
INFLUENCE ANALYSIS FOR ONLINE
SOCIAL NETWORKS

XU ENLIANG

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48799198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INFLUENCE ANALYSIS FOR ONLINE
SOCIAL NETWORKS

XU ENLIANG

(B.Sc., Northeastern University, China, 2009)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university pre-

viously.

XU ENLIANG

July 9, 2014

c© 2014, XU ENLIANG

To my parents.

Acknowledgements

First and foremost, I would like to thank my supervisors, Prof. Wynne Hsu

and Prof. Mong Li Lee. Without their excellent guidance, continuous sup-

port and encouragement, this thesis cannot be done. I have benefited greatly

from their insights and knowledge through regular discussions. I have learnt

a lot from them in many aspects of doing research. Their dedication and

preciseness have deeply influenced me in my research and my entire life.

I would like to thank my thesis committee Prof. Stéphane Bressan and Prof.

Tan Chew Lim to give me insightful comments and constructive suggestions

to improve my work.

I would like to thank Dr. Dhaval Patel for his generous help and inspiring

discussions on my research, and for being a great friend. Dhaval has helped

me a lot during my Ph.D study. He is very friendly and always ready to help

whenever I have questions, even after leaving NUS for IIT Roorkee as an

Assistant Professor.

I would also like to thank the following lecturers in School of Computing,

NUS for giving me the opportunity to be a part-time teaching assistant: Prof.

Lubomir Bic, Prof. Joxan Jaffar, Dr. Ang Chuan Heng, and Aaron Tan.

As a part-time TA, I have gained valuable teaching experience, enhanced my

knowledge and improved my communication skills through teaching tutorials

and conducting labs. I extend my thanks to Ms Loo Line Fong and other

administrative staffs in School of Computing for their always kind help.

I am also grateful to my lab mates in iLab: Ding Feng, Cheng Yuan, Deng

Fanbo, Gilbert Lim, Jin Yiping and lab mates in DB2: Chen Wei, Zhao Gang,

Song Chonggang, Li Furong and other friends, to name a few.

Last, but not least, I give my sincere thanks to my parents for their endless

love, unconditional support and encouragement.

Contents

List of Tables . vii

List of Figures . viii

List of Publications . xi

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.2.1 Mining Top-k Maximal Influential Paths 3

1.2.2 Inferring Topic-level Social Influence 4

1.2.3 Identifying k-Consistent Influencers 4

1.3 Contributions . 5

1.4 Organization . 6

2 Related Work 8

2.1 Information Diffusion Models . 8

2.2 Influence Maximization . 10

2.3 Learning Influence Probabilities . 18

2.4 Inferring Hidden Networks . 19

2.5 Information Cascades and Blog Networks 20

2.6 Topic-level Influence Analysis . 22

3 Mining Top-k Maximal Influential Paths 24

3.1 Motivation . 25

i

3.2 Preliminaries . 27

3.3 The TIP Algorithm . 31

3.4 Incremental Mining . 38

3.4.1 Insert Observation . 41

3.4.2 Delete Observation . 45

3.4.3 Complexity Analysis . 46

3.5 Experimental Evaluation . 47

3.5.1 Efficiency Experiments . 49

3.5.2 Sensitivity Experiments . 53

3.5.3 Effectiveness Experiments . 57

3.6 Summary . 60

4 Inferring Topic-level Social Influence 62

4.1 Motivation . 62

4.2 Preliminaries . 65

4.3 Guided Hierarchical LDA . 67

4.4 Topic-level Influence Network . 71

4.5 Experimental Evaluation . 74

4.5.1 Effectiveness Experiments . 75

4.5.2 Case Study . 86

4.5.3 Applications . 87

4.6 Summary . 91

5 Identifying k-Consistent Influencers 92

5.1 Motivation . 92

5.2 Preliminaries . 95

5.3 The TCI Algorithm . 100

5.4 Experimental Evaluation . 107

5.4.1 Efficiency Experiments . 108

5.4.2 Sensitivity Experiments . 109

5.4.3 Effectiveness Experiments . 113

5.5 Summary . 117

6 Conclusion and Future Work 118

6.1 Conclusion . 118

6.2 Future Work . 119

References 121

Summary

The prevalence of online social media such as Facebook, Twitter, LinkedIn

and YouTube has attracted considerable research in social influence analysis

with applications in viral marketing, online advertising, recommender sys-

tems, information diffusion, and experts finding. Social influence occurs

when one’s emotions, opinions, or behaviors are affected by others. Most

of the works on social influence analysis have largely been focused on val-

idating the existence of influence, studying the maximization of influence

spread in the whole network, inferring the “hidden” network from a list of

observations, modeling direct influence in homogeneous networks, mining

topic-level influence on heterogeneous networks, and conformity influence.

In this thesis, we perform influence analysis for online social networks by ad-

dressing three important issues in the discovery of influential nodes and influ-

ence relationships, which have been given little attention by existing works:

influential path, topic-level influence and consistent influencer. We outline

our approaches as follows.

First, we focus on influential path discovery. We show that influential paths

can capture the dynamics of information diffusion better compared to influ-

ential edges. We propose a generative influence propagation model based on

the Independent Cascade Model and Linear Threshold Model, which math-

ematically models the spread of certain information through a network. We

formalize the top-k maximal influential path inference problem and develop

an efficient algorithm, called TIP, to infer the top-k maximal influential paths.

TIP makes use of the properties of top-k maximal influential paths to dynam-

ically increase the support and prune the projected databases. As databases

evolve over time, we also develop an incremental mining algorithm, named

IncTIP, to maintain the set of top-k maximal influential paths efficiently. We

evaluate the proposed algorithms on two real world datasets (MemeTracker

and Twitter). The experimental results show that our algorithms are more

scalable and more efficient than the base line algorithms. In addition, in-

fluential paths can improve the precision of predicting which node will be

influenced next.

Next, we investigate topic-level influence. We show that in many applica-

tions the underlying networks are not explicitly modeled, and temporal factor

plays an important role in determining social influence, which is ignored by

existing works. We take into account the temporal factor in social influence

to infer the influential strength between users at topic-level. Our approach

does not require the underlying network structure to be known. We propose

a guided hierarchical LDA approach to automatically identify topics with-

out using any structural information. We then construct the topic-level social

influence network incorporating the temporal factor to infer the influential

strength among the users for each topic. Experimental results on two real

world datasets (Twitter and MemeTracker) demonstrate the effectiveness of

our methods. Further, we show that the proposed topic-level influence net-

work can improve the precision of user behavior prediction and is useful for

influence maximization.

Finally, we propose to identify k-consistent influencers. We show that finding

influential users at single time point only cannot capture whether the users are

consistently influential over a period of time. We devise an efficient algorithm

that utilizes a grid index to scan the users in the 2D personal-preference con-

sistency space, thereby obtaining the rank of these users at a given time point.

Then we design the TCI algorithm to identify the k-consistent influencers for

a given time interval. We conduct extensive experiments on three real world

datasets (Citation, Flixster and Twitter) to evaluate the proposed methods.

The experimental results demonstrate the effectiveness and efficiency of our

methods. We show that the proposed k-consistent influencers is useful for

identifying information sources and finding experts.

List of Tables

3.1 A sample observation database D . 33

3.2 Frequent nodes in D . 36

3.3 < c >-projected database D<c> . 36

3.4 Frequent nodes in D<c> . 36

3.5 New database D′ after insertion . 42

3.6 Additional information for root node . 42

3.7 < a >-projected database I<a> . 43

3.8 Frequent nodes in I<a> . 43

3.9 Additional information for node d . 45

3.10 Additional information for node c . 46

3.11 Datasets characteristics . 49

4.1 Characteristics of Twitter data . 74

4.2 Characteristics of MemeTracker data . 75

5.1 Dataset statistics . 108

5.2 Top-5 experts on data mining . 117

5.3 Top-5 experts on information retrieval 117

vii

List of Figures

1.1 Thesis framework . 5

3.1 MemeTracker dataset . 25

3.2 Number of news articles produced in MemeTracker dataset 26

3.3 Prefix search tree for sample database 38

3.4 Prefix tree with additional information for root and node c, e 40

3.5 Prefix search tree for new database after inserting observation o6 44

3.6 Prefix search tree for new database after deleting observation o4 47

3.7 Performance of varying database size on MemeTracker dataset 49

3.8 Performance of varying database size on Twitter dataset 50

3.9 Performance of varying update database size on MemeTracker dataset . . 51

3.10 Performance of varying update database size on Twitter dataset 51

3.11 Performance of varying update database size on MemeTracker dataset . . 52

3.12 Performance of varying update database size on Twitter dataset 52

3.13 Memory usage by varying update database size on MemeTracker dataset . 53

3.14 Memory usage by varying update database size on Twitter dataset 53

3.15 Performance of TIP by varying k on MemeTracker dataset 54

3.16 Performance of TIP by varying k on Twitter dataset 54

3.17 Performance of IncTIP by varying k on MemeTracker dataset 55

3.18 Performance of IncTIP by varying k on Twitter dataset 55

3.19 Performance of TIP by varying τ on MemeTracker dataset 56

3.20 Performance of TIP by varying τ on Twitter dataset 56

viii

3.21 Performance of IncTIP by varying τ on MemeTracker dataset 57

3.22 Performance of IncTIP by varying τ on Twitter dataset 57

3.23 Precision and recall on MemeTracker dataset 59

3.24 Precision and recall on Twitter dataset 60

4.1 Example topic-level influence analysis 63

4.2 “Two Explosions in the White House and Barack Obama is injured” rumor 64

4.3 Overview of proposed solution . 65

4.4 Graphical model of guided hLDA . 69

4.5 Example 3-level guided hLDA tree. Each tweet is assigned a path starting

from the root of the tree. Each node is a topic which is a distribution over

words and words with highest probability at each topic are shown. 71

4.6 (a) Topic hierarchy for tweet du and dv. (b) Words in tweet du and dv. (c)

Topic-word distribution for tweet du and dv at each level. Distribution of

words in tweet du and dv at each topic w.r.t all the words assigned to that

topic. 72

4.7 Guided hLDA vs. clustering for varying θ on Twitter data 77

4.8 Guided hLDA vs. clustering for varying θ on MemeTracker data 78

4.9 Guided hierarchical LDA vs. hierarchical LDA. (a) Topic hierarchical

tree generated by guided hierarchical LDA as well as example tweets as-

signed to each path. (b) Topic hierarchical tree generated by hierarchical

LDA as well as example tweets assigned to each path. Each node is a

topic which is a distribution over words. And the top-5 most probable

words at each topic are shown. 79

4.10 Guided hLDA vs. clustering for varying τ on Twitter data 80

4.11 Guided hLDA vs. clustering for varying τ on MemeTracker data 81

4.12 Precision of TIND vs. TAP for varying θ on Twitter data 82

4.13 Recall of TIND vs. TAP for varying θ on Twitter data 83

4.14 Precision of TIND vs. TAP for varying θ on MemeTracker data 84

4.15 Recall of TIND vs. TAP for varying θ on MemeTracker data 85

4.16 Topic-level influence network case study on Twitter data. (a) Following

relationships of users in Twitter data. Each node is a user in Twitter.

The directed edge from user u to v indicates that user u is a follower of

v. (b) Topic-level influence relationships inferred by our method. Each

node represents a user. Directed edge from user v to u indicates that user

v influences u on a specific topic. Edge weights indicate the influential

strength on that topic. 86

4.17 Prediction strategy . 88

4.18 User behavior prediction . 89

4.19 Influence maximization . 90

5.1 Example of two forms of consistency . 93

5.2 Personal-Preference 2D space . 95

5.3 Action log and graph . 96

5.4 Influence graph . 97

5.5 Solution overview . 102

5.6 Illustration of zig-zag traversal . 103

5.7 Grids at different time points . 104

5.8 GridIndex obtained from Figure 5.7 . 104

5.9 Rank lists . 107

5.10 Runtime of TCI for varying action log size 110

5.11 Effect of varying k . 111

5.12 Effect of varying τ . 112

5.13 Effectiveness of finding information sources on Twitter dataset 114

5.14 Effectiveness of finding data mining experts in Citation dataset 115

5.15 Effectiveness of finding information retrieval experts in Citation dataset . 116

List of Publications

1. E. Xu, W. Hsu, M. Lee, and D. Patel. Top-k Maximal Influential Paths in Network

Data. In International Conference on Database and Expert Systems Applications

(DEXA), pages 369-383, 2012.

2. E. Xu, W. Hsu, M. Lee, and D. Patel. Incremental Mining of Top-k Maximal

Influential Paths in Network Data. In Transactions on Large-Scale Data and

Knowledge-Centered Systems (TLDKS), pages 173-199, 2013. (Invited Paper)

3. E. Xu, W. Hsu, M. Lee, and D. Patel. Inferring Topic-level Influence from Network

Data. In International Conference on Database and Expert Systems Applications

(DEXA), pages 132-147, 2014.

4. E. Xu, W. Hsu, and M. Lee. k-Consistent Influencers in Network Data. Submitted

to International Conference on Information and Knowledge Management (CIKM),

2014.

xi

Chapter 1

Introduction

1.1 Background

The advent of Web 2.0 has seen increasing and extensive participation of people in on-

line activities like content sharing (e.g., text, images), social networking (e.g., Facebook,

Twitter), and social bookmarking (e.g., ratings, tagging). With the prevalence of online

social media, such as Facebook, Twitter, Flickr and YouTube, a huge amount of valuable

information has been generated and made available, which has led to different kinds of

research from many different domains, e.g. statistics, computer science, and sociology.

The field of social network analysis has recently attracted great research interests in the

computer science community. A social network can be represented as a graph, in which

nodes represent users, and links represent the connections between users. Social networks

are extremely rich in data, which can be divided into two main categories: linkage data

and content data. The linkage data refers to the graph structure of the social network;

whereas the content data contains the text, images and other kinds of data in the social

networks.

One aspect of social network analysis is influence analysis. When a user purchased

a product that his friend has just recently bought, he may have been influenced by his

friend. Such phenomenon is called social influence. Social influence occurs when one’s

1

Chapter 1. Introduction 2

emotions, opinions, or behaviors are affected by others1. Social influence takes many

forms and can be seen in conformity, socialization, peer pressure, obedience, leadership,

persuasion, sales, and marketing. The study of social influence has a long history in

social sciences. Early works focused on the adoption of medical [32] and agricultural

innovations [107]. Later, marketing researchers investigated the “word of mouth” diffu-

sion process for viral marketing [12, 43, 71, 54]. With the rapid proliferation of online

social media and the availability of user generated contents, influence analysis on social

networks has attracted great research interests.

A basic problem in influence analysis on social networks is that of influence maxi-

mization: given a social network, find k nodes to target in order to maximize the spread

of influence. Domingos and Richardson [37, 86] are the first to study the influence maxi-

mization problem as an algorithmic problem. Subsequently, Kempe et al. [55] formulate

the problem as a discrete optimization problem. Considerable works have also been done

on different aspects of social network influence, such as validating the existence of influ-

ence [37, 3], modeling information diffusion [55, 25, 46], learning influence probabilities

[92, 45], inferring hidden networks [44, 75], topic-level influence analysis [102, 69, 109]

and conformity influence [103]. In [18], Bonchi presents a survey on social network

influence from a data mining perspective.

Social network influence analysis has been exploited in applications like recommender

systems [96, 98, 99], information diffusion in social media [10, 22, 76, 88, 113, 115], ex-

perts finding [38, 102], and link prediction [33, 9]. Recently, some startups have utilized

social influence for social media marketing. For example, Klout2 measures the social

influence scores of users by integrating their Facebook and Twitter profiles with Klout.

Klout generates a score on a scale of 1-100 for a social user to represent his/her ability to

engage other people and inspire social actions.

1http://en.wikipedia.org/wiki/Social influence
2http://www.klout.com/

Chapter 1. Introduction 3

1.2 Motivation

Existing social network influence analysis research has largely been focused on discover-

ing influential nodes (users, entities) and influence relationships (who influences whom)

among nodes in the network [55, 64, 28, 27, 44, 102]. In the context of influence re-

lationship discovery, existing works have investigated both macro-level and micro-level

influence. For macro-level influence, Gomez et al. [44] infer top-k influential edges

from a list of observations, which can only capture the influence relationship between

two nodes. However, in many applications, knowing the actual paths of how influence

is being propagated in the social networks can lead to better decision making and policy

formulation. For micro-level influence, Tang et al. [102] study the topic-level influence

between two users assuming the influence relationship among users are explicitly mod-

eled. While this is useful for some applications that are concerned with only explicitly

modeled relationships, many applications need to go beyond the connected users. In the

context of influential nodes discovery, existing works [55, 64, 28, 27] find influential users

at single time point only and do not capture whether the users are consistently influential

over a period of time. However, consistency is a key factor in determining influence. In

this thesis, we address these three issues and show that exploiting these issues can further

benefit social influence analysis.

1.2.1 Mining Top-k Maximal Influential Paths

Discovering influential edges has important applications in viral marketing and person-

alized recommendations. Existing works infer top-k influential edges from a list of ob-

servations of when and where an event occurs. However, an influential edge can only

capture the influence relationship between two nodes. Often times, it is equally, if not

more important to know how the influence is being propagated. Knowing the paths of

propagation is useful. For example in the surveillance of computer virus propagation,

knowing the influential paths allow us to identify critical nodes and stop the virus prop-

agation by bringing down these nodes. Finding the top-k influential paths in large-scale

Chapter 1. Introduction 4

social networks is non-trivial. The problem is further complicated by the fact that users

are active and regularly upload new information to the online social media. Such updates

may introduce new patterns or invalidate some existing patterns and demand the need for

an incremental solution.

1.2.2 Inferring Topic-level Social Influence

Besides identifying the influential paths, it is also important to infer the influence relation-

ship among users at topic-level. Existing methods [102, 69, 109] that discover topic-level

influence assume that influence can only occur among known social connections (e.g.

friends in Facebook). However, there are many social networks where the influence may

occur among users who are not explicitly connected. For example, in Twitter, one user

can influence another even when they are not explicitly following one another. Inferring

topic-level influence without explicit connections is a challenging task. First, we need

to design an effective algorithm that can extract meaningful topics from short texts such

as tweets. Second, without the benefit of an explicit modeling of users’ connection with

each other, we need to infer influence relationships among users through the observation

of their activities on social networks.

1.2.3 Identifying k-Consistent Influencers

For influential nodes discovery, existing works [55, 64, 28, 27] find influential users at

a given time point. They do not care whether the users are consistently influential over

a period of time. However, from the psychological perspective, it is consistency that

builds trusts and thereby resulting in the greatest influence. Here, we advocate the need

to incorporate the notion of consistency in determining the top influencers. This involves

dynamically computing the total influence of each user and ranking them at each time

point.

Chapter 1. Introduction 5

1.3 Contributions

In this thesis, we investigate three important issues related to the discovery of influential

nodes and influence relationships, i.e. influential path, topic-level influence and consistent

influencer. The overall framework of this thesis is shown in Figure 1.1. We first address

the problem of mining top-k maximal influential paths. Later, we infer topic-level so-

cial influence from network data. Last, we study the problem of identifying k-consistent

influencers. The main contributions of this thesis can be summarized as follows.

Mining Top-k Maximal

Influential Paths

Inferring Topic-level

Social Influence

Identifying k-Consistent

Influencers

Behavioral Analysis Influence Maximization Experts Finding

Social Network Data

Figure 1.1: Thesis framework

1. We develop a method for inferring top-k maximal influential paths which can cap-

ture the dynamics of information diffusion better than influential edges. We propose

a generative influence propagation model based on the Independent Cascade Model

and Linear Threshold Model, which mathematically models the spread of certain

information through a network. We formally define the top-k maximal influen-

tial path inference problem and develop an efficient algorithm, TIP, to infer top-k

maximal influential paths. TIP makes use of the properties of top-k maximal in-

fluential paths to perform dynamic support-raising and projected database-pruning.

Chapter 1. Introduction 6

As databases evolve over time, we also develop an incremental mining algorithm,

named IncTIP, to maintain the set of top-k maximal influential paths efficiently. Ex-

tensive experiments are conducted on two real world datasets (MemeTracker and

Twitter). We show that our algorithms are more efficient than the base line algo-

rithms and demonstrate the effectiveness of using influential paths for predicting

which node will be influenced next.

2. We take into account the temporal factor in social influence to infer the influen-

tial strength between users at topic-level, without requiring the underlying network

structure to be known. We propose a guided hierarchical LDA approach to automat-

ically identify topics without using any structural information. We then construct

the topic-level social influence network incorporating the temporal factor to infer

the influential strength among the users for each topic. Experimental results on two

real world datasets (Twitter and MemeTracker) demonstrate the effectiveness of our

methods. Further, we show that the proposed topic-level social influence network

can improve the precision of user behavior prediction and is useful for influence

maximization.

3. We devise an efficient algorithm that utilizes a grid index to scan the users in the 2D

personal-preference consistency space, thereby obtaining the rank of these users at

a given time point. Then we design the TCI algorithm to identify the k-consistent

influencers for a given time interval. We conduct extensive experiments on three

real world datasets (Citation, Flixster and Twitter) to evaluate the proposed meth-

ods. The experimental results demonstrate the effectiveness and efficiency of our

methods. We show that the proposed k-consistent influencers is useful for identify-

ing information sources and finding experts.

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses the related work. We

review works that are most relevant to our research. These include works in information

diffusion models, influence maximization, learning influence probabilities, inferring hid-

den networks, information cascades and blog networks, and topic-level influence analysis.

Chapter 1. Introduction 7

In Chapter 3, we develop a method for inferring top-k maximal influential paths which

can truly capture the dynamics of information diffusion. As databases evolve over time,

we also develop an incremental mining algorithm IncTIP to maintain top-k maximal in-

fluential paths efficiently.

In Chapter 4, we infer topic-level influence without requiring the underlying network

structure to be known. We show that the proposed topic-level social influence network

can improve the precision of user behavior prediction and is useful for influence maxi-

mization.

In Chapter 5, we design the TCI algorithm to identify k-consistent influencers for

a given time interval. We show that the proposed k-consistent influencers is useful for

identifying information sources and finding experts.

Finally, we conclude our studies and discuss some future work in Chapter 6.

Chapter 2

Related Work

In this section, we review works that have been done on different aspects of social in-

fluence. We also give a brief overview of some of the mathematical and computational

techniques and models that have been developed in previous works.

2.1 Information Diffusion Models

Information diffusion refers to the spread of abstract ideas or technical information within

a social system, where the spreading denotes flow or movement from a source to an

adopter, typically via a communication link [87]. Such a communication can influence

and alter an adopter’s probability of adopting an innovation, where an adopter may be

an individual, a group, or an organization. Examples include viral marketing, innovation

of technologies, and infection propagation. There are two basic information diffusion

models that capture the underlying dynamics of the diffusion process, namely, the Linear

Threshold (LT) model and the Independent Cascade (IC) model.

The Linear Threshold model was first proposed by Grannovetter [47] and Schelling

[94] in the context of the social sciences. It is often used in marketing research [37, 86, 47,

94]. The model gives each individual an influence threshold. An individual is activated

when this threshold is exceeded. There is a cumulative effect of the linear threshold

model, as it takes a critical number of influential neighbors to activate an individual.

8

Chapter 2. Related Work 9

Let G = (V,E) be a graph where the set of vertices V represent individuals and the

directed edges inE indicate the direction of influence. The Linear Threshold model works

as follows. First, every vertex v randomly selects a value between [0,1] for its threshold

λv. Next, influence cascades in discrete steps i = 0, 1, 2, . . ., and let Si denote the set

of vertices activated at step i, with S0 = S. S is the set of initially activated vertices. In

each step i ≥ 1, a vertex v ∈ V \ ∪0≤j≤i−1 Sj is activated if the weighted number of its

activated in neighbors reaches its threshold, i.e.
∑

u∈∪0≤j≤i−1Sj

w(u, v) ≥ λv. The process

ends at a step t when St = ∅. Note that the linear threshold model is deterministic, as we

know whether a node is active or not by just counting the sum of the weights of all active

neighbors. It imposes the property that the sum of weights to a node is bounded by 1.

The Independent Cascade model was defined by Kempe et al. [55] and used in the

context of marketing [43, 42]. Given a seed set S ⊆ V , the independent cascade model

works as follows. Let St ⊆ V be the set of nodes that are activated at step t ≥ 0, with

S0 = S. At step t + 1, every node u ∈ St may activate its out-neighbors v ∈ V \ ∪0≤i≤t

Si with an independent probability of pu,v. The process ends at a step t with St = ∅. The

independent cascade model gives each individual the ability to influence their neighbors

as soon as they are activated. This is opposed to the linear threshold model that relies

on a cumulative effect. The independent cascade model has the property that a node has

exactly one time step in which it is infected to infect other nodes. That is, each node is

infectious for exactly one time step and then can no longer be infected, nor can it infect

any other nodes. Along with the linear threshold model, this model is used for studying

information diffusion on networks.

In [55], Kempe et al. also propose a broader framework, called General Threshold

Model, which simultaneously generalizes the Linear Threshold (LT) and Independent

Cascade (IC) models. In the General Threshold Model, each node v has a monotone

threshold function fv that maps the subsets of v’s neighbor set to real numbers in [0, 1],

and a threshold θv chosen uniformly at random from the interval [0, 1]. A node v becomes

active at time t + 1 if fv(S) ≥ θv, where S is the set of neighbors of v that are active at

Chapter 2. Related Work 10

time t.

In our work on influential path discovery, we propose a generative influence propaga-

tion model based on the Independent Cascade Model and Linear Threshold Model, which

can mathematically model the spread of certain information through a network.

2.2 Influence Maximization

A basic problem in social influence analysis is that of influence maximization: given a so-

cial network, find k nodes to target in order to maximize the spread of influence. Domin-

gos and Richardson [37, 86] are the first to study the influence maximization problem as

an algorithmic problem. They modeled social networks as Markov random fields where

the probability of an individual adopting a technology (or buying a product) is a function

of both the intrinsic value of the technology (or the product) to the individual and the

influence of neighbors. The authors proposed three algorithms that approximately deter-

mine the influential users and showed that selecting the right set of users for a marketing

campaign can make a substantial difference. [37, 86] built probabilistic models, and used

these models to choose the best viral marketing plan, but there are many parameters to be

trained in their scheme.

The algorithmic and computational aspects of the influence maximization problem

are investigated in [55, 56, 59]. Kempe et al. [55] formulate the problem as a discrete

optimization problem. A social network is modeled as a graph with vertices representing

individuals and edges representing connections or relationship between two individuals.

Influence is propagated in the network according to a stochastic cascade model. Three

cascade models, namely the independent cascade model, the weight cascade model, and

the linear threshold model, are considered in [55]. Given a social network graph, a specific

influence cascade model, and a small number k, the influence maximization problem is

to find k vertices in the graph (referred to as seeds) such that under the influence cascade

model, the expected number of vertices influenced by the k seeds (referred to as influence

spread) is the largest possible.

Chapter 2. Related Work 11

Kempe et al. prove that the optimization problem is NP-hard, and present a greedy ap-

proximation algorithm (Algorithm 1) which guarantees that the influence spread is within

(1− 1/e) [80] of the optimal influence spread. The basic idea of the greedy algorithm is

to calculate the influence set of each individual, and take turns to choose the node maxi-

mizing the marginal influence value until k nodes are selected. They also show through

experiments that their greedy algorithm significantly outperforms the classic degree and

centrality-based heuristics in influence spread.

Algorithm 1 Greedy(k, f)
1: initialize S = ∅;
2: for i =1 to k do
3: select u = argmax

w∈V \S
(f(S ∪ {w})− f(S));

4: S = S ∪ {u};
5: end for
6: output S;

However, their algorithm has a serious drawback, which is its efficiency. A key ele-

ment of their greedy algorithm is to compute the influence spread given a seed set, which

turns out to be a difficult task (in fact, Chen et al. point out that the computation is]P-

hard [27]). Instead of finding an exact algorithm, they run Monte-Carlo simulations of the

influence cascade model for sufficiently many times to obtain an accurate estimate of the

influence spread. As a result, even finding a small seed set in a moderately large network

(e.g. 15000 vertices) could take days to complete on a modern server machine.

Recent studies aim to address this efficiency issue. In [64], Leskovec, Krause, and

Guestrin address the influence maximization problem in two applications. The first ap-

plication is to determine where sensors should be placed in a water distribution network

such that contaminants can be quickly detected. The second application is to identify

influential blogs. They present a Cost-Effective Lazy Forward (CELF) scheme to select

new seeds. This scheme uses the sub-modularity property of the underlying objective to

greatly reduce the number of evaluations on the influence spread of vertices. As reported

in [64], CELF has the same influence spread as the original greedy algorithm of Kempe,

Kleinberg, and Tardos [55], and achieves as much as 700 times speedup in their exper-

Chapter 2. Related Work 12

iments. There are two aspects to this speed up: (i) by speeding up function evaluations

using the sparsity of the underlying problem, and (ii) by reducing the number of function

evaluations using the submodularity of the influence functions. However, even though the

“lazy-forward” optimization is significant, it still takes hours to find 50 most influential

nodes in a network with a few tens of thousands of nodes, as shown in [28].

Kimura and Saito [57] propose a shortest-path based influence cascade model and

provide efficient algorithms for finding the most influential nodes under these models.

However, since the influence cascade models are different, they do not directly address

the efficiency issue of the greedy algorithms for the cascade models studied in [55].

Even-Dar and Shapira [39] study the influence maximization problem in the context

of probabilistic voter model. They present simple and efficient algorithms for solving this

problem. Furthermore, in a special case, the popular heuristic which picks nodes in the

network with the highest degree turns out to be an optimal solution.

Chen, Wang, and Yang [28] present an efficient algorithm to find the top-k nodes

in a social network and this algorithm improves upon the greedy algorithm of Kempe,

Kleinberg, and Tardos [55] and also the algorithm of Leskovec et al. [64] in terms of its

running time. Specially, they propose two faster greedy algorithms called NewGreedy

and MixedGreedy, respectively. The main idea behind NewGreedy is to remove the edges

that will not contribute to propagation from the original graph to get a smaller graph and

do the influence diffusion on the smaller graph. The first round of MixedGreedy uses

NewGreedy algorithm, and the rest rounds employ CELF algorithm. An earlier approach

proposed by Kimura et al. [58] also removes edges that do not contribute to information

diffusion, and does the propagation on the subnetwork. In addition, the authors also

design a new degree discount heuristic algorithm, which they call DegreeDiscount, that

achieves much better influence spread than classic degree and centrality based heuristics.

They also note that the performance of this heuristic algorithm is comparable to that of the

greedy algorithm while its running time is much less than that of the greedy algorithm.

DegreeDiscount assumes that the influence spread increases with the degree of nodes.

Chapter 2. Related Work 13

Unlike the greedy algorithm, DegreeDiscount algorithm has no provable performance

guarantee.

The work by Chen et al. [27] is the continuation of [28] in the pursuit of efficient and

scalable influence maximization algorithms. In [28], Chen et al. explore two directions

in improving the efficiency: one is to further improve the greedy algorithm of [55], and

the other is to design new heuristic algorithms. The first direction shows improvement

but is not significant enough, indicating that this direction could be difficult to continue.

The second direction leads to new degree discount heuristics that are very efficient and

generate reasonably good influence spread. The major issue is that the degree discount

heuristics are derived from the uniform IC model where propagation probabilities on all

edges are the same, which is rarely the case in reality. [27] is a major step in overcoming

this limitation − their new heuristic algorithm, called maximum influence arborescence

(MIA), works for the general IC model while still maintains good balance between effi-

ciency and effectiveness. The main idea of the MIA heuristic is to use local arborescence

structures of each node to approximate the influence propagation. The authors also con-

duct much more experiments than in [28] on more and larger scale graphs, and the results

show that the MIA heuristic performs consistently better than the degree discount heuris-

tic in all graphs. Actually, the degree discount heuristic can be viewed as a special case of

the MIA heuristic restricted on the uniform IC model with all arborescences having depth

one.

Since both [28] and [27] are designed using specific features of the IC model, they do

not apply directly to the LT model. In term of design principle, Chen et al. [29] propose

the LDAG algorithm to fill this gap in the research of scalable influence maximization

algorithms in the LT model. LDAG is similar to the MIA algorithm [27]. Both uses lo-

cal structures to make the influence computation tractable and reduce computation cost.

However, the local structure and the influence computation are different: MIA uses lo-

cal tree structures because that is the only structure making the influence computation

tractable in the IC model, while LDAG uses local DAG structures, and thus could include

Chapter 2. Related Work 14

more influence paths in the local structure.

Narayanam and Narahari [101, 79] propose an efficient heuristic algorithm which is

called the SPIN (ShaPley value based Influential Nodes) algorithm for the LT model.

Their approach exploits the novel idea of modeling the information diffusion process as

a cooperative game and using the Shapley values of the nodes to compute their network

value or influence in the network. And they compare the performance of the proposed

SPIN algorithms with well-known algorithms in the literature. Extensive experimenta-

tion on 4 synthetically generated random graphs and 6 real-world data sets show that

the proposed SPIN approach is more powerful and computationally efficient. However,

SPIN only relies on the evaluation of influence spreads of seed sets, and thus does not

use specific features of the LT model. Moreover, SPIN is not scalable, with running time

comparable (as shown in [55]) or slower than the optimized greedy algorithm [29].

Goyal et al. [46] propose a novel data-based approach for influence maximization.

They introduce a new model called Credit Distribution (CD), which directly estimates

influence spread by exploiting available propagation traces, without the need for learning

influence probabilities or conducting Monte Carlo (MC) simulations. The credit distribu-

tion model learns the total influence credit accorded to a given set S by any node u and

uses this to predict the influence spread of S. Their approach also learns the different

levels of user influenceability, and takes the temporal nature of influence into account.

Based on the CD model, Goyal et al. develop an approximation algorithm for influence

maximization with high accuracy and scalability.

The aforementioned approaches attack the efficiency issue by either improving the

greedy algorithm or using new heuristics. However, none of them take into consideration

the community property of social networks. Wang et al. [112] propose a community-

based method for mining top-k influential nodes, called Community-based Greedy Al-

gorithm (CGA). The basic idea is to exploit the community structure property of social

networks. Intuitively, a community is a densely connected subset of nodes that are only

sparsely linked to the remaining network. Communities in a social network represent real

Chapter 2. Related Work 15

social groups, and thus individuals in a community will influence each other in the form

of “word-of-mouth”. The prohibitive cost of finding influential nodes over the whole

network would be reduced greatly if we find influential nodes with regard to communi-

ties. The proposed CGA algorithm has two main components, an algorithm for detecting

communities by taking into account information diffusion, and a dynamic programming

algorithm for selecting communities to find influential nodes. The authors also provide

provable approximation guarantees for CGA. Empirical studies on a large real-world mo-

bile social network show that the CGA algorithm is more than an order of magnitudes

faster than the state-of-the-art Greedy algorithm for finding top-k influential nodes and

the error of CGA is small compared with Greedy algorithm.

However, these influence maximization methods ignore one important aspect of in-

fluence propagation in the real world. That is, not only positive opinions on products

may propagate through the network, negative opinions are also propagating, and are often

more contagious and stronger in affecting people’s decisions. In [25], Chen et al. incorpo-

rate the emergence and propagation of negative opinions into the influence cascade model

and study its impact together with positive influence in the influence maximization prob-

lem. They design an efficient algorithm to compute influence in tree structures, which is

nontrivial due to the negativity bias in the model. And then they use this algorithm as the

core to build a heuristic algorithm for influence maximization for general graphs.

Recently, a substantial amount of research has been done in the context of influence

maximization. Although work has been done on improving the performance of greedy

algorithms for influence maximization, scalability remains a significant challenge. In ad-

dition to the scale issues that are inherently there, these definitions of influential users

ignore certain aspects of the real social networks such as the existence of multiple inno-

vations (competing campaigns), and time factor.

Bharathi et al. [14] extend past work by focusing on the case when multiple inno-

vations are competing within a social network such as when multiple companies mar-

ket competing products using viral marketing. Specially, they augment the Independent

Chapter 2. Related Work 16

Cascade Model to capture the existence of competing campaigns in a network. Similar

to Kempe et al. [55], they provide an approximation algorithm to computing the best

response to an opponent’s strategy in the “game of innovation”. In the influence maxi-

mization game, players wish to maximize their individual influence given a randomized

propagation scheme. It can be shown that mixed Nash Equilibria exist for this game. From

here, Bharathi et al. show that best-response strategies exist for this game that are both

monotone and submodular. This, coupled with discussion of “first mover” strategies, pro-

vides a framework for the behavioral basis of influence maximization in social networks.

In this paper, the authors use diffusion models where the competing campaigns propagate

exactly the same way, i.e. the probability of diffusion on a certain edge is the same for

all campaigns and all campaigns start at the same time. However, this assumption is not

true, as in the real world the competing campaigns may have different acceptance rates.

Liu et al. [70] study the categorical influence maximization (CIM) problem. Compare

with identifying maximum influence vertices in a single category social network, CIM is

much harder because it has to deal with large scale complex data. Specially, based on

the observations from real mobile phone social network data, they propose a Probability

Distribution based Search method (PDS) to tackle the CIM problem. The PDS method

consists of three steps. It first solves the storage problems in mobile phone social net-

works. Second, it identifies influential vertices by the probability distribution. Third, it

minimizes influential sets and maximizes the influence considering the vertex attributes.

They also verify the PDS method by real data sets, a one-year mobile phone network data

in a city in China.

Budak et al. [19] study the notion of competing campaigns in a social network. By

modeling the spread of influence in the presence of competing campaigns, they provide

necessary tools for applications such as emergency response where the goal is to limit

the spread of misinformation. More specifically, they investigate efficient solutions to

the eventual influence limitation (EIL) problem: Given a social network where a (bad)

information campaign is spreading, who are the k “influential” people to start a counter-

Chapter 2. Related Work 17

campaign if our goal is to minimize the effect of the bad campaign? They introduce the

Multi-Campaign Independent Cascade Model (MCICM), which models the diffusion of

two cascades evolving simultaneously in a network. And they prove that the eventual

influence limitation problem is NP-hard and show that a greedy method is guaranteed to

provide a 1/(1− e) approximation.

In [26], Chen et al. extend the classical Independent Cascade model to study time-

delayed influence diffusion and they consider the time-critical influence maximization

problem under the proposed IC-M model. They prove the submodularity of IC-M, and

propose fast heuristics MIA-M and MIA-C to find seed sets efficiently and effectively.

MIA-M is based on a dynamic programming procedure that computes exact influence in

tree structures, while MIA-C converts the problem to one in the original IC model and

then applies existing fast heuristics to it.

Liu et al. [67] study the time constrained influence maximization problem, which is

based on the Latency Aware Independent Cascade influence propagation model. They

show that the problem is NP-hard, and prove the monotonicity and submodularity of the

time constrained influence spread function. Based on this, they develop a greedy algo-

rithm with performance guarantees. To improve the algorithm scalability, they propose

to use Influence Spreading Paths (ISP) to quickly and effectively approximate the time

constrained influence spread for a given seed set. Let σT (S) be the expected number of

nodes influenced by S within T time units. ISP calculates both σT (S ∪ {v}) and σT (S)

by using Influence Spreading Paths. The Influence Spreading Paths starting from each

seed set are calculated from scratch by Depth-First Search (DFS). Further, by employing

faster marginal influence spread calculating methods, they propose Marginal Discount of

Influence Spread Path (MISP) to improve the speed of ISP. MISP calculates influence

spread σT (u) for each single node u with Influence Spreading Paths starting from u, then

select seed node with the largest discounted marginal influence spread one by one. Ex-

perimental results show that MISP is the fastest and multiple orders of magnitude faster

than the simulation based greedy algorithm MC while achieving similar time constrained

Chapter 2. Related Work 18

influence spread.

Recently, Li et al. [66] study the problem of location-aware influence maximization.

They devise two greedy algorithms with 1 − 1/e approximation ratio. The expansion-

based algorithm estimates the upper bound of users’ influences and adopts a best-first

method to eliminate the insignificant users. The assembly-based algorithm assembles the

precomputed information on small regions to answer a query. They also propose two

efficient algorithms with ε · (1 − 1/e) approximation ratio for any ε ∈ (0, 1]. The first

is a bound-based algorithm that uses the estimated upper bounds and lower bounds to

select top-k seeds. The second is a hint-based algorithm that utilizes precomputed hints

to identify top-k seeds.

All the above works study the influence maximization problem from different as-

pects, such as performance, community property, negative opinions, multiple innovations

and location awareness. Our methods can also be applied to find k nodes such that the

influence spread is maximized.

2.3 Learning Influence Probabilities

Saito et al. [92] focused on learning propagation probabilities under the IC model. They

formalize this as a likelihood maximization problem and then apply the expectation max-

imization (EM) algorithm to solve it. While their formulation is elegant, there are two

issues in their approach. First, since EM is an iterative algorithm, it may not be scal-

able to very large social networks. This is due to the fact that in each iteration, the EM

algorithm must update the influence probability associated to each edge. Second, the

propagation traces data that is used as input to learn probabilities is very sparse in partic-

ular, it follows a long tail distribution, that is, most of the users perform very few actions.

As a result, the EM algorithm is vulnerable to overfitting and may result in poor quality

seed sets.

Later, Saito et al. [90, 91] extended the IC and LT models to make them time-aware

and proposed methods to learn influence propagation probabilities for these extended

Chapter 2. Related Work 19

models. They incorporate time delay in action propagations where the time delay is on

a continuous time scale, for IC model in [90] and for LT model in [91]. They use EM

based approaches to learn propagation probabilities as in their previous work [92]. In a

recent paper, Saito et al. [93] recognize the issue of overfitting and propose to consider

node attributes as well in learning probabilities.

Goyal et al. [45] also study the problem of learning influence probabilities from the

history of user actions. They focus on the time varying nature of influence, and present

the concept of user influential probability and action influential probability. The goal

of this work is to find a model to best capture the user influence and action influence

information in the network. They also show that their methods can be used to predict

whether a user will perform an action and at what time, with higher accuracy for users

with higher influenceability scores.

These works focus on learning influence probabilities under certain information dif-

fusion models, which is different from our work.

2.4 Inferring Hidden Networks

Gomez et al. [44] study the diffusion of information among blogs and online news

sources. They assume that connections between nodes cannot be observed and use the

observed cascades to infer a sparse, “hidden” network of information diffusion. They

propose an iterative algorithm called NetInf which is based on submodular function op-

timization. NetInf first reconstructs the most likely structure of each cascade. Then it

selects the most likely edge of the network in each iteration. The algorithm assumes that

the weights of all edges have the same values.

In [115], Yang et al. propose a Linear Influence Model to model the global influence

of a node on the rate of diffusion through the (implicit) network. The main idea of this

model is that each node has an influence function associated with it and the number of

newly infected nodes is a function of influences of which other nodes got infected in

the past. For each node they estimate an influence function that quantifies how many

Chapter 2. Related Work 20

subsequent infections can be attributed to the influence of that node over time. With a

non-parametric formulation, the model can be efficiently estimated using a simple least

squares procedure.

Mathioudakis et al. [75] investigate the problem of sparsifying influence networks.

Given a social graph and a list of actions propagating through it, they design the SPINE

algorithm to find the “backbone” of the network through the use of the independent-

cascade model [55]. SPINE has two phases: the first phase selects a set of arcs that yields

a finite log-likelihood, while the second phase greedily seeks a solution of maximum log-

likelihood. The effectiveness of SPINE came from its ability to increase computation

speed significantly.

The aforementioned works aim to infer top-k influential edges from a list of observa-

tions of when and where an event occurs. Influential edges can only capture the influence

relationship between two nodes. In our work, we introduce the concept of “influential

path” to capture the propagation of influence beyond two nodes.

2.5 Information Cascades and Blog Networks

Cascades have been studied for many years by sociologists concerned with the diffusion

of innovation [87]. Cascades are used for studying viral marketing [62], and explaining

trends in blogspace [58, 29]. Leskovec et al. [65] studied the properties and models

of information cascades in blogs. Information diffusion models are also appropriately

considered from the view of the blogosphere where a blogger may have a certain level of

interest in a topic and is thus susceptible to talking about it. By discussing the topic, the

blogger may influence other bloggers.

Gruhl et al. [48] present a study on information diffusion of various topics in the

blogosphere along two dimensions, topical and individual, drawing on the theory of in-

fectious diseases via a general cascade model. They formalize the idea of topics that run

over long period of time and use theory of infectious diseases to analyze the flow of infor-

mation. They further classify the long running topics as internal sustained discussion and

Chapter 2. Related Work 21

externally induced spikes and provide formal models for both of them. Furthermore, they

propose an “expectation-maximization” algorithm which predicts the probability of an

individual getting infected by a topic at a given epoch of time and validate the algorithm

with both synthetic and real data.

In [1], Adar et al. have proposed the use of URL citations to infer the dynamics of

information epidemics in the blogspace. They also show that the PageRank algorithm

finds authoritative blogs. A variation, called iRank, is described to rank blogs based

on their informativeness. In this scheme, each directed edge is assigned a weight Wij

= w(∆dij) where ∆d refers to the time difference between the blogs citing a URL and

w(∆) is the weight function that gives importance to URL citations which are closer in

time. The edge weights are then normalized and PageRank computation follows. This

weighted graph is called the implicit information flow graph. iRank makes use of the

temporal nature of blogs by differentially weighing each citation in the graph by the time

difference between when the blog mentions a URL and how soon it is referenced by other

blogs.

Weblogs link together in a complex structure through which information can flow.

Such a structure is ideal for the study of the propagation of information. Adar et al.

[2] study the pattern and dynamics of information spreading among blogs. Specifically,

they are interested in determining the path information takes through the blog network

by using the existing link structure of blogspace. This infection inference task is related

to both link inference and link classification but makes use of non-traditional features

unique to blog data. Their goal is to correctly label graph edges between blogs when one

blog infects the other. The difficulty is that frequently blogs do not cite the source of

their information and appear disconnected from all likely sources of that information (i.e.

other infected blogs). Thus, they apply link inference techniques to infer the source of

information spread in blogspace based on the timestamps of entries and the link structure

of blogs. The authors describe a Support Vector Machine (SVM) and logistic regression

based classifiers to find and label potential infection routes. However, their method relies

Chapter 2. Related Work 22

on the embedded explicit hyperlinks in blogs. And the interesting interaction that occurs

in comments left by bloggers is not explored.

In [52], Java et al. study the performance of various algorithms such as PageRank

and in-degree, on modeling influence of blogs. They present the results of applying the

Linear Threshold Model and the Independent Cascade Model in the blogosphere and

show how these techniques can automatically predict a set of influential blogs which are

likely to be able to spread an idea most effectively. And they also show how splogs (spam

blogs) affect some of the heuristics such as in-degree, while others such as greedy and

PageRank perform well even in presence of splogs. Moreover, they suggest PageRank as

an inexpensive approximation to the greedy heuristic in selecting the initial target set for

activation.

2.6 Topic-level Influence Analysis

Anagnostopoulos et al. [6] and Singla et al. [97] propose methods to qualitatively mea-

sure the existence of influence. In [33], Crandall et al. study the correlation between

social similarity and influence. However, no previous work has been conducted for quan-

titatively measuring the topic-level social influence on large-scale networks.

Tang et al. [102] introduce the problem of topic-based social influence analysis and

present a method to quantify the influential strength in social networks. Given a social

network and a topic distribution for each user, the problem is to find topic-specific sub-

networks, and topic-specific influence weights between members of the sub-networks.

They propose a Topical Affinity Propagation (TAP) model to model social influence in

a network with respect to different topics, which are extracted by using topic modeling

methods. Later, Wang et al. [109] extend the TAP model further by considering the dy-

namic social influence. They propose a pairwise factor graph (PFG) model to model the

pairwise influence by mainly using the topological structures. In the factor graph model,

the pairwise influence is modeled as a marginal probability of two hidden variables. As

social influences are highly time-dependent, they further propose a dynamic factor graph

Chapter 2. Related Work 23

(DFG) model to incorporate the time information, which is described as a factor func-

tion across time windows. Experiments show that their approach can facilitate influence

maximization.

In [69], Liu et al. introduce a probabilistic model for mining direct and indirect influ-

ence between the nodes of heterogeneous networks. They measure influence based on the

clearly observable “following” behaviors and study how the influence varies with number

of hops in the network.

Weng et al. [113] study the problem of identifying topic-sensitive influential users on

Twitter by proposing an extension of the PageRank algorithm to measure the influence

taking both the topical similarity between users and the link structure into account. Their

method leverages LDA by creating a single document from all the tweets of a user and

then discovering the topics by running LDA over this document.

In [4], Ahmed et al. propose a unified framework, the nested Chinese Restaurant

Franchise (nCRF), to discover a unified hidden tree structure with unbounded width and

depth while allowing users to have different distributions over this structure. They ap-

ply the framework to organize tweets into a hierarchical structure and show that this tree

structure can be used to predict locations of unlabeled messages, resulting in significant

improvements to state-of-the-art approaches, as well as revealing interesting hidden pat-

terns.

These methods on topic-level influence depend on known social network structure,

i.e. influence only occurs along social connections. The temporal factor, which plays

an important role in determining the degree of influence, is also not considered. In our

work on inferring topic-level influence, we take into account the temporal factor in social

influence to infer the influential strength between users at topic-level, without requiring

the network structure.

Chapter 3

Mining Top-k Maximal Influential

Paths

In this chapter, we develop a method for inferring top-k maximal influential paths. We

propose a generative influence propagation model based on the Independent Cascade

Model and Linear Threshold Model, which mathematically models the spread of cer-

tain information through a network. We formalize the top-k maximal influential path

inference problem and develop an efficient algorithm, called TIP, to infer the top-k maxi-

mal influential paths. TIP makes use of the properties of top-k maximal influential paths

to dynamically increase the support and prune the projected databases. As databases

evolve over time, we also develop an incremental mining algorithm IncTIP to maintain

top-k maximal influential paths. We evaluate the proposed algorithms on two real world

datasets. The experimental results demonstrate the effectiveness and efficiency of both

TIP and IncTIP.

The remaining of this chapter is organized as follows: We start with the motivation of

inferring top-k maximal influential paths in Section 3.1. In Section 3.2, we describe the

preliminaries and problem statement. The TIP algorithm is explained in Section 3.3. In

Section 3.4, we develop an incremental mining algorithm, named IncTIP, to maintain the

set of top-k maximal influential paths efficiently. Experimental evaluation is reported in

Section 3.5. Finally, we summarize our work in Section 3.6.

24

Chapter 3. Mining Top-k Maximal Influential Paths 25

3.1 Motivation

Early attempts to find the top-k influential users/nodes in a social network assume the

existence of a social graph with edges labeled with probabilities of influence between

users [55, 57, 64, 79, 28, 27]. However, this assumption is not realistic as such edges are

often implicit or even unknown in the networks. Recent works aim to infer the “hidden”

network from a list of observations of when and where an event occurs [44, 75]. The work

in [44] infers top-k influential edges in the context of information propagation among

blogs and online news sources where bloggers write about newly discovered information

without explicitly citing the source. In other words, we can only observe the time when a

blog gets influenced but not where it got the influence from.

us.rd.yahoo.com

blog.myspace.com

uk.news.yahoo.com

rss.feedsportal.com

news.originalsignal.com

(a) Top-5 influential nodes

us.rd.

yahoo.com

philly.com news.originalsignal.com

blog.beliefnet.com

seattletimes.

nwsource.com

breitbart.com

(b) Top-5 influential edges

breitbart.com

philly.com

blog.beliefnet.com

seattletimes.nwsource.com

blog.myspace.com

uk.news.yahoo.com

forum.prisonplanet.com

us.rd.yahoo.com

news.originalsignal.com

(c) Top-5 influential paths

Figure 3.1: MemeTracker dataset

Figures 3.1(a) and 3.1(b) show the top-5 influential nodes and top-5 influential edges

obtained from MemeTracker dataset [63]. Each node in the network is a news website

and a directed edge from node a to node b indicates that information has propagated from

a to b. Based on the influential edges, we can only know that when the website seattle-

Chapter 3. Mining Top-k Maximal Influential Paths 26

times.nwsource.com has new information, it gets propagated to either blog.beliefnet.com

or news.originalsignal.com or both. However, if we have the top-5 influential paths as

shown in Figure 3.1(c), then we see that a new piece of information gets propagated from

us.rd.yahoo.com to seattletimes.nwsource.com to blog.beliefnet.com. Further, we observe

that many of the influential paths pass through philly.com, making it a critical node. Crit-

ical nodes should have mirror sites as any disruption to these critical nodes may lead to

news blackout.

Identifying critical nodes have many useful applications. In social network sites such

as Twitter, identifying critical nodes in the rumor paths enables effective strategies to

be formulated that target these critical nodes to counter the spread of rumors. Another

important application of top-k influential paths and critical nodes is in the surveillance

of computer virus propagation. Inferring the top-k influential paths from the list of sites

infected by computer virus allows one to better understand how the virus spreads over

time and stop the virus propagation by bringing down the critical nodes.

Figure 3.2: Number of news articles produced in MemeTracker dataset

One complication in the identification of influential paths is due to the fact that users

of the online social media are active and regularly upload new information to the social

media. For example, news websites regularly publish important information in Meme-

Tracker dataset. On average, 20,000 news articles are produced per hour from August

2008 to January 2009 in the MemeTracker dataset (see Figure 3.2). Such updates may

introduce new patterns or invalidate some existing patterns. Recomputing top-k maximal

Chapter 3. Mining Top-k Maximal Influential Paths 27

influential paths for each update is very inefficient. Clearly, an incremental algorithm is

needed to maintain the set of top-k influential paths efficiently.

3.2 Preliminaries

An influence network aims to capture the propagation of influence among a set of entities

based on a list of observations. We model the network using a directed graph G = (V,E)

where V and E are the sets of nodes and edges respectively.

A node u in V denotes an entity and can be active or inactive. It is considered active

if it has been influenced. Nodes can switch from being inactive to active, but not vice

versa. When a node u gets influenced, it in turns may influence each of its currently

inactive neighbors v with some small probability. Node u can only influence its neighbor

v if their time difference is within some time threshold τ .

Each directed edge (u, v) ∈ E has a weight weight(u, v) ∈ [0, 1] denoting the like-

lihood of node v being influenced by node u. Suppose tu and tv are the times at which

nodes u and v get influenced respectively. Then weight(u, v) = 0 if tv ≤ tu, i.e., nodes

cannot be influenced by nodes from the future time points. Otherwise, weight(u, v) =

e−
tv−tu
α , where α is radius of influence.

We associate each node u with an influence measure which is computed from the

weights of the edges connecting u to its active neighboring nodes as follows:

influence(u, S) = 1−
∏
w∈S

(1− weight(w, u)) (3.1)

where S is the set of active neighbors of u.

One immediate concern is the cost of updating influence(u, S) when the status of

nodes change. Since the node status changes frequently, this update cost can be compu-

tationally expensive. We derive an expression that allows influence(u, S) to be updated

incrementally.

Chapter 3. Mining Top-k Maximal Influential Paths 28

Suppose a new neighboring node w of u becomes active. Then

influence(u, S ∪ {w}) = 1− (1− weight(w, u)) ∗
∏
u′∈S

(1− weight(u′, u))

= 1− (1− weight(w, u)) ∗ (1− influence(u, S))

= influence(u, S) + (1− influence(u, S)) ∗ weight(w, u)

(3.2)

We observe that the influence measure influence(u, S) is both monotonic and sub-

modular.

A function f(.) is monotonic if f(S) ≤ f(S ′), for S ⊆ S ′. From Equation 3.2, we

have

influence(u, S ∪{w})− influence(u, S) = (1− influence(u, S))∗weight(w, u) ≥ 0

A function f(.) is submodular if f(S ∪ {w}) − f(S) ≥ f(S ′ ∪ {w}) − f(S ′), for

S ⊆ S ′. This means that adding a node w to S increases the score more than adding w to

S ′ when S ⊆ S ′. We show that influence(u, S) is sub-modular as follows:

influence(u, S ∪ {w})− influence(u, S)− (influence(u, S ′ ∪ {w})− influence(u, S ′))

= (1− influence(u, S)) ∗ weight(w, u)− (1− influence(u, S ′)) ∗ weight(w, u)

= (influence(u, S ′)− influence(u, S)) ∗ weight(w, u) (3.3)

By monotonicity, influence(u, S ′) ≥ influence(u, S). Hence,

(influence(u, S ′)− influence(u, S)) ∗ weight(w, u) ≥ 0

Definition 1. Observation. An observation o = < (u1, t1), (u2, t2), · · · , (un, tn) > is a

sequence of tuples (ui, ti) where ti is the time when node ui becomes active, and ∀ i <

j, ti < tj . Further, ui 6= uj ∀ i 6= j. The length of observation o, denoted as |o|, is the

Chapter 3. Mining Top-k Maximal Influential Paths 29

number of (ui, ti) tuples in o.

Definition 2. Influential Path. An influential path is a sequence of nodes, denoted as p

= < v1 → v2 → · · · → vn >, such that weight(vi, vi+1) is larger than some user defined

threshold for all i, 1 ≤ i ≤ n− 1. The length of p is given by |p| = n− 1.

Definition 3. Support. An observation o supports an influential path p if

• ∀v ∈ p, v ∈ { ui | (ui, ti) ∈ o}, and

• if ui and uj are nodes in o that correspond to vi′ and vi′+1, then 0 < tj − ti < τ , 1

≤ i′ ≤ n− 1.

Let D be an observation database, which consists of a set of observations. The

support of an influential path p, denoted as support(p), is the number of observations

in D that support p.

The score of a path p = < v1 → v2 → · · · → vn > w.r.t. an observation o is defined

as

score(p, o) = log(influence(v1, S)
∏

1≤i≤n−1

weight(vi, vi+1))− log ε, (3.4)

where ε ∈ [0, 1] is some small value and S is the set of active neighbors of v1 w.r.t. o.

Let Sp be the set of observations in D that support influential path p. The total score

of p, denoted as total score(p), is defined by

total score(p) =
∑
o∈Sp

score(p, o). (3.5)

An influential path p = < v1→ v2→ · · · → vm > is a sub-path of another influential

path p′ = < v′1 → v′2 → · · · → v′n >, denoted as p v p′, if and only if ∃ i1, i2, · · · , im,

such that 1 ≤ i1 < i2 < · · · < im ≤ n, and v1 = v′i1 , v2 = v′i2 , · · · , and vm = v′im . We also

call p′ a super-path of p.

An influential path p is maximal if there exists no influential path p′ such that p v p′

and support(p) = support(p′).

Chapter 3. Mining Top-k Maximal Influential Paths 30

Definition 4. Top-k Maximal Influential Path. An influential path p is a top-k maximal

influential path if p is maximal and there exist no more than (k − 1) maximal influential

paths whose total score is greater than that of p.

The following theorem states the relation between the support and total score of two

maximal influential paths. This theorem is utilized by our proposed algorithm in Section

3.3 to effectively prune off the search space.

Theorem 1. For any two maximal influential paths p and p′, if support(p) > support(p′)

and ε < e−|D|(|o|+1)τ , then total score(p) > total score(p′) where o is an observation

with maximum length in database D.

Proof. Let p be a maximal influential path with support s and length |p|. We can calculate

the total score of path p as

total score(p) =
∑
o∈Sp

score(p, o)

> (log e−τ + |p| ∗ log e−τ − log ε) ∗ s

= −sτ − s|p|τ − s ∗ log ε

= −sτ − s|p|τ − s ∗ log ε+ log ε− log ε

= (− log ε) ∗ (s− 1) + (−sτ − s|p|τ − log ε)

> (− log ε) ∗ (s− 1) + (−sτ − s|p|τ − log e−|D|(|o|+1)τ)

= (− log ε) ∗ (s− 1) + (|D|(|o|+ 1)− s(|p|+ 1))τ

> (− log ε) ∗ (s− 1)

Since (|D|(|o| + 1) − s(|p| + 1)) ≥ 0, we have (log e−τ + |p| ∗ log e−τ − log ε) ∗ s

> (− log ε) ∗ (s − 1). Note that (log e−τ + |p| ∗ log e−τ − log ε) ∗ s is the lower bound

for the total score of any maximal influential path with support s, and (− log ε) ∗ (s −

1) is the upper bound for the total score of any maximal influential path with support

(s − 1). Further, the value of total score decreases with the length of a path. Hence,

(log e−τ + |p| ∗ log e−τ − log ε)∗s > (− log ε)∗ (s−1) implies that the total score of any

Chapter 3. Mining Top-k Maximal Influential Paths 31

maximal influential path with support s is greater than all the maximal influential paths

whose support is less than s.

3.3 The TIP Algorithm

In this section, we first briefly review works in sequential pattern mining that are related

to our TIP method and then give the details of the TIP algorithm. Sequential pattern min-

ing [100], which discovers frequent subsequences as patterns in a sequence database, is

an important data mining problem. Recent studies have developed two major classes of

sequential pattern mining method: Apriori-based approaches such as GSP [100], SPADE

[117], SPAM [8] and Pattern-Growth-based approaches such as FreeSpan [49], PrefixS-

pan [83]. The key advantage of PrefixSpan is that it does not generate any candidate

sequences. Its general idea is to examine only the frequent prefix subsequences and

project only their corresponding postfix subsequences into projected databases because

any frequent subsequence can always be found by growing a frequent prefix.

A major challenge in mining frequent sequential patterns from a large data set is the

fact that such mining often generates a huge number of patterns satisfying the min sup

threshold, especially when min sup is set low. This is because if a sequential pattern is

frequent, each of its sub-patterns is frequent as well. A large sequential pattern will con-

tain an exponential number of smaller, frequent sub-patterns. To overcome this problem,

closed frequent sequential pattern mining methods have been proposed (e.g. CloSpan

[114], BIDE [111]). CloSpan [114] adopts a two-phase strategy for mining closed se-

quential patterns. In the first phase, it finds a superset of the set of final closed patterns.

In the second phase, it eliminates non-closed patterns using a hash index.

Mining closed patterns may significantly reduce the number of patterns generated and

is information lossless because it can be used to derive the complete set of sequential

patterns. However, setting min support is a subtle task: A too small value may lead to the

generation of thousands of patterns, whereas a too big one may lead to no answer found.

To come up with an appropriate min support, one needs prior knowledge about the mining

Chapter 3. Mining Top-k Maximal Influential Paths 32

query and the task-specific data, and be able to estimate beforehand how many patterns

will be generated with a particular threshold. TFP [50] and TSP [106] algorithms have

been proposed to discover top-k frequent closed patterns without a predefined min sup

threshold. TFP [50] is an FP-tree based frequent pattern mining algorithm. It starts the

mining process withmin sup threshold equal to 1, and raises the support threshold during

both the FP-tree construction and the mining of the FP-tree. Giannotti et al. [41] intro-

duce a novel form of sequential pattern, called Temporally-Annotated Sequence (TAS),

representing typical transition times between the events in a frequent sequence.

Our TIP algorithm is different from the above sequential pattern mining methods. TIP

is a prefix-based influential path mining method in the context of information diffusion.

We also consider the temporal information which is ignored by existing works.

Next, we describe our method, TIP, for mining top-k maximal influential paths with-

out the need to specify a minimum support threshold. Initially, the minimum support

threshold min sup is set to 1. TIP is a prefix-based influential path mining method. It

extends the classical projection-based pattern growth method [83] with time constraint.

Instead of projecting observation databases by considering all possible occurrences of

prefixes, TIP examines the frequent prefix sub-paths and projects only the corresponding

valid observations which satisfy the time constraint into the projected databases. The in-

fluential paths are then extended by exploring the valid frequent nodes in the projected

databases.

Given an influential path p = < v1→ v2→ · · · → vn > and a node α, we can extend

p by α if the last node of p, i.e. vn, can influence α, that is, the time difference between

tvn and tα is within the time threshold τ . We denote the extension as p→ α = < v1→ v2

→ · · · → vn→ α >.

Let p′ = p→ α be an extension of p. we say p is a prefix of p′ and α is a suffix of

p′. For example, in our sample observation database D as shown in Table 3.1, < a→ d

→ g > is a prefix of path < a→ d→ g→ i > and < i > is its suffix.

Let Sp be the set of observations that support influential path p. Suppose each o ∈ Sp

Chapter 3. Mining Top-k Maximal Influential Paths 33

is of the form < (u1, t1), (u2, t2), · · · , (ua, ta), (ua+1, ta+1), · · · , (ub, tb) >. Then we

define the p-projected database as Dp = {< (ua+1, ta+1), · · · , (ub, tb)> } if the last node

vn ∈ p corresponds to ua ∈ o and the time difference ta+1 − ta is less than τ .

Table 3.1: A sample observation database D

ID Observation
o1 <(a,1) (d,5) (g,10) (i,16)>
o2 <(c,8) (e,15) (f,20)>
o3 <(c,4) (d,10) (g,16) (i,20)>
o4 <(c,3) (e,12) (i,36)>
o5 <(c,5) (e,9) (h,20) (i,24)>

Consider the sample observation database in Table 3.1. Let time threshold τ = 20. The

projected database for path < c→ e > is D<c→e> = {< (f, 20) >, < (h, 20), (i, 24) >}.

Note that for observation o4, the time stamp of e is 12, while the next time stamp is 36.

Since the time difference is 24 which is more than τ , node e cannot influence node i, and

hence < (i, 36) > is not included in the projected database.

Algorithm 2 TIPMiner(D, k, τ)
Require: global variable PathSet
Require: observation database D, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet

1: V ← nodes in D
2: Initialize min sup = 1
3: Initialize PathSet = ∅
4: Let root be the root node
5: for each node v ∈ V do
6: Create child node v of root and record support count and IDs of the supporting

observations of v
7: Update PathSet by calling TIP(< v >, D<v>, k, min sup, τ , PathSet)
8: end for
9: return PathSet

Having defined the concept of path-projected databases, we next describe the frame-

work TIPMiner for mining the top-k maximal influential paths from a given observation

database D. Algorithm 2 gives the details. It first finds all the nodes in D and sorts them

in decreasing order of their support values. A global variable PathSet is used to keep

Chapter 3. Mining Top-k Maximal Influential Paths 34

track of the set of top-k maximal influential paths. This global variable is updated by

calling Algorithm TIP (see Algorithm 3) for each node.

Algorithm TIP finds the top-k maximal influential paths by constructing projected

databases. Inputs to TIP algorithm are an influential path p, the p-projected database Dp,

the number of maximal influential paths k, minimum support threshold min sup, time

threshold τ , and PathSet. The outputs are the set of top-k maximal influential paths

PathSet.

Given an influential path p, TIP algorithm attempts to extend p by first obtaining the

p-projected database Dp. Initially, the path consists of only one node. Given a path p, we

first check if this path is promising (Lines 1-3). A path is promising if its support is no

less than the minimum support threshold. We calculate the total score of path p (Lines

4-5). Line 6 checks whether there exists an influential path p′ ∈ PathSet such that p is a

sub-path or super-path of p′. If p′ exists, we perform maximal influential path verification

(Lines 8-15). If p′ is a sub-path of p, then we replace p′ by p in the PathSet since p is

now the maximal influential path (Lines 12-14). However, if p′ is a super-path of p, then

p is not a maximal influential path and can be discarded (Lines 9-11).

If p′ does not exist and PathSet contains less than k maximal influential paths, then

we add p to the PathSet (Lines 17-18). Otherwise, if PathSet already contains k maxi-

mal influential paths, we check the total score of p. If the total score of p is larger than

any of the k maximal influential paths in PathSet, we replace the path with the smallest

total score by p (Lines 19-24). By Theorem 1, we raise min sup to the support of the

path whose total score is the minimum in PathSet (Lines 26-29). This allows us to

prune off unpromising paths.

Next, the algorithm attempts to extend p by finding all the frequent nodes α ∈ Dp

such that we can extend p to p → α (Lines 30-41). We scan the p-projected database

Dp to find every frequent node α, such that path p can be extended to p→ α, and insert

α into a priority queue Q (Lines 31-36). We recursively call TIP algorithm to extend

another path using the next frequent node in Q (Lines 37-41). The algorithm terminates

Chapter 3. Mining Top-k Maximal Influential Paths 35

Algorithm 3 TIP(p, Dp, k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: a path p, Dp, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet

1: if support(p) < min sup then
2: return
3: end if
4: let Sp be the set of observations that support p
5: calculate total score(p) =

∑
o∈Sp

score(p, o)

6: check whether a discovered influential path p′ ∈ PathSet exists, s.t. either p v p′ or p′ v p,
and support(p) = support(p′)

7: if such super-path or sub-path exists then
8: for each p′ ∈ PathSet such that support(p′) = support(p) do
9: if p v p′ then

10: return
11: end if
12: if p′ v p then
13: replace p′ with p
14: end if
15: end for
16: else
17: if |PathSet| < k then
18: PathSet = PathSet ∪ {p}
19: else
20: let path q ∈ PathSet such that @ q′ ∈ PathSet, total score(q′) < total score(q)
21: if total score(p) > total score(q) then
22: replace q with p
23: end if
24: end if
25: end if
26: if |PathSet| = k then
27: let path q ∈ PathSet such that @ q′ ∈ PathSet, total score(q′) < total score(q)
28: min sup = support(q)
29: end if
30: Q← empty priority queue
31: compute the frequency of each node in Dp

32: for each frequent node α do
33: if p can be extended to p→ α then
34: Q.insert(α)
35: end if
36: end for
37: while !Q.isEmpty() do
38: α = Q.pop()
39: create child node α of the last node of p and record support count and IDs of the supporting

observations of α
40: Call TIP(p→ α, Dp→α, k, min sup, τ , PathSet)
41: end while
42: return

Chapter 3. Mining Top-k Maximal Influential Paths 36

when Q is empty.

Let us now use the example in Table 3.1 to illustrate the TIP algorithm. The entity

with the highest support value is c (see Table 3.2). We obtain the projected databaseD<c>

as shown in Table 3.3. The frequent nodes with their support values are shown in Table

3.4. We insert these nodes into the priority queue Q and recursively call TIP to extend

< c >. Since node e has support 3 in Q, we extend < c > to < c→ e >.

Table 3.2: Frequent nodes in D

Node Count
c 4
i 4
e 3
d 2
g 2
a 1
f 1
h 1

Table 3.3: < c >-projected database D<c>

ID Observation
o2 <(e,15) (f,20)>
o3 <(d,10) (g,16) (i,20)>
o4 <(e,12) (i,36)>
o5 <(e,9) (h,20) (i,24)>

Table 3.4: Frequent nodes in D<c>

Node Count
e 3
i 2
d 1
f 1
g 1
h 1

Conceptually, the TIP algorithm is constructing a prefix search tree where node in the

tree corresponds to an influential path starting from the root to the node and its support

Chapter 3. Mining Top-k Maximal Influential Paths 37

is shown next to the node as shown in Figure 3.3. The number along each edge denotes

the total score of the path from the root to the end node of the edge. We assume that the

time threshold τ = 20 and ε = e−64. We observe that < c→ e > are supported by three

observations o2, o4 and o5 in Table 3.1. The scores with respect to these observations are

as follows:

score(p, o2) = log(influence(c, S) ∗ weight(c, e))− log ε

= log e−
15−8
1.0 − log e−64

= 57

Similarly, we have score(p, o4) = 55 and score(p, o5) = 60. Thus the total score of the

influential path p = < c → e > is total score(p) = 57 + 55+ 60 = 172. In the same

manner, we build < c→ e >-projected database and extend < c→ e > to < c→ e→

f >.

Suppose we wish to find the top-2 maximal influential paths. After obtaining the paths

< c→ e > and < c→ i >, the min sup is raised to 2. This implies that all the branches

rooted at node a are pruned as their support values are less than 2. Similarly, branches

rooted at node e are also pruned as they have already been traversed previously from node

c. The bold lines in Figure 3.3 show the explored paths.

To further improve the efficiency of TIP algorithm, we propose two optimization

strategies.

Early Termination by Equivalence. Early termination by equivalence is a search space

reduction technique developed in CloSpan [114]. Let N(D) represent the total number of

nodes inD. The property of early termination by equivalence shows that if two influential

paths p v p′ and N(Dp) = N(Dp′), then ∀ γ, support(p → γ) = support(p′ → γ). It

means the descendants of p in the prefix search tree cannot be maximal. Furthermore,

the descendants of p and p′ are exactly the same. We can utilize this property to quickly

prune the search space of p.

Chapter 3. Mining Top-k Maximal Influential Paths 38

<>

fde

c de a

g i

g i

i

f h i

i

d

g i

g i

if h

i i

h

ii

g

i

i

f h

i

g

i

i

i

55

60 4955

4952 4952 48

48

93172 58 495252 117

49 45

45

48 45 10749

10759 53 49 118 60

:4 :3 :1 :1:4 :2:2

:1:1

:1

:3

:1

:1

:1

:1 :1 :1 :1

:1

:2 :1 :2 :2

:1 :1

:1

:1 :1:1

:1

:1

:1 :1 :2

:1

:1 :2 :1:1

pruned

pruned

pruned

49

Figure 3.3: Prefix search tree for sample database

Pseudo Projection. As with traditional projection-based mining method, the major cost

of TIP is the construction of projected databases. To reduce the cost of projection, we

apply the pseudo-projection technique [83]. Instead of constructing a physical projection

by collecting all the postfixes, we use pointers referring to the observations in the database

as a pseudo projection. Every projection consists of two pieces of information: pointer

to the observation in database and offset of the postfix in the observation. This allows

us to avoid physically copying postfixes: only pointers to the projected point are saved

for each observation. Thus, it is efficient in terms of both running time and space.

3.4 Incremental Mining

One challenge in finding the top-k maximal influential paths in social networks is that

most users are active and updates tend to be frequent and voluminous. In general, there

are three kinds of updates: (1) new observation arrives. This corresponds to an INSERT

operation. (2) new follow-up action is observed later. This corresponds to an APPEND

operation. (3) an existing observation is no longer valid and should be removed. This

corresponds to a DELETE operation. We can consider APPEND as deleting an existing

Chapter 3. Mining Top-k Maximal Influential Paths 39

observation and inserting a new one. For example, if we wish to append the tuple <

(g, 26) > to observation o2 in Table 3.1, we first delete o2 and insert the observation o′2:

< (c, 8)(e, 15)(f, 20)(g, 26) > into D.

Invoking TIP for each update is infeasible. In this section, we describe an incremental

mining algorithm to mine top-k maximal influential paths. We first briefly review in-

cremental sequential pattern mining algorithms that are most relevant to our incremental

mining method. Sequential pattern mining [100] is to find frequent subsequences from

a sequence database. In many applications, databases are updated incrementally, which

leads to the study of incremental mining of sequential patterns. Incremental sequen-

tial pattern mining methods can be classified into two categories, Apriori-based methods

(e.g. ISM [82], ISE [74], and GSP+ [119]) and projection-based methods (e.g. Inc-

Span [31], IncSpan+ [81], PBIncSpan [30], and ISPBS [68]). Apriori-based incremental

mining methods would generate huge set of candidate sequences, while projection-based

incremental mining methods can avoid this by using pattern growth approach to mine

sequential patterns.

Cheng et al. [31] propose an incremental mining algorithm, called IncSpan, by taking

advantage of PrefixSpan [83]. IncSpan buffers a set of semi-frequent sequences for incre-

mental mining. Later, Nguyen et al. [81] clarify that IncSpan cannot find the complete

set of sequential patterns in the updated database and propose a new algorithm called Inc-

Span+. In [30], Chen et al. argue that in general IncSpan+ cannot find complete set of

sequential patterns, and propose a new incremental mining algorithm based on prefix tree,

called PBIncSpan. PBIncSpan constructs a prefix tree to represent the sequential patterns

and maintains the tree structure using width pruning and depth pruning when database

updates.

Our incremental mining method IncTIP is quite different from existing works on in-

cremental pattern mining. We extend the pattern growth method with time constraint, and

introduce a score function to measure different patterns.

Next, we describe our IncTIP algorithm to allow for incremental mining of top-k

Chapter 3. Mining Top-k Maximal Influential Paths 40

maximal influential paths. The main idea in incremental mining is to leverage on the

computations done previously. In order to do this, we need to store additional information

for each node, namely the support count for each of its extended child and the IDs of the

supporting observations. Figure 3.4 shows the additional information we keep for root

and node c, e in the explored paths of the prefix tree.

<>

e

c d

g i

if h i

i

i

i

52

93172 117

49 45

45

107

107

:4 :4 :2

:3

:1 :1 :1

:1

:2 :2 :2

:2

Node Count IDs

h o51

f

o51h

Node Count IDs

1 o2

a 1 o1

g 2 o1,o3

d 2 o1,o3

e 3 o2,o4,o5

i 4 o1,o3,o4,o5

c 4 o2,o3,o4,o5

Node Count IDs

g 1 o3

f 1 o2

d 1 o3

i 2 o3,o5

e 3 o2,o4,o5

f 1 o2

h 1 o5

i 1 o5

Figure 3.4: Prefix tree with additional information for root and node c, e

The IncTIP algorithm for incremental mining of top-k maximal influential paths is

given in Algorithm 4. The inputs are database D, set of updates U , an integer k, top-

k maximal influential path set PathSet and the corresponding final min sup, and time

threshold τ . The output is the set of top-k maximal influential paths PathSet. For each

update, we first check whether it is INSERT or DELETE (Line 2). If the update is IN-

SERT of an observation o, then for each node v in o, we scan additional information

table of root and check whether v is frequent or not (Line 5). If it is frequent, we up-

date the PathSet by calling the INSERT algorithm (Lines 6-7). Otherwise, we call the

TIP algorithm (Lines 8-12). If the update is DELETE of an observation o, we update the

Chapter 3. Mining Top-k Maximal Influential Paths 41

PathSet by calling the DELETE algorithm (Lines 15-17). The global variable PathSet,

which keeps track of the set of top-k maximal influential paths, is updated by calling the

appropriate algorithms. Algorithm 5 and 6 gives the details of INSERT and DELETE re-

spectively. We will illustrate them in detail in the following subsections with our running

example.

Algorithm 4 IncTIP(D, U , k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: database D, set of updates U , an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet

1: let root be the root node
2: for each update in U do
3: if INSERT o then
4: for each node v ∈ o do
5: scan additional information table of root, check whether v is frequent or not
6: if v is frequent then
7: Update PathSet by calling INSERT(D, v, o, k, min sup, τ , PathSet)
8: else
9: let I be the set of observations in D ∪ {o} that support v

10: let I<v> be v-projected database
11: Update PathSet by calling TIP(v, I<v>, k, min sup, τ , PathSet)
12: end if
13: end for
14: else
15: if DELETE o then
16: Update PathSet by calling DELETE(D, root, o, k, min sup, τ , PathSet)
17: end if
18: end if
19: end for
20: return PathSet

3.4.1 Insert Observation

Suppose we insert a new observation o6: < (a, 2)(d, 7)(i, 13) > into the sample observa-

tion database D in Table 3.1. The new observation database D′ after insertion is shown

in Table 3.5.

Chapter 3. Mining Top-k Maximal Influential Paths 42

Table 3.5: New database D′ after insertion

ID Observation
o1 <(a,1) (d,5) (g,10) (i,16)>
o2 <(c,8) (e,15) (f,20)>
o3 <(c,4) (d,10) (g,16) (i,20)>
o4 <(c,3) (e,12) (i,36)>
o5 <(c,5) (e,9) (h,20) (i,24)>
o6 <(a,2) (d,7) (i,13)>

Recall that in our previous running example for the TIP algorithm, we find top-2

maximal influential paths and themin sup is finally raised to 2. So all the branches rooted

at node a are pruned as their support values are less than 2 (see Figure 3.3). However, after

inserting observation o6, the support of node a becomes 2, implying that we should mine

influential paths starting at node a. Based on the additional information for the root node

as shown in Table 3.6, we know that in the original database observation o1 supports node

a. So observations that support node a are observation o1 and the inserted observation o6.

Table 3.6: Additional information for root node

Node Count IDs
c 4 o2,o3,o4,o5

i 4 o1,o3,o4,o5

e 3 o2,o4,o5

d 2 o1,o3

g 2 o1,o3

a 1 o1

f 1 o2

h 1 o5

For node a, we call the TIP algorithm (Algorithm 3). We obtain < a >-projected

database I<a> as shown in Table 3.7. The frequent nodes with their support values are

shown in Table 3.8. We insert these nodes into the priority queue Q and recursively call

TIP to extend < a >. Since node d has support 2 in Q, we extend < a > to < a→ d >.

By recursively calling the TIP algorithm, we obtain the path < a → d → i > and the

other paths are pruned.

Chapter 3. Mining Top-k Maximal Influential Paths 43

Table 3.7: < a >-projected database I<a>

ID Observation
o1 <(d,5) (g,10) (i,16)>
o6 <(d,7) (i,13)>

Table 3.8: Frequent nodes in I<a>

Node Count
d 2
i 2
g 1

For node d, we update PathSet by calling the INSERT algorithm, as we observe from

the prefix search tree in Figure 3.3 that node d has already been traversed in the previous

mining result.

Algorithm 5 gives the details of INSERT algorithm. The inputs are database D, node

v, observation o, an integer k, min sup, time threshold τ , and top-k maximal influential

path set PathSet. The output is the set of top-k maximal influential paths PathSet. We

first check whether observation o supports v (Line 1). If o supports v, we update the

support of v and total score of path < root→ · · · → v > and meanwhile update IDs

of the supporting observations of node v (Lines 2-5). For each child α of node v, if α is

frequent, we recursively call the INSERT algorithm (Lines 7-8). Otherwise, we call the

TIP algorithm to explore branches that are pruned previously for possible top-k maximal

influential paths (Lines 9-15). Finally, we update the top-k maximal influential path set

PathSet (Lines 18-21) and min sup (Lines 22-23). With the insertion of observation o6,

we update the support of d to 3. Based on the additional information for node d as shown

in Table 3.9, we know that the child node i is supported by o6, so we update the support

of i and meanwhile update the total score of path < d→ i >.

For node i in observation o6, as it is already traversed, we call the INSERT algorithm

and update the support of i to 5. Figure 3.5 shows the prefix search tree constructed after

inserting observation o6. The bold lines represent the explored paths.

Chapter 3. Mining Top-k Maximal Influential Paths 44

Algorithm 5 INSERT(D, v, o, k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: database D, node v, observation o, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet

1: if o supports v then
2: support(v) = support(v) + 1
3: let path p = < root→ · · · → v >
4: total score(p) = total score(p) + score(p, o)
5: add ID of o to IDs of the supporting observations of node v
6: for each child α of v do
7: if α is frequent then
8: Call INSERT(D, α, o, k, min sup, τ , PathSet)
9: else

10: if o supports α then
11: let I be the set of observations in D ∪ {o} that support < p→ α >
12: let I<p→α> be < p→ α >-projected database
13: Call TIP(< p→ α >, I<p→α>, k, min sup, τ , PathSet)
14: end if
15: end if
16: end for
17: end if
18: let path q ∈ PathSet such that @ q′ ∈ PathSet, total score(q′) < total score(q)
19: if ∃ p′ ∈ T \ PathSet such that total score(p′) > total score(q) then
20: replace q with p′

21: end if
22: let path q ∈ PathSet such that @ q′ ∈ PathSet, total score(q′) < total score(q)
23: min sup = support(q)
24: return

a

d

i g

i g

102

119

:2

:2

:2

:2

:1

:1

pruned

<>

e

c d

g i

if h i

i

i

i

52

93172 117

49 45

45

107

165

:4 :5 :3

:3

:1 :1 :1

:1

:2 :2 :3

:2

pruned

Figure 3.5: Prefix search tree for new database after inserting observation o6

Chapter 3. Mining Top-k Maximal Influential Paths 45

Table 3.9: Additional information for node d

Node Count IDs
g 2 o1,o3

i 2 o1,o3

3.4.2 Delete Observation

Suppose we delete observation o4: < (c, 3)(e, 12)(i, 36) > from the sample observation

database D in Table 3.1. We update PathSet by calling the DELETE algorithm. Al-

gorithm 6 gives the details of DELETE algorithm. The inputs are database D, node v,

observation o, an integer k, min sup, time threshold τ , and top-k maximal influential

path set PathSet. The output is the set of top-k maximal influential paths PathSet. We

first scan the additional information table of node v to find every node α such that o sup-

ports α (Line 1). For each node α, we update the support of α and total score of path

< root→ · · · → α > and meanwhile update IDs of the supporting observations of node

α (Lines 3-6). We recursively call the DELETE algorithm on node α (Line 7). After

deleting observation o, we update the top-k maximal influential path set PathSet (Lines

9-12) and min sup (Lines 13-14). Finally, we call the TIP algorithm to explore branches

that are pruned previously for possible top-k maximal influential paths (Lines 15-20).

As observation o4 is deleted from the sample database D, the support of node c, e

and i will decrease. Note that we utilize the additional information for each node in the

prefix tree as shown in Figure 3.4. Starting from the root node, based on the additional

information for root node (Table 3.6), we know node c and i are supported by observation

o4, so we decrease their support by 1. As for node c, based on its additional information

(Table 3.10), the child e is also supported by o4, so we update the support of node e and

meanwhile update the total score of path < c→ e >. Figure 3.6 shows the prefix search

tree after deleting observation o4. The bold lines represent the explored paths.

Chapter 3. Mining Top-k Maximal Influential Paths 46

Algorithm 6 DELETE(D, v, o, k, min sup, τ , PathSet)
Require: global variable PathSet, min sup
Require: database D, node v, observation o, an integer k and time threshold τ
Ensure: Top-k maximal influential path set PathSet

1: scan additional information table of node v, find every node α such that o supports α
2: for each node α do
3: support(α) = support(α) − 1
4: let path p = < root→ · · · → α >
5: total score(p) = total score(p) − score(p, o)
6: remove ID of o from IDs of the supporting observations of node α
7: Call DELETE(D, α, o, k, min sup, τ , PathSet)
8: end for
9: let path q ∈ PathSet such that @ q′ ∈ PathSet, total score(q′) < total score(q)

10: if ∃ p′ ∈ T \ PathSet such that total score(p′) > total score(q) then
11: replace q with p′

12: end if
13: let path q ∈ PathSet such that @ q′ ∈ PathSet, total score(q′) < total score(q)
14: min sup = support(q)
15: scan additional information table of root, find every node v′ that is not frequent
16: for each node v′ do
17: let I be the set of observations in D \ {o} that support v′

18: let Iv′ be v′-projected database
19: Call TIP(v′, Iv′ , k, min sup, τ , PathSet)
20: end for
21: return

Table 3.10: Additional information for node c

Node Count IDs
e 3 o2,o4,o5

i 2 o3,o5

d 1 o3

f 1 o2

g 1 o3

h 1 o5

3.4.3 Complexity Analysis

In this section, we provide a brief analysis of the time and space complexity of TIP and

IncTIP algorithms. The major cost of the TIP algorithm is the construction of projected

databases. In the worst case, when no pruning takes place, TIP constructs a projected

database for every observation in the database. Thus, both the worst-case time and space

Chapter 3. Mining Top-k Maximal Influential Paths 47

<>

e

c d

g i

if h i

i

i

i

52

93117 117

49 45

45

107

107

:3 :3 :2

:2

:1 :1 :1

:1

:2 :2 :2

:2

Figure 3.6: Prefix search tree for new database after deleting observation o4

complexities are O(NL) where N is the number of tuples in the database and L is the

maximum length of all observations. In addition, since we use pseudo-projection in

our implementation, the space complexity can be reduced to the order of the size of the

database.

Similar to the TIP algorithm, the worst-case time complexity of IncTIP is O(NL)

where N is the number of tuples in the database and L is the maximum length of all

observations. For the IncTIP algorithm, we keep child node information for each node

in the prefix tree to facilitate incremental mining. So the worst-case space complexity of

IncTIP is O((N + C)L) where C is the number of child nodes for each node in the tree.

3.5 Experimental Evaluation

In this section, we conduct experiments to evaluate the effectiveness and efficiency of our

proposed TIP and IncTIP algorithms. In the first set of experiments, we compare the TIP

algorithm with the Naı̈ve algorithm that finds the top-k influential paths without any opti-

mization techniques. We also analyze the effectiveness of the two optimization strategies

by implementing two versions of TIP, TIPearly and TIPpp, where TIPearly utilizes only

the early termination strategy without pseudo projection whereas TIPpp utilizes only the

Chapter 3. Mining Top-k Maximal Influential Paths 48

pseudo projection technique without early termination. In the second set of experiments,

we compare efficiency of TIP and IncTIP algorithms for incremental mining.

All algorithms are implemented in Java language. The experiments are performed

using an Intel Core 2 Quad CPU 2.83 GHz system with 3GB of main memory and running

Windows XP operating system.

We use two real world datasets for performance evaluation. The first real world dataset

is the MemeTracker data [63]. This MemeTracker dataset contains the quotes, phrases,

and hyperlinks of the articles/blogposts that appear over prominent online news sites from

August 2008 to April 2009. Each post contains a URL, time stamp, and all of the URLs

of the posts it cites. Nodes are mostly news portals or news blogs and the time stamps in

the data capture the time that a quote/phase was used in a post. Finally, there are directed

hyperlinks among the posts. We use these hyperlinks to trace the flow of information. A

site publishes a piece of information and uses hyperlinks to refer to the same or closely

related pieces of information published by other sites. An observation is thus a collection

of time-stamped hyperlinks among different sites that refer to the same or closely related

pieces of information. We record one observation per piece – or closely related pieces –

of information. We extract the most active media sites and blogs with the largest number

of posts, and generate 46,352 observations.

Another real world dataset is the Twitter dataset [116, 60]. This Twitter dataset con-

sists of 17,214,780 tweets published by 1,746,259 users over a 7 month period from June

1 2009 to December 31 2009. For each tweet the following information is available: user,

time and content. We preprocess the tweets by removing tweets that are not in English

or have no hashtags. We use hashtags to identify the topic of each tweet and generate

129,043 observations for our experiments.

Table 3.11 shows the characteristics of the two real world datasets used in the ex-

periments including the number of input observations (Cardinality), average observation

length (Avg Len), maximum observation length (Max Len) and minimum observation

length (Min Len).

Chapter 3. Mining Top-k Maximal Influential Paths 49

Table 3.11: Datasets characteristics

Datasets Cardinality Avg Len Max Len Min Len
MemeTracker 46,352 13.72 42 3
Twitter 129,043 8.56 38 3

3.5.1 Efficiency Experiments

Efficiency of TIP. In this set of experiments, we evaluate the efficiency of TIP algorithm.

For the MemeTracker dataset, we generate the top-10 (i.e. k = 10) maximal influential

paths by setting time threshold τ to 1000 minutes and radius of influence α to 1.0. We

set time threshold τ to 1000 minutes, as we observe that the time lapse in the Meme-

Tracker dataset tends to be long. We randomly sample the dataset to vary the database

size from 10k to 40k. As can be seen from Figure 3.7, TIP algorithm outperforms the

Naı̈ve algorithm with early termination playing a greater role in reducing the runtime of

TIP.

 0

 200

 400

 600

 800

 1000

 1200

10k 20k 30k 40k

R
un

ni
ng

 ti
m

e
(s

)

Database size

Naive
TIPearly

TIPpp

TIP

Figure 3.7: Performance of varying database size on MemeTracker dataset

For the Twitter dataset, we set k = 10, τ = 10 minutes and α = 1.0. As the time lapse in

the Twitter dataset tends to be short, we set time threshold τ to 10 minutes. We generate

the top-10 maximal influential paths by varying database size from 10k to 129k. Figure

3.8 shows the result. We observe that TIP algorithm remains efficient as the database size

increases. In particular, the early termination optimization strategy is more effective in

reducing the runtime compared to the pseudo projection.

Chapter 3. Mining Top-k Maximal Influential Paths 50

 0

 100

 200

 300

 400

 500

 600

 700

 800

10k 30k 50k 70k 90k 110k 130k

R
un

ni
ng

 ti
m

e
(s

)

Database size

Naive
TIPearly

TIPpp

TIP

Figure 3.8: Performance of varying database size on Twitter dataset

Note that the runtime on Twitter dataset is less than the runtime on MemeTracker

dataset. This is because the average observation length of the Twitter dataset is smaller

than that of the MemeTracker dataset. Furthermore, for the Twitter dataset time threshold

τ is set to 10 minutes, whereas for the MemeTracker dataset τ is set to 1000 minutes.

Efficiency of IncTIP. We also evaluate the efficiency of IncTIP algorithm. For the Meme-

Tracker dataset, we set the original database size to 25k and vary the size of update

database from 5k to 20k. We set the number of maximal influential paths k = 10, time

threshold τ = 1000 minutes, and radius of influence α = 1.0. Figure 3.9 shows the result.

We observe that as the size of update database increases, the running time for both algo-

rithms increases. However, IncTIP is more efficient than TIP. The reason is that each time

when the database updates, TIP has to mine from scratch, but IncTIP only deals with the

update part.

For the Twitter dataset, we generate the top-10 maximal influential paths by setting

time threshold τ to 10 minutes and radius of influence α to 1.0. We set the original

database size to 30k and vary the update database size from 10k to 50k. As shown in Fig-

ure 3.10, IncTIP algorithm outperforms TIP algorithm and the performance gap widens as

the size of update database increases. This is because IncTIP only deals with the update

part, whereas TIP has to mine from scratch for each database update.

We then compare the performance of IncTIP algorithm with an existing incremen-

Chapter 3. Mining Top-k Maximal Influential Paths 51

 0

 100

 200

 300

 400

 500

 600

5k 10k 15k 20k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

TIP
IncTIP

Figure 3.9: Performance of varying update database size on MemeTracker dataset

 0

 50

 100

 150

10k 20k 30k 40k 50k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

TIP
IncTIP

Figure 3.10: Performance of varying update database size on Twitter dataset

tal mining algorithm IncSpan [31]. We evaluate IncTIP and IncSpan by varying update

database size on the real world datasets. For both algorithms, we set the parameters such

that they will generate the same number of patterns.

Figure 3.11 shows the result on MemeTracker dataset by varying update database

size from 5k to 20k. We can see that IncTIP outperforms IncSpan and the performance

gap gets larger and larger as the update database size increases. This is because IncTIP

utilizes time information to prune off the search space during mining process. Similar

trend is observed for the Twitter dataset as shown in Figure 3.12.

Memory Usage. Note that in order to facilitate incremental mining, we keep additional

information for each node in the prefix tree. Thus, IncTIP algorithm will incur additional

memory cost. In this set of experiments, we compare the memory usage of TIP and

Chapter 3. Mining Top-k Maximal Influential Paths 52

 0

 100

 200

 300

 400

 500

5k 10k 15k 20k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

IncSpan
IncTIP

Figure 3.11: Performance of varying update database size on MemeTracker dataset

 0

 50

 100

 150

10k 20k 30k 40k 50k

R
un

ni
ng

 ti
m

e
(s

)

Update database size

IncSpan
IncTIP

Figure 3.12: Performance of varying update database size on Twitter dataset

IncTIP. Figure 3.13 shows the memory usage of TIP and IncTIP on the MemeTracker

dataset. The original database size is 25k and the size of update database varies from 5k

to 20k. We set the number of maximal influential paths k = 10, time threshold τ = 1000

minutes, and radius of influence α = 1.0. We can see that as the update database size

increases, the memory usage of both algorithms increases. However, IncTIP algorithm

incurs more memory usage than TIP, as IncTIP keeps additional information to facilitate

incremental mining.

For the Twitter dataset, we set the original database size to 30k and vary the size of

update database from 10k to 50k. We set k to 10, τ to 10 minutes and α to 1.0. As can be

seen from Figure 3.14, IncTIP incurs more memory usage than TIP for different update

database sizes. The reason is that IncTIP has to keep additional information to facilitate

Chapter 3. Mining Top-k Maximal Influential Paths 53

 100

 200

 300

 400

 500

 600

 700

5k 10k 15k 20k

M
em

or
y

us
ag

e
(M

B
)

Update database size

TIP
IncTIP

Figure 3.13: Memory usage by varying update database size on MemeTracker dataset

 200

 400

 600

 800

 1000

10k 20k 30k 40k 50k

M
em

or
y

us
ag

e
(M

B
)

Update database size

TIP
IncTIP

Figure 3.14: Memory usage by varying update database size on Twitter dataset

incremental mining.

3.5.2 Sensitivity Experiments

Effect of k. Next, we investigate the effect of the number of maximal influential paths, k,

on the performance of TIP algorithm. For the MemeTracker dataset, we set the database

size to 20k, time threshold τ to 1000 minutes and vary k from 5 to 25. Figure 3.15 shows

the result. As can be seen, the runtime for both TIP and Naı̈ve algorithm increases as

k increases. However, TIP algorithm outperforms the Naı̈ve algorithm and the gap in

runtime widens as k increases.

For the Twitter dataset, we set the database size to 50k, time threshold τ to 10 minutes

and vary k from 5 to 25. As shown in Figure 3.16, the runtime of TIP algorithm is half that

Chapter 3. Mining Top-k Maximal Influential Paths 54

 0

 300

 600

 900

 1200

 1500

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of maximal influential paths (k)

Naive
TIPearly

TIPpp

TIP

Figure 3.15: Performance of TIP by varying k on MemeTracker dataset

 0

 50

 100

 150

 200

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of maximal influential paths (k)

Naive
TIPearly

TIPpp

TIP

Figure 3.16: Performance of TIP by varying k on Twitter dataset

of the Naı̈ve algorithm demonstrating that TIP remains efficient even when k increases.

We also investigate the effect of the number of maximal influential paths, k, on the per-

formance of IncTIP algorithm. For the MemeTracker dataset, we set the original database

size to 25k, update database size to 20k and time threshold τ to 1000 minutes. Figure 3.17

shows the runtime of IncTIP and TIP by varying k from 5 to 25. We can see that the run-

time of both algorithms increases as k increases. However, IncTIP algorithm outperforms

TIP algorithm by a large margin and the performance gap gets larger and larger as k

increases.

For the Twitter dataset, we vary k from 5 to 25 by setting the original database size to

30k, update database size to 50k and time threshold τ to 10 minutes. As shown in Figure

3.18, the runtime of both IncTIP and TIP increases as k increases. However, IncTIP

Chapter 3. Mining Top-k Maximal Influential Paths 55

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of maximal influential paths (k)

TIP
IncTIP

Figure 3.17: Performance of IncTIP by varying k on MemeTracker dataset

 0

 50

 100

 150

 200

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of maximal influential paths (k)

TIP
IncTIP

Figure 3.18: Performance of IncTIP by varying k on Twitter dataset

algorithm outperforms TIP algorithm for different values of k.

Effect of τ . Here, we examine the effect of varying the time threshold τ on the perfor-

mance of TIP algorithm. Note that increasing τ is equivalent to increasing the search

space, i.e. the number of potential influential paths. For the MemeTracker dataset, we

set the database size to 20k, number of maximal influential paths k to 10 and vary time

threshold τ from 1000 to 3000 minutes. Figure 3.19 shows that the runtime for all al-

gorithms increases as τ increases. Similar trend is observed here with the TIP algorithm

showing a significant reduction in runtime as compared to the Naı̈ve algorithm.

For the Twitter dataset, we set the database size to 50k, number of maximal influential

paths k to 10 and vary time threshold τ from 10 to 50 minutes. As shown in Figure 3.20,

the runtime for both TIP and Naı̈ve algorithm increases as τ increases. However, TIP

Chapter 3. Mining Top-k Maximal Influential Paths 56

 0

 100

 200

 300

 400

 500

 600

 700

1000 1500 2000 2500 3000

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

Naive
TIPearly

TIPpp

TIP

Figure 3.19: Performance of TIP by varying τ on MemeTracker dataset

 0

 50

 100

 150

 200

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

Naive
TIPearly

TIPpp

TIP

Figure 3.20: Performance of TIP by varying τ on Twitter dataset

algorithm outperforms the Naı̈ve algorithm and the gap in runtime widens as τ increases.

We also examine the effect of varying the time threshold τ on the performance of

IncTIP algorithm. For the MemeTracker dataset, we set the original database size to 25k,

update database size to 20k and k to 10. Figure 3.21 shows the runtime of IncTIP and TIP

by varying τ from 1000 to 3000 minutes. We can see that the runtime of both algorithms

increases as τ increases. However, IncTIP algorithm outperforms TIP algorithm and the

performance gap widens as τ increases.

For the Twitter dataset, we vary τ from 10 to 50 minutes by setting the original

database size to 30k, update database size to 50k and k to 10. As can be seen from Fig-

ure 3.22, the runtime of both IncTIP and TIP increases as τ increases. However, IncTIP

algorithm is more efficient than TIP algorithm for different values of τ .

Chapter 3. Mining Top-k Maximal Influential Paths 57

 0

 100

 200

 300

 400

 500

 600

 700

 800

1000 1500 2000 2500 3000

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TIP
IncTIP

Figure 3.21: Performance of IncTIP by varying τ on MemeTracker dataset

 0

 50

 100

 150

 200

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TIP
IncTIP

Figure 3.22: Performance of IncTIP by varying τ on Twitter dataset

3.5.3 Effectiveness Experiments

Effectiveness of TIP. In the final set of experiments, we demonstrate the effectiveness of

using maximal influential paths for prediction. To do cross validation, we partition the

MemeTracker dataset into 4 folds (25% each). We use 75% of the total observations for

training and the remaining 25% for testing. We run the TIP algorithm on the training data

to generate the top-k maximal influential paths. For each influential path p = < v1 → v2

→ · · · → vn−1→ vn > generated, we obtain the corresponding rule

r = {< v1 → v2 → · · · → vn−1 >⇒< vn >}

with

Chapter 3. Mining Top-k Maximal Influential Paths 58

confidence(r) =
support(< v1 → v2 → · · · → vn−1 → vn >)

support(< v1 → v2 → · · · → vn−1 >)
.

For each rule < v1 → v2 → · · · → vn−1 >⇒ < vn >, we determine the number of

observations in the testing data that support p′ = < v1 → v2 → · · · → vn−1 >. If there is

at least one support observation in the testing data, we assign the probability of node vn

being influenced to the confidence of the rule, i.e. support(p)
support(p′)

. If we have more than one

rule predicting that node vn will be influenced, we assign the maximum confidence of the

rules as the probability of node vn being influenced.

The set of predicted nodes are sorted in decreasing order of the probability of getting

influenced. We consider a node to be the next influenced node if it is among the top-n

nodes. Here top-n nodes are the first n non-duplicate nodes with highest probability of

being influenced.

LetX be the set of nodes influenced in test data, and Y be the set of nodes predicted to

be influenced in test data, then precision and recall are defined by the following equations:

precision =
|X ∩ Y |
|Y |

(3.6)

recall =
|X ∩ Y |
|X|

(3.7)

We compare the prediction accuracy of TIP algorithm with NetInf algorithm [44],

which can only infer influential edge between two nodes. Similarly, we run NetInf algo-

rithm on the training data to generate a set of influential edges, say < i→ j >. We assign

the probability of node j being influenced as support(<i→j>)
support(<i>)

.

We perform 4-fold cross validation for evaluating the prediction performance of both

algorithms. Figure 3.23 shows the precision and recall results by varying the number of

predicted nodes, n, from 5 to 25. We observe that TIP algorithm significantly outperforms

NetInf algorithm for different values of n. This is because influential paths are more

informative than influential edges and hence in predicting which node will be influenced

Chapter 3. Mining Top-k Maximal Influential Paths 59

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

P
re

ci
si

on

Number of predicted nodes

Netinf
TIP

(a) Precision

 0

 0.01

 0.02

 0.03

 0.04

5 10 15 20 25

R
ec

al
l

Number of predicted nodes

Netinf
TIP

(b) Recall

Figure 3.23: Precision and recall on MemeTracker dataset

next, the TIP algorithm tends to be more accurate than NetInf algorithm.

Effectiveness of IncTIP. We evaluate the effectiveness of IncTIP algorithm on the Twitter

dataset. We partition the dataset into training data and testing data. The size of the training

data varies from 10k to 50k. We set time threshold τ to 10 minutes, and radius of influence

α to 1.0. We run IncTIP on the training data to generate a set of rules and use the top-10

nodes for prediction. Similarly, we run IncSpan on the training data to generate a set of

rules and select the top-10 predicted nodes.

Chapter 3. Mining Top-k Maximal Influential Paths 60

We compare the prediction accuracy of IncTIP with IncSpan [31]. Figure 3.24 shows

the precision and recall results by varying the size of update database (training data) from

10k to 50k. We observe that IncTIP outperforms IncSpan in both precision and recall

measures. Further, the gap in both precision and recall between IncTIP and IncSpan

widens as update database size increases. This demonstrates the effectiveness of IncTIP

algorithm.

 0

 0.2

 0.4

 0.6

 0.8

 1

10k 20k 30k 40k 50k

P
re

ci
si

on

Update database size

IncSpan
IncTIP

(a) Precision

 0

 0.02

 0.04

 0.06

 0.08

10k 20k 30k 40k 50k

R
ec

al
l

Update database size

IncSpan
IncTIP

(b) Recall

Figure 3.24: Precision and recall on Twitter dataset

3.6 Summary

In this chapter, we have focused on influential path discovery. We develop a method for

inferring top-k maximal influential paths, which can truly capture the dynamics of in-

Chapter 3. Mining Top-k Maximal Influential Paths 61

formation diffusion. We propose a generative influence propagation model based on the

Independent Cascade Model and Linear Threshold Model, which mathematically models

the spread of certain information through a network. We formalize the top-k maximal

influential path inference problem and develop an efficient algorithm, called TIP, to infer

the top-k maximal influential paths. TIP makes use of the properties of top-k maximal in-

fluential paths to dynamically increase the support and prune the projected databases. As

databases evolve over time, we extend TIP to allow for incremental mining. The extended

algorithm, named IncTIP, leverages on the computation performed in previous stages to

maintain the set of top-k maximal influential paths efficiently. We evaluate the proposed

algorithms on two real world datasets (MemeTracker and Twitter). The experimental re-

sults show that our algorithms are more scalable and more efficient than the base line

algorithms. In addition, influential paths can improve the precision of predicting which

node will be influenced next.

Chapter 4

Inferring Topic-level Social Influence

In this chapter, we take into account the temporal factor in social influence to infer the

influential strength between users at topic-level. We propose a guided hierarchical LDA

approach to automatically identify topics without using any structural information. We

then construct the topic-level social influence network incorporating the temporal factor

to infer the influential strength among the users for each topic. Experimental results on

two real world datasets demonstrate the effectiveness of our methods. Further, we show

that the proposed topic-level influence network can improve the precision of user behavior

prediction and is useful for influence maximization.

The remaining of this chapter is organized as follows: We start with the motivation

of inferring topic-level social influence in Section 4.1. In Section 4.2, we define some

terminologies and give an overview of our two-step approach. Guided hierarchical LDA

is described in Section 4.3. In Section 4.4, we infer topic-level influence network. We

conduct experiments in Section 4.5. Finally, we summarize our work in Section 4.6.

4.1 Motivation

Research on social influence has focused on discovering influential nodes (users, enti-

ties) and influence relationships (who influences whom) between nodes in the network

[55, 64, 28, 27, 44]. Knowing the influential users and their influence relationships al-

62

Chapter 4. Inferring Topic-level Social Influence 63

lows a company to target only a small number of influential users, thus leading to more

effective online advertising and marketing campaigns. However, most often than not, in-

fluential users typically tweet on many topics and their followers generally follow them

for different reasons. As a result, they may not be the ideal targets for targeted marketing.

u1

u2

u5
u4

u3

RT@u4 Vodafone

announce iPhone launch

21 Dec 2009 14:45:22

see flow tweets obama

trip china

16 Nov 2009 06:04:57

RT@u1 obama finishes

town hall meeting china

16 Nov 2009 06:14:33

Vodafone announce

iPhone launch

21 Dec 2009 14:40:47

RT@u1 obama finishes

town hall meeting china

16 Nov 2009 06:16:25

RT@u2 see flow tweets

obama trip china

16 Nov 2009 06:09:35

obama finishes town hall

meeting china

16 Nov 2009 06:10:07

RT@u5 Vodafone

announce iPhone launch

21 Dec 2009 14:50:51

RT@u4 Vodafone

announce iPhone launch

21 Dec 2009 14:46:15

(a) A set of users and the tweets they publish

u1

u2

u5
u4

u3

(b) Influence based on re-tweet infor-
mation

0.4
u1

u2

u5
u4

u3

0.6

0.5

0.5

0.60.5

0.4

Topic 1: iphone

Topic 2: Obama

(c) Topic-level influence network

Figure 4.1: Example topic-level influence analysis

Figure 4.1(a) shows 5 users and the tweets they make at different times. Based on their

re-tweet information, we can construct the influence among the users as shown in Figure

4.1(b). We note that user u1 is the most influential person as his/her tweets are re-tweeted

by 3 other users. Yet, when we analyze the contents of the tweets, we discover that user

u1 only influences u2 on the topic “iphone”, whereas for the same topic “iphone”, user

u4 influences users u1 and u5. Hence, if we wish to conduct a marketing campaign on

“iphone”, the most influential person, i.e. u1, may not be the ideal target. Instead, we

Chapter 4. Inferring Topic-level Social Influence 64

should target u4.

Further, temporal factor also plays an important role in differentiating the degree of

influence among different users. For example, users u1, u3 and u4 are connected to each

other in Figure 4.1(b) and they have tweeted about “Obama” at time stamps 06:10, 06:16

and 06:14 respectively. Without utilizing the time information, the degree of influence

from u1 to u3 and to u4 is the same. However, in real life, we observe that the influence

is the greatest when the time lapse is the shortest [44]. In other words, the influence from

u1 to u4 should be greater than that from u1 to u3.

To address this, the works in [102, 69, 109] have looked into capturing the micro-

level mechanisms of influence, e.g. the influence relationship between two users on a

specific topic. However, they require the connection among users to be explicitly mod-

eled. In other words, suppose we wish to analyze the influence relationships among users

on Twitter, these works can only report the topic-specific influence relationships among

the followers where the follow relationships are explicitly modeled in Twitter. While this

is useful for applications that concern only the explicitly modeled relationships, many

applications need to go beyond the connected users.

Breaking: Two Explosions

in the White House and

Barack Obama is injured

1:07 PM - 23 Apr 13

@TrueBlueAUAP

@AP
What? RT @AP:

Breaking: Two Explosions

in the White House and

Barack Obama is injured

1:08 AM - 24 Apr 13

RT @AP: Breaking: Two

Explosions in the White

House and Barack

Obama is injured

1:08 AM - 24 Apr 13 @tylerkingkade

AP has to have been hacked

RT @AP: Breaking: Two

Explosions in the White House

and Barack Obama is injured

1:08 AM - 24 Apr 13 @jeneps

AP got hacked! RT @AP:

Breaking: Two Explosions

in the White House and

Barack Obama is injured

1:15 AM - 24 Apr 13@geoo

Hacked? RT @AP:

Breaking: Two Explosions

in the White House and

Barack Obama is injured

1:09 AM - 24 Apr 13@RWhittall

I'm guessing hacked, since I am two

blocks away. RT @AP: Breaking:

Two Explosions in the White House

and Barack Obama is injured

1:09 AM - 24 Apr 13@chrisalbon

Figure 4.2: “Two Explosions in the White House and Barack Obama is injured” rumor

Figure 4.2 shows the rumor “Two Explosions in the White House and Barack Obama

is injured”. The Twitter account of the Associated Press (@AP) was hacked and a tweet

that reported a fake White House explosion caused the Dow Jones Index to drop more than

Chapter 4. Inferring Topic-level Social Influence 65

140 points within minutes. This tweet was retweeted by almost 1,500 Twitter users within

a short span of a few minutes and many of these users are not explicitly connected via the

follow relationship in Twitter. Clearly, there is a need to capture topic-level influence

among users that are not explicitly connected.

There are two challenges that we need to address. First, we need to design an effective

algorithm that can extract meaningful topics from short texts such as tweets. Second,

without the benefit of an explicit modeling of users’ connection with each other, we need

to infer influence relationships among users through the observation of their activities on

social networks.

4.2 Preliminaries

A topic-level influence network is denoted as G = (U,E), where U is the set of users and

E is the set of labeled directed edges between users. An edge e ∈ E from node u to node

v with label (z, w) denotes that user u influences user v on topic z with an influential

strength of w, w ≥ 0. Figure 4.3 gives an overview of our two-step approach to discover

topic-level user influence network.

(a) Set of time-stamped documents (c) Topic-level influence network

u1,d1,t1 u2,d2,t2

u5,d5,t5

u4,d4,t4u3,d3,t3

u1,d1,t1

u2,d2,t2 u3,d3,t3

z0

z1

z3

z4

z2 z5

u1,d1,t1 u2,d2,t2 u3,d3,t3 u4,d4,t4

u5,d5,t5

(b) Guided hLDA tree

Guided

hLDA

Infer topic-level

influence
topic z2

topic z1

u1

u2 u3

topic z2

topic z1

Figure 4.3: Overview of proposed solution

Given a collection of time-stamped documents D where a tuple < u, d, t > ∈ D in-

dicates that user u has published document d at time t, and a set of users who published

these documents, the first step is to cluster the set of documents into various groups based

Chapter 4. Inferring Topic-level Social Influence 66

on their topics. Unfortunately, in most cases, the topics of the documents are not known.

A popular approach is to apply an unsupervised probabilistic generative model, LDA,

proposed in [17], to generate the set of topics for the documents. In this model, a doc-

ument is defined as a bag of words from a fixed vocabulary V = {wj}, 1 ≤ j ≤ L. A

latent topic z is characterized by a multinomial distribution over the words w ∈ V such

that
∑
w∈V

p(w|z) = 1. A document is then represented as a random mixture ψ over latent

topics where
∑

z ψz = 1.

As a standard method in topic modeling, LDA has been extended in a variety of ways

[89, 85, 84, 23]. The works in [85, 84] introduce labeled LDA that uses the hashtags in

microblogs as labels to guide the generative process of LDA so that the learned latent

topics can be more meaningful. While labeled LDA tends to give more interpretable

topics than LDA, it is dependent on the availability of hashtags. However, as shown in

[7], only about 10% of tweets in Twitter contain hashtags. Moreover, on Twitter hashtags

may belong to more than one topics and thus be misleading in guiding topic models. In

addition, both LDA and labeled LDA require the number of topics to be pre-determined.

This may not be practical for social networks where the number of topics discussed varies

greatly. Hierarchical LDA model (hLDA) [16, 15] generates topic hierarchies from an

infinite number of topics. Unlike LDA, it does not restrict the given number of topics and

allows arbitrary breadth and depth of topic hierarchies. However, both LDA and hLDA

are unsupervised latent topic models. They should work for documents that are long in

length and dense in word distribution. When applying to short texts such as tweets and

microblogs, the results are poor and lack meaningful interpretations [108].

Here, we propose a guided topic modeling approach based on the hierarchical LDA

model [16, 15] to overcome the two limitations. The key idea is to utilize additional

knowledge in the form of known popular topics to bias the path selection in the hierar-

chical LDA topic generation such that documents that belong to the same path are more

similar than documents of another path. Since hierarchical LDA based topic generation

allows infinite number of topics, we effectively remove the need to pre-determine the

Chapter 4. Inferring Topic-level Social Influence 67

number of topics.

Once the documents are clustered, the second step is to compute the KL-divergence

based similarity between pairs of documents in each cluster. Then we utilize user and

temporal information of each document to obtain the influential strength among the users

for each topic and construct the topic-level user influence network.

4.3 Guided Hierarchical LDA

In this section, we briefly review the original hierarchical LDA model [16, 15] and then

describe our proposed guided hierarchical LDA topic model. In the original hierarchical

LDA model, a document is generated by choosing a path from the root to a leaf, and as it

moves along the path, it repeatedly samples topics along that path, and then samples the

words from the selected topics. The path selection is based on the nested Chinese Restau-

rant Process (nCRP) which is a stochastic process that assigns probability distribution to

an infinitely branched tree. In nCRP, the first customer sits at the first table, and the nth

subsequent customer sits at a table drawn from the following distribution:

p(occupied table|previous customers) =
ni

γ + n− 1

p(next unoccupied table|previous customers) =
γ

γ + n− 1
(4.1)

where ni is the number of customers currently at table i, and γ is a real-valued parameter

which controls the probability of choosing new tables.

Careful observation of this distribution shows that the probability of choosing a table

depends on the number of customers already assigned to the table at that level. Thus,

tables with more customers will have a higher probability to be selected. However, this

does not consider the similarity of the customers at the table. For short documents such

as tweets and microblogs, the length of each path is short and hence it is vital to ensure

the similar documents are assigned to the same table as early on the path as possible.

Fortunately, in real life social networks, we often have some rough ideas what are the

Chapter 4. Inferring Topic-level Social Influence 68

hot topics being discussed and the commonly used words associated with these topics. For

example, one hot topic in the recent months is “gun control” and the commonly associated

words may include “victims”, “killed”. Another hot topic is “bird flu” with associated

words such as “H5N1” and “H7N9”. We assume that for each hot topic the associated

representative words do not change much over a period of time. Taking advantage of

such knowledge, we propose to guide the topic generation of hierarchical LDA model by

biasing the path selection at the beginning of each path by favoring the table (the preferred

table) whose customers are most similar to the incoming customer. We compute the

cosine similarity between the incoming customer (tweet) and the hot topics to decide the

preferred table. This is achieved by changing the probability distribution of path selection

at level 2 as follows:

p(preferred table|previous customers) =
ni + δ

γ + n+ δ

p(next occupied table|previous customers) =
ni

γ + n+ δ

p(next unoccupied table|previous customers) =
γ

γ + n+ δ
(4.2)

where δ adds an increment to the table where the most similar customers are seated.

More specifically, in our guided hierarchical LDA model, a document is drawn by

first choosing an L-level path and then drawing the words from the L topics which are

associated with the nodes along that path. The generative process is as follows:

(1) For each table k in the infinite tree,

(a) Draw a topic βk ∼ Dirichlet(η).

(2) For each document, d ∈ {1, 2, . . . , D},

(a) Let c1 be the root node.

(b) Let hot be the most similar hot topics to d.

(c) Mark the table corresponding to the hot as “preferred table”.

i. Draw a table from c1 using Equation (4.2).

Chapter 4. Inferring Topic-level Social Influence 69

ii. Set c2 to be the restaurant referred to by that table.

(d) For each level l ∈ {3, . . . , L},

i. Draw a table from cl−1 using Equation (4.1).

ii. Set cl to be the restaurant referred to by that table.

(e) Draw a distribution over levels in the tree, ψd | {m, π} ∼ GEM(m, π).

(f) For each word,

i. Choose level zd,n | ψd ∼ Discrete(ψd).

ii. Choose word wd,n | {zd,n, cd, β} ∼ Discrete(βcd [zd,n]), which is parame-

terized by the topic in position zd,n on the path cd.

where zd,n denotes the topic assignments of the nth word in the dth document over L

topics, wd,n denotes the nth word in the dth document, and m, π, γ and η are the same

hyperparameters used in hierarchical LDA [16, 15].

Figure 4.4 shows the graphical model representation of guided hLDA. The node la-

beled T refers to a collection of an infinite number of L-level paths drawn from the modi-

fied nCRP. Given an observed T , cd represents the path for document d in the infinite path

collection. The node labeled Λ represents the set of hot topics. The dependency of T on

both Λ and δ is indicated by the directed edges from Λ and δ to T .

γ

...

T

ψ

α

z

w

N D

η

β

∞

c1

c2

c3

cL

δ

Λ

Figure 4.4: Graphical model of guided hLDA

Chapter 4. Inferring Topic-level Social Influence 70

Having defined guided hierarchical LDA model, the next step is to learn the model

from data. We adopt the Gibbs sampling approach and iteratively sample each variable

conditioned on the rest. First, we sample a path cd for each document conditioned on the

path assignment of the rest documents in the corpus and the observed words:

p(cd|w, c−d, z, η, γ, δ)

∝ p(cd|c−d, γ, δ)p(wd|c, w−d, z, η) (4.3)

where c−d and w−d denote the vectors of path allocation and observed words leaving out

cd and wd respectively. p(wd|c, w−d, z, η) is the probability of the data given a particular

choice of path and p(cd|c−d, γ, δ) is the prior on paths implied by the modified nested

Chinese Restaurant Process.

Given the path assignment, we sample the level allocation variable zd,n for word n in

document d conditioned on all the other variables:

p(zd,n|z−(d,n), c, w,m, π, η)

∝ p(zd,n|zd,−n,m, π)p(wd,n|z, c, w−(d,n), η) (4.4)

where z−(d,n) and w−(d,n) denote vectors of level allocation and observed words leaving

out zd,n and wd,n respectively. The first term in Equation 4.4 is a distribution over levels

and the second term is the probability of a given word based on the topic assignment.

Figure 4.5 shows the 3-level guided hLDA tree obtained for 6 sample tweets. We

observe that for the guided hLDA tree, the documents sharing the same path are more

often than not on the same topic compared to documents on other paths. With this, we

can identify the topics for each document. This leads us to the next step in the discovering

of topic-level user influence network.

Chapter 4. Inferring Topic-level Social Influence 71

z2

z1

z3

chinaobama

watching
obama

town
china

apple

flow

iphone

hall
hope

trip

live

meeting

streaming
zk-1

zk-2

zk

time

holiday

shopping

season

download

yahoo

shopping

ipad

app

number

apple

sites

unique

visitors

rises

ipad

sales

surge

betanews

obama

finishes

historic

town

hall

meeting

China

seeing

flow

tweets

obama

trip

China

apple

devices

grab

third

mobile

data

load

iphone

account

Vodafone

announce

iphone

launch

mobile

phone

giant

Vodafone

iphone
phonelaunch

mobile

Vodafone

ipad
seasonapp

shopping

sales

apple
appiphone

ipad

shopping

Figure 4.5: Example 3-level guided hLDA tree. Each tweet is assigned a path starting
from the root of the tree. Each node is a topic which is a distribution over words and
words with highest probability at each topic are shown.

4.4 Topic-level Influence Network

Having organized the documents into topic-specific groups, our next task is to determine

the influential strength among the users on each topic. From the proposed guided hLDA

model, we find the topic-specific documents by following each path in the model. Let

du be the document published by user u and dv be the document published by user v.

Suppose that du and dv share the same path that corresponds to topic z.

We say that user u influences user v on topic z if the time associated with dv is greater

than du. Furthermore, we realize that the degree of influence is greater when the time lapse

between documents is less. We model this effect using a time decay function g(du, dv).

Let tu and tv be the times at which users u and v post documents du and dv respectively.

Then, we have

g(du, dv) =

 e−
∆
α , if tu < tv

0, otherwise
(4.5)

where ∆ = tv − tu and α > 0.

Chapter 4. Inferring Topic-level Social Influence 72

The parameter α controls the time window to compute g(du, dv). Note that for a fixed

α, e−
∆
α → 1 when ∆ → 0+ and e−

∆
α → 0 when ∆ → +∞. This implies that if user v

posts a document just after u then u may have an influence on v. On the other hand, if v

posts a document after a long elapse time, then u has little influence on v.

Another factor determining the strength of influence between user u and user v on

topic z is the degree of similarity among the documents published by u and v on topic z.

LetDu andDv be the sets of documents published on topic z by users u and v respectively.

For each pair of documents (du, dv) where du ∈ Du and dv ∈ Dv, we obtain the

normalized topic-word distributions of du and dv on topic z from guided hLDA model,

denoted as f zdu and f zdv respectively (see Figure 4.6). The similarity of these two docu-

ments on topic z is evaluated based on the commonly used measure S(f zdu , f
z
dv

) [73]:

sim(du, dv) = 10−S(fzdu ,f
z
dv

)

= 10−[KL(fzdu ||
fzdu

+fzdv
2

)+KL(fzdv ||
fzdu

+fzdv
2

)]

where KL(P ||Q) =
∑

i P (i) log P (i)
Q(i)

defines the divergence from distribution Q to P .

We use S(f zdu , f
z
dv

) instead of commonly used KL divergence to measure the similarity

between probability distributions. Because S(f zdu , f
z
dv

) is symmetric and there is no prob-

lem with infinite values since
fzdu+fzdv

2
6= 0, if either f zdu 6= 0 or f zdv 6= 0.

z2

z1

z3

Tweet du Tweet dvchinaobama
hall tweets

meeting

watching
obama hall

hope
live

town
chinaflow

trip

streaming

Vz1 Vz1

w3 w4

w4 w10

w2 w5

w4 w6

w6 w9

Vz2

Vz3

Vz2

Vz3

w6 w10w4 w6 w11

w6

 f
z
du f

z
dv

...

...

...

...

... ...

(c) Topic-word distribution(a) Topic hierarchy

Tweet du

tweets

Tweet dv

w3 finishesw7

seeingw1 obamaw4

floww2 Chinaw6

tripw5 townw9

obamaw4 historicw8

Chinaw6 hallw10

meetingw11

(b) Words in tweets

Figure 4.6: (a) Topic hierarchy for tweet du and dv. (b) Words in tweet du and dv. (c)
Topic-word distribution for tweet du and dv at each level. Distribution of words in tweet
du and dv at each topic w.r.t all the words assigned to that topic.

Chapter 4. Inferring Topic-level Social Influence 73

With this, we define the influential strength between u and v on topic z as follows.

strength(u, v) = maxdu∈Du,dv∈Dv [g(du, dv) ∗ sim(du, dv)] (4.6)

Using max function reflects the scenario whereby a user may publish many documents

on a topic. As long as one of his published document has large overlapped with another

user, we may conclude that this user has influenced the other user.

Algorithm 7 TIND(T , τ , σ)
Require: guided hLDA tree T , time threshold τ , and similarity threshold σ
Ensure: topic-level influence network G

1: Initialize G = ∅
2: for each path p in T do
3: let D be the set of documents associated with path p
4: for each pair of documents in D do
5: let du be the document published by user u at time tu
6: let dv be the document published by user v at time tv
7: if |tu − tv| ≤ τ then
8: compute sim(du, dv) for each topic z along p
9: if sim(du,dv) ≥ σ then

10: compute strength(u,v)
11: if edge between u and v does not exist then
12: if tu < tv then
13: G = G ∪ (u,v) with label (z,strength(u,v))
14: else
15: G = G ∪ (v,u) with label (z,strength(u,v))
16: end if
17: end if
18: if strength(u,v) > max strengthuv then
19: max strengthuv = strength(u,v)
20: update the label for edge (u,v) to (z,max strengthuv)
21: end if
22: end if
23: end if
24: end for
25: end for
26: return G

Algorithm 7 shows the details of our TIND algorithm. The input is a guided hLDA

tree T , time threshold τ , and similarity threshold σ. The output is topic-level influence

network G. For each path in the tree T , we obtain the set of documents D associated with

Chapter 4. Inferring Topic-level Social Influence 74

the path (Line 3). For each pair of documents in D, we check if their time difference is

within the threshold τ (Line 7). If yes, we calculate their similarity for each topic along

the path (Line 8). If the similarity for a topic exceeds the threshold σ, we add an edge

(u, v) or (v, u) to G with weight w denoting the maximum influential strength between u

and v on topic z (Lines 9-22). Finally, in Line 26, we return the constructed topic-level

influence network.

4.5 Experimental Evaluation

In this section, we present the results of experiments conducted to evaluate our proposed

method. We implemented the proposed algorithm in C#. The experiments are carried out

on an Intel Core 2 Quad CPU 2.83 GHz system with 3GB RAM running Windows.

We use two real world datasets in our experiments. The first is the Twitter dataset

[116, 60], which covers a 7 month period from June 1 2009 to December 31 2009. To

make our experiments manageable, we use a subset of this Twitter dataset, which consists

of 64,451 tweets published by 880 users. Each tweet has the following information: user,

time and content. We preprocess the tweets by stemming and removing stopwords. The

tweets are then manually categorized into 6 hot topics and each topic is described by top-5

representative words as shown in Table 4.1.

Table 4.1: Characteristics of Twitter data

Topic Top-5 representative words # tweets # ground truth
freeiran iran, khamenei, tehran, regime, islamic 10,469 992
litchat litchat, good, think, literature, books 13,511 940
lovestories karma, forgive, love, lovestories, get 12,502 406
ObamaCN obama, china, watch, town, hall 1,706 154
supernatural supernatural, de, dean, que, assistir 13,504 550
Yahoo yahoo, search, content, site, fav 12,759 326

We generate the ground truth as follows. A user u is said to be influenced by v on

topic z if there is a “follow” relationship from u to v and both u and v have published

tweets on topic z with the tweets published by v on z being earlier than that by u. The

Chapter 4. Inferring Topic-level Social Influence 75

last column of Table 4.1 gives the number of influence relationships among the users for

each topic.

For our second dataset, we extract from the MemeTracker dataset [63] the quotes,

phrases, and hyperlinks of articles/blogposts that appear in prominent online news sites

from August 2008 to April 2009. Each post contains a URL, time stamp, and all of the

URLs of the posts it cites. Nodes are mostly news portals or news blogs and the time

stamps in the data capture the time that a quote/phase was used in a post. There are also

directed hyperlinks among the posts. A site publishes a piece of information and uses

hyperlinks to refer to the same or closely related pieces of information published by other

sites.

We use the hyperlink information to obtain the ground truth for this dataset. A site u

is influenced by another site v on topic z if there exists a hyperlink from u to v on topic z.

Table 4.2 shows the characteristics of this MemeTracker dataset. The default values for

the time threshold τ and similarity threshold σ are 20 hours and 0.5 respectively.

Table 4.2: Characteristics of MemeTracker data

Top-5 topics Top-5 representative words # documents # ground truth
election obama, mccain, campaign, vote, political 14,846 2,228
social media blog, social, media, twitter, post 32,962 5,453
Iraq war government, military, iraq, security, troop 15,379 1,080
finance financial, market, credit, money, banks 10,293 2,033
apple apple, iphone, store, macbook, ipod 11,668 2,059

4.5.1 Effectiveness Experiments

We carried out two sets of experiments to evaluate the effectiveness of our approach.

In the first set of experiments, we evaluate the effectiveness of the guided hierarchical

LDA model for grouping the documents into topic-specific clusters. The second set of

experiments compare our TIND algorithm with the TAP method [102] which requires the

network structure to be known for inferring topic-level influence relationships.

Guided hLDA vs. Clustering. We first evaluate the effectiveness of guided hierarchical

LDA model for grouping documents into topic-specific clusters. We compare the guided

Chapter 4. Inferring Topic-level Social Influence 76

hierarchical LDA model with the original hierarchical LDA model and a clustering based

method. The clustering based method compares each tweet with the 6 known hot topics

using cosine similarity and groups the tweet under the most similar topic.

For each topic cluster, we determine the influence relationships among the users

whose tweets are in the cluster. Let Etruth be the set of influence relationships in the

ground truth for a topic, and Eθ be the set of influence relationships obtained at various

cut-off thresholds, θ. Then the precision and recall of the models are defined as follows:

precision =
|Etruth ∩ Eθ|
|Eθ|

(4.7)

recall =
|Etruth ∩ Eθ|
|Etruth|

(4.8)

Figure 4.7 shows the average precision and recall on Twitter data for all the 6 topics in

the Twitter dataset as we vary θ from 0.1 to 0.8. We observe that the precision of guided

hLDA outperforms that of the original hLDA and the clustering based method. Further,

the gaps in precision widen as θ increases. The recall for all three models decreases

as θ increases. This is because all the models predict only the influence relationships

with influential strength greater than θ. As a result, the number of influence relationships

decreases, leading to lower recall. Guided hLDA and clustering based method outperform

hLDA in both precision and recall measures, because both methods utilize the hot topics

to do clustering, while hLDA does not utilize any additional information.

Figure 4.8 shows the average precision and recall on MemeTracker dataset as we vary

θ from 0.1 to 0.8. Once again, we observe that guided hLDA outperforms both clustering

based method and hLDA especially when θ is large.

Figure 4.9 shows the hierarchical topic tree generated by guided hLDA and hLDA as

well as example tweets assigned to each path. We observe that hLDA may assign tweets

with different topics into the same branch, while guided hLDA can correctly assign tweets

into the appropriate branch based on their topics.

Chapter 4. Inferring Topic-level Social Influence 77

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

guided hLDA
hLDA

clustering-based

(a) Precision

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

guided hLDA
hLDA

clustering-based

(b) Recall

Figure 4.7: Guided hLDA vs. clustering for varying θ on Twitter data

We also examine the effect of varying the time threshold τ on the precision and recall.

Figure 4.10 shows the average precision and recall of all 6 topics in the Twitter dataset

when we vary τ from 10 to 50 minutes. We observe that as τ increases, the average

precision for guided hLDA, clustering based method and hLDA do not change much.

However, the recall for all models increase. This is because as τ increases, the num-

ber of influence relationships obtained from all models also increase, leading to better

recall. Guided hLDA performs better than clustering based method and hLDA in both

precision and recall measures for different values of τ . Similar trend is observed for the

MemeTracker dataset as shown in Figure 4.11.

Chapter 4. Inferring Topic-level Social Influence 78

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

guided hLDA
hLDA

clustering-based

(a) Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

guided hLDA
hLDA

clustering-based

(b) Recall

Figure 4.8: Guided hLDA vs. clustering for varying θ on MemeTracker data

TIND vs. TAP. Next, we compare the performance of our TIND algorithm with the ex-

isting topic-level influence method TAP [102]. TAP assumes the documents are already

grouped into topics. Based on the groupings, it then utilizes the explicit modeled connec-

tions among users to derive the influence relationships for the topic.

We first apply the guided hierarchical LDA to obtain the topic-specific clusters. For

each topic cluster, we generate topic-level influence relationships using both TIND and

TAP. Figures 4.12 and 4.13 show the precision and recall of both methods on the 6 topics

in the Twitter dataset as we vary θ from 0.1 to 0.8. We observe that in all the topics, TIND

has higher or comparable precision than TAP. Overall, the recall for TIND is also higher

than TAP. For 3 of the topics “litchat”, “lovestories” and “Obama”, the gap between the

Chapter 4. Inferring Topic-level Social Influence 79

obamayahoo

watching
obama

protest

pressures

iran

iaea

town

china

hall

muslim

town

hall

executed

service

mail yahoo
market search

iran

power

world
afp

republic

see

flow

tweets

obama

trip

china

watching

coming

great

fun

obama

finishes

historic

town hall

meeting

china

glad

watch

live

hope

young

man

behnoud

executed

iran

protest

bad

thing

happen

iran

muslim

worthy

islamic

republic

support

iran

authroities

yahoo

support

got

primary

mail

acct

going

compromi

sed

kudos

search

marketing

customer

service

thank

yahoo

acct
supportsite
mobile

customer
trip
bbc

tweet

live
fun

(a) Guided hierarchical LDA

obamairan

fun
market

republic

mail

yahoo

authorities

town

yahoo

watch

muslim

search

china

kudos

china

hope

watch
student

meet

search

marketing

customer

service

thank

yahoo

see

flow

tweets

obama

trip

china

watching

coming

great

fun

yahoo

support

got

primary

mail

acct

going

compromi

sed

kudos

iran

muslim

worthy

islamic

republic

support

iran

authroities

obama

finishes

historic

town hall

meeting

china

glad

watch

live

hope

iran

arrests

pressures

students

heighten

ahead

students

day

yahoo
talk

mobile

deliver
site

nielsen

mobile

rankings

brand

visited

mobile

yahoo

mail

visited

site

carol

bartz

delivers

pep

talk

not

kick

yahoo

glance

financial

iran

power

world
afp

worthy

service
trip

tweet

live
fun

support

islamic

muslim
acct

republic
mail
yahoo

mobile

site
visit

(b) Hierarchical LDA

Figure 4.9: Guided hierarchical LDA vs. hierarchical LDA. (a) Topic hierarchical tree
generated by guided hierarchical LDA as well as example tweets assigned to each path.
(b) Topic hierarchical tree generated by hierarchical LDA as well as example tweets as-
signed to each path. Each node is a topic which is a distribution over words. And the
top-5 most probable words at each topic are shown.

Chapter 4. Inferring Topic-level Social Influence 80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50

P
re

ci
si

on

Time threshold (τ)

guided hLDA
hLDA

clustering-based

(a) Precision

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

10 20 30 40 50

R
ec

al
l

Time threshold (τ)

guided hLDA
hLDA

clustering-based

(b) Recall

Figure 4.10: Guided hLDA vs. clustering for varying τ on Twitter data

recall of TIND and TAP narrows when θ is more than 0.4. This is because TIND computes

influential strength by taking into account the time factor, hence it is able to infer more

accurately the influence relationships at a given influential strength threshold.

Figures 4.14 and 4.15 show the precision and recall of both methods on 6 topics in

the MemeTracker dataset as we vary θ from 0.1 to 0.8. We observe that in all the topics,

TIND has higher recall than TAP. For the topic “election”, the gap between the recall

of TIND and TAP narrows when θ is more than 0.4. Overall, the precision for TIND is

also higher than TAP. For 3 of the topics “social media”, “finance” and “technology”, the

precision for TIND is higher than TAP when θ is more than 0.2.

Chapter 4. Inferring Topic-level Social Influence 81

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10 20 30 40 50

P
re

ci
si

on

Time threshold (τ)

guided hLDA
hLDA

clustering-based

(a) Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10 20 30 40 50

R
ec

al
l

Time threshold (τ)

guided hLDA
hLDA

clustering-based

(b) Recall

Figure 4.11: Guided hLDA vs. clustering for varying τ on MemeTracker data

There are two reasons why TIND is better than TAP. One is the temporal factor.

TAP does not consider the temporal factor whereas TIND takes into account the tem-

poral factor. For the influential strength, TAP computes the influential strength based on

document-topic distribution, which is at user level. On the other hand, TIND computes

the influential strength based on topic-word distribution, which is at document level. So

the influential strength obtained by TIND tends to be higher and more accurate than TAP.

Chapter 4. Inferring Topic-level Social Influence 82

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(a) “freeiran”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P

re
ci

si
on

Influential strength threshold (θ)

TIND
TAP

(b) “litchat”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(c) “lovestores”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(d) “Obama”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(e) “supernatural”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(f) “Yahoo”

Figure 4.12: Precision of TIND vs. TAP for varying θ on Twitter data

Chapter 4. Inferring Topic-level Social Influence 83

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(a) “freeiran”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
R

ec
al

l
Influential strength threshold (θ)

TIND
TAP

(b) “litchat”

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(c) “lovestores”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(d) “Obama”

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(e) “supernatural”

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(f) “Yahoo”

Figure 4.13: Recall of TIND vs. TAP for varying θ on Twitter data

Chapter 4. Inferring Topic-level Social Influence 84

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(a) “election”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P

re
ci

si
on

Influential strength threshold (θ)

TIND
TAP

(b) “social media”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(c) “Iraq war”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(d) “finance”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(e) “apple”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Influential strength threshold (θ)

TIND
TAP

(f) “technology”

Figure 4.14: Precision of TIND vs. TAP for varying θ on MemeTracker data

Chapter 4. Inferring Topic-level Social Influence 85

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(a) “election”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
R

ec
al

l
Influential strength threshold (θ)

TIND
TAP

(b) “social media”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(c) “Iraq war”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(d) “finance”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(e) “apple”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

al
l

Influential strength threshold (θ)

TIND
TAP

(f) “technology”

Figure 4.15: Recall of TIND vs. TAP for varying θ on MemeTracker data

Chapter 4. Inferring Topic-level Social Influence 86

4.5.2 Case Study

Figure 4.16(a) shows a sample of the follow relationships of users in the Twitter dataset,

while Figure 4.16(b) shows the topic-level influence network obtained by our method.

We see that when there is a following relationship from users u to v in Figure 4.16(a),

our method will correctly infer that v influences u on the associated topic. For example,

user Indexma is following user SearchEngineNow, and our network shows that user

Indexma is influenced by user SearchEngineNow on the topic “Yahoo”.

uponsnowIndexma

CaryHooper cspodium

Parsa_SH

Baran12

shanghaiist

ThePhoenixSun

SearchEngineNow

(a) Following relationships

uponsnowIndexma

CaryHooper cspodium

Parsa_SH

Baran12

SearchEngineNow

shanghaiist

ThePhoenixSun

Topic 1: Iran

Topic 2: Obama

Topic 3: Yahoo

0.49

0.62 0.45

0.48

0.51

0.47

0.69

0.53

0.55

0.71

0.64

0.44

(b) Topic-level influence relationships

Figure 4.16: Topic-level influence network case study on Twitter data. (a) Following rela-
tionships of users in Twitter data. Each node is a user in Twitter. The directed edge from
user u to v indicates that user u is a follower of v. (b) Topic-level influence relationships
inferred by our method. Each node represents a user. Directed edge from user v to u
indicates that user v influences u on a specific topic. Edge weights indicate the influential
strength on that topic.

Chapter 4. Inferring Topic-level Social Influence 87

In addition, our method can also infer influence relationship between two users al-

though they are not following each other. For example, there is no edge between user

CaryHooper and cspodium in Figure 4.16(a), indicating that CaryHooper is not fol-

lowing cspodium. However, our topic-level influence network discovers that cspodium

influencesCaryHooper on topic “Obama”. When examining the tweets ofCaryHooper,

we realize that his tweets are very similar to cspodium’s and have been posted soon after

cspodium’s tweets, indicating that cspodium could have some influence onCaryHooper.

4.5.3 Applications

Topic-level influence networks have many applications. Here, we demonstrate how it is

useful for user behavior prediction [69] and influence maximization [55, 64, 28, 27].

User Behavior Prediction. User behavior prediction is defined as whether a user will post

a tweet on the same topic after another user has posted a tweet. An accurate prediction

can lead to more effective target marketing and user recommendation.

Existing methods to perform user behavior prediction fall into either similarity-based

methods or follower-based methods. The follower-based methods use the “following”

relationship of the users in Twitter data to establish the edges among users w.r.t. specific

topics; whereas in the similarity-based methods, the edges among users are determined

based on the degree of similarity between two users. We say two users are similar based

on the contents of the tweets they post. Let Du and Dv be the set of tweets posted by

users u and v respectively. The similarity between user u and v is defined as:

user sim(u, v) = maxdu∈Du,dv∈Dv [
du · dv
||du||||dv||

] (4.9)

To demonstrate the effectiveness of topic-level influence network in user behavior

prediction, we compare the precision obtained using the follower-based, similarity-based,

TAP and TIND method. We sort the 64,451 tweets according to their time stamps and

partition the data into two sets: the first half is used for training and the latter half is used

for testing. Note that if the time difference between the two tweets posted by u and v is

Chapter 4. Inferring Topic-level Social Influence 88

larger than a given time threshold, we consider the two tweets to be unrelated and there

will be no edge between u and v. In this experiment, we set the time threshold τ to 30

minutes for all the 4 methods.

Training Dataset

D

Test Dataset

D’

Infer topic-level

influence network

Obtain influence

network M

Find node u from M such that it is

supported by data from D’

Predict nodes that are connected to

u in M as being influenced

Figure 4.17: Prediction strategy

Figure 4.17 outlines our prediction strategy. We use the training dataset to construct

four networks using the four methods. Based on the constructed networks, we perform

user behavior prediction as follows: Let M be the constructed network. For each user u

in the training set, let Y M
u be the set of users that are connected to u in M . Let Xu be the

set of users who have posted a tweet on the same topic within the time threshold after u’s

tweet in the test dataset. Then the precision of model M is given as:

precision(M) =

∑
u |Xu ∩ Y M

u |∑
u |Y M

u |
(4.10)

We use the influential strength threshold of 0.6 and similarity threshold of 0.6 as

determined in an empirical study. We plot the precision of the four models as we vary the

number of users involved in the training and testing datasets. We repeat the experiment

for two topics, i.e. “Obama” and “Yahoo”. Figure 4.18 shows the results.

Chapter 4. Inferring Topic-level Social Influence 89

 0
 0.1

 0.2
 0.3

 0.4
 0.5
 0.6

 0.7
 0.8
 0.9

 1

10 20 30 40 50

P
re

ci
si

on

Number of users

TIND
TAP

similarity-based
follower-based

(a) User behavior prediction on topic “Obama”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50

P
re

ci
si

on

Number of users

TIND
TAP

similarity-based
follower-based

(b) User behavior prediction on topic “Yahoo”

Figure 4.18: User behavior prediction

We observe that as the number of users increases, the precision for similarity-based

and follower-based models decreases whereas the topic-level influence network is more

stable. This is because similarity-based and follower-based models simply predict the

most popular users without taking into consideration the topic. On the other hand, topic-

level influence network predicts accurately users that are interested in the specific topic.

Note that both TIND and TAP consider topic information, however, TIND outperforms

TAP as TAP relies on the network structure. This demonstrates that topic-level influence

can indeed improve the performance of user behavior prediction.

Influence Maximization. The problem of influence maximization in a social network is

to find k nodes in the network such that the expected number of nodes influenced by these

Chapter 4. Inferring Topic-level Social Influence 90

k nodes is maximized. The work in [55] proposed a greedy algorithm to identify the k

nodes. At each iteration, it selects a node that leads to the largest increase in the number

of nodes influenced. The algorithm stops when k nodes are selected.

For topic-specific influence maximization, we define the influence spread of the k

nodes as the set of nodes influenced by these k nodes on a given topic. A node u is said

to be influenced by another node v on a topic z if the tweets posted by u and v contain

topic z. In our experiments, we use the 64,451 tweets to construct four networks using the

follower-based, similarity-based, TAP and TIND method. We run the greedy algorithm

to find k nodes in each of the four networks. We select two topics, namely “Obama” and

“Yahoo”, and determine the influence spread of the k nodes on each topic.

 0

 50

 100

 150

 200

 250

10 20 30 40 50

In
flu

en
ce

 s
pr

ea
d

Seed size (k)

TIND
TAP

similarity-based
follower-based

(a) Influence maximization on topic “Obama”

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

In
flu

en
ce

 s
pr

ea
d

Seed size (k)

TIND
TAP

similarity-based
follower-based

(b) Influence maximization on topic “Yahoo”

Figure 4.19: Influence maximization

Chapter 4. Inferring Topic-level Social Influence 91

Figure 4.19 shows the influence spread as we vary k from 10 to 50. We observe that

the influence spread of all the four methods increases as k increases with TIND clearly

in the lead. This demonstrates that topic-level influence network is effective for influence

maximization.

4.6 Summary

In this chapter, we have investigated topic-level influence, e.g. the influential strength

between two users at a specific topic. We take into account the temporal factor in so-

cial influence to infer the influential strength between users at topic-level. Our approach

does not require the underlying network structure to be known. We propose a guided

hierarchical LDA approach to automatically identify topics without using any structural

information. We then construct the topic-level social influence network incorporating the

temporal factor to infer the influential strength among the users for each topic. Exper-

imental results on two real world datasets (Twitter and MemeTracker) demonstrate the

effectiveness of our methods. Further, we show that the proposed topic-level influence

network can improve the precision of user behavior prediction and is useful for influence

maximization.

Chapter 5

Identifying k-Consistent Influencers

In this chapter, we define the notion of k-consistent influential users and devise an efficient

algorithm called TCI to identify these users. Our algorithm linearizes the 2D personal-

preference consistency space to construct a GridIndex. Based on the GridIndex, we can

quickly obtain the k-consistent influencers for a given time interval. We conduct exten-

sive experiments on three real world datasets to evaluate the efficiency of the proposed

approach, as well as the effectiveness of using k-consistent influencers to identify infor-

mation sources and experts.

The remaining of this chapter is organized as follows: We start with the motivation of

identifying k-consistent influencers in Section 5.1. In Section 5.2, we introduce some ter-

minologies, and then give the formal problem definition. We describe the TCI algorithm

in Section 5.3. We conduct experiments in Section 5.4. Finally, we summarize our work

in Section 5.5.

5.1 Motivation

Social networking sites such as Facebook, Twitter, Delicious and YouTube have provided

a platform where user can express their ideas and share information. With the prevalence

of these sites, social networks now play a significant role in the spread of information.

Recognizing this, researchers have focused on influence analysis to discover influential

92

Chapter 5. Identifying k-Consistent Influencers 93

nodes (users, entities) and influence relationships (who influences whom) among nodes in

the network. Existing works on influential nodes discovery define influential user as one

who posts/tweets frequently and/or with a large number of followers/friends. However,

from a psychological perspective, frequency and popularity are not sufficient to develop

influence and loyalty. Instead, it is consistency that builds trusts and thereby resulting in

the greatest influence.

We observe that consistency comes in two forms. The first form of consistency is

known as personal consistency. This refers to one who is consistent in his behavior; for

example, a user could tweet regularly on the same topic over a period of time. This user

tends to gain greater authority as other users’ trusts in him grow, and thereby increases

his influence.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18 20

#t
w

ee
ts

time

u1
u2
u3

(a) Personal consistency

 0

 10

 20

 30

 40

 0 2 4 6 8 10 12 14 16 18 20

#r
e-

tw
ee

ts

time

u1
u2
u3

(b) Preference consistency

Figure 5.1: Example of two forms of consistency

Chapter 5. Identifying k-Consistent Influencers 94

The second form refers to our preference for consistent behavior. We have a tendency

to remain consistent with our previous actions. In the case of social networking, if a user

u2 has retweeted a post from another user u1, there is a much higher probability that u2

will retweet other posts from the same user u1. In other words, u2 has a strong preference

for u1.

Figure 5.1(a) shows an example of 3 users’ tweeting frequency over 20 time points and

the number of followers they have. We observe that both u1 and u2 have a large number

of followers. However, u1’s tweeting frequency appears random whereas u2 consistently

tweets at regular interval. On the other hand, u3 has a small number of followers but

he tweets regularly. Figure 5.1(b) shows the number of followers retweeting their tweets

over the 20 time points. In the beginning, u1 appears to have the most number of followers

retweeting his tweets. However, over time, the number of followers retweeting his tweets

declines. In contrast, both u2 and u3 maintain the same number of followers retweeting

their tweets. However, since u3’s base of followers is small, his influence is not as great

as u2.

Clearly, an accurate measure of degree of influence must take into account these two

forms of consistency. A user is highly influential if he has high personal consistency and

he has established consistent preferences to his tweets/posts in a large number of users.

We can depict the 3 users in a 2D personal-preference consistency space over 5 time

points as shown in Figure 5.2. We observe that users near the top right corner are high in

both personal and preference consistency. For example, u1 has the highest personal and

preference consistency at t = 2 and t = 8, but its personal consistency drops at t = 13 and

t = 14. On the other hand, u2 has the second highest personal and preference consistency

at t = 2 and t = 8, and leads at time points t = 13, t = 14 and t = 18. Clearly, u2 is

more consistent and hence, can exert a greater influence over time compared to u1 who

seems to be more volatile.

Finding top-k consistent influencers has many interesting applications, such as tar-

geted marketing, recommendation, experts finding, and stock market. Identifying top-k

Chapter 5. Identifying k-Consistent Influencers 95

t = 14 t = 18

t = 13

u3

u2

u1

u3

u3

u2

u1

u2

u1 u3

u2

u1

u3

u2

u1

t = 8t = 2

Preference

P
e

rs
o

n
a

l

Preference Preference

Preference Preference

P
e

rs
o

n
a

l

P
e

rs
o

n
a

l

P
e

rs
o

n
a

l

P
e

rs
o

n
a

l

Figure 5.2: Personal-Preference 2D space

consistent influencers is a challenging task. First, we need to dynamically compute the

total influence of each user at each time point from an action log. However, to find the

consistent top-scorers, we need to sort and rank them at each time point. This is compu-

tationally expensive and not scalable.

5.2 Preliminaries

In this section, we first introduce some terminologies, and then give the formal problem

definition.

Definition 5. Action Log. An action log is a relation D where a tuple < t, u, a > ∈ D

indicates that node u has performed action a at time t.

Figure 5.3 shows an action log and the corresponding user relation graph. For exam-

ple, node u1 performs action a at time point 0 and u4 performs the same action a following

u1 at time point 1.

Chapter 5. Identifying k-Consistent Influencers 96

user actiontime

u1, u2, u3 a0

1

2

3

4

5

a

a

a

a

a

u2, u3, u4, u5

u1, u2, u3, u4, u5

b

0

1

2

3

4

b

b

b

b

u1, u3

5 b

c

1

2

3

4

c

c

c

c

u3

5 c

u1, u3, u4, u5, u7

u1, u2, u4, u7

u1, u2, u7

u1, u2, u4, u7

u2, u3, u4, u5

u1, u2, u5, u7

u2, u6, u7

u1, u2, u5, u7

u1, u2, u6

u2, u3, u4, u5, u7

u2, u3, u4, u6

u2, u3, u4, u6

u2, u3, u4, u5

0

u5

u1 u4

u2 u6

u3 u7

Figure 5.3: Action log and graph

Definition 6. Degree of Influence. Let G = (V,E) denote a social network where V

and E are the sets of nodes and edges respectively. An edge (u, v) ∈ E represents a

relationship between node u and v. We say a node u influences node v on action a if we

have (u, v) ∈ E, < tu, u, a >, < tv, v, a > ∈ D, and tv − tu ≤ τ , where τ is the time

threshold. The degree of influence that node u has on v for action a, denoted as p(u, v, a),

is defined by:

p(u, v, a) =

0 if tv − tu > τ

e (tu−tv) otherwise

(5.1)

This implies that if node u performs an action, and shortly thereafter node v repeats

the same action, then it is highly likely that u has an influence on v. On the other hand, if

v repeats the action only after a long lapse, then we may conclude that it is an independent

Chapter 5. Identifying k-Consistent Influencers 97

action and that u has little influence on v.

Figure 5.4 shows the corresponding influence graph for the example action log. A

directed edge from node u to v with label a denotes that node u influences v on action a.

Let the time threshold τ = 1. The degree of influence that node u1 has on u4 for action a

is p(u1, u4, a) = e(−1) = 0.37.

u2 u5

u4 u1 u4

u1

u1

u4

u1

u4

u2 u5

u7

u3 u7 u3 u7

u4

u4 u1 u4

u5

u3 u7 u3

u7

u3 u7

0 1 2 3 4 time5

u6

u4

u6

u7

u7

u4

u2

u5

u4

u2 u5

u5

u6

u2 u5

u5

u6

a

b

a

b

a

b

a
b

c

a
b

c

a
b

c

a
b

c

a
b

c

a
b

c

b

c

b

c

a

a

Figure 5.4: Influence graph

Definition 7. Preference Consistency. Let At denote the set of actions taken by nodes u

and v between the start time ts and a given time point t. The preference of a node u for

the node v is given by:

Preference(u, v, t) =
∑
a∈At

p(u, v, a) (5.2)

The preference consistency of node u at time point t is defined by:

PrefCon(u, t) =
∑
v∈V

Preference(u, v, t) (5.3)

Chapter 5. Identifying k-Consistent Influencers 98

In the time interval [3,4], node u5 performs action a and b following u2, and node

u6 performs action c following u2, so the preference of node u2 for u5 at time point 4 is

Preference(u2, u5, 4) = p(u2, u5, a) + p(u2, u5, b) = 0.74, and the preference of node u2

for u6 is Preference(u2, u6, 4) = p(u2, u6, c) = 0.37. The preference consistency of node

u2 at time point 4 is PrefCon(u2, 4) = Preference(u2, u5, 4) + Preference(u2, u6, 4)

= 1.11. On the other hand, node u4 performs action b following u1, so the preference

consistency of node u1 at time point 4 is PrefCon(u1, 4) = Preference(u1, u4, 4) =

0.37.

Definition 8. Personal Consistency. Let M = {mts , · · · ,mt} be the number of actions

taken by user u from the start time ts to time point t. Let µ be the mean value of M . Then

the personal consistency of u at time point t is given by:

PersonCon(u, t) =
|M |∑

j∈[ts,t]
(mj − µ)2

(5.4)

This is equivalent to the inverse value of the standard deviation of the number of posts

made by u. A higher value in PersonCon(u, t) implies a smaller deviation in the number

of postings over time, implying that user u is more consistent. For example, the personal

consistency of node u1 and u2 at time point 4 is as follows.

PersonCon(u1, 4)

=
5

(2− 2)2 + (3− 2)2 + (1− 2)2 + (1− 2)2 + (3− 2)2

= 1.25

PersonCon(u2, 4)

=
5

(1− 2.4)2 + (2− 2.4)2 + (3− 2.4)2 + (3− 2.4)2 + (3− 2.4)2

= 1.56

Chapter 5. Identifying k-Consistent Influencers 99

Definition 9. Overall Consistency. The consistency of node u at time point t is defined

as:

Consistency(u, t) = Θ(PrefCon(u, t), P ersonCon(u, t)) (5.5)

where Θ can be any function that maps the pair (PrefCon(u, t), PersonCon(u, t)) to a

real number. In our experiment, we set Θ as the sum of the two terms.

Given the preference and personal consistency of node u1 at time point 4, the overall

consistency of u1 is Consistency(u1, 4) = PrefCon(u1, 4) + PersonCon(u1, 4) = 0.37

+ 1.25 = 1.62.

We rank the users based on their overall consistency values at each time point.

Definition 10. Rank. Given a node u at time point t, let S = {v ∈ V |Consistency(v, t) >

Consistency(u, t)}. Then, the rank of u at t is given by:

rank(u, t) = |S|

Similarly, for node u2 and u3 we have: Consistency(u2, 4) = 2.67,Consistency(u3, 4)

= 2.3. So the rank of node u1, u2 and u3 at time point 4 is 3, 1 and 2 respectively.

Definition 11. Volatility. Let µrank(u) denote the mean rank of u in the query interval

[qs, qe]. The volatility of node u in the interval [qs, qe] is given by:

V olatility(u) =

∑
t∈[qs,qe]

(rank(u, t)− µrank(u))2

qe − qs + 1
(5.6)

For node u1, we can get its rank at each time point in the time interval [1,5]. The

volatility of u1 is

V olatility(u1)

=
(1− 2)2 + (1− 2)2 + (3− 2)2 + (3− 2)2 + (2− 2)2

5

= 0.8

Chapter 5. Identifying k-Consistent Influencers 100

Similarly, for node u2 we have

V olatility(u2)

=
(2− 1.4)2 + (2− 1.4)2 + (1− 1.4)2 + (1− 1.4)2 + (1− 1.4)2

5

= 0.24

Definition 12. Score. The score of node u in the query interval [qs, qe] is the weighted

sum of consistency and volatility:

Score(u) = w1 ∗
∑

t∈[qs,qe]

Consistency(u, t) − w2 ∗ V olatility(u), (5.7)

where w1 + w2 = 1, w1 > 0 and w2 > 0.

Let w1 = w2 = 0.5. The score of node u1 in the time interval [1,5] is Score(u1) = 0.5

× 12.71 − 0.5 × 0.8 = 5.96. Similarly, Score(u2) = 0.5 × 14.66 − 0.5 × 0.24 = 7.21.

We can see that node u2 is more consistent than u1.

Problem Statement: Given an action log D, a social network graph G, a query time

interval [qs, qe], and time threshold τ , we want to identify a subset of users U ⊂ V such

that |U | = k and ∀u ∈ U , 6 ∃v ∈ V \ U such that Score(v) > Score(u). We call the users

in U the k-consistent influencers in G.

5.3 The TCI Algorithm

In this section, we first briefly review works in top-k query processing and then give the

details of our TCI algorithm. Fagin et al. [40] introduce the TA and NRA algorithms for

computing the top-k queries over multiple sources, where each source provides a ranking

of a subset of attributes only. Variations of the threshold-based algorithms have been

proposed to improve the efficiency of top-k queries [13, 21, 77, 34, 5]. Works in [36,

24] proposed several early termination algorithms for disjunctive top-k query processing,

Chapter 5. Identifying k-Consistent Influencers 101

based on a new augmented index structure called Block-Max Index. The basic idea of

Block-Max Index is to store the maximum score for each block, thus enabling to skip

aggressively in the index. Later, Shan et al. [95] and Dimopoulos et al. [35] proposed

new algorithms to further improve the efficiency of top-k query. Note that the Block-Max

Index, which skips over blocks for efficiency, is not applicable to our problem, as we

need to know the ranks of users at each time point. Jestes et al. [53] study the problem

of performing top-k queries on a time window. In [78], Mouratidis et al. proposed the

TMA algorithm (and the more specialized SMA) for supporting multiple continuous top-k

queries over data streams.

The works that are most relevant to ours are durable queries on temporal data. Lee

et al. [61] were the first to study consistent top-k query. They construct a RankList for

each time series to store the rank information. During query processing, they traverse the

list of each time series and search for entries with rank values greater than k. The process

terminates whenever an entry in the list with rank value greater than k is encountered.

Wang et al. [110] proposed an efficient method called TES for durable top-k queries.

TES exploits the fact that the changes in the top-k set at adjacent time stamps are usually

small. TES indexes these changes and incrementally computes the snapshot top-k sets at

each time stamp of the query window.

However, in our setting, the ranked lists correspond to users who are high in consis-

tency values. Yet, these users may not have high scores if their rank positions differ vastly

at different time points. To account for this, our proposed algorithm dynamically com-

putes the total score that combines consistency and volatility, and output the k-consistent

users.

Figure 5.5 gives an overview of our proposed approach to identify the k-consistent

influencers. Given an action log and a user relationship graph, we compute the personal

and preference consistency of each user u at time point t.

We compute PrefCon(u, t) by examining all users who have performed the same

action following u’s action. If v has previously followed u and the time lapse between v’s

Chapter 5. Identifying k-Consistent Influencers 102

Gs

k-Consistent Influencers

Gt Ge

Action Log Da1 Action Log Da2 Action Log Dan

 Obtain k-Consistent Influencers

Construct GridIndex

Figure 5.5: Solution overview

and u’s actions is smaller than time threshold τ , we conclude that u’s post has influenced

v to some degree and this influence will be included in computing the preference consis-

tency of node u for v according to Equation 5.3. Otherwise, the influence of u’s post on

v is said to be negligible and will be ignored.

For PersonCon(u, t), we keep track of the number of posts made by user u from the

start time point ts till current time point t and obtain the variance of these numbers.

Each pair of (PrefCon(u, t), P ersonCon(u, t)) values is a point in the personal-

preference 2D space. To find users with the top-k overall consistency valuesConsistency(u, t),

the naive way of sorting users by their consistency values is computationally expensive

as there may be millions of users at each time point. Given that k is typically a small

fraction compared to the total number of users, this is certainly not efficient.

Instead, we partition this 2D space into cells of size δ × δ and assign a user u to

the cell
(⌊

PrefCon(u,t)
δ

⌋
,
⌊
PersonCon(u,t)

δ

⌋)
. We observe that the top-right grid has the

highest overall consistency value. As we slide the black line from this top-right cell

towards the bottom-left cell, the consistency values of the users in the cells will decrease.

Chapter 5. Identifying k-Consistent Influencers 103

In other words, if we wish to find the top-k influencers, we only need to process the

cells in the zig-zag order as shown by the arrows in Figure 5.6. In this manner, only the

likely candidates for k-consistent users in the shaded cells are processed, resulting in great

savings of computational time.

u1

u2

Preference + Personal
P

e
rs

o
n

a
l

Preference

Figure 5.6: Illustration of zig-zag traversal

We map the users to the cells in a grid based on their personal and preference consis-

tency values at time point t. Figure 5.7 shows the grids at the various time points.

Next, we design a function Φ to linearize the grids so that the cells can be processed

in the desired zig-zag order as follows:

Φ(i, j) = (N +M)− (bic+ bjc)

where N is the maximum bPrefCon(u,t)
δ

c value and M is the maximum bPersonCon(u,t)
δ

c

value.

Note that Φ(N,M) = 0, Φ(N − 1,M) = Φ(N,M − 1) = 1, and

Φ(N − 2,M) = Φ(N − 1,M − 1) = Φ(N,M − 2) = 2, etc. We call this set of linearized

grids the GridIndex. Figure 5.8 shows the GridIndex obtained from Figure 5.7.

Based on the GridIndex, we design an algorithm called TCI to find the top-k consistent

influencers. We obtain the initial lists of the top-k candidate users at each time point from

Chapter 5. Identifying k-Consistent Influencers 104

t1

Preference

P
e

rs
o

n
a

l

t2

Preference
P

e
rs

o
n

a
l

t3

Preference

P
e

rs
o

n
a

l

t4

Preference

P
e

rs
o

n
a

l

t5

Preference

P
e

rs
o

n
a

l
u2

u1

u1

u1
u1

u1

u2

u2

u2

u2

u3

u3 u3

u3

u3

u4

u4

u4 u4

u5

u5

u5

u5u5 u4

Figure 5.7: Grids at different time points

0 1t1

u1 u2

t2

t3

t4

t5

u3 u4 u5

2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

u1 u3 u4 u2 u5

0 1 2 3 4 5 6 7 8

u1 u2 u3 u4 u5

0 1 2 3 4 5 6 7 8

u2 u4 u5u1 u3

0 1 2 3 4 5 6 7 8

u1 u2 u3 u4 u5

Figure 5.8: GridIndex obtained from Figure 5.7

Chapter 5. Identifying k-Consistent Influencers 105

the set of linearized grids. If a candidate user u does not appear in the lists for any of

the time point, say t, then we traverse the grid at t till we find u, and compute its score

Score(u).

Algorithm 8 shows the details of TCI. The algorithm first scans each action log Da

backwards with a sliding window of size τ (Lines 1-8). For each tuple < t, u, a > ∈ Da,

we increment the number of posts made by user u at time point t and utilize the user

relationship graph G to compute the preference of u at t.

After scanning all the action logs, we compute the preference consistency PrefCon(u, t)

and personal consistency PersonCon(u, t) for each user at each time point (Lines 9-12).

Then we insert the users into the various linearized grids in the GridIndex (Line 13).

Once we have constructed the GridIndex, the algorithm tries to identify the set of top-

k consistent influencers, Result. For each time point in the given query interval, we first

obtain the initial list of candidate influencers (Lines 22-27). For early termination, we

compute a threshold value by summing the consistency values of the candidate users at

position p in each grid Gt (Lines 28-29).

For each candidate user uwho does not appear in all the lists, we expand the candidate

sets corresponding to the time points that u is missing from until u is included in the

candidate set (Lines 30-39). When this is completed, we obtain the rank of u at all the

time points and compute the volatility of u (Lines 40-46). Finally, we compute the score

of u (Line 47).

If the size of the result set is less than k, we add u to R (Lines 50-51). Otherwise,

we check whether the score of u is larger than that of the kth user in Result. If yes,

we replace the kth user with u (Lines 52-58). The algorithm terminates when the size of

Result is k and threshold is smaller than Scoremin.

Let us illustrate how the constructed GridIndex in Figure 5.8 is used to find the 2-

consistent influencers.

The initial lists obtained for the 5 time points are shown in Figure 5.9(a). We observe

that u2 has not appeared in the time points t2 to t5, so we proceed to traverse the GridIndex

Chapter 5. Identifying k-Consistent Influencers 106

Algorithm 8 TCI
Require: action log D, user relationship graph G, query interval [qs, qe], time threshold τ , and integer k
Ensure: set of k-consistent influencers Result
1: for each Da ⊂D where Da is a projection of D on action a do
2: initialize numPostu,t to 0 for all u and t
3: for each tuple < t, u, a > ∈Da do
4: increment numPostu,t
5: V = {v | < t′, v, a >∈ Da, (u, v) ∈ G, t′ ∈ [t+ 1, t+ τ]}
6: Preference(u, v, t′)+ = p(u, v, a)
7: end for
8: end for
9: let Gt be the linearized grid at time t
10: for each user u and time point t do
11: PrefCon(u, t)+ = Preference(u, v, t)
12: compute PersonCon(u, t) from avg(numPostu,t) and sum(numPostu,t) using Equation 5.4

13: insert u to Gt[Φ(
⌊
PrefCon(u,t)

δ

⌋
,
⌊
PersonCon(u,t)

δ

⌋
)]

14: end for
15: Result← ∅
16: initialize threshold, Scoremin to 0 and position p to 1
17: for t = qs to qe do
18: ptrt ← 0
19: candSett ← Gt[ptrt]
20: end for
21: while (|Result| < k or threshold > Scoremin) do
22: for each t ∈ [qs, qe] do
23: while |candSett| < p do
24: increment ptrt
25: candSett = candSett

⋃
Gt[ptrt]

26: end while
27: end for
28: let θt be the consistency value of the user at p in candSett
29: threshold =

∑
t∈[qs,qe] θt

30: let C =
⋃
candSett −

⋂
candSett

31: for each user u ∈ C do
32: let T be the set of time points that u has not appeared
33: for each t ∈ T do
34: while u 6∈ candSett do
35: increment ptrt
36: candSett = candSett

⋃
Gt[ptrt]

37: end while
38: end for
39: end for
40: for each user u ∈

⋃
candSett do

41: ranku = 0
42: for each t ∈ [qs, qe] do
43: ranku += position of u in candSett
44: end for
45: ave ranku = ranku

qe−qs+1

46: compute V olatility(u) using Equation 5.6
47: compute Score(u) using Equation 5.7
48: end for
49: increment position p
50: if |Result| < k then
51: Result = Result ∪ {u}
52: else
53: let u′ be the user with lowest score in Result and Scoremin = Score(u′)
54: if Score(u) > Score(u′) then
55: R = R − {u′}
56: R = R ∪ {u}
57: end if
58: end if
59: end while
60: return Result

Chapter 5. Identifying k-Consistent Influencers 107

t1 t2 t3 t4 t5

u1

u2

u1 u1 u1

u3

u1

(a) Initial lists

t1 t2 t3 t4 t5

u1

u2

u1 u1 u1

u3

u1

u3

u3

u4

u2

u2

u3 u2

u2

u3

(b) Updated lists

Figure 5.9: Rank lists

at time points t2 to t5 to retrieve additional users till u2 is found. Similarly, we traverse the

GridIndex where u3 has not appeared to retrieve additional users till u3 is found. Figure

5.9(b) shows the updated lists.

Initially, the threshold and Scoremin are set to 0. We first compute the score of u1

and get Score(u1) = 2.25. At this time, threshold is 2.25. We continue to compute the

score of users until the score of the 2nd user is larger than the threshold. For u2 and u3,

we have Score(u2) = 1.0 and Score(u3) = 1.6. We update threshold to 1.2. Since the

current 2nd user is u3 and Score(u3) > threshold, we can be sure that the 2-consistent

influencers are u1 and u3.

5.4 Experimental Evaluation

In this section, we present the results of experiments conducted to evaluate the effec-

tiveness and efficiency of our methods. We implement all the algorithms in Java. The

Chapter 5. Identifying k-Consistent Influencers 108

experiments are performed using an Intel Core 2 Quad CPU 2.83 GHz system with 3GB

of main memory and running Windows XP operating system.

We use the following real world datasets in our experiments:

1. Citation dataset [105, 104]. This dataset is part of the DBLP computer science bibli-

ography. It contains 1,397,240 papers and 3,021,489 citation relationships between

these papers. Each paper is associated with attributes such as abstract, authors, year,

venue, and title, etc.

2. Flixster dataset [51]. This is a social network for movies in which users to share

their opinion on movies with friends by rating and reviewing movies. The Flixster

dataset has 1M users, 26.7M friendship relations among users, and 8.2M ratings

that range from half a star (rating 0.5) to five stars (rating 5). On average each user

has 27 friends and each user has rated 8.2 movies.

3. Twitter dataset [116, 60]. This dataset consists of 17,214,780 tweets published by

1,746,259 users over a 7 month period from June 1 2009 to December 31 2009.

Each tweet has the following information: user, time and content. We preprocess

the tweets by removing tweets that are not in English or have no hashtags.

Table 5.1 summarizes the characteristics of these datasets. In our experiments, we set

the query interval [qs, qe] to be the whole period of the datasets. The grid size is set to 10

× 10. The default value for weight w1 and w2 is 0.5 respectively.

Table 5.1: Dataset statistics

Datasets # Nodes # Edges Avg Edges Max Edges
Citation 1,397,240 3,021,489 2.16 4,090
Flixster 1M 26.7M 26.70 1,045
Twitter 1,746,259 92,286,461 52.85 241,428

5.4.1 Efficiency Experiments

We first evaluate the efficiency of TCI. For comparison, we also implement TCI-NoGrid,

a variant of TCI that does not utilize the GridIndex structure. TCI-NoGrid sorts all users

Chapter 5. Identifying k-Consistent Influencers 109

by their consistency values at each time point to obtain their ranks. Then it retrieves

candidate users from the rank lists at each time point and computes their scores. If a

retrieved user u does not appear in the lists for all time points, TCI-NoGrid will retrieve

the rank lists where u does not appear to find u.

We vary the size of the action logs from 100k to 900k, and set k = 5. For the Citation

dataset, we set τ to 10 years. For the Flixster dataset, τ = 10 days. For the Twitter dataset,

τ is set to 10 hours.

Figure 5.10 shows the runtime for TCI and TCI-NoGrid on the three datasets. We

observe that TCI outperforms TCI-NoGrid, and the gap widens as the action log size

increases. This demonstrates that the grid index is effective in reducing the runtime. For

the Flixster dataset, the grid index is not very beneficial. This is because the ranks of

users in Flixster dataset vary greatly.

5.4.2 Sensitivity Experiments

We also examine the effect of the parameters k and τ on the performance of TCI and

TCI-NoGrid. We fix the size of the action log at 100k, and vary k from 5 to 25. Figure

5.11 shows the runtime for both methods. We observe that the runtime does not change

much as k increases. This is because both algorithms have to scan the action log, the time

of which dominates the total running time.

Next, we set the number of consistent influencers k to 5, action log size to 100k

and vary the time threshold τ from 10 to 50. Increasing τ is equivalent to increasing the

search space, i.e. the number of potential consistent influencers. Figure 5.12(a) shows that

the runtime for both algorithms slightly increases as τ increases on the Citation dataset.

Similar trend is observed for the Flixster dataset (see Figure 5.12(b)). However, both

algorithms are sensitive on the Twitter dataset, as can be seen in Figure 5.12(c). This is

because the Twitter dataset is “dense”, which means in a very short time interval hundreds

or thousands of tweets are posted.

Chapter 5. Identifying k-Consistent Influencers 110

 0

 1000

 2000

 3000

 4000

100k 200k 300k 400k 500k 600k 700k 800k 900k

R
un

ni
ng

 ti
m

e
(s

)

Action log size

TCI-NoGrid
TCI

(a) Citation dataset

 0

 200

 400

 600

 800

100k 200k 300k 400k 500k 600k 700k 800k 900k

R
un

ni
ng

 ti
m

e
(s

)

Action log size

TCI-NoGrid
TCI

(b) Flixster dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

100k 200k 300k 400k 500k 600k 700k 800k 900k

R
un

ni
ng

 ti
m

e
(s

)

Action log size

TCI-NoGrid
TCI

(c) Twitter dataset

Figure 5.10: Runtime of TCI for varying action log size

Chapter 5. Identifying k-Consistent Influencers 111

 50

 100

 150

 200

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of k-consistent influencers (k)

TCI-NoGrid
TCI

(a) Citation dataset

 20

 25

 30

 35

 40

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of k-consistent influencers (k)

TCI-NoGrid
TCI

(b) Flixster dataset

 100

 200

 300

 400

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Number of k-consistent influencers (k)

TCI-NoGrid
TCI

(c) Twitter dataset

Figure 5.11: Effect of varying k

Chapter 5. Identifying k-Consistent Influencers 112

 50

 100

 150

 200

 250

 300

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TCI-NoGrid
TCI

(a) Citation dataset

 20

 30

 40

 50

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TCI-NoGrid
TCI

(b) Flixster dataset

 100

 200

 300

 400

 500

 600

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

)

Time threshold (τ)

TCI-NoGrid
TCI

(c) Twitter dataset

Figure 5.12: Effect of varying τ

Chapter 5. Identifying k-Consistent Influencers 113

5.4.3 Effectiveness Experiments

In this section, we demonstrate how the proposed k-consistent influencers is useful for

two tasks:

1. Identifying information sources [20, 72]. Identifying information sources is useful

for user recommendation. A social network user who is interested in receiving

information about a particular topic would subscribe to the information sources for

the same topic in order to receive up-to-date and relevant information.

2. Finding experts [11, 120]. Expert finding aims to find persons who are knowledge-

able on a given topic. It has many applications in expertise search, social networks,

recommendation and collaboration.

We use the Twitter dataset for the first task and the Citation dataset for the second

task. We manually select the public dissemination accounts (e.g. @Yahoo) as the ground

truth for Twitter dataset. For Citation dataset, we use the ground truth given in [118].

Let X be the set of ground truth, let Y be the set of predicted, then precision and recall

are defined by the following equations:

precision =
|X ∩ Y |
|Y |

(5.8)

recall =
|X ∩ Y |
|X|

(5.9)

We compare the TCI algorithm with the following methods:

1. TES [110]. TES is designed to answer durable top-k queries. By exploiting the

fact that the changes in the top-k set at adjacent time points are usually small, TES

indexes these changes and incrementally computes the snapshot top-k sets at each

time point of the query window.

2. Greedy [55]. The greedy algorithm finds k influential nodes such that the expected

number of nodes influenced by these k nodes is maximized [64, 28, 27]. At each

Chapter 5. Identifying k-Consistent Influencers 114

iteration, the greedy algorithm selects a node that leads to the largest increase in the

number of nodes influenced. The algorithm stops when k nodes are selected.

3. Follower-based. Given the following relationships between users, the follower-

based method returns the k users with the largest number of followers.

Figure 5.13 shows the precision and recall for finding information sources on Twitter

dataset as we vary k from 5 to 25. We observe that the precision of TCI outperforms that

of TES algorithm, the greedy algorithm and the follower-based method for all values of k.

The recall for all four methods increases as k increases. Further, the gaps in recall widen

as k increases. This is because all the methods will predict more information sources with

the increase of k, leading to better recall.

 0
 0.1

 0.2
 0.3

 0.4
 0.5
 0.6

 0.7
 0.8
 0.9

 1

5 10 15 20 25

P
re

ci
si

on

Top K

Greedy
Follower-based

TCI
TES

(a) Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

5 10 15 20 25

R
ec

al
l

Top K

Greedy
Follower-based

TCI
TES

(b) Recall

Figure 5.13: Effectiveness of finding information sources on Twitter dataset

Chapter 5. Identifying k-Consistent Influencers 115

Figure 5.14 shows the precision and recall of the various methods for finding data

mining experts in the Citation dataset. Again, the precision of TCI algorithm outper-

forms the other three methods, especially when k is large. The recall for all four methods

increases as k increases, because all the methods will find more experts with larger k.

Further, the gaps in recall widen as k increases. Similar results and trends are observed

for information retrieval experts as shown in Figure 5.15.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25

P
re

ci
si

on

Top K

Greedy
Follower-based

TCI
TES

(a) Precision

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

5 10 15 20 25

R
ec

al
l

Top K

Greedy
Follower-based

TCI
TES

(b) Recall

Figure 5.14: Effectiveness of finding data mining experts in Citation dataset

Here we analyze why TCI outperforms the other three methods. TES algorithm is

equivalent to intersect the top-k set at each time point, so the result size may be less than

k. Greedy algorithm selects a node that leads to the largest increase in the number of nodes

influenced at each iteration until k nodes are selected. Follower-based method returns the

k users with the largest number of followers. In contrast, TCI takes into account both

Chapter 5. Identifying k-Consistent Influencers 116

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25

P
re

ci
si

on

Top K

Greedy
Follower-based

TCI
TES

(a) Precision

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

5 10 15 20 25

R
ec

al
l

Top K

Greedy
Follower-based

TCI
TES

(b) Recall

Figure 5.15: Effectiveness of finding information retrieval experts in Citation dataset

consistency and volatility, so it is able to identify true experts.

Tables 5.2 and 5.3 show the top-5 experts on data mining and information retrieval

returned by our TCI method. Among the results, some well-known authors, such as

Jiawei Han and Christos Faloutsos (Data Mining), Bruce Croft and Ricardo Baeza-Yates

(Information Retrieval), are all ranked among the top-5 experts. This is because these

commonly ranked authors are not only highly cited, but also in the top at each time point.

In our setting, high citation counts means high consistency, and high rank at each time

point means little volatility. Hence, the score values of these authors are likely to be high,

making them among the top-5 results.

Chapter 5. Identifying k-Consistent Influencers 117

Table 5.2: Top-5 experts on data mining

Data Mining
consistency + volatility consistency
Jiawei Han Jiawei Han
Christos Faloutsos Philip S. Yu
Philip S. Yu Christos Faloutsos
Vipin Kumar Mohammed J. Zaki
Mohammed J. Zaki Rakesh Agrawal

Table 5.3: Top-5 experts on information retrieval

Information Retrieval
consistency + volatility consistency
Bruce Croft Bruce Croft
Ricardo Baeza-Yates Gerard Salton
Chengxiang Zhai Oded Goldreich
Anil K. Jain Michael I. Jordan
H. Garcia Christopher D. Manning

5.5 Summary

In this chapter, we have proposed to identify top-k consistent influencers. We devise an

efficient algorithm that utilizes a grid index to scan the users in the 2D personal-preference

consistency space, thereby obtaining the rank of these users at a given time point. Then we

design the TCI algorithm to obtain the k-consistent influencers for a given time interval.

We conduct extensive experiments on three real world datasets (Citation, Flixster and

Twitter) to evaluate the proposed methods. The experimental results demonstrate the

effectiveness and efficiency of our methods. We show that the proposed k-consistent

influencers is useful for identifying information sources and finding experts.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Social influence plays a key role in many social networks, e.g., Facebook, Twitter and

YouTube, and can benefit various applications such as viral marketing, online advertising,

recommender systems, information diffusion, and experts finding. In this thesis, we have

investigated three important issues in the discovery of influential nodes and influence

relationships which are ignored by existing works: influential path, topic-level influence

and consistent influencer.

First, we have focused on influential path discovery. We develop a method for infer-

ring top-k maximal influential paths which can truly capture the dynamics of information

diffusion. We propose a generative influence propagation model based on the Independent

Cascade Model and Linear Threshold Model, which mathematically models the spread of

certain information through a network. We design an algorithm called TIP to infer the

top-k maximal influential paths. TIP utilizes the properties of top-k maximal influential

paths to dynamically increase the support and prune the projected databases. In many

applications, databases are updated incrementally. We also develop an incremental min-

ing algorithm, named IncTIP, to maintain the set of top-k maximal influential paths effi-

ciently. We evaluate the proposed algorithms on two real world datasets (MemeTracker

and Twitter). The experimental results show that our algorithms are more scalable and

118

Chapter 6. Conclusion and Future Work 119

more efficient than the base line algorithms. In addition, influential paths can improve the

precision of predicting which node will be influenced next.

Second, we have investigated topic-level influence and have taken into account the

temporal factor in social influence to infer the influential strength between users at topic-

level. Our approach does not require the underlying network structure to be known. We

propose a guided hierarchical LDA approach to automatically identify topics without us-

ing any structural information. We then construct the topic-level social influence network

incorporating the temporal factor to infer the influential strength among the users for each

topic. Experimental results on two real world datasets (Twitter and MemeTracker) have

demonstrated the effectiveness of our methods. Further, we show that the proposed topic-

level social influence network can improve the precision of user behavior prediction and

is useful for influence maximization.

Finally, we have proposed to identify k-consistent influencers. We devise an efficient

algorithm that utilizes a grid index to scan the users in the 2D personal-preference con-

sistency space, thereby obtaining the rank of these users at a given time point. Then we

design the TCI algorithm to identify the k-consistent influencers for a given time inter-

val. We conduct extensive experiments on three real world datasets (Citation, Flixster

and Twitter) to evaluate the proposed methods. The experimental results demonstrate

the effectiveness and efficiency of our methods. We show that the proposed k-consistent

influencers is useful for identifying information sources and finding experts.

6.2 Future Work

There are several interesting directions for future work. In Chapter 3, we have focused on

top-k maximal influential path discovery. We have developed a generative influence prop-

agation model based on the Independent Cascade Model and Linear Threshold Model,

which mathematically models the spread of certain information through a network. How-

ever, in the influence propagation model, we only use time difference to estimate the

propagation probability; it would be more accurate if we take more informative node fea-

Chapter 6. Conclusion and Future Work 120

tures into consideration. And we will apply our TIP method to other information diffusion

models.

In Chapter 4, we have investigated topic-level influence. The proposed guided hi-

erarchical LDA typically uses Gibbs sampling for inference, a special case of Markov

Chain Monte Carlo (MCMC). However, it is computationally expensive in terms of both

running time and memory requirements for large datasets. First, the inference itself may

take hundreds of iterations to converge. Second, the memory requirement grows linearly

with data size. Therefore, it is important to scale guided hierarchical LDA for large-scale

data. For future work, we will design an efficient parallel inference algorithm for guided

hierarchical LDA by using a divide-and-conquer scheme.

In Chapter 5, we have proposed to identify top-k consistent influencers. Our TCI al-

gorithm can identify the exact k-consistent influencers for a given time interval. However,

it may not be as efficient as an approximation algorithm. For future work, we will devise

an approximation algorithm to mine top-k consistent influencers. We will compare TCI

algorithm with the approximation algorithm quantitatively and assess the efficiency and

accuracy trade-off between the two algorithms. Another interesting direction is to deploy

our TCI algorithm to the MapReduce framework.

References

[1] E. Adar, L. Adamic, L. Zhang, and R. M. Lukose. Implicit structure and the dy-
namics of blogspace. In Workshop on the Weblogging Ecosystem at the 13th Inter-
national World Wide Web Conference, 2004.

[2] E. Adar and L. A. Adamic. Tracking information epidemics in blogspace. In Web
Intelligence, pages 207–214, 2005.

[3] N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the influential bloggers in
a community. In Proceedings of the international conference on Web search and
web data mining, WSDM ’08, pages 207–218, 2008.

[4] A. Ahmed, L. Hong, and A. J. Smola. Hierarchical geographical modeling of
user locations from social media posts. In Proceedings of the 22nd international
conference on World Wide Web, WWW ’13, pages 25–36, 2013.

[5] R. Akbarinia, E. Pacitti, and P. Valduriez. Best position algorithms for top-k
queries. In VLDB, VLDB ’07, pages 495–506, 2007.

[6] A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in
social networks. In Proceeding of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’08, pages 7–15, 2008.

[7] S. Ardon, A. Bagchi, A. Mahanti, A. Ruhela, A. Seth, R. M. Tripathy, and
S. Triukose. Spatio-temporal analysis of topic popularity in twitter. CoRR,
abs/1111.2904, 2011.

[8] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a
bitmap representation. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’02, pages 429–435,
2002.

[9] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large
social networks: membership, growth, and evolution. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’06, pages 44–54, 2006.

[10] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an influencer:
quantifying influence on twitter. In Proceedings of the fourth ACM international
conference on Web search and data mining, WSDM ’11, pages 65–74, 2011.

121

REFERENCES 122

[11] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding in
enterprise corpora. In SIGIR, SIGIR ’06, pages 43–50, 2006.

[12] F. Bass. A new product growth for model consumer durables. Management Sci-
ences, 15(1):215–227, 1969.

[13] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. Io-top-k:
index-access optimized top-k query processing. In VLDB, VLDB ’06, pages 475–
486, 2006.

[14] S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization in
social networks. In Proceedings of the 3rd international conference on Internet
and network economics, WINE’07, pages 306–311, 2007.

[15] D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested chinese restaurant process
and bayesian nonparametric inference of topic hierarchies. J. ACM, 57(2):7:1–
7:30, 2010.

[16] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic
models and the nested chinese restaurant process. In NIPS, 2003.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, 2003.

[18] F. Bonchi. Influence propagation in social networks: A data mining perspective.
IEEE Intelligent Informatics Bulletin, 12(1):8–16, 2011.

[19] C. Budak, D. Agrawal, and A. El Abbadi. Limiting the spread of misinformation
in social networks. In Proceedings of the 20th international conference on World
wide web, WWW ’11, pages 665–674, 2011.

[20] K. R. Canini, B. Suh, and P. L. Pirolli. Finding credible information sources in
social networks based on content and social structure. In Proceedings of the third
IEEE International Conference on Social Computing (SocialCom), 2011.

[21] P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks. In
PODC, PODC ’04, pages 206–215, 2004.

[22] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi. Measuring user influence
in twitter: The million follower fallacy. In 4th International AAAI Conference on
Weblogs and Social Media (ICWSM), 2010.

[23] Y. Cha and J. Cho. Social-network analysis using topic models. In Proceedings
of the 35th international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’12, pages 565–574, 2012.

[24] K. Chakrabarti, S. Chaudhuri, and V. Ganti. Interval-based pruning for top-k pro-
cessing over compressed lists. In ICDE, pages 709–720, 2011.

REFERENCES 123

[25] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincon, X. Sun, Y. Wang,
W. Wei, and Y. Yuan. Influence maximization in social networks when negative
opinions may emerge and propagate. Technical Report MSR-TR-2010-137, Mi-
crosoft Research, October 2010.

[26] W. Chen, W. Lu, and N. Zhang. Time-critical influence maximization in social
networks with time-delayed diffusion process. In AAAI, 2012.

[27] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’10, pages 1029–1038, 2010.

[28] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social net-
works. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’09, pages 199–208, 2009.

[29] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social net-
works under the linear threshold model. In Proceedings of the 2010 IEEE Interna-
tional Conference on Data Mining, ICDM ’10, pages 88–97, 2010.

[30] Y. Chen, J. Guo, Y. Wang, Y. Xiong, and Y. Zhu. Incremental mining of sequential
patterns using prefix tree. In Proceedings of the 11th Pacific-Asia conference on
Advances in knowledge discovery and data mining, PAKDD’07, pages 433–440,
2007.

[31] H. Cheng, X. Yan, and J. Han. Incspan: incremental mining of sequential pat-
terns in large database. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’04, pages 527–532,
2004.

[32] J. S. Coleman, E. Katz, and H. Menzel. Medical innovation: A diffusion study.
Bobbs-Merrill, 1966.

[33] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri. Feedback effects
between similarity and social influence in online communities. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’08, pages 160–168, 2008.

[34] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries
using views. In VLDB, VLDB ’06, pages 451–462, 2006.

[35] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. Optimizing top-k document re-
trieval strategies for block-max indexes. In WSDM, WSDM ’13, pages 113–122,
2013.

[36] S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes. In
SIGIR, SIGIR ’11, pages 993–1002, 2011.

REFERENCES 124

[37] P. Domingos and M. Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’01, pages 57–66, 2001.

[38] W. Dong and A. Pentland. Modeling influence between experts. In Proceedings of
the ICMI 2006 and IJCAI 2007 international conference on Artifical intelligence
for human computing, ICMI’06/IJCAI’07, pages 170–189, 2007.

[39] E. Even-Dar and A. Shapira. A note on maximizing the spread of influence in
social networks. In Proceedings of the 3rd international conference on Internet
and network economics, WINE’07, pages 281–286, 2007.

[40] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In PODS, PODS ’01, pages 102–113, 2001.

[41] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Mining sequences with tem-
poral annotations. In Proceedings of the 2006 ACM symposium on Applied com-
puting, SAC ’06, pages 593–597, 2006.

[42] J. Goldenberg and B. Libai. Using complex systems analysis to advance market-
ing theory development: Modeling heterogeneity effects on new product growth
through stochastic cellular automata. Academy of Marketing Science Review, 2001.

[43] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: a complex systems
look at the underlying process of word-of-mouth. Marketing Letters, pages 211–
223, 2001.

[44] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion
and influence. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’10, pages 1019–1028, 2010.

[45] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in
social networks. In Proceedings of the third ACM international conference on Web
search and data mining, WSDM ’10, pages 241–250, 2010.

[46] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social
influence maximization. Proc. VLDB Endow., 5(1):73–84, 2011.

[47] M. S. Granovetter. Threshold models of collective behavior. American Journal of
Sociology, 83(6):1420–1443, 1978.

[48] D. Gruhl, R. Guha, D. Liben-nowell, and A. Tomkins. Information diffusion
through blogspace. In WWW ’04, pages 491–501, 2004.

[49] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan:
frequent pattern-projected sequential pattern mining. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’00, pages 355–359, 2000.

[50] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns
without minimum support. In Proceedings of the 2002 IEEE International Confer-
ence on Data Mining, ICDM ’02, pages 211–218, 2002.

REFERENCES 125

[51] M. Jamali and M. Ester. A matrix factorization technique with trust propagation
for recommendation in social networks. In RecSys, RecSys ’10, pages 135–142,
2010.

[52] A. Java, P. Kolari, T. Finin, and T. Oates. Modeling the spread of influence on the
blogosphere. In World Wide Web Conference Series, 2006.

[53] J. Jestes, J. M. Phillips, F. Li, and M. Tang. Ranking large temporal data. Proc.
VLDB Endow., 5(11):1412–1423, 2012.

[54] S. Jurvetson. What exactly is viral marketing? Red Herring, 78:110–112, 2000.

[55] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’03, pages 137–146,
2003.

[56] D. Kempe, J. M. Kleinberg, and É. Tardos. Influential nodes in a diffusion model
for social networks. In ICALP, pages 1127–1138, 2005.

[57] M. Kimura and K. Saito. Tractable models for information diffusion in social
networks. In Principles of Data Mining and Knowledge Discovery, pages 259–
271, 2006.

[58] M. Kimura, K. Saito, and R. Nakano. Extracting influential nodes for information
diffusion on a social network. In National Conference on Artificial Intelligence,
pages 1371–1376, 2007.

[59] J. Kleinberg. Cascading behavior in networks: Algorithmic and economic issues.
In Algorithmic Game Theory, pages 613–632, 2007.

[60] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a
news media? In Proceedings of the 19th international conference on World wide
web, WWW ’10, pages 591–600, 2010.

[61] M. L. Lee, W. Hsu, L. Li, and W. H. Tok. Consistent top-k queries over time. In
DASFAA, DASFAA ’09, pages 51–65, 2009.

[62] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing.
In Proceedings of the 7th ACM conference on Electronic commerce, EC ’06, pages
228–237, 2006.

[63] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of
the news cycle. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’09, pages 497–506, 2009.

[64] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’07, pages 420–429, 2007.

REFERENCES 126

[65] J. Leskovec, M. Mcglohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading
behavior in large blog graphs. In SDM, 2007.

[66] G. Li, S. Chen, J. Feng, K.-L. Tan, and W.-S. Li. Efficient location-aware influence
maximization. In Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’14, pages 87–98, 2014.

[67] B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence maximization in
social networks. In ICDM, pages 439–448, 2012.

[68] J. Liu, S. Yan, Y. Wang, and J. Ren. Incremental mining algorithm of sequential
patterns based on sequence tree. In Advances in Intelligent Systems, volume 138
of Advances in Intelligent and Soft Computing, pages 61–67, 2012.

[69] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-level influence in
heterogeneous networks. In Proceedings of the 19th ACM international conference
on Information and knowledge management, CIKM ’10, pages 199–208, 2010.

[70] S. Liu, L. Chen, L. M. Ni, and J. Fan. Cim: Categorical influence maximization. In
Proceedings of the 5th International Conference on Ubiquitous Information Man-
agement and Communication, ICUIMC ’11, pages 124:1–124:10, 2011.

[71] V. Mahajan, E. Muller, and F. M. Bass. New product diffusion models in marketing:
A review and directions for research. Journal of Marketing, 54(1):1–26, 1990.

[72] D. Mahata and N. Agarwal. What does everybody know? identifying event-specific
sources from social media. In CASoN, pages 63–68, 2012.

[73] C. D. Manning and H. Schütze. Foundations of statistical natural language pro-
cessing. MIT Press, 1999.

[74] F. Masseglia, P. Poncelet, and M. Teisseire. Incremental mining of sequential pat-
terns in large databases. Data Knowl. Eng., 46(1):97–121, 2003.

[75] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen. Sparsifica-
tion of influence networks. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’11, pages 529–537,
2011.

[76] Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall
patterns of information diffusion: model and implications. In Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’12, pages 6–14, 2012.

[77] S. Michel, P. Triantafillou, and G. Weikum. Klee: a framework for distributed
top-k query algorithms. In VLDB, VLDB ’05, pages 637–648, 2005.

[78] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k
queries over sliding windows. In SIGMOD, SIGMOD ’06, pages 635–646, 2006.

REFERENCES 127

[79] R. Narayanam and Y. Narahari. A shapley value-based approach to discover in-
fluential nodes in social networks. IEEE T. Automation Science and Engineering,
8(1):130–147, 2011.

[80] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions-i. Mathematical Programming, 14:265–
294, 1978.

[81] S. N. Nguyen, X. Sun, and M. E. Orlowska. Improvements of incspan: incre-
mental mining of sequential patterns in large database. In Proceedings of the 9th
Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining,
PAKDD’05, pages 442–451, 2005.

[82] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental and
interactive sequence mining. In Proceedings of the eighth international conference
on Information and knowledge management, CIKM ’99, pages 251–258, 1999.

[83] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, and M. chun
Hsu. Prefixspan: Mining sequential patterns efficiently by prefix-projected pat-
tern growth. In ICDE, pages 215–224, 2001.

[84] D. Ramage, S. Dumais, and D. Liebling. Characterizing microblogs with topic
models. In ICWSM, 2010.

[85] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled lda: a supervised
topic model for credit attribution in multi-labeled corpora. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing, EMNLP
’09, pages 248–256, 2009.

[86] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral mar-
keting. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’02, pages 61–70, 2002.

[87] E. Rogers. Diffusion of Innovations, Fourth Edition. Free Press, 1995.

[88] D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman. Influence and passivity
in social media. In Proceedings of the 20th international conference companion
on World wide web, WWW ’11, pages 113–114, 2011.

[89] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for
authors and documents. In Proceedings of the 20th conference on Uncertainty in
artificial intelligence, UAI ’04, pages 487–494, 2004.

[90] K. Saito, M. Kimura, K. Ohara, and H. Motoda. Learning continuous-time in-
formation diffusion model for social behavioral data analysis. In Proceedings of
the 1st Asian Conference on Machine Learning: Advances in Machine Learning,
ACML ’09, pages 322–337, 2009.

[91] K. Saito, M. Kimura, K. Ohara, and H. Motoda. Selecting information diffusion
models over social networks for behavioral analysis. In Proceedings of the 2010
European conference on Machine learning and knowledge discovery in databases:
Part III, ECML PKDD’10, pages 180–195, 2010.

REFERENCES 128

[92] K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion proba-
bilities for independent cascade model. In Proceedings of the 12th international
conference on Knowledge-Based Intelligent Information and Engineering Systems,
Part III, KES ’08, pages 67–75, 2008.

[93] K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda. Learning diffusion
probability based on node attributes in social networks. In Proceedings of the 19th
international conference on Foundations of intelligent systems, ISMIS’11, pages
153–162, 2011.

[94] T. C. Schelling. Micromotives and Macrobehavior. Norton, 1978.

[95] D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized top-k processing with global
page scores on block-max indexes. In WSDM, WSDM ’12, pages 423–432, 2012.

[96] S. Shang, P. Hui, S. R. Kulkarni, and P. W. Cuff. Wisdom of the crowd: Incorporat-
ing social influence in recommendation models. In Proceedings of the 2011 IEEE
17th International Conference on Parallel and Distributed Systems, ICPADS ’11,
pages 835–840, 2011.

[97] P. Singla and M. Richardson. Yes, there is a correlation: - from social networks to
personal behavior on the web. In Proceedings of the 17th international conference
on World Wide Web, WWW ’08, pages 655–664, 2008.

[98] X. Song, Y. Chi, K. Hino, and B. L. Tseng. Information flow modeling based on
diffusion rate for prediction and ranking. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 191–200, 2007.

[99] X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun. Personalized recommendation
driven by information flow. In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR
’06, pages 509–516, 2006.

[100] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In Proceedings of the 5th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT ’96,
pages 3–17, 1996.

[101] N. R. Suri and Y. Narahari. Determining the top-k nodes in social networks using
the shapley value. In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems - Volume 3, AAMAS ’08, pages 1509–
1512, 2008.

[102] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale
networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’09, pages 807–816, 2009.

[103] J. Tang, S. Wu, and J. Sun. Confluence: conformity influence in large social net-
works. In KDD, pages 347–355, 2013.

REFERENCES 129

[104] J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang, and Z. Su. Topic level expertise
search over heterogeneous networks. Machine Learning Journal, 82(2):211–237,
2011.

[105] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction and
mining of academic social networks. In KDD, pages 990–998, 2008.

[106] P. Tzvetkov, X. Yan, and J. Han. Tsp: Mining top-k closed sequential patterns.
In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM
’03), pages 347–354, 2003.

[107] T. Valente. Network models of the diffusion of innovations. Quantitative methods
in communication. Hampton Press, 1995.

[108] H. Wallach, D. Mimno, and A. McCallum. Rethinking lda: Why priors matter. In
Advances in Neural Information Processing Systems 22, pages 1973–1981. 2009.

[109] C. Wang, J. Tang, J. Sun, and J. Han. Dynamic social influence analysis through
time-dependent factor graphs. In Proceedings of the 2011 International Conference
on Advances in Social Networks Analysis and Mining, ASONAM ’11, pages 239–
246, 2011.

[110] H. Wang, Y. Cai, Y. Yang, S. Zhang, and N. Mamoulis. Durable queries over
historical time series. IEEE TKDE, 26(3), 2014.

[111] J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In
Proceedings of the 20th International Conference on Data Engineering, pages 79–
90, 2004.

[112] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy algorithm for
mining top-k influential nodes in mobile social networks. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’10, pages 1039–1048, 2010.

[113] J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influ-
ential twitterers. In Proceedings of the third ACM international conference on Web
search and data mining, WSDM ’10, pages 261–270, 2010.

[114] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large
datasets. In SDM, pages 166–177, 2003.

[115] J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. In
Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM
’10, pages 599–608, 2010.

[116] J. Yang and J. Leskovec. Patterns of temporal variation in online media. In Pro-
ceedings of the fourth ACM international conference on Web search and data min-
ing, WSDM ’11, pages 177–186, 2011.

[117] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. In
Machine Learning, pages 31–60, 2001.

REFERENCES 130

[118] J. Zhang, J. Tang, and J.-Z. Li. Expert finding in a social network. In DASFAA,
pages 1066–1069, 2007.

[119] M. Zhang, B. Kao, D. W.-L. Cheung, and C. L. Yip. Efficient algorithms for
incremental update of frequent sequences. In Proceedings of the 6th Pacific-Asia
Conference on Advances in Knowledge Discovery and Data Mining, PAKDD ’02,
pages 186–197, 2002.

[120] J. Zhu, D. Song, S. Rüger, and X. Huang. Modeling document features for expert
finding. In CIKM, CIKM ’08, pages 1421–1422, 2008.

