
GRAPH PROCESSING ON GPU

ZHANG JINGBO

(B.E., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2013



2



DECLARATION

I hereby declare that this thesis is my original work and it

has been written by me in its entirety.

I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

Zhang Jingbo
July 17, 2013



ii



Acknowledgment

I would like to express my greatest thank my PhD thesis committee members, Anthony

K. H. Tung, Tan Kian-Lee and Sung Wing Ken, for their valuabletime, suggestions and

comments on my thesis.

I would like to express my deepest gratitude to my supervisor, Professor Anthony K.

H. Tung, for his guidance, support and encouragement throughout my Ph.D. study. He

has taught me a lot on research, work and life in the past five years, which will become

my precious treasure in my life. Moreover, I am grateful for his generous financial

support and tremendous mental assistance, especially whenI was frustrated at times

during the final stage of my Ph.D. study. His technical and editorial advice is essential to

the completion of this thesis while his kindness and wisdom have made a great impact on

my life. Professor Beng Chin Ooi deserves my special appreciation. He is the greatest

figure I have met in my life. As a visionary leader of our database group, he acts as a

passionate doer, an earnest advisor and a considerate friend.

My sincere thanks also go to Dr. Wang Nan. Dr. Wang provided meresources to start

my ventures on graph mining, and her insights on graph miningand encouragement were

of great help for my research. I am also indebted to Dr. Seth Norman Hetu. Apart from

contributing helpful discussions to refine my work, he spentmuch effort in updating my

writings. My senior Dr. Xiang Shili taught and encouraged mea lot of things. Dr. Zhu

Linhong, Dr. Wu Min and Myat Aye Nyein, who are my closest friends, accompanied,

iii



iv

discussed, and supported me in the past years.

The last seven years in National University of Singapore have become a wonderful

journey in my life. It is my great honor to be a member of our database group, a big

family full of joy and research spirit. I am very thankful to our iData group members

(including previous and current members). They are Yueguo Chen, Bingtian Dai, Wei

Kang, Chen Liu, Meiyu Lu, Zhan Su, Nan Wang, Xiaoli Wang, Shanshan Ying, Feng

Zhao, Dongxiang Zhang, Zhenjie Zhang, Yuxin Zheng, Jingbo Zhou. Besides, it is my

great pleasure to work together with our strong team of NUS Database Group, including

Zhifeng Bao, Ruichu Cai, Yu Cao, Su Chen, Ming Gao, Bin Liu, Xuan Liu, Wei Lu,

Weiwei Hu, Mei Hui, Feng Li, Yuting Lin, Peng Lu, Wei Pan, Yanyan Shen, Lei Shi,

Yang Sun, Jinbao Wang, Huayu Wu, Ji Wu, Sai Wu, Hoang Tam Vo, Jia Xu, Liang Xu,

Xiaoyan Yang, and Meihui Zhang. Throughout the long period of PhD study, we dis-

cuss and debate about research problems, work together and collaborate in the projects,

encourage and care for each other, and entertain as well as dosports together.

I am grateful to my parents, Shuming Zhang and Yumei Lin, for their dedicated

love, care and the powerful and faithful support during my studies. Their nutrition and

patience have brought me infinite energy to go through all thethorns and tribulations.

My deepest love is reserved for my wife, Lilin Chen, for her unconditional support and

encouragement during the past two years.

Finally, I also want to thank NUS for providing me the scholarship so that I can

concentrate on the study.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Supercomputing and Desktop-computing with GPUs . . . .. . . 2

1.1.2 Graph Processing and Mining . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 General Purpose Computation on GPU . . . . . . . . . . . . . . . 3

1.1.4 Graph Processing on GPU . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.5 Graph Processing System . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research Gaps, Purpose and Contributions . . . . . . . . . . . .. . . . . . 6

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9

2 Background and Related Works 11

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

2.1.1 Graph Notations and Definitions . . . . . . . . . . . . . . . . . . .11

2.1.2 Graph Memory Assumptions . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Heterogeneous System Metrics . . . . . . . . . . . . . . . . . . . .12

2.2 GPGPU Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Parallel Programming Model . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 GPU Cluster Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 GPU Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



vi

2.2.4 CPU vs GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Compute Unified Device Architecture (CUDA) . . . . . . . . .. . 24

2.2.6 Alternatives to CUDA . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.7 Parallelism with GPUs . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.8 Parallel Patterns in CUDA Programs . . . . . . . . . . . . . . . .. 30

2.2.9 Hardware Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Related Work on Graph Processing on GPU . . . . . . . . . . . . . . .. . 35

2.3.1 Graph Processing and Mining . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Graph Processing on GPU . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Graph Processing Model . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 Graph Processing System . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Dense Neighborhood Graph Mining . . . . . . . . . . . . . . . . . . . .. . 40

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Preliminaries forDN-graph Mining . . . . . . . . . . . . . . . . . 42

2.5.2 DN-Graph As A Density Indicator . . . . . . . . . . . . . . . . . . 44

2.5.3 Triangulation BasedDN-Graph Mining . . . . . . . . . . . . . . . 49

2.5.4 λ̃(e) Bounding Choice . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.5 Extension ofDN-Graph Mining to Semi-Streaming Graph . . . . 52

3 Streaming and GPU-Accelerated Graph Triangulation 55

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

3.2 Iterative Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 57

3.3 Parallel Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 59

3.4 Message Spreading Mechanism . . . . . . . . . . . . . . . . . . . . . . .. 64

3.5 Large Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . .. . 66

3.6 Multi-stream Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 69

3.7 Dynamic Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



vii

3.8 GPU Graph Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . .. 73

3.9 Result Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 77

3.10 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

3.10.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . .81

3.10.2 Partitioning Algorithms . . . . . . . . . . . . . . . . . . . . . . .. 84

3.10.3 Graph Data Facilities . . . . . . . . . . . . . . . . . . . . . . . . . .85

3.10.4 GPU Execution Configurations . . . . . . . . . . . . . . . . . . . .87

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 SIGPS: Synchronous Iterative GPU-accelerated Graph Processing System 89

4.1 Problem Statement and Design Purpose . . . . . . . . . . . . . . . .. . . . 90

4.2 Computation Model and System Overview . . . . . . . . . . . . . . .. . . 91

4.3 Overall Description and System Main Components . . . . . . .. . . . . . 97

4.3.1 Architecture of Master . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2 Architecture of Worker Manager . . . . . . . . . . . . . . . . . . .100

4.3.3 Architecture of Worker . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.4 Architecture of Vertex . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.5 Architecture of Communicator . . . . . . . . . . . . . . . . . . . .106

4.4 System Auxiliary Components . . . . . . . . . . . . . . . . . . . . . . .. . 108

4.4.1 Graph Generator and Graph Partitioner . . . . . . . . . . . . .. . 108

4.4.2 Vertex API, Edge and Graph . . . . . . . . . . . . . . . . . . . . . . 109

4.4.3 Message Center and Data Locator . . . . . . . . . . . . . . . . . . 109

4.4.4 State Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 Automatic Execution Configuration and Dynamic Thread Allocation . . . 114

4.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.1 Case One: PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.2 Case Two: Single Source Shortest Path . . . . . . . . . . . . . .. 119



viii

4.6.3 Case Three: Dense Subgraph Mining . . . . . . . . . . . . . . . . .121

4.7 Generic Vertex APIs Usage . . . . . . . . . . . . . . . . . . . . . . . . . .. 123

4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8.2 Scalability Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8.3 Communication Study . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.8.4 Vertex Parallel vs Edge Parallel . . . . . . . . . . . . . . . . . .. . 132

4.8.5 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8.6 Comparable Experimental Study . . . . . . . . . . . . . . . . . . .133

4.8.7 Computing Capability Study . . . . . . . . . . . . . . . . . . . . . 138

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.10.1 System Installation . . . . . . . . . . . . . . . . . . . . . . . . . . .139

5 Asynchronous Iterative Graph Processing System on GPU 143

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

5.2 Graph Formats for Asynchronous Computing on GPU . . . . . . .. . . . 145

5.2.1 Compressed Row/Column Storage on GPU . . . . . . . . . . . . . 145

5.3 Asynchronous Computational Model . . . . . . . . . . . . . . . . . .. . . 147

5.4 Parallel Sliding Windows on GPU . . . . . . . . . . . . . . . . . . . . .. . 148

5.4.1 Loading the Graph From Disk to GPU global memory . . . . . .. 149

5.4.2 Parallel Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.3 Updating Graph to Disk . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5 System Design and Implementation . . . . . . . . . . . . . . . . . . .. . . 151

5.5.1 Block Graph Data Format on GPU . . . . . . . . . . . . . . . . . . 151

5.5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



ix

5.5.4 Software Hierarchy Overview . . . . . . . . . . . . . . . . . . . . .155

5.6 Programming Model and Application Programming Interfaces . . . . . . . 156

5.7 Case Study and Applications . . . . . . . . . . . . . . . . . . . . . . . .. . 158

5.7.1 Case one: PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.7.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.8 Performance Comparison with SIGPS . . . . . . . . . . . . . . . . . .. . . 161

5.8.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.8.2 Data Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.8.3 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6 Conclusion and Future Work 167

6.1 Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Possible Research Directions and Applications . . . . . . .. . . . . . . . . 169



x



Summary

Graph mining and data management has become a significant area because more and

more new applications to various data mining problems in social networking, compu-

tational biology, chemical data analysis and drug discovery are emerging recently. Al-

though traditional mining methods have been extended to process graphs, many graph

applications still confront huge challenges due to continuous and overwhelming edges

to be processed with limited resources. Social networks, web graphs and protein interac-

tion graphs are difficult to handle because they cannot be easily decomposed into small

parts that could be further processed in parallel. As graphsgrow larger and larger, new

processing techniques with higher computing power are demanded for mining massive

graphs. Designing scalable systems for analyzing, processing and mining huge real-

world graphs has also become one of the most emerging problems.

The research in this thesis has explored and utilized the state-of-the-art GPGPU tech-

niques over large graph mining. By understanding the limitations of heterogeneous hard-

ware, triangulation, as a representative of graph mining algorithms, was implemented to

be accelerated by many-core GPUs in Chapter 3. Associated graph data structures and

blended algorithm structures were designed in this chapteras well. This is the first and

successful attempt to accelerate graph triangulation using GPGPU techniques. After-

wards, a synchronous iterative GPU-accelerated graph processing model was abstracted

and proposed in Chapter 4. A generic system (SIGPS) was then implemented based

xi



xii

on this model. Specifically, a vertex API was provided for users who want to design

their own algorithms with the assistance of a functional library of mining algorithms.

Together with the vertex API and algorithm library, severalsystem supporting modules

marked off the system hierarchy. This system could bring an impressive impact over

the graph mining community since it provided a systematic solution for implementing

efficient graph mining algorithms on GPU-accelerated computing platforms. Moreover,

in order to further enhance the system performance, an asynchronous disk-based model

was then designed to support asynchronous computing over GPUs in Chapter 5. A novel

parallel sliding windows method was employed on GPU memory.Two newer opera-

tional APIs named “sync” and “update” replaced the vertex API. Asynchronous-SIGPS

(ASIGPS) could be used to execute several advanced data mining, graph mining, and

machine learning algorithms on very large graphs.

It is noted that there may be a few problematic issues involved in the system since

designing effective and efficient systems across heterogeneous platform is complicated.

As a potential solution for large scale domain applicationson personal computers, more

graph mining algorithms need to be implemented to constitute the library of the system

and more efforts need to be paid to solve all the problems related to the implementation

of the hybrid system.
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Chapter 1

Introduction

In this chapter, we will describe the background of computing and graph mining, give

a general overview of the state-of-the-art GPGPU techniques in the current literature,

and present the rationale of our study on utilizing GPU to accelerate mining over large

graphs.

1.1 Background

One of the major changes in the computer software industry has been the move from

serial programming to parallel programming. The graphics processor unit (GPU) by its

very nature is the device designed for high-speed graphics present in most modern PCs,

which are inherently parallel. The state-of-the-art GPGPUtechniques take a simple

model of data parallelism and incorporate it into a programming model without the need

for graphics primitives. On the other hand, the ability to mine data to extract useful

knowledge has become one of the most important challenges ingovernment, industry,

and scientific communities. In most domains, there is a lot ofinteresting knowledge that

can be mined out of relationships between entities.

1
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1.1.1 Supercomputing and Desktop-computing with GPUs

Supercomputers are typically at the leading edge of the technology curve. In 2010, the

annual International Supercomputer Conference in Hamburg, Germany, announced that

a NVIDIA GPU-based machine had been listed as the second mostpowerful computer

in the world, according to the top 500 list (http://www.top500.org). In 2011, NVIDIA

CUDA-powered GPUs grasped the title of the fastest supercomputer in the world. It

was suddenly noticeable to everyone that GPUs had arrived ina very big way on the

high-performance computing landscape, as well as the humble desktop PC.

Supercomputing is the driver of many of the technologies we see in modern-day

processors. Due to the need for ever-faster processors to process ever-larger datasets,

the industry produces ever-faster computers. It is throughsome of these evolutions that

GPGPU technology has come about today.

Both supercomputers and desktop computing are moving toward a heterogeneous

computing route –that is, they are trying to achieve performance with a mix of CPU

and GPU technology. Jaguar, the fastest supercomputer, code-named Titan, has almost

300,000 CPU cores and up to 18,000 GPU boards to achieve between 10 and 20 petaflops

per second of performance. People can now put together or purchase a desktop super-

computer with several teraflops of performance. This would have given the first place in

the top 500 list1 at the beginning of 2000, which is just 13 years ago.

1.1.2 Graph Processing and Mining

Graphs are regarded as one of the most ubiquitous models of both natural and human-

made structures. A lot of practical problems in scientific and engineering areas can

be modeled by graphical model. As a very popular and flexible data abstraction for

connected entities, graphs capture the relationship amongthese entities. For example,

1IBM ASCI Red with 9632 Pentium processors
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social networks, popularized by Web 2.0, are graphs that describe relationships among

people. Well defined graph theory can be applied to processing the graph and return

interesting results. With the increasing demand on the analysis of large amounts of

structured data, graph processing has become an active and important theme in data

mining. On one side, growing richer information potentially extracted from large graphs

has triggered progressively more sophisticated analysis of graph data. On the other side,

since dense graph pattern captures more internal connections within a graph, researchers

from various fields are all using dense subgraphs to understand complex systems better.

Dense subgraph mining is close-relative but simpler when comparing with the tradi-

tional clustering which requires a strict partitioning of the graph. Exact mining methods

are usually time consuming algorithms, some of which are even regarded as NP-hard

problems. People then opt for some more time efficient solutions. This type of algo-

rithms can be categorized into three groups, namely enumeration, fast heuristic enumer-

ation and bounded approximation.

1.1.3 General Purpose Computation on GPU

Graphics processing units (GPUs) are devices present in most modern PCs. They provide

a number of basic operations to the CPU, such as rendering an image in memory and then

displaying that image onto the screen. A GPU will typically process a complex set of

polygons, a map of the scene to be rendered. It then applies textures to the polygons and

then performs shading and lighting calculations.

General-Purpose computation on Graphics Processing Units(GPGPU) is a technique

of using GPU to perform computation in applications traditionally handled by CPU. Af-

ter shifting from fast single instruction pipeline to multiple instruction pipelines, modern

computer systems have evolved into multiple threads architecture in the coming era of

Tera-scale Computing. Dual-core and many-core facilitieshave greatly improved the
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executing performance without impacting thermal and powerdelivery. Moreover, some

special-purpose devices are designed for accelerating thedata processing, such as ASIC,

FPGA and GPU. As a special-purpose co-processor to CPU, a graphics processing unit

(GPU) was originally designed for accelerating graphics rendering operations. In the

last decade, modern GPUs have evolved to be many-core processors with the potential

of high parallelism. They have displayed an impressive computational capability as well

as higher memory bandwidth compared to CPUs. Actually, general purpose comput-

ing has arisen to exploit the potential computing power fromsystems equipped with

graphics cards. More and more developers have moved the computationally intensive

parts of their applications to GPUs for acceleration. Thereare currently many GPU-

accelerated applications and the list grows monthly. NVIDIA showcases many of these

on its community website at http: //www.nvidia.com/object/cudaappsflash new.html.

Considering the performance-to-price ratio (cost-utility), the possibility of releasing the

potential power of general computer system has become an attractive alternative option

to traditional distributed supercomputer systems.

1.1.4 Graph Processing on GPU

For the past decade, various graph mining techniques have been developed to discover

patterns, clusters, and classifications from various kindsof graphs. Many algorithms

focus on the effectiveness of mining, while other researches aim at the performance

improvement of the specific methods. Utilizing parallel architectures has been a viable

means to improving graph processing performance. Modern GPUs have displayed an im-

pressive computational power as well as higher memory bandwidth compared to CPUs.

Given the success of GPGPU in many areas of scientific computing, graph processing

on GPU appears to be necessary to overcome the resource limitations of single proces-

sors. A GPU can be regarded as a massively multi-threaded many-core processor. Its



5

cores are designed to be virtualized, and its threads are managed by the hardware, which

simplifies GPU programs and improves algorithm scalabilityand portability. By taking

advantage of the massive computation power and the high memory bandwidth, GPUs

can be used by many graph (mining) applications as an accelerator to compute-intensive

algorithms. To process excessive graph data with limited resources, researchers combine

graph mining with the state-of-the-art GPGPU techniques. Moreover, energy efficiency

improvement while the system provides an order of magnitudeincrease in computational

power is another vital factor to process graphs on GPU.

1.1.5 Graph Processing System

In order to achieve efficient and effective graph data processing on GPU, the implemen-

tation of existing graph processing algorithms on GPU and a generic graph processing

system are two important research issues. For the first issue, as is well known, most

graph processing algorithms are designed to be sequential and memory bounded. How

to parallelize graph processing algorithms effectively and bypass the memory restriction

successfully are challenging problems to be solved. For theother issue, Internet compa-

nies have created scalable infrastructure. One example is that google has been using a

distributed high performance graph processing system named Pregel to process its mas-

sive graph data. Pregel can easily scale to billions of vertices and edges on google’s

distributed many-core-CPU system. The applicability and usability of Pregel are pretty

impressive. Mining huge graphs on general computer systems, however, is still a chal-

lenge. On one hand, general computer systems are equipped with fewer computing

cores than traditional supercomputers. Hundreds of thousands of vertices and millions

of connections among vertices make traditional graph mining operators a huge burden

for a normal computer. Close-clique detection, for example, has been proven to be an

NP-Complete problem. Even the running time of heuristic algorithms or approximation
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algorithms on such large graphs have exceeded the toleranceof human beings. On the

other hand, limited memory is another prohibitive factor for the scalability of high per-

formance computing on general computers. A large graph cannot even be loaded into

memory for any further processing. Therefore, a generic graph processing system im-

plemented on general computers equipped with GPUs is preferable to the data mining

community.

1.2 Research Gaps, Purpose and Contributions

As graphs grow incredibly large in size, many graph applications encounter great diffi-

culties due to the insufficiencies of computing power and thelimitations of computing

platforms. Since GPU provides potential opportunities of highly parallel computing, the

question of how to apply the state-of-the-art GPGPU techniques over massive graph ap-

plications has become a huge challenge. Research gaps for the current application of

GPGPU over large graphs are summarized below:

1. Although traditional mining methods can be utilized to process large graphs, they

are highly constrained when the system resources are limited. When GPU is em-

ployed to accelerate graph algorithms, whether and how the traditional mining

methods can be extended to parallelized version by way of GPGPU techniques is

still problematic.

2. There are some existing graph processing systems that incorporate a library of

graph mining algorithms. However, some of these libraries are only applicable

to small graphs while others are only designed for processing large graphs in dis-

tributed environments. Moreover, most existent graph processing systems only

provide naive APIs for invoking existing routines that implement classic mining
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algorithms. It is difficult for users to design their own algorithms, which are usu-

ally more complicated.

3. Currently, most graph processing systems support parallel graph mining algo-

rithms. Nevertheless, none of them provide algorithms utilizing GPGPU tech-

niques that can take advantage of the potential high performance computing power

from modern GPUs.

4. Most generic parallel systems are based on Bulk Synchronous Parallel model that

trades off performance for simplicity in algorithm design.There are limited solu-

tions that can support asynchronous processing.

The main aim of my research was to utilize GPGPU techniques over large graph

mining. By understanding the limitations of heterogeneoushardware, I designed graph

mining algorithms on GPU. In order to provide a systematic solution for implement-

ing efficient graph mining algorithms, I proposed a synchronous GPU graph processing

model and implemented a generic graph processing system over GPU-accelerated gen-

eral computers. The specific objectives of this study were to:

1. design GPU-accelerated mining algorithms over large graphs. We initially de-

signed a triangulation operator over GPU. We then summarized the associated

graph data structures and the blended algorithm structure design from graph pro-

cessing algorithms such as SSSP and PageRank.

2. propose a synchronous graph processing model over GPU-accelerated platform.

By simplifying the blended algorithm structure, we presented a graph processing

model that is based on bulk synchronous parallel computing.A generic vertex API

was proposed to assist algorithm design.
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3. design and implement a generic graph processing system that employs the syn-

chronous graph processing model. A real graph processing system over hetero-

geneous platform was implemented in C++ and CUDA. The vertexAPI, graph

processing library, and system supporting modules have differentiated the hierar-

chy of the system.

4. investigate the limitation of synchronous model and design an asynchronous one.

By fully studying the limitation of our synchronous model, an improved model that

provided asynchronous computing was then designed. The vertex API was then

replaced by two new operational APIs named “sync” and “update” respectively.

5. design and implement a generic graph processing system that supports the asyn-

chronous processing over GPU-accelerated large graph applications. We would

then redesign the graph processing system on top of the asynchronous graph pro-

cessing model with better system modularity.

The comprehensive experimental results of this study may have a significant impact

on both successfully applying GPGPU techniques to speed up large graph applications

with limited resources and providing systematic generic graph mining solutions.

To design an effective and efficient system accelerated by GPU is complicated since

it contains a lot of new research issues that are related to the library building, system

design and hardware tuning. There may be a few problematic issues involved. It is

also understood that we only focus on graph processing on topof general computer

systems. More data mining applications and graph processing accelerated by connected

distributed GPU nodes are very interesting but beyond the scope of this thesis.
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1.3 Thesis Organization

Hereby, we outline the organization of this thesis. The restof the thesis contains 5

chapters.

Chapter 2 consists of two main sections. The fist section is the background and

related work of graph mining on GPU. The second section introduces the mining of

DN-Graph, which directly led to the research of this thesis.

Chapter 3 presents our solution of accelerating a dense sub-graph mining operator

on GPU. Since memory and computing power are main bottlenecks of the graph mining

system, we utilize a streaming approach to partition the graph and take advantage of the

state-of-the-art GPGPU techniques for bounding acceleration. A two-level triangulation

algorithm is employed to iteratively drive triangulation operator on GPU. In addition,

several novel GPU graph data structures are proposed to enhance graph processing effi-

ciency and data transfer bandwidth.

We then extend our work on accelerating graph mining operators in a systematic

solution in Chapter 4. An iterative graph processing model on GPU-accelerated platform

is proposed. Based on this model, a generic system equipped with a set of easy-to-extend

Vertex APIs is then implemented over the model. Automatic parallelization and GPU

execution configuration are provided in the system. Emulating shared memory model is

also designed for vertex communication.

In Chapter 5, we optimize the graph processing model to support asynchronous pro-

cessing on GPU. After system re-design, the “Asigps” has better modularity and encap-

sulation. An improved new set of easy-to-extend Vertex APIsare designed, so that users

have higher degree of freedom to design their own algorithms. Asigps is a disk-based

GPU-accelerated system for computing efficiently on graphswith billions of edges. A

novel parallel sliding windows method was implemented on GPU memory. Asigps is

designed to support several advanced data mining graph mining, and machine learning
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algorithms on very large graphs using just a single GPU-accelerated personal computer.

Finally, Chapter 6 concludes this thesis and discusses somedirections for future

work.



Chapter 2

Background and Related Works

In this chapter, we first introduce preliminaries and some fundamental graph structures,

which are employed in our proposed system or some closely related works. Then, we fo-

cus on the work that led to this thesis. More specifically, we first present some definitions

of notations and discuss some system metrics in the related works. Then we review the

GPGPU background and graph processing on GPU in the literature. Last but not least,

we introduce ourDN-Graph mining work that induces the demand and the subsequent

research in this thesis.

2.1 Preliminaries

2.1.1 Graph Notations and Definitions

Let G = (V,E) be defined as an undirected simple graph with a set of nodesV and

a set of edgesE. A dense graph pattern1 is a connected subgraphS = (V ′,E′) ⊂ G

andV ′ ⊂ V,E′ ⊂ E, which has significant more internal connections with respect to the

surrounding vertices.

1or dense subgraph

11
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A triangle△ = (V△,E△) of the graphG is also defined as a three node subgraph with

V△ = {u, v,w} ⊂ V andE△ = {(u, v), (u,w), (v,w)} ⊂ E. We use the symbolδ(G) to

denote the number of triangles in graphG. Additionally, we employ the symbolδ(u) to

denote the number of the triangles the vertexu participates in and the symbolδ(u, v) to

denote the number of triangles the edge(u, v) is involved in.

2.1.2 Graph Memory Assumptions

Informally, we assume a personal computer system is equipped with limited memory

(DRAM) capacity. The graph structure, edge values and vertex values do not fit into

memory. On the contrary, the edges or values associated to any single vertex can be

stored in the memory.

Assumption 2.1.1.COMPUTATIONAL CONSTRAINTS

1. We assume the amount of memory to be only a small fraction ofthe memory required for

storing the complete graph.

2. We assume there is enough memory to contain the edges and values associated to any

single vertex in the graph.

2.1.3 Heterogeneous System Metrics

Almost all processors work on the basis of the process developed by Von Neumann, in which ap-

proach, the processor fetches instructions from memory, decodes, and then executes that instruc-

tion. As is described in DEFINITION 2.1.1, a stored-program digital computer is one that keeps

its programmed instructions, as well as its data, in read-write, random-access memory (RAM).

The principle of locality is one of the most important characters of modern computer systems. As

is defined in DEFINITION 2.1.2, modern programs tend to reuse data and instructions they have

accessed recently.
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Definition 2.1.1. VON NEUMANN ARCHITECTURE

The Von Neumann architecture describes a design architecture for an electronic digital com-

puter with subdivisions of a processing unit consisting of an arithmetic logic unit and processor

registers, a control unit containing an instruction register and program counter, a memory to

store both data and instructions, external mass storage, and input and output mechanisms.

Definition 2.1.2. THE PRINCIPLE OFLOCALITY

Programs access a relatively small portion of the address space at any instant of time.

To evaluate the performance of a system, processor and memory frequency, communication

bandwidth, and the system data throughput are basic metrics. As is defined in DEFINITION 2.1.3,

bandwidth refers to the maximum amount (capacity) of data that can pass through the commu-

nication channels per second. A modern processor typicallyruns at a high frequency in speed2.

A modern DDR-3 memory, which is paired with standard processors, can run at a comparable

frequency 3. The ratio of clock speed to memory is an important limiter for both CPU and GPU

throughput, which is defined in DEFINITION 2.1.4.

Definition 2.1.3. BANDWIDTH

Bandwidth is a measurement of bit-rate of available or consumed data communication re-

sources expressed in bits per second or multiples of it. In practice, the digital data rate limit (or

channel capacity) of a physical communication link is proportional to its bandwidth in hertz.

Definition 2.1.4. THROUGHPUT

Throughput is the average rate of successful message delivery over a communication channel.

The data may be delivered over a physical or logical link, or pass through a certain network node.

The throughput is usually measured in bits per second (bit/sor bps).

In heterogeneous systems, there are more than one types of processors. For example, our

personal computer systems are equipped with multi-coreCPU and many-coreGPU processors.

Applications designed for such hybrid system have adjustable parameters for different types of

24 GHz
3around 2 GHz
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computing modes. The host mode is defined to be the state in which an application is only

executed byCPU without any assistance of other co-processors. The device mode is defined to be

the state in which an application is executed by co-processors, such asGPU or FPGA. The hybrid

mode is defined to be the state in which an application is executed by bothCPU andGPU.

To quantify the efficiency and performance of an applicationrunning on heterogeneous sys-

tem, researchers usually employ the speedup and efficiency metrics. Intuitively, the speedup of

a parallel code refers to how much faster it runs than a corresponding sequential algorithm does.

The efficiency is a measure of the fraction that the availableprocessing power is being used. Ac-

cording to the computing modes the application is in, the speedup and efficiency can be defined

formally as follows:

Definition 2.1.5. SPEEDUP

The speedup of a parallel algorithm is defined to be the ratio of the rate at which when it is

run on N processors to the rate at which it is processed by justone. Technically, ifT1 andTN are

the time required to complete some job on1 andN processors respectively, the speedupS can

be defined as follows:

S =
T1

TN

(2.1)

In order to evaluate the performance of a parallel algorithm, there are different ways

to compute the speedup, according to the structure of the algorithm. For example, in

parallelized triangulation, ifT1(∆(G)) andTN(∆(G)) are the time required to employ

triangulation over GraphG on 1 andN processors respectively, global speedup can be

defined asSg in the following fomula; ifT1(λ(e)) andTN(λ(e)) are the time required to

employ triangulation over an edgee on 1 andN processors respectively, local speedup

can be defined asSl in the following fomula as well:

• GLOBAL SPEEDUP: Sg =
T1(∆(G))
TN (∆(G))

• LOCAL SPEEDUP: Sl =
T1(λ(e))
TN (λ(e))

Definition 2.1.6. EFFICIENCY
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The efficiency of a parallel algorithm is defined to be the effectiveness of parallel algorithm

relative to its sequential counterpart. Simply put, it is the speedup per processor. Technically, let

N be the number of processors in the parallel environment, efficiencyE is defined in terms of the

ratio of the sequential costC1 to the parallel costCN .

E =
C1

CN

=
T1

N × TN

(2.2)

we also define global efficiencyEg and local efficiencyEl as follows:

• GLOBAL EFFICIENCY: Eg =
T1(∆(G))

N×TN (∆(G))

• LOCAL EFFICIENCY: El =
T1(λ(e))

N×TN (λ(e))
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2.2 GPGPU Background

2.2.1 Parallel Programming Model

Many parallel programming languages and models have been proposed in the past several

decades [35]. The Message Passing Interface (MPI) is widelyused for distributed computing

environment while OpenMPTM is the de facto standard for shared-memory multi-core CPU

systems. CUDA4 is the GPGPU programming model proposed by NVIDIA Corporation [1].

Compared to the low scalability and weak thread management of multi-core CPU environment,

CUDA provides a higher scalability with simple, low-overhead thread management and no cache

coherence hardware requirements.

Actually, CUDA programming model employs SPMD (Single Program Multiple Data) man-

ner when running on GPU. Compared with threads in CPU, threads in GPU is lightweight, which

can be scheduled with extremely low cost [25]. Additionally, CUDA has a hierarchy of mem-

ory architecture. Analog to main memory, GPU global memory is off-chip memory that has

the largest size but cost the most when being accessed. Constant memory and texture memory

has caches and specific usage for higher performance. On-chip shared memory, analog to the

CPU caches, and hundreds of registers can be accessed in the fastest speed but they are also lim-

ited in size on graphics chip. Threads are organized in unitsnamed “warp”, which can access

consecutive memory locations with minimum cost [41]. The bottleneck of CUDA programs is

usually found to be the high-speed PCI-Express bus that transfers data from main memory to

GPU memory.

2.2.2 GPU Cluster Layout

Cluster computing became popular in 1990s along with ever-increasing clock rates. A general

cluster consists of a number of commodity PCs bought or made from off-the-shelf parts and

connected to an off-the-shelf 8-, 16-, 24, or 32-port Ethernet switch. Used together, the combined

power of many machines hugely outperformed any single machine with a similar budget.

4Compute Unified Device Architecture
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GPU computing today, as a disruptive technology that is changing the face of computing,

is just like cluster computing. Combined with the ever-increasing single-core clock speeds it

provides a cheap way to achieve parallel processing. The architecture inside a modern GPU

is no different from a cluster. As is illustrated in Figure 2.1, there are a number of streaming

multiprocessors (SMs) that are akin to CPU cores. These are connected to a shared memory/L1

cache. This is connected to an L2 cache that acts as an inter-SM switch. Data can be held in

global memory storage where it is then extracted and used by the host, or sent via the PCI-E

switch directly to the memory on another GPU. The PCI-E switch is many times faster than any

networks’s interconnect. The node may itself be replicatedmany times, as is shown in Figure 2.1.

This replication within a controlled environment forms a cluster.

Figure 2.1: GPUs Cluster Layout

2.2.3 GPU Evolution

Graphics chips started as fixed function graphics pipelines. Over the years, these graphics chips

became increasingly programmable, which led NVIDIA to introduce the first GPU or Graphics

Processing Unit. In the 1999-2000 timeframe, computer scientists in particular, along with re-
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searchers in fields such as medical imaging and electromagnetics started using GPUs for running

general purpose computational applications. They found the excellent floating point performance

in GPUs led to a huge performance boost for a range of scientific applications. To use graphics

chips, programmers had to use the equivalent of graphic API to access the processor cores. This

was the advent of the movement called GPGPU or General Purpose computing on GPUs.

However, the difficulty of using graphics programming languages to program the GPU chips

has limited the accessibility of tremendous performance ofGPUs. Developers had to make their

scientific applications look like graphics applications (use graphics APIs) and map them into

problems that drew triangles and polygons. This limitationmakes only a few people can master

the skills which are necessary to use these chips to achieve performance. One of the important

steps was the development of programmable shaders. These were effectively little programs that

the GPU ran to calculate different effects. The rendering was no longer fixed in the GPU; through

downloadable shaders, it could be manipulated. This was thefirst evolution of general purpose

graphical processor unit (GPGPU) programming, in that design had taken its first steps in moving

away from fixed function units. Then a few brave researchers made use of GPU technology to try

and speed up general-purpose computing. This led to the development of a number of initiatives

(e.g., BrookGPU [11] , Cg [34], CTM [6], etc.), all of which were aimed at making the GPU a

real programmable device in the same way as the CPU. In order to exploit the potential power and

bring this performance to the larger scientific community, NVIDIA devotes into modifying the

GPU to make it fully programmable for scientific applications and adding support for high-level

languages like C and C++. This led to the CUDA architecture for the GPU.
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(a) Traditional Model (b) A Dedicated Hardware (c) Graphics Pipeline in 2000

(d) Graphics Pipeline in 2001-
2002

(e) Graphics Pipeline in 2003

(f) Graphics Pipeline in 2007

Figure 2.2: Graphics Pipeline Evolution

Figure 2.2 shows the graphics pipeline evolution history. More specifically, Figure 2.2(a)

describes the traditional model for 3-D rendering, in whichthere are 7 main stages in the graph-
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ics pipeline. The input of this referring model includes vertices and primitives, transformation

operators, lighting parameters and so forth. The output of the model is a 2D image for display.

The application stage describes the application program running on the CPU, example of which

probably consists of simulation, input event handles, modify data structure, database traversal,

primitive generation and utility functions. The command stage feeds commands to the graph-

ics subsystem. In this stage, commands are buffered before being interpreted, data input are

unpacked and converted into a suitable format while graphics state is maintained. The geom-

etry stage mainly applies per-polygon operations, such as coordinate transformations, lighting,

texture coordinate generation, and clipping which may be hardware-accelerated. Instead of the

per-polygon operations in the geometry stage, the rasterization stage has per-pixel operations.

Rasterization is the task of taking an image described in a vector graphics format (shapes) and

converting it into a raster image (pixels or dots) for outputon a video display or printer, or for

storage in a bitmap file format. Operations of the rasterization stage include the simple operation

of writing color values into the frame buffer, or more complex operations like depth buffering,

alpha blending, and texture mapping, which may be hardware accelerated. In computer graph-

ics, texture is a bitmap image applied to a surface in computer graphics. Texture mapping is a

method for adding detail, surface texture, or color to a computer-generated graphic or 3D model.

Similarly in the texture stage, texture filtering, which is also called as texture smoothing from

other view, is the method used to determine the texture colorfor a texture mapped pixel, using

the colors of nearby texels (pixels of the texture).

Starting from Figure 2.2(c), texture and fragment stage were combined to form a new stage

named fragment unit, which became more programmable (via assembly language) in year 2000.

This year memory in this programmable stage was read via “dependant” texture lookups, pro-

gram size was limited and no real branching and looping were supported. Figure 2.2(d) shows in

2001 geometry stage became programmable (still via assembly language) and was called vertex

unit. There were no memory reads supported in this stage and program size was still limited as

well as the same situation of branching and looping comparedto 2000. Then things improved in

2002 so that vertex unit can do memory reads and the supportedmaximum program size was in-
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creased and branch as well as some higher level languages such as HLSL and Cg were supported.

However, both the vertex and fragment units could not write to memory but frame buffer. And

there were no integer math and bitwise operators. In 2003, GPUs became mostly programmable.

Although still inefficient, in Figure 2.2(e), “multi-pass”algorithms allowed writes to memory5 6.

Finally, as illustrated in Figure 2.2(f), processing unitswere “unified” so that the new geometry

unit that operates on a primitive can write back to memory.

Figure 2.3: CPU vs GPU in Peak Performance (gigaflops)

2.2.4 CPU vs GPU

CPUs and GPUs are architecturally very different devices. CPUs are designed for running a small

number of potentially quite complex tasks while GPUs are designed for running a large number

of quite simple tasks.

If we look at the relative computational power in GPUs and CPUs, we get an interesting

graph (Figure 2.3). We start to see a divergence of CPU and GPUcomputational power until

2009 when we see the GPU finally break the 1000 gigaflops or 1 teraflop barrier. At this point

5write to the frame buffer in the first pass
6the frame buffer is re-bound as a texture and is read in the second pass
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of time, the GPU hardware is moving from the G807 to the G2008 and then to the Fermi9

evolution. This is driven by the introduction of massively parallel hardware.

In Figure 2.3 we can also observe that NVIDIA GPUs make a leap of 300 gigaflops from

the G200 architecture to the Fermi architecture, nearly a 30% improvement in throughput. By

comparison, Intel’s leap from their core 2 architecture to the Nehalem architecture sees only a

minor improvement. Only with the change to Sandy Bridge architecture do we see significant

leaps in CPU performance. The traditional CPUs are aimed andgood at serial program execution

while the GPUs are designed to achieve their peak performance only when fully utilized in a

parallel manner.

(a) (b)

Figure 2.4: CPU vs GPU

There is a discrepancy in floating-point capability betweenthe CPU and the GPU. GPU

is specialized for compute-intensive, highly parallel computation. Therefore, more transistors

are devoted to data processing rather than data caching and flow control in GPU. Figure 2.4

schematically illustrates these differences between the design of CPU and GPU.

CPU and GPU have different thread environment. The CPU has a small number of registers

for each core, which must be used to execute any given task. Toachieve this, CPU cores need

to perform fast but expensive context switch among tasks. Incontrast, instead of having a single

7128 CUDA core device
8256 CUDA core device
9512 CUDA core device
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set of registers, GPU cores have multiple banks of registers. A context switch of GPU threads

simply involves setting a bank selector to swap in/out the current set of registers, which is much

faster than saving to off-chip global memory.

Definition 2.2.1. SPATIAL LOCALITY

Data that is close to the last accessed data will likely be accessed in the future.

Definition 2.2.2. TEMPORAL LOCALITY

Data that has been accessed before, will likely be accessed again.

Another difference between CPU and GPU is about the principle of locality, which is defined

in Definition 2.1.2. More specifically, spatial locality (Definition 2.2.1) and temporal locality

(Definition 2.2.2) are two types of locality to be consideredby programmers for a computer

system. CPU is designed to run software where the programmerdoes not have to care about

locality. On the contrary, GPU is designed with granting programmers the freedom of dealing

with locality. The simple process of planning ahead allows the programmer to schedule data

loads into the on-chip memory before they are needed.

One more important distinction between GPU and CPU is cache coherency. Although GPUs

of early generation have no general memory cache, more and more new-born ones are equipped

with hierarchical caches. For instance, the new Fermi and Kepler GPUs10 have a different

cache coherent mechanism from a general cache-coherent system. Specifically, a write to a main

memory location needs to be communicated to all levels of cache in all cores. Thus, all CPU

cores see the same view of memory at any point in time. This is one of the key factors that limit

the number of cores in CPU. Communication becomes increasingly more expensive in terms

of time as the processor core increases. On the GPU side, the system does not automatically

update the caches of other processing cores. It relies on programmers to write the output of each

processor core to separate addresses. Actually, a single core is responsible for a single or small

set of outputs. Moreover, adjacent memory locations are coalesced (combined) together by the

hardware on GPUs, resulting in a single and more efficient memory fetch.

10Fermi and Kepler GPUs are equipped with a shared L2 cache, which is similar to the L3 cache function
on the CPU.
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2.2.5 Compute Unified Device Architecture (CUDA)

CUDA is an extension to the C language that allows GPU code to be written in regular C. The

code is either targeted for the host processor (the CPU) or targeted at the device processor (the

GPU). The host processor spawns multi-thread tasks (or kernels as they are known in CUDA)

onto the GPU device. The GPU has its own internal scheduler that will then allocate the kernels

to whatever GPU hardware is present.

CUDA enabledGPUs consist of a scalable array of multi-threaded streaming multiprocessors

(SMs). EachSM contains 8 scalar processors (SPs), which can run simultaneously and executes

identical instruction set. Up to 32 threads can be scheduledat a time, in a unit with a name

“warp”. There can be 24 warps active in oneSM at most in the same time.

The CUDA programming model is a heterogeneous model in whichboth theCPU andGPU

are used. In CUDA, the host refers to theCPU and its memory while the device refers to theGPU

and its memory. Code running on the host manages memory on both the host and device, and

also launches kernels, which are functions executed on the device. These kernels are executed

by manyGPU threads in parallel, which are organized in a grid-block-thread hierarchy. Threads

within a block synchronize and cooperate with each other viafast block-wise shared memory.

Threads from different blocks can only communicate throughoff-chip global memory with long

latency. The grid is then formed by thread blocks that can be transparently deployed on various

number of physical processors.

Given the heterogeneous nature of the CUDA programming model, a typical sequence of

operations for a CUDAC program is:

• Declare and allocate host and device memory.

• Initialize host data.

• Transfer data from the host to the device.

• Execute one or more kernels.

• Transfer results from the device to the host.

In CUDA programming environment, a kernel function revokedby CPU is deployed to run
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on GPU. As displayed in Formula 2.3, a kernel call specifies theexecution configurationusing

⋘ . . .⋙ between the function name and the parenthesized argument list. Dg andDb define

the thread dimensions for the grid and the blocks.Ns specifies the number of bytes in shared

memory that is dynamically allocated per block for this callin addition to the statically allocated

memory andS relates to the associated stream.

kernalFunction⋘Dg,Db,Ns,S⋙(para); (2.3)

Moreover, CUDA has a hierarchy of memory space. Registers are thread-wise and

on the top of this pyramid structure, which respond fastest within one processor cycle

but are restricted by the limited number. Similarly, block-wise shared-memory are also

on-chip and executes very fast. It is limited by the size as well. Constant memory and

texture memory are off-chip but equipped with pretty fast caches. Lastly, accessing off-

chip global and local memory cost several hundreds of cycles, though they are large in

size.

Last but not least, CUDA programming model has been evolvingwith GPU architec-

tures fromGeforce,Tesla,Fermi toKepler. AndMaxwell will be released soon in 2013.

The Tesla architecture is based on a scalable processor array. Several independent pro-

cessing units called texture/processor clusters are employed to process the tasks.Fermi

extends the performance and functionality ofTesla. Specifically,Fermi offers dramati-

cally increased programmability and compute-efficiency through a series of architectural

innovations. Recently, under the 28nm crafts,Kepler is the fastest and most efficient

high performance computing architecture. It makes heterogeneous computing more ac-

cessible, with innovativeSMX, dynamic parallelism and hyper-Q technology. The next

generationGPU to Kepler will be theMaxwell, which has faster double precision speed

and lower power consumption.
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2.2.6 Alternatives to CUDA

Besides CUDA from NVIDIA, there are several alternatives inthe GPGPU market. For

example, OpenCL [5, 39, 17] is an open and royalty-free standard supported by NVIDIA,

AMD, and other hardware manufacturers. The OpenCL trademark is owned by Apple,

which sets out an open standard that allows the use of computedevices. CUDA is cur-

rently only officially executable on NVIDIA hardware while OpenCL supports all major

brands of GPU devices, including CPUs with at least SSE3 support.

DirectCompute is Microsoft’s alternative to CUDA and OpenCL. It is an application

programming interface (API) that supports general purposecomputing on GPUs on MS

Windows 7 and Windows 8. DirectCompute is part of the Microsoft DirectX collection

of APIs. The DirectCompute architecture shares a range of computational interfaces

with its competitors, OpenCL and CUDA.

The main parallel processing language-extensions includeMPI, OpenMP, windows

threading model and pthreads. Firstly, as is mentioned in Section 2.2.1, MPI (Message

Passing Interface) [20] is perhaps the most widely known messaging interface. MPI is

a process-based parallel programming model. The parallelism is expressed by spawn-

ing hundreds of processes over a cluster of nodes and explicitly exchanging messages.

Secondly, OpenMP (Open Multi-Processing) [12] is a system designed for parallelism

within a computer system. The programmer specifies various parallel directives through

compiler pragmas. The compiler then attempts to split the problem intoN parts au-

tomatically, according to the number of available processor cores. OpenMP provides

automatic scaling for the problems due to the underlying CPUarchitecture. The mem-

ory bandwidth in the CPU is the bottleneck for continuously streaming data. Thirdly,

pthreads [38] is a library that is used significantly for multithread application. Using

threads, pthreads is designed for parallelism within a single node. Moreover, the pro-

grammer should be responsible for thread management and synchronization, which pro-
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vides more flexibility and consequently better performancefor well-written programs.

Fourthly, ZeroMQ(0MQ) [24] is a simple library designed fordistributed computing

that supports thread-, process-, and network-based communications models with a single

cross-platform API. ZeroMQ provides dynamic connections and graceful fault-tolerant

mechanism. Lastly, Hadoop [27] is an open-source version ofGoogle’s MapReduce

framework [14]. In the map stage, Hadoop breaks (or map) a huge dataset into a number

of chunks and split over hundreds or thousands of nodes usinga parallel file system.

Then in the reduce stage, the program is sent to the node that contains the data. The

output is written to the local node. Subsequent MapReduce programs iteratively take

the previous output and transform it in some way. Hadoop is a highly fault-tolerant and

high-throughput system.

OpenACC is a set of “OpenMP-like” compiler directives for GPUs, which is sup-

ported by a number of compiler vendors11. With OpenACC, the programmer inserts

a number of compiler directives marking regions as “to be executed on the GPU”. The

compiler then automatically moves data to/from the GPU and invokes kernels. Similar

to the relationship between pthreads and OpenMP, CUDA provides the lower level of

control and higher performance over OpenACC. Conversely, OpenACC requires a lower

level of required programming knowledge, a lower risk of errors and shorter develop-

ment time.

2.2.7 Parallelism with GPUs

A significant number of problems are known as “embarrassingly parallel”, for which

little or no effort is required to separate the problem into anumber of parallel tasks.

These types of problems can be implemented extremely well onGPUs and are easy to

code. However, if one stage of the algorithm cannot be represented in this way, the

11PGI, CAPS, Cray, etc.
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computation slows down due to the processors/threads spending more time sharing data

than doing any useful work. The speedup will ultimately be limited. This stage turns out

to be a bottleneck of this problem.

CUDA is ideal for an embarrassingly parallel problem, wherelittle or no interthread

or interblock communication is required. It supports interthread communication with

explicit primitives using on-chip resources. Interblock communication is only supported

by invoking multiple kernels in sequence, communicating between kernels using off-chip

global memory.

CUDA splits problems into grids of blocks, each containing multiple threads. The

blocks may run in any order and are allocated to any SM (symmetrical multiprocessors)

that has free slots. If a grid of threads is analogous to an army of soldiers, the blocks

are said to be like the units that are commanded by a lieutenant. The block is then

split into several warps of threads, which is like a sergeant-lead squad of 32 soldiers.

Figure 2.5 illustrates the CUDA-based hierarchy of threadsview. The host program

invokes the kernels to perform some action by providing somedata. Each thread works

on its individual part of the problem. Threads may communicate with each other by

swapping data from time to time under the coordination of either the sergeant (the warp)

or the lieutenant (the block). Any coordination with other blocks has to be performed by

central command (the host or the kernel grid).

Thousands of threads orchestrate extremely high concurrency in this hierarchical

manner. Actually, a typical modern GPU has on the order of 24Kactive threads. For

example, a Fermi GPU has65,535 × 65,535 × 1536 threads in total, 24K of which are

active at any time. To understand the parallelism of GPUs, several types of parallelism

are defined as follows:

Definition 2.2.3. COARSE-GRAINED PARALLELISM IN GPU

Relative to fine-grained parallelism, bigger portions of processing element can be
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Figure 2.5: CUDA-based Thread View

Figure 2.6: Stream Pipelining

employed to perform over a bulk of data.

GPUs support the coarse-grained parallelism pattern in twoways:

1. kernels can be pushed into a single stream and separate streams executed concur-

rently.

2. multiple GPUs can work together directly through either passing data via the host

or passing data via messages directly to one another over thePCI-E bus.

As is defined in Definition 2.2.4, stream pipelining belongs to the coarse-grained

parallelism on the GPUs. Figure 2.6 displays the partitioning of the tasks in GPU stream

pipelining.

Definition 2.2.4. PIPELINE PARALLELISM

There are a number of powerful processors, each of which can perform a significant

chunk of work. The output on one program provides the input for the next.
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Besides coarse-grained parallelism, GPUs and CUDA can evensupport fine-grained

parallelism which is defined in Definition 2.2.5. The CUDA parallel programming model

has three key abstractions – a hierarchy of thread groups, shared memories, and barrier

synchronization. These abstractions provide fine-graineddata parallelism and thread

parallelism, nested within coarse-grained data parallelism and task parallelism (Defini-

tion 2.2.6). A problem is usually partitioned into coarse sub-problems that can be solved

independently in parallel by blocks of threads, and each sub-problem into finer pieces

that can be solved cooperatively in parallel by all threads within the block.

Definition 2.2.5. FINE-GRAINED PARALLELISM IN GPU

Relative to coarse-grained parallelism, smaller portionsof processing element can

be employed to perform over fine-partitioning data.

Definition 2.2.6. TASK-BASED PARALLELISM

Task parallelism (also known as function parallelism and control parallelism) is a

form of parallelization of program across multiple processors in parallel computing

environments. Typically, task parallelism is achieved when each processor executes a

different thread (or process) on the same or different data.

Definition 2.2.7. DATA -BASED PARALLELISM

Data parallelism is a form of parallelization of computing across multiple processors

in parallel computing environments. Data parallelism focuses on distributing the data

across different parallel computing nodes.

2.2.8 Parallel Patterns in CUDA Programs

There are several common parallel patterns in CUDA programs. Thinking in terms of

patterns helps people to broadly deconstruct or abstract a problem. Therefore, learning
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and grasping well common parallel patterns enhance the efficiency of problem modeling

and CUDA programming.

Loop-based patterns

A loop is a sequence of statements which is specified once but which may be carried

out several times in succession. The code “inside” the loop (the body of the loop) is

obeyed a specified number of times, or once for each of a collection of items, or until

some condition is met, or indefinitely. Loops vary primarilyin terms of entry and exit

conditions (for, do...while, while), and whether they create dependencies between loop

iterations or not.

Loop-based iteration is one of the easiest patterns to parallelize. With inter-loop de-

pendencies removed, its then simply a matter of deciding howto split, or partition, the

work between the available processors. This should be done with a view to minimiz-

ing communication between processors and maximizing the use of on-chip resources

(registers and shared memory on a GPU; L1/L2/L3 cache on a CPU). Communication

overhead typically scales badly and is often the bottleneckin poorly designed systems.

On the GPU the inner loop, provided it is small, is typically implemented by threads

within a single block. As the loop iterations are grouped, adjacent threads usually access

adjacent memory locations. This often allows people to exploit locality. Any outer

loop(s) is(are) then implemented as blocks of the threads.

Fork/join pattern

The fork/join pattern is a common pattern in serial programming where there are syn-

chronization points and only certain aspects of the programare parallel. The serial code

runs and at some point hits a section where the work can be distributed to P processors

in some manner. It then “forks” or spawns N threads/processes that perform the calcu-
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lation in parallel. These then execute independently and finally converge or join once

all the calculations are complete. This is typically the approach found in OpenMP and

OpenACC, where a parallel region is defined with pragma statements. The code then

splits into N threads and later converges to a single thread again.

The fork/join pattern is typically implemented with staticpartitioning of the data.

That is, the serial code will launch N threads and divide the dataset equally between the

N threads. The fork/join pattern is often used when there is an unknown amount of con-

currency in a problem. Traversing a tree structure or a path exploration type algorithm

may spawn (fork) additional threads when it encounters another node or path. When the

path has been fully explored, these threads may then join back into the pool of threads

or simply complete and wait to be re-spawned later.

GPUs have dynamic scheduling allocation. A block (thread) pool for GPUs is created

for allocating tasks among SMs. Actually, this pattern is not natively supported on a

GPU, as it uses a fixed number of blocks/threads at kernel launch time. Additional blocks

cannot be launched by the kernel, only the host program. Thus, such algorithms on the

GPU side are typically implemented as a series of GPU kernel launches, each of which

needs to generate the next state. An alternative is to coordinate or signal the host and

have it launch additional, concurrent kernels. Neither solution works particularly well,

as GPUs are designed for a static amount of concurrency. Kepler introduces a concept,

dynamic parallelism, which addresses this issue.

Tiling/grids

CUDA requires programmers to break the problem into smallerparts, each of which is

then allocated to the processing elements present in the machine.

The tiling model is thus an easy model to conceptualize. Imagine the problem in two

dimensions – a flat arrangement of data – and simply overlay a grid onto the problem
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space.

CUDA provides a simple two-dimensional grid model. For a significant number of

problems, this is entirely sufficient. Considering a lineardistribution of work within a

single block, an ideal decomposition into CUDA blocks, however, is then demanded. As

we can assign up to sixteen blocks per SM and we can have up to 16SMs (30 on some

GPUs), any number of blocks of 256 or larger is fine. In practice, we would like to limit

the number of elements within the block to 128, 256, or 512, sothis in itself may drive

much larger numbers of blocks with a typical dataset.

Divide and Conquer

The divide-and-conquer pattern is also a pattern for breaking down large problems into

smaller sections, each of which can be conquered. Taken together these individual com-

putations allow a much larger problem to be solved. Typically divide-and-conquer algo-

rithms are used with recursion. Most recursive algorithms can also be represented as an

iterative model, which is usually somewhat easier to map onto the GPU as it fits better

into the primary tile-based decomposition model of the GPU.

2.2.9 Hardware Overview

GPU hardware is radically different than CPU hardware. Notice the GPU hardware

consists of a number of key blocks:

• Memory (global, constant, shared)

• Streaming multiprocessors (SMs)

• Streaming processors (SPs)

As is shown in Figure 2.7, a GPU device consists of one or more SMs. Virtually, GPU is

really an array of SMs, each of which has N cores. This is the key aspect that allows scal-
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ing of the processor. The most significant part of SM is that there are multiple SPs within

each SM. Each SM has access to a register file, which is much like a chunk of memory

that runs at the same speed as the SP units. There is also a shared memory block accessi-

ble only to the individual SM that can be used as a program-managed cache. The shared

memory is entirely under programmer control. Each SM has a separate bus into the tex-

ture memory, constant memory, and global memory spaces. Texture memory is a special

view onto the global memory, which is useful for data where there is interpolation. Con-

stant memory is used for read-only data and is cached on all hardware revisions. Like

texture memory, constant memory is simply a view into the main global memory. Global

memory is supplied via GDDR (Graphic Double Data Rate) on thegraphics card. Each

SM also has two or more special-purpose units (SPUs), which perform special hardware

instructions, such as the high-speed 24-bit sin/cosine/exponent operations.

Figure 2.7: GPU Block Diagram
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2.3 Related Work on Graph Processing on GPU

2.3.1 Graph Processing and Mining

Graph problems were first considered in the streaming environment by Henzinger et

al. [23]. Then counting triangle number and estimating common neighborhoods are dis-

cussed in [8] and [10]. Both of these problems and those more “complicated” computa-

tion need to access the data in a very adaptive fashion. Sincethe entire graph is too large

to be stored in the memory, emulating an aforementioned traditional algorithm necessi-

tate a sequence of passes over the data. This has motivated data streaming models like the

Semi-Streaming[18], W-Stream[15], andSort-Stream[4] models. Actually, streaming

is a useful method and an important computational model for handling large graphs that

cannot be read into main memory. In streaming environment, data is normally accessed

in a sequential fashion to bypass the memory limitation. Different from semi-streaming

programming model [9], which is also named the external memory model [49], stream-

ing algorithms abandon random access to the input graph data.

Given a graph data streamS = ⟨e1, e2, e3, . . . , en⟩, whereV = {v1, v2, v3, . . . , vm},

E = {e1, e2, e3, . . . , en}, and each itemei ∈ [m] × [m], graph mining on streams is

considered as estimating properties or finding patterns within the graph. According to

[36], there are three common variants for graph mining on streams, namely multi-pass

model, weighted/dynamic/directed graphs, and adjacency/incidence orderings.

Dense subgraph has significant more internal connections when comparing with its

surrounding vertices. In the context of this thesis, the definition of a dense subgraph is

the same with the one in paper [51], which is defined in Definition 2.5.2. Dense subgraph

mining is close-relative but simpler when comparing with the traditional clustering which

requires a strict partitioning of the graph [3]. There are three main types of dense graph

mining algorithms, namely enumeration [32, 29], fast heuristic enumeration [19, 50] and
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bounded approximation [13, 7].

To enumerate all possible dense patterns is usually straightforward but time con-

suming. For some real applications, such as protein-protein interaction networks, fast

heuristic methods are used to find the target pattern in largegraphs. Moreover, bounding

techniques are usually used to approximate the required density as well. In this sense,

a series of famous algorithms were proposed, such as Singling Algorithm [19], GRASP

algorithm [2], CSV algorithms [50],µ -CompleteQB[28], and some streaming-based

algorithms [26].

Graph mining operators, such as computing graph statistics, graph matching, com-

puting distance in a graph, graph random walk and graph triangulation, are basic graph

mining approximative functional modules. These operatorsare fundamental to most of

the graph mining applications, like PageRank and graph clustering. Graph triangulation

operator walks through a graph and counts all triangles. Thestate-of-the-art triangulation

operator is introduced in paper [9, 42, 51].

Paper [50] employed efficient bounding techniques on the mining of dense patterns

such as clique, quasi-clique, and k-core components to approximate the indications of the

dense patterns in the graph. In addition, a greedy heuristicalgorithm is used to order all

graph vertices into a linear fashion for graph traversal. Finally, a visual plot is provided

to give clues about the size and distribution of the dense patterns. The time complex-

ity of the algorithm CSV (cohesive subgraph mining and visualizing) is calculated as

O(∣V ∣2log∣V ∣2d). For small and sparse graphs, the performance of CSV is polynomial,

which is quite attractive when comparing with the existing algorithms.

2.3.2 Graph Processing on GPU

Modern GPUs have displayed an impressive computational power as well as higher

memory bandwidth compared to CPUs. They are used by many graph (mining) ap-
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plications as an accelerator to compute-intensive algorithms. Paper [21] presents a few

fundamental algorithms - including breadth first search, single source shortest path, and

all-pairs shortest path - using CUDA on large graphs. Paper [48] proposes an imple-

mentation of the push-relabel algorithm for graph cuts on the GPU. A minimum span-

ning tree algorithm on CUDA is presented in paper[47] as a recursive formulation of

Boruvka’s approach for undirected graphs. SimRank is a simple and influential measure

of similarity between nodes in a graph. Paper [22] exploits the inherent parallelism and

high memory bandwidth of GPU to accelerate the computation of SimRank on large

graphs. Moreover, they use iterative aggregation techniques when computing SimRank

scores concurrently for large graphs. Medusa [52] is a unified framework for supporting

various graph computation and visualization operations onGPU.

2.3.3 Graph Processing Model

Many real life problems can be expressed in terms of connected entities. With graphical

models, well defined graph theory can be utilized to process graph data and discover

valuable results. There are three levels of general processing patterns for graphs, namely

capture, query and mining. “Capture” identifies the relationship being generated or ex-

isting among entities. “Query” looks for some general information computed from the

relationship among entities, which is just like a simple database query. “Mining” digs

out some valuable knowledge from the information we can get using a series of data

mining methodologies.

Since the graph size has been dramatically increased in the past years, how to store

and process such a massive graph is a critical option. If the graph is kept in one large

external storage, then the corresponding graph processingmodel works locally in shared

memory system. Streaming algorithms need to be applied in this scenario. Otherwise,

the graph would be broken down into multiple partitions and stored in different places.
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Original algorithms are required to be redesigned in order to run in a distributed envi-

ronment. Graph processing model can be sequential or parallel. A sequential process-

ing model normally uses loops to iterate over the graph elements, while a parallel one

launches processing concurrently among a set of graph elements. More and more graph

processing models takes advantage of parallel programmingtechniques, which includes

various multi-process, hyper-threading and many-threading methods.

Most parallel graph processing algorithms can be expressedin terms of a combina-

tion of “traversal” and “transformation”. In graph “traversal” case, the algorithm walks

through a path which consists of a sequence of segments. Marko and Peter’s model [40]

is an instance of such a case. The algorithm starts with walking from a set of vertices

in parallel, and repeats until all segments are covered. While in graph “transformation”

case, the algorithm can modify the graph by adding or removing vertices or edges. Pregel

graph processing model is such an example. The algorithm also starts from some active

vertices, executes some operations and repeats until all vertices become inactive. “traver-

sal” and “transformation” are usually combined to express more complicated functions.

Parallel graph processing model can be synchronous or asynchronous. On one side,

synchronization here means after some operations some parts of graph elements finish

their tasks but waiting for other peers to finish. This timekeeping is for coordination

purpose among all graph elements. A synchronization point is named as a barrier. Bulk

Synchronous Parallel model [46] is a synchronous bridging model for designing parallel

algorithms. All processors are connected by a communication network. After some local

computation, the processor will send its results to other processors and wait for their

messages to arrive. However, synchronization trades off the system performance with

the model simplicity. On the other side, system can be implemented in an asynchronous

model with careful data dependency design.

Graph processing model can be vertex centric or edge centric. Vertex centric means
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the model makes the vertices as its first class citizens and all computations are conducted

by the vertices. In a parallel graph processing model, each thread or process represents

a vertex for a vertex centric model. For an object-oriented programming language, a

vertex can be modeled as a class object that is responsible for some computations and

communications. An edge centric model takes the edges as itsfirst class citizens, which

is similar to a vertex model. An edge centric model can be converted to a vertex centric

one since two connected vertices represent an edge. Google’s Pregel [33] is a vertex

centric model while Hama [43] makes edges as its first class citizens.

2.3.4 Graph Processing System

A graph processing system is an integrated system designed for graph processing and

graph mining. A graph processing system has the functionalities of graph partition-

ing, graph traversal, graph merging and graph mining. Thereare several basic modules

in a graph processing system that provides the fundamental functionalities, namely in-

put/output module, partitioning module, combiner module,communication module, pro-

cessing module and scheduler module. Boost Graph Library (BGL) [37] is a standard

generic interface for traversing graphs and reusing basic graph algorithms and graph

data structures. Parallel Boost Graph Library (PBGL) [16] is an extension to the BGL

for parallel and distributed computing. PBGL offers distributed graphs and graph algo-

rithms to exploit coarse-grained parallelism along with parallel algorithms that exploit

fine-grained parallelism. Google’s Pregel [33] is also a generic graph processing system

for distributed computing environment. Several Pregel implementations have emerged

in the literature recently. Phoebus [45] is an Erlang-basedimplementation of Pregel.

Hama [44] is a distributed graph processing framework on Hadoop. Different from

other pregel implementation, Hama is not a vertex centric model. GraphLab [30] is

also a generic graph processing system that improves upon abstractions like MapReduce
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by compactly expressing asynchronous iterative algorithms with sparse computational

dependencies while ensuring data consistency and achieving a high degree of parallel

performance.

2.4 Dense Neighborhood Graph Mining

This work introduces a new definition of dense subgraph pattern, theDN-graph.DN-

graph considers both the size of the sub-structure and the minimum level of interactions

between any pair of vertices. Detailed definitions and related work are attached in Ap-

pendix 2.5 at the end of this chapter. The mining ofDN-graphs inherits the difficulty

of finding clique, the fully-connected subgraphs. Thus, theDN-graphs can be approx-

imately located using the state-of-the-art graph triangulation methods. The solution in

this work consists of a family of algorithms, each of which targets a different problem

setting. These algorithms are iterative, and utilize repeated scans through the triangles

in the graph to locate theDN-graphs approximately. Each scan on the graph triangles

improves the results.

Our iterative, triangulation-based approach has three advantages. First, most of the

details involved in efficient processing, such as minimizing I/Os, are abstracted within

the triangulation algorithm. The abstraction ensures thisapproach’s extensibility to dif-

ferent input settings, e.g. when the target graph is too large to fit into memory, this

approach only needs to change the access method of the graph links. In addition, the

estimation of the local neighborhood is encapsulated within the triangulation algorithm.

Second, as the estimation of the local density value improves with each additional itera-

tion, users can adopt a “pay as you go” approach and obtain themost updated results on

demand. Finally, when the graph is too large to fit into the main memory, statistics in the

first iteration can be collected to support effective buffermanagement. There should be
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a need to store the local density value on a disk, since the triangles are generated in the

same ordering in every iteration.

There is an algorithm family about triangulation based dense graph mining presented

in this work. Their key features are shown in Table 2.1. For the ease of reference, we

refer them as 1) TriDN , 2) BiTriDN and 3) StreamDN respectively.

In Memory Time Space

Tri DN Yes O(klog∣V ∣∣E∣
3

2 ) O(∣V ∣log∣V ∣ + ∣E∣)

BiTri DN
Yes O(klog∣V ∣∣E∣

3

2 ) O(∣V ∣log∣V ∣ + ∣E∣)
(Binary Bounding)

StreamDN
No O(k∣E∣) O(∣V ∣)

(Semi-Stream)

Table 2.1: A Family ofDN-graph Mining Algorithms

There are variances between algorithms TriDN and BiTriDN that deal with in-

memory graphs. The two algorithms vary from each other in theways that iteratively

refineλ to reach convergence. As briefly explained previously, the triangle based algo-

rithm interactively uses the triangles to refineλ value. This process reaches convergence

when allλ values remain the same as previous iteration’s results.

The third algorithm, StreamDN , is for semi-streaming graph setting. To mine semi-

streaming graphs, algorithm StreamDN applies the min-wise independent set property,

which provides an approximation for triangulation using sequentially scan of graph

edges, with bounded error.

Experimental data of our study in this work come from both theoretically proven

data generators, as well as domain datasets. All the experiments are conducted on a

workstation with a Quad-Core AMD Opteron(tm) processor 8356, 128GB RAM and

700GB hard disk. The operating system is Windows server 2003, Enterprize x64 edition.

In the experimental study, the efficiency (i.e., running time) of theDN-graph mining

algorithms is evaluated. Figure 2.8 presents the effect of different graph density in a fixed

parameter setting study. The synthetic graph generatorGEC varies the edge distribution

by varying the embedded clique sizecwhen∣V ∣ (vertex size) is fixed. The trend over time
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Figure 2.8: Vary graph density

roughly follows complexityO(E 3

2 ). This experiment has demonstrated that the program

efficiency decreases exponentially as graph grows denser. When the graph arrives some

degree of density, current system has reached its performance bottleneck. Methods with

more computing power are potential solution for this situation. In the next chapter, we

employ the state-of-the-art GPGPU techniques to provide additional computing power

for graph triangulation acceleration.

2.5 Appendix

2.5.1 Preliminaries forDN -graph Mining

In the graphG, the neighborhood of a vertexv, is the set of vertices directly connecting to

v. Formally, we denote it asN(v) = {u ∣ (u, v) ∈ E}. The degree of vertexv can be given

asdeg(v) = N(v). Moreover, the adjacency information for the graph is usually given as

a set of vertex neighborhood:adj(G) = {N(u) ∣ u ∈ V }. And the joint neighborhood is

defined in 2.5.1.

Definition 2.5.1. JOINT NEIGHBORHOOD

The joint neighborhood of two verticesu and v, is the set of common neighbors of



43

the two vertices.

N(u, v) = {w ∣ ((u,w) ∈ E) ∧ ((v,w) ∈ E)} (2.4)

The joint neighborhood of the subgraphG′, is the set of all neighboring vertices not inG′,

but connecting directly to vertices withinG′.

N(G′) = {u ∣ (u, v) ∈ EG ∧ (u, v) ∉ EG′ ∧ u ∉ VG′ ∧ v ∈ VG′} (2.5)

Definition 2.5.2. DN-GRAPH

A DN-Graph with parameterλ, denotedG′(V ′,E′, λ), is a connected subgraph

G′(V ′,E′) of graphG(V,E) that satisfies the following conditions:

1. Every connected pair of vertices inG′ share at leastλ common neighbors.

2. λ(V ′ ∪ {v}) < λ, for anyv ∈ (V − V ′) ;

3. λ(V ′ − {v}) ≤ λ, for anyv ∈ V ′.

Definition 2.5.3. DN-GRAPH SIZE: λ(G′)

TheDN-Graph sizeλ(G′) is defined as the number of vertices in theDN-Graph G′.

According to the definition of theDN-Graph, theDN-Graph size minus two equals to

the minimal joint neighborhood size (ν) between any two connected vertices within the

graph.

λ(G′) = ν(G′) + 2 = min
u,v∈V ′

ν(u, v) + 2 (2.6)

As is stated inDEFINITION 2.5.2, aDN-Graph is a subgraph whose vertices share

many common neighbors. TheDN-Graph size (λ) relates to the minimal joint neighbor-

hood size (ν) between any two connected vertices within the graph. TheDN-Graph size

for the subgraphG′ is defined inDEFINITION 2.5.3. In addition, theDN-Graph size for

an edge (λ(e)) and that for a vertex (λ(v)) are two local maximal density metrics for the

subgraph. Obviously, the joint neighborhood size is equal to the number of the triangles

the two connected vertices participates in, which is alwaysan upper bound for the min-
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imal joint neighborhood size. THEOREM 2.5.1 regulates the relationship between the

DN-Graph size and the triangulation.λ̃(u, v) is defined to be an estimator forλ(u, v).

Definition 2.5.4. SUPPORTINGVERTICES: SP(E)

A vertexw is defined to be a supporting vertex forλ̃(u, v), iff:

SP(E) = { w ∣ λ̃(u, v) ≤min(λ̃(u,w), λ̃(v,w)) } (2.7)

Definition 2.5.5. TRIANGULATION : ∆(G)

The triangulation for a graphG is defined to be the technique of miningDN-Graphs

in the graph by computing the number of triangles(δ) each graph vertex and edge par-

ticipate in.

∆(G) = { λ(e) ∣ ∀e ∈ E } ∪ { λ(v) ∣ ∀v ∈ V } (2.8)

Theorem 2.5.1.TRIANGULATION FOR THE DN-GRAPH SIZE

According to the definition of theDN-Graph, triangulation can be used to compute the

DN-Graph size. The number of the triangles in which the edge(u, v) participates (a.k.a

δ(u, v)) is the upper-bound of the minimal joint neighborhood sizeν(u, v). By tightening

the upper-bound, the minimal joint neighborhood size can bereached when there are

enough supporting verticesSP(u, v) (DEFINITION 2.5.4) for λ̃(u, v) in the subgraphG′.

λ(u, v) = ν(u, v) ≤ λ̃(u, v) ≤ δ(u, v) (2.9)

2.5.2 DN -Graph As A Density Indicator

A graphG(V,E) is a set of verticesV and a set of interactionsE over V × V . The

size of graphG, denoted as∣V ∣, is the number of vertices inV . The neighborhood of

a graph vertexv, is the set of vertices directly connecting to v.N(v) is used to repre-

sent it. If vertexu andv share some common neighbors,N∩(u, v) represents the joint

neighborhood. The neighborhood ofe is the joint neighborhood of its two end vertices.
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The joint neighborhood is denoted as∣Ne∣. For a subgraphG′ of G, the neighborhood

of G′, N(G′), is the set of verticesu ∈ G/G′, which immediately connect with vertices

in G′. Inside a graph, the measurement of minimal joint neighborhood size between any

connected vertex pair is denoted asλ. The notationλ(G)/λ(V ) is used to refer to the

measurement of a graphG with vertex setV . For brevity, the content inside the bracket is

omitted andλ is used when the context is clear.ã is also used to represent an upperbound

of quantitya. The upperbound ofλ is thus written as̃λ.

In this work, a clique is a fully connected graph, in which every pair of vertices is

connected by an edge. If the size of a clique isc, the clique is said to be ac-clique. When

compared with clique of the same size, a quasi-clique has only a fraction (sayδ) of edges

in the graph, it is aδ quasi-clique. Conventionallyδ is in the interval (0.5, 1].

Defined in Definition 2.5.2, aDN-graph should be a connected subgraph in which

the lower bound of shared neighborhood between any connected vertices,λ, is locally

maximized. Being aDN-graph, it has a local maximalλ value and the size of theDN-

graph is maximized. This ensures that theDN-graph has more distinguishing power and

maximal coverage. Similar with the graph’s diameter and minimum cut,λ is an indicator

of the graphs’ underlying density. As proven in the appendixof Paper [51], it is a local

maximum graph. For example, in figure 2.9, subgraphABCDEF is aDN-graph ofλ

value 3. If we include one more vertexA′, theλ value of the graphA′ABCDEF would

drop significantly to 0. Similarly, taking away any vertex, sayA, leads to a lower value

λ. DN-graph is designed to represent dense patterns, as it captures subgraphs with more

internal associations.

Besides the level of connectivity, aDN-graph also imposes restrictions on the mini-

mal size of the shared neighborhood. This restriction is especially useful when predicting

protein complexes via densely connected proteins within a protein-protein interaction

(PPI) graph. A protein complexs formation often serves to activate or inhibit one or



46

A 

F 

B

D 

C 

E A’ 

Figure 2.9: ADN-graph

more of the complex members. In a PPI network, we can observe the phenomenon that

members of a protein complex share (significantly many) neighbors. TheDN-graph

definition reconciles the sharing of neighborhood.

Based onDN-graph, this work provides effective solutions towards mining DN-

graphs within a massive graph. Generally speaking, the level of interactions among

entities determine the density of the substructures. From this point of view, it is not

surprising to see that some patterns are transformable to others. For example, aDN-

graph is a more general case of a closed clique (Recall that a clique is a fully connected

graph while the closed clique is the local maximal clique). In fact, aDN-graph is a

relaxation of a clique, with less rigid size constraints. Lemma 2.5.1 states the relationship

formally:

Lemma 2.5.1.DN-graph and Closed Clique

A graph contains a closed clique of sized if and only if the graph contains aDN-graph

G with λ = d − 2 and ∣G∣ = d.

Using Lemma 2.5.1, people are able to reduce the close cliquemining problem

to DN-graph mining problem. The reduction signifies thatDN-graph mining is NP-

complete. Prompted by this result, we seek to develop heuristical solutions instead. Like

the closed clique mining problem, the computational bottleneck forDN-graph mining

is on counting degrees within a subgraph. In fact, the counting of local degrees relies
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heavily on the multiple joins of neighbors, which are computationally expensive. To

avoid the complexity of multiple joins, we next introduce the concept ofλ(e).
As is discussed previously, the bottleneck ofDN-graph mining is excessive number

of the multiple joins of neighbors. This is because we have totest combinatorial number

of subgraphs for theirλ value and most subgraphs tested are notDN-graphs.

Definition 2.5.1. λ(e)
For all subgraph a graph edgee participates, the maximalλ value occurred ise’s local

density, We denote the maximalλ asλ(e).
For example, in figure 2.9, lete = (A,B), λ(e) equals 3. Actually, all edges within

the subgraphABCDEF haveλ(e) = 3. The valueλ(e) indicates quantitatively, the

most prominent relationships between two linked vertices.With the definition of local

density, we next prove that usingλ(e) we are able to find allDN-graphs.

Theorem 2.5.2.LocatingDN-graph usingλ(e)
A graphG′ is aDN-graph if and only if

• all edgese withinG′ have equivalentλ value,λmax and,

• for all u ∈ N(G′) andv ∈ G′, λ(u, v) ≤ λmax.

V_max

G’

v_max

Figure 2.10: Proof of Theorem2.5.2

Proof. To prove the correctness of theorem 2.5.2, we use the abstract graph in figure

2.10. The complete proof consists of two steps. Firstly,G′ must exist. Secondly,G′ must
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contain some max-minDN graph. To prove the existence ofG′, we constructG′ using

graph vertices/edges and theirλ values. First pick a vertexv with λ(v) ≥ λ(u) for all

(u ∈ N(v)). Denoteλ(v) asλmax. By the definition of localλ value,λ(v) participates in

a connected graphG′ with λ(G′) = λmax. Fromv, we find all its immediately connected

neighbors that haveλ(u) = λmax. From eachu, we find u’s immediately connected

neighbors with localλ valueλmax. This process propagates until no such neighbor exists.

The collection of discovered vertices form a connected subgraphG′ with λ valueλmax.

Next, we show thatG′ contains aDN-graph. By first part of the proof,G′ contains

all vertices and edges withλ valueλmax. For a vertexv′ ∈ G′, it only can formDN-

graph ofλ = λmax with vertices insideG′. If denoting the minimal set of vertices from

G′ that form anDN-graph withv′ asVmin, the subgraphVmin ∪ v′ is also aDN-graph.

This proves that a graphG′ containing the set of vertices withλ(v) = λmax > λ(u)
whereu ∈ N(G′) must participate in aDN-graph. The condition thatλ(v) = λmax

andλmax > λ(u), whereu is the neighbor vertices ofG′, means the graphG′ contains

vertices with local maximalλ value. Since graphG′ is always a super graph of some

DN-graph, If a solution can findG′, theDN graph can be located withinG′.

With above two steps, we prove the correctness of theorem 2.5.2.

Based on Theorem 2.5.2,DN-graphs can be located by connecting edges with local

maximalλ(e).
Computingλ(e) for all edges is however computationally prohibitive, as discussed

in section 2.5.2. To facilitate approximation efficiently,we first find an upper bound

value forλ(e), the λ̃(e), and then iteratively refinẽλ(e) to capture the actualλ(e) as

accurately as possible.

The approximation is based on the fact that for an edgee, its λ(e) value is upper

bounded by the joint neighborhood size of the end vertices ofe. This joint neighborhood

size is in fact the number of trianglese participates in a graph. Thus we are inspired to
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use triangulation to approximateλ(e) for every graph edge.

2.5.3 Triangulation BasedDN -Graph Mining

A triangle consists of a vertex triple(u, v,w) and three edges(u, v), (v,w) and(u,w).
The problem of counting or listing all triangles within a graph is referred asGraph

Triangulation (Definition 2.5.5).

The joint neighborhood of edgee(u, v) upper-bounds the local densityλ(e), while

the number of trianglese(u, v) participates in is equals to the joint neighborhood size.

This indicates that graph triangulation provides an upper boundλ(e) for every edge

e. Here we usẽλ(u, v) to represent the current upper bound of edge(u, v). What’s

more, given a graph triangle, thẽλ(u, v) can tighten the other two edges’ density upper

bound. The following proposition gives the relationship between an edgee’s (λ̃(e)) and

its neighbors’:

Proposition 2.5.1.Neighbor Bounding of̃λ(e)
Inside a triangle(u, v,w), if λ̃(u, v) ≤min(λ̃(u,w),λ̃(v,w))we sayw supports̃λ(u, v).
λ̃(u, v) is valid if and only if:

∣ {w∣w supports λ̃(u, v)} ∣ ≥ λ̃(u, v)

The elementary operation behind local triangulation is thejoining of vertex neigh-

borhoods. The performance of a local triangulation algorithm heavily depends on the

order of those join operations. In fact, it is a necessary preprocessing step to sort vertices

according to their degrees for effective triangulation.

The triangulation algorithm generates triangles systematically for each edge of the

graph. The generation of the triangles is a sequence of join operations between the

neighbors of two connected vertices. Based on a special order of joining operations, the
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triangles are generated in a streaming fashion. TheDN-graph mining algorithm thus

obtains the local density information gradually along the triangle streams. Based on

proposition 2.5.1, we can use the number of triangles an edgeparticipates in(TC(e)) as

the initial upper bound of theλ(e), theλ̃(e). To give an even more accurate bound for

λ(e), the algorithm uses the density value ofe’s neighbors’ to validate the current upper

boundλ(e). Figure 2.11 shows how this process works graphically.
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Figure 2.11: Use Triangle to Refine Local Density(λ)

In the first round of graph triangulation, we are aware of the triangular count of

e(a, b) (which is in factλ̃(e)), and nothing about its neighbors. However, the triangular

counts of the neighbors (a.k.a local density estimation) are available once the first round

of graph triangulation is completed. To compute a more accurate λ̃(e) for each edge,

we will simply go through more rounds of triangulation and make use of the density

information of the neighbors to further validate a new estimation ofλ̃(e) for each edge.

For a triangle(a, b, n1), the algorithm checks whether the triangles(a, b, n1) can

possibly be a supporting evidence that edgee(a, b) are in aDN-graph, withλ̃(e). This

is done by checking whether both the other two edges of triangle (a, b, n1) (i.e. e(a,n1)
ande(b, n1)) haveλ̃ greater or equal tõλ(e). If this is the case, this means thatn1 is

such a supporting vertex.

The triangle is then represented as a solid line indicating that e(a, b) finds a new

supporting vertex n1 inDN-graph withλ̃(e). As new triangles approach, the algorithm

counts the number of supporting vertices for edge(a, b) to form DN-graph, with the
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current value of̃λ(e). After one pass of all triangles, the number of vertices thatsupport

each edge’s density upper boundλ̃(e) are available for further computation.

With the supporting neighbors’ information, the algorithmis able to determine the

upper bound ofλ for each graph edge (the upper bound is denoted asλ̃(e)). If sufficient

supporting vertices are found forλ̃(e) for an edgee(a, b), λ̃(e) is a valid upper bound

of e(a, b)’s λ value. If there is not enough supporting vertices fore(a, b), the algorithm

finds the next possiblẽλ(e) value and tests it in the next round of triangulation. The

algorithmic description is given in Algorithm 1. Within thealgorithm,sc(e) records the

number of vertices supporting currentλ̃(e) value.

Algorithm 1: Triangulation based DN-graph mining
Input : GraphG = (V,E)
Output : λ̃(e) for eache ∈ E

1 Triangles = Triangulation(G), k(e) = Trianglecount(e), iteration= 0 ;

2 while converge& iteration ≠MAX ITR do
3 sc = 0, converge =TRUE ;

4 forall the Triangles(a, b, c) ∈ G do
5 if e is supportedthen
6 sc(e)++ ;

7 forall the edgese ∈ G do
8 if sc(e) < λ̃(e) then
9 Find next possible valuẽλ(e) for e ;

10 converge =FALSE ;

11 iteration++;

12 return λ̃(e) ;

2.5.4 λ̃(e) Bounding Choice

We can derive two variants of DN-graph mining algorithms from Algorithm 1, namely

algorithms TriDN and BiTriDN. The two algorithms have different ways to decide the

next possiblẽλ(e) value. The first variant, called TriDN, decreasesλ̃(e) by one (Line



52

9 in Algorithm 1 becomes̃λ(e) = λ̃(e) − 1 ), if current λ̃(e) cannot obtain sufficient

supporting vertices count. This strategy is useful when thetriangle counts are close to

the actualλ(e) values (qualitatively, when∣TC(e) + 2 − λ̃(e)∣ ≤ logλ(e) ).

When the triangulation results are far above the actualλ(e) value, we can employ

the second variant, called BiTriDN, which adopts a binary search strategy for the next

possible value ofDN(e). BiTriDN requires additional information of possibleDN(e)’s
range. We use two numberslbk(e) andλ̃(e) to record the lower bound and upper bound

of λ(e) value, andmk(e) denotes the medium of range[lbk(e), λ̃(e)]. For complete-

ness, we rewrite Line 7 onwards in Algorithm 1. BiTriDN has the advantage of fast

convergence if the graph to be mined has many high degree vertices (qualitatively, when

∣TC(e) + 2 − λ̃(e)∣ ≥ logλ(e)).

Algorithm 2: Binary DN-Graph Mining Variance “BiTriDN”
Input : GraphG = (V,E)
Output : λ̃(e) for eache ∈ E

1 mk(e) = k(e) = TC(e) + 2, lbk(e) = 2 ;
2 Get support countscmk(e) for all edges’̃λ(e) ; // This part is the

same as in Algorithm 1
3 forall the edgee ∈ G do
4 if scmk(e) <mk(e) & lbk(e) < λ̃(e) then
5 λ̃(e) =mk(e) − 1, converge = FALSE ;

6 else
7 lbk(e) =mk(e) ;
8 mk(e) = λ̃(e)+lbk(e)

2
;

9 return λ̃(e) ;

2.5.5 Extension ofDN -Graph Mining to Semi-Streaming Graph

The semi-streaming graph model assumes the vertices of the graph can be fitted into main

memory, and the interactions among vertices are stored in anordered manner within the

secondary storage. While this assumption may not hold for arbitrarily large graphs, we
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can still handle up to Giga scale vertices (assume∣V ∣ vertices require∣V ∣log∣V ∣ bits stor-

age) with today’s main memory capacities. Following the nature of physical storage

devices, our streaming model assumes random access in primary storage (i.e. memory)

and only sequential access in secondary storage. In the secondary storage, graph interac-

tions are stored in the form of adjacency list. As a feasible solution towards a streaming

graphG(V,E), it should not exceedlog∣V ∣ scans ofG’s adjacency list.

In the semi-streaming graph setting, the exact triangulation algorithm cannot be di-

rectly applied in theDN-graph mining solutions. The information of the neighbors are

stored in secondary storage and may not be immediately available when the algorithm

retrieves it.

In view of above difficulty, our streaming solution first performs a semi-streaming

triangulation, followed by the completeDN-graph mining solution in semi-streaming

setting.

The neighborhoods join operations are in fact the process ofdetermining the similar-

ity between two sets. The most well-adapted measurement forset similarity is Jaccard

coefficient. For two sets,A andB, Jaccard coefficient is calculated asJ(A,B) = ∣A∩B∣
A∪B .

In the semi-streaming graph setting, it is however expensive to calculate Jaccard co-

efficient between two neighborhoods since the operation of set joining requires expensive

pre-processing of sets such as sorting or heap building.

In view of above difficulty, we use the property of min-wise independent set to ap-

proximate Jaccard coefficient. When dealing with large sets, min-wise independent prop-

erty approximate set intersection size using sequential scan only.

SupposeA andB are defined on the set universeX, andπ is a permutation over

universeX, the min-wise independent property states: Ifπ[X] is a uniformly cho-

sen random permutation overX, andW ⊂ [X] is any subset over the universe, and

π[W ] is the projection ofW by permutationπ, then the probability that two subsets’
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minimal projected images are equal is the same as the Jaccardcoefficient. Formally,

P [min(π[A]) == min(π[B])] = J(A,B). Paper [9] proposes a streaming local trian-

gle counting algorithm based on min-wise independent property.

The first step of algorithm StreamDN estimates local triangulation using edge scans.

The next step is to calculate each edge’sλ value using only edge scans 1. StreamDN, as

presented in Algorithm 3, adopts the bounding process as algorithm BiTriDN. That is:

Algorithm 3: Streaming DN-Graph Mining Algorithm “StreamDN”
Input : GraphG = (V,E), r ∶ # of scans of graph links,k ∶ # of bits for hash

values
Output : λ̃(e) for eache ∈ E

1 mk(e) = λ̃(e) = TC(e), lbk(e) = 0 ;
2 Triangulation and store triangle countTC(v, u) for all e ∈ E as in algorithm 5 in

appendix.while !converge & iteration ≠ MAX ITR do
3 sck = 0, ubk(e) = λ̃(e) = TC(e), lbk(e) = 0 ;
4 forall the edge(u, v) ∈ G do
5 sck(u, v) = number ofu’s neighbor withλ̃(u, v) ;
6 Boundλ̃(u, v) usingubk(u, v)/lbk(u, v)/sck(u, v) ;

// the same as Algorithm 2

7 return λ̃(e) ;

The only difference between the streaming version of the algorithm and BiTriDN

is when counting the supporting vertices. In StreamDN, we can only access the graph

edges sequentially. In view of the restriction, proposition 2.5.1 is relaxed to as follows:

Proposition 2.5.2.Relaxed Neighbor Bounding ofλ(e)
Given a graph edgee(u, v) and the joint neighbor setN∩(u, v), we say a vertexw ∈

N∩(u, v) is a supporting vertex of̃λ(e) if λ(u,w) ≥ λ̃(e). An integerk is a valid upper

bound of̃λ(e) if and only if there are at leastk of such supporting vertices inN∩(u, v).



Chapter 3

Streaming and GPU-Accelerated

Graph Triangulation

In this chapter, we take advantage of the state-of-the-artGPGPUtechnology to accelerate

and scale iterative triangulation. Facing the challenges of applying efficient triangulation

over a massive graph, we propose a parallel triangulation algorithm across heterogeneous

platform and achieve a notable speedup. We first utilize a streaming partition to divide

a massive graph. To facilitate inter-partition communications, we then design a message

spreading mechanism. Moreover, we employ a streaming pipelining strategy to speedup

data transfer among different memory spaces. Last but not least, several novelGPUgraph

data structures are designed to enhance the graph processing efficiency on theGPU.

3.1 Problem Statement

Triangulation is defined to be the technique of mining dense sub-components in the graph

by computing the number of triangles each graph vertex and edge involve. However,

exact counting of triangles in large graphs is computationally expensive. Since graphs

are growing larger and larger, graph triangulation has become a huge burden for general

55
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computer systems. Limited memory space and computing powerhave become the main

bottlenecks of the system. We named this situation as hitting “memory wall” and “power

wall”.

In order to overcome the memory limitation, researchers proposed several solutions

that extend the algorithm operating space. One method is to apply the semi-streaming

model that stores the data in the external memory and saves the vertex list in the memory.

However, semi-streaming model only converts the problem from “memory-bound” to

“IO-bound”. The other way is to adopt the divide and conquer strategy which partitions

the graph into sub-portions, each of which is then read into the memory for triangulation.

Nevertheless partitioning is a feasible approach, additional efforts should be exerted to

process the inevitable redundant vertices and edges that originally link two sub-portions.

Both of the aforementioned answers to the “memory wall” problem seem to be less

efficient. In consideration of the multi-coreCPU architecture, we combine the streaming

model and the pipelining approach to speedup the data transfer.

In order to climb over the “power wall”, one solution is to parallelize the triangulation

algorithm for multi-coreCPU systems.SIMD programming model can be applied over

the algorithm design. Multi-threading and processor affinity techniques are adopted to

increase the virtual and real parallelism of triangulation. However, multi-coreCPU was

still unable to provide enough real parallelism for triangulation over increasing massive

graphs. There are only 4 to 16 cores in a recent personal computer systems. No matter

how many threads we can create for a large graph triangulation, the actual parallelism

is constrained by the physical parallelism provided by theCPU. In order to exploit the

potential computing power of general computer systems, we naturally turn to hetero-

geneous computing. In this chapter, we take advantage of thestate-of-the-artGPGPU

techniques to accelerate and scale the iterative triangulation.

The rest of this chapter is organized as follows: Iterative triangulation is introduced
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in Section 3.2 and a parallel version of triangulation is proposed in Section 3.3. The

message spreading mechanism is designed in Section 3.4 to assist inter-subgraph com-

munications. We then describe a streaming partition strategy in Section 3.5. Moreover,

Section 3.6 proposes an efficient streaming pipelining approach. Dynamic threading

techniques are utilized in Section 3.7. Several novel graphdata structures designed for

GPU are discussed in Section 3.8. Section 3.9 proves the correctness of parallel triangu-

lation. Finally, experiments are displayed in Section 3.10before a conclusion is made.

3.2 Iterative Triangulation

As stated in THEOREM 2.5.1, triangulation can be used to compute theDN-Graph size.

Initially, the triangle countδ for each edgee is computed by calculating the joint neigh-

borhood size of the two ends of the edge. In addition, according to THEOREM 2.5.1,

δ(e) is a tight upper-bound for the minimal joint neighborhood size ν(e). Specifically,

the estimation of the minimal joint neighborhood size,λ̃(e), can be bounded by the cur-

rent λ̃ values of the edgee’s two neighboring edges, according to the definition of the

supporting vertex (DEFINITION 2.5.4). Similarly,̃λ(e) is also used to bound thẽλ value

of e’s neighbors. When a graph flows through the processors, all edges are affected by

their neighbors and also influence their neighbors in reverse. During an iteration, one

edgee is only bounded once. Those neighbors of this edge whoseλ̃ values are updated

later can only affecte with their newλ̃ in the next iteration. By iteratively streaming

through the graph,̃λ(e) approaches a steady state, in whiche together with some of its

neighbors forms aDN-Graph.

EXAMPLE 3.1 is a simple working instance to illustrate iterative triangulation.

Example 1. Figure 3.1 displays a graphG with 7 vertices. By counting the num-

ber of triangles in which each edge participate, theλ̃ values of all edges are initial-



58

b

a

c

d

e

f

g

1

1

1
1

1

0

2

2

2

3

2

2
b

a

c

d

e

f

g

1

1

1
1

1

0

2

2

2

2

2

2

(a) Initialization (b) Iterative Bounding

Figure 3.1: Iterative Triangulation

ized to theirδ values. This is shown in figure 3.1(a). The edge(a, b) is involved in

three triangles{△abc,△abd,△abe}, so λ̃(a, b) is initialized to beδ(a, b)=3. Sincẽλ(a, b) >

max( λ̃(a, d), λ̃(b, d), λ̃(a, c), λ̃(b, c), λ̃(a, e), λ̃(b, e)), there is no supporting vertex for

the edge(a, b). λ̃(a, b) is then reduced to 2 as displayed in Figure 3.1(b). In the second

iteration, theλ̃ values of all edges in the subgraphG′{a, b, c, d} have enough supporting

vertices, falling into a steady state. Hence,λ(a, b)=λ̃(a, b)=2 and the subgraphG′ forms

a DN-Graph before the algorithm halts.

In order to compute theλ value for each edge in a graph, triangulation algorithm

examines all edges and their neighbors once an iteration. Inother words, there may be

O(∣E∣) join operations incurring intensive computation for each iteration. In practice, we

notice that when the graph to be processed becomes larger andlarger the performance

of the system drops exponentially. Lacking effective computing power has become the

main factor that limit the scalability of traditional triangulation algorithm. Additionally,

programs always crash as input graphs are too large to be heldin the memory. A semi-

streaming solution might prevent programs from crashing, such as stated in paper [51],

by saving only the vertices in the memory. Nevertheless, thelimited data transfer rate of

the system I/O becomes the system bottleneck. Processors always stall their operations

while waiting for graph data to be loaded or unloaded from theexternal storage.

In the next section, we will first try to explore additional computing power by exploit-
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ing the potential parallelism out of the graph triangulation. After that, we will introduce

a combination of streaming and pipelining techniques to solve the memory-bound prob-

lem.

3.3 Parallel Triangulation

Iterative triangulation was introduced in paper [51] as a “pay as you go” approach to

locate the dense subgraph pattern approximately. As a sequential algorithm designed for

small graphs, iterative triangulation faces scalability problem when increasing graph size

exhausts the existing computing power. In this section, we propose a parallel version of

triangulation to efficiently mine dense subgraph patterns.Heterogeneous computing and

the state-of-the-artGPGPUtechniques are employed to parallelize the algorithm.

One step back, to explore the performance of the application, let’s reflect the problem

again and analyze the parallelism of the application. As mentioned previously, theλ

values for a graphG are computed by triangulation. An initial valueδ for each edge

is calculated by counting triangles. Based on this upper-bound, an iterative bounding

process is applied on the estimated valueλ̃ to approach theλ value for all elements in

the graph. For a massive graph that cannot directly resides in the memory, an efficient

partition approach divides the graph into subgraphs. Triangulation should be conducted

concurrently on these subgraphs since a traversal across the graph may start from any

subgraph. Furthermore, triangulation can also be applied on different vertices/edges

simultaneously. With a neighboring list, each vertex has little inherent data dependency

to each other. All operations executed by the vertex are saidto be data parallel. We will

delve into the aforementioned two levels for parallelism when parallelizing triangulation.

As introduced inSECTION 2.2.5,CUDA is a parallel programming model for general

purpose computation onGPUs. Being a many-core co-processor toCPU, NVIDIA GPUs
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are optimized hardware for data parallel operations. A batch of light-weight threads

can be launched to run concurrently onGPU parallel hardware at the same time. People

always send the most compute-intensive part of algorithms to be processed onGPU. The

number of computing cores and hybrid system architecture decide the real (hardware)

parallelism. The efficiency and performance of the application are maximized when

algorithm (virtual) parallelism adapts to the hardware parallelism.

To parallelize triangulation, a massive graph is initiallydivided into several sub-

graphs. Then a number of threads take charge of these partitions, each of which is then

scheduled to run on one physical processor. A join operationthat computes the com-

mon neighbors for the two ends of an edge is employed for triangle counting. When a

graph stream flows through processors, the join operations are executed in parallel.CPU

threads as well asGPU threads can be assigned for this task. For example, we have tried

to use oneCPU thread to handle one partition and launched a pile ofGPU threads for ver-

tices to join their neighbors. Several combinations ofCPU threads andGPU threads can

be designed according to the algorithm and system architecture. Similarly, we parallelize

iterative bounding using simultaneousCPU or GPU threads.

ALGORITHM 4 is the parallel version of iterative triangulation. The algorithm reads

in a stream of the graph and output theλ values for all graph elements. In the first

line, the graph stream is divided into an array of sub-streams. Line 3∼ 6 initialize

the λ̃ value for each graph element using itsδ value. Iterative bounding is enclosed

with the “repeat. . . until” loop starting from Line 7 onwards. By adopting “pay as you

go” approach, the iteration continues until all bounding operations converge in every

partition or the maximum number of iterations has been reached. As is analyzed above,

different threads can drive the iterative bounding concurrently. cvg[i] denotes whether

the bounding has ceased in theith partitionP [i]. Line 11 swaps in the adjacency and the

λ̃ information from the external disk. If any message has been received fromN(P [i]),
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Algorithm 4: Parallel Triangulation
Input : G = (V,E)
Output : λ(G)

1 P (V ′,E′) = GraphPartition(G) ;
2 int itr count = 0, λ̃ = 0 ;
3 foreach graph partitionP [i](V ′[i],E′[i]) do
4 foreach Edgee(u, v) ∈ E′[i] do
5 λ̃(e) = δ(e) = ∣N(u, v)∣ = Join(N(u),N(v)) ;
6 λ̃(u) =max(λ̃(u), λ̃(e)), λ̃(v) =max(λ̃(v), λ̃(e));
7 repeat
8 bool converge = TRUE ;
9 foreach graph partitionP [i](V ′[i],E′[i]) do

10 if cvg[i] = FALSE then
11 Swap inadj(V ′[i]), λ̃(P [i]) from disk ;
12 if (i ≠ 0) ∥ (itr count ≠ 0) then
13 Swap inmsg[i]; Update(adj(V ′[i]), λ̃(P [i]), msg[i]) ;

14 dim3Db = BLOCKSIZE ,Dg = V ′[i]
Db

;
15 ItrBound<<<Dg,Db>>>(λ̃(P [i]),msg[i], cvg[i])
16 int idx = blockIdx.x× blockDim.x + threadIdx.x ;
17 int supportcnt = 0 ;
18 shared bool SCVG[Db] ;
19 shared list< pair<int,int> > SMSG[Db] ;
20 foreachvertexv ∈ N(idx) do
21 while u ∈ N(index, v) do
22 if λ̃(v, idx) ≤ λ̃(u, v)&&λ̃(v, idx) ≤ λ̃(u, idx) then
23 supportcnt++ ;

24 foreachvertexv ∈ N(idx) do
25 while u ∈ N(index, v) do
26 if λ̃(v, idx) ≤ λ̃(u, v)&&λ̃(v, idx) ≤ λ̃(u, idx) then
27 supportcnt++ ;

28 while u ∈ N(index, v) do
29 if supportcnt(v,idx)< λ̃(v, idx) then
30 λ̃(v, idx)−− ;
31 if v ∈ N(P [i]) then
32 Generate(SMSG, v, λ̃(v, idx)) ;

33 SCVG[threadIdx] = FALSE ;

34 synchronized();
35 cvg[i] = Rd(Rd(SCVG,threadIdx.x),blockIdx.x) ;
36 msg[i] = Encapsulate(SMSG) ;

37 MessageSend(msg[i]) ; Swap out̃λ(P [i]) to disk ;

38 converge &= cvg[i++] ;

39 itr count++ ;
40 until converge= TRUE && itr count>MAX ITR;
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the λ̃ value of some graph element will be updated in Line 14. Noticeably, the routine

ItrBound is the kernel function that is deployed to run onGPU. After iterative bound-

ing, messages are sent toN(P [i]) andλ̃(P [i]) are swapped out so that the resident data

in the memory can be minimized.

The kernel functionItrBound is invoked with the execution configuration (enclosed

by triple angle brackets “⋘⋙”) and some algorithmic parameters. Specifically, the di-

mension of thread blocksDb is preset to beBlockSizeand the dimension of thread grids

Dg is calculated as the subgraph vertex size divided byDb. Thus, theGPU threads are

put into one-to-one correspondence with the vertex set of the subgraph. With the global

thread index, the vertex is connected by theGPU thread. It is denoted as a thread ver-

tex. In addition, those algorithmic parameters in parentheses are declared by cpu but

allocated on gpu memory, which link the data across hybrid platforms. The first “fore-

ach” loop counts the supporting vertices for all edges formed bythe thread vertex and

its neighbors. The second “foreach” loop decreases thẽλ value for each aforementioned

edge if there is no enough supporting vertices. If a neighborv connecting to this thread

vertex idx happens to be a peripheral boundary vertex, which meansv ∈ N(P [i]), a

message is generated for the edge(idx, v). A synchronizing barrier is set in Line 32 to

wait for all threads to complete their bounding tasks. Before exiting the device code, the

converging flags for all thread are reduced to the global value cvg[i]. And the messages

generated by each thread are collected into the messaging listmsg[i].
Different from traditional sequential algorithms, there are several types of memory

spaces utilized in theALGORITHM 4. Firstly, massive graphs (G,P [i]) and related data

(λ̃, adj(V ′[i]), etc.) are stored in the external disk. However, direct access to the disk

always results in excessiveIO costs. We employ the disk as a supplementary storage.

Secondly, as a major place for data processing and scheduling, main memory can be ac-

cessed by multi-coreCPU for partitioning, initial triangle counting and message spread-



63

ing. Besides host memory,GPU global memory is the device memory connecting to

main memory via a high speed bus1. Similar to main memory,GPU global memory

acts as media for data processing and scheduling on the device. msg[i], cvg[i] and in-

termediate data are saved in global memory while the kernel function is executed. In

addition, texture memory is the auxiliary device memory that can be accessed via fast

cache byGPU processors.̃λ(P [i]) is read-only during the execution of the device code.

We combinẽλ(P [i]) with the texture memory to speed up parallel data access on the

device. Furthermore, constant memory is another read-onlydevice memory that we as-

sign our constants (BLOCKSIZE, etc.) there. Last but not least, shared-memory is the

block-wise fast device memory. Different from other memorytypes, shared-memory is

on-chip and close toGPU processors. Restricted by the limited size, we only employ

two shared arrays in the shared memory for fast data updates.The shared arraySCVG

is used for flagging whether anỹλ value of the edges incident to the thread vertex has

been updated. The reduce function can be conducted from the block-wise and grid-wise

levels to combine the flagging values and save the result in a global variable. The shared

arraySMSG records the updated̃λ values and the corresponding edge information for the

thread vertex.

The parallel triangulation algorithm streams the graph from the disk to GPU mem-

ory, which takesO(∣E∣) time complexity. Preprocessing sorts vertex and adjacencylist

into descending order of degrees, which costsO(∣V ∣log∣V ∣) time complexity. After that,

it counts triangles within the graphs for each vertex concurrently. For a vertex, its neigh-

borhood size is at most constant (sayS). The counting over all edges requireO(S∣E∣)
time. Assume settingS =

√∣E∣, taking into consideration of a fixed number of iteration

k, the time complexity for parallel triangulation isO(k ∣E∣ 32∣V ∣ ). If insisting on convergence,

the algorithm may need up toO(k∣E∣ 32 ). As we apply binary search paradigm to test pos-

1PCI-Express bus: 4GB/s for v1.x
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sibleλ(e) for everye, we adjust the time complexity toO(k log∣V ∣×∣E∣
3

2

∣V ∣ ) = O(k ∣E∣ 32∣V ∣ ).
As is introduced above, parallel triangulation bases on partitioning and iterative

bounding. The communication among neighboring partitionsand between successive

iterations is important for the effectiveness and efficiency of the algorithm. The next

section is a specific discussion about the message spreadingmechanism in parallel trian-

gulation.

3.4 Message Spreading Mechanism

Parallel triangulation partitions a massive graph and explores the iterative bounding

concurrently. As is introduced in the last section, any operation exerted on the graph ele-

ments have influence on the neighbors of these elements. According toTHEOREM 2.5.1,

the λ̃ value of an edge or a vertex is utilized to bound the corresponding values of its

neighboring edges or vertices. For example, in one iteration, theλ̃ of an edgee is em-

ployed to bound all its neighboring edges. An update to theλ̃ value of its neighbors will

reversely affect̃λ(e) in the next iteration. If some of these neighbors happen to bein a

different partition, an efficient message spreading mechanism is needed to exchange the

update information of̃λ values among subgraphs.

The message spreading mechanism in our parallel triangulation algorithm consists

of four intermediate components, namelyGENERATE, ENCAPSULATE, MESSAGE SEND

andUPDATE. They are located respectively at Lines 14, 30, 34 and 35 ofALGORITHM 4.

ALGORITHM 5 lists how these four routines function. TheGenerate function is used

to generate a message whenever theλ̃ value of the cut-edgee has been updated. A

piece of messagemsg is declared to be an integer pair: (vdest, λ̃(e)). TheSMSG array

is a list of integer pairs defined inGPU shared memory for fast recording the update

information. UsingthreadIdxto index threads within block-wise shared memory, the
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messagemsg is inserted into theSMSG array. TheEncapsulate function attaches

the source information and the destination partition to themessage. Then all messages

are transferred byGPU threads to themsg[i] array in the global memory. After all

messages are inserted into themsg[i] array, a sort function is invoked on the partition

number within theSMSG array. This shuffling function groups those messages with the

same destination partition number. This mechanism reducesthe IO cost while accessing

message files from external disk on general computer systems. TheMessage_Send

function then sends the groups of messages to the corresponding message filemsg[pid]
of the destination partitions. Finally, theUpdate function reads in the message file that

contains the messages received by the current partition from its neighboring partitions.

Then each piece of the message is analyzed before allλ̃ values of the corresponding

edges and vertices within the subgraph are updated.

v2 v3
... v1' v3' ...SMSG

idx1 idx2

idx1

v1

v2

v3

P1

P2

P3
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letter idx2 (v2’, ͠λ’)    (v1, ͠λ )    idx1
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Figure 3.2: Message Spreading Mechanism

To design an efficient communication mechanism, we model message spreading as

the process of mail delivery. As an illustrating example, FIGURE 3.2 displays how

the messages are delivered across partitions. Thread verticesidx1 and idx2 both have
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edges connecting to the vertices in other partitions. Whenλ̃(idx1, v1) and λ̃(idx2, v
′
2)

are updated, messages<v1,λ̃> and<v′2,λ̃
′> are generated withinSMSG shared array by

Generate. Then messages are formed as a “letter”, when the source vertex is signed

as a signature. Moreover, the “letter” is further encapsulated as a “mail”, with the des-

tination partition number attached. All of these “mails” are then transferred byGPU

threads into the “mail-box”msg[i] residing in the global memory. Before sending, all

mails in this “mail-box” are shuffled according to their destination partition numbers.

Since the destination verticesv1 andv′2 belong to the same partitionP1, their mails are

grouped in the same “package”. Finally, the “package” containing the two messages is

then sent back to the destination “mail-box”msg[P1], which has been swapped into the

main memory.

3.5 Large Graph Partitioning

Thegraph partitioning problemusually divides a large graphG(V,E) into several sub-

graphsP (V ′,E′) with a smaller size. The set of graph vertices and edges are then par-

titioned into smaller components with specific properties.Graph partitioning greatly

increases the parallelism of an application, which makes itmore and more important

for large scale and distributed applications. An objectivefunction is usually defined to

quantify the quality of the partition algorithm. For example, a good partition may be

defined as one in which the number of edges connecting separated components is small.

Unfortunately, graph partitioning has been proven to be anNP-hard problem. All well-

known practical partition algorithms give sub-optimal approximative solutions. In our

context of parallel triangulation on personal computers, massive graphs are always too

large to reside in the memory. We employ efficient large graphpartitioning algorithms to

divide and conquer the problem. Instead of using semi-streaming partition algorithms,
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Algorithm 5: Message Spreading

1 Generate (SMSG, v, λ̃(v, idx))
2 pair<int,int> msg= pair(v, λ̃(v, idx)) ;
3 SMSG[threadIdx].insert(msg) ;

4 Encapsulate (SMSG)
5 forall the message ms∈ SMSG[threadIdx] do
6 pair<int,pair<int,int>> letter = pair(idx, ms) ;
7 pid = Index(SMSG[threadIdx].first) ;
8 pair<int,pair<int,pair<int,int>>> mail = pair(pid, letter) ;
9 msg[i].insert(mail) ;

10 sort(msg[i], first);

11 Message_Send (msg[i])
12 forall the mail ml∈msg[i] do
13 if pid ≠ml.first then
14 pid =ml.first ;
15 Swap inmsg[pid] from disk ;

16 msg[pid].insert(ml) ;

17 Update (adj(V ′[i]), msg[i])
18 forall the mail ml∈msg[i] do
19 λ̃(ml) = ml.second.second.second ;
20 u = ml.second.first, v = ml.second.second.first ;
21 e = (ml.second.first, ml.second.second.first) ;
22 if λ̃(ml) < λ̃(e) then
23 λ̃(e) = λ̃(ml) ;

24 if λ̃(ml) < λ̃(u) then
25 λ̃(u) = λ̃(ml) ;

26 if λ̃(ml) < λ̃(v) then
27 λ̃(v) = λ̃(ml) ;

we take advantage of streaming methods to process a large graph. Four disk-based graph

partitioning algorithms are proposed and compared for efficiency as follows:

Vertex-centric Partition assign all vertices to each subgraph uniformly, according to

their indices.

Edge-centric Partition assign all edges to each subgraph sequentially. When the parti-

tion reaches capacity, edges are inserted into a new partition. Every partition has
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roughly the same number of edges.

BFS Partition Start from a root vertex and travel through the graph inBreadthFirst

Search order. Successive vertices are inserted into the subgraph starting from the

root vertex. The BFS walk stops when the subgraph reaches itscapacity and a new

random root vertex is selected for another subgraph.

Multi-Level Partition Partition the graph recursively. Simplified heuristic algorithm

and theMETIS method are employed.

Given a graph as input, the vertex-centric partition algorithm seeks to find ak-way

partition. Each subgraph within the partition has⌈ ∣V ∣
k
⌉ basic vertices. Edge stream flows

into different partitions according to the edge types. EXAMPLE 2 illustrates different

types of edge and vertex. As is defined byDEFINITION 3.5.1, the inner vertices and

edges are directly included in the partition they belong to.Thecut edgeand twoperiph-

eral vertices connected by thecut edgeare added into both partitions for information

completeness. A proof for the completeness and result correctness will be provided in

SECTION 3.9.

Definition 3.5.1. EDGE AND VERTEX TYPES

There are three types of edges and two types of vertices. Formally, an edgee(u, v) ∈
partition P is an inner edge, iff all neighbors of two end vertices are in the same par-

tition: N(e) ∈ P . The two end vertices are noted asinner vertices. An edgee(u, v) ∈
partitionP is a peripheral edge, iff at least one neighboring vertex is in a different par-

tition: ∃w ∈ N(e)st.w ≠ P . The end vertex ofe that connects tow is called aperipheral

vertex. An edgee(u, v) is a cut edge, iff two end vertices are in different partitions:

WLOG. (u ∈ P )&&(v ≠ P ). u andv are peripheral vertices.

Example 2. Figure 3.3 provides a simple graph to illustrate different types of graph

elements. As is displayed, verticesu1, u2, u3 andv belong to partitionP , while vertex
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w is not inP . According toDEFINITION 3.5.1,u1, u2 andu3 are inner vertices. Vertex

v andw are peripheral vertices. Edges(u1, u2), (u1, u3) are inner edges while (v, u1)
and(v, u3) are peripheral edges. Lastly, the edge connectingv andw is a cut edge.

u2

v

w

u1

u3

P

Figure 3.3: Three Edge and Vertex Types

Similarly, given a graph as input, the edge-centric partition algorithm seeks to find a

k-way partition. Each subgraph within the partition has⌈ ∣E∣
k
⌉ edges. As edge stream flows

into different partitions, vertices are marked as inner when they appear for the first time

in one subgraph. When any inner vertex is found to appear in a second subgraph, it will

be promoted to be a cut vertex. Compared with BFS and Multi-level partition algorithms,

the heuristic vertex-centric and edge-centric partition algorithms try to reduce the graph

size in the fastest way. The methods for partitioning the vertex (or edge) set intok subsets

greatly affects the quality of the algorithm. Since a randomassign has led to excessive

IO cost, we explore the locality of the graph elements by pre-re-indexing the vertex set.

3.6 Multi-stream Pipelining

After graph partitioning, we explore the parallelism of triangulation on personal com-

puters from the perspectives of application, hybrid systemand algorithmic structures. In

SECTION3.3, we have discussed the parallelism of application andGPUs. In this section,

we will further exploit the parallelism from multi-coreCPU, the algorithmic structure and

multi-GPUs.
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Figure 3.4: Multi-stream Pipelining

Initially, a graph stream flows into main memory as input of the algorithm. After

partition, the graph stream is replaced by several sub-streams. As is analyzed inSEC-

TION 3.3, triangulation can be conducted concurrently on these graph sub-streams since

a traversal across the graph may start from any subgraphs. The data parallelism among

these sub-streams has expressed a demand for parallel operations. In addition, the preva-

lence of multi-coreCPU has promoted the potential physical parallelism in our personal

computer systems. In order to explore additional real parallelism, we may try to start

severalCPU threads at the same time, each of which run on one or several graph sub-

streams. By carefully tuning suitable processor affinity, some of these threads can be

executed on differentCPU cores simultaneously. However, the efficiency and speedup of

direct multi-streaming are not as high as our expectation. The problem is that there are

some resources which are limited and has become the bottleneck of the system. For ex-

ample, theL3 cache is shared by all processor cores. In addition, after counting triangles

for initial λ̃ values,CPU threads need to send their data ontoGPU for iterative bound-

ing. Although modernGPU is capable of executing more than one kernel functions at the

same time, the bottleneck still exists since thePCI-E bus has limited bandwidth. Sending

all data at the same time results in a traffic jam, slowing downthe algorithm.

To solve the problem, we design a multi-stream pipelining mechanism and take ad-

vantage of multi-GPUs techniques. Specifically, we first modularize the functional blocks

of ALGORITHM 4 and encapsulate them into a sequence of items that can be linked ac-

cording to their logical order. Graph sub-streams are flowing within the pipes that con-
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Algorithm 6: Multi-Stream Pipeline Scheduling
1 Scheduler (P (V ′,E′), tid)
2 forall the stream str∈ P (V ′,E′) do
3 if str.thread !=tid then
4 str.thread = tid ;
5 forall the segment segdo
6 while Serviced[seg] == “OCCUPIED” do
7 THREAD(tid).wait() ;

8 Serviced[seg] = “OCCUPIED”;
9 THREAD(tid).process(seg,str) ;

10 Serviced[seg] = “UNOCCUPIED”;
11 THREAD(tid).notify() ;

nect the functional segments. Then we design a scheduler forthe pipelines executed by

different threads so as to minimize the idle time and maximize the resources utilization.

Furthermore, multi-GPUs as well asPCI-E buses are supported by the multi-streaming

pipelining mechanism. FIGURE 3.4 illustrates the multi-streaming pipelining mecha-

nism. After partition, severalCPU threads are launched for stream pipelines, each of

which runs on one subgraphs. Functional blocks ofALGORITHM 4, Tri-Count, Update,

ItrBound and Msg-Send, are encapsulated by segments. Tri-Count is defined as the head

of the pipeline while Msg-Send is noted as the tail if the converge requirement is reached.

ALGORITHM 6 illustrates how the scheduler works. A group of global semaphores,

noted as “Serviced”, are utilized to flag whether or not the current segment is busy servic-

ing other threads. If the current segment is free, the semaphore for this segment will be

locked in Line 8. The thread will then be granted to process the segment on the stream.

In order to facilitate concurrent execution between host and device, we utilize the

asynchronousGPU-related function calls. Specifically, data transfer and kernel execu-

tion should overlap to support multi-stream pipelining mechanism. In addition, since the

kernel execution takes more time than data transfer, multi-kernels need to be executed

concurrently as well. Accordingly,ALGORITHM 6 should be modified to support the con-
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currency of non-conflict segments. Actually, the maximum number of kernel launches

that a device can execute in parallel is up to 32. In the context of CUDA environment,

we employ routines as displayed inFORMULA 3.1 to combine multi-host-streams with

multi-device-streams. Furthermore, whenever there are more than oneGPUs in the sys-

tem, multi-streams can be combined to multi-devices viacudaSetDevice().

cudaStreamCreate(&stream[i])

cudaMemcpyAsync(iDevPtr,hostP tr, . . . , stream[i])
(3.1)

Lastly, as graphs grow larger, grid dimension( V
′

Db
) increases and kernel functions

take longer execution time. We can chop the vertex set into chunks and utilize multi-

stream to explore the parallelism among these chunks. FORMULA 3.2 computes the

global indices for threads in this situation.

threadID = blockIdx.x ∗ blockDim.x + threadIdx.x

index = chunkIdx ∗ chunkSize + threadID
(3.2)

3.7 Dynamic Threading

To explore the performance of triangulation on personal computers, we have tried to

exploit many-thread parallelism from hardware and algorithmic perspectives. However,

all of these attempts are based on the pre-defined thread configurations. We try to uti-

lize dynamic threading techniques in order to optimize the parallelism from the parallel

structure. Dynamic threading enables a running thread to create and synchronize new

nested work. Specifically, dynamic threading can easily spawn new threads for nested

“for-each” loop. For example, we try to spawn more threads for the “for-each” loop

within sub-graphs when initialize thẽλ values. As is shown in the Line 4 ofALGO-

RITHM 4, several threads can be spawn to represent a chunk of edges.The optimal num-

ber of threads depends on the physical processor cores and the multi-stream pipelining
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mechanism. Similarly, we can also spawn moreGPU threads for the loops that compute

supporting vertices (Lines 21∼24 of ALGORITHM 4) and that bound̃λ (Lines 25∼31). As

is illustrated inFIGURE 3.5,GPU spawns more “child” threads to represent the neighbors

of “parent” threads.

By employing dynamic threading, parallel triangulation algorithm can be more trans-

parent expressed. Program flow control can be done from within the device, which al-

lows for a hierarchical design of the algorithm.
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Figure 3.5: GPU Dynamic Threading

3.8 GPU Graph Data Structures

In graph theory, adjacency list and adjacency matrix are data structures for representing

graphs. In an adjacency list, each vertex has a list of all other vertices which it con-

nects to. Compared with adjacency matrix, an adjacency listof a sparse graph occupies

less space. In most graph data mining algorithms, adjacencylist is more efficient for

neighborhood access. To facilitate efficient operations onGPU, we compare several data

structures for parallel triangulation onGPU. We first adopted the two-array representa-

tion of the adjacency list as a baseline graph data structureon theGPU. Then we imple-

mented the column-major adjacency array to enhance memory access efficiency. After

that, we propose matrix column-major adjacency array and optimized memory access



74

again. Moreover, we put forward another new data structure named adjacency bitmap to

utilize the universal virtual address space.
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Figure 3.6: Row-major and Column-major Adjacency Arrays

Row and Column major Adjacency Arrays

Adjacency list is a compact representation for graphs compared with adjacency matrix.

However, theGPU representation of adjacency list is still not so efficient sinceGPU has

limited linear memory space. Therefore, we pack graph adjacency lists row by row

into a linear array, with anO(E) space complexity. We named it as graph row-major

adjacency array. An auxiliary array with anO(V) space complexity is used to record

the ending position of each vertex’s adjacency list in the adjacency array. As shown

in FIGURE 3.6(b), theIDX andAA arrays are row-major adjacency array representation

for the adjacency list inFIGURE 3.6(a). Using the index array, a vertexi can fetch its

neighborhood starting from the positionIDX [i-1] to IDX [i]-1 in the adjacency arrayAA .

Considering theCUDA execution model, threads in a block are further divided into

32-thread “warp” units, which is the unit of thread scheduling in streaming multipro-

cessors. TheGPU hardware executes an instruction for all threads in the samewarp at

any given point in time. Accessing a large number of consecutive DRAM locations gets

close to the peak global memory bandwidth. When we arrange data to enable all threads
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Coalesces 1 transaction

Out of sequence: 16 transactions

Figure 3.7: Memory Coalesces

in a warp can request consecutive memory addresses, theGPU hardware combines, or

coalesces, all of these requests into a consolidated access. Un-coalesce memory access

incurs redundantIO cost. For example, inFIGURE 3.6(b), threads 0, 1, 2 and 3 reading

position 0, 2, 3 and 7 respectively from arrayAA bring four separate accesses to the mem-

ory instead of one. FIGURE 3.7 displays the benefits of memory coalesces: decreasing

memory access latency.

In order to maximize memory coalesces, we attach the neighbors of the vertices in

column-wise order. An offset array to record the next neighbor position helps to connect

the neighborhood of a vertex effectively. TheCAA andOFFSETarrays inFIGURE 3.6(b)

are called column-major adjacency array. As is shown in the figure, accessing column-

major adjacency array takes advantage of memory coalescingtechniques and reduce the

IO costs. In the same example, threads 0, 1, 2 and 3 can now read consecutive memory

addresses 0, 1, 3 and 3 in arrayCAA.

Matrix Column-major Adjacency Array

Accessing column-major adjacency array led to high data throughput and lowIO costs.

However, the imbalance of the neighborhoods still complicates the situation of memory

access. In the worst case, excessive control flow divergenceto access neighbors from un-

related locations may lead to a huge performance penalty. Inaddition, reading additional

auxiliary array from GPU global memory still wastes data throughput and memoryIO-
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time. In order to explore multi-thread parallelism, we propose an optimized graph data

structure named matrix column-major adjacency array. As shown inFIGURE 3.8, we first

expand the adjacency list to a matrix format with placeholders for asymmetric neighbor-

hood. We then transpose the matrix and attach all the rows head to tail into a linear array.

Similar to column-major adjacency array,MCAA re-organizes graph adjacency list in a

column major style. AlthoughCAA has a more compact data structure,MCAA simplifies

the control flow of the algorithm. We define one column as a slice, the size of which

equals to⌈ ∣V ∣
BLOCKSIZE

⌉ × BLOCKSIZE.

Graph Adjacency Bitmap

As is discussed above, graph data structures based on adjacency list explore the per-

formance from memory coalescing, compact space and simple control flow. This is
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true for sparse graphs in general. However, for dense graphs, they do not display

enough advantage. Hinted by matrix column-major adjacencyarray, we propose an

adjacency-matrix-based graph data structure named adjacency bitmap. Instead of oc-

cupying4×(—E—+—V—) bytes, adjacency matrix needs only∣V∣
2

8
bytes of linear space.

For an undirected graph, only half space of the matrix is needed to save graph informa-

tion. As shown inFIGURE 3.9, we try to attach the columns of the upper triangle (above

the red zig zag line) into a linear array. Similar toMCAA , the length of each column is

fixed, nevertheless the column length for vertex varies. FORMULA 3.3 helps to locate

the neighboring relationship fast:

position = (u < v) ? (v − 1)v
2

+ u ∶
(u − 1)u

2
+ v (3.3)

Example 3. In order to decide whetherv1 is connected tov2, we caculateABMP[ (2−1)2
2
+

1] = TRUE. We then say thatv1 does connect tov2.

3.9 Result Correctness

For the correctness of parallel triangulation, we may proveit in two steps. For the first

step, we proved the correctness ofλ bounded in parallel theoretically. For the second

step, we comparedλ(G) computed with that of sequential triangulation.

Theorem 3.9.1.Result Correctness

Triangulation on subgraphs generates partial bounding foreach edge. Combining

the partial results can return a correct estimation ofλ value for each edge.

Proof. Partitioning algorithm reads a stream of edges and assigns each edgee(u, v) to a

subgraph according to the index of the two end vertices. A cut-edge is marked when its

two ends belong to two different subgraphs. For all internaledges, triangulation within a
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subgraph generates the same result with that of the originalgraph. For those cut-edges,

we need to consider all triangles that they belong to in both subgraphs. Lete(u, v) be

one peripheral edge within subgraphS1 and vertexw belongs to a different subgraphS2.

The two cut-edges(u,w) and(v,w) will be streamed in individually. When a cut-edge,

say(u,w) WLOG., is read,w will be added intoS1 andu is included intoS2. Moreover,

(u,w) will also be added intoS1 andS2. Triangulation will be conducted to(u,w) in

both subgraphs.

For peripheral edges, they can be part of triangles in two situations. One type of

triangle contains cut-edge while the other does not. All triangles that do not contain any

cut edge will be counted within each subgraph. Since all cut-edges are added into both

subgraphs and the peripheral edgee(u, v) will only be in one subgraphS1, the triangle

containing cut-edge will appear in only one subgraph. This means no triangle will be

missed. Even though the triangulation in subgraphS2 may result in a partial value for

cut-edges, the merging it with that fromS1 will maintain a correct result.

Example 4. Figure 3.10 displays an example for our result correctness proving. The

graphG is partitioned into two subgraphsS1{1,2,3,4} andS2{5,6,7} in Figure 3.10(a).

Then we apply triangulation on individual subgraphS1 andS2 as shown in Figure 3.10(b)

and 3.10(c). InS1, vertices 5 and 6 are included as well as three cut-edges (1,5),(2,5)

and (3,6). They are displayed as dotted circles and lines. Triangle△(1,2,5) does not

contain two cut edges. We can see all the edges have correctλ values in subgraph

S1 after triangulation. InS2, vertices 1, 2 and 3 as well as cut-edges (1,5),(2,5) and

(3,6) are included in partitioning. After triangulation, theλ values for edges (1,5) and

(2,5) are partial. By merging,λ(1,5) = max(λS1(1,5), λS2(1,5)) = 1 and λ(2,5) =
max(λS1(2,5), λS2(2,5)) = 1.



79

2

1

3

4

5

6

7

(a) GraphG Partitioning

2

24

2

2

2

2

1

2
1

3

5

6

1

0

(b) S1 Triangulation

2

1

3

5

6

7

1

1

1
0

0

0

(c) S2 Triangulation

Figure 3.10: Result Correctness

3.10 Experiments

In this section, we study the parallelization of iterative triangulation algorithm running

on heterogeneous personal computer systems. As an accelerated application, parallel

triangulation is designed for solving the two main bottlenecks previously noticed in per-

sonal computer systems. For the first step, we look into the performance of parallel

triangulation. We compare the speedup and efficiency when parallel triangulation is ex-

ecuted in different modes. We compare several disk-based partitioning algorithms and

discuss multi-stream pipelining techniques. Additionally, we study several new graph

data structures onGPU. Finally, we try to discuss the influence ofGPU execution config-

urations.

We have conducted our experiments on threeGPU accelerated personal computer

systems. They are aDELL PC equipped with anNVIDIA G eForce9400GT graphics card,



80

an ACPI x64-basedPC accompanied with anNVIDIA G eForceGT 520graphics card and

anotherACPI x64-basedPCequipped with anNVIDIA G eForceGT 330graphics card. The

price of the simpleGeForce9400GT andGeForceGT 520graphics card are less than50

US dollars respectively while the price ofGeForceGT 330graphics card is around100US

dollars. We present all major technical specifications of the three platforms in Table 3.1.

Platform CPU
Main
Memory GPU

GPU
Memory

Compute
Capability

GPU
Price

DELL Opti-755
Geforce 9400 GT

2 cores
2.33GHz

3.3GB
DDR2

1×16 cores
550 MHz

512MB
400 MHz

1.1 < $50

ACPI x64-based
Geforce GT 520

4 cores
3.40GHz

8 GB
DDR2

1×48 cores
1.62 GHz

993MB
535 MHz

2.1 < $50

ACPI x64-based
Geforce GT 330

4 cores
3.40GHz

8 GB
DDR2

12×8 cores
1.34 GHz

1 GB
790 MHz

1.2 < $100

Table 3.1: Experimental Platforms

We employ three main datasets in our experiments. Flickr dataset is derived from the

well-known photo sharing network Flickr with1,715,255vertices and22,613,982edges.

Each vertex represents a person and the edge denotes two people share photos with each

other. Protein Protein Interaction (PPI) dataset contains17203 interactions among4930

proteins. Netflix is an American provider of on-demand internet streaming media. There

are480,000customers and17,000movies in the dataset.

Table 3.2 lists the experimental parameters and their corresponding experimental op-

tions (default values are marked in bold). We partition the graph containing∣V ∣ vertices

and ∣E∣ edges intoparNumsubgraphs usingparMtd method. The size of the buffer in

the memory is set to bebufSz. As a “pay as you go” strategy, we can also choose to

exit the outer loop aftermaxItrO iterations and inner loop aftermaxItrI iterations in our

parallel triangulation algorithm. Moreover, as a systematic solution, we can choose to

run the iterative triangulation operator inmineModemining mode. Given “hybrid” mode

is selected, there are four options forgraphDSgraph data structure.
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Parameter Experimental Option

∣V ∣: Number of vertices [1715255]

∣E∣: Number of edges [22613982]

parNum: Number of partitions [50, 100, 200, 250, 300, 350,400]

parMtd: Partition Method [vertex-centric, edge-centric, BFS, multilevel]

bufSz: Buffer Size [4KB, 8KB, 16KB, 32KB, 64KB]

maxItrO: Max Outer Iterations#. [3, 4,5, 6, 10]

maxItrI: Max Inner Iterations#. [5, 10, 15, 20, 25]

mineMode: Mining Mode [Host, Device,Hybrid( SHSD)]

graphDS: Graph Data Structure [AA, CAA, MCAA , ABMP]

Table 3.2: Parameter Table

3.10.1 Performance Evaluation

In this section, we study the performance of our parallel triangulation algorithm. As an

economic solution for speeding up the triangulation on large graphs, we implement our

algorithm across gpu-accelerated hybrid architecture.

Platform Mode Partition Tri-Count ItrBound Total

Work Station
128GB RAM

- - 4.88 hrs 69.3 hrs 74.18 hrs

Dell 2Cores
3.3GB RAM

Host 4.67 hrs 985.07 sec 207.99 hrs 213.04 hrs

ACPI 4Cores
8GB RAM

Host 3.91 hrs 872.65 sec 145.59 hrs 149.85 hrs

Dell 2Cores
GF9400,16Cores

Hybrid 4.62 hrs 998.37 sec 26.46 hrs 31.46 hrs

ACPI 4Cores
GF520,48Cores

Hybrid 3.9 hrs 894.16 sec 23.1 hrs 27.35 hrs

ACPI 4Cores
GF330,96Cores

Hybrid 3.92 hrs 894.16 sec 17.3 hrs 21.46 hrs

Table 3.3: Response Time for Each Component

As stated in section 3.6, parallel triangulation algorithmcan be expressed as a series

of functional blocks. TABLE 3.3 lists the running time for major functional compo-

nents inALGORITHM 4. As a baseline algorithm, sequential iterative triangulation is

memory-bound. For massive graphs, sequential iterative triangulation applies only on

work stations with large memory. We compare the performancewhen the algorithm is

running on theDELL desktop and theACPI system. In addition, we also compare the

performance of the parallel algorithm accelerated by differentGPUs.
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As shown inTABLE 3.3, sequential iterative triangulation and parallel triangulation

running in “host” mode take much more time than parallel triangulation accelerated

by GPU. With more processing cores,GeForece330 GT gpu provides more comput-

ing power forACPI system. Although the local speedupSl defined inDEFINITION 2.1.5

is difficult to measure, however, it is possible to estimate its value using an approximate

formula. Let N be the processor number andN(e) be the average neighborhood size.

Sl = min(N,N(e)) = min(N, 2×∣E∣∣V∣ ) = min(N,26.3). Therefore, theSl for DELL desktop

is 16, and26.3 for the other 2 personal computers. Similarly, the global speedupSg can

be calculated for a specific platform.Sg =
T1(∆(G))
TN(∆(G))

= 213.04
31.46

= 6.77 for the DELL system

and Sg =
149.85
21.46

= 6.98 for the ACPI system equipped withGeForce GT 330 GPU. The

local efficiencyEl =
Sl
N
= min(N,26.3)

N
. Therefore, the local efficiency forDELL desktop

is 1, since it takes full use of all its processors. And the local efficiency for theACPI

system equipped withGeForceGT 520 GPU is El =
min(N,26.3)

N
= 26.3

48
= 54.8%. The local

efficiency forACPI system equipped withGeForceGT 330 GPU is El =
26.3
96
= 27.4%. The

general efficiencyEg =
Sg
N

differs for different platforms.Eg =
6.77
16
= 42.3% for theDELL

desktop andEg =
6.98
96
= 7.27% for theACPI system equipped withGeForceGT 330 GPU.

The general efficiencyEg =
149.85

27.35×48 = 11.4% for theACPI system equipped withGeForce

GT 520 GPU.

Figure 3.11 compares the speedups and efficiencies among different platforms. We

can observe that general speedupSg is usually smaller than local speedupSl, because

there are some portions of the algorithm that cannot be parallelized. The twoACPI

systems have lower local efficiencies because they cannot utilize all of the parallelism

provided by the hardware. Even with more processors, the system has shown a lower

efficiency. The system cannot make full use of all the additional computing power.

We also study the influence of two iteration parameters,maxItrOandmaxItrI. When

only one parameter is raised, the running time of the algorithm rises as well. As shown
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Figure 3.11: System Performance
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Figure 3.12: Iteration Parameters Study

in FIGURE 3.12(a), the maximal outer iteration numbermaxItrO, has higher influence

over the system than the maximal inner onemaxItrI. WhenmaxItrOadds to more than

16 iterations, the increasing of the running time becomes slower, since some subgraphs

have converged. An additional inner iteration runs faster with powerful computability

provided byGPU. FIGURE 3.12(b) depicts a combination point study which means the

study of a pair of parameters that converges the iterations.When there are15 ∼ 21 outer

iterations, small inner iteration number is observed.
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3.10.2 Partitioning Algorithms

As a streaming solution for processing large graphs, we study our partitioning algorithms

in various system environment. As discussed in Section 3.5,we employ five partitioning

streaming partitioning algorithms. They are vertex partitioning, edge partitioning, BFS

partitioning, multi-level simple partitioning and metis partitioning. Figure 3.13 presents

the performance comparison of the five algorithms in two low-end systems as well as

system with higher computability.
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Figure 3.13: Partitioning Performance

To study the effect of computability on partitioning performance, we test our parti-

tioning algorithms as partition number increases. In figure3.13(a), the running time of

our partitioning algorithm increases steadily, with an increasing partition number. For

example, the running time increases from about 1.5 hours to 4.5 hours in the server. Since

our partitioning algorithms handle graph streams from the external storage to main mem-

ory, we only need to consider theCPU computability and main memory size when com-

paring different computer platforms. As is noted from table3.1,ACPI system has double

CPU cores and main memory size thanDELL one. Therefore, we can see a proportional

decrease in the running time of the partitioning algorithm running on different platforms.

In figure 3.13(b), we compare the performance of our five partitioning algorithms when
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partition number increases from 2 to 512. The x-axe and y-axeare both in log-scale,

and five lines are almost linear. We can easily observe that the two recursive(multi-level)

algorithms run longer than the other three. This is because the recursive partitioning al-

gorithms scan the whole graph for each level, which increases theIO time. Running with

the simplest heuristic logic and scanning the graph for onlyone pass, vertex partitioning

is the fastest among all five partitioning algorithms.
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Comparing toBFS partitioning, recursive(multi-level) partitioning travels the graph

in DFS style. Figure 3.14 records the partitioning time for subgraphs and the doted-line

forms a power-law like shape. This reflects the flickr data is apower-law graph and

vertices are ordered according to their neighborhood size.

FIGURE 3.15 depicts theIO cost of vertex partitioning. Since we use buffer to cache

the vertices and edges before they are written to a specific subgraph file, the output

operations are less than the input ones. For a better observation, the starting point of the

x-axe is two in the figure.

3.10.3 Graph Data Facilities

In this section, we study the graph data facilities namely the cut-edge message files and

the graph data structures onGPU. On one hand, since the cut-edge message files spread
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the messages among subgraphs, our algorithm uses them to communicate. Therefore,

the usage of the buffer affects theIO performance of the algorithm. In our experiment,

we vary the buffer size and observe the changes of theIO in our program.
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Figure 3.16: GPU Graph DS
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Figure 3.17: Varying Block Size

On the other hand, we test the running performance about the graph data structures

on GPU. In this chapter, several novel graph data structuresare proposed on GPU. Fig-

ure 3.16 compares the running time when different graph datastructures are used in

our two-level iterative triangulation algorithm. We can observe that the running time of

the algorithms increases when the flickr graph is divided into more subgraphs. Obvi-

ously, MCAA (matrix column major adjacency array) and ABMP (adjacency bitmap)

have better performance than AA (adjacency array) and column major adjacency array.

Since CAA is used for accelerating batch data transfer, larger subgraphs from a smaller

partitioning number benefits more from the data structure. In the figure, when partition-

ing number is smaller than 280, program using CAA runs fasterthan AA. Because CAA

counts on vertex locality, a larger graph portion makes an advantage and saves addi-

tional time to load the auxiliary array from the global memory. Figure 3.18 displays the

speedups of the three novel graph data structures when comparing with the adjacency

array. As we can observe, ABMP has a stable speedup while CAA and MCAA have

decreasing ones. This reflects the fact that the graph size has few influence over the
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adjacency bitmap data structure.
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Figure 3.18: GPU Graph DS Speedups

3.10.4 GPU Execution Configurations

GPU execution configuration is an important factor for any CUDA-based program. As

components to GPU execution, block sizeDb, grid sizeDg and shared-memory sizeDs

are also parameters to our program. SinceDg can be decided by the data size andDb, we

only need to consider two additional parameters:Db andDs. Varying such parameters

can affect system performance. For example, figure 3.17 compares the performance

of our algorithm on different platforms with various block size Db. We can observe

that Dell and Tesla get an optimal performance whileDb is set to be 256. And ACPI

system reaches its optimal value whenDb equals to 512. The difference exists because

different GPUs have different compute capabilities. ACPI has a graphics card that has

more registers and can accommodate more threads and warps.
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3.11 Summary

In this chapter, we parallelize triangulation on heterogeneous computing systems. Lack-

ing computing power and limited memory space are two main bottlenecks for large graph

triangulation. We presented a streaming partitioning strategy to divide the graph so that

each subgraph can be read into memory. A parallel algorithm was then proposed for tri-

angulation onGPU-accelerated heterogeneous platform. Moreover, an efficient message

spreading mechanism was then designed to facilitate inter-partition communications. To

further exploit nested parallelism of the algorithms, we propose dynamic threading and

streaming pipelining approach. In addition, several novelGPUgraph data structures were

designed to enhanceGPU processing efficiency. Extensive experiments showed that our

solution had achieved a notable speedup.



Chapter 4

SIGPS: Synchronous Iterative

GPU-accelerated Graph Processing

System

In this chapter, we propose SIGPS (Synchronous Iterative gpu-accelerated Graph Pro-

cessing System), a generic graph processing system built onmany-core GPU platform.

This is a general solution provided for graph processing on GPU-accelerated PCs. A

Pregel-like BSP-based computation model is designed in combination with the state-

of-the-art GPU high performance computing techniques. Emulating shared memory is

used to assist fast communication among concurrent GPU threads. User-friendly high

level C++ APIs are provided. Programmers can implement their algorithms using the

generic interface and code in a simple sequential style. Lastly, automatic GPU execution

configuration and dynamic thread allocation are supported by SIGPS.

89
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4.1 Problem Statement and Design Purpose

In data-centric settings, graphs can be highly unstructured. Algorithms on these graphs

are particularly difficult to parallelize on distributed memory machines. Actually, these

algorithms tend to exhibit a high degree of fine-grained parallelism. They can be mapped

more pertinently to massively multi-threading and shared memory paradigm. The execu-

tion model bases on the availability of a large number of threads to keep the processors

busy. So as to implement high performance parallel graph algorithms, coarse-grained

to fine-grained parallelism need to be addressed. Memory contention is another critical

issue to be considered. Simultaneously accessing the same memory address may incur

correction problem, while coalescing memory access can enhance thread concurrency.

Load balancing improves performance by reassigning tasks among threads.

In consideration of the flexibility, extensibility, portability and maintainability prop-

erties, a generic graph processing system on multi-threaded shared-memory paradigm

is more useful for users when comparing to existing tools such as MapReduce, Parallel

Boost Graph Library [16] and Multi-Threaded Graph Library [31]. Similar to MapRe-

duce, the generic graph processing system should provide easy-to-use application pro-

gramming interfaces. By simply re-writing the abstract class or implementing the in-

terface, researchers can easily program their algorithms.Such kind of system enables

users to focus on the core functionality of the specific problem, instead of devoting to

handling complicated low-level system programming issues. The programming model

for such system has a shallow learning curve.

Specifically, there are three main design aims for SIGPS:

1. To implement a Pregel-like graph processing system.

2. To utilize GPGPU techniques for graph processing on shared memory platform.

3. To provide a as simple as possible generic API for users to implement their algo-
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rithms.

The rest of this chapter is organized as follows. In Section 4.2, the Pregel-like BSP-

based computation model and the system state machine are displayed. Besides, the sys-

tem architecture overview is also provided in this section.Section 4.3 gives an overall

description of the system and introduces its main components. Auxiliary components of

the system are then discussed in Section 4.4. Section 4.5 presents automatic execution

configuration and dynamic thread allocation. We will study three cases in Section 4.6.

The generic vertex APIs usage demonstration are provided inSection 4.7. Extensive

experiments in Section 4.8 demonstrate that SIGPS is applicably generic and efficient.

We finally conclude in Section 4.9.

4.2 Computation Model and System Overview

Similar to google’s Pregel, SIGPS bases itself on a vertex centric approach and the Bulk

Synchronous Parallel (BSP) computing model. The processing of a graph consists of

a series of iterations (supersteps). Each vertex is represented by one light-weight GPU

thread. Users utilize the generic API provided by the systemand implement their al-

gorithms into a “compute” member function of the vertex. Thesystem then launches a

batch of concurrent threads over a large graph data set on a local shared-memory ma-

chine.

Figure 4.1: SIGPS Computation Model
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Figure 4.1 illustrates an overview of the SIGPS computing model. Graph behaves as

a data flow running between input and output. The computationand communication of

the graph elements are divided into subsequent stages. These stages are also regarded

asSuperSteps. During each superstep, graph data is sent to be processed bymany-core

GPU. Between subsequent supersteps, a physical barrier is set to force synchronization

among threads.

GPU Threads

Synchronization

Read Messages

Data Shuffling

Local 

Computation

Writing Data

Global Barrier 

Synchronization

Data Movement

Reading Data

Figure 4.2: GBSP Model

The GPU Bulk Synchronous Parallel (GBSP) model displayed inFigure 4.2 consists

of three main components:

computation: User-defined “compute” function is executed by each vertex separately.

communication: Vertex reads messages from its neighbors, encapsulates itsvalue into

messages and sends back to neighbors.

synchronization: All vertices wait for each other at the end of one iteration.

We utilize the state-of-the-art many-core GPGPU techniques to implement this pro-

cessing model. The compute-function is written as a GPU kernel function that is invoked

by CPU and executed on GPU. Computation is done locally by a batch of GPU threads
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on top of the CUDA programming model. Message transmission and data shuffling are

conducted within the GPU memory, PCI-Express system buses and main memory. In

the beginning of one superstep stage, each vertex read messages received to update its

local vertex value. A local barrier is set to make sure that all updates are applied. After

local computation, each vertex sends its new-computed value to all its neighbors, where

another global barrier is needed. Synchronization is forced when GPU kernel functions

are invoked and terminated under the orders sent from CPU to GPU.

The general system architecture of SIGPS applies a master-worker pattern. A master

module corresponds to the main thread of the system. The master divides the graph

into several sub-graphs and dispatches them to several worker threads. The workers are

initialized by the CPU threads. Then these workers make a spinning and wait for signals

from the master. A batch of GPU threads representing vertices within the subgraph are

then launched by each worker. As a system design for scalableheterogeneous computing

platform, SIGPS also supports multi-GPUs and distributed computing. A module named

worker manager is employed between the master and the workers. Each worker manager

corresponds to one GPU and is registered with the master. After retrieving tasks and data

from the master, the worker manager initializes the sub-tasks/sub-graphs. The worker

manager module acts as an interface layer between CPU and GPU.

Figure 4.3 shows a hierarchical overview of the SIGPS model.A master takes charge

of several worker managers, each of which corresponds to oneGPU. The worker man-

ager initializes a group of workers by assigning each of thema set of graph partitions.

On receiving signals from the worker manager, the workers iteratively loads assigned

graph partitions onto GPU memory and launches kernel functions on graphics parallel

processing units.

Similar to Pregel, SIGPS is also a vertex-centric model. A vertex compute-function

is executed by one GPU thread which represents one vertex. Inside the vertex compute-
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Figure 4.3: SIGPS Architecture

function, the state of a vertex or an edge can be altered. Eachvertex may receive mes-

sages from its neighbors, does some computation and spreadsout the result via its out-

going edges.

Different from the distributed infrastructure of Google’sPregel, SIGPS utilizes the

state-of-the-art GPU hardware and drives the graph computation using blocks of GPU

light-wight threads. The algorithm within the vertex compute-function terminates when

all verticesvote to halt. Figure 4.4 illustrates the state machine of SIGPS. In the first

SuperStep, all vertices represented by threads in a block are in activestate; all blocks

of threads then participate in the computation of the algorithm; Some vertex may vote

to halt and pause its corresponding thread; As an inactive vertex receives some external

message, it can be re-activated and return to the active state. Only when all threads within

the block are inactive, thisSuperStepcan declare to be suspended by the WorkerManager.
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While all WorkerManagers agree on an end to theSuperStep, the algorithm may move

to the next one. This is called an explicit global synchronization operation in the model.

Vote to halt

Message received

Vote to halt

Vote to halt

Message received

Message received

Block 

Synchronize

Block 

Synchronize

Figure 4.4: Block State Machine

Instead of using the message passing model of Google’s Pregel, we chose to ap-

ply an emulating shared memory model for communications between the successive

SuperSteps. There are three considerations when we design SIGPS’s communication

mechanism. First, GPU’s thread model is built on top of its memory. Since we utilize

GPU’s thread model for parallelizing graph computation, wewould prefer to use its hi-

erarchical memory for communication. Second, the motivation of designing SIGPS is

to provide a generic and powerful graph processing system for ordinary researchers who

are incapable of accessing a Pregel-like high performance computing system. Last but

not least, SIGPS has a high level computation model in which the message is just an

abstract interface for communications. Message passing and emulating shared memory

are two specific communication implementation strategies.We can extend our emulating

shared memory model to distributed environment when a high performance GPU cluster

is considered in the future.

Before a batch of threads are launched on the GPU, a region of GPU memory is

initialized as a message center. Threads across the blocks use this region of memory

as a base for message exchange. Utilizing the characteristic of GPU memory hierarchy,
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processing device function shuffles the data for threads. For intra-block communication,

message center takes advantage of the multi-level cache andon-chip shared memory to

quickly exchange data among threads. For inter-block communication, message center

employs optimized shuffling algorithms among threads. As a data consistency require-

ment, synchronization is also provided in the two levels of thread hierarchy, intra-block

and inter-block.

CPU

Thread

Worker

Worker

Worker

Manager

Worker

Worker

Worker

Manager

GPU 

Thread

GPU 

Thread

GPU 

Thread

GPU 

Thread

Worker 

Manager

Worker 

Manager

Worker 

Manager

Worker 

Manager

Message 

Center

Figure 4.5: System Overview

Figure 4.5 displays the system architecture overview. A CPUthread invokes several

Worker Managers, each of which launches a number of GPU threads. The user-defined

compute function is then executed by GPU worker threads concurrently as soon as the

data flow arrives. After computation, all workers send theirresults to the message cen-

ter, in which messages are processed and grouped by GPU threads before posting to their

destinations. And starting from the secondSuperStep, each Worker Manager will receive

messages and then assign them to the corresponding worker threads. In a word, SIGPS

computation model uses iterations overSuperStepsto avoid the programming complex-

ity of graph algorithms and associated serialization overhead. The application of GPU

threads and emulating shared memory model has successfullyeliminated a large amount

of remote communication overhead.

As we know, modern GPU has evolved into many heavily multi-threaded-core pro-

cessors. There are three levels of thread hierarchy when thegraph model is mapped onto
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GPU SIMT architecture. At the first level, vertices from SIGPS are dynamically grouped

into warps and scheduled to run on SIMD hardware at runtime. The warp is transparent

to the users. At the second level, bundles of vertex warps aregrouped into a block, within

which vertices can synchronize via local barriers specifiedby the user. Vertices within

the same block are always assigned to the same SM1. We say these vertices are strong-

correlative. At the third level, multiple blocks are further grouped into a grid. Vertices

from different blocks are regarded as weak-correlative. Vertex blocks can be executed in

scheduled order. In one word, finer thread-level parallelism and synchronization provide

users more flexibility to implement their algorithms using simple generic APIs.

4.3 Overall Description and System Main Components

Figure 4.6: Software Architecture

SIGPS consists of three main modules, namely User API module, Graph module,

and System module. Figure 4.6 displays the software architecture of SIGPS. From left

to right, the degrees of the functional transparency and user relativity decrease. Users can

access to the generic APIs provided by the vertex class. Theyinvoke a set of vertex mem-

ber functions to implement their algorithms into the “compute” function. Graph module

contains several related classes for graph processing. Users cannot directly use func-

tions within these classes. However, they may use related vertex APIs to interact with

1Streaming Multiprocessors
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these classes when composing their own algorithms. System module is the functional

skeleton for SIGPS. Master, worker manager and worker definethe SIGPS architecture.

Data locator and message center relate to the communication, one of the most important

components of SIGPS.

In this section, we introduce the architecture of the main components of SIGPS.

There are three major modules in SIGPS, each of which contains several classes. The

user API module has only two “Vertex” classes. One is defined for CPU and the other is

implemented in the GPU memory and designed for GPU operations. The graph module

contains the “Edge” class, “GraphGenerator” class, “GraphPartition” class and “Graph-

Partitioner” class. The system module consists of Master, Worker, Communication and

Utility submodules. Specifically, the Master submodule has“ManagerToMaster” ab-

stract class, “IdManagerMap” and “MasterImpl” classes. The Worker submodule in-

cludes the “Worker” class, “WorkerManager” abstract classand “WorkerManagerImpl”

class. The Communication mechanism is composed of a “Communicator” class, a “Dat-

aLocator” class, “Message” class and “MessageSpooler” abstract class. The Utility in-

cludes “Logger”, “lock” and “FaultDetector”. In the following subsections, we will in-

troduce the architecture of those important classes such as“Master”, “Worker Manager”,

“Worker”, “Vertex”, “Partitioner” and “Communicator”.

4.3.1 Architecture of Master

Besides maintaining a list of worker managers, there are twothreads for the master class

running on CPU, the Sentinel and Processing threads. As is illustrated in Figure 4.7(a),

the Master Sentinel acts as a guard to poll all the active worker managers. The Sentinel

is triggered when a new worker manager is registered. While all worker managers are

ready, the Sentinel launches the Master Processing Thread.The architecture of Master

Processing Thread is shown in Figure 4.7(b). The ProcessingThread partitions the graph
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(a) Master Sentinel Thread (b) Master Processing Thread

Figure 4.7: Master Architecture

into subgraphs according to the number of machines and the number of GPUs each ma-

chine has. Then the Processing Thread initializes the worker managers and passes the

subgraphs to them. If there is only one machine and one GPU in the physical system, the

master launches only one worker manager using the original graph. After that, the Pro-

cessing Thread starts to execute supersteps only if there isany registered worker manager

is active.

The main functions of the master are listed as follows:

• Register Worker Managers.
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• Poll Worker Managers, if all are activated, start to process the graph.

• Signal to stop active Worker Managers.

• Partition the graph according to device counts.

• Initialize Worker Managers.

• Start supersteps to process the graph.

• Output the results.

4.3.2 Architecture of Worker Manager

A Worker Manager acts as an interface between CPU and GPU thathandles all the tasks

assigned to one GPU. It takes charge of several workers and a batch of GPU threads. As

displayed in Figure 4.8(a), a worker manager is initializedby the master thread with a

set of assigned partitions. The worker manager further divides the assigned partitions

among its workers and then initializes these workers. As shown in the second step of

Figure 4.7(b), the worker managers should respond to the master and start supersteps to

process the subgraphs. In Figure 4.8(b), a worker manager distributes messages to all

the destination vertices at the beginning of a superstep. From the perspective of vertex, it

receives/reads the messages in this stage. If it is in the first superstep or all the message

received by this worker manager from the last superstep, theworker manager signals the

communicator and the workers start to execute.

The main functions of the worker manager are listed as follows:

• Initialize worker manager.

• Initialize workers and assign partitions.
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(a) Initialize Worker Manager (b) Begin Superstep

Figure 4.8: Worker Manager Architecture

• Initialize communicator.

• Distribute messages received to the supervised vertices.

• Start and end supersteps by the signal from the master.

• Signal communicator to receive messages from all vertices.

• Signal to start workers.
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4.3.3 Architecture of Worker

Figure 4.9: Worker Architecture

A Worker corresponds to the processing of one or several partitions on the GPU. As

is illustrated in Figure 4.9, the worker thread is initialized by the worker manager and

waits for the signal to execute. As soon as it receives the “EXECUTE” signal, the worker

converts the subgraph into the graph format that can be processed on the GPU. Then the
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worker iteratively transfers the graph onto GPU global memory. And the worker com-

putes the execution thread dimensions before launching a batch of GPU threads to pro-

cess the graph. Finally, messages are retrieved from GPU memory to the main memory

and cached in the communicator.

The main functions of the worker are listed as follows:

• Convert graphs into the format that can be processed on the GPU.

• Transfer graphs to GPU global memory.

• Compute execution configuration and launch the kernel function.

• Retrieve messages from GPU global memory to the main memory.

• Signal worker manager that the job has been done.

4.3.4 Architecture of Vertex

Algorithm 7: Generic API For User Derived Vertex Class

1 class DerivedVertex : VertexInGPU{
2 public:
3 device void compute(){
4 . . . // Algorithm implemented by users.

5 }
6 . . . // Other public members can be added by users.

7 private:
8 . . . // Private members can be added by users.

9 } ;
10 device VertexRegisterInGPU<DerivedVertex> reg ;

A vertex corresponds to a GPU thread in SIGPS. The vertex class is the interface

between users and SIGPS. Users derive an application vertexsubclass and implement
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the overloaded “compute” function. Algorithm 8 is the structure of theVertex class.

All the public methods are open APIs that can be called by users in their derived Vertex

classes. In other words, programmers can utilize the inherited methods to implement

their algorithms in the overloaded “compute” functions. Algorithm 7 is the generic API

that a user can use to derive Vertex class and implement theiralgorithms.

Algorithm 8: Vertex Class

1 class VertexInGPU : VertexAPIGPU{
2 public:
3 device void initialize(int, double, int, int, message*, int, int,edge*, int,

int, message*) ;
4 device void initCompute() ;
5 device virtual void compute() = 0 ;
6

7 // Auxiliary Member Retrieval and Access Methods
8 . . .
9 // Messages Received Retrieval and Access Methods

10 . . .
11 // Edges Retrieval and Access Methods
12 . . .
13 // Messages Sending Method
14 . . .
15 private:
16 int vertexId ;
17 double vertexValue ;
18 int superstep ;
19 message *msgPtr, *msgSndPtr ;
20 int msgSize, edgeSize, vertexSize ;
21 edge* edgePtr ;
22 } ;

VertexRegisterInGPU is a struct implemented on GPU memory.It is designed for

Vertex auto-registration in GPU. As is shown in Algorithm 7,users declare a global de-

vice object in line 7, after implementing their derived vertex classes. The name of the

derived vertex class is used in the angular brackets to instantiate the template. Algo-

rithm 9 displays the mechanism to realize the vertex class auto-registration. “Map” is a
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device hash table implemented for the map(registration) function.

Algorithm 9: Derived Vertex Class Auto-registration

1 template<typename T>
2 device VertexInGPU* createVertexInGPU(){ return (VertexInGPU*)(new T);
}

3

4 struct VertexFactoryInGPU{
5 typedef Map<Key, VertexInGPU*(*)()> maptype ;
6

7 device VertexInGPU * createInstance(char* name, int len){
8 Key key(name, len) ;
9 return getMap()->find in map(key)() ;

10 }
11 device map type * getMap(){
12 if(!map) { map = new maptype;}
13 return map ;
14 }
15

16 maptype * map ;
17 };
18

19 template<typename T>
20 struct VertexRegisterInGPU : VertexFactoryInGPU{
21 device void init(char* name){
22 int size = strlen(name) ;
23 Key key(name, size) ;
24 getMap()->insertmap(key, &createVertexInGPU<T>) ;
25 }
26 };

The main functions of the vertex are listed as follows:

• Acts as a base class for user-derived vertex class.

• Provide a lists of public methods as API functions.

• Provide a virtual method “compute” for user to implement algorithms.

• Realize the derived vertex class auto-registration.
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4.3.5 Architecture of Communicator

A communicator is a member object of the worker manager class. It handles all the

messages within and among worker managers. Workers complete a superstep and send

messages to the communicator. The communicator caches these messages and computes

the destination for each one. Figure 4.10 illustrates the mechanism of a communicator

under the worker manager. When the worker manager signals itto run, the communi-

cator waits for the completion of all workers. While the function “communicate()” is

invoked, the communicator clears the spooler queues for worker managers. Then it adds

messages to the corresponding spooler queue according to the hostname(worker man-

ager id), partition id, and destination vertex id. After sending all the messages to the

spooler queues of different worker managers, the communicator signal its worker man-

ager to stop the current superstep. Finally, the communicator flag itself to be in “STOP”

state.

The main functions of the communicator are listed as follows:

• Poll until the worker manager signal to run.

• Wait for the completion of all the workers.

• Clear the spooler queues for all worker managers.

• Populate messages to its corresponding spooler queues.

• Send messages to its corresponding worker managers.

• Signal to stop workers.

• Signal to end superstep.

• Flag itself to “STOP”.
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Figure 4.10: Communicator Architecture
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4.4 System Auxiliary Components

SIGPS system is implemented across CPU and GPU heterogeneous platform, using

C++ and CUDA programming language. As a graph processing system, SIGPS con-

sists of three main modules, namely “Graph”, “System” and “User API”. Each of these

modules contains several functional classes. First of all,the “Graph” module consists

of four classes, namely “Graph”, “Edge”, “Graph Partitioner” and “Graph Generator”.

These classes realize a graph system that provides basic graph processing functions such

as graph generation, graph reading, graph partitioning, critical value computation and

result writing. Secondly, the “System” module consists of six classes, namely “Mas-

ter”, “Worker Manager”, “Worker”, “DataLocator”, “MessageCenter” and “Message”.

This module handles advanced graph processing such as parallelization, communication

and BSP model. Lastly, the “User API” module provides a vertex interface for users to

implement their own vertex class, which encapsulates user-defined graph processing al-

gorithms. We have walked through the main components in Section 4.3. In the remaining

portion of this section, a concise introduction of system auxiliary classes is provided.

4.4.1 Graph Generator and Graph Partitioner

Since SIGPS is a vertex-centric model, we define the graph in aformat of the adjacency

list. Each line of the input file is the neighboring list of onevertex. Specifically, the

graph generator produces a synthetic graph in the adjacencylist format. And the graph

partitioner divides this original graph into several partitions that can be held in the system

and GPU memory. We have proposed several partitioning algorithms in Section 3.5 and

conducted a comprehensive comparison when partitioning a large graph. In order to

compare the vertex-centric method with the edge-centric one, we provide a conversion

method between the adjacency list and the edge flow format of the graph. Partitioner can
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also read in both formats of graphs.

4.4.2 Vertex API, Edge and Graph

For simplicity, vertex API is designed as an abstract class.Users only need to subclass

the Vertex and override the compute member function. More specifically, in order to

facilitate implementing user’s algorithms in the simplestformat, and in consideration of

the C++ characteristic, we define the compute member function as an external function.

When subclassing a Vertex class, users only need to structure their algorithms and imple-

ment them using the compute function template. Since the external compute functions

are deployed to run on GPU, users need to send data parametersto the dedicated compiler

as well. Besides the function interface, users can also design the output by themselves.

The output data includes data sent back to standard output, data return by parameters

and function return value. The object/struct/array data need to be returned by pointers

for a better compatibility. Edge and Graph classes are fundamental for graph process-

ing, which are instantiated when graph is generated. Besides basic operations, getting

and setting theSuperStepare the most significant behaviors that a graph object operates

under its processing model. In addition, basic graph algorithms can be implemented as

well such as simple graph traversal and graph elements accessing.

4.4.3 Message Center and Data Locator

Communication is the principal system functionality that distinguishes SIGPS from Google’s

Pregel implementation. As mentioned above, Message Centerreceives messages sent by

workers, does the shuffling and stores the associated data tothe destination addresses of

the messages. During eachSuperStep, Data Locator calculates the message addresses in

GPU memory for each worker. There are two types of shuffling methodologies imple-

mented in Data Locator, data shuffling and thread shuffling.
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Definition 4.4.1. Collective Data Shuffling:

Let Xi be the value of threadi before shuffling,Yi be the index of the value after

shuffling. ThenYi satisfiesXYi
≤ XYj

for i ≤ j.

Definition 4.4.2. Comparison-based Collective Data Shuffling:

Comparison-based Collective Data Shuffling enables users to define their own com-

parison function for data shuffling. Complicated algorithms can be applied in this case

so that data shuffling can be controlled by the Data Locator.

Definition 4.4.3. Collective Thread Shuffling:

Let Xi be the value of threadi before shuffling,Zi be the value of threadi after

shuffling. Then after shuffling, threads are adjusted so thatZi ≤ Zj for i ≤ j.

Definition 4.4.4. Comparison-based Collective Thread Shuffling:

Comparison-based Collective Thread Shuffling enables users to define their own

comparison function for thread shuffling. Advanced shuffling strategies can be employed

by the Data Locator so that data can be sent to corresponding recipients.

Example 5.

Threads with rank{0, 1, 2, 3, 4, 5} compute values{X0, X1, X2, X3, X4, X5} =
{8, 4, 2, 5, 1, 3}. After data shuffling, the returned index set{Y0, Y1, Y2, Y3, Y4, Y5} =
{4, 2, 5, 1, 3, 0}. After thread shuffling, the value set{Z0, Z1, Z2, Z3, Z4, Z5} =
{1, 2, 3, 4, 5, 8}.

After shuffling in general, message center stores the valuesaccording to the addresses

computed by Data Locator. Actually, graph processing algorithms such as SSSP, PageR-

ank, and Dense Subgraph Mining can be abstracted into several iterative SuperSteps,
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which can be further broken into a sequence of parallel constructs. So that data move-

ment can be separated into a sequence of shufflings in the device memory.

The underlying system implementation of the shuffling has torealize data moving

in the GPU memory hierarchy. There are two types of the data moving units, namely

Move(<bx, ti>,<by, tj>), Move(<bx, ti>,<bx, tj>). In addition, Data Locator also handles

global memory coalescing, L1/L2 cache coherence and sharedmemory bank conflict

issues.

Definition 4.4.5. Data Moving Unit: Move(source, destination)

Assume the function Move(source, destination) is the unit operation that Message

Center executes to pass data from the address space of one thread to that of another. Let

“source” and “destination” be the threads that mean to communicate, which are in the

pair<blockId,threadId> format.

Definition 4.4.6. Move(<bx, ti>,<bx, tj>): Intra-block Data Moving

Communication occurs between two threadsti andtj from the same blockbx. Since

there are caches2 and shared memory in the same block, most data moving within

the same block can be operated in the block-wise shared memory. A shared memory

read/write access pattern is exploited in order to avoid some potential bank conflicts. If

the message is too large in size, a data replacement is neededto swap data via cache

from global memory.

Definition 4.4.7. Move(<bx, ti>,<by, tj>): Inter-block Data Moving

Communication occurs between two threadsti and tj from different blocksbx and

by respectively. A global memory read/write access pattern isexploited for memory

coalescing. Since shared memory is considered to be user manageable cache, the cache

coherence issue is also important if the global memory has been updated.

2for Graphics Card with Compute Capability 2.x and 3.0
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When a batch of threads are shuffled by Worker Managers, Move(<bx, ti>,<bx, tj>)

and Move(<bx, ti>,<by , tj>) unit operations are grouped separately by Message Center.

By conducting a bundle of intra-block and inter-block data moving, Data Locator en-

hances the data transfer bandwidth, minimize communication overhead and accelerates

the data moving process.

4.4.4 State Logging

For distributed system, state logging provides a solution for system fault tolerance. Mes-

sage sent among remote peers might be lost during communication. Workers in the peer

system might suffer failure as well. Whether a system can provide measures to recover

the computation if some system failure or message lost was detected is vital for such sys-

tem. However, for shared memory system, fault tolerance is not so important as a system

design issue. Message passing is replaced by data moving in the emulating shared mem-

ory and worker threads provided by GPU seem to be stable during execution.

Logging the state of eachSuperStepmakes SIGPS adapted to various system envi-

ronment. The state of oneSuperStepconsists of the state of all partitions, vertex values,

edge values and messages received. Because SIGPS is based onBSP model, the states

of all SuperStepsare recorded as a snapshot of the system. We have illustratedthe block

state machine in section 4.2. Here we rehearse it from the perspective of “logging”. At

the beginning of eachSuperStep, block state is activated by Worker Manager. Then the

block state may remain active until a block synchronizationis executed, which marks

an end to the currentSuperStep. The state of a single partition is only one part of the

snapshot of the whole graph. For eachSuperStep, all partitions are processed separately.

While the system has excessive resources, the whole graph can be processed concur-

rently. However, due to the possible limitation of the system resources, graph partitions

may not be processed simultaneously. With limited resources provided, some partitions
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need to be swapped out so that other partitions can be processed. State logging is critical

for this limited resources situation. An operation of the state logging before barrier syn-

chronization stores the state for each partition. At the beginning of the nextSuperStep,

the state of the partition is restored before receiving messages from other partitions.

State logging for SIGPS is also designed to enhance the system efficiency, includ-

ing the implementation and execution of the algorithms. By recording the state of one

SuperStep, some algorithms can be speeded up since there is no need for redundant re-

computation in every iteration. For example, some aggregator values do not need to

be re-computed for everySuperStep. Additionally, logging the states of eachSuper-

Stepmakes it easy for users or system programmers to debug their programs and have a

detailed understanding of their algorithms.

For state logging implementation, we utilize boost file system library and serializa-

tion facilities to flatten the objects of SIGPS modules. Algorithm 10 is the code the

serialization library invokes to save or load a class instance to/from an archive.

Algorithm 10: Object Serialization

1 friend std::ostream & operator<<(std::ostream &os, const classname &or);
2 friend class boost::serialization::access;
3 template<class Archive, class T>;
4 inline void serialize( Archive & ar, T & t, const unsigned intfile version ){
5 // invoke member function for class T
6 t.serialize(ar, fileversion);
7 // save/load class member variables
8 ar & member ;
9 // invoke serialization of the base class

10 ar & boost::serialization::baseobject<baseclassof T>(*this);
11 }
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4.5 Automatic Execution Configuration and Dynamic Thread

Allocation

For graph processing on GPU, each vertex is represented by one GPU thread. Local

computation in Figure 4.2 is conducted by the graphics processors, and message com-

munication is emulated in the graphics memory. In Section 4.3, we have mentioned that

SIGPS uses CUDA driver API to implement the underlying system functions. There-

fore, SIGPS inherits CUDA thread hierarchy, which consistsof grid, block and GPU

light-weight threads. Grid corresponds to the execution ofa device kernel function.

Block refers to a batch of GPU light-weight threads that can communicate via on-chip

fast caches and synchronize by multi-processor barriers with each other. A grid consists

of a number of blocks that can be assigned to saturate available GPU multi-processors

concurrently. As soon as a block of threads finish their task on one multi-processor, the

system will assign a new block of waiting threads to run on that multi-processor.

Instead of waiting for users to decide the execution configuration parameters, SIGPS

defines the properties of the thread model, which simplifies the programming and hides

the system complexity. Table 4.1 lists the pre-set properties of SIGPS thread model.

Since the system model is vertex-centric, each vertex is designed to be represented by

one thread. According to the current GPU capabilities, a block can afford 512 threads

in terms of the amortized shared resources. The number of blocks is then decided by

the task amount and the unit size. It is worth mentioning thatthe number of threads

which are actually running in parallel is decided by the multiprocessor size, the amount

of shared resources such as registers and the thread model configuration. All the other

dimensions of the grid and block are simply set to be 1. The whole thread model is

shaped to be in one dimension and the corresponding memory space of all threads is

packed into a linear array.
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Property Value Description

thread.size V ertex.size GPU thread number to be launched.

thread.grid.size ceil(V ertex.size
512

) The x dimension of thread grids.

thread.block.size 512 The x dimension of thread blocks.

thread.grid.sizey 1 The y dimension of thread grids.

thread.block.sizey 1 The y dimension of thread blocks.

thread.block.sizez 1 The z dimension of thread blocks.

Table 4.1: GPU Thread Configuration

Compared with other graph processing systems, SIGPS is equipped with new fea-

tures that manage to enhance the processing efficiency. Firstly, besides the default thread

configuration, in SIGPS users can allocate more threads as isin need. There are two lev-

els of parallelism in graph processing. One is the parallelism among vertices of the

graph. The other one is the task parallelism inherent in graph algorithms. The dy-

namic thread allocation enables users to exploit a finer parallelism for the problem. The

forall construct can be unfolded to explore an additional in-task parallelism, such as a

vertex inquiries around all its neighbors to get the associated messages. Moreover, the

in-block and intra-block parallelism is explored by WorkerManager and Worker hierar-

chical structures to distribute the tasks. Secondly, SIGPSemploys an efficient resizable

list in the implementation of Message Center. As we mentioned above, Message Center

manages the aggregated memory space for all threads in GPU memory. Due to the sim-

plified one dimension thread model, Message Center is also shaped to be like a linear

array. The capability of resizable list allocation makes SIGPS efficient and effective for

dynamic threads. Specifically, when a batch of threads are dynamically launched, SIGPS

resizes the linear array of Message Center. Thread ranks arealso re-assigned to match the

linear formation of the memory space. Thirdly, SIGPS simplifies the communication by

simply getting and putting values to their memory spaces. Fourthly, SIGPS stores graph
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class members separately in aligned arrays of basic types. Memory access of graph data

is always coalesced if only all members satisfy coalescing requirements. Last but not

least, Worker Manager and Worker are implemented in a sequential programming style,

successfully avoiding the complexity of parallel programming and leaving complicated

parallelization and optimization to the compiler.
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4.6 Case Study

4.6.1 Case One: PageRank

In web analysis field, PageRank is a probability distribution used to represent the like-

lihood that a person randomly clicking on links will arrive at any particular page. It

is represented by a link analysis algorithm, which can be applied to any collection of

entities with reciprocal quotations and reference. Specifically, a numerical weighting is

assigned to each element of hyper-linked set of documents inorder to “measure” its rel-

ative importance within the set. The computations of the algorithm have several passes,

called “iterations” through the collection to adjust approximate PageRank values to more

closely reflect the theoretically true value. Generally in mathematics, the PageRank value

for any pageu can be expressed as:

PR(u) = ∑
v∈Bu

PR(v)
L(v) 3

≈ 0.15 ×
1

∣V ∣ + 0.85 ×∑
PR(v)
L(v)

To implement the PageRank algorithm using SIGPS, we extend the Vertex class on

the GPU to create aPageRankVertexuser-defined GPU class. The PageRankVertex

class derives thecompute() virtual method, executed by one GPU thread, to calculate

the PageRank value of the vertex.

The initial PageRank value of each vertex is set to be1

∣V ∣ 4 . The process of PageR-

ank computations consists of severalsupersteps. Within each superstep, vertex thread

receives messages from its neighbors, computes its tentative PageRank and sends mes-

sages to its neighborhood along its outgoing edges.

The algorithm converges when the PageRank values of all vertices become stable. In

reality, we employ a “Pay as you go” strategy and pre-set the number of supersteps to

simplify the computation.
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Algorithm 11 is an example of user-defined PageRankVertex class implemented for

GPU execution. We take advantage of the generic Vertex APIs to derive the function

“compute()”. In line 7 to 9, the GPU thread reads messages from the neighborhood of

the vertex. Line 10 computes the tentative PageRank value for the current superstep. In

line 16 to 18, the vertex issues its tentative PageRank divided by the number of links

as messages to its neighboring vertices. After implementing the PageRankVertex class,

users need to declare a global variable, instantiated by theclass name“PageRankVer-

tex” in line 23, to register this customized vertex class in the system. The “reg” object

will be utilized to initialize the PageRankVertex class andcreate vertices objects in the

system automatically.

Algorithm 11: PageRankVertex

1 class PageRankVertex : VertexInGPU{
2 public:
3 device void compute(){
4 if ( this->getSuperStep()>= 1 ) {
5 double sum = 0 ;
6 int numMessages = this->getMsgSize() ;
7 for ( int i = 0 ; i < numMessages ; ++i ){
8 sum += this->getMsgValues(i);
9 }

10 double newPageRank = 0.15 / this->getTotalNumVertices() +
0.85*sum ;

11 this->setValue(newPageRank) ;
12 }
13

14 if ( this->getSuperStep()< SUPERSTEPNUM ) {
15 int numEdges = this->getEdgeSize() ;
16 for ( int i = 0; i < numEdges; ++i ){
17 this->sendMessage(this->getEdge(i), this->getValue()/numEdges) ;
18 }
19 }
20 }
21 };
22

23 device VertexRegisterInGPU<PageRankVertex> reg ;
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4.6.2 Case Two: Single Source Shortest Path

In graph theory, the Single Source Shortest Path problem is the problem of finding a path

between vertices in a graph so that the sum of the weights of the edges in the path is

minimized. In mathematics, letG = (V,E,C) be a directed/undirected graph and lets

be a designated vertex in V. ComputeMin(s, x;V ) for every vertexx ∈ V . There are

several classic algorithms to solve this problem, such as the Dijkstra’s algorithm and the

Bellman/Ford algorithm.

In order to solve Single Source Shortest Path problem, we implement the Dijkstra’s

algorithm using SIGPS. We derive the GPU vertex class and define an “SSSPVertex”

and its member function “Compute()”. During execution, each GPU thread create an

“SSSPVertex” object and run the function “Compute()” to calculate the shortest distance.

The algorithm converges when all the vertex values are set tobe the shortest distances

to the source vertex. There will be several passes before allvertices vote to stop, and

the system forces all vertex threads to synchronize with each other between subsequent

supersteps.

Algorithm 12 is an example of user-defined SSSPVertex class implemented for GPU

execution. We take advantage of the generic Vertex APIs to derive the function “Com-

pute()”. Initially, we set the pre-vertex-id of the currentvertex to be “-1” in line 4. We

also utilize a temporary shortest distance and the preNode to record the tentative infor-

mation. From line 7 to 12, the shortest distance is initialized for each vertex. The vertex

threads read messages from their neighbors in the “for-loop” from line 14 to 18. If the

tentative computed shortest distance is smaller than the vertex value, the vertex value will

be replaced by this smaller distance and its pre-vertex-id information will be updated as

well. Finally, the vertex thread sends its updated distanceadded by the corresponding

edge cost as a new message to all its neighbors.
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Algorithm 12: SSSPVertex

1 class SSSPVertex : VertexInGPU{
2 public:
3 device void compute(){
4 this->preVertexId = -1 ;
5 int preNode = -1 ;
6

7 double distance ;
8 if ( this->getVertexID() == 0 ){
9 distance = 0 ;

10 } else{
11 distance = INFINITY ;
12 }
13 int numMessages = this->getMsgSize() ;
14 for ( int i=0 ; i<numMessages ; ++i ){
15 if ( this->getMsgValues(i)< distance ){
16 distance = this->getMsgValues(i) ;
17 preNode = this->getMsgSourceVid(i) ;
18 }
19 }
20 if ( distance< this->getValue() ){
21 this->preVertexId = preNode ;
22 this->setValue(distance) ;
23 int numEdges = this->getEdgeSize() ;
24 for ( int i=0; i<numEdges; ++i ){
25 this->sendMessage(this->getEdge(i), distance +

this->getEdgeCost(i)) ;
26 }
27 }
28 }
29

30 private:
31 int preVertexId ;
32 };
33

34 device VertexRegisterInGPU<SSSPVertex> reg ;
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4.6.3 Case Three: Dense Subgraph Mining

To parallelize dense subgraph mining algorithm using SIGPS, we implementDN-graph

mining algorithm by extending the Vertex class on GPU to create a “DSMVertex” user-

defined class. The “DSMVertex” class derives thecompute()virtual method, executed

by one GPU thread, to calculate theλ̃ value of the vertex.

The algorithm converges when the “converge” flag is true, which means all vertices

have updated their̃λ value in the current superstep. Algorithm 13 is an example ofuser-

defined “DSMVertex” class implemented for GPU execution. Weutilize the generic

Vertex APIs to describe the behavior of each vertex. At first,we pre-set the “converge”

flag to be TRUE. The “for-loop” from line 6 to 20 queries all theneighbors of the current

vertex that had sent him a message in the last superstep. Line7 computes the common

neighbors of the vertex and its neighbor and the estimatedλ̃ value is bounded in line

11. If this estimated̃λ value is bigger than the current value of the vertex, it is said

to be supported by this neighbor and the counter “support” isadded in line 13. If the

supporting vertices are found smaller than theλ̃ value of the current vertex, it will be

updated as the new̃λ value of the vertex. And the flag “converge” will be set to be false.

This indicates that the new value needs to be spread to its neighbors, which is sent out as

messages in the loop (line 22 to 24).
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Algorithm 13: Dense Subgraph Mining Compute Function

1 class DSMVertex : VertexInGPU{
2 public:
3 device void compute(){
4 converge = TRUE ;
5 int numMessages = this->getMsgSize() ;
6 for ( int m=0 ; m<numMessages ; ++m ){
7 int coNeighborSize = neighborhoodjoin (this->getNeighbors(),

m.getDestVertex().getNeighbors(), coNeighbors) ;
8 int support = 0, *coNeighbors, density = coNeighborSize ;
9 for ( int j=0 ; j<coNeighborSize ; ++j ){

10 coNeighbor = coNeighbors[j] ;
11 density = Min(Min(this->getNeighborValue(coNeighbor),

this->getMsgValue(m)), Min(this->getNeighborValue(coNeighbor),
this->getValue()));

12 if ( density≥ this->getValue() ){
13 support++ ;
14 }
15 }
16 if (support<Min(this->getValue(), this->getMsgValue(m)){
17 this->setValue(this->getValue()-1);
18 converge = FALSE ;
19 }
20 }
21 if ( !converge) {
22 for ( int e=0 ; e<this->getEdges() ; ++e ){
23 this->sendMessage(this->getEdge(e), this->getValue()) ;
24 }
25 }
26 }
27 };
28

29 device VertexRegisterInGPU<DSMVertex> reg ;
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4.7 Generic Vertex APIs Usage

In this section, we provide an elementary tutorial about howto use the vertex APIs

provided by SIGPS. In Section 4.3.4, we have introduced the basic structure of the

generic vertex APIs and the Vertex class. In this section, were-list Algorithm 7 as

Algorithm 14. Users derive the Vertex class in GPU as displayed in Algorithm 14. They

can add public/private member variables and methods they need. Just remember to add

“ device ” in front of the methods since they are required to work on GPUs.

Algorithm 14: Generic API For User Derived Vertex Class

1 class DerivedVertex : VertexInGPU{
2 public:
3 device void compute(){
4 . . . // Algorithm implemented by users.

5 }
6 . . . // Other public members can be added by users.

7 private:
8 . . . // Private members can be added by users.

9 } ;
10 device VertexRegisterInGPU<DerivedVertex> reg ;

We list the full declaration of the Vertex class in Algorithm15. Theinitialize(. . . )

and initCompute() methods are used by the system to initialize the vertex and invoke

the “compute()” method. They are functions that connect thesystem to the code imple-

mented by users.

The virtual methodcompute()is the core function that must be implemented by users

in order to run their own algorithms to do graph processing.

The methodsgetVertexID() andsetVertexID(int) are functions to retrieve and ac-
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cess the vertex id that can be used to identify the vertex in the graph.

The methodsgetTotalNumVertices() andsetTotalNumVertices(int) are functions

to retrieve and access the size of the graph (total vertex number).

The methodsgetValue()andsetValue(double)are functions to retrieve and access

the value attached to the vertex which can be utilized by users. The meaning of the vertex

value can be defined by users in their algorithms. For example, in “PageRankVertex”

example, the vertex value is defined as the PageRank value of the current page node.

And in “SSSPVertex” example, the vertex value is defined as the shortest distance to the

source from the current vertex.

The methodsgetSuperStep()andsetSuperStep(int)are functions to retrieve and

access the tentative superstep.

The methodgetMessages()is the function to get the starting positions of the received

messages list. The methodgetMsgSize()is the function to get the size of the received

messages list. With the above two methods, users can retrieve and access all messages

received by the vertex thread.

The methodsgetMsgValue(int), getMsgSourceVid(int), getMsgDestVid(int) and

getMsgSuperStep(int)are functions to retrieve the components of the received mes-

sages according to the index (0 . . . getMsgSize()) in the messages list. Using these meth-

ods, users can retrieve the value sent accompanied with the message. In each superstep,

messages are issued with the source/destination vertex idsof the message.

The methodgetEdges()is the function to get the starting positions of the contingent

edges list. The methodgetEdgeSize()is the function to get the size of the contingent

edges list. With the above two methods, users can retrieve and access all the contingent

edges of the current vertex.

The methodsgetEdgeCost(int), getEdgeSourceVid(int)andgetMsgDestVid(int)

are functions to retrieve the components of an edge according to the index (0 . . . getEdgeSize())
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in the contingent edges list. Using these methods, users canretrieve the edge cost, and

the source/destination vertex ids of the edge.

The methodsendMessage(edge e, double value)is the function for the vertex thread

to send its value along an edge e, encapsulated as a message.
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Algorithm 15: Vertex Class

1 class VertexInGPU : VertexAPIGPU{
2 public:
3 device void initialize(int, double, int, int, message*, int, int,edge*, int,

int, message*) ;
4 device void initCompute() ;
5 device virtual void compute() = 0 ;
6

7 device int getVertexID() ;
8 device void setVertexID(int) ;
9 device int getTotalNumVertices() ;

10 device void setTotalNumVertices(int) ;
11 device double getValue() ;
12 device void setValue(double) ;
13 device int getSuperStep() ;
14 device void setSuperStep(int) ;
15

16 device message* getMessages() ;
17 device double getMsgValues(int) ;
18 device int getMsgDestVid(int) ;
19 device int getMsgSourceVid(int) ;
20 device int getMsgSuperStep(int) ;
21 device int getMsgSize() ;
22

23 device edge* getEdges() ;
24 device edge& getEdge(int) ;
25 device int getEdgeSourceVid(int) ;
26 device int getEdgeDestVid(int) ;
27 device double getEdgeCost(int) ;
28 device int getEdgeSize() ;
29

30 device void sendMessage(edge, double) ;
31

32 private:
33 int vertexId ;
34 double vertexValue ;
35 int superstep ;
36 message *msgPtr, *msgSndPtr ;
37 int msgSize, edgeSize, vertexSize ;
38 edge* edgePtr ;
39 } ;
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4.8 Experiments

In this section, we study the performance of SIGPS system. Weimplement three algo-

rithms, namely PageRank, SSSP (Single Source Shortest Path) and DSM (Dense Sub-

graph Mining) using the generic APIs of the system.

4.8.1 Experimental Settings

We have conducted our main experiments on three low-end GPU accelerated desktop

systems. They are a DELL PC equipped with a low-end NVIDIA GeForce 9400 GT

graphics card, and two ACPI x64-based systems accompanied with an NVIDIA GeForce

GT 520 graphics card and an NVIDIA GeForce GT 330 graphics card respectively. The

price of the GeForce 9400 GT and GeForce GT 520 graphics cardsare both less than 50

US dollars. And a GeForce GT 330 graphics card is no more than 100 US dollars. The

whole GPU-accelerated personal computer systems cost onlyaround 1000 US dollars,

which are quite affordable for ordinary users.

In order to study the computational capabilities of the SIGPS system, we also adopted

an exhaustive study of the desktop system resources. In thisstudy, we generate a series

of directed graphs with ten thousands to one million vertices on a desktop equipped with

an NVIDIA GeForce GTX 760 graphics card. The PageRank algorithm is executed on

the massive graphs to test the computing scalability of the SIGPS system. We present

the major technical specifications of our four platforms in Table 4.2.

We employ synthetic and real datasets in our experiments. Experimental synthetic

graphs are generated by the system graph generator component. We use the graph den-

sity, which is defined to beD = 2∣E∣
∣V ∣(∣V ∣−1) . For vertex centric algorithms, a series of graphs
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Platform CPU
Main
Memory GPU

GPU
Memory

Compute
Capability

GPU
Price

DELL Opti-755
Geforce 9400 GT

2 cores
2.33GHz

3.3GB
DDR2

1×16 cores
550 MHz

512MB
400 MHz

1.1 < $50

ACPI x64-based
Geforce GT 520

4 cores
3.40GHz

8 GB
DDR2

1×48 cores
1.62 GHz

993MB
535 MHz

2.1 < $50

ACPI x64-based
Geforce GT 330

4 cores
3.40GHz

8 GB
DDR2

12×8 cores
1.34 GHz

1 GB
790 MHz

1.2 < $100

i7-4770 x64-based
Geforce GTX 760

4 cores
3.40GHz

16 GB
DDR2

6×192cores
1.15 GHz

4 GB
3.004 GHz

3.0 < $500

Table 4.2: Experimental Platforms

with varying vertex sizes from103 to 107 are created. The edge sizes can be decided by

∣E∣ = D×(∣V ∣(∣V ∣−1)). For edge centric algorithms, graphs with edges ranging from 104

to108 are also produced. The corresponding vertex sizes are calculated by∣V ∣ = ⌈
√

2∣E∣
D
⌉.

Real graphs in our experiments include flickr, DBLP, PPI, andNetflix datasets. Flickr

graph is derived from a well known photo sharing social network. Each node in the

graph represents one person and an edge between two persons denotes this two persons

share photos with each other. There are 1,715,255 people and22,613,982 sharing rela-

tionship recorded in the graph. Since interactions betweenproteins are important for the

majority of biological functions, Protein Protein Interaction (PPI) graphs are useful tools

to study the behavior of the entire interactomics system of any living cell. Our PPI graph

contains 17203 interactions among 4930 proteins. Netflix isan American provider of

on-demand internet streaming media. There are 480,000 customers and 17,000 movies

in the dataset. Table 4.3 lists the graph data information inour study.

4.8.2 Scalability Study

In order to study the scalability of our system, we run the three graph processing algo-

rithms, PageRank, SSSP, and DSM with increasing graph sizes. Figure 4.11 illustrates

the growing tendency of the running time of the corresponding algorithms. When graph
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Graph Types Graph Name ∣V∣ ∣ E∣
Synthetic - [103 ∼ 107] [104 ∼ 108]

Real Flickr 1715255 22613982
Real DBLP 23136 54989
Real PPI 4930 17203
Real Netflix Movie 1000 1881
Real Netflix Rating 1000 10037
Real Stock Marcket 6018 1064138

Table 4.3: Experimental Datasets
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Figure 4.11: System Scalability

size increases exponentially, the elapsed time of processing a graph rises up with an ac-

celerated speed. In Figure 4.11(c), we applied PageRank, SSSP and DSM algorithms on

synthetic graphs with vertex size ranging from103 to 107. We can observe that among

all three processing algorithms, dense subgraph mining costs the most amount of time.
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Figure 4.11(b) displays the execution time when the algorithms are run on real graphs.

As graph size increases, dense subgraph mining algorithm uses more time. Even though

there are more nodes in the DBLP graph, all three algorithms take longer time to run on

the stock market graph. This is because the stock market graph is denser than the DBLP

one. Moreover, the three algorithms are processed in both sequential mode (CPU only)

and GPU accelerated mode of our system. Figure 4.11(c) compares the running time of

both modes when the algorithms are run on the synthetic graphs. Both x-axis and y-axis

are in log-scale. We can observe linear growth of the execution time when the algorithms

are processed in both sequential and GPU-accelerated modes. Similarly, linear curves

showing the algorithms running on the real graphs in Figure 4.11(d) also prove good

scalability of the system. The axes in figures 4.11(b) and 4.11(d) are arranged according

to the edge sizes of the real graphs.

4.8.3 Communication Study
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Figure 4.12: Communication Throughput

To study the communication cost of the system, we log the datamovement, calculate

the communication throughput and plot them in Figure 4.13. Specifically, Figure 4.12(a)

shows memory throughput from a data movement point of view, which is computed by
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Figure 4.14: Vertex Parallel vs Edge Parallel

dividing the estimated sum of message sizes by GPU running time. While Figure 4.12(b)

shows memory throughput from a data access point of view, which is computed by divid-

ing the estimated sum of the sizes of the messages accessed byGPU processors by GPU

memory access time. Figure 4.12(a) displays the linear increase in the communication

throughput with the increasing number of thread blocks, which is decided by the graph

size. Among the three algorithms, PageRank has the lowest throughput since it produces

the smallest amount of messages and consumes more time than SSSP. The throughput

curves are slowing down as the graph becomes large enough. Figure 4.12(b) illustrates

the communication throughput with a growth in the number of active thread blocks for

different graphics cards. We can observe a drop at around 12 active thread blocks for

Geforce GT 330 graphics card, which suggests that the multi-processors are being sat-

urated by the active thread blocks. Additional data moving requests are being absorbed

by fast caches. Finally, it can have a higher throughput since it has more processing

resources.

To further study the data moving cost, we increase message size and compare data

moving in different memory types. Figure 4.13 displays the data transfer time when

the message size is increased. There is only one point for registers in the plot, because

registers are used only for basic data types. Shared memory can be used as fast 64KB

independent caches, which takes only 1-2 clock cycles for one access. L1/L2 caches
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and coalescing global memory access make global memory fastbefore data transferred

become too large. In comparison, we emulate message passingby sending data to the

system main memory and sending it back onto global memory. Wecan observe that

message passing model is by no means much slower than our communication model.

4.8.4 Vertex Parallel vs Edge Parallel

In this experiment, we study the vertex centric methods. OurGPU-accelerated graph

processing model maps graph nodes to GPU threads. We call this thevertex-centric(or

vertex-parallel) approach. In vertex centric algorithms, the innerforall-loop over the

message list of the vertexv iterates the node neighborsN(v) and reads the messages

sent from the neighbors. The algorithm also iterate across edges incident to the vertex

before sending out its own value. More threads are dynamically launched to represent

the neighbor nodes of the current vertex in these loops. If weinstead parallelize over

the edges directly, then each thread can represent one edge.We implement an alterna-

tive algorithm (Algorithm 16) to compare with the vertex centric model. Figure 4.14

shows the running speed comparison among three graph processing algorithms. SSSP

and PageRank take a moment to finish while DSM runs much slowerin both models.

From the histogram, graph processing algorithms like SSSP and PageRank with simple

logic run faster in vertex parallel model. Because each edgein the edge centric model

needs to be processed in two directions of the data movement,the redundant process-

ing and data update conflicts tradeoff the additional parallelism gained from the model.

On the contrary, the edge parallel model simplifies the complicated processing logic of

DSM, which speeds up the algorithm and outperforms its vertex parallel counterpart.
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Algorithm 16: Edge-centric model

1 forall the Edge e=0:(Graph.edges.size-1)do
2 e.compute(){
3 u = e.getSource() ;
4 v = e.getDest() ;
5 value = Proc(e.Thread.get()) ;
6 if u.isGood(value)then
7 u.setValue(value) ;
8 end
9 value = u.getValue() ;

10 if u.isGood(value)then
11 e.Thread.put(value) ;
12 end
13 }

4.8.5 Speedup

In this experiment, we study the speedup of our graph processing model. We compare

all the three algorithms in parallel and sequential modes inFigure 4.15. Figure 4.15(a)

illustrates the speedups when the algorithms run on synthetic graphs. From the plot,

the speedup curves are steady for all three algorithms. Specifically, PageRank gains a

speedup of about 8, while SSSP runs nearly 8 times faster and DSM gets a speedup as

high as 16 to 17. Similarly, Figure 4.15(b) displays the speedups when the algorithms

run on real graphs. PPI dataset and flickr graph have lower speedup compared with

others. Both of the graphs have dense regions with a much higher local density than their

neighboring areas. The imbalance of the tasks for threads forces low-degree vertices wait

for their high-degree neighbors at the point of barrier synchronization, which slows down

the system processing speed.

4.8.6 Comparable Experimental Study

In order to study the SIGPS system, we compared the three versions of the PageRank

algorithm as follows.
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Figure 4.15: Speedup Study

First of all, we write the PageRank algorithm in a C routine that is only run by

the desktop central processors, which is also named as “CPU routine of PageRank”.

PageRank algorithm computes one vertex’s PageRank value using the PageRank value of

all its neighbors. This leads to an iteration within the bodyof which the processor travels

along the graph to update the PageRank values for all vertices. An initial PageRank value

for all vertices are needed and an ending condition is set fora termination of the process.

Figure 4.16 lists the main components of the “CPU routine of PageRank”. Specifically,

Algorithm 17 calculates the sum of out degree for each vertex. Within the two embedded

loops, CPU travels through the graph, pre-computes the out-degree of each vertex and

saves the sum into the array “sumOfOutDegree”, which records the out-degree values of

each vertex. Algorithm 18 travels the graph for the second time and computes the new

PageRank value for each vertex using the sum of all the vertex’s neighboring PageRank

value divided by the out-degree of the neighbor. Algorithm 19 displays how to compute

the end condition.

Secondly, we implement the PageRank algorithm using pure CUDA programming

model. Figure 4.17 lists the pure cuda counterparts of the “CPU routine of PageRank”,

which we name it as “Pure CUDA Routine of PageRank”. Instead of using embedded
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Algorithm 17: Calculate the sum of out degree of each vertex

1 forall the i < numberOfVertex do
2 sum = 0 ;
3 forall the j < numberOfVertex do
4 sum+ = *(Graph + i×numberOfVertex + j) ;

5 sumOfOutDegree [i] = sum ;

Algorithm 18: Calculate the new PageRank value

1 forall the i < numberOfVertex do
2 sum = 0, k = 0, j = i ;
3 forall the j < numberOfVertex × numberOfVertex do
4 if ∗(Graph + j) == 1 then
5 if sumOfOutDegree [k]! = 0 then
6 sum += PR[k] /sumOfOutDegree [k] ;

7 k++, j += numberOfVertex;

8 PR Temp[i] = (1 -α) + α×(sum) ;

Algorithm 19: End Condition

1 bool END( a[], b[] ){
2 sum = 0 ;
3 forall the i < numberOfVertex do
4 sum += abs(a[i] - b[i]) ;
5 if sum< END WEIGHT then
6 return true ;
7 return false ;
8 }

Figure 4.16: CPU Routine of PageRank
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Algorithm 20: Use CUDA to Calculate the sum of out degree

1 global void calculateSumOfOutDegree(*sumOfOutDegree, *Graph){
2 index = blockDim.x× blockIdx.x + threadIdx.x ;
3 if index < numberOfVertex {
4 sumOfOutDegree [index] = 0 ;
5 forall the j < numberOfVertex do
6 sumOfOutDegree [index] += *(Graph +

index×numberOfVertex + j) ;
7 }
8 }

Algorithm 21: CUDA Kernel Function PRAdd: Calculate the PageRank value

1 global void PRAdd(*PR, *Graph, *sumOfOutDegree) {
2 index = blockDim.x× blockIdx.x + threadIdx.x ;
3 if index < numberOfVertex {
4 sum = 0, k = 0,sumOfOutDegree [index] = 0, j = index ;
5 forall the j < numberOfVertex × numberOfVertex do
6 if ∗(Graph + j)&&sumOfOutDegree[k] {
7 sum += PR[k] /sumOfOutDegree [k] ;
8 }
9 k++, j += numberOfVertex;

10 PR[index] = (1 -α) + α×(sum) ;
11 }
12 }

Figure 4.17: Pure CUDA Routine of PageRank

loops to travel through a graph by one CPU thread, Algorithm 20 applies CUDA pro-

gramming model and employs a batch of parallel GPU threads tohandle vertices. Each

GPU thread executes one vertex and is indexed by the formula in the 2nd line. Therefore,

for each GPU thread, there is only one iteration displayed from line 5 to 6, which is used

to calculate the “sumOfOutDegree” for the vertex it handles. Algorithm 21 is a kernel

function that is used to compute the PageRank on CUDA-enableGPUs. Similarly, there

is only one iteration in the kernel, which reduces the complexity of the algorithm.

The third version is what we implemented for the SIGPS as stated in Algorithm 11.

The vertex API simplified the algorithm and the system handles all tuning of the CUDA
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Figure 4.18: PageRank Methods Comparison

Figure 4.18 compares all the three versions of PageRank algorithm. Specifically, in

Figure 4.18(a) all the three methods take more execution time while the graph size in-

creases. One one hand, when the vertex size is less than 300, the CPU method is the

fastest among the three routines. This is because the parallelism of the algorithm over

small graph is low and GPU-accelerated routines have extra overheads. On the other

hand, when the graph becomes large enough, the sufficient parallelism makes the CUDA

routine run faster than the CPU one. Noticeably, SIGPS is theslowest among the three

methods. This is caused by the systematic cost as well as the synchronization overhead.

SIGPS has seemingly worse performance than CPU routine or pure CUDA one. How-

ever, the CPU and pure CUDA routines are stuck when the vertexsize of the graph is

larger than 500. These two routines can not handle the situation that a graph is too large

to be stored in the memory. In contrast, SIGPS is equipped with several mechanisms with

which a large graph is automatically divided into several small sub-graphs. Moreover,

SIGPS has several components that are specifically designedfor accelerating PageRank

processing, such as communication, synchronization and auto GPU execution configu-

ration. Last but not least, the generic API provided by SIGPSmake PageRank algorithm
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composition easier than the others. In Figure 4.18(b), whengraph vertex size varies from

100 to 500, both GPU-accelerated methods have an increasingspeedup curve. SIGPS

has a lower speedup while the graph is not too large. The curveof pure CUDA routine

stops at around 500 vertices point while the curve of SIGPS can continue to grow.

4.8.7 Computing Capability Study

PageRank computation is a non-trivial task. The biggest challenge a system encounters

is that the input data is extremely huge. To study the extent of the computing capability

of SIGPS, we try to generate synthetic graphs that can exhaust the system resources such

as main memory, GPU memory or thread pools. Since main memoryis much larger than

GPU memory and the thread pools are pre-organized as fixed-size blocks and grids, we

found that GPU memory is the primary bottleneck that constraints the scalability of the

system. Figure 4.19 displays the results of our computing capability study of SIGPS.

More specifically, Figure 4.19(a) shows the GPU global memory usage of SIGPS while

the graph size (vertex size) increases from1000 to 107. We can see the GPU global

memory taken by the graph rises exponentially. When the vertex size arrives107, the

graph size cost nearly 4 Gigabytes, which exhausts the GPU global memory. Meanwhile,

the global memory available decreases rapidly, the linespoints of which are marked by

the inverted triangles. Since SIGPS divides a large graph into subgraphs automatically,

we can see in Figure 4.19(b) that the number of subgraphs thatSIGPS creates grow

exponentially as well. The more partitions a graph is divided, the more replication of the

edges are generated. Then the total memory space the graph needs increases.
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Figure 4.19: Computing Capability Study

4.9 Summary

In this chapter, we present SIGPS, an iterative graph processing model on GPU-accelerated

personal computing system. We propose a generic vertex API for users to implement

their graph algorithms. By automating GPU execution configuration and parallelizing

GPU device functions, we simplified GPU programming for users. Furthermore, emu-

lating shared memory model is designed for vertex communication and data movement

within GPU memory. We have conducted extensive experimentsto show the effective-

ness and efficiency of our system.

4.10 Appendix

4.10.1 System Installation

To install the SIGPS system, we need a computer system equipped with a CUDA-enabled

NVIDIA GPU. Besides, an official CUDA toolkit and the boost library are also required

to be installed in the system.
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Windows Operating System

In windows, we recommend users to use Microsoft Visual Studio as the programming

and compiling platform. In this document, we will use MSVS asan example to introduce

how to set up the system.

Figure 4.20: Additional Include Directories

Figure 4.21: CUDA Additional Include Directories
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Figure 4.22: Additional Library Directories

After installing the CUDA toolkit and boost library, users can create a new CUDA

project (by setting up the CUDA compiling rules) and add the source code of SIGPS

into the project. Then users need to open the project property pages under the solution

explorer and add the boost library and the CUDA toolkit installation path under the path:

“Configuration Properties -> C/C++ -> General -> Additional Include Directories” and

the path: “Configuration Properties -> CUDA C/C++ -> Common -> Additional Include

Directories”. Moreover, the paths to the libraries of boostlibrary and the CUDA tookit

are also needed in the path: “Configuration Properties ->C/C++ ->General ->Additional

Libraries Directories”. Figure 4.20, 4.21 and 4.22 are instances of how to setup project

environments.

After setting up the project environment, users can add a newclass file under “Header

Files/Applications” foler. For example, in order to implement the PageRank algorithm in

SIGPS, users can add a new vertex class file named “PageRankVertex.h” and implement

their PageRank algorithm into the extended Vertex class andthe derived virtual class

member “Compute()”.
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Chapter 5

Asynchronous Iterative Graph

Processing System on GPU

In this chapter, we are going to design an asynchronous modelof computation on

GPU. An update function is able to use the most recent values of the edges and the ver-

tices. The scheduling of all updates is dynamic. The parallel sliding windows method

designed in this work implements the asynchronous model on GPU and exposes updated

values immediately to subsequent computation. Furthermore, a generic GPU-accelerated

graph processing system, ASIGPS, is implemented to supportasynchronous concurrency

on GPU hardware. Optimized C++ execution engine leverages extensive multi-threading

and asynchronous IO. A new software hierarchy is designed toprovide better encapsu-

lation and higher modularity. Update/Sync operations are designed to have higher flexi-

bility in synchronous and asynchronous GPU programming.

143



144

5.1 Problem Statement

Current graph systems are able to scale to graphs of billionsof edges by distributing

the computation. To use existing graph frameworks, one is faced with the challenge

of partitioning the graph across cluster nodes. Finding efficient graph cuts that mini-

mize communication between nodes, and are also balanced, isa hard problem. More

generally, distributed systems and their users must deal with managing a cluster, fault

tolerance, and often unpredictable performance. From the perspective of programmers,

debugging and optimizing distributed algorithms is hard.

Since SIGPS is based onBulk Synchronous Parallel (BSP) Model, it is also con-

strained by the limitation of BSP model. SIGPS execute all vertex compute functions

in lock step, which can only observe values from its previousiteration. BSP is often

preferred in distributed systems as it is simple to implement, and allows maximum level

of parallelism during the computation. However, after eachiteration, a costly synchro-

nization step is required and system needs to store all values of both iterations.

There are some obvious drawbacks for synchronous computational model. On one

hand, the synchronous abstraction forces some cohesively connected algorithms to be

torn down into parts and transformed into an embarrassinglyparallel computations. Ad-

ditionally, synchronization also forces most of the fast threads to wait for individual

slowest one, which greatly harness the processing speed. Onthe other hand, though

some parallel graph algorithms are inherently designed to be synchronous, most iterative

graph processing algorithms are difficult to be executed synchronously after paralleliz-

ing. In some especial cases, BSP fails to converge at all, which will block all the threads

from executing. In addition, most of the current graph processing systems base on the

BSP model and do not support any asynchronous processing, nomention asynchronous

computation on GPUs. On GPUs, synchronous processing executes all device functions

concurrently and parameters for each of them need to be prepared before the computa-
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tion.

Conversely, asynchronous processing do not need to tear apart or transform cohe-

sively connected algorithms. No thread need to wait for eachother at the end of every

single iteration. They can run as fast as they can. Moreover,GPU hardware may execute

device functions in any style. The functions can use the most-recent-generated parame-

ters. Asynchronous computation accelerates convergence of many numerical algorithms.

Another problem that needs to be mentioned is that it is challenge to store a large

graph in main memory or GPU memory during processing. Furthermore, efficient mod-

ification of the edge values demand the capability of random access, which is also prob-

lematic in most of the current systems. Advanced storage media such as SSD can only

support tens of thousands of random reads/writes per second, while millions of access

may be required for a huge graph. Exploiting graph locality is also limited due to the

skewed vertex degree distribution. System performance is unpredictable as it depends

on the graph structure. In ASIGPS, we solved the random access problem by writing

updated edges into a scratch file, which is then disk-sorted,and used to generate input

graph for next iteration. However, this method cannot be efficiently used to perform

asynchronous computation. Therefore, an efficient and compressed data format and a

new access scheme are in need for our asynchronous graph processing system.

5.2 Graph Formats for Asynchronous Computing on GPU

5.2.1 Compressed Row/Column Storage on GPU

The GPU-accelerated system stores the graph on disk and transfers it to be processed

in GPU memory. An efficient data format is required to reduce data transfer time and

space cost. It should be equivalent to adjacency formats andedges need to be stored

consecutively in the memory address or file. In addition, edges or out/in edges of one
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vertex is required to be loaded fast. In order to transfer graphs across disk, main memory

and GPU memory, we employed an compressed graph format in this work.

The Compressed Row Storage on GPU (CRSG) format puts the subsequent non-

zeros of the matrix rows in contiguous GPU global memory locations. Assuming we

have a non-symmetric sparse matrixA, we create three vectors: one for floating point

numbers (val) and the other two for integers (colind, row ptr). The val vector stores

the values of the non-zero elements of the matrixA as they are traversed in a row-wise

fashion. The colind vector stores the column indexes of the elements in the val vector.

That is, ifval(k) = ai,j, thencol ind(k) = j. The rowptr vector stores the locations

in the val vector that start a row; that is, ifval(k) = ai,j, thenrow ptr(i) ≤ k <

row ptr(i + 1). By convention, we definerow ptr(n + 1) = nnz + 1, wherennz is the

number of non-zeros in the matrixA. The storage savings for this approach is significant.

Instead of storingn2 elements, we need only2nnz + n + 1 storage locations.

Example 6. As an example, consider the non-symmetric matrixA defined by:

⎛⎜⎜⎜⎜⎜⎜⎝

3 4

2 1

0

⎞⎟⎟⎟⎟⎟⎟⎠

The CRSG format for this matrix is then specified by the arrays{val, col ind, row ptr}
given below in Figure 5.1(a).

Analogous to CRSG, there is Compressed Column Storage on GPU(CCSG), which

is also called the Harwell-Boeing sparse matrix format on GPU. The CCSG format is

identical to the CRS format except that the columns ofA are stored (traversed) instead

of the rows. In other words, the CCSG format is the CRS format for AT .

The CCSG format is specified by the3 arrays{val, row ind, col ptr}, where rowind

stores the row indices of each non-zero, and colptr stores the index of the elements in val



147

which start a column ofA. The CCSG format for the matrixA is given by Figure 5.1(b).

0 2 4 5

0 2 0 2

3 4 2 1

1

0

row_ptr

col_ind

val

(a) CRSG

0 2 3 5

0 1 2 0

3 2 0 4

1

1

col_ptr

row_ind

val

(b) CCSG

Figure 5.1: Compressed Graph Storage on GPU

5.3 Asynchronous Computational Model

A directed graphG = (V,E) is named as a directed graph. Each vertexv ∈ V and each

directed edgee = (source, destination) = (u, v) ∈ E,1 ⩽ u, v ⩽ ∣V ∣ are associated with

a value respectively. An update function is designed to access and modify the value of a

vertex and its incident edges. The update function is executed for each vertex iteratively

before a termination condition is reached.

Algorithm 22: Generic API For User Derived Vertex Update Function

1 device void update(v){
2 Read values of all edges of vertex v ;
3 Compute the new value for vertex v ;
4 Compute and assign the new values for all edges of vertex v ;
5 }

The asynchronous computational model on GPU is implementedby way of Paral-

lel Sliding Windows on GPU. We will introduce Parallel Sliding Windows on GPU in

the following section. Algorithm 22 is the generic API for user derived vertex update

function. The underlying three lines in this function describe the main tasks executed by

this GPU device function. Algorithm 23 is an example of the aforementioned “update”

function, which is described in pseudo-code. All edge values are read into some array in
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Algorithm 23: Pseudo-code for Vertex Update Function

1 device void update(v){
2 for ( all edges e of vertex v ){
3 Array[e.index] = e.value ;
4 }
5 v.value = f( Array[] ) ;
6 for ( all edges e of vertex v ){
7 e.value = g( v.value(), e.value() ) ;
8 }
9 }

line 3. Function f executes computation over the array and stores it as the vertex value in

line 5. From line 6 to 8, the vertex value is spread to all its neighboring edges, if some

condition coded within function g is satisfied.

5.4 Parallel Sliding Windows on GPU

Parallel Sliding Windows on GPU (PSWG) can process a graph with mutable edge values

efficiently from disk through main memory, with only a small number of non-sequential

disk accesses and memory transactions. PSWG supports the asynchronous model of

computation. There are five steps for PSWG to process a graph:

1. a subgraph is loaded from disk into main memory;

2. the subgraph is transferred to GPU global memory;

3. the vertices and edges are updated;

4. the subgraph is transferred back to main memory;

5. the updated values are written to disk.

We then explain the aforementioned steps in the following sections.
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5.4.1 Loading the Graph From Disk to GPU global memory

Using the PSWG method, the verticesV of graphG = (V,E) are split intoN disjoint

segment. For each segment, we associate a block, which stores all the edges that have

destination in the segment. Edges are stored in the order of their source. Segments

are chosen to balance the number of edges in each block; the number of segments,N ,

is chosen so that any one block can be loaded completely into GPU global memory.

PSWG does graph computation by processing vertices one segment at a time. To create

the subgraph for the vertices in segmenti, their edges must be loaded from disk.

As is shown in Figure 5.2, block(i) contains the in-edges forthe vertices in segment(i)

and is loaded fully into GPU global memory. We call such block(i) the memory-block.

Because the edges are ordered by their source, the out-edgesfor the vertices are stored

in consecutive chunks in the other blocks, requiring additionalN − 1 data reads. Im-

portantly, edges for segment(i+1) are stored immediately after the edges for segment(i).

Intuitively, when PSWG moves from a fragment to the next, it slides a window over each

of the blocks. We call the other blocks the sliding window blocks. Figure 5.3 illustrates

the process of loading the graph. Vertices of the graph are divided into four fragments.

there are one block linked to each fragment. PSWG constructsone subgraph for each

fragment. One fragment in dark is first stored in GPU global memory and all in-edges

for the vertices in this fragment can be read directly. All out-edges are read in the sliding

window blocks from the disk.

5.4.2 Parallel Updates

Parallel Sliding Window on GPU (PSWG) executes the user-defined update-functions

for each vertex in parallel when the subgraph for segmenti has been fully loaded from

disk. To prevent race conditions (one edge value was read by two end vertices at the

same time), we enforce that each execution of PSWG would generate the same value.
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block(1) block(2) block(N)

1 v1 v2 |V|…... …... …...

fragment(1) fragment(2) fragment(N)

mmap(1) mmap(2) mmap(N)

Main 

memory

image

GPU 

global 

memory
…...

Figure 5.2: PSWG Block Mapping

As is noted in Definition 3.5.1, only cut-edges can be updatedin parallel. According

to the asynchronous model of computation, all inner vertices and peripheral vertices are

considered as critical vertices. Each critical vertex willnotice the preceding updates of

other critical vertices that are connected to it. Therefore, for algorithms that demand

consistency, critical vertices are executed in sequentialorder.

5.4.3 Updating Graph to Disk

After all vertices and edges are updated, PSWG writes them back to disk, replacing

the old data. Actually, PSWG loads the edges from disk in large blocks. The edge

blocks are cached in main memory before being sent to GPU global memory. When the

fragment subgraph is created, the edges are referenced as pointers to the cached blocks;

modifications to the edge values directly modify the data blocks themselves. The active

block and the active sliding window of other blocks are written to disk. Then PSWG

moves to the next fragment and reads the new blocks from disk.As is mentioned above,

the number of parallel disk writes for a fragment isN .
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block 1

fragment 1

fragment 2

fragment 3

fragment 4

block 2 block 3 block 4

Figure 5.3: PSWG Sketch

5.5 System Design and Implementation

5.5.1 Block Graph Data Format on GPU

The block graph data format on GPU is designed as an efficient and compressed format

for storing the blocks on GPU. Since most of the graph mining algorithms work on

graphs with a fixed structure and update the edge data only. Wemay separate the graph

structure from its associated edge values. Besides exploiting the sparsity of the graph, we
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Algorithm 24: Parallel Sliding Windows on GPU (PSWG)

1 for( it = iteration.begin(); it != iteration.end(); ++it ){
2 Initialize(fragments);
3 for( frag = fragments.begin(); frag != fragments.end(); ++frag ){
4 loadSubgraphToGPU(frag, subgraph) ;
5 updateVertexOnGPU() ;
6 loadSubgraphFromGPU(frag, subgraph) ;
7 subgraph.blocks[frag].UpdateFully() ;
8 for ( ix = fragments.begin(); ix != fragments.end(); ++ix ){
9 if(ix != frag)

10 subgraph.blocks[frag].UpdateLastWindow() ;
11 }
12 }
13 }

can generate and access a graph both on GPU and disk. There aretwo block components

currently, namely adjacency block and edge data block. The adjacency block records the

neighboring information in an order of a concatenate edge array and an index array. The

edge data block is an array of edge values.

5.5.2 Preprocessing

After reading it from the disk, the system preprocess the graph to generate graph frag-

ments before any further computation. The preprocessor first scans the graph and com-

putes the degree of the vertices by the prefix sum method. Thenthe preprocessor re-order

the vertices and divide vertices intoN segments. These segments are constrained with

nearly the same degree sum. After that, the preprocessor runs over the graph file for the

second pass and writes each edge to a scratch file for each fragment. The processor sorts

the edges in each scratch file and writes them to the compact block files. In order to assist

efficient computation on GPU, the preprocessor generate a temporary binary degree file

that stores the degrees for each vertex.
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5.5.3 Execution

After preprocessing the raw graph data, the system iteratively processes the fragment

subgraphs. Figure 5.4 illustrates the processing iteration for one execution fragment.

Loading degree data for the fragment, the system also preallocates edge arrays and vertex

objects in main memory. Then the system executes PSWG algorithm to load fragment

data from the disk to GPU global memory. After launching a batch of GPU threads to

execute vertex compute functions in parallel. Symmetrically, the system transfers the

updated blocks back to the disk before going to the next fragment.
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Figure 5.4: Execution Flow
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5.5.4 Software Hierarchy Overview

Figure 5.5: Software Hierarchy

ASIGPS is a generic graph processing system that supports asynchronous compu-

tation on GPU. Figure 5.5 shows the ASIGPS software hierarchy that consists of five

main layers. The top tier contains elementary graph algorithms and elementary graph

mining algorithms that are pre-implemented as a library. The second layer is the user

compute APIs within which users can implement their own algorithms. The layer be-

low are the two lower-APIs, “Update” and “Sync”, which can beutilized to implement

programmable behaviors for vertices. Below “Update” and “Sync”, there are four col-

lective operations implemented for GPU computations. Theyare “Gather”, “Merge”,

“Apply” and “Scatter”. The substratum is the CUDA librariesand drivers that are the

basic functional component of a GPU-accelerated system.
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5.6 Programming Model and Application Programming

Interfaces

Programs written for ASIGPS are similar to those written forSIGPS. However, the dif-

ferences are as follows. First, SIGPS is based on Bulk Synchronous Parallel (BSP model,

while ASIGPS do not need to synchronize at the end of each iteration. Second, SIGPS

emulate message passing for communications among verticeswhile ASIGPS removes

this model and updates the edge values directly.

Algorithm 25 is the generic API for users to program their ownalgorithms. User

would implement a class that derives their own methods that inherited from ASIGPS

vertex template. During execution, ASIGPS would automatically launch a batch of GPU

threads to execute vertex computes. Within the vertex “compute()” function, users can

implement an asynchronous computation via “update()” function and apply necessary

synchronization via “sync()” function.

Algorithm 25: Generic API For User Derived Program Class

1 class DerivedVertex : AsigpsVertexInGPU{
2 public:
3 device void compute(){
4 . . . // Algorithm implemented by users.

5 }
6 . . . // Other public members can be added by users.

7 private:
8 . . . // Private members can be added by users.

9 } ;
10 device VertexRegisterInGPU<DerivedVertex> reg ;

Moreover, there are four collective operations are provided by ASIGPS that can be

invoked by users within “update()” and “sync()” functions.Algorithm 26 shows the

device function “gather” for the current vertex thread to gather the related values from

its neighbors. “gather” function stores the correspondingvalues in an array for further
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processing.

Algorithm 26: Generic API For Function Gather

1 device void gather(vertex){
2 for ( e in vertex.inEdges() ){
3 neighborValues[“e”] = e.getValue() ;
4 }
5 vertex.setNeighborValues(neighborValues) ;
6 }

Algorithm 27 displays the device function “merge”, which reduces all values gath-

ered from the vertex’s neighboring edges.

Algorithm 27: Generic API For Function Merge

1 device void merge(vertex){
2 for ( e in vertex.inEdges() ){
3 sum += e.getValue() ;
4 }
5 vertex.setValue(sum) ;
6 }

Algorithm 28 is the device function “apply”, which updates the vertex value using

“function” and scatters this updated value to all out-edges.

Algorithm 28: Generic API For Function Apply

1 device void apply(vertex, (*f)(double)){
2 for ( e in vertex.outEdges() ){
3 e.setValue((*f)(vertex.getValue)) ;
4 }
5 }

Algorithm 29 shows the device function “scatter”, which collectively sends the cor-

responding values to all out-edges from the vertex neighboring-value-array.

Finally, the vertex update function can be written as a composition of “gather”, “ap-

ply” and “scatter” functions. This is displayed in Algorithm 30.
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Algorithm 29: Generic API For Function Scatter

1 device void scatter(vertex){
2 for ( e in vertex.outEdges() ){
3 e.setValue(vertex.getNeighborValues[“e”]) ;
4 }
5 }

Algorithm 30: Vertex Update Function

1 device void update(v){
2 gather(v) ;
3 apply(v,(*f)) ;
4 scatter(v) ;
5 }

5.7 Case Study and Applications

5.7.1 Case one: PageRank

PageRank is an algorithm used by Google Search to rank websites in their search engine

results. It is a way of measuring the importance of website pages and one of many factors

used to determine which pages appear in search results. PageRank works by counting

the number and quality of links to a page to determine a rough estimate of how important

the website is. The underlying assumption is that more important websites are likely to

receive more links from other websites.

PageRank is a link analysis algorithm and it assigns a numerical weighting to each

element of a hyper-linked set of documents, such as the WorldWide Web, with the

purpose of “measuring” its relative importance within the set. The computations of the

algorithm have several passes, called “iterations” through the collection to adjust approx-

imate PageRank values to more closely reflect the theoretically true value. Generally in
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mathematics, the PageRank value for any pageu can be expressed as:

PR(u) = ∑
v∈Bu

PR(v)
L(v) ≈ 0.15 ×

1

∣V ∣ + 0.85 ×∑
PR(v)
L(v)

To implement the PageRank algorithm using ASIGPS, we extendthe Vertex class

on the GPU to create aPageRankVertexuser-defined GPU class. The PageRankVertex

class derives thecompute() virtual method, executed by one GPU thread, to calculate

the PageRank value of the vertex.

Algorithm 31: PageRankVertex

1 class PageRankVertex : VertexInGPU{
2 public:
3 device void compute(){
4 double sum = 0.0 ;
5 for ( e in vertex.inEdges() ){
6 sum += e.getValue() ;
7 }
8 int vnum = this->getTotalNumVertices() ;
9 double newPageRank = 0.15 / vnum + 0.85 * sum ;

10 this->setValue(newPageRank) ;
11

12 for ( e in vertex.outEdges() ){
13 e.setValue(vertex.getValue) ;
14 }
15 }
16 };
17

18 device VertexRegisterInGPU<PageRankVertex> reg ;

Algorithm 31 is an example of user-defined PageRankVertex class implemented for

asynchronous GPU execution. We take advantage of the generic Vertex APIs to derive

the function “compute()”. In line 5 to 7, the GPU thread readsits neighboring edge

values directly and sums them up. A new PageRank is calculated in line 9 and updated

for the vertex value in line 10. In line 12 to 14, ASIGPS spreads this updated value

to all its neighbors. Similar to the situation in SIGPS, users need to declare a global
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variable, instantiated by the class name“PageRankVertex” in the last line, to register

this customized vertex class in ASIGPS.

Algorithm 32 is another version of user-defined PageRankVertex class. In this algo-

rithm, we take advantage of the collective operations provided by ASIGPS. It is notice-

able that this algorithm is so simplified that we can write it in only 4 lines.

Algorithm 32: PageRankVertex

1 class PageRankVertex : VertexInGPU{
2 public:
3 device void compute(){
4 int vnum = this->getTotalNumVertices() ;
5 auto calPageRank = [&](x){ return 0.15 / vnum + 0.85 * x; }
6 merge((*this)) ;
7 apply((*this), calPageRank) ;
8 }
9 };

10

11 device VertexRegisterInGPU<PageRankVertex> reg ;

5.7.2 Application

We also implemented algorithms for several other applications, such as SSSP, Dense

Graph Mining and triangle counting. The first algorithm is the problem of finding a

path between vertices in a graph so that the sum of the weightsof the edges in the path

is minimized. The algorithm converges when all the vertex values are set to be the

shortest distances to the source vertex. There are several iterations before the algorithm

converges. A temporary shortest distance and a variable pre-node are utilized to record

the tentative information. Each vertex starts with an initial value. The vertex threads

read their neighboring edge values directly. If the tentative shortest distance is smaller

than the edge value fetched, the tentative distance will be replaced by this smaller one

and its pre-node information will be updated as well. After accessing all neighboring
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edge values, the shortest tentative distance will be compared with the vertex value and

the smaller one will be retained as the updated vertex value.ASIGPS will compare all

vertex values and their connected edge values in parallel asynchronously on GPU. Once

a vertex updates its value, it would spread to all its neighboring edges and trigger others

to update theirs. The second algorithm is based on label propagation. At the beginning,

each vertex writes its id (“label”) to its edges. Then vertexchooses the most frequent

value (“label”) according to its neighboring edge values (“labels”). ASIGPS schedules a

vertex only if the value (“label”) in a connecting edge is updated. Vertices with the same

value (“label”) are regarded as the the connected dense subgraph. The third algorithm

is to count the number of edge triangles incident to every vertex. To efficiently join the

neighbors of two vertices, the graph is re-ordered according to vertex degree. A subgraph

fragment with higher degrees are stored in GPU global memoryand other fragments are

then read from the disk for comparison.

5.8 Performance Comparison with SIGPS

We have conducted our main performance comparison experiments on the desktop equipped

with an NVIDIA GeForce GTX 760 graphics card. The desktop is driven by a 4-core i7-

4770 x64-based central processor (8M Cache, 3.40 GHz). The graphics processing unit

has 6 multi-processors, each of which has as many as 192 processing cores (8M Cache,

1.15 GHz). The main memory is 16GB while the GPU global memoryis 4GB. The

PageRank algorithms implemented for SIGPS and ASIGPS are executed on the massive

graphs to compare the performance and scalability.

We employ synthetic and real datasets in this study. Experimental synthetic graphs

are generated by the system graph generator component. A series of graphs with varying

vertex sizes from103 to 107 are created. Real graphs include flickr, DBLP, PPI, and
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Netflix datasets. Flickr graph is derived from a well known photo sharing social network.

There are 1,715,255 people and 22,613,982 sharing relationship recorded in the Flickr

graph. The DBLP dataset records 23136 authors and their 54989 co-authorship. The

Protein Protein Interaction (PPI) graph contains 17203 interactions among 4930 proteins,

which records the behavior of the entire interactomics system of a living cell. There are

480,000 customers and 17,000 movies in the Netflix datasets,which are generated from

an American on-demand internet streaming media.

5.8.1 Scalability

So as to compare the scalability of SIGPS and ASIGPS, we run the PageRank algorithms

on synthetic and real graphs with increasing sizes. Figure 5.6 illustrates the growing

tendency of the running time of the corresponding algorithms. When graph size increases

exponentially, the elapsed time of processing a graph risesup with an accelerated speed.

More specifically, in Figure 5.6(a) PageRank algorithms areexecuted on synthetic graphs

with vertex size ranging from103 to 107. We can observe that when a graph is small,

system SIGPS runs faster than ASIGPS. This is because ASIGPStakes longer time to

prepare data before the algorithm is executed. While the graph size increases, more

GPU threads are employed to operate concurrently. There is no need for threads of

ASIGPS to wait for each other between consecutive iterations, while threads of SIGPS

are forced to wait for each other by obvious barriers. Therefore, as graph size increases,

PageRank for ASIGPS runs faster and faster than that for SIGPS. Similarly, Figure 5.6(b)

displays the increasing tendency of the elapsed time of the PageRank algorithm executed

on several real graphs. ASIGPS runs faster than SIGPS on realgraphs when graphs are

large enough. We notice that SIGPS runs faster on the Netflix N-Movie and N-Rating

graphs, PPI graph, and DBLP graph, while ASIGPS has better performance on the larger

graphs, S-Market and Flickr.
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Figure 5.6: Execution Time

5.8.2 Data Communication
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Figure 5.7: Communication Cost

To compare the communication cost of the two systems, we study the data move-

ment, calculate the communication throughput and plot themin Figure 5.7. We increase

message size and compare data moving in the two systems. Figure 5.7 shows the data

transfer time when the updated edges/messages size is increased. SIGPS uses message

passing mechanism that transfers updated “messages” to main memory while ASIGPS

directly writes edges to GPU global memory. In the figure, SIGPS takes more communi-

cation cost than ASIGPS. We can observe that a message transfer to main memory uses

around 20 microseconds. When the data transferred is too large, it is packed in several



164

messages and are sent in queue, which increases the total cost. The turning point of

ASIGPS curve means the system start to transfer edges to mainmemory from the GPU

global memory.

5.8.3 Speedup
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Figure 5.8: Speedup

To compare the speedup of SIGPS and ASIGPS, we apply the PageRank algorithms

on the two systems respectively. The PageRank algorithms are executed concurrently

by thousands of GPU threads and the sequential mode of SIGPS is set to be the base-

line. Figure 5.8 displays the comparison of the speedups when the algorithms are run on

synthetic and real graphs. More specifically, Figure 5.8(a)illustrates the speedups when

the algorithms run on synthetic graphs. From the plot, the speedup curve for SIGPS are

steady and that for ASIGPS has an increasing tendency. When the graph size (vertex

size) is smaller than 10000, SIGPS has a higher speedup than ASIGPS. The ASIGPS

has the burden of preparing data and low parallelism makes the benefit of the asynchro-

nization ineffective. While the graph size increases, the speedup of ASIGPS goes up

accordingly. Figure 5.8(b) displays the speedups when the algorithms are executed on

real graphs. Similarly, when the graph size (edge size) is smaller than around 60000,
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SIGPS has a higher speedup. And while the graph grows larger,ASIGPS takes the lead

in speedup and performance.

5.9 Summary

In this chapter, we proposed ASIGPS, an asynchronous iterative graph processing model

on GPU-accelerated personal computer system. ASIGPS was designed as an alternative

to SIGPS. In this chapter, we proposed an asynchronous computation model, PSWG, on

GPU. We designed new graph formats for asynchronous computing on GPU. A set of

generic APIs are also provided for users to implement their own algorithms. Collective

GPU operations are also provided for efficient GPU programming. As a generic graph

processing model on GPU, ASIGPS is both sufficiently expressive to implement a wide

range of graph processing algorithms, and formidably powerful to drive efficient large

graph processing.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude this thesis and address some future work on the basis of

the proposed graph processing model/system and methods in this thesis. Specifically,

Section 6.1 provides a brief summary on the contributions ofthe thesis. Section 6.2

formalizes a few promising research directions and applications to extend our current

studies.

6.1 Summarization

This thesis focuses on utilizing GPGPU techniques over large graph mining problems.

While traditional processing techniques are only applicable to the graphs of limited

sizes on general computer systems, all of these techniques processing graphs exceeding

specific sizes encounter bottlenecks in the system, when computing power is no more

enough and graphs are too big to be stored in the memory. Theseproblems prohibit

the use of efficient graph processing algorithms on the general computer systems with

quickly evolving large graphs.

The state-of-the-art GPGPU techniques are utilizing many-core graphics processors

to perform general purpose computation. It was found that GPGPU techniques greatly

167
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accelerate graph triangulation algorithm. Comparing withthe methods provided by

Wang [51], the speedup gained by GPU-accelerated triangulation is around 5 to 20,

which is quite remarkable (Chapter 3). Triangulation normally functions as a basic

approximative module for dense graph mining. A possible explanation is that the ap-

plication of SIMD multi-threading model on many-core GPUs extremely extends the

inherent parallelism of the graph and algorithm. This result suggests that GPGPU tech-

niques can be employed to accelerate graph mining algorithms. The work in this thesis is

the first attempt to accelerate graph triangulation using GPGPU techniques. The finding

is significant for personal computers as it provides a potential solution for large scale

domain applications, which previously can only be processed by main-frame/distributed

systems.

After finding the methods for breaking the system bottlenecks, we opt for a system-

atic and generic solution for efficient and economic large graph processing. Therefore,

a synchronous graph processing model over GPU-acceleratedplatform was designed in

Chapter 4 and a generic graph processing system was built on this model. The main dif-

ference between the model/system here and the existing graph processing library is that a

set of generic APIs are provided for assisting users to compose their own algorithms. Us-

ing the template of this model/system, existing or user-defined graph mining algorithms,

including those of massive domain applications, can be easily implemented on top of

general computer systems with limited resources. Moreover, GPU execution configu-

ration/process is automated and transparent to users. Flexible threading mechanism and

hierarchical module architecture have given the system high extendibility and scalability.

This system can bring an impressive impact over the graph mining community.

However, the synchronization exerted by the model forces all vertices represented by

the light-weighted GPU threads to wait for each other. Because the degree distributions

of these large scale domain graphs are highly skewed, a majority of the vertices with low
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degrees have to idle for most of the time. This has greatly affected the performance of the

system. Therefore an improved model that provided asynchronous computing was then

proposed in Chapter 5. The parallel sliding windows on GPU implemented the model

and exposed updated values immediately to subsequent computation. Besides the ver-

tex API “compute”, there were two new operational APIs named”sync” and ”update”.

Moreover, four collective GPU operations were provided to assist efficient programming.

A new generic graph processing system that supports the asynchronous processing over

GPU-accelerated large graph applications was re-designedand implemented. The im-

proved model has successfully brought in the asynchronous computing to graph mining,

which greatly improve the performance of the system. This improvement is a significant

step for generic graph mining.

6.2 Possible Research Directions and Applications

ASIGPS was designed for asynchronous iterative graph processing, which can be uti-

lized to implement advanced graph mining algorithms. We consider to extend ASIGPS

to support dynamic graph mining, which demands millions of vertex updates at the same

time. A continuous graph updates, accompanied with concurrent graph-related com-

putation, incurs great challenge for a single personal computer system. Moreover, it is

interesting to deploy SIGPS and ASIGPS over distributed GPU-accelerated system. Suit-

able adjustments to the computation model should support pipelining, multi-layer many-

threading asynchronous graph processing. Efficient communication will be a problem in

this situation.

It is noted that there may be a few problematic issues involved in the system since de-

signing an effective and efficient system across heterogeneous platform is complicated.

More efforts need to be paid to solve all the problems relatedto the implementation of
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the hybrid system. Additionally, system optimization can further improve the perfor-

mance. It is noticed that we have only provided several demonstrative algorithms using

the system. More graph mining algorithms need to be implemented to constitute the li-

brary of the system. It is also understood that we only focus on graph processing on top

of personal computer systems. More data mining applications and graph processing ac-

celerated by connected distributed GPU nodes are very interesting but beyond the scope

of this thesis. Further study/research is needed to extend the model/system to support

more general data mining applications. This is much more challenging but will bring

greater impact to the whole data mining community.
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