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Summary

Object recognition is one of the fundamental challenges in computer vision and

robots. Because of its complexity, object recognition is usually decomposed into

simplified tasks by the research community. Although different recognition tasks

may seem diverse, they share the ultimate target (visual recognition) and can thus

be regarded as the same problem from different views, such as at the whole-image

level - object classification, at the sub-window level - object detection, and at the

pixel level - object segmentation/parsing. Due to the intrinsic consistency, these

tasks should be strongly correlated. Unfortunately, the current system usually treats

them separately.

In this thesis, we propose to unify the approaches for visual recognition to ef-

fectively leverage the intrinsic consistency among different recognition tasks. By

reconsidering current recognition techniques, we explore several ways to integrate

approaches for different tasks, such as fusing the outputs from different tasks in a

principled way or directly solving multiple tasks in a unified framework, to boost

the state-of-the-art performance. In addition, we further extend the idea of “unified

analytics” from general object recognition to the specific field of human analysis.

In summary, we develop effective unified frameworks for both general object

recognition and specific field of human analysis by employing the intrinsic consis-

tency among different recognition tasks in a principled way.
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Chapter 1

Introduction

Visual recognition is one of the fundamental challenges in computer vision and

robots. The core tasks for visual recognition, such as classification, detection, seg-

mentation and pose estimation, have drawn much research attention due to the

wide application in robotics, human-computer interaction, health care, and Web

data mining. As these tasks essentially handle the same problem from different

views, they should be strongly related. In this thesis, we aim to explore the intrinsic

consistency among different tasks for visual recognition.

In artificial intelligence, visual recognition refers to the task of automatically

understanding the world using visual information, aiming to mimic the fascinat-

ing perception abilities of humans. Owing to its potential application in various

domains, visual recognition has gained extensive attention for over four decades.

Significant efforts have been devoted to developing representation schemes and al-

gorithms for recognizing generic objects in real-world images [18]. However, so far

even devising vision systems that can match the cognitive abilities of children is still

very challenging.

Because of its complexity, visual recognition is usually decomposed into simpli-

fied tasks by the research community. Among various tasks, several of them receive

special attention for their wide application: (1) Object Classification which aims to

predict the existence of certain objects in the images, (2) Object Detection which

targets to predict and localize the objects in the images, (3) Object Segmentation

15



which tries to obtain the per-pixel object level indication masks for the images, and

(4) Pose Estimation which desires to estimate the 2D/3D spatial configuration of

the objects in the images. Previous works on visual recognition often solve each task

separately, which ignore the strong correlation among different tasks. For example,

many state-of-the-art image classification systems follow the popular local feature

extraction-coding-pooling pipeline [18]. Each image is represented globally by a fea-

ture vector. Though such representation has demonstrated to be robust to occlusion

and pose variance, it is sensitive to scale of the object. If the size of the concerned

object is too small, the information from it is easy to be suppressed by clustered

background. In contrast, the current de facto systems for object detection employ

the sliding window approach. Assisted with the multi-scale strategy, this sliding

window based system can effectively detect the object of small scale [44]. However,

such approach only relies on the information inside the bounding box region and

thus ignores the valuable background information, which may lead to inferior per-

formance. Owing to the complementary properties of classification and detection,

combining them properly should boost the performance of each other [86]. Similar-

ity, segmentation and detection are highly related. The bounding boxes from the

detection methods will significantly simplify the segmentation task while the results

from segmentation can directly convert to the bounding boxes for detection.

This thesis focuses on exploring the intrinsic correlation among different recog-

nition tasks to boost the final recognition performance. Instead of improving the

existing models for a specific task, we believe that it is more important to look at

the recognition in a bigger picture.

1.1 Background and Related works

This section presents a survey of literature for classical tasks in visual recognition,

focusing on the intrinsic consistency between these tasks. After briefly reviewing the

traditional works to handle each task separately, we introduce the recent advances

in combining the techniques designed for different tasks.
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1.1.1 Classical Tasks for Visual Recognition

Object Classification

Objects usually come with specific background. For example, airplanes often ap-

pear in the sky. Hence, the context information should be valuable to predict the

existence of certain objects in the images. Many state-of-the-art image classifica-

tion systems follow the popular local feature extraction-coding-pooling pipeline [42],

which effectively utilizes both foreground and background information. Specifically,

local features like HOG [27], SIFT [75] and LBP [78] are first extracted on the dense

grids or sparse interest points. They are then encoded with a predefined visual dic-

tionary by vector quantization (VQ), locally-constrained linear coding (LLC) [99]

or Fisher kernel (FK) [49, 99]. Finally the encoded vectors are pooled together to

form the image-level representation [67, 20]. Much research on image classification

has been focused on improving this pipeline [42, 99, 49, 18]. However, this tradi-

tional framework assigns equal weight to each local feature. Thus, it is sensitive to

scale of the object. It would risk suppressing information of the concerned object

by clustered background if its size is too small.

Object Detection

Object detection [44], which is complementary to object classification, is another

central problem in visual recognition [86, 58]. As an object can appear at any

position and scale in the image, sliding window scanning has shown to be extremely

effective, and consequently become the dominant paradigm for a long time [2]. By

exhaustive search, the original complicated detection problem can be converted into

much simpler binary classification problems. However, such approach makes use

of only the image inside the bounding box and thus ignores the valuable context

information, which may lead to inferior performance.
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Sematic Segmentation

Sematic segmentation [14], which aims to provide more detailed information (pixel-

level labeling) than classification and detection, is usually cast as an optimization

problem under the MRF framework [65]. Traditional methods usually only rely

on the low level information. More specifically, such methods utilize appearance

features to construct unary term. Similar to object detection, such segmentation

methods fail to capture the informative context information. More importantly,

the shape and other top-down information are often discarded, which may heavily

decrease performance [65].

Human Parsing

Unlike other classical tasks, there exist several inconsistent definitions for human

parsing in literature. Some works [94, 101, 102] treat human parsing as a syn-

onym of human pose estimation. In this thesis, we follow the convention of scene

parsing [71, 89] and define human parsing as partitioning the human body into

semantic regions. Though human parsing plays an important role in many human-

centric applications [19], it has not been fully studied. Yamaguchi et al. [111]

performed human pose estimation and attribute labeling sequentially for clothing

parsing. However, such sequential approaches may fail to capture the correlations

between human appearance and structure, leading to unsatisfactory results.

1.1.2 Contextualization and Unification for Visual Recognition

Due to the strong correlation between these classical tasks, some recent works be-

gan to investigate how to effectively combine the techniques designed for separate

tasks [26, 107].

Contextualization

Contextualization refers to combine the results from separate tasks in the late fusion

stage. The results of many tasks, such as object classification and detection, are
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complementary and thus should be able to boost each other. Harzallah et al. [58]

introduced the pioneering work for detection and classification contextualization.

Though contextualization is intuitive, how to perform contextualization effectively

and efficiently is still rarely studied. In this work, we expect to investigate how to

fuse the results from the leading techniques to further improve the state-of-the-art

pipeline [86, 107].

Unification

As discussed above, different tasks share the ultimate target and the techniques

designed for each task should have the potential to corporate with each other. Uni-

fication here refers to combining many related techniques in a unified framework.

Selective search based recognition [14] is a representative approach. This line of

works first generate set of object hypotheses based on bottom-up segmentation

methods and then convert the recognition problem into a classification problem.

Though great success has been achieved in the past few years [14, 13], current works

mainly focus on limited type of unification, such as unifying segmentation and clas-

sification. In this work, we aim to explore more kinds of unification under a novel

framework to reveal the power of unification.

1.1.3 Datasets

General Object Recognition

Many datasets exist for general object recognition. Unfortunately, most of them,

such as Oxford Flowers [77], Caltech 101 [41] and Caltech 256 [52], are single-

label, object-centric and deficient in variance of pose and appearance, which makes

these datasets insufficient to represent the visual world. In addition, these datasets

are near saturation and not discriminative enough to distinguish different leading

algorithms. Hence, we validate the proposed framework on the challenging PASCAL

Visual Object Challenge (VOC) datasets [39, 36, 37], which provide a common

evaluation platform for both object classification and detection. These datasets
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are extremely challenging since the images are crawled from the real-world photo

sharing website and the objects contained vary significantly in size, pose, view point

and appearance. VOC 2007, 2010 and 2012 datasets are selected for experiments.

These datasets contain 20 object classes and are divided into “train”, “val” and

“test” subsets. We conduct our experiments on the “trainval” and “test” splits. We

follow the standard PASCAL protocol by employing Average Precision (AP) and

Intersection over Union (IoU) as evaluation metric for object classification/detection

and semantic segmentation, respectively.

Human Parsing

Our experiments are conducted on two datasets. The first one is the Fashionista

(FS) dataset [111], which has 685 annotated samples with 56 different clothing

labels. This dataset is originally designed for fine-grained clothing parsing. To

adapt this dataset for our human parsing, we merge their labels according to our

Parselet definition as in [32].. As there is no direct link between their annotation

and our “coat” Parselet, we ignore the “coat” Parselet and merge all upper body

clothing into the “upper clothes” Parselet. The second dataset, called Daily Photos

(DP), contains 2500 high resolution images, which are crawled following the same

strategy as the FS dataset [111]. In order to obtain quantitative evaluation results,

we thoroughly annotate the semantic labels at pixel-level. Compared with FS, the

DP dataset contains much more images and has consistent labels with Parselet

definition for human parsing. we label the common 14 joint positions in the same

manner as in [111].

1.2 Thesis Focus

Based on the above review, although different tasks for visual recognition seem

diverse, they share the ultimate target (visual recognition) and can thus be regarded

as the same problem from different views, i.e. at the whole-image level - object

classification, at the sub-window level - object detection, and at the pixel level -

20



object segmentation. Due to the intrinsic consistency, these tasks should be strongly

correlated. Unfortunately, the current system usually treats them separately, failing

to utilize the information from different levels effectively. The detailed research gaps

are summarized below:

• Information from different levels, such as whole-image level and sub-window

level, are essentially complementary. As classical models usually focus on a

specific level, the resulting system fails to capture the complementary infor-

mation and thus cannot utilize such complementary information to distinguish

ambiguous samples at a specific level, leading to inferior performance.

• Many new applications rely on the proper combination of various recognition

techniques. Current leading approaches usually brutally decompose these new

problems into well-defined tasks. For example, human parsing is decomposed

into sequential human pose estimation and region labeling. However, these

brute decompositions may ignore the intrinsic properties of each task and

thus harm the overall performance.

Instead of improving the existing models for a specific level, we believe that it

is more important to look at the recognition in a bigger picture. Thus, the main

aim of this thesis is to explore the intrinsic correlation among different recognition

tasks to boost the final recognition performance for each task. More specifically, we

conduct research on the following aspects:

• Subcategory Aware Object Recognition. We explore the subcategory struc-

tures embedded in semantic categories, which are effective to link the outputs

of different tasks. We then build a subcategory-aware recognition framework

to boost category level object classification performance. Different from the

existing monolithic model approaches, we aim to automatically leverage the

embedded subcategory structure to assist the further category level recogni-

tion. Motivated by the observation of considerable intra-class diversities and

inter-class ambiguities in many current object classification datasets, we ex-

plicitly split data into subcategories by ambiguity guided subcategory mining.
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The resulting subcategories are seamlessly integrated into the state-of-the-art

detection assisted classification framework [34, 30].

• Unified Object Detection and Semantic Segmentation. Object detection and

semantic segmentation are two strongly correlated tasks, yet typically solved

separately or sequentially with substantially different techniques. Motivated

by the complementary effect observed from the typical failure cases of the two

tasks, we propose a unified framework for joint object detection and semantic

segmentation. By enforcing the consistency between final detection and seg-

mentation results, the proposed unified framework can effectively leverage the

advantages of the leading techniques for these two tasks [33].

• Human Parsing based on Parselets. Previous works often consider solving

the problem of human pose estimation as the prerequisite of human parsing.

We argue that these approaches cannot obtain optimal pixel level parsing

due to the inconsistent targets between different tasks. To overcome this

limitation, we directly address the problem of human parsing by using the

novel Parselet representation as the building blocks of our parsing model. We

then build a Deformable Mixture Parsing Model (DMPM) for human parsing

to simultaneously handle the deformation and multi-modalities of Parselets.

The DMPM thus directly solves the problem of human parsing by searching

for the best graph configuration from a pool of Parselet hypotheses without

intermediate tasks to guarantee the overall performance [32].

• Unified Human Parsing and Pose Estimation. Human parsing and human pose

estimation, i.e. identifying the semantic regions and body joints respectively

over the human body image, are intrinsically highly correlated. However,

previous works generally solve these two problems separately or iteratively.

In this thesis, we propose a unified framework for simultaneous human pars-

ing and pose estimation based on semantic parts. By utilizing Parselets and

Mixture of Joint-Group Templates as the representations for these semantic

parts, we seamlessly formulate the human parsing and pose estimation prob-
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lem jointly within a unified framework via a tailored And-Or graph. A novel

Grid Layout Feature is then designed to effectively capture the spatial co-

occurrence/occlusion information between/within the Parselets and MJGTs.

Thus the mutually complementary nature of these two tasks can be harnessed

to boost the performance of each other [31].

1.3 Thesis Overview

In Chapter 2, we propose a subcategory aware recognition approach to contextualize

object detection and classification. Then in Chapter 3, we show how to perform

object detection and semantic segmentation in a unified framework. In Chapter

4, we reconsider the human parsing problem and propose to use Parselets as the

basic elements for human parsing. Finally, we demonstrate a unified framework for

simultaneous human parsing and pose estimation in Chapter 5.
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Chapter 2

Looking Inside Category:

Subcategory-aware Object

Recognition

In this chapter, we show how to automatically mine the embedded visual subcat-

egory structure in semantic categories. The resulting subcategory information can

help to link the outputs of current leading object classification and detection meth-

ods and improve the category level recognition performance.

2.1 Introduction

Visual categorization is a core problem in computer vision. Bag-of-Words (BoW)

approaches to category level classification advanced significantly during the past

few years [42, 67, 99, 49, 20]. This framework utilizes the local feature extraction,

feature encoding and feature pooling pipeline to generate global image represen-

tations. Each object category is then represented by a monolithic model, such as

a support vector machine classifier. However, the large intra-class diversities in-

duced by pose, viewpoint and appearance variations [76] make it difficult to build

an accurate monolithic model for each category, especially when there are many

ambiguous samples. For example, the chair category in Figure 2.1 includes three
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obvious subcategories, namely, sofa-like chairs, rigid-material chairs and common

chairs. In feature space, these subcategories are essentially far away from each

other. Furthermore, the ambiguous sofa-like chairs look more like sofas than com-

mon chairs. In this case, representing all chairs with a monolithic model will weaken

the model separating capacity and cannot distinguish sofas from chairs. Hence, it is

intuitively beneficial to model each subcategory independently. These considerable

intra-class diversities and inter-class ambiguities are common in the challenging real

world datasets [39, 109], which makes the subcategory awareness necessary.

To effectively employ the subcategory information for category level classification

in a principled way, the first step is to mine the subcategory structure automati-

cally. At first glance, clustering all training data of an object category based on

intra-class similarity seems to be a natural strategy, since objects belonging to the

same subcategory should intuitively have larger similarity in terms of appearance

and shape. However, in the context of generic object classification, subcategories

mined with only intra-class visual similarity cues are unnecessary to be optimal due

to the ignorance of valuable inter-class information [25]. More specifically, if the

samples are clustered by standard clustering methods, we are unable to utilize the

valuable inter-class information to handle the ambiguous samples. Then all ambigu-

ous samples, which often lie near the decision boundary, may be grouped together

and preserve the original complicated decision boundary. On the contrary, with

the assistance of inter-class information ambiguous samples can be grouped into

proper subcategories, which leads to easier subproblems and further improves the

overall performance. For instance, the chair category and other categories in Fig-

ure 2.1 have non-linear decision boundary. By noting the ambiguous chair sample

distribution near the decision boundary, these chairs should be intuitively divided

into separate subcategories. The proper split as indicated in Figure 2.1 will make

all subcategories linearly separable from other categories, which is only achievable

with the assistance of inter-class information. The above observation inspires us to

propose an ambiguity guided subcategory mining approach to explore the intrinsic

subcategory structure embedded in each category.

25
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Figure 2.1: Overview of the proposed ambiguity guided subcategory mining and
subcategory-aware object classification framework. For each category, training sam-
ples are automatically grouped into subcategories based on both intra-class simi-
larity and inter-class ambiguity. An individual subcategory model is constructed
for each detected subcategory. During training, the samples assigned to the tar-
get subcategory, the other subcategories belonging to the same category and other
categories are treated as positive, related and negative samples, respectively. The fi-
nal classification results are obtained by aggregating responses from all subcategory
models.

With mined subcategories, designing an effective strategy to train subcategory

classifiers tailored for category level classification is not trivial. A naive approach

is assigning the samples for the mined subcategory as positive samples and samples
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in the other categories as negative samples. However, such approach ignores the

informative related samples (samples from other subcategories of the same category)

and is unstable for some subcategories with small number of samples. Instead, we

propose to employ the related samples under the “Universum” SVM framework [85],

which can stabilize and regularize the subcategory classifier to further boost the

category level performance.

Overall, with subcategory awareness we can boost category level classification

by subcategory-aware object classification (SAOC). As indicated in Figure 2.1, we

split data into subcategories by ambiguity guided subcategory mining and train

an individual model for each subcategory. During subcategory classifier train-

ing, besides positive and negative samples we further leverage the related sam-

ples to regularize the subcategory classifier for better fitting the overall category

level data distribution. Since the diversities in each subcategory and ambigui-

ties between subcategories and other categories are reduced, more accurate shape-

based [27, 44]/appearance-based [96, 70] detectors and foreground classification

model [20] can be built, which fits nicely with the state-of-the-art detection as-

sisted classification framework [58, 86]. The final classification results are generated

by aggregating subcategory responses through subcategory-aware kernel regression.

The main contributions of this chapter are summarized as follows.

• We propose a novel ambiguity guided subcategory mining approach, which

gracefully integrates the intra-class similarity and inter-class ambiguity for

effective subcategory mining.

• We design an effective strategy to employ “related samples” under the “Uni-

versum” SVM framework. Such informative related samples will fine-tune the

subcategory classifiers to be more suitable for category level classification.

• We provide a subcategory-aware object classification framework based on the

detection assisted classification scheme [58, 86] to demonstrate how to effec-

tively employ the subcategory information for visual recognition. Our ambi-

guity guided subcategory mining approach can be seamlessly integrated into
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such framework. Utilizing mined subcategories can improve both detection

and classification performance and allow more effective subcategory level in-

teraction in the fusion model. The state-of-the-art classification results on the

PASCAL VOC datasets verify the effectiveness of our new framework.

The rest of the chapter is organized as follows. Section 2.2 briefly reviews the

related literature. Section 2.3 describes the overview of the proposed subcategory

aware classification framework. Detailed explanation of subcategory mining and

subcategory classification with related samples is presented in Section 2.4 and Sec-

tion 2.5. Extensive experiments are conducted in Section 2.6. Section 2.7 concludes

the chapter.

2.2 Related Work

Current leading detection assisted classification framework relies on the cooperation

of many recognition techniques, such as classification, detection and even segmen-

tation. A detailed review of all the fields is beyond the scope of this chapter, hence

we only focus on the topics that are most related to the proposed framework.

Object Classification. Traditional works for image classification usually fo-

cused on improving the popular local feature extraction-coding-pooling pipeline [18].

Some recent works [86, 58, 70, 96, 82, 6, 92] have begun to investigate out of this

pipeline. Harzallah et al. [58] introduced the pioneering work for detection and

classification contextualization, the extension of which leads to the state-of-the-art

results [86, 20, 82]. Segmentation results [14] have also been employed to boost the

classification performance [96, 70]. However, all the above methods train a mono-

lithic model for each category, and there are few works analyzing the data structure

embedded in each category. In this chapter, we show that properly splitting the

data into subcategories will boost the performance of the state-of-the-art pipeline.

Another line of work design a large number of weakly trained classifiers and treat

the output of these classifiers as image descriptor [6, 92]. Such weak classifiers are

usually obtained from semantic annotation, such as visual concepts, and bear the

28



mid-level information to some extent. Unlike these methods, our work automati-

cally discovery the structure embedded in each category without relying on manual

annotation.

Object Detection. For object detection, mixture models are proposed and

have become the standard approach [121, 44], as most semantic categories do not

form coherent visual categories. Early works only investigate heuristics based on

meta-data or manual labels such as bounding box aspect ratio [44], object scale [79],

object viewpoint [55] and part labels [10] to group the positive samples into clus-

ters. However, each of these methods has its own limitations and ignores other

more general intra-class variations such as appearance and shape variance [76, 53].

Malisiewicz et al. [76] handled the intra-class variation by training a separate model

for each positive instance, which inevitably reduces the generalization capacity of

each model. Some recent works begin to investigate the visual subcategory structure

embedded in each category [28, 53, 24, 121, 2, 29], which leads to considerable im-

provement in object detection performance. Gu et al. [53] grouped the samples into

components based on the key point and mask annotations. Aghazadeh et al. [2] built

a similarity graph based on intra-class information and utilized spectral clustering

to split the data. In contrast to our method, these methods either require manual

annotation or are fragile to outliers corresponding to highly occluded or strange

samples. Furthermore, most of previous works focus on object detection and are

not suitable for object classification. Finally, these methods discard the inter-class

information during data grouping, which is critical for object classification.

Locally Adaptive Classifiers. When the data has a complex non-linear struc-

ture, locally adaptive classifiers are usually superior to the use of a single global

classifier [93, 62, 25]. Kim and Kittler placed the local classifiers at the clusters

obtained by the K-means clustering algorithm [62]. Instead of placing the classifiers

based on the data distribution only, Dai et al. [25] proposed a responsibility mixture

model that uses the uncertainty associated with the classification at each training

sample. Using this model, the local classifiers are placed near the decision boundary

where they are most effective. Hoai and Zisserman [59] learn sub-categories by in-
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Figure 2.2: Diagrammatic flowchart of the proposed subcategory-aware object clas-
sification framework. Given a testing image, they are first processed by each learnt
subcategory model including detection and classification models. Then the responses
from all subcategory models are fed into the fusion model to generate the final cat-
egory level classification results.

vestigating a weakly supervised approach using both positive and negative samples

of the category. In this chapter, we borrow the idea of uncertainty piloted classi-

fication and propose an ambiguity guided subcategory mining approach under the

graph shift [72] framework.

2.3 Subcategory-aware Object Classification

Our subcategory-aware object classification (SAOC) framework relies on the auto-

matically mined subcategory information to boost the category level recognition. In

this section we mainly demonstrate how to effectively utilize the mined subcategory

information in current leading detection assisted classification scheme. Details on

subcategory mining and strategy of training a subcategory classifier are shown in

the sequent sections.

The diagrammatic flowchart of our SAOC framework is depicted in Figure 2.2.

The whole framework consists of three main components - detection, classification

and fusion models. We will first introduce each component of the framework and

then emphasize how subcategory information fits into each step.
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2.3.1 Classification Model

For classification, we follow the state-of-the-art Generalized Hierarchical Matching

(GHM) pipeline [20] and train a classifier for each subcategory individually. GHM

generalizes the Spatial Pyramid Matching by allowing image adaptive pooling in-

stead of pre-defined grid-based pooling. Both the detection confidence map and

saliency map have shown to be effective to guide the pooling process for certain

datasets [20]. In this chapter, since we focus on the scenarios where background is

usually cluttered and many of the concerned object classes may co-occur in a single

image, detection confidence maps are employed as the side information for GHM.

The details for classifier training are explained in Section 2.5.

2.3.2 Detection Model

Detection and classification are two strongly correlated and complementary tasks.

Most leading classification systems employ the detection techniques to some extent.

In our framework, the raw detection results are fed into the final fusion model as

middle level features as well as provide the confidence map for the GHM pooling.

Specifically, each subcategory is characterized by one shape-based sliding window

detector [44, 118] and one appearance-based selective window detector [97, 96],

respectively. The usage of two detectors is to guarantee both high precision and

high recall on object detection since none of the detectors can achieve this alone

and they complement each other.

2.3.3 Fusion Model

The fusion model mainly aims to: (1) boost the classification performance by com-

plementary detection results, (2) utilize the context of all categories for reweighting,

and (3) fuse the subcategory level results into final category level results. All of

these are achieved by kernel regression. First, we construct a middle level rep-

resentation for each training/testing image by concatenating classification scores

and the leading two detection scores from each subcategory model. The final cat-
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egory level classification results are then obtained by performing Gaussian kernel

regression on this representation. Without sophisticated models and complicated

postprocessing [37, 86], our subcategory-aware kernel regression is very efficient and

still performs well experimentally.

2.3.4 Subcategory Awareness

Subcategory awareness, which benefits each model separately and then boosts the

overall performance of the framework, plays a critical role in extending current

detection assisted classification framework.

• The subcategory information can be used to initialize both detection and clas-

sification models to better handle the rich intra-class diversities in challenging

datasets. Less diversity in each subcategory will lead to a simpler learning

problem, which can be better characterized by current state-of-the-art mod-

els, such as the Deformable Part based Model (DPM) for detection and the

foreground BoW models involved in GHM.

• The subcategory awareness will lead to more effective fusion models. First,

subcategory awareness allows us to model the subcategory level interaction.

For example, occluded chairs and sitting persons often occur together. The

co-occurrence of occluded chairs and sitting persons then should boost the

classification scores of each other. On the contrary, unoccluded chairs and

pedestrians are independent, the co-occurrence of which should not improve

the classification scores of either one. However, these two different cases cannot

be differentiated in the category level. Only by subcategory awareness can

such underlying correlation be captured effectively. Second, the subcategory

awareness is able to reduce the false mutual boosting when samples from

ambiguous categories are wrongly classified. More specially, diningtables often

appear together with common chairs. Then the co-occurrence of diningtables

and common chairs should lead to mutual boosting of classification scores.

On the contrary, sofas and diningtables are usually independent and thus
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Figure 2.3: Ambiguity guided subcategory mining approach. First instance affinity
graph is built by combining both intra-class similarity and inter-class ambiguity.
Then dense subgraphs are detected within the affinity graph by performing graph
shift. Each detected dense subgraph corresponds to a certain subcategory.

should not mutually boost the classification scores of each other. However, for

category level interaction, if sofas are misclassified as chairs, the dinningtable

scores may be boosted and thus lead to false alarms on diningtables. With

subcategory awareness, the response of diningtable will not be boosted as there

exists no mutual boosting between the sofa-like chairs and diningtables.

2.4 Ambiguity Guided Subcategory Mining

In this section, we will introduce how to find the subcategories by our ambiguity

guided subcategory mining approach as illustrated in Figure 2.3. Before digging

into details, we first summarize the notations used in this work. For a classification

problem, a training set of M samples are given and represented by the matrix

X = [x1, x2, . . . , xM ] ∈ Rd×M . The class label of xi is ci ∈ {1, 2, . . . , Nc}, where Nc

is the number of classes. We also denote the number of samples belonging to the

cth class by nc, and the corresponding index set of samples by πc.
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2.4.1 Similarity Modeling

In this work, we define the appearance similarity as the Gaussian similarity between

classification features (exp{−||xi − xj ||2/δ2}), where δ2 is the empirical variance of

x. Though it is a common similarity metric for object classification, appearance

similarity only is not enough for our SAOC framework, as in SAOC classification

and detection are closely integrated. Subcategory mining only based on appearance

similarity may lead to poor detectors, which in turn harms the overall performance.

Hence detection and classification feature spaces ought to be taken into count si-

multaneously for similarity calculation.

The HOG based sliding window methods are the dominant approaches for object

detection, which concatenate all the local gradients to form the window representa-

tion. These grid based HOG representations roughly capture object shapes and thus

are sensitive to highly cluttered backgrounds and misalignments. Directly comput-

ing distance in concatenated HOG feature space often leads to poor results due to

image misalignments [76]. To better measure the shape similarity between samples,

we train a separate Exemplar-SVM detector[76, 56] for each positive sample. The

misalignments can thus be partially handled by sliding the detector. The calibrated

detection scores [76] are defined as the pair-wise shape similarity.

The final instance similarity is defined by fusing the appearance similarity and

pair-wise shape similarity. More specifically, we denote the appearance similarity

as S(A)i,j and the pair-wise shape similarity as S(P )i,j . Both S(A) and S(P ) are

normalized to [0, 1]. The final instance similarity is defined as Si,j = S(A)i,j ×

S(P )i,j .

2.4.2 Ambiguity Modeling

As discussed above, inter-class information is crucial for object classification. Dai et

al. [25] have shown that placing local classifiers near the decision boundary instead

of based on the data distribution only leads to better performance. This is intuitive

as even there are many subcategories spreading separately in the feature space, if
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none of subcategories are close to samples of other categories, a single classifier may

be enough to correctly classify all these subcategories. On the contrary, if some

subcategories are near the decision boundary, separate classifiers should be trained

for these ambiguous subcategories. Otherwise the ambiguous subcategories may

decrease the classification performance of categories near the decision boundary.

As ambiguity is critical for object classification, subcategory mining should be

guided by ambiguity instead of only relying on intra-class data distribution. Before

introducing how to combine sample similarity and ambiguity into a unified frame-

work, we need to first explicitly define the ambiguity measure. Here, we consider

the L-nearest neighbours1 of a particular sample xi. If most of its neighbours share

the same class label as xi, the classification of xi should be easy. Otherwise, xi will

be ambiguous and likely to be classified incorrectly. We thus define the ambiguity

A(xi) of a training sample xi as:

A(xi) =

∑
j∈NL

i ,j /∈πci
Si,j∑

j∈NL
i
Si,j

, (2.1)

where NL
i is the index set of the L-nearest neighbours of xi. From the definition, a

large A(xi) means that the neighbouring samples are likely to be of different classes,

and hence the classification of xi is more uncertain. On the contrary, a small A(xi)

indicates that more neighbouring samples share the same class label of xi. Note that

computing the ambiguity relies on not only the intra-class information but also the

inter-class formation. The ambiguity will be high for those training samples lying

close to the decision boundary, and thus such samples should be more likely to form

a separate subcategory.

2.4.3 Subcategory Mining by Graph Shift

Intuitively, the subcategory mining algorithm is expected to satisfy the following

three properties. (1) It should be compatible with graph representation. Many sim-

ilarity metrics are defined based on pair-wise relation, such as our pair-wise shape

1In the experiments, we simply use L = nc/10 for the cth class.
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similarity. Hence, non-graph based algorithms, such as mean shift, k-means and [59],

may not be suitable due to the lack of ability to directly utilize the pair-wise infor-

mation. (2) It is able to utilize the informative inter-class ambiguities. Clustering

methods based on only intra-class data distribution may fail to detect the ambigu-

ous subcategories on the decision boundary and lead to subcategories imperfect for

classification. Hence the expected algorithm should be able to adaptively cluster the

data guided by ambiguity. (3) It should be robust to outliers. Some samples, such

as highly occluded or strange images, may not belong to any subcategory. Methods

insisting on partitioning all the input data into coherent groups without explicit

outlier handling may fail to find the true subcategory structure.

The traditional partitioning methods, such as k-means and spectral clustering

methods, are not expected to always work well for subcategory mining due to their

insistence on partitioning all the input data and inability to integrate the inter-

class information. Hence we need a more effective algorithm satisfying the above

three properties. The graph shift algorithm [72], which is efficient and robust for

graph mode seeking, appears to be particularly suitable for our subcategory min-

ing problem as it directly works on graph, allows one to extract as many clusters

as desired, and leaves the outlier points ungrouped. More importantly, the am-

biguity can be seamlessly integrated into the graph shift framework. The graph

shift algorithm shares the similar spirit with mean shift [23] algorithm and evolves

through iterative expansion and shrink procedures. The main difference is that

mean shift operates directly on the feature space, while graph shift operates on the

affinity graph. The simulation results for comparing our ambiguity guided graph

shift (AGS) with kmeans and spectral clustering are provided in Figure 2.4, from

which we can see that our AGS can lead to subcategories more suitable for boosting

classification.

Formally, we define an individual graph G = (V,A) for each category. V =

{v1, . . . , vn} is the vertex set, which represents the positive samples for the corre-

sponding category. A is a symmetric matrix with non-negative elements. The diag-

onal elements of A represent the ambiguity of the samples while the non-diagonal
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(a) Kmeans (b) Spectral clustering (c) Graph shift 

Figure 2.4: The subcategory mining results on synthetic data from kmeans, spectral
clustering and graph shift. Here, triangles (4) and dots (·) represent samples from
two different categories, respectively. Dots are split into subcategories, and different
colors represent different subcategories. Kmeans and spectral clustering cluster the
dots relying on only intra-class information, which leads to non-linearly separable
subcategories from triangles. However, by utilizing the inter-class information, all
three subcategories mined by the ambiguity guided graph shift are linearly separable
from triangles, which is desired for classification. For better viewing, please see
original colour pdf file.

element measures the similarity between samples. The modes of a graph G are

defined as local maximizers of graph density function g(y) = yTAy, y ∈ ∆n, where

∆n = {y ∈ Rn : y ≥ 0 and ||y||1 = 1}. More specifically, in this chapter sample

similarity and ambiguity are integrated and encoded as the edge weights of a graph,

whose nodes represent the instances of the specific object category. Hence subcate-

gories should correspond to those strongly connected subgraphs. All such strongly

connected subgraphs correspond to large local maxima of g(y) over simplex, which

is an approximate measure of the average affinity score of these subgraphs.

Since the modes are local maximizers of g(y), to find these modes, we need to

solve following standard quadratic optimization problem (StQP) [8]:

maximize g(y) = yTAy

subject to y ∈ ∆n.

(2.2)

Replicator dynamics, which arises in evolutionary game theory, is the most popu-

lar method to find the local maxima of StQP (2.2). Given an initialization y(0),

corresponding local solution y∗ of StQP (2.2) can be efficiently computed by the
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discrete-time version of first-order replicator equation, which has the following form:

yi(t+ 1) = yi(t)
(Ay(t))i
y(t)TAy(t)

, i = 1, . . . , n. (2.3)

It can be observed that the simplex ∆n is invariant under these dynamics, which

means that every trajectory starting in ∆n will remain in ∆n . Moreover, it has

been proven in [104] that, when A is symmetric and with non-negative entries, the

objective function g(y) = yTAy strictly increases along any non-constant trajectory

of Eqn. (2.3), and its asymptotically stable points are in one-to-one correspondence

with strict local solutions of StQP (2.2). One of the main drawbacks of replica-

tor dynamics is that it can only drop vertices and be easily trapped in any local

maximum. The graph shift algorithm provides a complementary neighbourhood ex-

pansion procedure to expand the supporting vertices [72]. The replicator dynamics

and the neighbourhood expansion procedure thus have complementary properties,

the combination of which leads to better performance. In addition, as the diagonal

elements may prevent the expansion to other vertices with no diagonal elements,

vertices with large diagonal elements tends to form a local subgraph.

Like mean shift algorithm, the graph shift algorithm starts from each individual

sample and evolves towards the mode of G. The samples reaching the same mode

are grouped as a cluster. Each large cluster corresponds to one subcategory, while

small clusters usually result from noises and/or outliers.

2.5 Subcategory Classification with Related Samples

With the subcategory mining results, the following step is to construct subcategory

classifiers tailored for category level classification. One intuitive approach is to

employ standard binary SVM while treating samples in the target subcategory as

positive samples and samples in other categories as negative samples. However, this

strategy may lead to sub-optimal results for the final category level classification

due to several reasons. First, this hard separation of the whole training samples
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may result in limited samples for some subcategories, which will lead to unstable

classifiers. Second, this approach is unable to exploit other informative samples in

the same category. As our main goal is to construct classifiers suitable for category

level classification instead of for accurate subcategory classification, classifiers only

relying on the samples in the target subcategory may decrease the final category

level performance.

To overcome the difficulty mentioned above, we propose the concept of “related

samples”. For a target subcategory, related samples are defined as samples from

other subcategories of the same category. Though unlabeled, the related samples

should be informative for classification. A prominent example for utilizing unlabeled

data is semi-supervised learning [17], where an additional set of unlabeled data are

assumed to follow the same distribution as the training inputs. However, for our

subcategory classification problem, related samples should have different distribu-

tion from either positive or negative samples. In other word, these related samples,

which are considered potentially helpful for classification, should represent a third

class. We note that the related samples can be viewed as a special form of “Univer-

sum” set as in [85]. Hence, we employ the “Universum” SVM framework [85, 105]

for subcategory classification.

“Universum” SVM is an extension of the standard SVM by introducing the

“Universum” set. Let D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1 be the set of la-

beled examples and let U = {(xj) | xj ∈ Rp}mj=1 denote the set of related sam-

ples. Ha[t] is the hinge loss (Ha[t] = max{0, a − t}) and Iε[t] is ε-insensitive loss

(Iε[t] = max{0, |t| − ε}). Besides penalizing the wrongly classified samples in D, we

also bring the related examples close to the separating hyperplane by minimizing

the ε-insensitive loss on the related samples in U . For a linear discriminant functions

fw,b(x) = (w · x) + b, the final object function is formulated as follows:

min
w,b

1

2
||w||2 + CD

n∑
i=1

H1[yifw,b(x)] + CU

m∑
j=1

Iε[fw,b(xj)]. (2.4)

Noting that Iε[t] = H−ε[t] + H−ε[−t], one can use the simple trick of adding the
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Figure 2.5: The influence of related samples for subcategory classifier. Red and blue
circles represent labeled samples for positive and negative class, respectively. Pink
triangles represent related samples. The upper figure shows the decision boundary
(black dashed line) obtained only based on labeled data. The resulting subcategory
classifier is not optimal for category level classification as some related samples
will be classified as negative samples with high confidence. The lower figure shows
the decision boundary (black dashed line) based on the proposed related sample
augmented approach, which is more suitable for category level classification as no
strong assertion is made about the labels of related samples. For better viewing,
please see original colour pdf file.

“Universum” examples twice with opposite labels and obtain an SVM like formula-

tion, which can be easily extended to the kernel form and solved with a standard

SVM optimizer [16].

Thus, we treat the mined samples, related samples and samples from other cat-

egories as the positive samples, “Universum” set and negative samples, respectively

40



for the subcategory classification problem. As shown in Figure 2.5, the related

samples will tune the classifier to better distinguish between the negative samples

and the positive + related samples. The classifier obtained only based on labeled

samples (upper figure) classifies the related samples as negative samples with hight

confidence. On the contrary, besides correctly classifying the labeled samples with

high confidence, the proposed related sample augmented approach (lower figure) will

not make a strong assertion about the labels of related samples, which is beneficial

for the final category level classification.

2.6 Experiments

In the following experiments, we first show our ambiguity guided subcategory mining

results for the bus and chair categories in Section 2.6.1. We then extensively compare

different subcategory mining methods and subcategory classifier training strategies

using VOC 2007 “trainval/test” datasets (i.e. “trainval” set for training and “test”

set for test) for proof of concept and ease of parameter tuning in Section 2.6.2

and 2.6.3. Finally, we evaluate the optimal configuration of our method on 2010

“trainval/test” datasets and compare with the state-of-the-art performance ever

reported in Section 2.6.4.

2.6.1 Ambiguity Guided Subcategory Mining Results

It has been shown that models trained by “clean” subsets of images usually perform

better than trained with all images [121]. The importance of “clean” training data

suggests that it is critical to cluster training data into “clean” subsets and remove

outliers simultaneously. Figure 2.6 displays our subcategory mining results for bus

and chair categories. Each row on the left side shows one discovered subcategory

while right side images are detected as outliers and left ungrouped.

For the bus category, the first 3 subcategories correspond to 3 different views

of buses. This is mainly due to the discriminative pair-wise shape similarity for

different views of buses, as the Exemplar-SVM works well for the categories with
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Outliers Subcategories 

Bus 

Chair 

Figure 2.6: Visualization of our ambiguity guided subcategory mining results for bus
and chair category on VOC 2007. Each row on the left shows one mined subcategory.
Images on the right are detected as outliers.

common rigid shapes. We note the shape and appearance of the last subcategory

show much larger diversity than other subcategories. Though these images are not

very similar to each other, the strong ambiguity with the person category still guides

them to form a separate subcategory.

For chairs, there are no common rigid shapes as buses and the shapes of vari-

ous chairs are very diverse, which leads to much noisier pair-wise shape similarity.

Hence the subcategory mining results should be the combination effects of both ap-

pearance similarity and shape similarity, which can be observed from the discovered

subcategories. Some subcategories may not have common shapes, but have similar

local patterns. For example, chairs of the 2nd subcategory all have the stripe-like

patterns. We note again the last detected subcategory looks like sofas. Besides

being different from other chair subcategories, the ambiguity with sofa is also one

of the main reasons that these images form a separate subcategory.
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Table 2.1: Classification results (AP in %) comparison for different subcategory
mining approaches on VOC 2007. For each category, the winner is shown in bold
font.
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FV [49] 75.7 64.8 52.8 70.6 30.0 64.1 77.5 55.5 55.6 41.8 56.3 41.7 76.3 64.4 82.7 28.3 39.7 56.6 79.7 51.5 58.3

FVGHM [20] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7

FVGHM-CTX 78.5 80.0 54.9 71.9 55.4 75.1 87.1 67.2 58.4 60.3 60.0 47.3 83.0 76.3 90.5 44.9 59.6 63.2 83.5 68.9 68.3

FVGHM-CTX-spectral 81.2 82.1 56.7 73.5 56.2 76.5 88.5 67.8 58.0 60.1 61.7 48.1 85.1 77.8 90.7 45.5 60.6 64.4 84.3 69.2 69.4

FVGHM-CTX-GS 81.8 82.3 58.5 74.1 56.5 77.2 88.7 68.4 59.4 61.5 63.0 49.8 84.9 80.0 91.3 47.7 61.3 65.9 85.7 70.8 70.4

FVGHM-CTX-AGS 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1

Table 2.2: Detection results (AP in %) comparison for different subcategory mining
approaches on VOC 2007.
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E-SVM [76] 20.8 48.0 7.7 14.3 13.1 39.7 41.1 5.2 11.6 18.6 11.1 3.1 44.7 39.4 16.9 11.2 22.6 17.0 36.9 30.0 22.7

MC [53] 33.4 37.0 15.0 15.0 22.6 43.1 49.3 32.8 11.5 35.8 17.8 16.3 43.6 38.2 29.8 11.6 33.3 23.5 30.2 39.6 29.0

DPM [43] 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

DPM-spectral 32.9 60.3 9.6 15.9 29.2 52.6 58.1 21.6 21.1 24.6 26.1 10.8 58.2 48.1 37.6 11.9 21.5 35.3 48.6 43.1 33.4

DPM-GS 34.3 60.7 11.4 17.5 29.9 53.0 58.9 23.7 22.9 25.8 30.3 12.6 60.8 49.2 42.6 13.3 22.9 37.0 50.2 45.4 35.1

DPM-AGS 34.7 61.4 11.5 18.6 30.0 53.8 58.8 24.7 24.7 26.8 31.4 13.8 61.4 49.2 42.2 12.9 23.9 38.5 50.8 45.5 35.7

2.6.2 Subcategory Mining Method Comparison

We extensively evaluate the effectiveness of different subcategory mining approaches

on the VOC 2007 dataset, as the ground-truth of its testing set is released. To

allow direct comparison with other popular works [49, 18, 20], we only implement

a simplified SAOC framework. More specifically, we choose the state-of-the-art

FVGHM method [20] as the classification pipeline (dense SIFT feature [75] with FK

coding [49] plus GHM pooling [67, 20] ) and the customized DPM [43] as object

detector. The only difference between customized DPM and the standard DPM is

the model initialization step. Unlike standard DPM, which utilize the aspect ratio to

cluster training samples into different groups, DPM-spectral, DPM-GS and DPM-

AGS replace the aspect ratio based initialization with spectral clustering, graph shift

and ambiguity guided graph shift mining results, respectively. For the standard

DPM, we use the publicly available implementation with the default settings (8
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parts) [43]. As detection assisted classification has become a standard approach

for classification on PASCAL VOC. We augment FVGHM with detection context

information as in [86] and utilize the resulting FVGHM-CTX as the starting point

to evaluate different subcategory mining methods. Dense SIFT is extracted using

multiple scales setting (spatial bins are set as 4, 6, 8, 10) with step 4. The size

of Gaussian Mixture Model in FK is set to 256. For GHM [20], we construct the

hierarchical structure with three-level clusters, each of which includes 1, 2, 4 nodes

respectively. One-vs-All SVM is learnt for each category/subcategory. For our

graph shift based approach, the subcategory number is determined by the expansion

size (the number of selected nearest neighbors for the expansion stage [72]). In

experiments the expansion size is decided by cross-validation, and the subcategory

number is generally from 2 to 5. For fair comparison, We did not compare with

the non-graph based approaches, such as k-means and [59], as they are difficult to

directly utilize our pair-wise shape similarity. Spectral clustering, the representative

graph based partition method, is chosen for comparison. We extensively evaluate

spectral clustering with the cluster number from 2 to 5 and report the best results.

The detailed classification results are shown in Table 2.1. It can be concluded

from the table that:

• Subcategory awareness does improve the performance of current detection as-

sisted classification framework. Subcategory information provides an effective

approach to decompose the original difficult problem into several easier sub-

problems. Such simplified sub-problem can be better captured by current

classification methods, which then improves the overall performance. Even

with the naive spectral clustering for category mining, we can still boost the

state-of-the-art classification performance;

• Our ambiguity guided graph shift approach is effective for subcategory mining.

The resulting subcategories can obviously improve the classification perfor-

mance; By adaptively grouping the samples into subcategories and rejecting

the outliers, our ambiguity guided graph shift approach performs much better
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than the spectral clustering.

• Ambiguity is informative for subcategories mining. The sample ambiguity im-

plicitly provides information about other categories and enables the algorithm

to focus on the samples near the decision boundary, which are more impor-

tant to the classification problem. With the assistance of sample ambiguity,

the graph shift algorithm can obtain better results for 17 out of 20 categories.

Figure 2.7 shows some exemplar results for the baseline method (FVGHM-CTX)

and the proposed algorithm (FVGHM-CTX-AGS) from the VOC “test” set. It can

be observed that the monolithic model (FVGHM-CTX) fails to recognize many

samples due to the variance of pose, view point and appearance. On the contract,

such samples can be successfully recognized by some subcategory classifiers. The less

diversities in each subcategory will make the corresponding classifier more reliable

and accurate. The final subcategory-aware classifier, which fuses the responses from

all subcategory classifiers, can successfully recognize more samples than the baseline

method.

As object detection is an inseparable component of our SAOC framework, we

also show the intermediate detection results in Table 2.2. Besides standard DPM, we

add two more baselines, which also use the multiple components/models for object

detection [53, 76]. When compared with other leading techniques in subcategory

based detection, our method obtains the best results for most categories, achieving

superior performance on categories with rigid shape or high ambiguity. We note

the MC [53], which requires manually labelling the pose of each image, performs

quite well on articulated categories. The inferior performance of our ambiguity

guided mining framework on articulated categories is mainly due to the limited

discriminative ability of current similarity metric.

The number of subcategories: We have proposed the ambiguity guided graph

shift for subcategory mining and verified its effectiveness. Here we evaluate the

influence of the number of subcategories. Particularly, we select the bus, chair and

horse category as representative.
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Baseline Classifier Subcategory Classifier Subcategory-aware Classifier
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Figure 2.7: Exemplar results for the baseline method (FVGHM-CTX) and FVGHM-
CTX-AGS from the VOC 2007 “test” set. The classification results are compared
by the confidence scores for each classifier. The blue and green bars represent the
baseline classifier and the subcategory classifiers, respectively. The subcategory-
aware classifier, which fuses the scores of all subcategory classifiers to obtain the
final score, is represented by the red bar. For better viewing, please see original
colour pdf file.

From Figure 2.8, the optimal number of subcategories depends on the character-

istics of the specific category. We can summarize the observations for the different

categories as follows:

• For small number of subcategories (K) the performance gradually increases

with increasing K, but stabilizes around K = 4. As there are large variation

for samples in each category due to pose, viewpoint and appearance variance,
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Table 2.3: Classification results (AP in %) comparison for different subcategory
classifier training strategies on VOC 2007. For each category, the winner is shown
in bold font.
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FVGHM-CTX-ASM 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1

FVGHM-CTX-ASM-2 76.9 79.0 55.9 72.7 53.6 76.4 88.4 67.8 60.6 59.9 61.3 50.4 79.9 74.5 87.8 44.8 59.2 62.2 83.7 69.7 68.2

FVGHM-CTX-ASM-RS 82.6 85.3 58.2 78.5 57.7 79.2 88.6 70.4 63.8 64.1 65.4 53.7 86.1 80.6 90.8 48.9 63.4 69.7 87.8 71.6 72.3

properly dividing them into subcategory will lead to easier sub-problems and

thus improve the overall performance.

• Further increasing K may decrease the performance. One of the reasons for

such decrease is the lack of data. Larger K will lead to fewer samples in each

subcategory. Such small number of samples may be insufficient for training a

reliable subcategory model and hurt the overall performance.

As the running time increases with K and K = 5 is large enough to get the optimal

performance for most categories, we select the best K from 2 to 5 for the balance

of accuracy and speed.

2.6.3 Subcategory Classifier Training Strategy Comparison

In this subsection, we evaluate different strategies for training subcategory classi-

fiers. We compare the related samples augmented approach described in Section 2.5

with two baseline strategies. For the target subcategory, the first strategy assigns

the samples in this subcategory as positive samples and the samples belonging to

the other categories as the negative samples. This is the approach used in Subsec-

tion 2.6.2. The second strategy assigns the samples in this subcategory as positive

samples and all other samples as the negative samples. The difference between two

baseline strategies lies in how to handle the related samples. The first strategy sim-

ply abandons them while the other one assigns them as the negative samples. We

use the same experiment setting as in Subsection 2.6.2 and the experimental results

are shown in Table 2.3. The penalty parameters CD and CU in Eqn. 2.4 are decided
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Figure 2.8: Variation in classification accuracy as a function of number of sub-
categories for three distinct categories on VOC 2007 dataset. The A.P. gradually
increases with increasing number of subcategories and stabilizes beyond a point.

by cross-validation. From the Table 2.3, it can be observed that:

• The baseline strategy 2 (FVGHM-CTX-AGS-2: assign samples for the target

subcategory as the positive samples and all other images as negative samples)

leads to the worst results. This is intuitive as our concern is category level

classification. However, because the samples from the same category are usu-
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Table 2.4: Classification results from the proposed framework with comparison to
other leading methods on VOC 2010.
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NLPR [37] 90.3 77.0 65.3 75.0 53.7 85.9 80.4 74.6 62.9 66.2 54.1 66.8 76.1 81.7 89.9 41.6 66.3 57.0 85.0 74.3 71.2

NEC [37] 93.3 72.9 69.9 77.2 47.9 85.6 79.7 79.4 61.7 56.6 61.1 71.1 76.7 79.3 86.8 38.1 63.9 55.8 87.5 72.9 70.9

ContextSVM [86] 93.1 78.9 73.2 77.1 54.3 85.3 80.7 78.9 64.5 68.4 64.1 70.3 81.3 83.9 91.5 48.9 72.6 58.2 87.8 76.6 74.5

GHM ObjHierarchy [20] 94.3 81.3 77.2 80.3 56.3 87.3 83.8 82.2 65.8 73.7 67.0 75.9 82.3 86.5 92.0 51.7 75.1 63.3 89.9 77.3 77.2

FVGHM-CTX-AGS 95.9 83.2 79.0 84.0 57.5 91.4 84.3 83.4 70.2 75.1 68.9 78.2 85.4 88.4 92.8 52.4 78.5 67.8 93.0 77.4 79.3

FVGHM-CTX-AGS-RS 96.4 84.8 78.3 85.5 57.0 91.7 85.6 85.1 72.7 77.2 70.6 80.1 86.4 89.4 92.0 54.2 78.0 70.5 93.4 79.4 80.4

ally more similar, this strategy will make subcategory classifier focus on the

boundary between the target subcategory and the other subcategories of the

same category instead of the boundary between the target subcategory and

other categories. Hence, the final subcategory classier is not discriminative for

the category level classification.

• Unlike the baseline strategy 1 (FVGHM-CTX-ASM), which abandons the

informative related samples, the proposed related samples augmented ap-

proach (FVGHM-CTX-ASM-RS) effectively utilize them under the “Univer-

sum” SVM framework. These related samples are effectively exploited to tune

the classifier for category level classification, especially for the subcategory

with small number of samples, which leads to the best performance.

2.6.4 Comparison with the State-of-the-arts

In this section we compare the performance of the proposed SAOC framework with

the reported state-of-the-art results on the VOC 2010 dataset. To obtain the state-

of-the-art performance, we conduct the experiments with more complicated setting.

For classification, we extract dense SIFT, HOG, color moment and LBP features in

a multi-scale setting. All these features are encoded with VQ, LLC and FK [18] and

then pooled by GHM. The pooling results are concatenated to form the final image

representation. During SVM training, χ2 and linear kernel is employed for VQ/LLC

and FK, respectively. For object detection, we train one shape-based detector and
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one appearance-based object detector for each object category. The augmented

DPM [118, 86] employing both the HOG and LBP features is adopted as the shape-

based model. For appearance-based approach [97, 96], we sample 4000 sub-windows

of different sizes and scales, and perform the BoW based object detector on these

sub-windows. The number of subcategories is also determined by cross-validation

as mentioned above.

We compare with the best known VOC 2010 performance from several recent

papers and the released results from the VOC 2010 challenge [37], which are all

obtained through the combinations of multiple methods in order to obtain better

performance. The comparison results are presented in Table 2.4, from which it can

be observed that:

• Our proposed method outperforms the competing methods on all 20 object

categories. We note that all the leading classification methods combine object

classification and object detection to achieve higher accuracy. However, most

of the previous methods simply fuse the outputs of a monolithic classification

model and a monolithic detection at category level. This limitation prevents

them from grasping the informative subcategory structure and the interaction

among the subcategories. By properly employing the subcategory structure,

we can improve the state-of-the-art performance by 2.1%.

• Related samples are informative for the category level classification. The pro-

posed related samples enhanced approach can further boost the overall per-

formance by 1.1%.

• Note that our methods can significantly improve the performance of rigid

categories (bus, train) and ambiguous categories (sofa, chair). For the rigid

categories, the proposed subcategory mining approach is able to split the data

effectively, which leads to ”clean” subcategories and boosts the performance.

For ambiguous categories, our model can implicitly re-rank the results. The

scores for subcategories without ambiguity are raised and scores for ambiguous

subcategories are depressed (still larger than samples not belonging to the
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corresponding category), which will also improve the AP.

When measured with object detection, we can achieve the performance of 37.1%

compared to the state-of-the-art results of 36.8 % [37], which is obtained by much

more complicated detection models than ours. As our framework focuses on classi-

fication, detailed detection results are omitted due to the space limitation.

2.7 Chapter Summary

In this chapter, we proposed an ambiguity guided subcategory mining and subcategory-

aware object classification framework for object classification. We modeled the sub-

category mining as a dense subgraph seeking problem. This general scheme allows

us to gracefully embed intra-class similarity and inter-class ambiguity into a unified

framework. The subcategories, which correspond to the dense subgraphs, can be

effectively detected by the graph shift algorithm. Ambiguity guided subcategory

mining results are then seamlessly integrated into the subcategory-aware detection

assisted object classification framework. The usage of “relate samples” allows us

to effectively tailor the subcategory classifiers for category level classification. Ex-

tensive experimental results on both PASCAL VOC 2007 and VOC2010 clearly

demonstrated the proposed framework achieved the state-of-the-art performance.
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Chapter 3

Towards Unified Object

Detection and Semantic

Segmentation

In this chapter, we show how to jointly solve object detection and semantic segmen-

tation in a unified framework. By enforcing the consistency between final detection

and segmentation results, our unified framework can effectively leverage the advan-

tages of leading techniques for both tasks to improve the overall performance.

3.1 Introduction

Object detection and semantic segmentation are two core tasks of visual recogni-

tion [27, 44, 95, 7, 115, 13, 90, 108, 103, 106]. Object detection is often formulated

as predicting a bounding box enclosing the object of interest [44] while semantic seg-

mentation usually aims to assign a category label to each pixel from a pre-defined

set [13]. Though strongly correlated, these two tasks have typically been approached

as separate problems and handled using substantially different techniques.

Template based detection using sliding window scanning (e.g. HoG [27] and

DPM [44]) has long been the dominant approach for object detection. Though good

at finding the rough object positions, this approach usually fails to accurately lo-
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Figure 3.1: The inconsistency of failure cases for object detection and semantic
segmentation. The images in the top row show the scenario where detection is
imperfect due to pose variance while the semantic segmentation works fine. The
images in the bottom row show the scenario where semantic segmentation is not
accurate while detectors can easily locate the objects. Thus, the two tasks are able
to benefit each other, and more satisfactory results can be achieved for both tasks
using our unified framework.

calize the whole object via a tight bounding box. In fact, it has been found that

the largest source of detection error is inaccurate bounding box localization (0.1 ≤

overlap < 0.5) [26, 60]. This may arise from the limited representation ability of

template-based detectors for non-rigid objects. For example, the deformable part-

based model (DPM) [44] detector works much better for localizing rigid cat heads

than for more amorphous cat bodies [80]. As shown in Figure 3.1 (a) and (b), the

DPM detector often locates the head region only, which leads to the localization er-

ror. On the other hand, owing to their homogeneous appearances, the whole objects

(cat and sheep) can be easily segmented out by the leading semantic segmentation

techniques [13]. If poor localizations can be corrected with the help of semantic

segmentation techniques [13], the overall detection performance would be improved

considerably from additional true positives and fewer false positives.

Hypotheses based semantic segmentation has achieved great success during the

past few years, which works by directly generating a pool of segment hypotheses

for further ranking [4, 13]. However, due to the lack of global shape models, these

approaches may fail to recognize the hypotheses of objects with heterogeneous ap-

pearances in the cluttered background, especially when all the generated hypotheses

have some artifacts. As shown in Figure 3.1 (c) and (d), the leading hypotheses

based semantic segmentation approach [13] either fails to segment out the object

53



of interest or selects a much larger segment hypothesis. In contrast, if the target

object has strong shape cues, the template-based detector [44] can easily locate the

object and thus provide valuable information for semantic segmentation. Recently,

a line of works, called detection-based segmentation, explored directly utilizing the

detection results as top-down guidance and then performing segmentation within

the given bounding boxes [11, 107]. However, such approaches usually have to make

a hard decision about detection results at the early stage. Hence the error for de-

tection, especially the localization error, will propagate to the segmentation results

and could not be rectified. Intuitively it is beneficial to postpone making a hard

decision till the last step of the pipeline [110].

Based on the above observations, we argue that object detection and semantic

segmentation should be addressed jointly. Object detections should be consistent

with some underlying segments to integrate local cues for better localization as

shown in Figure 3.1 (a) and (b). Similarly, hypotheses based semantic segmenta-

tion should benefit from template-based object detectors to select better segment

hypotheses as shown in Figure 3.1 (c) and (d). To this end, we propose a princi-

pled framework to unify current leading object detection and semantic segmentation

techniques. By enforcing the consistency, our unified approach can benefit from the

advantages of both techniques. In addition, some ambiguous object hypotheses may

be difficult to classify from the information within the window/segment alone, but

contextual information, such as local context around each object hypothesis and

global image-level context, can help [69, 86, 22]. Hence, we further integrate con-

textual modeling into our framework. The major contributions of this chapter can

be summarized as follows:

• We propose a principled framework for joint object detection and semantic

segmentation. By enforcing the consistency between detection and segmenta-

tion results, our unified framework can effectively leverage the advantages of

both techniques. Furthermore, both local and global context information are

integrated into our unified framework to distinguish the ambiguous examples.
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• With our unified framework, all information is accumulated at the final stage

of the pipeline for decision making. Hence, it is avoided to make any hard

decision at the early stage. The relative importance of different components is

automatically learned for each category to guarantee the overall performance.

• Extensive experiments are conducted for both object detection and semantic

segmentation tasks on the PASCAL VOC [39] datasets. The state-of-the-art

performance of the proposed framework verifies its effectiveness, showing that

performing object detection and semantic segmentation jointly is beneficial for

both tasks.

3.2 Related Work

Recently, by noticing the limitation and complementarity of techniques for both

tasks, some researchers have begun to investigate their correlations [64, 4, 12, 112].

The early work [64] simply employs the masks from detectors to initialize graph-cuts

based segmentations. In [68, 107], more sophisticated models are proposed to refine

the region within ground-truth bounding boxes. Rather than focusing on entire ob-

jects, Brox et al. employed Poselet detectors to predict masks for object parts [12].

Arbeláez et al. aggregated top-down information from detectors as activation fea-

tures for bottom-up segments [4]. Conversely, segmentation techniques have also

been explored to assist object detection in different ways. Dai et al. utilized seg-

ments extracted for each object detection hypothesis for better localization [26]. Fi-

dler et al. [48] proposed to improve object detection based on semantic segmentation

results [13]. The segments and detection windows are associated with several man-

ually designed geometry features. Unfortunately, nearly all the above approaches

utilize a sequential manner to fuse detection and segmentation techniques. Hence,

the overall performance heavily relies on the correctness of the initial results as the

errors in the early stage are difficult to rectify.

Probably the most similar approach to ours is [66], which also aims to perform

joint object detection and semantic segmentation. Our framework is different in the
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Figure 3.2: Overview of the proposed unified object detection and semantic seg-
mentation framework. Give a testing image, our UDS framework performs template
based detection using sliding window scanning and hypotheses based semantic seg-
mentation jointly. The agreement of the predictions from these two approaches is
ensured by the consistency model. Both local context around the object hypothesis
and global image context are also seamlessly integrated into our framework. The
final output is the bounding box position and the index of the selected segment
hypothesis.

sense that we avoid making any hard decision at the early stage. All the information

is aggregated at the final stage of the pipeline for decision making. On the contrary,

[66] has to make initial decision about detection results. Hence, the initial detection

errors, such as localization error, are difficult to rectify. Furthermore, unlike the

CRF based model used in [66], we employ a hypotheses based approach for semantic

segmentation. Hence, it is easier to ensure the shape consistency of top-down and

bottom-up information in our framework.

3.3 Unified Object Detection and Semantic Segmenta-

tion

In this section, we introduce the details of the proposed unified object detection and

semantic segmentation (UDS) framework. We start with an overview of the system

and then detail each key component.

Figure 3.2 illustrates the pipeline of the proposed UDS framework. For the seg-

mentation component, we employ the hypotheses based approach. Thus, with a
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pool of generated segment hypotheses, the segmentation problem is converted into

choosing the appropriate hypothesis. Given a testing image, we perform template

based detection using sliding window scanning and hypotheses based semantic seg-

mentation jointly. Successful detection and segmentation require the agreement of

both detection and segmentation predictions, which is achieved by utilizing a con-

sistency model. In addition, as context plays an important role in distinguishing

ambiguous object hypotheses, we further design a context model to aggregate both

local (around the target object) and global (image-level) context information. For

different object categories, each of these four components may have a different level

of importance, which is automatically decided during the learning process. The final

output of our system is the bounding box position (p0) and the selected segment

index (id) for the target object.

Formally, the joint detection and segmentation is achieved via the maximization

of the following score function:

S(I, z, id) = λDtSDt(z|wDt, I) + λSgSSg(id|wSg, I)

+λCtSCt(z, id|wCt, I) + SCs(z, id|wCs),
(3.1)

where wDt, wSg, wCt and wCs are the parameters for detection, segmentation, con-

text and consistency component, respectively. λDt, λSg, λCt are scalar weights for

the corresponding components. z captures the information for the template based

detector and id denotes the index of the selected segment. The details of each com-

ponent are introduced in the following subsections. Based on the proposed unified

approach, we avoid making any hard decision at the early stage. The final decision

is delayed to the last step of the pipeline with all the integrated information, which

implicitly relies on the learning mechanism to assess the relative importance of dif-

ferent components for each object category to guarantee the overall performance.

Finally, we want to emphasize that the proposed UDS framework provides a prin-

cipled way to unify detection and segmentation techniques. We can directly employ

the existing techniques or design new approaches for each component. Hence, it is
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easy to tailor UDS for specific applications, such as simultaneous person detection

and segmentation. In this chapter, we will focus on utilizing the UDS framework

for general object detection and semantic segmentation to verify its effectiveness.

3.3.1 Template based Detection Component

For the detection component, we aim to utilize the template based approach [44, 28],

as it is good at capturing the shape cue and thus complementary to the appearance

based segmentation techniques [13, 110]. In addition, through the mixture model

strategy [44], these approaches can easily encode sub-category level top-down in-

formation (subcategory specific soft shape mask in this work). In this chapter, we

utilize the state-of-the-art deformable part-based model (DPM) [44]. Following [44],

we define z = {c, p}, where p = {pi}i=0,··· ,m. Here, c denotes the mixture component

index. p0 encodes the location and scale of the root bounding box in an image pyra-

mid and {pi}i=1,··· ,m encodes the m part bounding boxes at the double resolution

of the root. By concatenating the parameters for all mixtures as in [44], the score

of a configuration can be written as

SDt(p, c|wDt, I) =

m∑
i=0

wDti · φDt(I, pi, c) +

m∑
i=1

wDti,def · φDt(p0, pi, c), (3.2)

where φDt(I, pi, c) and φDt(p0, pi, c) are the HoG pyramid features and spring defor-

mation features, respectively, as in [44]. As Eqn. (3.2) is linear in model parameters,

it can be written compactly as:

SDt(p, c|wDt, I) = wDt · φDt(I, p, c). (3.3)

3.3.2 Hypotheses based Segmentation Component

Hypotheses based semantic segmentation has achieved great success during the past

few years [14, 13, 110]. This line of approaches mainly consist of two stages. The

first stage generates a pool of segment hypotheses. The second stage ranks the

generated hypotheses based on category-dependent information. The top ranked
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segments are returned as the final solution. Many efforts have been devoted to hy-

potheses generation through either a pure bottom-up approach [14, 95, 4] or a CRF

based approach [110]. For the second stage, most approaches [14, 95, 110] simply

employ the appearance based classification/regression for ranking. However, due to

the limited discriminative ability of the appearance based ranking function, there

exists a large gap between upper-bound accuracy of generated hypotheses (larger

than 80%) and predicted accuracy of selected hypotheses (less than 50%) [14, 110].

As shown in Figure 3.1, due to the lack of global shape models, semantic segmen-

tation relying on pure appearance based ranking may fail to find the appropriate

hypotheses.

Based on the above observation, it may be expected that considerable improve-

ment over the current segmentation performance can be achieved by means of simply

selecting better hypothesis without generating more hypotheses. Hence, in this work

we use standard methods for hypotheses generation and focus on selecting better

segment hypotheses. To allow direct comparison, we utilize the publicly available

code of the second order pooling (O2P) approach [13] for hypotheses generation. For

the feature representation φSg(I, id) of the selected hypothesis id, a naive strategy

is directly employing the second order pooling features as in [13]. However, training

a latent model with high dimension features may be intractable. Hence, rather than

keeping φSg(I, id) as a high dimensional vector of raw second order pooling fea-

tures, we represent φSg(I, id) as the scores of pre-trained support vector regressors

(SVR) [13]. Then, the score function of the segmentation component can be written

as:

SSg(id|wSg, I) = wSg · φSg(I, id). (3.4)

3.3.3 Consistency Component

The consistency component mainly aims to enforce the consistency between de-

tection and segmentation prediction and thus leverage the advantages of both ap-

proaches. Soft shape mask has demonstrated to be effective for many detection
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(a) Exemplar soft shape masks for bus and cat categories (b) Regions for calculating context features 

Figure 3.3: (a) Examples of subcategory-specific soft shape masks for buses (top
row) and cats (bottom row). (b) Illustration of regions defined for computing the
context features. Based on the selected segment hypothesis and bounding box, we
adaptively divide the image into 7 regions as described in Section 3.3.4.

guided techniques [112, 4, 15]. Hence, in this work, we measure the consistency

between results of detection and segmentation approaches by calculating the corre-

lations between their masks as shown below:

SCs(z, id|wCs) =
m∑
i=0

wCsi ·m(pi, id, c) = wCs · φCs(p, id, c), (3.5)

where m(pi, id, c) is the binary map {1,−1} clipped from the segmentation hypoth-

esis id by the localized bounding box pi. Here, c in m(pi, id, c) is only used for

padding 0 to make the equation with mixture models more compact, which is a

common trick for the DPM approach [44].

Intuitively, the learned soft mask wCs from top-down detection techniques can

be seen as a shape guidance for bottom-up segmentation techniques. Enforcing the

correlation between masks from both approaches will guarantee the consistency of

top-down and bottom-up information. In addition, the mixture model strategy is

critical to cope with variance in the poses as well as the view points. To ensure

obtaining a reliable shape mask for each mixture component, we employ a shape

guided mixture initialization as introduced in Section 3.4.2. Some examples of such

soft shape masks are visualized in Figure 3.3 (a).
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3.3.4 Context Component

Both the local context around the target object [69] and the global image con-

text [86, 4, 22] have shown to be effective for visual recognition. The local con-

text directly models the interaction of the target object and the surrounding en-

vironment. For example, a horse is often occluded by a person riding on it. In

contrast, the global context mainly captures the image level information and co-

existence/exclusion relation between objects.

In order to leverage such informative context cues, we further enhance the frame-

work with an adaptive context model. Specifically, given a bounding box p0 and

a segment id, we divide the image into 7 regions (segment region, surrounding re-

gion within p0, 4 context boxes and the whole image) as shown in Figure 3.3 (b).

The area of the context box is half of that of the bounding box p0. Hence, the

spatial extent of the local context will vary adaptively based on p0. If a context

box crosses the boundary of the image, we consider only the area within the image.

Fisher Vector (FV) [49, 18] is employed as region feature representation, as it has

demonstrated the state-of-the-art performance for both object classification and de-

tection [20, 22]. Furthermore, the average pooling strategy for FV enables effective

calculation by utilizing the integral graph. Thus, the raw context representation is

the concatenation of FVs on the 7 regions mentioned above.

Similar to the segmentation component, the dimension of the raw context fea-

tures is too high. Hence, we first train a separate classifier for each object category

and then use the predicted scores as the final context features. Then, the context

component can be written as:

SCt(z, id|wCt, I) = SCt(p0, id|wCt, I) = wCt · φCt(I, id, p0), (3.6)

where φCtx(I, id, p0) is the concatenation of predicted scores for all classifiers. In

fact, our context model can be seen as a variant of the appearance based detection

approach to some extent. We still call it “context model” as it can provide valuable

and complementary context information to the other three components.

61



3.4 Inference and Learning

This section introduces inference and learning of the proposed UDS framework.

We begin with the general inference and learning procedure and then describe the

implementation details in practice.

3.4.1 Inference

Similar to DPM [44], we employ the sliding windows strategy for inference. For a

fixed root bounding box position p0 and mixture index c, inference in our model can

be done by solving the following optimization problem:

S(p0, c) = max
p1,··· ,pm,id

S(p, id, c) = max
id

[λDtwDt0 · φDt(I, p0, c)

+ λSgwSg · φSg(I, id) + λCtwCt · φCt(I, id, p0) + wCs0 ·m(p0, id, c)

+max
p1,··· ,pm

m∑
i=1

(λDtwDti ·φDt(I, pi, c)+λDtwDti,def ·φDt(p0, pi, c) + wCsi ·m(pi, id, c))].

(3.7)

By defining

R0(p0, id, c) =λDtwDt0 · φDt(I, p0, c) + λSgwSg · φSg(I, id)

+ λCtwCt · φCt(I, id, p0) + wCs0 ·m(p0, id, c)

Ri(pi, id, c) =λDtwDti · φDt(I, pi, c) + wCsi ·m(pi, id, c),

the Eqn. (3.7) can be written compactly as:

S(p0, c)=max
id

[R0(p0, id, c)+max
p1,··· ,pm

m∑
i=1

(Ri(pi, id, c)+λDtwDti,def ·φDt(p0, pi, c))]. (3.8)

With fixed segment index id, this scoring function is similar to that of DPM and

can thus be passed to an off-the-shelf DPM solver. Hence, the inference algorithm

works as follows: First, we compute R0(p0, id, c) for each root filter position p0 and

segment index id. Then, we prune the object hypotheses based on the score of R0

without sacrificing the overall recall rate (validated on the validation set). For each
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retained segment hypothesis, we further run the full model (3.7) locally with the

dynamic programming approach as in [44]. Finally, we compute the maximum over

the mixture components to obtain the final score of the object hypothesis.

3.4.2 Learning

By defining the output variable y = {p0, id} and latent variable h = {p1, · · · , pm, c},

the scoring function (3.1) can be rewritten as

S(I, y, h) = w · Φ(I, y, h), (3.9)

where w is the concatenation of all model parameters (wDt, wSg, wCt and wCs).

Φ(I, y, h) is the concatenation of all four components features weighted by their

weights (λDt, λSg and λCt) with respect to the label y and latent variable h.

We note that Eqn. (3.9) is linear in the model parameter w, thus this model can

be effectively learned based on the latent structure SVM framework [114, 51]:

min
w

1

2
||w||2+C[

n∑
j=1

max
ŷ,ĥ

(w·Φ(xj , ŷ, ĥ)+∆(yi, ŷ, ĥ))−
n∑
j=1

max
h

(w·Φ(xi, yi, h))], (3.10)

where the loss function ∆(yi, ŷ, ĥ) is defined as the weighted sum of the Intersection

over Union of the root filters and segment hypotheses (in current implementation,

we simply use the average value of two IoUs).

The standard approach to solve the optimization problem (3.10) is the Concave-

Convex Procedure (CCCP) [116, 114]. However, as the CCCP algorithm only guar-

antees to converge to a local minimum, we learn the model progressively to ensure a

reasonable initialization. More specifically, we first train each component separately

and jointly learn the overall model with Eqn (3.10).

For the object detection component, we follow the original training approach

of DPM [44] except for the mixture initialization and part discovery. Aspect ratio

based clustering is used in [44] for mixture initialization. However, such an approach

may ignore the potential pose/view variance. Hence, we employ the idea of “sub-
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category mining” [34, 3, 28] by utilizing the additional segmentation annotation to

ensure a more reliable shape mask for each component. Specifically, we resize all

the cropped segmentation masks to the same height and l2 normalizes all the resized

masks. Then, the similarity between two normalized masks a and b is defined as the

maximal value of the convolution response map of a and b. Finally, the graph shift

algorithm [72] is employed to discover the dense subgraphs, which correspond to the

subcategories, as in [34]. The resulting subcategories are then used for mixture ini-

tialization. The original DPM approach [44] discovers the salient parts greedily by

covering the high-energy region of the root HOG-template. Recently, [15] suggests

that modifying this “saliency” measure by multiplying the HOG magnitude by the

average segmentation mask for each component will lead to more semantic mean-

ingful parts. Hence, we follow their approach by utilizing the modified ‘saliency”

measure for part discovery. For the consistency component, the pixel-wise mean of

all segmentation masks for each component is utilized for initialization.

In the final joint learning stage, all model parameters (wDt, wSg, wCt and wCs) in

Eqn. (3.10) are jointly optimized. Thus, the relative importance of each component

will be automatically tuned for each category.

3.4.3 Implementation Details

As discussed in Section 3.3.3 and 3.3.4, we employ the predicted scores of the basic-

level classifiers as features for both the segmentation (φSg(I, id) in Eqn. (3.4)) and

context (φCt(I, id, p0) in Eqn. (3.6)) components to improve the efficiency of the UDS

framework. For the segmentation component, we follow the second-order pooling

approach [82] by utilizing the public available implementation provided by the au-

thor. 150 top-ranked object hypotheses are generated with the CPMC method for

each image [14]. The concatenation of scores from support vector regressors of all

categories is employed as the segmentation component feature for each hypothesis.

For the context component, the dense SIFT [75] and color moment are extracted

as low-level features. Both features are projected to 64 dimensions using PCA and

the size of Gaussian Mixture Model in FV [18] is set to 64. The concatenation of
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Table 3.1: Proof-of-Concept experiments for object detection on VOC 2010 valida-
tion set.
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DPM 43.6 51.1 4.4 3.4 21.7 57.4 40.4 17.0 16.4 15.3 10.2 11.1 37.2 39.1 40.4 5.2 27.4 18.9 39.7 37.1 26.9

S-DPM 48.2 52.7 4.9 5.7 25.3 60.6 40.8 21.6 16.6 16.3 17.0 12.5 40.5 38.8 41.3 6.9 32.5 23.2 44.3 40.8 29.5

S-DPM+Sg 57.6 55.4 22.6 15.8 27.9 64.3 45.8 54.8 10.7 26.9 21.9 35.2 48.2 49.8 38.8 13.3 36.3 32.5 49.0 45.3 37.6

S-DPM+Sg+Ct 59.2 56.7 22.8 16.4 28.9 63.7 46.6 56.2 15.6 29.1 25.1 36.9 49.5 50.7 39.3 14.4 38.2 36.1 49.2 46.2 39.0

resulting FVs in all regions is then trained with the LibLinear library [40] in a sim-

ilar manner with [27]. Finally, the confidence scores of classifiers for all categories

are utilized as the context component features.

For the shape-guided DPM, the number of subcategories is automatically decided

by the graph shift algorithm based on the expansion size, which is decided by cross-

validation [72]. The resulting subcategory number for different object categories is

generally from 4 to 8.

The weights λDt, λSg and λCt in Eqn. (3.1) are set as 0.1, 0.2 and 0.2, respectively,

based on cross-validation. In fact, the final accuracy is not very sensitive to the

variation of these parameters, as our UDS framework can automatically learn w to

adjust the relative weights of different components.

3.5 Experiments

In the following section, we extensively evaluate the proposed UDS framework on

the challenging PASCAL Visual Object Challenge (VOC) datasets [39]. We first

conduct multiple Proof-of-Concept experiments on the validation set to assess the

relative importance of each individual component. Then, we evaluate the opti-

mal configuration of the proposed framework on the test set to compare with the

state-of-the-art performance ever reported for both object detection and semantic

segmentation tasks.
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Table 3.2: Proof-of-Concept experiments for semantic segmentation on VOC 2010
validation set.
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O2P 83.2 70.0 22.0 43.8 39.6 40.3 60.3 64.9 55.7 13.2 37.1 20.2 42.5 37.3 47.1 50.5 31.9 51.5 27.2 58.6 50.6 45.1

S-DPM+ Sg 82.5 74.2 20.5 45.0 42.7 38.4 65.1 66.9 55.8 16.1 37.3 23.3 41.3 34.7 49.6 49.5 34.1 54.6 33.4 63.7 53.5 46.8

S-DPM+Sg+Ct 83.2 74.9 22.9 45.7 43.4 40.6 66.2 68.1 56.4 16.8 39.8 24.0 44.2 36.3 49.9 50.9 34.4 56.7 34.1 64.8 54.4 48.0

3.5.1 Proof-of-Concept Experiments

In this subsection, we evaluate the relative importance of individual components in

our framework on VOC 2012 “train/val” datasets (i.e. “train” set for training and

“val” set for test) with the extra segmentation annotation from [57] for proof of

concept and ease of parameter tuning.

Table 3.1 and 3.2 show the detailed object detection and semantic segmentation

results, respectively. It can be concluded from the tables that:

• Shape-guided subcategory mining does improve the detection performance.

By better capturing the pose/viewpoint variance and adaptively deciding the

number of subcategories, shape-guided DPM (S-DPM) can provide more reli-

able shape masks for our UDS framework.

• Object detection and semantic segmentation techniques are complementary.

Performing two tasks jointly will boost the performance of each other. As

shown in Table 3.1, the joint approach (S-DPM+Sg) significantly outperforms

the detection baseline (S-DPM) by 8.1%. In fact, the DPM based detector

mainly captures the shape cues. Hence, it may locate rigid parts only and

thus leads to localization error. On the contrary, the underlying segmentation

component mainly relies on the appearance cues and thus can help to rec-

tify the bounding box position, especially for the objects with homogeneous

appearances. Table 3.2 demonstrates that the joint approach (S-DPM+Sg)

also outperforms the segmentation baseline (O2P). For objects in the clut-

tered background, shape based detectors can provide valuable information to

assist in selecting better segment hypotheses. More examples to illustrate the
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Figure 3.4: More exemplar results on VOC 2012 from the proposed UDS framework
and baseline methods (DPM [44] for detection and O2P [13] for segmentation).

complementarity of the two tasks are shown in Figure 3.4.

• The context component can further improve the performance for both tasks.

By employing both the local and global context cues, the full model (S-

DPM+Sg+Ct) can better distinguish ambiguous objects and thus yield the

best performance.

3.5.2 Comparison with State-of-the-arts

In this subsection, we evaluate our UDS framework on the Pasval VOC test set

to have a direct comparison with the state-of-the-arts. Though our framework can

perform joint detection and segmentation, these two tasks are usually evaluated

using different image sets. Hence, we slightly tweak the training process to allow

the direct comparison with previous methods. Specifically, for the detection task, we

train the model on the VOC 2010 “main-trainval” set, as many leading methods [48,

22] only reported their results on this dataset. For the segmentation task, we perform

the experiments on the union of the VOC 2012 “main” and “seg” sets. The extra

segmentation annotation from [57] are used for both tasks. We omit the results of

VOC 2010 segmentation and VOC 2012 detection due to space limitation.

Object Detection: The detailed comparison of the proposed framework with
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Table 3.3: Comparison of detection performance on VOC 2010 test set.

Method p
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DPM [44] 48.2 52.2 14.8 13.8 28.7 53.2 44.9 26.0 18.4 24.4 13.7 23.1 45.8 50.5 43.7 9.8 31.1 21.5 44.4 35.7 32.2
van de Sande et al. [95] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Gu et al. [53] 53.7 42.9 18.1 16.5 23.5 48.1 42.1 45.4 6.7 23.4 27.7 35.2 40.7 49.0 32.0 11.6 34.6 28.7 43.3 39.2 33.1
NLPR [39] 53.3 55.3 19.2 21.0 30.0 54.4 46.7 41.2 20.0 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3 36.8
MITUCLA [118] 54.2 48.5 15.7 19.2 29.2 55.5 43.5 41.7 16.9 28.5 26.7 30.9 48.3 55.0 41.7 9.7 35.8 30.8 47.2 40.8 36.0
ContextSVM [86] 53.1 52.7 18.1 13.5 30.7 53.9 43.5 40.3 17.7 31.9 28.0 29.5 52.9 56.6 44.2 12.6 36.2 28.7 50.5 40.7 36.8
FV [22] 65.9 50.1 23.7 24.1 20.4 52.6 47.1 50.9 13.2 32.8 31.8 41.4 43.9 55.3 29.8 14.1 41.7 35.6 46.7 46.9 38.4

Using Extra Semantic Segmentation Annotation From [57]

segDPM [48] 58.7 51.4 25.3 24.1 33.8 52.5 49.2 48.8 11.7 30.4 21.6 37.7 46.0 53.1 46.0 13.1 35.7 29.4 52.5 41.8 38.1
Ours:UDS 60.1 54.3 23.9 22.9 31.8 57.0 51.1 54.8 17.6 35.7 26.7 42.8 51.2 58.0 41.7 15.3 37.8 39.8 54.9 45.6 41.2

current leading approaches for object detection is presented in Table 3.3. The

first two methods represent two different lines of approaches for object detection.

DPM [44] employed shape based templates with the sliding window strategy while

van de Sande et al. [95] utilized the appearance based model with the selective

window strategy. Gu et al. [53] further extended DPM with a multiple component

mechanism. Despite their theoretical interest, these methods only focus on the in-

formation within the windows and thus ignore the informative context cues, which

leads to inferior results compared with other competitors. All other methods are

obtained through the combinations of multiple techniques in order to obtain better

performance.

From Table 3.3, it can be observed that our proposed UDS outperforms all the

competitors in terms of mAP. The proposed UDS framework achieves the best per-

formance in 9 out of the 20 categories with an mAP of 41.2%, which is 3.1% higher

than that of the state-of-the-arts. With our unified approach, the advantages of both

object detection and semantic segmentation techniques can be leveraged to improve

the overall performance. In addition, it can be noted that our method can signifi-

cantly improve the performance on the categories with homogeneous appearances,

such as cats and dogs. For such categories, the underlying segmentation component

can easily segment the objects out for rectifying the localization errors.

Semantic Segmentation: Table 3.4 shows the detailed comparison of the

proposed framework with previous approaches on the VOC 2012 segmentation chal-
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lenge. Based on the basic idea behind the methods, all the competing methods can

be divided into two categories. The first category (O2P-CPMC-CSI, CMBR-O2P-

CPMC-LIN, O2P-CPMC-FGT-SEGM and Yadollahpour) employs the hypotheses

based segmentation. The difference among them mainly lies in the hypotheses gen-

eration procedure and ranking function design. Most of them provide the results

with/without extra annotation from [57]. The other category (NUS-DET-SPR-GC-

SP and Xia) estimates the semantic segmentation results based on the bounding

boxes from object detection. Hence, these approaches heavily rely on the detector

performance and need extra annotation for object detection.

The results in Table 3.4 demonstrate that the proposed UDS framework per-

forms the best in 8 out of the 21 categories, achieving the best average performance

of 50%. As discussed above, our unified approach can leverage the advantages of

both object detection and semantic segmentation techniques. One main source of

the improvement for semantic segmentation comes from the successful detection of

objects in cluttered backgrounds. The bottom-up segmentation techniques may not

be able to extract the accurate boundary of objects in cluttered backgrounds, which

makes the following ranking problem very difficult. However, the template based

detection mainly focuses on the object shape and thus is robust to the cluttered

backgrounds to some extent. Hence, the proposed framework can significantly im-

prove the semantic segmentation performance of rigid objects, such as aeroplane,

bus and motorbike, as verified in Table 3.4.

3.6 Chapter Summary

In this chapter, we proposed a unified framework for joint object detection and

semantic segmentation. Noticing the complementarity of current detection and seg-

mentation approaches, we explicitly enforce the consistency between their outputs to

leverage the advantages of both techniques. Both local and global context informa-

tion are further integrated into the framework to better distinguish the ambiguous

samples. All the information is aggregated at the end of the pipeline for decision
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Table 3.4: Comparison of segmentation performance on VOC 2012 test set.
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O2P-CPMC-CSI [38] 85.0 59.3 27.9 43.9 39.8 41.4 52.2 61.5 56.4 13.6 44.5 26.1 42.8 51.7 57.9 51.3 29.8 45.7 28.8 49.9 43.3 45.4
CMBR-O2P-CPMC-LIN [38] 83.9 60.0 27.3 46.4 40.0 41.7 57.6 59.0 50.4 10.0 41.6 22.3 43.0 51.7 56.8 50.1 33.7 43.7 29.5 47.5 44.7 44.8
O2P-CPMC-FGT-SEGM [38] 85.1 65.4 29.3 51.3 33.4 44.2 59.8 60.3 52.5 13.6 53.6 32.6 40.3 57.6 57.3 49.0 33.5 53.5 29.2 47.6 37.6 47.0
Yadollahpour et al. [110] 85.7 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8 48.1

Relying on Extra Object Detector

NUS-DET-SPR-GC-SP [38] 82.8 52.9 31.0 39.8 44.5 58.9 60.8 52.5 49.0 22.6 38.1 27.5 47.4 52.4 46.8 51.9 35.7 55.3 40.8 54.2 47.8 47.3
Xia et al. [107] 82.5 52.1 29.5 50.6 35.6 59.8 64.4 55.5 54.7 22.0 38.7 24.3 48.3 55.6 52.9 52.2 38.2 49.1 35.5 53.7 53.5 48.0

Using Extra Semantic Segmentation Annotation From [57]

O2P-CPMC-CSI [38] 85.0 63.6 26.8 45.6 41.7 47.1 54.3 58.6 55.1 14.5 49.0 30.9 46.1 52.6 58.2 53.4 32.0 44.5 34.6 45.3 43.1 46.8
CMBR-O2P-CPMC-LIN [38] 84.7 63.9 23.8 44.6 40.3 45.5 59.6 58.7 57.1 11.7 45.9 34.9 43.0 54.9 58.0 51.5 34.6 44.1 29.9 50.5 44.5 46.7
O2P-CPMC-FGT-SEGM [38] 85.2 63.4 27.3 56.1 37.7 47.2 57.9 59.3 55.0 11.5 50.8 30.5 45.0 58.4 57.4 48.6 34.6 53.3 32.4 47.6 39.2 47.5
Ours:UDS 85.2 67.0 24.5 47.2 45.0 47.9 65.3 60.6 58.5 15.5 50.8 37.4 45.8 59.9 62.0 52.7 40.8 48.2 36.8 53.1 45.6 50.0

making and thus hard decision is avoided to make at the early stage as in traditional

pipelines. The relative importance of different components is automatically learned

for each category to guarantee the overall performance. Extensive experimental re-

sults clearly demonstrated the proposed framework has achieved the state-of-the-art

performance.
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Chapter 4

A Deformable Mixture Parsing

Model with Parselets

In this work, we address the problem of human parsing, namely partitioning the

human body into semantic regions. Traditional methods usually handle this prob-

lem by a sequential or iterative approach. By reconsidering the basic representation

for human parsing, we propose the novel Parselet representation. Then, we directly

solve the human parsing problem without intermediate tasks to guarantee the pars-

ing performance.

4.1 Introduction

Human parsing [111] has drawn much attention recently for its wide applications

in human-centric analysis, such as person identification [50] and clothing analy-

sis [19, 74]. The success of human parsing relies on the seamless cooperation of

human pose estimation [113], segmentation [4], and region labeling [111]. However,

previous works often consider solving the problem of human pose estimation as the

prerequisite of human parsing [111]. We argue that these approaches cannot obtain

optimal pixel level parsing due to the inconsistent targets of these tasks.

In this chapter we aim to develop a unified framework for human parsing. To

this end, we reconsider the basic level representation. Although the key points [117]

71



Parselets 

pants 
… 

face 
… 

skirt 
… 

hair right  
arm 

bags 

…… 

upper 
clothes 

Head Half body 
clothes 

Upper 
body 

Low 
body 

… 

hair 

Deformable Mixture Parsing Model 

upper 
clothes skirt 

left 
arm 

right 
shoe 

… … 
Leaf 

And 

Or 

… 

Human Parsing 

Figure 4.1: Parselets are image segments that can generally be obtained by low-
level segmentation techniques and bear strong semantic meaning. The instantiated
Parselets, which are activated by our Deformable Mixture Parsing Model, provide
accurate semantic labeling for human parsing.

or rigid templates [113, 44] representation can facilitate the localization of human

parts, leading to great success in human detection and pose estimation [113], it

fails to provide accurate pixel-level labeling. This limitation hinders key points or

templates to be the ideal building blocks for human parsing. On the other hand,

there exists exciting progress of bottom-up region hypotheses based segmentation

methods [14, 35], which have achieved the state-of-the-art performance [38]. More

specifically, region hypotheses based segmentation is performed by first generating

extensive object hypotheses based on bottom-up information and then ranking them,

with the critical assumption that the object has a large probability to be tightly

covered by at least one of the generated hypotheses. This assumption usually holds

well for objects with homogeneous appearance. However, for objects with large

appearance variance, finding a single region hypothesis to tightly cover the whole

object is very difficult.

Based on the above observation, we propose to use Parselets as the building
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blocks for human parsing as shown in Fig. 4.1. The Parselets are a group of se-

mantic image segments with the following characteristics: (1) they can generally

be obtained by low-level over-segmentation algorithms [5, 1], i.e. they are parsable

by bottom-up techniques; (2) they have strong and consistent semantic meaning,

i.e. they are parsable by the human knowledge. An object consisting of parts with

large variance usually cannot be well segmented out by the low-level segmentation

methods, e.g. a human body cannot be perfectly segmented by edge-based segmen-

tation [5]. However, we argue that the localized semantic regions, e.g. the skirt or

hair area of human in Fig. 4.1, often show homogeneous appearance and can be

segmented out as segments. Such image segments, denoted as Parselets, explicitly

encode segmentation and semantic level information.

With the Parselet representation, we propose the Deformable Mixture Pars-

ing Model (DMPM) for human parsing. DMPM is represented as an “And-Or”

graph [117] based hierarchical model to simultaneously handle the deformation and

multi-modalities of Parselets. The joint learning and inference of best configuration

for both appearance and structure in our DMPM guarantee the overall performance.

We perform human parsing by generating extensive hypotheses for Parselets and

subsequently assembling them by DMPM. The major contributions of this chapter

can be summarized as follows:

• We propose the novel Parselet representation. By explicitly encoding segmen-

tation and semantic information, Parselets serve as ideal building blocks for

human parsing models. Human parsing is then performed with the Parselet

representation, rather than with the key point [117] or rigid template [113, 44]

representation. The instantiated Parselets directly provide accurate pixel-

level semantic information. In practice, several over-segmentation techniques

are utilized to ensure the high recall rate of Parselets.

• We build a novel Deformable Mixture Parsing Model (DMPM) for human

parsing. The “co-occurrence” and “exclusive” modalities of Parselets are ex-

hibited as the “And-Or” structure of sub-trees. To further solve the problem of
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Parselet occlusion or absence, we directly add the “visibility” property at the

corresponding nodes. Joint learning and inference of appearance and structure

parameters guarantee the overall performance. In addition, the tree structure

of our DMPM allows efficient inference.

• In order to verify the effectiveness of the proposed framework, we construct

a high resolution human parsing dataset consisting of 2,500 images. All the

pixels in the images are thoroughly annotated with 18 types of Parselets. As

far as we know, this is the largest human dataset with full parsing labels. It

could serve as the benchmark for segmentation-based human analysis in the

research community.

4.2 Related Work

Selective Search for Recognition: Selective search approaches for object recog-

nition have achieved great success in the past few years [83, 35, 96, 14, 4, 13]. This

line of works first generate a set of object hypotheses based on bottom-up informa-

tion and then convert the recognition problem into a ranking problem. Compared

with exhaustive sliding window scanning [27, 44], selective search usually enables

more expensive and potentially more powerful recognition techniques [97, 96]. Our

work differs from the above works significantly as we focus on parts instead of whole

objects. We claim that region hypotheses are better hypotheses for parts than for

objects toward categories with heterogeneous appearance. Gu et al. [54] also ad-

dressed the problem of segmenting and recognizing objects based on their parts.

They generated part hypotheses and then formulated the problem in the general-

ized Hough transformation framework. Our work differs from this work significantly

as their work focuses on the segmentation and is unable to exploit the hierarchical

structure of the object.

Part Based Model: Hierarchical part based models can better grasp the

complicated structure than rigid models and thus usually achieve better perfor-

mance for articulated objects [44, 113, 120]. Pictorial Structure (PS) based meth-
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ods [45, 44, 113] are the most common approaches for pose estimation and object

recognition. However, unlike our DMPM, part templates are usually spread in all

nodes of PS based models, which makes it inconvenient to model complicated com-

posite relation. The stochastic image grammar model [117, 21] is also effective for

modeling the hierarchical structure. However, these models rely on complex learn-

ing and inference procedures which can only be made tractable using approximate

algorithms [87]. On the contrary, despite the sophisticated structure of DMPM, we

show that a tractable and exact inference algorithm exists.

Human Parsing: Human parsing plays an important role in many human-

centric applications [19, 74, 100, 73]. Our method differs from previous methods [111]

as previous research on human parsing tends to first align human parts [113] due to

the large pose variations or the complexity of the models. However, such sequential

approaches may fail to capture the correlations between human appearance and

structure, leading to unsatisfactory results. The proposed DMPM, which can solve

human parsing in a unified framework, significantly distinguishes our work from

others.

4.3 Parselets

Parselets lie at the heart of our human parsing framework. In this section, we first

give the definition of human Parselets. Then we present the details of hypothesis

generation and feature representation for Parselets. And finally, we briefly introduce

the modalities of Parselet ensembles.

4.3.1 Parselet Definition

We notice that the classical part-based models [45, 113] usually divide body into

parts based on joints. However, such decomposition is unsuitable for segment hy-

potheses because joint-based parts usually do not correspond to the segments from

bottom-up cues. Considering the left image in Fig. 4.2, the whole dress is likely to

be captured by a single segment from the bottom-up techniques. But for the right
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Figure 4.2: Human decomposition based on different basic elements. The origi-
nal image, Parselet based decomposition and joint based decomposition are shown
sequentially.

image, the upper clothes, coat and pants should intuitively correspond to three sep-

arate segments. This difference is hard to be grasped by joint based decomposition.

To overcome this limitation, we propose the Parselets to serve as the building el-

ements for our parsing model. Formally, the Parselets are a group of semantic

image segments which have the following characteristics: (1) they can generally be

obtained by low-level segmentation algorithms [5, 1, 14], i.e. they are parsable by

the bottom-up techniques. This characteristic guarantees that Parselets can be re-

trieved with high possibility by the bottom-up hypothesis generation schemes. (2)

They bear strong and consistent semantic meaning, i.e. they are parsable by the

human knowledge. Since our ultimate goal is to perform human parsing, the basic

elements of the parsing model should have clear semantic meaning.

We now decompose human body into homogeneous regions based on low-level

cues. The homogeneous regions, which have clear semantic meaning and appear in

many different images, are defined as Parselets. Through careful design, each defined

Parselet will have high probability to form a single segment. Specifically, we define

18 types of Parselets as described in Table 4.1. These Parselets are representative

and can properly cover most of human body. They engage about 98.4% of human

body in our labeled datasets and can be obtained with high recall rate using the

method introduced in Section 4.3.2. Detailed statistics are shown in the experiment

section. It is worth noting that the Parselet definition is flexible to be redesigned

for different applications. The only assumption here is that those semantic regions
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Table 4.1: 18 types of Parselets for human

Parselets

Head hat hair sunglasses

Body upper clothes coat full body clothes
skirt pants

Foot left/right shoe

Skin face left/right arm left/right leg

Accessory bag scarf belt

can be segmented out with high probability.

4.3.2 Hypothesis Generation for Parselets

In order to obtain the Parselet hypotheses with high recall rate, we combine several

low-level segmentation methods. As Parselets usually appear in different scales, the

hierarchical segmentation algorithm should be a natural way to generate hypotheses.

Here, we choose Ultrametric Contour Map (UCM) [5], which works well to preserve

the boundary information. However, the merging scheme of UCM proceeds by

removing the edge with smallest probability and thus only neighboring super-pixels

can be merged. This may prevent non-adjacent segments from merging as a single

segment and lead to unsatisfactory results for some Parselets, which are separated

by noise segments. For example, the dress in the left image of Fig. 4.2 is split into

separate segments by the stripe pattern with strong edges. Hence UCM fails to

merge them in the early stage. In addition, some garments, such as a belt, may

also divide a Parselet into separate segments. To handle these difficulties, we add

another appearance based segmentation and merging scheme. Specifically, we first

use the fast appearance based over-segmentation method [1] and sequentially merge

the nearby (not necessarily adjacent) regions with the smallest similarity score in a

similar manner as in [96]. We define the similarity score S between segments a and

b as S(a, b) = Ssize(a, b) + Sappearance(a, b), both of which are normalized to [0,1].

Ssize(a, b) is defined as the fraction of the image that the region a and b jointly

occupy. This factor encourages small regions to be merged early. Sappearance(a, b)
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is defined as the χ2 distance of the color and SIFT [75] histogram of segments a

and b [99]. Finally, we utilize another complementary scheme, namely CPMC [14],

which directly generates many segments of different scales. The segments from the

above three methods are combined into the final Parselet hypothesis.

4.3.3 Feature Representation

Compared with exhaustive sliding window scanning [27, 44], our Parselet based

representation enables complex and expensive feature design. It has been shown that

the bag of words feature performs better than the rigid template for categories with

large pose and view variance [97, 96, 14]. As our Parselet categorization is essentially

a classification problem, we follow the state-of-the-art feature extraction-coding-

pooling classification pipeline [49, 18, 13]. In this work, we adopt the Fisher Kernel

(FK) + average pooling [49] and enhanced feature + second order pooling [13], which

have been shown with the best performance among current BoW encoding methods.

In addition, as our algorithm only employs the size and appearance features which

can be efficiently propagated throughout the hierarchical structure embedded in the

pools of segments, the feature extraction is reasonably fast.

4.3.4 Parselet Ensemble

Parselets serve as the building blocks of our human parsing model. The Parselets are

low-level parts from the definition. In practice, several Parselets are often grouped

together in order to form the middle-level human body part, e.g. head, body, etc.

Those middle-level parts cannot be represented by a single type of Parselets but

can be modeled by the ensembles of Parselets. More specifically, the ensembles

of Parselets show two kinds of modalities as follows: (1) Co-occurrence. The

modality of co-occurrence represents the relation that several types of Parselets

coexist and are merged to form a larger middle-level human part. This is the most

typical modality of Parselet ensembles. For example, the “hair” usually comes with

“face” to form the “head”. (2) Exclusivity. The modality of exclusivity models

the relationship of different types of Parselets that cannot coexist logically. For
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example, for the “lower-body” area, there are two possible Parselets, i.e. “skirts”

and “pants”. However, “skirts” and “pants” usually cannot coexist. The exclusivity

for the middle-level concept “lower-body” means that only one of the two exclusive

Parselets, i.e. “skirts” and “pants”, can exist for the “lower-body”.

The middle level concepts formed from Parselet ensembles can be further merged

with Parselet(s) or other middle level concepts. They also exhibit co-occurrence or

exclusivity modalities to form an even higher level concept. This higher level concept

thus inherits all the information from its sub-components. This inheritance property

guarantees that we can model complex objects (e.g. human) with multiple levels of

concepts.

4.4 Human Parsing over Parselets

With the Parselets and their ensembles, we propose the Deformable Mixture Parsing

Model (DMPM) for human parsing. Specifically, we propose to employ an “And-

Or” graph [117] based hierarchical model to simultaneously handle the deformation

and multi-modalities of Parselets. The “co-occurrence” modality is modeled as the

“And” relation while “exclusivity” modality is modeled as the “Or” relation in the

graph. The deformation is modeled as pairwise parent-child distance. We construct

a hierarchical model, as hierarchical models have been shown to be effective for

grasping the structure of objects in part based approaches [113, 117]. In addition,

absence/occlusion is common for some Parselets. Hence we explicitly model this

by utilizing a special structure call virtual “Leaf” node. Fig. 4.3 shows a subgraph

from our human graph, while the full graph of our parsing model is listed in the

supplemental file. In the next subsections, we will introduce our DMPM followed

by the inference and learning algorithms.

4.4.1 Deformable Mixture Parsing Model

We first define the notations used in the following section. P represents the Parselet

hypothesis segments in an image generated according to Section 4.3.2. For a hy-

79



Half body 

clothes 

Upper 

body 
Lower body 

coat 
upper 

clothes 
pants skirt 

Clothing 

dress 

“And” 

Relation 

“Or” 

Relation 

Human 

…… 
Leaf 

Virtual “Leaf” Node 

Or 

Leaf Invisible 

(a) “And-Or” Graph (b) Virtual “Leaf” Node 

And 

Or 

Leaf 

Virtual 
Leaf 
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pothesis segment with index i, its scale (the square root of its area) and centroid

are donated as si and ci = (xi, yi). Formally, a DMPM model is represented as a

graph G = (V,E) where V is the set of nodes and E is the set of edges. The edges

are defined by the parent-child structure and kids(ν) denote the children of node ν.

There are three basic types of nodes, “And”,“Or” and “Leaf” nodes which specify

different parent-child relationships as depicted in Fig. 4.3 by diamonds, rectangles

and eclipses respectively. Each “Leaf” node corresponds to one type of Parselets.

The state variables of the graph specify the graph configuration. Specifically, the

graph topology is instantiated by a switch variable t at “Or” nodes, which indicates

the set of active nodes V (t). Starting from the top level, an active “Or” node

ν ∈ V O(t) selects a child tν ∈ kids(ν). The active “And” or “Or” nodes have the

state variables gν = (sν , cν) which specify the virtual scale and centroid of the node.

The active “Leaf” nodes ν ∈ V L(t) have the state variables dν which specify the

index of the segments for Parselets. In summary, we specify the configuration of the

graph by the states z = {(tν , gν) : ν ∈ V O(t)}
⋃
{gν : ν ∈ V A(t)}

⋃
{dν : ν ∈ V L(t)}

where the active nodes V (t) are determined from the {tν : ν ∈ V O(t)}. We then let

zkids(ν) = {zµ : µ ∈ kids(ν)} denote the states of all the child nodes of an “And”
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node ν ∈ V A and let ztν denote the state of the selected child node of an “Or” node

ν ∈ V O.

Invisibility Modeling: Some Parselets, such as bags and scarfs, have high

probability to be absent or occluded, namely invisible. In other words, these “Leaf”

nodes should be with the visibility property. We explicitly model these notes by

using a special structure, denoted as virtual “Leaf” node. More specifically, we

introduce an auxiliary “Invisible” type of nodes which have no appearance repre-

sentation. Then the virtual “Leaf” node is represented as a structure consisting of an

“Or” node, an ordinary “Leaf” node and an “Invisible” node, as shown in Fig. 4.3.

The activated nodes in the virtual “Leaf” node structure thus explicitly suggest

whether the corresponding “Leaf” node (Parselet) is visible or not. For standard

“Leaf” node µ, the corresponding score is wLµ · ΦL(P, zµ), where ΦL(P, zµ) is the

feature vector extracted from the segment dµ as described in Section 4.3.3. For the

virtual “Leaf” node with “Or” node ν, “Leaf” node µ and “Invisible” node ρ, the

score is wLµ ·ΦL(P, zµ)+wOν,µ or wOν,ρ depending on the visibility of the corresponding

Parselet. wOν,µ and wOν,ρ are the learned weights for the visibility property, which are

embedded in the “Or” node of the virtual “Leaf” node. It is worth noting that the

state of the “Invisible” node fully depends on its weight in the “Or” node and its

own score is always 0.

We can now write the full score associated with a state variable z:

S(P, z) =
∑

µ∈V L(t)

wLµ · ΦL(P, zµ) +
∑

µ∈V O(t)

wOµ,tµ

+
∑

µ∈V A(t)

wAµ · ΦA(zµ, zkids(µ)).

(4.1)

The first term in Eqn. (4.1) is an appearance model that computes the local score

of assigning the segment dµ as Parselet µ. The last two terms are independent of

the data and can be considered as priors of occurrence and the spatial geometry.

Based on the graph structure, we can further decompose the last term of Eqn. (4.1)
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as follows:

S(P, z) =
∑

µ∈V L(t)

wLµ · ΦL(P, zµ) +
∑

µ∈V O(t)

wOµ,tµ

+
∑

µ∈V A(t)

∑
ν∈kids(µ)

wAµ,ν · ψ(dµ, dν).

(4.2)

ψ(dµ, dν) = [dx dx2 dy dy2 ds]T measures the geometric difference between part

µ and ν, where dx = (xν − xµ)/
√
sν · sµ, dy = (yν − yµ)/

√
sν · sµ and ds = sν/sµ

are the relative location and scale of part ν with respect to µ.

Compared with the most prevalent hierarchical modeling approaches [113, 44],

the proposed model has the following distinctive characteristics:

• We use Parselets as the basic elements for our parsing model. The parsing

problem is now transferred as searching the best configuration of the hier-

archical model. Once the maximization is obtained, we can directly get the

accurate pixel-level segmentation and semantic labels from the corresponding

Parselets.

• The “And-Or” graph structure allows both co-occurrence and exclusivity rela-

tions between different parts. Unlike previous methods [113, 44], which often

use “Or” node to model the multi-view properties of the same part, the “Or”

node here plays the role of selecting the best configuration among mixture of

subgraphs, which is more flexible.

• We explicitly model the visibility property of the “Leaf” node, which is practi-

cal and critical for some Parselets. The introduction of a special node, i.e. the

Invisible node, brings the flexibility for the real-life situation without adding

extra model complexity.

4.4.2 Inference

Inference corresponds to maximizing S(P, z) from Eqn. (4.2) over z. As graph G

= (V, E) is a tree, inference can be done efficiently with dynamic programming.
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More specifically, we can simply iterate over all subparts starting from the leaves

and moving “upstream” to the root. The message from children to their parent can

be computed by the following:

scoreIτ (zτ ) = 0, (4.3)

scoreLτ (zτ ) = wLτ · ΦL(P, zτ ), (4.4)

scoreOν (zν) = max
ρ∈kids(ν)

[mρ(zν)], (4.5)

mρ(zν) = max
zρ

[scoreρ(zρ)] + wOν,ρ, (4.6)

scoreAµ (zµ) =
∑

ρ∈kids(µ)

nρ(zµ), (4.7)

nρ(zµ) = max
zρ

[scoreρ(zρ) + wAµ,ρ · ψ(dµ, dρ)]. (4.8)

At the bottom level, the scores of “Invisible” nodes and “Leaf” nodes are calculated

as in Eqn. (4.3) and Eqn. (4.4). “Or” node selects the maximal response from its

children for its score as in Eqn. (4.5) and Eqn. (4.6). The score of “And” node is

calculated by accumulating the scores of its children plus the corresponding defor-

mation as in Eqn. (4.7) and Eqn. (4.8). The above equations suggest that we can

express the energy function recursively and hence find the optimal z using dynamic

programming. In addition, the maximization over z can be partially accelerated

by generalized distance transformation, which makes the whole algorithm more ef-

ficient [46, 44].

4.4.3 Learning

Given the labeled examples {Pi, zi}, the max-margin framework is arguably prefer-

able to maximum-likelihood estimation as our final goal is discrimination. Note that

the scoring function of Eqn. (4.2) is linear in model parameters w = (wL, wO, wA),

and can be written compactly as S(P, z) = w · Φ(P, z). Thus both appearance and

structure parameters can be learned in a unified framework, which is critical for

achieving the state-of-the-art performance for many applications [44, 113]. Here, we
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formulate the structured learning problem in a max-margin framework as in [44]:

min
w
‖w‖2 + C

∑
i

ξi

s.t. w · (Φ(Pi, zi)− Φ(Pi, z)) ≥ ∆(zi, z)− ξi,∀z;
(4.9)

where ∆(zi, zj) is a loss function which penalizes incorrect estimate of z. This loss

function gives partial credit to states which differ from the ground truth slightly.

The loss function is defined as follows:

∆(zi, zj) =
∑

ν∈V L(ti)
⋃
V L(tj)

δ(zνi , z
ν
j ), (4.10)

where δ(zνi , z
ν
j ) = 1, if ν /∈ V L(ti)

⋂
V L(tj) or sim(dνi , d

ν
j ) ≤ σ. sim(·, ·) is the

intersection over union ratio of two segments dνi and dνj , and σ is the threshold, which

is set as 0.8 in the experiments. This loss function penalizes both configurations with

“wrong” topology and leaf nodes with wrong segments. The optimization problem

Eqn. (4.9) is known as a structural SVM, which can be efficiently solved by the

cutting plane solver of SVMStruct [61] and the stochastic gradient descent solver

in [44].

4.5 Experiments

4.5.1 Experimental Settings

Evaluation Criterion: The parsing result is evaluated based on two complemen-

tary metrics. The first one is Average Pixel Accuracy (APA) [111], which is defined

as the proportion of correctly labeled pixels in the whole image. This metric mainly

measures the overall performance over the entire image. Since most pixels are back-

ground, APA is greatly affected by mislabeling a large region of background pixels

as body parts. The second metric is Intersection over Union (IoU) [38], which is

widely used in evaluating segmentation and suitable for measuring the performance

of each Parselet separately. We also devise two variants of IoU for Parselets to make
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Table 4.2: Comparison of Parselets versus objects in terms of the best IoU score on
FS and DP datasets.

dataset CPMC [96] SLIC [1] UCM [5] Combined

Obj IoU FS 0.830 0.559 0.430 0.831

Par mIoU FS 0.895 0.725 0.604 0.917

Par wIoU FS 0.844 0.621 0.546 0.860

Obj IoU DP 0.815 0.534 0.443 0.816

Par mIoU DP 0.896 0.722 0.638 0.928

Par wIoU DP 0.831 0.614 0.608 0.862

Parselets comparable with objects. The first one is the “Merging IoU” (mIoU) which

merges the hypothesis for each Parselet into an object hypothesis to obtain the ob-

ject level IoU. The second one is the “Weighted IoU” (wIoU) which is calculated by

accumulating each Parselet’s IoU score weighted by the ratio of its pixels occupying

the whole object. Note that generally mIoU is higher than wIoU.

Implementation Details: We extract dense SIFT [75], HOG [27] and color

moment as low-level features for Parselets. The size of Gaussian Mixture Model in

FK is set to 128. The training:testing ratio is 2:1 for both datasets. The penalty

parameter C is determined by 3-fold cross validation in the training set.

4.5.2 Hypotheses Comparison: Parselets vs. Objects

We first validate the assumption that segmentation can provide better hypothe-

ses for Parselets than for objects with heterogeneous appearance (e.g. human) by

comparing the best IoU scores of Parselets and objects. The best IoU score for a

segmentation method is defined as the maximal IoU score between the segments

produced by that method and the ground truth segments. The same hypothesis

segments, which are generated through the methods introduced in Section 4.3.2, are

used for both Parselets and objects. We calculate the best IoU of Parselets and

objects for different method on two datasets. The comparison results are displayed

in Table 4.2, from which it can be observed that the best IoU of Parselets is much

higher than that of objects. This trend is consistent among different algorithms and
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Table 4.3: The best IoU scores for each type of Parselets on the FS and DP datasets.

dataset FS DP

hat 84.0 83.5
hair 78.2 81.0
s-gls 56.6 58.8

u-cloth 84.1 88.6
coat null 71.9

f-cloth 90.8 93.9
skirt 91.6 89.3
pants 92.8 92.5
belt 65.7 71.0

l-shoe 72.4 73.2
r-shoe 71.9 73.8
face 83.4 85.6

l-arm 79.8 93.4
r-arm 79.8 92.9
l-leg 79.2 86.7
r-leg 79.9 86.5
bag 81.8 84.8
scarf 76.1 78.2

datasets, which makes the usage of segments as Parselet hypotheses more convinc-

ing. In addition, combining all three complementary algorithms leads to the best

performance and we use this setting thereafter. The detailed best IoU for each type

of Parselets based on combined hypotheses are shown in Table 4.3 .

4.5.3 Evaluation for Human Parsing

Human Parsing: We now compare our proposed framework with the work of

Yamaguchi et al. [111] for human parsing. This baseline works by first estimating

the human pose and then labeling the super-pixel based on the pose estimation

results. We use the public available implementation of version 0.2 and carefully tune

the parameter according to [111]. The baseline method achieves 83% for FS dataset

and 82% for DP dataset in terms of APA, which are inferior to 86% and 87% of our

framework. Though APA is good at measuring the overall performance of human

parsing, it fails to distinguish the performance of separate Parselets and has bias

towards background. More specifically, naively assigning all segments as background

86



u-clothes 
background 

hat hair sunglasses 
face 

coat skirt pants dress belt l-shoe 
r-shoe l-leg r-leg l-arm r-arm bag scarf 

Figure 4.4: Comparison of parsing results. Original images, our results and base-
line’s results [111] are shown sequentially.

Figure 4.5: More exemplar results from our parsing framework.

results in a reasonably good APA of 78% for DP and 77% for FS. Therefore, we

further employ the more discriminative IoU criterion for comparison. The detailed

comparison results on all types of Parselets are reported in Table 4.4. It can be seen

that our method performs much better than the baseline method, especially for the

Parselet level results. This mainly verifies the stability of our algorithm. Unlike

our method, the baseline method does not model the exclusive relation of different

labels, which leads to unstable results as shown in Fig. 4.4. Note that their method

can achieve good performance with the prior information specifying what type of

Parselets appears in the image. However, such information is usually difficult to

obtain for real-world applications. In addition, it can be observed that the results

from our model are more robust to uncommon poses and absent/occluded parts.

The baseline method estimates the human pose and labels the region separately.

This non-unified nature omits the strong correlation of appearance and structure

for human. On the contrast, by employing the low-level visual cues and high-level

structure information in a unified framework with explicit invisibility modeling, our

model is much more robust to these difficult examples. More exemplar results from

our framework are shown in Fig. 4.5.

Parsing as Segmentation: As human parsing results in pixel-level segment

labeling, our framework implicitly provides human segmentation results. We thus
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Table 4.4: Comparison of human parsing IoU scores on FS and DP datasets.

Baseline [111] DMPM Baseline [111] DMPM

dataset FS FS DP DP

hat 2.5 5.6 1.3 28.9
hair 47.2 67.9 43.5 74.8
s-gls 0.8 2.8 0.6 9.6

u-cloth 36.4 56.3 21.3 42.5
coat null null 19.5 39.4

f-cloth 23.2 56.6 21.8 61.0
skirt 21.6 55.3 12.2 50.3
pants 19.1 40.0 28.7 66.3
belt 8.9 18.2 4.8 16.6

l-shoe 27.6 58.6 25.6 57.0
r-shoe 25.2 53.4 21.7 51.8
face 59.3 72.4 52.6 78.1

l-arm 33.0 52.7 32.4 62.7
r-arm 30.5 45.4 28.3 59.3
l-leg 32.6 48.8 23.5 52.6
r-leg 24.1 41.6 18.4 35.5
bag 9.5 20.6 8.5 12.7
scarf 0.9 1.2 1.2 9.3

wIoU 29.9 51.7 24.6 53.0
mIoU 77.6 83.1 76.6 84.6

further compare the segmentation results between our human parsing method and

the state-of-the-art image segmentation method [13], to demonstrate the effective-

ness of our framework. The baseline method [13] employs the bottom-up segments

as the object hypotheses and only achieves the IoU score of 73% for FS dataset and

70% for DP dataset, which is much lower than the result of Merging IoU of 83.1%

and 84.6% as shown in Table 4.4. Some exemplar results are shown in Fig. 4.6,

from which we can observe obvious defects for the baseline segmentation results

in column (d). Such defects are avoidless for the baseline method as a single seg-

ment from the bottom-up segmentation can hardly cover the whole body tightly.

On the contrary, our framework can employ the top-down knowledge and assemble

several homogeneous segments into an object, which leads to much more accurate

segmentation.
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(a) (b) (c) (d) 

Figure 4.6: Comparison of human segmentation results. (a)-(d) are input images,
our human parsing results, segmentation results by merging (b) and results from
the segmentation method [13], respectively

4.5.4 Human Parsing for High Level Applications

Parselets provide a middle-level representation and well bridge the gap between the

low-level segments and the high-level concepts. Hence, our Parselet based parsing

framework can serve as the basis for many high-level applications. Here, we build

a prototype system to retrieve visually similar person as a representative. More

specifically, given a query image, we first filter images in the database based on the

Parselet types. For each pair of corresponding Parselets, the similarity is calculated

based on the Euclidean distance of the extracted features. Then the similarity

between images is defined as the sum of Parselet-level similarities weighted by the

faction of their pixels occupying the object. Such a system can be extended for

clothing retrieval, person identification and many other human centric analysis.

Fig. 4.7 shows some top retrieval results for Parselets such as upper clothes + coat

and pants, respectively. It can be observed that the visually similar persons are

successfully retrieved independent of pose and uninterested regions. Here, we do

not pursue this further for the space limitation.
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Figure 4.7: Top retrieval results from our visually similar person retrieval system.
The retrieval results (right columns) are visually similar to the query human for
the highlighted Parselets (the second column) independent of pose and uninterested
regions.

4.6 Chapter Summary

In this chapter, we proposed an effective framework for human parsing. By recon-

sidering the human parsing problem, we utilized the novel Parselets as the basic

elements. A unique Deformable Mixture Parsing Model (DMPM) was built to

jointly learn and infer the best configuration for both appearance and structure

effectively. Extensive experimental results clearly demonstrated the effectiveness of

the proposed framework.
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Chapter 5

Towards Unified Human

Parsing and Pose Estimation

Human pose estimation and human parsing are two strongly correlated tasks. How-

ever, correlation between them has rarely been explored. In this chapter, we show

how to jointly solve human parsing and pose estimation in a unified framework.

By utilizing Parselets and Mixture of Joint-Group Templates as the representations

for semantic parts, we seamlessly formulate the human parsing and pose estima-

tion problem within a united framework via a tailored And-Or graph to boost the

performance of each other.

5.1 Introduction

Human parsing (partitioning the human body into semantic regions) and pose es-

timation (predicting the joint positions) are two main topics of human body con-

figuration analysis. They have drawn much attention in the recent years and serve

as the basis for many high-level applications [9, 113, 32]. Despite their different fo-

cuses, these two tasks are highly correlated and complementary. On one hand, most

works on pose estimation usually divide the body into parts based on joint struc-

ture [113]. However, such joint-based decomposition ignores the influence of clothes,

which may significantly change the appearance/shape of a person. For example, it
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is hard for joint-based models to accurately locate the knee positions of a person

wearing long dress as shown in Figure 5.1. In this case, the human parsing results

can provide valuable context information for locating the missing joints. On the

other hand, human parsing can be formulated as inference in a conditional random

field (CRF) [89, 32]. However, without top-down information such as human pose,

it is often intractable for CRF to distinguish ambiguous regions (e.g. , the left shoe

v.s. the right shoe) using local cues as illustrated in Figure 5.1. Despite the strong

connection of these two tasks, the intrinsic consistency between them has not been

fully explored, which hinders the two tasks from benefiting each other. Only very

recently, some works [111, 91] began to link these two tasks with the strategy of

performing parsing and pose estimation sequentially or iteratively. While effective,

this paradigm is suboptimal, as errors in one task will propagate to the other.

In this chapter, we aim to seamlessly integrate human parsing and pose estima-

tion under a unified framework. To this end, we first unify the basic elements for

both tasks by proposing the concept of “semantic part”. A semantic part is either

a region with contour (e.g. , hair, face and skirt) related to the parsing task, or

a joint group (e.g. , right arm with wrist, elbow and shoulder joints) serving for

pose estimation. For the representation of semantic regions, we adopt the recently

proposed Parselets [32]. Parselets are defined as a group of segments which can

be generally obtained by low-level over-segmentation algorithms and bear strong

semantic meaning. Unlike the raw pixels used by traditional parsing methods [89],

which are not directly compatible with the template based representation for pose

estimation, Parselets allow us to easily convert the human parsing task into the

structure learning problem as in pose estimation. For pose estimation, we employ

joint groups instead of single joints as basic elements since joints themselves are too

fine-grained for effective interaction with Parselets. We then represent each joint

group as one Mixture of Joint-Group Templates (MJGT), which can be regarded as

a mixture of pictorial structure models defined on the joints and their interpolated

keypoints. This design ensures that the semantic region and joint group represen-

tation of the semantic parts are at the similar level and thus can be seamlessly
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Figure 5.1: Motivations for unified human parsing and pose estimation. The images
in top row show the scenario where pose estimation [113] fails due to joints occluded
by clothing (e.g. , knee covered by dress) while the human parsing works fine. The
images in bottom row show the scenario where human parsing [32] is not accurate
when body regions are crossed together (e.g. , the intersection of the legs). Thus,
the human parsing and pose estimation may benefit each other, and more satis-
factory results (the right column) can be achieved for both tasks using our unified
framework.

connected together.

By utilizing Parselets and MJGTs as the semantic parts representation, we pro-

pose a Hybrid Parsing Model (HPM) for simultaneous human parsing and pose

estimation. The HPM is a tailored “And-Or” graph [117] built upon these semantic

parts, which encodes the hierarchical and reconfigurable composition of parts as

well as the geometric and compatibility constraints between parts. Furthermore, we

design a novel grid-based pairwise feature, called Grid Layout Feature (GLF), to

capture the spatial co-occurrence/occlusion information between/within the Parse-

lets and MJGTs. The mutually complementary nature of these two tasks can thus

be harnessed to boost the performance of each other. Joint learning and inference of

best configuration for both human parsing and pose related parameters guarantee
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the overall performance. The major contributions of this chapter include:

• We build a novel Hybrid Parsing Model for unified human parsing and pose

estimation. Unlike previous works, we seamlessly integrate two tasks under

a unified framework, which allows joint learning of human parsing and pose

estimation related parameters to guarantee the overall performance.

• We propose a novel Grid Layout Feature (GLF) to effectively model the ge-

ometry relation between semantic parts in a unified way. The GLF not only

models the deformation as in the traditional framework but also captures the

spatial co-occurrence/occlusion information of those semantic parts.

• HPM achieves the state-of-the-art for both human parsing and pose estimation

on two public datasets, which verifies the effectiveness of joint human parsing

and pose estimation, and thus well demonstrates the mutually complementary

nature of both tasks.

5.2 Related Work

Human pose estimation has drawn much research attention during the past few

years [9]. Due to the large variance in viewpoint and body pose, most recent works

utilize mixture of models at a certain level [113, 84]. Similar to the influential de-

formable part models [44], some methods [84] treat the entire body as a mixture

of templates. However, since the number of plausible human poses is exponentially

large, the number of parameters that need to be estimated is prohibitive without

a large dataset or a part sharing mechanism. Another approach [113] focuses on

directly modeling modes only at the part level. Although this approach has com-

binatorial model richness, it usually lacks the ability to reason about large pose

structures at a time. To strike a balance between model richness and complexity,

many works begin to investigate the mixtures at the middle level in hierarchical

models, which have achieved promising performance [21, 87, 88, 81]. As we aim

to perform simultaneous human parsing and pose estimation, we tailor the above
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techniques for the proposed HPM by utilizing the mixture of joint-group templates

as basic representation for body joints.

Dong et al. proposed the concept of Parselets for direct human parsing under

the structure learning framework [32]. Recently, Torr and Zisserman proposed an

approach for joint human pose estimation and body part labeling under the CRF

framework [91], which can be regarded as a continuation of the theme of combining

segmentation and human pose estimation [63, 47, 98]. Due to the complexity of

this model, the optimization cannot be carried out directly and thus is conducted

by first generating a pool of pose candidates and then determining the best pixel

labeling within this restricted set of candidates. Our method differs from previous

approaches as we aim to solve human parsing and pose estimation simultaneously

in a unified framework, which allows joint learning of all parameters to guarantee

the overall performance.

5.3 Unified Human Parsing and Pose Estimation

In this section, we introduce the framework of the proposed Hybrid Parsing Model

and detail the key components.

5.3.1 Unified Framework

We first give some probabilistic motivations for our approach. Human parsing can

be formally formulated as a pixel labeling problem. Given an image I, the parsing

system should assign the label mask L ≡ {li} to each pixel i, such as face or dress,

from a pre-defined label set. Human pose estimation aims to predict the joint posi-

tions X ≡ {xj}, which is a set of image coordinates xj for body joints j. As human

parsing and pose estimation are intuitively strongly correlated, ideally one would

like to perform MAP estimation over joint distribution p(X,L|I). However, previ-

ous works either estimate p(X|I) and p(L|I) separately [113] or estimate p(X|I) and

p(L|X, I) sequentially [111]. The first case obviously ignores the strong correlation

between joint positions X and parsing label mask L. The second approach may also
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Figure 5.2: Illustration of the proposed Hybrid Parsing Model. The hierarchical
and reconfigurable composition of semantic parts are encoded under the And-Or
graph framework. The “P-Leaf” nodes encode the region information for parsing
while the “M-Leaf” nodes capture the joint information for pose estimation. The
pairwise connection between/within “P-Leaf”s and “M-Leaf” is modelled through
Grid Layout Feature (GLF). HPM can simultaneously perform parsing and pose
estimation effectively.

be suboptimal, as errors in estimating X will propagate to L.

To overcome the limitations of previous approaches, we propose the Hybrid

Parsing Model (HPM) for unified human parsing and pose estimation by directly

estimating MAP over P (X,L|I). The proposed HPM uses Parselets and Mixture

of Joint-Group Templates (MJGT) as the semantic part representation (which will

be detailed in Section 5.3.2) under the “And-Or” graph framework. This instan-

tiated “And-Or” graph encodes the hierarchical and reconfigurable composition of

semantic parts as well as the geometric and compatibility constraints between them.

Formally, an HPM is represented as a graph G = (V,E) where V is the set of nodes

and E is the set of edges. The edges are defined according to the parent-child re-

lation and “kids(ν)” denotes the children of node ν. Unlike the traditional And-Or
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graph, we define four basic types of nodes, namely, “And”,“Or”, “P-Leaf” and “M-

Leaf” nodes as depicted in Figure 5.2. Each “P-Leaf” node corresponds to one type

of Parselets encoding pixel-wise labeling information, while each “M-Leaf” node

represents one type of MJGTs for joint localization. The graph topology is speci-

fied by the switch variable t at “Or” nodes, which indicates the set of active nodes

V (t). V O(t), V A(t), V LP (t) and V LM (t) represent the active “Or”, “And”, “P-Leaf”

and “M-Leaf” nodes, respectively. Starting from the top level, an active “Or” node

ν ∈ V O(t) selects a child tν ∈ kids(ν). P represents the set of Parselet hypotheses

in an image and z denotes the state variables for the whole graph. We then define

zkids(ν) = {zµ : µ ∈ kids(ν)} as the states of all the child nodes of an “And” node

ν ∈ V A and let ztν denote the state of the selected child node of an “Or” node

ν ∈ V O.

Based on the above representation, the conditional distribution on the state vari-

able z and the data can then be formulated as the following energy function (Gibbs

distribution): The “P-Leaf” component ELP (.) links the model with the pixel-wise

semantic labeling, while the ‘M-Leaf” component ELM (.) models the contribution of

keypoints. The “And” component EA(.) captures the geometry interaction among

nodes. The final “Or” component EO(.) encodes the prior distribution/compatibility

of different parts. It is worth noting that there exists pairwise connection at the

bottom level in our “And-Or” graph as shown in Figure 5.2. This ensures that

more sophisticated pairwise modeling can be utilized to model the connection be-

tween/within “P-Leaf” and “M-Leaf” nodes. We approach this by designing the

Grid Layout Feature (GLF). The detailed introduction of each component and GLF

are given below.

5.3.2 Representation for Semantic Parts

In this subsection, we give details of the representation for the semantic parts. More

specifically, we utilize Parselets and Mixture of Joint-Group Templates (MJGT) as

the representation for regions and joint groups.
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Region Representation with Parselets

Traditional CRF-based approaches for human parsing [47, 81] are inconsistent with

structure learning approaches widely used for pose estimation. To overcome this

difficulty, we employ the recently proposed Parselets [32] as building blocks for

human parsing. In a nutshell, Parselets are a group of semantic image segments

with the following characteristics: (1) can generally be obtained by low-level over-

segmentation algorithms; and (2) bear strong and consistent semantic meanings.

With a pool of Parselets, we can convert the human parsing task into the structure

learning problem, which can thus be unified with pose estimation under the “And-

Or” graph framework.

As Parselet categorization can be viewed as a region classification problem, we

follow [32] by utilizing the state-of-the-art classification pipelines [49, 13] for feature

extraction. The parsing node score can then be calculated by

ELP (I, zµ) = wLPµ · ΦLP (I, zµ), (5.1)

where ΦLP (.) is the concatenation of appearance features for the corresponding

Parselet of node µ.

Mixture of Joint-Group Templates

The HoG template based structure learning approaches have shown to be effective

for human pose estimation [113, 81, 84]. Most of these approaches treat keypoints

(joints) as basic elements. However, joints are too fine-grained for effective in-

teraction with Parselets. Since joints and Parselets have no apparent one-to-one

correspondence (e.g. , knee joints may be visible or be covered by pants, dress or

skirt), direct interaction between all joints (plus additional interpolated keypoints)

and the Parselets is almost intractable. Hence, we divide the common 14 joints for

pose estimation [113, 81] into 5 groups (i.e. left/right arm, left/right leg and head),

as shown in Figure 5.3. Each joint group is modeled by one Mixture of Joint-Group

Templates (MJGT). MJGT can be regarded as a mixture of pictorial structure mod-

els [45, 113] defined on the joints and interpolated keypoints (blue points and green
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Joint Groups Exemplar mixture components of MJGT for the left arm 

Figure 5.3: The left image shows our joint-group definition (marked as ellipses).
Each group consist of several joints (marked as blue dots) and their interpolated
points (marked as green dots). We represent each group as one Mixture of Joint-
Group Templates (MJGT). Some exemplar mixture components of the MJGT for
the right arm are shown on the right side.

points in Figure 5.3). We choose MJGT defined on joint groups as the building block

for modeling human pose mainly for three reasons: (1) there are much fewer joint

groups than keypoints, which allows more complicated interaction with Parselets;

(2) with the reduced complexity in each component brought by the mixture models,

we can employ the linear HoG template + spring deformation representation for

pictorial structure modeling [113, 84] to ensure the effectiveness of pose estimation;

and (3) each component of an MJGT can easily embed mid-level status information

(e.g. , the average mask).

In practice, we set the number of mixtures as 32/16/16 for MJGT to handle

the arms/legs/head group variance respectively. The training data are split into

different components based on the clusters of the joint configurations. In addition,

an average mask is attached to each component of MJGTs to unify the interaction

between Parselet and MJGT, which will be discussed in Section 5.3.3. The state of

the instantiated mask for a component of an MJGT is fully specified by the scale

and the position of the root node.

For an MJGT model µ, we can now write the score function associated with a
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configuration of component m and positions c as in [113, 84]:

Sµ(I, c,m)=bm+
∑
i∈Vµ

wµ,mi · fi(I, ci)+
∑

(i,j)∈Eµ

wµ,m(i,j)· fi,j(ci, cj), (5.2)

where Vµ and Eµ are the node and edge set, respectively. fi(I, ci) is the HoG feature

extracted from pixel location ci in image I and fi,j(ci, cj) is the relative location

([dx, dy, dx2, dy2]) of joint i with respect to j. Each M-Leaf node can be seen as

the wrapper of an MJGT model. Hence the score of M-Leaf is equal to that of

the corresponding MJGT model. As the state variable zµ contains the component

and position information for M-Leaf node µ, the final score can be written more

compactly as follows:

ELM (I, zµ) = wLMµ · ΦLM (I, zµ), (5.3)

where ΦLM (.) is the concatenation of the HoG features and the relative geometric

features for all the components within the joint group.

5.3.3 Pairwise Geometry Modeling

According to our “And-Or” graph construction, there exist three types of pairwise

geometry relations in the HPM: (1) Parselet-Parselet, (2) Parselet-MJGT, and (3)

parent-child in “And” nodes. Articulated geometry relation, such as relative dis-

placement and scale, is widely used in the pictorial structure models to capture the

pairwise connection. We follow this tradition to model the parent-child interaction

(3) as in [113]. However, the pairwise relation of (1) and (2) is much more complex.

For example, as shown in Figure 5.4, the “coat” Parselet has been split into two

parts and its relation with the “upper clothes” Parselet can hardly be accurately

modeled by using only their relative center positions and scales. Furthermore, as

Parselets and MJGTs essentially model the same person by different representa-

tions, a more precise constraint than the articulated geometry should be employed

to ensure their consistency.

To overcome the above difficulties, we propose a Grid Layout Feature (GLF)

to model the pairwise geometry relation between two nodes. More specially, as a

region mask can be derived from each Parselet or MJGT (the average mask is utilized
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for MJGTs), the relation between two nodes can be measured by the pixel spatial

distribution relation of their corresponding masks. As illustrated in Figure 5.4, to

measure the GLF of mask A with respect to mask B, we first calculate the tight

bounding box of A and then divide the whole image into 12 spatial bins, denoted by

Ri, i = 1, · · · , 12. The 12 spatial bins consist of 8 cells outside of the bounding box

and 4 central bins inside it. We then count the pixels of mask B falling in each bin

(|B ∩ Ri|). Besides the spatial relation, we also model the level of overlap between

mask A and B, which has two main functions, i.e. (1) to avoid the overlap between

Parselets and (2) to encourage the overlap between corresponding Parselets and

MJGTs. This is achieved by further counting pixels of the insertion region between

A and B in the four central bins (|A ∩ B ∩ Ri|) as shown in Figure 5.4 (c). The

resultant 16 dimension feature is normalized by the total pixel number of mask B

(|B|). By swapping mask A and mask B, we can get another complementary feature

centered at the mask B, which is then concatenated with the original one to form

the final 32 dimension sparse vector. Formally, we define the Grid Layout Feature

as follows:

PG(A,B) =

 |B∩Ri|
|B| , i = 1, · · · , 12;

|A∩B∩Ri|
|B| , i = 9, · · · , 12

 ,
ψG(A,B) = [PG(A,B);PG(B,A)],

(5.4)

where ψG(A,B) is the GLF between mask A and B. With GLF, the interaction

between Parseles, such as “coat” and “upper clothes”, can be effectively captured.

Furthermore, as each mixture component of an MJGT is attached with an average

mask, interaction (1) and (2) can be easily unified with the help of GLF.

We can then write out the score of the “And” node, whose child nodes consist

of multiple Parselets/MJGTs, as follows:

EA(zµ, zkids(µ))=
∑

ν∈kids(µ)

wAµ,ν· ψ(µ, ν)+
∑

ω,υ∈kids(µ),(ω,υ)∈E

wAω,υ· ψG(ω, υ), (5.5)

where ψG(ω, υ) is the GLF feature between Parselet/MJGT ω and υ. ψ(µ, ν) =

[dx dx2 dy dy2 ds]T is the articulated geometry feature to measure the ge-

ometric difference between part µ and ν, where dx = (xν − xµ)/
√
sν · sµ, dy =
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Figure 5.4: Grid Layout Feature (GLF): GLF measures the pixel spatial distribution
relation of two masks. To calculate GLF of mask B with respect to mask A, the
image is first divided into 12 spatial bins based on the tight bounding box of A as
shown in (b), which includes 8 surrounding and 4 central bins. GLF consists of two
parts: (1) the ratio of pixels of mask B falling in the 12 bins , and (2) the ratio of
pixels of the interaction of mask A and B falling in the 4 central bins as shown in
(c).

(yν − yµ)/
√
sν · sµ and ds = sν/sµ are the relative location and scale of part ν with

respect to µ. As the horizontal relations (Parselet-Parselet, Parselet-MJGT) only

exist between the “Leaf” nodes under a common “And” node, the GLF term will be

removed for those “And” nodes not connected to “Leaf” nodes. By concatenating

all geometry interaction features, the score can be written compactly as:

EA(zµ, zkids(µ)) = wAµ · ΦA(zµ, zkids(µ)). (5.6)

5.3.4 Summary

Finally, we summarize the proposed HPM model. For a Parselet hypothesis with

index i, its scale (the square root of its area) and centroid can be directly calculated.

The switch variable t at “Or” nodes indicates the set of active nodes V (t). The active

“And”, “Or” and “M-Leaf” nodes have the state variables gν = (sν , cν) which specify

the (virtual) scale and centroid of the nodes. The active “P-Leaf” nodes ν ∈ V LP (t)

have the state variables dν which specify the index of the segments for Parselets,

while the active “M-Leaf” nodes ν ∈ V LM (t) have the state variables dν which
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specify the active component index of the MJGTs. In summary, we specify the

configuration of the graph by the states z = {(tν , gν) : ν ∈ V O(t)}
⋃
{gν : ν ∈

V A(t)}
⋃
{dν : ν ∈ V LP (t)}

⋃
{(dν , gν) : ν ∈ V LM (t)}. The full score associated

with a state variable z can now be written as:

S(I, z) =
∑

µ∈V O(t)

wOµ,tµ+
∑

µ∈V A(t)

wAµ · ΦA(zµ, zkids(µ))+

∑
µ∈V LP (t)

wLPµ · ΦLP (I, zµ)+λ
∑

µ∈V LM (t)

wLMµ · ΦLM (I, zµ),
(5.7)

where wOµ,tµ measures priors of occurrence for different parts and λ controls the

relative weight of the pose and parsing related terms.

5.4 Inference

The inference corresponds to maximizing S(I, z) from Eqn. (5.7) over z. As our

model follows the summarization principle [119], it naturally leads to a dynamic

programming type algorithm that computes optimal part configurations from bot-

tom to up. As the horizontal relation only exists between the “Leaf” nodes under

a common “And” node, if we have already calculated the states of all nodes in the

second layer, the following inference can be performed effectively on a tree due to

the Markov property of our model. In other words, if we regard all cliques con-

taining an “And” in the second layer and all its child “Leaf” nodes as super nodes,

the original model can be converted to a tree model. Hence, the maximization over

positions and scales for upper level nodes can be computed very efficiently using

distance transforms with linear complexity as in [44].

Since the cycles only exist in the first and second layers, the main computation

cost for the proposed model lies in passing the message from “Leaf” nodes to their

parent “And” node. However, there are only a limited number of “Leaf” nodes under

each “And” node. Furthermore, with the filtering through appearance and spatial

constraints, there are usually less than 30 hypotheses for each type of Parselets.

Hence, though there are cycles at the bottom level, the algorithm is still reasonably

fast.
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5.5 Learning

We solve the unified human parsing and pose estimation under the structural learn-

ing framework. We follow the setting of [32] to perform the Parselet selection and

training. As pose annotation contains no information about mixture component

labeling of joint-groups, we derive these labels using k-means algorithm based on

joint locations as in [113, 84]. Though such assignment is derived heuristically, it

is usually found that treating these labels as latent variables will not improve the

performance as these labels tend not to change over iterations [113, 84]. We thus di-

rectly use the cluster membership as the supervised definition of mixture component

labels for training examples.

As the scoring function of Eqn. (5.7) is linear in model parameters w = (wLP , wLM , wO, wA),

it can be written compactly as S(I, z) = w · Φ(I, z). Then both pose and parsing

related parameters can be learned in a unified framework. Thus we learn all the

parameters simultaneously rather than learn local subsets of the parameters inde-

pendently or iteratively to guarantee the overall performance. Given the labeled

examples {(Ii, zi)}, the structured learning problem can be formulated in a max-

margin framework as in [44]:

min
w
‖w‖2 + C

∑
i

ξi

s.t. w · (Φ(Ii, zi)− Φ(Ii, z)) ≥ ∆(zi, z)− ξi, ∀z,
(5.8)

where ∆(zi, zj) is a loss function which penalizes the incorrect estimate of z. This

loss function should give partial credit to states which differ from the ground truth

slightly, and thus is defined based on [81, 32] as follows:

∆(zi, zj) =
∑

ν∈V LP (ti)
⋃
V LP (tj)

δ(zνi , z
ν
j ) + λ

∑
ν∈V LM (ti)

min(2 ∗ PCP(zνi , z
ν
j ), 1), (5.9)

where δ(zνi , z
ν
j ) = 1, if ν /∈ V L(ti)

⋂
V L(tj) or sim(dνi , d

ν
j ) ≤ σ. sim(·, ·) is the

intersection over union ratio of two segments dνi and dνj , and σ is the threshold,

which is set as 0.8 in the experiments. This loss term penalizes both configurations

with “wrong” topology and leaf nodes with wrong segments. The second term

penalizes the derivation from the correct poses, where PCP(zνi , z
ν
j ) is the average
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PCP score [47] of all points in the corresponding MJGT. The optimization problem

Eqn. (5.8) is known as a structural SVM, which can be efficiently solved by the

cutting plane solver of SVMStruct [61] and the stochastic gradient descent solver

in [44].

5.6 Experiments

5.6.1 Experimental Settings

Dataset: Simultaneous human parsing and pose estimation requires annotation for

both body joint positions and pixel-wise semantic labeling. Traditional pose esti-

mation datasets, such as the Parse [113] and Buffy [47], are of insufficient resolution

and lack the pixel-wise semantic labeling. Hence we conduct the experiments on

two recently proposed human parsing datasets as in the previous chapters.

Evaluation Criteria: There exist several competing evaluation protocols for

human pose estimation throughout the literature. We adopt the probability of

a correct pose (PCP) method described in [113], which appears to be the most

common variant. Unlike pose estimation, human parsing is rarely studied and with

no common evaluation protocols. Here, we utilize two complementary metrics (APA

and the same IoU based metrics as the previous chapter) to allow direct comparison

with previous works [111, 32].

Implementation Details: We use the same definition of Parselets and settings

for feature extraction as in [32]. The dense SIFT, HoG and color moment are

extracted as low-level features for Parselets. The size of Gaussian Mixture Model in

FK is set to 128. For pose estimation, we follow [113] by using the 5×5 HoG cells for

each template. The training : testing ratio is 2:1 for both datasets as in [32]. The

penalty parameter C and relative weight λ are determined by 3-fold cross validation

over the training set.
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5.6.2 Experimental Results

To the best of our knowledge, there are few works handling human parsing and pose

estimation simultaneously. Hence, besides the recent representative approach [111],

which performs parsing and pose estimation iteratively, we also compare the pro-

posed method with the state-of-the-art methods designed for each task separately.

Human Pose Estimation: For human pose estimation, as the experiments are

conducted on these two new datasets, we only compare with several state-of-the-art

methods with publicly available codes for retraining [113, 111]. The comparison

results are shown in Table 5.1. Method [111] utilizes the results of [113] as initial

estimation of pose for human parsing. The parsing results are then fed back as addi-

tional features to re-estimate the pose. However, the improvement of [111] over [113]

is marginal probably because of its sequential optimization nature. As the error

from initial pose estimation results will propagate to parsing, it is difficult for the

re-estimation step to rectify the initial pose results from error-propagated parsing

results. On the contrary, we perform human parsing and pose estimation simultane-

ously, which significantly improves the state-of-the-art performance [113, 111]. We

also evaluate the raw MJGT baseline which only utilizes the MJGT representation

and removes the Parselet from the “And-Or” graph. The worse results compared

with the full HPM model verify the advantages of joint parsing and pose estimation.

Figure 5.5 shows some qualitative comparison results. It can be seen that all

other methods fail in cases where joints are occluded by clothing, e.g. , wearing long

dress or skirt. By contrast, with the help of Parselets and the pairwise constraints

brought by the GLF, the proposed method can still obtain reasonable joint positions.

Human Parsing: For human parsing, we compare the proposed framework

with the works [111] and [32]. In terms of APA, our method achieves 87% for

FS dataset and 88% for DP dataset, which are superior to 86% and 87% of the

current leading approach [32]. The improvement is not significant as APA metric is

dominated by the background. Even naively assigning all segments as background

results in a reasonably good APA of 78% for DP and 77% for FS. Therefore, the more
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Table 5.1: Comparison of human pose estimation PCP scores on FS and DP
datasets.

method [113] [111] raw MJGT HPM [113] [111] raw MJGT HPM

dataset FS FS FS FS DP DP DP DP

torso 100.0 99.6 100.0 99.5 99.8 99.8 99.8 99.8
ul leg 94.2 94.1 91.9 95.3 91.2 92.0 90.0 95.5
ur leg 93.0 95.1 91.6 95.6 93.9 94.2 92.3 96.4
ll leg 90.9 89.6 83.9 92.2 90.3 90.9 89.0 93.3
lr leg 90.1 91.9 82.5 92.7 90.0 90.0 88.7 92.7
ul arm 86.5 85.8 80.4 89.9 89.1 89.5 85.6 92.4
ur arm 85.2 86.9 81.1 90.9 88.8 88.7 85.7 91.7
ll arm 62.3 62.1 54.7 69.6 66.9 68.2 60.4 72.8
lr arm 61.9 63.6 58.2 69.7 61.7 62.6 48.0 69.3
head 99.2 99.3 97.5 99.1 99.5 99.5 99.6 99.7

avg 86.3 86.8 82.2 89.5 87.1 87.5 83.9 90.4

u-clothes 
background 

hat hair sunglasses 
face 

coat skirt pants dress belt l-shoe 
r-shoe l-leg r-leg l-arm r-arm bag scarf 

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) 

Figure 5.5: Comparison of human parsing and pose estimation results. (a) input
image, (b) pose results from [113], (c) pose results from [111], (d) parsing results
from [111], (e) parsing results from [32], and (f) our HPM results are shown sequen-
tially.

discriminative IoU criterion is more suitable to measure the real performance of each

algorithm. The detailed comparison results in terms of IoU are shown in Table 5.2.

It can be seen that our framework is consistently better than other methods across

different datasets and metrics. This significant improvement mainly comes from the

complementary nature of two tasks and the strong pairwise modeling, which verifies

the effectiveness of our unified parsing and pose estimation framework.

Some example human parsing results are shown in Figure 5.5. It can be observed
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Table 5.2: Comparison of human parsing IoU scores on FS and DP datasets.

method [111] [32] HPM [111] [32] HPM

dataset FS FS FS DP DP DP

hat 2.5 5.6 7.9 1.3 28.9 26.4
hair 47.2 67.9 70.8 43.5 74.8 74.2
s-gls 0.8 2.8 2.6 0.6 9.6 8.3

u-cloth 36.4 56.3 59.5 21.3 42.5 47.9
coat null null null 19.5 39.4 43.6

f-cloth 23.2 56.6 58.0 21.8 61.0 64.7
skirt 21.6 55.3 56.3 12.2 50.3 53.6
pants 19.1 40.0 48.3 28.7 66.3 70.7
belt 8.9 18.2 16.6 4.8 16.6 17.2

l-shoe 27.6 58.6 58.9 25.6 57.0 59.7
r-shoe 25.2 53.4 51.8 21.7 51.8 53.0
face 59.3 72.4 76.1 52.6 78.1 78.9

l-arm 33.0 52.7 56.7 32.4 62.7 67.9
r-arm 30.5 45.4 50.3 28.3 59.3 64.7
l-leg 32.6 48.8 52.6 23.5 52.6 55.1
r-leg 24.1 41.6 41.5 18.4 35.5 39.9
bag 9.5 20.6 17.7 8.5 12.7 16.2
scarf 0.9 1.2 2.3 1.2 9.3 6.6

aIoU 23.8 41.0 42.8 20.3 44.9 47.1
wIoU 29.9 51.7 54.3 24.6 53.0 56.4

that the sequential approach [111] performs much worse than ours. This may be

owing to the errors propagated from the inaccurate pose estimation results as well

as the lack of the ability to model the exclusive relation of different labels, which

usually leads to cluttered results. Though this method can achieve much better

performance with the additional information about the type of clothes in the target

image as illustrated in [111], such information is usually difficult to obtain for real

applications. Our method also outperforms the baseline [32], which has obvious

artifacts for persons with joint crossed (e.g. , legs and foot). The lack of top-down

information makes it difficult for the method [32] to distinguish the left shoe from the

right shoe. On the contrary, by jointly modeling human parsing and pose estimation,

our model can achieve reasonably good results for these cases. In addition, as the

method [32] does not explicitly model the overlap between Parselets, the resultant

Parselets may occlude each other seriously. For example, the “dress” Parselet is
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badly occluded by the “coat” Parselet in the right-bottom image. With the help

of GLF, our unified model can effectively avoid the severe overlap of Parselets and

thus leads to more promising results.

Finally, we want to emphasize that our goal is to explore the intrinsic correlation

between human parsing and pose estimation. To achieve this, we propose the HPM

which is a unified model built upon the unified representation and the novel pairwise

geometry modeling. Separating our framework into different components leads to

inferior results as demonstrated in Table 5.1 and 5.2. Though we use more anno-

tations than methods for individual tasks, the promising results of our framework

verify that human parsing and pose estimation are essentially complementary and

thus performing two tasks simultaneously will boost the performance of each other.

5.7 Chapter Summary

In this chapter, we present a unified framework for simultaneous human parsing

and pose estimation, as well as an effective feature to measure the pairwise geo-

metric relation between two semantic parts. By utilizing Parselets and Mixture of

Deformable Templates as basic elements, the proposed Hybrid Parsing Model allows

joint learning and inference of the best configuration for all parameters. The pro-

posed framework is evaluated on two benchmark datasets with superior performance

to the current state-of-the-arts in both cases, which verifies the advantage of joint

human parsing and pose estimation.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

This thesis explored the intrinsic consistency among different tasks for visual recog-

nition. In the previous chapters, we have been through several topics that expand

the frontier of recognition along four directions, contextualizing object classification

and detection with subcategory awareness, performing joint object detection and

semantic segmentation, exploring human parsing via a unified approach and con-

ducting joint human parsing and pose estimation. Below, we will summarize the

main content and contributions of the thesis.

In Chapter 2, Looking Inside Category: Subcategory-aware Object Recogni-

tion, we designed a system to integrate the state-of-the-art object classification and

detection techniques for joint object detection and classification. The detailed ex-

periments have revealed that the proposed contextualized framework significantly

outperformed the current leading approaches designed for individual tasks [34, 18].

This performance improvement partially comes from the complementary properties

of two tasks. The success in one task can be employed to rectify the ambiguous

results in the other task. It was also found that subcategory structure was common

for most categories in current object recognition datasets. However, previous works

usually ignored such informative subcategory structure and thus represented each

category by a monolithic model. To fully utilize the embedded subcategory struc-
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ture for each category, we proposed an ambiguity guided subcategory mining. Am-

biguity guided subcategory mining results was then seamlessly integrated into the

subcategory-aware detection assisted object classification framework. The overall

system has achieved the state-of-the-art performance on the Pascal VOC benchmark

dataset, which clearly demonstrated the effectiveness of proposed subcategory-aware

contextualized strategy [34].

In Chapter 3, Towards Unified Object Detection and Semantic Segmentation, we

presented a unified approach for joint object detection and segmentation. The ex-

periments have shown that the proposed approach achieved promising performance

in the popular Pascal VOC benchmark [33]. The main contributions of this paper

are three-fold. First, our holistic model is able to improve performance for both

tasks, which verifies that the two core tasks for visual recognition are highly cor-

related. By properly integrating classical algorithms designed for different levels of

recognition, the resulting pipelines should further improve the state-of-the-art visual

recognition system. Second, we have provided detailed quantitative and qualitative

analysis for the role of each component, which explains why these tasks are com-

pletely and how they benefit each other. Finally, our unified approach has provided

an invaluable way to understand visual recognition in a bigger picture.

In Chapter 4, A Deformable Mixture Parsing Model with Parselets, we proposed

an effective framework for human parsing. By reconsidering the human parsing

problem, we utilized the novel Parselets as the basic elements for our parsing model.

Then, a unique Deformable Mixture Parsing Model (DMPM) was built to jointly

learn and infer the best configuration for both appearance and structure effectively

over the generated pool of Parselets. Extensive experimental results have clearly

demonstrated the effectiveness of the proposed framework [32]. Besides providing

an elegant solution for the important human parsing problem, we also showed how

to tailor the leading techniques of recognition for real applications in a principled

way.

In Chapter 5, Towards Unified Human Parsing and Pose Estimation, we present

a unified framework for simultaneous human parsing and pose estimation. By uti-
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lizing Parselets and Mixture of Deformable Templates as basic elements for human

pose estimation and human parsing respectively, both tasks can be effectively uni-

fied under the proposed Hybrid Parsing Model. To better measure the pairwise

geometric relation between two semantic parts, we further proposed an effective

Grid Layout Feature. Thanks to the unification of human parsing and pose esti-

mation, the resulting Hybrid Parsing Model allows joint learning and inference of

the best configuration for all parameters to guarantee the overall performance. The

proposed framework is evaluated on two benchmark datasets with superior perfor-

mance to the current state-of-the-arts in both cases, which verifies the advantage of

joint human parsing and pose estimation.

6.2 Future Works

Though great success has been achieved for core visual recognition tasks by the

proposed systems, it should be noticed that the works in this thesis still have several

limitations:

• First, all the experiment results are obtained on the itemized datasets. Though

these benchmark datasets are well designed, they are still far from enough to

represent the real world. Hence, the performance of the proposed framework

for real world applications has not been fully tested.

• Second, the proposed frameworks focus on the general problems of visual recog-

nition. However, the specific applications may bear particular features that

are not well captured by current framework. Thus, possible modification may

be needed to adapt to specific applications.

• Finally, due to the prevalence of depth sensor, such as Kinect, the depth

information can now be obtained easily. However, this thesis focused on the

traditional RGB images only, as depth information is still impossible to obtain

for many applications, such as web image retrieval.
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Based on the limitations observed, there are several directions that can be further

explored:

• First, current frameworks highly depend on hand-crafted feature for represen-

tation of various tasks. However, the deep architecture has shown to achieve

great success for automatic feature learning during the past few years. Hence,

it might be promising to embed the automatic feature learning, which can

naturally generate the feature suitable for the target task, into the current

framework.

• Though the proposed approaches have achieved promising performance for

many applications, they usually rely on complicated feature extraction/inference

algorithms and may be too slow for real-time applications or mobile devices.

Hence, besides continuing to improve the final performance, we also plan to

improve the efficiency of current framework.

• Finally, with exciting advantages achieved in benchmark datasets, it might be

the right time to touch the real world applications. Thus, we would like to

build several customer oriented systems, such as visual product search and

clothes retrieval, based on current visual object recognition techniques.

These directions are worthwhile to take for both research and industry.
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