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Summary

Many industries are highly dependent on computers for their automated functioning. With

higher dependencies on software, the possibilities of crises due to system failures also increase.

System failures would potentially lead to significant losses in capital or even human lives. To

prevent those losses, assessing the system reliability before its deployment is highly desirable.

Concurrent or distributed systems like cloud-based services are ever more popular these

days. Assessing the reliability of such systems is highly non-trivial. Particularly, the order

of executions among different components adds a dimension of non-determinism, which in-

validates existing reliability analysis methods based on Markov chains. Moreover, reliability

analysis of such non-deterministic systems is also challenged by the state explosion issue.

This thesis proposes to analyze the reliabilities of non-deterministic systems via probabilistic

model checking on Markov decision processes (MDPs), a well-known automatic verification

technique dealing with both probabilistic and non-deterministic behaviors. On top of that,

various techniques (e.g., statistical, numerical and graphical methods) are incorporated to

enhance the scalability and efficiency of reliability analysis. The Ph.D. work is summarized

into the following three aspects.

First, to support the reliability analysis of non-deterministic systems, we propose a method

combining hypothesis testing and probabilistic model checking. The idea is to apply hy-

pothesis testing to deterministic system components and use probabilistic model checking

techniques to lift the results through non-determinism. Furthermore, if a requirement on the

system level reliability is given, we apply probabilistic model checking techniques to push

down the requirement through non-determinism to individual components so that they can

v



be verified using hypothesis testing. Based on the proposed framework, a toolkit RaPiD

has been developed to support automated software reliability analysis including reliability

prediction, reliability distribution and sensitivity analysis. Case studies have been carried

out on real world systems including a stock trading system, a therapy control system and

an ambient assisted living system.

The second part is on improving the efficiency of the proposed approach, in particular, the

fundamental part that calculates the probability of reaching certain system states (i.e., reach-

ability analysis). It is known that existing approaches on reachability analysis for Markov

models are often inefficient when a given model contains a large number of states and

loops. In this work, we propose a divide-and-conquer algorithm to eliminate strongly con-

nected components (SCCs), and actively remove redundant probability distributions based

on convex property. With the removal of loops and part of probability distributions, the

reachability analysis can be accelerated as evidenced by our experimental results.

Last but not the least, the scalability of the proposed approach has been improved, in

particular, for distributed systems. Traditional probabilistic model checking is limited to

small scale distributed systems as it works by exhaustively exploring the global state space,

which is a product of the state spaces of all components and often huge. In this work, we

improve the probabilistic model checking through a method of abstraction and reduction,

which controls the communications among different system components and actively reduces

the size of each system component. We formally prove the soundness and completeness of

the proposed approach. Through the evaluations with several systems, we show that our

approach often reduces the size of the state space by several orders of magnitude while still

producing sound and accurate assessment.

Key words: Reliability Analysis, Non-determinism, Markov Decision Process,

Probabilistic Model Checking, Hypothesis Testing
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Chapter 1

Introduction and Overview

1.1 Motivation and Goals

1.1.1 Reliability Analysis

Nowadays, software becomes unprecedented popular and permeates everywhere in our daily

life, from wristwatches, mobile phones to automobiles and aircraft. Virtually any industry,

e.g., automotive, avionics, oil, semiconductors, pharmaceuticals, telecommunications and

banking, is highly dependent on the computers for their automated functioning. With higher

dependencies on software, the possibility of crises due to computer failures also increases.

Failures would damage the reputation of the system operators, and potentially lead to losses

in capitals or even human lives. The probability of failure-free software operation within a

specific period and environment is referred to as reliability [81]. To prevent those losses due

to software failures, it is desirable to have the reliability of the system analyzed before its

deployment.

Existing approaches on reliability analysis problems fall into two categories: black-box ap-
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1.1. Motivation and Goals

proaches [70, 132] and white-box approaches [26, 81, 77, 70]. The black-box approaches

treat a system as a monolith and evaluate its reliability using testing techniques. They use

the observed failure information to predict the reliability of software based on several math-

ematical models. On the contrary, the white-box approaches assume reliability of system

components are known and evaluate software reliability analytically based on the model

of the system architecture. Typical reliability models include discrete time Markov chains

(DTMCs) [26], continuous time Markov chains (CTMCs) [81], or semi-Markov processes

(SMPs) [77]. Those approaches assume the system is deterministic, i.e., given the same in-

puts, the outputs of the system are always the same. Thus, in the corresponding reliability

model, the probabilities of transitions among components are assumed to be known. For

instance, the transition probability is assumed to be a constant in DTMC-based approaches

or a function of time in CTMC/SMP-based approaches. All those approaches assume that

there is a unique probability distribution for the possible usages of a component.

1.1.2 Non-deterministic Systems

As software becomes more complex and often operates in a distributed or dynamic environ-

ment, the execution orders among or the usage of certain software components are hard to be

measured prior to the software deployment. We consider such systems as non-deterministic

systems. In non-deterministic systems, there exist some states that have more than one

outgoing transitions that are engaged in a purely non-deterministic fashion. That is, the

outcome of this selection process is not known a priori, and hence, no statement can be made

about the likelihood with which transition is selected. Non-determinism exists in many mod-

ern softwares, e.g., a cloud computing system within which multiple processes aim to access

a shared resource and a pervasive system within which the software intensively interfaces

with environments or human behaviors.

2



1.2. Summary of This Thesis

1.1.3 Research Targets

The requirements of reliability analysis approaches for such non-deterministic system are

summarized as follows.

• Support for non-determinism. The approaches should be able to perform relia-

bility analysis on non-deterministic systems. That is, even for a system operating in

complex and dynamic environments, its reliability can still be analyzed as close to the

‘true’ reliability as possible, before software deployment.

• Efficiency. The approach should be efficient, i.e., the computation process should be

as fast as possible.

• Scalability. To handle large scale software system, the approaches should have good

scalability.

Although there are many related works on improving reliability analysis in terms of its

efficiency and scalability, insofar, none of them can work for non-deterministic system. In

this work, we are motivated to propose an approach to meet the first requirement, on top

of which to satisfy the last two requirements.

1.2 Summary of This Thesis

Existing reliability analysis approaches only apply to deterministic systems. In this thesis, we

propose to analyze the reliability of non-deterministic system via probabilistic model check-

ing on Markov decision processes (MDP), a well-known automatic verification technique

dealing with both probabilistic and non-deterministic behaviors. In addition, we integrate

various techniques, e.g., statistical, numerical and graphical methods, to make the reliability

3



1.2. Summary of This Thesis

analysis much more scalable and efficient. The Ph.D. work is summarized into the following

three main aspects.

Reliability analysis via combining model checking and testing. Testing provides a

probabilistic assurance of system correctness. In general, testing relies on the assumptions

that the system being examined is deterministic so that test cases can be sampled. However,

a challenge arises when the system behaves non-deterministically in a dynamic operating

environment because it will be unknown how to sample the test cases. In this work, we

propose a method to combine hypothesis testing and probabilistic model checking to ana-

lyze the reliability of non-deterministic systems. The idea is to apply hypothesis testing to

deterministic system components and use probabilistic model checking techniques to lift the

results through non-determinism. Furthermore, if a requirement on the level of assurance

is given, we apply probabilistic model checking techniques to push down the requirement

through non-determinism to individual components so that they can be verified using hy-

pothesis testing. Based on the proposed framework, a toolkit RaPiD has been developed

to support automated software reliability analysis including reliability prediction, reliability

distribution and sensitivity analysis. Case studies have been carried out on real world sys-

tems including a stock trading system, a hospital therapy control system and an ambient

assisted living system.

Improved probabilistic reachability analysis via SCC reduction. The second part

is on improving the efficiency of the proposed approach, in particular, the fundamental part

that calculates the probabilities of reaching certain system states (i.e., reachability analysis).

It is known that existing approaches on reachability analysis for DTMCs or MDPs are

often inefficient when a given model contains loops or formally called strongly connected

components (SCCs). In this work, we propose divide-and-conquer algorithms to eliminate

SCCs in DTMCs and MDPs respectively. For MDPs, the proposed algorithm can actively
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remove redundant probability distributions based on the convex property. With the removal

of loops and parts of probability distributions, the probabilistic reachability analysis can be

accelerated, as evidenced by our experimental results.

Reliability analysis on distributed systems based on abstraction and refinement.

Distributed systems like cloud-based services are ever more popular these days. Traditional

probabilistic model checking is limited to small scale distributed systems as it works by

exhaustively exploring the global state space, which is the product of the state spaces of

all components and often huge. As a result, reliability analysis of distributed system using

probabilistic model checking is particularly difficult and even impossible. In this part of

the work, we improve the probabilistic model checking through a process of abstraction and

reduction, which controls the communications among different system components and ac-

tively reduces the size of each system component. We prove the soundness and completeness

of the proposed approach. Through the evaluations with several systems, we show that our

approach often reduces the size of the state space by several orders, while still producing

sound and accurate assessment.

1.3 Thesis Outline and Overview

The thesis is structured in 7 chapters in total. In the following, we briefly present the outline

of the thesis and overviews of the rest of chapters.

Chapter 2 recalls the background knowledge that are fundamental in this thesis. In this

chapter, we first introduce two typical models that are widely employed in probabilistic

systems: discrete time Markov chain (DTMC) and Markov decision process (MDP). DTMC

models a fully probabilistic system, while MDP can model both non-deterministic and prob-

abilistic systems. Calculating the probability of reaching certain system states is a vital
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part in analyzing the quantitative aspects of the system such as reliability. Therefore, in

the second part of this chapter, we introduce two methods for calculating this probability

including linear programming and value iteration.

Chapters 3-6 present the main contributions of the thesis and structured in the following

manner. At the beginning of each chapter, an introduction is given, followed by details of

our technical contributions and experimental evaluations. Each chapter ends with a separate

discussion of related work.

Chapter 3 presents our proposed reliability analysis framework that combines probabilistic

model checking with testing. The chapter starts with a running example to demonstrate

why testing alone is not enough for reliability analysis. Next, it presents our approach

on combining model checking and testing for two reliability analysis activities: reliability

prediction that is to calculate the overall system reliability, and reliability distribution that

is to distribute the overall reliability to individual system components.

Chapter 4 introduces our reliability analysis toolkit called RaPiD (Reliability Prediction and

Distribution) and then presents an application of RaPiD in analyzing an ambient assisted

living (AAL) system. This system involves a variety of sensors, networks and remind infras-

tructures, which interact with unpredicted human behaviors. Thus, the reliability analysis is

highly challenging. This chapter gives the details on how to construct a reliability model of

an AAL system from its usage scenarios. Based on the reliability model, reliability analysis

and sensitivity analysis are conducted with our toolkit.

Chapter 5 introduces the divide-and-conquer approaches to improve the efficiency of reacha-

bility analysis in Markov models. Reachability analysis is a fundamental step in probabilistic

model checking and therefore it is a critical part in our reliability analysis. This chapter

first shows that the main method (i.e., value iteration) has slow convergence problem due

to the existence of loops. It then presents our two reduction algorithms for DTMCs and
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Chapter 2

Background

In this chapter, we define some general and fundamental notations and concepts used in

our work. In the first part, two typical formalisms for probabilistic systems, including

discrete time Markov chain and Markov decision process are introduced. In discrete time

Markov chains (DTMCs), all transitions are probabilistic. Markov chains are the most

popular operational model for the evaluation of performance and dependability of software

systems [15, 64]. Over the past few decades, it has been also widely used as the models for

software reliability analysis [26, 70, 50, 55, 51]. However, Markov chains are not suitable

to model interleaving behavior of distributed systems or the system that interacts with

an unknown environment. For this purpose, Markov decision processes (MDPs) [109] are

employed. MDPs can model both non-deterministic and probabilistic systems.

The problem of calculating the probability of reaching certain system states is central to the

probabilistic system analysis. In fact, it is a fundamental task in probabilistic model check-

ing [16]. In the second part, two main methods for calculating the reachability probabilities

are introduced. Other concepts will be introduced in later chapters where they are relevant.
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2.1. Modeling Formalisms

2.1 Modeling Formalisms

A stochastic system has the Markov property if the conditional probability distribution of

future states of the system depends only on the present state, not upon the sequence of

events that leads to this state [16]. This is also known as the memoryless property. A model

with this property is called a Markov model. In this section, two typical Markov models will

be introduced, i.e., discrete time Markov chain and Markov decision process. Discrete time

Markov chains can only model purely probabilistic systems and Markov decision processes

can not only model probabilistic but also non-deterministic systems. Both models assume the

underlying time domain of the system operation is discrete, and each transition is assumed

to take a single time unit, which are reasonable abstractions for most software systems

operating on digital computers.

Given a set of states S , a probability distribution is a function u : S ! [0, 1] such that

⌃s2Su(s) = 1. The probability distribution can also be expressed in vector form as u, and

Distr(S ) denotes the set of all discrete probability distributions over S . In the following

part, we introduce the details on Discrete time Markov chain and Markov decision process.

2.1.1 Discrete Time Markov Chain

Definition 2.1.1 A discrete time Markov chain is a tuple D = (S , init ,Pr) where S is a

set of states; init 2 S is the initial state; Pr : S ! Distr(S ) is a transition function. 2

A discrete time Markov chain (DTMC) is a fully probabilistic transition system where S

represent possible states of the system; transitions among states occur at discrete time and

follow a probability distribution. In this thesis, we focus on the finite model, i.e., a DTMC

or an MDP that has a finite number of states and transitions. Moreover, we consider a
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Figure 2.1: An example of a discrete time Markov chain

single initial state, which can be easily generalized to several initial states with a certain

probability distribution.

Formally, a DTMC model can be expressed by a stochastic matrix P : S ⇥ S ! [0, 1] such

that
P

s02S P(s, s 0) = 1. An element P(si , sj ) represents the transition probability from state

si to state sj . The row P(s, ·) for state s in this matrix contains the probabilities of moving

from s to its successors, while the column P(·, s) for state s specifies the probabilities of

entering state s from any other state. A state is an absorbing state if it has only self-looping

outgoing transitions, i.e., P(si , si) = 1. A path of ⇡, which gives one possible evolution of

the Markov chain, is a sequence of states s0s1s2 . . . such that s0 = init and P(si , si+1) > 0

for all i � 0.

An example of DTMC is depicted in Figure 2.1, which models a simple error-prone com-

munication protocol with an unreliable channel. Here, state start is the initial state, at

which the transition will go to state send with probability of 1. In the state send , a message

can be successfully delivered with a probability of 0.9; otherwise, it will be lost. If there is

a message lost, with a probability of 0.98, it will send an alert to re-deliver the message;

and with a probability of 0.02, it fails to do so. This DTMC models a purely probabilistic

system which has exact one probability distribution at each state. Using the enumeration

start , send , lost , delivered , failed for the states, the stochastic matrix P is a 5⇥ 5 matrix as
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follow.
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An example of a path is

⇡ = (start send lost send lost send delivered)!.

Along this path, each message has to be retransmitted twice before successfully delivered.

2.1.2 Markov Decision Process

Discrete time Markov chains (DTMCs) represent a fully probabilistic model of a system,

i.e., in each state of the model, the exact probability of moving to each other state is always

known. In DTMCs, the probabilistic choices may serve to model and quantify the possible

outcomes of randomized actions such as sending a message over a lossy communication

channel, tossing a coin, or modeling the interface of a system with its environment. For

instance, for an error-prone communication protocol, it might be reasonable to assign a

probability of 0.9 for successfully delivering a message, and a probability of 0.1 for losing

the message. This, however, requires statistical experiments to obtain adequate probability

distributions that model the average behavior of the environment, i.e., the media for the

message channel. In cases where this information is not available, or where it is needed to

analyze the system in all potential environments, a natural choice is to model the interface

with the environment by non-determinism.

Another great need for non-determinism is in modeling distributed systems. Due to the

12



2.1. Modeling Formalisms

interleaving of the behavior of the distributed processes involved, the non-deterministic

choice is used to determine which of the concurrent processes performs the next step. Finally,

non-determinism is also crucial for the situations that involve underspecification of certain

system actions or control strategies, or abstraction of a complex system using a simpler one.

For example, in the case of data abstraction, one might replace probabilistic branching by

a non-deterministic choice.

As a result, to model such systems exhibiting both probabilistic and non-deterministic be-

havior, Markov decision processes (MDPs) are more favored in those systems [16]. The

formal definition of MDP is introduced as follows.

Definition 2.1.2 (Markov Decision Process) A Markov decision process is a tuple M =

(S , init ,Act ,Pr) where S is a set of states; init 2 S is the initial state; Act is an alphabet;

and Pr : S ⇥ Act ! Distr(S ) is a labeled transition relation. 2

An action ↵ is enabled in state s if and only if
P

s02S Pr(s,↵)(s 0) = 1. Let Act(s) denote the

set of enabled actions in s . Given a state s , we denote the set of probability distributions

of s as Us , s.t., Us = {Pr(s, a) | a 2 Act}. A state without any outgoing transitions to

other states is called an absorbing state, which has only a self-loop with a probability of 1.

Without loss of generality, in this work, we assume that MDP has only one initial state and

is always deadlock-free, i.e., for any state s 2 S , Act(s) 6= ?. It is known that we can add

a self-looping transition with a probability of 1 to a deadlock state without affecting the

calculation result [16].

An infinite or a finite path in M defined as a sequence of states ⇡ = s0, s1, · · · or ⇡ =

s0, s1, · · · , sn , respectively, such that 8 i � 0 (for finite paths, i 2 [0,n � 1]), 9 a 2

Act ,Pr(si , a)(si+1) > 0. An MDP is non-deterministic if any state has more than one

probability distribution. A DTMC can be interpreted as a special MDP that has only one

event (and one probability distribution) at each state, and thus is deterministic.
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Figure 2.2: An example of a Markov decision process

An example of MDP is shown in Figure 2.2, where state s0 is the initial state, i..e., init = s0.

In the figure, transitions labeled with the same action belong to the same distribution. The

set of enabled actions at, for instance, state s0, is Act(s0) = {↵,�} with P(s0,↵)(s0) =

P(s0,↵)(s3) = 0.25, P(s0,↵)(s2) = 0.5, and P(s0,�)(s1) = 1. On selecting action �, the

next state is s1; on selecting action ↵, the successor states s0, s2 and s3 are all possible.

Without information about the frequency of actions ↵ and � in at state s0, the selection

between these two actions is purely non-deterministic.

Schedulers A scheduler is used to resolve the non-determinism in each state in an MDP.

Intuitively, given a state s , an action is first selected by a scheduler. Once an action is

selected, the respective probability distribution is also determined; and then one of the suc-

cessive states is reached according to the probability distribution. In this thesis, we focus on

a subclass of schedulers that are called memoryless schedulers, as the maximal and minimal

reachability probabilities can be obtained by schedulers of this simple subclass. Formally, a

memoryless scheduler for an MDP M is a function � : S ! Act . At each state, a memo-

ryless scheduler always selects the same action in a given state. This choice is independent
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of the path that leads to the current state. In the following, unless otherwise specified, the

terms ‘schedulers’ and ‘memoryless schedulers’ are used interchangeably. An induced MDP,

M�, is the DTMC defined by an MDP M and a scheduler �. A non-memoryless scheduler

is the scheduler that can select different action in a given state according to the execution

history. An MDP M can be viewed as a group of DTMCs, each of which is obtained with

a different scheduler.

2.2 Probabilistic Reachability Analysis

In this thesis, the reliability model is an MDP, as it can model both probabilistic and

non-deterministic behavior of a system. One fundamental question in quantitative analysis

of MDPs is to compute the probability of reaching target states G from the initial state

(hereafter, reachability probabilities). Noted that with different schedulers, the result may

be different. The measurement of interest is thus the maximum and minimum reachability

probabilities. The maximum probability of reaching any state in G in an MDP M is denoted

as Pmax (M |= 3G), which is defined as:

Pmax (M |= 3G) = sup
�

P(M� |= 3G)

Similarly, the minimum probability of reaching any state in G is defined as:

Pmin(M |= 3G) = inf
�

P(M� |= 3G),

The supremum/infimum ranges over all and potentially infinitely many schedulers. Rather

than considering all schedulers, it suffices to consider only memoryless schedulers, in order

to obtain maximum and minimum reachability probabilities [16].
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Theorem 2.2.1 (Equation System for Max Reachability Probabilities) Given a fi-

nite MDP M with state space S , and target states G ✓ S , the vector Vs2S with V (s) =

Pmax (s |= 3G) yields the unique solution of the following equation system:

• If s 2 G, then V (s) = 1.

• If s 6|= 3G, then V (s) = 0.

• If s 62 G and s |= 3G, then

V (s) = max
n

X

t2S
Pr(s,↵)(t) · V (t) |↵ 2 Act(s)

o

2

The maximum reachability probability of reaching target states from a state in an MDP can

be transformed into an equation system based on Theorem 2.2.1. Here, we use Pmax (s |=

3G) to denote the probability for reaching G from a given state s in an MDP. The minimum

reachability probability can be obtained in a similar manner.

In the following, with the MDP in Figure 2.2 in Page 14, we demonstrate how to numerically

calculate the maximum probability of reaching state s2 from the initial state. Let V be a

vector such that, given a state s , V (s) = Pmax (M |= 3G) is the maximum probability of

reaching G from a state s . Here, state s0 is the initial state, and G contains a single target

state s2, i.e., V (s2) = 1. For instance, V (s0) is the maximum probability of reaching G from

the initial state. State s2 is the target state, so V (s2) = 1. Using backward reachability

analysis, we can identify the set of states X = {s0, s1, s2, s3} such that G is reachable from

any state in X , i.e., 8 s 2 X , s |= 3G ; and a set of states Y from where G is unreachable,

i.e., 8 s 2 Y , s 6|= 3G , hence, V (s) = 0. In this case, all the states can reach s2, hence

Y = ?. With memoryless schedulers, there are two main approaches on calculating the

reachability probabilities for states X \G , i.e., {s0, s1, s2, s3}.
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2.2.1 Linear Programming

The method encodes each probability distribution for a state in X \G into a linear inequality.

This is defined as,

V (s) >
X

t2S
P(s,↵)(t) · V (t), for s 2 X \G (2.1)

with an additional constraint V (s) 2 [0, 1], and the goal is to minimize the sum of V .

Taking state s0 in Figure 2.2 in Page 14 for example, there are two actions ↵,�, each

attached with a probability distribution, i.e., Pr(s0,↵) = {0.25 7! s0, 0.5 7! s2, 0.25 7! s3}

and Pr(s0,�) = {1 7! s1}. These can be encoded to

V (s0) > 0.25V (s0) + 0.5V (s2) + 0.25V (s3),

V (s0) > V (s1).

We can obtain the inequalities using the probability distributions from all the other states in

a similar way. The unique solution of this set of linear inequalities is V = (1, 1, 1, 1). V can

be automatically obtained by solving such linear programming using standard algorithms.

2.2.2 Value Iteration

This method iteratively builds an approximation of V based on the previous approximation.

Let V i be the i -th approximation. For 8 s 2 X \G , we have

V 0(s) = 0,

V i+1(s) = max{
X

t2S
Pr(s, a)(t) · V i(t) | a 2 Act(s)}. (2.2)
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Table 2.1: List of values V i at each iteration i

Iteration i 0 1 2 3 4 5 6 7
V i(s0) 0 0.5 0.875 0.96875 0.9921875 0.998046875 0.999511719 0.99987793
V i(s1) 0 0.4 0.65 0.8125 0.903125 0.95078125 0.975195313 0.987548828
V i(s2) 1 1 1 1 1 1 1 1
V i(s3) 0 1 1 1 1 1 1 1

diff Inf 1 0.375 0.1625 0.090625 0.04765625 0.024414063 0.012353516

It can be shown that for every state s , V i+1(s) > V i(s) and we can obtain V in the limit,

limi!1V i = V . In reality, it may take many iterations before V i converges and thus

value iteration is often stopped when the absolute/relative difference between two successive

iterations falls below a certain threshold ✏. The number of iterations required is related to

the subdominant eigenvalue of the transition matrix [119]. Each iteration involves a series

of matrix-vector multiplications, with a complexity of O(n2 ·m) in the worst case, where n

is the number of states in S and m is the maximum number of actions/distributions from a

state.

Applying value iteration to the MDP in Figure 2.2 in Page 14, we have V i(s2) = 1 for any

i and

V i+1(s3) = max{V i(s3), 1} = 1,

V i+1(s1) = 0.1V i(s0) + 0.5V i(s1) + 0.4,

V i+1(s0) = max{0.25V i(s0) + 0.5 + 0.25V i(s3),V
i(s1)}.

With the value iteration method, it is then easy to get V 0 = (0, 0, 1, 0); V 1 = (0.5, 0.4, 1, 1);

V 2 = (0.875, 0.65, 1, 1); V 3 = (0.96875, 0.8125, 1, 1); etc. The evaluation continues until

difference max s2S | xs (n+1)�xs (n) | is below certain predefined threshold. The values V i and

its corresponding value difference for the first eight iterations are listed in Table 2.1. As your

can see, if the stopping criterion is set as maximum difference is within 0.05, i.e., max s2S |

xs (n+1)�xs (n) | 0.05, the program stops at iteration 5, and reports final reachability results
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as V = {0.998046875, 0.95078125, 1, 1}. This result indicates that the maximum probability

of reaching to s2 from state s0 is 0.998046875, from state s1, 0.95078125, from state s2, s3,

1. As we can also observed from Table 2.1, more iterations are required if there is an even

smaller threshold requirement for the maximum difference.
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Chapter 3

Reliability Analysis via Combining

Model Checking and Testing

Testing is useful because it provides a certain level of assurance of system correctness/re-

liability. The more testing is conducted, the more likely a system behavior (being a bug

or not) is demonstrated. When the system under test is deterministic, the level of “assur-

ance” can be precisely captured through hypothesis testing, which is a statistical process

determining whether to reject a null hypothesis based on tests generated according to the

probability distribution in a model [11]. However, the testing method for quantifying the

level of “assurance” remains unknown if the system is non-deterministic (or equivalently

that the probability distributions of certain events are unknown or hard to predict). In

this chapter, a probabilistic “assurance” for non-deterministic system is achieved through

combining hypothesis testing and probabilistic model checking, and the underlying principle

are demonstrated through an application of system reliability analysis.
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Figure 3.1: Architecture of the CCS System

3.1 Introduction

A motivating example One product of our industrial collaborator, a financial software

solution provider, is the Call Cross System (CCS), which is a stock trading system accepting

order flow in a global operating environment. It operates on a 24 hours basis for 6 days

per week. It has operating successfully since 2005 and playing a crucial part in the core

business of a financial institute in Boston. The CCS system is required to be highly reliable,

and quantitatively 99.99% of the transactions must be correctly handled. With such a

requirement, an immediate question is: how do we calculate the system reliability and

present our calculation as a formal evidence to show that the delivered system will meet

the requirement? A related question is: given the system level reliability requirement, what

is the reliability requirement on each of the system components, so that the component

development teams can carry out reliability measures on their own? The former is known

as reliability prediction problem and we term the latter as reliability distribution problem.

In order to answer the questions, we must understand the architecture of the CCS. Fig-

ure 3.1 shows the high-level architecture of the CCS, where arrows represent the directions

of dataflow. At the top level, the system consists of six components. Gateway serves as a

linkage between peripheral applications and the CCS. It receives order messages in the data
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batch manner and dispatches them to different symbol partitions in the CCS Servers via

Java Message Service (JMS) server. JMS serves as the messaging engine for order flows,

executions, pricing requests and responses, printing trade reports in several markets. CCS

Servers are the core of the system to perform the business logics.They consist of a cluster

of Websphere AppServer nodes with WebSphere Partitioning Facility (WPF) enabled. The

workload is dynamically distributed to the server nodes based on the partitioning policies.

The status of each partition is monitored in real-time. If one node fails, partitions in the

failed node are reloaded to other healthy nodes. The partitions communicate with the exter-

nal objects via a JMS server. Pricing Server is a JMS client that processes pricing requests

and responds with pricing events to CCS servers. Printing Agent is a JMS client that receives

printing requests and responses to JMS after printing. DB is the database server for the

CCS system. A stock trading transaction is accomplished through a series of steps involving

multiple system components. First, the Gateway sends order messages to its inbound queue

through the JMS. The CCS servers receive order messages from inbound queue, process and

store them into the database through underlying service framework. Afterwards, the Pric-

ing Server provides the current price to CCS Servers. After the transactions are finished,

the trading information is shown by the Gateway or printed by the Printing Agent. The

transaction completes after displaying out. Furthermore, components are often duplicated

in the CCS system to achieve high reliability.

Why existing approaches are not enough? Software reliability is defined as the prob-

ability of failure-free software operation for a specified period of time in a specified envi-

ronment [81]. In this work, we consider reliability of a system based on the probability

of failure of the system. Existing approaches on the reliability prediction problem fall

into two categories: black-box approaches [70, 132] and white-box approaches [26]. The

black-box approaches treat a system as a monolith and evaluate its reliability using testing

techniques. They use the observed failure information to predict the reliability of software
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based on several models such as Jelinski-Moranda model [71], Musa Okumoto model [100],

Littlewood-Verrall model [86], etc. On the contrary, the white-box approaches assume reli-

ability of system components are known and evaluate software reliability analytically based

on a model of the system architecture including discrete time Markov chains (DTMCs) [26],

continuous time Markov chains (CTMCs) [81], or semi-Markov processes (SMPs) [77]. In

these approaches, the probabilistic transfer of control among components is assumed to be

known. For instance, the probability is assumed to be a constant in DTMC-based approaches

or a function of time in CTMC/SMP-based approaches.

In the following, we argue that because the CCS system’s behavior relies on the run-time

environment, the existing approaches are not ideal for it, nor for non-deterministic systems in

general. The white-box approaches rely on modeling systems in DTMCs, CTMCs or SMPs,

which imply that there is only one probability distribution out of any system component. In

other words, if the system’s behavior is hard to predict, the assumption that the probability

distribution of transitions among system components is known should be problematic. For

instance, if we model the CCS system using a DTMC, one probability distribution is required

to capture the probability that an order is processed by different CCS servers. Obtaining this

probability distribution is highly non-trivial as the target CCS server is chosen at run-time

using a sophisticated dynamic load balancing algorithm. A probability distribution obtained

in a testing environment is likely to be different from that of the real system. As a result,

the estimated system reliability may lose its accuracy. A “safer" (and more convincing to

the stakeholder) prediction is to assume no knowledge on the distribution and assume that

an order may be non-deterministically assigned to any CCS server. The existing black-box

approaches rely on testing the overall systems. However, with a non-deterministic system

under test, it is unclear how test cases should be generated systematically so that testing

can provide a quantifiable level of “assurance".

There is another issue with the existing white-box approaches. Two inputs are required
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Figure 3.2: Workflow: (a) reliability prediction; (b) reliability distribution

including the reliability of the system components and a model of the system architecture.

The former is usually obtained simply through component-based testing, which could be

misleading. For instance, a component which failed 2 out of 50 test cases and a component

which failed 40 out of 1000 test cases would have the same reliability of 96%. It is, however,

obvious that 96% for the second component is more accurate. In the CCS system, we

have indeed discovered that the number of tests for different components varies significantly.

Mixing these semantically different data in calculating the system reliability gives inaccurate

results.

Combining testing and model checking From the above analysis, testing is ineffective

in non-deterministic systems. On the contrary, model checking is well-known to be able

to handle non-deterministic systems systematically [32, 16]. We thus propose to combine

testing (in particular, hypothesis testing) and model checking (in particular, probabilistic

model checking) for non-deterministic systems. The idea is to apply hypothesis testing to

system components which are deterministic and use probabilistic model checking to lift the

results through non-determinism.

In the example of reliability prediction and distribution, we propose to apply hypothesis test-

ing to measure component reliability with error bounds, and to use MDP-based probabilistic

model checking to obtain system-level reliability. Hypothesis testing is one of the testing

methods [114], and can be used to bound the number of test cases by indicating when the
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test can be stopped [132]. With hypothesis testing, users can quantify the accuracy of a test

result by giving error bounds, i.e., the probability of false positive and false negative testing

conclusions. MDPs are used in our probabilistic model checking. Compared to DTMCs,

MDPs support non-determinism, i.e., there may be multiple probability distributions from

a state in the model. With its expressiveness, we can then properly model complicated sys-

tems like the CCS. However, compared to DTMC-based reliability prediction or distribution,

MDP-based algorithms are more challenging, as we show later.

Figure 3.2-a shows our workflow of solving the reliability prediction problem. Firstly, hy-

pothesis testing is applied to obtain the reliability of system components. The result is a

probability, i.e., the reliability of a component being larger or equal to this probability, with

error bounds defined by users. Next, MDP-based reachability analysis is used to compute the

overall system reliability, which is the probability that the system reaches the success state.

Notice that existing algorithms on probabilistic reachability checking must be extended to

handle the error bounds obtained with hypothesis testing. Figure 3.2-b shows the workflow

of solving the reliability distribution problem. Given a reliability requirement for the system

with error bounds, we solve the problem in three steps. Firstly, we construct a parameter-

ized MDP model within which each component is associated with variables representing its

reliability measurement. Next, we develop a parameterized probabilistic reachability check-

ing algorithm to obtain the minimum constraints on the variables. Lastly, we synthesize

concrete reliability requirement for each component based on the constraints. We develop

a toolkit named RaPiD to fully automate our approach and apply it to investigate two

real-world systems.

Organization The rest of this chapter is organized as follows. Section 5.2 reviews back-

ground on MDP-based probabilistic model checking and hypothesis testing. Section 3.3

presents our approach on combining probabilistic model checking and hypothesis testing.
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Section 3.4 shows an application of our approach to reliability prediction and distribution.

Section 3.5 evaluates our approach. Section 6.6 surveys related works.

3.2 Background on Hypothesis Testing

This work requires some background on both probabilistic model checking and hypothe-

sis testing. Since relevant details on probabilistic model checking, including discrete time

Markov chain, Markov decision process and reachability analysis, have already been intro-

duced in Chapter 2. In this section, we briefly introduce the background on hypothesis

testing.

Hypothesis testing is a statistical process to decide the truthfulness of two mutual exclusive

statements: H0 and H1, where H0 is the hypothesis that the probability of a given event

is larger than or equal to a given value p0, and H1 is the alternative hypothesis (i.e., the

probability of the event is less than or equal to a given value p1). Besides, two parameters

are required from users. One is the targeted assurance level (✓) over the system, and the

other is the indifference region (2�). Indifference region refers to the region (p1, p0), used to

avoid exhaustive sampling and obtain the desired control over the precision [135]. With the

input ✓ and �, p0 = ✓ + �, p1 = ✓ � �. The probability of accepting H1 given that H0 holds

is required to be at most ↵, called false negative, and the probability of accepting H0 if H1

holds should be no more than �, called false positive. In practice, the error bounds (i.e.,

↵,�), and � can often be decided by how much testing resource the component developer

has. In general, it would require more resource for a smaller error bounds or a smaller

indifference region.

Hypothesis testing has been applied for reliability estimation [132]. Let R be the reliability

of a module. Suppose that we wish to test the hypothesis that the reliability R is at least ✓.

With a user defined �, we have hypothesis H0 : R � ✓+� and H1 : R  ✓��. We remark that
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hypothesis testing requires a way of sampling system executions according to its operational

usage. Many sampling methods have been developed and applied for software demonstrating

testing [124, 115]. There are two main acceptance sampling methods to decide when testing

can be stopped. One is fixed-size sampling test, which often results in a large number of

tests [135]. The other one is sequential probability ratio test (SPRT), which yields a variable

sample size. SPRT is faster than fix-sampling methods as the testing process ends as soon

as a conclusion is made. The basic idea of SPRT is to calculate the probability ratio, after

observing a test result and comparing with two stopping conditions [12]. If either of the

conditions is satisfied, the testing stops and returns which hypothesis is accepted. Readers

can refer to [135] for details.

Example In the CCS system, to verify whether the reliability of a CCS server is at least

0.8, users should define the test parameters (i.e., �, ↵ and �). Assuming ↵ = 0.01, � = 0.01,

and � = 0.1, the parameters define the goal for the testing, i.e., whether to accept H0 “the

reliability of the CCS Server is at least 0.9" or H1 “its reliability is at most 0.7". If the “true”

reliability is at most 0.8, it is guaranteed that the probability of wrongly accepting H0 is

less or equal to 0.01. By the stopping criterion, we have xm � 0.8138m + 3.4040 (to accept

H0) or xm  0.8138m � 3.4040 (to accept H1). We start the testing with m = 0; xm = 0.

After executing a test case (which is chosen randomly according to the user profile), m

increases by 1. xm either increases by 1 if the test finishes without failure or remains the

same otherwise. Next, the updated m and xm are used for stopping criteria. If any one

of the stopping criteria is fulfilled, H0 or H1 is accepted accordingly; otherwise, sampling

continues with another test case and the above steps will be repeated. 2

The error bounds quantify the reliability measurement. They can differentiate the above-

mentioned case, i.e., two different test cases which have concluded the same reliability of

96% with different number of tests. Assuming that a fixed sampling plan is adopted with ✓
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set to 0.96 and � set to 0.01, the minimum error bounds are: ↵ = 0.5262 and � = 0.3357

for 2 failures out of 50 tests case; and ↵ = 0.2161 and � = 0.2026 for the case of 40 failures

out of 1000 tests. Therefore, the result based on the larger sample size is more accurate in

terms of smaller error bounds.

SPRT is guaranteed to terminate [12], while the expected sample size is hard to determine.

Wald [11] has provided a good approximation. The expected sample size increases from 0

to p1 and decreases from p0 to 1. The worst case is when the “true” probability is within

the indifference region. If a = 0.01, b = 0.01, p0 = 0.99, and p1 = 0.98, the expected sample

size will be 3.0005 ⇥ 103 by Wald’s approximation. If considering the hypothesis testing

parameters with high precision, which is normally the case in practice, e.g., a = 0.001, b =

0.001, p0 = 0.9999, p1 = 0.9998, the expected sample size will be 6.8811⇥ 105 in this case.

3.3 Combining Model Checking and Hypothesis Testing

Hypothesis testing enables directly sampling on systems, but is not suited to non-deterministic

systems. On the contrary, probabilistic model checking can handle non-determinism easily

with exact solutions, but suffers from state explosion problem. The combination of both is

proposed in such a way that hypothesis testing is conducted on each subsystem separately

and probabilistic model checking method is performed on the system level modeled in an

MDP. This can be formally presented as follows.

Let M be an MDP, � be a property (which can be in LTL [107], PCTL [63], etc.). By

probabilistic model checking, it can calculate the probability of the set of paths in M� that

satisfy the � for all schedulers �, denoted as P(M |= �). It can also check whether a property

holds with probability at least ✓, i.e., P�✓(M |= �), which returns a Boolean value. The

model is assumed to be composed of several components, denoted as M(D0,D1, . . . ,Dn),

where each Di is a deterministic system component. We connect the probability of satisfying
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global property � with the probability of satisfying the local properties for each component

with the following function.

P(M |= �) = f (P (D0 |= �0) ,P (D1 |= �1) , . . . ,P (Dn |= �n))

where �i is the local property for component i and f is a function that takes in the probability

of satisfying the local properties in each component and outputs the probability of satisfying

the global property in the whole model.

Similarly, the verification task of comparing the probability of satisfying a global property

with a bound relates to that of local properties in each components is as follows.

P�✓(M |= �) = (P�✓0 (D0 |= �0)) ^ (P�✓1 (D1 |= �1)) ^ . . .

where ✓ = f (✓0, ✓1, . . . , ✓n). In each deterministic component Di , the probability of satisfying

a local property �i being larger than a given value ✓, denoted as P�✓i (Di |= �i), can be

verified by hypothesis testing.

With the setting above, we show how to solve two different problems as explained below.

Firstly, if the objective is to obtain a probability of a system satisfying a global property,

we first perform hypothesis testing to obtain the probability of each component satisfying

the corresponding local property. Notice that we need to specify certain discrete levels from

high to low, e.g., l1 = 1, l2 = 0.99, etc. Hypothesis testing is performed against those

discrete levels (e.g., li) sequentially, until P�li (Di |= �i) is true. The li is the approximated

maximum probability of satisfying the local property. Afterwards, we perform probabilistic

model checking based on the obtained results to calculate P(M |= �). Second, a global

verification task, i.e., P�✓(M |= �), can be distributed into several local verification tasks,

i.e., P�✓i (Di |= �i) for each component Di . This relies on the assumptions that there is an

inverse function of the given f , denoted by f �1, such that each ✓i is calculated from f �1(✓);
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whenever the result of P�✓i (Di |= �i) is false for a component Di , P�✓(M |= �) is also false,

and vise versa.

Besides, it is still necessary to analyze how error bounds at system level are related to the

ones at components.

Lemma 3.3.1 Let ↵c and �c be the error bounds of verifying components Dc. Let C be the

set of all components of a system. Let the error bounds for the overall system be (↵,�). ↵

is bounded by max{↵c | c 2 C} and � is bounded by
P

c2C �c.

Proof Let M be a system. We define the following hypothesis: � (“Accept P�✓(M |=

�) is true”); �c (“Accept P�✓c (Dc |= �c) is true”); ¬� (“Accept P�✓(M |= �) is false”);

¬�c (“Accept P�✓c (Dc |= �c) is false”);  (“In fact, P�✓(M |= �) is true”);  c (“In fact,

P�✓c (Dc |= �c) is true"); ¬ (“In fact, P�✓(M |= �) is false"); and ¬ c (“In fact, P�✓c (Dc |=

�c) is true"). Let (↵,�) be the error bounds for verifying P�✓(M |= �). By definition, ↵ is

Pr( | ¬�), i.e., the probability of false negative.

↵ = Pr( | 9 c 2 C.¬�c) � ?

 max{Pr( | ¬�c) | c 2 C}

 max{Pr( c | ¬�c) | c 2 C}

 max{↵c | c 2 C}

(?) holds because “accepting that P�✓(M |= �) false” is equivalent to “accepting that there

exists a Dc such that P�✓c (Dc |= �c) is false”.

Similarly, � is Pr(¬ | �), i.e., the probability of false positive.

� = Pr(¬ | �) = Pr(¬ | 8 c. �c)

= Pr(9 c 2 C. ¬ c | 8 c 2 S . �c)
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
X

i2C
Pr(¬ c | 8 c 2 C. �c)

=
X

c2C
Pr(¬ c | �c) =

X

c2C
�c

2

The setting above is beneficial in terms of alleviating state space explosion problem and

easily handling system non-determinism. However, the general form above depends on a

few assumptions which are not easy to be satisfied in general. We assume verification of a

global property � can be divided into the verification against local properties �0,�1, . . . ,�n ;

and the probability of satisfaction in the system is related to that of components by a

function f . In general, such function is hard to attain, not to mention its inverse function

f �1.

Nonetheless, f can be obtained in some cases. A special case is when all local properties

are the same as a global property, i.e., �i = � for the component Di . The function f is an

evaluation of the MDP model which can be done by numerical methods e.g., value iteration.

In the following, we show that the problem of reliability analysis is exactly such a special

case and thus can be solved efficiently.

3.4 Reliability Analysis

The special case can readily apply to the software reliability analysis, i.e., reliability pre-

diction and reliability distribution, by setting local properties and modeling function “f ”

explicitly. The property of interest in reliability analysis is the probability that a software

has no failure. This is a global property, denoted by P(M |= ⇤¬failure). The global

property is actually composed by a set of local properties, i.e., probability of each module

running successfully without any failure. An MDP model is built from the system archi-

tecture and users environment. Each module in the system can be treated as a component
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D in the MDP. The transition probability between components, e.g., Pij , is the probability

from component i to component j , given that component i does not fail, i.e., Pij is condi-

tional on P(Di |= ⇤¬failure). Therefore, the transition probability of the MDP, e.g., from

component i to component j , is P(Di |= ⇤¬failure)Pij . Here, conditional probability pij

can be estimated from operational profile, which is the set of independent operations that a

software system performs and their associated probabilities [99, 70]. By reachability check-

ing on the MDP (e.g., via value iterations), the relationship between P(M |= ⇤¬failure)

and P(Di |= ⇤¬failure) for each component i can be established.

In the following, we present the details of applying the combination of hypothesis testing

with probabilistic model checking to software reliability analysis. We first set up assumptions

of our reliability analysis, followed by the construction of an MDP from system architecture

and operational environment. The methodologies for reliability prediction and distribution

are then introduced, respectively.

3.4.1 Assumptions and Threads to Validity

Considering reliability analysis as a special application, there are some underlying assump-

tions in terms of system reliability model and component failure behavior.

We use an MDP to model a system. Each state represents the execution of a single compo-

nent of the application. Same as other Markov models, our model relies on the assumption of

Markovian transfer of control among components, i.e., the probability distribution of future

executing components depends only upon the present components.

In the standard set up of MDP, probabilities are used to model environment while non-

determinism is used to model user decisions (e.g., available options) [108]. In our setting,

non-determinism is used to resolve uncertain situations where the exact probability distri-

butions are not available. This can be treated as a more general understanding on MDP
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by treating environment and user in the standard set up as a whole system. In fact, using

MDP to resolve uncertain situations is not new. Nondeterminism has been used to model

concurrency between processes by means of interleaving in probabilistic model checking [16].

Similar to [26, 70, 55, 50], our model also assumes that there is statistical independence

among failures of the components. More specifically, the failure occurring within one com-

ponent is neither the result of a failure occurring within another component, nor able to

cause any other component to fail. However, in practice, different component may be heav-

ily dependent, which may be a result of data exchange occurring through parameters or

messages passing. In this work, we limit ourself to the applications whose components are

failure independent. It appears to be a strict condition. However, the present assumption

can be well satisfied considering many up-to-date large systems (e.g. CCS), within which the

components are designed, implemented and tested independently. If any failure dependent

components exist and can be grouped into one, the model would still work.

Moreover, in our reliability model, we assume that failure of any component will eventually

lead to the failure of the system. For a system consisting of self-recovery or self-correction

mechanism, there are some executions that end successfully after recovery. These scenarios

are not considered as failure cases. Nonetheless they can be modeled in an MDP.

3.4.2 System Level Modeling

When to use non-deterministic choices? Compared to DTMCs, MDPs allow us to

capture both probabilistic and non-deterministic behavior. A central issue is: when to

use non-deterministic choices and when to use probabilistic choices. In general, proba-

bilistic choices can be viewed as informed non-deterministic choices. That is, we use a

non-deterministic choice when we have no definitive information on how the choice is re-

solved. For instance, if all we know is that there are two different outgoing transitions after
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executing a component C , we model the two transitions using a non-deterministic choice.

If the choice is made locally, after testing C systematically, we learn the frequency of each

outgoing transition and we can model C with a probabilistic choice. However, if the re-

sult of executing C is correlated to its inputs, there are two cases. If the inputs are the

result of executing some other component K in the system, we may either model it as a

non-deterministic choice conservatively; or we calculate the probability distribution of C ’s

results based on the probability distribution of K ’s results. Notice that if we systematically

test C and K as a whole, we may obtain a probability distribution of C ’s results. However,

if the inputs of C are from an external environment which is difficult to predict (e.g., like

the traffic of stock transactions), a non-deterministic choice would deliver a “safer” model.

In a nutshell, testing helps to turn non-deterministic choices into probabilistic choices. Ide-

ally, we would like to learn probability distribution of all actions in the system. Nonetheless,

due to the limited resources for testing or knowledge of the external environment, we often

have to employ non-deterministic choices.

Example In the following, we illustrate the difference between non-deterministic choices

and probabilistic choices using a simple example. Figure 3.3 presents a simplified fragment

of the CCS system. There are two components S1 and S2, with reliability 0.8 and 0.9,

respectively. The components execute simultaneously and independently. Assume that S1

is chosen 30% of the time. The corresponding DTMC model is shown on the left of the

figure. The system reliability is then estimated as 0.3 ⇥ 0.8 + 0.7 ⇥ 0.9, which is 0.87.

There are two potential problems with the above prediction. First, the two components are

running in parallel and hence a DTMC cannot truthfully model the system. Second, the

transition probability is decided through operational profiles, which can only be obtained

within limited tests in a testing environment before the system is deployed. The transition

probability is hardly accurate since it is determined by the dynamic tasks loading at run-
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Figure 3.3: A system with run-time tasks distribution

time. If an MDP is used to model the system, as shown on the right, the reliability is

calculated as 0.8 if S1 is chosen and 0.9 if S2 is chosen. The result shows that in the worst

case, the system is only as reliable as S1. We can see that the result based on the MDP

model is less dependent on the external environment. 2

In the CCS example, depending on the run-time traffic of the transaction, a sophisticated

dynamic load balancing algorithm is used to distribute transactions to the three CCS servers.

There are 15 different combinations of choices, i.e., any of the three is chosen; two of them

are chosen in a particular order; or all three of them are chosen in a particular order. It is

challenging, if not impossible, to predict the probability distribution of the choices. Modeled

as non-deterministic choices, these choices can be distinguished by different schedulers and

the system reliability for each choice can be calculated and compared during value iteration.

Reliability Modeling The model of a system in our setting is an MDP M = (S , init ,Act ,

Pr). For each system component C (i.e., a self-contained piece of codes that can be indepen-

dently designed, implemented, and tested), there is a pair of states, C and xC , in S which

represent the state of C executing and the state right after C terminates, respectively. Fur-

ther, S contains two absorbing states: a state of Success and a state of Failure. Here, the

probability of a system always not getting failure state is the same as the probability of a

system eventually reaching success state, denoted as P(M |= ⇧Success). If the reliability

of C is RC , there is one probability distribution from C such that there is probability RC

to reach xC and probability 1 � RC to reach Failure. Notice that if there is certain fail-

ure handling mechanism in the system (like WPF in the CCS system), the transition with
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probability 1� RC leads to a failure recovering state instead of the Failure state.

A simplified model of the CCS system is shown in Figure 3.4. The data in this figure are

obtained based on test results on an early version of the system. Only the non-deterministic

choices among the three CSS servers are shown and we further ignore the ordering among

the three servers so as to save space. For compact presentation, we skip the Failure state.

Instead, a node labelled as C (R) is used to denote that the name of the component is C and

the probability of reaching Failure is 1�R and probability of R to transit to the successive

components. The transition probability at each edge represents the usage information.

Taking Server1 as an example, its reliability can be read off from the graph as 0.9972 and

it has three outgoing transitions labeled with action ⌘. If Server1 terminates successfully, it

has a probability 0.584 of going to Exit , and a probability 0.416 of going to DB . If Server1

fails, it goes to Server2, which serves as a backup server for Server1. A backup transition

is denoted by a dash line in the figure. In the corresponding MDP, the three transitions are

labeled with (⌘, 0.9972⇥ 0.584), (⌘, 0.9972⇥ 0.416), and (⌘, 1� 0.9972), respectively. Note

that if action (✏, 1) is chosen at Enter , there is a backup server available for Server1a or

Server2a . If action (�, 1) or (!, 1) is selected instead, there are no backup servers available,

i.e., both servers are failed or the three servers are all running to finish a job.

3.4.3 Reliability Prediction

Given the hypothesis testing results of each component and an MDP, we then calculate the

overall system reliability.

Based on Lemma 3.3.1, if all components are tested with the same error bounds (↵c ,�c), the

error bounds of the overall system are (↵c ,�c ⇥N ), where N is the number of components.

Notice that system-level false positive � could be N times larger than the one at component

level. This implies that the confidence of system level measurement is lower than that of
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Figure 3.4: A simplified model for the CCS system

the components.

The maximum and minimum system reliabilities can by calculated by Pmax (M |= ⇧Success)

and Pmin(M |= ⇧Success), respectively, and can be calculated using the value iteration

method. Given the CCS model1 in Figure 3.4, we obtain that the system reliability ranges

from 0.95505 to 0.95729. The worst reliability is obtained with a scheduler such that three

servers are running together, whereas the best reliability is obtained when only one is run-

ning. Detailed analysis is discussed in Section 3.5.

1The reliability are relatively low as they are obtained from test environment before the software released.
The data for released version is confidential from the company. We have demonstrated that our method
can still work and is accurate to a certain level by assuming relatively high reliability of each component
(e.g., 99.999%), which is often the case after software released, available at [4].
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3.4.4 Reliability Distribution

Our approach on distributing the overall system reliability requires two inputs: (1) a relia-

bility requirement R on the overall system and a pair of error bounds (↵,�); (2) a system

model in the form of an MDP. The goal is to find a reliability requirement on some compo-

nents so that the overall reliability requirement is satisfied. The resultant requirement on

the components (e.g. component c), is in the form of a reliability probability Rc and a pair

(↵c ,�c), which can be established using hypothesis testing on the smaller-scale component.

In the following, we first show how to identify Rc and then how to obtain (↵c ,�c).

Given an MDP M and a scheduler �, we can obtain a DTMC M�. The probability of reach-

ing the Success state, P(M� |= ⇧Success), is a polynomial function constituted by multiple

variables (i.e., Rc for all relevant components). The constraint P�R(M� |= ⇧Success) then

gives us the reliability requirement on each component, under the scheduling of �. However,

such a constraint is hardly useful in practice as the reliability of the components constraint

each other. For simplification and making the results useful in practice, we assign different

weights for the components participating in reliability distribution, by considering testing

costs, e.g., testing time, and effort. In practice, the software can make use of some read-

ily developed components. The components whose reliability is already known and rarely

changes (e.g., a legacy component), will not participate in reliability distribution.

As a result, P�R(M� |= ⇧Success) becomes a polynomial inequality constituted by a vari-

able x only. Using numerical methods, we can obtain a lower bound on x , which is the

reliability requirement we need. Multiplying x with assigned weights, the reliability require-

ment for the components participating in reliability distribution can be obtained. Take

the model in Figure 3.4 for example. Assume R is 0.98 and the scheduler �1 resolves the

non-deterministic choice at state Enter by selecting action ⌘. We further assume a unit

weight assigned to all components, the calculated polynomial using our algorithm above is
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0.5x 1 + 0.16435x 3 + 0.05402x 5 + 0.11641x 7 � 0.09865x 8 · · · � R. When the iterations stop,

the polynomial is accumulated up to the term of x 160. We omit the result of the terms

here. By Newton’s method [10], we obtain that the lower bound on x is 0.99601. This is

the reliability requirement for every component since we assuming the same weight.

The above concerns only one scheduler. In general, there are multiple schedulers and we need

to guarantee that the system reliability requirement is satisfied with any scheduler. Apply-

ing value iteration directly is very challenging as we need to compare polynomial functions

representing the probability of reaching Success through different distributions from a state

in each iteration. We thus adopt an alternative approach, i.e., we compute a lower bound on

x for every scheduler and the maximum of the lower bounds gives us the minimum require-

ment on component reliability. Based on [16], only finitely many memoryless schedulers need

to be considered. Our algorithm works as follows. First, an unvisited memoryless scheduler

� is selected. Next, we perform the value iteration method on M�. The following shows

how the result vector V is updated. Assume scheduler � chooses a distribution µs at state

s : V (n+1)(s) =
P

t2S x ⇥ µs(t)⇥ V (n)(t). Once a stopping condition is satisfied, we obtain

a constraint V (init) � R and solve the equation V (init) � R = 0 using Newton’s method

to obtain a lower bound on x so that V (init) � R is true. The steps above are repeated for

all memoryless schedulers.

The upper bound of memoryless schedulers equals to the product of the numbers of distri-

butions for each state. If there are ten states and two of them both have 3 distributions

and the rest has one, the number of schedulers is bounded by 9. Essentially, the more non-

determinism there is, the more schedulers are to be considered. In practice, the number of

schedulers is manageable as we are dealing with a high-level system model. Further, since

schedulers are independent, we can parallelize the computation.

Next, we distribute the system error bounds (↵,�). We assume that error bounds of each

component are the same, denoted as (↵0,�0). Based on Lemma 3.1, we can deduce the fol-
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lowing constraints: ↵0  ↵ and �0  �
N . Therefore, the two error bounds for each component

are ↵ and �
N , respectively. Given the model in Figure 3.4, we assume the system error bounds

are (0.02, 0.04). Since N is 8, the error bounds for each component are (0.02, 0.005). �0 might

be considerably smaller than � if N is large. A very small error bound for hypothesis testing

may lead to a large number of tests. The practical implication is that one can estimate

system reliability by testing either larger components with larger error bounds (which is

harder to test but needs less tests) or smaller components with smaller error bounds (which

is easier to test but needs more tests).

3.5 Implementation and Evaluation

The proposed approach has been realized in a toolkit named RaPiD (Reliability Prediction

and Distribution). RaPiD is a self-contained toolkit for reliability prediction and distribu-

tion, and it is publicly available at [4], with all case studies. It provides a user friendly

interface to draw MDP models as well as fully automated methods to solve the reliability

prediction and distribution problems. RaPiD is implemented with 4K lines of C# code.

It uses a number of MATLAB (version 2009a) libraries to support powerful mathematical

calculations as well as graph plotting functions. In the following, we apply RaPiD to study

two real-world systems and obtain interesting results.

3.5.1 Reliability Prediction for Call Cross System

The CCS system has more than 300K lines of code. To predict the reliability of the CCS

system, we first build an MDP model (as partly shown in Figure 3.4) and then test each of

the components. Next, we apply RaPiD with a stopping criterion of 1E-5 and obtain the

minimum/maximum system reliability of 0.95505/0.95729, respectively.
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Figure 3.5: System reliability vs. component reliability for: (a) M1 and M1b; (b) M2 and
M2b; (c) M3 and M3b

To compare the effectiveness of different models, i.e., the effect of non-deterministic choices

for system reliability prediction, we build three models in total. Model M 1 is a DTMC model,

assuming that the probability distribution of all transitions among system components are

known; M 2 is as shown in Figure 3.4 where non-deterministic choices are used to model

the run-time choice of the CCS servers, and M 3 further introduces non-determinism by

modeling the choices of going back to JMS or DB from a CCS server non-deterministically.

To investigate the usefulness of the back-up servers in terms of system reliability, we modify

these three models to incorporate transitions leading to a backup server. The resultant

models are denoted as M 1b, M 2b and M 3b, respectively.

As presented, if we assume all components have the same reliability x , we can obtain system

reliability as a polynomial function of x for each scheduler. Using RaPiD, we can plot the

functions, as shown in Figure 3.5. Different from M 1, M 2 has 5 schedulers, and M 3 has

160 schedulers in total since it has a state with 5 non-deterministic choices and another five

states each with 2 non-deterministic choices. The dash lines are the corresponding functions

for M 1b, M 2b and M 3b, respectively. Notice that many of functions are identical (e.g., for

M 3) and their plots overlap with each other.
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Table 3.1: Reliability prediction for the three models

Name (#Schedulers) M1 (1) M2 (5) M3 (160)
Min. Reliability 0.95568 0.95401 0.73149
Max. Reliability 0.95568 0.95568 0.96257

The following observations can be made based on the results. First, the difference be-

tween maximum reliability and minimum reliability becomes larger when the number of

non-deterministic choices increases. For instance, Table 3.1 shows the differences for the

three models.

Assuming that we need to show the system’s reliability is at least 0.95, the result based

on M 3 is not conclusive, which suggests further testing is necessary so that we can learn

the probability distribution of the non-deterministic choice (i.e., the transitions from CCS

servers to JMS or DB) and make more accurate prediction. The result based on M 2 on

the other hand shows that we can make fairly accurate prediction without making any

assumption on the run-time dynamic loading decisions, and this serves as a strong argument

that the system is robust in the open dynamic stock market. If we superimpose the results

for M 1, M 2 and M 3 (i.e., the solid curves in Figure 3.5 (a), (b), (c)), we can find that

the curve in graph (a) resides between the curves in graph (b), all the curves in (a) and

(b) reside between the curves in graph (c). Second, in all three graphs, the dashed curves

are higher than the corresponding solid curves. It implies that the system reliability indeed

becomes higher by introducing a backup server. Nonetheless, it should be noticed that with

the increase of component reliability, the gain of system reliability by introducing the backup

server decreases. The results confirm (and quantify) our intuition.

3.5.2 Reliability Distribution for Call Cross System

RaPiD solves the reliability distribution problem using the approach documented in Sec-

tion 3.4.4. There are totally 15 different choices of servers operation modes for the CCS,
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Figure 3.6: Reliability analysis result for the CCS

which indicates 15 schedulers existing in the model. Figure 3.6 visualizes the results for those

five schedulers for the model shown in Figure 3.4, where scheduler �1/�2/�3 chooses action

⌘/�/� (i.e., to run Server1/Server2/Server3 only, respectively) at state Enter ; scheduler

�4 leads to state Server1a and possibly state Server2a subsequently (i.e., to run Server1

and Server2 at the same time); and scheduler �5 leads to a state where all three servers are

running.

Assume that the system reliability requirement is 0.98 (i.e., the horizontal dash line in

Figure 3.6). When all curves are above the dash line, we have sufficient component reliability

to guarantee the system is reliable with any scheduler. Given the same component reliability,

a scheduler is “better” if its corresponding system reliability is higher. Similarly, given the

same system reliability, a scheduler is “better” if its corresponding component reliability is

lower. Notice that when component reliability is low, the less servers are chosen to work

simultaneously (e.g., scheduler �1 and �2), the higher the system reliability is achieved; and

as component reliability becomes higher (e.g., > 0.95), the schedulers (e.g., �4) leading to

more servers running outperform the others.
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3.5.3 Reliability Distribution for Therapy Control System

The Burr Proton Therapy Center is a radiation therapy facility associated with the Mas-

sachusetts General Hospital in Boston. Proton therapy is a treatment controlling the dose of

radiation delivered to the patients. High precision radiation therapy enables reduced dose to

healthy tissue. Reliability assurance on such system is of utmost importance. One software

component of the system, called the Therapy Control System (TCS), provides the users

with all the control functions necessary. It is written primarily in 250K lines of C code. The

TCS handles the storage and retrieval of patient data entry of prescriptions, scheduling of

treatments, patient positioning and beam delivery.

A high-level view of the system is shown in Figure 3.7. The Human/Computer Interface

Layer is a graphical user interface. The Application Layer is the core of the system. It

consists of four modules: System Manager (SM), which controls operational modes, and

event reporting; Beam Manager (BM), which handles allocation and operation of the proton

beam transport; Treatment Manager (TM), which handles the patient treatment sequence

from prescription to irradiation; and Database Manager (DM), which provides functions to

allow the other modules to access to the database. The Control Unit Layer contains drivers

for the physical devices, including Accelerator Control Unit (ACU), Energy Selection and

Beam Transport Control Unit (ECU-BTCU), Positioning Control Unit (PCU), Treatment

Control Unit (TCU), and Safety Control Unit (SCU). These are implemented in a table-

driven fashion as low level state machines. RTServer is the information distribution server.

It manages all communication among client processes, freeing all low-level network coding.

RTH1 and DataDAQ are two data acquisition interfaces. RTH1 is in charge of ACU and

SCU, while DataDAQ is in charge of the rest of control units. The service starts with any

beam service requirements sent via Human/Computer Interface Layer, and completes after

the BM generating the irradiation summary.
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Figure 3.8: A reliability model for the TCS

The TCS system serves as an excellent case study for our reliability distribution method as it

is presently undergoing a software upgrade. Some components are to be revised or replaced.

Given the requirement on system level reliability, it is desirable to generate concrete reliabil-

ity requirement for newly developed components so that they are contracted properly. The

challenge in applying RaPiD is that there is no precise information on transition probabili-

ties. The reason is that testing the system is highly complicated, as there are 5 concurrent

machines and many interrupting events generated by hardware control units. However less

complex safety mechanisms are in place to mitigate any error. As a result, transition proba-

bility and the system are modeled by non-deterministic choices only. Nonetheless, we show

that we can still obtain some useful results.

A simplified MDP model of the system is shown in Figure 3.8. As the reliability of each
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Figure 3.9: Reliability analysis result for the TCS

component is not available, they are omitted. Although there are 2,592 schedulers, only three

different system reliability functions of component reliability exist. By further analyzing the

corresponding schedulers reported by RaPiD, we can identify three typical workflows of the

system that result in the three scenarios, respectively.

In Figure 3.9, the plot of the worst scenarios is a horizontal line of zeros. It implies that for

any component reliability, the system level reliability is zero, i.e., the system cannot reach

the Success state. This set of schedulers always chooses RTH 1 or DataDAQ from RTServer

and hence state Success is never reached. The best scenarios include the cases within

which the transition directly goes from RTServer to BM and then reaches Success. In real

situation, this is an extreme case that the system sends beam treatments request directly

to the BM , which completes the job, and then the whole transition finishes successfully.

Moderate scenarios contain cases within which RTServer goes to SM , TM , or BM and

then goes to DM ; and afterwards, DM reports data back to BM and lastly the Success

state is reached. As we can see, without any testing results on the system, we are able

to find out the worst/best system reliability in respect to components reliability. This

information is particularly helpful in the early stage of software development, as the system

developers can use the results as a guideline on how to test the system or how to improve the

system reliability, e.g., by improving the feedback communication from control unit layer to
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RTServer.

3.5.4 Scalability

RaPiD is efficient in our case studies. The reliability prediction took 0.03 seconds for the

CCS, and the reliability distribution took 42 seconds for the CCS (with 160 schedulers) and

628 seconds for the TCS (with 2,592 schedulers). To further test the scalability of RaPiD,

we evaluate RaPiD’s reliability prediction and distribution using 5 benchmark MDP models

from [78] as well as randomly generated models (with 1K to 50K states and the number of

states for having multiple transitions are sampled from a uniform distribution). The results

show that RaPiD is able to handle 14K states per second on average (with termination

threshold as relative difference 1.0E-6) in calculating reachability probability. Reliability

distribution (with a bound 600 on the number of terms in the obtained polynomial) is

slightly slower due to maintaining/updating/solving the polynomial functions. The data

is obtained using a PC with Intel(R) Core(TM) i7CPU at 2.80 GHz and 8 GB of RAM.

This evaluation is for a single MDP. However, when we use parallel composition of a set

of MDPs to model distributed systems communication, the state space is the product of

its local system state spaces, which is challenged by scalability issue. We have proposed a

solution to reduce the state space, as detailed in Chapter 6.

3.6 Related Work

Hypothesis testing has gained its popularity in probabilistic model checking [29, 136, 84] as it

can overcome state space explosion problem. Its applications were limited to deterministic

systems in the early stage. In recent years, it has been extended to non-deterministic

systems [19, 66, 82]. [19] provides an approach that only limits to spurious non-determinism

that introduced by the commutativity of concurrently executed transition in compositional
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setting. [66, 82] apply learning techniques to search for near optimal schedulers so as to

convert MDP to an induced Markov Chain. The effectiveness in searching for the near-

optimal schedulers is decided by several parameters for controlling the maximum number

of schedulers to evaluate each time and the effectiveness of learning process. All those

parameters shall be tuned by users. Instead, our approach lifts up non-determinism to a

level that exact methods can be used.

Our work can also be viewed as performance analysis of programs with probabilities. Gelden-

huys et al. [45] have provided an approach to calculate the probabilities of code executions

quantitatively. This work can be seen as a form of profiling. In the context of weakest

preconditions, McIver and Morgan have several work in studying probabilities and non-

determinism in programs, e.g., in [97]. In our work, the probability of transition is known

as a priori.

Our framework has been applied to reliability prediction and distribution. For reliability

prediction, it is related to software architecture based reliability evaluation [26, 70, 55, 50]

and software scenario based reliability evaluation [112, 134]. Compared to the above work,

our approach handles systems with model parameters which are hard to obtain. Further-

more, it can quantify the accuracy of component reliability with the help of hypothesis

testing. Some recent studies focus on dynamically changing parameters in reliability models

and updating parameters based on run-time data [95, 43, 38]. [95] develops a � evalua-

tion method to update system reliability if one component reliability changes in run-time

by reusing previous evaluation results. This method is limited to systems where only one

component reliability changes at once. [43] assesses the reliability inquiries expressed in

Probabilistic Computation Tree Logic at pre-calculation stage, whereas DTMCs’ transition

parameters are substituted into pre-obtained formulae at run-time. [38] continuously cor-

rects and updates DTMCs’ parameters in a run-time fashion based on a Bayesian technique.

These are not applicable until the software is released. Our reliability model tackles the

49



3.7. Summary

issue on missing run-time information before system deployment. In addition, our remedy

relies on modeling hard-to-predict run-time behaviors as non-deterministic choices so as to

obtain reliability measurement which is independent of the dynamic environment. Hypoth-

esis testing has also been used in estimating system reliability [132], which treats programs

as black boxes.

Our reliability distribution problem is similar but slightly different from the reliability allo-

cation problem by solving an optimization problem, e.g., in [106, 69, 92]. The optimization

goals are to minimize the amount of testing time while ensuring that a system is sufficiently

reliable. [92] also discusses a way to minimize the number of remaining faults given a fixed

amount of testing efforts. Our method on reliability distribution focuses on the minimization

of component reliability requirement. To the best of authors’ knowledge, our work is the

first on applying the combination of probabilistic model checking with hypothesis testing

to reliability prediction and distribution. Moreover, we have established the system error

bounds from components error bounds and vice versa.

3.7 Summary

In this chapter, a framework that combines both hypothesis testing and probabilistic model

checking is proposed for the reliability analysis of non-deterministic systems. This method

applies hypothesis testing to deterministic system components and uses the probabilistic

model checking techniques to resolve non-determinism. We have performed case studies on

a stock trading system and a hospital therapy control system to demonstrate its usefulness.
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Chapter 4

Reliability Analysis of an Ambient

Assisted Living System with RaPiD

The rapid increase of aging population in all industrialized societies has raised serious prob-

lems, e.g., creating enormous costs for the intensive care of elderly people. The Ambient

Assisted Living (AAL) system, as a promising solution is designed to assist their indepen-

dent living [101, 130]. In such systems, sensors and inference engines are widely used to

perceive environment changes and user intentions. Applications and actuators are triggered

accordingly to provide necessary assistance to the user. However, lack of reliability guar-

antees prevents AAL systems to be widely utilized. For instance, a failure of prompting a

reminder could harm the user’s life, e.g., a call-for-help alert failed to prompt when the elder

falls may leave him/her unattended for a long and eventually leading him/her to death.

Thus, it is essential to conduct reliability analysis and provide quantitative guarantees on

the system before deployment. In this chapter, we introduce our reliability analysis toolkit

called RaPiD (Reliability Prediction and Distribution), which is an implementation based

on the techniques proposed in Chapter 3, and then demonstrate the usage and usefulness of

RaPiD on ALL systems by studying on a real smart healthcare system [18].
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4.1 Introduction

An Ambient Assisted Living (AAL) system is considered reliable if the reminder service is

correctly delivered to the right person at the right usage scenario. It is a challenging task to

analyze the reliability of such systems for the following reasons. First of all, AAL systems are

inherently complex. They are usually composed of multiple layers of software and hardware

components which have limited capability and accuracy. Previous research [102, 111] re-

ported that the inherent inaccurate and unreliable low-level sensors are often used to detect

context information from the environment. This is probably on the cost-efficiency consid-

erations, i.e., low-capability but cheap sensors are often selected due to budget constraints.

Furthermore, AAL systems rely heavily on different types of wireless networks with different

reliability. For instance, sensors transmit signals via Zigbee, a low-cost low-power wireless

mesh network, while software components and actuators exchange messages using more re-

liable networks such as WLAN. Moreover, human errors, e.g., a user may forget to wear the

RFID tags, could also cause the failure of the system.

Though failures of such systems are unavoidable, it is critical to manage the reliability in

an acceptable level. Systematic reliability analysis of such AAL systems is thus in great

need. AAL systems are highly user-oriented such that the system can automatically react

according to users’ behaviors. However, due to unpredictable users’ activities (i.e., non-

deterministic), their system behaviors are often too complicated to be analyzed before its

deployment. This nature makes our techniques introduced in Chapter 3 good candidates in

analyzing ALL systems, i.e., reliability analysis can be conducted based on a system model

in the form of a Markov decision process (MDP). We develop a toolkit called RaPiD to assist

automatic reliability analysis. Using probabilistic model checking techniques, e.g., (paramet-

ric) reachability checking, three fundamental and highly important reliability issues can be

investigated in RaPiD for non-deterministic systems: (1) RaPiD can synthesize the overall

system reliability given the reliability values of system components; (2) given a reliability
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requirement on the overall system, RaPiD can distribute the reliability requirement to each

component; and (3) RaPiD can identify the component that affects the system reliability

most significantly.

With RaPiD, we have performed reliability analysis on a smart health care system, called

AMUPADH. It is a typical AAL system designed for the healthcare of elderly dementia

people. Our evaluation shows that the overall system reliability is below 0.4. For the system

to reach a reliability of 0.4, each Wi-Fi network related node should have a reliability of at

least 0.9. Our analysis also concludes that it is impossible for the system reliability to reach

0.5 based on the current design. There is such a scenario that the system always fails to

identify the person that is performing an abnormal activity. Thus, half of the chances the

reminder will be sent to a wrong person. Lastly, the sensitivity analysis suggests that the

overal system reliability can be improved most efficiently by improving the Wi-Fi network.

In the end, the analysis results are reported to AMUPADH designers who confirmed their

consistency with the real data collected from the hospital. They redesigned the activity

recognition rules and added more nodes in the Wi-Fi network to increase its reliability. As a

result, we show that our reliability analysis approach can provide good estimation of system

reliability and is particularly helpful in identifying the critical component inside the system.

Organization The remainder of the chapter reports the details of this case study. It is

organized as follows. Section 4.2 introduces our reliability analysis toolkit RaPiD. Section 4.3

presents the case study system, AMUPADH. Sections 4.4 reports details on constructing

reliability models from AMUPADH. Section 4.5 presents the reliability analysis results for

AMUPADH. Section 4.6 discusses the related work.
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Figure 4.1: RaPiD architecture
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4.2 RaPiD: A Toolkit for Reliability Analysis

RaPiD is implemented to provide a friendly user interface to draw reliability models and fully

automated methods to the reliability analysis (i.e., reliability prediction, reliability distribu-

tion, and sensitivity analysis) for non-determistic systems. Starting from 2012, RaPiD has

come to a stable stage with solid testing and has been applied to analyze several real-world

systems. The tool (along with a screencast illustrating its usage) is available at [4].

RaPiD consists of three main components, i.e., Editor, Parser, and Reliability Analyzers.

Figure 4.1 shows the architecture of RaPiD. In the graphical editor, a system model for

reliability analysis (i.e., reliability model) is first created, from which the explicit model,

i.e., MDP, is then automatically obtained by the parser. The core algorithms for reliability

analysis are in the reliability analyzers including reliability predictor, reliability distributor

and sensitivity analyzer. After the analysis, RaPiD presents results in terms of a text report

54



4.2. RaPiD: A Toolkit for Reliability Analysis

Server1(0.9972)

Enter(1)

Server2(0.9972)

Exit(1) Success(1)

DB(0.9811)

↵,
1

�, 1

⌘, 0.584

⌘, 0.416

⌘,
0.
58

4

⌘, 0.416

. . .

Figure 4.3: An example of reliability model

or a graphical plot. With different input knowledge and requirements, RaPiD can read-

ily perform three different software reliability with its respective analyzers. More detailed

technical backgrounds of RaPiD are referred to Chapter 3. In the following, we introduce

the input reliability model of RaPiD and then present the workflow for its three reliability

analyzers.

4.2.1 Reliability Model

Extended from Cheung’s model [26], the model for reliability analysis in our setting is an

MDP M, which can be built from the system architecture and user environments. It can

support the modeling of both probabilistic and non-deterministic behaviors. In this model,

states and transitions are two key elements, which can be constructed as follows.

States Each system component C is a self-contained piece of codes that can be indepen-

dently designed, implemented, and tested. Each system component represents a state

in MDP. In addition, there are two absorbing states: a state of Success and a state

of Failure. A simple model is demonstrated in Figure 4.3. For compact reliability

model presentation, we skip the Failure state. Instead, a node labelled as C (Rc) is

used to denote a component C with a probability of Rc to transit to the successive

components, and a probability of 1� R to reach Failure state.

Transitions The transition probability in a probability distribution at each edge represents

55
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the usage information, e.g., Pij , is the probability from component i to component j ,

given that component i does not fail. An MDP can have more than one probability

distributions at a state. This feature enables RaPiD to model all possible operating

environments/situations explicitly. RaPiD supports the modeling of failure handling

mechanism in the system, where the transition with probability 1 � RC leads to a

failure recovering state instead of the Failure state. Taking Server1 in Figure 4.3 as

an example, its reliability can be read off from the graph as 0.9972 and it has two

outgoing transitions labeled with action ⌘. If Server1 terminates successfully, it will

have a probability 0.584 of going to Exit , and a probability 0.416 of going to database

DB . If Server1 fails, it goes to Server2, which serves as a backup server for Server1.

This backup transition is denoted by the dash line in the figure.

4.2.2 Reliability Analysis

Depending on the different input knowledge and requirements, RaPiD can readily address

three different questions on software reliability.

• “What is the overall system reliability if the reliability of each component is known,

considering all possible user behaviors and unreliable factors?”

This is the problem of reliability prediction . This question is to be answered necessarily

before system deployment since end users would prefer to know how reliable the system

is. The reliability value of each component and an MDP model of system are required for

predicting the overall system reliability. Reliability prediction is equivalent to checking the

probability that the system never fails. It is then transformed into a problem of calculating

the probability of reaching accepting nodes from an initial state to a goal state s on an

MDP model M, denoted as Pr(M, s). Here, RaPiD performs value iteration approach [16]

to compute the reachability probabilities. Unlike DTMC approaches, the result here is a
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probability range due to the non-deterministic behaviors. The upper bound is the system

reliability corresponding to the best scenario in the systems; whereas, the lower bound

corresponds to the worst scenario.

• “What is the reliability required on a certain component if there is a requirement on

overall system reliability?”

This is the problem of reliability distribution . Addressing this issue is useful because

we can have specific quantitative requirements on the selection of software and hardware

components, whose qualities are often cost-sensitive. The reliability distribution analysis

shown in Figure 4.2 (b) needs two inputs: (1) a reliability requirement R on the overall

system; (2) a parametric MDP model M. RaPiD considers only memoryless schedulers that

have already been proven to be enough for probability reachability analysis in MDPs [16].

Given a scheduler �, we can obtain the system reliability (i.e., Pr(M�, s)) as a polynomial

function of x and its associated inequality, e.g., 0.5x 1 + 0.16435x 3 + 0.05402x 5 + · · · � R.

To solve the constraints on an individual component, RaPiD uses Newton’s method, due to

its fast convergence rate to the solution/root. RaPiD calculates the lower bounds on x for

finitely many schedulers among which the maximum value gives us the minimum requirement

on component reliability.

• “Which component is most critical to system reliability among all system components?”

The answer can be addressed via sensitivity analysis . This analysis is essential to improve

the overall system reliability effectively with limited resource. For example, if a system is

shown to be not reliable enough based on current components, it is desirable to prioritize the

components such that reliability improvement of a higher priority component would result in

better improvement on overall system reliability. Sensitivity analysis requires all component
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reliabilities to be known in advance and an indication on which one of those components

needs to be evaluated, as shown in Figure 4.2 (c). The sensitivity �i of component i with

reliability Ri is defined as a partial derivation of system reliability R, i.e., �i = Pr(M,s)
�Ri

.

Here, Pr(M, s) are polynomials obtained via parametric reachability analysis. RaPiD has

equipped with polynomial solvers to solve these differential equations. Noted that, similar

to the reliability distribution, due to multiple schedulers in an MDP, results for sensitivity

analysis ranges from its maximum and minimum sensitivity values.

4.3 AMUPADH System

Dementia is a progressive, disabling, and chronic disease common in elderly people. Elders

with dementia often have declining short-term memory and have difficulties in remembering

necessary activities of daily living. However, they are able to live independently in assisted

living facilities with little supervision. An ambient assisted living system for elderly dementia

people’s healthcare (AMUPADH) system is designed for this purpose by providing necessary

assistance in the form of reminders.

AMUPADH is a project initiated in Singapore to design smart healthcare systems for mon-

itoring and assisting the daily living of elderly people with dementia. This project started

with three months’ visits to PeaceHeaven1 nursing home for collecting requirements. By ob-

serving the patients’ daily life and interviewing nurses/doctors, two critical issues associated

with dementia patients are raised which are sleeping behavior in bedroom and showering

behavior in bathroom. With 21 months research and development focusing on providing

assistance on these two scenarios, the system was finally deployed in the nursing home to

be tested with real dementia patient users for 6 months.

Preliminary data collected in the trial shows that the importance of system reliability is un-

1Located at 9 Upper Changi Road North, Singapore, 507706. Tel: +65-65465678.
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Figure 4.4: An overview of AMUPADH system design

derestimated. Unreliability caused by sensor/device failures, network issues and unforeseen

human errors draws considerable attentions of the stakeholders.

4.3.1 System Components

The design of the system is shown in Figure 4.4. It mainly consists of three sub-systems, Data

Acquisition component containing various sensors, the Context Processing and Inference

Engine components based on first order logic rules and Reminder System for rendering

suitable reminder services to the patients.

• Data Acquisition In the system, multiple sensors are deployed to acquire information

from the home environment. For example, if someone turns on the shower tap, the

shake sensor on shower pipe will be triggered and change its status to Unstationary .

A signal is generated and then sent to the central system via a Zigbee network. AMU-

PADH adopts a multi-modal sensor2 design for user monitoring. This is due to users’

2Multi-modal sensor also known as sensor fusion is the combining of sensory data from disparate sources
such that the resulting information is more accurate than using the sources individually.
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Figure 4.5: Sensor deployment in a PeaceHeaven nursing home

privacy concerns, video cameras are refused in bedrooms.

The PeaceHeaven nursing home has 13 separate Resident Living Areas (RLAs), each

designed as an individual home-like environment. Selected rooms for AMUPADH

system deployment are equipped with two/three beds with a shower facility. Three

rooms are selected for deployment; and each room is shared by 2 or 3 people. Figure 4.5

shows an exemplar sensor deployment for a twin shared room. The pressure sensor

under a bed mattress is used for detecting sitting/lying behavior, while the RFID

readers are for detecting the identity of the person near the location. In the bath room,

a motion sensor detects human presence in the room, while the vibration sensors are

attached to water pipes and the soap dispenser for detecting their usages.

• Context Processing and Reasoning Upon receiving a sensor signal, the central

system translates it into low-level context sensor events i.e., a signal unstationery

from shake sensor on shower pipe is translated to “Shower Tap On". Different low-

level contexts are provided from different sensors. They are aggregated in the inference

engine for reasoning and generating high-level contexts, activities . This task is per-

formed by evaluating predefined activity recognition rules based on prior knowledge

of user behavior. A typical rule is like: if shower tap is on and lasts for 30 minutes,

at the meantime a PIR sensor detects movements of someone in the washroom; an
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abnormal behavior, showering for too long is recognized, then a message will be sent

to the server indicating some patient is in the abnormal state of showering for too long.

The messages are sent out via a shared bus within the central system. Note that,

AMUPADH aims for a multi-user sharing environment which is a challenging topic in

the activity recognition area. In fact, it is not only important to know which activity

is being carried on but also who is doing this activity. This adds complexity to define

the activity recognition rules. In the case that if the patient’s identity is missing in

a rule, the activity could be recognized for a different person, causing a subsequent

reminder to be prompted to a wrong patient. Our previous work [89, 83] discussed

this issue in details. In this work, when defining the reliability of the inference engine,

we take this factor into account.

• Reminding System The reminding system listens to the messages sent from the

inference engine and decides which reminder service to render. For example, upon

receiving the message Activity .error .ShowerTooLong .patientA, the system will invoke

the service of playing a preloaded sound reminder on bluetooth speaker located in

the shower room correspondingly. In this case, the message is transferred via blue-

tooth technology. In general, different message transmitting technologies are used for

different rendering devices. For instance, for reminders on mobile phones, messages

are transmitted through 3G network, while for iPad case, a small home wide Wi-Fi

network is used.

4.3.2 Six Reminding Scenarios

In AMUPADH system, there are six reminding scenarios targeting at providing assistance

for six abnormal behavior of elderly patients with dementia.

• Using Wrong Bed (UWB) Since a room in the PeaceHeaven nursing home is shared
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by 2-3 patients, some of them, especially the new residences, tend to lie on a bed

without recognizing whether it is his/her own bed. This behavior is detected by the

bed pressure sensor and RFID reader. The reminder will be prompted by a Bluetooth

speaker beside bed or an iPad on the wall asking the patient to leave the bed.

• Sitting on Bed for Too Long (SBTL) Some of the agitated patients often have

sleeping problems. They are easily bothered and irritated by the environment. A

typical symptom is that the patient will get up at midnight and sit on the bed for

very long time until assisted by nurses/caregivers. The abnormal scenario is captured

by bed pressure sensor and a timer in the mini-server. A reminder will be prompted

using similar devices as UWB scenario whispering the person to sleep or send an alert

to nurse’s PC console/ mobile phone.

• Shower No Soap (SNS) Due to memory loss, dementia patients constantly forget the

normal steps of performing an daily activity. In the taking shower activity, the patient

could forget what to do next right after the shower tap is turned on. It is reported

by the nurses that some of the patients finish the shower very fast without applying

soap. Concerned about the personal hygiene, patients presenting this behavior need

help. Vibration sensors on the shower pipe and soap dispenser are used to capture

the activity. A reminder instructing the person to use soap will be prompted by a

Bluetooth speaker.

• Showering for Too Long (STL) Similar to the SNS scenario, some patients will

stand under the shower head for a long time. This is a critical issue that exposing in

the water for a long time could cause the patient to faint. If not helped immediately,

it can even cause death. Similar sensors and devices are used as SNS scenario to help

the patient stop showering.

• Tap Not Off (TNO) It is often the case that dementia patients forget to turn off the

tap after showering. In order to save water and energy, this scenario is detected by a
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RFID reader, a motion sensor and two vibration sensors. A reminder is prompted on

proper device according to patient location asking someone to turn off the tap.

• Wandering in Washroom (WiW) Caused by memory loss, it is possible for the

patient to forget at any step during showering. Thus, a wandering behavior is also

typical and patients need assistance in such cases. The wandering behavior is mon-

itored by a RFID reader and a motion sensor in the washroom. A leave-washroom

reminder will be prompted to the person.

In fact, taking shower turns out to be the most concerned issue of nursing elderly patients

with dementia. In PeaceHeaven, the nurses need to monitor the showering activity of every

patient. Considering the ratio of nurses to patients is 1:15, it creates a heavy burden to

nurses. To alleviate the problem, a two-level reminding solution is provided in AMUPADH.

When the system recognizes an abnormal behavior, it will prompt a reminder to the patient.

If the problem remains, an alert will be sent to the nurse’s mobile phone or PC console to

raise her attention.

4.4 Modeling AMUPADH System

AAL systems are user driven such that the system behavior contains non-determinism due

to the unpredictable user behavior. Thus, MDP is chosen as the modeling formalism in

this work. Compared to DTMC, MDP allows us to capture both probabilistic and non-

deterministic behavior. A central issue in the AMUPADH system modeling is that when to

use non-deterministic choices over probabilistic choices. As we mentioned in Section 3.4.2 in

Chapter 3, probabilistic choices can be viewed as informed non-deterministic choices. That is,

we use a non-deterministic choice when we have no definitive information on how the choice

is resolved. Although the construction of reliability models have already been introduced in
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Figure 4.6: Bathroom scenario: Tap Not Off (TNO)

Section 3.4.2, we demonstrate the details on how to model an AAL system based on those

contraction rules.

In practice, it turns out to be unrealistic to model all the scenarios using one MDP model

considering the complexity and readability. Thus, we split the model into six models ac-

cording to different scenarios by duplicating the same components. In the following, we

shall explain the modeling processes. Scenario TNO as shown in Figure 4.6 is taken as an

example for its richness of involved components. In order to build the reliability model,

there are three major elements to extract from AAL systems, i.e., the nodes, the transitions

and the reliability values.

4.4.0.1 Nodes

Typically, in an AAL system, the sources of unreliability could be failure of sensors and

network devices, error in softwares and connection loss/transmission failure in networks.
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Thus, in an MDP model of an AAL System, nodes are the abstraction of sensors, software

components and network devices. To decide which device/component is necessary to be

modeled, we need to analyze the activity recognition rules. In TNO case, four sensors

are used for recognizing this behavior as introduced in Section 4.3.2. Besides, there are

multiple choices of playing this reminder, e.g., playing on an iPad where reminder command

is received via Wi-Fi network or on a Smart Phone through 3G network. Thus, the four

sensors, iPad, smart phone, Wi-Fi network and 3G network need to be included in the model

as nodes. Similarly, the Zigbee network, mini server and the rule engine need to be modeled

as well.

In Figure 4.6, circle nodes denote sensors, square nodes denote hardware devices and cloud

shape nodes denote networks. Double circled nodes are accepting nodes representing a

reminder is successfully delivered. The different shapes of nodes are used to show the

different types of components. In the MDP model, they are treated the same.

4.4.0.2 Transitions

In AAL systems, there are usually two types of relations between nodes, happen-before and

message-forwarding relations. Happen-before relation usually exists among sensors saying

that some sensor is triggered earlier than the others. It is able to be derived from analyzing

the temporal relations between sensors according to their spatial distribution. For example,

in Figure 4.5 in Page 60, the RFID reader near to the bedroom door is triggered earlier

than the other sensors assuming the system starts with all users outside. Thus, in the MDP

model, it should be placed in front of the rest of sensor nodes.

However, sometimes, the happen-before relation is not deterministic. For instance, for the

model shown in Figure 4.6, there is no specific triggering orders between shake sensors on

the tap and soap dispenser. Thus, we need to enumerate all the possible orderings. Besides,
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there is one rule deciding this abnormal behavior based on shower-pipe vibration sensor only.

Thus, there is a transition link from ShakeT to Zigbee making the ordering asymmetric.

Our experience suggests that it is better to enumerate all the possible transition orders in

the initial model, especially when there are multiple rules defined for recognizing the same

scenario.

As for message-forwarding relations, they are extracted from the system design. For example,

in the TNO model, the messages are sent to the mini server via Zigbee network. Thus, a

Zigbee node is placed between the sensors and mini server. The transitions between nodes

denote the direction of message transmission. Similar methods are applied for the rest of

the transitions.

4.4.0.3 Reliability and Transition Probability

The final step is to label the nodes and transitions with probability values. Nodes are labelled

with reliability values of the corresponding devices. For transitions, there are different cases.

At the initial node, the outgoing transitions usually representing the user behavior. In the

TNO case shown in Figure 4.6, there is 20% of time, the user will throw the RFID tags

away (result drawn from an experiment conducted by the engineers). Thus, initially, there

are only 0.8 probability leading to the next node. Additionally, the happen-before relations

are usually non-deterministic choices with no specific probabilities due to randomness of

user activities, thus by default, we assign the value 1. As for forwarding relations, due

to the signal strength, transitions to/from network nodes have different reliability values.

Transitions from Wi-Fi node to bridge node has the reliability of 0.8 since the bridge is

placed on the wall outside the bedroom. The nurse PC in common area is further away from

the bedroom, thus the transition from bridge to PC is as low as 0.75.

In our case study, these reliability values are provided by system engineers. Fortunately,
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Reliability UWB SBTL SNS STL TNO WiW
Number of Schedulers in MDP 32 24 32 16 64 16

Max Reliability 0.3744 0.4190 0.3670 0.3707 0.3707 0.3707
Min Reliability 0.2956 0.2463 0.2897 0.2927 0.2897 0.2927

Calculation Time <1 ms

Table 4.1: Results of reliability prediction

Reliability Requirement Nodes UWB SBTL SNS STL TNO WiW

0.4 Network 0.854 0.904 0.913 0.911 0.911 0.911
Sensor 0.886 0.938 0.941 0.923 0.923 0.923

0.5 Network 0.914 - 0.965 0.963 0.963 0.963
Sensor 0.996 - 0.995 0.994 0.994 0.994

Time(s) 3.45 2.68 3.86 1.87 11.00 2.35

Table 4.2: Results of reliability distribution

AMUPADH system has been deployed in a real user environment for data collection. During

the 6 months trial deployment and 3 consecutive months, 24 hours data collecting, the

engineers are able to log every details of how the system works. By comparing to the

ground truth (manually logged by nurses in the nursing home) and conducting statistical

analysis, they are able to provide a good estimation of each component’s reliability.

4.5 Reliability Analysis on AMUPADH

Based on the MDP models constructed in Section 4.4, we use the RaPiD tool for reliability

analysis. All the experiments are carried out on a PC with 2.7 GHz Intel CPU, 8 GB memory

and 64-bit Windows 7 operating system. In the following, we listed the settings and results

of three groups of experiments respectively. Interested readers are referred to [1] for details.

67



4.5. Reliability Analysis on AMUPADH

4.5.1 Reliability Prediction

As shown in Table 4.1, the reliability of six scenarios ranges from 25% to 40% with dif-

ferent scheduler which is quite low considering using the system at home with no human

supervision.

One general observation from this experiment is that the system uses the RFID sensors in

many places for identity tracking. However, the RFID sensors have the lowest reliability

among all the sensors. In fact, due to budget issues, these RFID readers used in the system

have a half meter detecting radius which are much cheaper but have a lower accuracy than

others with a larger radius. Besides, the dementia patients tend to remove their RFID tags

from time to time causing the failure of identity tracking. It is also an important lesson

learned that AAL systems cannot rely on patients to provide the critical information. Thus,

we suggest the designers to replace the RFID reader to the one with a larger detecting range

or the one does not require a tag.

Besides, the six reminding scenarios have similar reliability except for SBTL case. By a

careful examination, we discover that the rule defined for SBTL has an error. Because the

engineer failed to put the user’s identity information into the rule’s condition, this reminder

will be sent to the wrong user in 50% chance. This shows that reliability analysis is also

useful in identifying system bugs.

4.5.2 Reliability Distribution Analysis

Further, we explored how to distribute reliability on certain components so as to reach an

overall reliability requirement. Two groups of nodes are tested which are sensor nodes and

network related nodes. By fixing reliability of the network related nodes, we calculated the

distribution on sensor nodes and vice versa. We consider a uniform distribution (where all

the nodes have the equal weight) among sensors since they have similar reliability.
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As shown in Table 4.2, it requires each network related node to have a reliability of 0.913

in order for all the scenarios to achieve a reliability of 0.4. However, it is impossible when

the requirement raises to 0.5. The reason also points to a failure rule in SBTL scenario.

Moreover, it becomes unrealistic that if we expect the system reliability to reach 0.5 based

on the current design, it requires highly accurate and stable sensors which are of much higher

cost. For example, a short range RFID reader may cost a few hundred US dollars, but for a

higher range, the price raises to a few thousand US dollars. Considering the AAL systems

are to be deployed in normal homes, the cost becomes unaffordable for normal families.

Thus, this group of experiment results requests AMUPADH designers to rethink about the

system design rather than simply replace sensors.

Besides, it is still intuitive to ask the question that which node or group of nodes affects the

system reliability more than the others? If improvements are made on such node(s), it will

be more efficient. Thus, we seek the answer from sensitivity analysis.

4.5.3 Sensitivity Analysis Experiments

There are multiple schedulers in each MDP model as shown in Table 4.2. Due to page

limits, we present one typical scheduler in this experiments. The UWB scenario refers to

Section 4.3.2 is modeled in Figure 4.7. The path connected by thick black links are the

target scheduler. It is a typical case which relies on two RFID sensors and multiple other

sensors. The iPad case is chosen since playing reminders on iPad is the most common way

in practice.

Two nodes and a bundle of nodes are chosen for the experiment which are RFID reader node,

Zigbee network node, and bundle of nodes related to Wi-Fi network (If network reliability is

improved, the reliability of message transmission paths i.e., bridge and transition to bridge,

will also be improved.). Figure 4.8 (a) shows the reliability distribution on these nodes.
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Figure 4.7: Bedroom scenario: Using Wrong Bed (UWB)

As we can see, improvement on RFID reader node and Wi-Fi bundle can achieve a higher

reliability than Zigbee node.

Recall that the sensitivity measures how quickly the system reliability changes when one

of its component’s reliability changes. Therefore, the sensitivity analysis is conducted with

respect to a particular component. The reliability of this component varies and those of

the others are kept constant. In Figure 4.8 (b), two horizontal lines indicates that system

reliability increases constantly (i.e., in a linear rate) with respect to the component reliability.

It further indicates that when the reliability of these nodes are greater then 0.7, increasing

reliability of nodes in Wi-Fi bundle can achieve better improvement than other nodes. In

practice, increasing the reliability of a network might be cheaper than purchasing a sensor
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Figure 4.8: Reliabiltiy Analysis on Nodes for UWB

with higher reliability, e.g., placing more bridges along the path.

4.5.4 Discussions

Although we have only carried out detailed analysis in RaPiD on one AAL system, AMU-

PADH, we contend that the approach considered here is widely applicable to many other

similar systems for the following reasons.

Modeling Applicability Layered architecture and multi-sensor platform are widely adopted

in AAL systems like AMUPADH system because of the low cost and high extensibility, e.g.,

plug and play [6]. Thus, the modeling techniques introduced in this case study are easily

adaptable to other similar systems by extracting necessary information from the system

design and codes about scenarios, transition relations among related sensors and actuators

and the internal reasoning mechanism. Our approach requires the knowledge and experience

on modeling system in MDP models, which makes it not easy for engineers to use without

necessary background.
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Usefulness The above experiments show that our approach can give a good estimation

on the overall system reliability. Upon a reliability requirement on overall system, we can

provide suggestions of the least requirements on certain nodes. Additionally, our approach

provides useful guidance on improving the system effectively, such that relatively more effort

and fund can be spent on those critical components in budget concerned systems. Thus, our

approach is able to solve practical problems and give useful suggestions for the improvement

of the system design.

4.6 Related Work

The tools like SMERFS [39], SoRel [73], CASRE [90, 91], and RAT [85] can be used to

estimate software reliability using the failure data to drive the software reliability growth

models (SRGM) [81, 72]. Due to the need for learning SRGM, all those tools can only be

used very late in the software life-cycle. Moreover, they treat software as a black box without

utilizing any architecture information.

In performing white box based software reliability prediction using software architecture

or usages scenarios, though some techniques have been proposed in [76, 103, 51, 55, 106,

128], there are only two tools available. One is SREPT [110], the other is a simple GUI

toolkit that has been developed for the purpose of education demonstration [131]. All those

approaches are based on deterministic reliability models, which have not considered the non-

deterministic factors. Our toolkit RaPiD are designed for non-deterministic systems based

on Markov decision processes.

Although RaPiD uses probabilistic model checking techniques, unlike the general probabilis-

tic model checkers including PRISM [78] , MRMC [74] and LiQuor [27], RaPiD is tailored to

software reliability analysis. In particular, it provides fully automated solutions to reliability

prediction and reliability distribution problems as well as sensitivity analysis.
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For the applications, there are also some works on analyzing reliability of complex systems in

the literature. Reliability analysis by modeling system architecture as discrete time Markov

chain (DTMC) is first proposed by Cheung [26] in 1980. It has been applied in various case

studies, e.g., Gokhale et al. [52] analyzed a system called SHARPE by constructing a DTMC

and found out the relation between system reliability and fault density per subsystem.

Goseva et al. [53] performed reliability predicting and sensitivity analysis on a system of the

European Space Agency. Wang et al. [129] analyzed a stock market system by constructing

DTMC and predicted the system reliability. However, to the best of our knowledge, there

is no reliability analysis has been conducted on any AAL system which involves not only

system reactions but also non-deterministic human behavior. In such a complex system,

probability distribution of transitions among system components are hard to obtain. To

overcome this challenges, we choose Markov decision process as the reliability model over

discrete time Markov chain. Furthermore, most of the works are focusing on predicting

reliability of current systems while we contribute more on finding the best solutions to

improve system reliability via reliability distribution and sensitivity analysis.

4.7 Summary

In this chapter, we have introduced our reliability analysis toolkit called RaPiD, and then

demonstrate the usage and usefulness of RaPiD on a ambient assisted living room system

by studying on a real smart healthcare system [18]. The reliability models are manually

constructed from the design and implementation of the systems. Three important reliability

analysis activities are performed on this system, including reliability prediction, reliability

distribution and sensitivity analysis. The experiments show that the overall system reliability

is hardly able to reach 50%. It is also suggested that to improve the reliability of Wi-Fi

network will be more efficient to improve the system reliability.
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Chapter 5

Improved Reachability Analysis based

on SCC Reduction

One fundamental task in quantitative analysis of probabilistic system is to decide the prob-

ability of reaching a set of target states in the system. We refer to this as the reachability

analysis problem. It is a crucial step in probabilistic model checking as well as model-based

reliability analysis. Thus, improving the efficiency of reachability analysis can be consider-

ably beneficial. In this chapter, we introduce graph-based reduction techniques to improve

the reachability analysis for two typical Markov models, i.e., Markov decision process (MDP)

and discrete time Markov chain (DTMC).

5.1 Introduction

Reachability analysis in two Markov models MDPs are extensively used to model a

system with both non-determinism and probabilistic behavior. A DTMC can be considered

as a special form of an MDP with unique reachability probability since it has only one prob-
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ability distribution at each state. Given an MDP and a set of target states, a variable can

be created for each state to present the probability of that state reaching the target states.

There are two main methods to calculate or approximate the values of these variables [16].

One method encodes the probabilistic reachability problem into a linear optimization prob-

lem where each probability distribution is encoded into an inequality. Thus, the goal is to

maximize or minimize the sum of the variables. It should be noted that the state-of-the-art

linear solvers are limited to small cases with up to thousands of variables. However, a prac-

tical Markov model is often resulted from parallel composition of several MDPs/DTMCs,

which would have an even larger number of states.

The other method is based on value iteration by finding a better approximation iteratively

until the result satisfies a certain stopping criterion, and performs generally better in system

with a large number of states [16]. The approximation of the variable of a state needs to

be updated whenever any of its successive states are changed. When there are loops in an

MDP, this approach tends to require many iterations before converging to a value, and thus

lead to slow convergence.

A motivating example Fig. 5.1 (a) shows an example of a simple MDP with loops among

states s1, s2 and s3. Suppose the task is to calculate the probability of reaching state s4 from

state s0. If the approximation in s2 is updated during the k th iteration, the approximation

in s1 will be updated during the (k + 1)th iteration as s2 is successive to s1. The update of

s1 will trigger s3 to update its value subsequently, which requires s2 to be updated again.

This iteration can only be stopped by enforcing a stopping criterion, thus one major issue

associated with such an approach is that the difference between the approximated and

‘actual’ probabilities remains unknown even after the iteration is stopped [44]. On the other

hand, in an acyclic MDP in Figure 5.1 (b), each state will be visited only a few rounds for

backward calculation without iterations. In this case, the exact maximum and minimum
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Figure 5.1: Running examples of (a) an MDP and (b) an acyclic MDP

probabilities can be calculated without the necessity of approximation. DTMC can be taken

as a special MDP that has exact one probability distribution at each state. Hence, the same

issues due to the existence of loops also exist in DTMCs. Therefore, in this work, we are

motivated to improve reachability analysis by removing loops in both Markov models.

SCCs elimination Some foundation has been established by recent works on the elim-

ination of strongly connected components (SCCs) in DTMC [8, 5]. To remove the loops,

SCCs are first identified, and the transition probabilities from every input to output states

of each SCC are calculated. The loops can then be removed by connecting the inputs to the

outputs with the computed probability transitions (i.e., abstraction of SCC). After all the

SCCs are abstracted, the whole model becomes acyclic. With such an acyclic set of states,

value iteration can be used to calculate the probability from initial states to the target states.

Our work is inspired by the above mentioned SCC reduction methods. We propose ap-

proaches based on divide-and-conquer algorithms that divide an SCC into arbitrary parts

and resolve the loops in each small part. Instead of simple extensions, our divide-and-conquer

approaches are tailored to the particular structure i.e., DTMC or MDP, respectively, and

integrated with other techniques. More details are introduced as follows.

Our SCCs reduction algorithm in DTMC For DTMC, we divide each SCC having a

large number of states to several smaller partitions. For each partition, abstract transitions

from its input to output are calculated via solving linear equations. Here we use Gauss-
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Jordan elimination [7]. Further, the states in each partition which are not input states will

be removed, and thus the states in the SCC can be reduced. Afterwards, the new SCC is

ready for next iteration of divide and conquer. This procedure for each SCC will be done

iteratively until any of the following three criteria is satisfied. First, there is no more loop

in the reduced SCC. Then this part will be left alone since it is already acyclic. Second, the

number of remaining states in reduced SCC is small enough to be solved via a linear solver.

Third, the last iteration does not reduce any states. In the second and third scenarios,

the final SCC will be solved via linear equation again, and final abstract transitions will

be generated. After all loops in SCCs are resolved, the whole DTMC becomes acyclic, and

value iteration is used to calculate the probability from initial states to targets. Since the

abstract transitions from each partition’s input states to output states are determined by

the partition itself and independent to other partitions, multi-cores or distributed computers

can be straightforwardly used here to solve each partition simultaneously, which makes the

verification faster.

Our SCCs reduction algorithm in MDP In an MDP, however, eliminating loops is

particularly challenging due to the existence of multiple probability distributions. The num-

ber of memoryless schedulers of an MDP increases exponentially with the number of the

states that have multiple probability distributions. During the abstraction of a group of

states, a probability distribution must be calculated under different memoryless scheduler

in the group. As a result, the total number of probability distributions can increase expo-

nentially after abstraction. Therefore, directly applying the existing approaches [8, 5, 117]

to MDPs is often infeasible.

To overcome this challenge, we propose another divide-and-conquer algorithm to remove

loops in MDP. For each SCC, we first construct blocks, i.e., each state in the SCC forms a

block. By solving sets of linear equations, new probability distributions can be calculated
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from each block to replace the loops without varying the overall reachability probabilities.

With the new equivalent probability distributions, the new block will be free of loops, and

have the same reachability probabilities with the original model. We repeatedly merge a

few blocks into one block, and eliminate loops in this new block by performing the above

abstraction until only one block is left in the SCC. After the reduction for all the SCCs,

the remaining acyclic MDP can be solved efficiently via the standard value iteration ap-

proach. After this reduction, the maximum and minimum reachability probabilities of the

reduced MDP remain unchanged as compared with those of the original MDP. As introduced

earlier, reducing states in SCCs of an MDP may result in exponentially many probability

distributions, and our algorithm is thus designed to eliminate redundant or infeasible prob-

ability distributions on-the-fly to achieve better performance. The underlying observation

is that, a probability distribution will not affect the maximum or the minimum reachability

probability, if it is not a vertex of the convex hull of a set of probability distributions.

Organization The rest of this chapter is structured as follows. The relevant background

information is recalled in Section 5.2; Our SCC reduction approach for DTMC is introduced

in Section 5.3 and for MDP is in Section 5.4; the evaluations for both approaches are reported

in Section 5.5; and related work is surveyed in Section 5.6.

5.2 Preliminaries

In this section, we recall some relevant background knowledge.

5.2.1 Some Graph Definitions on Markov Models

Discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) are the most

popular Markov models. DTMCs model a purely probabilistic system, while Markov decision
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processes (MDPs) can model systems exhibiting both probabilistic and non-deterministic be-

havior [16]. The two kinds of Markov models and their associated reachability computations

are detailed in Chapter 2. In the following part, we formalize the definitions of input states

and output states of a group of states, and strongly connected components in a Markov

model. We will only introduce those definitions for general MDPs, which can be easily

adapted to DTMCs, since DTMCs can be treated as special MDPs as mentioned previously.

Input and Output States Similar to [8, 5, 117], in an MDP M = (S , init ,Act ,Pr), we

define input and output states of a group of states K ✓ S as follows.

Inp(K) = {s 0 2 K | 9 s 2 S\K, 9 a 2 Act · Pr(s, a)(s 0) > 0},

Out(K) = {s 0 2 S\K | 9 s 2 K, 9 a 2 Act · Pr(s, a)(s 0) > 0}.

Here, the set of input states of K, Inp(K), contains the states in K that have incoming

transitions from states outside K; and the set of output states of K, Out(K), contains all

the states outside K that have direct incoming transitions from states in K. In addition,

without loss of generality, if a group contains the initial state init , we include init to its

input states (with an imaginary transition leading to init from outside).

Strongly Connected Components A set of states C ✓ S is called strongly connected

in M iff 8 s, s 0 2 C , there exists a finite path ⇡ = hs0, s1, · · · , sni satisfying s0 = s ^ sn =

s 0 ^ 8 i 2 [0,n], si 2 C . Strongly connected components (SCCs) are the maximal sets

of the strongly connected states. All SCCs can be automatically identified by Tarjan’s

approach [126], with a complexity of O(n + l), where n and l are the numbers of states and

transitions, respectively.

In Figure 5.1 (a) in Page 77, {s0}, {s4}, {s5} and {s1, s2, s3} are the SCCs in the model. We

define SCCs as trivial if they do not have any outgoing transitions (e.g., {s4}, {s5}) or are

80



5.2. Preliminaries

not involved in loops (e.g., {s0}, an SCC of one single state without any loop). As a result,

{s1, s2, s3} is the only nontrivial SCC in Figure 5.1 (a). An MDP is considered acyclic if it

contains only trivial SCCs. An example of an acyclic MDP is shown in Figure 5.1 (b). Note

that an acyclic MDP may still have absorbing states, but it does not affect the computation

of reachability probabilities.

In addition, we define an adjacent group (AG) D ✓ S such that 9 s 2 D , 8 s 0 2 D ^ s 0 6= s ,

there is a finite path ⇡ = hs0, s1, · · · , sni satisfying s0 = s ^ sn = s 0 ^8 i 2 [0,n], si 2 D , and

s is called root state in D . AGs are more complex, for example, in Figure 5.1 (a) {s0, s1, s2}

and {s1, s2, s4} are AGs and there are other possible combinations. Note that a set of states

like {s0, s1, s4} is not a valid AG because there is no such a root state. Strongly connected

subgraphs are AGs but the reverse is not always true, e.g., {s0, s1, s3} is an AG but not a

connected subgraph.

5.2.2 States Abstraction and Gauss-Jordan Elimination

Given a set K, if a state is not an input state, we call it as an inner state. We can eliminate

all the inner states of K by calculating the direct transition probabilities from Inp(K) to

Out(K). This process is called abstraction. It eliminates all loops in K, and meanwhile,

preserves the maximum and minimum reachability probabilities from inputs to the outputs

of K. There are known algorithms in [5, 117] to perform the abstraction. However, they are

only applicable to DTMCs. For an MDP M, the abstraction are performed on its induced

DTMC, M�, with its every memoryless schedulers �. In the following, we introduce the

details on how to achieve the abstraction on a given DTMC.

Given a DTMC (S , init ,Pr) and a group of states K ✓ S , K can be abstracted by cal-

culating the transition probability from Inp(K) to Out(K). According to the proof in [5],

the abstraction of any arbitrary set of states is independent from others, and the abstract
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Figure 5.2: States abstraction via Gauss-Jordan Elimination in a small DTMC

transitions preserve the probability of reaching target states G .

One example of the abstraction is in Figure 5.2. Figure 5.2 (a) is the original DTMC, which

has one SCC K = {s1, s2, s3}. Inp(K) = {s1} and Out(K) = {s4, s5}. In order to abstract K1,

the probability from Inp(K) to each state sout 2 Out(K) should be calculated. Theoretically,

the calculation from an SCC’s inputs to outputs can be solved via linear equations or value

iteration approaches2. However, for value iteration approach, since there could be several

output states in Out(K), we have to separately calculate the probability from input states

to each output state. If there are many output states, this method could be inefficient. In

addition, the existence of loops still causes slow convergence issue. Furthermore, using value

iteration, there will be some errors because of the user-defined precision, but there is no way

to know the error bounds. Therefore, we use a specific linear equation solving technique:

Gauss-Jordan elimination [7] to do the abstraction.

Gauss-Jordan elimination is an algorithm for getting matrices in reduced row echelon form

that placing zeros above and below each pivot [7]. Here, we briefly introduce how it works

in our setting.

Assume there are m states in a set of states K, and |Out(K)| = n. Then two matrices A

1Here we take an SCC as an example. Actually this abstraction can be applied to arbitrary set of states,
according to [5].

2Different from our previous discussion which focuses the calculation from the initial state to targets,
here we discuss the probability from input states to every output state of an SCC.
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and B , containing linear equations information of all transitions in K, are first introduced

as follows.

A(i , j ) =

8

>

<

>

:

1, if i = j ;

�Pr(i , j ), otherwise.
B(i , k) = �Pr(i , k).

Here, A is an m ⇥m square matrix. A(i , j ) is a negative value of probability of transition

from i th state to j th state in K if i 6= j . The diagonal elements of A are filled by 1. This

records the transition relationship within K. B is an m ⇥ n matrix to record the transition

relationship from K to Out(K). k represents the k th state in Out(K).

Next, augmenting the square matrix A with matrix B , we will have [A | B ]. Gauss-Jordan

elimination on [A | B ] will then produces [I | C ]. Here, I is the identity matrix with 1s on

the main diagonal and 0s elsewhere. The new transition probability e.g., Pr 0(i , k), stores

the transition probability from i th state in K and k th state in Out(K), which is actually

�C (i , k). Now take Figure 5.2 (a) as an example. Its [A | B ] and resulting [I | C ] are listed

as follows.

[A | B ] =

2
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; [I | C ] =

2

6
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1 0 0
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�

�

�

�

�

�

�

�

�

�

�0.4 �0.6

�0.2 �0.8

�0.6 �0.4

3

7

7

7

7

5

Here the transitions from all the states in K to Out(K) are obtained. Note that those

states which are not in Inp(K) will be removed. Therefore we are just interested in the new

transitions from Inp(K) to Out(K), which are

Pr 0(s1, s4) = 0.4; Pr 0(s1, s5) = 0.6;

Accordingly, we can obtain a new probability distribution as {0.4 7! s4, 0.6 7! s5} at state
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s1 in the abstracted DTMC, which is shown in Figure 5.2 (b). Given a group of states K in

an DTMC, this abstraction procedure is defined as a method Abs(K).

Note that in practice, most transition matrices in probabilistic model checking have a very

sparse structure that contains a large number of zeros. A compressed-row representa-

tion [120] can be further adopted as the data structure to present matrices in Gauss-Jordan

elimination.

5.3 SCC Reduction on Discrete Time Markov Chains

As illustrated in the introduction, for a large DTMC with complicated loop structure, both

linear equations and value iteration method are ineffective, even unworkable. In this section,

we propose a divide-and-conquer approach which tackles the above-mentioned problem. Our

main idea is similar to work [8, 5], which transfers the original DTMC to an acyclic one by

abstracting SCCs recursively so as to reduce the number of state and loops.

Intuitively, our approach divides large SCCs into smaller partitions, each of which will be

solved via Gauss-Jordan elimination independently. Through this approach, loops will be

eliminated. Afterwards, value iteration method is used to decide the final probability of

reaching targets. In the following, we introduce our algorithm in details.

5.3.1 Overall Algorithm

Given a DTMC M = (S , init ,Pr) and target states G ✓ S , the probability of reaching G ,

denoted as P(sinit |= ⌃G), can be solved by Algorithm 1. Note that B is an input parameter,

which indicates SCCs having more than B states should be divided. Abs(K ) is defined in

Section 5.2.2. ValueIteration(M,G) indicates calculating the probability of reaching G via

value iteration. The procedure of the algorithm is explained in the following.
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Algorithm 1: SCC Reduction in a DTMC via Divide-and-Conquer
input : A DTMC M = (S , init ,Pr), target states G ✓ S and a Bound B
output: P(sinit |= ⌃G)

1 Let C be the set of all nontrivial SCCs in M;
2 while |C| > 0 do
3 Let D 2 C;
4 if |D|  B _Out(D)  1 then
5 Abs(D) and C  C\D
6 else
7 Divide D into a set of AGs denoted as A;
8 for each E 2 A do Abs(E);
9 Let D0 be the set of remaining states in D;

10 if |D0|  B _ |D0| = |D| then
11 Abs(D0) and C  C\D
12 else
13 Let CD0 be the set of all nontrivial SCCs in D0;
14 C  (C\D) [ CD0 ;

15 return ValueIteration(M,G);

• The first step is to find all SCCs C in M by Tarjan’s approach [126], and their input

and output states are recorded as well. This is captured by line 1.

• For each SCC D 2 C, we will first check whether |D| exceeds B or whether |Out(D)| >

1. If not, Abs(D) will be executed directly. States in D but not in Inp(D) will be

removed. Afterwards D will be removed from C, as shown in lines 4-5. The reason

why we directly abstract cases |Out(D)|  1 is as follows.

– If |Out(D)| = 0, D has no outgoing transitions, then no matter whether D has

target states or not, we do not need to solve D. If D \G = �, it is obvious that

all states in D has probability 0 to reach G ; otherwise, it is trivial to show that

all states in D has probability 1 to reach G .

– If |Out(D)| = 1, assume sout is the output state. All paths entering D will leave

it eventually. Therefore, for every si 2 Inp(D), the probability of paths entering
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Figure 5.3: Destruction of SCC during abstraction taken on {s1, s2}

D via si , staying in D and exiting D to sout should be 1. So D can be abstracted

directly.

• Lines 7-14 describe the case when D needs to be divided, i.e., when the SCC has more

than B states. First we divide D into several groups based on some heuristics, each

of which has a reasonably small number of state, i.e., less than B . Therefore, for each

group E we use Abs(E) to get the abstraction. Here we choose AG as the structure of

each partition, because the existence of the root state, say sr , may remove the most

states after abstraction. In the extreme case where Inp(E) = {sr}, all states in E

except sr can be removed.

• By removing the states which are not input states of any E , the number of states in

D is often (not always) reduced. Line 10 checks two situations. 1) the size of D0 is

smaller than or equal to B , and 2) there is no reduction for D in this iteration. If 1) is

true, then there is no need to divide D0 again, and Abs(D0) is executed directly. If 2) is

true, i.e., no state is reduced after divide and conquer, the main reason should be that

each state in D has a lot of pre-states. Therefore every state in one group is an input

state and cannot be removed. In this case, D0 should also be abstracted. Afterwards,

D is removed from C. If 1) and 2) are both false, lines 13-14 will be executed.

• Because of the abstraction, D may not be an SCC now. An example is shown in

Figure 5.3. On the left hand side, D = {s1, s2, s3}; if we group s1 and s2 together, then

s3 is this group’s output. It is easy to get the abstract transitions between them, as
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shown in right hand side. Because both s1 and s2 are input states, no state is removed.

However, it is obvious that D0 = {s1, s2, s3} is not an SCC anymore. Tarjan’s algorithm

is used again to find new SCCs in the D0, captured by lines 13-14. New SCCs will be

added to C for another iteration.

• When the iteration terminates, there is only trivial SCCs in M now; in other words,

M is acyclic. Value iteration approach can be used to calculate the probability from

the initial state to targets efficiently, and this is captured by line 15.

As we mentioned in Section 5.2.2, the iterative abstraction will not affect the final result of

the probability calculation. The following theorem establishes that the algorithm is always

terminating.

Theorem 5.3.1 Given a finite state DTMC M, Algorithm 1 always terminates.

Proof We assume Ŝ = ⌃D2C |D|, in other words, Ŝ is the total number of states in C.

Then the theorem can be proved by showing (1) Ŝ is finite at the beginning, and (2) Ŝ

monotonically decreases after each iteration.

(1) is obviously true because M has finite number of states, and Ŝ  |S | where S is the set

of states of M.

Given an SCC D 2 C, if it satisfies the condition in line 4, then D will be removed from

C, thus Ŝ is reduced. Otherwise, from line 6, there are two possible outputs. (i) 9 E 2 A,

Abs(E) reduces its number of states, or (ii) 8 E 2 A, Abs(E) does not reduce its number of

states. If (i) is true, then Ŝ is also reduced. If (ii) is true, then |D0| = |D|. According to line

8, D will be abstracted directly and be removed from C. Thus Ŝ is still reduced. Therefore

(2) is true, and the theorem holds. 2

87



5.3. SCC Reduction on Discrete Time Markov Chains

5.3.2 Dividing Strategies

Although the divide-and-conquer approach is correct and terminating, its efficiency is highly

dependent on how an SCC is divided. Assume A is the set of partitions after dividing an

SCC, then a suitable partition, say E 2 A, should satisfy the following conditions.

1. E should not have too many states, since each partition is abstracted using Gauss-

Jordan elimination which is limited to a relatively small number of states;

2. E should not have too few states as well, otherwise there will be too many partitions

to be solved, and the states reduction for E is inefficient;

3. The smaller |Out(E)| is, the better reduction is achieved. Too many output states

will make the input states of E have too many abstract transitions, which makes the

remaining structure complicated, and affects the efficiency of the following abstraction.

As a result, the remaining issue is that given an SCC D, is there any optimal strategy to

divide it into suitable AGs? In practice, the structure of D could be arbitrary. This increases

the difficulty of finding a general strategy for all cases.

The simplest division method is to try to set each AG to have the same number of states.

Assume each AG should have N states. Then starting from one input state of D, depth first

search (DFS) or breadth first search (BFS) can be used to group every N states together.

Afterwards, each AG can be abstracted, and the remaining states are combined together to

do the next iteration. The advantage of this strategy is that the number of states in each

partition is easily controlled. It can be very efficient in cases where the states in D has

few transitions. However, this method cannot control the number of output states of each

partition, and a predefined N may not be suitable for D’s structure.

Therefore, another improved strategy is used to automatically decide the number of states

in each AG . Instead of picking a constant N in the beginning, we set a lower bound BL
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and an upper bound BU for each partition. Thus the number of states in each partition

should be between BL and BU . At first, BL states will be grouped into E , and |Out(E)| is

recorded. Afterwards, some states in Out(E) are added into E , and |Out(E)| is updated.

If |Out(E)| keeps unchanged or even becomes smaller after the update, we will try to add

more states into E again. If |Out(E)| is increased but the increase is not significant, a few

states will be added into E but the number should be small. Otherwise E is confirmed and

ready for Abs(E). Note the number of states in E should be always below BU . This strategy

guarantees

1. the number of states in E is under control. BL and BU guarantee that the size of E

should not be too large or too small.

2. the outputs of E are also manageable. This guarantees the states structure after

abstraction is not too complicated, and is suitable for next iteration.

Parameters B , BL and BU can be adjusted according to the specific DTMC to improve the

efficiency.

5.3.3 Parallel Computation

Previous work such as [80, 28] depends on the topological order between different SCCs.

Therefore, parallel computation is not so easy to use in their setting. On the contrary, our

algorithm eliminates loops via abstracting every SCC one by one, without considering their

order. The independence between different SCCs can be proved following the proof in [5].

What is more, even each AG in one SCC is also independent from others, and the proof

actually follows the same idea of SCC’s independence. Thus, parallelization is suitable in

our setting in order to solve different AGs simultaneously.

In details, after finding all SCCs, they are stored with their input and output states. For
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each SCC, a spare thread can be used to solve it. Therefore, lines 2-14 in Algorithm 1 can

be solved via parallel computation. In addition, whenever an AG is grouped, another spare

thread, if there is any, can be used to abstract it. Thus line 8 in Algorithm 1 can also be

handled in parallel.

5.4 SCC Reductions on Markov Decision Processes

As both approaches based on solving linear programming and value iteration have their

own limitations, we propose a new approach to abstract away the loops in each strongly

connected component (SCC) of an MDP based on a divide-and-conquer algorithm, and

then apply value iteration to the resulting acyclic MDP. Without loops, the calculation of

reachability probabilities will be faster, and also will be more accurate than the pure value

iteration case with an unspecified amount of errors.

Reducing SCCs in MDP while preserving the results of reachability analysis is highly non-

trivial, and may lead to extra schedulers and an exponential increase in the number of PDs

if not handled properly. In this work, the proposed divide-and-conquer algorithm works

on blocks; hence effectively avoids the generation of extra PDs. Moreover, we can further

reduce the redundant PDs based on the convex property.

In the following, we will use a running example to illustrate the main idea of the divide-

and-conquer approach, and then present the overall algorithm and detailed methodologies

on performing state abstraction in an MDP, followed by its optimization on the reductions

of probability distributions.
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Figure 5.4: A running example of transforming the MDP in Figure 5.1 (a) to the acyclic
MDP in Figure 5.1 (b)

5.4.1 A Running Example

To reduce an SCC, our reduction approach starts from adding each state in the SCC into a

new block. It then divides these blocks into groups. For each group, it eliminates loops within

the group and merges its components into a new block. We call this process abstraction.

This step repeats until the whole SCC becomes one block, which is guaranteed to be free

of loops. In this part, we demonstrate our main idea with a running example that transfers

the MDP in Figure 5.1 (a) to the acyclic MDP in Figure 5.1 (b). The execution of each step

is demonstrated in Figure 5.4.

First, the states {s1, s2, s3} are identified as the only nontrivial SCC in the MDP, and there

are three blocks, i.e., {s1}, {s2}, {s3}, labeled using different grayscale in Figure 5.4(a). Let

⇤ be the set of all current blocks in the SCC, i.e., ⇤ = {{s1}, {s2}, {s3}}. We then divide ⇤

into two groups, as enclosed by dashed lines, such that the blocks {s1} and {s2} form one

group, and {s3} alone forms the other.
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Subsequently, abstraction is performed on both groups. The main idea of the abstraction

is to eliminate loops in the group by connecting the inputs and outputs using equivalent

non-redundant probability distributions. In the first step, we need to remove the redundant

probability distributions (PDs) in each block of the group. Recall that each PD can form a

linear constraint according to Eq. (2.1). According to the PDs in Figure 5.4 (a), it can be

proved that the constraint from PD b of state s1 is redundant as it can be represented by a

linear combination of the constraints from PDs a and c. As a result, PD b can be removed.

The updated MDP is shown in Figure 5.4 (b).

The second step of abstraction is to calculate the equivalent PDs. In the present case, block

{s1} has two actions and block {s2} has only one action, thus there are two (2 ·1) schedulers

in total. We define �1 as the scheduler selecting PD a at block {s1}, based on which a set

of linear equations can be formed as

V (s1) = 0.1V (s2) + 0.9V (s3); V (s2) = 0.5V (s1) + 0.1V (s3) + 0.4V (s4) (5.1)

Similar definition applies to scheduler �2 for PD c, we have

V (s1) = 0.9V (s2) + 0.1V (s3); V (s2) = 0.5V (s1) + 0.1V (s3) + 0.4V (s4) (5.2)

To eliminate the transitions between s1 and s2, we need to first select a particular scheduler,

and then perform Gauss Jordan elimination. Under the selection of scheduler �1, we can

have the following new transitions based on Eq. (5.1),

V (s1) =
4

95
V (s3) +

91

95
V (s4); V (s2) =

11

19
V (s3) +

8

19
V (s4) (5.3)

Similarly, with the selection of �2, we have the following based on Eq. (5.2),

V (s1) =
36

55
V (s3) +

19

55
V (s4); V (s2) =

3

11
V (s3) +

8

11
V (s4) (5.4)
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As a result, the updated PDs can be established based on Eq. (5.3) and Eq. (5.4). As

illustrated in Figure 5.4 (c), a new block can then be formed by grouping states s1 and s2,

and states s3 and s4 continue to serve as outputs. Each state (s1 or s2) in the new block

now has two PDs (i.e. a and c), which appears to create a larger number (2 · 2 = 4) of

schedulers. However, it should be noted that the newly generated PDs in s2 are derived

based on the choice of scheduler in s1 and thus not independent. For example, Eq. (5.3)

and (5.4) are derived based on Eq. (5.1) and (5.2), respectively. That means a scheduler

selects action a in s1 and action c in s2 is equivalent to a non-memoryless scheduler in the

original MPD (with both selections of a and c at s1). Therefore, two of the four schedulers

in the new block are equivalently non-memoryless and thus redundant for obtaining the

maximum and minimum reachability probabilities (please refer to Section 2.2). Effectively,

the number of schedulers to be handled in the new blocks remains as two. To easily allocate

these schedulers, we denote the PDs for s1 and s2 obtained from the same set of equations

by the same index or the same action name. Thus, given a block, a scheduler only selects an

index or an action, which means the PD with that index or action will be selected at each

state. Similarly, we can obtain the abstraction on the other block {s3}. The resulting MDP

as shown in Figure 5.4 (c) has only two blocks (⇤ = {{s1, s2}, {s3}}) in the SCC, both of

which are free of loops and redundant PDs.

To finally achieve a single block, another round of grouping and abstraction needs to be

performed. There are now two blocks, and we combine them into one group as shown

in Figure 5.4 (d). As explained above, during the calculation of maximum and minimum

reachability probabilities, block {s1, s2} can be described using two schedulers, and the other

block {s3} has only one scheduler. Therefore, the total number of schedulers within the group

is two (i.e., 2 · 1). Let �3 be a scheduler selecting the PD of action a, i.e., �3({s1, s2}) = a,

and �4 be the other scheduler selecting the PD with action c, i.e., �4({s1, s2}) = c. A set

of linear equations can be formed similarly as Eq. (5.1) and (5.2), and the solutions connect
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Algorithm 2: SCC Reduction in an MDP via Divide-and-Conquer
input : An MDP M = (S , sinit ,Act ,Pr), target states G ✓ S
output: P(M |= ⌃G)

1 M0 := M
2 C := the set of all nontrivial SCCs in M0;
3 for each D 2 C do
4 ⇤ := ?; //to record a set of partitions

5 8 s 2 D,⇤ := ⇤ [ {{s}}; //each state is a partition initially

6 repeat
7 Divide ⇤ into a set of groups of partitions denoted as A;
8 ⇤0 = ?;
9 for each J 2 A do

10 E 0 = AbstractionMDP(J ); //J is a set of partitions

11 ⇤0 = ⇤0 [ E 0;

12 ⇤ = ⇤0;
13 until |⇤| == 1;
14 return ValueIteration(M,G) ;

the input states s1 and s2 directly to the output states s4 and s5. With such a new block,

the inner state s3 can be removed from the MDP. Up to this point, there is only one block

left and our reduction finishes. The final acyclic MDP is shown in Figure 5.4 (e).

5.4.2 Overall Algorithm

The overall algorithm for SCCs reduction is presented in Algorithm 2. It is based on a

divide-and-conquer approach that works on blocks of an MDP. Given a set of states S , a

block E is a subset of S such that
S

i Ei = S ; and 8 Ei , Ej , Ei 6= Ej , Ei \ Ej = ?. Given an

MDP M = (S ,Sinit ,Act ,Pr) and target states G ⇢ S , Algorithm 2 removes all loops in M

(i.e., producing a new acyclic MDP M0) and computes reachability probabilities in M0 by

value iteration. We remove loops according to the following steps.

• Line 2 finds all SCCs by Tarjan’s approach [126], and adds all nontrivial SCCs to C.

Lines 3–13 present the divide-and-conquer procedure for each SCC in C. Let ⇤ be a
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set of blocks of an SCC. Initially, each state of SCC forms a block in ⇤, as shown in

lines 4–5.

• Lines 6–13 perform the divide-and-conquer in the blocks of ⇤ until there is only one

block left. Within each round, line 7 first divides all the blocks ⇤ into several groups,

denoted by A. Here, the groups are formed dynamically that each has relatively small

number of output states. Each element J in A is a group of blocks. There is always

a group containing more than one blocks unless there is only one block in A. Next,

lines 9–11 remove loops and the inner states in each J through AbstractionMDP()

method, which takes a group of blocks as the input and returns a new acyclic block

that can represent the previous group. As a result, after each round, the number of

blocks decreases and loops inside each block are eliminated. Details for the abstraction

process will be presented in Section 5.4.3.

• After the iteration terminates, the resulting MDP becomes acyclic. The value iteration

method, detailed in Section 2.2, can then be applied to calculate the probability from

the initial state to the target states efficiently.

As we can see, in order to support the divide-and-conquer algorithm for MDPs, the overall

algorithm incorporates methods like abstraction and PD reduction. In the following parts,

we will introduce details of these two methods.

5.4.3 States Abstraction in an MDP

Given a set of blocks, denoted by J , the abstraction process removes the inner states in

each block, and merges all blocks into a new block, denoted by E 0. The detailed algorithm

of abstraction is presented in Algorithm 3. It takes J as the input and returns a new acyclic

block E 0. The procedure works as follows.
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Algorithm 3: States Abstraction in MDP
input : A set of partitions of states J in an MDP
output: A new partition E 0

//step 1: remove redundant PDs in each partition

1 for each E 2 J do
//I is to record whether a PD is non-redundant

2 Let I be a set of Boolean variables initialized with false;
3 for each s 2 E do
4 Indices := indices non-redundant PDs of s ;
5 for each index 2 Indices do I 0[index ] =: true;
6 I = I 0;
7 for each s 2 E do Update PDs according to I;

//step 2: calculate new PDs from inputs to outputs

8 K =
S

E2J E ;
9 8 s 2 Inp(K) ·U0

s := ?;
10 ⌃ := all the schedulers in J based on partitions;
11 for each � 2 ⌃ do
12 calculate PDs from Inp(K) to Out(K) according to �;
13 Let us be the calculated PD of a input state s ;
14 8 s 2 Inp(K) ·U0

s := U0
s [ {us};

//step 3: form a new partition

15 E 0 = Inp(K) ;
16 8 s 2 E 0, replace PDs of s by U0

s ; //re-connect Inp(E 0) to Out(E 0)
17 return E 0;

• The first step, as shown in lines 1–7, is to reduce redundant PDs in each block. As

demonstrated in Section 5.4.1, within a block, the PDs of the same index are originated

from the same scheduler in the original model. Thus, they are not independent and

can only be removed if they are all redundant. The detailed operations are as follows.

For each block, we use a Boolean set I to record whether a PD is redundant. Initially,

line 2 sets all elements in I to false. For each state of the block, line 4 gets all indices of

the non-redundant PDs, and line 5 sets the respective elements in I to true. Here, the

non-redundant PDs can be identified by finding the vertices of the convex hull, detailed

in Section 5.4.4. After the for loop in lines 3 - 6, a false in I means the corresponding

PD in each state is redundant. As a result, line 7 removes the respective PDs at the
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indices for all states.

• Line 8 combines states in all blocks of J into a group K. The second step is to calculate

new PDs from Inp(K) to Out(K) for all schedulers. Line 9 creates an empty set for

each state in Inp(K), which is used to store new PDs. Line 10 finds all the schedulers

in J and assigns them to ⌃. As reviewed in Section 5.2.1, for any given state, a

scheduler is used to select a PD, and the total number of schedulers is exponential to

the number of states. As mentioned, within a block, the PDs with the same index are

not independent, we thereby create a scheduler in such a way that it can only select

PDs with the same index at all states in the block. This can avoid the generation of

extra schedulers by including all the combinations of PDs. Lines 11 –14 calculate the

new equivalent PDs by calculating the transition probabilities, from Inp(K) to Out(K).

For each scheduler �, we calculate the probabilities from any input to output states in

the group DTMC states K� according to Gauss-Jordan method detailed Section 5.2.2.

Line 14 adds the new PDs to each state.

• Since the sets of PDs from Inp(K) to Out(K) have been obtained, the inner states

of K are then redundant for the calculation of reachability probabilities. As a result,

line 15 creates a new block E 0 by adding only the inputs states of K, and updates the

PDs of each state in E 0 by U0
s . The new block E 0 is free of loops.

5.4.4 Reduction of Probability Distributions based on Convex Hull

Within a set of probability distributions (PDs), if a PD can be represented by a convex

combination of the other PDs, we call it a redundant PD. As demonstrated, PD b in Fig-

ure 5.1 (a) is redundant as it can be represented by a combination of 50% of PD a and

50% of PD b. It can be proved that the redundant PDs are irrelevant to the maximum and

minimum reachability probabilities [21].
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There are two scenarios when redundant PDs might be introduced. One is during system

modeling, for instance, the PDs could originate from a set of working profiles (modeling

complex system environment) and some of working profiles are indeed redundant for calcu-

lating the maximum or minimum probability. The other is during the removal of the inner

states within a group of states K. In this case, the equivalent PDs are created to connect

inputs to outputs of K, the number of those is equal to the total number of schedulers in K.

As a result, there could be redundant PDs, especially when obtained PDs of a state have

only a few successive states. In fact, the number of PDs of a state can be minimized and

replaced by a unique and minimal set of PDs. If we consider PDs as a set of points in a

Euclidean space and each successive state in a PD provides a dimension in the Euclidean

space, finding the set of non-redundant PDs is equivalent to the problem of identifying all

the vertices of the convex hull of all the PDs. This has been already proved in [21]. In the

following, we have a brief review on the convex hull property.

The convex hull of a set Q of points, denoted by CH (Q), is the smallest convex polygon or

polytope in the Euclidean plane or Euclidean space that contains Q [35]. Mathematically,

the convex hull of a finite point set, e.g., Q = {q1, · · · ,qn}, is a set of all convex combinations

of each point qi assigned with a coefficient ri , in such a way that the coefficients are all non-

negative with a summation of one; i.e., CH (Q) = {
Pn

i=1 ri · qi | (8 i : ri > 0)^
Pn

i=1 ri = 1}.

We denote the set of vertices of a convex hull as VCH (Q). Each qi 2 VCH (Q) is also in Q ,

but it is not in the convex hull of the other points (i.e., qi 62 CH (Q \ {qi})). In other word,

the points VCH (Q) are the essential points that generate all the other points in CH (Q) via

a convex combination. Given a set of n points (Q) in d -dimension, the algorithms to deter-

mine the vertices of the convex hull are also known as the redundancy removal for a point

set Q in Rd . This problem can be reduced to solving O(n) linear programming problems

with many polynomial time algorithms available [21].

To further accelerate the calculation, we adopt an approximation algorithm proposed by
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Bentley et al. [17], who use the convex hull of some subset of given points as an approximation

to the convex hull of all the points. Here, a user-defined parameter � controls degree of

approximation. For instance, in xy-plane, we first divide the area between the minimum

and maximum (i.e., extreme) values in x -dimension into ‘strips’, with a width of �. We then

select the points with the extreme values in y-dimension within each strip, and the points

with x -dimension extreme. Last, we construct the convex hull based on these selected

points (in the worst case, there are only 2(1/� + 2) points). Here, � specifies the relative

approximation error; i.e., any point outside the approximate hull is within � distance of the

‘true’ hull, as proved in [17]. Hence, a larger � implies a faster calculation but a coarser

approximation. In terms of reachability analysis, the schedulers, after approximation, are

only a subset of original ones. Ignoring some of the PDs means the maximum or minimum

reachability probability will be a safe approximation; i.e., the maximum probability is smaller

than the ‘true’ maximum, and the minimum probability is larger than the ‘true’ minimum.

5.4.5 Termination and Correctness

In this section, we discuss the termination and the correctness of our approach.

Theorem 5.4.1 Given a finite states MDP, Algorithm 2 always terminates.

Proof : Given a finite number of states, the for loop in Algorithm 2 always terminates as

the number of SCCs is finite. The theorem can then be proved by showing (1) the repeat

loop can terminate and (2) AbstractionMDP() can also terminate.

For (1), the proof for the one state SCC is trivial. For an SCC having more than one states,

there are at least one group in A that has more than one block, which can be merged into

one new block through AbstractionMDP(). The total number of blocks is guaranteed to

decrease after each round of the repeat loop. Thus the termination condition | ⇤ |== 1 can
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always be fulfilled. For (2), the abstraction, as in Algorithm 3, always terminates because

all for loops work on a finite set of elements. As both conditions are fulfilled, the theorem

holds. 2

Theorem 5.4.2 Given a finite states MDP, Algorithm 2 always produces an acyclic MDP.

Proof : To prove the theorem, it is equal to show that Algorithm 2 can remove all loops

in each SCC. As proved above, Algorithm 2 always transfers each SCC into one block, the

theorem can be proved by showing that the abstraction process always returns a loop-free

block. Assuming a set of blocks J are the input, Algorithm 3 always creates a new block by

recalculating the probability distributions from Inp(J ) to Out(J ). As Inp(J )\Out(J ) =

?, the new block is guaranteed to be acyclic. Therefore, the theorem holds. 2

As Algorithm 2 always terminates with an acyclic MDP, our approach can always provide

an accurate result. Recall that loops in each SCC of the MDP are resolved by solving sets

of equations, which is based on an accurate method. Further, we could trade off a certain

level of accuracy for better performance with approximate convex hull.

5.5 Implementation and Evaluation

We implement the algorithms (for both DTMCs and MDPs) in our model checking frame-

work PAT [121]. As the only difference between the ordinary and our proposed value iteration

methods is the algorithm of reachability analysis, it is fair to check the effectiveness of the

new method through direct comparison of their performance. Hereafter, we refer the im-

plementations with and without our approach as PAT(w) and PAT(w/o), respectively. For

the value iteration method, we use the default stopping criterion in PAT, i.e., the maximum

ratio of difference is 1E -6. The testbed is an Intel(R) Xeon(R) CPU at 2.67 GHz with 12
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GB RAM. All related materials, including the tools, models, and evaluation results, are

available at [2].

5.5.1 Evaluations in Discrete Time Markov Chains

In this section, we report the experiments evaluations of Algorithm 1 in deterministic systems

that are modeled in discrete time Markov chains (DTMCs). In these experiments, we use

the improved dividing strategy, and B , BL, BU are set to be 300, 100, 150 respectively. In

other words, an SCC with more than 300 states should be divided; each group has states

between 100 and 150. These parameters are manually selected based on our experimental

experience, i.e., generally these parameters have better performance compared with others.

The testbed is a server running Windows Server 2008 64 Bit with Intel Xeon 4-Core CPU⇥2

and 32 GB memory.

We apply our approach to several more meaningful systems and demonstrate that our ap-

proach can still improve the efficiency significantly.

In multi-agent systems, dispersion games [56] represent an important scenario, i.e., dispersion

games are the generalization of anti-coordination games to an arbitrary number of players

and actions. Two strategies are designed for dispersion games: basic simple strategy (BSS)

and extend simple strategy (ESS). BSS assumes the number of players and the number of

actions are the same, while ESS does not have this assumption. In each round of the game,

every player chooses one action following specific probabilistic distribution, which is updated

roundly according to the output of last round. There is a desired outcome in this game called

Maximal Dispersion Outcome (MDO), and one property is to calculate the probability that

MDO can be achieved.

Another case used in our experiments is coin flipping protocol for polynomial randomized

consensus [9] (CS). This case focuses on modeling and verifying the shared coin protocol of
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System States Prob PAT (w) PAT (w/o)
Time BMR Memory Time BMR Memory

BSS (4) 4196 1 1.3 92.3% 39 0.2 50% 35
BSS (5) 49572 1 3.5 94.3% 297 4.4 11.4% 142
BSS (6) 605890 1 41.4 72.7% 1297 105.3 6.7% 417
BSS (7) 7462639 1 1671 30.1% 6350 2073.1 4.1% 5039

ESS (6, 4) 32662 1 1.4 92.8% 16.3 2.7 14.8% 5.6
ESS (6, 5) 162945 1 6.7 91.1% 48.5 11.4 16.7% 13.9
ESS (7, 5) 463460 1 27.9 84.9% 310 75.8 7.1% 292
ESS (8, 5) 1114480 1 70.5 74.7% 619 278.5 6.1% 643
ESS (8, 6) 6476524 1 438.0 68.5% 4209 1168.1 7.5% 3904
CS (4, 3) 4966 0.023 0.8 87.5% 45 2.4 8.3% 35
CS (6, 3) 34529 0.023 15.7 81.5% 214 124.1 0.9% 108
CS (6, 4) 45281 0.015 24.8 86.7% 324 243.8 0.6% 81
CS (6, 5) 56033 0.012 38.6 91.2% 312 432.1 0.4% 104
CS (7, 4) 99265 0.014 102.3 87.6% 1062 983.1 0.4% 97
CS (7, 5) 122785 0.011 161.7 92.1% 1145 1384.8 0.3% 97
CS (7, 6) 146305 0.01 245.5 94.9% 1404 2409.5 0.2% 156
CS (8, 4) 200083 0.013 585.1 93.4% 1974 - - -

Table 5.1: Experiments: benchmark systems

the randomized consensus algorithm. CS is used as a benchmark system in the state-of-the-

art probabilistic model checker PRISM [78]. Here we use a safety property in the system as

our target.

The experiments based on these three models are listed in Table 5.1. Here, time and memory

are recored in the units of second and megabyte, respectively. in BSS (N ) indicates there

are N players (also N actions) in the game; ESS (N ,K ) means there are N players and K

actions; CS (N ,K ) indicates there are N processes and K is a constant used in the model.

Here we are interested in the ratio of model building (BM ) time to the total time, which is

denoted as BMR in the table. In PAT (w), BM means the time for building acyclic DTMC,

i.e., the overall time consumed by eliminating loops in DTMC; in PAT (w/o), it indicates

the time for building the whole system. In both PAT versions, value iteration is used to get

the final result after building the model. ‘-’ indicates the verification takes more than 1 hour

thus the result is not taken into consideration. From the table, we have several observations.
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1. For some small examples such as BSS (4), our new approach is slower. This is due to

the overhead taken by the SCC searching algorithm, and value iteration approach is

efficient when loops are small.

2. As the examples become larger, the verification speed is increased by our proposed

approach. This improvement is obvious especially in large-scale systems such as

ESS (8, 5), ESS (8, 6) and CS (8, 4).

3. CS consumes more resource than BSS and ESS when they have similar size of state

space, such as CS (7, 6) and ESS (6, 5). The reason is that CS has more complicated

SCCs, and both our new approach and traditional value iteration method have to

use more time and memory to solve it. As a result, the SCCs’ structure affects the

verification efficiency to a large extent.

4. According to BMR, we can see that in the previous version of PAT, building the

model costs small portion of the overall verification time compared with the value

iteration procedure. The average value of BMR is less than 10%, which means slow

convergence indeed exists in systems having large SCCs. CS has very small BMR and

this is consistent with the fact that CS has complicated SCCs. In the new approach,

time is mainly used by abstractions, as average BMR is more than 80%. It indicates

that the efficiency of the divide-and-conquer strategy is critical in the whole verification

now, and optimal dividing strategy is worthy to explore.

On the other hand, we want to share some limitations of our approach according to the

experimental information. The efficiency of this approach is dependent on whether large

SCCs exist in the system. During our experiment, the new approach performs slower than

value iteration method in several cases. The main two reasons include 1) there is no loops

in the system, thus the SCC searching algorithm makes the whole verification slow; 2)

the system just has small SCCs while the whole state space is large, thus the gain of the
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Figure 5.5: A reliability model, the states su and sf are copied for a clear demonstration

abstraction is limited.

5.5.2 Evaluations in Markov Decision Processes

In this section, we report the experiments evaluations of Algorithm 2 in non-deterministic

systems that are modeled in Markov decision processes (MDPs). For the new approach in

MDPs, we set the maximum number of blocks in a group to 3, and the parameter for convex

hull approximation to 0.001. We perform an analysis on case studies on two MDP-based

systems: one is software reliability assessment model and the other is tennis tournament

prediction model. Both systems have many probability transitions and loops, thus may en-

counter slow convergence issue especially when the systems become large. Thus, we evaluate

how our new approach can benefit those cases.

5.5.2.1 Case Study on Software Reliability Assessment

Reliability and fault tolerance are central concerns to many software systems. The reliability

problem can be transferred into a reachability problem in an MDP [58, 88]. In this case study,

we model a system that undergoes n tasks and then standbys at the initial state. Each task

is exposed to a certain probability of failure or self-recovering situation, before successfully

transferring to the next task or service. A highly abstracted reliability model is shown in

Figure 5.5, which consists of n+2 states, i.e., {sf , su , s0, s1, · · · , sn�1}, representing different

system status. The failure state sf is the state that the system fails, and the success state su
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Table 5.2: Comparison between PAT with and without SCC reduction for reliability model

Parameters PAT (w/o) PAT (w)
m n #Trans. Pmax Time(s) Pmax Time(s)

4

40 0.6K 0.499985 0.03 0.500000 0.01
400 6K 0.499999 0.22 0.500000 0.13
20K 320K 0.499999 547.52 0.500000 55.97
40K 640K 0.499999 1389.55 0.500000 314.73

10

40 2K 0.499985 0.04 0.500000 0.11
400 16K 0.499999 0.41 0.500000 0.20
20K 800K 0.499999 894.34 0.500000 111.62
40K 1600K 0.499999 2168.04 0.500000 597.44

# States ⇡ n

is the state that the system finishes a requirement successfully. Each state si transits to sf

with a probability of p1; to su with a probability of p2; to itself with a probability of p3; and

otherwise, to the next state s(i+1)%n . Multiple sets of values for {p1, p2, p3} are considered.

We then perform reachability analysis, e.g., computing the maximum probability of reaching

state su , under different scale by varying the parameters n and m, where n controls the

number of states and m is the number of probability distributions of each state.

The experiments are summarized in Table 5.2. The number of states being generated is

approximately equal to n; Trans. represents the total number of transitions in the model;

Pmax represents the maximum reachability probability; and Time represents the total time

spent on the verification. We have the following observations.

• The overall verification time of the new approach (PAT(w)) is much less than that

of the previous approach (PAT(w/o)). Three factors here can affect the rate of value

iteration in this model: 1) the self-loops at each state si ; 2) the large SCC formed

by {s0, s1, · · · , sn�1}; and 3) the various probability distributions in the model. Our

approach reduces loops prior to value iteration, as detailed in Section 5.4. With

PAT(w), the resulting acyclic MDP consists of only three states, s0 (the only input of
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the SCC), and sf and su (the outputs of the SCC). Thus, time spent on value iteration

can almost be negligible (less than 0.001s). In addition, due to the PD reductions

based on the convex hull, our reduction approach can work under many probability

distributions without much overhead, as evidenced by the cases with m = 10.

• The result obtained from the new approach is closer to the true value. Through manual

analysis, we know that 0.5 is the accurate result. In fact, our reduction approach

removes loops by solving a set of linear equations, which yields accurate results. As

mentioned above, the resulting model is an acyclic MDP of only three states, on which

value iteration stops naturally without using any stopping criterion. On the other

hand, the ordinary value iteration approach keeps iterating over loops until a stopping

criterion is met, thus the result is an approximation.

The experiment above considers only one SCC in the reliability model. However, often, a

system may have a large number of SCCs in its reliability model. Our preliminary result

shows that, with the increase of SCCs, the total time increases exponentially for the ordinary

value iteration approach, while remains at a low level with our approach [2]. This is because

our approach resolves each SCC independently while the ordinary approach has to iterate

over all SCCs until converging to a stable result.

5.5.2.2 Case Study on Tennis Tournament Prediction

A tennis match is won when a player wins the majority of prescribed sets. At a score of 6 - 6

of a set, an additional ‘tiebreaker’ game is played to determine the winner of the set. In this

case study, we model a 7 point tiebreaker. Our model encodes the outcomes of individual

player’s actions (e.g., serve and baseline) according to the past scoring profiles available

at http://www.tennisabstract.com, and predicts the winning probability for one player

against the other. In particular, we predict the game between two tennis giants Federer

106



5.5. Implementation and Evaluation

Table 5.3: Comparison between PAT with and without SCC reduction for tennis prediction
model

# Pro. #States #Trans. PAT (w/o) PAT (w)
Pmin Pmax B (s) V (s) Pmin Pmax B (s) V (s)

1

a 15K 26K 0.4585 0.5077 0.16 0.01 0.4585 0.5077 0.22 0.00
b 15K 26K 0.4923 0.5415 0.14 0.01 0.4923 0.5415 0.24 0.00
c 17K 30K 0.4678 0.4786 0.19 13.44 0.4678 0.4786 0.58 0.33
d 17K 30K 0.5214 0.5322 0.16 13.34 0.5214 0.5322 0.50 0.32

3

a 62K 108K 0.7877 0.8075 0.66 64.72 0.7877 0.8075 1.55 2.94
b 62K 108K 0.8116 0.8303 0.64 65.54 0.8116 0.8303 1.48 2.96
c 71K 123K 0.4576 0.4649 0.74 133.89 0.4576 0.4649 1.95 9.32
d 71K 123K 0.5351 0.5424 0.72 133.03 0.5351 0.5424 1.98 8.45

5

a 141K 278K 0.9194 0.9271 1.42 266.26 0.9194 0.9271 3.66 23.25
b 141K 245K 0.9332 0.9401 1.43 265.80 0.9332 0.9401 3.65 23.35
c 160K 279K 0.4486 0.4554 1.58 434.29 0.4486 0.4554 4.37 41.65
d 160K 278K 0.5446 0.5514 1.53 428.62 0.5446 0.5514 4.32 36.93

and Nadal. A play wins the set if he wins one tiebreaker, or best of 3 (or 5) tiebreakers.

Thus, we analyze all the three situations. For each situation, we calculate four probabilities:

(a) Federer scores the first point in any tiebreaker; (b) Nadal scores the first point in any

tiebreaker; (c) Federer wins the set; and (d) Nadal wins the set.

The verification results are shown in Table 5.3. # represents the numbers of tiebreakers; Pro.

represents the properties to be verified; #States and #Trans. represent the total numbers

of states and transitions in the system, respectively; Pmin/Pmax records the minimum/max-

imum reachability probability; and B and V record the time costs on building the MDP

model (for PAT(w), it includes the additional time spent on SCC reduction) and on value

iteration, respectively. Notice that the summation of these two time costs is the total time

spent on the verification. We have the following observations.

Comparing the time costs in B and V columns, for the ordinary approach, though the time

for building an MDP model is very short, the verification time increases quickly when the

size of system becomes large. On the other hand, with slightly longer time spent on model
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building, our new approach reduces the value iteration time significantly. This is because

the new approach removes all SCCs prior to value iteration and the probability computation

is thereby accelerated. In this case study, both approaches generate the same results up to

four decimal points.

5.6 Related Work

In recent years, some approaches [80, 28, 8, 5, 117] have been proposed to improve probability

reachability calculation. The key idea is to reduce iterations on the state space. [80, 28]

improve value iteration in MDPs by backward iterating over each SCC in topological order,

i.e., an SCC will not be visited until the reachability probabilities of all its successive SCCs

converge. However, since it requires iterating over each SCC, this approach only alleviates

the slow convergence problem to a certain degree without completely solving the problem.

Compared to their work, our reduction on each SCC is independent to others, so that multi-

cores or distributed computers can be directly applied, which can make the verification even

faster.

The approaches [8, 5] are on SCCs elimination by connecting inputs to outputs of an SCC

with equivalent probability transitions in DTMCs. These works have been successfully

applied to the probabilistic counterexample generation. The algorithms proposed in [5] and

our proposed approach [117] can both reduce large SCCs. [5] iteratively searches for and

solves the smallest loops within an SCC. But our SCC reduction in DTMC [117] uses a

divide-and-conquer algorithm that iteratively divides an SCC into even smaller parts and

resolves loops in each part. On the other hand, eliminating loops in an MDP is particularly

challenging due to the existence of many probability distributions. To the best of our

knowledge, there has been no previous work on SCC reductions for MDP. Instead of a simple

extension of our divide-and-conquer for DTMC in [117], our divide-and-conquer algorithm for
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MDP [59] is carefully designed to avoid generation of extra schedulers. To further accelerate

the elimination of loops, we actively detect and remove redundant probability distributions

of each state based on the convex hull property.

5.7 Summary

In this chapter, we have proposed divide-and-conquer algorithms to speed up reachability

analysis in both DTMCs and MDPs. Because SCCs are one of main reasons that the proba-

bility calculation is slow, we focus on abstracting SCCs via calculating the transition proba-

bility from their inputs to outputs. For DTMCs, we divide every SCC, whose states exceed

some specific bound, into several partitions having reasonable number of states, and can be

solved efficiently via Gauss-Jordan elimination. To further cope with the non-determinism

in MDPs, our divide-and-conquer algorithm is then designed to work on blocks. Initially,

each state in an SCC is considered as a block. The blocks are repeatedly merged together

until there is only one left. During the abstraction, loops within a block are replaced by

equivalent probability distributions between inputs and outputs. The convex hull property

is applied to further reduce the redundant probability distributions. We have implemented

this algorithm in a model checker PAT. The evaluation results on some benchmark systems

and two practical case studies show that our method can improve reachability analysis.
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Chapter 6

Improved Reliability Assessment for

Distributed Systems via Abstraction

and Refinement

Our reliability analysis for non-deterministic systems is based on the techniques from prob-

abilistic model checking, to deal with situations involving both probabilistic behavior (e.g.,

reliabilities of system components) and non-determinism. However, the application of prob-

abilistic model checking is currently limited due to the issue of state space explosion, which

makes reliability assessment of distributed system particularly difficult and even impossible.

In this chapter, we improve the probabilistic model checking through a method of abstrac-

tion and refinement, which controls the communications among different system components

and actively reduces the size of each component.
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6.1 Introduction

Assessing the reliability of a distributed system can be highly non-trivial due to non-

determinism compared to that of a sequential system, which is often deterministic. In

distributed systems, the order of executions among various system components is highly un-

predictable and dependent on the operating environment. Therefore, the precise probability

distribution of the execution orders is hard to obtain if not impossible, and it is more suit-

able to model those non-deterministically. However, non-determinism invalidates existing

reliability assessment approaches based on Markov chain models [26, 70, 55, 50, 43], which

fundamentally assume that there is only one probability distribution of event occurrences

at any system state. It is thus necessary to develop a method for assessing the reliability of

non-deterministic systems.

A potential candidate is probabilistic model checking [16, 32] based on Markov decision

processes, which is designed to deal with both probabilistic behavior and non-determinism.

However, its application is limited to small scale distributed systems as it works by ex-

haustively exploring the global state space, which is a product of the state spaces of all

components and often huge. Therefore, we are motivated to develop a scalable approach to

assess the reliability of distributed systems (e.g., web services, wireless sensor network) that

often consist of many components (e.g., clients, sensors).

In this work, we assume that a distributed system consists of a set of system components,

each of which has its local state space and interfaces for communications. Our key con-

cept is to shrink the global state space by controlling the communications among different

system components and actively reducing the sizes of their local state spaces. More specif-

ically, we start with an abstract system by turning a subset of communication events into

local (i.e., non-communication) events, which can be effectively removed afterwards by re-

calculating the local probability distributions for the rest of the communication events. We
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then perform probabilistic model checking to calculate the reliabilities (here referred to as

‘approximations’). If the resulting approximations are not precise enough, refinement steps

can be performed by incrementally enlarging the set of communication events, which even-

tually yield an actual result based on the complete model. We prove the soundness of our

approach by showing that probabilistic model checking on the reduced system always results

in safe approximations, i.e., the minimum approximation is no larger than the actual mini-

mum and the maximum approximation is no less than the actual maximum. Our empirical

study shows that the approximations are often very close to the actual values, which allow

us to deduce conclusive results based on a smaller state space depending on the level of

reliability requirement. The underlying principle is that the additional behavior contained

in the reduced system is often irrelevant or negligible for reliability calculation.

In summary, we contribute to the following technical aspects. First, we propose an abstrac-

tion technique to significantly reduce the state space for reliability assessment by hiding not

only local events but also communication events. As a result, we can assess the reliability of

distributed systems, which are normally too large for probabilistic model checking. Second,

we prove that results obtained from the reduced state space always produce safe approxima-

tions, and we empirically show that it is often satisfactory to explore a reduced state space

with a given reliability requirement. Third, we develop a framework so that an overly coarse

abstraction can be refined incrementally. To choose a better refinement strategy, we develop

different heuristics for adding back the communication events, through analyzing the veri-

fication result on the reduced state space. The empirical study shows that the application

of heuristics often accelerates the refinement process. Last but not the least, we implement

the proposed technique in the toolkit RaPiD [58] to support the reliability assessment of

distributed systems, and show that our method improves its performance significantly on

multiple systems.
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Figure 6.1: Two Markov models and an LTS specification
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fail

warning shutdown
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Figure 6.2: The state space of the product of M1 and M2

Organization The remainder of the chapter is organized as follows. Section 6.2 presents

a motivating example, which illustrates the main steps of our approach. Section 6.3 reviews

relative background. Section 6.4 introduces our approach in details. Section 6.5 reports the

experiments and evaluations. Section 6.6 surveys related work.

6.2 Motivating Example

A simple model of a device controlling system, which is a variant of [79], is shown in Fig-

ure 6.1. A device is modeled as a Markov decision process (MDP) M2. Its shutdown process
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Figure 6.4: Reduced models with only fail event visible

is coordinated by a controller, modeled as a Markov chain (MC) M1. Each probability dis-

tribution is labeled with an event name. If a probability distribution connects to only one

successor, we drop the probability value of 1 to keep the graphs concise. There is one prob-

ability distribution at state t0 in M2. The transition from t0 to t6 (labeled with work , 0.1)

means that while the device is working on a task, it has a probability of 0.1 going to state

t6, which subsequently leads to an error event, and activates a repair mechanism at state

t7. With a probability of 0.9, the error can be fixed and the device goes to state t5 and

subsequently finishes the task with a finish event. After finishing a task, the device checks
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if there are new tasks. With a probability of 0.5, it will work on a new task and then go

back to state t0; otherwise, the device will go to state t4 (i.e., prepare for shutdown) if there

is no more new task. The controller and the device communicate through synchronizing

common events, i.e., warning , shutdown and o↵ , as highlighted in bold. Via a communica-

tion, the advancement to the next state only happens when this communication event occurs

simultaneously in both the controller and the device. Intuitively, M1 first receives a detect

signal, after which it sends a warning message and coordinates the shutdown behavior of

the device by sending a shutdown command. However, with a probability of 0.2, it fails to

issue a warning message. If M2 receives warning, it shuts down correctly; otherwise, it only

shuts down correctly with a probability of 0.9. Notice that events warning and shutdown are

modeled non-deterministically at state t4, as the exact probability of each event occurrence

depends on practical control environment.

A labeled transition system, Spec in Figure 6.1, specifies a system such that the fail event

never occurs, i.e., a system that always shuts down properly. Here ⌃ is an abbreviation

of the set of all events in M1 and M2, and the transition labeled with ⌃\{fail} denotes a

group of transitions that are labeled with any event in ⌃ except fail event. The question is

how reliable the system is for accomplishing a shutdown properly; or equivalently what the

minimum probability is for the system to satisfy the Spec.

The standard approach works as follows. First, we compute the synchronous product of M1

and M2. Notice that all common events warning , shutdown and o↵ are to be synchronized.

They are referred to as communication events, and the rests are referred to as local events.

The result is an MC partially shown in Figure 6.2. There are in total 24 states and 47

transitions. Due to the space limit, we only show the part that contains communication

events. Next, we apply probabilistic model checking to the computation of the probability

that the product satisfies Spec, which is reduced to the problem of computing the probability

of not reaching state (s3, t3) in the product [123]. Using standard techniques like value
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iteration or solving a linear equation system, we obtain a reliability of 0.9804. Besides the

state space explosion problem, it should be noticed that the calculation based on value

iteration is only an approximation and the accuracy is user-defined via setting conditions on

when the iteration can be stopped. Although directly solving linear equations can provide

the most accurate results, but it only works with small models [16].

An improved approach being proposed in this work is based on two major observations: (1)

some of the communication events are not essential in computing this probability, and (2) in

general, we can always identify lower and upper bounds of the reliability even if we choose

to ignore some of the communications among the components. In the following, we show

these through two cases.

In the first case, we show that ignoring some of the communication events allows us to work

with a smaller state space without changing the result. In fact, local events do not affect

the communication among components, and communication event o↵ is perhaps not that

relevant to overall reliability intuitively, as both M1 and M2 remain at the same state after

it occurs. Thus, we hide all local and o↵ events by replacing them with an invisible event,

designated by ⌧ event. M1 and M2 are reduced to M r
1 , M r

2 , respectively. M r
1 is exactly the

same as M1 except that the self-loop transition labeled with o↵ event previously at state

s3 is hidden and labeled with ⌧ event instead. To further explain the reduction process,

M r
2 is shown in Figure 6.3. After hiding, the states t0, t5, t6, t7, and t9 are only connected

by ⌧ events and thus can be collapsed into one state t0 connecting to states t4 and t8 with

an equivalent probability distribution, which can be obtained via solving a simple linear

program [117, 5]. The states t0, t1, t2, t3, t4 and t8 are kept in M r
2 as they cannot be further

reduced. As a result, the number of states of the parallel composition is reduced from 24

to 13. With probabilistic model checking, the minimum probability of the reduced model is

0.9804, which is the same as that of the original model.

In the second case, we show that a safe approximation of the minimum reliability can
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be obtained even though the ‘wrong’ events are ignored. We consider an extreme case by

ignoring all local and communication events except fail event as fail is the only event related

to Spec. The reduced models M r
1 and M r

2 are shown in Figure 6.4. As all the events in M1 are

hidden, the whole model is reduced to one state with a self-looping ⌧ transition M r
1 . Similar

to the first case, the states t5, t6, t7, and t9 are removed in M r
2 . The transitions between the

states t4 and t2, which are previously linked by events shutdown and warn, are now reduced

into two direct ⌧ transitions. The parallel composition of the two reduced models is shown in

the third model of Figure 6.4. Notice that the number of states of the parallel composition

is reduced from 24 to 5. Furthermore, the product has no loops with multiple states so that

probabilistic model checking with value iteration is likely to converge fast. Based on this

highly abstracted model, the minimum probability is calculated as 0.9020, which is smaller

than the actual value 0.9804, and thus a safe approximation. If the question is whether the

system has a reliability of at least 0.9 shutting down successfully, we can conclude positively

with this result. However, it should be noted that according to the actual requirement of

the reliability assessment, refinement can always be performed to yield results with a higher

order of accuracy.

This example provides insights on the effectiveness of our approach in speeding up the

reliability assessment as well as potential challenges. In the following, we present details of

our approach including the heuristics on choosing the ‘right’ events to ignore.

6.3 Preliminaries

In this work, we assume that a distributed system with failure behavior can be modeled as a

network of Markov decision processes (MDPs), and the specification on the required reliable

system is modeled as a linear transition system (LTS). As the basic definition on MDPs

are introduced in Chapter 2, we only provide the definitions on LTS and some details on
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how to model a distributed system using a set of MDPs, and then describe the procedures

of applying standard probabilistic model checking on reliability assessment with a given

specification in this section.

6.3.1 Some More on Model Formalisms

Labeled Transition System We start with defining a labeled transition system (LTS).

Let ⌃ be a set of event names; ⌧ denote an internal event that is invisible from external; and

⌃⌧ denote ⌃[{⌧}. An LTS is a tuple L = (S , init ,Act ,T ) where S is a set of states; init 2 S

is the initial state; Act ✓ ⌃⌧ is a set of events (or called an alphabet); and T ✓ S ⇥Act ⇥S

is a labeled transition relation. A simple example is the Spec shown in Figure 6.1.

Let s, s 0 2 S and a 2 ⌃⌧ , a transition between two states s , s 0, is denoted as (s, a, s 0) 2 T

or written as s a! s 0 for simplicity. In this case, we say a is enabled at s . We write u  v to

denote that v is reachable from u through ⌧ transitions, i.e., there exists a finite sequence

of states hs0, s1, · · · , sni such that si
⌧! si+1 for all i 2 [0,n � 1] and u = s0 and v = sn .

We write u
a v if u  u 0 and u 0 a! v 0 and v 0  v . This means that the two states are

connected via a series of ⌧ transitions and one a transition. A path of L is a sequence of

alternating states/events ⇡ = hs0, a0, s1, a1 · · ·i such that s0 = init and si
ai! si+1 for all

i � 0. The set of all paths of L is written as paths(L). Given a path ⇡, we can obtain

the corresponding trace, written as trace(⇡), by omitting states and ⌧ events. The traces of

L are denoted as traces(L) = {trace(⇡) |⇡ 2 paths(L)}. An LTS is deterministic iff for all

s 2 S and e 2 ⌃⌧ , if s e! u and s
e! v , then u = v . Otherwise, it is non-deterministic. A

non-deterministic LTS can be translated into a trace-equivalent deterministic LTS using the

standard power set construction [113, 123].

Relationships Between LTS, MDP and DTMC Informally, an LTS can be turned

into an MDP by incorporating probability distributions, e.g., to model system failures prob-
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abilistically. A discrete time Markov chain (DTMC) can be viewed as a special MDP with

every state having exactly one probability distribution, and thus is deterministic. An MDP

M can be viewed as a group of DTMCs, each of which is obtained with a different scheduler.

The scheduler, denoted as �, selects an event (and the corresponding probability distribu-

tion) at each state so that the result is a DTMC, denoted as �(M). A memoryless scheduler

is a function � : S ! Act that always chooses the same event given the same state. It has

been shown that memoryless schedulers are sufficient for our present task [16]. More details

on MDP, DTMC and the scheduler are referred to Chapter 2.

Given a DTMC �(M), a path is a sequence hs1, a1, s2, a2, · · · i such that ai = �(si) is the

event chosen by the scheduler � and Pr(si , ai)(si+1) > 0. For each path, we can calculate its

probability as ⇧iPr(si , ai)(si+1). Given the path, we can obtain a trace ha1, a2, · · · i by omit-

ting the states and ⌧ events. The probability of a given trace tr , written as Pr(tr ,�(M)),

is defined as the accumulated probability of all the paths in �(M) that exhibit tr .

Synchronization among a set of MDPs A distributed system, with failure behavior,

can often be modeled as a network of MDPs. Given a system composed of multiple MDPs,

events to be synchronized are called communication events that are the common events

among the MDPs. Within a set of events, visible events are the ones that can be observed

from outside, and the rests are called local or internal events. A communication event can be

synchronized if and only if it is a visible event and is enabled in all MDPs. In the following,

we define the parallel composition of two MDPs over a set of visible events, which can be

readily extended to multiple MDPs.

Let Mi = (Si , init i ,Acti ,Pri) where i 2 {1, 2} be two MDPs and ⌃v be a set of visible

events. The synchronization composition M1 and M2 over ⌃v , written as M1 |[⌃v ]|M2, is

an MDP M = (S1⇥S2, (init1, init2),Act1[Act2,Pr), where Pr is the probability transition

relation satisfying the following conditions:
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• if s1
e! µ in Pr1 and e 62 ⌃v , then (s1, s2)

e! µ0 in Pr for all s2 2 S2 such that

µ0((s 01, s2)) = µ(s 01) for all s 01 2 S1;

• if s2
e! µ in Pr2 and e 62 ⌃v , then (s1, s2)

e! µ0 in Pr for all s1 2 S1 such that

µ0((s1, s 02)) = µ(s 02) for all s 02 2 S2;

• if s1
e! µ1 in Pr1, s2

e! µ2 in Pr2 and e 2 ⌃v , then (s1, s2)
e! µ0 in Pr such that

µ0((s 01, s
0
2)) = µ1(s

0
1) · µ2(s

0
2) for all s 01 2 S1 and s 02 2 S2.

Examples of the composition is shown in Figure 6.2 and Figure 6.4. We remark that, though

only synchronous communication is allowed in the above definition, asynchronous commu-

nication, which is typical for distributed systems, can be easily constructed by modeling the

communication media explicitly. For instance, if M1 and M2 communicate through radio,

which is common for sensors, we can model the lossy channel using an MDP that essentially

receives messages and later on either forgets about the messages or forwards them. The

entire system is then a composition of the three MDPs.

6.3.2 Reliability Assessment with a Given Specification

In this work, we use an LTS as a specification of correct system behavior and calculate

reliability as the probability of a system model (which is a network of MDPs) satisfying the

specification. In the simplest case, the specification is an LTS that prevents the fail event

from happening and allows other events repeatedly to happen at any time, i.e., the Spec

shown in Figure 6.1. In general, having an LTS specification (which models the behavior

of a perfectly reliable system according to different service requirements) allows more flexi-

bility than always having the same LTS, Spec, as the specification (which specifies that the

system should not fail). For instance, the specification can model a system that fails once

but successfully activates a backup service, or a system that works correctly for important

system functionalities whereas fails and recovers only during less important missions, etc.
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Furthermore, different systems may have different focuses with respect to the reliability. For

instance, reliability of a sensor in a wireless sensor network may be defined as the probability

of detecting certain phenomena, whereas the reliability of a web server is associated with

the probability that it reacts to web page requests without errors.

The task of reliability assessment is thus to calculate the exact probability of a system

satisfying the specification. That is, reliability is the probability of the traces of the system

model being a subset of those of the specification. Formally, let M be the system model

with failure behavior and S be the specification. Reliability is the accumulated probability

of all traces of M that are also traces of S. Let � be a scheduler of M, the reliability with

�, written as R(�(M),S), is defined as:

R(�(M),S) = ⌃{Pr(tr ,�(M)) | tr 2 traces(S)}.

Notice that with different schedulers, the probability is often different and there are poten-

tially infinitely many schedulers. Therefore the measurement of interest is the minimum and

maximum probabilities, which are defined as:

Rmin(M,S) = inf
�

R(�(M),S);

Rmax (M,S) = sup
�

R(�(M),S).

Note that the supremum ranges over all, potentially infinitely many schedulers. Using the

approach proposed in [123], the range of reliability can be calculated using the following

steps. First, we construct a deterministic LTS, denoted as d(S), which is equivalent to S

using the standard power set construction [113]. Next, we compute the synchronous product

of M and d(S), which is defined as follows. Let M = (SM, initM,ActM,PrM) and d(S) =

(SS , initS ,ActS ,TS). The product, written as M ⇥ d(S), is an MDP (SM ⇥ SS , (initM,

initS),ActM [ActS ,Pr), where Pr is defined as follows:
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• if sm
e! µ in PrM and e 62 ActS , then (sm , ss)

e! µ0 in Pr for all ss 2 SS such that

µ0((s 0m , ss)) = µ(s 0m) for all s 0m 2 SM;

• if sm
e! µ in PrM, e 2 ActS and ss

e! s 0s in d(S), then (sm , ss)
e! µ0 in Pr for all

ss 2 SS such that µ0((s 0m , s 0s)) = µ(s 0m) for all s 0m 2 SM.

Here, ActS is the set of specification events. Given a state (sm , ss) 2 SM⇥SS , if there exists

e 2 ActS such that sm
e! µ in M and e is not enabled at ss , any trace of M reaching

sm extended with e will not be a trace of S, i.e., a trace example of M not satisfying S.

Thus, we call such states witness states. The reliability assessment problem is thus reduced

to the problem of finding the probability of reaching any witness state. For instance, if the

maximum probability of reaching the witness states is q , then Rmin(M,S) is 1� q . There

are known methods for probabilistic reachability analysis like value iteration or solving linear

programs [16]. The details for reachability analysis is shown in Chapter 2. In general, value

iteration often yields better performance than other methods in practice [78, 122]. However,

slow convergence is often an issue there due to large loops in the model and furthermore

when value iteration is stopped, it is hard to know how far the approximation is from the

actual result [24, 44].

6.4 Our Approach

There are two major challenges in applying probabilistic model checking to reliability assess-

ment of distributed systems. One is state space explosion, as the global state space is the

product of the state spaces of all distributed components. The other is that the result is often

an approximation without knowing the discrepancy from the actual result due to the limi-

tation of value iteration. In this section, we present our approach, which aims to tackle the

former and help the latter challenges by reducing states and loops. Our approach assumes

123



6.4. Our Approach

Initial Selec-

tion: ⌃v = ActS

Abstraction: Ni = Abstract(Mi ,⌃v ) for all i
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Figure 6.5: Overall workflow

that MDP is deadlock-free1. We present our approach by adopting a deadlock-free MDP

M = (SM, initM,ActM, PrM) as the system model and an LTS S = (SS , initS ,ActS ,TS)

as the specification.

6.4.1 Overview

The problem of reliability assessment for distributed systems is often stated as follows. Given

a distributed system with multiple components, it is to decide whether the overall reliability

is no less than some threshold ✓. Thus, without loss of generality, we assume that we need

to check whether Rmin(M,S) � ✓ in the following. The workflow of our approach is shown

in Figure 6.5. Recall that ⌃v denotes the set of visible events and ActS denotes the set

of specification events. Any event not in ⌃v can be turned into a ⌧ event. During initial

1As mentioned, this is a standard assumption. Nonetheless, if M is the parallel composition of multiple
components, even if the components are deadlock-free, there is no guarantee that the composition is. On the
other hand, there are methods that allow us to construct deadlock-free systems from given components [54].
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selection, we always initialize ⌃v to ActS . Because hiding any event in the specification

would invalidate the verification results. The other four main steps are detailed as follows.

• In the abstraction step, we hide any event that is in ActM but not in ⌃v . Specifically,

for each component Mi in M, if an event a is to be hidden, we label all transitions

with ⌧ instead of a in Mi . As a result, if two MDPs communicate by event a, then

the communication is lost. This alters the behavior of the system. Nonetheless, as we

show later, this allows us to work with a reduced global state space after the reduction

while being able to produce useful results.

• In the reduction step, we minimize each component Mi by removing transitions

labeled with ⌧ in a way such that the verification result is not affected. We remark

that, as the global state space is the product of the local state spaces, minimizing the

local spaces would often lead to a significant reduction in the global state space.

• In the verification step, we apply probabilistic model checking to check whether

Rmin(M0,S) � ✓ is true, where M0 is the parallel composition based on all components

after abstraction and reduction. In fact, Rmin(M0,S) is always less than or equal to

Rmin(M,S) and Rmax (M0,S) is always larger than or equal to Rmax (M,S), as we

will prove in Theorem 6.4.1.

• After the verification step, we decide whether the result is conclusive. If Rmin(M0,S) �

✓ is shown to be true, we conclude that Rmin(M,S) � ✓ is true and we are done with

the assessment. If Rmax (M0,S)  ✓, then we conclude that Rmin(M,S) � ✓ is false.

Otherwise, the result is inconclusive, and we need to refine the abstraction so that

more precise and perhaps conclusive results will be obtained.

• In the refinement step, we reduce the set of events to be hidden by restoring some

communication events. That is, we enlarge ⌃v so that the resultant system model M0

is refined towards the original model M. Afterwards, we repeat from the abstraction
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step. If all communication events are in ⌃v , we present with the verification result of

the last iteration as the final conclusion.

Our approach always terminates. The worst case is that, after a few rounds of abstrac-

tion/refinement, it terminates when all communication events are made visible. In our

experiments, we show that our approach often produces relatively accurate results and con-

cludes in early rounds. Even in the worst case, there can still be a reduction as we always

hide the non-communication events. In the following, we present details of the key steps.

6.4.2 Abstraction and Reduction

In this part, we show how to systematically hide events in a system component and then

build a reduced MDP that preserves the verification result on the overall system.

Given a component modeled as an MDP, denoted as Mi and a set of visible events ⌃v , the

abstraction is done straightforwardly by turning transition labels not in ⌃v into ⌧ . Let Ni

denote the MDP of the component after abstraction. In the reduction step, we build a new

MDP Mr
i such that probabilistic analysis results based on Ni are preserved in Mr

i (which

could be different from that based on the original system component model obviously). The

basic idea of the reduction is to remove ⌧ transitions and group states which are connected

by ⌧ transitions (since they are indistinguishable from an external point of view).

Let Ni = (S , init ,⌃v [ {⌧},Pr). We formally define Mr
i as an MDP (S 0, init , ⌃v ,Pr 0)

satisfying the following two conditions. First, S 0 = {init} [ {si 2 S | 9 sj 2 S , e 2 ⌃v ·

Pr(si , e)(sj ) > 0} such that it contains the initial state of Ni and all states in S which have

at least one outgoing transition labeled with a visible event. Intuitively, all other states in S

are not in S 0 as all of their outgoing transitions are labeled with ⌧ , and thus can be collapsed

into some state in S 0. Second, Pr 0 satisfies the following condition: if si 2 S 0, for all states
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sj 2 S 0 such that there exists a scheduler � that si
e sj in �(Ni) where e 2 ⌃v , then

Pr 0(si , e)(sj ) = Pr(reach(si , sj ),�(Ni)). Here Pr(reach(si , sj ),�(Ni)) is the probability of

reaching state sj from state si in a DTMC �(Ni). Calculating the probability of reaching a

certain state in DTMC is a known problem with efficient solutions [16].

In the following, we discuss the complexity of the reduction defined above, especially in

constructing Pr 0. If Ni is a DTMC rather than an MDP, there is only a single scheduler to

consider and the above construction is relatively inexpensive, as experimentally evidenced

in [8, 5, 117]. If Ni is an MDP2, in constructing Pr 0, e.g., in identifying Pr 0(si , e)(sj ), we

must explore all memoryless schedulers which result in DTMCs containing si and sj . In the

worst case, the number of such schedulers is exponential to the number of non-deterministic

choices. This implies that, although there are fewer states in Mr
i , the number of schedulers

may remain the same.

The above defines the maximum reduction that we could achieve by eliminating all states

whose outgoing transitions are labeled with ⌧ . It is in general expensive to obtain the

maximum reduction due to the large number of schedulers given a complicated MDP [37].

In order to obtain a reasonable reduction without paying the full price, our implementation

for an MDP reduction focuses on two aspects. First, we identify all strongly connected

components (SCCs) in Ni which only contain ⌧ transitions and collapse all the states in each

SCC into one representative. Recall that slow convergence in the value iteration method is

often due to loops and a loop containing only ⌧ transitions in Ni will result in many loops

in the global space. Second, we remove states with all non-probabilistic outgoing transitions

labeled with ⌧ which are not part of any loop, and direct all their incoming transitions to

the respective successors.

We remark that, a component-based reduction not only eases the state space explosion (since

2Mr
i is a probabilistic automaton rather than an MDP. In this work, the difference is irrelevant for

simplicity in presentation.
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the number of states in each component may be reduced) but is also helpful in solving the

slow convergence problem in probabilistic model checking. The reduction cost is relatively

small compared to the potential saving due to the facts that (1) the size of a local state

space corresponding to a distributed component is relatively small, thus requires a relatively

low reduction cost; and (2) any reduction on a local state space can produce exponential

benefits when performing calculations in the global state space as many states and loops

may have been eliminated. This is evidenced by the empirical evaluation in Section 6.5.

6.4.3 Verification

After abstracting and reducing each component, we apply probabilistic model checking to

the analysis on whether Rmin(M0,S) � ✓ is true or not, where M0 is the synchronization

composition of all the system components after abstraction and reduction. In the follow-

ing, we discuss the effectiveness and the soundness of the abstraction and reduction by

establishing that the verification result obtained based on M0 is safe.

Let A be the alphabet of the specification S. Let G and L represent the sets of communi-

cation events and local events in M, respectively. For each component, in the worst case,

there are 2|A[G[L| states where | A [G [ L | is the size of the union of A, G and L. Because

for each event, there could be two states: either it is enabled or not. Assume there are X

components running concurrently. In the worst case, there are 2|A[G[L|⇥X states. Given the

set of visible events is ⌃v , the worst case number of states in the abstract model is 2|⌃v |⇥X ,

thus 2|(A[G[L�⌃v |)⇥X states are reduced. In the extreme case, ⌃v = A (i.e., all events not

in A are hidden) and the worst case state space is 2|A|⇥X , which is exponentially smaller

than the original state space. We remark that the above state space calculation is only an

estimate based on the assumption that states can be distinguished by their outgoing tran-

sitions. In the setting of an MDP, because the same event may be associated with different

probability distributions, the resultant worst case state space could be even larger and so
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could the reduction. Nevertheless, the above analysis can provide some insights on how the

proposed method may significantly improve reliability assessment for distributed systems.

Theorem 6.4.1 Let M be a deadlock-free MDP and M0 be the abstract reduced MDP as

described in Section 6.4.2. Rmin(M0,S)  Rmin(M,S)  Rmax (M,S)  Rmax (M0,S).

Proof It is trivial to see that Rmin(M,S)  Rmax (M,S) and thus in the following,

we show Rmin(M0,S)  Rmin(M,S) and Rmax (M,S)  Rmax (M0,S). Furthermore,

extending the proof that a DTMC after reduction is equivalent to the original DTMC in

probability measurement [117, 5], we can show that parallel composition of all components

Ni (i.e., the component after abstraction) and that of all components Mr
i are equivalent.

That is, assuming N is the parallel composition of Ni , Rmin(N ,S) = Rmin(M0,S) and

Rmax (N ,S) = Rmax (M0,S). Thus, we are left with proving that the abstraction step is

safe, i.e., Rmin(N ,S)  Rmin(M,S) and Rmax (M,S)  Rmax (N ,S).

For simplicity, M is assumed to be the parallel composition of two components M1 and

M2. It should be straightforward to extend the proof to multiple components. Let � be an

arbitrary memoryless scheduler for M and

⇡ = h(s0, t0), a0, (s1, t1), a1, · · · , an�1, (sn , tn)i

be a path of �(M) where (si , ti) is a state of M. By an induction on the length of ⇡, we show

that there is always a scheduler �0 for N and a path ⇡0 = h(s 00, t 00), a 0
0, (s

0
1, t

0
1), a

0
1, · · · , a 0

n�1, (s
0
n , t

0
n)i

of �0(N ) such that the probability of the two paths are the same and ⇡ and ⇡0 share the

same sequence of events in ActS and sn = s 0n and tn = t 0n . The base case is when ⇡ is

h(s0, t0)i, which is trivially true. The induction hypothesis is that the above is true when

⇡ has n states. By assumption (that M is deadlock-free), there must be an event an such

that ((sn , tn), an , µn+1) is a transition in PrM. Here, an is assumed to be the choice of � at

(sn , tn). We discuss different cases in the following.
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• If an 2 ⌃v , by definition, an must be enabled at (s 0n , t
0
n) and it leads to the same

probability distribution. Therefore, we set �0((s 0n , t
0
n)) to be an and the induction

holds.

• If an 62⌃v and an is a local event, there must be a ⌧ transition enabled at (s 0n , t 0n) and

it leads to the same probability distribution. Therefore, we set �0((s 0n , t
0
n)) to be an

and the induction holds.

• If an 62⌃v and an is a communication event, there must be a transition labeled with an

enabled at sn leading to µ1
n+1 and a transition labeled with an enabled at tn leading

to µ2
n+1. By definition of parallel composition, let the resultant product probability

distribution to be µn+1. There must be a ⌧ transition enabled at s 0n leading to the same

probability distribution µ1
n+1 and there must be a ⌧ transition enabled at t 0n leading

to the same distribution µ2
n+1. We set �0 such that �0(s 0n , t

0
n) is the ⌧ transition at

s 0n leading to µ1
n+1. Next, for all states (s 0n+1, t

0
n) such that µ1

n+1(s
0
n+1) > 0, we set

�0(s 0n+1, t
0
n) to be the ⌧ transition at t 0n leading to µ2

n+1. It can be shown that the

following two paths: where a denotes sequence concatenation,

⇡ a han , (sn+1, tn+1)i;

⇡0 a h⌧, (s 0n+1, t
0
n), ⌧, (s

0
n+1, t

0
n+1)i,

have the same probability in �(M) and �0(N ); and have the same sequence of events in

ActS (since an is not in ⌃v and therefore ActS); and have sn+1 = s 0n+1 and tn+1 = t 0n+1.

Thus, the scheduler space is enlarged after abstraction such that every scheduler in M will

be still in M0. Therefore, we conclude the induction holds. 2

Based on the theorem, if Rmin(M0,S) � ✓ is shown to be true, we conclude that Rmin(M,S) �

✓ is true and we are done with the assessment. If Rmax (M0,S)  ✓, we conclude that
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Rmin(M,S) � ✓ is false. On the other hand, the usefulness of verification results based

on M0 depends on how close the results are to the verification results based on M. In

Section 6.5, we empirically show that they are indeed close and thus useful.

6.4.4 Refinement

In the refinement step, the set ⌃v is enlarged by adding communication events. The order

of adding the events and how the events are added (e.g., one at a time or multiple at a time)

are critical as they have an impact on the effectiveness of the reduction as well as the number

of refinements required. The problem is that there are exponentially many ways of adding

the events, e.g., K ! options for K events to be added to ⌃v one by one, and finding the

optimal way is highly non-trivial. Ideally, we should add the events such that the size of the

resultant system M0 is small whereas the verification results are accurate. This is difficult

as there is no analytical solution to estimate the size of M0 or the verification result without

conducting the verification. In fact, The computation of such a minimal alphabet is shown

to be NP-hard. Instead, we propose two heuristics to automatically guide the refinement,

which we demonstrate empirically to be effective.

With the first heuristic (hereafter H1), we always give higher priority to an event that is to

be synchronously engaged by more components. Intuitively, if an event is to be synchronized

by multiple components, adding it into ⌃v would not introduce many new states since the

event is likely to be disabled most of the time. The purpose is to keep M0 small.

With the second heuristic (hereafter H2), we evaluate and select the best group of events at

each refinement iteration. In the initial step, we divide all candidate events into groups and

each group contains the same events in symmetrical components. In each refinement step,

we evaluate the effectiveness of the candidate groups and the events in the most effective

group are then added to ⌃v . We quantify the effectiveness of every group, denoted by p, as
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follows,

p = w · | R(M0,S)�R(M0
c ,S) |

R(M0,S)
| {z }

pa

+sgn(N � Nc) lg(
| N � Nc |

N
)

| {z }

ps

Here, M0 and M0
c are the abstract reduced model before and after including the event into

⌃v ; N and Nc are the number of states in M0 and M0
c ; sgn() is the sign function. The

first part denoted by pa measures the improvement in the accuracy of a newly added event;

and the second part denoted by ps measures the changes in the size of state space in orders

of magnitude. w is a weighting factor designed by users to control the degree of preference

over the two aspects. It is not hard to observe that p measures the effectiveness of the newly

added group reasonably well, because p increases when the verification accuracy is improved

and the number of states is reduced; and vice versa.

Compared with H1, H2 tends to provide a better performance more often because it is based

on a more precise calculation. The price to pay is that H2 requires more effort on calculating

the effectiveness factor p for each event group in every refinement step. H1 requires less as

it only counts the number of system components that synchronize each event in the initial

step.

Lastly, we argue that there are at most L+ 1 refinement steps where L is the total number

of communication events, and therefore our approach always terminates.

6.5 Experiments and Evaluations

The proposed method has been implemented in RaPiD (Reliability Prediction and Distri-

bution) [58] to support the reliability assessment of distributed systems, with 6.5K lines of

C# code. RaPiD is a self-contained toolkit for reliability assessment and publicly available

at [3]. It provides a user-friendly interface to draw MDP models as well as fully automated
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methods for reliability analysis. All models and evaluation results are available online at [3].

6.5.1 Case Studies

We evaluate RaPiD using three systems, two benchmarks taken from the literature and one

healthcare system developed jointly by our group and a hospital in Singapore [89].

The first system is a client-server system (CSS) [46, 41], which is a typical distributed

protocol that partitions workloads between a service provider (called a server) and service

requesters (called clients). The server and clients often communicate over a network. Each

client sends reservation requests for a common resource, waits for the server to grant, uses

the resource, and then cancels the reservation. As the number of clients increases, the inter-

actions between the clients and the server become more complicated. Performing reliability

analysis of such a system requires extensive expertise and time. We build a CSS system

model with one server and k clients, where k is an integer of at least 2. The resource is to be

shared by the clients in a mutually exclusive way. Each client initially has a probability of

0.1 getting failure. In addition, we consider a variant that is slightly more complicated and

denoted as CSSr. Besides the behavior in CSS, each client can be successfully repaired with

a probability of 0.9. In both cases, the overall reliability to be estimated is the probability

that any client can successfully access the resource and meanwhile no multiple clients are

accessing the resource simultaneously. The specification used in this case study has multiple

events like cancel and granted (instead of a single failure) which models a system where

mutual exclusion is guaranteed perfectly.

The second system is an automatic gas station system (GSS) [65], consisting of one operator,

n pumps, one queue for each pump and m customers. The operator handles payments and

schedules the use of pumps. Each customer first goes to the operator and prepays a certain

amount. Then, the customer will be randomly allocated to a pump. There is a queue of
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waiting customers at each pump. A pump must be activated before serving customers.

Once filling finishes, the pump signals the operator with the amount of gas provided to the

customer. Next, the operator calculates the balance and then gives the change back to the

customer. We consider two kinds of failure behavior of each pump, i.e., in the beginning,

there is a probability of 0.01 that a pump cannot be started successfully, and during the

service, there is also a probability of 0.01 that the pump fails to deliver gas. Whenever

a failure occurs, there is a corresponding maintenance that has a probability of 0.99 to

rectify the pump system. We calculate the overall system reliability, i.e., the probability of

providing at least 100 times pumping services to the customers without any failure. The

size of the system depends on the number of pumps in the station (n), and the number of

customers simultaneously asking for the service (m).

The third system is a smart healthcare system (SHS). It provides assistance to mild dementia

patients who have difficulties in memorizing things and taking care of themselves. The

system has been deployed in a nursing home over half a year for a trial [89]. This is a

typical ambient intelligent system that is sensitive and responsive to the presence of patients

with the aid of many sensors and reminders. To assist patients, the system has multiple

sensors in the patients’ room to monitor the patients’ behavior, e.g., entering the room,

lying down on a bed, leaving the bed, etc. The sensor signals are then interpreted by an

inference engine. Once detecting any inappropriate behavior, the inference engine activates

a reminder system, which sends a message to the patient’s smartphone and/or screens in

the room, or an alert to nurses for serious issues, via a Bluetooth speaker, TV, or iPad. The

system reliability depends on the reliabilities of its sensors and networks. In this case study,

we model failure behavior of each sensor and network according to the data collected from

the project engineers.

In the following, we use one of them for illustration, i.e., the system must correctly send

an alert when a patient is lying on the wrong bed. The reliability metric is to measure the
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minimum probability that the alert is sent without any error.

The SHS system has many requirements, which form a complicated LTS specification. In-

terested readers are referred to [89, 88] for more details.

6.5.2 Evaluation Results

The underlying assumptions of our approach are as follows: (1) by reducing each system

component, we could significantly reduce the state space hence the reliability assessment

time, and (2) ignoring some of the communication events has limited impact on the as-

sessment results. In the following, we evaluate the assumptions and the efficiency of our

reduction techniques by answering three research questions.

RQ 1: How effective is our technique in terms of reducing the size of the state space and

assessment time?

To answer this question, we compared the number of states in a system and the total

time cost for assessment (including time spent on abstraction, reduction and verification)

with/without use of reduction technique in RaPiD (referred to as RaPiD and RaPiDr, re-

spectively). For cross referencing, we also compared RaPiDr with PRISM v4.0.3 [78] on

an Intel(R) Xeon(R) CPU at 2.67 GHz with 12 GB RAM. We created several models with

different sizes by varying the number of system components. Specifically, for GSS, we con-

structed 18 cases by adjusting the numbers of available pumps (m =1 to 3) and customers

(n = 1 to 6); for CSS and CSSr, we constructed 9 cases by increasing the number of clients

gradually (k = 2 to 10); and for SHS, we followed the actual system design, and did not

increase its size by adding extra components.
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The results based on RaPiD and RaPiDr are compared in Table 6.1. The degree of ab-

straction can affect reduction strength, we therefore evaluate two extreme cases in RaPiDr:

one is the minimum abstraction that does not hide any event; the other is the maximum

abstraction that hides all events except those related to the reliability specification. The

default algorithm in RaPiDr is to hide all events except specification events in the initial

round and refine from there if the result is not satisfactory. Thus, we can often achieve a

reduction closer to the maximum one and the minimum abstraction marks the ‘worst’ case

of our method. The (para.) column contains the parameters for different systems, i.e., the

numbers of pumps and customers for GSS and the number of clients for CSS and CSSr.

States number and time cost for RaPiD without reductions are shown by exact values. To

compare the effect of the reduction, the results for RaPiDr are shown in terms of ratios

in the table, i.e., the ratios of the results from RaPiD to that of RaPiDr. A higher ratio

indicates a higher degree of reduction. In the case that RaPiD runs out of memory (OM)

and RaPiDr does not, then the ratio is presented as infinity (1).

We have three main observations from Table 6.1. First, there is a general trend that the

efficiency of reduction in state space and time increases as the system becomes larger. More-

over, there are some cases, e.g., GSS(2, 6), GSS(3, 4) and CSSr(10), that RaPiD runs out

of memory and RaPiDr can still handle with relatively small number of states generated.

Second, we observe that the time is reduced considerably in RaPiDr. This is because many

states and redundant loops are removed in RaPiDr, and the convergence rate based on the

value iteration is improved. The reduction in the total time implies that the time cost for

the reduction is much less than its savings. Third, different levels of abstractions can save

the state space and time to different extents because the more events are hidden, the greater

reduction can be achieved. We also find that without hiding any events, our reduction

method can still reduce the state spaces for GSS, CSSr and SHS, this is because our method

can also remove internal ⌧ transitions.
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In addition, we notice that RaPiDr provides significantly better reductions on CSSr com-

pared to the ones on CSS. Because CSS has few internal events, the state space is not

reduced via the minimum abstraction, thus more time is spent. In contrast, the failure-

repair loops in individual components of CSSr result in a dramatically large global space in

RaPiD. However, they are effectively removed in RaPiDr even via the minimum abstraction.

Therefore, the number of states and the time are reduced significantly. We remark that, by

hiding communication events, we can still achieve a reduction ratio of more than 5 in some

CSS cases. Moreover, it should be noticed that accuracy of abstraction is not affected by

the difference between Rmin and Rmax , as demonstrated by CSS cases.

The comparisons on PRISM and RaPiDr are presented in Figure 6.6. Exactly the same

models are taken as inputs to PRISM and RaPiDr. Similarly, we show the best/worst

possible reduction in RaPiDr. In Figure 6.6 (a), x- and y-axis of the plot are the number of

states generated by PRISM and RaPiDr, respectively. Thus, the region below the diagonal

line (i.e., slope = 1) indicates fewer states are generated by RaPiDr than by PRISM. The

lower the point is, the higher degree of reduction RaPiDr provides. Note that the number

of states is plotted in a logarithmic scale to focus on the comparison in terms of the order of

magnitude. ‘OM’ stands for ‘out of memory’ and is only indicated qualitatively in the plot.

We observe that RaPiDr is much more scalable than PRISM as all the scatters are within

the lower-half region, and it can reduce the number of states by several orders of magnitude.

There are several cases that PRISM runs out of memory whereas RaPiDr can still keep the

number of states within 107, evidenced by the points in the vertical ‘OM’ line.

Similarly, Figure 6.6 (b) is a plot of the total time cost. We can observe that PRISM

outperforms RaPiDr when the time taken is less than 10 seconds, although time factor is less

critical for small systems. However, the benefit of adopting RaPiDr increases tremendously

as the system grows larger. As shown in the plots, the scattered points tend to reside below

and shift further away from the diagonal line for systems with the higher number of states

138



6.5. Experiments and Evaluations

1 2 3 4 5 6 7 8 9 10 11
1
2
3
4
5
6
7
8
9
10
11

 CSS
 CSSr
 GSS
 SHS

R
aP

iD
r, 

lo
g 10

(#
St

at
es

)

PRISM, log10(#States)

Slope = 1

OM -2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

6
 CSS
 CSSr
 GSS
 SHS

R
aP

iD
r, 

lo
g 10

(T
im

e)

PRISM, log10(Time)

Slope = 1

OM

(a) (b)

Figure 6.6: Comparisons between RaPiDr and PRISM on (a) states and (b) time (unit:
second) in logarithmic scale

and longer verification time.

In summary, via comparing RaPiDr with RaPiD and PRISM, we find that our reduction

method is more scalable and can reduce the total time significantly in many cases, especially

for moderate and large systems. As RaPiDr reduces states and transitions in individual

components, the overall states are reduced exponentially. Together with the removal of

loops, reliability assessment can be speeded up significantly by RaPiDr.

RQ 2: How accurate is the assessment using our technique?

This question is essentially related to the validation of our assumption that ignoring certain

events does not change the assessment result significantly. First, we compare assessment

results from RaPiDr based on the maximum/minimum abstraction. The maximum abstrac-

tion hides all the communication events except specification events, thus it just provides

approximations; and the minimum abstraction does not hide any communication events,

thus it provides as accurate results as RaPiD does. The results are presented in Table 6.1,
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where Rmin ,Rmax are the actual results and R0
min , R0

max are the approximations based on

the maximum abstraction. The reliability results are reported to an accuracy up to five

decimal places. It should be noted that the accuracy of prediction (i.e. difference between

the actual result and approximation) is dominated by the choice of visible events. Further

increasing the number of decimal places during computations can improve the precision but

has been found to introduce insignificant effect on the accuracy. As shown in Table 6.1,

R0
min is always less than or equal to Rmin , and R0

max is always larger than or equal to Rmax ,

which complies with our proof in Section 6.4.3. Moreover, we can achieve an approximation

of the maximum reliability that is equal to the actual maximum for all these cases.

Comparing the minimum reliabilities (Rmin and R0
min), we can observe that: (1) for CSS

and CSSr, results are not affected by the abstraction, and thus we can achieve the maximum

reduction. (2) for GSS system, the results are accurate except for some cases when m is

less than n. This is because the details for the customers and queues have been hidden

after abstraction. For example of GSS(3, 1), the discrepancy between the approximation

(0.98945) and the actual result (0.98965) is 0.2%. If the reliability requirement is to ensure

a reliability above 0.989, the result is conclusive and the verification can stop with the

maximum reduction; otherwise, the refinement process will be carried out. (3) for the SHS

system, the minimum reliability calculated is 0. This means there is no useful information

obtained in the first round of abstraction and reduction, and some more events should be

added back in the subsequent refinement step. In the following, we experimentally show

that that actual results can be obtained after several rounds of refinements.

We refine the abstract model by adding communication events back to improve the approx-

imations. To have a quantitative evaluation, we keep track of the number of states and the

assessment results during iterations of abstraction/refinement, and discuss the effect of the

two refinement heuristics. In order to obtain a complete picture on how the state space

and the assessment result change through refinements, instead of verifying against a given
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Figure 6.7: Refinement analysis results for GSS(3, 1)

reliability requirement in which case our approach may terminate early, we continue until

all of the communication events have been added into ⌃v . In the following part, we take

GSS(3, 1) for an example.

There are 25 communication events for GSS(3, 1), apart from the events in the specification.

We compare the above-mentioned two heuristics in each refinement step, and the results are

shown in Figure 6.7. The numbers of states are described in two bar charts and values can

be read off via the y-axis on the left; and the resulting minimum probabilities are described

in two sets of marked scatters and their values can be read off via the y-axis on the right.

According to H1, 25 events are ranked according to the number of components synchronizing

on the event. During each refinement, ⌃v is enlarged by adding one new event. Therefore,

there are 25 bars and 25 points for H1. The event selection completes within one step and

the time cost is negligible. For H2, we set the weighting factor w to 100 and divide the

events into 10 groups according to the symmetry. We add the events by groups into ⌃v so

there are 10 bars and points for H2 in Figure 6.7. The total time spent on selecting events

based on H2 is 610 seconds.

We have the following observations based on Figure 6.7. First, the calculated minimum

reliabilities converge to the actual result, regardless of the heuristics. Second, by comparing
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two heuristics, we can find H2 outperforms H1. The number of states generated by H2

is much less than that by H1; and the resulting probability converges to the actual result

(0.98965) much faster for H2. At a particular point based on H2, when 16 events are added,

the approximation reaches the actual result while the state space remains relatively small.

This information can be used to guide reliability assessment for even larger GSS systems,

i.e., the similar set of events can always be selected first. We remark that although H2

can provide relatively better performance than H1, it requires extra knowledge in dividing

events into groups and more efforts in evaluating the effectiveness of each candidate group

at each refinement iteration. Last, although the size of the state space may increase after

refinement, it remains manageable along the way, i.e., much less than that generated by

RaPiD (without the reductions) and PRISM.

Similar refinements have been conducted on SHS. As a result, we have identified a group

of 24 (out of 33) events based on which the approximated minimum reliability converges to

the actual result. The number of states is 73, 054 and verification time is 9.4s.

In summary, starting from hiding all events not mentioned in the specification, we can

obtain safe approximations on the verification result. Refinement can incrementally help to

improve the accuracy. Comparing the two heuristics, the results show that H2 often guide

the refinement better than H1 while the time cost of using H1 is much lower.

RQ 3: How efficient is our method given a reliability requirement?

The efficiency of our approach is directly related to the reliability requirement. Intuitively,

our approach terminates quicker given a less restrictive requirement. The question is then

how sensitive our approach is regarding different reliability requirements. Table 6.2 shows

the reliability assessment against different levels of reliability requirements, i.e., 0.40, 0.90,

and 0.99. If the system’s minimum reliability is above or equal to a requirement, RaPiDr is

expected to report ‘valid’; and otherwise ‘invalid’. Besides the assessment results, we also
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Table 6.2: Reliability assessment against reliability requirements

requirement GSS(3, 1) CSS(8) CSSr(8) SHS

result valid valid valid valid
Rmin � 0.40 time (s) 10.06 3.18 3.22 3,039

#iteration 4 1 1 34
result valid invalid valid invalid

Rmin � 0.90 time (s) 12.14 100.00 3.00 3,037
#iteration 4 19 1 34
result invalid invalid invalid invalid

Rmin � 0.99 time (s) 649.48 98.99 95.58 3,040
#iteration 26 19 19 34

Rmin result 0.98965 0.43047 0.91540 0.63274
Rmax result 1.00000 1.00000 1.0000 1.00000

record the time and the number of abstraction/refinement iterations needed. If ‘invalid’ is

reported, RaPiDr still reports the actual assessment results, i.e., Rmin and Rmax , shown in

the last two rows of the table. As shown, if the reliability requirement is 0.40, all results

are ‘valid’ and RaPiDr terminates quickly with only a few iterations. If the requirement is

Rmin � 0.90, results from CSS(8) and SHS become ‘invalid’ (as expected) and more time and

more iterations are needed. If the requirement is Rmin � 0.99, all results become ‘invalid’.

We remark that, the refinement here is based on H1, which is fully automatic without any

domain information. If there is some domain information to guide the refinement, fewer

iterations can be expected.

We conclude that RaPiDr can terminate early when the requirement is low or when the

system is relatively reliable. For a less reliable system and relatively high requirement,

RaPiDr may indeed take more iterations and time. In the worst case, it will run all the model

versions between the maximum abstraction and minimum abstraction, thus take more time

than that required to verify the minimum abstraction. This worst case situation is similar to
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other approaches on alleviating the state explosion problem [42, 40, 79, 75, 68]. In practice,

distributed systems can easily have many components such that the state space is too large

and reliability assessment based on the concrete model is impossible. Instead, RaPiDr can

always produce a safe approximation based on abstract models; and with more time and

computing resources, RaPiDr can produce increasingly more accurate approximations.

6.6 Related Work

In the field of reliability assessment, some works have considered each component as a single

node and composed all the nodes in one Markov chain according to the system architectures

or service usage scenarios [26, 70, 55, 50, 43, 20, 34, 49]. In particular, [128] has deduced

close form reliability expressions for different architecture style of local components. This

can only partially support non-determinism, as only limited number of architecture styles

are discussed and the underlying reliability models are still DTMCs. In the field of multi-

agent systems, some works have modeled the distributed components as Markov chains [36]

or MDPs [127, 133] and produced results by verifying over LTL specifications. In our work,

we model each component as an MDP and perform reliability assessment based on a set

of MDPs. We believe this is more realistic as non-determinism is unavoidably part of dis-

tributed systems’ behavior. This allows users to focus more on the behavior of individual

component and avoids constructing the complete Markov model that involves considerable

efforts or even is infeasible when there are many distributed components in the system.

We further apply abstraction and refinement on the communication events to reduce state

spaces.

There are two main approaches on alleviating state space explosion via the compositional

verification, which are orthogonal to our approach. One is counterexample-guided abstrac-

tion refinement (CEGAR) [30, 31]. Recently, it has been extended to probabilistic systems
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based on predicate abstraction and predicate refinement according to spurious probabilis-

tic paths/counterexamples analysis [68]. [68] only calculates upper bounds on maximum

probabilities. Instead of working on predicates, our abstraction and refinement work on

communication events among components. These provide both lower and upper bounds

and avoid enumerating possibly large or even infinite set of paths.

The other approach is assume-guarantee verification [104, 67, 48], with its extensions in prob-

abilistic systems [42, 40, 79, 75]. One of the main challenges for assume-guarantee reasoning

is to automatically generate small assumptions. To overcome this challenge, [47, 105, 22]

proposed alphabet refinement in a learning framework, however, that is only applicable

for non-probabilistic systems. In [42, 40], the authors proposed an assumption generation

approach based on automata learning techniques without termination being guaranteed.

In [75], the authors proposed a complete and fully automatic solution by iteratively ab-

stracting and refining the inferred assumptions via counterexamples analysis [62, 8, 5]. But

finding a counterexample in probabilistic systems itself can be quite involved. Moreover,

a practical investigation on assume-guarantee analysis in [33] has shown that the decom-

position is critical and can affect the performance and scalability significantly. In many

assume-guarantee reasoning works, there is no guidance on how the system shall be decom-

posed to achieve good performance. In contrast, our method works on MDPs and reduces

every component according to a subset of the communication events, thus there is no need

to find assumptions or suitable decomposition or analyze on counterexamples. In fact, as

our approach can produce a safe approximation on each component, it can be used prior

to the assume guarantee approaches for even larger systems that neither approach can han-

dle alone; i.e., the individual component is first reduced via the attraction and reduction

steps and the assume guarantee approaches are then applied to perform verification on the

resulting components.
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6.7 Summary

In this work, we proposed a scalable approach based on improved probabilistic model check-

ing. An abstraction technique is adopted to effectively reduce the local state space of each

component and thus the global state space by hiding local events and part of communication

events. We proved that the results always produce safe approximations. To further refine

the results, we have developed a framework to incrementally add the communication events

back based on our proposed heuristics. Our empirical studies showed that our method could

reduce the state space by several orders of magnitude and speed up reliability assessment.
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Chapter 7

Conclusion

In this chapter, we briefly summarize the contributions of this Ph.D. thesis and discuss

possible topics for the future research work.

7.1 Summary

The present study has systematically investigated the reliability analysis for non-deterministic

systems based on Markov decision processes.

First, to perform reliability analysis on non-deterministic systems, we have proposed a

framework that combines hypothesis testing and probabilistic model checking. This pro-

posed method applies hypothesis testing to deterministic system components and uses the

probabilistic model checking techniques to resolve non-determinism. Based on this pro-

posed framework, we have designed and developed a toolkit RaPiD to support automatic

software reliability analysis including reliability prediction, reliability distribution and sen-

sitivity analysis. To demonstrate its usefulness, we have performed case studies on a stock

trading system and a hospital therapy control system.
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Second, to have some more further practical evaluation on our proposed framework, we have

conducted reliability analysis on an ambient assisted living system called AMUPADH. We

have constructed the reliability models from the design and implementation of the systems.

Using our reliability analysis toolkit RaPiD, we have accomplished three groups of experi-

ments to answer the questions of “What is the overall system reliability with known reliability

value of each nodes?", “To reach a certain overall system reliability, how reliable should the

sensors/networks be?" and “Which part among a sensor or network devices affects the over-

all reliability most significantly?". Experiments show that the overall system reliability can

hardly reach 50%. From the analysis, we have identified that the overal system reliability can

be improved most efficiently by improving the Wi-Fi network. That information is shown

to be helpful to AMUPADH designers in improving the system reliability.

Probability reachability analysis serves as a fundamental step in our reliability analysis. To

improve the efficiency of our approach, we have proposed divide-and-conquer algorithms to

improve reachability analysis in both discrete time Markov chains (DTMCs) and Markov

decision processes (MDPs), respectively. Because strongly connect components (SCCs) are

one of the main reasons for the slow probability computation, the proposed approaches focus

on abstracting SCCs via calculating the transition probabilities from their inputs to outputs.

For DTMCs, we have repeatedly divided every SCC to several smaller parts and resolved

loops in each until there is no loop in the states of the original SCC. To further cope with

the non-determinism in MDPs, our divide-and-conquer algorithm has then been designed to

work on blocks so as to maintain the number of probability distributions in a manageable

level. To further reduce the redundant probability distributions, we have applied reductions

based on the convex hull property. The efficiency could be enhanced significantly based

on our approaches, as evidenced by a series of benchmark systems and two practical case

studies.

Last but not the least, to improve the scalability of reliability analysis, we have proposed an
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approach to improve current probabilistic model checking via abstracting and refining the

communications among distributed components. An abstraction technique is introduced to

effectively reduce the local state space of each component and thus the global state space

by hiding local events and part of communication events. We have proved that the results

always produce safe approximations. To further refine the results, we have developed a

framework to add back the communication events incrementally based on our proposed

heuristics. Our empirical studies showed that our method could reduce the state space by

several orders of magnitude and accelerate the reliability assessment.

7.2 Future Works

In this section, we outline the possible extensions of our work presented in this thesis.

• In Chapter 3, we have presented a framework that combines testing and model check-

ing. For reliability analysis, we only focus on the special property where the global

property is exact the same as local properties, i.e., reachability property. It cannot

support the quantitative measurement like “the probability of warning messages fail-

ing to send before failure occurs is at least 0.99”. This is related to the decomposition

of global property into local properties, which is complicated in general. So we are

motivated to study conditions under which such decomposition is sound (i.e., if the

components satisfy the local properties, then the global property is guaranteed) or

complete or both. A possible approach is to start with coarse sound decomposition

and refine the decomposition through a method similar to counterexample guided ab-

straction refinement [30, 68].

• Moreover, our current work is based on the assumption of Markovian transfer among

components. Although it is a widely used assumption to estimate most software sys-

tems, this assumption will not hold for some software applications, where the execution
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history determines the next component to be executed. Therefore, another interesting

line of future work will be on exploring a higher order state space representation for

non-Markovian applications, where the level of history retained in the model needs to

be determined in practice [50]. Moreover, our current reliability model only works on

the discrete time Markov model. In this model, the probability of failure is considered

as the reliability factor. However, in some cases, it may be more accurate to con-

sider failure rate (i.e., the failure density that is a function of time), and continuous

time Markov models (e.g., CTMC and CTMDP) are more suitable. We are motivated

to extend current (parametric) probability model checking techniques to CTMC and

CTMDP, so as to support various reliability analysis with consideration of the failure

rate.

• In Chapters 3 and 4, we have demonstrated that our reliability analysis framework is

useful in analyzing highly dynamic systems, e.g., a stock trading system, a therapy

control system and an ambient assisted living room system. Obtaining the corre-

sponding reliability models is always a prerequisite for the reliability analysis. In this

thesis, the input reliability model of our reliability analysis toolkit RaPiD is an MDP.

This MPD is manually obtained from either system architecture or usage scenarios.

In the future, we shall extend this toolkit to obtain MDP or its coarser MDP skele-

ton automatically from a given high-level document. There are already some works

on automatically transferring from high-level system model (e.g., architecture model

or UML model) into some semantic models like labeling transition system [118, 87].

Inspiring by [98, 96] that integrating probability into CSP and Event-B, we shall in-

corporate the reliability information into the high-level model, based on which we shall

then develop an automatic way to generate MDPs for reliability analysis.

• In Chapter 5, the algorithms based on divide-and-conquer techniques can eliminate

SCCs so as to accelerate reachability analysis in DTMCs and MDPs. There are two
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future directions. Current method can only work for non-parametric reachability anal-

ysis; therefore, it can only improve the efficiency for reliability prediction. However, for

reliability distribution and sensitivity analysis, there are some transition probabilities

that are unknown and hereby marked as parameters in an MDP. In fact, our current

techniques can help to reduce an MDP into an acyclic one, based on which the param-

eter reachability analysis can be much easier. Therefore, one direction is on applying

current techniques to enhance parametric probability reachability analysis [61, 95, 60].

The other is on improving the current techniques. Our algorithms require the prior

knowledge of the dividing parameters that are currently manually set based on users’

experience. Different systems may require the different set of parameters for the best

performance. Therefore, one potential topic is to find more efficient dividing strategies.

• In Chapter 6, the reliability specification is expressed based on labeling transition

system. One possible line of future research is to apply our abstract and refinement

methods to assessing a certain reliability that is specified in temporal logic, e.g., prob-

abilistic computation tree logic [63] or linear temporal logic [107]. On the other hand,

the efficiency of our abstraction and refinement heavily depends on the selections of

the alphabet to hide. The selection strategy is currently based on the two proposed

heuristics. The future work is to develop more effective ways in selecting the most

critical subset of communication events that can reduce the state space most while

producing relatively accurate results.

• In addition, the thesis focuses on reliability analysis for non-deterministic systems.

The proposed framework and the underlying techniques presented in Chapter 3, 5

and 6 based on Markov decision processes can also be applied to the analysis of other

quantitative properties (e.g., availability [70], performability [52, 64, 116, 14, 15], se-

curity [94, 93, 13]) in more application domains (e.g., web service composition[125, 25,

23], wireless sensor network [139, 138, 137]).
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Appendix A

RaPiD User Guide

A.1 Basic Features

Download and run RaPiD.exe from http://www.comp.nus.edu.sg/~pat/rapid. Noted

that if the current PC has no MATLAB installed, there is a need to install MCRInstaller.exe

(available at [4]) before using RaPiD, to view graphical plots. Reliability analysis activities

including reliability prediction, distribution and sensitivity analysis can be carried out as

follows.
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Figure A.1: Reliability model in RaPiD editor

With RaPiD editor, the first task is to construct a reliability model. A call cross system

(CCS) model is shown in Figure A.1 as an running example below. All the examples are

in the Example folder, which is in the same directory with RaPiD.exe file, which can be

downloaded at [4].

Double click a node or an edge to edit the details for a state or a transition, as shown in

Figure A.2 and A.3, respectively.

Figure A.2: State editing form
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Figure A.3: Transition editing form

By clicking Prediction button, RaPiD then calculates the minimum and maximum reliabil-

ities and displays the results using the default text editor, as shown in Figure A.4.

Figure A.4: Reliability prediction result presented in a text viewer

For reliability distribution, right-click process button, select Process Details in the drop-

down menu as shown in Figure A.5, and then write the overall reliability requirement for

the system as shown in Figure A.6.
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Figure A.5: A drop-down menu at a process

Figure A.6: Overall reliability requirement editing form used for reliability distribution

By clicking Distribution button, RaPiD outputs text report, as shown in Figure A.7 which

presents the details on the schedulers and distributed reliability requirements. In addition,

RaPiD outputs a Matlab figure, which is a plot of the system reliability over component

reliability, as shown in Figure A.8. Clicking legend button to view legend. Clicking zoom

in/out button to adjust the presentation of different level of details of the figure.

Figure A.7: Reliability distribution result in a text viewer
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Figure A.8: Reliability distribution result in a Matlab figure

For sensitivity analysis, it first requires to specify a component/state on which the sensitivity

analysis is carried out. Right-click that node and select Sensitivity Analysis in the drop-

down menu. Similarly, a plot and a text report on sensitivity analysis are generated, as

shown in Figure A.9 and A.10.

Figure A.9: Sensitivity analysis result in a text viewer
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Figure A.10: Sensitivity analysis result in a Matlab figure

A.2 Advanced Features

In this section, some advanced features on reliability assessment for distributed system with

a control on state space are presented. For distributed system, instead of a single process,

RaPiD models each system in an MDP and the overall system is the parallel composition of

all those MDPs. A simple model of a distributed controller device system in Figure A.11 is

shown as a running example in this section.

Figure A.11: A set of processes

The reliability is the probability of the system model satisfying the specification that is
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modeled in labeled transition system. This reliability assessment can be initiated by right

clicking on the Processes and selecting Parallel Refinement option, as shown in Figure A.12.

Figure A.12: Reliability assessment based on refinement for a parallel composition of a set
of processes

Figure A.13: Reliability assessment form for distributed system via abstraction and refine-
ment on communication alphabet

In the form, as shown in Figure A.12, the first panel is the place to specify the distributed

systems and the specification. The second panel is the place to specify assessment details,

with three options available. Events panel is used to specify the synchronization alphabet,

verification alphabet, as well as the alphabet order that is used to guide refinement process.

Result is displayed in Output panel.
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