
Personalizing Recommendation in Micro-blog Social
Networks and E-Commerce

Zhao Gang

Bachelor of Engineering

East China Normal University, China

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48799222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisors, Professor Mong Li Lee and

Professor Wynne Hsu for their valuable guidance, continuous support, encouragement

and freedom to pursue independent works throughout my Ph.D study. Above all, they

are like my friend, which I appreciate them from my heart.

I would also like to thank my thesis committee, Professor Kian-Lee Tan and Pro-

fessor Min-Yen Kan, who have provided constructive feedback through GRP to this

final thesis. To the many anonymous reviewers at the various conferences, thank you

for helping to shape and guide the direction of my work with your careful and detailed

comments.

I would also like to thank my labmates in the Database Research Lab 2 for their

supports and friendship especially during the many sleepless night rushing to complete

experiments before conference deadline. I will never forget the days we together study-

ing, discussion, playing and eating.

Last but not the least, I would like to thank my parents for their support for past 28

years. Without their encouragement and understanding, it would have been impossible

for me to finish my Ph.D study.

i



ii



TABLE OF CONTENTS

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 User Recommendation in Microblogs . . . . . . . . . . . . . . 5
1.2.2 Product Recommendation in E-commerce . . . . . . . . . . . . 6

1.3 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 11
2.1 Recommendation Techniques . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Content-based Filtering . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Hybrid Recommendations . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Cluster-based Collaborative Filtering . . . . . . . . . . . . . . 21

2.2 User Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Product Recommender Systems . . . . . . . . . . . . . . . . . . . . . 24
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Using Latent Communities for User Recommendation in Microblogs 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Discover Communities . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Recommend Followees . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Experimental Data Sets . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



3.3.3 Sensitivity Experiments . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Comparative Experiments . . . . . . . . . . . . . . . . . . . . 40
3.3.5 Comparison of Community Discovery Methods . . . . . . . . . 41
3.3.6 Scalability Experiments . . . . . . . . . . . . . . . . . . . . . 46

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Using Purchase Intervals for Product Recommendation in E-Commerce 51
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Utility and Utility Surplus . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Law of Diminishing Returns . . . . . . . . . . . . . . . . . . . 56

4.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Purchase Interval Cube . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Utility Model with Purchase Intervals . . . . . . . . . . . . . . 62
4.3.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Experiment Dataset . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.4 Temporal Diversity . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.5 Effect of Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Utilizing Purchase Intervals in Latent Clusters for Product Recommenda-
tion 77
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Generate Latent Clusters . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Refine Latent Clusters . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Recommend Items . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.1 Experimental Data Set . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3 Preliminary Experiment . . . . . . . . . . . . . . . . . . . . . 90
5.3.4 Sensitivity Experiments . . . . . . . . . . . . . . . . . . . . . 90
5.3.5 Comparative Experiments . . . . . . . . . . . . . . . . . . . . 93
5.3.6 Analysis of Clustering Methods . . . . . . . . . . . . . . . . . 93
5.3.7 Analysis of Latent Groups . . . . . . . . . . . . . . . . . . . . 98

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

iv



6 Conclusion and Future Work 101
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



vi



SUMMARY

Microblogs and e-commerce have emerged as two important applications of Web 2.0

technology. Service providers rely heavily on personalized recommender systems to

drive sales and social interaction respectively. This thesis seeks to address the challenges

of data sparsity and scalability in recommender systems, and proposes methods to im-

prove the performance of personalized recommendation in microblog social systems and

e-commerce.

We first examine how the Latent Dirichlet Allocation (LDA) to find latent clusters

can be applied to improve user recommendation in microblogs. We utilize the follower-

followee relationship and devise an LDA based method to discover communities among

the users. These communities capture the hidden interests of users as they actively

choose their followees. We apply the state-of-the-art matrix factorization approach on

each community and generate the final top-k recommendation based on the recommen-

dation lists obtained in each community. Extensive experiments on real world Twitter

and Weibo data sets demonstrate that the proposed framework is scalable and effective

in reducing the data sparsity of each community.

Next, we investigate the problem of product recommendation from the perspective

that the value of a product for a user changes over time. We observe that the intervals be-

tween user purchases may influence a users purchase decision, and propose a framework

vii



that utilizes purchase intervals to improve the temporal diversity of the recommenda-

tions. Given the scale of users, products and purchase histories in any e-commerce web-

site, it is necessary to efficiently compute the purchase interval between pairs of product

for all users. We design an algorithm to compute purchase intervals from users’ pur-

chase histories, and incorporate the purchase intervals into a matrix factorization based

method. We demonstrate on a real world e-commerce data set that the proposed ap-

proach improves the conversion rate, precision and recall, as well as achieve a signifi-

cantly higher temporal diversity compared to traditional recommender systems.

Finally, we observe that users may have different preferences when purchasing dif-

ferent subsets of items, and the periods between purchases also vary from one user to

another. We propose a framework that leverages on LDA to generate clusters that capture

users hidden preferences for items as well as item time sensitivity before we apply ma-

trix factorization on each cluster to personalize the recommendations. We introduce the

notion of a cluster purchase interval factor which estimates the probability that users in

a cluster will purchase an item. Experiment results indicate that our approach is scalable

and significantly improves the conversion rate (by up to 10%) of state-of-the art product

recommender methods.

viii



LIST OF TABLES

3.1 Meanings of symbols used . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Statistics of Twitter and Weibo data sets . . . . . . . . . . . . . . . . . 37
3.3 Performance on Twitter for varying γ and N . . . . . . . . . . . . . . . 40
3.4 Performance on Weibo for varying γ and N . . . . . . . . . . . . . . . 40

4.1 Average Purchase Intervals . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Effect of ω on the Density of Purchase Interval Matrix . . . . . . . . . 68
4.3 Sample Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Sample Purchase Intervals (in days) . . . . . . . . . . . . . . . . . . . 72
4.5 Sample of User U10370829’s Purchase History in Training Data . . . . . . 72

5.1 Tensor Decomposition & Clustering Result . . . . . . . . . . . . . . . 79
5.2 CPI Values at t = 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 CPI Values at t = 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Effect of γ and N on c-PIMF . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Sample Latent Groups of Users and Items Purchased . . . . . . . . . . 99

ix



x



LIST OF FIGURES

1-1 Different types of recommender systems . . . . . . . . . . . . . . . . . 2
1-2 General framework of a recommender system . . . . . . . . . . . . . . 4
1-3 Screen shots of followee recommender feature in Twitter and Weibo . . 6

2-1 Example of Recommender Systems . . . . . . . . . . . . . . . . . . . 12

3-1 Example of a Uni-directional Social Network . . . . . . . . . . . . . . 28
3-2 Matrix Representation of the Network in Figure 3-1 . . . . . . . . . . . 29
3-3 Graphical Model Representation . . . . . . . . . . . . . . . . . . . . . 33
3-4 Characteristics of Twitter Dataset . . . . . . . . . . . . . . . . . . . . . 37
3-5 Characteristics of Weibo Dataset . . . . . . . . . . . . . . . . . . . . . 38
3-6 Comparative study on Twitter data set . . . . . . . . . . . . . . . . . . 42
3-7 Comparative study on Weibo data set . . . . . . . . . . . . . . . . . . . 43
3-8 NDCG of the various methods . . . . . . . . . . . . . . . . . . . . . . 44
3-9 Sparsity of original dataset vs. discovered communities . . . . . . . . . 45
3-10 Effect of different community discovery methods on conversion rate . . 47
3-11 Effect of LF on runtime and F1 (Weibo dataset) . . . . . . . . . . . . . 48

4-1 Example of Users’ Purchase History . . . . . . . . . . . . . . . . . . . 52
4-2 Purchase Interval Cube obtained from Figure 4-1. (Unit: day) . . . . . . 57
4-3 Example to illustrate Algorithm 1 . . . . . . . . . . . . . . . . . . . . 61
4-4 Characteristics of Jingdong Dataset . . . . . . . . . . . . . . . . . . . . 67
4-5 Effect of Window Size ω on PIMF . . . . . . . . . . . . . . . . . . . . 69
4-6 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4-7 Top-5 and Top-10 Temporal Diversity for TopPop,MF,UT MF, PIMF 73
4-8 Effect of Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



5-1 Example Purchase Interval Matrices for Users (Unit: Day ) . . . . . . . 79
5-2 Graph Model Representation . . . . . . . . . . . . . . . . . . . . . . . 82
5-3 Example of Users’ Purchase History . . . . . . . . . . . . . . . . . . . 87
5-4 Characteristics of Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 88
5-5 Preliminary Experiment Study . . . . . . . . . . . . . . . . . . . . . . 91
5-6 Effect of varying latent factor LF . . . . . . . . . . . . . . . . . . . . . 92
5-7 Comparative experiments . . . . . . . . . . . . . . . . . . . . . . . . . 94
5-8 Comparison of clustering methods using PIMF . . . . . . . . . . . . . 95
5-9 Comparison of clustering methods using MF . . . . . . . . . . . . . . . 96
5-10 Sparsity of original data set vs. discovered clusters for different cluster-

ing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xii



CHAPTER 1

INTRODUCTION

With the rapid development of Web 2.0 Internet technology, the interaction between

people and Internet has been dramatically changed. Users share their photos online

in Flickr1, go to shopping online at Amazon2, make new friends online on Facebook3,

write their daily updates online in Twitter4 and watch the latest videos on YouTube5,

etc. The increasing online traffic has resulted in huge economic benefits and challenges

for e-service providers, as well as serious information overload for online social network

users. E-service providers are keen to invest in technologies to help users make decisions

and increase satisfaction of users’ online experiences.

Recommender systems have become a core technology to improve user experience

in both e-commerce and social networks. A recommender system [72] aims to provide

suggestions of items to satisfy users’ interest, such as what products to buy, what books

to read, what music to listen to, or what people to connect to.

1http://www.flickr.com/
2http://www.amazon.com/
3http://www.facebook.com/
4http://www.twitter.com/
5http://www.youtube.com/

1



1.1 Background

Recommender systems can be broadly classified into three types: (a) editorial recom-

mendations, (b) top-k recommendations, and (c) personalized recommendations. Fig-

ure 1-1 shows examples of these different types of recommender systems employed in

Google Play which recommends Apps to Android OS users. Editorial recommendations

are typically made by experts in some specified areas, while top-k recommender sys-

tems capture statistics from users to determine the most popular item. However, these

two types of recommender systems are not personalized to users. On the other hand,

personalized recommender systems aim to provide users with recommendation based

on their personal preference, and has attracted much attention from researchers in the

information retrieval, data mining, machine learning and database communities.

Figure 1-1: Different types of recommender systems

2



Figure 1-2 gives the general framework of a recommender system. It has the follow-

ing main components:

• Items. Items are the objects that are recommended. Items are characterized by

their value or utility. The value of an item indicates the preference from users. The

main task of recommender systems is to estimate these item values using a range

of properties and features of the items. For example, in a music recommender

system, the genre (such as popular, rop, etc.), as well as the singer, and producer

can be used to describe a song and to learn the utility of an item related to these

features.

• Users. In order to personalize the recommendations, recommender systems ex-

ploit a range of information about the users’ diverse characteristics, including their

feedback or attitude to the items such as ratings, and personal particulars (age,

salary and geographic information, etc.). Such user information is also known

as user profile. Recommender systems utilize user profile to recommend to users

items that are preferred by users who have similar profiles.

• Events. An event is a recorded interaction between a user and an item. An event

typically has the format as < user, item, f eedback >, which indicates that a user

gives a f eedback on an item. The feedback can be either explicit, e.g., ratings

(1-5 stars) provided in the book recommender system, or implicit e.g, a user has

observed or purchased an item. Another form of user interaction are tags that

users give to items. For instance, in Delicious1, users utilize tags or discriminative

words[52] to describe URLs, e.g. ”job hunting”, or ”java development”.

The objective of a recommender system is to determine a ranked lists of items that

are the most suitable products or services for a target user based on the user’s prefer-

ences and constraints learned from user profile. The challenge is to achieve a high user

acceptance rate on their recommendations.
1http://del.icio.us/

3



�����

���	��
����
���

�����

�������	�����	
�	��	�
�������

�������	�����	

����

Figure 1-2: General framework of a recommender system

One of the powerful personalization technique is collaborative filtering. This method

increases user acceptance towards recommendation (filtering) on the interests of a user

by collecting preferences or information from many users (collaborating). The system

users, e.g., a consumer in Amazon, provide feedback on their past purchase such as

good, neutral or bad. Recommender systems record these feedback and construct mod-

els to learn what items may be interesting to the users in future. The theory underlying

such recommendation systems is that individuals often rely on recommendations pro-

vided by peers in making decisions [58]. Recommender systems capture this behavior

by leveraging on the recommendations suggested by a community of users to the target

user. The rationale is that if a target user has agreed in the past with some users, then the

other recommendations coming from these similar users should be relevant as well and

are of interest to the target user.

Collaborative filtering techniques have been widely studied in information retrieval

and knowledge management research communities. The current state-of-the-art collab-

orative filtering method is matrix factorization and its variants [47]. However, matrix

factorization involves a computationally intensive learning process, and scalability be-

comes an issue given the huge number of users and items. Further, with limited user

feedback on the wide variety of items, data sparsity continues to be a research challenge.

4



1.2 Motivation

Microblogs and e-commerce have emerged as two important applications of Web 2.0

technology. The service providers rely heavily on personalized recommender systems

to drive social interaction and sales respectively. The goal of this thesis is to develop

efficient and effective methods for (a) user recommendation in microblogs, and (b) prod-

uct recommendation in e-commerce systems. We will discuss their specific research

challenges and briefly describe our proposed approaches to address them.

1.2.1 User Recommendation in Microblogs

One of the most successful Web 2.0 products is the social network platform, e.g. Face-

book and Twitter, which facilitates and enhances relationships among users. The con-

tinued success of these social networks relies heavily on their abilities to recommend

appropriate and relevant users to drive relationship creation.

One typical user recommendation task is for bi-directional friendship social sys-

tems, such as Facebook. The relationships in these systems are reciprocal and model

the friendships in the real world. The most commonly employed user recommendation

technique in bi-directional social systems is compute the number of overlapping friends,

that is, these system will recommend friends who share the most number of friendship

(links) with the target user. This makes sense since they assume that two users know

each other if there is a link between them.

In contrast to the bi-directional relationships in Facebook, the relationships in Twitter-

style social networks or microblogs are uni-directional and not necessarily reciprocal.

The relationships in microblogs are of the follower-followee nature, e.g., the fans follow

some super star, but the super star may not want to build friendship with all his/her fans.

Figure 1-3 shows the screen shots of followee recommendations in Twitter and Weibo.

If the user actually chooses one of the users from the list of recommended top-K users

to follow, then we say that the recommendation is successful.

5



���
������� ���
���
�

Figure 1-3: Screen shots of followee recommender feature in Twitter and Weibo

Recommending who to follow in microblogs is a challenge because of the limited

user profile information. Inferring user preferences from their tweets is also difficult as

tweets are inherently noisy. Tweets are typically short (maximum 140 characters) and

they are often peppered with acronyms and abbreviations.

The work in [33] investigates the use of combinations of tweet content and follower-

followee relationships to recommend users to follow in Twitter. They found that follower-

followee relationships are dominant features that capture the interest of users since users

actively choose people they are interested in to follow. In this thesis, we examine how

follower-followee relationships in Twitter-style social network can be utilized to dis-

cover communities and recommend users to follow within these communities. Forming

communities for user recommendation in a uni-directional social network reduces data

sparsity, and is scalable as the matrix factorization of each community (a subset of the

original data set) can be carried out in parallel.

1.2.2 Product Recommendation in E-commerce

A report in [41] reveals that the sales volume of B2C (business-to-Consumer) in China

market is about 47 billion RMB yuan (7.5 billion US dollar) in 2011, and is expected

to reach 650 billion RMB yuan (103 billion US dollar) in 2013. E-service providers are

keen to invest in technologies that help users make purchase decisions and increase the

6



satisfaction of users’ online shopping experiences. E-commerce recommender systems

aim to produce a personalized list of recommendations that users may be interested to

buy. Research [46] has shown that temporal diversity is an important facet of such

systems, and even randomly changing the recommendation list can improve users’ sat-

isfaction with the recommendations [49].

Existing works build models to predict the rating or preference that a user would give

to an item, and items with the highest predicted ratings are then recommended to the user

[82, 30, 76, 57, 59, 65]. However, these models assume that the value of an item for a

user does not change over time, and suffer from the problem of recommending the same

or almost same products to users.

The works in [46, 70, 94] examine the temporal dynamics in recommendation sys-

tems. [70] consider the order of the items purchased and apply the Markov Chain theory

to predict the next item that a user will purchase. [46, 94] design models to capture

changes in user preferences for products over time due to external events such as new

product offerings, seasonal changes or festive holidays (short-term bias) as well as long

term interest. However, the temporal diversity of these works is not high for users who

do not make purchases often and the same top-k item will be repeatedly recommended

to these users.

Theories in economics and consumer behavior postulate that the value of certain

products may change over time, especially if the user has recently purchased them. This

is known as the Law of Diminishing Marginal Utility [8]. For example, a user is less

likely to buy a second computer or mobile phone if s/he has recently bought one. In

contrast, products such as milk, bread and eggs are likely to be purchased over and over

again. Thus the value or marginal utility of a product for a user depends on his/her

purchase history.

Recent works have applied these theories to recommender systems [51, 90]. The

authors in [90] incorporate marginal utility into product recommender systems. They

adapt the widely used Cobb-Douglas utility function [23] to model product-specific di-

7



minishing marginal return and user-specific basic utility to personalize recommendation.

In this thesis, we propose a framework that incorporate purchase intervals for product

recommendation. The model in our framework combines purchase interval information

in users’ purchase histories with marginal utility, and enables us to increase the temporal

diversity of the recommended items.

Besides temporal diversity, studies on consumer behavior have shown that the un-

derlying mechanisms governing user purchase behavior is very complex. A user is often

interested in more than one subset of products, indicating his/her diverse purchase be-

havior. Two users may purchase the same product for different reasons, demonstrating

the diverse characteristics of a product. In this thesis, we also develop a bi-cluster (i.e.,

a clustering method which can both capture user’s preference and item similarity) based

collaborating filtering method, and incorporate temporal information into the recom-

mendation process. Our goal is to find user-item subgroups in the large user-item matrix

that effectively capture the users’ preferences for items as well as item time sensitivity

to increase the conversion rate, i.e., the proportion of users who become buyers.

1.3 Contributions of Thesis

Although many recommender systems have been proposed in the literature and devel-

oped in real world systems to enhance users’ experience in both microblogs and e-

commerce, there still exists limitations as described above. This thesis seeks to address

the challenges of data sparsity and scalability in recommender systems, and proposes

methods to improve the performance of personalized recommendation in microblog so-

cial systems and e-commerce. Specifically, the contributions of this thesis are as follows:

• We examine how the Latent Dirichlet Allocation (LDA) [13] method can be used

to find latent clusters to improve user recommendation in microblogs. We propose

to utilize the follower-followee relationship and devise an LDA based method to

discover communities among the users. These communities capture the hidden

8



interests of users as they actively choose their followees. We apply the state-of-

the-art matrix factorization approach on each community and generate the final

top-k recommendation based on the recommendation lists obtained in each com-

munity. The advantages of the proposed framework are: (a) it learns the different

user preferences from different communities; (b) the data sparsity of each commu-

nity is reduced which improves the recommendation performance; (c) it is scal-

able as the matrix factorization of each community can be performed in parallel.

These advantages are confirmed by extensive experiments on real world Twitter

and Weibo data sets.

• We approach the problem of product recommendation from the perspective that

the value of a product for a user changes over time. We observe that the inter-

vals between user purchases may influence a users purchase decision, and propose

a framework to utilize purchase intervals to improve the temporal diversity of the

recommendations. Given the scale of users, products and purchase histories in any

e-commerce website, it is necessary to efficiently compute the purchase interval

between pairs of product for all users. We design an algorithm to compute the pur-

chase intervals from the users’ purchase histories, and describe how to incorporate

purchase intervals into a matrix factorization based method. We demonstrate on a

real world e-commerce data set that the proposed approach improves the conver-

sion rate, precision and recall, as well as achieve a significantly higher temporal

diversity compared to traditional recommender systems.

• We also observe that users may have different preferences when purchasing differ-

ent subsets of items, and the periods between purchases also vary from one user

to another. We propose a framework that leverages on LDA to generate clusters

that capture the users hidden preferences for items as well as item time sensitivity

before we apply matrix factorization on each cluster to personalize the recom-

mendations. We introduce the notion of a cluster purchase interval factor which

9



estimates the probability that users in a cluster will purchase an item. Experiment

results indicate that our approach is scalable and significantly improves the con-

version rate (by up to 10%) of state-of-the art product recommender methods. We

also compare our approach with a non-LDA method to show that the improvement

is not simply due to the use of purchase intervals.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 presents an comprehensive review on existing techniques in recom-

mender systems, with a focus on techniques used in product recommender and

user recommender systems.

• Chapter 3 describes our community-based approach that utilizes follower-followee

relationships to find the hidden interests of users and improve user recommenda-

tion in microblogs.

• Chapter 4 introduces the purchase interval concept in e-commerce systems, and

describes how to utilize the new feature to improve the accuracy and diversity of

recommendation.

• Chapter 5 presents our probabilistic approach to generate latent clusters and use

purchase intervals to refine the clusters to improve the performance of product

recommendation.

• Finally, Chapter 6 concludes the thesis and discusses possible directions for further

research.

10



CHAPTER 2

LITERATURE REVIEW

The manner in which people interact with Internet has changed significantly in the last

two decades. The first revolutionary change are search engines such as Google and

Baidu. However, search engines are passive as they retrieve items in response to users’

queries, while recommender systems are proactive in pushing items that users are in-

terested in. Research in personalized recommender systems emerged in the mid-1990s

[35, 81], and they have become a core technology for e-service providers. Amazon is

one of the pioneers in using recommendations to drive sales; 25% of their annual sales

come from suggesting products to users by showing related books or personalized music

recommendations. Figure 2-1 shows sample screen shots of the variety of recommender

systems.

Recommender systems play an important role in social networks to help connect peo-

ple online and promote social interactions. Similarly, recommender systems not only

help identify what products to offer to an individual customer, but they also help to

increase cross-sell by suggesting additional products to the customers and improve the

consumer loyalty because consumers tend to return to the sites that best serve their needs

[79, 19]. In this chapter, we will first review the state-of-the-art recommender tech-

11



��������	
���
	���
�����	��
����	�����

��������������
	���
�������
��� �
���	��������
	���
�������	�

Figure 2-1: Example of Recommender Systems

niques, followed by the related works in user recommender and product recommender

systems.

2.1 Recommendation Techniques

The techniques used in recommender systems can be broadly classified into content-

based [82, 66, 33] and collaborative filtering [1, 30, 76, 57].

2.1.1 Content-based Filtering

Content-based filtering aims to find the items whose contents are similar to the items

which are previously liked by the target user [61]. The first step in this class of tech-

niques is to build an item vector for each item. Then given a target user, a set of items

12



is generated from the events in the user’s profile, and the target user vector based on

these items’ vectors is built. Finally, the similarity between an unseen item vector and

the target user vector is computed.

Note that an item vector is a set of features with associated value or weight. For ex-

ample, a movie can have features such as author, title and director. The cosine similarity

between two vectors i and j is defined as:

sim(i, j) = cos(�i, �j) =
�i · �j

||�i|| × ||�j||
(2.1)

Content-based filtering has its roots in information retrieval research which automat-

ically extracts content (or important words) from items [5, 9]. Therefore, content-based

recommender systems are designed mostly to recommend text-based items, where the

content in these systems is usually described with keywords. For instance, the work in

[66] recommends website based on the web page contents, and [33] considers users’

tweets content to recommend users to follow.

The classical method to weigh the features in the item vector is based on TF-IDF

(Term Frequency-Inverse Document Frequency) [74], a metric often used in information

retrieval. Term frequency is defined as:

T Ft,d =
ft,d

argmax
z

fz,d
(2.2)

where ft,d is the number of occurrence of a term t in a given document d. This is a

normalized term frequency representation which considers term t against the maximum

frequency over all keywords fz,d.

However, some words that appear in a large number of documents are not useful

in distinguishing between a relevant document and a non-relevant one. Therefore, the

inverse document frequency is combined with TF. The IDF for a term t is defined as

IDFt = log
N
nt

(2.3)

13



where N is the number of documents in a given corpus and nt indicates the number of

documents which term t occurred in.

Then the TF-IDF weight for term t in a document d is defined as

wt,d = T Ft,d × IDFt (2.4)

The content of a document d with k terms can be modeled with a vector as d =

(w1d, ...,wkd). We call this the vector space model [75].

The user vector can be similarly formalized. For a target user u, we also use the k

words to describe the user and define a vector u = (w1u, ...,wku), where each value in

the vector is the user preference. The preference can be learned from the user profile.

There are variety of techniques to compute the user vector from the user’s profile. For

example, the works in [67, 66] use a Bayesian classifier to estimate the probability of

user’s preference.

Applications that use content-based filtering to make recommendations include news

[11, 12, 2], movies [55] and books [61]. The works in [11, 12, 2] allow users to give

positive or negative feedback on articles or authors. The user preference vector is based

on a fixed number of topics, and all the news items are mapped to the same space, i.e.,

the same topics as the user preference vector. INTIMATE [55] recommends movies

by using text categorization techniques to learn from movie synopses obtained from the

IMDB, and LIBRA [61] implements a naive Bayes text categorization method for book

recommendation.

However, content-based recommender systems have several limitations [6]:

• Feature selection. Content-based recommendation basically associate both users

and items with a set of features, and compute the similarities between them to

produce the recommendation list. Although this approach works well in extracting

features from text documents such as web pages, it is difficult to automatically

obtain a relevant set of features from items in domains such as multimedia.

14



• Over-specialization. Content-based recommendation aims to find the items have

highest similarity with the items target user liked previously. In another words, the

recommender can only push the items that highly match the user’s profile, and the

items are limited to those that have already been rated. For example, a programmer

reading ”JAVA” related news may be recommended news about ”JAVA island”.

One solution to this problem is to introduce some randomness, e.g., [12] filters

out items if they are either too different from user’s preference, or too similar to

some item the user has seen before.

2.1.2 Collaborative Filtering

Collaborative filtering addresses the over-specialization problem in content-based rec-

ommendation by using information about the user’s past behavior and similar users to

make suggestions. Collaborative filtering approaches can be categorized into memory-

based and model-based methods [14]. Memory-based algorithms utilizes the entire data

to make recommendations, while model-based algorithms use the data to learn or train a

model which is subsequently used to make predictions.

Memory-based Collaborative Filtering

Memory-based CF algorithms [25, 62, 15, 30, 76, 92] find users that are similar to the

target user and use their preferences to predict ratings for the target user. Cosine sim-

ilarity and Pearson correlation [27] are two standard measures used to determine the

similarity between users. Given a target user ut, various neighborhood selection strate-

gies have been proposed to obtain the set of similar users as Ut. These strategies include

applying some threshold [81], finding top-k users with the highest similarity scores [71].

The work in [30] report that selecting the most similar users not only reduce the compu-

tational complexity but it also leads to better recommendation results compared to using

all users.

The score of a target user ut on an item i, denoted as score(ut, i), is estimated based

15



on the rating ru,i assigned to item i by the users u ∈ Ut who are similar to target user ut.

The score function can be a simple aggregation such as the average ratings of the similar

users:

score(ut, i) =
1
|Ut|

∑

u∈Ut

ru,i (2.5)

However, this basic scoring is not personalized for the target user. A commonly

accepted approach is to use a weighted sum where ratings by users who are more similar

to the target user contribute more towards the prediction of the item rating:

score(ut, i) =
∑

u∈Ut
sim(u, ut) × ru,i∑

u∈Ut
sim(u, ut)

(2.6)

where sim(ut, u) is the similarity between target user ut and user u who has previously

rated item i.

Another commonly used scoring function is the adjusted weighted summethod which

takes into account the fact that different users may use the rating scale differently.

score(ut, i) = r̄i +

∑
u∈Ut

sim(u, ut) × (ru,i − r̄u)∑
u∈Ut

sim(u, ut)
(2.7)

where r̄i denotes the average rating of item i and r̄u is the average of the all ratings made

by user u previously.

The above three scoring functions are designed for recommender systems that uti-

lizes explicit feedback (i.e., rating). The work in [96] propose the following scoring

function for recommender systems that utilizes implicit feedback such as purchase his-

tory, watching habits and browsing activity to model user preferences:

score(ut, i) =
∑

u∈Ut

sim(ut, u) × bu,i (2.8)

where bu,i = 1 if user u has observed item i and bu,i = 0 otherwise.

The works in [76, 50] use the similarity between items instead of users to predict

16



the score that a target user will give to an item. The preference of user ut to item i can

be obtained by computing the sum of the ratings given by ut on items that are similar to

i. Each rating is weighted by the similarity sim(i, j) between items i and j.

score(ut, i) =

∑
j∈ItemS et(ut)

sim(i, j) × ru, j

∑
j∈ItemS et(ut)

sim(i, j)
(2.9)

where ItemS et(ut) is set of items rated previously by target user ut.

A more sophisticated item similarity based approach is the slope one predictor [50]

which takes into consideration the average difference between the ratings of one item

and another for users who rated both:

score(ut, i) = rut, j + dev j,i (2.10)

where dev j,i is the average rating deviation of item i with respect to j, defined as:

dev j,i =

∑
u∈U(i, j) ru,i − ru, j

|Ui, j|
(2.11)

where Ui, j denotes the set of users who has previously rated both items i and j. If we

can compute dev j,i which indicates that users tend to rate j approximately some rating

(e.g., 1.5 stars) higher than the rating on i, then we predict the unknown rating of user ut

on i as score(ut, i) = rut , j + dev j,i. Let coItemS et(ut, i) be the set of items that has been

rated by target user ut, and has been co-rated with item i by at least one user. Then we

can vary item j in Equation 2.10 as follows:

score(ut, i) =
1

|coItemS et(ut, i)|

∑

j∈coItemS et(ut ,i)

rut, j + dev j,i (2.12)

Equation 2.12 can be extended to incorporate user similarity into the term dev j,i and

item similarity into the term rut, j. The work in [93] combines it with a user-based CF

algorithm to improve the prediction performance.

17



Model-based Collaborative Filtering

In contrast to memory-based CF, model-based CF algorithms [10, 38, 56, 45, 97, 42, 47]

use the collection of user ratings on items to learn a model, which is then used to make

rating predictions. Model-based recommender methods incorporate techniques from

statistics, data mining and machine learning, including Singular Value Decomposition

(SVD) [47], probabilistic Latent Semantic Analysis (pLSA) [37], Bayesian model [21],

Latent Dirichlet Allocation (LDA) [13] and approaches for implicit feedback [42, 69].

Model-based CF algorithms takes as input the user-item-rating data in the form of a

matrix R with M items and N users. Each element ru,i in R corresponds to the rating user

u gives to item i, where ru,i = 0 if u has not rated i before. Then the recommendation

algorithm aims to determine the zero entries in R which are consider items unknown to

users.

One challenge faced in building the model is the extremely sparse data set, typically

> 99% in most of the applications. Many algorithms utilize feature selection to reduce

the dimensionality in order to mitigate the sparsity problem. One of the most successful

dimensionality reduction techniques is SVD [47].

Dimensionality reduction is achieved by introducing K hidden (latent) variables

which try to capture the preferences of users and attributes of items. The original R

is then approximated by the product of two matrices

R ≈ W · V (2.13)

where W and V are matrices with dimensions N × K and K × M respectively, K << M

and K << N. This approach is also known as Matrix Factorization (MF) approach.

After obtaining the matrices W and V , each user is represented as a vector pu which

is a row vector of V , and each item is represented as a vector qi which is a column vector

of W. Then we can estimate the rating r̂u,i that a user u will give to some unknown item

18



i by the dot product of pu and qi as follows:

r̂u,i = pu · qi (2.14)

Essentially, qi is a vector which contains some latent features or characteristics of the

item, while pu is the vector that depicts the user’s preference of corresponding charac-

teristics of the item.

Various methods have been proposed to approximate W and V . Suppose R̂ denotes

the dot product ofW and V . Then the simplest way [86] to learn R̂ is by minimizing the

Frobenius Norm of the matrix R − R̂:

R̂ = argmin
R′

||R − R′|| (2.15)

The work in [47, 64] shows that the accuracy can be improved through a regular-

ized model to avoid the overfitting problem. Hence, to learn the vectors pu and qi, the

algorithm minimizes the regularized squared error on the set of known ratings:

argmin
p∗,q∗

∑

(u,i)∈D

(ru,i − puqi)2 + λ(||qi||
2 + ||pu||

2) (2.16)

The above model based matrix factorization approach have become a dominant method

in collaborative filtering recommender systems [47], as demonstrated in the Netflix com-

petition.

Since collaborative filtering systems use other users’ rating to make recommenda-

tions, they can deal with any kind of content and recommend any items, even the ones

that are dissimilar to those seen in the past. However, collaborative filtering recom-

mender systems have their own limitations:

Sparsity. In many real applications, the number of items and users are often ex-

ceedingly large (e.g., millions of items in Amazon). This causes the overlap between

two users to be very small, or even none, which imposes a limit to the performance of

19



collaborative filtering.

Cold start. When there is a new user or a new item, collaborative filtering is unable

to provide recommendation since it does not have sufficient information.

Scalability. Model based collaborative filtering is computationally expensive, and

scalability becomes an issue with the huge number of users and items.

2.1.3 Hybrid Recommendations

Given that both content-based and collaborative filtering techniques have their strengths

and weaknesses, several works have proposed various ways to combine these techniques

to improve the recommendation accuracy [3, 5, 6, 7, 12, 22, 24, 31, 59, 67, 68, 80, 83,

87, 88, 78]. One main issue that hybrid recommender systems aim to address is the

cold-start problem [80, 1].

The most straightforward strategy is to implement the collaborative and content-

based methods separately and combine their predictions by using a weighted average

[22] or a voting scheme [67]. The work in [12] use the confidence criterion to switch

between different recommendation techniques, while [87] propose to use the agreement

between a user’s past ratings and the recommendations of each technique to make the

final recommendation.

Another strategy is to add content-based characteristics to collaborative models. The

hybrid recommenders in [6, 67, 31, 59] are based on traditional collaborative filtering

techniques, but maintain content-based profiles for users and items to calculate the simi-

larity. [67] proposes a framework to add user profile into a collaborative filtering recom-

mender, while [59] utilizes the user’s ratings as a vector to calculate the content-based

score.

Alternatively, one can also add collaborative characteristics to content-based models

by using some dimension reduction technique on content-based profiles. For example,

the work in [83] proposes to use latent semantic indexing to build a collaborative model

on users’ profile contents.

20



Other works have proposed unified models to incorporate both content-based and

collaborative characteristics [7, 68, 80, 3, 24]. The work in [7] utilizes both content-

based and collaborative characteristics in a rule-based classifier. [68, 80] propose proba-

bilistic methods based on latent semantic analysis to integrate collaborative and content-

based recommendations, while [3, 24] use Bayesian mixed-effects regression models

with Markov chain Monte Carlo method for parameter estimation.

For hybrid recommendation systems, they can balance the advantages of both content-

based and collaborative filtering techniques, however it is difficult to build a unified

framework for different applications as different hybrid methods require different com-

ponents. Moreover, the performance hybrid recommendation systems is bottle-necked

by the basic techniques(i.e.,content-based or collaborative filtering techniques). In this

thesis, we will only focus on research of improving performance for collaborative filter-

ing recommender systems.

2.1.4 Cluster-based Collaborative Filtering

Clustering is often used as an intermediate process in collaborative filtering to obtain

sub-groups for further analysis. There are three types of cluster-based CF models.

The first type is one-sided clustering which partitions either the users or the items

into distinct groups. For example, Sarwar et al. [77] split the users into groups based on

user similarity before applying memory based CF algorithm to make recommendation.

O’Connor et al. [63] discover item clusters from user rating data. [88] cluster users and

items separately using variants of k-means and Gibbs sampling. The drawback of the

one-sided clustering method is that the inter-relationships that exist between users and

items is ignored.

The second type is two-sided clustering CF models [29] which simultaneously ob-

tain user and item neighbourhoods via co-clustering, and generate predictions based on

the average ratings of the co-clusters. The drawback of both the one-sided and two-sided

clustering approaches is that each user or item can belong to only one cluster.

21



The third type, bi-cluster CF models, allows overlaps among clusters. Bi-clustering

was first proposed in biological data analysis [20, 54]. Symeonidis et al. [85] apply

bi-clustering model on collaborative filtering to discover the inter-relationship between

users and items.

The most recent work in Xu et al. [95] propose a multi-class co-clustering (MCoC)

algorithm to find user-item subgroups (i.e., bi-cluster). The authors design a unified

framework to incorporate the subgroups into collaborative filtering methods. MCoC

works in two phases. The first phase maps all the users and items into a shared low-

dimensional space. The second phase use existing clustering algorithms such as fuzzy c-

means and k-means to find the user-item clusters from the low-dimensional space. How-

ever, this method is computationally expensive as the mapping to the low-dimensional

shared space involves matrix manipulations with at least (m + n)2 parameters, m is the

number of users and n is the number of items.

2.2 User Recommender Systems

User recommendation has become an important recommendation task in social networks

such as Facebook and Twitter. There has been much research on using recommender

systems to help users connect with people online [40, 32, 26, 18]. These works are

focused on more structured data and restricted domains such as co-authorship links [32],

community membership in enterprise social network [18].

The work in [32] profile users by aggregating information from multiple sources in

an enterprise and highlighting users who have contributed in similar ways, e.g., patent

authorship, co-author papers or wikis. [18] propose algorithms that utilize content sim-

ilarity and social network structure in user recommendation. The former is based on

the intuition that ”if two users both post content on similar topics, then they might be

interested in getting to know each other”, while the latter is based on the Friend-of-

Friend hypothesis that ”if many of my friends consider someone a friend, then I might

22



be interest to know that person too”.

Recent work has examined methods for recommending users to follow in noisy un-

structured micro-blogging data such as Twitter [33, 4]. The authors in [33] investigate

both content-based approach (users’ own tweets, their followers’ tweets and followees’

tweets) and collaborative filtering approach (users’ ID, followers’ ID and followees’ ID)

to profile users. User profiles are indexed and the information retrieval TF-IDF approach

is used to rank and recommend users based on a target user profile. They find that the

collaborative filtering approach are better at finding relevant followees for a user.

Collaborative filtering methods such as matrix factorization and its variants [47, 42,

69] have been applied to user recommendation with implicit feedback. [42] design

a a matrix factorization method called IF-MF for implicit feedback data sets. Each

user-item (or user-user) pair is associated a confidence variable in the cost function, and

each decision is assigned a weight in the learning process. [69] propose a probabilistic

matrix factorization method (BPR-MF) for implicit feedback data sets. Unlike other

matrix factorization approaches that take the unseen items as missing samples, BPR-

MF divides the unseen items into negative samples and missing samples. The training

process takes the rank pair as input such as (u, i, j) which means user u prefer item i to j.

This work has also been applied in KDD Cup 2012 [41] to predict which users a target

user might follow in Tencent Weibo.

A topology-based algorithm is designed in [4] to search the follower/followee net-

work for candidate users to recommend. This algorithm is based on the hypothesis that,

for a target user u, the users followed by the followers of u’s followees are candidates to

recommend to u. This approach is a variant of the neighborhood item recommendation

method [76] where a followee is equivalent to an item. However, the work in [47]

shows that neighborhood approaches perform worse than matrix factorization approach.

23



2.3 Product Recommender Systems

Recommender systems are used in e-commerce websites to help customers find products

to purchase. Most of the collaborative filtering methods reviewed in Section 2.1.2 can

be employed in these product recommender systems. These include memory-based ones

[30, 76, 57] and model-based methods [14, 60, 84, 39, 17]. However, these systems can

be further enhanced by taking into account the temporal factor and temporal diversity

which are important in e-commerce as users’ preference tend to change over time.

The work in [70] combines the latent factor model and Markov chain model to pre-

dict the next basket of products that may be purchased by users. This method utilizes

the order of products purchased as the temporal information. They construct a tensor

which captures the probabilities of all product pairs p(i| j) that indicates the probability

of purchasing product i after purchasing product j and further use the factorizing method

to estimate the unknown value in the tensor. The estimated values are used as evidence

for the next basket recommendation.

The authors in [46] design a method to learn the temporal changes of users and

items. They propose a time-aware factor model which distinguish the transient effects

and long term patterns. They first bin the time dimension into small time slots, and then

incorporate temporal factors such as user bias, item bias and user preference into the

standard matrix factorization model. Similarly, recent works have developed systems to

recommend the right products at the right time [91].

Unlike [46] that utilizes a factorization model, Liang et. al [94] propose a graph

based method to capture the temporal factor. A Session-based Temporal Graph (STG)

is employed to simultaneously learn the user’s long and short preference on items. The

score of each product is determined by both the long-term preference and short-term

bias due to external events such as seasonal festivities. The long-term preference is

defined by user similarity when they purchase the same products, while the short-term

bias considers the product similarity over a short period of time. Both these preferences

can be determined from their proposed STG.

24



The work in [51] highlights that product recommender systems in e-commerce dif-

fer from music or movie recommender systems as the former should take into account

the utility of products in their ranking. The authors employ the utility and utility surplus

theories from economics and marketing to improve the list of recommended product.

The work in [90] propose to recommend product which maximize users’ marginal util-

ity [23], e.g, the marginal utility of a mobile phone drops after a user purchase and

subsequent recommendations should not include similar phones but phone accessories

instead and [89] models the joint probability of a user making a follow-up purchase of

a particular product at a particular time to improve recommendation accuracy. [90] use

the matrix factorization based model to learn the features of products and enhance the

model with the Law of Diminishing Marginal Utility. In our work, we combine the no-

tions of purchase intervals and utility surplus to obtain a model to increase the temporal

diversity of products recommended.

2.4 Summary

In this chapter, we have reviewed existing works on recommender techniques which

form the background of this thesis. We have also discussed related works on user rec-

ommender systems and product recommender systems, and have identified the following

limitations in these works:

• Existing user recommendation approaches assume that user preference informa-

tion are available to depict their interests. However, this is a challenge in mi-

croblogs due to limited user information and noisy tweets. The accuracy of user

recommendation can be improved if we can form user communities to reduce data

sparsity and discover the latent characteristics of communities instead of individ-

ual user.

• Existing product recommenders in e-commerce consider the order of items pur-

chased by users to obtain a list of recommended items. The models aim to capture

25



the preferences of users for items over time, including their long term interest and

short term bias. However, they do not consider the time intervals between the items

purchased, and assume that the value of an item for a user does not change over

time. These factors can be utilized to improve the performance of e-commerce rec-

ommender as well as increase the temporal diversity of the recommended items.

• The state-of-the-art collaborative filtering method, matrix factorization, typically

used in product recommenders, constrains each user to one preference vector, and

sparsity remains a challenge for matrix factorization given the huge number of

users and products. Since users may have different preferences when purchasing

different subsets of items, and the periods between purchases also vary from one

user to another, we could reduce sparsity and improve product recommendations

with a bi-cluster based collaborating filtering method.

The next three chapters of this thesis will describe our proposed approaches to ad-

dress the above limitations.

26



CHAPTER 3

USING LATENT COMMUNITIES FOR

USER RECOMMENDATION IN

MICROBLOGS

Advances in Web 2.0 technology has led to the rising popularity of many social network

services. Microblogs such as Twitter allow users to post short text messages (tweets), and

have become real time information sources as users follow one another. It is reported

that there are over 500 million active users in Twitter, and user recommendation has

become a key service to help users find people they might be interested in to follow.

Unlike traditional user recommendation systems, user interest is not expressed explicitly

in the form of ratings on items s/he likes. Instead, the profile of a Twitter user is given

by the tweets s/he publishes and the structure of the follower-followee network.

In this chapter, we describe a community-based approach to user recommendation in

Twitter-style social networks. We utilize the follower-followee relationships and employ

an LDA-based method to discover hidden communities before applying matrix factor-

ization on each of the communities. This work has been published in [100].

27



3.1 Motivation

Existing user recommendation approaches assume that user preference information such

as ratings and purchase histories are available to depict their interests. However, this is

a challenge in Twitter because of its limited user information. Inferring user preferences

from their tweets is difficult as tweets are inherently noisy (short and peppered with

acronyms and abbreviations). The work in [33] examines using combinations of tweet

content and follower-followee relationships to recommend users to follow in Twitter.

They found that follower-followee relationships are dominant features that capture the

interest of users since users actively choose people they are interested in to follow.

Figure 3-1 shows a sample Twitter-style social network where the relationships are

directional and not necessarily reciprocal. The directed edge e(u, v) indicates that user u

is following user v. Each user u has a set of followers Fu and a set of followees Gu. For

example, we have Fu1 = {u2, u4, u5} and Gu1 = {u2, u3, u4, u6}. Note that we do not have

the edge e(u, v) where u = v since a user does not follow him/herself.

��

��

��

��
��

��

�	

��


��

��

Figure 3-1: Example of a Uni-directional Social Network

Although the follow relationship among users seems disorganized and chaotic, com-

munities exist in these social networks as a user follows another user based on his/her

interests. Figure 3-2 gives the matrix representation of the follow relationships in Figure

3-1. The rows and columns denote user ids. An element at row i and column j with

a value of 1 indicates that user ui is a follower of user uj. In other words, row i is the

followee list Gui for user ui and column j is the follower list Fuj for user uj.

28



��

�� �� ���� �� � �! �" �# ��$

��

��

��

��

� 

�!

�"

�#

��$

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�� �

�

�

�

�

�

�

�

Figure 3-2: Matrix Representation of the Network in Figure 3-1

By clustering or re-arranging the rows and columns in the matrix, we obtain two

communities as indicated by the red and blue submatrice. We observe that:

1. A user may be a follower in more than one communities, indicating his/her multi-

ple interests, e.g., pop music and sports. For example, user 7 is a follower in both

the red and blue communities.

2. A user may be a followee in multiple communities, demonstrating his/her influ-

ence in these communities. For example, user 6 is a followee in both the red and

blue communities.

3. A user may play different roles in different communities. For example, user 6 is

both a followee and a follower in the red community. However, s/he is only a

followee in the blue community.

The above observations motivate us to utilize a probabilistic approach that leverages

both the follower and followee information of users to discover communities. The goal is

to form communities of users with similar influence as well as interests. Then, applying

state-of-the-art matrix factorization methods and its variants IF-MF [42] and BPR-MF

[73] to each community will lead to better personalized recommendations.

29



Suppose we want to recommend users to u10 to follow. We observe that u10 is in

the red community. If we apply matrix factorization on the red sub-matrix, we will

recommend u7 to u10. However, if we apply matrix factorization on the entire matrix

in Figure 3-2, we will recommend u3 because u10 follows u6 and u9, and the majority

of the u6’s followers also follow u3. Our experiments demonstrate that by discovering

communities in Twitter-style social network and recommending users to follow within

these communities leads to significant improvement in conversion rate, precision and

recall over performing matrix factorization on the original dataset (see Section 3.3.4).

Further, forming communities for user recommendation in a uni-directional social

network reduces the sparsity in the matrix which is one of the most serious limitations of

contemporay matrix factorization approaches. For example, the densities of the 2 sub-

matrix in Figure 3-2 which correspond to the red and blue communities are increased to

48%, 58% respectively compared to the original density of 32%. The proposed approach

is also scalable as the matrix factorization of each community (a subset of the original

data set) can be performed in parallel (see Section 3.3.6).

In this work, we utilize the follower-followee relationships in Twitter-style social

network and propose a two-step approach to recommend users to follow. We first employ

an LDA-based method to discover the communities. Then we apply matrix factorization

on each of the discovered communities, and provide two ways to combine the results

obtained to recommend the top-k followees for a target user. Extensive experiments on

two real world data sets, Twitter and Weibo, demonstrate that the proposed approach

is scalable and improves the conversion rate by 20% compared to the state-of-the-art

matrix factorization based recommendation algorithms [42, 69].

3.2 Proposed Framework

Our proposed framework comprises two main phases. The first phase utilizes an LDA-

based method to determine the topic distribution of the users. Communities are formed

30



by grouping users whose probability of a given topic is above some threshold. The sec-

ond phase applies matrix factorization on each community to generate a list of candidate

followees. We then combine these candidate lists to obtain the top-k users for a target

user to follow. Before we describe the details of each phase, we summarize the symbols

used in Table 3.1.

Table 3.1: Meanings of symbols used

Symbol Meaning
u A Twitter user
U The set of all Twitter users
f A follower
F The set of all followers
g A followee
G The set of all followees

e( f , g) A follow edge from f to g
E The set of all edges e( f , g) f ∈ F, g ∈ G
z A topic
Z The set of all topics
c A community
C The set of all community

c.F The set of followers in community c
c.G The set of followees in community c
c.E The set of edges e( f , g) in a community c,

f ∈ c.F, g ∈ c.G

3.2.1 Discover Communities

LDA has been shown to be effective in document classification and recently, it has been

applied to uni-directional social network such as Twitter to group users based on their

follower relationship [16]. In this work, we propose to incorporate both the follower

and followee relationships into the LDA model to discover communities. We map both

followees and followers into the same space so that the communities obtained will link

users based on their interests (followees) and influence (followers).

Let U be the set of users and E be the set of directed edges connecting the users in

a social network. An edge e( f , g) ∈ E implies that user f follows user g. Let F ⊂ U be

31



the set of followers and G ⊂ U be the set of followees defined as:

F = {u | u ∈ U ∧ ∃g ∈ U ∧ ∃ e(u, g) ∈ E}

G = {u | u ∈ U ∧ ∃ f ∈ U ∧ ∃ e( f , u) ∈ E} (3.1)

Just as one has a topic in mind when choosing a word for a document, likewise a user

has an interest in mind when following another user in Twitter. Hence, each follower f

can be regarded as a document consisting of a list of followees g. We denote Pr(z| f ) as

the multinomial probability of topic z given a follower f , and Pr(g|z) as the multinomial

probability of a followee g given z.

Since a user u can be both a follower f and a followee g, s/he is associated with two

documents df and dg. The content of df is the list of followees of u, while the content of

dg is the list of followers of u, denoted as follows:

df : {u | u ∈ U ∧ ∃ e( f , u) ∈ E}

dg : {u | u ∈ U ∧ ∃ e(u, g) ∈ E} (3.2)

Therefore our document corpus D is given by

D =
⋃

f∈F
d f ∪

⋃

g∈G
dg (3.3)

We apply LDA on D to generate a pre-defined number of topics Z. Figure 3-3 depicts

the graph model for this representation.

For each topic z ∈ Z, we form a community c such that the followers and followees

in c, denoted as c.F and c.G respectively, are given by

c.F = { f | f ∈ F ∧ Pr(z|df ) > γ}

c.G = {g | g ∈ G ∧ Pr(z|dg) > γ} (3.4)

32



� � �

�

���

 

�!�

Figure 3-3: Graphical Model Representation

where γ is some threshold. The edges in c, denoted as c.E, represent the follower-

followee relationships in c and is given by

c.E = {e( f , g) | e( f , g) ∈ E ∧ f ∈ c.F ∧ g ∈ c.G} (3.5)

The output for this phase is a set of communities C where |C| = |Z|.

3.2.2 Recommend Followees

After discovering the communities, the next phase is to generate candidate followees

from these communities for recommendation. The work in [42] adapted the state-of-the-

art matrix factorization approach [47] to handle binarized user preference for items in

implicit feedback data sets (IF-MF).

Here, we utilize the IF-MF method by considering f ∈ F as users and g ∈ G as

items and construct the matrix M in the model as follows. For each community c ∈ C,

the matrix M has dimensions |c.F| × |c.G|. Each entry M[ f , g] has a value of 1 if there is

an edge e( f , g) ∈ c.E, otherwise M[ f , g] = 0.

After matrix factorization, we obtain two matrices, namely P|c.F|×L and QRD×|c.G|,

where P|c.F|×RD denotes the mappings of followers in the reduced latent space of RD

dimensions and QRD×|c.G| denotes the mappings of followees to the same reduced latent

space. In other words, each follower f is associated with a vector pf ∈ P|c.F|×RD, while

each followee g is associated with a vector qg ∈ QRD×|c.G|.

33



Then for a follower f , we obtain the score that s/he will follow g in community c.

This is given by the inner product of pf and qg as follows:

score( f , g, c) =
〈
pf , qg

〉
(3.6)

Since a target user f may belong to more than one community, s/he will have a dif-

ferent candidate followee recommendation list from each community. Here, we propose

two ways to compute the final score that a target user f ∈ F will follow g ∈ G from these

lists.

We can take the maximum score among the scores in the communities that both f

and g belong to.

maxS core( f , g) = Max
c∈C
(score( f , g, c)) (3.7)

Alternatively, we can sum up the scores in all the communities that f and g appear

in as follows:

sumS core( f , g) =
∑

c∈C
(score( f , g, c) × Pr(c| f )) (3.8)

where Pr(c| f ) is the probability that f belongs to the community c.

Note that Pr(c| f ) is Pr(z|df ) in the LDA model where z is the latent topic corre-

sponding to community c. Finally, we sort these scores for each follower f and output

the top-K followees to recommend to f .

Algorithm 1 summarizes our proposed approach. We call our method Community-

Based Matrix Factorization (CB-MF). The algorithm first obtain the set of followers

and followees from the follower-followee relationships (lines 1-3). Then we obtain the

document corpus and apply LDA to generate a pre-determined number of topics (lines 4-

11). Lines 12 to 18 shows how to construct each community with its followers, followees

and associated edges. Then we perform matrix factorization on each community (lines

19 to 24). Lines 25-28 aggregates the scores from each community and we obtain a

ranked list of recommended followees for each follower.

34



Algorithm 1: CB-MF Algorithm
input : 1. Set of follower-followee relationships E = {e( f , g)},

2. Number of communities N,
3. Number of latent factors L,
4. Threshold γ

output: Ranked recommendation list
F ← { f | ∃e( f , g) ∈ E};1

G ← {g | ∃e( f , g) ∈ E};2

U ← F ∪ G;3

D = ∅;4

foreach f ∈ F do5

df = {u | u ∈ U ∧ ∃ e( f , u) ∈ E}6

D = D ∪ {df };7

end8

foreach g ∈ G do9

dg = {u | u ∈ U ∧ ∃ e(u, g) ∈ E}10

D = D ∪ {dg};11

end12

Z ← LDA(D,N);13

C = ∅;14

foreach z ∈ Z do15

c ← ∅16

c.F = { f | f ∈ F ∧ Pr(z|df ) > γ};17

c.G = {g | g ∈ G ∧ Pr(z|dg) > γ};18

c.E = {e( f , g) | e( f , g) ∈ E ∧ f ∈ c.F ∧ g ∈ c.G};19

C = C ∪ {c};20

end21

R = ∅;22

foreach c ∈ C do23

construct matrix Mc;24

IF-MF(Mc, L);25

Rc = {score( f , g, c) | f ∈ c.F ∧ g ∈ c.G}26

R = R ∪ {Rc};27

end28

Result = ∅;29

foreach pair ( f , g) do30

compute sumS core( f , g) (or maxS core) according to Equation 7 (or 8);31

end32

Return the ranked lists of followees for each follower;33

35



3.3 Experimental Study

In this section, we report the results of the extensive experiments we have carried out to

evaluate both of the effectiveness and efficiency of our proposed CB-MF method. We

compare the performance of our method with the following methods:

1. TopPop. This is a baseline algorithm which ranks users according to their number

of followers and recommends the top-K most popular users to follow.

2. FoF. This is based on the Friend-of-Friend hypothesis, that is, if a particular

person is followed by many followees of a target user, then s/he might be interested

to follow this person too. In other words, we find the top-K most highly ranked

followees of a target user’s followees.

3. NB-based [4]. This is an implementation of the neighborhood based algorithm in

[4]. Given a target user u and its set of followees Gu, we find the set of followers

F = {u | ∃e(u, g) ∈ E ∧ ∃g ∈ Gu}. For each f ∈ F, we find the set of followees

G f and take the union. Then we find the top-K users with the most occurrences to

recommend to u.

4. LDA-based [16]. This is an implementation of the LDA model described in [16]

which map followers to documents and followees to words. Each followee g is

scored using Equation 3.9 and we recommend the top-K followees with the highest

score.

Pr(g| f ) =
∑

z∈Z
Pr (g|z) Pr (z| f ) (3.9)

5. IF-MF [42]. This is the state-of-the-art matrix factorization method for implicit

feedback data sets.

6. BPR-MF [69]. This is a probabilistic matrix factorization method for implicit

feedback data sets.

36



We implement the methods using Python. We code the LDA model according to

[36], and use the C# implementation provided in [28] for the methods BPR-MF and

IF-MF. All the experiments are carried out on an Intel(R) Core(TM) i7-2600 with 3.4

GHz, 8 GB RAM, 64 bit Microsoft Windows 7 operating system.

3.3.1 Experimental Data Sets

We use two real world Twitter-style data sets for our experiments. The first data set is the

social network data used in [48] which is obtained from Twitter1. The second data set is

the social network data which we crawled from Weibo2, the biggest Chinese micro-blog

system in China.

Table 3.2: Statistics of Twitter and Weibo data sets
Statistic Twitter Weibo
|F| 130,352 168,561
|G| 114,997 150,761
|U | 142,624 169,750
|E| 10,242,503 40,358,104

Max
g∈G
(|E(∗, g)|) 31,952 55,948

Max
f∈F
(|E( f , ∗)|) 26,663 2,053

Sparsity 99.93% 99.84%

Figure 3-4: Characteristics of Twitter Dataset

1http://www.twitter.com
2http://www.weibo.com

37



Figure 3-5: Characteristics of Weibo Dataset

We pre-process these data sets to anonymize the user ids and improve the data set

density by removing users who have less 10 followers/followees. Table 3.2 gives the

statistics of the two data sets after pre-processing.

Figures 3-4 and 3-5 show the characteristics of the Twitter and Weibo data sets re-

spectively. The figures depict the number of users who have same number of followers

or followees. As expected, both data sets have long tails, indicating that a small number

of users have large number of followers or followees. For the Weibo data set, we see

that more users have around 100 followees instead of 10 primarily because Weibo pro-

vide features such as batch following to encourage a user to have more followees. The

difference in the number of followees in the two data sets is due to the different poli-

cies in Twitter and Weibo. Twitter allows users to have more followees as long as their

number of followers increase. On the other hand, Weibo places a limit on the number of

followees that a user can have (< 3000).

3.3.2 Evaluation Metrics

Our goal is to recommend top-k users for a target user to follow. For each follower, we

randomly choose 10% followees s/he has followed as testing data, and keep the rest as

training data. Our evaluation metrics include conversion rate, NDCG [43], precision,

recall and F1 score.

Conversion rate is a commonly used metric in recommender systems to determine if

38



a user has obtained at least one good recommendation. If L is the list of recommended k

followees and L′ is the list of k followees actually followed by the user, then the conver-

sion rate is given by:

Conversion Rate =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if |L ∩ L′| > 0

0 otherwise
(3.10)

We compare the conversion rates of the various algorithms by taking the average of

values computed for each test user.

Normalized Discounted Cumulative Gain (NDCG) is a widely used metric for a

ranked list. NDCGk is defined as:

NDCGk =
1

IDCGk
×

k∑

i=1

2bi−1

log2(i + 1)
(3.11)

where bi is a binary value, 1 if the item at position i is hit item (i.e., item match) and 0

otherwise, IDCGk is the maximum NDCGk that corresponds to the optimal ranking list

so that perfect NDCG can be 1.

The standard definitions for precision and recall are:

Recall = |L ∩ L′|
|L′| (3.12)

Precision = |L ∩ L′|
|L| (3.13)

We also report the F1 score, which is the harmonic mean of precision and recall,

defined as:

F1 = 2 × Precision × Recall
Precision + Recall (3.14)

3.3.3 Sensitivity Experiments

We first examine how the various parameters affect the performance of our proposed

CB-MF method. We fix the number of latent factors LF = 16, and vary the threshold γ

39



and number of communities N.

We measure the F1 score for k=3 using the two ways of combining the lists of

candidate followees from each community (Equations 3.7 and 3.8). Tables 3.3 and

3.4 show the results for the Twitter and Weibo data sets respectively. We see that the

F1 scores obtained by summing the weighted scores from the candidate lists (F1sum) is

higher compared to taking the maximum scores (F1max). Further, a larger value for N

improves the performance of CB-MF on the larger Weibo data set.

Based on the results in Tables 3.3 and 3.4, we obtain the optimal parameter settings

for the rest of the experiments. We use γ = 0.02, N = 10 for the Twitter data set, and

γ = 0.01, N = 15 for the Weibo data set.

Table 3.3: Performance on Twitter for varying γ and N
N=5 N=10 N=15 N=20

γ F1sum F1max F1sum F1max F1sum F1max F1sum F1max
0.01 0.0695 0.0612 0.0725 0.0638 0.0735 0.0650 0.0637 0.0572
0.02 0.0722 0.0632 0.0740 0.0681 0.0708 0.0602 0.0649 0.0580
0.04 0.0682 0.0593 0.0692 0.0595 0.0690 0.0597 0.0650 0.0581
0.08 0.0657 0.0584 0.0690 0.0595 0.0652 0.0579 0.0593 0.0521

Table 3.4: Performance on Weibo for varying γ and N
N=5 N=10 N=15 N=20

γ F1sum F1max F1sum F1max F1sum F1max F1sum F1max
0.01 0.0385 0.0313 0.0436 0.0372 0.0440 0.0375 0.0410 0.0326
0.02 0.0377 0.0308 0.0428 0.0350 0.0423 0.0333 0.0418 0.0330
0.04 0.0359 0.0293 0.0348 0.0290 0.0402 0.0327 0.0401 0.0323
0.08 0.0298 0.0231 0.0351 0.0298 0.0343 0.0270 0.0360 0.0285

3.3.4 Comparative Experiments

Next, we compare the performance of the various user recommendation methods. We

set the number of latent factors LF = 16 for the matrix factorization based methods

(BPR-MF, IF-MF). Our CB-MF calls IF-MF for each community with the same LF

setting.

40



Figures 3-6 and 3-7 show the Conversion Rate, Recall and Precision for the Twit-

ter and Weibo data sets respectively. The NDCG for these two datasets are shown in

Figure 3-8. The results indicate that the matrix factorization based methods (BPR-MF,

IF-MF and CB-MF) outperform the methods that do not utilize matrix factorization

(TopPop, FoF, LDA-based and NB-based).

Among the 3 matrix factorization based methods, the proposed CB-MF gives the

best performance. All the methods perform better of Weibo compared to Twitter in

terms of conversion rate. This is mainly because that the density of Weibo data set is

higher then Twitter data set. For state-of-the-art matrix factorization approaches IF-MF

and BPR-MF, IF-MF performs better than BPR-MF on both data sets. This is because

IF-MF can better handle the data set sparsity.

We also observe that FoF outperforms the NB-based algorithm. This is because the

recommendations given by NB-based for a target user who follows popular users will be

similar to the baseline TopPop. The LDA-based method is better than TopPop, FoF

and NB-based mainly because it is able to discover and utilize the hidden characteristics

of followees and followers for recommendation.

Overall, our proposed community-based approach improves the conversion rate in

Weibo by about 15%, and leads to a significant 30% increase in the conversion rate for

Twitter. This is because our approach applies matrix factorization on communities which

have lower sparsity compared to the original data set. Figure 3-9 compares the sparsity

of the original data sets and the communities obtained, clearly indicating that reducing

data sparsity can help improve the effectiveness of user recommendation.

3.3.5 Comparison of Community Discovery Methods

We also examine the impact of using different community discovery methods on the

conversion rate. We compare our approach to find communities with the following two

methods:

1. LDA-Followee [16]. This is an LDA-based model which utilizes only follower

41



1 2 3 4 5
Top K

0

5

10

15

20

25

30

C
o
n
v
e
rs

io
n
 R

a
te

(P
e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(a) Conversion Rate

1 2 3 4 5
Top K

0

1

2

3

4

5

6

7

8

9

R
e
c
a
ll
(P

e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(b) Recall

1 2 3 4 5
Top K

0

2

4

6

8

10

12

14

P
re

c
is

io
n
(P

e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(c) Precision

Figure 3-6: Comparative study on Twitter data set

42



1 2 3 4 5
Top K

0

5

10

15

20

25

30

35

40

45

C
o
n
v
e
rs

io
n
 R

a
te

(P
e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(a) Conversion Rate

1 2 3 4 5
Top K

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
c
a
ll
(P

e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(b) Recall

1 2 3 4 5
Top K

2

4

6

8

10

12

14

16

18

20

P
re

c
is

io
n
(P

e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(c) Precision

Figure 3-7: Comparative study on Weibo data set

43



1 2 3 4 5
Top K

0

2

4

6

8

10

12

14

N
D

C
G

(P
e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(a) Twitter

1 2 3 4 5
Top K

0

5

10

15

20

25

N
D

C
G

(P
e
rc

e
n
ta

g
e
)

TopPop

FOF

BPR-MF

IF-MF

CB-MF

LDA-based

NB-based

(b) Weibo

Figure 3-8: NDCG of the various methods

44



C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Original
95

96

97

98

99

100

S
p
a
rs
it
y

97.55

99.84

95.88

98.77

98.43

99.72

98.56

96.92

97.43 97.53

99.93

(a) Twitter Data Set

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Original
99.5

99.6

99.7

99.8

99.9

S
p
a
rs
it
y

99.57

99.72
99.71

99.65

99.73

99.65

99.54

99.58

99.55

99.62

99.84

99.72
99.70

99.80

99.71

99.86

(b) Weibo Data Set

Figure 3-9: Sparsity of original dataset vs. discovered communities

45



relationships.

2. MCoC [95]. This is a multi-class co-clustering method to find user-item sub-

groups for item recommendation. We use this method to find follower-followee

subgroups.

The MCoC code provided by the authors could not scale on the large Weibo data set.

For the Twitter data set, we had to further improve the density by filtering out users who

have less than 100 followers or followees. The resulting data set has 19305 followers

and 16782 followees, and the data set sparsity is improved to 98.62%.

We apply the same matrix factorization approach IF-MF with LF = 16 on the com-

munities obtained by the different methods. Figure 3-10 shows the results on both

Twitter and Weibo data sets. We observe that our LDA-based model which utilizes both

follower and followee relationship outperforms both LDA-Followee and MCoC, indi-

cating that the communities obtained by our model are able to capture the user influence

and interests.

3.3.6 Scalability Experiments

In this last set of experiments, we examine the scalability of the proposed approach.

Matrix factorization is computationally expensive, especially when the number of latent

factors increases. We propose that CB-MF can be an alternative form of parallelization

for matrix factorization, and compare the performance of CB-MF and IF-MF on the

larger Weibo data set.

Figure 3-11 shows the runtime and F1 scores as we vary the number of latent factors

LF from 16 to 128. The run time of CB-MF is given by the time needed to discover

communities and the maximum time obtained from running IF-MF on each of the com-

munity in parallel.

The results clearly demonstrate the effectiveness of the proposed community-based

matrix factorization approach and its ability to scale. Although the F1 scores of both

46



1 2 3 4 5
Top K

10

15

20

25

30

35

40

45

C
o
n
v
e
rs

io
n
 R

a
te

(P
e
rc

e
n
ta

g
e
)

CB-MF

LDA-Followee

MCoC

(a) Twitter Data Set

1 2 3 4 5
Top K

4

6

8

10

12

14

16

18

20

C
o
n
v
e
rs

io
n
 R

a
te

(P
e
rc

e
n
ta

g
e
)

CB-MF

LDA-Followee

(b) Weibo Data Set

Figure 3-10: Effect of different community discovery methods on conversion rate

47



LF

(a) Runtime

LF

(b) F1 Score

Figure 3-11: Effect of LF on runtime and F1 (Weibo dataset)

48



methods increase with L, the running time for CB-MF remains reasonably stable while

the run time for IF-MF grows significantly.

3.4 Summary

In this chapter, we have investigated how using both follower and followee relation-

ships to discover communities can improve user recommendation in uni-directional so-

cial networks. We have introduced a two-phase approach where we first utilized the

LDA model to discover communities, and then applied matrix factorization on each

community found. We carried out extensive experiments to evaluate the performance

of our approach on two real world microblog data sets, Twitter and Weibo. The results

indicate that the proposed CB-MF method significantly outperforms state-of- the-art rec-

ommender algorithms. We have further shown that the community-based approach is a

good alternative form of parallelization for matrix factorization.

49



50



CHAPTER 4

USING PURCHASE INTERVALS FOR

PRODUCT RECOMMENDATION IN

E-COMMERCE

The development of Web 2.0 technology has led to huge economic benefits and chal-

lenges for both e-commerce websites and online shoppers. One core technology to in-

crease sales and consumers’ satisfaction is the use of recommender systems to produce a

list of recommendations that users may be interested to purchase. As reviewed in Chap-

ter 2, research in recommender systems build models to characterize item (content-based

filtering [82]) or users (collaborative filtering [76, 57]) or both (hybrid recommender sys-

tems [59, 65]) so as to predict the rating or preference that a user would give to an item.

Items with the highest predicted ratings are then recommended to the user. However,

these models assume that the value of an item for a user does not change over time.

In this chapter, we describe how we utilize purchase interval information to improve

the performance of the recommender systems for e-commerce. This work has been

published in [99].

51



4.1 Motivation

Existing product recommender systems typically consider the order of items purchased

by users to obtain a list of recommended items. However, they do not consider the time

interval between the products purchased. For example, there is often an interval of 2-3

months between the purchase of printer ink cartridges or refills. Thus, recommending

appropriate ink cartridges one week before the user needs to replace the depleted ink

cartridges would increase the likelihood of a purchase decision.

Figure 4-1 shows the purchase histories of 5 users for products i1, i2, i3, i4, i5. We

use Hi to denote the purchase history of user ui. Suppose we want to recommend some

products to user u5 at time point 24. Since u5 has previously bought products i1 and i3,

the algorithms in [70, 94] would recommend product i4 to u5. This is because based

on the purchase order and short-term bias, both users u1 and u3 buy i4 after purchasing

i3. From the long term interest of users [94], we see that users who purchase product i3

always purchase i4. Further, suppose u5 does not buy i4 at time point 24. When s/he logs

into the system at time points 19 and 21, the algorithms in [70, 94] will still recommend

i4 to u5.





�


�



�


�



�


�

 

�
 

�


	


�

 
��
��
��
��
��
��
��
��
�	
�


��

��

��
��
��
��
��
��
�	

�


��

��

��

�� �� ��

����

�




���� �




�










 
 


�� �� ���� ��

 




�� �� �� �� �� ��

 

 

 



 

�� ��

����

Figure 4-1: Example of Users’ Purchase History

In this work, we advocate that the intervals between user purchases may influence

a user’s purchase decision. A quick survey reveals that users who purchase an iphone

52



usually purchase apps one week later, after they have setup the new phone and become

familiar with its use. Thus recommending apps to a new iphone user a day after is not

likely to increase sales, whereas pushing apps 5-6 days later is probably more effective.

Consider again our example in Figure 4-1. For illustrative purposes, let us assume

that the interval between each time point is a day. We observe that user u2 buys product

i4 14 days after s/he has bought i1, while user u3 buys i4 12 days after s/he has bought

i1. We could conclude that, on average, users are likely to purchase i4 13 days after s/he

has purchased i1. Assuming that all the users u1 to u5 are similar, we can summarize the

average purchase interval between product pairs from their purchase histories as shown

in Table 4.1.

Table 4.1: Average Purchase Intervals
i1 i2 i3 i4 i5

i1 - 15 5.7 13 18.5
i2 4 - - - 2.5
i3 - 11 - 7 13.5
i4 14 3 - - 6.3
i5 6 2 - - -

Based on Table 1, if u5 logs into the system at time point 24, then we will recommend

product i4 since s/he has bought i1 13 days ago. However, if s/he logs into the system at

time point 27, then we will recommend product i2 to him/her because we see that users

who bought i3 tend to buy i2 11 days later. Similarly, our approach will recommend i5 to

u5 if s/he logs into the system at time point 29.

Theories in economics and consumer behavior postulate that the value of certain

products may change over time, especially if the user has recently purchased them. This

is known as the Law of Diminishing Marginal Utility [8]. For example, a user is less

likely to buy a second computer or mobile phone if s/he has recently bought one. In

contrast, products such as milk, bread and eggs are likely to be purchased over and over

again. Thus the value or marginal utility of a product for a user depends on his/her

purchase history. Recent works have applied these theories to recommender systems

[51, 90]. The authors in [90] incorporate marginal utility into product recommender sys-

53



tems. They adapt the widely used Cobb-Douglas utility function [23] to model product-

specific diminishing marginal return and user-specific basic utility to personalize recom-

mendation.

Here, we propose a framework that incorporates purchase intervals for product rec-

ommendation. The model in our framework will combine purchase interval information

in users’ purchase histories with marginal utility. This enables us to increase the tempo-

ral diversity of the recommended items which is an important facet of product recom-

mender systems [49]. Given the scale of users, products and purchase history in any

e-commerce website, we design an algorithm to efficiently compute the purchase inter-

val between pairs of product for all users. We evaluate our method on a real world data

set obtained from an e-commerce B2C website Jingdong in China. The experimental

results show that our approach improves the conversion rate, precision and recall of the

state-of-the-art utility-based recommendation algorithm [90]. Further, we can achieve a

significantly higher temporal diversity compared to traditional recommender systems.

The rest of the chapter is organized as follows. Section 2 gives the background of

the concepts used in this work. Section 3 describes the proposed framework. Section 4

gives the results of the experimental study, and we conclude in Section 5.

4.2 Preliminaries

In this section, we provide the background for the economics concepts used in our pro-

posed model. We review the notions of utility, utility surplus and the law of diminishing

marginal utility and discuss how these concepts are adapted to model product-specific

diminishing marginal return and user-specific utility for personalized recommendation.

4.2.1 Utility and Utility Surplus

Utility and Utility Surplus are two fundamental concepts from economics. Utility can be

defined as a measure of the satisfaction obtained from the consumption or purchase of

54



various goods and services. The utility of a product i, denoted as δi, can be modeled as

the weighted sum of k characteristics or features of the product as follows:

δi =
∑

k
βk ∗ ck

i (4.1)

where ck
i is the kth feature of product i and βk is its weight.

Utility surplus determines the excess utility one gets by purchasing a product. It

is defined as the gain in the utility of a product minus the cost/price of the product as

follows:

US (i) = δi − α · pricei (4.2)

where pricei is the price of product i and α is the marginal net utility of money.

Equations 4.1 and 4.2 assume that users have the same preference for the features of

a product. In reality, users may have different preferences for a product’s features. In

order to personalize product recommendations, we revise the above equations to allow

user-specific preferences for product features as follows:

δu,i =
∑

k
βk

u ∗ ck
i (4.3)

US (u, i) = δu,i − αu · pricei (4.4)

where βk
u is the user u’s preference for the kth feature of product i and αu is the sensitivity

of user u to the product price.

Consumer behavior theory shows that a person usually makes a purchase decision

depending on a product’s utility surplus. Hence, our goal is to find the list of products

that maximizes the utility surplus for users.

55



4.2.2 Law of Diminishing Returns

The Law Of Diminishing Marginal Utility states the marginal utility of product drops

as the consumption of the product increases. Thus, each product will have a product-

specific diminishing rate γi. [90] use the well-known Constant elasticity of substitution

(CES) to capture this property. If a user has already purchased Xi quantity of product i,

then then the marginal utility of buying an additional unit of i is (Xi + 1)γi − Xγi
i .

By taking into consideration the Law Of Diminishing Marginal Utility, we can refine

the utility surplus as follows:

US (Xi, i, u) = δu,i · ((Xi + 1)γi − Xγi
i ) − αu · pricei (4.5)

Note that in Equation 4.5, the utility surplus is decreased due to the diminishing

effect.

4.3 Proposed Framework

The proposed framework incorporates the information of purchase intervals into the util-

ity surplus model. It has three main phases:

• Phase I: Generate Purchase Interval Cube.

This phase computes a purchase interval matrix Mu for each user from his/her

purchase history. Each cell Mu[i, j] stores the interval between the purchase of

products i and j for user u. We obtain a purchase interval cube when we combine

the purchase interval matrix of all the users. Section 4.3.1 gives the computational

details of this phase.

• Phase II: Build Model.

This phase uses the matrix factorization method [45] to learn the feature vectors of

users and products from the training data. Then we can learn the optimal settings

56



for the parameters in our purchase interval enhanced utility based model. We

discuss how to incorporate the purchase interval information into the utility model

in Equation 4.5 in Section 4.3.2 and estimate its parameters in Section 4.3.3.

• Phase III: Recommendation.

When a user logs into the system at time t, we use our model to compute the utility

surplus of each product at this time point t and rank them. A list of top K products

that the user is most likely to purchase is recommended to the user.

4.3.1 Purchase Interval Cube

��
��

��	��
�

��
	�

�

�

% %  % %

� � % % �

% �� % ! ��

�� � % % "

 � % % %

% %  % %

� � % % �

% �� % ! ��

�� � % % "

 � % % %

% �� � ! �!

� � % % �

% �� % ! ��

�� � % % "

 � % % %

% % % �# �$

� � % % �

% �� % ! ��

�� � % % "

 � % % %

% % % % %

� � % % �

% �� % ! ��

�� � % % "

 � % % %

Figure 4-2: Purchase Interval Cube obtained from Figure 4-1. (Unit: day)

An e-commerce database D consists of a set of usersU, product items I and purchase

histories of users H. Each entry in the purchase history is a tuple < u, i, t >which records

the time t at which user u purchase item i.

If we want to capture the pattern of the purchase interval, we need first to know the

purchase pattern for products pair < i, j > for individual user u. For the computation, we

not only consider the interval between each pair of products, but also the factors such as

how many items purchased between the items and repurchased items. The computation

57



Algorithm 2: Generate Purchase Interval Cube
input : Set of purchase histories H = {H1, ...,Hn},

Window size ω
output : Purchase interval cube M = {M1, ...,Mn}
foreach u ∈ U do1

Initialize list Q ← ∅; /* to store entries e */2

/* e is a 3-tuple < u, id, t > */3

Initialize lists R,Rw,R′w ← ∅; /* to store records r */4

/* r is a 4-tuple < i, j, x, c > where i and j are product ids, x is the purchase interval5

between i and j, and c is the number of products purchased between i and j.*/
foreach e ∈ Hu do6

/* remove records whose purchase interval exceeds ω */7

while (e.t - e′.t) > ω where e′ is the first entry in Q do8

remove e′ from Q;9

remove all tuples r from Rw where r.i = e′.id;10

end11

/* update purchase interval and count of products */12

Let e′ be the last entry in Q;13

x′ ← e.t - e′.t;14

if x′ > 0 then15

c′ ← 1;16

end17

else18

c′ ← 0;19

end20

/* handle the case e.id occur more than once in ω */21

if ∃ e′ in Q s.t. e′.id = e.id then22

while r.i <> e.id where r is the first entry in Rw do23

create r′ ← (r.i, e.id, r.x + x′, r.c + c′);24

add r′ to R′w;25

remove r from Rw;26

end27

end28

/* create new interval records */29

foreach r ∈ Rw do30

create r′ ← (r.i, e.id, r.x + x′, r.c + c′);31

add r′ to R′w;32

add r′ to R;33

end34

Rw ← R′w;35

R′w ← ∅;36

if ∃ e’ in Q s.t. e′.id = e.id then37

remove e’ from Q;38

remove all tuples r from Rw where r.i = e.id ;39

end40

create a tuple r ← < e.id, e.id, 0, 0 >;41

add r to list Rw;42

push e to queue Q;43

end44

Use Equation 4.6 to obtain Mu from R;45

end46 58



and detail is discussed in this section. Let Hu be the purchase history of user u and Iu

be the set of products purchased by a user u over a time window ω. For each pair of

products i, j ∈ Iu, we want to find the average time interval when u would purchase

j after purchasing i. Since u may purchase products i and j multiple times, we let Ti

and T j be the sets of time stamps at which u bought i and j respectively. For each

t j ∈ T j, we find the ti ∈ Ti such that t j − ti is the smallest and is less than ω. Let

Φ = {[ti1 , t j1], [ti2 , t j2], · · · , [tin , t jn]} be the set containing such pairs of time stamps. Then

the average purchase interval du,i, j where a user u buys product j after buying product i

can be determined as follows:

du,i, j =

∑
[tir ,t jr ]∈Φ t jr − tir/(log2(2 + count(t jr , tir))∑

[tir ,t jr ]∈Φ 1/(log2(2 + count(t jr , tir))
(4.6)

where the function count(tir , t jr) returns the number of products purchased by the user

between time stamps tir and t jr .

Note that Equation 4.6 considers both the time interval between the purchase of the

two products i and j, as well as the number of products bought in between i and j. We

penalize the interval that has more purchases in between by taking the log.

Given the huge amount of user purchase histories and the large number of users

and products, we need an efficient method to compute the purchase intervals between

product pairs. Algorithm 2 gives the details of generating the purchase interval cube that

captures the purchase interval between pairs of products for all users.

The algorithm takes as input the set of user purchase histories H and the window size

ω to capture more accurate purchase intervals. Each entry e in the user purchase history

is a 3-tuple consisting of the user id u, product id id and a time stamp t. The output is a

purchase interval cube M that stores the purchase intervals of products for all users. We

denote the purchase history and purchase interval matrix for each user u as Hu and Mu

respectively.

For each user, we slide a window of size ω over his/her purchase history Hu and

use a list Q to maintain the purchases which occur in the current window. The list R

59



stores tuples containing product pairs and their smallest purchase intervals. Each entry

in R is a 4-tuple < i, j, x, c > where i and j are product ids, x is the purchase interval

between i and j, and c is the number of products purchased between i and j. In order to

reduce computation, we use two lists Rw and R′
w to temporarily store the interval pairs

corresponding to the purchase entries in Q. These lists are initialized in lines 1-4.

For each entry e in the user purchase history, we compare the timestamps between

e and the oldest entry e′ in Q. If the purchase interval exceeds the window size ω, we

remove e′ from Q and all the records that has the same product id as e′ from the list

Rw, that is, we do not need to consider this pair of products e′.id and e.id further (Lines

8-10).

Based on the latest entry e′ in Q and the records in Rw, we update the interval and

count of products purchased between r.i and e.id (Lines 12-33). If a user has purchased

the product e.id more than once in the window ω, then we remove records whose time

intervals are not the smallest (Lines 19-23 and 31-33). Otherwise, we generate new

interval records r′ and store them in both R and R′
w (Lines 25-28). Note that we only

need to update the interval records in Rw with the time difference between e and the

latest entry e′ in Q (line 12-17). Lines 34-36 creates an interval record r for each entry e

and inserts e into Q.

Finally, R stores the list of purchase intervals between product pairs for a user u. We

apply Equation 4.6 to compute du,i, j. Each cell Mu[i, j] stores the value of du,i, j (Line 37).

The purchase interval matrix of all users u ∈ U will form a purchase interval cube

M. Figure 4-2 shows the purchase interval cube obtained for our example in Figure 4-1.

Let us illustrate Algorithm 2 with user u1’s purchase history in Figure 4-1. Suppose

ω is set to 20. The first entry i5 is < u1, i3, 1 >. Since all the lists are initially empty,

we create a record r < i3, i3, 0, 0 > and add it to Rw. We also insert i3 into Q. When

we process the second entry < u1, i4, 8 >, we compare its timestamp with that of the

first entry < u1, i3, 1 > in Q to check whether their purchase interval exceeds ω. Since

it does not, we will compute the interval x′ = 8 and c′ = 1 and generate a new record

60



���
�
��
���
�
��
�������

�
���
������
�
�
�
���
���
��
�
�
����
���

�


�

�� �� �
�
���
���
��
�
�
�
���
������
�
�
�
���
���
��
�
�

(a) Lists obtained after < u1, i2, 13 >

���
�
��
���
�
��
�������
�������

�
���
������
�
�
�
���
����
��
�
�
���
���
��
�
�
����
���

�


�

�� �� �
�
���
���
��
�
�
�
���
������
�
�
�
���
���
��
�
�
�
���
�����
�
�
�
���
�����
�
�
����
���
��
�
�
����
���
���
�
����
���
��
�
�

(b) Lists obtained after < u1, i2, 18 >

���
�
��
�������
�������
�������

�
���
�������
�
�
���
���
��
�
�
����
���
���
�
����
���

�


�

�� �� �
�
���
���
��
�
�
�
���
������
�
�
����
���
��
�
�
�
���
�����
�
�
�
���
�����
�
�
����
���
��
�
�
����
���
���
�
����
�����
�
�
�
���
�������
�
�
���
���
��
�
�
����
���
���
�

(c) Lists obtained after < u1, i1, 22 >

Figure 4-3: Example to illustrate Algorithm 1

61



< i3, i4, 7, 1 >. We insert this record into R and update Rw. Rw now has two records,

< i3, i4, 7, 1 > and < i4, i4, 0, 0 >. The third entry in Hu1 is similarly processed. Figure 4-

3(a) shows the lists Q, Rw and R obtained.

When we process the entry < u1, i2, 16 > in Hu1 , we find that there is another entry

for product i2 in Q. We create new records < i2, i2, 5, 2 > and < i5, i2, 2, 1 > for the

product pairs (i2, i2) and (i5, i2). We also remove the older entry < u1, i2, 13 > from Q

and insert < u1, i2, 18 > into Q. Figure 4-3(b) shows the updated lists.

When we process the last entry < u1, i1, 22 >, we find that its timestamp and that

of the first entry < u1, i3, 1 > in Q exceeds the window size ω. Hence, we remove

< u1, i3, 1 > from Q and the corresponding records < i3, i2, 17, 3 > from Rw. We only

need to create 3 new records for R (see Figure 4-3(c)).

Algorithm 1 only needs to scan the user purchase history once. It has a complexity

of O(|U | × m × n) where m is the maximum number of purchase entries in the window

size ω and n = max(|Hu|).

In order to ensure that we only consider frequently purchased product pairs, we will

do a post-processing of the purchase interval cube M obtained from the user history as

follows. For each product pair i and j, we count the number of users u such that Mu[i, j]

is nonzero. If the number of users that purchase this pair of products is less than some

threshold, then we will discard this pair of products and set Mu[i, j] to a null value.

4.3.2 Utility Model with Purchase Intervals

Due to the sparsity problem, it is impossible to generate all the intervals between pairs

of products from a user’s own purchase history. We address this by using the purchase

history of similar users to estimate the purchase interval information. We denote the sim-

ilarity between user u and u′ as sim(u, u′). Then the average purchase interval between

two products i and j for user u can be estimated as follows:

d′u,i, j =
∑

u′∈U du′,i, j ∗ (1 + sim(u, u′))∑
u′∈U (1 + sim(u, u′)) (4.7)

62



The similarity between users can be obtained by using some existing latent factor

based methods. In our experiments, we use the degree of overlap in the users’ purchase

histories as a measure of their similarity.

Having obtained the average purchase interval between product pairs for each user,

the next step is to incorporate the interval factor into the utility plus model. Suppose a

user u has already purchased a set of products Iu and s/he logs into the system at time

t. Before we recommend some product j, we want to consider the effect of the interval

between a product i ∈ Iu and j. We model this purchase interval factor PI(u, i, j) as

follows:

PI(u, i, j) = 1
log2(|t − ti − d′u,i, j| + 2)

(4.8)

Equation 4.8 reduces the effect of purchase intervals by the distance between (t − ti)

and du,i, j. For example, suppose we have estimated that u typically buys product j d′u,i, j
days after buying product i, then at time point t we will more confidence to recommend

product j to u if |(t − ti)| = d′u,i, j.

We can nowmodify the utility surplus function to include the purchase interval factor

as follows:

US +(Xi, i, u) = (4.9)

δu,i · (Xi + 1)γi − Xγi
i ) · (1 + maxj∈Hu PI(u, j, i))μi

−αu · pricei

where δu,i is the basic utility of product i to user u and αu is the sensitivity of u to the

product price pi. The term ((Xi + 1)γi − Xγi
i ) considers the return rate γi for product i,

while the term (1 + maxj∈Hu PI(u, j, i))μi accounts for the purchase interval factor. Note

that we find the product pair ( j, i) that has the largest purchase interval effect and add an

product-specific parameter μi to tune the effect of each product.

63



4.3.3 Parameter Estimation

In this section, we discuss how we estimate the parameters δu,i, γi, μi and αu in Equa-

tion 4.9. Recall that

δu,i =
∑

k
βk

u ∗ ck
i

We use the matrix factorization method [45] to learn the user preference for the

product features. Given a |U | × |I| user-product matrix A, each entry au,i in A can be

estimated as

âu,i =
〈
qT

i , pu
〉

(4.10)

With this, we replace βk
u and ck

i in Equation 4.10 with pu and qi respectively. We have

δu,i = Âu,i This allows us to use matrix factorization to estimate the utility of a product to

a user.

Similar to [90], we define the joint probability of these parameters as:

JP =
∏

u
Pr(pu)

∏

i
Pr(qi)

∏

u
Pr(αu)

∏

i
Pr(γi)

∏

i
Pr(μi)

∏

u,i,t
Pr(ru,i,t|US +(Xi, i, u)) (4.11)

where Pr(ru,i,t|US +(Xi, i, u)) denotes the conditional probability of a user u making the

decision to purchase product i at time t given the utility surplus value US +(Xi, i, u) at

time t.

Here, we define

Pr(ru,i,t|US +(Xi, i, u)) =
1

1 + e−ru,i,t ·US +(Xi,i,u)
(4.12)

where ru,i,t = 1 if user u purchase i at time t. Otherwise ru,i,t = −1. Note that a higher

utility surplus value indicates that the user is more likely to purchase the product i.

The parameters can be estimated by maximizing the joint probability. We assume

Gaussian priors on all the model parameters N(ϕ, 1
λ
). For pu and qi, we have ϕpu =

64



ϕqi = 0 and variance λ1. The mean and variance for α, γ and μ are ϕα, ϕγ, ϕμ and λα, λγ,

λμ respectively. Then maximizing the joint probability is equivalent to minimizing the

negative log likelihood as follows:

(pu, qi, αu, γi, μi) = argmin[−logJP]

= argmin1
2
λ1
∑

u
||pu||

2 +
1
2
λ1
∑

i
||qi||

2 +

1
2
λα
∑

u
(αu − ϕα)2 +

1
2
λγ
∑

i
(γi − ϕγ)2 +

1
2
λμ
∑

i
(μi − ϕμ)2 +

∑

u,i,t
log(1 + e−ru,i,t ·US (Xi,i,u))

We use the stochastic gradient descent method to find the optimal values for the

parameters. Our learning algorithm updates the parameters by using the following first

order derivatives:

pu = pu − θ1 ·
∂(−logJP)
∂pu

qi = qi − θ1 ·
∂(−logJP)
∂qi

αu = αu − θ2 ·
∂(−logJP)
∂αu

γi = γi − θ3 ·
∂(−logLJP)
∂γi

μi = μi − θ4 ·
∂(−logJP)
∂μi

(4.13)

At each iteration, the learning rate is controlled by θ1, θ2, θ3 and θ4. The values of θ1,

θ2, θ3, θ4, λ1, λα, λγ and λμ can be set by cross-validation.

4.4 Experimental Study

In this section, we report the results of the experiments we have carried out to evaluate the

effectiveness of our proposed approach. We call our method PIMF. We also compare

65



the performance of our method with three algorithms:

1. TopPop. This is a baseline algorithm which recommends the top-K most popular

products to users;

2. MF [45]. Matrix Factorization is a widely used recommendation algorithm based

on latent factors and matrix factorization.

3. UT MF [90]. UT MF is the state-of-the-art recommendation algorithm for e-

commerce which incorporates marginal net utility and the law of diminishing re-

turns into matrix factorization approach.

Since MF, UT MF and PIMF all have a learning phase to set the optimal values

for their parameters, we use the first 90% of each user’s purchase history for training

and the remaining 10% for testing. We associate each user u and each product i with

a feature vector pu and qi respectively. We set the dimension of the latent factor is 50.

We determine use 50 here is because we want to experiment within a reasonable running

time. Although the performance for all MF-based methods will typically improve as the

number of latent factors increases, however, the runtime will also increase significantly.

We use both positive and negative training points. Each purchase record is a positive

point. Given that the density of e-commerce data set is usually much lower than that of

movie or music rating dataset [34], we randomly sample 0.1% of the missing entries

and set them to 0 to train the MF model. For UT MF and PIMF, we randomly sample

1% from the missing entries as negative points.

4.4.1 Experiment Dataset

We collect a dataset from Jingdong which is one of the biggest B2C e-commerce web-

sites in China. We crawled products that belong to the electronic category. The dataset

consists of 197,025 users, 98,302 products and 2,610,279 purchase records from January

2010 to November 2011. The density of the dataset is 0.013%.

66



0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10000

12000

Hu size (log10)

N
um

be
r o

f u
se

rs

(a) # Distinct Products

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

20

40

60

80

100

120

140

160

180

N
um

be
r o

f p
ro

du
ct

Time of purchase (log10)

(b) Product Popularity

Figure 4-4: Characteristics of Jingdong Dataset

We pre-process the dataset to remove products that have less than 10 purchase records,

as well as users who have purchased less than 10 products. The clean dataset D has

96,882 users, 6,921 products and 2,302,066 purchase records. The density of this dataset

is now 0.34%. We sort the purchase records according to the users to form their purchase

history. Records in each user purchase history are ordered by their time stamps. Figure

4-4 shows the distribution of the number of distinct number of products bought by users

and the popularity of the products. As expected, there is a long tail in the products

purchased.

4.4.2 Evaluation Metrics

Our evaluation metrics include temporal diversity, conversion rate, precision and recall.

Temporal diversity measures the differences between two lists of recommendations when

a user logs into the system at different times. For example, suppose a user is given a set

of 5 recommended products at time t. If he logs into the system later and only 1 of the 5

recommendations is different, then the diversity between the two lists is 1/5 = 0.2. [49]

derives the diversity between two lists Lt and Lt′ from their set theoretic difference as

follows:

Lt′ \ Lt = {x ∈ Lt′ |x � Lt} (4.14)

diversity(Lt, Lt′ ,K) =
|Lt′ \ Lt|

K (4.15)

67



where K is the number of products in each list. If the two lists are exactly the same,

then diversity is 0.

Conversion rate is a commonly used metric in e-commerce to determine if a user has

obtained at least one good recommendation. If the user purchased at least one product

from the recommended top K list, then we say that the user has switched from a browser

to a buyer. If L is the list of recommended products and L′ is the list of products actually

purchased by the user, then the conversion rate is given by:

conversion rate@K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if |L ∩ L′| > 0

0 otherwise
(4.16)

We compare the conversion rate of the various algorithms by taking the average of

values computed for each test user.

The standard definitions for precision and recall are as follows:

recall@K = |L ∩ L′|
|L′| (4.17)

precision@K = |L ∩ L′|
K (4.18)

4.4.3 Results and Analysis

We first examine the effect of the window size ω on the conversion rate, recall and

precision of our proposed algorithm PIMF. We set ω to 7, 14, 21, 28 and 35 days.

This implies that the purchase intervals generated are less than or equals to ω. Table 4.2

shows the accumulated density of the purchase interval matrix generated by Algorithm 1

for the different values of ω. We observe that the density increases as we consider larger

purchase intervals.

Table 4.2: Effect of ω on the Density of Purchase Interval Matrix

ω 7 14 21 28 35
Density 0.41% 0.59% 0.65% 0.74% 0.83%

68



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 7  14  21  28  35

co
nv

er
si

on
 ra

te

ω  :Days

K=1
K=2
K=3
K=4
K=5

(a) Conversion Rate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 7  14  21  28  35

P
re

ci
si

on

ω  :Days

K=1
K=2
K=3
K=4
K=5

(b) Precision

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 7  14  21  28  35

re
ca

ll

ω  :Days

K=1
K=2
K=3
K=4
K=5

(c) Recall

Figure 4-5: Effect of Window Size ω on PIMF

69



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1  2  3  4  5

co
nv

er
si

on
 r

at
e

K

TopPop
MF

UTMF
PIMF

(a) Conversion Rate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1  2  3  4  5

pr
ec

is
io

n

K

TopPop
MF

UTMF
PIMF

(b) Precision

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 1  2  3  4  5

re
ca

ll

K

TopPop
MF

UTMF
PIMF

(c) Recall

Figure 4-6: Comparative Study

70



Figure 4-5 gives the results of this experiment for different values of K. We see

that the conversion rate increases as K increases. Similar observations are made for the

precision and recall graphs. The best result is obtained when ω = 28. We use this

window size for the rest of the experiments.

Next, we compare the performance of our algorithm PIMF to TopPop, MF and

UT MF. Figure 4-6 shows the results. Since TopPop recommends the most popular

products and is not personalized, it has the lowest conversion rate compared to the per-

sonalized MF-based methods. When we compare PIMF with MF and UT MF, we

see that using purchase intervals significantly improves the conversion rate, recall and

precision of the recommendations.

We give an example of the results obtained. Table 4.3 gives the products correspond-

ing to the product IDs. Table 4.4 shows a sample of the purchase intervals between the

products 229040002 (DVD-ROM) and 24101000e (Wireless Router) computed from the

dataset. We observe that users typically purchase a DVD-ROM about 25 days after pur-

chasing a Wireless Router.

Table 4.3: Sample Products

Product ID Product Title
22306000e Galaxy GT430 512MB DDR5 Graphics Card
229040002 LITEON 18X DVD-ROM
23d010004 PHILIPS SWA1938/93-5 Internet Cable 5M
23d02000e CHOSERL Q505 VGA Cable 1.5M
24101000e TP-LINK WR340G+ 54M Wireless Router

Table 4.5 shows a sample of user U10370829’s purchase history in the training data.

The first entry in the testing data for this user is < 229040002, 2010 − 07 − 16 > indi-

cating that s/he purchases the product 229040002 (DVD-ROM) at time 2010 − 07 − 16.

Upon examining the list of products recommended by the various algorithms, we find

that our method PIMF also recommends this product 229040002 (DVD-ROM) to the

user, whereas both MF and UT MF recommend the product 23d010004 (Internet Ca-

ble). From the user purchase history data, we find that users either purchase the prod-

71



Table 4.4: Sample Purchase Intervals (in days)

Product ID Product ID Interval
24101000e 229040002 22
24101000e 229040002 25
24101000e 229040002 25
24101000e 229040002 27
24101000e 229040002 27
24101000e 229040002 29
24101000e 229040002 22
24101000e 229040002 23
24101000e 229040002 26
24101000e 229040002 27

ucts 24101000e (Wireless Router) and 23d010004 (Internet Cable) together, or purchase

Internet Cable 1-2 days after buying Wireless Router. Since MF and UT MF do not

consider the purchase intervals, both of them recommend the product Internet Cable to

user U10370829.

Table 4.5: Sample of User U10370829’s Purchase History in Training Data

Product ID Purchase time
23d02000e 2010-03-19
23201000d 2010-03-30
23d100002 2010-04-20
23d060003 2010-04-26
233020011 2010-05-25
24101000e 2010-06-19
22306000e 2010-06-26

4.4.4 Temporal Diversity

We also investigate the temporal diversity of the various algorithms. We obtain the first

recommendation list L at the time stamp of the first entry in the testing data. Then we

partition the testing data into two and put the first partition into the training data. We

re-run the algorithms on this larger training data and obtain a second recommendation

list L′ at the time stamp of the first entry in the second partition.

Figure 4-7 shows the temporal diversity result for the top-5 and top-10 recommended

72



TopPop

MF

UTMF

PIMF

Figure 4-7: Top-5 and Top-10 Temporal Diversity for TopPop,MF,UT MF, PIMF

items. The temporal diversity of TopPop is 0 because both its recommendation lists con-

tains the same popular products. Our proposed method PIMF has the highest temporal

diversity compared to MF and UT MF since the products recommended depends on the

time at which the user logs into the system.

Based on the results, we envisage that our proposed approach would be useful in

email-based or message-based marketing applications. At different time points, when

we want to push some products to consumers, we can determine the products that would

be most attractive to consumers at that time point instead of only products that consumers

may potentially like.

4.4.5 Effect of Taxonomy

Finally, we study the effect of taxonomy on the various algorithms. Based on the original

e-commerce website, products are classified under various levels of category, e.g., both

the products “DELL V3400R-426S 14 inch laptop” and “DELL V3400R-426S 13.3 inch

laptop” fall under the same brand “Dell” which is under the product type “Laptops”.

The product type “Laptops” is under “Computers” which is under “Computers & Soft-

ware”. Thus, we could consider both models of the Dell laptops as the same product

type.

In this experiment, we replace specific product models by their product type and

73



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  2  3  4  5

co
nv

er
si

on
 r

at
e

K

TopPop
MF

UTMF
PIMF

(a) Conversion Rate

TopPop

MF

UTMF

PIMF

(b) Temporal Diversity

Figure 4-8: Effect of Taxonomy

74



brand, that is, we generalize “DELL V3400R-426S 14 inch laptop” and “DELL V3400R-

426S 13.3 inch laptop” to a more general product called “DELL Laptops”. Then we

re-generate the purchase interval cube and learn a new model for recommendation. Note

that we drop the product price term from Equation 4.9 since we would not have the price

of the generalized product.

Figure 4-8 gives the conversion rate and temporal diversity of the algorithms on this

dataset. We observe that all the methods show improvement in the conversion rate. The

temporal diversity of all the algorithms decrease slightly because the total number of

distinct products is reduced when we merge the individual product models of the same

brand to their product type. The gap between PIMF and the other algorithms widens as

the density of the purchase interval cube increases with the use of taxonomy.

4.5 Summary

In this chapter, we have described how purchase intervals are able to increase the tempo-

ral diversity and conversion rate in product recommender systems. We have designed

a model that combines purchase interval information in users purchase history with

marginal utility. We have also developed an efficient algorithm to generate a purchase

interval cube by scanning users’ purchase history once. Experimental results on the real

world Jingdong e-commerce dataset demonstrate that the proposed approach improves

the precision, recall, conversion rate of existing algorithms. It also significantly improves

temporal diversity which is essential for product recommendation systems.

75



76



CHAPTER 5

UTILIZING PURCHASE INTERVALS

IN LATENT CLUSTERS FOR

PRODUCT RECOMMENDATION

Online shopping service providers aim to provide users with quality list of recommended

items that will enhance user satisfaction and loyalty. The dominant collaborative filter-

ing method, matrix factorization, typically used in product recommenders, depicts each

user as one preference vector, and sparsity remains a challenge for matrix factorization

given the huge number of users and products. In practice, we observe that users may

have different preferences when purchasing different subsets of items, and the periods

between purchases also vary from one user to another.

In this chapter, we describe a probabilistic approach to learn latent clusters in the

large user-item matrix, and incorporate temporal information into the recommendation

process. The clusters obtained capture users’ hidden preferences for items as well as

item time sensitivity. This work has been published in [98]

77



5.1 Motivation

A widely adopted approach for product recommendation is collaborative filtering which

associates a user with a group of similar users based on their preferences over all the

items, and recommends to the user items which the group likes. The assumption is that

similar users will have similar preferences on all the items. The state-of-the-art collab-

orative filtering method, matrix factorization [47], reduces the dimension of the high

dimensional user-item matrix by finding latent vectors for users and items. However,

matrix factorization constrains each user to one preference vector, and sparsity remains

a challenge for matrix factorization given the huge number of users and products [53].

Studies on consumer behavior have shown that the underlying mechanisms govern-

ing user purchase behavior is very complex. A user is often interested in more than one

subset of products, indicating his/her diverse purchase behavior. Two users may pur-

chase the same product for different reasons, demonstrating the diverse characteristics

of a product. The work in [95] shows that two users with similar preferences on a subset

of items may have vastly different preferences on another subset of items, and propose

to co-cluster both users and items into multiple subgroups to improve recommendation

accuracy. The authors develop an approach called MCoC which simultaneously clusters

users and items into smaller subgroups before applying any recommendation algorithm.

The clustering step in MCoC has two steps. First, the high dimensional M × N

user-item matrix is transformed to a (M + N) × d matrix, where d << min{M,N}. This

transformation maps both users and items into the same latent space, and each dimension

can be seen as a latent feature for a user or a item. Next, a soft clustering fuzzy c-means

is applied on the lower dimensional latent space to obtain clusters of users and items.

Inspired by the MCoC framework, we want to examine whether the purchase interval

information described in Chapter 4 can be utilized to find clusters of users with similar

purchase behaviors. We first employ tensor decomposition [44] to reduce the M×N×N

purchase interval cube to a M × d matrix, before applying fuzzy c-means to find clusters

on the lower dimension matrix. Figure 5-1 shows the purchase interval data for 4 users

78



and 5 items. Table 5.1 gives the results after applying tensor decomposition and fuzzy c-

means on the purchase interval cube obtained from the matrices in Figure 5-1. Suppose

we set the number of clusters to 2 for the fuzzy c-means algorithm, then we will obtain

the cluster membership for each user as shown in the last column in Table 5.1. If we

set the membership threshold as 0.3, then we will cluster the users into two clusters c1 =

{u1, u2} and c2 = {u2, u3, u4}.

Figure 5-1: Example Purchase Interval Matrices for Users (Unit: Day )
i1 i2 i3 i4 i5

i1 4 6
i2 2 2
i3 6
i4 5 4
i5 2 2

(a) User u1

i1 i2 i3 i4 i5
i1 3 5 6
i2 3
i3 6
i4 6
i5 3

(b) User u2

i1 i2 i3 i4 i5
i1 4 2
i2 3 4
i3 6 3
i4 4
i5 5

(c) User u3

i1 i2 i3 i4 i5
i1 5
i2 4 3
i3 5 3
i4 2 3
i5 4

(d) User u4

Table 5.1: Tensor Decomposition & Clustering Result
Latent Space Membership

d=1 d=2 d=3 c=1 c=2
u1 1.49167494 1.06868527 1.68747388 0.96 0.04
u2 1.78127964 1.74024785 0.46215857 0.42 0.58
u3 0.83263382 1.30810371 2.18367095 0.28 0.72
u4 0.91476136 2.34232086 0.81208335 0.03 0.97

We implement the above Purchase Interval Clustering method (PIC) and compare

it with MCoC on the Jingdong e-commerce dataset. We apply matrix factorization on

the clusters obtained by PIC and MCoC respectively. We find that the clusters obtained

by PIC did not yield better results than those obtained by MCoC (see Section 4.3.5).

Further investigation reveals that the density1 of the purchase interval cube (0.00092%)
1We define the density as the number of non-empty cells in the matrix/cube divided by the size of

matrix/cube.

79



is worse than the user purchase data or user-item matrix (0.21%). Based on the initial

experimental results, we purpose to develop a clustering method which not only utilize

user purchase data, but also incorporate purchase interval information to improve the

cluster quality.

In this chapter, we describe a bi-cluster based collaborating filtering method, and

incorporate temporal information into the recommendation process. Our goal is to find

user-item subgroups in the large user-item matrix that effectively capture the users’ pref-

erences for items as well as item time sensitivity. Item time sensitivity determines the

relevance of an item at a given time stamp. In particular, we adopt a probabilistic ap-

proach to discover user-item clusters, and refine the clusters by utilizing user purchase

intervals to find the most relevant items for the given time stamp. Then we apply matrix

factorization on each of these clusters to personalize the recommendations.

Our approach leverages on the Latent Dirichlet Allocation (LDA) [13] method to

capture the hidden aspects of user interests and distribution of products purchased. Just

as one has some criteria in mind when making some purchase, a user may be interested

in the latest IT gadgets such as mobile phone regardless of the price, while another user

tends to splurge on the latest fashion and is more careful about the cost of IT devices.

Thus, if we are able to identify the shared interests behind users purchasing activities,

we could significantly improve the quality of recommendations in e-commerce sites like

Amazon and Taobao.

We create “documents” that contain the ids of items bought by a user previously and

utilize latent Dirichlet allocation to generate latent groups. We introduce the notion of a

cluster purchase interval factor which estimates the probability that users in a cluster will

purchase an item. Experiment results on a real world e-commerce data set demonstrate

that our approach significantly improves the conversion rate (by up to 10%), as well

as the precision and recall of state-of-the-art product recommender methods. We also

compare our approach with other clustering methods to show that the good performance

is not simply because of the use of purchase intervals.

80



5.2 Proposed Approach

Our proposed framework has three main phases. The first phase utilizes an LDA-based

method to generate latent user-item clusters. The second phase refines the clusters by

incorporating information on the user purchasing intervals. The last phase performs

matrix factorization on each cluster and combines the top K items from the clusters that

the user occurs in to obtain the final list of recommended items.

We describe the details of each phase in the following subsections.

5.2.1 Generate Latent Clusters

A topic model is a statistical model developed for discovering hidden topics from a

collection of documents. The assumption is that every document is a mixture of topics,

and words in a document describes these hidden topics.

Latent Dirichlet Allocation (LDA) [13] has become a well-established method for

modeling the topic distribution of a set of documents D. Similar to Probabilistic Latent

Semantic Indexing (PLS I) [37], each document in the LDA model is represented as

a mixture of a fixed numbers of topics Z, with topic z having a probability Pr(z|d) in

document d. Each topic is a probability distribution over a finite vocabulary of wordsW,

with word w having probability Pr(w|z) in topic z.

Given the parameters α and β where α is a vector of dimension |Z| and β is a vector

of dimension |W |, the document generation process is as follows:

1. Choose the number of topics.

2. Choose θ ∼ Dir(α)

3. For each word wn

• Choose a topic zn ∼ Multinomial(θ)

• Choose word wn from Pr(wn|zn, β)

81



LDA has been shown to be effective in document classification and recently, it has

been successfully applied to user recommendations in microblogs [100]. In this work,

we propose to use the LDAmodel to identify the hidden interests behind user purchasing

activities and generate latent user-item clusters.

Each user u can be regarded as a document consisting of a list of items i s/he has

bought before. We denote Pr(z|u) as the multinomial probability of topic z given a user

f , and Pr(i|z) as the multinomial probability of a item i given z. We use du to denote a

user document, and the content of du is the list of item purchased by u. Therefore our

document corpus D is given by

D =
⋃

u∈U
du (5.1)

We apply LDA on D to generate a pre-defined number of topics Z. Figure 5-2 depicts

the graph model for this representation.


 � �




���

�

���

Figure 5-2: Graph Model Representation

For each topic z ∈ Z, we form a cluster c such that the users in c, denoted as c.U is

given by

c.U = {u | u ∈ U ∧ Pr(z|du) > γ} (5.2)

where γ is some threshold.

The set of clusters C generated by LDA are latent clusters, where C = Z with es-

timates Pr(c|du) and Pr(i|c). Pr(c|du) indicates the likelihood of a user u belongs to a

82



cluster, and thus can be used to cluster users into latent groups. Pr(i|c) indicates the

importance of an item i to a cluster c, and thus can be used to estimate the likelihood of

users in c purchasing i. We use these estimate to compute the cluster purchase interval

factor in the cluster refinement phase.

Algorithm 3 shows the details of this phase. The input is a dataset H containing the

purchase histories of users, the number of clusters N and threshold γ. The output is a set

of latent clusters C generated by LDA, where C = Z with estimates Pr(c|du) and Pr(i|c).

Each cluster c ∈ C is associated with a set of users c.U whose Pr(c|du) > γ.

Algorithm 3: Generate Latent Clusters
input : 1. Set of purchase records H = {< u, i, t >},

2. Number of clusters N,
3. Threshold γ

output: C, Pr(c|du), Pr(i|c)
D = ∅;1

foreach u ∈ U do2

du = {i | i ∈ I ∧ ∃ < u, i, t > ∈ H}3

D = D ∪ {du};4

end5

Z ← LDA(D,N);6

foreach z ∈ Z do7

c ← ∅8

c.U = {u | u ∈ U ∧ Pr(z|du) > γ};9

C = C ∪ {c};10

end11

5.2.2 Refine Latent Clusters

Before we use the clusters obtained in the previous step to make recommendations at

some time point T , we want to refine the set of items c.I in each cluster c ∈ C such that

users in c have a high probability to purchase the items at time t.

We normalize the purchase interval factor of each user in Equation 3.8 as follows:

NPI(u, i, j, t) = PI(u, i, j, t)∑
i′∈I PI(u, i′, j, t) (5.3)

83



Then the probability that the users in a cluster c will purchase an item j at time t after

purchasing i is given by:

CPI(c, j, t) = Pr( j|c) ∗ (5.4)
∑

u∈c.U
Pr(c|du) ∗ (

∑

i∈I
(1 + NPI(u, i, j, t)) ∗ Pr(i|c))

We call CPI the cluster-level purchase interval factor at t. The formula for CPI com-

prises of three terms. The first term Pr( j|c) considers the importance of the item j to the

cluster, while the second term Pr(c|du) weights the user’s interest to the cluster. The last

term (1+ NPI(u, i, j, t)) ∗ Pr(i|c) in the equation measures the purchase interval effect of

item i in purchase history to item j.

We can rank the items in each cluster according to their CPI values. Then we put

items with the highest CPI(c, i) values into c.I for each c ∈ C

Note that the number of items to be placed in each cluster should be proportionate to

the number of users in that cluster, and is given by

τ ∗ |I| ∗ |c.U |/|U |

where τ is a tuning factor dependent on the dataset and is obtained experimentally.

Users who have not purchased any item i ∈ c.I are removed from c.U. Let H be the

set of user purchase records. Then the subset of purchase records in a cluster c, denoted

as c.H, is given by:

c.H = {< u, i, t > | < u, i, t >∈ H ∧ u ∈ c.U ∧ i ∈ c.I} (5.5)

84



5.2.3 Recommend Items

After refining the clusters, the next phase is to compute candidate items from these clus-

ters for recommendation. We utilize the PIMF collaborating filtering method on each

cluster to accomplish this.

Given a target user u, we obtain the score that s/he will purchase the item i in cluster c

as score(u, i, c). Since umay occur in more than one latent clusters, we need to combine

the different lists of candidate items recommended in each cluster. Here, we sum up the

scores of all the clusters that u and i appears in as follows:

sumS core(u, i) =
∑

c∈C
(score(u, i, c) × Pr(c|du)) (5.6)

where Pr(c|du) is the weight of user u’s interest in cluster c.

Finally, we sort the scores for each user u and output the top-K items to recommend

to u.

Algorithm 4 shows the details of our proposed approach. We call our method c-

PIMF for cluster-based Purchase Interval Matrix Factorization. The input is the set

of latent clusters obtained from Algorithm 3. Lines 1 to 2 computes the normalized

purchase interval factor at time T for each user. Lines 3 to 7 computes the cluster level

purchase interval factor CPI and refines the clusters with items that have the high CPI

values. Then we perform PIMF on each cluster (lines 9-12). Lines 14-18 aggregates the

scores from each cluster and we obtain a ranked list of recommended products for each

user.

Let us illustrate our approach with the sample user purchase histories in Figure 5-

3. If we let N = 2, then Algorithm 3 will generate two clusters c1 = {u1, u3, u4} and

c2 = {u1, u2, u4}.

Suppose our target user is u4, and we want to make recommendations at time point

t = 24. Table 5.2 shows the CPI values of the items computed for each cluster. If we

want the top three items from each cluster, then we will put items i2, i4, i5 in cluster c1

85



Algorithm 4: c-PIMF Algorithm
input : 1. Set of clusters C

2. Set of purchase records H = {< u, i, t >}
3. Number of latent factors LF
4. Tuning factor τ
4. Time T

output: Ranked recommendation list
use Equation 3 to compute purchase interval factor PI for each user u ∈ U;1

use Equation 7 to compute the normalized purchase interval factor NPI at time T2

for each user;
foreach c ∈ C do3

Use Equation 5.4 to compute the cluster purchase interval CPI ;4

Rank items according to their CPI values;5

c.I = top (τ ∗ |c.U |/|U | ∗ |I|) items;6

c.H = {< u, i, t > | < u, i, t > ∈ H ∧ u ∈ c.U ∧ i ∈ c.I};7

end8

R = ∅;9

foreach c ∈ C do10

PIMF(c, LF);11

Rc = {< u, i, score(u, i, c) > | u ∈ c.U ∧ i ∈ c.I};12

R = R ∪ {Rc};13

end14

Result = ∅;15

foreach pair (u, i) do16

Use the scores in R to compute sumS core(u, i) according to Equation 5.6;17

Result = Result ∪ < u, i, sumS core(u, i) >;18

end19

foreach u ∈ U do20

Return the ranked list of items in Result;21

end22

86



since these items have the highest CPI values. Similarly, we will put items i2, i3, i5 into

cluster c2. For each cluster, we apply PIMF and finally recommend item i2 to u4.





�


�



�


�



�


�

 

�
 

�


	


�

 
��
��
��
��
��
��
��
��
�	
�


��

��

��
��
��
��
��
��
�	

�


��

��

��

�� �� ��

����

����





 
 


�� �� ���� ��

 


 


��

�

Figure 5-3: Example of Users’ Purchase History

On the other hand, suppose we want to make recommendations to u4 at time point

t = 27. Table 5.3 shows theCPI values obtained for each cluster. Based on the top three

CPI values for each cluster, we have c1.I = {i1, i4, i5} and c2.I = {i1, i2, i3}. Item i5 will be

recommended to u4 after applying PIMF on each cluster.

Table 5.2: CPI Values at t = 24
Item Cluster c1 Cluster c2

i1 0.391 0.296
i2 0.414 0.407
i3 0.368 0.426
i4 0.575 0.352
i5 0.598 0.370

Table 5.3: CPI Values at t = 27
Item Cluster c1 Cluster c2

i1 0.399 0.340
i2 0.378 0.376
i3 0.357 0.394
i4 0.483 0.304
i5 0.483 0.376

5.3 Experimental study

In this section, we report the results of the extensive experiments we have carried out to

evaluate both of the effectiveness and efficiency of our proposed c-PIMF method. We

87



(a) # Distinct Products

(b) Product Popularity

Figure 5-4: Characteristics of Dataset

compare the performance of our method with the following methods:

1. TopPop. This is a baseline algorithm which ranks product items according to their

popularity among users and recommends the top-K most popular product items to

a target user.

2. IF-MF [42]. This is the state-of-the-art matrix factorization method for implicit

feedback data sets. We set the number of latent factor to be 16 for IF-MF .

3. PIMF As proposed in Chapter 4. This is the state-of-the-art temporal-based ma-

trix factorization method which utilizes purchase interval information for product

recommender systems. Since PIMF has a parameter ω which specifies the time

window to compute the user purchase intervals, we run a set of experiments to

obtain the optimal value of ω = 35 that yields the best performance for PIMF.

88



We implement the methods using Python. We code the LDA model according to

[36], and use the C# implementation provided in [28] for the method IF-MF. All the

experiments are carried out on an Intel(R) Core(TM) i7-2600 with 3.4 GHz, 8 GB RAM,

64 bit Microsoft Windows 7 operating system.

5.3.1 Experimental Data Set

The experimental dataset is collected from Jingdong which is one of the biggest B2C

e-commerce websites in China. In order to observe significant performance distinction

among different approaches, we re-crawled a larger dataset than that was used in Chapter

4. We crawled products that belong to the electronic category. The dataset consists of

3,775,069 users, 12,316 products and 12,784,961 purchase records from January 2011

to November 2013. The density of the data set is 0.027%.

We pre-process the dataset to remove products that have less than 10 purchase records,

as well as users who have purchased less than 10 products. The processed dataset

has 239,468 users, 10,775 products and 5,328,887 purchase records, with a density of

0.21%. We sort the purchase records according to the users to form their purchase his-

tory. Records in each user purchase history are ordered by their time stamps. For each

user’s purchase history, we use the first 90% of the records as training dataset and the

remaining 10% as the test data set.

Figure 5-4 shows the characteristics of the dataset. Figure 5-4(a) depicts the dis-

tribution of distinct products purchased by users, and Figure 5-4(a) gives the product

popularity over time. Both figures show long tails in the distribution.

5.3.2 Evaluation Metrics

We use the conversion rate, precision and recall as our evaluation metrics. Conversion

rate is a standard metric in e-commerce to determine if a user has obtained at least one

good recommendation. If the user purchased at least one product from the recommended

list of top K items, then we say that the user has switched from a browser to a buyer. If

89



L is the list of recommended products and L′ is the list of products actually purchased

by the user, then the conversion rate is given by:

conversion rate@K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if |L ∩ L′| > 0

0 otherwise
(5.7)

We compare the conversion rate of the various methods by taking the average of

values computed for each test user.

Precision and recall are defined as follows:

recall@K = |L ∩ L′|
|L′| (5.8)

precision@K = |L ∩ L′|
K (5.9)

We also report the F1 score, which is the harmonic mean of precision and recall,

given by:

F1 = 2 × Precision × Recall
Precision + Recall (5.10)

5.3.3 Preliminary Experiment

We repeat the comparative experiment in Chapter 4 on the new larger data set. The

results in Figure 5-5 shows similar trend. We observe that the method TopPop shows

improved performance in this larger data set. This is because of the change in consumers’

purchase patterns as Jingdong has become more popular recently and more consumers

actually buys the most popular item recommended.

5.3.4 Sensitivity Experiments

We first examine how the parameters γ, N and LF affect the performance of our proposed

c-PIMF approach. We fix the number of latent factor at LF = 16, and vary the threshold

90



1 2 3 4 5

Top K

1

2

3

4

5

6

7

8

9

10

C
o
n
v
e
rs

io
n
 R

a
te

(P
e
rc

e
n
ta

g
e
)

TopPop

UTMF

PIMF

MF

(a) Conversion Rate

1 2 3 4 5

Top K

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
re

c
is

io
n
(P

e
rc

e
n
ta

g
e
)

TopPop

UTMF

PIMF

MF

(b) Precision

1 2 3 4 5

Top K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
c
a
ll
(P

e
rc

e
n
ta

g
e
)

TopPop

UTMF

PIMF

MF

(c) Recall

Figure 5-5: Preliminary Experiment Study

91



γ and the number of clusters N.

We use F1 score to measure the performance of the recommendations. Table 5.4

shows the results for K = 3. We see that the F1 score increases as the number of

clusters increase from 3 to 6, indicating that the additional clusters are able to capture

users’ preferences for different subsets of items. The F1 score drops when N = 7 due to

information loss as purchase records of users who have low probabilities of purchasing

items are removed from clusters.

Based on the results, we use γ = 0.02 and N = 6 for c-PIMF in the subsequent

experiments.

Table 5.4: Effect of γ and N on c-PIMF
γ N=3 N=4 N=5 N=6 N=7
0.01 0.0122 0.0165 0.0174 0.0191 0.0179
0.02 0.0159 0.0163 0.0177 0.021 0.0173
0.04 0.0148 0.0166 0.0169 0.0192 0.0168
0.08 0.0144 0.0152 0.0161 0.0185 0.0163

8 16 32 64

Number of Latent Factors LF

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

F
1

 S
c
o
r
e

PIMF

c-PIMF

Figure 5-6: Effect of varying latent factor LF

Figure 5-6 shows the F1 scores for PIMF and c-PIMF as we vary the number

of latent factors LF from 8 to 64. We observe that although the performance of both

methods improve as LF increases, the proposed c-PIMF still outperforms PIMF. We

also use LF = 16 for both PIMF and c-PIMF for the rest of our experiments.

92



5.3.5 Comparative Experiments

Next, we compare the performance of c-PIMF with the baseline method TopPop, and

state-of-the-art matrix factorization methods IF-MF and PIMF. Figure 5-7 shows the

conversion rate, precision and recall of the various approaches. The results indicate

significant improvement achieved by c-PIMF.

The baseline method TopPop has the worst performance as it only recommends

the most popular products and it is not personalized. Although the IF-MF method

personalized the recommendations for users by considering their latent preferences, it

does not capture the temporal information.

Our proposed method c-PIMF outperforms PIMF with a 10% improvement in con-

version rate as it is able to capture users’ latent preferences for different subset of items.

5.3.6 Analysis of Clustering Methods

We also analyze the impact of clustering methods on the performance since our proposed

method applies matrix factorization on clusters which have lower sparsity compared

to the original data set. We compare our approach to find clusters with the following

methods:

1. MCoC [95]. This is the state-of-the-art multi-class clustering method that finds

user-item subgroups for item recommendation.

2. PIC (Purchase Interval Clustering). This method utilizes the purchase interval

cube to cluster users. We assign the top τ ∗ |I| ∗ |c.U |/|U | items with highest fre-

quency to the corresponding cluster.

3. cLDA. This is a variant of our approach which only employs LDA to generate

the clusters and does not incorporate purchase interval factor to refine the clusters.

Thus for each cluster, the top τ ∗ |I| ∗ |c.U |/|U | items with highest Pr(i|c) values

will be assigned to corresponding cluster.

93



IF-MF

(a) Conversion Rate

IF-MF

(b) Precision

IF-MF

(c) Recall

Figure 5-7: Comparative experiments

94



1 2 3 4 5

Top K

2

3

4

5

6

7

8

9

10

C
o
n
v
e
rs

io
n
 R

a
te

(P
e
rc

e
n
ta

g
e
)

c-PIMF

MCoC

cLDA

PIC

(a) Conversion Rate

1 2 3 4 5

Top K

2.0

2.5

3.0

3.5

4.0

4.5

P
re

c
is

io
n
(P

e
rc

e
n
ta

g
e
)

c-PIMF

MCoC

cLDA

PICd

(b) Precision

1 2 3 4 5

Top K

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
e
c
a
ll
(P

e
rc

e
n
ta

g
e
)

c-PIMF

MCoC

cLDA

PIC

(c) Recall

Figure 5-8: Comparison of clustering methods using PIMF

95



1 2 3 4 5

Top K

2

3

4

5

6

7

8

9

10

C
o
n
v
e
rs

io
n
 R

a
te

(P
e
rc

e
n
ta

g
e
)

c-PIMF

MCoC

cLDA

PIC

(a) Conversion Rate

1 2 3 4 5

Top K

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

P
re

c
is

io
n
(P

e
rc

e
n
ta

g
e
)

c-PIMF

MCoC

cLDA

PICd

(b) Precision

1 2 3 4 5

Top K

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
c
a
ll
(P

e
rc

e
n
ta

g
e
)

c-PIMF

MCoC

cLDA

PIC

(c) Recall

Figure 5-9: Comparison of clustering methods using MF

96



C1 C2 C3 C4 C5 C6 Original
98.0

98.5

99.0

99.5

100.0

S
p
a
rs
it
y

98.98

99.25 99.27

99.36
99.43

99.63

99.79

(a) c-PIMF

C1 C2 C3 C4 C5 C6 Original
98.0

98.5

99.0

99.5

100.0

S
p
a
rs
it
y 99.01

99.22

99.39 99.40
99.44

99.53

99.79

(b) MCoC

C1 C2 C3 C4 C5 C6 Original
98.0

98.5

99.0

99.5

100.0

S
p
a
rs
it
y

99.36

99.67
99.72 99.75 99.77

99.83
99.79

(c) PIC

C1 C2 C3 C4 C5 C6 Original
98.0

98.5

99.0

99.5

100.0

S
p
a
rs
it
y

99.09
99.13

99.24

99.36

99.50

99.71
99.79

(d) cLDA

Figure 5-10: Sparsity of original data set vs. discovered clusters for different clustering
methods

We respectively apply the matrix factorization approach IF-MF, and the purchase

interval based PIMF with LF = 16 on the clusters obtained by the different methods.

Figure 5-8 and Figure 5-9 show the experimental results for comparison for different

clustering methods. We observe that our approach that captures both the latent prefer-

ences of users as well as the item time sensitivity yields the best performance. Moreover,

we can see that the pure purchase interval based clustering method (PIC) does not per-

form well indicating that purchase interval information cannot be used as key feature to

cluster user purchase behavior.

Figure 5-10 compares the sparsity of the original data sets and the clusters obtained

by the various methods. The sparsity of a cluster is defined as

sparsity = 1 − |c.H|
|c.U | ∗ |c.I| (5.11)

97



While all the clustering methods reduce data sparsity, we see that the sparsity of

the clusters generated by c-PIMF is generally lower that obtained by MCoC, PIC and

cLDA. The sparsity of the clusters obtained by PIC remains high, showing that purely

clustering users based on their purchase interval information is not effective.

5.3.7 Analysis of Latent Groups

In order to further understand why c-PIMF works best, we examine the latent groups

discovered by our approach. Table 5.5 shows the items purchased by a subset of the

users in two latent groups.

We observe that users in latent group 1 have mainly purchased mobile devices such as

iPad minis and laptop models, as well as related accessories such as mouse and keyboard.

On the other hand, the users in latent group 2 bought DIY PC items such as CPUs and

monitors, and PC related accessories such as harddisk and cables. Note that the items

monitor and router occur in both latent groups since such items are commonly used in

both mobile devices and PCs. We see that our approach can effectively cluster items

with their latent features.

5.4 Summary

In this chapter, we have developed a probabilistic approach to discover latent clusters

from a large user-item matrix. The goal is to capture the hidden preferences and interests

of users in each cluster as well as item time sensitivity. We have introduced the notion

of a cluster-level purchase interval factor to indicate the likelihood that users in a cluster

will purchase an item. We utilized this factor to refine the latent clusters before applying

matrix factorization approach on each cluster.

We have carried out extensive experiments to evaluate the performance of our ap-

proach on a real e-commerce data set. In order to show that our approach gives good

performance not because of the use of purchase intervals, we have also compared our ap-

98



Table 5.5: Sample Latent Groups of Users and Items Purchased

Latent Group 1
User Id Sample Purchase History

2472
Logitech M185 wireless mouse, TP-LINK 300M wireless route
EDIFIER K800 Earphone, SAMSUNG 21.5’ Monitor, EPSON LQ-630K Printer
360 Geek WiFi 2,Apple iPad mini 7.9’,ThinkPad X230i 12.5 laptop

6325
360 Geek WiFi 2, Apple MacBook Pro 13.3,MacBook Pro Screen Protector
SAMSUNG 21.5’ Monitor, Apple iPad mini 7.9’,EPSON LQ-630K Printer
Kingston 16G USB flash disk, Hagibis MacBook HDMI Cable

10298
EDIFIER K800 Earphone,Apple iPad mini 7.9’ , SAMSUNG SSD 120G
Kingston DDR3 4G, Kingshare data cable, DEEPCOOL Laptop Cooler
EDIFIER Multimedia Speaker,HYUNDAI keyboard and mouse

41024
Apple MacBook Air, Apple iPad mini 7.9’, Acer D101E Projector
MacBook Air Screen Protector,TRNFA 12bit Calculator,ARITA DVD R
EDIFIER Multimedia Speaker, TP-LINK 300M wireless router

73092
Kingston DDR3 4G, HP 14.0’ Laptop, DEEPCOOL Laptop Cooler
EPSON LQ-630K Printer, HP 802 black cartridge, EDIFIER Multimedia Speaker
Logitech M185 wireless mouse, Kingston 16G USB flash disk

Latent Group 2
User Id Sample Purchase History

392
GIGABYTE Mainboard, Kingshare data cable, CoolerMaster U3 Computer Case
HYUNDAI keyboard and mouse, DELL UltraSharp Monitor, Internet Cable,
Antec 450W VP 450P power supply, EDIFIER Multimedia Speaker

1098
Kingston DDR3 4G, SAMSUNG 21.5’ Monitor, Intel CORE i3-3220 CPU
Logitech M185 wireless mouse, GIGABYTE Mainboard, EPSON LQ-630K Printer
TP-LINK 300M wireless router, Antec 450W VP 450P power supply

11524
Internet Cable, SAMSUNG SSD 120G, Apple iPad mini 7.9’
Acer G206HQL b 19.5’ Monitor, Kingston 16G USB flash disk
Logitech MK260 Wireless Keyboard Suit, MAXSUN 1G 128bit graphics card

30297
Intel CORE i3-3220 CPU, ARITA DVD R, UniFly Webcam,
ORICO audio card, Acer D101E Projector, Internet Cable
Logitech MK260 Wireless Keyboard Suit,Seagate 500G 7200r Hard disk

71026
Intel CORE i3-3220 CPU, GIGABYTE Mainboard, ORICO audio card
Internet Cable, NZXT Computer Case, Seagate 1T 7200r Hard disk
Antec 450W VP 450P power supply,360 Geek WiFi 2

99



proach with a non-probabilistic technique that also employs the same purchase interval

information. The results have demonstrated that the proposed c-PIMF method signif-

icantly outperforms state-of-the-art recommender methods, and is useful in providing

more accurate recommendations and clusterings for e-commerce systems. We further

find that it may not possible to use only purchase interval to cluster users behavior,

hence it is a good idea to use it as additional feature to generate the clusters.

100



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Microblog social networks and e-commerce have becomes two important applications of

Web 2.0 technology. Recommender systems play a key role in driving sales and social

interactions in these applications. In this thesis, we have developed novel methods to

personalize and improve the performance of user and product recommender systems.

In user recommender system, we have focused on improving user acceptance of

”friendship” in Twitter style micro-blog social networks. In this work, we investigated

using both follower and followee relationships to discover communities to improve user

recommendation in uni-directional social networks. We introduced a two-phase frame-

work where we first utilized the LDA model to discover communities, and then applied

matrix factorization on each community found. We carried out extensive experiments

to evaluate the performance of our approach on two real world uni-directional social

network data sets, Twitter and Weibo. The results indicated that the proposed method

significantly outperformed the state-of-the-art user recommender algorithms. We further

showed that the community-based approach is a good alternative form of parallelization

101



for matrix factorization.

In product recommender systems, we have proposed a framework that utilizes pur-

chase intervals to improve the temporal diversity of recommended items. Existing works

have primarily considered the order of items purchased by users, and not the time inter-

vals between the products purchased. We have designed a model that combines purchase

interval information in users’ purchase history with marginal utility and the Law of Di-

minishing Returns. We also devised an efficient algorithm to generate a purchase interval

cube by scanning users’ purchase history once.

We have further designed a LDA based approach to discover latent clusters in the

large user-item matrix and incorporate temporal information into the recommendation

process. We introduced the notion of a cluster purchase interval factor which estimates

the probability that users in a cluster will purchase an item. Extensive experiments on

a real world data set obtained from an e-commerce B2C website Jingdong in China

demonstrate that the proposed methods are able to improve the precision, recall, conver-

sion rate of the state-of-the-art product recommendation algorithms.

6.2 Future Work

There are several directions that require further investigations. We list two major direc-

tions for future work.

• Parallelization. Big data is now a very hot topic in both industry and academia.

Scalability remains a challenge for recommender systems. One possibility is to

using parallel frameworks such as MapReduce to increase the scalability of our

proposed algorithms.

• Unified subgroup framework for matrix factorization. We have shown that

it is possible to employ LDA based method utilizing some data characteristics

such as purchase interval factor and follower-followee relationships, to discover

102



meaningful clusters from e-commerce and social network data respectively. Af-

ter obtaining the clusters, state-of-the-art matrix factorization approaches can be

applied to each cluster. The advantages are lower sparsity and smaller data set

for each cluster. Hence, this approach can both improve the effectiveness and

efficiency of recommender systems. Therefore, an interesting direction is to in-

vestigate how we can develop a unified framework that can discover clusters for

matrix factorization.

• Hybrid recommendation systems. For product recommendation, it would be in-

teresting to study how purchase intervals compares with sequential patterns, and

how to incorporate purchase interval with other temporal features such as sequen-

tial pattens. For user recommendation, although the user information is usually

limited and tweets are noisy in microblog social networks, it would be still inter-

esting to see how the proposed algorithm can be combined with user preference

and content features.

103



104



BIBLIOGRAPHY

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749, 2005.

[2] Jae-wook Ahn, Peter Brusilovsky, Jonathan Grady, Daqing He, and Sue Yeon
Syn. Open user profiles for adaptive news systems: help or harm? In Proceedings
of the 16th International Conference on World Wide Web, pages 11–20, 2007.

[3] Asim Ansari, Skander Essegaier, and Rajeev Kohli. Internet recommendation
systems. Journal of Marketing research, 37(3):363–375, 2000.

[4] Marcelo G Armentano, Daniela L Godoy, and Analı́a A Amandi. A topology-
based approach for followees recommendation in twitter. In Proceedings of 9th
International Workshop on Intelligent Techniques for Web Personalization & Rec-
ommendation, pages 22–30, 2011.

[5] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval.
ACM press, New York, 1999.

[6] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recom-
mendation. Communications of the ACM, 40(3):66–72, 1997.

[7] Chumki Basu, Haym Hirsh, William Cohen, et al. Recommendation as classifica-
tion: Using social and content-based information in recommendation. In Proceed-
ings of the 15th National Conference on Artificial Intelligence, pages 714–720,
1998.

[8] William Baumol and Alan Blinder. Microeconomics: Principles and policy. Cen-
gage Learning, 2011.

[9] Nicholas J Belkin and W Bruce Croft. Information filtering and information re-
trieval: Two sides of the same coin? Communications of the ACM, 35(12):29–38,
1992.

105



[10] Daniel Billsus and Michael J Pazzani. Learning collaborative information filters.
In Proceedings of the 15th International Conference on Machine Learning, pages
46–54, 1998.

[11] Daniel Billsus and Michael J Pazzani. A hybrid user model for news story clas-
sification. CISM International Centre for Mechanical Sciences, pages 99–108,
1999.

[12] Daniel Billsus and Michael J Pazzani. User modeling for adaptive news access.
User Modeling and User-adapted Interaction, 10(2):147–180, 2000.

[13] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[14] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predic-
tive algorithms for collaborative filtering. In Proceedings of the 14 Conference on
Uncertainty in Artificial Intelligence, pages 43–52. Morgan Kaufmann Publish-
ers, 1998.

[15] Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and Vreixo Formoso. Compar-
ison of collaborative filtering algorithms: Limitations of current techniques and
proposals for scalable, high-performance recommender systems. ACM Transac-
tions on the Web, 5(1):1–33, 2011.

[16] Youngchul Cha and Junghoo Cho. Social-network analysis using topic models. In
Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 565–574, 2012.

[17] Sonny Han Seng Chee, Jiawei Han, and Ke Wang. Rectree: An efficient collab-
orative filtering method. In Data Warehousing and Knowledge Discovery, pages
141–151. Springer, 2001.

[18] Jilin Chen, Werner Geyer, Casey Dugan, Michael Muller, and Ido Guy. Make
new friends, but keep the old: recommending people on social networking sites. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 201–210, 2009.

[19] Pei-Yu Chen, Shin-yi Wu, and Jungsun Yoon. The impact of online recommen-
dations and consumer feedback on sales. Proceedings of the 25th International
Conference on Information Systems, pages 711–724, 2004.

[20] Yizong Cheng and George M Church. Biclustering of expression data. In ISMB,
volume 8, pages 93–103, 2000.

[21] Yung-Hsin Chien and Edward I George. A bayesian model for collaborative fil-
tering. In Proceedings of the 7th International Workshop on Artificial Intelligence
and Statistics. Morgan Kaufman Publishers, 1999.

106



[22] Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry Netes,
and Matthew Sartin. Combining content-based and collaborative filters in an
online newspaper. In Proceedings of ACM SIGIR Workshop on Recommender
Systems, 1999.

[23] Charles W Cobb and Paul H Douglas. A theory of production. The American
Economic Review, pages 139–165, 1928.

[24] Michelle Keim Condliff, David D Lewis, David Madigan, and Christian Posse.
Bayesian mixed-effects models for recommender systems. In Proceedings of the
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 23–30, 1999.

[25] Joaquin Delgado and Naohiro Ishii. Memory-based weighted majority prediction.
In SIGIR Workshop on Recommender System, 1999.

[26] Jill Freyne, Michal Jacovi, Ido Guy, and Werner Geyer. Increasing engagement
through early recommender intervention. In Proceedings of the 3rd ACM Confer-
ence on Recommender Systems, pages 85–92, 2009.

[27] MH Fulekar. Bioinformatics: Applications in life and environmental sciences.
Springer, 2009.

[28] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. Mymedialite: A free recommender system library. In Proceedings of
the 5th ACM Conference on Recommender Systems, pages 305–308, 2011.

[29] Thomas George and Srujana Merugu. A scalable collaborative filtering frame-
work based on co-clustering. In 5th IEEE International Conference on Data Min-
ing, 2005.

[30] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A
constant time collaborative filtering algorithm. Information Retrieval, 4(2):133–
151, 2001.

[31] Nathaniel Good, J Ben Schafer, Joseph A Konstan, Al Borchers, Badrul Sarwar,
Jon Herlocker, and John Riedl. Combining collaborative filtering with personal
agents for better recommendations. In Proceedings of the 16th National Confer-
ence on Artificial Intelligence, pages 439–446, 1999.

[32] Ido Guy, Inbal Ronen, and Eric Wilcox. Do you know?: recommending peo-
ple to invite into your social network. In Proceedings of the 14th International
Conference on Intelligent User Interfaces, pages 77–86, 2009.

[33] John Hannon, Mike Bennett, and Barry Smyth. Recommending twitter users to
follow using content and collaborative filtering approaches. In Proceedings of the
4th ACM Conference on Recommender Systems, pages 199–206, 2010.

[34] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.
Evaluating collaborative filtering recommender systems. ACM Transactions on
Information Systems, 22(1):5–53, 2004.

107



[35] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and
evaluating choices in a virtual community of use. In Proceedings of the SIGCHI
Conference on Human factors in Computing Systems, pages 194–201, 1995.

[36] Matthew D Hoffman, David M Blei, and Francis R. Bach. Online learning for
latent dirichlet allocation. Advances in Neural Information Processing Systems,
23:856–864, 2010.

[37] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of
the 22nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 50–57, 1999.

[38] Thomas Hofmann. Collaborative filtering via gaussian probabilistic latent seman-
tic analysis. In Proceedings of the 26th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 259–266, 2003.

[39] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM
Transactions on Information Systems, 22(1):89–115, 2004.

[40] William H Hsu, Andrew L King, Martin SR Paradesi, Tejaswi Pydimarri, and Tim
Weninger. Collaborative and structural recommendation of friends using weblog-
based social network analysis. In AAAI Spring Symposium: Computational Ap-
proaches to Analyzing Weblogs, pages 55–60, 2006.

[41] http://news.imeigu.com/a/1315461895947.html. Market share and sales growth
situation of jingdong mall., September 2011.

[42] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 2008 8th IEEE International Conference
on Data Mining, pages 263–272, 2008.

[43] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

[44] Tamara G. Kolda and Jimeng Sun. Scalable tensor decompositions for multi-
aspect data mining. In Proceedings of the 8th IEEE International Conference on
Data Mining. Computer Society, 2008.

[45] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collabo-
rative filtering model. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 426–434, 2008.

[46] Yehuda Koren. Collaborative filtering with temporal dynamics. Communications
of the ACM, 53(4):89–97, 2010.

[47] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. IEEE Journal of Computer, 42(8):30–37, August
2009.

108



[48] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,
a social network or a news media? In Proceedings of the 19th International
Conference on World Wide Web, pages 591–600, 2010.

[49] Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. Temporal di-
versity in recommender systems. In Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
210–217, 2010.

[50] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-
based collaborative filtering. In Proceedings of the SIAM Data Mining Confer-
ence, pages 1–5, 2005.

[51] Beibei Li, Anindya Ghose, and Panagiotis G Ipeirotis. Towards a theory model
for product search. In Proceedings of the 20th International Conference on World
Wide Web, pages 327–336, 2011.

[52] Xin Li, Lei Guo, and Yihong Eric Zhao. Tag-based social interest discovery.
In Proceedings of the 17th International Conference on World Wide Web, pages
675–684, 2008.

[53] Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang, and
Tao Zhou. Recommender systems. Physics Reports, 519(1):1–49, 2012.

[54] Sara C Madeira and Arlindo L Oliveira. Biclustering algorithms for biological
data analysis: a survey. Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, 1(1):24–45, 2004.

[55] Harry Mak, Irena Koprinska, and Josiah Poon. Intimate: A web-based movie rec-
ommender using text categorization. In Proceedings of IEEE/WIC International
Conference on Web Intelligence, pages 602–605, 2003.

[56] Benjamin Marlin. Modeling user rating profiles for collaborative filtering. In
Proceedings of Conference on Neural Information Processing Systems, 2003.

[57] Matthew R McLaughlin and Jonathan L Herlocker. A collaborative filtering al-
gorithm and evaluation metric that accurately model the user experience. In Pro-
ceedings of the 27th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 329–336, 2004.

[58] Frank McSherry and Ilya Mironov. Differentially private recommender systems:
building privacy into the net. In Proceedings of the 15th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 627–636,
2009.

[59] Prem Melville, Raymond J Mooney, and Ramadass. Nagarajan. Content-boosted
collaborative filtering for improved recommendations. In National Conference on
Artificial intelligence, pages 187–192, 2002.

109



[60] Koji Miyahara and Michael J Pazzani. Collaborative filtering with the simple
bayesian classifier. In PRICAI Topics in Artificial Intelligence, pages 679–689.
Springer, 2000.

[61] Raymond J Mooney and Loriene Roy. Content-based book recommending using
learning for text categorization. In Proceedings of the 5th ACM Conference on
Digital libraries, pages 195–204, 2000.

[62] Atsuyoshi Nakamura and Naoki Abe. Collaborative filtering using weighted ma-
jority prediction algorithms. In Proceedings of the 15th International Conference
on Machine Learning, pages 395–403, 1998.

[63] Mark OConnor and Jon Herlocker. Clustering items for collaborative filtering. In
Proceedings of the ACM SIGIR Workshop on Recommender Systems, 1999.

[64] Arkadiusz Paterek. Improving regularized singular value decomposition for col-
laborative filtering. In Proceedings of KDD Cup and Workshop, pages 5–8, 2007.

[65] Dmitry Pavlov and David M Pennock. A maximum entropy approach to collabo-
rative filtering in dynamic, sparse, high-dimensional domains. In Proceedings of
Neural Information Processing Systems, volume 2, pages 1441–1448, 2002.

[66] Michael Pazzani and Daniel Billsus. Learning and revising user profiles: The
identification of interesting web sites. Machine Learning, 27(3):313–331, 1997.

[67] Michael J Pazzani. A framework for collaborative, content-based and demo-
graphic filtering. Artificial Intelligence Review, 13(5):393–408, 1999.

[68] Alexandrin Popescul, David M Pennock, and Steve Lawrence. Probabilistic mod-
els for unified collaborative and content-based recommendation in sparse-data en-
vironments. In Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence, pages 437–444. Morgan Kaufmann Publishers Inc., 2001.

[69] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Pro-
ceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages
452–461, 2009.

[70] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing
personalized markov chains for next-basket recommendation. In Proceedings of
the 19th International Conference on World Wide Web, pages 811–820, 2010.

[71] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In
Proceedings of the ACM Conference on Computer Supported Cooperative Work,
pages 175–186, 1994.

[72] Paul Resnick and Hal R Varian. Recommender systems. Communications of the
ACM, 40(3):56–58, 1997.

110



[73] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factoriza-
tion using markov chain monte carlo. In Proceedings of the 25th International
Conference on Machine Learning, pages 880–887, 2008.

[74] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing & Management, 24(5):513–523, 1988.

[75] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620, 1975.

[76] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, pages 285–295, 2001.

[77] Badrul M Sarwar, George Karypis, Joseph Konstan, and John Riedl. Recom-
mender systems for large-scale e-commerce: Scalable neighborhood formation
using clustering. In Proceedings of the 5th International Conference on Com-
puter and Information Technology, volume 1, 2002.

[78] J Ben Schafer. Dynamiclens: A dynamic user-interface for a meta-
recommendation system. Beyond Personalization, pages 72–76, 2005.

[79] J Ben Schafer, Joseph A Konstan, and John Riedl. E-commerce recommendation
applications. Applications of Data Mining to Electronic Commerce, pages 115–
153, 2001.

[80] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock.
Methods and metrics for cold-start recommendations. In Proceedings of the 25th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 253–260, 2002.

[81] Upendra Shardanand and Pattie Maes. Social information filtering: algorithms
for automating word of mouth. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 210–217. ACM Press/Addison-Wesley,
1995.

[82] Luo Si and Rong Jin. Flexible mixture model for collaborative filtering. In
Proceedings of International Conference on Machine Learning, volume 3, pages
704–711, 2003.

[83] Ian Soboroff and Charles Nicholas. Combining content and collaboration in text
filtering. In Proceedings of the IJCAI, pages 86–91, 1999.

[84] Xiaoyuan Su and Taghi M Khoshgoftaar. Collaborative filtering for multi-class
data using belief nets algorithms. In Tools with Artificial Intelligence, 2006. IC-
TAI’06. 18th IEEE International Conference on, pages 497–504, 2006.

[85] Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, and
Yannis Manolopoulos. Nearest-biclusters collaborative filtering. Information Re-
trieval, 11(1):51–75, 2008.

111



[86] Gabor Takacs, Istvan Pilaszy, Bottyan Nemeth, and Domonkos Tikk. On the
gravity recommendation system. In Proceedings of KDD Cup and Workshop,
2007.

[87] Thomas Tran and Robin Cohen. Hybrid recommender systems for electronic
commerce. In Proceedings Knowledge-Based Electronic Markets, Papers from
the AAAI Workshop, Technical Report WS-00-04, AAAI Press, 2000.

[88] Lyle H Ungar and Dean P Foster. Clustering methods for collaborative filtering.
In AAAI Workshop on Recommendation Systems, volume 1, 1998.

[89] Jian Wang, Badrul Sarwar, and Neel Sundaresan. Utilizing related products for
post-purchase recommendation in e-commerce. In Proceedings of the 5th ACM
Conference on Recommender Systems, pages 329–332, 2011.

[90] Jian Wang and Yi Zhang. Utilizing marginal net utility for recommendation in
e-commerce. In Proceedings of the 34th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 1003–1012, 2011.

[91] Jian Wang and Yi Zhang. Opportunity model for e-commerce recommendation:
right product; right time. In Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 303–
312, 2013.

[92] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. Unifying user-based and
item-based collaborative filtering approaches by similarity fusion. In Proceedings
of the 29th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 501–508, 2006.

[93] Pu Wang and HongWu Ye. A personalized recommendation algorithm combining
slope one scheme and user based collaborative filtering. In International Confer-
ence onIndustrial and Information Systems, pages 152–154, 2009.

[94] Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and
Jimeng Sun. Temporal recommendation on graphs via long-and short-term prefer-
ence fusion. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 723–732, 2010.

[95] Bin Xu, Jiajun Bu, Chun Chen, and Deng Cai. An exploration of improving
collaborative recommender systems via user-item subgroups. In Proceedings of
the 21st International Conference on World Wide Web, pages 21–30, 2012.

[96] Wei Zeng, Ming-Sheng Shang, Qian-Ming Zhang, Linyuan Lü, and Tao Zhou.
Can dissimilar users contribute to accuracy and diversity of personalized rec-
ommendation? International Journal of Modern Physics C, 21(10):1217–1227,
2010.

[97] Yi Zhang and Jonathan Koren. Efficient bayesian hierarchical user modeling for
recommendation system. In Proceedings of the 30th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 47–
54, 2007.

112



[98] Gang Zhao, Mong Li Lee, and Wynne Hsu. Utilizing purchase intervals in la-
tent clusters for product recommendation. In Proceedings of Workshop on Social
Network Mining and Analysis Social Network Study for Business, Consumer and
Social Insights, pages 28–36, 2014.

[99] Gang Zhao, Mong Li Lee, Wynne Hsu, and Wei Chen. Increasing temporal di-
versity with purchase intervals. In Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
165–174, 2012.

[100] Gang Zhao, Mong Li Lee, Wynne Hsu, Wei Chen, and Haoji Hu. Community-
based user recommendation in uni-directional social networks. In Proceedings of
the 22nd ACM International Conference on information & Knowledge Manage-
ment, pages 189–198, 2013.

113


	thesis_c
	New Doc 2(1)
	thesis_t

