sum rule?   

In the wide-narrow-wide-AGNR junctions we are studying, while the wide-AGNR is 

within the backland of the interface zigzag edge, the narrow-AGNR is well outside the 

backland of the zigzag edge but still immediately connected to the zigzag edge (see Fig. 

6.1 for example).  In fact, the bonding and antibonding states we discussed in Chapter 5 

are states originating from the zigzag edges.  By looking at the contributions from each 

sublattice, i.e.    or   , as visualized in Fig. 5.2 (c-d), it is obvious that    and    both 

look like the usual zigzag edge state extends seamlessly into 5-AGNR within the same 

sublattice.  Unlike the decay behavior of the zigzag edge state towards its backland, the 

extension into 5-AGNR seems not decaying.  As a result of this non-decaying 

extension, the eigenenergies of the associated bonding and antibonding states are 

independent of the length of the 5-AGNR segment (Chapter 4).   

In this chapter, we show that the zigzag edge state can extend into a general narrow-

AGNR.  However, the decaying behavior of such extension is strongly dependent on 

the family of the narrow-AGNR.  
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6.1 Non-Decaying Extension into 3p+2-AGNRs 

Figures 6.1 to 6.3 and Figs. B1 to B2 (Appendix B) show the DFT calculated bonding 

and antibonding states in three different AGNR-junctions, all with the middle AGNR in 

the 3p+2 family. For all of these states, we do not see any obvious decay inside the 

middle AGNR, even when we separating them into contributions from two sublattices.  

 
Fig. 6.1 The (a) bonding and (b) antibonding states in 23-5-23-AGNR junction with l = 

9 unit cells, calculated using SIESTA under periodic boundary condition. (c-d) 

Contributions to the bonding/antibonding state from two sublattices.  Isovalue = ±0.025 

for all wavefunction isosurfaces.  

 

 
Fig. 6.2 The (a) bonding and (b) antibonding states in 23-11-23-AGNR junction, 

calculated using SIESTA under periodic boundary condition. (c-d) Contributions to the 

bonding or antibonding state from two sublattices. Isovalue = ±0.025 for all 

wavefunction isosurfaces.  
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Fig. 6.3 The (a) bonding and (b) antibonding states in 35-17-35-AGNR junction, 

calculated using SIESTA under periodic boundary condition. (c-d) Contributions to the 

bonding or antibonding state from two sublattices. Isovalue = ±0.025 for all 

wavefunction isosurfaces.  

 

 

We wonder if we could see any decay if l is sufficiently long.  We checked this using 

DFT calculations for a 23-5-23-AGNR junction with l = 9 unit cells (~ 4nm, see Fig. 

6.1), where we do not see any obvious decay.  Further increase of l is challenging for 

DFT, so we switched to nearest-neighboring tight-binding model to solve the 

Hamiltonian of a 23-5-23-AGNR junction under periodic boundary conditions. We 

reproduced the bonding and antibonding states using tight-binding calculations, which 

do not decay over the 5-AGNR for l varying from 3 up to 50 unit cells (see Fig. 6.4).  In 

addition, according to the induction principle in the proof presented in Chapter 4 and 

Appendix A, as long as we have a state for a short junction that contains at least 3 

locally repeating units (do not decay), we expect a similar non-decaying state (locally 

repeating) for a junction of any length.  
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Fig. 6.4 Spatial profile of laterally-summed absolute square of the bonding state of 23-

5-23-AGNR junction with varying l, as a function of the longitudinal dimension z. The 

states are obtained by solving the nearest-neighboring tight-binding Hamiltonian of the 

junction under periodic boundary condition. Each profile shows two peaks symmetric 

with respect to the middle point of the length, and the first peaks of all seven profiles 

locate at the same longitudinal position (~ 18 Bohr). 

 

As we have already implied in Chapter 4, the wavefunction patterns of the bonding and 

antibonding states resemble the usual zigzag edge state coupled to the HOGO and 

LUGO of the middle 3p+2-AGNR (see Fig. 3.2).  They can couple so well because 

gaps in 3p+2-AGNRs are extremely small, so that the DOS of HOGO/LUGO of 3p+2-

AGNRs and the DOS of the zigzag edge state overlap in energy, as shown in Fig. 6.5.  
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Fig. 6.5 (a) Γ-point DOS of 5-AGNR and 32-ZGNR calculated using DFT implemented 

in SIESTA.  

6.1.1 Non-Decaying Property induced from the “3j” Pattern 

We see from Fig. 6.1 to Fig. 6.3 that the bonding and antibonding states exhibit a “3j” 

wavefunction pattern, which is inherited from the HOGO and LUGO of infinite 3p+2-

AGNRs. Here, we show that the non-decaying behavior in 3p+2-AGNRs can in fact be 

induced from this interesting “3j” pattern.   

We have reviewed in Section 1.1.3 that the sum of wavefunction projections on all 

nearest neighbors of any carbon atom has to vanish for a Fermi level state, as described 

by Eqn. (1.6).  Via this nearest-neighboring sum rule, Fujita et. al. has explained the 

decay behavior of the zigzag edge state towards its backland [11].  Such decay behavior 

is obvious in all junctions, such as those we show in Fig. 6.1 to Fig. 6.3.  However, this 

decay argument does not apply to the narrow AGNR, as it is outside the backland of the 

zigzag edge.   

Then, how would the wavefunction distribute over the narrow-AGNR region? For 

junctions with the narrow-AGNR in the 3p+2 family, the bonding and antibonding 
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states are distributed over the narrow 3p+2-AGNRs following a “3j” pattern: localized 

only on every two rows of carbon atoms, with every third row empty (Fig. 6.1 to Fig. 

6.3 ).  In such a pattern, each carbon atom has only two effective nearest neighbors with 

non-zero electron density.  For example, site β in Fig. 6.6 (a) has only two effective 

neighbors B and C, since     .  According to the sum rule, the wavefunction 

coefficients on the two effective neighbors will be of the same magnitude but opposite 

signs.  For example,        and           in Fig. 6.6  (a).  This implies that 

the state does not decay along the AGNR.  

We see from the above analysis that the absence of electron probability density on 

every third row is a sufficient condition for the non-decaying behavior.  Such a “3j” 

pattern counting from both sides of an n-AGNR then requires the width n to be in form 

of                         . 
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Fig. 6.6 Extension of the zigzag edge state into (a) 5-AGNR and (b) 3-AGNR. They are 

zooming-in of Fig. 6.1 (c) and Fig. 6.8 (c), respectively.  A, B, C, etc indicate atomic 

sites at the occupied sublattice, whereas α, β, γ, etc represent atomic sites at the empty 

sublattice. Red/blue spheres are isosurfaces of the DFT wavefunctions with 

positive/negative isovalues. The radius of the spheres qualitatively indicate the 

magnitude of the electron density (hence the magnitude of the wavefunction 

coefficient) at an atomic site.  Red/blue colors represent positive/negative signs of 

wavefunction coefficient. 

 

As an opposite example, if the middle AGNR is of width    , as shown in Fig. 6.6  

(b), we show that the state decays into 3-AGNR.  Like in the previous case, site γ (Fig. 

6.6  (b)) has only two effective neighbors E and F, so       .  Site δ has three 

nearest neighbors F, G and H, then  

               (6.1) 
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Because site G and site H are symmetric with each other, we have  

                    (6.2) 

Equations (6.1) and (6.2) together determines that  

       
  

 
 

  

 
               

which means the state is decaying over the 3-AGNR segment by half per unit cell. 

6.1.2 Width Dependence of the Bonding Antibonding Gap  

As we have shown in Chapters 4 and 6, the bonding and antibonding states in a w-n-w-

AGNR Z-Z junction with n=3p+2 originate from the HOGO and LUGO of the middle 

n-AGNR coupled to the zigzag edges at the two interfaces.  Because of the zigzag 

edges playing as sources and drains, electrons are not confined within the middle n-

AGNR, so the length l of the middle n-AGNR becomes unimportant in determining the 

energy of these states.  Then, how does the bonding and antibonding energy splitting 

∆E depends on the width n of the middle n-AGNR?   

Figure 6.7 shows the tight-binding ∆E of a 65-n-65-AGNR junction as a function of n. 

This nearest-neighboring tight-binding model that has been shown to well reproduce 

the DFT results (see e.g. Fig. 4.2).  We have also learnt from the tight-binding 

calculated ∆E(l) relationship of 23-5-23-AGNR junction (Fig. 4.2 and Fig. 5.4) that ∆E 

slightly decreases as l increases and converges to a constant value for l > 20 unit cells.  

Therefore, we set l = 50 unit cells in the 65-n-65-AGNR junction we are studying here, 

which is much longer than sufficient to give a converged ∆E.   
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Fig. 6.7 The bonding antibonding energy splitting ∆E of a 65-n-65-AGNR junction as a 

function of the width n of the middle n-AGNR, calculated by solving the nearest 

neighboring tight-binding Hamiltonian.  Here, n = 3p+2 <= 53. The length of 65-

AGNR = 16 unit cells and length of the n-AGNR l = 50 unit cells.  ∆E(n) is drawn on 

top of the LDA bandgaps of 3p+2-AGNRs, adopted with permission from Fig. 2(b) of 

Ref. [12]. Copyright (2006) by the American Physical Society. 

 

It is clear from Fig. 6.7 that the tight-binding ∆E of 65-n-65-AGNR junctions match 

very well to the LDA band gaps of the middle n-AGNRs [12].  This indicates that ∆E is 

mainly contributed from the middle n-AGNR region, consistent with our previous study 

in Fig. 5.4 using the example of 23-5-23-AGNR junction.  

6.2 Decaying Extension into 3p- and 3p+1-AGNRs 

For junctions with the middle AGNR in the 3p and 3p+1 families, we also observed 

bonding and antibonding states that mimic the zigzag edge state and the HOGO/LUGO 

of the middle 3p-AGNRs (Fig. 6.8 to Fig. 6.11) or the HOGO-1/LUGO+1 of the middle 

3p+1-AGNRs (Fig. 6.12 to Fig. 6.13). 
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Fig. 6.8 The (a) bonding and (b) antibonding states in 17-3-17-AGNR junction, 

calculated using SIESTA under periodic boundary condition. (c-d) Contributions to the 

bonding/antibonding state from two sublattices.  Isovalue = ±0.015 for all wavefunction 

isosurfaces.  

 

 

Fig. 6.9 The (a) bonding and (b) antibonding states in 21-9-21-AGNR junction, 

calculated using SIESTA under periodic boundary condition. (c-d) Contributions to the 

bonding/antibonding state from two sublattices.  Isovalue = ±0.01 for all wavefunction 

isosurfaces.  

 



Chapter 6. Extension of the Zigzag Edge State into an AGNR: Family Dependence  

 
87 

 

 

 
 

Fig. 6.10 The (a) bonding and (b) antibonding states in 35-15-35-AGNR junction, 

calculated using SIESTA under periodic boundary condition. (c-d) Contributions to the 

bonding or antibonding state from two sub-lattices.  Isovalue = ±0.01 for all 

wavefunction isosurfaces.  
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Fig. 6.11 The (a) bonding and (b) antibonding states in 35-21-35-AGNR junction, 

calculated using SIESTA under periodic boundary condition. (c-d) Contributions to the 

bonding or antibonding states from two sublattices.  Isovalue = ±0.01 for (a-b) and 

±0.02 for (c-d).  

 

 

 

 

 

Fig. 6.12 The (a) bonding and (b) antibonding states in 25-7-25-AGNR junction. (c-d) 

Contributions to HOGO-1 and LUGO+1 of 7-AGNR from two sub-lattices.  All 

wavefunctions are calculated using SIESTA under periodic boundary condition, and 

plotted with an isosurfaces value = ±0.08.  

 

 

 

Fig. 6.13 The (a) bonding and (b) antibonding states in 33-13-33-AGNR junction. (c-d) 

Contributions to the bonding or antibonding states from two sublattices. (e-f) 

Contributions to HOGO-1 and LUGO+1 of 13-AGNR from two sublattices.  All 

wavefunctions are calculated using SIESTA under periodic boundary condition, and 

plotted with an isosurface value = ±0.005 for (a-d) and ±0.05 for (e-f).  
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In addition, if we replace one of the zigzag edged interface with an armchair edged 

interface, such bonding and antibonding states are no longer observed.  Instead, we see 

the original “zigzag + AGNR” state, as shown in Fig. 6.13 for the examples of 21-3-21- 

and 25-7-25-AGNR junctions.  This is similar as what we observed in Fig. 5.3 (a) and 

confirms that the states shown in Fig. 6.8 to Fig. 6.13 are bonding and antibonding 

couplings of two “zigzag + AGNR” states.  

 

Fig. 6.14 The “zigzag + AGNR” state observed as a Fermi level eigenstate in (a) 21-3-

21-AGNR Z-A junction and (b) 25-7-25-AGNR Z-A junction, obtained using DFT 

under periodic boundary condition.  Isosurface = +/- 0.02 for both wavefunctions.  

However, these states dramatically decay along the middle 3p- or 3p+1-AGNR from 

the zigzag edge side towards the opposite side. Such decaying tendency is especially 

obvious by looking at the contributions from each of the sublattices A or B.  In addition 

to the fast decay, the energies of these bonding and antibonding states are extremely 

close to EF. 

6.2.1 Decay Rate from the Evanescent State approach  

The extension of zigzag edge state into 3p- and 3p+1-AGNRs significantly decay 

because the gaps of 3p- and 3p+1-AGNRs are much wider than that of 3p+2-AGNRs 

(see Fig. 3.1) [12].  In this case, electrons and holes from the zigzag edge state see a 

huge energy barrier when they try to enter the HOGO/LUGO or HOGO-1/LUGO+1 of 
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the AGNRs.  As a result, we expect that these electrons/holes penetrate into the AGNR 

as an evanescent state within the gap of the AGNR.  As illustrated in Fig. 6.15, the 

evanescent state decays along the length l of the AGNR exponentially as     , where 

the decay rate   can be obtained from the complex bandstructure of the AGNR.  

 

Fig. 6.15 The complex band structure of 3-AGNR, as an example to illustrate the 

bonding and antibonding states in AGNR-junctions as an evanescent sate penetrating 

the AGNR. 

Exponential Fitting 

In order to examine this evanescent state hypothesis, we first obtained the decay rate   

of the bonding and antibonding states in each AGNR-junction by fitting the 

wavefunction to exponential function using MATLAB.  We use the bonding state of 

17-3-17-AGNR as an example to demonstrate the detailed procedures of the fitting.  To 

distinguish the decaying from both sides, we take only the contribution from sublattice 

A   , as shown in Fig. 6.16 (a).  We then integrate the Local Density of States (LDOS) 

             over the transverse dimensions x and y, to obtain a function of the 

longitudinal dimension z as 
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as plotted in Fig. 6.16 (b-c).  Assuming that   decays along z following      , 

then      would decay two times faster, i.e. following       .  Since    is originated 

from the π-electrons, the electron density are localized at the carbon atoms rather than 

between them, so      is oscillating with a period (indicated by red arrow in Fig. 6.16 

(b)) corresponding to the distance between two zigzag-shaped carbon chains.       

shows a highest peak at the z position corresponding to the zigzag edge, and fast decays 

towards both sides.  Here, we are interested on the      values on the right side of the 

highest peak, which corresponds to electron density over the 3-AGNR region.  We then 

take the peak values of each oscillation on right of the highest peak, and fit them to 

      , as illustrated in Fig. 6.16 (c).  

 
Fig. 6.16 (a) The sublattice A contribution to the bonding/antibonding state of 17-3-17-

AGNR junction, which is also Fig. 6.8 (c), obtained from    and     by        

       . (b) The z-profile of corresponding electron density obtained as       

                 . The red arrow indicates the wavelength of oscillations. (c) 

Zooming-in of (b) to see the peaks on the right side of the zigzag edge and fitting of the 
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peak values to       .  Note that the first peak immediately on right of the zigzag edge 

is affected by the zigzag edge, so it is excluded in the fitting.   

 

We see that the decaying over the 3-AGNR region fits very well to the exponential 

function.  In fact, we obtained an adjusted R-square of 0.9936 for this particular fitting.  

The fitted decaying rate   = 0.1282 ± 0.0152 Å
-1

.  As the unit cell length over the 3-

AGNR is ~4.32 Å, the decaying rate converts to 0.5538 ± 0.0657 per unit cell, which 

matches very well to the decay rate of half per unit cell we derived in Section 6.1.1.  

We performed fittings via the same procedures for the bonding/antibonding state in 

other AGNR-junctions and all are fitted very well to the exponential function       . 

The fitted decaying rate   in various AGNR-junctions are summarized in Table 6.1. 

Complex Bandstructures  

On the other hand, we calculated the complex band structures of corresponding AGNRs 

using DFT implemented in ATK, as shown in Fig. 6.17.  When the zigzag edge state 

extends into these AGNRs as an evanescent state, it follows the smallest   that gives 

the slowest decay rate.  We define the complex band giving the smallest   at EF as the 

lowest complex band.  For all 3p-AGNRs shown in Fig. 6.17, the lowest complex band 

smoothly connects the lowest unoccupied real band and the highest occupied real band, 

forming one continues curve.  The evanescent state with an   value on this complex 

band will show the character of the HOGO and LUGO with an decaying envelop. 

However, for the 3p+1-AGNRs, especially 7-AGNR, the lowest complex band 

connects the second lowest unoccupied and second highest occupied real bands.  

Because of this feature, the zigzag edge extends into the HOGO-1 and LUGO+1 of 

3p+1-AGNR.  This explains why the states shown in Fig. 6.12 to Fig. 6.13 mimic the 
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HOGO-1 and LUGO+1 rather than the HOGO and LUGO of 3p+1-AGNRs.  In fact, 

we also observed states results from the zigzag edge state extending into the HOGO 

and LUGO of 3p+1-AGNRs, but decaying very fast to zero.  

We extract the smallest complex wave number   at the corresponding energy of the 

bonding/antibonding state for various AGNRs, as presented in Table 6.1.   
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Fig. 6.17 The complex band structures of fully relaxed (upper panel) 3p- and (lower 

panel) 3p+1-AGNRs, calculated using DFT implemented in ATK with double-zeta 

polarized basis-set.  
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Comparison and Discussion 

Table 6.1 Energy splitting ∆E and fitted decay rate   for the bonding/antibonding state 

in various AGNR-junctions (obtained from SIESTA calculation with double-zeta basis-

set) vs the corresponding complex wave number   and gaps in infinite n-AGNRs 

(obtained from ATK calculation with double-zeta polarized basis-set). The AGNR-

junctions are all with the same length l = 4 for the middle AGNR (except 17-3-17-

AGNR junction, where l = 3).  Note that for 3p+1-AGNRs, we use the gaps and 

complex bands both corresponding to the HOGO-1 and LUGO+1, rather than HOGO 

and LUGO.   

w-n-w-AGNR 

junction 
   and     

splitting ∆E (eV) 

n-AGNR 

gap (eV) 
fitted   (Å

-1
) 

  at E = 

∆E/2 (Å
-1

) 

n = 3p 

17-3-17 0.01868 1.826078 0.1282 ± 0.0152 0.12704 

21-9-21 0.00819 0.800716 0.07134 ± 0.00416 0.06373 

35-15-35 0.03215 0.514635 0.05375 ± 0.00302 0.04280 

35-21-35 0.04882 0.381823 0.04260 ± 0.00289 0.03244 

n = 

3p+1 

25-7-25 0.00154 1.869195 0.13077 ± 0.01096 0.12918 

33-13-33 0.00498 1.165442 0.09355 ± 0.0019 0.08846 

 

It is very clear from Table 6.1 that the decay rate   and the complex wave number   

match very well for all 3p- and 3p+1-AGNR junctions we examined.  This evidence 

confirms the hypothesis that the zigzag edge extends into the gaps of 3p- and 3p+1-

AGNRs as an evanescent state.   

In a Z-Z AGNR-junction, the extensions from zigzag edges on both interfaces overlap 

over the middle AGNR, so they couple to form a bonding state    with lower energy 

and an antibonding state     with higher energy (Section 1.2 and Chapter 5).  However, 

as extensions from both sides decay very fast, the overlap is very weak, so energy 

splitting between    and     is extremely small, especially compared to the large gaps 

in 3p- and 3p+1-AGNRs (see Table 6.1).  In the case where zigzag edge state extends 

into a 3p+2-AGNR without decay, the energy splitting between    and     is invariant 
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with the length of the middle 3p+2-AGNR (Chapters 4-5 and Section 6.1).  Here, as the 

extension of zigzag edge state into 3p- and 3p+1-AGNRs decays, the overlapping 

between extensions from two sides reduces as the middle AGNR lengthens, therefore 

the energy splitting between    and     also decreases, and vanishes to zero when the 

middle AGNR is sufficiently long.  

The AGNR junctions examined in Table 6.1 are all with the same length of l = 4 unit 

cells, except 17-3-17-AGNR junction.  For junctions in both 3p and 3p+1 families, as 

the width of the middle AGNR increases, the energy splitting between    and     also 

increases. This arises from the increased overlapping due to slower decay rate, which is 

attributed to the smaller gap of the middle n-AGNR.  

6.3 Chapter Conclusion  

We have showed in this chapter that the zigzag edge state extends into a 3p+2-AGNR 

as a non-decaying state because of the small gap in 3p+2-AGNRs. The non-decaying 

behavior can also be deduced from the “3j” wavefunction pattern of these states via the 

tight-binding sum rule.  However, as 3p- and 3p+1-AGNRs have much wider gaps, the 

zigzag edge state can only extend into these AGNRs as an evanescent state with an 

exponential decay rate determined by the complex wave number.  

As a result of the decaying behavior, the bonding and antibonding states in AGNR-

junctions of the 3p+2 family exhibit invariant eigenenergies with respect to the length 

of the middle AGNR, while the bonding and antibonding eigenenergies in AGNR-

junctions of the 3p and 3p+1 family approaches EF as the middle ribbon lengthens.  
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Chapter 7. Large Magnetoresistance 

We have seen in Chapters 4-5 that the states    and     in a Z-Z AGNR-junction give 

rise to perfect transmission channels.  Since the “zigzag + AGNR” state    (  ) is 

derived from the spin-polarized zigzag edge state, we expect these conducting channels 

will exhibit non-trivial spin-dependent phenomena.  In fact, as we demonstrate in this 

chapter, we can destroy the transmission channels if we break the degeneracy of    and 

   by applying antiparallel spin-polarizations on two zigzag edge interfaces. 

7.1 Spin-Polarized Transmission  

In zigzag graphene nanoribbons, the spin up and spin down edge states are split in 

energy by ~0.5 eV within DFT [12], and larger when many-electron effects are taken 

into account [18].  Likewise, we expect here that each “zigzag + AGNR” state   (   ) 

is split into two states with opposite spins   
  (  

 ) and   
  (  

 ), where the one with 

majority spin is shifted down in energy by the magnetic exchange energy term EM and 

the other with minority spin is shifted up in energy by the same amount EM.  Crucially, 

because good coupling between these states requires them to be at the same energy, we 

expect that the spin orientation at the two zigzag edge interfaces can be used to control 

the coupling between the states, thereby closing or opening the channels for electron 

transmission.  When the spin orientations at both zigzag edge interfaces are parallel (P 

configuration), the spin up (down) original states on both sub-lattices of the junction 

will still be at the same energy, and therefore can couple equally well as in the non-

spin-polarized case.  In contrast, when the spin at one zigzag-edge interface is pointed 
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in the opposite direction as the spin at the other zigzag-edge interface (antiparallel (AP) 

configuration), the spin up (down) original states at both sides of the junction will be at 

different energies, resulting in significantly reduced coupling and electron transmission. 

 

 

Fig. 7.1  Spin-polarized transmission curves of the 23-5-23-AGNR Z-Z junction with 

Parallel (P) and Antiparallel (AP) spins on two zigzag edge interfaces.  Inset schematic: 

energy level diagrams illustrating the bonding and antibonding couplings of two 

original states in non-spin-polarized (middle black diagram), P (right red/green 

diagram), and AP (left pink/blue diagram) cases.  Inset wavefunction isosurfaces 

(isovalue = +/- 0.025) on right side of transmission curve: real parts of eigenchannel 

wavefunctions at the four perfect transmission peaks for P case.  Inset wavefunction 

isosurfaces (isovalue = +/- 0.005) on left side of the transmission curve: spin up 

eigenchannel wavefunction (real and imaginary parts) incident from the left at the 

bonding (loosely defined) peak of AP case. 

 

The above hypothesis, illustrated in the energy level diagrams in Fig. 7.1 inset, is 

clearly supported by our first principles spin-polarized transmission results (Fig. 7.1).  
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For the P configuration, the computed spin up (majority) and spin down (minority) 

transmission curves both show two resonant peaks with transmission T ~ 1 close to EF, 

but shifted lower and higher in energy relative to the non-spin-polarized case, 

respectively (Fig. 7.1, red/green curves).  The eigenchannel wavefunctions at these 

perfect transmission peaks (Fig. 7.1 inset, right side) are exactly the bonding and 

antibonding states.  In particular, when we construct the “original” states from spin-

polarized eigenstates of the periodic structure by     
       

       
       (    

  

     
       

      ) and      
       

       
       (    

       
       

     ), we 

obtain essentially the same “original” states as in the non-spin-polarized case, as shown 

in Fig. 7.2.  

 

Fig. 7.2 The spin-up (a) bonding and (b) antibonding states of the 23-5-23-AGNR Z-Z 

junction with parallel spin-configurations on two zigzag edge interfaces, and the two 

original states (c)     
  and (d)     

  deduced from (a) and (b). All Isosurfaces are with 

isovalue = +/- 0.025. The spin-down bonding, antibonding, and original states show the 

same features. 

 

On the other hand, the corresponding transmission peaks are significantly suppressed in 

the AP configuration (Fig. 7.1, pink/blue curves).  The corresponding eigenchannel 
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wavefunction (Fig. 7.1 inset, left side) indicates that electrons coming from the left are 

reflected at the first (real part) or second (imaginary part) zigzag edge interface they 

encounter. 

7.2 Spin-Polarized Current and Magnetoresistance 

The significant difference in transmission spectra for P and AP configurations results in 

a large difference in the currents.  As shown in Fig. 7.3 (a), the current in P 

configuration increases rapidly and almost linearly as the bias increases from 0.1 to 0.5 

V, while the current in AP configuration remain very small until the bias voltage 

reaches ~ 0.4V. The AP current starts to slightly increase for bias voltage above 0.4V 

because the two small transmission peaks at ~ 0.2 eV (Fig. 7.1 pink/blue curves) enter 

the bias window at bias ~ 0.4V.    

 

Fig. 7.3 (a) IV curves of the Z-Z junction with P and AP spin configurations. (b) 

Magnetoresistance of the junction at various bias voltages.  

 

The large difference in currents of the P and AP cases then suggests that a large 

magnetoresistance (MR, defined as  
      

   
     ) can be achieved in spin valve 

architectures based on this structure.  Our MR results in Fig. 7.3 (b) indicate a large MR 

value reaching ~900% at the bias voltage of 0.3V.  The MR peaks close to 0.3V 

because current in AP configuration starts to increase at ~0.4 V.  We also verified from 
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our calculations that the magnetization is localized mainly on the zigzag edge interfaces 

and is not affected by the bias up to 0.5V. 

7.3 Understanding the Width of Transmission Peaks 

Figure 7.4 plots the transmission curves of the 23-5-23-AGNR Z-Z junction for the 

non-spin-polarized, Parallel spin-up, and Parallel spin-down cases together. We see an 

interesting feature that the width of the bonding and antibonding transmission peaks 

varies greatly among these three cases.  Here we show that the origin of the difference 

in peak widths lies in the non-conducting zigzag edge state that produces a transmission 

valley.  

7.3.1 Transmission Valley by the Non-Conducting Zigzag Edge State 

For all the three transmission curves in Fig. 7.4 left panel, there is always a 

transmission valley with transmission probability T~0 between the bonding and 

antibonding transmission peaks.  The log scale transmission curves (Fig. 7.4 right 

panel) show there exists a point with minimum transmission (T_min point) within the 

transmission valley for all three cases.  Note that the local minima at EF for all three 

cases are due to the gap in the 23-AGNR lead and irrelevant to our discussion here
6
. 

The eigenchannel wavefunctions at the T_min points (Fig. 7.4 right panel inset (a-c)) 

all indicate that the incoming wave enters the zigzag edge state localized at the zigzag 

edge interface of the incoming side and almost totally reflected by this interface (the 

state has no weight on the transmitted side no matter how low the isovalue is).  This is 

                                                           
6
 An interesting point to note is that the scattering state SCARLET calculation (black curve) 

gives zero transmission in the gap, while the non-equilibrium Green’s function TRANSIESTA 

calculation (red and green curves) still gives very small non-zero transmission in the gap, which 

we attribute to numerical errors. 
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consistent with the fact that transmission at the T_min point is almost zero.  This non-

conducting nature arises from the strong localization of the zigzag edge state, which 

prevents it from coupling to other states, especially states over the other side of the 

narrow ribbon. 

 

Fig. 7.4 Transmission curves of the 23-5-23-AGNR Z-Z junction without spin and with 

Parallel spins, plotted on (left panel) linear scale and (right panel) log scale.  Inset (a-c): 

Real parts of eigenchannel wavefunctions, incident from the left side, at the lowest 

points (T_min) of the transmission valleys (the imaginary parts of the wavefunctions 

show similar features).  Inset (d): Eigenchannel wavefunction at 0.04eV below T_min 

for the non-spin-polarized case. All wavefunction isosurfaces are with isovalue = +/- 

0.015.  EM and E’M represent the magnetic exchange energies for the “zigzag + AGNR” 

(  ) state and the zigzag edge state, respectively. 
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As we know, a conducting resonant state interacting with a uniform density of states in 

the electrodes produces a Lorentzian-shaped transmission peak.  The width of the peak 

increases with the coupling strength between the resonant state and the states in the 

electrodes.  Similarly, a non-conducting resonant state will produce a valley in the 

transmission spectrum, and the valley widens with increased coupling to the leads.  The 

eigenchannel wavefunction at 0.04 eV below T_min point (Fig. 7.4 inset (d)) shows 

that majority of the incoming state still enters the zigzag-edge state and reflected back 

at the interface on the incident side, but a very small percentage of the incoming wave 

transmits to the other side.  This confirms that states in the valley but away from the 

T_min point are still related to the zigzag edge state, hence suggests that the T~0 

transmission valley is due to the non-conducting zigzag edge state.   

7.3.2 Width of Transmission Peaks  

For the non-spin-polarized case, the bonding and antibonding transmission peaks both 

fall off rapidly on the valley side, and the shapes of both peaks are roughly symmetric 

about EF because the zigzag-edge state is almost mid-way in energy between the 

bonding and antibonding states.  In the Parallel spin configuration, however, the spin-

polarized zigzag edge state will split into two states.  The one with majority spin shifts 

down in energy, whereas the one with minority spin shifts up, both by an magnetic 

exchange energy term   
 , similar as the splitting of the delocalized state    discussed 

in Section 7.1.  We find that   
  (~0.1eV from Fig. 7.4) >    ( ~0.06eV, from Fig. 7.4), 

which is consistent with the fact that the zigzag edge state here is more localized on the 

zigzag edge (where the magnetic moments also localized on) than is the “zigzag + 

AGNR” state   .  As a result, the corresponding zero-conductance zigzag edge state 

will be closer to the bonding state for spin-up (majority) case and closer to the 
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antibonding state for spin-down case, leading to asymmetric line widths for the bonding 

and antibonding peaks in the corresponding transmission curves.  

7.4 Chapter Conclusion 

In summary, we have demonstrated in this chapter that the transmission spectrum of 

AGNR junctions are spin-dependent, leading to a large magnetoresistance reaching 

900% for 23-5-23-AGNR junction. The origin of the spin-polarization lies in the nature 

of the two frontier resonant states as bonding and antibonding couplings of original 

zigzag edge derived states.  As the bonding and antibonding transmission channels are 

intrinsic for all AGNR junctions in the 3p+2 family, we expect the spin-polarized 

transport property can also be generalized to other AGNR junctions in the 3p+2 family.  

For AGNR junctions in the 3p and 3p+1 families, especially for long junction, these 

transmission channels becomes less conducting, therefore we expect the 

magnetoresistance will also be less. 
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Chapter 8. Negative Differential Resistance 

We see from previous chapters that the bonding and antibonding transmission peaks of 

the AGNR Z-Z junction are very narrow and close to EF.  Moreover, the AGNR-leads 

have a bandgap that can be well controlled by the width of the AGNR.  The narrow 

transmission peaks and the gap in the leads provide very good conditions to obtain 

negative differential resistance (NDR), where an increase in voltage induces a decrease 

in current. This is an uncommon property and is very useful in many electronic device 

applications, including oscillators, amplifiers [87], switching, memory circuits [88], etc.  

In addition, NDR with low on-set bias and high peak-to-valley ratio is preferred for 

practical applications.  In this chapter, we demonstrate in detail the NDR mechanism in 

AGNR junctions via the resonant tunnelling model [89] and show how AGNR 

junctions is advantageous to achieve high performance NDR.  

8.1 the AGNR Junction and Transmission Properties 

In our previous prototypical 23-5-23-AGNR junction, the gap of 23-AGNR is too 

narrow compared with the width of the bonding and antibonding transmission peaks.  

To obtain an effective NDR, here we choose 17-AGNR with a larger bandgap ~ 0.1eV 

[12] as the leads and form a 17-5-17-AGNR junction, as shown in Fig. 8.1 (a).  To 

make it metallic, the 17-AGNR lead region is doped with 0.15% of B atoms via the 

Virtual Crystal Approximation [90].  This p-type doping shifts the EF from the middle 

of gap to ~0.05eV below the valence band edge, as indicated in Fig. 8.1 (b).  
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The 17-5-17-AGNR junction shows two perfect narrow transmission peaks near EF (Fig. 

8.1 (b)).  According to their eigenchannel wavefunction patterns, we can identify that 

these two transmission peaks arise from the well studied bonding and antibonding 

states (Chapters 4 and 5).  As will be demonstrated in detail in next section, we can use 

a bias voltage to drive these peaks into the gap of leads to obtain NDR. 

 

Fig. 8.1 (a) Atomic structure of 17-5-17-AGNR Z-Z junction. The 17-AGNR region is 

doped with 0.15% of B atoms via the Virtual Crystal Approximation [90]. (b) 

Transmission curve for the junction shown in (a) at zero bias. The dark and light gray 

shadings indicate occupied and unoccupied states in the leads, respectively. The white 

blank region indicates the gap of leads. Inset: the real parts of eigenchannel 

wavefunctions (isovalue = +/- 0.025) at the two transmission peaks (imaginary parts 

show similar features).  

8.2 NDR and the Mechanism 

Figure 8.2 (a) gives the IV curve of the 17-5-17-AGNR junction, where a NDR effect 

with an on-set bias of only 0.2V and a peak-to-valley current ratio > 6 is observed.  

This ratio is quite high compared to other systems such as the GNR-CNT cross bar 

system with a peak-to-valley ratio of 2 [91] and the Si-SiGe system with a peak-to-

valley ratio of 5.2 [92].   
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Fig. 8.2 (a) IV curve of the 17-5-17-AGNR junction shown in Fig. 8.1 (a). (b) 

Transmission spectrums of the junction with a bias of 0.1 to 0.5V.  The dark and light 

gray shadings indicate occupied and unoccupied states in the leads, respectively. The 

white blank regions indicate the gaps of leads. The blue box indicates biased energy 

window, within which one lead is occupied and the other lead is unoccupied.  

 

The NDR can be understood by examining the transmission curve as a function of the 

bias voltage, as shown in Fig. 8.2 (b).  When we apply a bias of 0.1 V, the Fermi level 

of lead 1 (   ) drops by 0.05 eV and the Fermi level of lead 2 (   ) increases by 0.05 

eV.  This produces an energy window of 0.1eV with occupied states in lead 2 but 

empty states in lead 1, as indicated by the blue box.  The current at low temperature is 

the integration of the transmission probability      within this energy window [77] 

  
  

 
       

   

   

 

Since the cumulative transmission probability falling into the energy window at the bias 

of 0.1V is almost zero, the current is also almost zero.  As the bias increases to 0.2V, 

the bias window widens and partially covers the transmission peak initially below EF1, 

which gives rise to a current up to ~ 0.444 µA.  At the bias of 0.3V and 0.4V, although 

the bonding transmission state would be well within the energy window, it is however 

driven into the gap of lead 1, where there is no incoming electrons, hence giving no 

transmission.  This leads to a significant drop of the current from ~ 0.444 µA at 0.2V to 
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only ~ 0.071 µA at 0.4V, thus results in a NDR with peak-to-valley ratio ~ 0.444/0.071 

= 6.25.  At a bias of 0.5V, as the gap of lead 1 shifts further down, the bonding peak 

partially emerges out of the gap.  Moreover, the other transmission peak also starts to 

fall into the biased energy window, so together the two transmission peaks give rise to a 

current as large as ~ 1.6 µA.  For bias beyond 0.5V, since both transmission peaks will 

fall into the biased energy window and will no longer be affected by the gaps of leads, 

we expect the current to increase further.   

8.3 Advantages of AGNR-Junctions for NDR 

We see from the mechanism of NDR that AGNR junctions possess many advantages to 

achieve the NDR with relatively low on-set bias and high peak-to-valley ratio.  Firstly, 

the bonding and antibonding nature of the two transmission peaks determines that they 

are close to EF.  The bonding peak of the 17-5-17-AGNR Z-Z junction is only ~0.1 eV 

below EF (Fig. 8.1 (b)).  The closeness to EF makes it easier to achieve NDR with a 

relatively low on-set bias.   

Secondly, the eigenchannel wavefunctions (Fig. 8.1 (b)) of the transmission peaks also 

show that the two states are strongly localized over the middle AGNR region and the 

two zigzag edge interfaces, but relatively weakly coupled to the leads.  Such 

localization is an intrinsic property originated from the zigzag edges (Chapters 4 and 5).  

On one hand, the weak coupling determines that the states are not perturbed much by 

the bias applied to the two leads. Figure 8.2 (b) shows that the energy and shape of 

these transmission peaks do not vary much as bias increases, except a suppression by 

the gap.  In addition, the eigenchannel wavefunction at the bonding peak under a bias of 

as large as 0.5V (see Fig. 8.3) remains essentially the same as that at 0V (Fig. 8.1 (b) 
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inset), further confirming that the state is not perturbed much by the bias.  It would be 

more difficult or even impossible to achieve NDR if these states were drifted away or 

destroyed by the bias.  On the other hand, the weak coupling determines that the two 

transmission peaks are very narrow in energy width (< 0.05 eV), hence can be 

completely suppressed by the gap of the lead (~0.1eV for 17-AGNR, see Fig. 8.1 (b) 

and Fig. 8.2 (b)).  In addition, there is no other transmission peaks nearby.  Therefore, 

once the bonding peak enters the gap, we can achieve a valley current of almost zero.   

 

Fig. 8.3 Real part of the eigenchannel wavefunction with isovalue = +/- 0.025 at the 

bonding peak of 17-5-17-AGNR junction under a bias of 0.5V, as shown in Fig. 8.2 (b).  

The imaginary part show the same feature. 

 

Thirdly, the two narrow transmission peaks close to EF arise from the HOGO and 

LUGO of the middle AGNR (see Chapter 3, 4, 6), so they are intrinsic to the AGNR 

junction as long as there are zigzag edges at the interfaces.  The gap in the AGNR lead 

is also intrinsic and can be well controlled through the width.  Therefore, the high 

performance NDR that we demonstrated using the example of 17-5-17-AGNR can be 

generalized to other AGNR junctions.  In addition, as we have demonstrated in Chapter 

4, these transmission peaks do not shift away from EF as the ribbon lengthens for 

AGNRs in the 3p+2 family.  This unique property allows that the device can be 

extremely long-ranged.  For AGNRs in 3p- and 3p+1 families, as the ribbon lengthens, 
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the transmission peaks approach the Fermi level and may immerge into the gap 

(Chapter 6), while the peak height (transmission probability) also attenuates to zero, so 

there would a length limitation for the NDR device.    

Fourthly, these intrinsic channels still persist when the junction is put on graphene or 

BN substrates (Fig. 8.4). This can be understood since the two interesting states are 

originated from the π-electrons, which do not couple strongly to these substrates.  

Therefore, we expect the high performance NDR would also be robust against 

substrates.   

 
 

 Fig. 8.4 The bonding (a, c) and antibonding (b, d) states with isovalue = +/- 0.025 of a 

17-5-17-AGNR junction on a graphene (a-b) or boron nitride (c-d) substrate.   

8.4 Junctions made by Hydrogenization 

So far, we have been demonstrating NDR in an etched AGNR junction.  In fact, the 

perfect transmission channels giving rise to NDR is originated from spatial extension of 

the zigzag edge state, which is related to the π-orbitals of carbon atoms (Chapter 5 - 6; 

[11]).  Therefore, we expect an equivalent AGNR junction of π-orbitals (rather than 
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carbon atoms) is enough to exhibit the bonding and antibonding states and the relevant 

effects.  Figure 8.5 (a) shows one such junction of π-orbitals made from perfect 17-

AGNR by passivating the π-electron of extra carbon atoms with a hydrogen atom other 

than etched these atoms off; we call this a hydrogenised junction.  This hydrogenised 

junction shows essentially the same transmission curve at zero bias (Fig. 8.5 (c)) as that 

of an etched junction (Fig. 8.1 (b)).  The eigenchannel wavefunctions at the two narrow 

peaks close to EF (Fig. 8.5 (d)) also look similar as the eigenchannels determining the 

NDR in an etched 17-5-17-AGNR junction (Fig. 8.1 (b)), confirming that the nature of 

the channels are the same.  As a result, this hydrogenised junction gives an IV curve 

(Fig. 8.5 (b)) also similar to that of the equivalent etched junction, which exhibits an 

NDR with the same on-set voltage of 0.2 V and a peak-to-valley ratio ~18.6.  

 

Fig. 8.5  The (a) geometry structure, (b) IV curve, and (c) transmission curve at zero 

bias of the 17-5-17-AGNR Z-Z junction made from 17-AGNR by hydrogenization. (d) 

The real parts of eigenchannel wavefunctions at the two perfect transmission peaks 

with isovalue = +/- 0.08.  Imaginary parts show similar features.  
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8.5 Chapter Summary 

In conclusion, we have demonstrated NDR in AGNR-junction via the resonant 

tunnelling model by utilizing an intrinsic transmission channel and the gap of the 

semiconducting AGNR-leads.  The intrinsic channel is close to EF, weakly coupled to 

the leads, and without any other channels nearby.  All these properties help to give a 

very low on-set voltage and high peak-to-valley ratio for the NDR.  Moreover, the 

intrinsic channel hence the resulting NDR effect is robust against effects from 

substrates, and whether the junction is made by etching or hydrogenization, both 

providing great convenience in practical applications.  
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Chapter 9. Disorder Effects 

So far, we have been assuming perfect AGNR junctions.  In practice, it is difficult to 

experimentally make such perfect nanostructures, and many kinds of disorders may 

occur.  From this practical point of view, it is important to study how various types of 

disorder affects the two interesting and useful states in AGNR junctions with a 3p+2-

AGNR in the middle region.  As the two states originate from the zigzag edge state 

coupled to states in the narrow 3p+2-AGNR (Chapters 4, 5, and 6), we expect disorders 

at the zigzag edge and the narrow 3p+2-AGNR would affect more on the two states.  In 

this chapter, we discuss two types of disorders: 1) roughness at the zigzag edge 

interface and 2) an extra H atom over the narrow 3p+2-AGNR. 

9.1 Zigzag Edge Interface Roughness 

Since the bonding and antibonding states originate from the zigzag edge state that 

extends into an AGNR in the front side of the zigzag edge, the atomic structure at the 

interface connecting the zigzag edge and the AGNR is especially important.  So far, we 

have been assuming that the zigzag edge segment at the interface connects to the 

narrow-AGNR at one end, and connects to the armchair edge of the wide-AGNR at the 

other end, both with a well defined 90
0
 corner, as shown in Fig. 9.1 (a). Such well 

defined connection on both sides of the zigzag edge segment requires the width of the 

wide-AGNR exceeding that of the narrow-AGNR by an odd number. Namely, the total 

number of carbon atoms along the zigzag edge segment has to be an odd number.  
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Fig. 9.1 Possible atomic structures at the zigzag edge interface.   

 

If this number becomes even, as shown in Fig. 9.1(b), there will be a carbon atom at the 

outer end of the zigzag edge segment (indicated by red arrow in Fig. 9.1(b)) that is 

bonded to only one carbon atoms and passivated with two hydrogen atoms. This carbon 

atom will be more active and makes the structure less stable.  We may modify the 

structure by deleting this unstable carbon atom to obtain a structure as shown in Fig. 

9.1(c). This generates a very short zigzag edge smoothly connecting the vertical zigzag 

edge and the armchair edge of the wide-AGNR. An alternative modification is to delete 

the whole zigzag chain indicated by the red box in Fig. 9.1(b), generating a structure 

shown in Fig. 9.1(d).  However, there will be a carbon atom left at the corner between 

the zigzag edge and the armchair edge of the narrow-AGNR, as indicated by the red 

circle in Fig. 9.1(d). If we remove this carbon atom, there will be two passivating 

hydrogen atom being at the same place, which is not stable.   

Next, we examine how is the “zigzag + AGNR” state affected by the different atomic 

structures at the interface using a Z-A junction under periodic boundary condition. As 

shown in Fig. 9.2, the Fermi level “zigzag + AGNR” state survives in all four junctions. 

For structures with a shorter zigzag edge (four edge atoms, Fig. 9.2(c-d)), there is only 

one Fermi level state that exhibiting a positive and negative oscillation of wavefunction 

value along the zigzag edge atoms.  However, for structures with a longer zigzag edge 

(five edge atoms, Fig. 9.2(a-b)), there are two such Fermi level states, one of exhibiting 
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a node with negative wavefunction value on two adjacent edge atoms, as indicated in 

Fig. 9.2 (a1) and (b1).  The extra carbon in structure (b) traps more electron probability 

than the usual zigzag edge atoms.  The short zigzag edge in structure (c) (highlighted in 

red in Fig. 9.2 (c)) enhances extension of the zigzag edge state into the 5-AGNR, while 

the extra carbon at the zigzag edge – 5-AGNR corner (indicated by red circle in Fig. 

9.1(d)) prohibits the extension. Based on these observations, we expect that the “zigzag 

+ AGNR” state as well as the bonding and antibonding states will be robust against the 

detailed atomic structure at interface as long as we have a zigzag edge.  

 

Fig. 9.2  The Fermi level “zigzag + AGNR” states in four AGNR Z-A junctions. The 

atomic structures at the zigzag edge interface in (a-d) corresponds those shown in Fig. 

9.1 (a-d), respectively.  The wavefunction magnitude over the 5-AGNR region slightly 

increases from left to right.  This could be due to the short zigzag edge at the corner 

between the 5-AGNR and the armchair edge at the right interface. 
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9.2 Extra H atom over the narrow-AGNR 

The bonding and antibonding states arise from the π-electron of carbon atom in an sp
2
 

configuration (we have confirmed this in Section 8.4).  An extra H atom forms bond 

with this π-electron, hence may destroy the bonding and antibonding states. Without 

loss of generality, we still use the 23-5-23-AGNR Z-Z junction to examine the effects 

of having an extra hydrogen atom over the narrow 3p+2-AGNR region.  An extra H 

atom could be bonded to a carbon atom of the middle 5-AGNR at the first, second, or 

third rows, as shown in Fig. 9.3, which stabilizes the system by -1.61eV, -1.06eV, and -

0.22eV compared with the perfect junction, respectively.  

 

Fig. 9.3  Atomic structures of 23-5-23-AGNR Z-Z junction with an extra H atom 

(indicated by red arrow) bonded to carbon atoms on the (a) first, (b) second, or (c) third 

row counting from the armchair edge. The length of the middle 5-AGNR l = 3 unit cells 

for all junctions.  

 

The transmission curves of these three defected junctions and the perfect junction are 

given in Fig. 9.3.  For junctions with an extra H atom on the 1
st
 and the 2

nd
 rows of the 

5-AGNR, the bonding and antibonding transmission peaks disappear, indicating that 
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the bonding and antibonding states are destroyed by the extra H atom.  However, for 

the junction with an extra H atom on the 3
rd

 row of the 5-AGNR, the bonding and 

antibonding transmission peaks survive.  This could be understand from the unique “3j” 

wavefunction pattern over the 5-AGNR region: absence of wavefunction distribution 

on the (3j)
th

 rows of carbon atoms (Fig. 4.1 and Figs. 6.1 to 6.3).  We expect that for 

AGNR junctions with much wider 3p+2-AGNRs in the middle, an extra hydrogen atom 

bonded to a carbon atom in the (3j)
th

 rows will not destroy the bonding and antibonding 

states.  

We also note that the two peaks of the junction with an extra H atom on the 3
rd

 row 

slightly shifted lower in energy, compared to that of the perfect junction.  This arises 

from the n-type doping effect by the extra H atom, which slightly lifts the Fermi level.  

This result implies that we may dope the AGNR junction system by putting H atoms on 

carbon atoms in the (3j)
th

 rows without destroying the two interesting states. 
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Fig. 9.4 The transmission spectra of the three defected junctions shown in Fig. 9.1 and 

of a perfect junction.   

9.3 Chapter Summary 

In this Chapter, we have discussed the effects from two types of disorders. Results 

show that the bonding and antibonding states tend to be robust against the detailed 

atomic structure at the interface, as long as there is a zigzag edge. However, the 

bonding and antibonding states are more fragile to disorders over the narrow 3p+2-

AGNR, as the non-decaying extension relies on a locally repeating property.  Once 

such repeating property is destroyed, the state would be hardly survive any more.   For 

example, we have showed that an extra H atom bonded to a carbon atom over the 5-

AGNR will destroy the bonding and antibonding states unless this carbon atoms is in 

the empty 3j
th

 row.  
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Chapter 10. Overall Conclusion and Outlook 

In summary, we find that the zigzag edge state can extend into an AGNR in front of the 

zigzag edge.  Such extension results in a non-decaying state for AGNRs in the 3p+2 

family and an exponentially decaying evanescent state for AGNRs in other families.  In 

particular, the non-decaying extension liberates the zigzag edge state from the localized 

nature, potentially leading to many more interesting phenomena.  In an AGNR-junction 

with two zigzag edge interfaces on both sides of the middle 3p+2-AGNR, states 

originated from zigzag edges on both interfaces couple to form perfect transmission 

channels.  The zigzag edges serving as sources and drains to liberate electrons in these 

channels from confinement within the 3p+2-AGNR. Therefore, the eigenenergies of 

these channels are independent on the length of the 3p+2-AGNR segment.  This 

property makes AGNR-junctions in the 3p+2 family excellent molecular wires showing 

invariant conductance with respect to length.  In addition, our results o the spin-

polarized transmission suggest that these perfect transmission channels can be tuned 

with a magnetic field to obtain a large magnetoresistance.  By utilizing theses 

transmission channels and the gap in the semiconducting AGNR leads, we can also 

obtain high performance negative differential resistance via the resonant tunneling 

mechanism.     

Possible future developments of this project include but not limited to 

1) Based on the fact that the zigzag edge state can extend without decay into an 

3p+2-AGNR, we can design many other applications utilizing the non-decaying 

extension.  For example, we expect the zigzag edge state and its non-decaying 



Chapter 10. Overall Conclusion and Outlook 

 

 
120 

 

 

extension into 3p+2-AGNR can serve as a conducting channel that turns direction by 

90
0
. With this as the building units, we would be able to design nanoscale conducting 

channels of any desired shape.  In addition, we can control the opening/closing of each 

section of the channel using a magnetic field. 

2)  Besides the states derived from the zigzag edge, we observed another type of 

interesting states in 3p+1-AGNR junctions whose patterns over the middle 3p+1-

AGNR look like the HOGO and LUGO of 3p+1-AGNs, as shown in Fig. 10.1 (a-b) for 

25-7-25-AGNR junction as an example. What’s more, these states also show a 

localization at the zigzag edges.      

 

Fig. 10.1 (a-b) Two states in 25-7-25-AGNR periodic structure, at energies of -0.35eV 

and 0.35eV, respectively. (c-d) Contributions to each of the two states from sublattices 

A and B. 

 

However, separating the contributions from the two sublattices, the state seems 

increasing inside the middle AGNR from the zigzag edge side towards the opposite side.  

We are still not sure of the reason for this increasing yet, but this implies the state in the 

middle AGNR may not be derived from the zigzag edge.   
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In order to find out the necessity of the zigzag edge for these states, we studied two 

reference junctions with one or both of the zigzag edge interfaces replaced by armchair 

edge interfaces, i.e. a Z-A and an A-A junction as shown in Fig. 10.2.  Interestingly, we 

also observed two states in both the Z-A and the A-A junction with the pattern inside 

the middle 3p+1-AGNR mimic the HOGO and LUGO of an infinite 3p+1-AGNR and 

the pattern at any zigzag edge mimic the zigzag edge state, as shown in Fig. 10.2.   

 

 Fig. 10.2  Two states in 25-7-25-AGNR (a-b) Z-A and (c-d) A-A periodic structures.  

 

The states shown in Fig. 10.2 (especially those for the A-A structure) definitely do not 

rely on the zigzag edge.  So we can tell that the two states shown in Fig. 10.1 (a-b) are 

of the same nature.  Namely, these states may be related to the HOGOs and LUGOs of 

the middle 3p+1-AGNR, but they are not derived from the zigzag edge, although the 

state show localization at the zigzag edge.   

These two interesting states worth further investigation. 
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Appendix A.  Mathematical Induction Proof of the  

Length-Independence of Eigenenergy 

The l-independence of eigenenergies of the anomalous states discussed in Chapter 4 

mainly results from the locally repeating pattern in the wavefunction.  For a 23-5-23-

AGNR Z-Z periodic structure, let P
(m) 

be the proposition that for l = m, there exists an 

eigenstate with m locally repeating units within the 5-AGNR region and this eigenstate 

has eigenenergy E independent of l. Here, we present a mathematical proof of this 

proposition by induction. 

 

Step 1) We show that P
(3) 

 is true. 

For m = 3, the eigenwavefunction patterns of the bonding state and antibonding state of 

23-5-23-AGNR Z-Z periodic structure each includes 3 locally repeating units in the 5-

AGNR region, with each unit consisting of two zigzag-shaped carbon columns, as 

qualitatively shown in the DFT eigenstate results in Fig. 5.2 (a) and (b).  We also plot 

the exact values of coefficients   
     

of the bonding state         
     

 calculated by 

tight-binding method in Fig. 4.3 (b).  The zoomed-in plot for the coefficients projected 

in the 5-AGNR region shows clearly 3 locally repeating units, each consisting of 2n = 

2×5 = 10 coefficients. 

 

Step 2) We show that if P
(m) 

is true, then P
(m+1) 

is also true. 

Suppose for a 23-5-23-AGNR Z-Z periodic structure with l = m, we have the 

Hamiltonian      and an eigenwavefunction      with eigenenergy   

                          (A1) 
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Mathematically,      is an eigenvector whose elements are coefficients projected at 

each carbon atom i out of the N atoms in the whole structure.    

     

 

 
 
 
 
 
 

  
   

  
   

 
  

  
   

 
  

  
   

 

 
 
 
 
 
 

         (A2) 

Assume the coefficients projected at the 5-AGNR segment is locally repeating, and 

group   
   

 within each repeating unit as a sub-vector  , we can represent      as 

       

 

         

 

  

  

 

m  sub-vectors      (A3)      

  

. 

. 

. 

  

 

where          is a sub-vector consisting of coefficients projected at carbon atoms in 

the 23-AGNR region. 

Substituting (A2) into the matrix multiplication Eqn. (A1), we can represent it as a 

series of N equations 

    
   

  
    

       
   

     (A4) 
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where    
   

 is the element ij of the Hamiltonian matrix     , representing the hopping 

interaction between atom i and atom j, and i runs from 1 to N. 

Including interactions up to third nearest neighboring zigzag columns, which covers 1
st
 

to 7
th

 nearest neighboring carbon atoms, is more than enough to describe the physics of 

graphene [12, 29].  For convenience, we define neighbors within third nearest zigzag-

shaped columns as local neighbors.  With this definition, local neighbors for the 5-

AGNR region are within the same and nearest locally repeating unit cells.  Therefore, 

the interaction parameter between atom i and its neighbor j outside the local neighbor 

definition would vanish    
   

  , and Eqn.(A4) can be simplified to 

    
   

  
   

                

    
   

                  

From the eigenstate     , we can insert one more locally repeating sub-vector   (as 

illustrated in Fig. 4.1 (e)) and renormalize the wavefunction by multiplying an scaling 

down parameter   to manually construct an eigenstate        as 

          

 

         

 

  

   

m +1  sub-vectors   (A6)      

  

. 

. 

. 
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We show that        constitutes an eigenstate of        (the Hamiltonian of the 

periodic structure with l = m+1) with the same eigenenergy E, i.e. 

                         (A7) 

Considering again only interactions with local neighbors, Eqn.(A7) can be simplified to 

a series of N+2n equations (n is the number of carbon atoms across the width of n-

AGNR,  and 2n is the number of atoms in one locally repeating unit) 

    
     

                

  
     

    
     

                  

For convenience, we arrange the coefficients   
     

 of        in such a sequence that 

coefficient projected on the newly inserted 2n atoms are attached at the end of the 

vector, although geometrically they are inserted in-between two sub-vectors v.  

 

We discuss the validity of eqns. (A8) for i in three cases: Case 3) is the newly inserted 

sub-vector v; Case 2) are the two sub-vectors v neighboring with the extra v; and Case 

1) includes the rest N-4n atoms that are inherited from      but excluding Case 2). 

 

For the N coefficients   
     

 inherited from   
   

, there is only a scaling down by a 

parameter  , i.e.   

  
     

    
   

  (A9) 

For Case 1), both the atoms   
     

 and their local neighbours   
     

 satisfy Eqn.(A9).  

The local interactions also remain the same, i.e.  
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Hence Eqns. (A8) for i runs within these N-4n atoms can be further simplified exactly 

to the series of equations (A5), which are already valid by assumption. 

 

Case 2) is almost same as Case 1) except that one neighboring sub-vector v is replaced 

with a newly inserted but exactly same sub-vector v, so Eqn.(A8) also holds for these 

4n atoms. 

 

For Case 3), the atoms   
     

 and their local neighbors   
     

 (within the same and the 

nearest locally repeating unit cells of narrow-AGNR) are exactly a copy of another sub-

vector   plus its two neighboring sub-vectors  , hence they will all satisfy equation 

(A8).  

Summing up Cases 1), 2), and 3), all N+2n coefficients   
     

 of        satisfy the 

Schrödinger equation (A8).  Hence we have proved        is an eigenstate of         

with the same eigenenergy  , i.e. P
(m+1)

 is true. 

 

With         
     

 as a starting point, according to Step 2), we can construct an eigenstate 

        
   

 for any m > 3 with the same eigenenergy  . This explains why the 

eigenenergies of the bonding and antibonding eigenstates are almost independent of the 

number of locally repeating units in the 5-AGNR region.  This proof indicates that as 

long as there exists a starting eigenwavefunction      containing m locally repeating 

units, we can construct an eigenwavefunction with the same eigenenergy for a longer 

structure by inserting more locally repeating units. 
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Appendix B.  Family of the wide-AGNR 

In the main text of the whole thesis, we have been focusing on the zigzag edge interface 

and the narrow-AGNR.  In particular, when the narrow-AGNR is in 3p+2 family, the 

zigzag edge state at the interface will extend into this 3p+2-AGNR without decay. 

Otherwise, the state decays inside the narrow-AGNR exponentially.  In contrast to the 

important role the family of the narrow-AGNR plays, the family of the wide-AGNR 

makes little difference to the peculiar “zigzag + narrow-AGNR” states.  For example, 

the bonding and antibonding states are also observed in a 19-5-19-AGNR and a 27-5-

27-AGNR (Fig. B.1), where the wide-AGNR is in 3p+1 and 3p family, respectively.    

 

Fig. B.1 The (a, c) bonding and (b, d) antibonding states in (a-b) 19-5-19- and (c-d) 27-

5-27-AGNR Z-Z junctions.  Isovalue = +/- 0.025 for all wavefunction isosurfaces. The 

number show the energy of these states relative to the Fermi level.  
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However, these bonding and antibonding states are at energies very close to the Fermi 

level.  When we use a narrow-gap 3p+2-AGNR as the leads, the bonding and 

antibonding states both give rise to a transmission channel with conductance reaching 

1.  However, if we use a wide-gap 3p- or 3p+1-AGNR [12] as the leads, although the 

bonding and antibonding states still well survive, they immerse into the wide gap of the 

leads and does not give rise to a transmission channel. As shown in Fig. B.2, the 

transmission spectra of the 19-5-19- and 27-5-27-AGNR junctions both show a wide 

gap (~ 1V) cantered around EF, within which there is no incoming state to transmit 

through the bonding or antibonding state.  However, we expect that the bonding and 

antibonding states will conduct as well as in the 23-5-23-AGNR junction if we drift 

them out of the gap using e.g. a bias. 

 

 

Fig. B.2 The transmission spectra of (a) 19-5-19- and (b) 27-5-27-AGNR Z-Z junctions 

with a varying length l of the 5-AGNR. 
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