GRAPH PROCESSING ON GPU

ZHANG JINGBO
(B.E., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE
2013

DECLARATION

| hereby declare that this thesis is my original work and it
has been written by me in its entirety.
| have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

Zhang Jingbo
July 17, 2013

Acknowledgment

| would like to express my greatest thank my PhD thesis coteminembers, Anthony
K. H. Tung, Tan Kian-Lee and Sung Wing Ken, for their valuainee, suggestions and
comments on my thesis.

| would like to express my deepest gratitude to my superyBafessor Anthony K.
H. Tung, for his guidance, support and encouragement thwautgmy Ph.D. study. He
has taught me a lot on research, work and life in the past fiaesyevhich will become
my precious treasure in my life. Moreover, | am grateful fag generous financial
support and tremendous mental assistance, especially iMvas frustrated at times
during the final stage of my Ph.D. study. His technical antbedil advice is essential to
the completion of this thesis while his kindness and wisdanehmade a great impact on
my life. Professor Beng Chin Ooi deserves my special apatied. He is the greatest
figure | have met in my life. As a visionary leader of our datbgroup, he acts as a
passionate doer, an earnest advisor and a considerate. frien

My sincere thanks also go to Dr. Wang Nan. Dr. Wang providedaseurces to start
my ventures on graph mining, and her insights on graph mianthencouragement were
of great help for my research. | am also indebted to Dr. Setmda Hetu. Apart from
contributing helpful discussions to refine my work, he sprath effort in updating my
writings. My senior Dr. Xiang Shili taught and encouragedariet of things. Dr. Zhu

Linhong, Dr. Wu Min and Myat Aye Nyein, who are my closest fitkss, accompanied,

discussed, and supported me in the past years.

The last seven years in National University of Singaporeeizcome a wonderful
journey in my life. It is my great honor to be a member of ourathaise group, a big
family full of joy and research spirit. | am very thankful taioiData group members
(including previous and current members). They are YuegoenCBingtian Dai, Wei
Kang, Chen Liu, Meiyu Lu, Zhan Su, Nan Wang, Xiaoli Wang, Sitean Ying, Feng
Zhao, Dongxiang Zhang, Zhenjie Zhang, Yuxin Zheng, JinghoWZ Besides, it is my
great pleasure to work together with our strong team of NU&Bsse Group, including
Zhifeng Bao, Ruichu Cai, Yu Cao, Su Chen, Ming Gao, Bin LiuaXuiu, Wei Lu,
Weiwei Hu, Mei Hui, Feng Li, Yuting Lin, Peng Lu, Wei Pan, Yaay Shen, Lei Shi,
Yang Sun, Jinbao Wang, Huayu Wu, Ji Wu, Sai Wu, Hoang Tam oXdi Liang Xu,
Xiaoyan Yang, and Meihui Zhang. Throughout the long perib@loD study, we dis-
cuss and debate about research problems, work togetheplaldorate in the projects,
encourage and care for each other, and entertain as wellsgsodis together.

| am grateful to my parents, Shuming Zhang and Yumei Lin, feirt dedicated
love, care and the powerful and faithful support during nudsts. Their nutrition and
patience have brought me infinite energy to go through alkhloens and tribulations.
My deepest love is reserved for my wife, Lilin Chen, for hecanditional support and
encouragement during the past two years.

Finally, | also want to thank NUS for providing me the scheldp so that | can

concentrate on the study.

Contents

1 Introduction 1
1.1 Background 1
1.1.1 Supercomputing and Desktop-computing withGPUs 2
1.1.2 GraphProcessingandMining 2
1.1.3 General Purpose ComputationonGPU 3
1.1.4 GraphProcessingonGPU 4
1.1.5 GraphProcessingSystem 5
1.2 Research Gaps, Purpose and Contributions 6
1.3 ThesisOrganization 9
2 Background and Related Works 11
2.1 Preliminaries e 11
2.1.1 Graph Notations and Definitions 11
2.1.2 Graph Memory Assumptions 12
2.1.3 Heterogeneous System Metrics 12.
2.2 GPGPUBackground 16
2.2.1 Parallel Programming Model 6 1
222 GPUCIlusterLayout, 16
223 GPUEvolution 17

2.3

2.4
2.5

224 CPUvVvsGPU
2.2.5 Compute Unified Device Architecture (CUDA)
2.2.6 Alternativesto CUDA
2.2.7 ParallelismwithGPUs
2.2.8 Parallel Patterns in CUDA Programs

2.2.9 Hardware Overview e

Related Work on Graph Processing on GPU

2.3.1 GraphProcessingandMining
2.3.2 GraphProcessingonGPU
2.3.3 GraphProcessingModel
2.3.4 GraphProcessingSystem
Dense Neighborhood GraphMining
AppendixX e
2.5.1 Preliminaries fobN-graphMining
2.5.2 DN-Graph As A Density Indicator
2.5.3 Triangulation Base®@ N-Graph Mining
254 MXe)BoundingChoice

2.5.5 Extension oD N-Graph Mining to Semi-Streaming Graph

3 Streaming and GPU-Accelerated Graph Triangulation

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Problem Statement
Iterative Triangulation
Parallel Triangulation
Message Spreading Mechanism
Large Graph Partitioning
Multi-stream Pipelining

DynamicThreading0...

Vi

. 64

66
69
27

vii

3.8 GPUGraphDataStructures. 73
3.9 ResultCorrectness 77
3.10 Experiments. e T9
3.10.1 Performance Evaluation 81
3.10.2 Partitioning Algorithms 84
3.10.3 GraphDataFacilities 85
3.10.4 GPU Execution Configurations 87
311 SUMMANY . . e e e e e 88

SIGPS: Synchronous lterative GPU-accelerated Graph Pragssing System 89

4.1
4.2
4.3

4.4

4.5
4.6

Problem Statement and Design Purpose 90
Computation Model and System Overview 91
Overall Description and System Main Components 97
4.3.1 ArchitectureofMaster oL 89
4.3.2 Architecture of Worker Manager 100
4.3.3 Architectureof Worker L. 021
4.3.4 Architectureof Vertex 03L
4.3.5 Architecture of Communicator 106
System Auxiliary Components 0o e 108
4.4.1 Graph Generator and Graph Partitioner 108
442 \Vertex APl,EdgeandGraph. 910
4.4.3 Message Center and Data Locator 09.1
444 Stateloggingo 112
Automatic Execution Configuration and Dynamic Threalkbédtion . . . 114
CaseStudy 117

46.1 CaseOne:PageRank
4.6.2 Case Two: Single Source ShortestPath 119

4.6.3 Case Three: Dense SubgraphMining.
4.7 GenericVertex APIsUsage
4.8 EXperiments. e
4.8.1 Experimental Settings
4.8.2 Scalability Study
4.8.3 CommunicationStudy
4.8.4 \ertex Parallel vs Edge Parallel
485 Speedup
4.8.6 Comparable Experimental Study
4.8.7 Computing Capability Study
4.9 SUMMANY . . o o o e e e e e e e
4.10 AppendiX

4.10.1 Systemnstallation

Asynchronous Iterative Graph Processing System on GPU

5.1 ProblemStatement

5.2 Graph Formats for Asynchronous Computingon GPU
5.2.1 Compressed Row/Column StorageonGPU

5.3 Asynchronous Computational Model

5.4 Parallel Sliding Windowson GPU

5.4.1 Loading the Graph From Disk to GPU global memory

542 ParallelUpdates

5.4.3 Updating GraphtoDisk
5.5 System Design and Implementation

5.5.1 Block Graph Data FormatonGPU

55.2 Preprocessing

5.5.3 EXecution

viii

5.5.4 Software Hierarchy Overview 155
5.6 Programming Model and Application Programming Intesfa. 156
5.7 Case Study and Applications 158
5.7.1 Caseone:PageRank 158
5.7.2 Application 160
5.8 Performance ComparisonwithSIGPS 161
5.8.1 Scalability 162
5.8.2 Data Communication 163
583 Speedup 164
59 Summary 165
Conclusion and Future Work 167
6.1 Summarization 671
6.2 Possible Research Directions and Applications 169

Summary

Graph mining and data management has become a significanbacause more and
more new applications to various data mining problems inasaw@tworking, compu-
tational biology, chemical data analysis and drug discpeee emerging recently. Al-
though traditional mining methods have been extended togssographs, many graph
applications still confront huge challenges due to comtirauand overwhelming edges
to be processed with limited resources. Social networkb,gvaphs and protein interac-
tion graphs are difficult to handle because they cannot by elecomposed into small
parts that could be further processed in parallel. As grgpbe larger and larger, new
processing techniques with higher computing power are ddethfor mining massive
graphs. Designing scalable systems for analyzing, prowgssid mining huge real-
world graphs has also become one of the most emerging preblem

The research in this thesis has explored and utilized the-efasthe-art GPGPU tech-
nigues over large graph mining. By understanding the litiites of heterogeneous hard-
ware, triangulation, as a representative of graph miniggradhms, was implemented to
be accelerated by many-core GPUs in Chapter 3. Associasgih glata structures and
blended algorithm structures were designed in this chastevell. This is the first and
successful attempt to accelerate graph triangulatiorguSiIRGPU techniques. After-
wards, a synchronous iterative GPU-accelerated graplegsoty model was abstracted

and proposed in Chapter 4. A generic system (SIGPS) was thpleinented based

Xi

Xii

on this model. Specifically, a vertex APl was provided forrasgho want to design
their own algorithms with the assistance of a functionaldily of mining algorithms.
Together with the vertex API and algorithm library, sevesydtem supporting modules
marked off the system hierarchy. This system could bringnapréssive impact over
the graph mining community since it provided a systematiatsmn for implementing
efficient graph mining algorithms on GPU-accelerated camgplatforms. Moreover,
in order to further enhance the system performance, an heymaus disk-based model
was then designed to support asynchronous computing ovuds @RChapter 5. A novel
parallel sliding windows method was employed on GPU memdwo newer opera-
tional APIs named “sync” and “update” replaced the vertex.A8ynchronous-SIGPS
(ASIGPS) could be used to execute several advanced datagnmaph mining, and
machine learning algorithms on very large graphs.

It is noted that there may be a few problematic issues ingbimehe system since
designing effective and efficient systems across heteemenplatform is complicated.
As a potential solution for large scale domain applicationgersonal computers, more
graph mining algorithms need to be implemented to constthu library of the system
and more efforts need to be paid to solve all the problemsactka the implementation

of the hybrid system.

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

GPUs Cluster Layout i 71
Graphics Pipeline Evolution 19

CPU vs GPU in Peak Performance (gigaflops) 21

CPUVSGPU e 22
CUDA-based Thread View 9 2
Stream Pipelining 29
GPUBIlock Diagram 34
Vary graphdensity 42
ADN-graph e 46
Proof of Theorem2.5.2. 47
Use Triangle to Refine Local Density(. 50
Iterative Triangulation 58
Message Spreading Mechanism 65
Three Edge and Vertex Types o i i i i it . 69
Multi-stream Pipelining 70
GPUDynamicThreading 37

Row-major and Column-major Adjacency Arrays 74
Memory Coalesces e 5 7

Matrix Column-major Adjacency Array 76

Xiii

Xiv

3.9 AdjacencyBitmap 6 7
3.10 Result CorreCtness i i i i 79
3.11 SystemPerformance 83
3.12 Iteration Parameters Study 83
3.13 Partitioning Performance 84
3.14 Partition Order e 85
3.15 Partitioning /O 85
3.16 GPUGraph DS e 86
3.17 VaryingBlock Size e 86
3.18 GPUGraphDSSpeedupso.... 0. 8
4.1 SIGPS ComputationModel 91
42 GBSPModel e 92
4.3 SIGPS Architecture 94
4.4 Block State Machine 95
45 SystemOVerVIEW 6 9
4.6 Software Architecture e 97
4.7 Master Architecture e 99
4.8 Worker Manager Architecture 0. 101
4.9 Worker Architecture 102
4.10 Communicator Architecture.o 107
4.11 System Scalability e 129
4.12 Communication Throughput 130
4.13 Communication Cost. 131
4.14 \ertex Parallelvs Edge Parallel 131
4.15 Speedup Study 341

4.16 CPU Routineof PageRank 135

XV

4.17 Pure CUDA Routineof PageRank 136
4.18 PageRank Methods Comparison 137
4.19 Computing Capability Study 139
4.20 Additional Include Directories 140
4.21 CUDA Additional Include Directories 140
4.22 Additional Library Directories au.... 141
5.1 Compressed Graph StorageonGPU 147

5.2 PSWGBIlockMapping 150
53 PSWGSKketch. 151
54 ExecutionFlow 541
5.5 SoftwareHierarchy. 155
5.6 ExecutionTime 631
5.7 CommunicationCoSst. 163

5.8 Speedup 164

List of Tables

2.1

3.1
3.2
3.3

4.1
4.2
4.3

A Family of DN-graph Mining Algorithms 41
Experimental Platforms 80
Parameter Table 1
Response Time for Each Component 81
GPU Thread Configuration 115
Experimental Platforms 128
ExperimentalDatasets 129

XVi

Chapter 1

Introduction

In this chapter, we will describe the background of computaind graph mining, give
a general overview of the state-of-the-art GPGPU techsiguehe current literature,
and present the rationale of our study on utilizing GPU tcebaate mining over large

graphs.

1.1 Background

One of the major changes in the computer software industsyblean the move from
serial programming to parallel programming. The graphice@ssor unit (GPU) by its
very nature is the device designed for high-speed graphésept in most modern PCs,
which are inherently parallel. The state-of-the-art GPGRBthniques take a simple
model of data parallelism and incorporate it into a prograngrmodel without the need
for graphics primitives. On the other hand, the ability t;mmendata to extract useful
knowledge has become one of the most important challenggsviernment, industry,
and scientific communities. In most domains, there is a lontefresting knowledge that

can be mined out of relationships between entities.

1.1.1 Supercomputing and Desktop-computing with GPUs

Supercomputers are typically at the leading edge of thentdoy curve. In 2010, the
annual International Supercomputer Conference in Hamléegmany, announced that
a NVIDIA GPU-based machine had been listed as the secondpoasrful computer
in the world, according to the top 500 list (http://www.t@fborg). In 2011, NVIDIA
CUDA-powered GPUs grasped the title of the fastest supgpaten in the world. It
was suddenly noticeable to everyone that GPUs had arrivedviery big way on the
high-performance computing landscape, as well as the reuddsktop PC.

Supercomputing is the driver of many of the technologies & is modern-day
processors. Due to the need for ever-faster processorotess ever-larger datasets,
the industry produces ever-faster computers. It is thraaghe of these evolutions that
GPGPU technology has come about today.

Both supercomputers and desktop computing are moving tbadreterogeneous
computing route —that is, they are trying to achieve pertoroe with a mix of CPU
and GPU technology. Jaguar, the fastest supercomputes;reded Titan, has almost
300,000 CPU cores and up to 18,000 GPU boards to achievedreileand 20 petaflops
per second of performance. People can now put together ohase a desktop super-
computer with several teraflops of performance. This woalktgiven the first place in

the top 500 list at the beginning of 2000, which is just 13 years ago.

1.1.2 Graph Processing and Mining

Graphs are regarded as one of the most ubiquitous modelgtohatural and human-
made structures. A lot of practical problems in scientifid @mgineering areas can
be modeled by graphical model. As a very popular and flexilala ébstraction for

connected entities, graphs capture the relationship artieese entities. For example,

1IBM ASCI Red with 9632 Pentium processors

social networks, popularized by Web 2.0, are graphs thatritesrelationships among
people. Well defined graph theory can be applied to procgdbia graph and return
interesting results. With the increasing demand on theyarsabf large amounts of
structured data, graph processing has become an activargruitant theme in data
mining. On one side, growing richer information potentiaktracted from large graphs
has triggered progressively more sophisticated analygisgaph data. On the other side,
since dense graph pattern captures more internal connsetithin a graph, researchers
from various fields are all using dense subgraphs to unaetstamplex systems better.
Dense subgraph mining is close-relative but simpler whenparing with the tradi-
tional clustering which requires a strict partitioning bétgraph. Exact mining methods
are usually time consuming algorithms, some of which aren eegarded as NP-hard
problems. People then opt for some more time efficient swigti This type of algo-
rithms can be categorized into three groups, namely enudioeyéast heuristic enumer-

ation and bounded approximation.

1.1.3 General Purpose Computation on GPU

Graphics processing units (GPUSs) are devices present inmuakern PCs. They provide
a number of basic operations to the CPU, such as renderimgaageiin memory and then
displaying that image onto the screen. A GPU will typicalhpgess a complex set of
polygons, a map of the scene to be rendered. It then appkesés to the polygons and
then performs shading and lighting calculations.

General-Purpose computation on Graphics Processing (B&PU) is a technique
of using GPU to perform computation in applications tramttlly handled by CPU. Af-
ter shifting from fast single instruction pipeline to mpl# instruction pipelines, modern
computer systems have evolved into multiple threads archite in the coming era of

Tera-scale Computing. Dual-core and many-core faciltiage greatly improved the

executing performance without impacting thermal and payetivery. Moreover, some
special-purpose devices are designed for acceleratingatiagprocessing, such as ASIC,
FPGA and GPU. As a special-purpose co-processor to CPU phigsaprocessing unit
(GPU) was originally designed for accelerating graphicgleging operations. In the
last decade, modern GPUs have evolved to be many-core parsesith the potential
of high parallelism. They have displayed an impressive atatpnal capability as well
as higher memory bandwidth compared to CPUs. Actually, gémirpose comput-
ing has arisen to exploit the potential computing power freyatems equipped with
graphics cards. More and more developers have moved theutatigmally intensive
parts of their applications to GPUs for acceleration. Thaee currently many GPU-
accelerated applications and the list grows monthly. NYABhowcases many of these
on its community website at http: //www.nvidia.com/objeatdaappsflash.new.html.
Considering the performance-to-price ratio (cost-yiijithe possibility of releasing the
potential power of general computer system has become ractate alternative option

to traditional distributed supercomputer systems.

1.1.4 Graph Processing on GPU

For the past decade, various graph mining techniques haredwreloped to discover
patterns, clusters, and classifications from various kwofdgraphs. Many algorithms
focus on the effectiveness of mining, while other reseaciien at the performance
improvement of the specific methods. Utilizing parallelarectures has been a viable
means to improving graph processing performance. Modetys®Rve displayed an im-
pressive computational power as well as higher memory battdwompared to CPUSs.
Given the success of GPGPU in many areas of scientific comgaugraph processing
on GPU appears to be necessary to overcome the resourcatilomst of single proces-

sors. A GPU can be regarded as a massively multi-threadeg-omaa processor. Its

cores are designed to be virtualized, and its threads aragedrby the hardware, which
simplifies GPU programs and improves algorithm scalabditg portability. By taking
advantage of the massive computation power and the high nyelpamdwidth, GPUs
can be used by many graph (mining) applications as an aet@l¢o compute-intensive
algorithms. To process excessive graph data with limitedueces, researchers combine
graph mining with the state-of-the-art GPGPU techniquesrddver, energy efficiency
improvement while the system provides an order of magniilckease in computational

power is another vital factor to process graphs on GPU.

1.1.5 Graph Processing System

In order to achieve efficient and effective graph data psiogson GPU, the implemen-
tation of existing graph processing algorithms on GPU andreegc graph processing
system are two important research issues. For the first,issuis well known, most
graph processing algorithms are designed to be sequentiahamory bounded. How
to parallelize graph processing algorithms effectivelgt Byppass the memory restriction
successfully are challenging problems to be solved. Footiher issue, Internet compa-
nies have created scalable infrastructure. One exampaiggbogle has been using a
distributed high performance graph processing system dd&megel to process its mas-
sive graph data. Pregel can easily scale to billions of eestand edges on google’s
distributed many-core-CPU system. The applicability asdhility of Pregel are pretty
impressive. Mining huge graphs on general computer systeowgever, is still a chal-
lenge. On one hand, general computer systems are equippledewier computing
cores than traditional supercomputers. Hundreds of thassaf vertices and millions
of connections among vertices make traditional graph rgimiperators a huge burden
for a normal computer. Close-clique detection, for exampés been proven to be an

NP-Complete problem. Even the running time of heuristioatgms or approximation

algorithms on such large graphs have exceeded the tolecditntenan beings. On the
other hand, limited memory is another prohibitive factarttee scalability of high per-
formance computing on general computers. A large graphataswen be loaded into
memory for any further processing. Therefore, a generiplgrocessing system im-
plemented on general computers equipped with GPUs is pldéeto the data mining

community.

1.2 Research Gaps, Purpose and Contributions

As graphs grow incredibly large in size, many graph appbeet encounter great diffi-
culties due to the insufficiencies of computing power andlithnéations of computing
platforms. Since GPU provides potential opportunitiesighly parallel computing, the
guestion of how to apply the state-of-the-art GPGPU teasmpver massive graph ap-
plications has become a huge challenge. Research gapsfouttent application of

GPGPU over large graphs are summarized below:

1. Although traditional mining methods can be utilized togess large graphs, they
are highly constrained when the system resources are timitthen GPU is em-
ployed to accelerate graph algorithms, whether and howrdditibnal mining
methods can be extended to parallelized version by way off@JPtachniques is

still problematic.

2. There are some existing graph processing systems thapirate a library of
graph mining algorithms. However, some of these librarresamly applicable
to small graphs while others are only designed for procgdaige graphs in dis-
tributed environments. Moreover, most existent graph ggsing systems only

provide naive APIs for invoking existing routines that irapient classic mining

algorithms. It is difficult for users to design their own atgloms, which are usu-

ally more complicated.

3. Currently, most graph processing systems support pagidaph mining algo-
rithms. Nevertheless, none of them provide algorithmszind GPGPU tech-
niques that can take advantage of the potential high pediocecomputing power

from modern GPUs.

4. Most generic parallel systems are based on Bulk SyncimoRarallel model that
trades off performance for simplicity in algorithm desigrhere are limited solu-

tions that can support asynchronous processing.

The main aim of my research was to utilize GPGPU techniques lawge graph
mining. By understanding the limitations of heterogeneoarsiware, | designed graph
mining algorithms on GPU. In order to provide a systematictsan for implement-
ing efficient graph mining algorithms, | proposed a synchtenGPU graph processing
model and implemented a generic graph processing systenG#id-accelerated gen-

eral computers. The specific objectives of this study were to

1. design GPU-accelerated mining algorithms over largplgra We initially de-
signed a triangulation operator over GPU. We then sumnthrize associated
graph data structures and the blended algorithm structsig from graph pro-

cessing algorithms such as SSSP and PageRank.

2. propose a synchronous graph processing model over G&tleaated platform.
By simplifying the blended algorithm structure, we pregeind graph processing
model that is based on bulk synchronous parallel compufirgeneric vertex API

was proposed to assist algorithm design.

3. design and implement a generic graph processing systneploys the syn-
chronous graph processing model. A real graph processstgrayover hetero-
geneous platform was implemented in C++ and CUDA. The veitek graph
processing library, and system supporting modules havereiftiated the hierar-

chy of the system.

4. investigate the limitation of synchronous model andglesin asynchronous one.
By fully studying the limitation of our synchronous modat,inproved model that
provided asynchronous computing was then designed. ThexvAPI was then

replaced by two new operational APIs named “sync” and “ugtiaspectively.

5. design and implement a generic graph processing systamsupports the asyn-
chronous processing over GPU-accelerated large grapicatghs. We would
then redesign the graph processing system on top of the lagymaus graph pro-

cessing model with better system modularity.

The comprehensive experimental results of this study mag hasignificant impact
on both successfully applying GPGPU techniques to speedrgp graph applications
with limited resources and providing systematic generapgrmining solutions.

To design an effective and efficient system accelerated dy Gleomplicated since
it contains a lot of new research issues that are relatedetdiibary building, system
design and hardware tuning. There may be a few problematiessinvolved. It is
also understood that we only focus on graph processing omftggneral computer
systems. More data mining applications and graph proogssicelerated by connected

distributed GPU nodes are very interesting but beyond tbpesof this thesis.

1.3 Thesis Organization

Hereby, we outline the organization of this thesis. The oéghe thesis contains 5
chapters.

Chapter 2 consists of two main sections. The fist sectionasbtéickground and
related work of graph mining on GPU. The second section dhices the mining of
DN-Graph, which directly led to the research of this thesis.

Chapter 3 presents our solution of accelerating a densgrsydh+ mining operator
on GPU. Since memory and computing power are main bottlenaicthe graph mining
system, we utilize a streaming approach to partition thplyemnd take advantage of the
state-of-the-art GPGPU techniques for bounding accéberaf two-level triangulation
algorithm is employed to iteratively drive triangulatiopeyator on GPU. In addition,
several novel GPU graph data structures are proposed toemlgaaph processing effi-
ciency and data transfer bandwidth.

We then extend our work on accelerating graph mining opesatoa systematic
solution in Chapter 4. An iterative graph processing modeb®U-accelerated platform
is proposed. Based on this model, a generic system equipped get of easy-to-extend
Vertex APIs is then implemented over the model. Automati@jelization and GPU
execution configuration are provided in the system. Enmuygghared memory model is
also designed for vertex communication.

In Chapter 5, we optimize the graph processing model to stipggnchronous pro-
cessing on GPU. After system re-design, the “Asigps” hatebatodularity and encap-
sulation. An improved new set of easy-to-extend Vertex AdPésdesigned, so that users
have higher degree of freedom to design their own algorithAssgps is a disk-based
GPU-accelerated system for computing efficiently on gragpitis billions of edges. A
novel parallel sliding windows method was implemented orUGRemory. Asigps is

designed to support several advanced data mining grapmgpiand machine learning

10

algorithms on very large graphs using just a single GPU{acated personal computer.
Finally, Chapter 6 concludes this thesis and discusses sieetions for future

work.

Chapter 2

Background and Related Works

In this chapter, we first introduce preliminaries and somrmelamental graph structures,
which are employed in our proposed system or some closaltectivorks. Then, we fo-
cus on the work that led to this thesis. More specifically, nst pfresent some definitions

of notations and discuss some system metrics in the relabekbwThen we review the
GPGPU background and graph processing on GPU in the literaliast but not least,
we introduce ouD N-Graph mining work that induces the demand and the subséquen

research in this thesis.

2.1 Preliminaries

2.1.1 Graph Notations and Definitions

Let G = (V,E) be defined as an undirected simple graph with a set of nvdaad
a set of edge. A dense graph patterhis a connected subgrapgh= (V',E’) c G
andV’ c V, E’ ¢ E, which has significant more internal connections with respethe

surrounding vertices.

or dense subgraph

11

12

Atrianglea = (Va, Ex) of the graph is also defined as a three node subgraph with
Va ={u,v,w} c VandEx = {(u,v), (u,w), (v,w)} ¢ E. We use the symbal(G) to
denote the number of triangles in gragh Additionally, we employ the symbal(«) to
denote the number of the triangles the verigarticipates in and the symbé(u,v) to

denote the number of triangles the edgev) is involved in.

2.1.2 Graph Memory Assumptions

Informally, we assume a personal computer system is eqdipgd limited memory
(DRAM) capacity. The graph structure, edge values and xerddues do not fit into
memory. On the contrary, the edges or values associatedytsiagle vertex can be

stored in the memory.

Assumption 2.1.1. COMPUTATIONAL CONSTRAINTS

1. We assume the amount of memory to be only a small fractitveshemory required for

storing the complete graph.

2. We assume there is enough memory to contain the edges ks wssociated to any

single vertex in the graph.

2.1.3 Heterogeneous System Metrics

Almost all processors work on the basis of the process dpedlby Von Neumann, in which ap-
proach, the processor fetches instructions from memoggags, and then executes that instruc-
tion. As is described in BFINITION 2.1.1, a stored-program digital computer is one that keeps
its programmed instructions, as well as its data, in reateywandom-access memory (RAM).
The principle of locality is one of the most important chaeas of modern computer systems. As
is defined in ZEFINITION 2.1.2, modern programs tend to reuse data and instructi@yshtave

accessed recently.

13

Definition 2.1.1. VON NEUMANN ARCHITECTURE

The Von Neumann architecture describes a design architefbu an electronic digital com-
puter with subdivisions of a processing unit consistingroiethmetic logic unit and processor
registers, a control unit containing an instruction registand program counter, a memory to

store both data and instructions, external mass storagd,iaput and output mechanisms.

Definition 2.1.2. THE PRINCIPLE OFLOCALITY

Programs access a relatively small portion of the addresgegt any instant of time.

To evaluate the performance of a system, processor and mdraquency, communication
bandwidth, and the system data throughput are basic me#ids defined in EFINITION 2.1.3,
bandwidth refers to the maximum amount (capacity) of dasé ¢hn pass through the commu-
nication channels per second. A modern processor typioafly at a high frequency in speéd
A modern DDR-3 memory, which is paired with standard prosesscan run at a comparable
frequency 3. The ratio of clock speed to memory is an important limiterfoth CPU and GPU

throughput, which is defined in&rINITION 2.1.4.

Definition 2.1.3. BANDWIDTH
Bandwidth is a measurement of bit-rate of available or comsd data communication re-
sources expressed in bits per second or multiples of it. &etre, the digital data rate limit (or

channel capacity) of a physical communication link is pmijomal to its bandwidth in hertz.

Definition 2.1.4. THROUGHPUT
Throughput is the average rate of successful message getiver a communication channel.
The data may be delivered over a physical or logical link, asgthrough a certain network node.

The throughput is usually measured in bits per second (bithps).

In heterogeneous systems, there are more than one typesagfspors. For example, our
personal computer systems are equipped with multi-csre and many-coresPuU processors.

Applications designed for such hybrid system have adjlstprameters for different types of

24 GHz
Saround 2 GHz

14

computing modes. The host mode is defined to be the state ichvem application is only
executed by puwithout any assistance of other co-processors. The dewickeris defined to be
the state in which an application is executed by co-proeessach aspuor FPGA. The hybrid
mode is defined to be the state in which an application is é&dduwy bothcPuandcpu.

To quantify the efficiency and performance of an applicatioming on heterogeneous sys-
tem, researchers usually employ the speedup and efficieatiycs Intuitively, the speedup of
a parallel code refers to how much faster it runs than a qooreting sequential algorithm does.
The efficiency is a measure of the fraction that the availpbdeessing power is being used. Ac-
cording to the computing modes the application is in, theedpp and efficiency can be defined

formally as follows:

Definition 2.1.5. SPEEDUP

The speedup of a parallel algorithm is defined to be the rdfithe rate at which when it is
run on N processors to the rate at which it is processed bygnst Technically, if; and Ty are
the time required to complete some job band N processors respectively, the speedupan

be defined as follows:
_

S—TN

(2.1)

In order to evaluate the performance of a parallel algoritithere are different ways
to compute the speedup, according to the structure of theriihgm. For example, in
parallelized triangulation, ifl} (A(G)) and Ty (A(G)) are the time required to employ
triangulation over GraphG on 1 and N processors respectively, global speedup can be
defined as5, in the following fomula; iff; (A(e)) andTx (A(e)) are the time required to
employ triangulation over an edgeon 1 and N processors respectively, local speedup

can be defined a$; in the following fomula as well:

+ GLOBAL SPEEDUR S, = %

e LOCAL SPEEDUPR S, = 7lev(a((ee))))

Definition 2.1.6. EFFICIENCY

15

The efficiency of a parallel algorithm is defined to be thectiffeness of parallel algorithm
relative to its sequential counterpart. Simply put, it is #§peedup per processor. Technically, let
N be the number of processors in the parallel environmentiefity £ is defined in terms of the

ratio of the sequential cost; to the parallel cosCy .

C T
E=—= 2.2
CN NXTN ()

we also define global efficiendy, and local efficiencyy; as follows:

« GLOBAL EFFICIENCY: E, = —N%VA((AG()&))

e LOCAL EFFICIENCY: E = %

16

2.2 GPGPU Background

2.2.1 Parallel Programming Model

Many parallel programming languages and models have bespoged in the past several
decades [35]. The Message Passing Interface (MPI) is wigsdy for distributed computing
environment while OpenMP" is the de facto standard for shared-memory multi-core CPU
systems. CUDA is the GPGPU programming model proposed by NVIDIA Corporafil].
Compared to the low scalability and weak thread managenfentti-core CPU environment,
CUDA provides a higher scalability with simple, low-oveduaethread management and no cache
coherence hardware requirements.

Actually, CUDA programming model employs SPMD (Single Reog Multiple Data) man-
ner when running on GPU. Compared with threads in CPU, terga@PU is lightweight, which
can be scheduled with extremely low cost [25]. Additiona@JDA has a hierarchy of mem-
ory architecture. Analog to main memory, GPU global memarpff-chip memory that has
the largest size but cost the most when being accessed. &dbnsemory and texture memory
has caches and specific usage for higher performance. @rshhred memory, analog to the
CPU caches, and hundreds of registers can be accessed astiést Epeed but they are also lim-
ited in size on graphics chip. Threads are organized in ugitsed “warp”, which can access
consecutive memory locations with minimum cost [41]. Thélboneck of CUDA programs is
usually found to be the high-speed PCI-Express bus thasfeendata from main memory to

GPU memory.

2.2.2 GPU Cluster Layout

Cluster computing became popular in 1990s along with eveneasing clock rates. A general
cluster consists of a number of commodity PCs bought or memta bff-the-shelf parts and
connected to an off-the-shelf 8-, 16-, 24, or 32-port Etheswitch. Used together, the combined

power of many machines hugely outperformed any single maakith a similar budget.

4Compute Unified Device Architecture

17

GPU computing today, as a disruptive technology that is gimgnthe face of computing,
is just like cluster computing. Combined with the ever-easing single-core clock speeds it
provides a cheap way to achieve parallel processing. THetecture inside a modern GPU
is no different from a cluster. As is illustrated in Figurel 2there are a number of streaming
multiprocessors (SMs) that are akin to CPU cores. Theseameected to a shared memory/L1
cache. This is connected to an L2 cache that acts as an Mtesw®ch. Data can be held in
global memory storage where it is then extracted and usethédyast, or sent via the PCI-E
switch directly to the memory on another GPU. The PCI-E dwiscmany times faster than any
networks’s interconnect. The node may itself be replicatedy times, as is shown in Figure 2.1.

This replication within a controlled environment forms aster.

‘L1HL1HL1||L1|
V v

\ L2 Cache \

GPU GPU GPU
GMEM
v
PCI-E Interface
A A Y £
A A 4 v Y
PCI-E Switch

3

h 4

Host Memory / CPU

Figure 2.1: GPUs Cluster Layout

2.2.3 GPU Evolution

Graphics chips started as fixed function graphics pipeli@@gr the years, these graphics chips
became increasingly programmable, which led NVIDIA toaddice the first GPU or Graphics

Processing Unit. In the 1999-2000 timeframe, computemsisis in particular, along with re-

18

searchers in fields such as medical imaging and electrortiegiséarted using GPUs for running
general purpose computational applications. They fouaexcellent floating point performance
in GPUs led to a huge performance boost for a range of scieafifplications. To use graphics
chips, programmers had to use the equivalent of graphic &Rttess the processor cores. This
was the advent of the movement called GPGPU or General Rugaosputing on GPUSs.
However, the difficulty of using graphics programming laages to program the GPU chips
has limited the accessibility of tremendous performancé®Us. Developers had to make their
scientific applications look like graphics applicationsd€wgraphics APIs) and map them into
problems that drew triangles and polygons. This limitatieakes only a few people can master
the skills which are necessary to use these chips to achefermance. One of the important
steps was the development of programmable shaders. Theseffextively little programs that
the GPU ran to calculate different effects. The rendering malonger fixed in the GPU; through
downloadable shaders, it could be manipulated. This wafirteevolution of general purpose
graphical processor unit (GPGPU) programming, in thatgelkad taken its first steps in moving
away from fixed function units. Then a few brave researchedenuse of GPU technology to try
and speed up general-purpose computing. This led to théagerent of a number of initiatives
(e.g., BrookGPU [11], Cg [34], CTM [6], etc.), all of which weeaimed at making the GPU a
real programmable device in the same way as the CPU. In ar@ptoit the potential power and
bring this performance to the larger scientific community/INIA devotes into modifying the
GPU to make it fully programmable for scientific applicascend adding support for high-level

languages like C and C++. This led to the CUDA architecturdtie GPU.

19

Application

o
= Application 3 Application
L. = 3 = ¥
=) =
S & Command S Command
A4 o e e g
Geometry Geometry Geometry
L. 3 3
Rasterization o Rasterization < Rasterization
' e 3 S ¥
Texture £ — :1::
v
L 4 = 4 s Fragment Unit
3 g
Fragment o Fragment]
4 1 2
Display Display Display

(a) Traditional Model (b) A Dedicated Hardware (c) Graphics Pipeline in 2000

g Application
2 PP
> .4
o Command g Application
Vertex Unit 8 Command
. - v
5 Rasterization
=
z L £ -
] =4
% S| VertexUnit = & = Fragment 3
= Fragment Unit £ & Unit a
g g &
5 5 3 L5
1 4 &
Display I Texture Memory ' I Texture Memory I
(d) Graphics Pipeline in 2001- (e) Graphics Pipeline in 2003
2002

E Application

= 1 4

u] Command

k—l

v 5

g - Geometry B Fragment z

© VertexUnit = - = 2 = 3 = o

2 Unit 2 Unit a

g &

=

3 = L = . o

] | |

l Memory ‘ [Memory } I Memory |

(f) Graphics Pipeline in 2007

Figure 2.2: Graphics Pipeline Evolution

Figure 2.2 shows the graphics pipeline evolution historyoréspecifically, Figure 2.2(a)

describes the traditional model for 3-D rendering, in whiodre are 7 main stages in the graph-

20

ics pipeline. The input of this referring model includestims and primitives, transformation
operators, lighting parameters and so forth. The outpuh@itodel is a 2D image for display.
The application stage describes the application programimg on the CPU, example of which
probably consists of simulation, input event handles, ifiyodiata structure, database traversal,
primitive generation and utility functions. The commandgs feeds commands to the graph-
ics subsystem. In this stage, commands are buffered be&ng Interpreted, data input are
unpacked and converted into a suitable format while grapkiate is maintained. The geom-
etry stage mainly applies per-polygon operations, suctbasdmate transformations, lighting,
texture coordinate generation, and clipping which may belware-accelerated. Instead of the
per-polygon operations in the geometry stage, the raat@iz stage has per-pixel operations.
Rasterization is the task of taking an image described inctovgraphics format (shapes) and
converting it into a raster image (pixels or dots) for outpnta video display or printer, or for
storage in a bitmap file format. Operations of the rastddnattage include the simple operation
of writing color values into the frame buffer, or more compteperations like depth buffering,
alpha blending, and texture mapping, which may be hardwerelerated. In computer graph-
ics, texture is a bitmap image applied to a surface in connmraghics. Texture mapping is a
method for adding detail, surface texture, or color to a cat@pgenerated graphic or 3D model.
Similarly in the texture stage, texture filtering, which isacalled as texture smoothing from
other view, is the method used to determine the texture dotaa texture mapped pixel, using
the colors of nearby texels (pixels of the texture).

Starting from Figure 2.2(c), texture and fragment stageesveembined to form a new stage
named fragment unit, which became more programmable (sienasly language) in year 2000.
This year memory in this programmable stage was read viactuggmt” texture lookups, pro-
gram size was limited and no real branching and looping wapparted. Figure 2.2(d) shows in
2001 geometry stage became programmable (still via asgdanjuage) and was called vertex
unit. There were no memory reads supported in this stage raguigm size was still limited as
well as the same situation of branching and looping compiar@@00. Then things improved in

2002 so that vertex unit can do memory reads and the suppo@ginum program size was in-

21

creased and branch as well as some higher level languageastit SL and Cg were supported.
However, both the vertex and fragment units could not wotenemory but frame buffer. And
there were no integer math and bitwise operators. In 2008/Gf@came mostly programmable.
Although still inefficient, in Figure 2.2(e), “multi-passilgorithms allowed writes to memony.
Finally, as illustrated in Figure 2.2(f), processing unitsre “unified” so that the new geometry

unit that operates on a primitive can write back to memory.

3500 -
3090
3000 o
2500
2000
1581 1581
1500 -+ _® .4
1062
1000 &
i 576 648
o3
500 87 243
42.6 51.2 55 ii___—---———i2————-"‘"“""""'“—__'_—_.I
04 2 —i ‘ i ‘ , ’
2006 2007 2008 2009 2010 2011 2012

¢—GPU —a—CPU

Figure 2.3: CPU vs GPU in Peak Performance (gigaflops)

2.2.4 CPUvs GPU

CPUs and GPUs are architecturally very different devicédU€are designed for running a small
number of potentially quite complex tasks while GPUs aregiesi for running a large number
of quite simple tasks.

If we look at the relative computational power in GPUs and GPWe get an interesting
graph (Figure 2.3). We start to see a divergence of CPU and &GPputational power until

2009 when we see the GPU finally break the 1000 gigaflops orafldaprbarrier. At this point

Swrite to the frame buffer in the first pass
Sthe frame buffer is re-bound as a texture and is read in thenskgass

22

of time, the GPU hardware is moving from the G8@ the G200° and then to the Fernt
evolution. This is driven by the introduction of massivebrallel hardware.

In Figure 2.3 we can also observe that NVIDIA GPUs make a |ga800 gigaflops from
the G200 architecture to the Fermi architecture, nearly% 8@provement in throughput. By
comparison, Intel's leap from their core 2 architecturehi® Nehalem architecture sees only a
minor improvement. Only with the change to Sandy Bridge iéecture do we see significant
leaps in CPU performance. The traditional CPUs are aimedjaad at serial program execution
while the GPUs are designed to achieve their peak perforenanty when fully utilized in a

parallel manner.

Control ALU ALU

ALU ALU

CPU GPU
(@) (b)

Figure 2.4: CPU vs GPU

There is a discrepancy in floating-point capability betwéss CPU and the GPU. GPU
is specialized for compute-intensive, highly parallel gonation. Therefore, more transistors
are devoted to data processing rather than data caching amddintrol in GPU. Figure 2.4
schematically illustrates these differences betweendsed of CPU and GPU.

CPU and GPU have different thread environment. The CPU hasa#d sumber of registers
for each core, which must be used to execute any given taskcHieve this, CPU cores need

to perform fast but expensive context switch among tasksohtrast, instead of having a single

7128 CUDA core device
8256 CUDA core device
°512 CUDA core device

23

set of registers, GPU cores have multiple banks of regis#&rsontext switch of GPU threads
simply involves setting a bank selector to swap in/out theeru set of registers, which is much

faster than saving to off-chip global memory.

Definition 2.2.1. SPATIAL LOCALITY

Data that is close to the last accessed data will likely beeased in the future.

Definition 2.2.2. TEMPORAL LOCALITY

Data that has been accessed before, will likely be accesgaid.a

Another difference between CPU and GPU is about the pria@plocality, which is defined
in Definition 2.1.2. More specifically, spatial locality (Btion 2.2.1) and temporal locality
(Definition 2.2.2) are two types of locality to be considetad programmers for a computer
system. CPU is designed to run software where the progrardoes not have to care about
locality. On the contrary, GPU is designed with grantinggremnmers the freedom of dealing
with locality. The simple process of planning ahead allolas programmer to schedule data
loads into the on-chip memory before they are needed.

One more important distinction between GPU and CPU is cagherency. Although GPUs
of early generation have no general memory cache, more ang meav-born ones are equipped
with hierarchical caches. For instance, the new Fermi arqnleKeGPUle have a different
cache coherent mechanism from a general cache-coher¢ansySpecifically, a write to a main
memory location needs to be communicated to all levels dieac all cores. Thus, all CPU
cores see the same view of memory at any point in time. Thieaésod the key factors that limit
the number of cores in CPU. Communication becomes incrgigsinore expensive in terms
of time as the processor core increases. On the GPU sideysters does not automatically
update the caches of other processing cores. It relies gmgroners to write the output of each
processor core to separate addresses. Actually, a singleéscresponsible for a single or small
set of outputs. Moreover, adjacent memory locations aresoad (combined) together by the

hardware on GPUSs, resulting in a single and more efficient ongrfetch.

10Fermi and Kepler GPUs are equipped with a shared L2 cachehvgsimilar to the L3 cache function
on the CPU.

24

2.2.5 Compute Unified Device Architecture (CUDA)

CUDA is an extension to the C language that allows GPU code tariiten in regular C. The
code is either targeted for the host processor (the CPUYgetsd at the device processor (the
GPU). The host processor spawns multi-thread tasks (oelsesas they are known in CUDA)
onto the GPU device. The GPU has its own internal schedudemihi then allocate the kernels
to whatever GPU hardware is present.

CUDA enabledsPus consist of a scalable array of multi-threaded streaminigipnacessors
(sms). Eachswm contains 8 scalar processors (SPs), which can run simoltaheand executes
identical instruction set. Up to 32 threads can be schedalexlitime, in a unit with a name
“warp”. There can be 24 warps active in og& at most in the same time.

The CUDA programming model is a heterogeneous model in wihdath thecpu andGpru
are used. In CUDA, the host refers to theu and its memory while the device refers to theu
and its memory. Code running on the host manages memory bnttthost and device, and
also launches kernels, which are functions executed ondtieel These kernels are executed
by manyGPu threads in parallel, which are organized in a grid-bloale#id hierarchy. Threads
within a block synchronize and cooperate with each otherfaga block-wise shared memory.
Threads from different blocks can only communicate throofftthip global memory with long
latency. The grid is then formed by thread blocks that carrdresparently deployed on various
number of physical processors.

Given the heterogeneous nature of the CUDA programming hadigpical sequence of

operations for a CUDAC program is:

Declare and allocate host and device memory.

Initialize host data.

Transfer data from the host to the device.
* Execute one or more kernels.

* Transfer results from the device to the host.

In CUDA programming environment, a kernel function revoksdcpu is deployed to run

25

on GPU. As displayed in Formula 2.3, a kernel call specifiesdkecution configurationising
<« ... > between the function name and the parenthesized argursenbly and Db define
the thread dimensions for the grid and the blocRés specifies the number of bytes in shared
memory that is dynamically allocated per block for this @akddition to the statically allocated

memory andS relates to the associated stream.

kernal Function << Dg, Db, Ns, S >> (para); (2.3)

Moreover, CUDA has a hierarchy of memory space. Registershaead-wise and
on the top of this pyramid structure, which respond fastestiwone processor cycle
but are restricted by the limited number. Similarly, bloglse shared-memory are also
on-chip and executes very fast. It is limited by the size a. v@nstant memory and
texture memory are off-chip but equipped with pretty fasthess. Lastly, accessing off-
chip global and local memory cost several hundreds of cythesigh they are large in
size.

Last but not least, CUDA programming model has been evohirig GPU architec-
tures fromceforce,Tesla,Fermi tokepler. Andmaxwell will be released soon in 2013.
The Tesla architecture is based on a scalable processor arregrabmdependent pro-
cessing units called texture/processor clusters are gl process the tasksermi
extends the performance and functionalityresla. Specificallyrermi offers dramati-
cally increased programmability and compute-efficiencgtlgh a series of architectural
innovations. Recently, under the 28nm crakepler is the fastest and most efficient
high performance computing architecture. It makes hetsregus computing more ac-
cessible, with innovativemx, dynamic parallelism and hypertechnology. The next
generationcPU to Kepler will be themaxwell, which has faster double precision speed

and lower power consumption.

26

2.2.6 Alternatives to CUDA

Besides CUDA from NVIDIA, there are several alternativeshe GPGPU market. For
example, OpenCL [5, 39, 17]is an open and royalty-free stathsupported by NVIDIA,
AMD, and other hardware manufacturers. The OpenCL trademawned by Apple,
which sets out an open standard that allows the use of condputees. CUDA is cur-
rently only officially executable on NVIDIA hardware whileg@nCL supports all major
brands of GPU devices, including CPUs with at least SSE3@tipp

DirectCompute is Microsoft’s alternative to CUDA and Opén@ is an application
programming interface (API) that supports general purposeputing on GPUs on MS
Windows 7 and Windows 8. DirectCompute is part of the MicfoBorectX collection
of APIs. The DirectCompute architecture shares a range wipatational interfaces
with its competitors, OpenCL and CUDA.

The main parallel processing language-extensions inditide OpenMP, windows
threading model and pthreads. Firstly, as is mentioned ati®@e2.2.1, MPIl (Message
Passing Interface) [20] is perhaps the most widely knownsaugiag interface. MPI is
a process-based parallel programming model. The pasaias expressed by spawn-
ing hundreds of processes over a cluster of nodes and akpézgchanging messages.
Secondly, OpenMP (Open Multi-Processing) [12] is a systesighed for parallelism
within a computer system. The programmer specifies variatalpl directives through
compiler pragmas. The compiler then attempts to split tiedlem into N parts au-
tomatically, according to the number of available processwes. OpenMP provides
automatic scaling for the problems due to the underlying @Rthitecture. The mem-
ory bandwidth in the CPU is the bottleneck for continuoushgaming data. Thirdly,
pthreads [38] is a library that is used significantly for ntblead application. Using
threads, pthreads is designed for parallelism within alsingde. Moreover, the pro-

grammer should be responsible for thread management aotreynzation, which pro-

27

vides more flexibility and consequently better performafozenell-written programs.

Fourthly, ZeroMQ(OMQ) [24] is a simple library designed fdistributed computing

that supports thread-, process-, and network-based comatiams models with a single
cross-platform API. ZeroMQ provides dynamic connectiond graceful fault-tolerant
mechanism. Lastly, Hadoop [27] is an open-source versioBadgle’'s MapReduce
framework [14]. In the map stage, Hadoop breaks (or map) a dataset into a number
of chunks and split over hundreds or thousands of nodes aspayallel file system.

Then in the reduce stage, the program is sent to the nodedh#ins the data. The
output is written to the local node. Subsequent MapReducgrams iteratively take

the previous output and transform it in some way. Hadoop iglalyfault-tolerant and

high-throughput system.

OpenACC is a set of “OpenMP-like” compiler directives for (& which is sup-
ported by a number of compiler venddés With OpenACC, the programmer inserts
a number of compiler directives marking regions as “to beceted on the GPU”. The
compiler then automatically moves data to/from the GPU amdkes kernels. Similar
to the relationship between pthreads and OpenMP, CUDA gesvihe lower level of
control and higher performance over OpenACC. ConversglgndCC requires a lower
level of required programming knowledge, a lower risk obesrand shorter develop-

ment time.

2.2.7 Parallelism with GPUs

A significant number of problems are known as “embarrasgipgrallel”, for which
little or no effort is required to separate the problem intouember of parallel tasks.
These types of problems can be implemented extremely weB®Uds and are easy to

code. However, if one stage of the algorithm cannot be repted in this way, the

1pGI, CAPS, Cray, etc.

28

computation slows down due to the processors/threads spembre time sharing data
than doing any useful work. The speedup will ultimately Ineited. This stage turns out
to be a bottleneck of this problem.

CUDA is ideal for an embarrassingly parallel problem, whétke or no interthread
or interblock communication is required. It supports itttegad communication with
explicit primitives using on-chip resources. Interblockrmanunication is only supported
by invoking multiple kernels in sequence, communicatingveen kernels using off-chip
global memory.

CUDA splits problems into grids of blocks, each containingltiple threads. The
blocks may run in any order and are allocated to any SM (symeoaémultiprocessors)
that has free slots. If a grid of threads is analogous to ary afnsoldiers, the blocks
are said to be like the units that are commanded by a lieutenBime block is then
split into several warps of threads, which is like a sergdéaad squad of 32 soldiers.
Figure 2.5 illustrates the CUDA-based hierarchy of threads. The host program
invokes the kernels to perform some action by providing sdata. Each thread works
on its individual part of the problem. Threads may commueicgith each other by
swapping data from time to time under the coordination dfezithe sergeant (the warp)
or the lieutenant (the block). Any coordination with othérdks has to be performed by
central command (the host or the kernel grid).

Thousands of threads orchestrate extremely high conayrmenthis hierarchical
manner. Actually, a typical modern GPU has on the order of 2dtve threads. For
example, a Fermi GPU ha&s$, 535 x 65,535 x 1536 threads in total, 24K of which are
active at any time. To understand the parallelism of GPUgrsétypes of parallelism

are defined as follows:

Definition 2.2.3. COARSE-GRAINED PARALLELISM IN GPU

Relative to fine-grained parallelism, bigger portions obpessing element can be

29

Grid
l ‘, l
Block Block Block
N-1 N N+1
y v v vy v v v v
Warp Warp Warp Warp Warp Warp Warp Warp Warp
N-1 N N+1 N-1 N N+1 N-1 N N+1

Figure 2.5: CUDA-based Thread View

Stream 0

Copy To Device

Kemel

Copy From
Device

Copy To Device

Kemel

Copy From
Device

Stream 1

Stream 2

Copy To Device

Kemel

Copy From
Device

Copy To Device

Kemel

Copy From
Device

Copy To Device

Kemel

Copy From
Device

Copy To Device

Kemel

Copy From
Device

Figure 2.6: Stream Pipelining

employed to perform over a bulk of data.

GPUs support the coarse-grained parallelism pattern intswcs:

1. kernels can be pushed into a single stream and sepaedenstexecuted concur-

rently.

2. multiple GPUs can work together directly through eith@sging data via the host

or passing data via messages directly to one another oveXGh& bus.

As is defined in Definition 2.2.4, stream pipelining belonggtie coarse-grained

parallelism on the GPUs. Figure 2.6 displays the partitigraf the tasks in GPU stream

pipelining.

Definition 2.2.4. PIPELINE PARALLELISM

There are a number of powerful processors, each of which eaiopn a significant

chunk of work. The output on one program provides the inpuh®next.

30

Besides coarse-grained parallelism, GPUs and CUDA cansygoort fine-grained
parallelism which is defined in Definition 2.2.5. The CUDA giéel programming model
has three key abstractions — a hierarchy of thread groupsgdimemories, and barrier
synchronization. These abstractions provide fine-graohed parallelism and thread
parallelism, nested within coarse-grained data parstteind task parallelism (Defini-
tion 2.2.6). A problem is usually partitioned into coarsb-guoblems that can be solved
independently in parallel by blocks of threads, and eachpablem into finer pieces

that can be solved cooperatively in parallel by all threadkiwthe block.

Definition 2.2.5. FINE-GRAINED PARALLELISM IN GPU
Relative to coarse-grained parallelism, smaller portiaigrocessing element can

be employed to perform over fine-partitioning data.

Definition 2.2.6. TASK-BASED PARALLELISM

Task parallelism (also known as function parallelism andtoal parallelism) is a
form of parallelization of program across multiple processin parallel computing
environments. Typically, task parallelism is achieved nveach processor executes a

different thread (or process) on the same or different data.

Definition 2.2.7. DATA-BASED PARALLELISM
Data parallelism is a form of parallelization of computingrass multiple processors
in parallel computing environments. Data parallelism feea on distributing the data

across different parallel computing nodes.

2.2.8 Parallel Patterns in CUDA Programs

There are several common parallel patterns in CUDA prograbihenking in terms of

patterns helps people to broadly deconstruct or abstragildgm. Therefore, learning

31

and grasping well common parallel patterns enhance theesftig of problem modeling

and CUDA programming.

Loop-based patterns

A loop is a sequence of statements which is specified once bichwnay be carried
out several times in succession. The code “inside” the Idoe body of the loop) is
obeyed a specified number of times, or once for each of a tmlteof items, or until
some condition is met, or indefinitely. Loops vary primaiityterms of entry and exit
conditions (for, do...while, while), and whether they ¢eedependencies between loop
iterations or not.

Loop-based iteration is one of the easiest patterns tolpkzal With inter-loop de-
pendencies removed, its then simply a matter of deciding teosplit, or partition, the
work between the available processors. This should be datheawiew to minimiz-
ing communication between processors and maximizing teeofi®n-chip resources
(registers and shared memory on a GPU; L1/L2/L3 cache on & GRimmunication
overhead typically scales badly and is often the bottlemegioorly designed systems.

On the GPU the inner loop, provided it is small, is typicattyglemented by threads
within a single block. As the loop iterations are groupedaeent threads usually access
adjacent memory locations. This often allows people to @kpbcality. Any outer

loop(s) is(are) then implemented as blocks of the threads.

Fork/join pattern

The fork/join pattern is a common pattern in serial prograngwhere there are syn-
chronization points and only certain aspects of the progaesrparallel. The serial code
runs and at some point hits a section where the work can bebdistd to P processors

in some manner. It then “forks” or spawns N threads/procetsa perform the calcu-

32

lation in parallel. These then execute independently aralljitonverge or join once
all the calculations are complete. This is typically the raggh found in OpenMP and
OpenACC, where a parallel region is defined with pragma istatgs. The code then
splits into N threads and later converges to a single thrgatha

The fork/join pattern is typically implemented with stapartitioning of the data.
That is, the serial code will launch N threads and divide thtasket equally between the
N threads. The fork/join pattern is often used when thera isr&known amount of con-
currency in a problem. Traversing a tree structure or a pgttoeation type algorithm
may spawn (fork) additional threads when it encountersharotode or path. When the
path has been fully explored, these threads may then joik ibéx the pool of threads
or simply complete and wait to be re-spawned later.

GPUs have dynamic scheduling allocation. A block (thread) for GPUs is created
for allocating tasks among SMs. Actually, this pattern i$ matively supported on a
GPU, as it uses a fixed number of blocks/threads at kernethatime. Additional blocks
cannot be launched by the kernel, only the host program. ,Buch algorithms on the
GPU side are typically implemented as a series of GPU keawngldhes, each of which
needs to generate the next state. An alternative is to quatedor signal the host and
have it launch additional, concurrent kernels. Neitheusoh works particularly well,
as GPUs are designed for a static amount of concurrency.eKeytoduces a concept,

dynamic parallelism, which addresses this issue.

Tiling/grids

CUDA requires programmers to break the problem into smakets, each of which is
then allocated to the processing elements present in theingac
The tiling model is thus an easy model to conceptualize. Ingthe problem in two

dimensions — a flat arrangement of data — and simply overlaydaogto the problem

33

space.
CUDA provides a simple two-dimensional grid model. For angigant number of
problems, this is entirely sufficient. Considering a lindatribution of work within a
single block, an ideal decomposition into CUDA blocks, heereis then demanded. As
we can assign up to sixteen blocks per SM and we can have up3®&$630 on some
GPUSs), any number of blocks of 256 or larger is fine. In pragtice would like to limit
the number of elements within the block to 128, 256, or 512h&in itself may drive

much larger numbers of blocks with a typical dataset.

Divide and Conquer

The divide-and-conquer pattern is also a pattern for brepéiown large problems into
smaller sections, each of which can be conquered. Takethexg@ese individual com-
putations allow a much larger problem to be solved. TypyodiNide-and-conquer algo-
rithms are used with recursion. Most recursive algorithars &lso be represented as an
iterative model, which is usually somewhat easier to map timt GPU as it fits better

into the primary tile-based decomposition model of the GPU.

2.2.9 Hardware Overview

GPU hardware is radically different than CPU hardware. &&the GPU hardware

consists of a number of key blocks:
* Memory (global, constant, shared)
» Streaming multiprocessors (SMs)
» Streaming processors (SPs)

As is shown in Figure 2.7, a GPU device consists of one or mbte ¥irtually, GPU is

really an array of SMs, each of which has N cores. This is tgeakpect that allows scal-

34

ing of the processor. The most significant part of SM is thetelare multiple SPs within
each SM. Each SM has access to a register file, which is muelalghunk of memory
that runs at the same speed as the SP units. There is alsed af@mnory block accessi-
ble only to the individual SM that can be used as a programageth cache. The shared
memory is entirely under programmer control. Each SM hagparsge bus into the tex-
ture memory, constant memory, and global memory spacesurBaxiemory is a special
view onto the global memory, which is useful for data wheeréhs interpolation. Con-
stant memory is used for read-only data and is cached on @iMaae revisions. Like
texture memory, constant memory is simply a view into themgéobal memory. Global
memory is supplied via GDDR (Graphic Double Data Rate) orgttaghics card. Each
SM also has two or more special-purpose units (SPUs), whadopn special hardware

instructions, such as the high-speed 24-bit sin/cosipefesnt operations.

PCI-E 2.0 Interconnect (6GB/S) ‘

¢ 3¢ J¢
GPU#0 GPU GPU GPU
G %ﬁ%ﬁé%ﬁé%ﬁé%ﬁ%ﬁé%ﬁé IR
Constant Shared | |
Memory across i Og;m‘ Global Memory MMU (448 / 512 Bit) - 120GB/S - 256K to 4GB
all MPs (64K) |
jf [
[Global Memory Bus
| Constant Memory Bus L ==
3 T sl sl sl % ii
SMO
1c
| Bus |
ac J¢ 3¢ J¢ dc Jt J¢ 3I¢
SPO SP1 SP2 SP3 SP4 SP5 SP6 SP7 SM1 SM2 SM3 o;gzna\
In

JLJC 36dC JE3C JEJL JEIE IEIE JEIT JEIT

| Crossbar

|
S L T e

Shared Memory (16x 1K)

Figure 2.7: GPU Block Diagram

35

2.3 Related Work on Graph Processing on GPU

2.3.1 Graph Processing and Mining

Graph problems were first considered in the streaming emviemt by Henzinger et
al. [23]. Then counting triangle number and estimating canmeighborhoods are dis-
cussed in [8] and [10]. Both of these problems and those nuplicated” computa-
tion need to access the data in a very adaptive fashion. 8ir@ntire graph is too large
to be stored in the memory, emulating an aforementionedtitvadl algorithm necessi-
tate a sequence of passes over the data. This has motivédesiréaming models like the
Semi-Streaminfl8], W-Strean{15], andSort-Streanj4] models. Actually, streaming
is a useful method and an important computational modeldodhing large graphs that
cannot be read into main memory. In streaming environmetg i@ normally accessed
in a sequential fashion to bypass the memory limitationfdbgint from semi-streaming
programming model [9], which is also hamed the external nrgmuwdel [49], stream-
ing algorithms abandon random access to the input graph data

Given a graph data streaf = (eq,eq,€3,...,¢,), WhereV = {v,v9,v3,..., 0},

E = {ej,e,¢€3,...,6,}, and each iteme; € [m] x [m], graph mining on streams is
considered as estimating properties or finding patternsinvthe graph. According to
[36], there are three common variants for graph mining osastis, namely multi-pass
model, weighted/dynamic/directed graphs, and adjaceragience orderings.

Dense subgraph has significant more internal connectioes wbmparing with its
surrounding vertices. In the context of this thesis, thenitédn of a dense subgraph is
the same with the one in paper [51], which is defined in Debnifi.5.2. Dense subgraph
mining is close-relative but simpler when comparing with tfaditional clustering which
requires a strict partitioning of the graph [3]. There ame¢hmain types of dense graph

mining algorithms, namely enumeration [32, 29], fast h&tirienumeration [19, 50] and

36

bounded approximation [13, 7].

To enumerate all possible dense patterns is usually stfargtard but time con-
suming. For some real applications, such as protein-pratéeraction networks, fast
heuristic methods are used to find the target pattern in uagghs. Moreover, bounding
techniques are usually used to approximate the requiresitgeas well. In this sense,
a series of famous algorithms were proposed, such as Sglgorithm [19], GRASP
algorithm [2], CSV algorithms [50]; -CompleteQH28], and some streaming-based
algorithms [26].

Graph mining operators, such as computing graph statigfreph matching, com-
puting distance in a graph, graph random walk and graphguiation, are basic graph
mining approximative functional modules. These operadoesfundamental to most of
the graph mining applications, like PageRank and grapltediung. Graph triangulation
operator walks through a graph and counts all triangles stdte-of-the-art triangulation
operator is introduced in paper [9, 42, 51].

Paper [50] employed efficient bounding techniques on thengiof dense patterns
such as cligue, quasi-clique, and k-core components t@ajppate the indications of the
dense patterns in the graph. In addition, a greedy heuakgarithm is used to order all
graph vertices into a linear fashion for graph traversalaly, a visual plot is provided
to give clues about the size and distribution of the densteqpet. The time complex-
ity of the algorithm CSV (cohesive subgraph mining and Vigirgg) is calculated as
O(|V']2log|V|2¢). For small and sparse graphs, the performance of CSV is polial,

which is quite attractive when comparing with the existitgpaithms.

2.3.2 Graph Processing on GPU

Modern GPUs have displayed an impressive computationakpas well as higher

memory bandwidth compared to CPUs. They are used by many draming) ap-

37

plications as an accelerator to compute-intensive algost Paper [21] presents a few
fundamental algorithms - including breadth first searamnglei source shortest path, and
all-pairs shortest path - using CUDA on large graphs. Pa@&] proposes an imple-
mentation of the push-relabel algorithm for graph cuts en@®PU. A minimum span-
ning tree algorithm on CUDA is presented in paper[47] as amsee formulation of
Boruvka'’s approach for undirected graphs. SimRank is aleigpd influential measure
of similarity between nodes in a graph. Paper [22] expltitsibherent parallelism and
high memory bandwidth of GPU to accelerate the computatfoBimRank on large
graphs. Moreover, they use iterative aggregation tecksiqehen computing SimRank
scores concurrently for large graphs. Medusa [52] is a uhifemework for supporting

various graph computation and visualization operation&BiJ.

2.3.3 Graph Processing Model

Many real life problems can be expressed in terms of condestgties. With graphical
models, well defined graph theory can be utilized to proceaplgdata and discover
valuable results. There are three levels of general prowepatterns for graphs, namely
capture, query and mining. “Capture” identifies the relatup being generated or ex-
isting among entities. “Query” looks for some general infation computed from the
relationship among entities, which is just like a simpleatdbaise query. “Mining” digs
out some valuable knowledge from the information we can getgua series of data
mining methodologies.

Since the graph size has been dramatically increased irafteypars, how to store
and process such a massive graph is a critical option. If thphgis kept in one large
external storage, then the corresponding graph processidgl works locally in shared
memory system. Streaming algorithms need to be appliedsrstenario. Otherwise,

the graph would be broken down into multiple partitions atatesd in different places.

38

Original algorithms are required to be redesigned in ordeun in a distributed envi-
ronment. Graph processing model can be sequential or @larAllsequential process-
ing model normally uses loops to iterate over the graph eidsnevhile a parallel one
launches processing concurrently among a set of graph etenmdore and more graph
processing models takes advantage of parallel programtaaigiques, which includes
various multi-process, hyper-threading and many-thregadiethods.

Most parallel graph processing algorithms can be exprassiedms of a combina-
tion of “traversal” and “transformation”. In graph “traveal” case, the algorithm walks
through a path which consists of a sequence of segments.oMarkPeter's model [40]
is an instance of such a case. The algorithm starts with nglitom a set of vertices
in parallel, and repeats until all segments are coveredlaAthigraph “transformation”
case, the algorithm can modify the graph by adding or rengpwmtices or edges. Pregel
graph processing model is such an example. The algorithorstdsts from some active
vertices, executes some operations and repeats untiraleebecome inactive. “traver-
sal” and “transformation” are usually combined to expressexcomplicated functions.

Parallel graph processing model can be synchronous or lasymmus. On one side,
synchronization here means after some operations sonmgeqfagtaph elements finish
their tasks but waiting for other peers to finish. This timegkeg is for coordination
purpose among all graph elements. A synchronization psinamed as a barrier. Bulk
Synchronous Parallel model [46] is a synchronous bridgingehfor designing parallel
algorithms. All processors are connected by a communicagdwork. After some local
computation, the processor will send its results to othecgssors and wait for their
messages to arrive. However, synchronization trades eftyistem performance with
the model simplicity. On the other side, system can be implged in an asynchronous
model with careful data dependency design.

Graph processing model can be vertex centric or edge ceNitex centric means

39

the model makes the vertices as its first class citizens dndraputations are conducted
by the vertices. In a parallel graph processing model, daad or process represents
a vertex for a vertex centric model. For an object-orientezjpamming language, a
vertex can be modeled as a class object that is responsité®fioe computations and
communications. An edge centric model takes the edges fasitslass citizens, which
is similar to a vertex model. An edge centric model can be eded to a vertex centric
one since two connected vertices represent an edge. Gedykgel [33] is a vertex

centric model while Hama [43] makes edges as its first cld&®ns.

2.3.4 Graph Processing System

A graph processing system is an integrated system desigmegdph processing and
graph mining. A graph processing system has the functioeslof graph partition-
ing, graph traversal, graph merging and graph mining. Thegeseveral basic modules
in a graph processing system that provides the fundamematibnalities, namely in-
put/output module, partitioning module, combiner modatenmunication module, pro-
cessing module and scheduler module. Boost Graph Libra@L§B37] is a standard
generic interface for traversing graphs and reusing basiplgalgorithms and graph
data structures. Parallel Boost Graph Library (PBGL) [B6&m extension to the BGL
for parallel and distributed computing. PBGL offers distitied graphs and graph algo-
rithms to exploit coarse-grained parallelism along witingtial algorithms that exploit
fine-grained parallelism. Google’s Pregel [33] is also aggergraph processing system
for distributed computing environment. Several Pregellengentations have emerged
in the literature recently. Phoebus [45] is an Erlang-bdsgulementation of Pregel.
Hama [44] is a distributed graph processing framework onddad Different from
other pregel implementation, Hama is not a vertex centricleho GraphLab [30] is

also a generic graph processing system that improves ustraations like MapReduce

40

by compactly expressing asynchronous iterative algostimth sparse computational
dependencies while ensuring data consistency and achievingh degree of parallel

performance.

2.4 Dense Neighborhood Graph Mining

This work introduces a new definition of dense subgraph pattee D N-graph. DN -
graph considers both the size of the sub-structure and thienmin level of interactions
between any pair of vertices. Detailed definitions and eelatork are attached in Ap-
pendix 2.5 at the end of this chapter. The mininglaWV-graphs inherits the difficulty
of finding clique, the fully-connected subgraphs. Thus, fh€-graphs can be approx-
imately located using the state-of-the-art graph triaagoih methods. The solution in
this work consists of a family of algorithms, each of whichgtts a different problem
setting. These algorithms are iterative, and utilize regmbacans through the triangles
in the graph to locate th® N-graphs approximately. Each scan on the graph triangles
improves the results.

Our iterative, triangulation-based approach has threargdges. First, most of the
details involved in efficient processing, such as miningzif©s, are abstracted within
the triangulation algorithm. The abstraction ensuresdpjgoach’s extensibility to dif-
ferent input settings, e.g. when the target graph is toceléogfit into memory, this
approach only needs to change the access method of the gn&aph In addition, the
estimation of the local neighborhood is encapsulated witne triangulation algorithm.
Second, as the estimation of the local density value imgrawth each additional itera-
tion, users can adopt a “pay as you go” approach and obtamdis¢ updated results on
demand. Finally, when the graph is too large to fit into themmagmory, statistics in the

first iteration can be collected to support effective buffemmagement. There should be

41

a need to store the local density value on a disk, since thegies are generated in the
same ordering in every iteration.

There is an algorithm family about triangulation based degraph mining presented
in this work. Their key features are shown in Table 2.1. Fere¢hse of reference, we

refer them as 1) TDN, 2) BiTriDN and 3) Strear® N respectively.

In Memory Time Space
Tri DN Yes | O(klog|V||E|2) | O([Vlog|V] + | E])
BiTri DN 3
(Binary Bounding) TS | O(kloglVIIEIZ) O([Vtog|V| +|E)
StreamD N
(Semi-Stream) No O(K|EI) oV

Table 2.1: A Family ofD N-graph Mining Algorithms

There are variances between algorithmsDI¥i and BiTriDN that deal with in-
memory graphs. The two algorithms vary from each other irvihgs that iteratively
refine \ to reach convergence. As briefly explained previously, tiaagle based algo-
rithm interactively uses the triangles to refih@alue. This process reaches convergence
when all\ values remain the same as previous iteration’s results.

The third algorithm, Stream N, is for semi-streaming graph setting. To mine semi-
streaming graphs, algorithm StreanV applies the min-wise independent set property,
which provides an approximation for triangulation usingjsentially scan of graph
edges, with bounded error.

Experimental data of our study in this work come from bothotieically proven
data generators, as well as domain datasets. All the expetarare conducted on a
workstation with a Quad-Core AMD Opteron(tm) processor@3®8GB RAM and
700GB hard disk. The operating system is Windows server ZDO@rprize x64 edition.

In the experimental study, the efficiency (i.e., runningg)raf the D N-graph mining
algorithms is evaluated. Figure 2.8 presents the effedffefent graph density in a fixed
parameter setting study. The synthetic graph gene€atervaries the edge distribution

by varying the embedded clique sizethen|V| (vertex size) is fixed. The trend over time

42

Elapsed Time(sec)

s 0.08 0.16 0.2

012
Graph Density

Figure 2.8: Vary graph density
roughly follows complexit)O(E%). This experiment has demonstrated that the program
efficiency decreases exponentially as graph grows dendegn\tie graph arrives some
degree of density, current system has reached its perfaerzottieneck. Methods with
more computing power are potential solution for this sirat In the next chapter, we
employ the state-of-the-art GPGPU techniques to providitiadal computing power

for graph triangulation acceleration.

2.5 Appendix

2.5.1 Preliminaries for DN-graph Mining

In the graphG, the neighborhood of a vertexis the set of vertices directly connecting to
v. Formally, we denote it a& (v) = {u | (u,v) € E}. The degree of vertexcan be given
asdeg(v) = N(v). Moreover, the adjacency information for the graph is ugugven as

a set of vertex neighborhoodd;j(G) = {N(u) | u € V}. And the joint neighborhood is
defined in 2.5.1.

Definition 2.5.1. JOINT NEIGHBORHOOD

The joint neighborhood of two verticesand v, is the set of common neighbors of

43

the two vertices.

N(u,v) ={w| ((u,w) € B) A ((v,w) € E)} (2.4)

The joint neighborhood of the subgragH, is the set of all neighboring vertices not @,

but connecting directly to vertices withi#'.

N(G") = {u| (u,v) € Eg A (u,v) ¢ Eqr Au ¢ Vgr AveVgr} (2.5)

Definition 2.5.2. DN-GRAPH
A DN-Graph with parametep, denoted='(V’, E’, \), is a connected subgraph

G'(V',E") of graphG(V, E) that satisfies the following conditions:

1. Every connected pair of verticesdti share at leash common neighbors.
2. A(V'u{v}) <A foranyve (V-V');

3. MV ={v}) <\ foranyveV’.

Definition 2.5.3. DN-GRAPH SIZE \(G)

The DN-Graph size\(G") is defined as the number of vertices in the-Graph G'.
According to the definition of theN-Graph, theDN-Graph size minus two equals to
the minimal joint neighborhood size)(between any two connected vertices within the
graph.

MG =v(G')+2= u{{)leigll/(u,v) +2 (2.6)

As is stated iIDEFINITION 2.5.2, aDN-Graph is a subgraph whose vertices share
many common neighbors. Tien-Graph size X) relates to the minimal joint neighbor-
hood size ¢) between any two connected vertices within the graph. Ofresraph size
for the subgraplt:’ is defined inDEFINITION 2.5.3. In addition, th@N-Graph size for
an edge X(e)) and that for a vertex\(v)) are two local maximal density metrics for the
subgraph. Obviously, the joint neighborhood size is equéi¢ number of the triangles

the two connected vertices participates in, which is alvaysipper bound for the min-

44

imal joint neighborhood size. HEOREM 2.5.1 regulates the relationship between the

DN-Graph size and the triangulatioR(u, v) is defined to be an estimator fau, v).

Definition 2.5.4. SUPPORTINGVERTICES SP(E)

A vertexw is defined to be a supporting vertex fofu, v), iff:

SPE) = { w| X u,v) < min(X(u,w), X(v,w)) } 2.7)

Definition 2.5.5. TRIANGULATION: A(G)

The triangulation for a graplt: is defined to be the technique of mining-Graphs
in the graph by computing the number of triangi{é$ each graph vertex and edge par-
ticipate in.

A(G)={Xe)|Vee E}u{A(v)|VveV} (2.8)

Theorem 2.5.1. TRIANGULATION FOR THE DN-GRAPH SIZE

According to the definition of theN-Graph, triangulation can be used to compute the
DN-Graph size. The number of the triangles in which the edge) participates (a.k.a
d(u,v)) is the upper-bound of the minimal joint neighborhood size v). By tightening
the upper-bound, the minimal joint neighborhood size cameaehed when there are

enough supporting vertices(u, v) (DEFINITION 2.5.4) for X(u,v) in the subgraphs’.

AMu,v) = v(u,v) < Xu,v) < 8(u,v) (2.9)

2.5.2 DN-Graph As A Density Indicator

A graphG(V, E) is a set of verticed” and a set of interaction® overV x V. The

size of graph’z, denoted a$l/|, is the number of vertices ilr. The neighborhood of
a graph vertex, is the set of vertices directly connecting toN.(v) is used to repre-
sent it. If vertexu andv share some common neighboig, (u,v) represents the joint

neighborhood. The neighborhood«is the joint neighborhood of its two end vertices.

45

The joint neighborhood is denoted @6.|. For a subgrapld’ of GG, the neighborhood
of G’, N(G'), is the set of vertices ¢ G/G’, which immediately connect with vertices
in G'. Inside a graph, the measurement of minimal joint neighbodrsize between any
connected vertex pair is denotedasThe notation\(G)/\(V) is used to refer to the
measurement of a gragghwith vertex set/. For brevity, the content inside the bracket is
omitted and\ is used when the context is clearis also used to represent an upperbound
of quantitya. The upperbound of is thus written as\.

In this work, a clique is a fully connected graph, in which gvpair of vertices is
connected by an edge. If the size of a clique ihe clique is said to beaclique. When
compared with clique of the same size, a quasi-clique hasainaction (say) of edges
in the graph, itis @& quasi-clique. Conventionallyis in the interval (0.5, 1].

Defined in Definition 2.5.2, & N-graph should be a connected subgraph in which
the lower bound of shared neighborhood between any cortheetéices,), is locally
maximized. Being & N-graph, it has a local maximalvalue and the size of thB V-
graph is maximized. This ensures that fh&/-graph has more distinguishing power and
maximal coverage. Similar with the graph’s diameter andmmim cut,)\ is an indicator
of the graphs’ underlying density. As proven in the appemdiRaper [51], it is a local
maximum graph. For example, in figure 2.9, subgraghC DEF' is a D N-graph of\
value 3. If we include one more verte¥, the \ value of the graptd’ ABC' D E'F would
drop significantly to 0. Similarly, taking away any verteays4, leads to a lower value
A. DN-graph is designed to represent dense patterns, as it eatuibgraphs with more
internal associations.

Besides the level of connectivity,/aN-graph also imposes restrictions on the mini-
mal size of the shared neighborhood. This restriction is@sly useful when predicting
protein complexes via densely connected proteins withimosem-protein interaction

(PPI) graph. A protein complexs formation often serves tivate or inhibit one or

46

F

Figure 2.9;77ADVN-graph
more of the complex members. In a PPI network, we can obskevpltenomenon that
members of a protein complex share (significantly many) msoegs. TheD N-graph
definition reconciles the sharing of neighborhood.

Based onD N-graph, this work provides effective solutions towards imgnD N -
graphs within a massive graph. Generally speaking, thd tEvimteractions among
entities determine the density of the substructures. Filumpoint of view, it is not
surprising to see that some patterns are transformablehtysot For example, & N-
graph is a more general case of a closed clique (Recall tHefueeds a fully connected
graph while the closed clique is the local maximal cliqua).fdct, aDN-graph is a
relaxation of a clique, with less rigid size constraintsirirea 2.5.1 states the relationship

formally:

Lemma 2.5.1. DN-graph and Closed Clique
A graph contains a closed clique of sizé& and only if the graph contains & N-graph

G with A =d -2 and|G| = d.

Using Lemma 2.5.1, people are able to reduce the close chgyueng problem
to DN-graph mining problem. The reduction signifies tlia¥v-graph mining is NP-
complete. Prompted by this result, we seek to develop healisolutions instead. Like
the closed clique mining problem, the computational bn#tk for D N-graph mining

is on counting degrees within a subgraph. In fact, the cagntif local degrees relies

a7

heavily on the multiple joins of neighbors, which are congtanally expensive. To
avoid the complexity of multiple joins, we next introduce ttoncept of\(e).

As is discussed previously, the bottleneckialV-graph mining is excessive number
of the multiple joins of neighbors. This is because we hatesbcombinatorial number

of subgraphs for theik value and most subgraphs tested are/ndt-graphs.

Definition 2.5.1. A\(e)
For all subgraph a graph edge participates, the maximal value occurred ig’s local

density, We denote the maximaas A(e).

For example, in figure 2.9, let= (A, B), A(e) equals 3. Actually, all edges within
the subgrapPdABCDEF have\(e) = 3. The value\(e) indicates quantitatively, the
most prominent relationships between two linked vertiodsth the definition of local

density, we next prove that usinge) we are able to find alD N-graphs.

Theorem 2.5.2.Locating D N-graph using\(e)

A graphG’ is a DN-graph if and only if
+ all edgese within G’ have equivalenk value,)., and,
o forall u e N(G") andv € G', \M(u,v) € Anag-

Figure 2.10: Proof of Theorem2.5.2

Proof. To prove the correctness of theorem 2.5.2, we use the abgtagh in figure

2.10. The complete proof consists of two steps. Firstlynust exist. Secondly;’” must

48

contain some max-miW N graph. To prove the existence Gf, we constructy’ using
graph vertices/edges and thgivalues. First pick a vertex with A\(v) > A(u) for all
(ue N(v)). Denote\(v) as\,... By the definition of local value,\(v) participates in
a connected grapfi’ with A\(G’) = \,...- Fromo, we find all its immediately connected
neighbors that hava(u) = \,.... From eachu, we find v's immediately connected
neighbors with locah value),,,... This process propagates until no such neighbor exists.
The collection of discovered vertices form a connected sy’ with A value,,,...
Next, we show thaf:’ contains aD N-graph. By first part of the proot;’ contains
all vertices and edges with value \,,,... For a vertexo’ € GG/, it only can formDN-
graph of\ = \,,.. with vertices insid&=’. If denoting the minimal set of vertices from
G’ that form anD N-graph withv” asV,,,;,,, the subgraplv,,;, u v’ is also aD N-graph.
This proves that a grapty’ containing the set of vertices witR(v) = Ajae > A(u)
whereu € N(G’) must participate in & N-graph. The condition that(v) = Auz
and ... > A(u), whereu is the neighbor vertices @', means the grapty’ contains
vertices with local maximah value. Since graply’ is always a super graph of some
D N-graph, If a solution can find”’, the DN graph can be located withi@'.

With above two steps, we prove the correctness of theorer@.2.5 O

Based on Theorem 2.5.2,N-graphs can be located by connecting edges with local
maximal\(e).

ComputingA(e) for all edges is however computationally prohibitive, ascdssed
in section 2.5.2. To facilitate approximation efficientyge first find an upper bound
value for\(e), the A(e), and then iteratively refind(e) to capture the actual(e) as
accurately as possible.

The approximation is based on the fact that for an edgés \(e) value is upper
bounded by the joint neighborhood size of the end vertices ©his joint neighborhood

size is in fact the number of trianglegarticipates in a graph. Thus we are inspired to

49

use triangulation to approximarée) for every graph edge.

2.5.3 Triangulation BasedD N-Graph Mining

A triangle consists of a vertex triple:, v, w) and three edge@:, v), (v,w) and(u,w).
The problem of counting or listing all triangles within a ghais referred a$sraph
Triangulation (Definition 2.5.5).

The joint neighborhood of edg€u, v) upper-bounds the local densitfe), while
the number of triangles(u, v) participates in is equals to the joint neighborhood size.
This indicates that graph triangulation provides an uppmmbl A(e) for every edge
e. Here we use\(u,v) to represent the current upper bound of edgey). What's
more, given a graph triangle, tﬁféu, v) can tighten the other two edges’ density upper
bound. The following proposition gives the relationshipvzeen an edge’s (\(¢)) and

its neighbors’:

Proposition 2.5.1. Neighbor Bounding ok (¢)
Inside a triangle(u, v, w), if A(u, v) < min(A(u,w), (v, w)) we sayw SUpportsi(u, v).

A(u, v) is valid if and only if;

| {w|w supports M(u,v)} | > A(u,v)

The elementary operation behind local triangulation isjtieing of vertex neigh-
borhoods. The performance of a local triangulation algamitheavily depends on the
order of those join operations. In fact, it is a necessarpgnm@essing step to sort vertices
according to their degrees for effective triangulation.

The triangulation algorithm generates triangles systeaiat for each edge of the
graph. The generation of the triangles is a sequence of jparations between the

neighbors of two connected vertices. Based on a speciat ofg@ning operations, the

50

triangles are generated in a streaming fashion. DRAé-graph mining algorithm thus
obtains the local density information gradually along thangle streams. Based on
proposition 2.5.1, we can use the number of triangles an padiipates i(7TC(e)) as
the initial upper bound of tha(e), the \(¢). To give an even more accurate bound for

A(e), the algorithm uses the density valuectsf neighbors’ to validate the current upper

bound\(e). Figure 2.11 shows how this process works graphically.

Figure 2.11: Use Triangle to Refine Local Densky/(

In the first round of graph triangulation, we are aware of ti@ngular count of
e(a,b) (whichis in fact;\(e)), and nothing about its neighbors. However, the triangular
counts of the neighbors (a.k.a local density estimatioaagilable once the first round
of graph triangulation is completed. To compute a more aactetiw(e) for each edge,
we will simply go through more rounds of triangulation andk®aaise of the density

information of the neighbors to further validate a new eation of \(¢) for each edge.
For a triangle(a,b,n1), the algorithm checks whether the trianglesb, n1) can
possibly be a supporting evidence that edge b) are in aDN-graph, withA(e). This
is done by checking whether both the other two edges of tieafagb, n1) (i.e. e(a,nl)

ande(b,n1)) have greater or equal ta(e). If this is the case, this means that is

such a supporting vertex.
The triangle is then represented as a solid line indicatiag 4(a,b) finds a new

supporting vertex n1 i N-graph withA(e). As new triangles approach, the algorithm

counts the number of supporting vertices for edggh) to form DN-graph, with the

51

current value oﬁ(e). After one pass of all triangles, the number of vertices slug@iport
each edge’s density upper boukgt) are available for further computation.

With the supporting neighbors’ information, the algoritigrable to determine the
upper bound of\ for each graph edge (the upper bound is denoted @y. If sufficient
supporting vertices are found fale) for an edge:(a,b), A(e) is a valid upper bound
of e(a,b)’s X value. If there is not enough supporting verticesdor, b), the algorithm
finds the next possibl&(e) value and tests it in the next round of triangulation. The
algorithmic description is given in Algorithm 1. Within tlegorithm,sc(e) records the

number of vertices supporting curré\(te) value.

Algorithm 1: Triangulation based D N-graph mining
Input: GraphG = (V, E)
Output: \(e) for eache € E
1 Triangles = Triangulatiof(z), k(e) = Trianglecoun{e), iteration=0;
2 while converge iteration + MAX_ITR do
3 sc =0, converge ¥RUE ;
4 | forall the Triangles(a,b,c) € G do
5
6

if e is supported¢hen
| scle)++;
7 forall the edggse eGdo
8 if sc(e) < A(e) then i
9 Find next possible valug(e) for e ;
10 converge FALSE ;
11 iteration++;

12 return A(e) ;

2.5.4 \(e) Bounding Choice

We can derive two variants of DN-graph mining algorithmshirdlgorithm 1, namely
algorithms TriDN and BiTriDN. The two algorithms have diféat ways to decide the

next possible\(e) value. The first variant, called TriDN, decreasds) by one (Line

52

9 in Algorithm 1 becomes\(e) = A(e) — 1), if current A\(e¢) cannot obtain sufficient
supporting vertices count. This strategy is useful whentrilaagle counts are close to
the actual\(e) values (qualitatively, whefT’C'(e) + 2 - A(e)| < logA(e)).

When the triangulation results are far above the aciga) value, we can employ
the second variant, called BiTriDN, which adopts a binagrekle strategy for the next
possible value 0D N (e). BiTriDN requires additional information of possibieN (e)’s
range. We use two numbeiisi(¢) and\(e) to record the lower bound and upper bound
of A(e) value, andnk(e) denotes the medium of rang®k(e), \(e)]. For complete-
ness, we rewrite Line 7 onwards in Algorithm 1. BiTriDN hag thdvantage of fast
convergence if the graph to be mined has many high degreee(qualitatively, when

ITC(e) +2 - Me)| > logA(e)).

Algorithm 2: Binary D N-Graph Mining Variance “BiTriDN”
Input: GraphG = (V, E)
Output: A(e) for eache € E
1 mk(e) =k(e) =TC(e) +2, lbk(e) =2;
2 Get support countc,,;,(¢) for all edges’\(e) :// This part is the
sane as in Algorithm1l
3 forall the edgee € G do
4 if sc(e) < mk(e) & Ibk(e) < A(e) then
5 L Ae) =mk(e) -1, converge = FALSE ;

6 else
7 | bk (e) = mk(e) ;
s | mik(e) = Z\(e)+21bk(e) :

©

return A(e) ;

2.5.5 Extension ofD N-Graph Mining to Semi-Streaming Graph

The semi-streaming graph model assumes the vertices ofdph gan be fitted into main
memory, and the interactions among vertices are stored andered manner within the

secondary storage. While this assumption may not hold fatrarily large graphs, we

53

can still handle up to Giga scale vertices (asslifjeertices requir¢l/|log|V| bits stor-
age) with today’s main memory capacities. Following theuratof physical storage
devices, our streaming model assumes random access inrpstogage (i.e. memory)
and only sequential access in secondary storage. In thadagostorage, graph interac-
tions are stored in the form of adjacency list. As a feasiblation towards a streaming
graphG(V, E), it should not exceetbg|V'| scans of5’s adjacency list.

In the semi-streaming graph setting, the exact triangaadigorithm cannot be di-
rectly applied in theD N-graph mining solutions. The information of the neighbaes a
stored in secondary storage and may not be immediatelyadl@ilvhen the algorithm
retrieves it.

In view of above difficulty, our streaming solution first pemins a semi-streaming
triangulation, followed by the complete N-graph mining solution in semi-streaming
setting.

The neighborhoods join operations are in fact the procedstefmining the similar-

ity between two sets. The most well-adapted measuremesetaimilarity is Jaccard

|AnB|

coefficient. For two setsi and 3, Jaccard coefficient is calculated.864, B) = -5 .

In the semi-streaming graph setting, it is however expensivcalculate Jaccard co-
efficient between two neighborhoods since the operatioatgdsing requires expensive
pre-processing of sets such as sorting or heap building.

In view of above difficulty, we use the property of min-wisel@pendent set to ap-
proximate Jaccard coefficient. When dealing with large seits-wise independent prop-
erty approximate set intersection size using sequental ealy.

Supposed and B are defined on the set univerdge and~ is a permutation over
universeX, the min-wise independent property states:z[fX] is a uniformly cho-
sen random permutation ovéf, andW c [X] is any subset over the universe, and

7[W] is the projection ofi¥” by permutationr, then the probability that two subsets’

54

minimal projected images are equal is the same as the Jacoafficient. Formally,
P[min(n[A]) == min(w[B])] = J(A, B). Paper [9] proposes a streaming local trian-
gle counting algorithm based on min-wise independent ptgpe

The first step of algorithm StreamDN estimates local tridagon using edge scans.
The next step is to calculate each edgetslue using only edge scans 1. StreamDN, as

presented in Algorithm 3, adopts the bounding process asitiigh BiTriDN. That is:

Algorithm 3: Streaming D N-Graph Mining Algorithm “StreamDN”
Input: GraphG = (V, E), r : # of scans of graph linkg; : # of bits for hash
values
Output: A(e) for eache € E
1 mk(e) = A(e) = TC(e), lbk(e) =0;
2 Triangulation and store triangle codR€' (v, u) for all e € E as in algorithm 5 in
appendixwhile lconverge & iteration + MAX_ITR do
scp = 0, ubk(e) = X(e) = TC(e), lbk(e) =0 ;
forall the edge(u,v) € G do
scx(u,v) = number ofu’s neighbor withA(u, v) ;
Bound(u,v) usingubk(u,v)/1bk(u,v)/sc,(u,v) ;
/[l the same as Algorithm?2

o o b~ W

return A(e) ;

~

The only difference between the streaming version of therdlgm and BiTriDN
is when counting the supporting vertices. In StreamDN, wearay access the graph

edges sequentially. In view of the restriction, proposit5.1 is relaxed to as follows:

Proposition 2.5.2. Relaxed Neighbor Bounding ok(e)
Given a graph edge(u,v) and the joint neighbor seV,(u,v), we say a vertexv €
N, (u,v) is a supporting vertex of(e) if A(u,w) > A(e). An integerk is a valid upper

bound of\(e) if and only if there are at least of such supporting vertices iN-,(u, v).

Chapter 3

Streaming and GPU-Accelerated

Graph Triangulation

In this chapter, we take advantage of the state-of-thefstrutechnology to accelerate
and scale iterative triangulation. Facing the challendgepplying efficient triangulation
over a massive graph, we propose a parallel triangulatgori#thm across heterogeneous
platform and achieve a notable speedup. We first utilizeesmstmg partition to divide

a massive graph. To facilitate inter-partition communaat, we then design a message
spreading mechanism. Moreover, we employ a streamingipipglstrategy to speedup
data transfer among different memory spaces. Last but ast,leeveral novepu graph

data structures are designed to enhance the graph prage#fgirency on thespu.

3.1 Problem Statement

Triangulation is defined to be the technique of mining denfecomponents in the graph
by computing the number of triangles each graph vertex age @u/olve. However,
exact counting of triangles in large graphs is computatlprexpensive. Since graphs

are growing larger and larger, graph triangulation has tveca huge burden for general

55

56

computer systems. Limited memory space and computing ploaes become the main
bottlenecks of the system. We named this situation as gittmeemory wall” and “power
wall”.

In order to overcome the memory limitation, researcherp@sed several solutions
that extend the algorithm operating space. One method ipgly ahe semi-streaming
model that stores the data in the external memory and saegttex list in the memory.
However, semi-streaming model only converts the probleamffmemory-bound” to
“IO-bound”. The other way is to adopt the divide and conqueategy which partitions
the graph into sub-portions, each of which is then read laviemory for triangulation.
Nevertheless partitioning is a feasible approach, additiefforts should be exerted to
process the inevitable redundant vertices and edges thataily link two sub-portions.
Both of the aforementioned answers to the “memory wall” pgobseem to be less
efficient. In consideration of the multi-coo®u architecture, we combine the streaming
model and the pipelining approach to speedup the data &ansf

In order to climb over the “power wall”, one solution is to pelize the triangulation
algorithm for multi-corecpu systems.siMD programming model can be applied over
the algorithm design. Multi-threading and processor dffitechniques are adopted to
increase the virtual and real parallelism of triangulatiBlowever, multi-corecPu was
still unable to provide enough real parallelism for trialagion over increasing massive
graphs. There are only 4 to 16 cores in a recent personal demgystems. No matter
how many threads we can create for a large graph triangolate actual parallelism
is constrained by the physical parallelism provided bydke. In order to exploit the
potential computing power of general computer systems, aarally turn to hetero-
geneous computing. In this chapter, we take advantage dft#te-of-the-arGPGPU
techniques to accelerate and scale the iterative triatigala

The rest of this chapter is organized as follows: Iteratiangulation is introduced

57

in Section 3.2 and a parallel version of triangulation isgm®ed in Section 3.3. The
message spreading mechanism is designed in Section 3.4disbiager-subgraph com-
munications. We then describe a streaming partition gjyate Section 3.5. Moreover,
Section 3.6 proposes an efficient streaming pipelining @ggr. Dynamic threading
techniques are utilized in Section 3.7. Several novel gdgih structures designed for
GPU are discussed in Section 3.8. Section 3.9 proves the coegsxdf parallel triangu-

lation. Finally, experiments are displayed in Section éfbre a conclusion is made.

3.2 lterative Triangulation

As stated in HEOREM 2.5.1, triangulation can be used to computeiheGraph size.
Initially, the triangle count for each edge is computed by calculating the joint neigh-
borhood size of the two ends of the edge. In addition, acogrth THEOREM 2.5.1,
d(e) is a tight upper-bound for the minimal joint neighborhoorksi(e). Specifically,
the estimation of the minimal joint neighborhood six&;), can be bounded by the cur-
rent X values of the edge’s two neighboring edges, according to the definition of the
supporting vertexfEFINITION 2.5.4). Similarly,X(e) is also used to bound thevalue
of e’s neighbors. When a graph flows through the processorsgg#ésare affected by
their neighbors and also influence their neighbors in reveBuring an iteration, one
edgee is only bounded once. Those neighbors of this edge whoasgues are updated
later can only affect with their new in the next iteration. By iteratively streaming
through the graph\(e) approaches a steady state, in whidlogether with some of its
neighbors forms aN-Graph.

ExAmMPLE 3.1 is a simple working instance to illustrate iterativamgulation.

Example 1. Figure 3.1 displays a grapli: with 7 vertices. By counting the num-

ber of triangles in which each edge participate, thevalues of all edges are initial-

58

(a) Initialization (b) Iterative Bounding

Figure 3.1: Iterative Triangulation

ized to theird values. This is shown in figure 3.1(a). The edgg) is involved in
three triangles{ 2 gpe, 2 abds L ape }, SON(a, b) is initialized to bes(a,b)=3. Sincex(a,b) >
max(A(a,d), X(b,d), Xa,c), X(b,c), Xa,e),X(b,e)), there is no supporting vertex for
the edge(a,b). X(a,b) is then reduced to 2 as displayed in Figure 3.1(b). In the sdco
iteration, theX values of all edges in the subgraph{a,b,c,d} have enough supporting
vertices, falling into a steady state. Henaég, b)=X(a,b)=2 and the subgrapls’ forms

a DN-Graph before the algorithm halts.

In order to compute the value for each edge in a graph, triangulation algorithm
examines all edges and their neighbors once an iteratioathir words, there may be
O(|E]) join operations incurring intensive computation for eaehdtion. In practice, we
notice that when the graph to be processed becomes largdéarged the performance
of the system drops exponentially. Lacking effective cotmgupower has become the
main factor that limit the scalability of traditional trigalation algorithm. Additionally,
programs always crash as input graphs are too large to berhéld memory. A semi-
streaming solution might prevent programs from crashinghsas stated in paper [51],
by saving only the vertices in the memory. Neverthelesslitiéed data transfer rate of
the system I/O becomes the system bottleneck. Processagsastall their operations
while waiting for graph data to be loaded or unloaded frometkternal storage.

In the next section, we will first try to explore additionahsputing power by exploit-

59

ing the potential parallelism out of the graph triangulatidfter that, we will introduce
a combination of streaming and pipelining techniques teestiie memory-bound prob-

lem.

3.3 Parallel Triangulation

Iterative triangulation was introduced in paper [51] as ay‘jas you go” approach to
locate the dense subgraph pattern approximately. As a segjedgorithm designed for
small graphs, iterative triangulation faces scalabilityipem when increasing graph size
exhausts the existing computing power. In this section, kep@se a parallel version of
triangulation to efficiently mine dense subgraph pattereterogeneous computing and
the state-of-the-asPGPUtechniques are employed to parallelize the algorithm.

One step back, to explore the performance of the applicdatareflect the problem
again and analyze the parallelism of the application. Astioead previously, the\
values for a grapld: are computed by triangulation. An initial valdefor each edge
is calculated by counting triangles. Based on this uppenbdpan iterative bounding
process is applied on the estimated valu® approach the\ value for all elements in
the graph. For a massive graph that cannot directly resrdéseimemory, an efficient
partition approach divides the graph into subgraphs. gu&tion should be conducted
concurrently on these subgraphs since a traversal acresgdph may start from any
subgraph. Furthermore, triangulation can also be applredifferent vertices/edges
simultaneously. With a neighboring list, each vertex htkelinherent data dependency
to each other. All operations executed by the vertex aretedié data parallel. We will
delve into the aforementioned two levels for parallelisnewparallelizing triangulation.

As introduced irseECTION 2.2.5,CUDA is a parallel programming model for general

purpose computation omPUS. Being a many-core Co-processorcu, NVIDIA GPUS

60

are optimized hardware for data parallel operations. A lbaftclight-weight threads
can be launched to run concurrently @ru parallel hardware at the same time. People
always send the most compute-intensive part of algoritlinbe tprocessed asPuU. The
number of computing cores and hybrid system architectuceddehe real (hardware)
parallelism. The efficiency and performance of the appbcaare maximized when
algorithm (virtual) parallelism adapts to the hardwareafialism.

To parallelize triangulation, a massive graph is initiadliyided into several sub-
graphs. Then a number of threads take charge of these @astigach of which is then
scheduled to run on one physical processor. A join operdhiahcomputes the com-
mon neighbors for the two ends of an edge is employed forghgaoounting. When a
graph stream flows through processors, the join operatienex@cuted in paralleCpPu
threads as well aspu threads can be assigned for this task. For example, we hade tr
to use onecpu thread to handle one partition and launched a pilerf threads for ver-
tices to join their neighbors. Several combinationgpb threads anaPu threads can
be designed according to the algorithm and system arctrecsimilarly, we parallelize
iterative bounding using simultaneooBu or GPU threads.

ALGORITHM 4 is the parallel version of iterative triangulation. Thgaithm reads
in a stream of the graph and output thevalues for all graph elements. In the first
line, the graph stream is divided into an array of sub-steeaiine 3~ 6 initialize
the X value for each graph element using dtsvalue. Iterative bounding is enclosed
with the “repeat. . . until” loop starting from Line 7 onwards. By adopting “pay as you
go” approach, the iteration continues until all boundingmgions converge in every
partition or the maximum number of iterations has been re@chs is analyzed above,
different threads can drive the iterative bounding corenity. cvg[:] denotes whether
the bounding has ceased in th& partition P[i]. Line 11 swaps in the adjacency and the

X information from the external disk. If any message has beeeived fromv(P[i]),

Algorithm 4: Parallel Triangulation

Input: G = (V, E)

Output: \(G)

1 P(V' E") = GraphPartitionG) ;
int itr_count =0, \=0;
foreach graph partition P[i](V'[i], E'[i]) do

2
3
4
5
6

7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23

24
25
26
27

28
29
30
31
32

33

34
35
36

37
38

39
40

|

repeat
bool converge = TRUE ;
foreach graph partition P[i](V'[i], E'[i]) do
if cvg[i] = FALSE then
Swap inadj(V'[]), X(P[i]) from disk ;
if (i #0) || (itr_count # 0) then
| Swap inmsg[i]; Updatetd;j(V'[i]), X(P[i]), msg[i]) ;

dim3 Db = BLockSIZE, Dg = Y14

foreach Edgee(u,v) € E'[4] do
X(e) = 0(e) = [N (. 0)| = Join(N (). N()
A(u) =max(A(u), A(e)), A(v) = max(A(v), \(e));

Db

[tr Bound<<<Dg,Db>>>(’X(P[i]),msg[i],cvg[i])

int idx = blockldx.x x blockDim.x + threadldx.x ;
int supportcnt =0 ;
__shared._ boolscvG[Db] ;
shared. list< pairint,int> > SMSG[Db] ;
foreachvertexv € N(idz) do
while u € N (index,v) do
if X(v,idz) < X(u,v)&&X(v, idx) < X(u,idz) then
| supportcnt++ ;

oreachvertexv € N (idz) do

while v € N (index,v) do

if X(v,idz) < Mu,v)&&N(v, idz) < X(u,idz) then
| supportcnt++ ;

—h

while u € N (index,v) do
if supportent(v,idxx (v, idz) then
Nv,idz)——;
if ve N(P[i]) then
| GeneratefMsG, v, \(v,idx)) ;
SCVG|[threadldz] = FALSE ;

___synchronized();
cvg[i] = Rd(Rd(scvG,threadldx.®,blockldx.x) ;

| msg[i] = Encapsulate(MsG) ;
| MessageSendfnsg[i]) ; Swap out\(P[i]) to disk ;
converge &= cvglit++] ;

itr_count++

until converge= TRUE && itr _count> MAXITR;

62

the X value of some graph element will be updated in Line 14. Natite the routine

I t r Bound is the kernel function that is deployed to run @Ru. After iterative bound-
ing, messages are sentAqP[i]) and\(P[:]) are swapped out so that the resident data
in the memory can be minimized.

The kernel function t r Bound is invoked with the execution configuration (enclosed
by triple angle brackets<<>>") and some algorithmic parameters. Specifically, the di-
mension of thread blockBb is preset to b&lockSizeand the dimension of thread grids
Dy is calculated as the subgraph vertex size dividedby Thus, theGPu threads are
put into one-to-one correspondence with the vertex sete$tibgraph. With the global
thread index, the vertex is connected by twu thread. It is denoted as a thread ver-
tex. In addition, those algorithmic parameters in paresgbeare declared by cpu but
allocated on gpu memory, which link the data across hybtf@ms. The first fore-
ach’ loop counts the supporting vertices for all edges formedhweythread vertex and
its neighbors. The seconfbteach loop decreases the value for each aforementioned
edge if there is no enough supporting vertices. If a neighbmmnnecting to this thread
vertexidz happens to be a peripheral boundary vertex, which meansv(P[i]), a
message is generated for the edgier, v). A synchronizing barrier is set in Line 32 to
wait for all threads to complete their bounding tasks. Befxiting the device code, the
converging flags for all thread are reduced to the globale/aly[i:]. And the messages
generated by each thread are collected into the messagingslj[:].

Different from traditional sequential algorithms, there aeveral types of memory
spaces utilized in theLGORITHM 4. Firstly, massive graphs:(P[i]) and related data
O\, adj(V'[i]), etc.) are stored in the external disk. However, direct s&te the disk
always results in excessive costs. We employ the disk as a supplementary storage.
Secondly, as a major place for data processing and schgdaiein memory can be ac-

cessed by multi-corepu for partitioning, initial triangle counting and messageesul-

63

ing. Besides host memorgPu global memory is the device memory connecting to
main memory via a high speed BusSimilar to main memoryspPu global memory
acts as media for data processing and scheduling on theedewisg|[i], cvg][i] and in-
termediate data are saved in global memory while the keumadtion is executed. In
addition, texture memory is the auxiliary device memoryt tten be accessed via fast
cache bycPu processorsi(P[i]) is read-only during the execution of the device code.
We combineX(P[:]) with the texture memory to speed up parallel data accesseon th
device. Furthermore, constant memory is another readdamlce memory that we as-
sign our constantsBockSize, etc.) there. Last but not least, shared-memory is the
block-wise fast device memory. Different from other memtyyes, shared-memory is
on-chip and close t@PU processors. Restricted by the limited size, we only employ
two shared arrays in the shared memory for fast data updatesshared arragcve

is used for flagging whether anyvalue of the edges incident to the thread vertex has
been updated. The reduce function can be conducted fromdble-tvise and grid-wise
levels to combine the flagging values and save the result iotabvariable. The shared
arraysmsGrecords the updatetvalues and the corresponding edge information for the
thread vertex.

The parallel triangulation algorithm streams the grapmftbe disk to GPU mem-
ory, which takegD(|E|) time complexity. Preprocessing sorts vertex and adjacksicy
into descending order of degrees, which cast8/|log|V|) time complexity. After that,
it counts triangles within the graphs for each vertex corenity. For a vertex, its neigh-
borhood size is at most constant (sgy The counting over all edges requitd S|E|)

time. Assume setting = \/|E|, taking into consideration of a fixed number of iteration

3
|E|2

k, the time complexity for parallel triangulationd(k v

). Ifinsisting on convergence,

the algorithm may need up t@(k|E|3). As we apply binary search paradigm to test pos-

'PCI-Express bus: 4GB/s for v1.x

64

sible \(e) for everye, we adjust the time complexity (O(k%) = O(k'ﬁf).

As is introduced above, parallel triangulation bases ortitfaring and iterative
bounding. The communication among neighboring partitiang between successive
iterations is important for the effectiveness and efficjentthe algorithm. The next
section is a specific discussion about the message spreadciganism in parallel trian-

gulation.

3.4 Message Spreading Mechanism

Parallel triangulation partitions a massive graph and angsl the iterative bounding
concurrently. As is introduced in the last section, any apen exerted on the graph ele-
ments have influence on the neighbors of these elementsrdingdoTHEOREM 2.5.1,
the \ value of an edge or a vertex is utilized to bound the corredipgnvalues of its
neighboring edges or vertices. For example, in one itatatiee \ of an edge: is em-
ployed to bound all its neighboring edges. An update totkalue of its neighbors will
reversely affech\(e) in the next iteration. If some of these neighbors happen tin lae
different partition, an efficient message spreading meishais needed to exchange the
update information ok values among subgraphs.

The message spreading mechanism in our parallel triangalatgorithm consists
of four intermediate components, namelgNERATE, ENCAPSULATE, MESSAGE SEND
anduPDATE. They are located respectively at Lines 14, 30, 34 and 32 GDRITHM 4.
ALGORITHM 5 lists how these four routines function. T@ener at e function is used
to generate a message whenever Xhealue of the cut-edge has been updated. A
piece of message:sg is declared to be an integer paity{;, A(¢)). TheSMsG array
is a list of integer pairs defined iaPu shared memory for fast recording the update

information. Usingthreadldxto index threads within block-wise shared memory, the

65

messagensg is inserted into thesmsG array. TheEncapsul at e function attaches
the source information and the destination partition torttessage. Then all messages
are transferred bypu threads to thensg[i] array in the global memory. After all
messages are inserted into theg[i] array, a sort function is invoked on the partition
number within thesmsG array. This shuffling function groups those messages wiéh th
same destination partition number. This mechanism redihege cost while accessing
message files from external disk on general computer systéhmsMessage_Send
function then sends the groups of messages to the correspandssage filewsg[pid]

of the destination partitions. Finally, thgpodat e function reads in the message file that
contains the messages received by the current partitiom it©oneighboring partitions.
Then each piece of the message is analyzed befork adlues of the corresponding

edges and vertices within the subgraph are updated.

iXm idXz
SMSG Iil v2| V3| | |V1'|V_z'| v3'|
message (v1,X) (v2', %)
letter liaxi|(ve, X)| [idx(v2, ¥)|
mail | Pafidasf(v4, X) | | Pafiax(v2’,)|
msgli] | P1|idx1|(v1,’7T)| P1|idxz|(V2’,77)| l Py - | P, |
_ source
Mail-box destination

msg[P1] [Pafix(vs, X) [Paficb](v2’,) - msg[P,]

Figure 3.2: Message Spreading Mechanism

To design an efficient communication mechanism, we modekaggEsspreading as
the process of mail delivery. As an illustrating exampleGURE 3.2 displays how

the messages are delivered across partitions. Threadegidic; andidz, both have

66

edges connecting to the vertices in other partitions. Wk@tz,, v;) and \(idz,, v})
are updated, messages;,\> and <v§,>7> are generated withisMsSG shared array by
Gener at e. Then messages are formed as a “letter”, when the souraexvsrsigned
as a signature. Moreover, the “letter” is further encapgsdlas a “mail”, with the des-
tination partition number attached. All of these “mailseahen transferred bgpru
threads into the “mail-boxinsg[i] residing in the global memory. Before sending, all
mails in this “mail-box” are shuffled according to their deation partition numbers.
Since the destination vertices andv;, belong to the same partitiaf, their mails are
grouped in the same “package”. Finally, the “package” coirig the two messages is
then sent back to the destination “mail-boxsg[P,], which has been swapped into the

main memory.

3.5 Large Graph Partitioning

The graph partitioning problemsually divides a large grapk(V, E) into several sub-
graphsP(V', E") with a smaller size. The set of graph vertices and edges arepthr-
titioned into smaller components with specific properti€staph partitioning greatly
increases the parallelism of an application, which makesate and more important
for large scale and distributed applications. An objecfivection is usually defined to
guantify the quality of the partition algorithm. For examph good partition may be
defined as one in which the number of edges connecting sedaramponents is small.
Unfortunately, graph partitioning has been proven to bardmard problem. All well-
known practical partition algorithms give sub-optimal egpppmative solutions. In our
context of parallel triangulation on personal computerassive graphs are always too
large to reside in the memory. We employ efficient large gragotitioning algorithms to

divide and conquer the problem. Instead of using semi-siirgg partition algorithms,

67

Algorithm 5: Message Spreading

1
2
3

© 00 N o O »

10

11
12
13
14
15

16

17
18

19
20
21
22

23

24

25

26

27

Gener at e (SMSG, v, (v, idz))
pair<int,int> msg= pairf, A\(v, idz)) ;
SMSG[threadIdz].insert(msg) ;

Encapsul at e (SMSG)

forall the message mssMsG[threadldx] do
pairint,pairint,int>> letter = pair(idx, ms) ;
pid = IndexEMSG[threadldz].first) ;
pairint,pairint,pairint,int>>> mail = pair(pid, letter) ;
msg[i].insert(mail) ;

| sortgnsg[i], first);

Message_Send (msg[i])
forall the mail mle msg[i] do
if pid + ml. first then
pid =ml. first;
L Swap inmsg[pid] from disk ;
msg|pid].insertnl) ;

pdat e (adj(V'[i]), msg[i])
forall the mail mle msg[i] do

X(ml) = ml.second.second.second ;
u = ml.second.first, v = ml.second.second.first ;
e = (ml.second.first, ml.second.second.first) ;
if X(mi) <X(e) then

[o) =Xemi) ;
if X(mi) <X(u) then

| X(w) =X(mi) ;
if X(mi) <X(v) then

| () =X(mi) ;

c

we take advantage of streaming methods to process a langie. gfaur disk-based graph

partitioning algorithms are proposed and compared forieffay as follows:

Vertex-centric Partition assign all vertices to each subgraph uniformly, according t

their indices.

Edge-centric Partition assign all edges to each subgraph sequentially. When tkie par

tion reaches capacity, edges are inserted into a new patrtiivery partition has

68

roughly the same number of edges.

BFS Partition Start from a root vertex and travel through the grapiBreadthFirst
Search order. Successive vertices are inserted into theapibgtarting from the
root vertex. The BFS walk stops when the subgraph reachesptcity and a new

random root vertex is selected for another subgraph.

Multi-Level Partition Partition the graph recursively. Simplified heuristic altion

and themETIS method are employed.

Given a graph as input, the vertex-centric partition aliponi seeks to find &-way
partition. Each subgraph within the partition Hé%] basic vertices. Edge stream flows
into different partitions according to the edge typesxaMPLE 2 illustrates different
types of edge and vertex. As is defined bgrFINITION 3.5.1, the inner vertices and
edges are directly included in the partition they belongtwe cut edgeand twoperiph-
eral vertices connected by theut edgeare added into both partitions for information
completeness. A proof for the completeness and resultaoess will be provided in

SECTION 3.9.

Definition 3.5.1. EDGE AND VERTEX TYPES

There are three types of edges and two types of vertices.afyran edgez(u,v) €
partition P is aninner edge, iff all neighbors of two end vertices are in the same par-
tition: N(e) € P. The two end vertices are noted iamer vertices. An edgee(u,v) €
partition P is aperipheral edge, iff at least one neighboring vertex is in a different par-
tition: Jw e N(e)st.w + P. The end vertex ofthat connects ta is called aperipheral
vertex. An edgee(u,v) is a cut edge, iff two end vertices are in different partitions:

WLOG. (u € P)&&(v # P). u andv are peripheral vertices.

Example 2. Figure 3.3 provides a simple graph to illustrate differeppés of graph

elements. As is displayed, verticesus,us andv belong to partitionP, while vertex

69

w IS not in P. According toDEFINITION 3.5.1,uy,u, andug areinner vertices. Vertex
v andw are peripheral vertices. Edges(u,us), (u1,us) areinner edges while (v, u;)

and (v, u3) are peripheral edges. Lastly, the edge connectingandw is a cut edge.

Figure 3.3: Three Edge and Vertex Types

Similarly, given a graph as input, the edge-centric partilgorithm seeks to find a
k-way partition. Each subgraph within the partition Iﬁ%ﬂ edges. As edge stream flows
into different partitions, vertices are marked as inner vty appear for the first time
in one subgraph. When any inner vertex is found to appear @cansl subgraph, it will
be promoted to be a cut vertex. Compared with BFS and Mutatlgartition algorithms,
the heuristic vertex-centric and edge-centric partitigoathms try to reduce the graph
size in the fastest way. The methods for partitioning théexgor edge) set intb subsets
greatly affects the quality of the algorithm. Since a randassign has led to excessive

IO cost, we explore the locality of the graph elements by priedexing the vertex set.

3.6 Multi-stream Pipelining

After graph partitioning, we explore the parallelism oftrgulation on personal com-
puters from the perspectives of application, hybrid sysaechalgorithmic structures. In
SECTION 3.3, we have discussed the parallelism of applicationamg. In this section,

we will further exploit the parallelism from multi-co@ru, the algorithmic structure and

multi-GPus.

70

Msg-Send J

Tri-Count i > Update ItrBound

\ 4

A4
A4

Partition

A,

t—————————| Tri-Count l » Update » ItrBound » Msg-Send J

Figure 3.4: Multi-stream Pipelining

Initially, a graph stream flows into main memory as input af #igorithm. After
partition, the graph stream is replaced by several sulasse As is analyzed IBEG
TION 3.3, triangulation can be conducted concurrently on thesghgsub-streams since
a traversal across the graph may start from any subgraplesddta parallelism among
these sub-streams has expressed a demand for paralldiopgrén addition, the preva-
lence of multi-corecpu has promoted the potential physical parallelism in our gueais
computer systems. In order to explore additional real peistin, we may try to start
severalcpu threads at the same time, each of which run on one or sevexah gub-
streams. By carefully tuning suitable processor affiniopme of these threads can be
executed on differertPu cores simultaneously. However, the efficiency and speetiup o
direct multi-streaming are not as high as our expectatidre @roblem is that there are
some resources which are limited and has become the battlen¢he system. For ex-
ample, the.3 cache is shared by all processor cores. In addition, aftantag triangles
for initial X values,cpu threads need to send their data osteu for iterative bound-
ing. Although moderiGPuis capable of executing more than one kernel functions at the
same time, the bottleneck still exists since Bwe-E bus has limited bandwidth. Sending
all data at the same time results in a traffic jam, slowing dtdveralgorithm.

To solve the problem, we design a multi-stream pipeliningima@ism and take ad-
vantage of multispus techniques. Specifically, we first modularize the funcatidrhocks
of ALGORITHM 4 and encapsulate them into a sequence of items that cankied kat-

cording to their logical order. Graph sub-streams are flgwuithin the pipes that con-

71

Algorithm 6: Multi-Stream Pipeline Scheduling

1 Schedul er (P(V',E"), tid)

2 forall the stream stre P(V', E’) do

3 if str.thread !=tid then

4 str.thread = tid ;

5 forall the segment sedo

6 while Serviced[seg] == “OCCUPIED” do
7 | THREAD(tid).wait() ;

8 Serviced[seg] = “OCCUPIED”;

9 THREAD(tid).process{eg,str) ;
10 Serviced[seg] = “UNOCCUPIED";
11 THREAD(tid).notify() ;

nect the functional segments. Then we design a scheduldrdqgipelines executed by
different threads so as to minimize the idle time and maxentine resources utilization.
Furthermore, multspus as well aseCI-E buses are supported by the multi-streaming
pipelining mechanism. IBURE 3.4 illustrates the multi-streaming pipelining mecha-
nism. After partition, severatpu threads are launched for stream pipelines, each of
which runs on one subgraphs. Functional blockaiagoRITHM 4, Tri-Count, Update,
ItrBound and Msg-Send, are encapsulated by segments.olniGs defined as the head
of the pipeline while Msg-Send is noted as the tail if the @ge requirement is reached.
ALGORITHM 6 illustrates how the scheduler works. A group of global sgnoaes,
noted as “Serviced”, are utilized to flag whether or not theent segment is busy servic-
ing other threads. If the current segment is free, the searagdbr this segment will be
locked in Line 8. The thread will then be granted to processsggment on the stream.
In order to facilitate concurrent execution between host device, we utilize the
asynchronouspPuUrelated function calls. Specifically, data transfer anthi&kexecu-
tion should overlap to support multi-stream pipelining tm@awsm. In addition, since the
kernel execution takes more time than data transfer, rkattiels need to be executed

concurrently as well. AccordinglgLGORITHM 6 should be modified to support the con-

72

currency of non-conflict segments. Actually, the maximurmber of kernel launches
that a device can execute in parallel is up to 32. In the comtegUDA environment,
we employ routines as displayed FORMULA 3.1 to combine multi-host-streams with
multi-device-streams. Furthermore, whenever there are than onespPus in the sys-
tem, multi-streams can be combined to multi-deviceswvitaSet Device().

cudaStreamCreate(&stream[i]) 3.1)

cudaMemepyAsync(iDevPtr, host Ptr, ..., stream|[i])

Lastly, as graphs grow larger, grid dimensiog%) increases and kernel functions
take longer execution time. We can chop the vertex set intmk$ and utilize multi-
stream to explore the parallelism among these chunksRMtLA 3.2 computes the
global indices for threads in this situation.

threadlI D = blockIdx.x * blockDim.x + threadldz.x (3.2)

index = chunklIdx * chunkSize + threadl D

3.7 Dynamic Threading

To explore the performance of triangulation on personal maters, we have tried to
exploit many-thread parallelism from hardware and algonit perspectives. However,
all of these attempts are based on the pre-defined threadyomatfons. We try to uti-
lize dynamic threading techniques in order to optimize tarajpelism from the parallel
structure. Dynamic threading enables a running threaddaterand synchronize new
nested work. Specifically, dynamic threading can easilyvspaew threads for nested
“for-each” loop. For example, we try to spawn more threadstle “for-each” loop
within sub-graphs when initialize the values. As is shown in the Line 4 ef.Go-
RITHM 4, several threads can be spawn to represent a chunk of ddgesptimal num-

ber of threads depends on the physical processor cores amdulti-stream pipelining

73

mechanism. Similarly, we can also spawn meraJ threads for the loops that compute
supporting vertices (Lines 224 of ALGORITHM 4) and that bound (Lines 25-31). As
is illustrated inFIGURE 3.5,GPU spawns more “child” threads to represent the neighbors
of “parent” threads.

By employing dynamic threading, parallel triangulatiogaithm can be more trans-
parent expressed. Program flow control can be done frommiitta device, which al-
lows for a hierarchical design of the algorithm.

Compute Bound
Supporting Estimated

Msg_Send

Figure 3.5: GPU Dynamic Threading

3.8 GPU Graph Data Structures

In graph theory, adjacency list and adjacency matrix ara skatictures for representing
graphs. In an adjacency list, each vertex has a list of akrotlertices which it con-
nects to. Compared with adjacency matrix, an adjacencgflistsparse graph occupies
less space. In most graph data mining algorithms, adjackstag more efficient for
neighborhood access. To facilitate efficient operations®n, we compare several data
structures for parallel triangulation @Pu. We first adopted the two-array representa-
tion of the adjacency list as a baseline graph data struotutbecpru. Then we imple-
mented the column-major adjacency array to enhance mensogss efficiency. After

that, we propose matrix column-major adjacency array ariniged memory access

74

again. Moreover, we put forward another new data structaneed adjacency bitmap to

utilize the universal virtual address space.

0 1 2 3 4 5
0] 2 IDX|2|3|7|13|18|21|
1 1—- \4\‘

0 2\ 3 6 18
[T WO o

— 0 |
A4
4 5—|0|2|3|5|6| CAA|3|2|1|O|0|2|4|3|2|2|..._
5|3 OFFSET|6|—‘I|5|5|5|5|_1|4|4|4|.z

(a) Adjacency List (b) C(R)-major Adjacency Arrays

Figure 3.6: Row-major and Column-major Adjacency Arrays

Row and Column major Adjacency Arrays

Adjacency list is a compact representation for graphs coetpaith adjacency matrix.
However, thescPU representation of adjacency list is still not so efficiemiceiGPu has
limited linear memory space. Therefore, we pack graph adj@c lists row by row
into a linear array, with am(E) space complexity. We named it as graph row-major
adjacency array. An auxiliary array with a{v) space complexity is used to record
the ending position of each vertex’s adjacency list in thm@ehcy array. As shown
in FIGURE 3.6(b), theibx andAA arrays are row-major adjacency array representation
for the adjacency list iFIGURE 3.6(a). Using the index array, a vertéxan fetch its
neighborhood starting from the positiamx [i-1] to IDX[4]-1 in the adjacency arrayA.
Considering thecubA execution model, threads in a block are further divided into
32-thread arp’ units, which is the unit of thread scheduling in streamingltipro-
cessors. ThePu hardware executes an instruction for all threads in the saanp at
any given point in time. Accessing a large number of conseemRAM locations gets

close to the peak global memory bandwidth. When we arrangetd@&nable all threads

75

Coalesces: 1 transaction

HEEEEEEEEEEEREREE

Out of sequence: 16 transactions

HEEEEEEEEEEEEREE

Figure 3.7: Memory Coalesces

in a warp can request consecutive memory addressesgPbdardware combines, or
coalesces, all of these requests into a consolidated addessoalesce memory access
incurs redundanio cost. For example, iRIGURE 3.6(b), threads 0O, 1, 2 and 3 reading
position 0, 2, 3 and 7 respectively from arvay bring four separate accesses to the mem-
ory instead of one. IBURE 3.7 displays the benefits of memory coalesces: decreasing
memory access latency.

In order to maximize memory coalesces, we attach the nerghdfdhe vertices in
column-wise order. An offset array to record the next neayhgmsition helps to connect
the neighborhood of a vertex effectively. TheA andoFFsETarrays inFIGURE 3.6(b)
are called column-major adjacency array. As is shown in thed, accessing column-
major adjacency array takes advantage of memory coaletsshgiques and reduce the
|0 costs. In the same example, threads 0, 1, 2 and 3 can now reaeatdive memory

addresses 0, 1, 3 and 3 in arrayA.

Matrix Column-major Adjacency Array

Accessing column-major adjacency array led to high datautfinput and lowo costs.
However, the imbalance of the neighborhoods still comptisahe situation of memory
access. In the worst case, excessive control flow divergeramxess neighbors from un-
related locations may lead to a huge performance penaladdition, reading additional

auxiliary array from GPU global memory still wastes datatighput and memoryo-

76

el _L_L_L_ |
2 A) EXEA N R A
1 3|4|5|—[—| AEIEIEEIEREY
—T - Transpose B L e W I |
02|4|5|6|7 alafs|s|5|1]-
of2s[s]e] | Al a]e |6]|
2fsJ«f [[S I I A e il
J [[:[:[:| AdjacencyList > MCAA

012345867

ofo 171 -
AN E S OB Al [l]
) 1 EIEE o S B K I I D S
3 01111-~-'£ iL
-
4 0 (1]
.
2 00 - ofo|1[1|{o|1]|1|of1[1]|0]|Oof1|1]|0O
7 5T~ ofojof1[1]{o]|ofofOf[1{1]|0O[O]]
|
Pl Adjacency Bitmap

Figure 3.9: Adjacency Bitmap

time. In order to explore multi-thread parallelism, we pvee an optimized graph data
structure named matrix column-major adjacency array. Asvshin FIGURE 3.8, we first
expand the adjacency list to a matrix format with placehdder asymmetric neighbor-
hood. We then transpose the matrix and attach all the rowsstheail into a linear array.
Similar to column-major adjacency arrayCAA re-organizes graph adjacency listin a
column major style. AlthougkAA has a more compact data structwmeAA simplifies

the control flow of the algorithm. We define one column as aeslibe size of which

14!
BLOCKSIZE

equals tq | x BLOCKSIZE.

Graph Adjacency Bitmap

As is discussed above, graph data structures based on acjdcs explore the per-

formance from memory coalescing, compact space and singpigat flow. This is

77

true for sparse graphs in general. However, for dense grapkg do not display
enough advantage. Hinted by matrix column-major adjacemcgy, we propose an
adjacency-matrix-based graph data structure named adjadetmap. Instead of oc-
cupying4x(—e—+—v—) bytes, adjacency matrix needs oﬁ“& bytes of linear space.
For an undirected graph, only half space of the matrix is eded save graph informa-
tion. As shown irFIGURE 3.9, we try to attach the columns of the upper triangle (above
the red zig zag line) into a linear array. SimilarM@AA, the length of each column is
fixed, nevertheless the column length for vertex varieesR¥MULA 3.3 helps to locate

the neighboring relationship fast:

(v-1)v 1)1} i (u-1)u
2

position = (u<v) ? +v (3.3)

Example 3. In order to decide whether, is connected te,, we caculatessmp[2522 +

1] = TRUE. We then say that; does connect to,.

3.9 Result Correctness

For the correctness of parallel triangulation, we may pilibuetwo steps. For the first
step, we proved the correctness)obounded in parallel theoretically. For the second

step, we compared(G) computed with that of sequential triangulation.

Theorem 3.9.1.Result Correctness
Triangulation on subgraphs generates partial boundingdach edge. Combining

the partial results can return a correct estimation)o¥alue for each edge.

Proof. Partitioning algorithm reads a stream of edges and assapisetige (u,v) to a
subgraph according to the index of the two end vertices. Aedgee is marked when its

two ends belong to two different subgraphs. For all inteedlgles, triangulation within a

78

subgraph generates the same result with that of the orignagh. For those cut-edges,
we need to consider all triangles that they belong to in batigsaphs. Let(u,v) be
one peripheral edge within subgraphand vertexv belongs to a different subgragh.
The two cut-edgesu, w) and(v,w) will be streamed in individually. When a cut-edge,
say(u,w) WLOG., is readw will be added intcs; andw is included intos,. Moreover,
(u,w) will also be added int®; ands,. Triangulation will be conducted tbu, w) in
both subgraphs.

For peripheral edges, they can be part of triangles in tweasgdns. One type of
triangle contains cut-edge while the other does not. Adngles that do not contain any
cut edge will be counted within each subgraph. Since alkclgies are added into both
subgraphs and the peripheral edge, v) will only be in one subgrapls,, the triangle
containing cut-edge will appear in only one subgraph. Theans no triangle will be
missed. Even though the triangulation in subgrapimay result in a partial value for

cut-edges, the merging it with that frosn will maintain a correct result. O

Example 4. Figure 3.10 displays an example for our result correctneswipg. The
grapha is partitioned into two subgrapts {1,2, 3,4} ands,{5,6, 7} in Figure 3.10(a).
Then we apply triangulation on individual subgraphands, as shown in Figure 3.10(b)
and 3.10(c). Ins;, vertices 5 and 6 are included as well as three cut-edges,(2,5)
and (3,6). They are displayed as dotted circles and lineg@angle A(1,2,5) does not
contain two cut edges. We can see all the edges have cotreatues in subgraph

S, after triangulation. Ins,, vertices 1, 2 and 3 as well as cut-edges (1,5),(2,5) and
(3,6) are included in partitioning. After triangulationhé \ values for edges (1,5) and
(2,5) are partial. By mergingA(1,5) = max(X\s, (1,5),As,(1,5)) = 1 and \(2,5) =

max (s, (2,5),As,(2,5)) = 1.

79

(a) GraphG Partitioning

(b) S1 Triangulation (c) S, Triangulation

Figure 3.10: Result Correctness
3.10 Experiments

In this section, we study the parallelization of iteratikiarigulation algorithm running
on heterogeneous personal computer systems. As an atedlagplication, parallel
triangulation is designed for solving the two main bottiekeepreviously noticed in per-
sonal computer systems. For the first step, we look into thomeance of parallel
triangulation. We compare the speedup and efficiency whaallpktriangulation is ex-
ecuted in different modes. We compare several disk-baseiigraing algorithms and
discuss multi-stream pipelining techniques. Additiopalle study several new graph
data structures oapu. Finally, we try to discuss the influence @Pu execution config-
urations.

We have conducted our experiments on thesa accelerated personal computer

systems. They are@ELL PC equipped with amVIDIA G eForce9400GT graphics card,

80

an ACPI x64-basedrc accompanied with anVvIDIA G eForceGT 520 graphics card and
anotheracpi x64-basedPc equipped with amVIDIA G eForceGT 330graphics card. The
price of the simpleseForce9400GT andGeForce GT 520 graphics card are less thaa
us dollars respectively while the price gerorceGT 330graphics card is arouridOus

dollars. We present all major technical specifications efttiree platforms in Table 3.1.

Main GPU Compute | GPU

Platiorm CPU Memory GPU Memory |Capability| Price
DELL Opti-755 2 cores | 3.3cB 1x16 cores 512wmB 11 <$50
Geforce 9400 GT | 2.33GHz | DDR2 550 MHz 400 MHz :
ACPI x64-based 4 cores | 8cs 1x48 cores 993 wmB 21 <$50
Geforce GT 520 3.40GHz | DDR2 1.62 GHz 535 MHz :
ACPI x64-based 4 cores | 8cB 12x8 lcs
Geforce GT 330 3.40GHz | DDR2 1.34 GHCzOres 790 MHz 1.2 < $100

Table 3.1: Experimental Platforms

We employ three main datasets in our experiments. Flickasddis derived from the
well-known photo sharing network Flickr with 715,255vertices and2,613,982dges.
Each vertex represents a person and the edge denotes twe peape photos with each
other. Protein Protein InteractiorKl) dataset contains7203interactions among930
proteins. Netflix is an American provider of on-demand in&trstreaming media. There
are480,000customers and7,000movies in the dataset.

Table 3.2 lists the experimental parameters and their sporeding experimental op-
tions (default values are marked in bold). We partition thepd containingV’| vertices
and|E| edges intgparNumsubgraphs usingarMtd method. The size of the buffer in
the memory is set to bbufSz As a “pay as you go” strategy, we can also choose to
exit the outer loop aftemaxitrOiterations and inner loop aftenaxltrl iterations in our
parallel triangulation algorithm. Moreover, as a systemswlution, we can choose to
run the iterative triangulation operatornmneModemining mode. Given “hybrid” mode

is selected, there are four options gpaphDSgraph data structure.

Parameter Experimental Option
|[V]: Number of vertices [1715255]
|E|: Number of edges [22613982]

parNum Number of partitions

[50, 100, 200, 250, 300, 35800

parMtd: Partition Method

[vertex-centric, edge-centric, BFS, multileve]

bufSz Buffer Size

[4KB, 8KB, 16KB, 32KB, 64KB]

maxItrO. Max Outer Iterationst.

[3,4,5, 6, 10]

maxltrl: Max Inner lterations#.

[5, 10, 15, 20, 25]

mineMode Mining Mode

[Host, Device Hybrid(SHSD)]

graphDS Graph Data Structure

[AA, CAA, MCAA , ABMP]

Table 3.2: Parameter Table

3.10.1 Performance Evaluation

algorithm across gpu-accelerated hybrid architecture.

‘ Platform H Mode H Partition ‘ Tri-Count ‘ ItrBound H Total ‘
ﬁﬂégﬁm ; 4.88hrs | 69.3hrs || 74.18 hrs
'363'('323(:;;51\7 Host || 4.67 hrs | 985.07 seq 207.99 hrs|| 213.04 hrg
/gggsAc&res Host || 3.91 hrs | 872.65 sed 145.59 hrs|| 149.85 hrg
2i'gig&rle§(:0res Hybrid || 4.62 hrs | 998.37 sed 26.46 hrs || 31.46 hrs
élczglzgiggres Hybrid|| 3.9hrs | 894.16 sed 23.1hrs || 27.35 hrs
éﬁgggg‘ggﬁres Hybrid || 3.92 hrs | 894.16 sed 17.3hrs || 21.46 hrs

Table 3.3: Response Time for Each Component

performance of the parallel algorithm accelerated by bffieGPus.

81

In this section, we study the performance of our parallahigulation algorithm. As an

economic solution for speeding up the triangulation ondagtaphs, we implement our

As stated in section 3.6, parallel triangulation algoritbam be expressed as a series
of functional blocks. ABLE 3.3 lists the running time for major functional compo-
nents iNALGORITHM 4. As a baseline algorithm, sequential iterative triangoiais
memory-bound. For massive graphs, sequential iterati@adgulation applies only on
work stations with large memory. We compare the performaviven the algorithm is

running on theDELL desktop and thecpri system. In addition, we also compare the

82

As shown inTABLE 3.3, sequential iterative triangulation and parallelrigalation
running in “host” mode take much more time than parallelngalation accelerated
by Gpu. With more processing coresgerorece330 GT gpu provides more comput-
ing power foracpi system. Although the local speedgpdefined inDEFINITION 2.1.5
is difficult to measure, however, it is possible to estim&e/alue using an approximate
formula. Letn be the processor number ande) be the average neighborhood size.
S = min(N,N(e)) = min(N, 2|V“E‘) = min(N,26.3). Therefore, thes, for DELL desktop
is 16, and26.3for the other 2 personal computers. Similarly, the globaksjups, can

be calculated for a specific platforrs, = TH{X(E = 2204 = 6.7 for the DELL system

ands, = £ - .98 for the AcPI system equipped witkseForce GT 330 GPU. The

local efficiencyg;, = & = mn(M263) - Therefore, the local efficiency faveLL desktop
is 1, since it takes full use of all its processors. And the lodatiency for theAcPI
system equipped witbeForceGT 520 GPU IS E; = M = 22—3 = 54.8%. The local
efficiency foracpi system equipped witBeForceGT 330GPUIS E; = &2 = 27.4%. The
general efficiency, = Sq differs for different platformsg, = = 42.3% for the DELL

desktop and, = &3 = 7.27% for the AcPI system equipped witbeForceGT 330 GPU.

The general efficiency, = 7225 = 11.4% for theAcPI system equipped witBerorce
GT 520GPU.

Figure 3.11 compares the speedups and efficiencies amdatedif platforms. We
can observe that general speedyps usually smaller than local speedsp because
there are some portions of the algorithm that cannot be Ipzald. The twoAcCPI
systems have lower local efficiencies because they canitiaell of the parallelism
provided by the hardware. Even with more processors, theesybas shown a lower
efficiency. The system cannot make full use of all the add@l@omputing power.

We also study the influence of two iteration parameteitrO andmaxltrl. When

only one parameter is raised, the running time of the algaritises as well. As shown

83

100
25 7
Local Speedup 80~ B Local Efficienc 7
= y
2k General Speedup 4 B General Efficiency
g S 1
L 1 s
g " g
-4 5
& o
ok | & 4o 7
sk i 201 b
Z)
Zl Z
0 0
Dell-GF9,400 ACPI-GF520 ACPI-GF330 Dell-GF9,400 ACPI-GF520 ACPI-GF330
(a) Speedup (b) Efficiency

Figure 3.11: System Performance

6000 o S S
] EI Combination Point -3
HO0A AAALLAAALLAABEELLL o) =] ’
12000 | 5| < &l
&10000 , %0 &
@ > .
2 8000 =
F 6000 GE) 40
=
4000] Cl
. Outer lteration -[1- 30+ EIEI 1
2000l Inner lteration A T = =
4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 0
Number of Iterations Outer lteration
(@) (b)

Figure 3.12: Iteration Parameters Study

in FIGURE 3.12(a), the maximal outer iteration numbeaxItrO, has higher influence
over the system than the maximal inner anaxItrl. WhenmaxItrOadds to more than
16 iterations, the increasing of the running time becomased, since some subgraphs
have converged. An additional inner iteration runs fasteh wowerful computability
provided byGrPu. FIGURE 3.12(b) depicts a combination point study which means the
study of a pair of parameters that converges the iteratiien there aré5 ~ 21 outer

iterations, small inner iteration number is observed.

84

3.10.2 Partitioning Algorithms

As a streaming solution for processing large graphs, weysiudpartitioning algorithms
in various system environment. As discussed in Sectionv&®mploy five partitioning
streaming partitioning algorithms. They are vertex panting, edge partitioning, BFS
partitioning, multi-level simple partitioning and metiantitioning. Figure 3.13 presents
the performance comparison of the five algorithms in two &wvd systems as well as

system with higher computability.

18000

Dell M ‘ ‘ A 1sto72f
ACPI o~ e 65536 - 3
15000 [Tesla ~[-]- AN 1
e 32768 f
§1 2000 | T g § 16384 | B
P oy o 8192¢ ﬁﬁg |
E 9000 £ I A
= = 40% B Vertex [
2048 | Edge A |
6000/X T 102 BFS - |
ML-Vertex -5—
3000E“ S ‘ ‘ ‘ ‘ ‘ st Metis = |
50 100 150 200 250 300 350 400 4 8 16 32 64 128 256 512
Partition Number Partition Number

(a) Computability (b) Partition Strateges

Figure 3.13: Partitioning Performance

To study the effect of computability on partitioning perftance, we test our parti-
tioning algorithms as partition number increases. In fighifie8(a), the running time of
our partitioning algorithm increases steadily, with anr@asing partition number. For
example, the running time increases from about 1.5 hourdtoaurs in the server. Since
our partitioning algorithms handle graph streams from #iereal storage to main mem-
ory, we only need to consider tle®u computability and main memory size when com-
paring different computer platforms. As is noted from tekle, ACPI system has double
CcPuU cores and main memory size thegLL one. Therefore, we can see a proportional
decrease in the running time of the partitioning algorittumning on different platforms.

In figure 3.13(b), we compare the performance of our five paning algorithms when

85

partition number increases from 2 to 512. The x-axe and yaageboth in log-scale,
and five lines are almost linear. We can easily observe tedtb recursive(multi-level)
algorithms run longer than the other three. This is becausegcursive partitioning al-
gorithms scan the whole graph for each level, which incretts®o time. Running with
the simplest heuristic logic and scanning the graph for onky pass, vertex partitioning

is the fastest among all five partitioning algorithms.

L A L SN i e = =1
1400 |/ | 1 1.3e+008 s =
1200] 1.26+008 A A
1.1 N — LT
,61000 L 4 .1e+008 A
2 g0l | o tero08; i
© = =
E 600 9e+007|:j
8e+007 | §
400
76+007 | §]
il R it 5
5 10 15 20 25 30 35 40 45 50 55 60 A 20 700 150 200 250 300 350 400
Partition Order Partition Number
Figure 3.14: Partition Order Figure 3.15: Partitioning I/O

Comparing toBFs partitioning, recursive(multi-level) partitioning trals the graph
in DFS style. Figure 3.14 records the partitioning time for sulpysaand the doted-line
forms a power-law like shape. This reflects the flickr data mower-law graph and
vertices are ordered according to their neighborhood size.

FIGURE 3.15 depicts theo cost of vertex partitioning. Since we use buffer to cache
the vertices and edges before they are written to a specifigraph file, the output
operations are less than the input ones. For a better oltiservhe starting point of the

x-axe is two in the figure.

3.10.3 Graph Data Facilities

In this section, we study the graph data facilities nametyahit-edge message files and

the graph data structures amu. On one hand, since the cut-edge message files spread

86

the messages among subgraphs, our algorithm uses them mwooate. Therefore,
the usage of the buffer affects the performance of the algorithm. In our experiment,

we vary the buffer size and observe the changes oifdhe our program.

40000 AA [‘ ‘ R
CAA A e
MCAA N7 A 0 Do N [H
ABMP —-&— EB _ AN N A
S)
§3ooodzi ------- 1 3
o & v < Dell ~[Z]~ ACPI ~A- Tesla 7
=S — V P
= s IS
S R ———— v =
20000:7---------~~-v---»-----v 7) | V7, 7 7 v v
oo —o—9
200 250 300 350 200 %32 64 128 256 512
Partition Number Block Size
Figure 3.16: GPU Graph DS Figure 3.17: Varying Block Size

On the other hand, we test the running performance aboutrfphglata structures
on GPU. In this chapter, several novel graph data strucareproposed on GPU. Fig-
ure 3.16 compares the running time when different graph si@tectures are used in
our two-level iterative triangulation algorithm. We carsebve that the running time of
the algorithms increases when the flickr graph is divided mbre subgraphs. Obvi-
ously, MCAA (matrix column major adjacency array) and ABM&Ijacency bitmap)
have better performance than AA (adjacency array) and aolmajor adjacency array.
Since CAA is used for accelerating batch data transfergfasgbgraphs from a smaller
partitioning number benefits more from the data structuréhé figure, when partition-
ing number is smaller than 280, program using CAA runs fakem AA. Because CAA
counts on vertex locality, a larger graph portion makes aramihge and saves addi-
tional time to load the auxiliary array from the global memdfigure 3.18 displays the
speedups of the three novel graph data structures when cogpéth the adjacency
array. As we can observe, ABMP has a stable speedup while GAIAMCAA have

decreasing ones. This reflects the fact that the graph sedelainfluence over the

87

adjacency bitmap data structure.

T T T T T
2+ == —
CAA
= Mcaa
B ABMP
2 = = B
7
°
@ E
(] 1F § -
(n E
0 | - —
0
200 250 300 350 400

Partition Number

Figure 3.18: GPU Graph DS Speedups

3.10.4 GPU Execution Configurations

GPU execution configuration is an important factor for anyD@based program. As
components to GPU execution, block si2&, grid sizeDg and shared-memory siZes

are also parameters to our program. Sibgecan be decided by the data size dnlid we
only need to consider two additional parametdp$:and Ds. Varying such parameters
can affect system performance. For example, figure 3.17 amspthe performance
of our algorithm on different platforms with various blockkes Db. We can observe
that Dell and Tesla get an optimal performance wiilleis set to be 256. And ACPI
system reaches its optimal value wheh equals to 512. The difference exists because
different GPUs have different compute capabilities. ACR4 la graphics card that has

more registers and can accommodate more threads and warps.

88

3.11 Summary

In this chapter, we parallelize triangulation on heteragers computing systems. Lack-
ing computing power and limited memory space are two maitidragcks for large graph
triangulation. We presented a streaming partitioningegiato divide the graph so that
each subgraph can be read into memory. A parallel algorithsthen proposed for tri-
angulation orcPuU-accelerated heterogeneous platform. Moreover, an eftioiessage
spreading mechanism was then designed to facilitate pagition communications. To
further exploit nested parallelism of the algorithms, wegmse dynamic threading and
streaming pipelining approach. In addition, several nawel graph data structures were
designed to enhanaePu processing efficiency. Extensive experiments showed tinat o

solution had achieved a notable speedup.

Chapter 4

SIGPS: Synchronous Iterative
GPU-accelerated Graph Processing

System

In this chapter, we propose SIGPS (Synchronous Iterativeagpelerated Graph Pro-
cessing System), a generic graph processing system buitiaory-core GPU platform.
This is a general solution provided for graph processing &J@ccelerated PCs. A
Pregel-like BSP-based computation model is designed inbamation with the state-
of-the-art GPU high performance computing techniques. |I&tmg shared memory is
used to assist fast communication among concurrent GPdbreUser-friendly high
level C++ APIs are provided. Programmers can implement #igorithms using the
generic interface and code in a simple sequential stylaly,asitomatic GPU execution

configuration and dynamic thread allocation are supporyesiGPS.

89

90

4.1 Problem Statement and Design Purpose

In data-centric settings, graphs can be highly unstrudtutégorithms on these graphs
are particularly difficult to parallelize on distributed mery machines. Actually, these
algorithms tend to exhibit a high degree of fine-grained lpeism. They can be mapped
more pertinently to massively multi-threading and sharedvory paradigm. The execu-
tion model bases on the availability of a large number ofatiseto keep the processors
busy. So as to implement high performance parallel grapbrifitgns, coarse-grained
to fine-grained parallelism need to be addressed. Memortentan is another critical
issue to be considered. Simultaneously accessing the samenmy address may incur
correction problem, while coalescing memory access caareghthread concurrency.
Load balancing improves performance by reassigning tasksg threads.

In consideration of the flexibility, extensibility, portdiby and maintainability prop-
erties, a generic graph processing system on multi-thceadared-memory paradigm
is more useful for users when comparing to existing toolfisascMapReduce, Parallel
Boost Graph Library [16] and Multi-Threaded Graph LibraBi]. Similar to MapRe-
duce, the generic graph processing system should provgjeteaise application pro-
gramming interfaces. By simply re-writing the abstracisslar implementing the in-
terface, researchers can easily program their algoritt®osh kind of system enables
users to focus on the core functionality of the specific pohlinstead of devoting to
handling complicated low-level system programming issudse programming model
for such system has a shallow learning curve.

Specifically, there are three main design aims for SIGPS:
1. To implement a Pregel-like graph processing system.
2. To utilize GPGPU techniques for graph processing on shammory platform.

3. To provide a as simple as possible generic API for usemmpdeiment their algo-

91

rithms.

The rest of this chapter is organized as follows. In Secti@nthe Pregel-like BSP-
based computation model and the system state machine ptaydid. Besides, the sys-
tem architecture overview is also provided in this sectiSection 4.3 gives an overall
description of the system and introduces its main compe@enénixiliary components of
the system are then discussed in Section 4.4. Section 4sBrgseautomatic execution
configuration and dynamic thread allocation. We will stuldsete cases in Section 4.6.
The generic vertex APIs usage demonstration are provid&kation 4.7. Extensive
experiments in Section 4.8 demonstrate that SIGPS is amyigeneric and efficient.

We finally conclude in Section 4.9.

4.2 Computation Model and System Overview

Similar to google’s Pregel, SIGPS bases itself on a vertaiiceapproach and the Bulk
Synchronous Parallel (BSP) computing model. The procgssira graph consists of
a series of iterations (supersteps). Each vertex is repiesddy one light-weight GPU
thread. Users utilize the generic API provided by the systeich implement their al-
gorithms into a “compute” member function of the vertex. Bystem then launches a
batch of concurrent threads over a large graph data set otehdbared-memory ma-

chine.

SuperSteps

Figure 4.1: SIGPS Computation Model

92

Figure 4.1 illustrates an overview of the SIGPS computinglehoGraph behaves as
a data flow running between input and output. The computaimhcommunication of
the graph elements are divided into subsequent stagese Flegges are also regarded
asSuperStepsDuring each superstep, graph data is sent to be processedrbycore
GPU. Between subsequent supersteps, a physical barretrtis ®rce synchronization
among threads.

GPU Threads
Reading Data | Read Messages

Local
Computation

Writing Data

Global Barrier —
‘ Synchronization ‘

Synchronization
Data Movement Data Shuffling

Figure 4.2: GBSP Model

The GPU Bulk Synchronous Parallel (GBSP) model displaydedare 4.2 consists

of three main components:
computation: User-defined “compute” function is executed by each vergpagtely.

communication: Vertex reads messages from its neighbors, encapsulategutsinto

messages and sends back to neighbors.
synchronization: All vertices wait for each other at the end of one iteration.

We utilize the state-of-the-art many-core GPGPU techraqaemplement this pro-
cessing model. The compute-function is written as a GPUedtdéamction that is invoked

by CPU and executed on GPU. Computation is done locally byéhlad GPU threads

93

on top of the CUDA programming model. Message transmissmihdata shuffling are
conducted within the GPU memory, PCI-Express system busésrain memory. In
the beginning of one superstep stage, each vertex read gessseived to update its
local vertex value. A local barrier is set to make sure thiatadlates are applied. After
local computation, each vertex sends its new-computecevalall its neighbors, where
another global barrier is needed. Synchronization is bieken GPU kernel functions
are invoked and terminated under the orders sent from CPWtd.G

The general system architecture of SIGPS applies a mastdenpattern. A master
module corresponds to the main thread of the system. Theemdisides the graph
into several sub-graphs and dispatches them to severakwitmleads. The workers are
initialized by the CPU threads. Then these workers makeragpg and wait for signals
from the master. A batch of GPU threads representing vertigehin the subgraph are
then launched by each worker. As a system design for scdiabdeogeneous computing
platform, SIGPS also supports multi-GPUs and distributeduting. A module named
worker manager is employed between the master and the vgoikach worker manager
corresponds to one GPU and is registered with the mastaar édtrieving tasks and data
from the master, the worker manager initializes the suksfasib-graphs. The worker
manager module acts as an interface layer between CPU and GPU

Figure 4.3 shows a hierarchical overview of the SIGPS maklaetaster takes charge
of several worker managers, each of which corresponds t@&éhé The worker man-
ager initializes a group of workers by assigning each of tlaeset of graph partitions.
On receiving signals from the worker manager, the workensiively loads assigned
graph partitions onto GPU memory and launches kernel fonston graphics parallel
processing units.

Similar to Pregel, SIGPS is also a vertex-centric model. Aexecompute-function

is executed by one GPU thread which represents one vertgxlelthe vertex compute-

94

Worker Manager
(GPU i)

Worker Manager
(GPU n-1)

Worker Manager
(GPU 0)

Worker 0
(Po, P31, ...)

Worker i
(Pi, Pi+1, ...)

00000
90000
WL

Block O

Worker (m-1)
(Pm-1, Pm, ...)

OO0
OO

OOO®
QOO

OOOG
OOOG

Block k

Figure 4.3: SIGPS Architecture

function, the state of a vertex or an edge can be altered. #=tEx may receive mes-
sages from its neighbors, does some computation and spraatise result via its out-
going edges.

Different from the distributed infrastructure of Googl®segel, SIGPS utilizes the
state-of-the-art GPU hardware and drives the graph cortipatasing blocks of GPU
light-wight threads. The algorithm within the vertex congfunction terminates when
all verticesvote to halt Figure 4.4 illustrates the state machine of SIGPS. In tise fir
SuperStepall vertices represented by threads in a block are in astiate; all blocks
of threads then participate in the computation of the atgorj Some vertex may vote
to halt and pause its corresponding thread; As an inactitexeeceives some external
message, it can be re-activated and return to the active €aty when all threads within

the block are inactive, thiSuperStepan declare to be suspended by the WorkerManager.

95

While all WorkerManagers agree on an end to $uperStepthe algorithm may move

to the next one. This is called an explicit global synchratian operation in the model.

Vote to halt
Block
Synchronize

Block
Inactive

Block
Synchronize

Block
Active

Figure 4.4: Block State Machine

Instead of using the message passing model of Google’s IPrggechose to ap-
ply an emulating shared memory model for communications/éen the successive
SuperSteps There are three considerations when we design SIGPS’s oomation
mechanism. First, GPU's thread model is built on top of itsmgy. Since we utilize
GPU's thread model for parallelizing graph computation,waild prefer to use its hi-
erarchical memory for communication. Second, the motwatf designing SIGPS is
to provide a generic and powerful graph processing systewrfinary researchers who
are incapable of accessing a Pregel-like high performaas®ating system. Last but
not least, SIGPS has a high level computation model in whiehniessage is just an
abstract interface for communications. Message passid@wamulating shared memory
are two specific communication implementation strategscan extend our emulating
shared memory model to distributed environment when a hegfopnance GPU cluster
is considered in the future.

Before a batch of threads are launched on the GPU, a regiorPbf @emory is
initialized as a message center. Threads across the blgekthis region of memory

as a base for message exchange. Utilizing the charaatesfSBPU memory hierarchy,

96

processing device function shuffles the data for threadsinf@a-block communication,

message center takes advantage of the multi-level cacheraokip shared memory to
quickly exchange data among threads. For inter-block comeation, message center
employs optimized shuffling algorithms among threads. Aata donsistency require-
ment, synchronization is also provided in the two levelshoéad hierarchy, intra-block

and inter-block.

GPU Worker ‘
\ Thread \Manager/

\ |/ GPU Worker ™\
Message\ Thread \Manager/

Worker
Manager

+
Thread Center || ~cpu Worker ™
/ _Thread \Manager/
— |/ 6PU T/ Worker

\Thread / \Manager/

Figure 4.5: System Overview

Figure 4.5 displays the system architecture overview. A @¥ad invokes several
Worker Managers, each of which launches a number of GPUdkreEhe user-defined
compute function is then executed by GPU worker threadsurogtly as soon as the
data flow arrives. After computation, all workers send thegults to the message cen-
ter, in which messages are processed and grouped by GPUdshrefre posting to their
destinations. And starting from the secduperStepeach Worker Manager will receive
messages and then assign them to the corresponding worg&ad#h In a word, SIGPS
computation model uses iterations o@rperStept avoid the programming complex-
ity of graph algorithms and associated serialization ozada The application of GPU
threads and emulating shared memory model has succesdfalipated a large amount
of remote communication overhead.

As we know, modern GPU has evolved into many heavily muktgdlded-core pro-

cessors. There are three levels of thread hierarchy whegrdiph model is mapped onto

97

GPU SIMT architecture. At the first level, vertices from SI&&e dynamically grouped
into warps and scheduled to run on SIMD hardware at runtinhe. Warp is transparent
to the users. Atthe second level, bundles of vertex warpgratgoed into a block, within
which vertices can synchronize via local barriers specifigthe user. Vertices within
the same block are always assigned to the samé.SNk say these vertices are strong-
correlative. At the third level, multiple blocks are furtrgrouped into a grid. Vertices
from different blocks are regarded as weak-correlativeteveblocks can be executed in
scheduled order. In one word, finer thread-level paralteasd synchronization provide

users more flexibility to implement their algorithms usimggle generic APIs.

4.3 Overall Description and System Main Components

Master
Worker :><: Data :>
Manager Locator

(Voier) Message

’ N Graph
Generator
Edge ’ Graph
S Center
Partitioner

User API Graph Module System Module

Figure 4.6: Software Architecture

SIGPS consists of three main modules, namely User APl modrgph module,
and System module. Figure 4.6 displays the software anthie of SIGPS. From left
to right, the degrees of the functional transparency andret#ivity decrease. Users can
access to the generic APIs provided by the vertex class. ihlieie a set of vertex mem-
ber functions to implement their algorithms into the “cortgfdunction. Graph module
contains several related classes for graph processingts daanot directly use func-

tions within these classes. However, they may use relatadx@PIs to interact with

IStreaming Multiprocessors

98

these classes when composing their own algorithms. Systeduleis the functional
skeleton for SIGPS. Master, worker manager and worker d&im&IGPS architecture.
Data locator and message center relate to the communicatierof the most important
components of SIGPS.

In this section, we introduce the architecture of the maimgonents of SIGPS.
There are three major modules in SIGPS, each of which cantawveral classes. The
user APl module has only two “Vertex” classes. One is defimePU and the other is
implemented in the GPU memory and designed for GPU opeatibime graph module
contains the “Edge” class, “GraphGenerator” class, “GRastition” class and “Graph-
Partitioner” class. The system module consists of Masterkéd, Communication and
Utility submodules. Specifically, the Master submodule tidanagerToMaster” ab-
stract class, “ldManagerMap” and “Masterimpl” classes.e WMiorker submodule in-
cludes the “Worker” class, “WorkerManager” abstract clasd “WorkerManagerimpl”
class. The Communication mechanism is composed of a “Conuation” class, a “Dat-
aLocator” class, “Message” class and “MessageSpoolettatislass. The Utility in-
cludes “Logger”, “lock” and “FaultDetector”. In the followg subsections, we will in-
troduce the architecture of those important classes sutWaster”, “Worker Manager”,

“Worker”, “Vertex”, “Partitioner” and “Communicator”.

4.3.1 Architecture of Master

Besides maintaining a list of worker managers, there ardlweads for the master class
running on CPU, the Sentinel and Processing threads. Asistrited in Figure 4.7(a),
the Master Sentinel acts as a guard to poll all the active grarkanagers. The Sentinel
is triggered when a new worker manager is registered. WHileaker managers are
ready, the Sentinel launches the Master Processing Thideelarchitecture of Master

Processing Thread is shown in Figure 4.7(b). The Proce3$iregnd partitions the graph

99

(Master Sentinel Threadj

'

Register Worker
Manager wkmgr ;

<Master Processing Threa@

WorkerManager.size() == Partition input graph | if there are mare
into subgraphs; than ane devices

Device.size() ?

Initialize Worker
Manager with Partitions;

check if all Worker
Managers are active

| \

i<WarkerManager.size() 7

\\No

wait until
superstep is aver ;

there are active
warker managers 7

Ko Yei
(End | start Master)
“—— |Processing Thread (End)

(a) Master Sentinel Thread (b) Master Processing Thread

Figure 4.7: Master Architecture

into subgraphs according to the number of machines and timd@&uof GPUs each ma-
chine has. Then the Processing Thread initializes the waonlemagers and passes the
subgraphs to them. If there is only one machine and one GPt¢ipttysical system, the
master launches only one worker manager using the orignaphg After that, the Pro-
cessing Thread starts to execute supersteps only if thany iegistered worker manager

is active.

The main functions of the master are listed as follows:

» Register Worker Managers.

100

Poll Worker Managers, if all are activated, start to predde graph.

Signal to stop active Worker Managers.

Partition the graph according to device counts.

Initialize Worker Managers.

Start supersteps to process the graph.

Output the results.

4.3.2 Architecture of Worker Manager

A Worker Manager acts as an interface between CPU and GPWUdhdtes all the tasks
assigned to one GPU. It takes charge of several workers aatth of GPU threads. As
displayed in Figure 4.8(a), a worker manager is initialibgdhe master thread with a
set of assigned partitions. The worker manager furtheddws/ithe assigned partitions
among its workers and then initializes these workers. Asvshio the second step of
Figure 4.7(b), the worker managers should respond to théemasd start supersteps to
process the subgraphs. In Figure 4.8(b), a worker manageibdites messages to all
the destination vertices at the beginning of a superstepnfne perspective of vertex, it
receives/reads the messages in this stage. If it is in thestiperstep or all the message
received by this worker manager from the last superstepytinker manager signals the

communicator and the workers start to execute.

The main functions of the worker manager are listed as falow

* Initialize worker manager.

* Initialize workers and assign partitions.

itialize Worke
Manager ({P1,
P2,P3, ..}

§={S1.582 83
S={51,82 S

'

Assign Partitions
to Workers ;

(€nd

[Initialize Worker(Si) ;|

(a) Initialize Worker Manager

Figure 4.8: Worker Manager Architecture

Initialize communicator.

Distribute messages received to the supervised vertices.

Start and end supersteps by the signal from the master.

eginSuperStep
(superstep)

f

bool msgDistributed =
DistributeMessages() ;

fisgDistributed == TRUE

or superstep ==

Start all Workers

Workers:iterator wkr =
Workers.begin()

et WorkerState
to "EXCUTE

StartWorkers(wkr) ;

(b) Begin Superstep

Signal communicator to receive messages from all vertices

Signal to start workers.

101

102

4.3.3 Architecture of Worker

WorkerRunOnGPU(Parts
Worker is signaled to run

Iteratively process
assigned partitions

getState() == "EXECUTE" ?

Ye

PartitionList:iterator
No itParts=Parts.begin()

itParts != Parts.end() ?

convertGraph() ;

transferGraph() ; RetrieveMessages() ;
startKernel() ;

\ l

++tParts setState("DONE") ;

\ Signal WorkerManager

*'/E\ that the job
nd
Y has been done.

Figure 4.9: Worker Architecture

A Worker corresponds to the processing of one or severatipag on the GPU. As
is illustrated in Figure 4.9, the worker thread is initiaizby the worker manager and
waits for the signal to execute. As soon as it receives theEENTE” signal, the worker

converts the subgraph into the graph format that can be gsedeon the GPU. Then the

103

worker iteratively transfers the graph onto GPU global mgm@énd the worker com-
putes the execution thread dimensions before launchingch b GPU threads to pro-
cess the graph. Finally, messages are retrieved from GPlWngdmthe main memory

and cached in the communicator.

The main functions of the worker are listed as follows:

Convert graphs into the format that can be processed onftie G

» Transfer graphs to GPU global memory.

» Compute execution configuration and launch the kerneltfanc

Retrieve messages from GPU global memory to the main memory

Signal worker manager that the job has been done.

4.3.4 Architecture of Vertex

Algorithm 7: Generic API For User Derived Vertex Class
1 class DerivedVertex : VertexInGP{U

2 public:

3 __device._ void compute(}

4 [/ Al gorithmi npl enented by users.

5 ¥

6 /] oher publ i c nenbers can be added by users.
7 private:

8 /] Private nembers can be added by users.

9 };

10 __device_ VertexRegisterinGPkDerivedVertex reg ;

A vertex corresponds to a GPU thread in SIGPS. The vertes csathe interface

between users and SIGPS. Users derive an application \&rtetass and implement

104

the overloaded “compute” function. Algorithm 8 is the sture of theVertex class.

All the public methods are open APIs that can be called bysusetheir derived Vertex
classes. In other words, programmers can utilize the itdtemethods to implement
their algorithms in the overloaded “compute” functionsgéiithm 7 is the generic API

that a user can use to derive Vertex class and implementalyarithms.

Algorithm 8: Vertex Class

1 class VertexInGPU : VertexAPIGPYU

2 public:

3 __device_ void initialize(int, double, int, int, message*, int, irggdge*, int,
int, message®) ;

4 __device_void initCompute() ;

5 __device _ virtual void compute() =0 ;

6

7 /1 Auxiliary Menber Retrieval and Access Mt hods
8 .

9 /'l Messages Received Retrieval and Access Met hods
10 e

11 /| Edges Retrieval and Access Mt hods

12 .

13 /'l Messages Sendi ng Met hod

14

15 private:

16 int vertexid ;

17 double vertexValue ;

18 int superstep ;

19 message *msgPtr, *msgSndPtr ;

20 int msgSize, edgeSize, vertexSize ;

21 edge* edgePtr ;

2 };

VertexRegisterInGPU is a struct implemented on GPU memiiris designed for
Vertex auto-registration in GPU. As is shown in Algorithmusgers declare a global de-
vice object in line 7, after implementing their derived esrclasses. The name of the
derived vertex class is used in the angular brackets tontiata the template. Algo-

rithm 9 displays the mechanism to realize the vertex class@gistration. “Map” is a

105

device hash table implemented for the map(registratiomytfan.

Algorithm 9: Derived Vertex Class Auto-registration

1 templatetypename %
2 __device_ VertexInGPU* createVertexinGPU({)return (VertexinGPU*)(new T);

}

3

4 struct VertexFactoryInGPY

5 typedef MagKey, VertexInGPU*(*)()> maptype ;
6

7 __device_ VertexInGPU * createlnstance(char* name, int [¢n)
8 Key key(name, len) ;

9 return getMap()p>find_in_map(key)() ;

10 }

11 __device_manptype * getMap(){

12 if('map) { map = new mapype; }

13 return map ;

14 }

15

16 maptype * map ;

17 };

19 templatetypename %
20 struct VertexRegisterInGPU : VertexFactoryInGRU

21 __device_ void init(char* name)

22 int size = strlen(hame) ;

23 Key key(name, size) ;

24 getMap()>insertmap(key, &createVertexInGRI >) ;
25 }

2 };

The main functions of the vertex are listed as follows:

Acts as a base class for user-derived vertex class.

Provide a lists of public methods as API functions.

Provide a virtual method “compute” for user to implemergaaithms.

Realize the derived vertex class auto-registration.

106

4.3.5 Architecture of Communicator

A communicator is a member object of the worker manager clétskandles all the
messages within and among worker managers. Workers cargiiperstep and send
messages to the communicator. The communicator cachesrttessages and computes
the destination for each one. Figure 4.10 illustrates thehaism of a communicator
under the worker manager. When the worker manager sign@gun, the communi-
cator waits for the completion of all workers. While the ftino “communicate()” is
invoked, the communicator clears the spooler queues fokevananagers. Then it adds
messages to the corresponding spooler queue according toottname(worker man-
ager id), partition id, and destination vertex id. After derg all the messages to the
spooler queues of different worker managers, the commtarisgnal its worker man-
ager to stop the current superstep. Finally, the commudlal itself to be in “STOP”

State.

The main functions of the communicator are listed as foltows
 Poll until the worker manager signal to run.
» Wait for the completion of all the workers.
» Clear the spooler queues for all worker managers.
» Populate messages to its corresponding spooler queues.
» Send messages to its corresponding worker managers.
 Signal to stop workers.
 Signal to end superstep.

* Flag itself to “STOP”.

107

' -
-

CommunicatorExecute()>

check if all workers
finish the jobs.
|

getState() == "EXECUTE" ?

Yes

workers:iterator itwkr
=workers.begin()

itwkr 1= workers.end() ?

itwkr->getState()
I="DONE" ?

Add msgto spooler

queues according to

ostname, partition, and
destVertexld.

No| allDone = FALSE ;| [clearSpoolerQueues(); | h

_-F/-F./.
/_x"’/ According to the spooler
- - - map, send msags to
0 |populateSpooIerQueuesO,l corresponding
worker managers.

| sendMessag;so;| N

Send signals
0 stop workers

/

MNo P

Send signals to
end superstep.

-

| setState("STOP-:)- |

=

Figure 4.10: Communicator Architecture

108

4.4 System Auxiliary Components

SIGPS system is implemented across CPU and GPU heterogeptadtorm, using
C++ and CUDA programming language. As a graph processingmssysSIGPS con-
sists of three main modules, namely “Graph”, “System” andétJAPI”. Each of these
modules contains several functional classes. First otfadl,"Graph” module consists
of four classes, namely “Graph”, “Edge”, “Graph Partitichand “Graph Generator”.
These classes realize a graph system that provides bapltgn@ecessing functions such
as graph generation, graph reading, graph partitioningcalrvalue computation and
result writing. Secondly, the “System” module consists iafdasses, namely “Mas-
ter”, “Worker Manager”, “Worker”, “DatalLocator”, “Messafenter” and “Message”.
This module handles advanced graph processing such akepaasibn, communication
and BSP model. Lastly, the “User API” module provides a vemerface for users to
implement their own vertex class, which encapsulates dskned graph processing al-
gorithms. We have walked through the main components in@e4t3. In the remaining

portion of this section, a concise introduction of systemilaary classes is provided.

4.4.1 Graph Generator and Graph Partitioner

Since SIGPS is a vertex-centric model, we define the grapliamaat of the adjacency
list. Each line of the input file is the neighboring list of omertex. Specifically, the
graph generator produces a synthetic graph in the adjadishégrmat. And the graph
partitioner divides this original graph into several pi#otis that can be held in the system
and GPU memory. We have proposed several partitioningi#thgas in Section 3.5 and
conducted a comprehensive comparison when partitioniregge Igraph. In order to
compare the vertex-centric method with the edge-centr&; ae provide a conversion

method between the adjacency list and the edge flow formaeajitaph. Partitioner can

109

also read in both formats of graphs.

4.4.2 \ertex API, Edge and Graph

For simplicity, vertex API is designed as an abstract clékssers only need to subclass
the Vertex and override the compute member function. Moeeifipally, in order to
facilitate implementing user’s algorithms in the simplestnat, and in consideration of
the C++ characteristic, we define the compute member fumescan external function.
When subclassing a Vertex class, users only need to steutteir algorithms and imple-
ment them using the compute function template. Since thermxit compute functions
are deployed to run on GPU, users need to send data paratodtersledicated compiler
as well. Besides the function interface, users can als@debe output by themselves.
The output data includes data sent back to standard outata, rdturn by parameters
and function return value. The object/struct/array datedne be returned by pointers
for a better compatibility. Edge and Graph classes are fmeadal for graph process-
ing, which are instantiated when graph is generated. Bgsidsic operations, getting
and setting th&uperStepre the most significant behaviors that a graph object ogerat
under its processing model. In addition, basic graph algms can be implemented as

well such as simple graph traversal and graph elementssacges

4.4.3 Message Center and Data Locator

Communication is the principal system functionality thigtiiguishes SIGPS from Google’s
Pregel implementation. As mentioned above, Message Catigives messages sent by
workers, does the shuffling and stores the associated dtte testination addresses of
the messages. During eaShperStepData Locator calculates the message addresses in
GPU memory for each worker. There are two types of shufflinthodologies imple-

mented in Data Locator, data shuffling and thread shuffling.

110

Definition 4.4.1. Collective Data Shuffling:
Let X; be the value of thread before shufflingy; be the index of the value after

shuffling. Thery; satisfiesXy, < Xy, fori < j.

Definition 4.4.2. Comparison-based Collective Data Shuffling:
Comparison-based Collective Data Shuffling enables usaletfine their own com-
parison function for data shuffling. Complicated algorithoan be applied in this case

so that data shuffling can be controlled by the Data Locator.

Definition 4.4.3. Collective Thread Shuffling:
Let X; be the value of thread before shufflingZ; be the value of thread after

shuffling. Then after shuffling, threads are adjusted sothat Z; for i < j.

Definition 4.4.4. Comparison-based Collective Thread Shuffling:
Comparison-based Collective Thread Shuffling enablessusedefine their own
comparison function for thread shuffling. Advanced shyfitnategies can be employed

by the Data Locator so that data can be sent to correspondogprents.

Example 5.

Threads with ranK0, 1, 2, 3, 4, 5} compute value$X,, X;, Xo, X3, Xy, X5} =
{8, 4, 2, 5, 1, 3}. After data shuffling, the returned index $&}, Y1, Ys, Y3, Yy, Y5} =
{4, 2, 5, 1, 3, 0}. After thread shuffling, the value se¥y, 7, Zs, Zs, Zy, Zs} =
{1, 2,3, 4, 5, 8}.

After shuffling in general, message center stores the valcesding to the addresses
computed by Data Locator. Actually, graph processing dlgos such as SSSP, PageR-

ank, and Dense Subgraph Mining can be abstracted into $eteredive SuperSteps

111

which can be further broken into a sequence of parallel cocist So that data move-
ment can be separated into a sequence of shufflings in theedeamory.

The underlying system implementation of the shuffling hasetdize data moving
in the GPU memory hierarchy. There are two types of the datarmgaunits, namely
Move(<b,, t;>,<b,, t;>), Move(<b,, t;>,<b,,t;>). In addition, Data Locator also handles
global memory coalescing, L1/L2 cache coherence and shaszdory bank conflict

issues.

Definition 4.4.5. Data Moving Unit: Move(source, destination)

Assume the function Move(source, destination) is the yp@taiion that Message
Center executes to pass data from the address space of @aal ttarthat of another. Let
“source” and “destination” be the threads that mean to commate, which are in the

pair<blockld,threadld format.

Definition 4.4.6. Movekb,, t;>,<b,, t;>): Intra-block Data Moving

Communication occurs between two threadandt; from the same block,. Since
there are cache$ and shared memory in the same block, most data moving within
the same block can be operated in the block-wise shared nyerdoshared memory
read/write access pattern is exploited in order to avoid egratential bank conflicts. If
the message is too large in size, a data replacement is ndedaeap data via cache

from global memory.

Definition 4.4.7. Movekb,, t;>,<b,, t;>): Inter-block Data Moving

Communication occurs between two threadandt; from different blocksd, and
b, respectively. A global memory read/write access patterexjgloited for memory
coalescing. Since shared memory is considered to be useageahle cache, the cache

coherence issue is also important if the global memory has lng@dated.

2for Graphics Card with Compute Capability 2.x and 3.0

112

When a batch of threads are shuffled by Worker Managers, Mbye(>,<b,,t;>)
and Movekb,, t;>,<b,,t;>) unit operations are grouped separately by Message Center.
By conducting a bundle of intra-block and inter-block dataving, Data Locator en-
hances the data transfer bandwidth, minimize communicatv@rhead and accelerates

the data moving process.

4.4.4 State Logging

For distributed system, state logging provides a solutwisystem fault tolerance. Mes-
sage sent among remote peers might be lost during commiamicsforkers in the peer
system might suffer failure as well. Whether a system camigeomeasures to recover
the computation if some system failure or message lost wastgel is vital for such sys-
tem. However, for shared memory system, fault tolerancetismimportant as a system
design issue. Message passing is replaced by data moving éntulating shared mem-
ory and worker threads provided by GPU seem to be stableglaxacution.

Logging the state of eacBuperStepnakes SIGPS adapted to various system envi-
ronment. The state of orfeuperStegonsists of the state of all partitions, vertex values,
edge values and messages received. Because SIGPS is b&8& omodel, the states
of all SuperStepare recorded as a snapshot of the system. We have illusthetédbck
state machine in section 4.2. Here we rehearse it from theppetive of “logging”. At
the beginning of eacBuperStepblock state is activated by Worker Manager. Then the
block state may remain active until a block synchronizat®executed, which marks
an end to the currerBuperStep The state of a single partition is only one part of the
snapshot of the whole graph. For e&iliperStepall partitions are processed separately.
While the system has excessive resources, the whole graphecarocessed concur-
rently. However, due to the possible limitation of the systesources, graph partitions

may not be processed simultaneously. With limited res@upcevided, some partitions

113

need to be swapped out so that other partitions can be peumteState logging is critical
for this limited resources situation. An operation of thetstiogging before barrier syn-
chronization stores the state for each partition. At tharbegg of the nexiSuperStep
the state of the partition is restored before receiving egss from other partitions.

State logging for SIGPS is also designed to enhance thensyeffeciency, includ-
ing the implementation and execution of the algorithms. &gording the state of one
SuperStepsome algorithms can be speeded up since there is no neestifordant re-
computation in every iteration. For example, some aggoegatiues do not need to
be re-computed for everuperStep Additionally, logging the states of ea®uper-
Stepmakes it easy for users or system programmers to debug tlogirgms and have a
detailed understanding of their algorithms.

For state logging implementation, we utilize boost file eysiibrary and serializa-
tion facilities to flatten the objects of SIGPS modules. Aitgon 10 is the code the

serialization library invokes to save or load a class insan/from an archive.

Algorithm 10: Object Serialization

1 friend std::ostream & operatot(std::ostream &0s, const clasame &or);
2 friend class boost::serialization::access;

3 templateclass Archive, class>;

4 inline void serialize(Archive & ar, T & t, const unsigned file_version){
5 /I invoke member function for class T

6 t.serialize(ar, fileversion);

7 /I save/load class member variables

8 ar & member ;

9 /I invoke serialization of the base class

10 ar & boost::serialization::basgbjeckbaseclassof_T>(*this);

1}

114

4.5 Automatic Execution Configuration and Dynamic Thread
Allocation

For graph processing on GPU, each vertex is representeddy8t thread. Local
computation in Figure 4.2 is conducted by the graphics pemes, and message com-
munication is emulated in the graphics memory. In Secti@nwe have mentioned that
SIGPS uses CUDA driver API to implement the underlying sysfanctions. There-
fore, SIGPS inherits CUDA thread hierarchy, which consadtgrid, block and GPU
light-weight threads. Grid corresponds to the executiom afevice kernel function.
Block refers to a batch of GPU light-weight threads that cammmunicate via on-chip
fast caches and synchronize by multi-processor barrigtsagich other. A grid consists
of a number of blocks that can be assigned to saturate alai&PU multi-processors
concurrently. As soon as a block of threads finish their taskrme multi-processor, the
system will assign a new block of waiting threads to run on thalti-processor.

Instead of waiting for users to decide the execution condijoin parameters, SIGPS
defines the properties of the thread model, which simplifiegprogramming and hides
the system complexity. Table 4.1 lists the pre-set progemif SIGPS thread model.
Since the system model is vertex-centric, each vertex igaed to be represented by
one thread. According to the current GPU capabilities, albtman afford 512 threads
in terms of the amortized shared resources. The number okbls then decided by
the task amount and the unit size. It is worth mentioning thatnumber of threads
which are actually running in parallel is decided by the mputtcessor size, the amount
of shared resources such as registers and the thread modiglucation. All the other
dimensions of the grid and block are simply set to be 1. Thelevbimead model is
shaped to be in one dimension and the corresponding memace sy all threads is

packed into a linear array.

115

Property Value Description

thread.size Vertex.size |GPU thread number to be launchgd.

thread.grid.size | ceil(*<c2=2¢) | The x dimension of thread grids

thread.block.size 512 The x dimension of thread blocks.
thread.grid.sizey 1 The y dimension of thread grids
thread.block.sizey 1 The y dimension of thread blocks.

thread.block.size: 1 The z dimension of thread blocks

T~
\"24

Table 4.1: GPU Thread Configuration

Compared with other graph processing systems, SIGPS ipmepliwith new fea-
tures that manage to enhance the processing efficiencityHissides the default thread
configuration, in SIGPS users can allocate more threadsaséed. There are two lev-
els of parallelism in graph processing. One is the paralielamong vertices of the
graph. The other one is the task parallelism inherent intg@gorithms. The dy-
namic thread allocation enables users to exploit a finedlpasa for the problem. The
forall construct can be unfolded to explore an additional in-taslaltelism, such as a
vertex inquiries around all its neighbors to get the assedianessages. Moreover, the
in-block and intra-block parallelism is explored by Worlkanager and Worker hierar-
chical structures to distribute the tasks. Secondly, SI&mRgloys an efficient resizable
list in the implementation of Message Center. As we mentiat®ve, Message Center
manages the aggregated memory space for all threads in GRidnmpneDue to the sim-
plified one dimension thread model, Message Center is akgoeshto be like a linear
array. The capability of resizable list allocation makeGB§ efficient and effective for
dynamic threads. Specifically, when a batch of threads arardically launched, SIGPS
resizes the linear array of Message Center. Thread rankésaree-assigned to match the
linear formation of the memory space. Thirdly, SIGPS sifigdithe communication by

simply getting and putting values to their memory spacesrthty, SIGPS stores graph

116

class members separately in aligned arrays of basic typemsdwy access of graph data
is always coalesced if only all members satisfy coalescaggirements. Last but not
least, Worker Manager and Worker are implemented in a seigliprogramming style,
successfully avoiding the complexity of parallel programgnand leaving complicated

parallelization and optimization to the compiler.

117

4.6 Case Study

4.6.1 Case One: PageRank

In web analysis field, PageRank is a probability distriboutised to represent the like-
lihood that a person randomly clicking on links will arrive any particular page. It
is represented by a link analysis algorithm, which can bdieghpo any collection of
entities with reciprocal quotations and reference. Spgdifi, a numerical weighting is
assigned to each element of hyper-linked set of documemtslar to “measure” its rel-
ative importance within the set. The computations of thewtlgm have several passes,
called “iterations” through the collection to adjust apgroate PageRank values to more
closely reflect the theoretically true value. Generally ethematics, the PageRank value
for any pageu can be expressed as:

PR(v)

PR(u)=) PR(v) ~0.15 x 1 +0.85x) L)

veB, L(v)® Vi

To implement the PageRank algorithm using SIGPS, we extemd/artex class on
the GPU to create RageRankVertexuser-defined GPU class. The PageRankVertex
class derives theompute() virtual method, executed by one GPU thread, to calculate
the PageRank value of the vertex.

The initial PageRank value of each vertex is set to‘;l%‘)g. The process of PageR-
ank computations consists of sevesapersteps. Within each superstep, vertex thread
receives messages from its neighbors, computes its temtddéigeRank and sends mes-
sages to its neighborhood along its outgoing edges.

The algorithm converges when the PageRank values of aitesibecome stable. In
reality, we employ a “Pay as you go” strategy and pre-set theber of supersteps to

simplify the computation.

118

Algorithm 11 is an example of user-defined PageRankVerissdmplemented for
GPU execution. We take advantage of the generic Vertex APtetive the function
“‘compute()”. Inline 7 to 9, the GPU thread reads messages fhee neighborhood of
the vertex. Line 10 computes the tentative PageRank valu@éocurrent superstep. In
line 16 to 18, the vertex issues its tentative PageRank eliviay the number of links
as messages to its neighboring vertices. After implemgrilia PageRankVertex class,
users need to declare a global variable, instantiated bgldss naméPageRank\Ver-
tex” in line 23, to register this customized vertex class in theey. The “reg” object
will be utilized to initialize the PageRank\Vertex class ameate vertices objects in the

system automatically.

Algorithm 11: PageRankVertex
1 class PageRankVertex : VertexinGRU

2 public:

3 __device._ void compute(}

4 if (this->getSuperStepf=1) {

5 double sum=0;

6 int numMessages = thisgetMsgSize() ;

7 for (inti=0;i<numMessages ; ++i{

8 sum += this>getMsgValues(i);

9 }

10 double newPageRank = 0.15 / thigetTotaINumVertices() +
0.85*sum ;

11 this->setValue(newPageRank) ;

12 }

13

14 if (this->getSuperStep SUPERSTERNUM) {

15 int numEdges = thisgetEdgeSize() ;

16 for (inti=0;i < numEdges; ++i X

17 this->sendMessage(thisgetEdge(i), this-getValue()/numEdges) ;

18 }

19 }

20 }

21 };

22
23 __device_ VertexRegisterinGPWPageRankVertexreg ;

119

4.6.2 Case Two: Single Source Shortest Path

In graph theory, the Single Source Shortest Path probleneiprioblem of finding a path
between vertices in a graph so that the sum of the weightseoédges in the path is
minimized. In mathematics, I&€t = (V, E,C') be a directed/undirected graph anddet
be a designated vertex in V. Comput&in(s,z; V') for every vertexc € V. There are
several classic algorithms to solve this problem, sucha®itjkstra’s algorithm and the
Bellman/Ford algorithm.

In order to solve Single Source Shortest Path problem, wéemmgnt the Dijkstra’s
algorithm using SIGPS. We derive the GPU vertex class anaal@in “SSSPVertex”
and its member function “Compute()”. During execution, le&PU thread create an
“SSSPVertex” object and run the function “Compute()” toocdédte the shortest distance.

The algorithm converges when all the vertex values are ¢t the shortest distances
to the source vertex. There will be several passes beforedltes vote to stop, and
the system forces all vertex threads to synchronize with editer between subsequent
supersteps.

Algorithm 12 is an example of user-defined SSSPVertex ctapteimented for GPU
execution. We take advantage of the generic Vertex APIs ioalthe function “Com-
pute()”. Initially, we set the pre-vertex-id of the curremrtex to be “-1” in line 4. We
also utilize a temporary shortest distance and the preNmdecbrd the tentative infor-
mation. From line 7 to 12, the shortest distance is initedifor each vertex. The vertex
threads read messages from their neighbors in the “for:lbom line 14 to 18. If the
tentative computed shortest distance is smaller than thexealue, the vertex value will
be replaced by this smaller distance and its pre-verterfatination will be updated as
well. Finally, the vertex thread sends its updated distaumed by the corresponding

edge cost as a new message to all its neighbors.

120

Algorithm 12: SSSPVertex

1 class SSSPVertex : VertexinGRU

2 public:

3 __device_ void compute()}

4 this>preVertexid = -1 ;

5 int preNode =-1;

6

7 double distance ;

8 if (this->getVertexID() == 0 {

9 distance =0 ;

10 } else{

11 distance = INFINITY ;

12 }

13 int numMessages = thisgetMsgSize() ;
14 for (inti=0 ; iknumMessages ; ++i{

15 if (this->getMsgValues(ix distance X
16 distance = this-getMsgValues(i) ;
17 preNode = thissgetMsgSourceVid(i) ;
18 }

19 }
20 if (distancex this->getValue()
21 this->preVertexld = preNode ;
22 this->setValue(distance) ;
23 int numEdges = thisgetEdgeSize() ;
24 for (inti=0; iknumEdges; ++i)
25 this->sendMessage(thisgetEdge(i), distance +

this->getEdgeCost(i)) ;

26 }
27 }
28 }
29
30 private:
31 int preVertexld ;
2 };

33
34 __device_ VertexRegisterInGPKUSSSPVertexreg ;

121

4.6.3 Case Three: Dense Subgraph Mining

To parallelize dense subgraph mining algorithm using SIGRSmplementD N-graph
mining algorithm by extending the Vertex class on GPU to tar@a'DSMVertex” user-
defined class. The “DSMVertex” class derives tmenpute() virtual method, executed
by one GPU thread, to calculate thevalue of the vertex.

The algorithm converges when the “converge” flag is true cwimeans all vertices
have updated thek value in the current superstep. Algorithm 13 is an examplesef-
defined “DSMVertex” class implemented for GPU execution. utWize the generic
Vertex APIs to describe the behavior of each vertex. At fisd,pre-set the “converge”
flag to be TRUE. The “for-loop” from line 6 to 20 queries all theighbors of the current
vertex that had sent him a message in the last superstep.7ldomputes the common
neighbors of the vertex and its neighbor and the estimatedlue is bounded in line
11. If this estimated\ value is bigger than the current value of the vertex, it isl sai
to be supported by this neighbor and the counter “suppor@tided in line 13. If the
supporting vertices are found smaller than thealue of the current vertex, it will be
updated as the newvalue of the vertex. And the flag “converge” will be set to biséa
This indicates that the new value needs to be spread to gbkipeis, which is sent out as

messages in the loop (line 22 to 24).

122

Algorithm 13: Dense Subgraph Mining Compute Function

1
2
3

~N o g b

©

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

class DSMVertex : VertexinGPY
public:
__device._ void compute(}
converge = TRUE ;
int numMessages = thisgetMsgSize() ;
for (int m=0 ; nknumMessages ; ++m{)
int coNeighborSize = neighborhogdin (this->getNeighbors(),
m.getDestVertex().getNeighbors(), coNeighbors) ;
int support = 0, *coNeighbors, density = coNeighborSize ;
for (intj=0 ; j<coNeighborSize ; ++j]
coNeighbor = coNeighbors[j] ;
density = Min(Min(this>getNeighborValue(coNeighbor),

this->getMsgValue(m)), Min(this-getNeighborValue(coNeighbor),
this->getValue()));

if (density> this-getValue() X
support++;
¥
¥
if (support< Min(this->getValue(), this-getMsgValue(m))

this->setValue(this-getValue()-1);
converge = FALSE ;

¥
¥
if (converge) {
for (int e=0 ; ecthis->getEdges() ; ++e]
this->sendMessage(thisgetEdge(e), thisgetValue()) ;

}
}
%

__device_ VertexRegisterinGPKUDSMVertex- reg ;

123

4.7 Generic Vertex APIs Usage

In this section, we provide an elementary tutorial about howse the vertex APIs
provided by SIGPS. In Section 4.3.4, we have introduced #macbstructure of the
generic vertex APIs and the Vertex class. In this sectionrevist Algorithm 7 as
Algorithm 14. Users derive the Vertex class in GPU as diggdian Algorithm 14. They
can add public/private member variables and methods they. nlist remember to add

“__device_" in front of the methods since they are required to work on GPU

Algorithm 14: Generic API For User Derived Vertex Class
1 class DerivedVertex : VertexInGPU

2 public:

3 __device_ void compute(}

4 [/ Al gorithmi npl enented by users.

5 }

6 /] oher publ i c nenbers can be added by users.
7 private:

8 [/ Private nenbers can be added by users.

o };

10 __device_ VertexRegisterinGPkDerivedVertex reg ;

We list the full declaration of the Vertex class in Algorithtb. Theinitialize(...)
andinitCompute() methods are used by the system to initialize the vertex arake
the “compute()” method. They are functions that connecsifstem to the code imple-
mented by users.

The virtual method@ompute()is the core function that must be implemented by users
in order to run their own algorithms to do graph processing.

The methodgetVertexID() andsetVertexID(int) are functions to retrieve and ac-

124

cess the vertex id that can be used to identify the vertexamgtaph.

The methodgetTotalNumVertices() and setTotalNumVertices(int) are functions
to retrieve and access the size of the graph (total vertexbetgm

The methodgetValue() and setValue(double)are functions to retrieve and access
the value attached to the vertex which can be utilized bysugére meaning of the vertex
value can be defined by users in their algorithms. For exanipléPageRankVertéx
example, the vertex value is defined as the PageRank valle afurrent page node.
And in “SSSPVertéexample, the vertex value is defined as the shortest distemthe
source from the current vertex.

The methodgetSuperStep()and setSuperStep(int)are functions to retrieve and
access the tentative superstep.

The methodyetMessages(js the function to get the starting positions of the received
messages list. The methgetMsgSize()is the function to get the size of the received
messages list. With the above two methods, users can eti®y access all messages
received by the vertex thread.

The methodgetMsgValue(int), getMsgSourceVid(int) getMsgDestVid(int) and
getMsgSuperStep(int)are functions to retrieve the components of the received mes
sages according to the index (0 ... getMsgSize()) in the agesslist. Using these meth-
ods, users can retrieve the value sent accompanied withélsage. In each superstep,
messages are issued with the source/destination vertex ide message.

The methodyetEdges()is the function to get the starting positions of the contirtge
edges list. The methogetEdgeSize()s the function to get the size of the contingent
edges list. With the above two methods, users can retried@eress all the contingent
edges of the current vertex.

The methodgietEdgeCost(int) getEdgeSourceVid(int) and getMsgDestVid(int)

are functions to retrieve the components of an edge acaptditme index (0 . .. getEdgeSize())

125

in the contingent edges list. Using these methods, usersetaeve the edge cost, and
the source/destination vertex ids of the edge.
The methodendMessage(edge e, double value}he function for the vertex thread

to send its value along an edge e, encapsulated as a message.

126

Algorithm 15: Vertex Class

1 class VertexInGPU : VertexAPIGPYU
2 public:

3

__device_ void initialize(int, double, int, int, message*, int, irggdge*, int,

int, message*) ;

© 00 N o g b

__device_ void initCompute() ;
__device_ virtual void compute() =0 ;

__device_ int getVertexID() ;

__device_ void setVertexID(int) ;
__device_ int getTotalNumVertices() ;
__device_ void setTotalNumVertices(int) ;
__device_double getValue() ;

__device_ void setValue(double) ;
__device_ int getSuperStep() ;

__device_ void setSuperStep(int) ;

__device_message* getMessages() ;
__device_ double getMsgValues(int) ;
__device_ int getMsgDestVid(int) ;
__device_ int getMsgSourceVid(int) ;
__device_ int getMsgSuperStep(int) ;
__device_int getMsgSize() ;

__device_edge* getEdges() ;
__device_edge& getEdge(int) ;
__device_ int getEdgeSourceVid(int) ;
__device_ int getEdgeDestVid(int) ;
__device_ double getEdgeCost(int) ;
__device_ int getEdgeSize() ;

__device_ void sendMessage(edge, double) ;

32 private:

int vertex|d ;

double vertexValue ;

int superstep ;

message *msgPtr, *msgSndPtr ;
int msgSize, edgeSize, vertexSize ;
edge* edgePtr ;

127

4.8 Experiments

In this section, we study the performance of SIGPS systeminWgéement three algo-
rithms, namely PageRank, SSSP (Single Source Shortegt&atlDSM (Dense Sub-

graph Mining) using the generic APIs of the system.

4.8.1 Experimental Settings

We have conducted our main experiments on three low-end Glekleaated desktop
systems. They are a DELL PC equipped with a low-end NVIDIA @eE 9400 GT
graphics card, and two ACPI x64-based systems accompaitiedmNVIDIA GeForce
GT 520 graphics card and an NVIDIA GeForce GT 330 graphics saspectively. The
price of the GeForce 9400 GT and GeForce GT 520 graphics eaedsoth less than 50
US dollars. And a GeForce GT 330 graphics card is no more tBarUs dollars. The
whole GPU-accelerated personal computer systems costaonmiyd 1000 US dollars,
which are quite affordable for ordinary users.

In order to study the computational capabilities of the S¥Glpstem, we also adopted
an exhaustive study of the desktop system resources. Istthdy, we generate a series
of directed graphs with ten thousands to one million vestime a desktop equipped with
an NVIDIA GeForce GTX 760 graphics card. The PageRank algoris executed on
the massive graphs to test the computing scalability of tlBPS system. We present
the major technical specifications of our four platforms able 4.2.

We employ synthetic and real datasets in our experimentpetiirental synthetic
graphs are generated by the system graph generator contptveense the graph den-

2|E|

sity, which is defined to b® = (UEDE For vertex centric algorithms, a series of graphs

128

Main GPU Compute | GPU

Platiorm CPU Memory GPU Memory |Capability| Price
DELL Opti-755 2 cores | 3.3cB 1x16cores |[512mB 11 <$50
Geforce 9400 GT | 2.33GHz | DDR2 550 MHz 400 MHz :
ACPI x64-based 4 cores | 8cB 1x48 cores |993mB 21 <$50
Geforce GT 520 3.40GHz | DDR2 1.62 GHz 535 MHz :
ACPI x64-based 4 cores | 8cs 12x8 lcs
Geforce GT 330 3.40GHz | DDR2 1.34 GHCzOres 790 MHz 1.2 <$100
i7-4770 x64-based |4 cores | 16cB 6x192 4GB
Geforce GTX760 | 3.40GHz | DDR2 1.15 GHzCores 3.004 GHz 3.0 <$500

Table 4.2: Experimental Platforms

with varying vertex sizes from0?3 to 107 are created. The edge sizes can be decided by

|E| = Dx(|V|(]V]-1)). For edge centric algorithms, graphs with edges ranging i@

2|E]

to 108 are also produced. The corresponding vertex sizes ardatdly|V| = [\/ 5]

D

Real graphs in our experiments include flickr, DBLP, PPI, hidflix datasets. Flickr

graph is derived from a well known photo sharing social nekwd=Each node in the

graph represents one person and an edge between two peesmtegithis two persons

share photos with each other. There are 1,715,255 peopl226i3,982 sharing rela-

tionship recorded in the graph. Since interactions betvpeeteins are important for the

majority of biological functions, Protein Protein Intetan (PPI1) graphs are useful tools

to study the behavior of the entire interactomics systermgfli@ing cell. Our PPI graph

contains 17203 interactions among 4930 proteins. NetflaniAmerican provider of

on-demand internet streaming media. There are 480,000roest and 17,000 movies

in the dataset. Table 4.3 lists the graph data informatiauimstudy.

4.8.2 Scalability Study

In order to study the scalability of our system, we run the¢hgraph processing algo-

rithms, PageRank, SSSP, and DSM with increasing graph. skigare 4.11 illustrates

the growing tendency of the running time of the correspogadiligorithms. When graph

129

| Graph Typeg Graph Name | V| | | E| |
Synthetic - [10% ~ 107] | [10* ~ 108]
Real Flickr 1715255 | 22613982
Real DBLP 23136 54989
Real PPI 4930 17203
Real Netflix Movie 1000 1881
Real Netflix Rating 1000 10037
Real Stock Marcket 6018 1064138
Table 4.3: Experimental Datasets
10000 T 5000 .
o & e E v
& 8000 | DSM g7~ /24000 8
1S i B’
g 6000 | ESOOO
2 B 2000
$ 4000 ¢ -~ 2
g i 1000 | v/]
Howop V 53 R G
L, - SRSy N\ /(ZC‘
(‘%o g 1o|'66 """""" 104006 1e+007 - %’Jf-@/ &

(a) Synthetic Graphs

100000 100000 |-
L U R
Zong—"" g Erooog w7
R O v o)
) €
£ g 100} o
= 2
8 g o _ .
8 s L.
<] 1dA
o 4
> & %
0.1 s s ‘ 7, »950, @(A % 4%
1000 10000 100000 1e+006 1e+007 % %, %,
V| © 15 ‘

(c) Synthetic Graphs (d) Real Graphs

Figure 4.11: System Scalability

size increases exponentially, the elapsed time of praogssgraph rises up with an ac-
celerated speed. In Figure 4.11(c), we applied PageRar8® 88d DSM algorithms on
synthetic graphs with vertex size ranging fraf?¥ to 107. We can observe that among

all three processing algorithms, dense subgraph minintgg ¢he most amount of time.

130

Figure 4.11(b) displays the execution time when the algor#t are run on real graphs.
As graph size increases, dense subgraph mining algoriteswaere time. Even though
there are more nodes in the DBLP graph, all three algoritlakes longer time to run on
the stock market graph. This is because the stock market gsajfenser than the DBLP
one. Moreover, the three algorithms are processed in bojrestial mode (CPU only)
and GPU accelerated mode of our system. Figure 4.11(c) aesg@e running time of
both modes when the algorithms are run on the synthetic grdgith x-axis and y-axis
are in log-scale. We can observe linear growth of the exextitne when the algorithms
are processed in both sequential and GPU-accelerated m8desarly, linear curves
showing the algorithms running on the real graphs in Figuid @l) also prove good
scalability of the system. The axes in figures 4.11(b) andl(d)lare arranged according

to the edge sizes of the real graphs.

4.8.3 Communication Study

1000 F b geRank [‘ ‘] Geforce 9400 GT o ‘ R

sssp A 10} Coloee T om0 B O @)
= DSM X7 A .
& 100 o i) K
2 = 4
& & &
2 2 .
2 2 o.1§%13
[= [=

s ‘ s 0.01 ‘ ‘ ‘
1000 10000 100000 4 8 16 32 64 128
Number of thread blocks Number of active thread blocks
(a) Scalable Thread Blocks (b) Active Blocks

Figure 4.12: Communication Throughput

To study the communication cost of the system, we log thematgement, calculate
the communication throughput and plot them in Figure 4.3#c8ically, Figure 4.12(a)

shows memory throughput from a data movement point of vidwekvis computed by

Transfer Time (microseconds)

131

‘ SharedMemory ‘EI 2 25,000
1000 - Registers e 3
GlobalMemory Ve L i
100 | MessagePassing - §7 20,000
18 © © v
M g o Vertex Parallel i
-] b ‘ertex Parallel
1 V T g £ Edge Parallel
S . 10,000 R
o1l P a4 [R
T
0.01g~] 5,000 |
00017t b = .
10 100 1000 10000 190000 1e+006 0 = =)
Bytes per Transfer PageRank sssp DSM

Figure 4.13: Communication Cost Figure 4.14: Vertex Parallel vs Edge Parallel

dividing the estimated sum of message sizes by GPU runnimgy #Vhile Figure 4.12(b)
shows memory throughput from a data access point of viewgimisicomputed by divid-
ing the estimated sum of the sizes of the messages acces&Rlbgrocessors by GPU
memory access time. Figure 4.12(a) displays the lineae&se in the communication
throughput with the increasing number of thread blocks ciiis decided by the graph
size. Among the three algorithms, PageRank has the lowestghput since it produces
the smallest amount of messages and consumes more time $i&# Fhe throughput
curves are slowing down as the graph becomes large enougiiwer.12(b) illustrates
the communication throughput with a growth in the numberativae thread blocks for
different graphics cards. We can observe a drop at arounctiZ ahread blocks for
Geforce GT 330 graphics card, which suggests that the mprdtiessors are being sat-
urated by the active thread blocks. Additional data movewuests are being absorbed
by fast caches. Finally, it can have a higher throughputesinbas more processing
resources.

To further study the data moving cost, we increase messageasd compare data
moving in different memory types. Figure 4.13 displays tlatadransfer time when
the message size is increased. There is only one point f@teegin the plot, because
registers are used only for basic data types. Shared memaarpe used as fast 64KB

independent caches, which takes only 1-2 clock cycles feramtess. L1/L2 caches

132

and coalescing global memory access make global memorpdéste data transferred
become too large. In comparison, we emulate message passsending data to the
system main memory and sending it back onto global memory.c&@leobserve that

message passing model is by no means much slower than ourwdoation model.

4.8.4 \Vertex Parallel vs Edge Parallel

In this experiment, we study the vertex centric methods. GBtJ-accelerated graph
processing model maps graph nodes to GPU threads. We calhthiertex-centriqor
vertex-paralle) approach. In vertex centric algorithms, the inf@mall-loop over the
message list of the vertexiterates the node neighbofé(v) and reads the messages
sent from the neighbors. The algorithm also iterate acrdgesincident to the vertex
before sending out its own value. More threads are dynatyilzinched to represent
the neighbor nodes of the current vertex in these loops. linseead parallelize over
the edges directly, then each thread can represent one @égenplement an alterna-
tive algorithm (Algorithm 16) to compare with the vertex t&mmodel. Figure 4.14
shows the running speed comparison among three graph pmogedgorithms. SSSP
and PageRank take a moment to finish while DSM runs much slowleoth models.
From the histogram, graph processing algorithms like SS8HPageRank with simple
logic run faster in vertex parallel model. Because each @udfee edge centric model
needs to be processed in two directions of the data movenmentedundant process-
ing and data update conflicts tradeoff the additional palrath gained from the model.
On the contrary, the edge parallel model simplifies the caraf@d processing logic of

DSM, which speeds up the algorithm and outperforms its xgréeallel counterpart.

133

Algorithm 16: Edge-centric model

1 forall the Edge e=0:(Graph.edges.size-d9
2 e.compute()

3 u = e.getSource() ;

4 v = e.getDest() ;

5 value = Proc(e.Thread.get()) ;

6

7

8

9

if u.isGood(valuejhen
u.setValue(value) ;

end
value = u.getValue() ;
10 if u.isGood(valuejhen
11 e.Thread.put(value) ;
12 end
13 }

4.8.5 Speedup

In this experiment, we study the speedup of our graph prougssodel. We compare
all the three algorithms in parallel and sequential moddsgnre 4.15. Figure 4.15(a)
illustrates the speedups when the algorithms run on syotbedphs. From the plot,
the speedup curves are steady for all three algorithms. ifgjadly, PageRank gains a
speedup of about 8, while SSSP runs nearly 8 times faster &\ @ets a speedup as
high as 16 to 17. Similarly, Figure 4.15(b) displays the sip@s when the algorithms
run on real graphs. PPI dataset and flickr graph have lowerdsipecompared with
others. Both of the graphs have dense regions with a muclehigtal density than their
neighboring areas. The imbalance of the tasks for threadesdow-degree vertices wait
for their high-degree neighbors at the point of barrier $yanization, which slows down

the system processing speed.

4.8.6 Comparable Experimental Study

In order to study the SIGPS system, we compared the thre@musrsf the PageRank

algorithm as follows.

134

20 20
18] e T o Ve | 8. V
] 6‘7,u- "7 16 \v4 v
... A 1 AN— 7
141&_._“._,,,,...- i\ AN 2 177 AA e
52 T B0 e)]
§ wof = o % ‘" B B, |
UQ'J- q:a E E 7 %) . E |:;|
° 4 PRank --[+]-
4L PageRank |E| 1 2 SSSP
21 SSSP - | 0 e o | DSM g)
1%00 10000 100000 1 6[(;2M V1 007 /k%/w 4/)%;/ %o %, 404»
V] ° * CHE El o
(a) Synthetic Graphs (b) Real Graphs

Figure 4.15: Speedup Study

First of all, we write the PageRank algorithm in a C routinattts only run by
the desktop central processors, which is also named as “©Btihe of PageRank”.
PageRank algorithm computes one vertex’'s PageRank vahgthe PageRank value of
all its neighbors. This leads to an iteration within the boélyhich the processor travels
along the graph to update the PageRank values for all verthaeinitial PageRank value
for all vertices are needed and an ending condition is set fermination of the process.
Figure 4.16 lists the main components of the “CPU routineagfjdRank”. Specifically,
Algorithm 17 calculates the sum of out degree for each vekléihin the two embedded
loops, CPU travels through the graph, pre-computes thelegrtee of each vertex and
saves the sum into the array “sumOfOutDegree”, which rectivd out-degree values of
each vertex. Algorithm 18 travels the graph for the secome tand computes the new
PageRank value for each vertex using the sum of all the vemexghboring PageRank
value divided by the out-degree of the neighbor. Algoritf®rdisplays how to compute
the end condition.

Secondly, we implement the PageRank algorithm using purBACprogramming
model. Figure 4.17 lists the pure cuda counterparts of tHlJ@outine of PageRank”,

which we name it as “Pure CUDA Routine of PageRank”. Instefagsing embedded

135

Algorithm 17: Calculate the sum of out degree of each vertex

1 forall the i < numberOfVertex do

2 sum=0;

3 forall the j < numberOfVertex do

4 | sum+ = *(Graph + ixnumberOfVertex +) ;

5 sumOfOutDegree [i] = sum;

Algorithm 18: Calculate the new PageRank value

1 forall the i < numberOfVertex do

2 sum=0,k=0,j=1i;

3 forall the j < numberOfVertex x numberOfVertex do
4 if x(Graph + j) ==1then

5 if sumOfOutDegree [k]! = 0 then

6 L | sum += PR[K] /sumOfOutDegree [K] ;

7 k++, | += numberOfVertex;
s | PRTempl[i]=(1-a)+ax(sum);

Algorithm 19: End Condition

1 bool END(a[], b[]){

sum=0;

forall the i < numberOfVertex do
sum += abs(a]i] - b[i]) ;

if sum< END_WEIGHT then
return true ;

return false ;

0 N o g b~ WODN

Figure 4.16: CPU Routine of PageRank

136

Algorithm 20: Use CUDA to Calculate the sum of out degree

1 __global_ void calculateSumOfOutDegreeimOfOutDegree, *Graph) {
2 index = blockDim.xx blockldx.x + threadldx.x ;

3 if index < numberOfVertex {

4 sumOfOutDegree [index] =0 ;
5
6

forall the j < numberOfVertex do
sumOfOutDegree [index] += *(Graph +
indexxnumberOfVertex +) ;
T}
8 }

Algorithm 21: CUDA Kernel Function PRAdd: Calculate the PageRank value

1 __global_void PRAdd(*PR, *Graph, sumOfOutDegree) {

2 index = blockDim.xx blockldx.x + threadldx.x ;

3 if index < numberOfVertex {

4 sum = 0, k = 0sumOfOutDegree [index] = 0, j = index ;
5 forall the j < numberOfVertex x numberOfVertex do
6

7

8

9

if *(Graph + j)&&sumOfOutDegree[k] {
sum += PR[K] /lsumOfOutDegree [K] ;

}

k++, j += numberOfVertex;
10 PR[index] = (1 -a) + ax(sum) ;
11 }
12}

Figure 4.17: Pure CUDA Routine of PageRank

loops to travel through a graph by one CPU thread, Algorittima@plies CUDA pro-
gramming model and employs a batch of parallel GPU threatardle vertices. Each
GPU thread executes one vertex and is indexed by the formth&i2nd line. Therefore,
for each GPU thread, there is only one iteration displayeahfiine 5 to 6, which is used
to calculate the “sumOfOutDegree” for the vertex it handlakyorithm 21 is a kernel
function that is used to compute the PageRank on CUDA-er@Blds. Similarly, there
is only one iteration in the kernel, which reduces the coxipief the algorithm.

The third version is what we implemented for the SIGPS agdtat Algorithm 11.

The vertex API simplified the algorithm and the system hamdletuning of the CUDA

137

execution configuration.

1000

Pure CUDA Routine IEI L L p CUDA Routi 21
CPU Routine ~& . Y 18rPure Slpe e
800 SIGPS s N J 16}
A ial
‘2 600 N g 1ol |
£ A E]
(0] v 8 1 v
E a0t om0 g e B 085 -]
[e e :[] -
Yy ZX 06T
200 | s 0.4
v 02} " v
e ‘ | | 5 | | |
100 200 300 400 500 100 200 300 400 500
V| V|
(a) Execution Time (b) Speedup

Figure 4.18: PageRank Methods Comparison

Figure 4.18 compares all the three versions of PageRankithigo Specifically, in
Figure 4.18(a) all the three methods take more executioe tinle the graph size in-
creases. One one hand, when the vertex size is less thanh8GPl method is the
fastest among the three routines. This is because the gdamallof the algorithm over
small graph is low and GPU-accelerated routines have exeeheads. On the other
hand, when the graph becomes large enough, the sufficialtglem makes the CUDA
routine run faster than the CPU one. Noticeably, SIGPS isliwsest among the three
methods. This is caused by the systematic cost as well agnicer®nization overhead.
SIGPS has seemingly worse performance than CPU routinererQUUDA one. How-
ever, the CPU and pure CUDA routines are stuck when the vertexof the graph is
larger than 500. These two routines can not handle the situtitat a graph is too large
to be stored in the memory. In contrast, SIGPS is equippduseiteral mechanisms with
which a large graph is automatically divided into severaadbrsub-graphs. Moreover,
SIGPS has several components that are specifically designadcelerating PageRank
processing, such as communication, synchronization atmd@BU execution configu-

ration. Last but not least, the generic API provided by SIGR&e PageRank algorithm

138

composition easier than the others. In Figure 4.18(b), vgnaph vertex size varies from
100 to 500, both GPU-accelerated methods have an incresgeeglup curve. SIGPS
has a lower speedup while the graph is not too large. The afrgare CUDA routine

stops at around 500 vertices point while the curve of SIGRScatinue to grow.

4.8.7 Computing Capability Study

PageRank computation is a non-trivial task. The biggedtarhge a system encounters
is that the input data is extremely huge. To study the extetiteocomputing capability
of SIGPS, we try to generate synthetic graphs that can ektteisystem resources such
as main memory, GPU memory or thread pools. Since main memmarych larger than
GPU memory and the thread pools are pre-organized as fixedskicks and grids, we
found that GPU memory is the primary bottleneck that con#isahe scalability of the
system. Figure 4.19 displays the results of our computimgloiity study of SIGPS.
More specifically, Figure 4.19(a) shows the GPU global mgnusage of SIGPS while
the graph size (vertex size) increases fro®0 to 10”. We can see the GPU global
memory taken by the graph rises exponentially. When theexesize arrived0?, the
graph size cost nearly 4 Gigabytes, which exhausts the Géthagnemory. Meanwhile,
the global memory available decreases rapidly, the linespof which are marked by
the inverted triangles. Since SIGPS divides a large grajghsubgraphs automatically,
we can see in Figure 4.19(b) that the number of subgraphsSil&R®S creates grow
exponentially as well. The more partitions a graph is dididbe more replication of the

edges are generated. Then the total memory space the graginereases.

139

N N w 16 Bl
ssp . [a 14
@ 3 R 12
G} Av4 P
g 251 y Gr:phlsi)zle [. % 10 +
(%) emory Available -7 5
2 2 y N _g) 8
S 15} 3
éE’ 17 |
ar ET
0.5 S T
e (] \% 21 e =
q;'d E))) lt—% , ‘ ‘
0 10000 100?\(/)|0 1e+006 1e+007 1990 10000 10|(\)/0|00 16+006 16+007
(a) Memory Usage (b) Number of Subgraphs

Figure 4.19: Computing Capability Study
4.9 Summary

In this chapter, we present SIGPS, an iterative graph psaugmodel on GPU-accelerated
personal computing system. We propose a generic vertex @&Riders to implement
their graph algorithms. By automating GPU execution coméigan and parallelizing
GPU device functions, we simplified GPU programming for aséurthermore, emu-
lating shared memory model is designed for vertex commtinicand data movement
within GPU memory. We have conducted extensive experinterdiow the effective-

ness and efficiency of our system.

4.10 Appendix

4.10.1 System Installation

To install the SIGPS system, we need a computer system esfivpith a CUDA-enabled
NVIDIA GPU. Besides, an official CUDA toolkit and the boodtiary are also required

to be installed in the system.

140

Windows Operating System

In windows, we recommend users to use Microsoft Visual $tadi the programming
and compiling platform. In this document, we will use MSV Sasxample to introduce

how to set up the system.

0 sioops (DebugWin32) - Microsolft Visual Studio (Admiistrator)
File Edit View VAssistX Project Build Debug Team Tools Test Architecture Analyze Window Help

© - | B ¥ | Search Code Samples: | A |EdgelnGPU -lReR&E | | n L
Solution Explorer - siggps v 8 x PageRankVertexh # X
dlo-2d@|smR [raeronkvenexcom -]> void compuren
o)
rch Solutio i) P - | 25Pagel siggps Property Pages Pl x]
7 Solution siggps’ (1 projec -
tion siggps'(1 project) Active(Debug) ~| Blatform: [Activewina2) -
4 (5 siggps
b & External Dependencies Common Properties ‘Additional Include Directories C:\Program Files (x86)\boost\boost 1 52
4 & HeaderFiles 4 Configuration Propertie] | Additional #using Directories.
4 @an General Debug Information Format Program Database for Edit And Continue /Z1)
® Vertexh Debugging Common Language RunTime Support
B VertexAPLh VC+ + Directories Consume Windows Runtime Extension
B VertexAPIGPUN “C/Cer Suppress Startup Banner Yes (/nologo)
VertexDataForGPU.cuh General Warning Leve —
© VertexinGPUA Optimization Treat Wamind Adcitional Indude Directories e
B VertexinPartitionn Preprocessor SDL checks
4 & Applications Code Generation
® PageRankVertexh Language C\Program Files (xB6)\b0ost\boost_1.52.0
B Precompiled Hea C:\Program Files\NVIDIA GPU Computing Toolkit\CUDAVS.O\include
i @ Output Files CA\Program Files\NVIDIA Corporation\NvToolsExtyinclude
Browse Informatic A Corporation\CUD/
© Communicatorh N .
e
CommunicatorinWorkerh i i - ‘

B CommunicatorinWorkerMar
Command Line

vevggvvvTYgvIYTTTSTYQvT v v v

B Communicatorstateh g St
® Datalocatorh Liner Inherited values:
B Messagen CUDA Linker $(CudaToolkitincludeDin) &
B Messagespoolerh } Manifest Tool
4 & Graph XML Document Gene|
B Edgeh B Browse Information
B GraphGeneratorh Build Events
B GraphPartitionh rTE | Custom Build Step
© GraphPartitionerh Code Analysis B -
© GraphPartitioninWorkerh Output Additional Incl
b 8 Logger Showal Specifies one orf| [7] inherit from parent or project defauits R
4 & Master . d i
© IdManagerMaph T
1 Cancel
B ManagerToMastern i D -
B Mastermplh i - - - =
4 & Utilties 1> VorkerlianagerTnpl. cpp

Solution Explorer &l alts 1 Find Symbol Resuts Undo Close Call Hierarchy

This item do viewing

Figure 4.20: Additional Include Directories

o sioops - Microsoft Visual
File Edit View VAsisX Project Buld Debug Team Tools Test Architectwe Analyze Window Help
© - © | W | Search Code Samples: | -|| A |EdgelnGPU B~ - . | | -
Solution Explorer - siggps - 4 x PageRankVertexh # X
@lo-2am(+sRR | - oo igops\sigaps\siagp:
Search Solution Expl gops (i) 2 - |5 Pagel siggps Property Pages P x|
&7 Solution 'iggps’ (1 project) -
o8 Siggesdl projec) Configuration: [Active(Debug) »] Platior: [Active(Win32) =] [configuaton Mnager
4 siggps J
b & Exteral Dependencies Common Properties CUDA Toolkit Custom Dir
4 & Header Files 4 Configuration Propertie | Source Dependencies
4 @A General Compiler Output (obj/cubin) $SQntDin%(Filename)2%(Extension) abj
b B Vertexh Debugging Additional Include Directories C:\Program Files (x86)\boost\boost 1 52 0;C:\Program Files\NVIC.
b B VertexAPLh VC++ Directories Use Host Include Directories Yes
b B VertexAPIGPUN GlCre Keep Preprocessed Files No
b VertexDataForGPUcuh 4 CUDAC/CH+ Keep Directory §(CudalntDin
b B VertedinGPUh Emon Generate s N
b © VertexinPartitionh neies NVCC Compilation| Aditional Include Directories S 0 i ===
4 &l Applications Hast Target Machine Plaj
b B PageRankVertexh Command Uine C:\Program Files (x86)\boost\boost 1.52.0 B
b B SSSPVertexh Linker CA\Program Files\NVIDIA GPU Computing Toolkit\CUDAS O\include
4 & Comm CUDA Linker CA\Program Files\NVIDIA Corporation\NvToolsExt\include
Manifest Tool c Corporation\CUDA
b B Communicatorh
XML Document Gene Sé(AdditionallncludeDirectories)
b B CommunicatorinWorkerh ~
Browse Information
b B CommunicatorinWorkerMar <)
b o - Build Events
§ ienmncnse Custom Build Step Inherited values
atalcator! Code Analysis
b B Messageh 2
b B Messagespoolerh }
4 & Graph
b B Edgen
b B GraphGeneratorh T i
b B GraphPartitionh T
b © GraphPartitionerh ||| Clnherit from parent or project defauits e
b & GraphPartitioninWorkerh Additional Include Dif|
b s Logger prom Specifies one or more| —
4 &l Master e
o1:27, —
b B ldManagerMaph 5 ™
b B ManagerToMasterh Total T ancel oo
b B Masterdmplh
4 @ Utlties Rebutld All: 1 succeeded or up-to-date, 0 failed, 0 skipped
“« - y f«
Solution Explorer [T

“This item does not support pre

Figure 4.21: CUDA Additional Include Directories

141

n N
| WorkerinGPU |edoen

[Vertexcop

™ W acditional Library Directories =

[EIE3EES|

No
C:\Program Files (x&6)\boostiboost 1.5:
Yes

Figure 4.22: Additional Library Directories

After installing the CUDA toolkit and boost library, userarccreate a new CUDA
project (by setting up the CUDA compiling rules) and add tbarse code of SIGPS
into the project. Then users need to open the project prppeades under the solution
explorer and add the boost library and the CUDA toolkit itateon path under the path:
“Configuration Properties>-C/C++ > General > Additional Include Directories” and
the path: “Configuration Properties CUDA C/C++ ->> Common > Additional Include
Directories”. Moreover, the paths to the libraries of bddstary and the CUDA tookit
are also needed in the path: “Configuration Properti€¥€++ -> General > Additional
Libraries Directories”. Figure 4.20, 4.21 and 4.22 areanses of how to setup project
environments.

After setting up the project environment, users can add acteess file under “Header
Files/Applications” foler. For example, in order to implent the PageRank algorithm in
SIGPS, users can add a new vertex class file named “PageR#mkk& and implement
their PageRank algorithm into the extended Vertex classtl@dierived virtual class

member “Compute()”.

142

Chapter 5

Asynchronous Iterative Graph

Processing System on GPU

In this chapter, we are going to design an asynchronous noddmimputation on
GPU. An update function is able to use the most recent valiideedges and the ver-
tices. The scheduling of all updates is dynamic. The pdrglilding windows method
designed in this work implements the asynchronous modelRid é1d exposes updated
values immediately to subsequent computation. Furthespacgeneric GPU-accelerated
graph processing system, ASIGPS, is implemented to sugpgmnthronous concurrency
on GPU hardware. Optimized C++ execution engine leveragessive multi-threading
and asynchronous 10. A new software hierarchy is designg@dawde better encapsu-
lation and higher modularity. Update/Sync operations asghed to have higher flexi-

bility in synchronous and asynchronous GPU programming.

143

144

5.1 Problem Statement

Current graph systems are able to scale to graphs of bilbbresiges by distributing
the computation. To use existing graph frameworks, onedsdawith the challenge
of partitioning the graph across cluster nodes. Findingiefit graph cuts that mini-
mize communication between nodes, and are also balancadiasd problem. More
generally, distributed systems and their users must dehl wanaging a cluster, fault
tolerance, and often unpredictable performance. From éhgppctive of programmers,
debugging and optimizing distributed algorithms is hard.

Since SIGPS is based @ulk Synchronous Parallel (BSP) Model, it is also con-
strained by the limitation of BSP model. SIGPS execute allexecompute functions
in lock step, which can only observe values from its previesation. BSP is often
preferred in distributed systems as it is simple to impletygmd allows maximum level
of parallelism during the computation. However, after eefration, a costly synchro-
nization step is required and system needs to store all valiigoth iterations.

There are some obvious drawbacks for synchronous compuightinodel. On one
hand, the synchronous abstraction forces some cohesigalyected algorithms to be
torn down into parts and transformed into an embarrassipa@lsilel computations. Ad-
ditionally, synchronization also forces most of the fase#uds to wait for individual
slowest one, which greatly harness the processing speedheédother hand, though
some parallel graph algorithms are inherently designee wyhchronous, most iterative
graph processing algorithms are difficult to be executedtssonously after paralleliz-
ing. In some especial cases, BSP fails to converge at alchwiill block all the threads
from executing. In addition, most of the current graph pssoay systems base on the
BSP model and do not support any asynchronous processimgention asynchronous
computation on GPUs. On GPUs, synchronous processingtesegilidevice functions

concurrently and parameters for each of them need to be natpafore the computa-

145

tion.

Conversely, asynchronous processing do not need to tedr @p@ansform cohe-
sively connected algorithms. No thread need to wait for edbRr at the end of every
single iteration. They can run as fast as they can. More@/Y hardware may execute
device functions in any style. The functions can use the srexstnt-generated parame-
ters. Asynchronous computation accelerates convergémeary numerical algorithms.

Another problem that needs to be mentioned is that it is ehgk to store a large
graph in main memory or GPU memory during processing. Furtbee, efficient mod-
ification of the edge values demand the capability of randocess, which is also prob-
lematic in most of the current systems. Advanced storagearserth as SSD can only
support tens of thousands of random reads/writes per seednig millions of access
may be required for a huge graph. Exploiting graph locabtglso limited due to the
skewed vertex degree distribution. System performancepsadictable as it depends
on the graph structure. In ASIGPS, we solved the random aquedblem by writing
updated edges into a scratch file, which is then disk-soged,used to generate input
graph for next iteration. However, this method cannot becieffitly used to perform
asynchronous computation. Therefore, an efficient and cesspd data format and a

new access scheme are in need for our asynchronous gra@sgirag system.

5.2 Graph Formats for Asynchronous Computing on GPU

5.2.1 Compressed Row/Column Storage on GPU

The GPU-accelerated system stores the graph on disk arsfersuit to be processed
in GPU memory. An efficient data format is required to reduatadransfer time and
space cost. It should be equivalent to adjacency formatsedgds need to be stored

consecutively in the memory address or file. In addition,esdgr out/in edges of one

146

vertex is required to be loaded fast. In order to transfeplgsaacross disk, main memory
and GPU memory, we employed an compressed graph formasimtk.

The Compressed Row Storage on GPU (CRSG) format puts thecpudrst non-
zeros of the matrix rows in contiguous GPU global memory tiocs. Assuming we
have a non-symmetric sparse matdxwe create three vectors: one for floating point
numbers (val) and the other two for integers (oud, row_ptr). The val vector stores
the values of the non-zero elements of the matrias they are traversed in a row-wise
fashion. The caind vector stores the column indexes of the elements in theegtor.
That is, ifval(k) = a;, thencol_ind(k) = j. The rowptr vector stores the locations
in the val vector that start a row; that is, whl(k) = a;;, thenrow_ptr(i) < k <
row_ptr(i+1). By convention, we defineow ptr(n+ 1) = nnz + 1, wherennz is the
number of non-zeros in the matrik The storage savings for this approach is significant.

Instead of storing? elements, we need ondyinz + n + 1 storage locations.

Example 6. As an example, consider the non-symmetric matrdefined by:

The CRSG format for this matrix is then specified by the arfay$, col ind, row ptr}
given below in Figure 5.1(a).

Analogous to CRSG, there is Compressed Column Storage on(GE85G), which
is also called the Harwell-Boeing sparse matrix format onlGHhe CCSG format is
identical to the CRS format except that the columnd afre stored (traversed) instead
of the rows. In other words, the CCSG format is the CRS foraratf.

The CCSG format is specified by tharrays{val, row_ind, col_ptr}, where rowind

stores the row indices of each non-zero, andpilstores the index of the elements in val

147

which start a column ofi. The CCSG format for the matrix is given by Figure 5.1(b).

row_ptr|0|2|4|5| coI_ptr|O|2|3|5|

col_ind|0|2|0|2|1| row_ind|0|1|2|0|1|
val[3]4]2]1]0] val [3]2]of4a]1]
(@) CRSG (b) CCSG

Figure 5.1: Compressed Graph Storage on GPU

5.3 Asynchronous Computational Model

A directed graphG = (V, E) is named as a directed graph. Each vertexi” and each

directed edge = (source,destination) = (u,v) € E,1 < u,v < |V| are associated with
a value respectively. An update function is designed tosscaad modify the value of a
vertex and its incident edges. The update function is exeldiar each vertex iteratively

before a termination condition is reached.

Algorithm 22: Generic API For User Derived Vertex Update Function
1 __device_ void update(v)

2 Read values of all edges of vertex v ;

3 Compute the new value for vertex v ;

4 Compute and assign the new values for all edges of vertex v ;
5 }

The asynchronous computational model on GPU is implemdnyeday of Paral-
lel Sliding Windows on GPU. We will introduce Parallel Shdj Windows on GPU in
the following section. Algorithm 22 is the generic API forauglerived vertex update
function. The underlying three lines in this function déserthe main tasks executed by
this GPU device function. Algorithm 23 is an example of theramentioned “update”

function, which is described in pseudo-code. All edge valre read into some array in

148

Algorithm 23: Pseudo-code for Vertex Update Function

__device_ void update(vY
for (all edges e of vertex v
Array[e.index] = e.value ;
¥

1
2
3
4
5 v.value = f(Array[]) ;
6
7
8
9

for (all edges e of vertex v
e.value = g(v.value(), e.value()) ;

}
}

line 3. Function f executes computation over the array amestit as the vertex value in
line 5. From line 6 to 8, the vertex value is spread to all itghleoring edges, if some

condition coded within function g is satisfied.

5.4 Parallel Sliding Windows on GPU

Parallel Sliding Windows on GPU (PSWG) can process a gragfhmutable edge values
efficiently from disk through main memory, with only a smalimber of non-sequential
disk accesses and memory transactions. PSWG supportsythehaesnous model of

computation. There are five steps for PSWG to process a graph:
1. a subgraph is loaded from disk into main memory;
2. the subgraph is transferred to GPU global memory;
3. the vertices and edges are updated,;
4. the subgraph is transferred back to main memory;
5. the updated values are written to disk.

We then explain the aforementioned steps in the followirngiges.

149

5.4.1 Loading the Graph From Disk to GPU global memory

Using the PSWG method, the verticésof graphG = (V, E') are split intoN disjoint
segment. For each segment, we associate a block, whicls stibtbe edges that have
destination in the segment. Edges are stored in the orddreaf $source. Segments
are chosen to balance the number of edges in each block; thieanwf segmentsy,

is chosen so that any one block can be loaded completely iRid Global memory.
PSWG does graph computation by processing vertices onessg@ma time. To create
the subgraph for the vertices in segmeriheir edges must be loaded from disk.

As is shownin Figure 5.2, block(i) contains the in-edgegfiervertices in segment(i)
and is loaded fully into GPU global memory. We call such blogcthe memory-block.
Because the edges are ordered by their source, the out#uidhe vertices are stored
in consecutive chunks in the other blocks, requiring adddl N - 1 data reads. Im-
portantly, edges for segment(i+1) are stored immediatitdy the edges for segment(i).
Intuitively, when PSWG moves from a fragment to the nextjdes a window over each
of the blocks. We call the other blocks the sliding windowdi®. Figure 5.3 illustrates
the process of loading the graph. Vertices of the graph aideti into four fragments.
there are one block linked to each fragment. PSWG constamgssubgraph for each
fragment. One fragment in dark is first stored in GPU globahmey and all in-edges
for the vertices in this fragment can be read directly. Al-edges are read in the sliding

window blocks from the disk.

5.4.2 Parallel Updates

Parallel Sliding Window on GPU (PSWG) executes the usenddfupdate-functions
for each vertex in parallel when the subgraph for segméiais been fully loaded from
disk. To prevent race conditions (one edge value was reavbyehd vertices at the

same time), we enforce that each execution of PSWG wouldrgenthe same value.

150

GPU 1 eeeees Vi Vo eeeees V]
global fragment(1) | fragment(2) fragment(N)
memory
vain L
memory mmap(1) mmap(2) mmap(N)
image
block(1) block(2) block(N)

Figure 5.2: PSWG Block Mapping

As is noted in Definition 3.5.1, only cut-edges can be updaigarallel. According
to the asynchronous model of computation, all inner vestaned peripheral vertices are
considered as critical vertices. Each critical vertex witice the preceding updates of
other critical vertices that are connected to it. Thereféoe algorithms that demand

consistency, critical vertices are executed in sequenitdsr.

5.4.3 Updating Graph to Disk

After all vertices and edges are updated, PSWG writes thesk teadisk, replacing
the old data. Actually, PSWG loads the edges from disk inddstpcks. The edge
blocks are cached in main memory before being sent to GPLAginbmory. When the
fragment subgraph is created, the edges are referencedhésrpdo the cached blocks;
modifications to the edge values directly modify the datakdahemselves. The active
block and the active sliding window of other blocks are eritto disk. Then PSWG
moves to the next fragment and reads the new blocks from Asks mentioned above,

the number of parallel disk writes for a fragment\'s

151

block 1 block 2 block 3 block 4

fragment 1

fragment 2

fragment 3

fragment 4

Figure 5.3: PSWG Sketch

5.5 System Design and Implementation

5.5.1 Block Graph Data Format on GPU

The block graph data format on GPU is designed as an efficreht@ampressed format
for storing the blocks on GPU. Since most of the graph minilggpr&ghms work on
graphs with a fixed structure and update the edge data onlyn&yeseparate the graph

structure from its associated edge values. Besides eixpgjdiite sparsity of the graph, we

152

Algorithm 24: Parallel Sliding Windows on GPU (PSWG)

1 for(it = iteration.begin(); it != iteration.end(); ++itY

Initialize(fragments);

for(frag = fragments.begin(); frag != fragments.end()frag
loadSubgraphToGPU(frag, subgraph) ;
updateVertexOnGPU() ;
loadSubgraphFromGPU(frag, subgraph) ;
subgraph.blocks[frag].UpdateFully() ;
for (ix = fragments.begin(); ix != fragments.end(); ++iX)

if(ix |= frag)
subgraph.blocks[frag].UpdateLastWindow() ;

© 00 N o 0o b~ W N

I e e =
w N B O
——
——
——

can generate and access a graph both on GPU and disk. Themdeck components
currently, namely adjacency block and edge data block. @fecancy block records the
neighboring information in an order of a concatenate edgg/and an index array. The

edge data block is an array of edge values.

5.5.2 Preprocessing

After reading it from the disk, the system preprocess thelyta generate graph frag-
ments before any further computation. The preprocessoistiens the graph and com-
putes the degree of the vertices by the prefix sum method. fhiegreprocessor re-order
the vertices and divide vertices infé segments. These segments are constrained with
nearly the same degree sum. After that, the preprocesssoman the graph file for the
second pass and writes each edge to a scratch file for eacheragThe processor sorts
the edges in each scratch file and writes them to the compaadt files. In order to assist
efficient computation on GPU, the preprocessor generat@paery binary degree file

that stores the degrees for each vertex.

153

5.5.3 Execution

After preprocessing the raw graph data, the system itefgitprocesses the fragment
subgraphs. Figure 5.4 illustrates the processing itereto one execution fragment.
Loading degree data for the fragment, the system also poeddls edge arrays and vertex
objects in main memory. Then the system executes PSWG tgoto load fragment
data from the disk to GPU global memory. After launching acbaif GPU threads to
execute vertex compute functions in parallel. Symmeitgcéthe system transfers the

updated blocks back to the disk before going to the next fexgm

v

Load degree data

Preallocate edge arrays and
vertex objects

N S

+” Load fromdisk ~~
/| Edges (memory block) [y
“ Out-edges (sliding blocks) |:

\ Vertex values s
\ 7
A P

Transfer block data to
GPU global memory

GPU threads execute vertices
in parallel

Transfer updated blocks bac
from GPU global memory

.+ Writetodisk
,] Edges data (memory block) I\

: [Edge values (sliding blocks) | :

\ Vertex values G
\ 4
N\ 7/

v

Figure 5.4: Execution Flow

154

155

5.5.4 Software Hierarchy Overview

Elementary Graph Mining

Elementary Graph Algorithms Algorithms
User Compute APIs (C++)

Update Sync

Gather Merge Apply Scatter

CUDA Libraries/Drivers

Figure 5.5: Software Hierarchy

ASIGPS is a generic graph processing system that suppgmst@®nous compu-
tation on GPU. Figure 5.5 shows the ASIGPS software hieyaticht consists of five
main layers. The top tier contains elementary graph algmstand elementary graph
mining algorithms that are pre-implemented as a librarye $&cond layer is the user
compute APIs within which users can implement their own atgms. The layer be-
low are the two lower-APIs, “Update” and “Sync”, which can indized to implement
programmable behaviors for vertices. Below “Update” andrtS, there are four col-
lective operations implemented for GPU computations. Téaey“Gather”, “Merge”,
“Apply” and “Scatter”. The substratum is the CUDA librariasd drivers that are the

basic functional component of a GPU-accelerated system.

156

5.6 Programming Model and Application Programming
Interfaces

Programs written for ASIGPS are similar to those written$¢GPS. However, the dif-
ferences are as follows. First, SIGPS is based on Bulk Sgncius Parallel (BSP model,
while ASIGPS do not need to synchronize at the end of eachtiter. Second, SIGPS
emulate message passing for communications among vewités ASIGPS removes
this model and updates the edge values directly.

Algorithm 25 is the generic API for users to program their oségorithms. User
would implement a class that derives their own methods tifarited from ASIGPS
vertex template. During execution, ASIGPS would autonadtirdaunch a batch of GPU
threads to execute vertex computes. Within the vertex “eds()’ function, users can
implement an asynchronous computation via “update()” fimmcand apply necessary

synchronization via “sync()” function.

Algorithm 25: Generic API For User Derived Program Class
1 class DerivedVertex : AsigpsVertexinGRU

2 public:

3 __device _ void compute(}

4 /1 Al gorithmi npl enented by users.

5 }

6 /] oher publ i c nenbers can be added by users.
7 private:

8 [/ Private nenbers can be added by users.

o };

10 __device_ VertexRegisterinGPkDerivedVertex reg ;

Moreover, there are four collective operations are praviog ASIGPS that can be
invoked by users within “update()” and “sync()” function&lgorithm 26 shows the
device function “gather” for the current vertex thread tohga the related values from

its neighbors. “gather” function stores the correspondialgies in an array for further

157

processing.

Algorithm 26: Generic API For Function Gather

1 __device_ void gather(vertexy

2 for (e in vertex.inEdges(){

3 neighborValues[‘e”] = e.getValue() ;

4 ¥

5 vertex.setNeighborValues(neighborValues) ;
6 }

Algorithm 27 displays the device function “merge”, whiclduees all values gath-

ered from the vertex’s neighboring edges.

Algorithm 27: Generic API For Function Merge

1 __device_ void merge(vertexj

2 for (e in vertex.inEdges(){
3 sum += e.getValue() ;
4 ¥

5 vertex.setValue(sum) ;

6 }

Algorithm 28 is the device function “apply”, which updatdeetvertex value using

“function” and scatters this updated value to all out-edges

Algorithm 28: Generic API For Function Apply

1 __device._ void apply(vertex, (*f)(double))

2 for (e in vertex.outEdges(){)

3 e.setValue((*f)(vertex.getValue)) ;
4 ¥

5

Algorithm 29 shows the device function “scatter”, whichlectively sends the cor-
responding values to all out-edges from the vertex neighberalue-array.
Finally, the vertex update function can be written as a casitjpm of “gather”, “ap-

ply” and “scatter” functions. This is displayed in Algonth30.

158

Algorithm 29: Generic API For Function Scatter

1 __device._ void scatter(vertexj

2 for (e in vertex.outEdges(){)

3 e.setValue(vertex.getNeighborValues[‘e”]) ;
4 ¥

5

Algorithm 30: Vertex Update Function
1 __device_ void update(v)
gather(v) ;

apply(v,(*f)) ;
scatter(v) ;

N

a b~ W

5.7 Case Study and Applications

5.7.1 Case one: PageRank

PageRank is an algorithm used by Google Search to rank eslisitheir search engine
results. It is a way of measuring the importance of websigepand one of many factors
used to determine which pages appear in search resultsRBakjevorks by counting
the number and quality of links to a page to determine a rosgmate of how important
the website is. The underlying assumption is that more inapomvebsites are likely to
receive more links from other websites.

PageRank is a link analysis algorithm and it assigns a naalesieighting to each
element of a hyper-linked set of documents, such as the Wittt Web, with the
purpose of “measuring” its relative importance within tle¢. sSThe computations of the
algorithm have several passes, called “iterations” thindtig collection to adjust approx-

imate PageRank values to more closely reflect the theoligtioae value. Generally in

159

mathematics, the PageRank value for any pagan be expressed as:

PR(v)
L(v)

PR(v) 1
PR = ~ 0.1 x — +0.85
(W= 2, Ty ~O10x [+ 085 2

To implement the PageRank algorithm using ASIGPS, we extiead/ertex class
on the GPU to createRageRankVertexuser-defined GPU class. The PageRankVertex
class derives theompute() virtual method, executed by one GPU thread, to calculate

the PageRank value of the vertex.

Algorithm 31: PageRankVertex
1 class PageRankVertex : VertexinGRU

2 public:

3 __device_ void compute()}

4 double sum =0.0;

5 for (e in vertex.inEdges()}

6 sum += e.getValue() ;

7 }

8 int vnum = this>getTotalNumVertices() ;
9 double newPageRank = 0.15/vnum + 0.85 * sum ;
10 this->setValue(newPageRank) ;

11

12 for (e in vertex.outEdges(){)

13 e.setValue(vertex.getValue) ;

14 }

15 }

16 };

17
18 __device_ VertexRegisterinGPPageRankVertexreg ;

Algorithm 31 is an example of user-defined PageRankVerissdmplemented for
asynchronous GPU execution. We take advantage of the gevertex APIs to derive
the function “compute()”. In line 5 to 7, the GPU thread re@dsneighboring edge
values directly and sums them up. A new PageRank is calcliatene 9 and updated
for the vertex value in line 10. In line 12 to 14, ASIGPS spred#us updated value

to all its neighbors. Similar to the situation in SIGPS, gseeed to declare a global

160

variable, instantiated by the class natfageRankVertex” in the last line, to register
this customized vertex class in ASIGPS.

Algorithm 32 is another version of user-defined PageRartkXarass. In this algo-
rithm, we take advantage of the collective operations plediby ASIGPS. It is notice-

able that this algorithm is so simplified that we can writaibinly 4 lines.

Algorithm 32: PageRankVertex
1 class PageRankVertex : VertexInGRU

2 public:

3 __device_ void compute()}

4 int vnum = this>getTotalNumVertices() ;

5 auto calPageRank = [&](X)return 0.15 / vnum + 0.85 * x}
6 merge((*this)) ;

7 apply((*this), calPageRank) ;

8}

o };

10
11 __device_ VertexRegisterinGPtPageRankVertexreg ;

5.7.2 Application

We also implemented algorithms for several other appbeati such as SSSP, Dense
Graph Mining and triangle counting. The first algorithm ig ghroblem of finding a
path between vertices in a graph so that the sum of the weiglite edges in the path
is minimized. The algorithm converges when all the vertelkies are set to be the
shortest distances to the source vertex. There are setgredlons before the algorithm
converges. A temporary shortest distance and a variablaqate are utilized to record
the tentative information. Each vertex starts with an ahitialue. The vertex threads
read their neighboring edge values directly. If the temgasihortest distance is smaller
than the edge value fetched, the tentative distance wileptaced by this smaller one

and its pre-node information will be updated as well. Aftecessing all neighboring

161

edge values, the shortest tentative distance will be coedpaith the vertex value and
the smaller one will be retained as the updated vertex vah$#GPS will compare all
vertex values and their connected edge values in parajtathsonously on GPU. Once
a vertex updates its value, it would spread to all its neiginigoedges and trigger others
to update theirs. The second algorithm is based on labebgain. At the beginning,
each vertex writes its id (“label”) to its edges. Then vertdwoses the most frequent
value (“label”) according to its neighboring edge valudal§els”). ASIGPS schedules a
vertex only if the value (“label”) in a connecting edge is apet. Vertices with the same
value (“label”) are regarded as the the connected denseapitngThe third algorithm
is to count the number of edge triangles incident to everjexerTo efficiently join the
neighbors of two vertices, the graph is re-ordered accgridivertex degree. A subgraph
fragment with higher degrees are stored in GPU global memodyother fragments are

then read from the disk for comparison.

5.8 Performance Comparison with SIGPS

We have conducted our main performance comparison expetsroa the desktop equipped
with an NVIDIA GeForce GTX 760 graphics card. The desktoprigah by a 4-core i7-
4770 x64-based central processor (8M Cache, 3.40 GHz). fphigs processing unit
has 6 multi-processors, each of which has as many as 192ssingecores (8M Cache,
1.15 GHz). The main memory is 16GB while the GPU global menisgGB. The
PageRank algorithms implemented for SIGPS and ASIGPS a@ited on the massive
graphs to compare the performance and scalability.

We employ synthetic and real datasets in this study. Expmariad synthetic graphs
are generated by the system graph generator componentie& ségraphs with varying

vertex sizes from03 to 107 are created. Real graphs include flickr, DBLP, PPI, and

162

Netflix datasets. Flickr graph is derived from a well knowmfzhsharing social network.
There are 1,715,255 people and 22,613,982 sharing resaijpmecorded in the Flickr
graph. The DBLP dataset records 23136 authors and theird95d®&uthorship. The
Protein Protein Interaction (PPI) graph contains 17208 adtions among 4930 proteins,
which records the behavior of the entire interactomicsesystf a living cell. There are
480,000 customers and 17,000 movies in the Netflix datasbish are generated from

an American on-demand internet streaming media.

5.8.1 Scalability

So as to compare the scalability of SIGPS and ASIGPS, we riRdlgeRank algorithms
on synthetic and real graphs with increasing sizes. Figugdllbistrates the growing
tendency of the running time of the corresponding algorghwithen graph size increases
exponentially, the elapsed time of processing a graph ugegth an accelerated speed.
More specifically, in Figure 5.6(a) PageRank algorithmseaexuted on synthetic graphs
with vertex size ranging from03 to 10”. We can observe that when a graph is small,
system SIGPS runs faster than ASIGPS. This is because ASi&XeS longer time to
prepare data before the algorithm is executed. While thphgsdze increases, more
GPU threads are employed to operate concurrently. There iseed for threads of
ASIGPS to wait for each other between consecutive iterafiasile threads of SIGPS
are forced to wait for each other by obvious barriers. Ttwegfas graph size increases,
PageRank for ASIGPS runs faster and faster than that for SIGimilarly, Figure 5.6(b)
displays the increasing tendency of the elapsed time ofageRank algorithm executed
on several real graphs. ASIGPS runs faster than SIGPS ognagaths when graphs are
large enough. We notice that SIGPS runs faster on the NetflstdMie and N-Rating
graphs, PPI graph, and DBLP graph, while ASIGPS has betttarpgance on the larger
graphs, S-Market and Flickr.

163

2048 : \ ‘] 1024 F
1024 | A st
é 512 | ‘ ' % 056 |
_qé 256 E 128 |
5 3
§ 128 | 3 64
w 16A SIGPS]
SIGPS [} 1 L L) (ASIGPS -Z&-]
S O S A,
1 ‘ ‘ ASIGPS A ‘ Y, ’k/%,?/ N % 4%
1000 10000 100000 1e+006 1e+007 % %, %
V| © E| ‘
(a) Synthetic Graphs (b) Real Graphs
Figure 5.6: Execution Time
5.8.2 Data Communication
- " SIGPS [} D
T1000 [ASIGPS Ak
3 A
g 100} =
£ BB &
)
£ g
= 1
g 0.1 D AN
© A
O
0.01 A

10 100 1000 10000 100000 1e+006
Bytes per Transfer

Figure 5.7: Communication Cost

To compare the communication cost of the two systems, weyshaldata move-
ment, calculate the communication throughput and plot timeligure 5.7. We increase
message size and compare data moving in the two systemgeFgushows the data
transfer time when the updated edges/messages size iasedieSIGPS uses message
passing mechanism that transfers updated “messages” tomsnory while ASIGPS
directly writes edges to GPU global memory. In the figure,F83akes more communi-
cation cost than ASIGPS. We can observe that a messageetrémsfiiain memory uses

around 20 microseconds. When the data transferred is tge, ldris packed in several

164

messages and are sent in queue, which increases the tatalTdws turning point of

ASIGPS curve means the system start to transfer edges tomaairory from the GPU

global memory.

5.8.3 Speedup

24 : : : 4 15 : ‘ ‘ ‘
e A
» I:] A
ge| A s P a— Bl
o} o 9 . . @
g S 2
(% 121 & EIEI 4
R — P El SA
q:] @ EI . A
} " SIGPS | A SIGPS -oofo=i]ee
4A""" ‘ ‘ ASIGPS AN ‘ 3 ‘ ‘ _ ASIGPS - A
1000 10000 1 OOR/(iO 1e+006 1e+007 10000 1 00000|V| 1e+006 1e+007
(a) Synthetic Graphs (b) Real Graphs

Figure 5.8: Speedup

To compare the speedup of SIGPS and ASIGPS, we apply the BagaRjorithms
on the two systems respectively. The PageRank algorithemgxacuted concurrently
by thousands of GPU threads and the sequential mode of SIS&S to be the base-
line. Figure 5.8 displays the comparison of the speedupswiesalgorithms are run on
synthetic and real graphs. More specifically, Figure 5.Bi(&trates the speedups when
the algorithms run on synthetic graphs. From the plot, teedpp curve for SIGPS are
steady and that for ASIGPS has an increasing tendency. Wigegraph size (vertex
size) is smaller than 10000, SIGPS has a higher speedup t888PS. The ASIGPS
has the burden of preparing data and low parallelism malebehefit of the asynchro-
nization ineffective. While the graph size increases, feedup of ASIGPS goes up
accordingly. Figure 5.8(b) displays the speedups whenlgeithms are executed on

real graphs. Similarly, when the graph size (edge size) allemthan around 60000,

165

SIGPS has a higher speedup. And while the graph grows |&§GPS takes the lead

in speedup and performance.

5.9 Summary

In this chapter, we proposed ASIGPS, an asynchronousiiteigtaph processing model
on GPU-accelerated personal computer system. ASIGPS wsamdd as an alternative
to SIGPS. In this chapter, we proposed an asynchronous datigpumodel, PSWG, on
GPU. We designed new graph formats for asynchronous congpah GPU. A set of
generic APIs are also provided for users to implement their algorithms. Collective
GPU operations are also provided for efficient GPU programgmAs a generic graph
processing model on GPU, ASIGPS is both sufficiently expregs implement a wide
range of graph processing algorithms, and formidably powéo drive efficient large

graph processing.

166

Chapter 6

Conclusion and Future Work

In this chapter, we conclude this thesis and address some=fuiork on the basis of
the proposed graph processing model/system and methobsithésis. Specifically,
Section 6.1 provides a brief summary on the contributionthefthesis. Section 6.2
formalizes a few promising research directions and apfpina to extend our current

studies.

6.1 Summarization

This thesis focuses on utilizing GPGPU techniques oveelgrgph mining problems.
While traditional processing techniques are only appledb the graphs of limited
sizes on general computer systems, all of these technigaesgsing graphs exceeding
specific sizes encounter bottlenecks in the system, whepuatng power is no more
enough and graphs are too big to be stored in the memory. Tgrebéems prohibit
the use of efficient graph processing algorithms on the geémemputer systems with
quickly evolving large graphs.

The state-of-the-art GPGPU techniques are utilizing maorg-graphics processors

to perform general purpose computation. It was found thagBP techniques greatly

167

168

accelerate graph triangulation algorithm. Comparing it methods provided by
Wang [51], the speedup gained by GPU-accelerated triatignlés around 5 to 20,
which is quite remarkable (Chapter 3). Triangulation ndiynfunctions as a basic
approximative module for dense graph mining. A possibldanation is that the ap-
plication of SIMD multi-threading model on many-core GPUdremely extends the
inherent parallelism of the graph and algorithm. This resuggests that GPGPU tech-
niques can be employed to accelerate graph mining algositiime work in this thesis is
the first attempt to accelerate graph triangulation usin@G BB techniques. The finding
is significant for personal computers as it provides a pa@ksblution for large scale
domain applications, which previously can only be processemain-frame/distributed
systems.

After finding the methods for breaking the system bottlesegke opt for a system-
atic and generic solution for efficient and economic larggpgrprocessing. Therefore,
a synchronous graph processing model over GPU-accelguit#drm was designed in
Chapter 4 and a generic graph processing system was bulitsomodel. The main dif-
ference between the model/system here and the existing grapessing library is that a
set of generic APIs are provided for assisting users to cemfteir own algorithms. Us-
ing the template of this model/system, existing or usemeefigraph mining algorithms,
including those of massive domain applications, can bdyemsplemented on top of
general computer systems with limited resources. MoredvBtJ execution configu-
ration/process is automated and transparent to usersbleléireading mechanism and
hierarchical module architecture have given the systemméxgendibility and scalability.
This system can bring an impressive impact over the grapigoommunity.

However, the synchronization exerted by the model fordesediices represented by
the light-weighted GPU threads to wait for each other. Beedbe degree distributions

of these large scale domain graphs are highly skewed, a ityapbthe vertices with low

169

degrees have to idle for most of the time. This has greatgcedtl the performance of the
system. Therefore an improved model that provided asymcu® computing was then
proposed in Chapter 5. The parallel sliding windows on GPplamented the model
and exposed updated values immediately to subsequent tatopu Besides the ver-
tex API “compute”, there were two new operational APIs narfssahc” and "update”.

Moreover, four collective GPU operations were providedssist efficient programming.
A new generic graph processing system that supports thelasyrmous processing over
GPU-accelerated large graph applications was re-designédmplemented. The im-
proved model has successfully brought in the asynchronmupating to graph mining,

which greatly improve the performance of the system. Thigrovement is a significant

step for generic graph mining.

6.2 Possible Research Directions and Applications

ASIGPS was designed for asynchronous iterative graph psoug which can be uti-
lized to implement advanced graph mining algorithms. Wesater to extend ASIGPS
to support dynamic graph mining, which demands millionsestex updates at the same
time. A continuous graph updates, accompanied with coantigraph-related com-
putation, incurs great challenge for a single personal edergsystem. Moreover, it is
interesting to deploy SIGPS and ASIGPS over distributed GBtelerated system. Suit-
able adjustments to the computation model should suppeetiping, multi-layer many-
threading asynchronous graph processing. Efficient conwation will be a problem in
this situation.

It is noted that there may be a few problematic issues ingblvéhe system since de-
signing an effective and efficient system across heteragenplatform is complicated.

More efforts need to be paid to solve all the problems rel&tetie implementation of

170

the hybrid system. Additionally, system optimization cattier improve the perfor-
mance. It is noticed that we have only provided several destnative algorithms using
the system. More graph mining algorithms need to be impléeteto constitute the li-
brary of the system. It is also understood that we only focugraph processing on top
of personal computer systems. More data mining applicatan graph processing ac-
celerated by connected distributed GPU nodes are venesttag but beyond the scope
of this thesis. Further study/research is needed to extemdnbdel/system to support
more general data mining applications. This is much mordeanging but will bring

greater impact to the whole data mining community.

Bibliography

[1] NVIDIA CUDA Programming Guide2011.

[2] James Abello, Mauricio G. C. Resende, and Sandra Sugldvidssive quasi-clique
detection. LATIN '02, 2002.

[3] Aggarwal and etcManaging and Mining Graph Data2010.

[4] Gagan Aggarwal, Mayur Datar, Sridhar Rajagopalan, arattiMas Ruhl. On the
streaming model augmented with a sorting primitive.Pioceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Scjéf@€ES '04, pages
540-549, Washington, DC, USA, 2004. IEEE Computer Society.

[5] AMD. Opencl demo, amd cpu. SIGGRAPH, 2008.

[6] AMD AMD. Close to metal. Technology Unleashes the Power of Stream Comput-
ing. Webpagg2006.

[7] Reid Andersen. A local algorithm for finding dense sulpipm 2007.

[8] Ziv Bar-yossef, Ravi Kumar, and D. Sivakumar. Reducsion streaming algo-

rithms, with an application to counting triangles in graphs

[9] Becchetti and etc. Efficient semi-streaming algoritHorslocal triangle counting

in massive graphs. 2008.

171

172

[10] Adam L. Buchsbaum, Raffaele Giancarlo, and Jeffery Rsibtook. On finding
common neighborhoods in massive grapfseor. Comput. S¢i299(1-3):707—
718, April 2003.

[11] lan Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, KayW¥atahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: stream compatirgyaphics hard-
ware. INACM Transactions on Graphics (TOGplume 23, pages 777-786. ACM,
2004.

[12] Barbara Chapman, Gabriele Jost, and Ruud Van Derlfsasg OpenMP: portable

shared memory parallel programmingplume 10. The MIT Press, 2008.

[13] Moses Charikar. Greedy approximation algorithms fodiing dense components

in a graph. INPAPPROX 2000.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simghldeta processing on
large clustersCommunications of the ACN61(1):107-113, 2008.

[15] Camil Demetrescu, Irene Finocchi, and Andrea Ribichifrading off space for
passes in graph streaming problerdCM Trans. Algorithms6(1):6:1-6:17, De-
cember 20009.

[16] Nicholas Edmonds. The parallel boost graph librarywap@ctive pebbles)KDT
Mind Meld, 03/2012 2012.

[17] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. Aprehensive perfor-
mance comparison of cuda and openclPéarallel Processing (ICPP), 2011 Inter-

national Conference grpages 216-225. IEEE, 2011.

[18] Joan Feigenbaum, Sampath Kannan, Andrew McgregoriandZhang. On graph
problems in a semi-streaming model. Im31st International Colloquium on Au-

tomata, Languages and Programmjmpgges 531-543, 2004.

173

[19] David Gibson, Ravi Kumar, and Andrew Tomkins. Discamgrlarge dense sub-

graphs in massive graphs. fLDB, 2005.

[20] William Gropp, Steven Huss-Lederman, Andrew LumsdaiBwing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. Mpi: The completfarence, vol. 2—

the mpi-2 extension?ublished in 1998.

[21] Pawan Harish and P. J. Narayanan. Accelerating lagehgalgorithms on the gpu
using cuda. 2007.

[22] Guoming He, Haijun Feng, Cuiping Li, and Hong Chen. Raraimrank compu-

tation on large graphs with iterative aggregation. KDD, 201

[23] Monika Rauch Henzinger, Prabhakar Raghavan, and ISRdmgopalan. Comput-

ing on data streams, 1998.
[24] Pieter HintjensZeroMQ: Messaging for Many Application®’Reilly, 2013.

[25] David B. Kirk and Wen-mei W. HwuProgramming Massively Parallel Processors:

A Hands-on Approach2010.

[26] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalad, Andrew Tomkins.
Trawling the web for emerging cyber-communities. Rroceedings of the eighth

international conference on World Wide Wai999.
[27] Chuck Lam.Hadoop in action Manning Publications Co., 2010.

[28] Jinyan Li, Kelvin Sim, Guimei Liu, and Limsoon Wong. Miaxal quasi-bicliques
with balanced noise tolerance: Concepts and co-clustepgications. In

SDM’08, 2008.

[29] Guimei Liu and Limsoon Wong. Effective pruning techaés for mining quasi-

cliques. INECML PKDD, 2008.

174

[30] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny BackCarlos Guestrin,
and Joseph M. Hellerstein. Graphlab: A new framework foald@rmachine learn-

ing. CoRR abs/1006.4990, 2010.

[31] K. Madduri, D.A. Bader, J.W. Berry, J.R. Crobak, and BHendrickson. Multi-

threaded algorithms for processing massive graphs. 2008.

[32] Kazuhisa Makino and Takeaki Uno. New algorithms for mewating all maximal

cliques. 2004.

[33] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bikmes C. Dehnert, llan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel. a syshar large-scale
graph processing. IRroceedings of the 2010 international conference on Manage

ment of dataSIGMOD 10, pages 135-146, New York, NY, USA, 2010. ACM.

[34] William R Mark, R Steven Glanville, Kurt Akeley, and Mad Kilgard. Cg: a sys-
tem for programming graphics hardware in a c-like langudg&CM Transactions

on Graphics (TOG)volume 22, pages 896-907. ACM, 2003.
[35] Mattson and etcPatterns for parallel programming2004.

[36] Andrew McGregor. Graph mining on streams. Hncyclopedia of Database Sys-

tems pages 1271-1275. 2009.

[37] K. Musgrave and University of Wales Swansea. Dept. oim@oter Science.
Generic Programming and the Boost Graph Libratniversity of Wales Swansea,

2004.

[38] Bradford Nichols, Dick Buttlar, and Jacqueline Fakr&threads programming: A
POSIX standard for better multiprocessing’'Reilly Media, Inc., 1996.

[39] NVIDIA. Opencl demo, nvidia gpu. SIGGRAPH, 2008.

175

[40] Marko A. Rodriguez and Peter Neubauer. Constructiomadots and linesCoRR

abs/1006.2361, 2010.

[41] J. Sanders and E. KandrotCUDA by Example: An Introduction to General-

Purpose GPU ProgrammingAddison-Wesley, 2010.

[42] Thomas Schank and Dorothea Wagner. Finding, countiaigliating all triangles

in large graphs, an experimental studyWHA 2005.

[43] Sangwon Seo, Edward J. Yoon, Jaehong Kim, SeongwogKihf5oo Kim, and
Seungryoul Maeng. Hama: An efficient matrix computatiorhwiite mapreduce
framework. Cloud Computing Technology and Science, IEEE InternatiQuan-

ference onpages 721-726, 2010.

[44] Sangwon Seo, Edward J. Yoon, Jaehong Kim, SeongwogKihf5oo Kim, and
Seungryoul Maeng. Hama: An efficient matrix computatiorhwiite mapreduce

framework. CLOUDCOM ’10, 2010.
[45] Arun Suresh. Phoebus: Erlang-based implementatigoogles pregel, 2010.

[46] Leslie G. Valiant. A bridging model for parallel comption. Commun. ACM
pages 103-111, 1990.

[47] Vibhav Vineet, Pawan Harish, Suryakant Patidar, andl Rarayanan. Fast mini-

mum spanning tree for large graphs on the gpu. HPG, 20009.

[48] Vibhav Vineet and P. J. Narayanan. Cuda cuts: Fast gragghon the gpuCom-
puter Vision and Pattern Recognition Workshap08.

[49] Jeffrey Scott Vitter. External memory algorithms aradalstructures: Dealing with

massive dataACM Computing Survey2001.

176

[50] Nan Wang, Srinivasan Parthasarathy, Kian-Lee TanAanidony K. H. Tung. Csv:

visualizing and mining cohesive subgraphs. 2008.

[51] Nan Wang, Jingbo Zhang, Kian-Lee Tan, and Anthony K. knd. On triangula-
tion based dense neighborhood graphs discowdriaB, 2010.

[52] Jianlong Zhong, Bingsheng He, and Gao Cong. Medusa: ifednframework
for graph computation and visualization on graphics pregces Technical report,

Nanyang Technology University, 2011.

	Introduction
	Background
	Supercomputing and Desktop-computing with GPUs
	Graph Processing and Mining
	General Purpose Computation on GPU
	Graph Processing on GPU
	Graph Processing System

	Research Gaps, Purpose and Contributions
	Thesis Organization

	Background and Related Works
	Preliminaries
	Graph Notations and Definitions
	Graph Memory Assumptions
	Heterogeneous System Metrics

	GPGPU Background
	Parallel Programming Model
	GPU Cluster Layout
	GPU Evolution
	CPU vs GPU
	Compute Unified Device Architecture (CUDA)
	Alternatives to CUDA
	Parallelism with GPUs
	Parallel Patterns in CUDA Programs
	Hardware Overview

	Related Work on Graph Processing on GPU
	Graph Processing and Mining
	Graph Processing on GPU
	Graph Processing Model
	Graph Processing System

	Dense Neighborhood Graph Mining
	Appendix
	Preliminaries for DN-graph Mining
	DN-Graph As A Density Indicator
	Triangulation Based DN-Graph Mining
	(e) Bounding Choice
	Extension of DN-Graph Mining to Semi-Streaming Graph

	Streaming and GPU-Accelerated Graph Triangulation
	Problem Statement
	Iterative Triangulation
	Parallel Triangulation
	Message Spreading Mechanism
	Large Graph Partitioning
	Multi-stream Pipelining
	Dynamic Threading
	GPU Graph Data Structures
	Result Correctness
	Experiments
	Performance Evaluation
	Partitioning Algorithms
	Graph Data Facilities
	GPU Execution Configurations

	Summary

	SIGPS: Synchronous Iterative GPU-accelerated Graph Processing System
	Problem Statement and Design Purpose
	Computation Model and System Overview
	Overall Description and System Main Components
	Architecture of Master
	Architecture of Worker Manager
	Architecture of Worker
	Architecture of Vertex
	Architecture of Communicator

	System Auxiliary Components
	Graph Generator and Graph Partitioner
	Vertex API, Edge and Graph
	Message Center and Data Locator
	State Logging

	Automatic Execution Configuration and Dynamic Thread Allocation
	Case Study
	Case One: PageRank
	Case Two: Single Source Shortest Path
	Case Three: Dense Subgraph Mining

	Generic Vertex APIs Usage
	Experiments
	Experimental Settings
	Scalability Study
	Communication Study
	Vertex Parallel vs Edge Parallel
	Speedup
	Comparable Experimental Study
	Computing Capability Study

	Summary
	Appendix
	System Installation

	Asynchronous Iterative Graph Processing System on GPU
	Problem Statement
	Graph Formats for Asynchronous Computing on GPU
	Compressed Row/Column Storage on GPU

	Asynchronous Computational Model
	Parallel Sliding Windows on GPU
	Loading the Graph From Disk to GPU global memory
	Parallel Updates
	Updating Graph to Disk

	System Design and Implementation
	Block Graph Data Format on GPU
	Preprocessing
	Execution
	Software Hierarchy Overview

	Programming Model and Application Programming Interfaces
	Case Study and Applications
	Case one: PageRank
	Application

	Performance Comparison with SIGPS
	Scalability
	Data Communication
	Speedup

	Summary

	Conclusion and Future Work
	Summarization
	Possible Research Directions and Applications

