
 

DATA-DRIVEN BAYESIAN APPROACH TO THE 

ANALYSIS OF CELL SIGNALLING NETWORKS IN 

SYNERGISTIC LIGAND-INDUCED NEURITE 

OUTGROWTH IN PC12 CELLS 

 

 

SEOW KOK HUEI 

 
 

 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF SINGAPORE 

2014



 

 

DATA-DRIVEN BAYESIAN APPROACH TO THE 

ANALYSIS OF CELL SIGNALLING NETWORKS IN 

SYNERGISTIC LIGAND-INDUCED NEURITE 

OUTGROWTH IN PC12 CELLS 

 

 

SEOW KOK HUEI 

(B.Eng. (Hons.), National University of Singapore) 

 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

IN CHEMCIAL AND PHARMACEUTICAL ENGINEERING 

SINGAPORE-MIT ALLIANCE 

 

NATIONAL UNIVERSITY OF SINGAPORE 

2014



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Declaration I 
 
 

Declaration 

I hereby declare that this thesis is my original work and it has been written by 

me in its entirety. I have duly acknowledged all the sources of information 

which have been used in the thesis. 

This thesis has also not been submitted for any degree in any university 

previously. 

 

Seow Kok Huei 

22nd January 2014 

 

 

 

 

 

 

 

 

 

 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Acknowledgements II 
 
 

Acknowledgements 

―The person who has the most to do with what happens to you is you. It is not 

the environment, it is not the other people who were there trying to help you 

or trying to stop you. It is what you decide to do and how much effort you put 

behind it.‖ ~ Dr. Benjamin Solomon Carson 

 

While this Ph.D. journey has been a long and arduous path for me, it is also 

one that I am extremely grateful for. The testing times have made me realized 

many shortcomings in myself and forced me to question my outlook and 

approach to life on many occasions. Without a doubt, this enduring time has 

in many aspects prepared me better for life ahead and enlightened me in 

immeasurable ways. 

First and foremost, I would like to thank my main supervisor, Professor Too 

Heng-Phon. It is my blessing and fortune to have him as my advisor. Despite 

my inadequacies, he did not give up on me. Instead, he has been very 

supportive and patient in mentoring and guiding me all these years. He has 

been very inspirational and has devoted an enormous amount of time in 

helping and advising me both in work and in life. More importantly, he has 

been pivotal in guiding me how to do good science and in moulding me to be 

a more matured person. 

I would like to thank my co-supervisor Professor Gregory Stephanopoulos, 

who has given me insightful advices during my candidature, especially during 

my spell in MIT. I would also like to thank Professors Saif A. Khan, Tong Yen 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Acknowledgements III 
 
 

Wah, Patrick S. Doyle, Raj Rajagopalan, and Rudiyanto Gunawan for having 

served on my thesis committee and their guidance to my research. I would 

also like to express my gratitude towards Professor Leong Tze Yun and Dr. 

Silander Tomi Viljam for their invaluable assistance towards the mathematical 

modelling aspects of my thesis. 

I would also like to thank every lab members for their help and support all 

these years, especially Dr. Zhou Lihan, Mr Jeremy Lim Qing ‗En, Dr. John 

Wan Guoqiang, and Dr. Zhou Kang. I would like to express my sincere 

gratitude to my family members for their encouragement during this Ph.D. 

study. Last but not least, I would also like to express my appreciation to all my 

close friends, especially Ms. Zhou Yanqing, who had supported me in 

different ways during the difficult phases of my Ph.D. study. 

 

―Adversity is the true school of the mind.‖ ~ Katharine Lee Bates



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Table of Contents IV 
 
 

Table of Contents 

Declaration  ................................................................................................... I 

Acknowledgements ...................................................................................... II 

Summary  ................................................................................................ IX 

List of Tables ............................................................................................. XII 

List of Figures ........................................................................................... XIV 

List of Abbreviations ............................................................................... XVII 

List of Manuscripts and Publications ..................................................... XIX 

Chapter 1. Introduction .............................................................................. 1 

1.1. Background .................................................................................................. 2 

1.2. Scope and Organization of Thesis ............................................................... 5 

1.2.1. Investigation of a Sub-System Critical for Synergistic Neurite 

Outgrowth ............................................................................................... 6 

1.2.2. Investigation of the Signalling Pathways Regulating the 

Morphological Structures of Neurite Outgrowth ..................................... 7 

1.2.3. Development of a Modified Bayesian Methodology (TEEBM) for 

Analyses of Dynamic Signalling Networks ............................................. 7 

1.2.4. Investigation of the Expression of Genes and miRNAs during 

Synergistic Neurite Outgrowth ............................................................... 8 

Chapter 2. Literature Review ..................................................................... 9 

2.1. Cell Signalling ............................................................................................ 10 

2.1.1. Reductionism versus Systems-Based Approaches ............................. 10 

2.1.2. Single-Ligand versus Multi-Ligand Approaches .................................. 12 

2.1.3. Multi-Ligand Synergistic Systems ........................................................ 12 

2.2. Mathematical Modeling in Systems Biology .............................................. 13 

2.2.1. Reverse Engineering of Cell Signalling Networks ............................... 14 

2.2.2. Mechanistic Modeling .......................................................................... 15 

2.2.2.1. Ordinary Differential Equations (ODEs) ....................................... 15 

2.2.3. Data-Driven Modeling .......................................................................... 16 

2.2.3.1. Artificial Neural Networks (ANNs) ................................................ 17 

2.2.3.2. Associated Networks .................................................................... 18 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Table of Contents V 
 
 

2.2.3.3. Bayesian Networks (BNs) ............................................................ 19 

2.2.3.4. Boolean Networks ........................................................................ 22 

2.2.3.5. Linear Algebra-Based Analyses ................................................... 23 

2.3. Neuronal Differentiation ............................................................................. 25 

2.3.1. Regulation of Neurite Outgrowth in PC12 Cells ................................... 26 

2.3.1.1. Pituitary Adenylate Cyclase-Activating Peptide (PACAP) ............ 26 

2.3.1.2. Nerve Growth Factor (NGF) ......................................................... 29 

2.3.1.3. Basic-Fibroblast Growth Factor (FGFb) ....................................... 31 

2.3.1.4. Epidermal Growth Factor (EGF) .................................................. 33 

2.3.2. Regulation of Synergistic Neurite Outgrowth in PC12 Cells ................ 33 

2.3.3. Regulation of Morphological Structures of Neurite during 

Synergistic Neurite Outgrowth in PC12 Cells ...................................... 35 

2.4. Analysis of Synergistic Systems Using PC12 Cells ................................... 37 

2.4.1. Lack of Approaches to Analyses of Synergistic Systems .................... 37 

2.4.2. Proposed Bayesian Approach to Analysis of Synergistic Neurite 

Outgrowth ............................................................................................. 38 

2.4.2.1. Model Selection ............................................................................ 39 

2.4.2.2. Modeling the Dynamics of the System ......................................... 40 

2.4.2.3. Capture of Information on Synergism through 

Parameterization .......................................................................... 42 

2.4.2.4. Integration of Data from Uni- and Bi-Ligand Treatments ............. 44 

2.4.2.5. Optimization and Experimental Validation ................................... 45 

2.5. Concluding Remarks .................................................................................. 47 

Chapter 3. C-Jun N-Terminal Kinase in Synergistic Neurite 
Outgrowth in PC12 Cells Mediated through P90RSK .......... 49 

3.1. Introduction ................................................................................................ 50 

3.2. Results ....................................................................................................... 51 

3.2.1. Response Surface Analyses Suggest that Synergistic Neurite 

Outgrowth is Regulated by Discrete Mechanisms in Different 

Systems ............................................................................................... 51 

3.2.2. Synergistic Phosphorylations of Erk and JNK upon 

Combinatorial Growth Factor-PACAP Treatment ................................ 55 

3.2.3. Erk Positively Regulates Neurite Outgrowth in All Three Systems 

Whereas Regulation of the Process by JNK is Positive in the NP 

and FP Systems but Negative in the EP System ................................. 61 

3.2.4. P90RSK is Downstream of both Erk and JNK in the NP and FP 

Systems but only Downstream of Erk in the EP System ..................... 65 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Table of Contents VI 
 
 

3.3. Discussions ................................................................................................ 69 

3.4. Conclusions ................................................................................................ 73 

Chapter 4. Multi-Parameter Morphological Analysis Reveals 
Complex Regulation of Neurite Features during 
Synergistic Neurite Outgrowth in PC12 Cells ...................... 74 

4.1. Introduction ................................................................................................ 75 

4.2. Results ....................................................................................................... 77 

4.2.1. Analyses of Neurite Extension ............................................................. 77 

4.2.2. Analysis of Neurite Branching .............................................................. 81 

4.2.3. PKA Regulates Neurite Length in the FP and EP, but not NP, 

Systems ............................................................................................... 84 

4.2.4. Regulation of Different Morphological Features of Neurite 

Outgrowth by Distinct Signalling Pathways ......................................... 87 

4.3. Discussions ................................................................................................ 91 

4.4. Conclusions ................................................................................................ 96 

Chapter 5. A Novel Bayesian Approach to Network Inference of 
the Synergistic NGF-PACAP Bi-Ligand System Unveils 
Positive Feedback during Regulation of Neurite 
Outgrowth in PC12 Cells ....................................................... 97 

5.1. Introduction ................................................................................................ 98 

5.2. Mathematical Modeling Procedure .......................................................... 100 

5.2.1. BNs without Intervention Data ........................................................... 100 

5.2.1.1. Bayesian Inference from Data .................................................... 101 

5.2.1.2. Expanded-in-Time Parameterization of Protein Variables ......... 103 

5.2.1.3. Two-Phase Learning .................................................................. 105 

5.3. Results ..................................................................................................... 106 

5.3.1. Synergistic MEK, MKK4, Erk, and JNK Activations ........................... 106 

5.3.2. Network Inference Using TEEBM ...................................................... 110 

5.3.3. Validation of Predicted Edges Common to BN and eDBN ................ 114 

5.3.4. Validation of Predicted Edges Common to DBN and eDBN .............. 116 

5.3.5. Validation of Edges not Predicted by eDBN, and Edges 

Predicted by eDBN but not by BN or DBN ......................................... 116 

5.3.6. Positive Feedback Involving MEK, MKK4, Erk, and JNK .................. 118 

5.3.7. Arc-Weight Analysis ........................................................................... 119 

5.4. Discussions .............................................................................................. 120 

5.5. Conclusions .............................................................................................. 124 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Table of Contents VII 
 
 

Chapter 6. Expressions of IEGs and miRNAs during Synergistic 
Neurite Outgrowth in PC12 Cells ........................................ 126 

6.1. Introduction .............................................................................................. 127 

6.2. Results ..................................................................................................... 129 

6.2.1. Regulation of Expression of IEGs during Synergistic Neurite 

Outgrowth ........................................................................................... 129 

6.2.2. Regulation of Expression of miRNAs during Synergistic Neurite 

Outgrowth ........................................................................................... 134 

6.3. Discussions .............................................................................................. 137 

6.4. Conclusions .............................................................................................. 141 

Chapter 7. Conclusions and Future Works .......................................... 142 

7.1. Conclusions .............................................................................................. 143 

7.2. Future Works ............................................................................................ 147 

7.2.1. Application of TEEBM in Understanding Synergistic Neurite 

Outgrowth ........................................................................................... 149 

7.2.1.1. Network Analyses of Signalling Pathways Regulating 

Neurite Outgrowth in the FP and EP Systems ........................... 149 

7.2.1.2. Investigation of the Differential Involvement of Signalling 

Pathways in Regulating Neurite Outgrowth in the NP, FP, 

and EP Systems ......................................................................... 149 

7.2.1.3. Role of Protein Phosphatases in Regulating the Synergistic 

Activations of Erk and JNK ......................................................... 151 

7.2.1.4. Identification of Novel Interactions between the Growth 

Factor and PACAP Signalling Systems ..................................... 152 

7.2.1.5. Investigation of the Dynamics of Protein Activity in Relation 

to Neurite Outgrowth .................................................................. 152 

7.2.1.6. Regulation of Morphological Features during Synergistic 

Neurite Outgrowth ...................................................................... 153 

7.2.2. Further Development of TEEBM ........................................................ 154 

7.2.2.1. Maximizing Use of Literature Datasets ...................................... 154 

7.2.2.2. Analyses of Networks with More than 30 Variables ................... 155 

7.2.2.3. Applications of TEEBM to Systems with More than Two 

Ligands ....................................................................................... 156 

Chapter 8. Materials and Methods ........................................................ 157 

8.1. Experimental Materials ............................................................................ 158 

8.2. Cell Culture .............................................................................................. 159 

8.3. Western Blot Analyses ............................................................................. 159 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Table of Contents VIII 
 
 

8.4. Measurements of Neurite Outgrowth ....................................................... 160 

8.5. Immunocytochemistry .............................................................................. 161 

8.6. Quantitative Polymerase Chain Reaction (qPCR) ................................... 161 

8.7. Statistical Analyses .................................................................................. 163 

Bibliography ............................................................................................. 164 

 

 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Summary IX 
 
 

Summary 

Traditional approaches to cell signalling studies are limited by the use of a 

single ligand in experiments, and the accompanying single-component 

analyses. These reductionist frameworks are restricted by their limited 

physiological relevance as both the intracellular and extracellular 

environments of cells function as systems of interacting components. In a 

multi-ligand environment, an important emergent behaviour that is garnering 

attention is synergism. In particular, synergistic neurite outgrowth, an 

important process during both neuronal development and treatment of 

neurodegenerative diseases, is still poorly understood at a systems-level. 

Furthermore, there is currently a lack of mathematical modeling tools for the 

analysis of such synergistic systems. 

This thesis aimed to further the understanding of the mechanisms underlying 

synergistic neurite outgrowth through the use of a systems-based 

mathematical model. This work served as a proof-of-concept study that the 

developed tool based on Bayesian formalism, for the multi-variant analyses of 

the perturbation effects of multiple ligands on a small number of known 

signalling nodes involved in neurite outgrowth, is feasible. Using PC12 cells, 

an established model used for studying neuronal differentiation, the 

mechanisms underlying synergistic neurite outgrowth in three systems, NGF-

PACAP (NP), FGFb-PACAP (FP), and EGF-PACAP (EP) were investigated.  

In the first part of this thesis, the signalling pathways involved in the regulation 

of synergistic neurite outgrowth in the three systems were investigated. While 

Erk was required for neurite outgrowth in all three systems, JNK was found to 
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positively-regulate neurite outgrowth only in the NP and FP systems (Chapter 

3). Conversely, PKA was involved in neurite outgrowth only in the FP and EP 

systems (Chapter 4). This requirement of Erk and differential involvement of 

JNK and PKA was found to be dependent on the regulation of P90RSK 

activity. Thus, the JNK-P90RSK and PKA-P90RSK links were identified as 

hitherto unrecognized mechanisms mediating the synergistic effect in neurite 

outgrowth. Furthermore, the differential regulation of P90RSK in these 

synergistic systems strongly suggested that these systems can serve as 

excellent models to decipher the mechanistic regulation of P90RSK by its 

upstream kinases, Erk, JNK, and PKA. 

In a brief follow-up of the study, the potential IEGs and miRNAs that can 

mediate the effects of these kinases in regulating synergistic neurite 

outgrowth were identified (Chapter 6). miR-487b-3p, which has not been 

reported before to be required for neurite outgrowth, was found to be up-

regulated during neurite outgrowth. In addition, several IEGs and miRNAs 

known to be involved in neurite outgrowth were found to be regulated by the 

same pathways regulating neurite outgrowth in the corresponding system.  

Next, the regulation of synergistic neurite outgrowth was further analyzed in 

terms of its various morphological features. Enhancement of total neurite 

length was found to be mediated by an increase in the number of neurite 

extensions, degree of neurite branching, and length of individual neurites. 

Critically, P38 was found to mediate neurite branching independently of 

length in the NP and FP systems (Chapter 4). This involvement of distinct 

signalling pathways in regulating the various morphological features of neurite 

outgrowth in these systems demonstrated the complexity of this process. 
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To gain mechanistic insights underlying the synergistic activations of Erk and 

JNK in the NP system, a modeling framework based on Bayesian formalism, 

termed TEEBM (Two-phase, Exact structure learning, Expanded-in-time 

Bayesian Methodology), was developed (Chapter 5). Using this model, a 

positive feedback between the MEK/Erk and MKK4/JNK pathways was found 

to mediate the synergistic activations of the two pathways. The model 

predictions were validated experimentally, suggesting the validity and 

potential of the developed tool for analyzing signalling networks in any multi-

ligand systems, beyond the scope of this study.  
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1.1. Background 

Cell signalling is an important information transmission system which cells 

utilize to respond to their microenvironments and to carry out their cellular 

responses such as survival, apoptosis, proliferation, migration, and 

differentiation. The cell responses are mediated and regulated through the 

intracellular activities of biomolecules in a dynamical manner. This system of 

information transmission in cells involves extensive interactions between 

different classes of proteins, including kinases, phosphatases, transcription 

factors, and adaptor proteins. These processes are made more complicated 

by interactions that result in emergent behaviours such as synergism and 

antagonism. 

Defects and abnormalities in signalling mechanisms are often associated with 

various illnesses such as AIDs, cancer, cardiovascular diseases, diabetes, 

and neurodegenerative diseases1-6. One of the most critical proteins in cell 

signalling is the protein kinases. They play an important role in regulating and 

coordinating signalling pathways involved in normal development and 

operation, and improper functioning of the kinases can lead to various 

diseases7. They are involved in the post-translational phosphorylations of 

tyrosine, serine, and threonine residues8 and are implicated in the regulation 

of many cellular processes9. In the human genome, up to 50% of the proteins 

may be regulated by phosphorylation10. Thus, a greater understanding of the 

defects in such signalling processes can lead to the development of 

chemotherapeutics, which either inhibit or activate signalling pathways, in 

treating various diseases. Furthermore, understanding the signalling 

processes can pave the way for combinatorial drug treatments that give rise 
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to synergistic therapeutics. Such synergistic behaviours are of utmost 

importance as the combinatorial effects of the components are greater than 

the sum of the effects of the constituent parts1. These approaches can 

potentially moderate treatment, achieve higher efficacy, and reduce side 

effects11-13 in the treatment of various illnesses.  

Cell signalling studies have traditionally been studied solely using reductionist 

approaches, which try to explain complex phenomena through the functional 

properties of the individual parts that constitute the multi-component system14. 

However, it is now accepted that reductionism alone cannot lead to a 

complete understanding of how cells behave as the complex physiological 

processes cannot be understood simply by knowing how the individual parts 

work. Given that the activities of cellular components change dynamically and 

quantitatively, systems-based approaches are necessary for studying the 

integrated function of the biological systems15.  

The issue of reductionist approaches is present not just in the analysis of 

interactions between signalling components but also in the use of single 

ligands in biological studies. This is because cells are exposed to a multitude 

of ligands in their microenvironments and using a single ligand can result in a 

mis-represented understanding of cell signalling. It is through the interactions 

between the signalling responses to the individual ligands that give rise to 

synergistic behaviours, further highlighting the physiological-relevance of 

synergism. Thus, there is also a need to shift from a single-ligand to multi-

ligand experimental paradigm. This in turn means that developing a systems-

based approach in the study of synergistic behaviours is of paramount 

importance. 
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To achieve a systems-level analysis of cell signalling networks, mathematical 

models, which allow multiple components to be analyzed both quantitatively 

and temporally, are essential tools. However, many of these tools are derived 

from engineering disciplines and are applied to systems designed by humans. 

Engineering systems are characterized by well-defined and well-understood 

processes whereas biological systems are currently defined by vaguely and 

poorly understood processes. Thus, the main uses of mathematical models 

differ between engineering and biological systems. These models are used to 

represent the behaviours of systems in engineering fields but in biological 

systems, they are used with the aim of gaining insights into the complexity of 

cells through the analysis of biological data. This reverse-engineering process 

is further complicated by noisy data, and small number of data-points coupled 

with high dimensionality. Thus, development of mathematical tools that can 

be adapted to both the properties of biological systems and biological 

datasets are of paramount importance towards the advancement of the field. 

Moreover, while many tools have been applied to the investigations of 

biological systems, few have focused on the analyses of multi-ligand 

biological systems that can give rise to synergistic behaviours. The analyses 

of multi-ligand systems call for a different framework from those of uni-ligand 

systems as different information can potentially be extracted from the two 

different experimental set-ups. Hence, modelling frameworks and 

parameterizations that can be tailored to extract more information from multi-

ligand systems can yield more insights into signalling mechanisms than the 

mainstream approaches. 
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While biological processes pertaining to cancer, such as survival, 

proliferation, migration, and apoptosis, have been relatively well-studied, the 

process of neuronal differentiation is still poorly understood at the systems-

level. During neuronal differentiation, one of the key changes is axonal and 

dendritic outgrowth from the cell-body. This is of critical importance not just in 

development, but also in recovery from injuries and neurodegenerative 

diseases16. Upon nerve injury, the speed of nerve regeneration is critical as a 

full functional recovery can be impeded by delayed regeneration17. Thus, 

acceleration of neurite outgrowth through a synergistic drug-combination 

approach can provide a valuable treatment strategy. Given the potentials of 

combinatorial drug therapy in neurodegenerative diseases3-5, it is imperative 

to gain a more comprehensive understanding of the mechanisms underlying 

such synergistic behaviours. 

1.2. Scope and Organization of Thesis 

Several studies have demonstrated the benefits of the co-administration of 

neurotrophic factors18 and the combinatorial treatment of nerve growth factor 

(NGF) with glial cell-derived neurotrophic factor (GDNF)19 or insulin-like 

growth factor (IGF)-120 in promoting synergistic axonal or neurite elongation. 

The aim of this thesis is to further the understanding of synergistic neurite 

outgrowth, which is still poorly understood at the systems-level. This is 

facilitated with the aid of mathematical modelling. In this work, a systems-

based mathematical modelling approach for the study of synergistic 

behaviours in multi-ligand systems was developed and applied to the 

analyses of the mechanisms underlying synergistic neurite outgrowth, a 

measure of neuronal differentiation. Given that existing methods are still in its 
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infancy in the analyses of cellular signalling, and methods that can analyse 

synergistic behaviours in multi-ligand systems are very much lacking, the 

proposed approach can significantly contribute to the field.  

In chapter 2, a literature review of the main modeling methods used in 

systems biology was presented along with the current knowledge of the 

regulation of differentiation in PC12 cells. The proposed method for the 

analysis of synergistic system was also reviewed in view of the challenges 

involved. 

The scope of this project was aimed at the following aspects and is covered 

from chapters 3 to 6 as follows: 

1.2.1. Investigation of a Sub-System Critical for Synergistic 

Neurite Outgrowth 

In Chapter 3, the pathways regulating synergistic neurite outgrowth in three 

different systems, EGF-PACAP, FGFb-PACAP, and NGF-PACAP, were 

investigated. Although synergistic neuronal systems have been identified 

previously, the signalling pathways involved in the regulation of synergistic 

neurite outgrowth were largely unknown. Using a widely-used cell model for 

the study of neuronal differentiation, the PC12 cells, these three different 

synergistic systems were explored in this aspect. Signalling pathways that 

were synergistically activated were identified and investigated for their 

involvement in regulating synergistic neurite outgrowth. A differential 

involvement of these pathways in the three systems was found along with the 

reason underlying the difference.  
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1.2.2. Investigation of the Signalling Pathways Regulating 

the Morphological Structures of Neurite Outgrowth 

In chapter 4, emphasis was placed on the analyses of the morphological 

structures of neurite in the three different synergistic systems, EGF-PACAP, 

FGFb-PACAP, and NGF-PACAP. The determination of the extent of neurite 

outgrowth in many studies has primarily been focused on neurite length and 

the proportion of cells that are differentiated. However, the morphological 

structures of neurites such as branching and the number of neurites 

extending from the cell-bodies are equally important parameters. To gain 

insights into how these morphological features collectively contributed to the 

synergistic regulation of neurite outgrowth, kinases regulating the process 

were studied for their involvement in regulating different morphological 

features of neurites. It was found that morphological features such as neurite 

length and the degree of branching in the neurites can be regulated 

independently of one another.  

1.2.3. Development of a Modified Bayesian Methodology 

(TEEBM) for Analyses of Dynamic Signalling 

Networks 

In Chapter 5, the mechanism underlying the synergistic activations of the 

kinases involved in neurite outgrowth in the NGF-PACAP system was 

investigated through the use of mathematical modeling. A modified Bayesian 

approach, termed TEEBM (Two-phase, Exact structure learning, Expanded-

in-time Bayesian Methodology) for structure learning was proposed and used 

to determine if any novel directional influences exist within the pathways. The 

methodology was proposed to overcome the limitations of existing 
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approaches in the analysis of multi-ligand cell signalling networks. It 

addressed issues related to the modeling of the system dynamics, the 

parameterization of the data, the integration of data from uni- and bi-ligand 

treatments, and the optimization of the learned network structure. The novel 

edges that were identified to contribute to synergistic neurite outgrowth by the 

proposed method were validated experimentally. 

1.2.4. Investigation of the Expression of Genes and 

miRNAs during Synergistic Neurite Outgrowth 

In chapter 6, a brief study was performed to determine the expression and 

regulation of the genes and miRNAs that are potentially involved in neurite 

outgrowth in the three different synergistic systems, EGF-PACAP, FGFb-

PACAP, and NGF-PACAP. While several genes and miRNAs have been 

implicated in neurite outgrowth, it is unclear if the requirement for different 

combinations of upstream protein kinases in regulating neurite outgrowth in 

the three systems can converge onto a common set of genes or miRNAs. The 

regulation of these genes and miRNAs were found to be different in all three 

systems, suggesting that yet to be discovered cross-talks between these 

signalling pathways are likely to be present. 
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2.1. Cell Signalling 

Cell signalling is a system of communication utilized by cells to respond to 

their microenvironments. It involves a complex network of interactions 

between signalling components present in the cells in a dynamical manner. 

This leads to cellular actions such as survival, apoptosis, proliferation, 

migration, and differentiation.  

2.1.1. Reductionism versus Systems-Based Approaches 

Studies aimed at gaining an understanding into this complex system have 

traditionally utilized reductionist approaches. Reductionism takes the 

approach of ―divide and conquer‖ and is based on the belief that the complex 

system can be solved by breaking it down into smaller and more tractable 

constituent units21-23. Reductionism is extremely useful in identifying the 

important or involved parts in a system and much of our knowledge today 

about cell signalling mechanisms are based on an accumulation of such 

reductionist approaches. However, it is based on the wrong assumption that it 

is the only solution24. The main drawback of reductionism is that breaking 

down the system into its parts result in loss of critical information about the 

system as a whole. It is now realized that biological systems are too complex 

to be explained simply just by an understanding of the constituent parts 

(Figure 2.1). This is because biological systems exhibit emergent properties, 

a behaviour that can only be exhibited as a system and not by any isolated 

constituent part21,23. 
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Figure 2.1. Comparison of reductionism and systems science
24

. 

To circumvent such a drawback, systems-based approaches have been 

adopted, with a shift from a component to a system-level perspective. The 

systems standpoint stems from the assumption that the forest cannot be 

explained by studying the trees individually. It takes into account the holistic 

and composite characteristics of a problem and analyses the problem with the 

use of computational and mathematical modelling tools21. The main goal is to 

understand how emergent properties can arise from the non-linear 

interactions between multiple components. Given that cells respond to their 

environment in a dynamical manner and are compartmentalized into areas 

such as the nucleus, cytoplasm, and plasma membrane, a systems-based 

approach to cell signalling studies should take the space, time, and context of 

the environment into account. 

However, it must be emphasized that this does not mean that reductionist 

approaches are not useful. Both systems and reductionist approaches are 

meant to complement each other21,25 as it is only when the parts of the 

system have been identified that systems approaches can be used to 

understand the underlying emergent behaviours. 
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2.1.2. Single-Ligand versus Multi-Ligand Approaches 

The reductionist approach pervades not only in the analysis of interactions 

between components in a signalling network but also in the use of a single 

ligand in biological experiments. Again, such an approach is undesirable as 

cells are exposed to multiple ligands in their microenvironments. When cells 

are exposed to a single ligand in typical experimental settings, it does not 

reflect how cells respond to their cellular microenvironments. In the presence 

of multiple ligands in their microenvironments, extensive interactions between 

the signalling responses to the individual ligands actually occur. Such 

interactions can give rise to physiologically-relevant and -pervasive emergent 

behaviours such as synergism and antagonism. Both phenomenon are 

important in regulating cellular behaviours and can give rise to greater or less 

than additive effects, respectively26,27. Thus, the main drawback of a single-

ligand approach lies in its inability to reflect how signalling responses upon 

exposure to multiple ligands can result in emergent behaviours. 

Again, this does not mean that single-ligand approaches are useless. They 

have provided a fairly comprehensive understanding of the fundamental 

signalling responses in cells. Given that the cellular responses to single-

ligand treatments have been fairly well studied, it is now imperative that the 

understanding of cellular responses take on a more informative and 

physiologically-relevant multi-ligand treatment approach. 

2.1.3. Multi-Ligand Synergistic Systems 

The analysis of synergistic behaviours in cells has become increasingly 

important in recent years owing to the potential benefits of understanding 
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such a phenomenon. After all, cells are constantly exposed to multiple ligands 

where the responses are integrated resulting in the final phenotype. 

Furthermore, its importance can already be seen in the increasing number of 

synergistic drugs in clinical use and studies attempting to find combinatorial 

drugs for therapeutics purposes11,12,28. Understanding the mechanisms 

underlying synergistic behaviours will be an essential step before the 

potentials of synergistic therapeutics can be fulfilled. However, mathematical 

modeling tools that can address this issue at a systems-level are still very 

much lacking in the field.  

The aim of this thesis is to bridge this gap through investigations of the 

phenomenon of synergistic neurite outgrowth in PC12 cells during neuronal 

differentiation, a process that is poorly understood but nevertheless, critical 

during development. In the following sections, a review of mathematical 

models that are currently applicable to the field of systems biology will first be 

discussed. This is then followed by a review of the current understanding of 

pathways involved in neurite outgrowth, including systems that give rise to 

synergistic neurite outgrowth. Lastly, the gap in the application of existing 

modeling approaches towards the analysis of synergistic system is presented. 

This is accompanied by a proposed solution considered in view of the 

analysis of synergistic neurite outgrowth.  

2.2. Mathematical Modeling in Systems Biology 

Mathematical models are essential tools for understanding the complexity of 

cellular systems for several reasons29-31. Firstly, it allows the levels of the 

biological components to be accounted for in a quantitative rather than a 

qualitative manner. Secondly, temporal variation in the levels of the biological 
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components can be analyzed through the use of dynamical models. Thirdly, 

spatial variation in the biological components can be represented using 

appropriate models. Lastly, mathematical models allow many components to 

be analyzed concurrently, which can potentially reveal emergent properties 

that arise as a result of interactions between the components. 

2.2.1. Reverse Engineering of Cell Signalling Networks 

The process of learning about cell signalling networks from experimental data 

is known as reverse engineering. It involves the learning of network structure 

and/or parameters that define the model. There are several forms of network 

graphs that can be learned, with each form depending on the types of 

interaction or regulatory relationships defined by the edges in the biological 

networks. The main types of networks are gene regulatory, metabolic, and 

signalling. Although different relationships are defined in these networks, the 

same set of modelling formalisms can be applied to their analyses. There is a 

wide spectrum of mathematical modeling methods that can be applied for 

such purposes and they can be classified into mechanistic and data-driven 

models as shown in Figure 2.232-34. In these network models, the signalling 

components are called nodes, and the influences that the nodes exert on one 

another are termed edges. Reverse engineering of these models involve 

learning of the parameters needed to define the nodes and edges. 
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Figure 2.2. A spectrum of high- to low-level computational approaches, ranging from 
data-driven (abstracted) to mechanistic (specified) models

32
. 

2.2.2. Mechanistic Modeling 

2.2.2.1. Ordinary Differential Equations (ODEs) 

The most common form of mechanistic models is ordinary differential 

equations (ODEs). Such models provide information about the kinetics and 

dynamics of the different biological processes in the system35. In addition to 

the temporal aspects of the system, additional information such as the spatial 

distribution of the signalling nodes can also be incorporated into variants of 

these models known as partial differential equations (PDEs)36,37. In an ODE 

model, the activity of each node, x, is described temporally as a function of 

that of other nodes as shown in Equation 2.1. 

(Equation 2.1) 
   

  
( )     (          )   

ODEs are very useful tools for the modeling of biological systems and have 

been widely applied in the investigation of cellular systems, including cross-

talks between pathways38-40, identification of critical regulators of cellular 
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behaviours41, biomarkers discovery42, and combinatorial drug therapeutics42.  

In such models, the structure of the network is usually known, and learning of 

the models involves learning the parameters needed to define the set of 

equations defined in Equation 2.1. Learning of the parameters is typically 

done using a least-square-error objective function, which serves to minimize 

the error between experimental data and model output. However, in defining 

these equations, a large number of parameters are typically needed43. This in 

turn requires a large number of data points before parameter and model 

identifiability can be achieved. While ―-omics‖ technology can produce a large 

amount of data, such data is not always useful as the large data size is due to 

an increase in dimensionality rather than number of measurements of the 

same components44. Sufficient data is necessary to obtain reliable estimates 

of model parameters and use of parameter-intensive mechanistic models is 

not appropriate when data is sparse45. This demand for data is made worse in 

the presence of noise, a common characteristic of biological data46. However, 

such problems can be alleviated in systems with strong a priori knowledge as 

such information can be used to reduce the number of unknown parameters 

in these models.  

2.2.3. Data-Driven Modeling 

In situations where a priori knowledge is sparse, data-driven statistical models 

are much more appropriate for analysis of the cellular systems46,47. This is 

because the number of parameters needed to define these statistical models 

is much lower than that required for mechanistic models43. The most 

commonly used data-driven models are the associated networks, Bayesian 

networks, Boolean networks, neural networks, and regression models. 
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In this thesis, a modeling framework centralizing on Bayesian networks were 

used for the analysis of synergistic neurite outgrowth, a cellular behaviour still 

poorly understood at the systems-level. Among these data-driven models, 

Bayesian networks are well-suited for the analysis of such multi-ligand 

systems as they can capture non-linear multivariate dependencies, determine 

directional influences between signalling nodes, and allow integration of data 

from different datasets. These different data-driven models and the 

advantages of Bayesian networks over the other methods are reviewed in the 

following sections.  

2.2.3.1. Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) were developed based on the idea of the 

central nervous system, where neurons are highly connected to form a neural 

network. ANNs typically consist of three or more layers of artificial neurons, or 

nodes. The first and last layers are termed the input and output layers, 

respectively whereas the middle layers are called the hidden layers48. During 

the learning process, the relationship between the input and output variables 

are established through optimization of the weight factors that are associated 

with the connections of the variables between successive layers. The 

optimization of the weight factors is based on minimization of the error 

between the experimental data and the output of the model. 

The feasibility of using ANNs in biological systems for prediction of signalling 

responses to perturbations49,50, parameter estimations mathematical 

models51, identification of disease-causing single nucleotide polymorphisms52, 

and classification of disease phenotypes have been demonstrated53. This is 

based on its key advantage of being able to model non-linear 
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interdependencies between the variables, which in turn allow complex 

relationships between the layers not to be missed. However, an 

accompanying problem is that ANNs are ―black-box‖ models, which means 

that the topologies of neural networks are arbitrary in nature and no meaning 

should be inferred from them, rendering such models poor choices for gaining 

mechanistic insights into cell signalling networks50,54. Thus, ANNs are not the 

appropriate choices when the modeling objective is to gain an understanding 

of how different signalling nodes are inter-connected dynamically during the 

regulation of synergistic neurite outgrowth.  

2.2.3.2. Associated Networks 

Association networks are undirected graphs where a measure of statistical 

dependency or similarity measure is calculated for each edge33,55. The most 

commonly used statistical measures are Pearson correlation coefficient 

(PCC), Rij (Equation 2.2) and mutual information (MI), Iij (Equation 2.3). Such 

statistical measures have been used to identify correlations between 

signalling nodes in a network56-60, identification of synergy between interacting 

genes61, and experimental design to improve estimation of model parameters 

and prediction capability of the models62,63. 

(Equation 2.2)       
   (      )

√   (  )√   (  )
,           

where cov and var mean covariance and variance, respectively. 

(Equation 2.3)        (     )            

         ∑ ∑  (     )          
    (

 (      )

 (  ) (  )
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where p denotes the probability distribution functions 

The PCC measures the linear relationship between the two variables, Xi and 

Xj, in the data. If the covariance between them is 0, then the variables are not 

correlated linearly. A value of -1 and 1 indicates perfect negative and positive 

correlation, respectively. However, it is not a good measure of non-linear 

correlation. Thus, in situations where the variables exhibit strong non-linear 

correlation, PCC may not pick up a link between them. In contrast to PCC, MI 

can measure both linear and non-linear dependencies and it can detect 

dependencies missed by PCC56. MI is always non-negative and will give a 

positive value for correlated variables58. For statistically independent 

variables, the MI between them is 0. Although these measures are relatively 

easier to compute and have been successfully applied to biological systems, 

they face the drawback of giving undirected networks. Thus, in situations 

where directional influences between the nodes need to be learnt, such 

correlation methods are not suitable. While such models can provide 

correlations between different signalling nodes during synergistic neurite 

outgrowth, its failure to take into account the precedence of the underlying 

signalling events is a major drawback that renders it a poor modeling option 

for the aim of this thesis. 

2.2.3.3. Bayesian Networks (BNs) 

Bayesian networks (BNs) were first introduced by Judea Pearl in the 1980s 

for the modeling of complex probability models64. They are stochastic 

probabilistic graphical networks, where the edges are all directed33,65. These 

networks are directed acyclic graphs, which prevent the recurrence of 

information flow in the network. The relationships between the signalling 
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nodes, as represented by the edges, are defined using conditional 

probabilities between the child and parent nodes. BNs are defined as 

functions of G and θ (Equation 2.4). The graph, G, contains the random 

variables, Xi, and the edges that represent the dependencies between the 

variables. It encodes independence assumptions where each variable, Xi, is 

independent of its non-descendants given its parents, πi, in G. θ denotes the 

parameters that define G.  

(Equation 2.4)  (            )   ∏  (     )
 
         

             ∏       

 
      

Learning BNs involve finding G and θ that can best explain the experimental 

data. However, a more connected BN can give rise to a better fit to the 

experimental data, resulting in overfitting of the model. This problem is 

alleviated by using scoring functions that can penalize the models for 

complexity. Examples of such scoring functions are minimum description 

length, Akaike Information Criterion, Bayesian Information Criterion, and 

normalized maximum likelihood66. 

BNs have the advantage of allowing data from different sources to be 

integrated in the analyses67. They have been widely used for predicting novel 

regulatory behaviours68-70, determining cell fate decisions71, experimental 

design to improve estimation of model parameters and prediction capability of 

the models63,72, parameter learning in mathematical models73, and model 

selection to identify the most plausible models among competing 

hypothesis74. Despite the wide applications of BNs, there are several 

drawbacks associated with it. First, it is possible to have networks with 
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different edge directions but similar probability distributions75. They are known 

as equivalent networks and cannot be distinguished from the data used for 

the learning of the BN. In addition, they are also unable to model feedback 

loops38. To overcome this problem, Dynamic BNs (DBNs) were proposed76. 

DBNs model BNs unfolded over discrete time-points, which can capture the 

dynamics of the system without violating the requirement for a directed 

acyclic flow of information. Although DBNs models take into account the 

temporal aspects of the variables, they assume that the relationships between 

the variables are time-invariant. Such an assumption is not always valid in the 

analysis of biological systems, especially under non-steady-state 

conditions77,78. Another challenge pertaining to the use of BNs is that 

inference of BNs is largely dependent on discretized variables and in the 

process of discretizing data, loss of information can often occur79,80. It has 

been shown that the number of intervals, the width of the intervals, and the 

minimum number of data-point in each interval can have a significant 

influence on the resulting model, further emphasizing the importance of 

minimizing this loss of information81,82.  

The ability of BNs to integrate different information from various data-sources 

strongly indicates that such models can potentially be applied to the analysis 

of synergistic neurite outgrowth. This is because an important aspect in this 

network inference is the integration of data from single-ligand and multi-ligand 

experiments in the capturing of synergistic information. At the same time, its 

ability to model multivariate dependencies without any a priori information is 

another advantage that can model important interactions during synergistic 

neurite outgrowth. While DBNs have its own drawbacks in analyzing cellular 

systems, they can be overcome through proper parameterizations. These 
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properties and modifications will be examined further in the later sections 

when the proposed approach for the analysis of synergistic neurite outgrowth 

is discussed in greater details. 

2.2.3.4. Boolean Networks 

Boolean network models were first introduced by Kauffman in 1969 as an 

abstract model to study the dynamics of gene regulation83. In Boolean 

networks, each node is allowed to take only one of two values as its state 

(e.g. expressed or not expressed, on or off, phosphorylated or not 

phosphorylated). The relationships in Boolean networks, are defined by 

Boolean functions, bi, such as AND, OR, or NOT. The parameters that define 

these networks are state transitions that define the state of each child node, 

Xi, given the state of its parent(s), πi (Equation 2.5). The optimal Boolean 

network is found by minimizing the error between the experimental data and 

model prediction.  

(Equation 2.5)        (  )             

Such a formalism have been applied for prediction of cellular behaviours84, 

identification of regulatory influences during cell signalling33,85-87, analysis of 

attractors of the networks such as steady activation states of the components 

or cellular phenotypes88-90, prediction of phenotype response91, and finding a 

basis set of nodes required for signal transduction92. Similar to BNs, Boolean 

networks also encounter the same difficulties with regards to data 

discretization93. Data discretization in Boolean formalism face an added 

challenge of minimizing information loss compared to BNs as the variables 

can only exist in two discretized states86. Thus, such a two-state modeling 
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formalism can miss out on important regulatory mechanisms during network 

inference. This drawback impedes its application to the analysis of synergistic 

neurite outgrowth as the interactions between different signalling nodes at 

multiple quantitative states are likely to have a large bearing in the regulation 

of synergism. 

To overcome the limitation of a two-state model in Boolean networks, a multi-

state logic modeling method, fuzzy logic (FL), was developed. Its feasibility in 

the analysis of cell signalling networks has also been demonstrated in its 

application to identify interactions between signalling pathways94. However, 

the use of such a multi-state logic framework results in a combinatorial rule 

explosion problem, where an exhaustive search for all possible rules is not 

feasible for large networks95. Thus, methods that can evaluate multivariate 

regulatory effects between signalling nodes while not being overwhelmed by 

this problem are necessary. In the analysis of synergistic neurite outgrowth, 

this concern is not alleviated by the inability to restrict the possible 

combinations of the rule due to a lack of a priori knowledge about the system. 

2.2.3.5. Linear Algebra-Based Analyses 

Statistical methods using linear algebra such as principal component analysis 

(PCA) and partial least squares (PLS) are well known for their applications in 

multivariate data analysis47,96. These methods are extremely useful in dealing 

with high dimensional data as they can reduce the large number of 

dimensions to a few new axes called the principal components. Each principal 

component is a combination of the original signalling axes that exhibit high 

covariance with each other. While PCA serves to maximize the variance 
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explained in the variables, PLS extends PCA by maximizing the covariance 

between the dependent and independent variables. 

Despite the advantages of PCA in reducing dimensions and clustering highly 

correlated variables, PCA do not shed light on how the variables may be 

related to one another in signalling networks. In biological systems, they have 

been largely applied to the analyses of microarray data to identify cluster of 

co-regulated genes97, determination of cell fate decision98,99, and model and 

dimensional reduction100. On the other hand, in PLS, each variable can be set 

as either a dependent or an independent variable, allowing plausible 

relationships between the two sets of variables to be established. Thus, 

relationships between the signalling nodes can be obtained, which can be 

translated to topology in signalling networks. This idea has been used for 

identification of cross-talks between signalling pathways101. It has also been 

coupled with a priori knowledge from the literature to identify a basis set of 

proteins responsible for regulating cell fate decisions102,103. In addition, PLS 

has been used to identify appropriate drugs for therapeutic purposes104, and 

for prediction and classification of disease state105. However, the regression 

component in PLS models is based on the idea of linear multivariate 

regression106, which may not capture relationships that are complex and non-

linear in signalling networks. Given that the regulation of synergistic 

behaviours, such as neurite outgrowth, is likely to entail more complex 

interactions, it is all the more important to realize that such linear models are 

likely to result in important regulatory mechanisms being overlooked. 
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2.3. Neuronal Differentiation 

Neuronal differentiation is an important process during the development of the 

nervous systems. During their developmental stages, complex processes 

involving the growth of neurons, migration of the neurons to their position 

within the brains, outgrowth of axons and dendrites from the neurons, and the 

formation of synapses are critical for our normal development. Defects in 

neuronal differentiation can lead to neurodegenerative diseases such as 

Alzheimer‘s, Parkinson‘s, and Huntington‘s. 

The PC12 cell-line, which is established from a pheochromocytoma of the rat 

adrenal medulla, is a widely used cell model for the study of neuronal 

differentiation107,108. PC12 cells have provided useful insights into the 

regulation of various signalling cascades during neuronal differentiation. They 

respond to several growth factors and neurotrophins by exhibiting distinct 

morphological changes such as neurite outgrowth, a read-out commonly used 

as a measure of neuronal differentiation. In respond to stimuli such as the 

basic-fibroblast growth factor (bFGF), nerve growth factor (NGF), and pituitary 

adenylate cyclase-activating peptide (PACAP), they differentiate and neurites 

extend out of the cell-bodies to varying degrees. Binding of these ligands to 

their respective receptors result in a series of complex and orchestrated 

events. These include activation of different signalling cascades, 

modifications of proteins such as phosphorylation and glycosylation, 

expression of genes such as transcription factors, immediate early genes, 

and delayed response genes, and regulation of miRNAs, which are master 

regulators of cellular processes. 

https://en.wikipedia.org/wiki/Pituitary_adenylate_cyclase-activating_peptide
https://en.wikipedia.org/wiki/Pituitary_adenylate_cyclase-activating_peptide
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Neurite outgrowth occurs by an initial sprouting of neurites and is followed by 

elongation of axons and dendritic, which are collectively called neurites. The 

appropriate and ordered manner of growth, guidance, and stabilization of 

neurites during differentiation involves a complex interplay between 

extracellular cues and intracellular signalling events. Various signalling 

pathways, such as cAMP109, Akt110, Erk111, JNK112, and P38113 had been 

reported to be involved in such morphogenesis of neurites.  

2.3.1. Regulation of Neurite Outgrowth in PC12 Cells 

2.3.1.1. Pituitary Adenylate Cyclase-Activating Peptide 

(PACAP) 

Pituitary adenylate cyclase-activating peptide (PACAP), a member of the 

secretin superfamily of neuropeptides, was initially isolated from the extracts 

of ovine hypothalamic on the basis of its ability to stimulate cAMP formation in 

rat anterior pituitary cells114. It is an amidated peptide which exists in either 

38-amino acid (PACAP-38) or 27-amino acid (PACAP-27) forms, each 

derived from the same precursor, prepro-PACAP115. Although PACAP can 

bind to three receptors, PAC1, VPAC1, and VPAC2, only the PAC1 receptor 

is found in the brain116. 

PACAP and its receptors are widely found in the body, including expression in 

the pituitary, gonads, placenta, central and peripheral nervous systems, lung, 

intestinal tract, pancreas, parathyroid gland, and adrenal gland. It can function 

as a neurotransmitter, neuromodulator, and neurotrophic factor and is known 

to exert pleiotropic effects in various organs, including modulation of 

neurotransmitter release, vasodilatation, bronchodilatation, activation of 
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intestinal motility, augmentation of insulin and histamine secretion, and 

stimulation of cell multiplication and differentiation117. In the nervous system, 

PACAP is found to regulate differentiation in many regions, including the 

hypothalamus, cerebral cortex, amygdala, nucleus accumbens, hippocampus 

and cerebellum of the central nervous system (CNS), and the sensory 

neurons, sympathetic preganglionic neurons and parasympathetic pre- and 

postganglionic neurons of the peripheral nervous system118,119. Its importance 

had been demonstrated both in development and adulthood and is involved in 

the regulation of memory, learning, emotions, and sleep120. During the 

development of the CNS, it decreases the number of mitotic cells and 

promote neuroblast differentiation121 whereas in the adult brain, it modulates 

neurotransmitter release and inhibits apoptosis122,123. In the brain tissue, 

various analyses had shown that PACAP-38 is the predominant form present, 

with PACAP-27 accounting for less than 10% of the total peptide content124-

128.  

In the PC12 cells, PACAP-38 had also been found to be a much stronger 

neurite-inducing ligand than PACAP-27, further demonstrating the relevance 

of PACAP-38 in neuronal differentiation129. PACAP binds to the PAC1 

receptor, a GPCR, and activate a series of signalling pathways. The PAC1 

receptor signals through the cyclic AMP (cAMP)109,111, phospholipase C130, 

P38131, and Erk pathways132-134. Among them, the Erk and cAMP pathways 

have been extensively studied for their involvement in regulating neurite 

outgrowth.  

Binding of PACAP to the PAC1 GPCR causes the stimulation of adenylate 

cyclase (AC). This leads to the conversion of ATP to cAMP, which in turn 
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results in activation of its key downstream effectors, protein kinase A (PKA) 

and exchange proteins activated by cAMP (Epac)135. The involvement of 

cAMP in regulating neurite outgrowth is demonstrated when analogs of both 

PKA (6-Bnz-cAMP) and Epac (8-pCPT-2‘-O-Me-cAMP) were found to induce 

neurite outgrowth136. In the same study, both analogues were found to 

synergize, and co-treatment of cells with both analogues resulted in neurite 

outgrowths that were greatly enhanced. Using the same analogues, both 

Epac and PKA were found to be required for the sustained activation of Erk, 

an important determinant of neurite outgrowth137. Furthermore, CREB, a well-

known transcription factor that is a downstream mediator of PKA, has also 

been found to be critical for regulating brain development, and neurogenesis, 

including neurite outgrowth, in the adult brain138. The PKA inhibitor, H89, was 

found to inhibit Erk activation by PACAP139, and inhibition of the GTPase 

Rap1 was found to block activation of Erk by Epac137, further demonstrating 

the involvement of cAMP in regulating PC12 differentiation. In addition, the 

use of dominant negative MEK inhibited Erk activation by the cAMP analogue 

8-CPT, suggesting that activations of Erk by Epac and PKA are both 

mediated through MEK140. 

The Erk protein belongs to a family of protein kinases known as mitogen-

activated protein kinases (MAPK)141. These signalling cascades consist of 

three kinases in series, MAPK kinase kinase (MAPKKK), MAPK kinase 

(MAPKK), and the MAPK. Erk, a MAPK, is one of the most widely studied 

kinases for its involvement in neurite outgrowth. The duration of Erk signalling 

is a well-known critical determining factor of whether differentiation occurs, 

where sustained but not transient activation of Erk results in differentiation137. 

Treatment of PC12 cells with PACAP had been found to result in sustained 
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Erk activation132. Besides the involvement of cAMP in the activation of Erk as 

mentioned above, the GTPase Ras and protein kinase C (PKC) had also 

been reported to regulate the activity of Erk upon PACAP treatment139. The 

involvement of Erk in regulating neurite outgrowth had been found to be 

mediated through transcription factors that regulate neurite outgrowth such as 

CREB142, Elk-1134, and NF-κB143. These transcription factors regulate the 

expression of many genes that are involved in neuronal differentiation and 

neurite outgrowth144,145. 

2.3.1.2. Nerve Growth Factor (NGF) 

Nerve growth factor (NGF) is the first discovered member of the neurotrophin 

family146. It was isolated from the submandibular gland of adult male mice as 

a complex consisting of six polypeptides, α2β2γ2
147. It is the β subunit that 

exhibits neurotrophic activities148 and both the α and γ subunits inhibit the 

actions of the  β subunit149. The mature and active form of NGF can bind to 

two neurotrophin receptors, p75NTR and p140TrkA150.  

NGF is important both during development and in adult life151,152. It is found 

mainly in the cortex, hippocampus, pituitary gland, basal ganglia, thalamus, 

spinal cord, and retina153 and it is essential for the development and 

maintenance of neurons both in the peripheral nervous system and the 

CNS154. It has important roles in the survival and functions, such as arousal, 

attention, consciousness, and memory, of cholinergic neurons of the basal 

forebrain complex (BFC)155. Given that defects in BFC neurons are found in 

Alzheimer‘s disease, NGF can potentially be used as a protective or curative 

factor for such neurodegenerative diseases156. NGF regulates phenotypic 

features in noradrenergic nuclei of hypothalamus and brainstem, and is 
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involved in the modulation of stress axis activity and in the regulation of 

autonomic response157,158. It is also found in the sensory nervous, autonomic 

nervous, endocrine, and immune systems159 and known to play an important 

role in the functional recovery from brain injury and the prevention of neuronal 

death160,161. 

Although PC12 cells express both the p75NTR and the p140trkA receptors, it 

had been shown that the neurite-inducing property of NGF is mediated by the 

p140TrkA, but not the p75NTR, receptor150,162. The induction of neurite 

outgrowth by NGF in PC12 cells is one of the most widely used systems for 

the study of signalling pathways involved in the process. Several pathways, 

such as the Akt163, Erk164,165, JNK112, and P38113 have been reported to be 

required for the differentiation of PC12 cells. 

NGF activates PI3K, which then subsequently phosphorylates Akt in PC12 

cells163. The PI3K pathway has been implicated in the cytoskeletal 

reorganization of the cells during NGF stimulation166,167, an important process 

in neuronal differentiation. It has also been found to regulate different aspects 

of neurotrophin-induced axon morphogenesis, including guidance and 

elongation110. 

Erk, JNK, and P38 are mitogen-activated protein kinases (MAPKs), which are 

among the most widely used kinases throughout evolution in many 

physiological processes168. The MEK-Erk signalling cascade is one of the 

most extensively studied pathways and multiple upstream effectors that are 

able to activate MEK have been reported141. The Ras→C-Raf→MEK and 

Rap1→B-Raf→MEK pathways have been found to be the main pathways 

leading to Erk activation upon NGF stimulation169. However, the activation 
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kinetics of the two pathways are different, with the Ras→c-Raf pathway 

leading to transient Erk activation and the Rap1→B-Raf pathway leading to 

sustained Erk activation169. It is well-known that the sustained and prolonged 

activation of the MEK-Erk pathway up to an hour is required for neurite 

outgrowth165. Sustained activation of Erk results in its nuclear translocation, 

activation of transcription factors such as Elk and c-Jun164, and induction of 

neural-specific gene expression, leading to neuronal differentiation of PC12 

cells170. 

The JNK pathway has also been reported to be required for PC12 cells 

differentiation112,164. Treatment of PC12 cells with NGF was also found to 

induce sustained JNK activation of up to an hour171. The involvement of JNK 

in regulating neurite outgrowth has been attributed to its ability to 

phosphorylate c-Jun, an important mediator of neurite outgrowth172. 

Furthermore, the activity of JNK was found to regulated, in part, by MEK, 

suggesting that the involvement of MEK in regulating neurite outgrowth could 

be mediated to some extent by JNK112. 

Similarly, studies have also shown that the P38 pathway is required for the 

differentiation of PC12 cells113,173. In addition, MEK was also found to regulate 

the activity of P38, indicating that the involvement of MEK in regulating 

neurite outgrowth could also be mediated partly by P38113. 

2.3.1.3. Basic-Fibroblast Growth Factor (FGFb) 

The basic-fibroblast growth factor (FGFb), the prototypic member of a family 

of 22 proteins, was first purified as a heparin-binding polypeptide from bovine 

pituitary174. FGF was recognized as an important neurotrophic factor after 
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high levels of mitogenic activity were found in the brain175, and both FGFb and 

its receptors have also been detected in the brain176-178. It was found to be a 

potent neurotrophic factor with the ability to promote neuronal survival and 

neurite extension under both in vitro179 and in vivo conditions180,181. 

FGFs, including FGFb, are important for the development and maintenance of 

the nervous system, including the outgrowth and survival of brain cells182-184. 

They are required to sustain and regulate the proliferation and differentiation 

of stem cells during neurogenesis185. FGFs and their receptors are also 

required for the regulation of the survival and neurite outgrowth of neurons 

from the cerebral cortex, hippocampus, retina, cerebellum, septa area, ciliary 

ganglion, sympathetic ganglia, and sensory ganglia186-189. In addition, they are 

known to regulate functions such as memory and learning190. There are wide 

medical applications of FGFb as it can potentially be used for the treatment of 

diseases such as brain ischemia191, and stroke192, treatment of 

neurodegenerative disorders such as Alzheimer‘s and Parkinson‘s disease190, 

and survival of grafted neurons in transplantation193. 

Treatment with FGFb is known to promote neurite outgrowth in PC12 

cells194,195. While activation of Akt by FGFb has been correlated to neurite 

outgrowth, the direct involvement of Akt in regulating the process has yet to 

be verified196. In addition, the P38 MAPK was found to be not required for 

neurite outgrowth induced by FGFb197. However, similar to treatments with 

NGF and PACAP, sustained Erk activation has also been found to be 

essential for FGFb-induced neurite outgrowth198,199. 
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2.3.1.4. Epidermal Growth Factor (EGF) 

Epidermal growth factor (EGF) is the founding member of the EGF-family of 

ligands and was first isolated from the submaxillary glands of mouse200. High 

levels of the EGF-family of ligands and their receptors are found in the brain 

and they are important for the morphogenesis of the brain and the functions 

of both the developing and adult brains201,202. 

The EGF-family of ligands and their receptors are found in various regions of 

the brain such as the developing cortical plate, hippocampus, septum, and 

hypothalamus202,203. They are important for the survival, migration, 

differentiation, and proliferation of neurons in these regions of the brain202. In 

addition, they regulate biological functions such as psychomotor behaviours, 

learning, memory, object recognition, and synaptic plasticity204. Defects in the 

system has been associated with illness such as Parkinson‘s disease205, 

Alzheimer‘s disease206, gliomas207, and psychiatric disorder204. 

Despite the importance of EGF in the brain, EGF is not known to induce 

neurite outgrowth. In the PC12 cells, unlike NGF and FGFb, EGF induces 

only survival and proliferation, but not differentiation111,208,209. 

2.3.2. Regulation of Synergistic Neurite Outgrowth in PC12 

Cells 

All these three growth factors, NGF210-213, FGFb214, and EGF215,216 are well-

known to cooperate with cyclic adenosine monophosphate (cAMP)-elevating 

agents to result in synergistic neurite outgrowth. Examples of such cAMP-

elevating agents include PACAP, forskolin, and cAMP-analogues. However, 

the pathways and mechanisms involved in regulating such synergistic neurite 
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outgrowth have not been well-studied. The main finding made in these 

systems is that sustained Erk activation, an important prerequisite for neurite 

outgrowth, was observed. In addition, the P38 MAPK pathway has also been 

found to regulate neurite outgrowth induced by NGF-cAMP212. 

While the Erk and P38 MAPK signalling pathways are required for synergistic 

neurite outgrowth regulated by these growth factors and cAMP-elevating 

agent, there is little knowledge of whether other signalling pathways are also 

involved in the process. More importantly, it is not known if the three systems 

activate a common set of signalling pathways to mediate the synergistic 

neurite outgrowth. Besides the Erk, JNK, P38, and Akt pathways, many other 

signalling components, which can potentially be involved in synergistic neurite 

outgrowth, are also activated by these ligands. A summary of the signalling 

pathways activated by these ligands in PC12 cells is shown in Figure 2.3. 

However, this map is just an addition or superimposition of the individual 

signalling networks activated by each ligand and cannot explain the resulting 

multi-ligand emergent behaviours217,218. It is consolidated from multiple 

studies, each under different context and experimental conditions, based on 

reductionist approaches. Thus, the quantitative and context-dependency 

nature of the underlying signalling behaviours are unclear. It gives no 

information with regards to the stoichiometry of the interactions, the dynamics 

of the protein activities and interactions, and how the activities of the proteins 

affect the network. Thus, such a map does not illustrate how synergistic 

behaviours can be achieved through the interactions of the involved 

pathways.  
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Figure 2.3. Signalling pathways activated by the growth factors (NGF, FGFb, and EGF) 
and PACAP in PC12 cells during differentiation

111-113,134,135,163,164,169,172,219-226
. 

2.3.3. Regulation of Morphological Structures of Neurite 

during Synergistic Neurite Outgrowth in PC12 Cells 

With a deeper understanding of the brain today, it is now known that the 

morphological structures of neurites are linked with higher-order cognitive 

functions and are important in regulating the functions of the brain227-229. As 

reviewed above, protein kinases such as Erk, JNK, P38, and Akt are 

important in the regulation of neurite outgrowth during neuronal differentiation. 

Quantifications of the extent of neurite outgrowth are typically measured 
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through one or two parameters such as the number of differentiated cells and 

neurite length136,164,230. The number of differentiated cells is based on the 

number of cells that exhibit neurite outgrowths longer than one or two cell-

body diameter. However, the morphological structure of neurites is 

characterized not just by length alone but also by other features such as the 

number of neurite extensions from the cell-body and the branching of the 

neurites231. These features collectively dictate the number of neurons that can 

interact with a particular neuron and guide the spatial boundary within which 

neurons can form synapses and transmit information between one another. 

The importance of gaining insights into the regulation of these features has 

also resulted in an increasing effort in the development of both manual and 

automated softwares for the analysis of the morphological structures of 

neurites229,232-235. Such tools are especially important when a large number of 

cells in any population need to be quantified before any meaningful 

conclusion can be drawn. Despite the importance of such morphological 

structures, the mechanisms underlying the regulation of some of these 

features have not been well-studied.  

Although many pathways have been investigated for their roles in regulating 

neurite length, the mechanisms involved in the regulation of various 

morphological features is still poorly understood. Enhancement of neurite 

length during synergism is likely to be due to up-regulation of multiple 

morphological parameters, such as length of individual neurites, number of 

neurites, and degree of branching. As mentioned above, pathways such as 

the Erk and JNK are known to regulate neurite outgrowth during 

differentiation of PC12 cells. Importantly, these pathways regulate not just the 
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length of neurites, but also other morphological aspects of neuritogenesis, 

such as number of neurite extensions and degree of branching236. However, 

these morphological features can also be regulated independently of one 

another. For instance, P38 had been found to regulate the total neurite length 

and degree of branching but not number of neurites per cell237 and Akt had 

been found to regulate neurite branching but not length238 in various systems. 

In addition, studies investigating the branching and elongation of axons have 

also found that axon branching can be regulated separately from other 

aspects of neurite outgrowth239,240. Thus, regulation of morphological neurite 

outgrowth involves a complex interplay of different signalling pathways and 

morphological features. To gain a deeper understanding of synergistic neurite 

outgrowth, the pathways regulating different morphological features and the 

impact of these features on global measures of differentiation such as total 

neurite length need to be addressed. 

2.4. Analysis of Synergistic Systems Using PC12 Cells 

2.4.1. Lack of Approaches to Analyses of Synergistic 

Systems 

As mentioned in the earlier sections, synergism is a phenomenon that is 

gaining importance due to its huge benefits in therapeutics. It is an emergent 

behaviour that can arise as a result of interactions between signalling 

components in the cells. Thus, the key to understanding such behaviours is to 

have approaches that can shed light on how specific interactions can give rise 

to synergism. While synergistic behaviours in various systems have been 

widely observed241-244, there have not been many studies that focus on 

understanding how synergism occurs at a systems-level. While systems-level 
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modeling have been applied to the analyses of synergism by using regression 

models27 or combining ODEs from two systems245, to identify synergistic drug 

combinations246,247, or to develop methods to evaluate the extent of 

synergy248, these methods do not give insight into the mechanism underlying 

synergism in systems with poor a priori knowledge. Methods that aim to 

identify synergistic drug combination or to quantify synergy do not reveal how 

the drug combinations can lead to synergistic effects. Although the 

significance of the cross-terms in regression models can suggest the absence 

or presence of synergy, they give no indication of the mechanism underlying 

synergy. On the other hand, while ODE models can suggest the kinetic 

mechanisms underlying synergism, they are not suitable for systems with 

poor a priori knowledge. 

2.4.2. Proposed Bayesian Approach to Analysis of 

Synergistic Neurite Outgrowth 

The signalling mechanisms underlying neuronal differentiation, including the 

PC12 cells model, and neurite outgrowth are still very poorly understood 

today. Likewise, synergistic neurite outgrowth under multi-ligand condition is 

also poorly understood mechanistically. To develop modeling frameworks that 

can effectively analyze such a system, several issues need to be addressed. 

These issues are outlined in Figure 2.4 and discussed in the following 

sections.  
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Figure 2.4. Issues to be addressed in the development of an approach for the analysis of 
synergistic systems. 

2.4.2.1. Model Selection 

Given this lack of a priori understanding, and lack of available modeling tools 

for such purposes, modeling tools for such network inference must be 

developed in order to gain insights about the system. An overview of the 

different modeling methods reviewed earlier is given in Table 2.1 below. BNs 

are potentially useful for such as purpose as it can be applied even with a 

lack of a priori knowledge. Furthermore, it is not limited by linearity 

assumptions, or a two-state representation of the variables, like in linear 

algebra and Boolean network, respectively. While FL models have been 

proposed as an extension of Boolean models by allowing a multi-state 

representation of the variables, they are not well suited for the incorporation 

of a priori information about the network topology in cell signalling.  
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Table 2.1. Properties of different mathematical models
33

. 

Properties ODE ANN 
Associated 

Network 
Boolean 
Network 

BN 
Linear 

Algebra 

Requires good a priori 
knowledge 

√      

Incorporation of a priori 
topology knowledge 

√  √  √  

Modeling of dynamics √ √  √ √ √ 

Gives directed networks √   √ √ √ 

Need for data discretization    √ √  

Allows variables to exist in  
multiple (>2) states 

√ √ √  √ √ 

Linearity assumption      √ 

Importantly, in addition to the properties of BNs reviewed above, BNs allow 

multivariate directional dependencies to be captured. They can also capture 

both direct molecular interactions as well as indirect influences that occur 

through components not measured in the experiments. The probabilistic 

nature of BNs can also accommodate for noise, which is inherent to biological 

datasets. Thus, BNs can potentially provide insight into poorly understood 

signalling systems, where mechanistic knowledge is sparingly available, even 

when noise is present in the datasets. 

2.4.2.2. Modeling the Dynamics of the System 

Cell signalling is not a static but a temporally-varying process. Consequently, 

ordinary BNs may not a priori be the most natural choice of modelling 

approach. Thus, DBN were proposed as a variant to BN so that the dynamics 

in systems can be accounted for. However, DBNs are most suited for the 

multivariate time-series that form a first order Markov-chain, an assumption 

that may be plausible when the relationships between the variables are 
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stationary and do not vary with time, which is unlikely to be true when cells 

are not at steady-state conditions77,78. Moreover, the process, including all the 

relevant factors in the domain, also needs to be observed in regular intervals. 

In typical biological experiments where cells are perturbed and the cellular 

components probed temporally at irregular intervals, the above assumptions 

are not true. 

Recently, non-stationary DBNs (nsDBNs) and time-varying DBNs (tvDBNs) 

have been developed to relax the restrictive assumption of stationarity78,249,250. 

These approaches work by demarcating time-series data into multiple 

segments, with each segment spanning different time-frames. The structures 

are assumed to be piecewise-stationary in time, and non-stationary networks 

are built as a series of stationary models. These segmented points are also 

termed Bayesian changepoints. Thus, the inference process involves learning 

of the location and number of changepoints as well as the network structure. 

Although these approaches greatly enhance the expressivity of the DBN 

framework, they are plausible only for observation sequences that are 

sufficiently long, where the regularities in the change of the independence 

structure can be captured.  

Thus, a different approach is still needed in order to effectively model systems 

with short-time series data obtained at irregular intervals. To tackle this issue, 

a DBN expanded-in-time (eDBN), where protein activation levels at different 

time-points were considered as separate variables, was proposed. This idea 

is analogous to modeling variables at different time points as separate 

variables in the ordinary BN. An eDBN is a better approach as it can reduce 

information loss as compared to traditional BN or DBN approaches. In the BN 
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approach, for each variable, data across all time-points are grouped into one 

variable independent of the temporal effects. This can cause different 

relationships between the proteins at different time-points to offset each other, 

resulting in a misrepresented network. Likewise, for DBNs, data across all 

time-points are grouped into two variables, at time t and t+1, which inevitably 

results in the same drawback as BNs. Although the idea of eDBN had 

previously been employed65, the validity of the approach was not validated as 

the model predictions were not validated experimentally. This problem is not 

encountered in the work presented in this thesis as the proposed 

methodology presented here will require the model findings to be validated 

experimentally. 

2.4.2.3. Capture of Information on Synergism through 

Parameterization 

In BN modeling, discretization of data is necessary. While it is important to 

minimize loss of data during this procedure, it would be beneficial to be able 

to discretize data in a way such that information regarding to synergism can 

be captured. In this work, the degree of synergism (DS) is quantified using 

Equation 2.6, where values > 1 represents synergism.  

(Equation 2.6)      
                                

                                                             
  

Discretization of data serves to group the activation levels of each variable 

obtained under different treatment conditions into different bins, where each 

bin represents a different discretized degree of activity. However, such 

discretization does not contain information about the absence/presence or 

different degrees of synergism. This is because similar activity levels can be 
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obtained under both uni- or bi-ligand treatments, depending on the ligand 

concentrations used. A hypothetical example is given in Table 2.2 below, 

where conditions 4, 5, and 6 result in the same activation levels of protein C. 

Although all three data-points are grouped into Bin 3, the information that 

condition 5 but not conditions 4 and 6 resulted in synergism is not reflected in 

the discretized data. 

Table 2.2. Hypothetical example of how traditional methods of data discretization 
(binning) fail to capture information about synergism. 

Condition 
Ligand A 

(μM) 
Ligand B 

(μM) 
Activation level of Protein 

C (Fold change) 
Presence of 
Synergism 

Bin 

1 0 0 0 - 1 

2 0 10 4 - 2 

3 10 0 5 - 2 

4 100 0 20 - 3 

5 10 10 20 Yes 3 

6 100 10 20 No 3 

To circumvent this limitation, it is proposed that separate bins are used for 

data obtained under uni- and bi-ligand treatments. An example is illustrated in 

Table 2.3, where Bins 4, 5, and 6 reflect activity levels under uni-ligand 

condition, presence of synergism under bi-ligand condition, and absence of 

synergism under bi-ligand condition. While the use of more bins may add 

noise to the data, such parameterizations can potentially add more 

information when used appropriately. Such a parameterization approach 

essentially means that different information with regards to activation levels 

and degree of synergism is obtained from uni- and bi-ligand experiments, 

respectively.  

 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 2. Literature Review  44 
 
 

Table 2.3. Hypothetical example of how a modified data discretization (binning) 
technique can incorporate information about synergism. 

Condition 
Ligand A 

(μM) 
Ligand B 

(μM) 
Activation level of Protein 

C (Fold change) 
Presence of 
Synergism 

Bin 

1 0 0 0 - 1 

2 0 10 4 - 2 

3 10 0 5 - 2 

4 100 0 20 - 3 

5 10 10 20 Yes 4 

6 100 10 20 No 5 

2.4.2.4. Integration of Data from Uni- and Bi-Ligand 

Treatments  

Given that different information is obtained under uni- and bi-ligand 

treatments, techniques that can integrate the two types of data together are 

required during the modeling process. If they cannot be integrated, the idea of 

parameterizing data from uni- and bi-ligand experiments differently would not 

serve its purpose.  

Existing data integration techniques are primarily focused on integration of 

similar data from different sources or integration of complementary data-

types251,252. Some examples of such approaches are ordering of datasets253, 

correlated clustering254, weighted contribution of each dataset255,256, use of 

mean and mode values of occurrences of each edge in the individual 

networks257, and multi-objectives optimization to account for the nature of 

different experiments258. In essence, many of these methods conduct 

separate statistical analyses on each dataset and integrate the results of each 

analysis, by analyzing individual links between pairs of nodes independently 

without considering the context of the whole system259,260. Moreover, these 
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approaches do not account for how ligand-specific treatments can 

complement one another. In the analysis of synergism, experiments from uni-

ligand treatment can complement those of bi-ligand as synergism must be 

assessed with reference to uni-ligand treatments. Thus, there is a need for 

systems biology to go beyond connecting different pieces of data to an 

integrated analysis. 

In this methodology, a two-phase learning approach is proposed as a strategy 

for this integrated analysis. Such an approach is also well-suited for BNs as 

Bayesian theory offers a principled way to integrate different sources of 

information by using the results from one information source as a prior 

knowledge for analyzing another information source. In the first phase, the 

probabilities of all the possible parent sets for all variables were first 

estimated using the data from the uni-ligand treatment. In the second phase, 

these probabilities were then used as a decomposable structure prior for the 

bi-ligand system. In addition to an approach for data integration, it also serves 

a way to alleviate the lack of a priori knowledge of the signalling network 

underlying bi-ligand treatment. This is justifiable as long as the same 

signalling pathways are activated following both uni- and bi-ligand treatments. 

2.4.2.5. Optimization and Experimental Validation 

Learning of BNs requires search algorithms to find the optimal BN. It is a 

widely established fact that this process is a non-deterministic polynomial-

time hard problem261,262, meaning that no polynomial time algorithms for 

finding the most probable BN are likely to exist. Since the number of possible 

BN structures, given by f(n) in Equation 2.7263,264, increases super-
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exponentially with the number of nodes (n)265, evaluating all the possible 

structures is not computationally feasible when n exceeds 6.  

(Equation 2.7)  ( )  ∑ (  )   ( 
 
)  (   ) (   ) 

      

Thus, most methods for finding the optimal network structure are based on 

either local or global approximation methods that cannot guarantee the 

optimal or most probable network. Finding the most optimal network is then 

performed using a process known as Bayesian model averaging (BMA)266, 

which involves finding a network that is an average over all the high scoring 

networks found during the learning process. There is usually no way of 

determining, via computational methods, which of the competing high scoring 

models gives the correct representation of the system. Thus, BMA reduces 

the uncertainty in the model selection process by taking an average of the 

high scoring networks and finding a consensus network. 

However, advances in the field of dynamic programming have offered a 

different perspective to this problem. It is a technique that is well-suited for 

solving global optimization problems and works by breaking down a problem 

to smaller sub-problems267,268. Recently, a dynamic programming algorithm 

that utilizes the specific structure of the common BN evaluation criteria was 

proposed for guaranteed inference of the most probable Bayesian network.  

This exact structure learning algorithm269 can be applied to systems of 30 

variables or less. In addition, this algorithm can overcome another 

computational challenge in using Bayesian data integration for BN inference. 

Given the large number of possible BN network structures (Equation 2.7), 

storage of the prior and posterior probabilities for all the possible network 

structures would be impractical due to space constraints. This is overcome by 
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the exact structure learning algorithm as the same structure of network 

evaluation criteria that it utilizes can be used for storing the prior and posterior 

network structure distributions compactly. However, it can be argued that 

selecting the highest-scoring and most optimal network is not advisable given 

that the top scoring networks can be highly similar and that selection of a 

consensus model will give a more representative depiction of the system. 

This is especially true in view of the small datasets obtained in typical 

biological experiments. Another drawback is that the feasibility of the 

application of an exact structure learning algorithm in the analyses of cellular 

signalling networks has yet to be demonstrated. 

Although the selection of the highest-scoring network has its drawbacks as 

highlighted above, this problem is less of an issue in this scenario. In the use 

of approximation optimization methods, where the search space is always 

non-exhaustive, there is no way of determining how close the top-scoring 

networks are to the true optimal structure. On the contrary, the optimal 

network can be found using dynamic programming. Thus, the chances of 

having false positives and negatives in the resulting model for dynamic 

programming would be lower as compared to networks obtained under 

approximation methods. In addition, performing experimental validation of the 

model findings, a key step in the workflow of systems biology, is taken into 

consideration. The results obtained will result in validation or invalidation of 

the model, which will in turn lead to changes in the model, if necessary. 

2.5. Concluding Remarks 

Despite the importance of synergistic therapeutics, computational modeling 

tools that can effectively analyze such behaviours at systems levels are still 
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lacking. To bridge this gap in the field, using synergistic neurite outgrowth in 

PC12 cells as the system of study, such a tool will be developed. Neurite 

outgrowth is an important process of neuronal differentiation during 

development and abnormalities in this process have led to neurodegenerative 

diseases such as Alzheimer‘s and Parkinson‘s. Thus, the main focus of this 

thesis is to further the understanding of the mechanisms underlying 

synergistic neurite outgrowth and a general modeling approach that can be 

used to effectively analyze behaviours such as synergism in multi-ligand 

systems was used to complement the analysis. This proposed approach was 

termed TEEBM (Two-phase, Exact structure learning, Expanded-in-time 

Bayesian Methodology). 
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3.1. Introduction 

Given the lack of a priori understanding of the pathways involved in 

synergistic neurite outgrowth, it is imperative to first identify a plausible sub-

system of signalling mechanism involved in the regulation of the process. It is 

only when signalling components involved in this process are identified that 

the underlying emergent synergistic properties can be analyzed. PC12 cells 

have been widely used a model widely used for the study of neuronal 

differentiation and it differentiates in response to ligands such as NGF107, 

FGFb195, and PACAP111. In these systems, pathways such as the Erk164,169, 

P38270, JNK112,164, and PI3K163 have been widely reported to be required for 

neurite outgrowth. 

Although EGF alone does not induce neurite outgrowth in PC12 cells, it has 

been found to synergize with cyclic adenosine monophosphate (cAMP)-

elevating agents such as PACAP and forskolin, thereby enhancing neurite 

outgrowth215,216. Similarly, cAMP-elevating agents have also been found to 

synergize with FGFb214 and NGF211,212 to enhance neurite outgrowth, where 

both P38 and Erk have been found to regulate neurite outgrowth induced by 

NGF-cAMP212,213. Whereas NGF, FGFb and EGF can all cooperate with 

cAMP-elevating agents to enhance neurite outgrowth, an unanswered 

question is whether these three systems activate a common set of signalling 

pathways to mediate such synergy. 

In this study, we investigated the activation and involvement of various 

signalling pathways in synergistic neurite outgrowth using three combinations 

of ligands: NGF-PACAP (NP), FGFb-PACAP (FP) and EGF-PACAP (EP). As 

expected, all three systems showed a synergistic phosphorylation of Erk 
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concomitant with neurite outgrowth. Interestingly, JNK, but not Akt or P38, 

was also synergistically activated in all three systems. Unexpectedly, 

inhibition of JNK blocked neurite outgrowth in the NP and FP, but not EP, 

systems. This differential involvement of JNK was found to be dependent on 

the regulation of P90RSK activity. Thus, a JNK-P90RSK link was identified as 

a hitherto unrecognized mechanism mediating the synergistic effect in neurite 

outgrowth. Our results therefore demonstrate the involvement of distinct 

signalling pathways in regulating neurite outgrowth in response to different 

synergistic growth factor-PACAP stimulation.  

3.2. Results 

3.2.1. Response Surface Analyses Suggest that 

Synergistic Neurite Outgrowth is Regulated by 

Discrete Mechanisms in Different Systems 

In this study, the software HCA-Vision was used for the quantification of 

neurite outgrowth. Before using it for the analysis of the neurite outgrowths 

induced by different treatments, its reliability was first verified against a more 

commonly used and widely accepted tool, NeuronJ, a plug-in for ImageJ271. In 

NeuronJ, quantification of the number of cells and the tracing of the neurites 

are performed manually (Figure 3.1a). On the other hand, in HCA-Vision, both 

tasks are automated (Figure 3.1b). The quantification results of the number of 

cells and the neurite length are as shown in Table 3.1. The quantification 

results by HCA-Vision were very consistent with those of NeuronJ and 

manual counting, indicating the reliability of HCA-Vision for the analyses of 

neurite length. 
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Figure 3.1. Neurite tracing for analyses by NeuronJ and HCA-Vision. (a) Manual neurite 

tracing using NeuronJ. (b) Automated neurite tracing by HCA-Vision. 

Table 3.1. Comparison of neurite length quantification by two softwares, NeuronJ and 
HCA-Vision. 

Read-outs NeuronJ HCA-Vision 

Number of Cells 33 33 

Total Neurite Length (pixels) 5460 5484 

NGF211,212, FGFb214 and EGF215,216 are known to synergize with cAMP-

elevating agents to enhance neurite outgrowth. NGF or FGFb caused 

considerably longer neurite outgrowth than EGF or PACAP (Figures 3.2, and 

3.3). Representative images of the neurite outgrowth in each system are 

shown in Figure 3.2a. Following treatment with the growth factors and 

PACAP, no differences in the expression levels and localization of the 

neuronal marker, βIII-Tubulin, were observed (Figure 3.2b), which is 

consistent with the findings of previous studies272,273. 

To better visualize the synergistic action between growth factors and PACAP 

on neurite length, we used response surface model (RSM)274 and examined 

the effect of NGF-PACAP (NP), FGFb-PACAP (FP) and EGF-PACAP (EP) 

treatments in these cells. The cells were treated with the ligands singly and in 

combinations. In these plots, the neurite length obtained after 48 hours of 

combinatorial treatment was compared to that obtained by a summation of 
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neurite length induced by the individual ligands (additive effect). Surface plots 

of the three systems—NP (Figure 3.3a(i)), FP (Figure 3.3b(i)), and EP (Figure 

3.3c(i))—clearly indicated that combinatorial treatments resulted in longer 

neurites than the additive effects of single ligand exposure, indicating 

synergism. These plots also showed that synergism (as indicated by the 

plateau regions) occurred over a wide range of doses of growth factors and 

PACAP.  

 

 
Figure 3.2. Synergistic neurite outgrowth induced by combinatorial growth factor-
PACAP treatments. (a) Representative images of cells treated with each growth factor (50 

ng/ml) with and without PACAP (100 ng/ml). (b) Representative fluorescent images of cells 

stained with βIII-Tubulin after being treated with each growth factor (50 ng/ml) with and without 

PACAP (100 ng/ml). 
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Figure 3.3. Analysis of synergistic neurite outgrowth induced by combinatorial growth 
factor-PACAP treatments using RSM. (a(i)), (b(i)), (c(i)) Response surface plots for the NGF 

(0-50 ng/ml)-PACAP (0-500 ng/ml) (NP), FGFb (0-100 ng/ml)-PACAP (0-500 ng/ml) (FP), and 
EGF (0-50 ng/ml)-PACAP (0-500 ng/ml) (EP) systems, respectively. Top panel: Experimentally 
obtained results of the growth factor-PACAP combinatorial treatment; Bottom panel: Additive 
effect calculated through the summation of the individual effects of the growth factors and 
PACAP. The x, y, and z axes denote concentrations of PACAP (ng/ml), concentrations of 
growth factors (ng/ml), and neurite length, respectively. (a(ii)), (b(ii)), (c(ii)) Isobologram plots 
illustrating the concentrations of growth factor and PACAP necessary to obtain a neurite length 
of 0.14 for the NP, FP, and EP systems, respectively. 

To further illustrate that synergistic neurite outgrowth can occur even with low 

doses of PACAP, an isobologram275 was plotted for each of the three systems 
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(Figures 3.3a(ii), 3.3b(ii), and 3.3c(ii)). Significantly higher concentrations of 

PACAP were required in the absence of any growth factors to obtain similar 

neurite lengths. In addition, in the NP and FP systems, the saturating neurite 

length for the combinatorial treatment was about twice that of the additive 

effect, whereas a difference of about 4-fold was observed for the EP system. 

This indicates a higher degree of synergism in the EP system, and suggests 

that synergistic neurite outgrowth in the EP system may differ mechanistically 

from those of the NP and FP systems.  

3.2.2. Synergistic Phosphorylations of Erk and JNK upon 

Combinatorial Growth Factor-PACAP Treatment 

 

 
Figure 3.4. Time-course profiles of activations of kinases upon PACAP, NGF, and NP 
treatments. Fold changes of (a) pErk, (b) pJNK, (c) pP38, and (d) pAkt from 0-1 hour. The 

concentrations of NGF, and PACAP used were 50 ng/ml, and 100 ng/ml, respectively. 

We hypothesized that there was likely to be synergistic activation of the 

various kinases that regulate synergistic neurite outgrowth. To examine the 
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pathways involved in regulating synergistic neurite outgrowth in these 

systems, we conducted a time-course to determine changes in the 

phosphorylation levels of four kinases—Akt, Erk, JNK, and P38—upon NGF, 

PACAP, and NP treatments. The kinases were activated throughout the entire 

1 hour time-course (Figure 3.4). Thus, for convenience, subsequent analyses 

were performed only at the 20 and 60 minutes time-points. 

After treating the cells with multiple doses of NGF and PACAP, the 

phosphorylation levels of Erk (Figure 3.5a), JNK (Figure 3.5a), P38 (Figure 

3.6a) and Akt (Figure 3.6a) were quantified and analyzed for synergism. 

Single ligand treatment with NGF but not PACAP induced sustained Erk 

phosphorylation. To analyze for synergistic activation of Erk, effects upon 

combinatorial treatments of NP was compared to the additive effect of the 

individual ligands. In the presence of both ligands, Erk phosphorylation was 

higher than the additive effects of NGF and PACAP separately (Figure 3.5b). 

This is in congruence with the finding that NGF and NP treatment but not 

PACAP induced extensive neurite outgrowth, and is consistent with the idea 

that sustained Erk phosphorylation is involved in neurite outgrowth165,170,213. 

Similarly, sustained activation of JNK by NGF was observed (Figure 3.5c). In 

addition, we made the novel discovery that JNK was also synergistically 

phosphorylated upon combinatorial NP treatment (Figure 3.5c) and it was 

sustained for up to 1 hour post-stimulation. On the contrary, using the same 

analyses, synergistic phosphorylations of P38 (Figures 3.6a, and 3.6b) and 

Akt (Figure 3.6a, and 3.6c) were not observed in the NP system. 
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Figure 3.5. Synergistic and sustained phosphorylation of Erk and JNK upon 
combinatorial NGF and PACAP treatment. (a) Time-course of Erk and JNK phosphorylation 

at 20 and 60 minutes following NGF (0-50 ng/ml)-PACAP (0-100 ng/ml) (NP) treatment. 
Phosphorylation levels of the proteins were analyzed by western blotting, and normalized to the 
levels of actin. Fold-changes in (b) pErk and (c) pJNK were quantified by densitometry. Data 
for 50 ng/ml NGF and 100 ng/ml PACAP (highlighted in blue) were plotted and analyzed for 
synergism. Significant differences between combinatorial experimental treatment of NGF-
PACAP and summation of their individual effects were calculated using the paired Student‘s t-
test. A value of p<0.05 was considered significant (**p<0.01).  
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Figure 3.6. Non-synergistic phosphorylation of P38 and Akt upon combinatorial NGF (0-
50 ng/ml) and PACAP (0-100 ng/ml) treatments. (a) Time-course of P38 and Akt 

phosphorylations at 20 and 60 minutes following NGF-PACAP treatments. Phosphorylation 
levels of the proteins were analyzed by western blotting, and normalized to the levels of actin. 
Fold changes of (b) pP38, and (c) pAkt under (i) uni-ligand treatments, (ii) bi-ligand treatments 
at 10 ng/ml of NGF, and (iii) bi-ligand treatments at 50 ng/ml NGF. Significant differences 
between combinatorial experimental treatment of NGF-PACAP and summation of their 
individual effects were calculated using the paired Student‘s t-test. A value of p<0.05 was 
considered significant. 
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Having found that Erk and JNK were synergistically phosphorylated in the NP 

system, we next investigated if these trends were also common to the FP and 

EP systems. Similar to the NP system, sustained and synergistic Erk (Figures 

3.7a(i), and 3.7b(i)) and JNK (Figures 3.7a(ii), and 3.7b(ii)) phosphorylations 

were observed for the FP and EP treatments, respectively, within 1 hour of 

stimulation.  

 
Figure 3.7. Synergistic and sustained phosphorylation of Erk and JNK upon FP and EP 
treatments. Time-course of quantified Erk and JNK phosphorylation at 20 and 60 minutes 

upon (a) FGFb (50 ng/ml)-PACAP (100 ng/ml) (FP) or (b) EGF (50 ng/ml)-PACAP (100 ng/ml) 
(EP) treatment. Fold-change in (i) pErk, and (ii) pJNK were quantified by densitometry and 
normalized to the levels of actin. Significant differences between combinatorial experimental 
treatment of growth factor-PACAP and the summation of their individual effects were calculated 
using the paired Student‘s t-test. A value of p<0.05 was considered significant (**p<0.01; 
*p<0.05). 

Likewise, neither P38 (Figures 3.8a(i), and 3.8b(i)) nor Akt (Figures 3.8a(ii), 

and 3.8b(ii)) were synergistically phosphorylated in the FP and EP systems. 

Thus, these results indicate that specific kinases were synergistically 
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phosphorylated by various combinatorial growth factor-PACAP treatments, 

suggestive of their roles in mediating synergistic neurite outgrowth. 

 

 

 
Figure 3.8. Non-Synergistic phosphorylation of P38 and Akt upon FP and EP treatments. 

Time-course of quantified P38, and Akt phosphorylations at 20 and 60 minutes following (a) 
FGFb (50 ng/ml)-PACAP (100 ng/ml), and (b) EGF (50 ng/ml)-PACAP (100 ng/ml) treatment. 
Fold changes of (i) pP38, and (ii) pAkt were quantified by densitometry and normalized to the 
levels of actin. Significant differences between combinatorial experimental treatment of growth 
factor-PACAP and summation of their individual effects were calculated using the paired 
Student‘s t-test. A value of p<0.05 was considered significant. 

The total protein levels of Erk, JNK, P38 and Akt upon treatment with single 

ligand or combinations of the growth factors and PACAP were probed across 

all conditions and time-points (Figure 3.9). Upon quantification of the bands, 

the standard deviation of the fold changes across all conditions (NGF, EGF, 

FGFb, NP, EP, and FP at both 20 and 60 minutes) was found to be within 0.2 

for all the proteins probed, indicating that the total protein levels were not 

changed. 
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Figure 3.9. Total levels of Erk, JNK, P90RSK, Akt and P38 were not changed following 
treatments with ligands. The total protein levels were assayed at 20 and 60 minutes post-

stimulation. The same control (C, at t=0 minutes) was used for both time-points. The 
concentrations of growth factors, and PACAP used were 50 ng/ml, and 100 ng/ml, respectively. 

3.2.3. Erk Positively Regulates Neurite Outgrowth in All 

Three Systems Whereas Regulation of the Process 

by JNK is Positive in the NP and FP Systems but 

Negative in the EP System 

We next examined the role of these synergistically activated kinases in 

regulating neurite outgrowth using kinase inhibitors. As expected, treatment 

with the MEK inhibitor, U0126, inhibited neurite outgrowth in the NP system in 

a dose-dependent manner (Figures 3.10a(i), and 3.10d). Similarly, inhibition 

of MEK also blocked neurite outgrowth in the FP (Figures 3.10b, and 3.10d) 

and EP systems (Figures 3.10c, and 3.10d), confirming the involvement of 

synergistic Erk phosphorylation in neurite outgrowth. Further supporting the 

involvement of synergistically phosphorylated kinases in regulating synergistic 

neurite outgrowth, the JNK inhibitor, SP600125, blocked neurite outgrowth in 

the NP (Figures 3.10a(ii), and 3.10d) and FP systems (Figures 3.10b, and 

3.10d). Surprisingly, SP600125 at the same concentration (10 μM) failed to 

inhibit neurite outgrowth in the EP system, showing instead enhanced neurite 

outgrowth (Figures 3.10c, and 3.10d). Higher concentrations of SP600125 
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were deemed to be cytotoxic (data not shown). Positive controls for the 

effects of U0126 and SP600125 are shown in Figures 3.11a and 3.11b, 

respectively.  
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Figure 3.10. Erk is required for neurite outgrowth in all three systems whereas JNK is 
required only for the NP and FP, but not EP, systems. Concentrations of growth factors and 

PACAP used were 50 ng/ml and 100 ng/ml, respectively. (a) Dose-response treatment of (i) 
MEK inhibitor (U0126), (ii) JNK inhibitor (SP600125), (iii) P38 inhibitor (SB203580), and (iv) 
PI3K inhibitor (LY294002) on neurite outgrowth in the NP system. (b), (c) Effect of U0126 (20 
μM), SP600125 (10 μM), SB203580 (20 μM), and LY294002 (20 μM) on neurite outgrowth in 
the FP, and EP systems, respectively. (d) Representative images of cells treated with growth 
factors-PACAP in the presence of inhibitors in the three systems, NP, FP and EP. Significant 
differences between treatments with and without inhibitors were calculated using the paired 
Student‘s t-test. A value of p<0.05 was considered significant (**p<0.01; *p<0.05). 

 
Figure 3.11. Positive controls for the kinase inhibitors following treatment with NGF (50 
ng/ml). (a) Inhibition of Erk phosphorylation in the presence of U0126. (b) Inhibition of c-Jun 

phosphorylation in the presence of SP600125. (c) Inhibition of P38 phosphorylation in the 
presence of SB203580. (d) Inhibition of Akt phosphorylation in the presence of LY294002. 

As expected, inhibition of the non-synergistically activated nodes, P38 and 

Akt, by SB203580, and LY294002, respectively, did not block neurite 

outgrowth in all three systems (Figures 3.10a(iii), 3.10a(iv), 3.10b, 3.10c, and 

3.10d). Likewise, cells treated with doses of the inhibitors at concentrations 

higher than 20 μM resulted in high levels of cytotoxicity (data not shown). The 

positive controls for SB203580 and LY294002 are shown in Figures 3.11c 

and 3.11d, respectively. 
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Figure 3.12. Net inhibitor-induced reduction in neurite length is greater in the synergistic 
systems than in the additive effect of the single ligand treatments. Net reduction in neurite 

outgrowth in the (a) NP system following treatment with various concentrations of (i) U0126 
(MEK inhibitor) and (ii) SP600125 (JNK inhibitor). Reductions in neurite outgrowth in the (b) FP 
and (c) EP systems in the presence of specific kinase inhibitors. The concentrations of growth 
factors, and PACAP used were 50 ng/ml, and 100 ng/ml, respectively. Significant differences 
between the effects of the combinatorial treatment of growth factor-PACAP (bi-ligand) versus 
the sum of the effects for each single ligand treatment were compared using the paired 
Student‘s t-test. A value of p<0.05 was considered significant (**p<0.01; *p<0.05). 

Next, the reduction in neurite outgrowth, after treatment with inhibitors, for the 

NP treatment was compared to the sum of reduction of neurite outgrowth in 

the single ligand treatments. With U0126 (Figure 3.12a(i)) and SP600125 

(Figure 3.12a(ii)), the reduction in neurite outgrowth in the NP treatment was 

greater than the sum of reduction for the single ligand treatments. Similarly, 

for the FP (Figure 3.12b) and EP (Figure 3.12c) systems, inhibition of the 

kinases positively regulating neurite outgrowth also resulted in a greater 

reduction in neurite outgrowth in the combinatorial growth factor-PACAP 

treatments than the sum of reduction for the respective single ligand 
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treatments. These results support the involvement of the various kinases in 

positively regulating synergistic neurite outgrowth in the respective synergistic 

systems. 

Critically, these results also suggest that these systems utilize distinct 

pathways to regulate neurite outgrowth and that not all synergistically 

phosphorylated kinases are relevant to the enhancement of neurite 

outgrowth. 

3.2.4. P90RSK is Downstream of both Erk and JNK in the 

NP and FP Systems but only Downstream of Erk in 

the EP System 

Having found that JNK was positively involved in neurite outgrowth in the NP 

and FP, but not EP, systems, we sought to identify the downstream targets 

that may be involved in mediating this differential requirement of JNK. Among 

the many downstream effectors of JNK, P90RSK has been recently shown to 

be involved in neurite outgrowth and PC12 cells differentiation219,276,277. Thus, 

we examined if P90RSK was synergistically phosphorylated and if it was 

involved in JNK-mediated neurite outgrowth.  

As expected, P90RSK was synergistically phosphorylated in the NP (Figures 

3.13a(i), and 3.13a(ii)), FP (Figure 3.13b(i)) and EP (Figure 3.13c(i)) systems 

from 20 minutes to 1 hour after stimulation, while the total protein levels of 

P90RSK across all time-points and conditions were not changed (Figure 3.9). 

In all three systems, neurite outgrowth was inhibited in the presence of the 

P90RSK inhibitor, BRD7389278,279 (Figures 3.13a(iii), 3.13b(ii), 3.13c(ii), and 

3.13e). Greater reductions in neurite outgrowth were also achieved in the 
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combinatorial growth factor-PACAP treatments than for the sum of the 

reduction in neurite outgrowth in the respective single ligand treatments 

(Figure 3.13d), supporting the involvement of P90RSK in regulating 

synergistic neurite outgrowth in all three systems.  
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Figure 3.13. P90RSK is synergistically phosphorylated and is involved in neurite 
outgrowth in all three systems. (a(i)) Time-course of P90RSK phosphorylation at 20 and 60 

minutes following NGF (0-50 ng/ml)-PACAP (0-100 ng/ml) treatment. Phosphorylation levels of 
the proteins were analyzed by Western blotting, and normalized to the levels of Actin. The blots 
used were the same as those used for pJNK in Figure 3.5a. (a(ii)), (b(i)), (c(i)) Time-course 
measurements of pP90RSK at 20 and 60 minutes following NGF (50 ng/ml)-PACAP (100 
ng/ml) (NP), FGFb (50 ng/ml)-PACAP (100 ng/ml) (FP) or EGF (50 ng/ml)-PACAP (100 ng/ml) 
(EP) stimulations, respectively. (a(iii)), (b(ii)), (c(ii)) Effect of P90RSK inhibitor, BRD7389 (0.2 
μM), on neurite outgrowth in the NP, FP, and EP systems, respectively. (d) Net reduction in 
neurite outgrowth between combinatorial ligand treatment (bi-ligand) versus the sum of neurite 
outgrowth reduction from treatment with each ligand separately in the presence of BRD7389 
(0.2 μM). (e) Representative images of cells treated with growth factors (50 ng/ml)-PACAP 
(100 ng/ml) in the presence of BRD7389 in the three systems. Significant differences between 
the effects of combinatorial experimental treatment of growth factor-PACAP and summation of 
their individual effects, and that between the effects of treatments with and without inhibitors 
were calculated using the paired Student‘s t-test. A value of p<0.05 was considered significant 
(**p<0.01; *p<0.05).  
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Figure 3.14. P90RSK is regulated by Erk and JNK in the NP and FP systems, but only by 
Erk in the EP system. (a), (b), (c) Time-course measurement of pP90RSK at 20 and 60 

minutes following NGF (50 ng/ml)-PACAP (100 ng/ml), FGFb (50 ng/ml)-PACAP (100 ng/ml), 
and EGF (50 ng/ml)-PACAP (100 ng/ml) treatment, respectively, in the presence or absence of 
MEK inhibitor, U0126 (20 μM), or JNK inhibitor, SP600125 (10 μM). (d) The total levels of Erk, 
JNK, and P90RSK were unchanged during the combinatorial growth factor-PACAP treatments 
both in the presence and absence of the inhibitors. The total protein levels were assay at 20 
minutes post-stimulation. A normalizer (NGF-PACAP co-treated cells) in each blot served as a 
control to normalize between different blots, where U denotes U0126 (20 μM), and S denotes 
SP600125 (10 μM). Significant differences between treatments with and without inhibitors were 
calculated using the paired Student‘s t-test. A value of p<0.05 was considered significant 
(**p<0.01). 
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To validate the role of P90RSK as a downstream effector of synergistically 

activated JNK in the three systems, the phosphorylation level of P90RSK was 

examined after inhibition with SP600125. Surprisingly, treatment with 

SP600125 inhibited P90RSK phosphorylation in the NP (Figure 3.14a) and 

FP (Figure 3.14b), but not EP (Figure 3.14c), systems. These results strongly 

suggest that the regulation of P90RSK by the JNK pathway could be a critical 

determinant of JNK involvement in positively regulating synergistic neurite 

outgrowth. 

In addition to JNK, P90RSK has also been reported to be a downstream 

target of Erk280,281. Unlike the case for JNK inhibition, inhibition of Erk 

activation with U0126 suppressed P90RSK phosphorylation in all three 

systems (Figures 3.14a-3.14c), providing further support for the role of 

P90RSK as an important mediator of neurite outgrowth. In the presence of 

each of these inhibitors, the total levels of Erk, JNK, and P90RSK were also 

unchanged (Figure 3.14d). 

3.3. Discussions 

In this study, we demonstrated the involvement of distinct combinations of 

signalling pathways in mediating synergistic neurite outgrowth induced by 

PACAP and different growth factors (Figure 3.15). In these systems, Erk, 

JNK, and P90RSK were all found to be synergistically phosphorylated. 

However, synergistic JNK phosphorylation positively regulated neurite 

outgrowth only in the NP and FP systems. Further investigations led to the 

crucial finding that the JNK-P90RSK link is critical to the involvement of JNK 

in positively regulating synergistic neurite outgrowth in some but not all 

growth factor-PACAP stimulation combinations. 
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Figure 3.15. A schematic illustration of the different pathways used by the three different 
synergistic systems, NGF-PACAP (NP), FGFb-PACAP (FP), and EGF-PACAP (EP) in the 
regulation of neurite outgrowth. 

cAMP-elevating agents have long been known to synergize with NGF211,212, 

FGFb214, and EGF215,216 to enhance neurite outgrowth. Although the pathways 

used by these individual ligands to regulate neurite outgrowth have been 

widely studied, little is known about the mechanisms underlying synergistic 

neurite outgrowth. RSM-based analyses provide a means to quantitatively 

compare the degree of synergism between different treatments274. By such 

analyses, the degree of synergism in the EP system was found to be higher 

than those in the NP and FP systems, suggesting that different signalling 

pathways may regulate neurite outgrowth in these systems.  

To determine the pathways involved in synergistic neurite outgrowth, four 

kinases were examined, each widely reported to be involved in PC12 cells 

differentiation: Erk169,282,283, P38270,282, JNK112,284, and Akt163,283,285. 

Interestingly, our results showed that Akt and P38 were activated following 

ligand stimulation but not involved in neurite outgrowth in all three systems. In 

agreement with this, inhibition of these two kinases also failed to suppress 
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NGF-induced neurite outgrowth in PC12 cells. These results were consistent 

with some of the earlier reports exploring neurite outgrowth286-288 but not 

others112,163,164,270,282-285. A recent systems-based study revealed a two-

dimensional Erk-Akt signalling code that was critical in governing PC12 cells 

proliferation and differentiation289. Thus, the controversy surrounding the 

involvement of P38 and Akt would be more adequately addressed using 

systems-based approaches in the future. 

The sustained activation of Erk has been widely reported to be required for 

neurite outgrowth during differentiation165,169,170,213. Consistent with these 

reports, synergistic and sustained Erk phosphorylation was found to be 

involved in neurite outgrowth in all three growth factor-PACAP systems. This 

was especially evident in the EP system, where transient Erk activation was 

observed following treatment with EGF or PACAP alone. Similarly, synergistic 

and sustained JNK phosphorylation was observed in all three systems. 

Remarkably, inhibition of JNK led to reduced neurite outgrowth in the NP and 

FP systems, but enhanced outgrowth in the EP system. Although a previous 

study has found sustained JNK activation to be sufficient to induce PC12 cells 

differentiation171, our results showed that sustained JNK activation in the EP 

system is insufficient to induce neurite outgrowth. These seemingly 

contradictory findings could imply that the kinetics of JNK activation alone is 

insufficient to determine if cells undergo differentiation. It is likely that JNK 

acts in conjunction with other signalling nodes to form a signalling network 

that regulates neurite outgrowth. Nonetheless, to the best of our knowledge, 

this is the first report demonstrating the involvement of JNK phosphorylation 

in synergistic neurite outgrowth. 
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We have shown that both Erk and JNK were synergistically phosphorylated in 

all three systems. This may occur through shared common upstream 

effectors226 or through independent upstream effectors, such as PKA and 

Epac136,290,291. In preliminary experiments, we observed the involvement of 

PKA in neurite outgrowth in the EP but not NP system (data not shown); 

however, a complete understanding of the contribution of PKA and Epac in 

Erk and JNK activation remains to be determined.  

Although synergistic JNK phosphorylation was observed in all three systems, 

it was not found to positively regulate synergistic neurite outgrowth in the EP 

system. This suggests a possible difference in downstream signalling. 

P90RSK, which had previously been found to be required for PC12 cells 

differentiation219, was also found to be synergistically activated in all three 

systems in our study. Interestingly, P90RSK was activated by JNK in the NP 

and FP, but not EP, systems. Although JNK-mediated activation of P90RSK 

has not been widely reported, it has been observed following ultraviolet 

exposure277, insulin treatment292, or transforming growth factor alpha 

treatment293. Consistent with previous findings281, P90RSK was also regulated 

by Erk in our study. The co-regulation of targets by Erk and JNK is not 

uncommon, with previous studies showing that these two kinases regulate 

many common targets, including transcription factors164,172,294, immediate 

early genes295 and differentiation-specific genes164,295,296. Despite this, results 

from several studies have suggested that the binding sites of P90RSK for Erk 

and JNK are likely to be different277,297, further indicating that P90RSK may be 

discretely regulated by the two kinases. Our finding of the differential 

regulation of P90RSK in the NP and EP systems in this study strongly 

suggests that these synergistic systems can serve as excellent models to 
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decipher the mechanistic regulation of P90RSK by its upstream kinases, Erk 

and JNK. The contributions of Erk, JNK and P90RSK in the mechanism of 

axonal outgrowths of neurons in vivo and in vitro will require further 

clarification in future studies. 

3.4. Conclusions 

In conclusion, our study has demonstrated that distinct pathways were 

involved in synergistic neurite outgrowth in different systems. Importantly, our 

findings of the underlying pathways involved in these systems have two key 

implications. First, some kinases such as JNK may be synergistically 

activated by multiple ligands but yet not necessarily involved in the positive 

regulation of synergistic neurite outgrowth and that its positive involvement in 

the process is dependent on its interaction with P90RSK. Second, in the EP 

system, the increased synergy in neurite outgrowth and lack of JNK 

requirement in the positive regulation of the process suggest that PACAP 

synergizes differently with different growth factors to enhance neurite 

outgrowth. These findings reveal that synergistic neurite outgrowths induced 

by multiple ligands involve the interplay of a network of signals. 
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4.1. Introduction 

Previously, the involvement of four pathways, Erk164,169, P38270, JNK112,164, 

and PI3K163,166, involved in the regulation of total neurite length in three 

synergistic systems, NP, FP, and EP, were investigated. In addition to these 

pathways, protein kinase A (PKA)222 has also been widely reported to be 

involved in the regulation of various morphological features of neurite 

outgrowth in PC12 cells.  

The morphological properties of neurites represent key aspects of the 

neuronal phenotype in the nervous system and play critical roles in the 

processing of information and formation of network connectivity298,299. 

However, neurite outgrowth is a complex process that involves the initiation, 

elongation and branching of neurites and total length alone gives only a 

limited depiction of the process300,301. The extent and rate of neurite outgrowth 

dictates the wiring and transmission of information between neurons. Thus, in 

order to gain a more holistic understanding of neurite outgrowth, other 

morphological aspects of neurite outgrowth232,235,302, such as the number of 

neurites extending from the cell-body, and degree of branching must be 

investigated as well. These parameters are important as they collectively 

determine the number of neurons that can interact with each neuron and the 

spatial boundary within which neurons can transmit information between one 

another. Moreover, these morphological features can be regulated 

independently from one another303 and using only limited morphological 

features to characterize neurite outgrowth may result in an over-simplified 

understanding of the mechanisms regulating the process. For instance, P38 

had been found to regulate the total neurite length and degree of branching 
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but not number of neurites per cell237 and Akt had been found to regulate 

neurite branching but not length238 in various systems. To date, many studies 

addressing neurite outgrowth have largely focused on the analyses of one or 

two parameters such as neurite length and percentage of differentiated cells. 

Thus, the mechanisms underlying the morphological complexity of neurite 

outgrowth is still poorly understood. 

While it has been shown previously that the total neurite length in the 

synergistic systems are regulated by the Erk and JNK pathways, the 

pathways regulating the other morphological features during this process are 

still unclear. In this study, we investigated the involvement of various 

signalling pathways in regulating the morphological structures of neurite in 

three systems exhibiting synergistic neurite outgrowth, NP, FP, and EP. 

Building on our previous study, we found that the involvement of PKA in 

regulating synergistic neurite length in the FP and EP systems was mediated 

through P90RSK independently of Erk, further suggesting the importance of 

P90RSK in regulating synergistic neurite outgrowth. As expected, pathways 

which are involved in the regulation of neurite length in these systems also 

regulated other morphological parameters such as the number of neurite 

extensions and branch-points. Surprisingly, in the NP and FP systems, the 

P38 pathway was found to regulate neurite branching without affecting neurite 

length. Our study suggests that the different morphological structures of 

neurites can be regulated by distinct signalling pathways and a more 

complete understanding of the pathways regulating neurite outgrowth can 

only be achieved through holistic analyses of the morphology of the neurites. 
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4.2. Results 

4.2.1. Analyses of Neurite Extension 

Growth factors such as NGF211,212, FGFb214 and EGF215,216 are known to 

synergize with cAMP-elevating agents such as PACAP to enhance neurite 

outgrowth. Previously, in Chapter 3, we have also shown that combinatorial 

treatments of PACAP with any one of these growth factors resulted in 

synergistic regulations of total neurite length. In this study, we aimed to 

determine how this enhancement of total neurite length is achieved 

morphologically by examining the other features of neurite outgrowths. The 

number of neurite extensions from the cell-body upon NP (Figure 4.1a), FP 

(Figure 4.1b), and EP (Figure 4.1c) treatments was first examined. Following 

treatments with single ligands and with combinations of growth factors and 

PACAP for 48 hours, the number of neurite extensions was quantified and 

analyzed using a response surface model (RSM). The number of neurite 

extensions obtained for the combinatorial growth factor-PACAP treatment 

was compared to that from a summation of the additive effects of the 

corresponding individual ligands. In all three systems, the total number of 

neurite extensions (Figure 4.1) was found to be synergistically regulated. This 

suggests that the increased number of neurite extensions during 

combinatorial growth factor-PACAP treatments may contribute to the increase 

in total neurite length. The reliability of HCA-Vision for the quantification of 

these morphological parameters was verified through manual quantification. 
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Figure 4.1. Synergistic increase in number of neurite extensions from the cell-body upon 
combinatorial growth factor-PACAP treatments. (a), (b), (c) Response surface plots of 

number of neurite extensions after 48 hours of stimulation with NGF (0-50 ng/ml)-PACAP (0-
500 ng/ml), FGFb (0-100 ng/ml)-PACAP (0-500 ng/ml), and EGF (0-100 ng/ml)-PACAP (0-500 
ng/ml), respectively; Top panel: Experimentally obtained results of the growth factor-PACAP 
combinatorial treatment; Bottom panel: Additive effect calculated through the summation of the 
individual effects of the growth factors and PACAP. x, y, and z axes denote concentrations of 
growth factors (ng/ml), concentration of PACAP (ng/ml), and number of neurite extensions, 
respectively. 
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Figure 4.2. Increase in the length of each neurite contributes to the synergistic 
regulation of total neurite length in all three systems upon combinatorial growth factor-
PACAP treatments. (a) Illustration of neurite branching and segments. (b) Length of longest 

neurite, and (c) average length of each neurite after 48 hours of stimulation with (i) NGF (0-50 
ng/ml)-PACAP (0-500 ng/ml), (ii) FGFb (0-50 ng/ml)-PACAP (0-500 ng/ml), and (iii) EGF (0-50 
ng/ml)-PACAP (0-500 ng/ml), respectively.  

We next examined if the various morphological changes of each neurite was 

also enhanced. The length of each neurite was examined using two different 

measures, the length of the longest neurite (S1+S3) and the average length 

of each neurite (average of S1+S2+S3, S4, and S5) (Figure 4.2a). 

Investigating the length of the longest neurite (Figure 4.2b), it was also found 

to be synergistically regulated in all three systems. In addition, the length of 

each neurite was increased in all three systems (Figure 4.2c). This is 

especially obvious in the FP (Figure 4.2c(ii)) and EP (Figure 4.2c(iii)) 

systems, where synergistic behaviours were observed. Thus, our data shows 

that increases in both the number of neurite protrusions and length of each 

neurite contribute to the synergistic enhancement of total neurite length. 
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4.2.2. Analysis of Neurite Branching 
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Figure 4.3. Synergistic increase in the number of branch-points in the neurites upon 
combinatorial growth factor-PACAP treatments. (a) Number of branch-points, and (b) 

number of segments after 48 hours of stimulation with (i) NGF (0-50 ng/ml)-PACAP (0-500 
ng/ml), (ii) FGFb (0-100 ng/ml)-PACAP (0-500 ng/ml), and (iii) EGF (0-100 ng/ml)-PACAP (0-
500 ng/ml), respectively. Top panel: Experimentally obtained results of the growth factor-
PACAP combinatorial treatment; Bottom panel: Additive effect calculated through the 
summation of the individual effects of the growth factors and PACAP. x, y, and z axes denote 
concentrations of growth factors (ng/ml), concentration of PACAP (ng/ml), and number of 
branch-points or segments, respectively.  

Having shown that the length of each neurite is increased, we sought to 

identify if this increase was due solely to an elongation of the neurites or 
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accompanied by an increase in the degree branching of neurites. This was 

measured using two parameters, the number of branch-points and the 

number of segments, defined as the region of the neurite spanning between a 

branch-point, cell-body, or the terminal end of the neurite (S1, S2, and S3) 

(Figure 4.2a). In all three systems, using a RSM analysis, the number of 

branch-points was also found to be synergistically regulated (Figure 4.3a). 

Given that a higher degree of branching would result in more neurite 

segments, the number of neurite segments (Figure 4.3b) was expectedly 

found to be synergistically regulated as well. 

 

 
Figure 4.4. Increase in the length of each neurite segments contributes to the 
synergistic regulation of total neurite length in the EP and FP, but not NP, systems. (a), 

(b), (c) Length of each neurite segment after 48 hours of stimulation with NGF (0-50 ng/ml)-
PACAP (0-500 ng/ml), FGFb (0-50 ng/ml)-PACAP (0-500 ng/ml), and EGF (0-50 ng/ml)-
PACAP (0-500 ng/ml), respectively. 
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To assess if the length of each segment was enhanced during combinatorial 

growth factor-PACAP treatments, the average length of each segment was 

quantified. Similar to the average length of each neurite, the average length of 

each segment was increased in the FP (Figure 4.4b) and EP (Figure 4.4c) 

systems. This increase is most evident in the EP system as the increase in 

segment length was synergistic. Surprisingly, the segment length was not 

enhanced in the NP system (Figure 4.4a), suggesting a differential regulation 

of synergistic neurite outgrowth in these systems. 

4.2.3. PKA Regulates Neurite Length in the FP and EP, but 

not NP, Systems 

In our previously study, we have shown that while Erk was involved in the 

regulation of total neurite length in all three systems, JNK was positively 

involved in the process in only the NP and FP systems. Here, we investigated 

if PKA, which had been reported to be involved in neurite outgrowth in PC12 

cells222,304, was also required for neurite outgrowth in these three systems. 

Although Erk and JNK were previously reported to be synergistically 

phosphorylated in all three systems, CREB, a surrogate marker for PKA, was 

not found to be synergistically phosphorylated in these systems (Figure 4.5). 

While this suggested that PKA was unlikely to be required for the regulation of 

neurite length in these systems, inhibition of PKA using H89 surprisingly 

reduced the total neurite length in the FP and EP (Figure 4.6a) systems. 

However, inhibition of PKA did not affect the total neurite length in the NP 

(Figure 4.6a) system. 
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Figure 4.5. CREB is not synergistically phosphorylated upon combinatorial growth 
factor-PACAP treatments. (a) pCREB levels after stimulation with NGF (0-50 ng/ml)-PACAP 

(0-100 ng/ml), FGFb (0-50 ng/ml)-PACAP (0-100 ng/ml), or EGF (0-50 ng/ml)-PACAP (0-100 
ng/ml) for 60 minutes. pCREB levels were analyzed by Western blotting, and normalized to the 
levels of Tubulin. (b) Fold changes of pCREB upon (i) NP, (ii) FP, and (iii) EP stimulations were 
quantified by densitometry and plotted for the analysis of synergism. Significant differences 
between combinatorial experimental treatment of growth factor-PACAP and summation of their 
individual effects were calculated using the paired Student‘s t-test. A value of p<0.05 was 
considered significant. 

0

2

4

6

8

10

12

0 10 20 30 40 50

Fo
ld

 C
h

an
ge

 (
p

C
R

EB
) 

Concentration of NGF (ng/ml) 

PACAP-0ng/ml
PACAP-10ng/ml (Additive Effect)
PACAP-100ng/ml (Additive Effect)
PACAP-10ng/ml (Combinatorial Treatment)
PACAP-100ng/ml (Combinatorial Treatment)

0

2

4

6

8

10

12

0 10 20 30 40 50

Fo
ld

 C
h

an
ge

 (
p

C
R

EB
) 

Concentration of FGFb (ng/ml) 

PACAP-0ng/ml
PACAP-10ng/ml (Additive Effect)
PACAP-100ng/ml (Additive Effect)
PACAP-10ng/ml (Combinatorial Treatment)
PACAP-100ng/ml (Combinatorial Treatment)

0

2

4

6

8

10

12

0 10 20 30 40 50

Fo
ld

 C
h

an
ge

 (
p

C
R

EB
) 

Concentration of EGF (ng/ml) 

PACAP-0ng/ml
PACAP-10ng/ml (Additive Effect)
PACAP-100ng/ml (Additive Effect)
PACAP-10ng/ml (Combinatorial Treatment)
PACAP-100ng/ml (Combinatorial Treatment)

a 

b(i) b(ii) 

b(iii) 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 4. Multi-Parameter Morphological Analysis   86 
Reveals Complex Regulation of Neurite Features  
during Synergistic Neurite Outgrowth in PC12 Cells 

 

 
Figure 4.6. Involvement of PKA in regulating total neurite length in the FP and EP, but 
not NP, systems is mediated by P90RSK independently of Erk. The concentrations of 

growth factor and PACAP used were 50 ng/ml and 100 ng/ml, respectively. (a) Effect of PKA 
inhibitor, H89, at 10 μM (H89) on total neurite length after 48 hours of stimulation NP, FP, and 
EP. (b) Effects of U0126 at 20 μM (U0), and H89 at 10 μM (H89) on levels of (i) pCREB, (ii) 
pErk, and (iii) pP90RSK after 60 minutes of stimulation with NP, FP, or EP. The 
phosphorylation levels of these proteins were analyzed by Western blotting, quantified by 
densitometry, and normalized to the levels of Tubulin. Significant differences between 
treatments with and without inhibitors were calculated using the paired Student‘s t-test. A value 
of p<0.05 was considered significant (**p<0.01; *p<0.05). 

In PC12 cells, both Erk164,169 and its downstream target P90RSK219 had been 

reported to be required for neurite outgrowth. Previous studies had also 

suggested that PKA is an upstream effector of Erk in the regulation of neurite 

outgrowth216. To determine if PKA indeed regulated the activity of Erk in the 

FP and EP systems, the phosphorylation levels of Erk and P90RSK, were 

probed after stimulation with the ligands in the presence of H89. In the NP 

system, inhibition of PKA, using pCREB as a control (Figure 4.6b(i)), exhibits 

no inhibitory effect on Erk (Figure 4.6b(ii)) and P90RSK phosphorylations 

(Figure 4.6b(iii)), which is consistent with the finding that PKA did not regulate 
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neurite length in the NP system (Figure 4.6a). In the FP and EP systems, 

surprisingly, inhibition of PKA resulted in a reduction in the phosphorylation 

level of P90RSK (Figure 4.6b(iii)) but not Erk (Figure 4.6b(ii)). This suggests 

that PKA can regulate the activity of P90RSK via an alternative mechanism 

independently of Erk. 

4.2.4. Regulation of Different Morphological Features of 

Neurite Outgrowth by Distinct Signalling Pathways 

As we have seen earlier, enhancement of neurite length in these systems can 

occur through an increase in the number of neurite extensions, length of each 

neurite, and degree of branching. However, it is unclear if the pathways 

regulating neurite length also regulated these morphological features. 

Inhibition of the kinases involved in the positive regulation of total neurite 

length was also found to inhibit the number of neurite extensions (Figure 

4.7a), length of the longest neurite (Figure 4.7b) and length of each neurite 

(Figure 4.7c), demonstrating that these pathways regulate synergistic neurite 

outgrowth through enhancement of these parameters. Representative images 

of the cells treated with different ligands in both the absence and presence of 

various inhibitors are as shown in Figure 4.7d. 
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Figure 4.7. Regulation of total neurite length by various signalling pathways is mediated, 
in part, through number of neurite extensions and length of each neurite. The 

concentrations of growth factor and PACAP used were 50 ng/ml and 100 ng/ml, respectively. 
Effects of U0126 (20 μM), SP600125 (10 μM), SB203580 (20 μM), LY294002 (20 μM), and 
H89 (10 μM) on (a) number of neurite extensions, (b) length of longest neurite, and (c) length 
of each neurite after 48 hours of stimulation with NGF-PACAP (NP), FGFb-PACAP (FP), and 
EGF-PACAP (EP). (d) Representative images of cells after different treatments for 48 hours in 
both the absence and presence of various inhibitors. Significant differences between 
treatments with and without inhibitors were calculated using the paired Student‘s t-test. A value 
of p<0.05 was considered significant (**p<0.01; *p<0.05). 

We then examined the regulation of the degree of branching by these 

kinases. As expected, inhibition of the kinases involved in the positive 

regulation of neurite length also reduced the number of branch-points (Figure 

4.8a) and the number of segments (Figure 4.8b). However, the length of each 

segment was not reduced upon inhibition of these pathways in the NP and FP 

systems (Figure 4.8c), suggesting that an increase in total neurite length did 

not occur through an increase in the length of the neurite segments. On the 

contrary, inhibition of Erk resulted in a decrease in the length of each 

segment in the EP system (Figure 4.8c), indicating that different mechanisms 

might regulate synergistic neurite outgrowth in these systems. 
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Figure 4.8. P38 regulates the number of branch-points and the number of segments 
independently of neurite length. The concentrations of growth factor and PACAP used were 

50 ng/ml and 100 ng/ml, respectively. Effects of U0126 (20 μM), SP600125 (10 μM), 
SB203580 (20 μM), LY294002 (20 μM), and H89 (10 μM) on (a) number of branch-points, (b) 
number of segments, and (c) length of each segment after 48 hours of stimulation with NGF-
PACAP (NP), FGFb-PACAP (FP), and EGF-PACAP (EP). Significant differences between 
treatments with and without inhibitors were calculated using the paired Student‘s t-test. A value 
of p<0.05 was considered significant (**p<0.01; *p<0.05). 

Surprisingly, inhibition of P38 using SB203580 decreased the number of 

branch-points (Figure 4.8a) and segments (Figure 4.8b) in the NP and FP 

systems without reduction of the total neurite length (Figure 3.10). This 
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reduction in the number of branch-points independently of neurite length 

resulted in an increase in the length of each segment (Figure 4.8c). Thus, our 

results suggest that different morphological aspects of neurite outgrowth can 

be regulated independently through distinct signalling pathways.  

4.3. Discussions 

In this study, we further investigated the regulation of different morphological 

features underlying synergistic neurite outgrowth. Building on our previous 

work, we found that the total neurite length was regulated by PKA in the EP 

and FP, but not NP, systems. Surprisingly, this involvement of PKA in neurite 

outgrowth was mediated by P90RSK independently of Erk. Investigating the 

morphological changes during synergistic neurite outgrowth, the synergistic 

regulation of total neurite length was found to be mediated by an increase in 

the number of neurite extensions, degree of branching of the neurites, and 

length of each neurite. These morphological features, which contributed to the 

enhancement of total neurite length, were all found to be regulated by the 

same pathways regulating total neurite length. However, P38, which was not 

involved in the regulation of total neurite length in all three systems, was 

instead found to regulate the branching of neurites in the NP and FP systems, 

suggesting that distinct pathways regulate the different morphological 

features of neurite outgrowth (Table 4.1, and Figure 4.9). 

There have been controversies surrounding the role of PKA in regulating 

neurite outgrowth where both its involvement and non-involvement in 

regulating neurite outgrowth in PC12 cells had been reported133,216,222,304,305. 

Examining its role in the regulation of synergistic neurite outgrowth, PKA was 

found to be involved in neurite outgrowth in the FP and EP, but not NP, 
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systems. Although PKA had previously been reported to regulate the activity 

of Erk111,139,306, its involvement in the regulation of neurite outgrowth in the FP 

and EP systems in this study was found to be mediated through P90RSK, 

independently of Erk. In addition to the involvement of Erk and JNK in 

regulating synergistic neurite outgrowth through P90RSK307 (Chapter 3), this 

suggests that the regulation of P90RSK by PKA could be yet another 

mechanism involved in the regulation of the process. P90RSK had previously 

been shown to be able to interact directly with both the regulatory and 

catalytic subunits of PKA308-310. While it has not been shown that PKA can 

directly phosphorylate P90RSK, the complex interactions between the 

catalytic subunits of PKA, regulatory subunits of PKA, PKA anchoring 

proteins, protein phosphatases (PPs), and P90RSK suggest that the activity 

of PKA can influence that of P90RSK309. Thus, our results indicates that 

P90RSK could be a convergent point for the three different signalling 

pathways and further complements the results of previous studies where it 

was found to be an important mediator of neurite outgrowth219,276. 

Table 4.1. Summary of the kinases involved in the regulation of various morphological 
features of neurite outgrowth. ‗+‘, ‗-‘, and ‗‘ denote positive, negative, and no regulation, 

respectively. 

Morphological 
Features 

NP  FP  EP 

Erk JNK P38 PKA  Erk JNK P38 PKA  Erk JNK P38 PKA 

Total neurite 
length 

+ +    + +  +  + -  + 

Number of 
neurites 

+ +    + +  +  + -  + 

Degree of 
branching 

+ + +   + + + +  + -  + 

Length of 
longest neurite 

+ +    + +  +  + -  + 

Average length 
of each neurite 

+ +    + +  +  + -  + 

Length of each 
neurite segment 

  -     -   +    
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Figure 4.9. A schematic illustration of the different pathways used by the three different 
synergistic systems, (a) NGF-PACAP (NP), (b) FGFb-PACAP (FP), and (c) EGF-PACAP 
(EP), in the regulation of various morphological features during neurite outgrowth. 
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Besides PKA, the other main downstream target of cAMP is Epac311,312. 

Similar to PKA, Epac had also been found to regulate neurite outgrowth in 

PC12 cells137,313. Although our results showed that PKA was not involved in 

regulating neurite outgrowth in the NP system, it had previously been shown 

that NGF synergized with Epac to enhance neurite outgrowth136. Thus, it is 

likely that cAMP synergizes with different growth factors via different 

mechanisms. Interestingly, PKA and Epac had also been found to synergize 

with one another to enhance neurite outgrowth290. Given the controversy 

surrounding the involvement of Epac and PKA in neurite outgrowth311, a more 

holistic systems-based study on these cAMP effectors, and other signalling 

pathways, such as Erk and JNK, would give a clearer picture of their roles in 

regulating neurite outgrowth. 

To achieve a more comprehensive understanding of neurite outgrowth, its 

morphologies need to be analyzed to a greater depth232,314,315 as the neuronal 

morphology pertaining to the structure and connectivity of neurons are critical 

for the regulation of neuronal functions316. In this study, the enhancement of 

total neurite length in the three systems was found to occur through an 

increase in the length of individual neurites, number of neurite protrusions, 

and branch-points in the neurites. During both neurite elongation and 

branching, organization of the cytoskeleton occurs. Thus, it is not unexpected 

that both neurite elongation and branching can be co-regulated by the same 

pathways317,318. This is consistent with previous studies that implicated 

pathways regulating total neurite length, such as Erk and JNK, in regulating 

other aspects of neuritogenesis, such as neurite branching and elongation 

during differentiation of PC12 cells236. Both Rac1319 and map1b320, which are 

mediators of the JNK pathway, have also been found to regulate neurite 
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branching. In addition, in vivo studies have also shown that deletion of Erk 

results in abnormal terminal branching of sensory neurons321,322. 

However, neurite elongation and branching can be seen as two separate 

phenomena and can be operationally independent as conditions that affect 

one do not necessary affect the other239,240. For instance, the microtubule-

severing proteins katanin and spastin regulate primarily axon elongation and 

branching, respectively323. Importantly, branching is a critical process during 

development as disruption of axon branching can lead to various 

neurodevelopmental problems including autism spectrum disorders, infantile 

epilepsy, and mental retardation324. 

Surprisingly, P38, which was not found to regulate neurite length, regulated 

the branching of neurites in the NP and FP, but not EP, systems. The 

dynamics of microtubule or actin polymerization are critical processes in the 

regulation of neurite branching as inhibition of these processes was found to 

inhibit branching but not elongation324-326. One of the main classes of proteins 

that can regulate actin polymerization and microtubules stabilization is the 

Rho GTPases RhoA, Cdc42, and Rac1327. Among them, Rac1 and Cdc42 

had been found to positively regulate neurite outgrowth in PC12 cells328. 

Given that P38 is a downstream signalling effector of Rac and Cdc42 in many 

systems141,329, it is plausible that P38 may play a critical role in regulating the 

morphological branching of neurites. This idea is further supported by a 

previous work that demonstrated its involvement in regulating the onset of the 

sprouting of neurites in PC12 cells164. In addition, the mixed-lineage kinase 

(MLK), which lies upstream of P38, has also been found to regulate branching 

in neurites330. To the best of our knowledge, this is the first report indicating 

that P38 can regulate the branching independently of the elongation of the 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 4. Multi-Parameter Morphological Analysis   96 
Reveals Complex Regulation of Neurite Features  
during Synergistic Neurite Outgrowth in PC12 Cells 

neurites. Another interesting finding in our work was that Erk regulated the 

length of the neurite segments in the EP, but not NP and FP, system. This 

clearly implies that the same signalling pathways can regulate the 

morphological structures of neurites in each system differently. Critically, 

given that these morphological structures are all tightly inter-related to one 

another, assessment of the mechanisms underlying neurite outgrowth should 

not just take into account a systems-view of signalling pathways, but also a 

systems-view of morphological structures. 

4.4. Conclusions 

This study has demonstrated that different parameters characterizing the 

morphological features of synergistic neurite outgrowth are regulated by 

distinct signalling pathways. The involvement of PKA in regulating neurite 

outgrowth was found to be mediated by P90RSK, independently of the Erk 

pathway. Together with the findings from our previous work (Chapter 3), 

P90RSK could be an important convergent point for multiple signalling 

pathways, such as Erk, JNK, and PKA, rendering it an important mediator of 

neurite outgrowth. A more elaborated neurite outgrowth under synergistic 

conditions occurs due to an increase in the length of each neurite, and 

number of neurite extensions and branch-points. Although inhibition of 

pathways regulating synergistic neurite length resulted in attenuation of these 

morphological features, P38 was found to regulate the number of segments 

and branch-points independently of the length. These results indicate a 

complex interplay of different signalling pathways in the regulation of the 

morphological structures of neurite during differentiation. 
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5.1. Introduction 

In Chapter 3, we showed that synergistic Erk and JNK activations were 

required for neurite outgrowth in the NP system307. Several studies have also 

reported synergistic Erk phosphorylation in different models of synergistic 

neurite outgrowth216, including the NP system213. However, the underlying 

mechanisms for such synergistic Erk and JNK activations are still poorly 

understood. Various studies have identified the existence of cross-talks 

between different signalling cascades41,112,331,332, which can potentially 

contribute to synergism in neurite outgrowth. Given the intricacies of the 

network wiring, the quantitative relationships between different proteins, and 

the high dimensionality involved, computational modeling offers unique 

insights into network interactions218,333. For instance, a previous study using 

steady-state-based Modular Response Analysis, had unveiled a positive 

feedback loop between MEK and Erk in NGF-treated PC12 cells334, 

suggesting that such a mechanism may be involved in the synergistic 

activation of Erk upon NP treatment. However, modeling approaches for the 

analyses of synergistic behaviours are still lacking. In the analyses of such 

systems, the main challenges that need to be addressed are the lack of a 

priori knowledge and the ability to parameterize the data from uni-ligand and 

bi-ligand experiments so that information regarding synergistic behaviours 

can be extracted.  

In view of the wide-ranging implications of synergism, extensive research has 

been done in this area. However, previous studies have largely focused on 

the evaluation of multi-component synergy using methods such as Bliss 

independence model, Loewe additivism model, and the Combinatorial Index 
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theorem275,335 without providing much mechanistic insights into how 

interactions between signalling pathways can lead to the synergistic effects. 

As discussed previously, the lack of a priori knowledge about the 

mechanisms underlying synergistic neurite outgrowth render data-driven 

models more appropriate tools than mechanistic models. Among the 

commonly used data-driven models, such as Bayesian networks (BNs)69,71, 

Boolean networks86, association networks55, and artificial neural networks 

(ANNs)50, for analyzing signalling networks, the advantages of BNs have also 

been discussed earlier.  

Given that current modeling approaches are not well-equipped for the 

analyses of synergistic systems, we proposed the use of a modified Bayesian 

methodology to address this issue using the synergistic NP system. The main 

methodological contribution of this paper was to show that the dynamic 

programming algorithm for the exact structure learning can be adapted to 

perform two-phase learning in a computationally feasible manner, an idea that 

can be exploited for the analyses of multi-ligand systems. Through western 

blot experiments, we first made a novel observation that MEK and MKK4, 

upstream effectors of Erk, and JNK141, respectively, were synergistically 

activated upon NP treatment. Our developed method, termed TEEBM (Two-

phase, Exact structure learning, Expanded-in-time Bayesian Methodology) 

was then applied to a small set of experimentally-obtained phosphorylation 

data on these four kinases to infer statistical dependencies between them 

upon NP stimulation. Our inference results unexpectedly identified a feedback 

loop involving MEK, Erk, MKK4, and JNK, which contributed to their 

synergistic activations. These key biological findings were validated 

experimentally using kinase inhibitors, where inhibition of MEK blocked Erk, 
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JNK, and MKK4 activations, and inhibition of JNK attenuated MKK4, MEK, 

and Erk activations, demonstrating the potential of our TEEBM in gaining 

insights about signalling networks in synergistic systems. 

5.2. Mathematical Modeling Procedure 

5.2.1. BNs without Intervention Data 

BNs were initially used as ordinary statistical models without any specific 

connection to Bayesian statistics. The name was originally given by the 

artificial intelligence researcher Judea Pearl, who used these models to 

represent and manipulate subjective knowledge. However, over the years, the 

statistical machine learning community has developed Bayesian statistical 

techniques to infer such models from data. These techniques are adopted in 

this study and are explained briefly to the extent needed for further 

developments. 

In BNs modelling, the n-variate domain,   *       +, is represented using a 

directed acyclic graph,  , that encodes the independences between the 

variables,   . In this graphical model, each variable,   , is represented by a 

node, and the arcs of the network,  , can be encoded as a vector containing 

a subset of the variables of  , i.e.   (       ), where    is a ―parent set‖ of 

the variable,   , that contains the variables from which there is an arc to   . 

The notation,   , is used to refer both to the random variable,   , and the 

node,   , in the network,  . The statistical meaning of the graph is then 

defined by the parental Markov condition, which states that the variable,   , is 

conditionally independent of all its non-descendants given its parents,   . The 
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descendants of a node,   , refer to all the nodes that can be reached from    

by following the directed arcs. 

Using the parental Markov condition, the joint probability distribution,  ( ), 

can be factorized as  ( )  ∏  (     )
 
     

The specification of the individual terms,  (     ) , is dependent on the 

measuring scale of the random variables,    and   , but in general, this 

conditional distribution is modelled to be governed by a finite set of 

parameters      
, i.e.  (     )    (           

).  

5.2.1.1. Bayesian Inference from Data 

In the Bayesian learning of any BN structures,  ,336 a dataset,   

(       ), of N exchangeable n-variate data vectors, is used to compute the 

posterior probability,  (   )    ( )   (   ) ( ). The network prior,  ( ), 

is often assumed to be uniform, or at least decomposable as  ( )  

 ∏  (  )
 
   . During the comparisons of the probabilities of different networks, 

the normalizing denominator,  ( ) , is cancelled out. Thus, the data-

dependent part of the computation is denoted by the marginal likelihood, 

 (   )   ∫ (     ) ( )  . 

Although the data vectors,    (         ) , can be assumed to be 

conditionally independent given the network and its parameters, i.e. 

 (     )   ∏  (      ) 
   , the parameter prior,  ( ), has to be first defined. 

To facilitate the elicitation of this prior, it is common to assume that the 

parameters defining the conditional distributions of different variables are a 
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priori independent, i.e.  ( )   ∏  (     
) 

   . The posterior probability of the 

network structure,  , can then be expressed as 

(Equation 5.1)  (   )   ( ) (   )  

           ( )∫∏  (      ) ( )   
    

           ( )∫∏ ∏  (        
      

) (     
)   

   
 
      

           ( )∏ ∫∏  (        
      

) (     
)      

 
   

 
    

           ∏  (  ) (         
) 

   . 

Factorization of the posterior distribution as shown above results in a 

decomposable scoring criterion, which is a requirement for efficient heuristic 

learning of BNs336 and for exact structure learning methods. For the latter 

methods, the most probable BN, for small numbers of variables, can be found 

in a reasonable time337-339. However, reliable estimation of the mode of the 

marginal likelihood,  (   ), by integrating out the parameters (as in Equation 

5.1), is a non-trivial process as it is very sensitive to the parameter prior,  ( ), 

which is difficult to specify in practice. In addition, this sensitivity is 

exacerbated by datasets with small sample sizes340. As suggested in our 

previous work341, this sensitivity problem can be circumvented by estimating 

 (   ) (Equation 5.2) using another decomposable score called a factorized 

normalized maximum likelihood (fNML): 

(Equation 5.2)  (   )  ∏  (        
) 

    

          ∏ ∏  (   |   
)      (  )

 
    

          ∏ ∏
 (      

  ̂(      
))

∑  (      ̂(    ))    
      (  )

 
   , 
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where  (      
)  denotes the data for the variable,   , in cases where its 

parents have the value configuration,   , and  ̂(      
) denotes the maximum 

likelihood parameters for that uni-variate data.  

The normalizer is summed over all the uni-variate data sets of the size |      
| 

and it is guaranteed that the fraction defines a proper probability distribution. 

However, the probabilities defined by the equations above are often 

extremely small in practice. Thus, for numerical stability, the logarithms of 

these probabilities are used as scores to be optimized in the actual 

implementations, and the differences in scores are then logarithms of 

probability ratios. 

5.2.1.2. Expanded-in-Time Parameterization of Protein 

Variables 

Cell signalling is not a static but a temporally-varying process. Consequently, 

ordinary BNs may not a priori be the most natural choice of modelling 

approach. The most popular graphical model for discrete stationary stochastic 

process is the dynamic BN (DBN). However, DBNs are most suited for the 

multivariate time-series that form a first order Markov-chain, an assumption 

that may be plausible when the process is observed in regular intervals and 

when all the relevant factors of the domain have been observed. Neither of 

these two assumptions is true in our case. Recently, non-stationary DBNs 

(nsDBNs) and time-varying DBNs (tvDBNs) have been developed to relax the 

restrictive assumption of stationarity78,249,250. These models greatly enhance 

the expressivity of the DBN framework and technically, they could be used in 

this study. However, these methods are plausible only for observation 

sequences that are sufficiently long, where the regularities in the change of 
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the independence structure can be captured. However, in our case, there are 

only two pairs of time-points in the data, which is insufficient to infer any 

regularities in the dependency change process. Thus, variables in different 

time-points were modelled as separate variables in the ordinary BN, where 

the parameterization of our experimental data was performed as outlined in 

the next paragraph. 

Cells were treated experimentally with a full-factorial combination of NGF (0, 

10, and 50 ng/ml) and PACAP (0, 10, and 100 ng/ml) in triplicates. 

Quantitative western blot using chemiluminescence with standard curve was 

performed essentially as described previously342. Protein phosphorylation 

levels were measured at three discrete time-points, 5 minutes, 20 minutes, 

and 60 minutes. The data at 240 minutes were not used for the modeling 

analysis as the phosphorylation levels of the kinases had dropped close to 

the basal levels by then. Thus, a total of 27 data-points per protein, per time-

point were obtained. The data for each protein was first segregated into 2 

groups based on how they were experimentally obtained, uni-ligand or bi-

ligand. The data in the uni-ligand group was then binned based on the 

phosphorylation levels of the proteins across time. For the bi-ligand group, the 

data was binned based on the degree of synergism, if any, observed. A 

histogram was plotted for each of the two groups, and the bins were based on 

the different segmentations observed in the histogram. The data for neurite 

length was parameterized in the same way. Synergism is defined to be 

present if the phosphorylation level of the protein under bi-ligand treatment is 

greater than the sum of the phosphorylation levels of the protein under the 

two uni-ligand treatments at the same concentrations of ligands. We defined 
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the degree of synergism as 
                                         

                                                     
, 

where values > 1 represents synergism. 

5.2.1.3. Two-Phase Learning 

Recently, a method to combine differently coded datasets for learning a single 

BN was proposed343. It relied on hypotheses testing, and as such it is only 

appropriate when the sample sizes are feasible. In cell signalling, obtaining 

data is labour intensive and it would be convenient to obtain preliminary 

models to guide the study at the initial stages. As Bayesian learning 

framework does not theoretically set any lower limit to the sample size, this 

approach is potentially useful for combining different sources of data. 

Bayesian reasoning is an online process in which the observations are used 

to update the prior beliefs into posterior beliefs, which are in turn served as 

prior beliefs for the subsequent observations. This inherent incrementality 

makes it convenient to combine different sources of evidence for the 

inference of a probable model. In BN learning, one batch of data,   , can be 

used to update the  ( ) into  (    ), and the next batch,   , can then be 

used to update  (    )  into  (       ) . Using the same argument, this 

procedure can be generalized to more than two data batches. 

In the case that the structure prior is decomposable, i.e.  ( )   ∏  (  )
 
   , 

the structure posterior is also decomposable, which also allows efficient 

learning algorithms for BNs to be used. Under such scenarios, for a small 

(less than about 30) number of variables, dynamic programming algorithms 

can be used to find the network structure with the maximal score337. In our 
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work, exact structure learning was used. To the best of our knowledge, such 

a two-phase exact structure learning approach has not been reported before.  

Two phase learning requires the posterior distribution of the first phase, 

 (    ) , to be used as a prior distribution for the second phase. In our 

experiments, there were 18 variables, which yield about      possible 

networks. Storing the probabilities for each of these would be infeasible 

because of the space (and even time) constraints. However, due to the 

decomposability of the posterior probability, it is enough to save the 

conditional probabilities  (    )  of each possible parent set,  , for each 

variable,   . The probabilities of the whole networks are simply products of 

such local conditional probabilities. For storing the conditional probabilities, 

only       real numbers need to be stored. For 18 variables, this evaluates to 

2,359,296 real numbers, which, in double precision, requires only 16MB of 

space. In exact structure learning algorithms, these numbers can be stored 

on disk. However, with 30 variables, 128GB of space would be needed 

instead. Thus, this naïve implementation does not scale much further. 

5.3. Results 

5.3.1. Synergistic MEK, MKK4, Erk, and JNK Activations 

We first investigated the involvement and dynamics of the activation of three 

kinases widely reported to be involved in PC12 differentiation, Erk164,169, 

JNK112,164, and Akt163, by examining their phosphorylation levels from 0 

minutes to 4 hours after stimulation. Synergistic phosphorylations of both Erk 

(Figures 5.1a, and 5.1b) and JNK (Figures 5.1a, and 5.1c) were observed to 

peak at 5 minutes and were sustained for up to 1 hour post-stimulation. 
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However, no synergistic phosphorylation of Akt (Figures 5.1a, and 5.1d) was 

observed within the time course of the study. The relative neurite lengths at 

48 hours following stimulation are plotted as shown in Figure 5.1e. The 

involvement of Erk, and JNK, but not Akt, in regulating synergistic neurite 

outgrowth was verified through the use of kinase inhibitors (Figure 5.1f). 

MEK and MKK4 are known upstream effectors of Erk141, and JNK329, 

respectively. To gain insight into the possible mechanisms by which Erk, and 

JNK were synergistically activated, the phosphorylation levels of MEK and 

MKK4 were examined following NP stimulation. Similarly, both MEK (Figure 

5.2a) and MKK4 (Figure 5.2b) were also synergistically activated upon 

combinatorial NP treatment.  
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Figure 5.1. Synergistic and sustained phosphorylations of Erk and JNK upon NGF-
PACAP treatment. (a) Time-course of Erk, JNK, and Akt phosphorylations from 0-4 hours 

following NGF (0-50 ng/ml)-PACAP (0-100 ng/ml) treatment. Phosphorylation levels of the 
proteins were analyzed by Western blotting, and normalized to the levels of Actin. Fold 
changes of (b) pErk, (c) pJNK, and (d) pAkt were quantified by densitometry and presented as 
colour plots. Top panel: Experimentally obtained results of the NGF-PACAP combinatorial 
treatment. Bottom panel: Additive effect calculated through the summation of the individual 
effects of NGF and PACAP. (e) Quantified neurite outgrowth upon NGF (0-50 ng/ml)-PACAP 
(0-100 ng/ml) treatment. (f) Effect of the MEK inhibitor, U0126 (20 μM), JNK inhibitor, 
SP600125 (10 μM), and PI3K inhibitor, LY294002 (20 μM), on neurite outgrowth induced by 
combinatorial NGF (50 ng/ml)-PACAP (100 ng/ml) stimulation. Significant differences between 
treatments with and without inhibitors were calculated using the paired Student‘s t-test. A value 
of p<0.05 was considered significant (**p<0.01). 
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Figure 5.2. Synergistic and sustained phosphorylations of MEK and MKK4 upon NP 
treatment. Time-course of MEK and MKK4 phosphorylations from 0-1 hour following NGF (0-

50 ng/ml)-PACAP (0-100 ng/ml) treatment. Phosphorylation levels of the proteins were 
analyzed by Western blotting, and normalized to the levels of Actin. Fold changes of (a) pMEK, 
and (b) pMKK4 were quantified by densitometry and presented as colour plots. Top panel: 
Experimentally obtained results of the NGF-PACAP combinatorial treatment. Bottom panel: 
Additive effect calculated through the summation of the individual effects of NGF and PACAP. 

5.3.2. Network Inference Using TEEBM 

Having identified that MEK, MKK4, and their downstream targets, Erk, and 

JNK, respectively, were all synergistically activated, we hypothesized that 

close regulations, such as cross-talks between the two MAPK signalling 

cascades, or feedbacks between them may be present. To test this 

hypothesis, Bayesian inference was employed to learn the most probable 

topological relationships between them.  
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While tvDBN and nsDBN approaches have been proposed to overcome the 

limitations of traditional DBN approaches, they were not suitable for our study. 

In these approaches, the structures are assumed to be piecewise-stationary 

in time, and non-stationary networks are built as a series of stationary 

models. These segmentations of points are also termed Bayesian multiple 

changepoint processes. Thus, the inference process involves learning of the 

location and number of changepoints as well as the network structure. Such 

approaches were designed for data with read-outs at an extensive number of 

time-points and are not feasible for our analysis, where the data available is 

limited. To tackle this issue, we used a DBN, expanded-in-time (eDBN), 

where protein activation levels at different time-points were considered as 

separate variables. This was accompanied by a two-phase learning approach 

to allow integration of data from uni- and bi-ligand stimulations using an exact 

learning method. Our two-phase approach allowed data integration to be 

performed in a way such that the probabilities of all the possible parent sets 

for all variables were first estimated using the data from the uni-ligand 

treatment. These probabilities were then used as a decomposable structure 

prior for the bi-ligand system to overcome the lack of a priori knowledge. 

Given that both the uni-ligand and bi-ligand treatments activated similar 

pathways, it was justifiable to use data from the uni-ligand treatment to infer a 

structure prior to facilitate the inference of the network during NP treatment. 

The workflow of our learning methodology is as shown in Figure 5.3a. 

Following discretization of our data, the topological relationships between the 

different protein variables were learned using our proposed eDBN approach 

(Figure 5.3b). Network inferences using the same methodology but with the 

traditional BN (Figure 5.3c) and DBN (Figure 5.3d) approaches, were also 
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performed. In the literature of NGF- and PACAP-signalling in PC12 cells, it is 

well-known that neurite outgrowth induced by both ligands requires MEK 

activation111,135,230. Thus, in the inference of these networks, pMEK at the 

earliest time-point was constrained to be downstream of NGF and PACAP as 

a priori knowledge. 

To validate that our inference approach was identifying the most probable 

network, probabilities of random networks were also evaluated using the 

eDBN approach. This was done while keeping the properties of the networks, 

such as the number of edges, and maximum number of parents, similar to our 

best-scoring network. A total of one billion randomizations were performed. 

The score distribution following structure randomization indicated that these 

resulting networks gave a much poorer explanation of our experimental data. 

The best network obtained using our methodology, with an eDBN approach, 

had a score of -81.6 whereas the scores obtained with randomized networks 

were much lower (Figure 5.3e). This provides justification that our learning 

algorithm had identified the network that can best explain our experimental 

observations and that randomized networks gave much poorer explanations 

of our experimental data. 

 
a 
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Figure 5.3. Application of proposed methodology for network inference using various 
Bayesian inference approaches. (a) Workflow of proposed Bayesian methodology. Inferred 

networks using (b) eDBN, (c) BN, and (d) DBN approaches (Variables with and without ―+‖ are 
used to denote time t and t+1, respectively). Arrows between the variables represent 
directional influences between them. (e) Histogram illustrating distribution of network scores 
following one billion randomizations of the network. 

It must be highlighted that our inferences here, without the use of 

interventional data, only resulted in a network of directional influences based 
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on statistical dependencies344. Using these dependencies between nodes, at 

the same time-points and across different time-points, we sought to determine 

the validity of these dependencies experimentally. Thus, our modeling 

methodology using an eDBN approach did not aim to describe the biological 

processes in a real-time manner. The dependencies identified using our 

methodology is summarized in Table 5.1. 

Table 5.1. Statistical dependencies learned using our proposed methodology with the 
three approaches. 

Method eDBN BN DBN 

Statistical 
Dependencies 

MEK→JNK   

MEK→MKK4 MEK→MKK4  

MEK→Erk MEK→Erk  

Erk→JNK   

JNK→MEK  JNK→MEK 

JNK→Erk  JNK→Erk 

 Akt→MEK  

 Akt→Erk  

5.3.3. Validation of Predicted Edges Common to BN and 

eDBN 

Comparing the networks inferred using our eDBN (Figure 5.3b) and the 

traditional BN (Figure 5.3c) approaches, two edges, MEK→Erk and 

MEK→MKK4, were present in both of them. To validate if these predictions 

were true, the cells were treated with NP in the presence of the MEK inhibitor, 

U0126. Consistent with the well-established knowledge that Erk is a 

downstream target of MEK141, activation of Erk (Figure 5.4a) was inhibited in 

the presence of U0126. Similarly, U0126, which had previously been shown 

not to non-specially inhibit MKK4 and its downstream effector, JNK345,346, also 

inhibited the activation of MKK4 (Figure 5.4b), suggesting that it is a 

downstream target of MEK. 
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Figure 5.4. Validation of the model predictions made using our proposed methodology. 

The concentrations of NGF and PACAP used were 50 ng/ml and 100 ng/ml, respectively. 
Effect of the MEK inhibitor, U0126 (20 μM), on (a) pErk, (b) pMKK4, and (c) pJNK levels 
following NP stimulation. Effect of the JNK inhibitor, SP600125 (10 μM), on (d) pMEK, and (e) 
pErk levels following NP stimulation. Effect of the JNK inhibitor, SP600125 (10 μM), on (f) 
pMEK, and (g) pErk levels following PACAP stimulation. Significant differences between 
treatments with and without inhibitors were calculated using the paired Student‘s t-test. A value 
of p<0.05 was considered significant (**p<0.01; *p<0.05). 
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5.3.4. Validation of Predicted Edges Common to DBN and 

eDBN 

Next, the network inferred using our eDBN (Figure 5.3b) was compared with 

that obtained using a traditional DBN (Figure 5.3d) approach. Both 

approaches predicted the edges, JNK→MEK and JNK→Erk, which were 

validated experimentally. Using the JNK inhibitor, SP600125, the 

phosphorylation levels of both MEK (Figure 5.4d) and Erk were inhibited 

(Figure 5.4e). These results were in agreement with previous studies in PC12 

cells showing that inhibition of JNK blocks Erk activation112. Our results further 

suggested that this regulation of Erk by JNK occur through the upstream 

effector of Erk, MEK. The JNK inhibitor, SP600125, was not a non-specific 

inhibitor of Erk as treatment with SP600125 did not block both MEK (Figure 

5.4f) and Erk (Figure 5.4g) activations by PACAP. 

5.3.5. Validation of Edges not Predicted by eDBN, and 

Edges Predicted by eDBN but not by BN or DBN 

The MEK→JNK edge was predicted by our eDBN approach but not by the 

traditional BN or DBN approaches. This was validated experimentally where 

inhibition of MEK using U0126 led to reduced phosphorylation of JNK (Figure 

5.4c). This result further complements our finding that MEK is a regulator of 

MKK4 (Figure 5.4b). 

From the inference results, Akt was found to be upstream of both MEK and 

Erk in the network learned through BN (Figure 5.3c) but not eDBN (Figure 

5.3b). To determine the validity of these edges, cells were treated with NP in 

the presence of the PI3K inhibitor, LY294002. As expected, LY294002 
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inhibited the activation of Akt (Figure 5.5a) but not those of both MEK (Figure 

5.5b) and Erk (Figure 5.5c). This indicates that the BN approach can result in 

false positives that were not inferred using the eDBN approach. 

In the eDBN-inferred network (Figure 5.3b), both MKK4 and JNK were also 

not predicted to be downstream targets of Akt. These predictions were 

validated experimentally (Figures 5.5b, and 5.5d), where LY294002 did not 

reduce the phosphorylation levels of these proteins. 

 
Figure 5.5. Non-involvement of Akt in the regulation of MEK, Erk, MKK4, and JNK. The 

concentrations of NGF and PACAP used were 50 ng/ml and 100 ng/ml, respectively. Effect of 
the PI3K inhibitor, LY294002 (20 μM), on (a) MEK and MKK4, (b) pErk, and (c) pJNK levels. 
Significant differences between treatments with and without inhibitors were calculated using the 
paired Student‘s t-test. A value of p<0.05 was considered significant (**p<0.01). 
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5.3.6. Positive Feedback Involving MEK, MKK4, Erk, and 

JNK 

 

 
Figure 5.6. Existence of a plausible feedback loop involving MEK, Erk, MKK4, and JNK. 

The concentrations of NGF and PACAP used were 50 ng/ml and 100 ng/ml, respectively. (a) 
Effect of the JNK inhibitor, SP600125 (10 μM), on pMKK4 level. Illustration of a positive 
correlation between the 4 kinases via scatterplots of (b) pJNK vs. pErk, (c) pMEK vs. JNK, (d) 
pErk vs. pMEK, and (e) pJNK vs. pMKK4. Significant differences between treatments with and 
without inhibitors were calculated using the paired Student‘s t-test. A value of p<0.05 was 
considered significant (**p<0.01). 
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The edges that were predicted by our eDBN approach were experimentally 

validated as shown in the previous sections. Given that JNK regulates MEK, 

and that MEK regulates MKK4 and JNK, our result suggested a plausible 

positive feedback regulation involving MEK, JNK, and MKK4. If this is true, 

inhibition of JNK would also block the activity of MKK4. Consistent with our 

hypothesis, the phosphorylation level of MKK4 was reduced in the presence 

of SP600125 (Figure 5.6a). This was further complemented by scatterplot 

analyses (Figures 5.6b-5.6e), which indicated a positive correlation between 

all the kinases at all time-points. While these scatterplots do not indicate the 

presence of a loop, the positive correlations between the phosphorylation 

levels of the kinases are consistent with the findings of the inhibitors assays 

that the loop is positive in nature. In addition, the conditional probability 

distributions of the phosphorylation levels of the proteins indicated a positive 

dependency between the proteins across different time-points. 

5.3.7. Arc-Weight Analysis 

To further analyze the importance of the predicted edges in regulating the 

synergistic activation of the kinases, the relative importance of the various 

edges were determined. If these arcs, which are involved in the feedback 

loop, are important in explaining the synergistic activations of the four 

kinases, they should be relatively highly weighted in the network. To assess 

this weight, we determined the importance of a particular arc by determining 

the score of the resulting network after removing it. The scores of the 

networks with and without the arc were then compared. A larger score 

difference would indicate a higher relative importance of the arc. The relative 

weights of each arc are as shown in Figure 5.7, with a thicker arc indicating a 
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relatively higher importance. Investigating the weights of these arcs, edges 

such as JNK→Erk, MEK→JNK, and MEK→MKK4 were found to be relatively 

highly weighted, suggesting their importance in explaining our experimental 

data. 

 
Figure 5.7. Arc-weight analyses of the eDBN network. Relatively strong strengths of the 

edges involved in feedback as compared to the other edges were obtained. 

5.4. Discussions 

In this work, we proposed a TEEBM, consisting of a two-phase learning 

strategy based on an exact structure learning algorithm337, to infer a network 

where each protein at each time-point is considered as a separate variable. 

This Bayesian methodology allows integration of differently-parameterized 

data from different experimental set-ups, which are critical for the analyses of 

synergistic systems. In addition, the practicality of using an exact structure 

learning algorithm and advantages of using an eDBN approach was also 

demonstrated. In our study, we found that MEK and MKK4 were 

synergistically activated along with their respective downstream kinases, Erk 

and JNK, respectively. Applying our TEEBM to analyze the regulation 

between these kinases, our inference results identified a plausible feedback 
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loop, involving MEK, Erk, MKK4, and JNK, that contributed to their synergistic 

activations. This was validated experimentally, suggesting the potential of our 

TEEBM for network inference. 

There are a variety of data-driven modeling techniques, such as Boolean 

networks, associated networks, neural networks, and BNs, which can be used 

for network inference68. A Boolean‘s representation of a network using logic 

gates is restricted as activity levels of the proteins cannot be sufficiently 

described using two states86. Associated networks are often limited as they 

cannot model dynamics, and are usually unable to capture directional 

influences55. In contrast, the topologies of neural networks are arbitrary in 

nature and no meaning should be inferred from them50. Thus, such models 

are not suitable for gaining mechanistic knowledge about the system. 

However, BNs are not impeded by these limitations. In addition, they can 

capture multivariate statistical dependencies, a dominant feature in biological 

networks, without having to specify the structure of any equations.  

Although complex relationships can be modelled and analysed using BNs, 

they are not well suited for the analysis of temporal data347. DBNs were 

consequently proposed to overcome this drawback. However, the underlying 

assumption that the relationships between different nodes are invariant with 

time348 is not valid for cellular systems as the complex regulatory mechanisms 

in biological networks result in neither static nor time-invariant topologies77,78. 

tvDBN and nsDBN, which work by demarcating time-series data into multiple 

segments, with each segment spanning different time-frames, were recently 

proposed to circumvent this issue78,249,250. However, such approaches are not 

applicable in situations where the data consist of only a small number of time-
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points and an eDBN approach would instead be deemed more appropriate. 

Although the idea of eDBN had previously been employed65, no comparison 

of the approach was made in relation to traditional BN or DBN approaches.  

As evident in our study, an eDBN approach performed better than traditional 

DBN and BN methods in the inference of the dependencies between the 

kinases. In the BN approach, for each variable, data across all time-points 

were grouped into one variable independent of the temporal effects. This can 

cause different relationships between the proteins at different time-points to 

offset each other, resulting in a misrepresented network. Likewise, for DBNs, 

data across all time-points were grouped into two variables, at time t and t+1. 

This inevitably results in the same drawback as BNs, which can be overcome 

with the use of eDBN. Thus, our results clearly demonstrated that the eDBN 

approach can overcome such a limitation and allow new influences to be 

learnt.  

Data combination from multiple datasets is another area of challenge in 

systems biology. Various approaches, such as ordering of datasets253 and 

multiple dataset integration254, had been used to identify differentially 

expressed genes from multiple datasets. In the inferences of regulatory 

networks, approaches such as a weighted contribution of each dataset255,256, 

use of mean and mode values of occurrences of each edge in the individual 

networks257, and multi-objectives optimization to account for the nature of 

different experiments258 had been employed to learn the optimal network. 

However, these inferences were all based on simple correlations, which have 

two main drawbacks. These methods work by identifying links between pairs 

of nodes without considering the context of the whole system259 and they are 

also not effective in distinguishing between direct and indirect interactions259. 
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These drawbacks were overcome using our TEEBM encompassing a two-

phase learning approach. In addition, the problem of limited a priori 

knowledge of the NP system was alleviated, where data from the uni-ligand 

treatments was used to learn a structure prior, which was in turn used for 

inferring the most probable network during bi-ligand stimulation. Thus, our 

two-phase learning approach is a potential strategy that can be applied to 

datasets which require different parameterizations to capture different 

information present in different datasets, just like in the synergistic NP system 

in this study. 

Using our TEEBM for network inference, we found a plausible positive 

feedback loop involving MEK, Erk, MKK4, and JNK in the regulation of 

synergistic neurite outgrowth. This is in congruence with previous 

reports349,350, including during differentiation of PC12 cells334,351, of a positive 

feedback between MEK and Erk. Similar to our model prediction, inhibition of 

MEK was found to block the activity of JNK112,226,352. In addition, synergistic 

behaviours arising from positive feedback had also been reported in other 

studies246,353. Our experimentally-validated finding of the regulation of MEK by 

JNK is, to the best of our knowledge, the first report establishing such a 

feedback across the two pathways during PC12 cells differentiation. This is 

plausible as both NGF and PACAP activate the MEK pathway. Upon NP 

treatment, a greater initial MEK activation is achieved, resulting in a more 

intensive activation of the pathway via feedback than that achieved by either 

ligand alone. However, our validations of the model predictions were based 

only on the use of inhibitors, which have drawbacks such as cytotoxicities354 

and non-specificities346. Validation of the predictions by the use of other 
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assays such as RNAi to reduce the contributions of each protein will 

invariably be useful. 

Bayesian inference without interventional data only captures statistical 

dependencies that do not necessarily correspond to causal influences 

between variables355. Thus, established causalities, such as activation of JNK 

by MKK4329, were not identified by our model. This can be explained by the 

finding that MEK can influence both MKK4 and JNK. As such, it can influence 

the activity of JNK independently of MKK4. Although our model predicts a 

feedback involving the four kinases, they were not found to exhibit similar 

activation profiles. Activations of Erk, JNK, and MEK were sustained whereas 

that of MKK4 was transient. One key mechanism that reduces the activity of 

kinases is dephosphorylation by protein phosphatases (PPs). PPs are known 

to act on MAPKs and MAPKKs356, with each PP exhibiting different specificity 

for different kinases357,358 and is distinctly localized in various cellular 

compartments357-359. Thus, investigating the localizations and activities of the 

PPs during NP treatment will allow a more detailed network analysis of the 

regulation of the kinases. 

5.5. Conclusions 

Our study has demonstrated the use of our proposed TEEBM in uncovering 

insights into the interactions between different signalling nodes in bi-ligand 

synergistic systems. Importantly, our approach consists of a two-phase 

learning strategy using an exact structure learning algorithm to infer a network 

using an eDBN parameterization. We used a two-phase learning approach to 

first estimate the BN structure distribution from the uni-ligand 

experiments, and then used the result as a prior to infer the network for the bi-
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ligand case. The practicality of our approach was supported when the 

predicted feedback loop, with novel cross-talks between the MEK/Erk and 

MKK4/JNK pathways, was validated experimentally using kinase inhibitors. In 

performing these validations, our results also showed two other benefits of 

TEEBM. Firstly, the eDBN strategy performed better than traditional BN and 

DBN approaches. Secondly, the feasibility of an exact structure learning 

algorithm, which has not yet been applied to the analysis of cell signalling 

networks, for learning the optimal topological structure was demonstrated. 

However, TEEBM is limited to systems with less than 30 variables. Thus, this 

study has shown that TEEBM can be a potential tool for the analysis of 

signalling networks in synergistic systems and it can possibly be extended to 

analyses of other signalling networks in multi-ligand systems. 
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6.1. Introduction 

Kinases are key regulators of cellular behaviours. They are the first signalling 

events utilized by cells upon stimulation with ligands. The effects of these 

activated kinases are mediated by their downstream protein, gene, and 

miRNA targets. In the earlier chapters, we have investigated the involvement 

of several kinases in the regulation of synergistic neurite outgrowth. Various 

combinations of the three kinases, Erk, JNK, and PKA were found to be 

important mediators of neurite outgrowth in the three synergistic systems, NP, 

FP, and EP. However, the downstream targets of these kinases that can 

mediate synergistic neurite outgrowth have not been well studied. 

Kinases are well-known to regulate the expression of genes. These genetic 

responses can be broadly classified into two groups, immediate early genes 

(IEGs) and delayed response genes (DRGs)360. IEGs are induced as the first 

genetic response and are expressed within the first few hours after 

stimulation without any prior protein synthesis361,362. The proteins encoded by 

these IEGs are mainly transcription factors or regulators of signalling 

pathways, which are important mediators of cellular events and changes in 

phenotypes363. Many IEGs have been reported to be expressed following 

treatment with differentiation-inducing agents such as NGF and PACAP. 

During neuronal differentiation, IEGs such as Egr1364-366, c-Fos294, Btg2367, 

Fosl108, and Nr4a1368 have been found to be involved in the process of neurite 

outgrowth. 

Another important class of cellular components that is essential in the 

regulation of cellular functions is microRNAs (miRNAs). They are short non-

coding hairpin-derived RNAs, which are ~20-24 nucleotides long369 and they 
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regulate cellular behaviours by fine-tuning the expression levels of target 

genes. They post-transcriptionally repress the expression levels of these 

target messenger RNAs (mRNAs) by binding to their 3‘ untranslated region 

(UTR). In addition, complex regulatory relationships exist between miRNAs 

and mRNAs. It is now known that complex multiple-to-multiple regulatory 

relationships exist between miRNAs and mRNAs, where each miRNA can 

regulate multiple genes and each gene is regulated by multiple miRNAs370. To 

date, several miRNAs, such as miR-9371, miR-21372, and miR221373, have 

been reported to regulate neuronal differentiation. 

In this study, the regulation of several mRNAs and miRNAs by pathways 

involved in synergistic neurite outgrowth in the three synergistic systems, NP, 

FP, and EP, were investigated. This study revealed that these IEGs and 

miRNAs were differentially regulated in each system. This is the first report 

indicating an up-regulation of miR-487b-3p during neurite outgrowth. 

Moreover, a number of IEGs and miRNAs, which have previously been 

implicated in neurite outgrowth, were found to be regulated by the same 

pathways regulating neurite outgrowth in the corresponding system. While 

functional studies have yet to be performed, this study essentially identified 

the potential involvement of these genes and miRNAs in regulating 

synergistic neurite outgrowth. 
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6.2. Results 

6.2.1. Regulation of Expression of IEGs during Synergistic 

Neurite Outgrowth 

Many studies have previously been done to identify genes, including IEGs, 

expressed upon treatments with differentiation-inducing ligands such as NGF 

and PACAP145,295,374-376. Several IEGs, such as Egr1364-366, c-Fos294, Fosl108, 

Nr4a1368, BTG2367, JunB108, Arc377, and Hes1378,379 have previously been 

found to be involved in neurite outgrowth and sprouting. Investigating the 

regulation of these IEGs during synergistic neurite outgrowth, treatment with 

the growth factors and/or PACAP increased the expression of these genes 

(Figures 6.1a-6.1g), except for Hes1 (Figure 6.1h). This suggested that these 

up-regulated IEGs are likely to regulate synergistic neurite outgrowth. 

In Chapters 3 and 4, distinct combinations of the kinases, Erk, JNK, and PKA, 

were found to be required for synergistic neurite outgrowth in different 

systems. In order to identify the downstream gene targets of these kinases, 

the expression levels of the up-regulated IEGs were quantified after inhibition 

of the kinases (Figure 6.2). The expression levels of these genes were 

normalized to RPL19, which has previously been reported to be stable during 

differentiation of PC12 cells380. Surprisingly, these genes were found to be 

regulated by different pathways in different systems. 
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Figure 6.1. Activations of various IEGs following treatments with combinatorial growth 
factor-PACAP for 60 minutes. Expression levels of (a) Arc, (b) Btg2, (c) Egr1, (d) c-Fos, (e) 

Fosl, (f) JunB, (g) Nr4a1, and (h) Hes1 following treatments with 50 ng/ml of growth factor 
(EGF, FGFb, or NGF) and 100 ng/ml of PACAP.  

To gain insights into the regulation of neurite outgrowth by these IEGs in 

different systems, a comparison of the pathways regulating neurite outgrowth 

and these IEGs was performed as shown in Tables 6.1 to 6.3. In the EP 

system, IEGs such as Btg2, Egr1, c-Fos, Fosl, and JunB could potentially be 

involved in the regulation of neurite outgrowth while all the measured IEGs 

could be involved in the process in the FP system. However, in the NP 

system, no conclusions of which IEGs were required for neurite outgrowth 

can be drawn as PKA, which was previously not found to be involved in 

neurite outgrowth (Chapter 4), regulated the expression all the measured 

IEGs. This strongly suggested that these IEGs did not function alone in the 

regulation of neurite outgrowth, and a more in-depth multivariate analysis of 

the IEGs would be necessary. 

 

0

50

100

150

200

250

Control EGF FGFb NGF

Fo
ld

 C
h

an
ge

 (
N

r4
a1

, 6
0

m
in

) 

Control
PACAP

0

0.4

0.8

1.2

1.6

2

Control EGF FGFb NGF

Fo
ld

 C
h

an
ge

 (
H

e
s1

, 6
0

m
in

) 

Control
PACAP

g h 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 6. Expressions of IEGs and miRNAs during  132 
Synergistic Neurite Outgrowth in PC12 Cells 
 

 

 

 

0

10

20

30

40

50

60

EP FP NP

Fo
ld

 C
h

an
ge

 (
A

rc
, 6

0
m

in
) 

No Inhibitors
U0126
SP600125
H89

0

5

10

15

20

25

30

35

40

EP FP NP

Fo
ld

 C
h

an
ge

 (
B

tg
2

, 6
0

m
in

) 

No Inhibitors
U0126
SP600125
H89

0

50

100

150

200

250

300

350

400

EP FP NP

Fo
ld

 C
h

an
ge

 (
Eg

r1
, 6

0
m

in
) 

No Inhibitors
U0126
SP600125
H89

0

50

100

150

200

250

300

350

400

450

EP FP NP

Fo
ld

 C
h

an
ge

 (
c-

Fo
s,

 6
0

m
in

) 

No Inhibitors
U0126
SP600125
H89

0

20

40

60

80

EP FP NP

Fo
ld

 C
h

an
ge

 (
Fo

sl
, 

6
0

m
in

) 

No Inhibitors
U0126
SP600125
H89

0

5

10

15

20

25

EP FP NP

Fo
ld

 C
h

an
ge

 (
Ju

n
B

, 6
0

m
in

) 

No Inhibitors
U0126
SP600125
H89

** 

a b 

c d 

e f 

** 

** 
** 

** 
** 

** 

** 

** 

** 

** 

** 

** 

** 

** 

** 

** ** 

** 

** 

** 

** 

** 

** 

** 

* 

** 

* 

** 

** 

** 
** 

** 

** 

** 

** 

** 

** 

* 

** 

** 

** 

** 

** 

** 
** 

** 
** 

** 

** 
** 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 6. Expressions of IEGs and miRNAs during  133 
Synergistic Neurite Outgrowth in PC12 Cells 
 

 
Figure 6.2. IEGs are differentially regulated by upstream kinases in the EP, FP, and NP 
systems. Expression levels of (a) Arc, (b) Btg2, (c) Egr1, (d) c-Fos, (e) Fosl, (f) JunB, (g) 

Nr4a1, and (h) Hes1 following treatments with 50 ng/ml of growth factor (EGF, FGFb, or NGF) 
and 100 ng/ml of PACAP for 60 minutes in the presence of the MEK inhibitor, U0126 (20 μM), 
JNK inhibitor, SP600125 (10 μM), or PKA inhibitor, H89 (10 μM). Significant differences 
between treatments with and without inhibitors were calculated using the paired Student‘s t-
test. A value of p<0.05 was considered significant (**p<0.01; *p<0.05). 

Table 6.1. Summary of the pathways involved in neurite outgrowth and the expression of 
various IEGs in the EP system. ‗+‘, ‗-‘, and ‗‘ denote positive, negative, and no regulation, 

respectively. 

Kinase Arc Btg2 Egr1 C-Fos Fosl JunB Nr4a1 Neurite 

Erk + + + + + + + + 

JNK +   - -  + - 

PKA + + + + + + + + 

Table 6.2. Summary of the pathways involved in neurite outgrowth and the expression of 
various IEGs in the FP system. ‗+‘ denotes positive regulation. 

Kinase Arc Btg2 Egr1 C-Fos Fosl JunB Nr4a1 Neurite 

Erk + + + + + + + + 

JNK + + + + + + + + 

PKA + + + + + + + + 

Table 6.3. Summary of the pathways involved in neurite outgrowth and the expression of 
various IEGs in the NP system. ‗+‘, and ‗‘ denote positive, and no regulation, respectively. 

Kinase Arc Btg2 Egr1 C-Fos Fosl JunB Nr4a1 Neurite 

Erk + + + + + + + + 

JNK + + + + + + + + 

PKA + + + + + + +  
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6.2.2. Regulation of Expression of miRNAs during 

Synergistic Neurite Outgrowth 

Although many miRNAs have been studied for their roles in regulating various 

cellular behaviours, their involvements in the regulation of neurite outgrowth 

have not been well-studied. To date, several miRNAs, such as miR-9371, miR-

21372, miR-34a381, miR-128382, miR-181a383, and miR-221373 have been 

reported to be required for neurite outgrowth. To identify the miRNAs that 

could be involved in regulating synergistic neurite outgrowth, a panel of fifty-

eight miRNAs, including these six miRNAs, with potential functions in the 

brain384-417 were profiled after stimulations with NP, EP, and FP. However, the 

expression levels of most of the profiled miRNAs were not changed (Table 

6.4) and only four miRNAs, miR-21-5p, miR-221-3p, miR-382-5p, and miR-

487b-3p were up-regulated (Tables 6.5 to 6.7). In all three systems, the 

expression levels of all four miRNAs were enhanced during combinatorial 

growth factor-PACAP treatments as compared to treatments with the 

individual ligands alone. The expression levels of all miRNAs were 

normalized to the mean expression value of all the profiled miRNAs418. 

Table 6.4. List of rno-miRNAs without changes in their expression levels from 1 hour to 
48 hours upon NP, FP, or EP treatments. Concentrations of growth factors and PACAP used 

were 50 ng/ml and 100 ng/ml, respectively. 

miRNAs 
NP  FP  EP 

1h 10h 24h 48h  1h 10h 24h 48h  1h 10h 24h 48h 

List of 54 
unregulated 

miRNAs 

let-7a-5p, let-7b-5p, let-7d-3p, let-7f-5p, let-7i-5p, 9a-5p, 15b-5p, 16-5p, 17-5p, 
19b-3p, 22-3p, 23a-3p, 24-3p, 26b-3p, 26b-5p, 27a-3p, 29b-2-5p, 29c-3p, 30b-
5p, 30d-5p, 30e-3p, 30e-5p, 32-5p, 34a-5p, 92b-3p, 93-5p, 96-5p, 103-3p, 
106b-5p, 107-3p, 125a-3p, 125a-5p, 126a-5p, 128-3p, 130a-3p, 133a-3p, 136-
5p, 141-3p, 142-3p, 142-5p, 150-5p, 151-5p, 181a-5p, 181d-5p, 185-5p, 186-
5p, 192-5p, 194-5p,199a-5p, 204-5p, 218a-5p, 340-5p, 378a-3p, 532-3p 
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Table 6.5. Regulation of rno-miRNAs from 1 hour to 48 hours upon EP treatment. 

Concentrations of EGF and PACAP used were 50 ng/ml and 100 ng/ml, respectively. 

miRNAs 
PACAP  EGF  EP 

1h 10h 24h 48h  1h 10h 24h 48h  1h 10h 24h 48h 

Fold change of 
miR-21-5p 

0.7 1.5 1.5 1.1  0.6 1.2 1.0 1.7  0.6 5.2 3.5 3.5 

Fold change of 
miR-221-3p 

0.6 0.1 0.4 0.6  0.1 0.3 0.6 4.2  0.1 0.4 1.4 17.1 

Fold change of 
miR-382-5p 

0.8 1.3 1.5 1.3  0.6 1.3 1.2 1.5  0.6 4.7 4.4 3.8 

Fold change of 
miR-487b-3p 

0.9 2.3 2.2 1.6  0.7 1.4 1.9 2.0  0.6 6.9 6.4 4.2 

Table 6.6. Regulation of rno-miRNAs from 1 hour to 48 hours upon FP treatment. 

Concentrations of FGFb and PACAP used were 50 ng/ml and 100 ng/ml, respectively. 

miRNAs 
PACAP  FGFb  FP 

1h 10h 24h 48h  1h 10h 24h 48h  1h 10h 24h 48h 

Fold change of 
miR-21-5p 

0.7 1.5 1.5 1.1  0.9 1.8 1.2 1.6  0.5 6.2 4.7 4.1 

Fold change of 
miR-221-3p 

0.6 0.1 0.4 0.6  0.3 0.8 3.3 53.2  0.1 0.8 6.4 67.8 

Fold change of 
miR-382-5p 

0.8 1.3 1.5 1.3  0.9 2.2 2.3 1.9  0.6 6.0 5.9 3.6 

Fold change of 
miR-487b-3p 

0.9 2.3 2.2 1.6  0.8 3.7 2.7 2.6  0.6 6.6 6.4 4.7 

Table 6.7. Regulation of rno-miRNAs from 1 hour to 48 hours upon NP treatment. 

Concentrations of NGF and PACAP used were 50 ng/ml and 100 ng/ml, respectively. 

miRNAs 
PACAP  NGF  NP 

1h 10h 24h 48h  1h 10h 24h 48h  1h 10h 24h 48h 

Fold change of 
miR-21-5p 

0.7 1.5 1.5 1.1  0.8 1.4 1.5 1.9  0.7 4.3 5.5 6.2 

Fold change of 
miR-221-3p 

0.6 0.1 0.4 0.6  0.3 1.3 4.0 137.6  0.2 0.6 4.5 221.3 

Fold change of 
miR-382-5p 

0.8 1.3 1.5 1.3  0.8 1.5 2.9 2.9  0.6 6.2 6.6 6.1 

Fold change of 
miR-487b-3p 

0.9 2.3 2.2 1.6  0.9 2.3 3 2.9  0.9 8.1 7.4 7.4 
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Figure 6.3. miRNAs are differentially regulated by upstream kinases in the EP, FP, and 
NP systems. Expression levels of (a) miR-21-5p, (b) miR-221-3p, (c) miR-382-5p, and (d) 

miR-487b-3p following treatments with 50 ng/ml of growth factor (EGF, FGFb, or NGF) and 100 
ng/ml of PACAP for 48 hours in the presence of the MEK inhibitor, U0126 (20 μM), JNK 
inhibitor, SP600125 (10 μM), or PKA inhibitor, H89 (10 μM). Significant differences between 
treatments with and without inhibitors were calculated using the paired Student‘s t-test. A value 
of p<0.05 was considered significant (**p<0.01; *p<0.05). 

Next, the pathways involved in the regulation of these miRNAs were analyzed 

similarly to that of the IEGs (Figure 6.3). To gain insights into the regulation of 

neurite outgrowth by these miRNAs in different systems, the pathways 

regulating neurite outgrowth and these miRNAs were compared as shown in 

Tables 6.8 to 6.10. In all three systems, miR-221-3p and miR-382-5p were 

likely to be involved in the regulation of synergistic neurite outgrowth as the 

same pathways regulated these miRNAs and neurite outgrowth in the 

respective system. On the other hand, while miR-487b-3p was possibly 

involved in neurite outgrowth in the EP and FP systems, miR-21-5p was likely 

to be required for the regulation of neurite outgrowth only in the FP system. 
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Again, this strongly suggested that the involvement of specific miRNAs in the 

regulation of neurite outgrowth was likely to be dependent on multiple factors, 

and a more in-depth multivariate analysis would be necessary to gain a better 

understanding of the process. 

Table 6.8. Summary of the pathways involved in neurite outgrowth and the expression of 
various miRNAs in the EP system. ‗+‘, ‗-‘, and ‗‘ denote positive, negative, and no regulation, 

respectively. 

Kinase miR-21-5p miR-221-3p miR-382-5p miR-487b-3p Neurite 

Erk + + + + + 

JNK + - - - - 

PKA +   + + 

Table 6.9. Summary of the pathways involved in neurite outgrowth and the expression of 
various miRNAs in the FP system. ‗+‘, and ‗‘ denote positive, and no regulation, respectively. 

Kinase miR-21-5p miR-221-3p miR-382-5p miR-487b-3p Neurite 

Erk + + + + + 

JNK + +  + + 

PKA +   + + 

Table 6.10. Summary of the pathways involved in neurite outgrowth and the expression 
of various miRNAs in the NP system. ‗+‘, and ‗‘ denote positive, and no regulation, 

respectively. 

Kinase miR-21-5p miR-221-3p miR-382-5p miR-487b-3p Neurite 

Erk + + + + + 

JNK + + + + + 

PKA +   +  

6.3. Discussions 

In this brief investigation, the expression of IEGs and miRNAs were profiled in 

the NP, FP, and EP systems to identify targets that could potentially be 

involved in the regulation of synergistic neurite outgrowth. While the profiled 

IEGs have previously been reported to be required for neurite outgrowth, 

most of the profiled miRNAs have not been implicated in neurite outgrowth. 

Surprisingly, only four out of the fifty-eight profiled miRNAs were up-regulated 
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significantly, and this is the first report indicating an up-regulation of miR-

487b-3p during neurite outgrowth. Interestingly, these genes and miRNAs 

were regulated by distinct signalling pathways in different systems. Although 

the upstream kinases that regulated these genes and miRNAs may differ for 

each system, they were found to be regulated by the same pathways 

regulating neurite outgrowth in the corresponding system. 

It is widely-known that expressions of IEGs are often regulated by multiple 

pathways164,419. Although a previous study has found that the functions of 

upstream kinases can be decoded by its downstream IEGs420, our results 

demonstrated otherwise. The PKA pathway, which was required for neurite 

outgrowth in the FP, but not NP, system (Chapter 4), was found to regulate 

the same IEGs in both systems. This indicated that different cross-talks 

between these upstream kinases and other uninvestigated pathways are 

likely to be present in these systems421. This is supported by a previous study 

where different combinations of activated pathways were found to result in 

expressions of different subsets of genes in the same cell line422. Our results 

also showed that Erk and JNK co-regulated the expression of the IEGs in 

both the NP and FP systems. This not only further supports our finding that a 

feedback cross-talk exists between the Erk and JNK pathways in the NP 

system (Chapter 5), but also suggests that such a cross-talk could similarly 

exist in the FP system within the first hour of ligand stimulation. 

While gene expression studies in PC12 cells during neuronal differentiation 

have been widely studied145,295,371-373, much less are known about the 

expression of miRNAs levels during the process. miR-221 is currently one of 

the most well-studied miRNA during neurite outgrowth373,407, and functional 
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validation of its role in regulating neurite outgrowth in PC12 cells has also 

been performed previously in the lab. In addition, it has been reported to be 

regulated by sustained activation of Erk during neurite outgrowth in PC12 

cells373. Consistent with these findings, miR-221 was found to be highly 

expressed and regulated by Erk in all three systems after 48 hours of 

stimulation. In addition, it was also found to be regulated by JNK but not PKA 

in all three systems in this study, further indicating its importance in neurite 

outgrowth. Thus, given that PKA alone, which was activated by PACAP, is a 

poor inducer of neurite outgrowth290 (data not shown), our data indicated that 

PKA interacts with other signalling pathways, rather than Erk or JNK, in 

enhancing neurite outgrowth in the synergistic systems. Further investigations 

of the cross-talks between the signalling responses downstream of receptor-

tyrosine-kinases (RTK) and G-protein-coupled-receptors (GPCR) is likely to 

yield insights into the underlying mechanism of such a cross-talk423,424. In 

addition, miR-221 has also been predicted and validated to target PTEN425, 

which is a negative regulator of neurite outgrowth in PC12 cells426,427. Thus, 

the possibility that miR-221 enhances neurite outgrowth in the synergistic 

systems by acting on PTEN needs to be explored further. 

In this work, miR-487b-3p was another miRNA found to be up-regulated in all 

three systems. While it has not been previously reported to be required for 

neurite outgrowth, it has been shown to be enriched in the neurons in the 

central nervous systems (CNS) of rats417. Thus, it is likely that miR-487b-3p 

plays a role in neuronal functions and its involvement in neurite outgrowth 

requires further investigations. 
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Among the fifty-eight profiled miRNAs, the changes in expression levels for 

fifty-four of them were relatively small. This could indicate either a lack of 

regulation or a minute change in their expression levels, which is a 

characteristic of miRNAs428-430. This is because the regulatory relationships 

between genes and miRNAs are multiple-to-multiple in nature, where each 

miRNA can regulate multiple genes and each gene is regulated by multiple 

miRNAs370. It has also been increasingly recognized that extracellular 

miRNAs could be involved in cell-to-cell communication and may have 

functional relevance in cellular behaviours as they are protected from 

degradation by extracellular RNases431. In addition, extracellular miRNAs 

have been found to be packaged differently, such as microvesicles, 

exosomes, or RNA binding proteins such as Ago2, under various conditions, 

indicating that multiple roles of extracellular miRNAs can exist432,433. Thus, 

investigations of the extracellular miRNAs during synergistic neurite 

outgrowth may lead to a more in-depth understanding of the importance of 

miRNAs in this process. 

Given that the regulation of synergistic neurite outgrowth is a complex 

process with a differential regulation of the same genes and miRNAs in 

different systems, a Bayesian approach such as TEEBM (Chapter 5) can be 

used to analyze the signalling networks in these systems. The different 

network structures and conditional probabilistic relationships between the 

variables will give a depiction of the differences in the signalling mechanisms 

between different systems in the regulation of neurite outgrowth.  
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6.4. Conclusions 

This study has identified up-regulated IEGs and miRNAs upon combinatorial 

growth factor-PACAP treatment, which could potentially be involved during 

synergistic neurite outgrowth. Our data showed that these genes and miRNAs 

are regulated by different combinations of pathways in each of the three 

systems, indicating that yet to be discovered cross-talks are likely to be 

present. While fifty-eight miRNAs were profiled, only four was found to be 

differentially expressed in the synergistic systems, suggesting that 

investigation of extracellular miRNAs may yield more insights into the roles of 

miRNAs in regulating neurite outgrowth. This is also the first study that 

reports an up-regulation of neuron-enriched miR-487b-3p during neurite 

outgrowth. Further studies on other signalling pathways and functional 

validation of the up-regulated IEGs and miRNAs would be required to 

ascertain their involvement in synergistic neurite outgrowth. This can be 

complemented by network analyses to shed light on the combinatorial 

involvement of these kinases, genes, and miRNAs in regulating the process.  
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7.1. Conclusions 

Although traditional reductionist approaches to the analyses of cell signalling 

are important in gaining a fundamental understanding of cell signalling, the 

underlying principle of reductionism poses significant limitations. First, 

analyses of signalling mechanisms have been carried out through the 

analyses of individual signalling components, which fail to account for 

emergent behaviours that can only arise from interactions between these 

components but not by any constituent parts alone21,23. Second, many 

experiments are performed using only one ligand, which is not physiologically 

relevant as cells are exposed to multiple stimuli concurrently in their biological 

microenvironments26,27. To better understand cellular behaviours, systems-

based approaches that analyze signalling components in a multivariate 

setting under multi-ligand experimental conditions are needed. In particular, 

modeling methods that can effectively analyze multi-ligand synergistic 

systems are very much lacking.  

In this thesis, an attempt was made to develop tools for the multi-variant 

analyses of the effects of multiple sets of ligands on the perturbation of a 

limited number of known signalling nodes involved in neurite outgrowth. This 

study is a proof-of-concept that a tractable solution for identifying the 

dynamics of cell signaling, by analyses of such complex interactions using a 

modified Bayesian approach, is possible. Hence, the mechanism underlying 

synergistic neurite outgrowth during PC12 cells differentiation was 

investigated with the aid of a modified Bayesian network inference approach. 

The signalling pathways involved in synergistic neurite outgrowth in three 

different systems, NP, FP, and EP, in PC12 cells were investigated. The 
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morphological changes upon these treatments include more neurite 

extensions from the cell-body, more branching of neurites, and an increase in 

the length of each neurite. Collectively, these changes resulted in synergistic 

enhancements of total neurite length. An overview of the findings presented in 

this thesis is illustrated in Figure 7.1. 

Five signalling pathways widely reported to be required for neurite outgrowth 

in PC12 cells, Erk164,165, JNK112,164, P38113,173, Akt163, and PKA222, were 

studied. The synergistic regulation of total neurite length in the three systems 

was found to be regulated by distinct signalling pathways. In the NP system, 

only the Erk and JNK pathways were found to positively regulate neurite 

outgrowth whereas the Erk, JNK, and PKA pathways were required for the 

process in the FP system. On the contrary, neurite outgrowth in the EP 

system was positively regulated by Erk and PKA but negatively regulated by 

JNK. Importantly, the involvement of these pathways in positively regulating 

synergistic neurite outgrowth was found to be mediated by P90RSK, 

indicating that P90RSK could be a critical component in the regulation of the 

process. This is consistent with previous studies where P90RSK was found to 

mediate differentiation of PC12 cells219,276,277. Critically, this is the first study 

that implicated P90RSK as a downstream effector of both JNK and PKA in 

the regulation of synergistic neurite outgrowth in PC12 cells. The finding of 

the differential regulation of P90RSK in the NP, FP, and EP systems in this 

thesis strongly suggests that these synergistic systems can serve as excellent 

models to decipher the mechanistic regulation of P90RSK by its upstream 

kinases, Erk, JNK, and PKA. 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 7. Conclusions and Future Works  145 
 
 

In a brief extension of the study, the potential IEGs and miRNAs that can 

mediate the effects of the upstream kinases in regulating synergistic neurite 

outgrowth were also investigated. These genes and miRNAs were found to 

be regulated by different combinations of signalling pathways in each of the 

three systems, suggesting that yet to be discovered cross-talks between 

upstream signalling pathways are likely to be present. miR-487b-3p, which 

has not been previously reported to be involved in neurite outgrowth, was 

found to be up-regulated during neurite outgrowth. In addition, several IEGs 

and miRNAs, which have been previously implicated in neurite outgrowth, 

were found to be regulated by the same pathways regulating neurite 

outgrowth in the corresponding system. Thus, genes and miRNAs potentially 

involved in the regulation of synergistic neurite outgrowth were identified. 

To gain a deeper understanding of synergistic neurite outgrowth, the 

morphology of the neurites was investigated more comprehensively in terms 

of the various morphological changes governing neurite outgrowth. Various 

studies have demonstrated that the distinct morphological features of neurites 

can be regulated both independently of different pathways as well as by the 

same pathways. Both mechanisms were observed in this study. For instance, 

pathways that positively regulate the total neurite length, such as Erk, JNK, 

and PKA, also positively regulated the number of neurite extensions, number 

of branch-points, and the length of the individual neurites. However, P38 was 

found to positively regulate the branching of neurites without affecting the 

total neurite length. This is the first study demonstrating that P38 can regulate 

neurite branching independently of total neurite length during differentiation of 

PC12 cells in the NP and FP systems. All in all, the current understanding of 

neurite outgrowth is still very limited, and PC12 cells can serve as an 
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excellent model to understand the distinct regulation of different 

morphological features of neurites. 

The mechanism underlying the synergistic activations of Erk and JNK in the 

NP system was further investigated using a systems-based mathematical 

modeling approach. Given the lack of approaches for the analyses of multi-

ligand synergistic systems, a modified Bayesian methodology for network 

inference was proposed to infer novel regulatory behaviours governing the 

synergistic activation of the two kinases. This methodology was termed 

TEEBM (Two-phase, Exact structure learning, Expanded-in-time Bayesian 

Methodology). It comprises of three distinct elements. First, an expanded-in-

time DBN (eDBN) parameterization was used to define the signalling nodes 

and it overcomes the limitations of traditional DBN approaches where the 

relationships between different variables are assumed to be time-invariant. 

Second, a two-phase learning was used to incorporate the different 

information content obtained from the single- and bi-ligand experiments. This 

data integration technique was facilitated by the use of a binning procedure 

that can capture different information from different experimental conditions. 

Information on activation levels and degree of synergism was extracted from 

the single- and bi-ligand experiments, respectively. Third, an exact structure 

learning algorithm269 was used for structural learning of the network as it can 

overcome the drawbacks arising from the non-exhaustive nature of widely 

used approximate search methods. Using this approach, a novel positive 

feedback between the MEK/Erk and MKK4/JNK signalling pathways was 

found to mediate the synergistic activations of Erk and JNK. This model 

prediction was validated experimentally. Thus, this work demonstrates the 

potential of the proposed TEEBM in the analysis of signalling networks in bi-
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ligand synergistic systems, and it can potentially be extended to the analyses 

of other multi-ligand systems. 

 
Figure 7.1. Overview of findings in this thesis and recommendations for future works. 

7.2. Future Works 

Although the work presented here have made some contributions to the field 

of both neuronal differentiation and systems biology, both areas are still in its 

infancy with many avenues for further development. This is especially true in 

light of the analysis of synergism. The study of synergism constitutes a 

multivariate analysis of the interactions between cellular components, which 
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requires the use of mathematical models. This essentially constitutes a cyclic 

loop between the biological issues to be addressed in synergism and the use 

of appropriate mathematical models to facilitate the process (Figure 7.2). 

Thus, the availability of suitable mathematical models will be the key to 

driving the advancements in the understanding of synergism in neuronal 

differentiation. Although the ideal next step is to further validate the TEEBM 

presented in this thesis, the lack of a priori knowledge about signalling 

mechanisms underlying synergistic behaviours in bi-ligand systems in the 

biological literature render such a task impractical. Instead, further validation 

of this TEEBM can go in conjunction with further employments of the model in 

understanding neuronal differentiation. As such, the recommendations for 

future works (Figure 7.1) are centered, where appropriate, on the applications 

and developments of TEEBM. 

 
Figure 7.2. Cyclic loop between mathematical modeling and biological advancement in 
neuronal differentiation. 
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7.2.1. Application of TEEBM in Understanding Synergistic 

Neurite Outgrowth 

7.2.1.1. Network Analyses of Signalling Pathways 

Regulating Neurite Outgrowth in the FP and EP 

Systems 

As a subset of signalling pathways involved in the regulation of total neurite 

length had each been determined for the FP, and EP systems (Chapters 3 

and 4), TEEBM can be applied to these systems to gain insights about the 

underlying signalling networks. In these two systems, the combinations of the 

pathways regulating neurite outgrowth are both different from that of the NP 

system. This differential involvement of signalling pathways is likely to result 

from different activation profiles and interactions between signalling 

pathways434. Thus, these systems serve as valuable platforms that can be 

used for further validation or refinement of the TEEBM to ensure that pathway 

cross-talks and signalling responses of different nature can be captured. 

7.2.1.2. Investigation of the Differential Involvement of 

Signalling Pathways in Regulating Neurite 

Outgrowth in the NP, FP, and EP Systems 

In each of these synergistic systems, NP, FP, and EP, different combinations 

of signalling pathways are involved in the regulation of different aspects of 

morphological neurite outgrowth (Chapters 3 and 4). Preliminary work has 

also indicated that different combinations of pathways are involved in the 

expression and regulation of IEGs and miRNAs potentially required for 

synergistic neurite outgrowth in these systems (Chapter 6). Furthermore, 
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these targets were found to be regulated by pathways which are both 

required and not required for neurite outgrowth. These results strongly 

suggest that the determinant of the involvement of various signalling 

pathways in the regulation of synergistic neurite outgrowth is likely to lie in the 

combinatorial regulation of their downstream effectors, such as IEGs and 

miRNAs. 

Thus, it would be important to first functionally validate the roles of various 

IEGs and miRNAs in regulating neurite outgrowth. After which, a network 

analyses should be centered on these signalling components and kinases to 

understand how they regulate neurite outgrowth in a combinatorial manner. 

Unraveling such complexities will be critical to the field in two ways. First, 

downstream components, which are more oriented to the regulation of neurite 

outgrowth, can be uncovered. This is of great relevance as upstream 

signalling components are involved in the regulation of a broader range of 

cellular behaviours. Second, the context under which specific interactions can 

occur in one system but not another can provide insights into novel signalling 

mechanisms, which is highly relevant to many different fields of biology.  

A BN approach, such as TEEBM, is a practical solution to this problem as a 

key aspect of BNs is the use of conditional independence in defining the 

relationships between different variables. This idea of conditional 

independence can provide the context, such as activation of a particular 

signalling component, within which a particular interaction is present or 

relevant and if the interaction is positive or negative in nature. 
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7.2.1.3. Role of Protein Phosphatases in Regulating the 

Synergistic Activations of Erk and JNK 

It was shown in this thesis that synergistically-activated kinases can 

potentially regulate the enhancement of neurite outgrowth. The regulation of 

the synergistic activations of MEK/Erk and MKK4/JNK in the NP system was 

found to be mediated by a positive feedback loop between these pathways 

(Chapter 5). Given that there are distinct signalling pathways activated by the 

two ligands, it would be interesting to investigate if other cross-talks 

downstream of these two different receptor systems can also play a part in 

the synergistic regulation of these kinases. For instance, cAMP, a key effector 

of PACAP, can activate PKA and Epac135. Both PKA435,436 and Epac437,438 are 

known to regulate various protein phosphatases (PPs), which are key 

components in the down-regulation of the activity of protein kinases. PPs are 

known to act on MAPKs and MAPKKs356, with each PP exhibiting different 

specificity for different kinases357,358 and each distinctly localized in various 

cellular compartments357-359. Thus, down-regulation of these PPs can be 

another mechanism through which synergistic activations of the Erk and JNK 

pathways can occur. It would be interesting to further investigate the 

localizations and activities of the PPs in these systems at a systems-level to 

gain a more comprehensive understanding of the regulation of these kinases. 

The TEEBM presented in this thesis will be useful in predicting the 

combinatorial effects of different PPs and identifying the points of interactions 

between these PPs and kinases. This is because MAPK signalling cascades, 

such as Erk and JNK, are multi-tiered, and there are multiple points along 

these cascades where different PPs can exert their effects. 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 7. Conclusions and Future Works  152 
 
 

7.2.1.4. Identification of Novel Interactions between the 

Growth Factor and PACAP Signalling Systems 

Besides the signalling pathways investigated in this thesis (Chapters 3 and 4), 

many signalling pathways have also been found to be required for 

differentiation of PC12 cells. For instance, other pathways activated by the 

growth factors and PACAP include PLC439-441, PKC133,199,442, Src112,223,225,443, 

and Erk5221. These pathways have been frequently studied in many cellular 

systems and cross-talks among them134,444, as well as those that were 

investigated in this thesis, have been reported. Given that synergistic 

behaviours occur due to interactions between signalling pathways, it is very 

plausible that some of these interactions are also critical to the regulation of 

synergistic neurite outgrowth. As demonstrated in this thesis, the potential 

points of cross-talks between these signalling pathways can be learned using 

the TEEBM. 

7.2.1.5. Investigation of the Dynamics of Protein 

Activity in Relation to Neurite Outgrowth 

It is now increasingly evident that the dynamical profiles of signalling nodes 

are critical in governing cellular behaviours. For instance, sustained activation 

of Erk is critical for neurite outgrowth (Chapter 3), which is consistent with the 

literature132,169. Although any signalling component may be activated over a 

wide duration of time in these synergistic systems, it is likely that only a 

specific time-window may be relevant to its regulation of neurite outgrowth. 

This essentially implies that the relationships between signalling nodes are 

not time-invariant, a property of cellular systems that has been emphasized in 

this thesis77,78. Thus, while more pathways and signalling mechanisms 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 7. Conclusions and Future Works  153 
 
 

regulating synergistic neurite outgrowth are identified, it is just as critical to 

identify the time-window relevant to the process. In the TEEBM presented in 

this thesis, an eDBN parameterization was central to the proposed method. It 

can be used for the analyses of dynamical relationships that are not time-

invariant. In addition, its practical usage is not restricted to BNs alone and can 

be extrapolated to many other types of model formalism. 

7.2.1.6. Regulation of Morphological Features during 

Synergistic Neurite Outgrowth 

Synergistic neurite outgrowth is a complex process involving changes in 

many morphological features. In this thesis, P38 was found to regulate neurite 

branching independently of total neurite length in the NP and FP systems 

(Chapter 4), which is consistent with previous studies where different 

parameters were reported to be regulated independently303. Cdc42 and Rac1 

are key regulators of actin polymerization and microtubules stabilization, 

which are important determinants of neurite branching324-327. Furthermore, 

P38 has been found to be a downstream signalling effector of Rac and Cdc42 

in many systems141,329. Thus, it is plausible that P38 plays a critical role in 

regulating the branching of neurites and the possibility that this is mediated 

through Rac1 and Cdc42 should be looked at.  

Furthermore, it would be of great interest to investigate the pathways that can 

regulate other parameters such as segment length, angle of neurite 

extensions, and angle of neurite branching. In this aspect, the future 

directions raised above, in general, for synergistic neurite outgrowth can also 

be applied to the analyses of different morphological parameters. In addition, 

development of softwares that can simultaneously address more 
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morphological parameters would be very beneficial. Currently, softwares that 

can analyze parameters such as branching and length are unable to address 

the angles of neurite protrusions and branching, and vice versa229,234,235,298,445. 

7.2.2. Further Development of TEEBM 

The TEEBM used in this thesis comprised of several key features, namely, a 

two-phase learning strategy, an eDBN parameterization, and an exact 

structure learning algorithm. It can be further developed in several aspects as 

outlined in the following sections. Importantly, these proposed developments 

and applications of TEEBM are not restricted to the analyses of neuronal 

changes alone and hence, can be extended to other biological systems 

beyond the scope of this thesis. 

7.2.2.1. Maximizing Use of Literature Datasets 

The data obtained in typical biological experiments is often continuous in 

nature. Thus, the discretization of these variables into discrete multinomial 

variables inevitably results in a loss of information79,80. This step is even more 

critical when the activation profiles of the measured variables are similar. If it 

is not performed well, a problem analogous to that of multi-collinearity in 

regression models can occur446, which results in erroneous model predictions. 

While many automatic data discretization techniques have been developed to 

optimize this process, the results have been unsatisfactory and the current 

opinion is that this process is best carried out by domain experts447. In 

general, it is accepted that more bins will result in the capturing of more 

dependencies that can more accurately reflect the underlying complexity of a 

system447. However, to ensure that these bins contain information rather than 
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noise, more experimental data is actually needed. Given that the generation 

of more data, without increasing the number of dimensions, is seldom 

feasible, maximizing the use of literature datasets is a potential alternative. 

In the literature, a wealth of data is available, with differences in terms of 

experimental conditions and techniques, and time-course of measurements. 

To use such data effectively, two potential areas need be addressed. First, 

the reliability and importance of each dataset need to be ascertained or 

optimized, so as to establish the contribution of each dataset. Second, proper 

parameterization of the data in each dataset is needed so that data with 

different properties can be pooled together in a single analysis. Thus, such 

approaches can serve as a priori knowledge to complement the TEEBM. 

7.2.2.2. Analyses of Networks with More than 30 

Variables 

In this thesis, the proposed TEEBM was used for the analyses of the protein 

phosphorylation levels measured at discrete time-points (Chapter 5). The 

drawback of an eDBN parameterization is that the number of variables scales 

proportionately with the number of time-points, and increasing the number of 

signalling nodes or time-points will easily result in a network with more than 

30 variables.  

One possible approach to this problem is to combine TEEBM with the idea 

behind tvDBNs and nsDBNs, where a series of stationary BNs, each 

demarcated by a changepoint, are built across time78,249,250. In situations with 

measurements at many time-points, this concept can be extended to TEEBM, 

where a series of eDBNs are built across the time-course. Another approach 
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would be to further explore the concept of dynamic programming267,268, which 

is the basis of the exact structure algorithm269, to allow incorporation of more 

variables. The main strength of dynamic programming lies in its ability to 

identify recursive independent sub-problems, or sub-networks in the context 

of BNs, and obtain the optimal solution for each independent sub-problem268. 

This means that each sub-problem needs to be solved only once, which 

reduce the space and memory requirements for solving the whole problem. 

Thus, advancements that can allow these sub-problems to be identified and 

solved more effectively will lead to more efficient algorithms with lower 

memory requirements, and this in turn allows the inclusion of more variables. 

7.2.2.3. Applications of TEEBM to Systems with More 

than Two Ligands 

In the treatment of diseases, one topic of increasing interest is that of 

synergistic drug therapeutics. Unlike the work on bi-ligand synergistic neurite 

outgrowth in this thesis, combinatorial drug therapy can go beyond the use of 

two drugs244,448,449. Thus, in the analyses of such systems, the TEEBM must 

be extended to accommodate for more than two ligands, so that maximal 

information can be extracted from the experimental data. This can be 

accomplished by adopting a multi-phase learning procedure in place of that of 

a two-phase, a concept analogous to that of online-learning in BNs450. For 

instance, in a three-ligand system, phase one, two, and three learning 

consider the effects of the individual ligand, effects of interactions between 

different pairs of ligands, and effects of interactions between all three ligands, 

respectively. Thus, each learning phase is used to account for information, 

such as the degree of synergism, arising from a different number of ligands. 
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8.1. Experimental Materials 

Mouse recombinant NGF was purchased from Peprotech (Rocky Hill, NJ). 

Mouse recombinant EGF was purchased from Shenandoah Biotechnology 

(Warwick, PA). PACAP was purchased from American Peptide Company 

(Sunnyvale, CA). MEK inhibitor U0126, JNK inhibitor SP600125, P38 inhibitor 

SB203580, PI3K inhibitor LY294002, and PKA inhibitor H89 were purchased 

from LC Laboratories (Woburn, MA). P90RSK inhibitor BRD7389 was 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Primary 

antibodies against phospho-specific MEK (Ser217/221) (pMEK), phospho-

specific Erk1/2 (Thr202/Tyr204) (pErk), pan-Erk1/2, phospho-specific MKK4 

(Ser257/Thr261) (pMKK4), phospho-specific JNK (Thr183/Tyr185) (pJNK), 

pan-JNK, phospho-specific P38 (Thr180/Tyr182) (pP38), pan-P38, phospho-

specific Akt (Ser473) (pAkt), pan-Akt, phospho-specific P90RSK (Ser380) 

(pP90RSK), pan-RSK, and phospho-specific CREB (Ser133) (pCREB) were 

purchased from Cell Signalling Technologies (Danver, MA). The antibody 

against phospho-specific c-Jun (Ser73) (pc-Jun) was purchased from Abnova 

(Taipei, Taiwan). The antibody for the neuronal marker βIII-Tubulin was 

purchased from R&D Systems (Minneapolis, MN). Human recombinant FGFb 

and the antibody against actin were purchased from EMD Millipore (Billerica, 

MA). The TRI-Reagent and antibody against tubulin was purchased from 

Sigma (Sigma-Aldrich, St. Louis, MO). Horseradish peroxidase-conjugated 

secondary antibodies, Imperial Protein Stain, Triton X-100, and Hoechst were 

purchased from Thermo Scientific (Wilmington, DE). Secondary antibodies 

conjugated with Alexa Fluor 488 were bought from Invitrogen (Carlsbad, CA). 

ImPromII reverse transcriptase was purchased from Promega (Madison, WI) 

and KlearTaq DNA polymerase was purchased from KBiosciences (UK). 
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8.2. Cell Culture 

Rat pheochromocytoma PC12 cells (American Type Culture Collection, 

Manassas, VA) were cultured in Dulbecco‘s minimum essential medium 

(DMEM) supplemented with 10% heat inactivated fetal bovine serum (FBS, 

Sigma-Aldrich) and 5% Horse Serum (HS, Hyclone, Thermo Scientific). Cells 

were cultured with 100 U/ml penicillin and 100 mg/ml streptomycin, and 

maintained in a humidified incubator with 5% CO2 at 37°C. 

8.3. Western Blot Analyses 

PC12 cells were seeded into the wells of 6-well plates pre-coated with poly-D-

lysine at a density of 500,000 cells/well and cultured in growth medium for 48 

hours. Following this, cells were incubated in serum-depleted medium (1% 

FBS, 0.5% HS) for an additional 16 hours. Cells were then simulated with 

individual or combinations of NGF, FGFb, EGF, and PACAP. For treatments 

with inhibitors, the cells were pre-incubated for 1 hour with the respective 

inhibitors prior to stimulations with the ligands. Cells were harvested within 4 

hours after ligand stimulation at the stipulated time-points. Treated cells were 

washed once with PBS and subsequently lysed in 2% sodium dodecyl sulfate 

(SDS). Protein concentrations in the total cell lysates were quantified using 

the microBCA assay (Pierce Biotechnology, Rockford, IL). The protein 

samples were then separated by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE), transferred onto nitrocellulose membranes, blocked with 5% 

milk for an hour before being probed with antibodies against pMEK 

(phosphorylated MEK) (1:5000 dilution), pErk (1:5000 dilution), pMKK4 

(1:1000 dilution), pJNK (1:1000 dilution), pP38 (1:1000 dilution), pAkt (1:1000 

dilution), pP90RSK (1:1000 dilution), pCREB (1:1000 dilution), pc-Jun (1:1000 
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dilution), total Erk (1:5000 dilution), total JNK (1:1000 dilution), total P38 

(1:1000 dilution), total Akt (1:1000 dilution), total P90RSK (1:1000 dilution), 

actin (1:10,000 dilution), and tubulin (1:10,000 dilution). Blots were stripped 

with Restore Western Stripping Buffer (Pierce Biotechnology) and re-probed 

for different proteins. The protein bands were developed with Immobilon 

Western Chemiluminescent HRP Substrate (Millipore) on a ChemiDoc XRS 

system (Biorad, Hercules, CA). The band intensities were quantified using 

Quantity One 1-D Analysis software (Biorad). To enable comparisons of 

signals across different blots, lysates from PC12 cells treated with NGF-

PACAP were used to generate a standard curve for each blot342. 

8.4. Measurements of Neurite Outgrowth 

PC12 cells were seeded into the wells of 12-well plates at a density of 25,000 

cells/well, and cultured as described for western blotting. After treatment with 

the respective ligands for 48 hours, the cells were fixed with 4% 

paraformaldehyde for 20 minutes and permeabilized with ice-cold methanol 

for 15 minutes. The cell bodies were then stained with Imperial Protein Stain 

for 15 minutes and the nuclei with Hoechst stain for 5 minutes. The images of 

the cells were then captured using a Zeiss inverted fluorescent microscope 

(Zeiss Oberkochen, Germany). The length of the neurites was quantified 

using HCA-Vision software (CSIRO, North Ryde, NSW, Australia). The 

neurite quantification procedure, which involved neuron body detection, 

neurite detection, and neurite analysis, was performed as previously 

described232. The neurite length obtained under control conditions (i.e. in the 

absence of both NGF and PACAP) was subtracted from each treatment 

condition. Thereafter, the neurite length for each condition was normalized 
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against that obtained for cells grown under 50 ng/ml of NGF, assigned an 

arbitrary value of 1. The same procedure was applied to the analysis of the 

length of the longest neurite. The other morphological parameters analyzed, 

namely number of neurite extensions, number of branch-points, and number 

of segments, were not normalized. 

8.5. Immunocytochemistry 

PC12 cells were seeded into the wells of 12-well plates at a density of 25,000 

cells/well, and cultured as described for western blotting. After treatment with 

the respective ligands for 48 hours, the cells were fixed with 4% 

paraformaldehyde for 20 minutes and permeabilized with 0.5% Triton-

X100/PBS and blocked with normal goat serum (1:10) (Dako, Glostrup, 

Denmark) in 0.5% Triton X-100/PBS for 60 minutes at 37°C. The cells were 

incubated with primary antibodies against βIII-Tubulin (1:250) and then further 

incubated with secondary antibodies conjugated with Alexa Fluor 488 (1:500). 

The images of the cells were captured using a Zeiss inverted fluorescent 

microscope (Zeiss Oberkochen). 

8.6. Quantitative Polymerase Chain Reaction (qPCR) 

PC12 cells were seeded into the wells of 12-well plates at a density of 

100,000 cells/well, and cultured as described for western blotting. Total RNA 

from the cultured cells was isolated using the TRI-Reagent according to the 

manufacturer‘s instructions. The integrity of the isolated total RNA was 

validated by denaturing agarose gel electrophoresis. The concentration of the 

total RNA isolated was measured using Nanodrop 2000 (Thermo Scientific).  
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For transcriptomic profiling of mRNAs, 500 ng of total RNA was first reverse 

transcribed using ImPromII reverse transcriptase and 0.5 μg of random 

hexamers for 60 minutes at 42°C according to the manufacturer‘s instructions. 

The reaction was terminated by heating at 70°C for 5 minutes. For 

transcriptomic profiling of miRNAs, 100 ng of total RNA was first reverse 

transcribed using ImPromII reverse transcriptase and 100 nM of multiplex 

reverse transcription primers for 30 minutes at 42°C. The reaction was 

terminated by heating at 70°C for 5 minutes. 

The primer sequences used for real-time quantitative polymerase chain 

reaction (qPCR) for the mRNA assays are listed as shown in Table 8.1. The 

designs for the primers for the rno-miRNA assays are properties of Exploit 

Technologies Private Limited (Biopolis, Singapore). The research use of 

these assays is governed by the End User License Agreement. 

Table 8.1. Primers used for real-time qPCR for mRNAs in PC12 cells (rno species). 

Gene Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) 

Arc CCCCAGCAGTGATTCATACCA GCCGGAAAGACTTCTCAGCAG 

Btg2 CAGGACGCACTGACCGATCAT CTGGCCACCTTGCTGATGATG 

Egr1 GCGCTGGTGGAGACAAGTTAT TGCTCACAAGGCCACTGACTA 

c-Fos GGGGACAGCCTTTCCTACTAC CTGTCACCGTGGGGATAAAGT 

Fosl CAGGCCCTGTGAGCAGATCAG CCCGATTTCTCATCCTCCAAC 

Hes1 CGACACCGGACAAACCAAAGA TTGGAATGCCGGGAGCTATCT 

JunB GCTCAACCTGGCAGATCCTTA TTGCTGTTGGGGACGATCAAG 

Nr4a1 AGGGCTGCAAAGGCTTCTTCA CTTCCTTCACCATGCCCACAG 

RPL19 ACCTGGATGCGAAGGATGAG ACCTTCAGGTACAGGCTGTG 

Real-time qPCR using SYBR Green I was performed on the CFX96 (Biorad) 

in a total volume of 25 μl in 1× XtensaMix-SGTM (BioWORKS, Singapore), 

containing 2.5 mM MgCl2, 200 nM of primers and 0.5 U of KlearTaq DNA 



Data-Driven Bayesian Approach to the Analysis of Cell Signalling  
Networks in Synergistic Ligand-Induced Neurite Outgrowth in PC12 Cells 

Chapter 8. Materials and Methods  163 
 
 

polymerase. Real-time qPCR for mRNAs were carried out after an initial 

denaturation for 10 minutes at 95°C followed by 40 cycles of 30 seconds 

denaturation at 95°C, 30 seconds annealing at 60°C and 30 seconds 

extension at 72°C. Real-time qPCR for microRNAs were carried out after an 

initial denaturation for 10 minutes at 95°C followed by 40 cycles of 10 

seconds denaturation at 95°C and 30 seconds annealing and extension at 

60°C. Melt curve analyses were performed at the end of the reactions to 

verify the identity of the products.  

The threshold cycles (Ct) were calculated using the CFX manager software 

(Biorad). All real-time PCR quantification was carried out simultaneously with 

non-template controls (NTCs). The fold changes of the measured mRNAs 

and miRNAs in the treated samples relative to the control samples were 

calculated using the equation 2-ΔΔCt, where ΔΔCt = (CtTarget Gene – CtReference 

Gene)Treatment – (CtTarget Gene – CtReference Gene)Control. 

8.7. Statistical Analyses 

Statistical significance was determined using the Student‘s t-test and the 

respective results are displayed as the mean ± standard deviation (S.D.). All 

experiments and measurements were replicated at least three times. 
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