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Summary 

High-mobility Germanium-Tin Filed-Effect-Transistors: 

Surface Passivation, Contact, and Doping Technologies 

by 

Lanxiang WANG 

 

Doctor of Philosophy 

NUS Graduate School for Integrative Sciences and Engineering 

National University of Singapore 

 

Silicon (Si) complementary metal-oxide-semiconductor (CMOS) 

transistors have been widely used in electronics for the past several decades.  

The trend of scaling Si transistors towards higher packing density, faster speed, 

reduced cost, and lower power consumption per function has become a driving 

force of technological change.  However, continual scaling of transistors into 

sub-10 nm regime meets great challenges.  Exploring high-mobility channel 

materials to replace Si is deemed as a solution to extend the CMOS road map.  

In particular, germanium-tin (Ge1-xSnx) have become of great interest due to its 

high career mobilities.  This thesis aims to address various challenges in 

taking full advantage of Ge1-xSnx for future CMOS logic applications. 

For Ge1-xSnx p-channel metal-oxide-semiconductor field-effect 

transistors (p-MOSFETs), ammonium sulfide [(NH4)2S] was first 

demonstrated to achieve high-quality gate stack.  Single-crystalline 

Ge0.958Sn0.042 films were grown on Ge (100) substrate by a solid source 
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molecular beam epitaxy (MBE) system.  Prior to gate dielectric deposition, 

(NH4)2S passivation was done by treatment with (NH4)2S aqueous solution 

(36%) for 10 minutes at 25 °C.  The (NH4)2S-passivated Ge0.958Sn0.042 p-

MOSFETs show decent transfer and output characteristics.  A peak mobility 

of 509 cm2/V∙s, which is higher than those of other (100)-oriented Ge1-xSnx p-

MOSFETs reported so far, was obtained for the (NH4)2S-passivated transistors.  

Next, incorporation of platinum (Pt) during the formation of nickel 

(Ni) stanogermanide was exploited for metallization scheme of Ge1-xSnx 

transistors.  The surface of Ni/Ge0.947Sn0.053 sample becomes rough after 

annealing at 450 °C, which is the cause of the sharp increase in sheet 

resistance from 450 to 500 °C.  The incorporation of Pt improves the thermal 

robustness by suppressing agglomeration during reaction between Ni and 

Ge0.947Sn0.053 at temperatures higher than 450 °C. 

To realize high-performance Ge1-xSnx n-MOSFETs, high n-type dopant 

activation for low source/drain (S/D) resistance is critical.  We first 

investigated Ge0.976Sn0.024 n+/p junction formation using phosphorus ion (P+) 

implant without heating the substrate during the implant.  Various activation 

temperatures were investigated to activate the dopants.  Activation 

temperature as low as 400 °C is demonstrated to obtain active doping 

concentration of 2.1 × 1019 cm-3 for P+-implanted Ge0.976Sn0.024.  In addition, 

we investigated the effect of P+ implant temperature on the material properties 

and the electrical characteristics of epitaxial Ge0.976Sn0.024.  Implant at elevated 

temperature of 400 °C was explored to maintain the single-crystallinity of 

Ge0.976Sn0.024 during implant and achieve a lower contact resistivity after 

activation at 450 °C as compared with the room-temperature implant. 
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Chapter 1 

 

Introduction 

 

1.1 Background 

1.1.1 The End of Classical MOSFET Scaling 

Since the first demonstration by D. Kahng and M. M. Atalla in 1960 [1], 

the silicon (Si) metal-oxide-semiconductor field-effect transistor (MOSFET) using 

the abundant Si as the substrate and silicon dioxide (SiO2) as the dielectric oxide 

of the transistor has become the basic building block of integrated circuits (IC).  

Enabled by MOSFET scaling, the number of transistors per chip increases 

tremendously in the past half century to meet the growing needs for electronic 

devices for computing, communication, and other applications.  This persistent 

trend of transistor scaling was predicted by G. Moore in 1965 and is commonly 

referred to as Moore’s law that the number of transistors on a chip doubles about 

every 24 months [2]. 

The classical MOSFET scaling requires that transistor dimensions (gate 

length LG, gate width W, dielectric thickness tox, etc.) scale accordingly with the 

decrease of the supply voltage VDD.  The first benefit of the scaling is to make 

transistors smaller to increase the packing density every new generation, resulting 

in a chip with more functionality in a given area.  Today, more than 100 million 

MOSFETs using Intel 22-nm technology can fit onto the head of a pin with 
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diameter of 1.5 mm [3].  Another advantage is to improve the circuit speed to 

obtain more sophisticated computing capability.  In addition, the scaling leads to 

the average selling price per transistor falling more than 6 orders of magnitude 

from the year 1970 to 2000 [4], stimulating many exciting new applications, such 

as the tablet computer and smartphone.  Finally, it is necessary to reduce power 

consumption.  If the power consumption had not been scaled accordingly, running 

a microprocessor (operating a billion transistors at 2 GHz) using the 1970’s 10-

µm technology would require the power output of a power plant [5].  In brief, this 

trend enabled by the MOSFET scaling towards higher packing density, faster 

speed, reduced cost, and lower power consumption per function has become a 

driving force of technological change [6]. 

 

 

Fig. 1.1. Electron mobility versus technology scaling trend for various 
technology nodes.  The electron mobility decreased from 400 cm2 /V-s at the 0.80-

μm node to 120 cm2/V-s at the 0.13-μm node.  Fig. 1.1  reprinted from Ref. [8], 
with permission from IEEE Electron Devices Society, Copyright 2004. 
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This classical scaling was sufficient to deliver device performance 

improvement until the 0.13-μm node [7], when we reached the new millennium.  

Fig. 1.1 shows the electron mobility versus technology scaling trend for various 

technology nodes.  As transistors are scaled to the sub-micrometer regions, it is 

difficult to improve MOSFET drive current IDSat by just reducing LG, as the 

effective carrier mobility μeff in the channel reduces monotonically from 400 

cm2/V-s at the 0.80-μm node to 120 cm2/V-s at the 0.13-μm node. 

The mobility degradation should result from the increasing scattering 

during carrier transport, due to the combined effect of the increasing channel 

doping concentration N and effective vertical electrical field Eeff.  Following the 

classical scaling trend, both N and Eeff increase as the device dimensions decrease.  

The empirical relationships between μeff and N and between μeff and Eeff are given 

by Equations (1.1) [9] and (1.2) [10], respectively 
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where μmax is the highest carrier mobility in bulk semiconductor, Pc, μ0, μ1, Cr, Cs, 

α, β and E0 are the empirical parameters with positive values obtained by fitting 

the experimental results. 

 

 

  



 4 

1.1.2 Challenges and Innovations in Scaling at Sub-100 nm Nodes 

 

Fig. 1.2. Innovations in MOSFET scaling with the introduction of strain silicon, 

high-k/metal gate and tri-gate transistor technologies since 2003.  Strained silicon 
technology was introduced to enhance the electron mobility of n-MOSFETs 
realized with silicon nitride high stress film and hole mobility of p-MOSFETs 

realized with silicon germanium source/drain stressors at the 90-nm node.  The 
transistors integrated with high-k/metal gate technology instead of using 

SiO2/polysilicon gate were in mass production to achieve lower gate leakage 
current and suppress the gate depletion at the 45-nm node.  The revolutionary tir-
gate transistors were released to achieve better gate electrostatic control and  

smaller footprint at the 22-nm node.  Fig. 1.2 reprinted from Refs. [8], [13] and 
[17], with permission from IEEE Electron Devices Society, Copyright 2004, 2007, 

and 2012. 
 
 

Continual innovations in transistor materials and structures have been 

developed to sustain Moore's law over the past decade as shown in Fig. 1.2.  

Particularly, strained silicon technology was introduced at the 90-nm technology 

in 2003 to offset the undesired mobility degradation as shown in Fig. 1.1 [8].  A 

silicon nitride capping layer is deposited on top of the n-MOSFET to induce 

uniaxial tensile strain in the channel to enhance the electron mobility.  For p-
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VDD =  0.9 V, Tox = 0.9 nm
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2007 (45 nm)

VDD =  1.0 V, Tox = 1.0 nm

Innovations in Transistor Scaling Since 2003
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are anticipated to be 
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nMOS: SiN stressor 

 uniaxial tensile strain

pMOS: SiGe S/D 

 uniaxial compressive strain

 Parasitic S/D resistance

 1.0 nm EOT high-k

dielectric

 Suppression of  gate 

depletion

 Better gate electrostatic control

 Higher drive current for a given 

transistor footprint

Strained Silicon

High-k/Metal Gate

Tri-gate Transistor
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MOSFET, silicon germanium is utilized as the source and drain (S/D) to induce 

uniaxial compressive strain in the channel to enhance hole mobility and reduce 

S/D parasitic resistance RSD. 

SiO2 has been the favored dielectric layer for Si MOSFET since the very 

beginning, and its thickness was successfully reduced to 1.2 nm at 65-nm node 

[11].  However, there is no room left for further scaling such a thin SiO2 (only 

about four atomic layers), as any thickness reduction would result in the gate 

leakage current becoming unmanageable [12].  By utilizing an alternative gate 

dielectric using high dielectric constant (high-k) material with an equivalent oxide 

thickness (EOT) of 1.0 nm at the 45-nm node in 2007, n- and p-MOSFET gate 

leakage currents are reduced by more than 25 times and 1000 times, respectively 

[13].  In addition, the depletion region of gate electrode made of polysilicon, 

which acts like an additional dielectric layer, leads to a lower inversion carrier 

density and drive current.  This issue is resolved by switching fro m the highly 

doped semiconductor gate to metal gate. 

Other than gate leakage current discussed in the last paragraph, another 

important component of off-state current IOFF is the S/D leakage current due to the 

insufficient gate control of the potential along a sub-surface leakage path.  As the 

gate length reduces, the drain gains control of the channel potential, while the gate 

comparatively loses control [14].  Therefore, the drain voltage allows leakage 

current to flow at the sub-surface region by pulling down the potential barrier near 

the source region.  To circumvent this scaling limitation, multiple-gate transistor 

or fin field-effect transistor (FinFET) structure is proposed [15]-[17].  With better 

gate electrostatic control from more than one side of the channel, this thin fin 

design reduces S/D leakage current significantly.  Consequently, the introduction 
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of multiple-gate transistors at Intel’s 22-nm technology in 2011 reverses the trend 

of increasing IOFF at recent technology nodes [5]. 

 

1.1.3 The Use of High-Mobility Channel Materials  

Unlike in the long channel transistors, carrier transport in the extremely 

scaled transistors in sub-100 nm regime is quasi-ballistic or ballistic.  IDSat of a 

transistor operating in quasi-ballistic or ballistic regime is limited by the thermal 

injection velocity vinj and is given by Equation 1.3 or Equation 1.4 [18]-[19], 
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where q is the elementary charge, NS, Source is the carrier concentration near the 

source edge, rc is the backscattering coefficient which is a measure of the number 

of carrier that backscatter to the source, Cox is the gate oxide capacitance, VGS is 

the gate voltage that equals to VDD when the transistor is turned on, and VTH is the 

threshold voltage.  Experimentally, it was found that vinj is proportional to low-

filed mobility that is determined by conductivity effective mass [20]-[21].  

Therefore, achieving small effective mass and thereby high low-field mobility is 

now critical to obtain high vinj and IDSat. 

Beyond strained silicon technology, the use of high-mobility materials 

could be another solution to achieve high injection velocity and therefore drive 

current due to their high intrinsic bulk carrier mobilities and low conductivity 

effective mass.  In the last decade, great deal of research is focused on high-
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mobility germanium (Ge) and III-V compound semiconductors as alternative 

channel materials at future technology nodes [22]-[34]. 

The so-called high-mobility channel logic technology is anticipated to be 

in production in 2018 according to the International Technology Roadmap for 

Semiconductors (ITRS) (Fig. 1.2) [35].  To see the benefit of high-mobility 

channel transistors over Si channel transistors, Fig. 1.3 shows the comparison of 

transfer characteristics IDS - VGS between a high-mobility channel MOSFET (the 

red dashed curve) and a Si channel MOSFET (the black solid curve) in the 

saturation region (VDS = VDD).  Compared with the Si channel MOSFET, the high-

mobility channel transistor with a higher v inj allows a higher on-state current ION at 

the approximately same IOFF for a given gate overdrive voltage (VDD – VTH), 

resulting in an improved circuit speed determined by ION/CVDD.  On the other hand, 

the high-mobility channel transistor can also achieve a reduced supply voltage 

VDD,Reduced to maintain the same ION and approximately same IOFF.  This can be 

used for low operating power (LOP) technology due to the ability of achieving a 

low dynamic power determined by CVDD
2.  Table 1.1 shows the comparison of the 

Si channel high-performance (HP) and LOP technologies, and the high-mobility 

channel logic technology [35].  Here we only list the ratios in relation to the 

values in HP technology.  Thus, not only does the technology using high-mobility 

materials offer higher speed than HP technology, but does so with the same low 

dynamic power as LOP technology. 
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Fig. 1.3. Transfer characteristics IDS - VGS of a high-mobility channel MOSFET 
(red dashed curve) and a Si channel MOSFET (black solid curve) in the saturation 
region, respectively.  High-mobility channel MOSFET can achieve an increased 

ION and approximately same IOFF with the same gate overdrive voltage.  In 
addition, high-mobility channel MOSFET can maintain the same ION and 

approximately same IOFF with a smaller gate overdrive voltage. 

 

 

 

Table 1.1. Comparison of Si channel HP and LOP technologies, and high-

mobility channel technology [35].  The ratios in relation to the values 
in HP technology are listed. 

 

 
Si channel High-mobility 

channel HP LOP 

Speed (ION/CVDD) 1 0.5 1.5 

Dynamic power (CVDD
2) 1 0.5 0.6 
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1.1.4 Why Ge1-xSnx? 

 

Fig. 1.4. Plot of the bulk mobilities, lattice constants, and band gaps for silicon, 
germanium and a variety of III–V compound semiconductors.  Filled symbols and 

open symbols represent electron mobility and hole mobility, respectively.  The 
lattice constant of Si (5.43 Å) and the supply voltages for the years 2018 (0.63 V) 
and 2026 (0.54 V) are highlighted.  The material parameters are taken from Ref. 

[36]. 
 

 

Fig. 1.4 plots the bulk carrier mobilities, lattice constants, and band gaps 

for Si, Ge and a variety of III–V compound semiconductors including gallium 

arsenide (GaAs), indium phosphide (InP), indium arsenide (InAs), and indium 

antimonide (InSb).  The band gap is important for selecting the next-generation 

channel material, as it affects the transistor off-state behavior.  If the band gap is 

too small (e.g. 0.35 eV for InAs and 0.17 eV for InSb) relative to VDD (which 

varies from 0.63 V in 2018 to 0.54 V in 2026 according to ITRS [35]), the 

transistor would suffer from high S/D leakage current resulting from not only 

thermionic emission but also band-to-band tunneling.  From Fig. 1.4, it can be 
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observed that Ge has a sufficiently large band gap of 0.66 eV for future 

technology nodes. 

For a high-mobility channel technology to be compatible with today’s Si 

manufacturing process, the cost-effective integration of high-mobility materials on 

a large Si substrate is imperative.  Due to the fragility of the high-mobility 

materials, the production and use of large bulk wafers made of such materials for 

device fabrication is challenging.  In addition, incorporating the less abundant and 

more expensive high-mobility materials on a large (e.g. 300 mm) Si wafer reduces 

the considerable costs associated with developing non-Si bulk substrates.  

However, the direct growth of these materials on Si is prohibited by the massive 

defect formation that would arise from large lattice mismatch between the high-

mobility material and Si.  Therefore, integration of high-mobility materials on Si 

requires special techniques such as buffer- layer growth [33],[37]-[41] and aspect-

ratio-trapping growth [42]-[45] techniques.  Among the high-mobility materials as 

shown in Fig. 1.4, Ge has the smallest lattice mismatch to Si, making it easier to 

integrate on a Si substrate.  In addition, the growth of polar materials such as III-V 

compound semiconductors on a non-polar material like Si results in 

crystallographic defects known as anti-phase boundaries (APBs) [46]-[47].  Ge, 

which is also non-polar, suffers no such problem. 

Apart from having a reasonably large band gap and the lowest lattice 

mismatch to Si, Ge has the highest bulk hole mobility of 1900 cm2/V-s and 

reasonably high bulk electron mobility of 3900 cm2/V-s.  The incorporation of tin 

(Sn) into the Ge lattice to form germanium-tin (Ge1-xSnx) alloys shows promise for 

engineering the electronic properties, based on calculations using the empirical 

pseudopotential method done by K. L. Low et al. [48].  First, the light-hole 
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effective mass of Ge1-xSnx decreases as the Sn composition increases, resulting in 

the possible improvement of drive current of Ge1-xSnx p-MOSFETs by increasing 

the thermal injection velocity of holes [20]-[21].  In addition, the incorporation of 

a small amount of Sn (x < 0.11) reduces the longitudinal electron effective mass at 

L-point and therefore the conductivity effective mass of electrons, showing a way 

of achieving higher drive current of Ge1-xSnx n-MOSFETs by increasing the 

thermal injection velocity of electrons [20]-[21].  Fig. 1.5(a) shows the full band 

structure of Ge0.89Sn0.11 along high symmetry lines in the Brillouin zone.  The 

calculated band gap energies of X, L, and Γ-point at various Sn compositions are 

shown in Fig 1.5(b).  Notably, the transition from indirect to direct band gap 

should be achieved by alloying with Sn composition of 11% and above, resulting 

in a significant improvement of the thermal injection velocity of electrons. 

 

 

Fig. 1.5. (a) Full band structure of Ge0.89Sn0.11 along high symmetry lines in the 

Brillouin zone.  (b) The calculated band gap energies of X, L, and Γ-point at 
various Sn compositions.  Fig. 1.5 reprinted from Ref. [48], with permission from 

American Institute of Physics, Copyright 2012. 
 

(a) (b)
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In short, Ge1-xSnx is predicted to have even smaller effective mass for 

electrons and holes and consequently higher carrier mobilities than Ge.  The 

tradeoffs are a larger lattice constant and a smaller band gap, but lattice mismatch 

to Si is less of an issue with the use of growth techniques such as the aspect-ratio-

trapping growth technique, while a sufficiently large band gap can be maintained 

for low Sn compositions.  Therefore, Ge1-xSnx could potentially be an even more 

promising high-mobility material than Ge to replace Si as the channel material in 

MOSFETs.  Furthermore, high-quality single-crystalline Ge1-xSnx has been 

successfully grown using molecular beam epitaxy (MBE) [49]-[57] and chemical 

vapor deposition (CVD) [58]-[60], and is ready for being developed as an 

important technical option for ultra-scaled MOSFET technologies. 

To realize high-performance transistors using high-mobility materials as 

the channel, remarkable effort has been made from the academia and industry 

over the last decade.  Take p-MOSFETs for example, Fig. 1.6 shows the research 

trend towards higher hole mobility from literatures reported on the flagship 

technical conferences: International Electron Devices Meeting (IEDM) and 

Symposium on VLSI Technology (VLSIT).  The demonstrations of high-

performance transistors using high-mobility materials such as Si1-yGey, Ge, and 

indium gallium antimonide (In1-cGacSb) have been reported in Refs. [22] - [34].  

Please note that the mobility value in Ref. [22] is extracted at the effective field of 

1 MV/cm, as the authors reported mobility as a function of effective field ranging 

from 0.7 MV/cm to 2.5 MV/cm.  For the rest of references in Fig. 1.6, the 

mobility value is extracted at the effective field of 0.3 MV/cm, if mobility was 

plotted as a function of effective field, or is extracted at the inversion carrier 
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density of 5 × 1012 cm-2, if mobility was plotted as a function of inversion carrier 

density. 

Recently, Ge1-xSnx p-channel MOSFETs were demonstrated to have higher 

hole mobility than Ge control devices by experiment [61]-[63].  The high-quality 

Ge1-xSnx films were epitaxially grown on n-type Ge (100) substrates using MBE 

system.  As an emerging material for scaling supply voltage towards 0.5 V for 

high performance transistors at sub-10 nm technology nodes [64], much research 

work needs to be done on Ge1-xSnx, which is the focus of the work in this thesis. 

 

 

Fig. 1.6. Research on channel materials for p-MOSFETs from 2000 to 2011 for 
achieving high hole mobility [22]-[34].  The world’s first Ge1-xSnx channel p-

MOSFET is demonstrated in the year 2011 [61].  Please note that the mobility 
value in Ref. [22] is extracted at the effective field of 1 MV/cm, as the authors 
reported mobility as a function of effective field ranging from 0.7 MV/cm to 2.5 

MV/cm.  For the rest of references, the mobility value is extracted at 0.3 MV/cm, 
if mobility was plotted as a function of effective field, or is extracted at the 
inversion carrier density of 5 × 1012 cm-2, if mobility was plotted as a function of 

inversion carrier density.  The figure is modified from Fig. 1 in Ref. [61]. 
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1.2 Thesis Outline and Original Contributions 

Chapter 2 proposes a complementary metal-oxide-semiconductor (CMOS) 

using Ge1-xSnx n- and p-channel transistors integrated on Si substrate for sub-10 

nm technology nodes.  Many technical challenges have to be overcome for Ge1-

xSnx MOSFETs before its possible mass production in the future.  These include 

cost-effective integration of high-mobility Ge1-xSnx on large Si substrates, 

formation of high-quality gate stack, source/drain engineering for low-resistance. 

This thesis aims to address various challenges in realizing high-mobility 

Ge1-xSnx MOSFETs for future logic applications.  The technical contents 

discussed in this thesis are documented in Chapters 3 to 5. 

Chapter 3 reports a surface passivation by treatment with ammonium 

sulfide [(NH4)2S], which is explored for the gate stack of high-mobility 

Ge0.958Sn0.042 p-MOSFETs.  Single-crystalline Ge0.958Sn0.042 was epitaxially grown 

on Ge (100) substrate as the channel material.  The (NH4)2S-passivated 

Ge0.958Sn0.042 p-MOSFETs show decent transfer and output characteristics, and 

demonstrate a higher peak μeff in comparison with those of other (100)-oriented 

Ge1-xSnx p-MOSFETs reported so far. 

Chapter 4 investigates a thermally stable Pt-incorporated stanogermanide 

metallization scheme for Ge1-xSnx transistors.  The surface of Ni/Ge1-xSnx/Ge (100) 

sample becomes rough after annealing at 450 °C, which is the cause of the sharp 

increase in sheet resistance from 450 to 500 °C.  The incorporation of Pt during 

the formation of Ni-stanogermanide was exploited to improve the thermal 

robustness by suppressing agglomeration during solid-state reactions between Ni 

and Ge0.947Sn0.053 at temperatures of 450 °C and above.   
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Chapter 5 documents the efforts towards highly doped n-type germanium-

tin for low S/D resistance of Ge1-xSnx n-MOSFETs.  Activation temperature as 

low as 400 °C was demonstrated to obtain active doping concentration of 2.1 × 

1019 cm-3 for phosphorus- implanted Ge0.976Sn0.024.  In addition, implant at elevated 

temperature of 400 °C was explored to maintain the single-crystallinity of 

Ge0.976Sn0.024 during implant and achieve a lower contact resistivity after 

activation at 450 °C as compared with the room-temperature implant. 

This thesis ends with an overall conclusion and possible future research 

directions documented in Chapter 6. 
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Chapter 2 

 

High-mobility Germanium-Tin 

Complementary Metal–Oxide–Semiconductor 

on Silicon: Benefits and Challenges 

 

2.1 High-mobility Germanium-Tin CMOS on Silicon 

As discussed in Chapter 1, germanium-tin (Ge1-xSnx), which is predicted to 

have higher carrier mobilities µeff than germanium (Ge) [48], could potentially be 

a more promising high-mobility material than Ge to replace silicon (Si) as the 

channel material for future complementary metal-oxide-semiconductor (CMOS) 

technologies.  Fig. 2.1 depicts a schematic of a group IV CMOS featuring high-

mobility Ge1-xSnx n- and p-channel metal-oxide-semiconductor field-effect 

transistors (MOSFETs) integrated on Si.  First, it is highly favorable to use a same 

material system (e.g. Ge1-xSnx) for both n- and p-channel MOSFETs, as it can 

achieve process simplicity and consequently save considerable cost [65].  In 

addition, it is challenging to use a multiple material system (e.g. Ge p-MOSFETs 

and III-V n-MOSFETs [66]-[67]) with dissimilar chemistries and thermal 

properties on a single chip [68]. 

The key challenges highlighted in Fig. 2.1 have to be overcome before 

Ge1-xSnx CMOS becomes a strong candidate for sub-10 nm technology node 

applications.  First, a cost-effective approach to integrating Ge1-xSnx on large Si 
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wafers is a crucial prerequisite.  Second, a high-quality and thermodynamically 

stable gate stack for Ge1-xSnx MOSFETs has to be realized to fully exploit the 

benefits of its high bulk mobilities.  Third, for source/drain (S/D), it is essential to 

develop thermally stable self-aligned S/D contact metallization and achieve high 

doping concentration for low S/D parasitic resistance RS/D for Ge1-xSnx MOSFETs.  

The current status and future perspectives of research on the above three aspects 

will be elucidated in detail in this Chapter. 

 

 

 

Fig. 2.1. Schematic of a group IV CMOS featuring Ge1-xSnx n- and p-channel 

transistors integrated on Si substrate.  The key technical challenges faced are 
highlighted. 
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2.2 Key Challenges for High-mobility Ge1-xSnx CMOS on Si 

2.2.1 Integration of Ge1-xSnx on Si 

In this subsection, we first review the breakthrough of integrating Ge on Si 

by the aspect-ratio-trapping growth technique [42]-[45].  This approach can be 

utilized for growing high-quality Ge1-xSnx on Si cost-effectively for high-

performance logic applications.  In addition, if silicon-germanium (Si1-yGey) [69] 

and/or silicon-germanium-tin (Si1-x-yGeySnx) [70]-[72] is used as the buffer layer 

for the Ge1-xSnx growth, there is an additional benefit of carrier confinement in the 

Ge1-xSnx layer due to the conduction and valence band offsets between the channel 

layer and the buffer layer. 

a. The Aspect-Ratio-Trapping Growth Technique 

Due to a large lattice mismatch of 4.2% between Ge and Si, growing Ge 

directly on Si generally leads to a large amount of dislocations, which are formed 

at the Si/Ge interface and are terminated at the top surface.  In the early days, to 

accommodate the lattice mismatch, a thick buffer layer, which comprises a Si1-

yGey layer with composition gradually graded [Fig. 2.2(a)] [33],[37]-[40] or 

abruptly changed in a few steps [41], can be grown between the Si substrate and 

the top Ge layer.  This results in the top Ge layer with much fewer dislocations, as 

most of the defects are confined to the thick buffer layer as shown in cross-

sectional transmission electron microscopy (XTEM) image in Fig. 2.2(b).  

However, this process is extremely costly, as the most advanced buffer systems 

still take a long time to grow several micrometers-thick buffer layers [33]. 
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Fig. 2.2. (a) Schematic of the structure and growth conditions for Ge growth 

with graded Si1-yGey buffer layer.  The total epitaxial thickness is 12 µm.  (b) 
XTEM image of the upper graded region and top Ge layer of the sample.  With 

such a thick buffer layer, this method has allowed to grow Ge with a low 
dislocation density of 2.1×106 cm-2.  Fig. 2.2 reprinted from Ref. [39], with 
permission from American Institute of Physics, Copyright 1998. 

 

 

To reduce the buffer- layer thickness, an aspect-ratio-trapping growth 

technique has been investigated for growing Ge (with or without Si1-yGey buffer 

layer) within high-aspect-ratio silicon dioxide (SiO2) trenches patterned on Si 

substrates [42]-[45].  The principle is to terminate dislocations at the oxide 

sidewalls and therefore to confine them to the bottom layer, resulting in a defect-

free top layer [Fig. 2.3(a)].  In the {111} <110> diamond cubic slip systems, the 

misfit dislocations resulting from lattice mismatch between Ge and Si lie along 

<110> directions in the (100) growth plane.  The threading dislocations then 

propagate along {111} planes in <110> directions, which are 45° to the (100) 

plane.  Therefore, if the aspect ratio is greater than 1 [the dashed lines labeled in 

Figs. 2.3(b) and (c)], crystallography dictates that the threading dislocations will 

be trapped by the oxide sidewalls [42]. 

(a) (b)

12 µm
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Fig. 2.3. (a) Schematic demonstrates the principle of the aspect-ratio-trapping 

growth technique.  XTEM images of Ge in trenches of (b) 200 nm width and (c) 
400 nm width showing dislocations that originate at the Ge/Si interface trapped by 

the sidewalls.  The dashed lines indicate where the aspect ratio is 1.  The 
schematic and TEM images are taken from, respectively.  Fig. 2.3 reprinted from 
Refs. [42] and [43], with permission from American Institute of Physics, 

Copyright 2000 and 2007. 
 

 

 

Fig. 2.4. Schematics depict the process of forming Ge fin using the aspect-ratio-

trapping technique: (a) formation of Si bulk fin, (b) etching of 175-nm Si, (c) 
growth of 150-nm Si0.25Ge0.75 and 25-nm Ge, and (d) recess etching of STI.  (e) 

XTEM and (f) high angle annular dark field-scanning transmission electron 
microscopy (HAADF-STEM) images of the Ge fin.  Fig. 2.4 reprinted from Ref. 
[45], with permission from IEEE Electron Devices Society, Copyright 2013. 

(a)

(b)

(c)

(a) (b)

(c) (d)

(e) (f)
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This method shows promise for growing Ge on Si with much thinner 

buffer layer.  Using this approach, L. Witters et al. demonstrated Ge fin field-

effect-transistors (FinFETs) that are integrated on 300-mm Si wafers [45].  

Starting from a Si (100) wafer, a 175-nm SiO2 trench with a large aspect ratio is 

formed [Figs. 2.4(a) and (b)].  150-nm Si0.25Ge0.75 and 25-nm Ge are then 

deposited in the trench [(Fig. 2.4(c)].  The process is completed by recess etching 

of the shallow trench isolation (STI) to expose the Ge fin [Fig. 2.4(d)], as defects 

are confined to the bottom [Figs. 2.4(e) and (f)].  However, it should be noted that 

as the defect trapping at the oxide side walls is limited to one direction, there is no 

confinement of defects along the direction of the fin [73].  Further efforts need to 

be devoted to solve this problem. 

 

b. Band Gap Engineering Using Buffer Layer 

The aspect-ratio-trapping technique discussed above may provide a good 

solution to integrate Ge1-xSnx channel transistors on large Si substrates cost-

effectively.  Furthermore, Si1-yGey [69] and/or Si1-x-yGeySnx [70]-[72] can be used 

as the buffer layer with the electrostatic benefit due to the conduction and valence 

band offsets between the channel and buffer layer.  Fig. 2.5(a) shows the 

calculated electronic-character diagram of Si1-x-yGeySnx mapping the electronic 

structure versus Si and Sn concentrations [72].  Particularly, Si1-x-yGeySnx with a 

fixed Si-to-Sn ratio at ~4 (the labeled white dotted line) can be lattice-matched to 

Ge and shows a tunable band gap [70]-[72].  The Ge/Si1-x-yGeySnx interface can 

have Type-I band offsets to confine the carriers in Ge [Fig. 2.5(b)].  As Sn 

incorporation into Ge further reduces the band gap, so does the Ge1-xSnx/Si1-x-

yGeySnx interface. 
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Fig. 2.5. (a) Calculated electronic-character diagram of Si1-x-yGeySnx alloys 

mapping the electronic structure versus Si and Sn concentrations.  The white 
dotted line designates the composition with a fixed Si-to-Sn ratio at ~4 to exactly 

match the Ge lattice constant.  (b) Calculated band alignment at a strain- free 
Ge/Si1-x-yGeySnx interface, showing Type-I band offsets to confine the carriers in 
the Ge layer.  Fig. 2.5(a) reprinted from Ref. [72], with permission from Elsevier, 

Copyright 2014.  Figure (b) reprinted from Ref. [71], with permission from 
Elsevier, Copyright 2010. 

 
 

2.2.2 Formation of High-quality Gate Stack for Ge1-xSnx MOSFETs 

Unlike SiO2, the native oxides of Ge-based materials are unstable.  The 

presence of Ge suboxides leads to a high density of interface traps resulting from 

dangling bonds at the dielectric/channel interface [74]-[75].  These interface traps 

can significantly degrade the µeff of Ge or Ge1-xSnx MOSFET by severe Coulomb 

scattering [76].  Without a proper passivation process to prevent native oxide 

formation, direct deposition of high-k dielectrics such as aluminium oxide (Al2O3) 

[77], zirconium oxide (ZrO2) [78], hafnium oxide (HfO2) [79], and lanthanum 

aluminate (LaAlO3) [80] on Ge substrates result in high interface trap density Dit, 

low µeff for both electrons and holes, and high gate leakage current JG.  In addition, 

the subthreshold swing and off-state leakage current would degrade due to these 

traps. 

(a) (b)
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Although the incorporation of Sn can achieve enhanced mobilities than Ge, 

Sn was found to segregate to the top surface right after the epitaxial growth of 

Ge1-xSnx [81].  In addition, subsequent high-temperature processes for transistor 

fabrication may further degrade the material quality [82]-[83].  Particularly, Sn 

segregation at the high-k/Ge1-xSnx interface would degrade the interface quality 

and the carrier mobility would be significantly affected.  Therefore, the use of a 

low thermal budget process to form a high-quality gate stack for Ge1-xSnx 

MOSFETs is therefore imperative.  This subsection focuses on the methods of 

forming high-quality gate stack for Ge1-xSnx MOSFETs. 

 

a. Low-temperature Silicon Passivation 

The use of an ultrathin interfacial Si layer inserted between the high-k 

dielectric and the channel of Ge p-MOSFETs is one of the most important 

technologies to suppress the mobility degradation [28],[33],[84]-[85].  In addition, 

high-performance Si-passivated Ge1-xSnx p-MOSFETs with a high effective 

mobility of 220 cm2/V-s at an effective vertical electric field of 1 MV/cm have 

been demonstrated [61]. 

For Ge1-xSnx p-MOSFETs [61],[63],[86]-[91], the Si layer is grown at a 

low temperature of 370 °C by an ultra-high-vacuum chemical vapor deposition 

(UHVCVD) system with disilane (Si2H6) as the precursor.  Fig. 2.6(a) shows a 

schematic illustrating the key features of Ge1-xSnx p-MOSFET with the 

passivation layer.  The key concept is to suppress carrier scattering for Ge1-xSnx p-

MOSFET resulting from few interface traps and moving the interface traps further 

away from the channel by inserting such a thin interface layer [Fig. 2.6(b)] [63].  

In addition, the carriers (holes) are confined in the high-mobility Ge1-xSnx channel 
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due to the valence band offset at the Si/Ge1-xSnx interface.  Fig. 2.6(c) shows a 

top-view scanning electron microscopy (SEM) image of a completed Ge1-xSnx p-

MOSFET.  XTEM and high-resolution TEM (HRTEM) images [Fig. 2.6(d)] 

reveal the existence of an ultrathin interfacial layer between the dielectric and 

channel. 

However, the major issue of this surface passivation method is the 

inefficient scaling of equivalent oxide thickness (EOT) due to thickness of the 

interfacial layer.  In addition, Si passivation might only be used for p-MOSFETs 

due to the negligible conduction band offset between Ge1-xSnx and Si.  This results 

in electron trapping at the interfacial layer, the dielectric layer and their interface 

of Si-passivated Ge1-xSnx n-MOSFETs, which degrades the carrier mobility due to 

remote Coulomb scattering [92]. 

 

Fig. 2.6.  (a) Schematic illustrating the key features of Ge1-xSnx p-MOSFET with 
Si passivation.  (b) Band diagram of the Ge1-xSnx p-MOSFET operating in strong 

inversion regime.  (c) Top-view SEM image of a completed Ge1-xSnx p-MOSFET.  
(d) XTEM image across line B–B’ of the Ge0.97Sn0.03 show the good interface 

quality.  The high-resolution image reveal the existence of an ultrathin interfacial 
layer between the dielectric and channel.  Fig. 2.6 reprinted from Ref.[63], with 
permission from IEEE Electron Devices Society, Copyright 2012. 

(a)

(b)

(c)

(d)
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b. Indium Aluminum Phosphide Passivation 

Another promising technique for passivating Ge1-xSnx surface is to use 

indium aluminum phosphide (In1-aAlaP).  In1-aAlaP with Al composition of 0.52 

has a relatively large band gap of ~2.3 eV and is lattice-matched to Ge [93].  It has 

been successfully utilized as the passivation layer of high-performance Ge CMOS 

to achieve a record high electron mobility of ~958 cm2/V-s at inversion carrier 

density of 6×1011 cm-2 for n-MOSFETs and a high peak hole mobility of ~390 

cm2/V-s for p-MOSFETs [94].  Prior to high-k dielectric deposition, an 

In0.48Al0.52P layer is epitaxially grown on Ge surface at 650 °C using a  

metalorganic chemical vapor deposition (MOCVD) system [Fig. 2.7(a)].  The 

In0.48Al0.52P/Ge interface can achieve not only a valence band offset of ~0.86 eV 

but also a conduction band offset of ~0.84 eV [Fig. 2.7(b)] [93] to obtain good 

confinement for holes and electrons within the Ge channel layer [Fig. 2.7(c)].  Fig. 

2.7(d) shows a top-view SEM image of a Ge fabricated MOSFET.  XTEM [Fig. 

2.7(e)] and HRTEM [Fig. 2.7(f)] images of the gate stack clearly shows the 

epitaxial interfacial layer between the dielectric layer and the Ge channel. 

This interface passivation scheme can also be developed for Ge1-xSnx 

MOSFETs.  However, as Ge1-xSnx is more thermally unstable than Ge [81]-[83], 

the temperature of In1-aAlaP passivation should be reduced, as the pre-growth 

baking and growth temperatures are 650 °C [93]-[94].  Apart from the above two 

important passivation techniques, novel surface passivation techniques that can 

fulfill the necessary requirements – namely few interface traps and the capability 

of EOT scaling – need to be developed for Ge1-xSnx MOSFETs.  This is the focus 

of Chapter 3 of this thesis. 
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Fig. 2.7. (a) Schematic showing an In1-aAlaP passivation scheme for Ge CMOS.  
The In1-aAlaP layer is grown on the Ge surface prior to gate stack formation.  (b) 
The In1-aAlaP-Ge interface has a conduction band offset of ~0.84 eV and a valence 

band offset of ~0.86 eV.  (c) Band diagrams of an In1-aAlaP-capped Ge p-
MOSFET (left) and an In1-aAlaP-capped Ge n-MOSFET (right) in strong inversion 

regime.  Holes and electrons are confined within the Ge layer due to the large 
band offsets.  (d) SEM image showing the structure of an In1-aAlaP-passivated Ge 
n-MOSFET.  (e) TEM and (f) HRTEM images of the gate stack, clearly showing 

the epitaxial In1-aAlaP passivation layer sandwiched between the Ge substrate and  
gate dielectrics.  Figs. 2.7(a), (c)-(f) reprinted from Ref. [94], with permission 

from IEEE Electron Devices Society, Copyright 2013.  Fig. 2.7 (b) reprinted from 
Ref. [93], with permission from American Institute of Physics, Copyright 2013. 
 

 
  

(a) (b)

(c)

(d) (e) (f)
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2.2.3 Source/Drain Engineering 

Apart from forming high-quality gate stack, it is critical to minimize RS/D 

of Ge1-xSnx MOSFETs by developing thermally stable self-aligned S/D contacts 

and achieving high doping concentration for low resistance S/D regions. 

The total resistance RTotal is contributed by the channel resistance RCH and 

RS/D [Fig. 2.8(a)].  RCH decreases monotonically from the 90-nm technology node 

due to the combined effect of the use of mobility enhancement technology and 

channel length scaling [Fig. 2.8(b)].  In addition, the scaling of device dimensions 

such as S/D junction depth and metal contact area leads to the increase of RS/D.  As 

a result, RS/D becomes comparable to the RCH at the 32-nm node [95], implying 

RS/D may be a bottleneck for achieving high IDSat at the advanced technology 

nodes using high-mobility materials as the channel. 

 

 

Fig. 2.8.  (a) Schematic representing the RCH and RS/D.  The sum of these 
resistances equals the RTotal.  (b) Simulation showing RCH and RS/D of n-MOSFET 

becoming equivalent at the 32-nm logic node.  Fig. 2.8 (b) reprinted from Ref. 
[95], with permission from IEEE Electron Devices Society, Copyright 2008.  
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a. Thermally Stable Source/Drain Contacts for Ge1-xSnx 

The well-established self-aligned silicide and germanide processes are 

used for the S/D contact metallization for Si and Ge MOSFETs, respectively.  

Self-alignment of the S/D contacts to the gate brings it adjacent to the gate, 

minimizing the distance between the channel and the metal contact and therefore 

RS and RD.  Nickel germanide (NiGe) formed by the solid-state reaction between 

Ni and Ge has been widely investigated as a self-aligned S/D contact material for 

Ge MOSFETs due to its low sheet resistance RSh and low formation temperature (> 

250 °C) [96]-[110].  Likewise, nickel stanogermanide [Ni(GeSn)] formed by the 

solid-phase reaction of Ni and Ge1-xSnx is thus a potential self-aligned S/D contact 

material for Ge1-xSnx MOSFETs [111]-[113]. 

However, the surface roughness of NiGe increases as the reaction 

temperature increases from 400 to 600 °C [99].  The agglomeration of NiGe 

occurs at ~500 °C and above [100]-[102].  Similarly, the thermal stability of 

Ni(GeSn) has to be improved as it is also susceptible to agglomeration during 

annealing.  As shown in the top-view SEM images in Fig. 2.9, agglomeration 

occurs for 10 nm Ni/50 nm Ge0.935Sn0.065 annealed at a relatively low temperature 

of 450 °C [112].  This issue could worsen in aggressively scaled devices with 

ultrathin Ni(GeSn) contacts, according to the model of agglomeration in 

polycrystalline thin films [114].  Consequently, a contact metallization process for 

Ge1-xSnx with good thermal stability is needed, and is the focus of Chapter 4. 
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Fig. 2.9. SEM images of Ni/Ge1-xSnx/Ge (100) samples with various Sn contents 

annealed at 350 °C, 450 °C, or 550 °C.  A Ge1-xSnx layer with a thickness of 50 
nm and a substitutional Sn composition of 2.0%, 3.6% or 6.5% was grown on the 

Ge (100) substrate.  A 10 nm Ni layer was deposited, followed by RTA.  Fig. 2.9 
reprinted from Ref. [112], with permission from Elsevier, Copyright 2011. 
 

 

b. Towards Highly Doped N-type Ge1-xSnx 

High doping concentration in the S/D region is needed to achieve low RS/D 

and thereby high IDSat for Ge1-xSnx MOSFETs.  The related study on Ge1-xSnx is 

lacking in the literature.  Therefore, in Table 2.1, using Ge as the starting point, 

we benchmark the dopant activation in Ge using various doping methods 

including ion implant, in situ doping during the epitaxial growth, and gas phase 

doing, and activation methods including rapid thermal annealing (RTA) and laser 

annealing (LA) [115]-[122].  All the surface active concentration values are taken 

from the data in the references measured by the spreading resistance probe (SRP).   

P-type doping in Ge is of less an issue now, as ion implant has achieved an 

electrically active boron (B) concentration as high as 2 × 1020 cm-3 at the surface 

after RTA at 400 °C [118].  Likewise, activation of boron in Ge1-xSnx is not a 

problem [90]. 
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Table 2.1. Research progress in doping in Ge.  All the surface active 
concentration values are taken from the data measured by SRP. 

 

 

Doping Method 
Activation 
Method 

Temperature 
of Anneal or 

Growth (°C) 

Surface Active 
Concentration 

(cm-3) 

[115] Chui Ion Implant RTA 650 P: 2× 1019 

  
650 As: 8 × 1018 

650 Sb: 8 × 1018 

[116] Chao Ion Implant RTA 400 B: 2 × 1020 

[117] Satta  Ion Implant RTA 600 P: 2 × 1019 

[118] Chao Ion Implant RTA 600 P: 2 × 1019 

[119] Yu In situ doping N.A. 500 P: 1 × 1019 

[120] Morii Gas phase  N.A. 600 As: 1 × 1019 

[121] Thareja Ion Implant LA Unknown Sb: 1× 1020 

 

 

However, forming highly doped n-type Ge is more difficult as the dopants 

such as phosphorus (P), arsenic (As), and antimony (Sb) have low solubilities (e.g. 

2 × 1020 cm-3 for P) [122] and high diffusion coefficients (e.g. 4.38 × 10-2 cm2/s 

for P at temperatures ranging from 600 to 850 °C) [115].  As shown in Table 2.1, 

higher temperatures (> 500 °C) are needed for dopant activation of n-type dopants, 

as compared with p-type dopants.  To obtain a relatively high concentration of 

active n-type dopants with a relatively shallow junction depth, there is a delicate 

balance between the diffusion of dopants and the high-temperature annealing 

requirement for dopant activation.  Due to this balance, implant plus activation by 

RTA [115]-[118], in situ doping during epitaxy [119], or gas phase doping [120] 

can only obtain the highest active P concentration of ~2 × 1019 cm-3 at the surface.  
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Activation of n-type dopants should be more challenging and therefore its related 

research has higher impact.  For design and fabrication of Ge1-xSnx n-MOSFETs, 

the investigation of n-type doping in Ge1-xSnx is imperative.  The focus of Chapter 

5 is n-type doping in Ge1-xSnx. 
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2.3 Summary 

In this Chapter, we review the current status of research on the technical 

challenges faced for Ge1-xSnx MOSFETs.  First, the study on cost-effective 

integration of Ge on large Si is reviewed, which would provide an excellent 

solution for integrating Ge1-xSnx on Si.  Second, it is critical to form high-quality 

gate stack for Ge1-xSnx MOSFETs.  The surface passivation techniques using Si 

and In1-aAlaP are discussed.  Last, to minimize S/D parasitic resistance for 

obtaining high drive current of Ge1-xSnx MOSFETs, it is important to develop 

thermally stable self-aligned S/D contacts and to achieve high doping 

concentration for low resistance S/D regions. 
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Chapter 3 

 

Germanium–Tin P-Channel Metal-Oxide 

Semiconductor Field-Effect Transistors with 

High Hole Mobility Realized by Ammonium 

Sulfide Passivation 

 

3.1 Introduction 

Germanium-tin (Ge1-xSnx) has attracted great interest as an alternative 

channel material as it has higher carrier mobilities than germanium (Ge) and 

silicon (Si) [48],[61]-[64],[86]-[91],[123]-[131].  High-mobility Ge1-xSnx p-

channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) with Si 

passivation have been demonstrated [61],[63],[86]-[91].  The effective mobility 

μeff of Ge1-xSnx p-MOSFETs with Si passivation is higher than that of the Ge 

control, owing to the Sn- induced chemical effect and the biaxial compressive 

strain in the Ge1-xSnx channel resulting from epitaxial growth of Ge1-xSnx film on 

Ge substrate [61]. 

High bulk carrier mobility of a semiconductor channel material may not 

necessarily lead to high μeff and therefore high drive current IDsat, if the quality of 

the interface between the gate dielectric and channel is poor.  As discussed in 

Chapter 2, surface passivation of the Ge1-xSnx channel surface and development of 
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a thermodynamically stable high-quality gate stack are critical for realizing high-

performance Ge1-xSnx MOSFETs. 

Sulfur (S) passivation on Ge substrate can be achieved by means of 

treatment with ammonium sulfide [(NH4)2S] aqueous solution [65],[132]-[138], or 

by reactions in the gas phase using hydrogen sulfide (H2S) [139]-[142] or 

elemental S [143]-[144].  After (NH4)2S treatment, a thin GeSx layer is formed, 

producing a passivated Ge surface that is almost free of Ge native oxides and thus 

has low Dit [65],[134]-[136].  Likewise, it is worthwhile to study the impact of 

(NH4)2S surface passivation on the electrical characteristics of Ge1-xSnx MOSFETs.  

In this Chapter, we investigate Ge0.958Sn0.042 p-MOSFETs with (NH4)2S 

passivation for the first time.  We report the results of the material characterization, 

including transmission electron microscopy (TEM), atomic force microscopy 

(AFM), X-ray diffraction (XRD), secondary ion mass spectroscopy (SIMS) and 

X-ray photoelectron spectroscopy (XPS).  We also study the impact of (NH4)2S 

passivation on the electrical characteristics of Ge0.958Sn0.042 p-MOSFETs.  By 

performing (NH4)2S passivation, a peak μeff of 509 cm2/V∙s was demonstrated.  

Part of this work was published in Refs. [130] and [131]. 
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3.2 Experimental Details 

3.2.1 Growth and Characterization of Ge0.958Sn0.042 

Ge1-xSnx films in this work were grown on 4- inch arsenic-doped Ge (100) 

substrates at 180 °C by a solid source molecular beam epitaxy (MBE) system [56].  

Ex situ pre-epitaxy cleaning was performed using dilute hydrofluoric acid (DHF) 

(HF:H2O = 1:10), followed by a pre-epitaxy baking at 650 °C for 30 minutes for 

native oxide removal.  In situ reflection high-energy electron diffraction (RHEED) 

patterns reveal well-developed 2 × 1 reconstruction, indicating that the sample 

surface is free of native oxide.  The base pressure in the growth chamber is 3 × 10-

8 Pa.  The Ge1-xSnx alloy was then grown by evaporating 99.9999% pure Ge and 

99.9999% pure Sn from the effusion cells.  The deposition rate of Ge or Sn can be 

adjusted by tuning the temperature of effusion cell.  The Ge deposition rate was 

maintained at ~0.022 nm/s, while the Sn deposition rate was set to obtain the 

desired Sn composition (~4% in this work).  The epitaxial Ge1-xSnx films are p-

type with an unintentional doping concentration of 5 × 1016 cm-3 as obtained by 

Hall measurement, due to the presence of vacancies in the epitaxial films [145]-

[147].  The above-mentioned MBE growth was done by our collaborators (Prof. 

Buwen Cheng’s group) at the Institute of Semiconductors, Chinese Academy of 

Sciences, Beijing, China. 

To calculate the substitutional Sn composition, high-resolution XRD 

(HRXRD) was performed.  To obtain good XRD signal from the epitaxial film, a 

relative thick Ge1-xSnx film was used for material characterization.  Cross-

sectional TEM (XTEM) image in Fig. 3.1(a) shows ~140-nm-thick Ge1-xSnx film 

grown on Ge (100) substrate.  The Ge1-xSnx/Ge interface can be observed clearly.  
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High-resolution TEM (HRTEM) image in Fig. 3.1 (b) shows the single-crystalline 

Ge1-xSnx film without any observable defect near the Ge1-xSnx/Ge interface.  

The HRXRD (004) curve in Fig. 3.2 shows the well-defined peaks of Ge1-

xSnx epitaxial layer and Ge (100) substrate.  Based on previous studies from our 

group [61],[63],[86]-[91], the Ge1-xSnx thin film is fully-strained to the Ge (100) 

substrate.  This should be the case for all the Ge1-xSnx (x < 0.07) films grown on 

Ge substrates by the MBE system used.  Assuming tetragonal distortion of the 

Ge1-xSnx layer grown on Ge (100) substrate, the lattice constant of unstrained Ge1-

xSnx is calculated to be 0.569255 nm using the HRXRD (004) curve.  Taking the 

lattice constants of Ge and Sn to be 0.565754 nm and 0.649120 nm, respectively 

[148], the substitutional Sn composition is obtained to be 4.2% by applying 

Vegard’s law.  In addition, the AFM image in Fig. 3.3 shows the smooth 

Ge0.958Sn0.042 surface with a root-mean-square (RMS) roughness of 0.26 nm 

within a scanning area of 10 μm × 10 μm. 

 

 

Fig. 3.1. (a) XTEM image of ~ 140-nm-thick epitaxial Ge0.958Sn0.042 film grown 

on Ge (100) substrate.  (b) HRTEM image showing the periodic arrangement of 
atoms across the defect-free interface between Ge0.958Sn0.042 and Ge.  The TEM 

was performed as an external service job at the Institute of Materials Research and 
Engineering (IMRE). 

Ge0.958Sn0.042

Ge (100) 50 nm

(a) (b)

Ge0.958Sn0.042

Ge (100)
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Fig. 3.2. HRXRD (004) curve showing the well-defined peaks of the Ge1-xSnx 
epitaxial film and Ge substrate.  The substitutional Sn composition of the Ge1-xSnx 

film is ~4.2%.  The HRXRD was performed as an external service job at IMRE. 
 

 

 

Fig. 3.3. AFM image of a smooth Ge0.958Sn0.042 film surface showing a RMS 

roughness of 0.26 nm within a scanning area of 10 μm × 10 μm. 
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3.2.2 Design Concept 

(a) 

 

(b) 

 

Fig. 3.4. (a) The schematic of a Ge0.958Sn0.042 p-MOSFET with (NH4)2S-

passivated interface to prevent the native oxide formation before high-k deposition.  
(b) The energy band diagram across line A-A’ of the (NH4)2S-passivated 

Ge0.958Sn0.042 transistor operating in the strong inversion regime.  We assume there 
is no native oxide layer formed on the (NH4)2S-passivated Ge0.958Sn0.042 channel 
surface.  EC, EV and Ef in the energy band diagram are the conduction band edge,  

valence band edge, and Fermi level, respectively. 
 

 

To illustrate the concept of applying the surface passivation technique on 

the Ge0.958Sn0.042 channel surface, the schematic of a Ge0.958Sn0.042 p-MOSFET 

using (NH4)2S passivation is shown in Fig. 3.4(a).  Considering the Sn- induced 

chemical effect and compressive strain in Ge0.958Sn0.042 grown on Ge substrate 

[48],[149], the band gap was estimated to be ~70 meV smaller than that of Ge.  

Fig. 3.4(b) depicts the energy band diagram of the (NH4)2S-passivated 

Ge0.958Sn0.042 p-MOSFET across line A-A’ operating in strong inversion regime, 
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based on the reported analysis of internal photoemission and photoconductivity 

[150].  S was used to passivate the dangling bonds at the Ge0.958Sn0.042 channel 

surface and to prevent the native oxide formation before Al2O3 deposition. 

 

3.2.3 Transistor Fabrication  

Figs. 3.5(a) and (b) show XTEM and HRTEM images of ~10-nm-thick 

Ge0.958Sn0.042 film grown on n-type Ge (100) substrate for transistor fabrication, 

respectively.  A high-quality single-crystalline Ge0.958Sn0.042 film without 

observable defects at the surface and near the Ge0.958Sn0.042/Ge interface was 

detected.  Obtaining a smooth surface is an essential prerequisite for achieving 

high-quality gate stack with low Dit between the high-k dielectric and channel.  In 

addition, an excellent Ge0.958Sn0.042/Ge interface would not contribute to leakage 

current associated with defects beneath the channel and should be preferable for 

transistor fabrication. 

 

 

Fig. 3.5. (a) XTEM image of ~10-nm-thick epitaxial Ge0.958Sn0.042 film grown on 
Ge (100) substrate.  (b) HRTEM image showing a high-quality single-crystalline 

Ge0.958Sn0.042 film without observable defects at the surface and near the 
Ge0.958Sn0.042/Ge interface.  The TEM was done by Dr. Yue Yang in our group. 
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Fig. 3.6(a) illustrates the key process steps for fabricating Ge0.958Sn0.042 p-

MOSFETs, highlighting the step of (NH4)2S passivation.  After Ge0.958Sn0.042 

growth by MBE, phosphorus well implantation was performed on blanket 

Ge0.958Sn0.042 samples with a dose of 5 × 1012 cm-2 and implant energy of 20 keV.  

The implant was performed as an external service job at the INNOViON 

Corporation, San Jose, California, USA.  A rapid thermal annealing (RTA) 

process at 450 °C for 3 minutes in a nitrogen gas (N2) ambient was used for 

dopant activation.  A cyclic pre-gate cleaning process was used for cleansing the 

Ge0.958Sn0.042 surface.  It involves 5 cycles’ treatment of the samples, with 

deionized water for 30 s followed by DHF (HF:H2O = 1:50) for 30 s in each cycle.   

After that, (NH4)2S passivation was done by treatment with (NH4)2S aqueous 

solution (36%) for 10 minutes at 25 °C. 

All samples were then quickly loaded into an atomic layer deposition 

(ALD) system for growing ~6 nm of Al2O3 gate dielectric at 250 °C using 

trimethylaluminium (TMA) and H2O as precursors, and N2 as carrier gas.  This 

was followed by reactive sputter deposition of 100 nm of tantalum nitride (TaN) 

as gate electrode and 10 nm of silicon dioxide (SiO2) as hard mask.  Gate 

lithography was performed by a mask aligner and TaN was patterned using a 

chlorine based plasma etching process.  50 nm of SiO2 was then deposited by 

sputter and patterned to expose the active region.  Self-aligned nickel 

stanogermanide [Ni(GeSn)] metallic source/drain (S/D) were formed by 

depositing 10 nm of Ni, followed by the solid-state reaction by a RTA process at 

350 °C for 30 s in N2 ambient.  Selective removal of the unreacted Ni film using 

concentrated sulfuric acid (H2SO4) solution (96%) completes the device 

fabrication.  Fig. 3.6(b) shows a top-view scanning electron microscopy (SEM) 
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image of the fabricated transistor.  Except the ALD growth that was done by Dr. 

Xiao Gong in our group, the rest of the process steps were done jointly by Dr. 

Genquan Han in our group and the author. 

 

(a) 

 

(b) 

 

Fig. 3.6. (a) The process flow for fabricating Ge0.958Sn0.042 p-MOSFETs.  Prior to 
deposition of Al2O3 by ALD, (NH4)2S passivation was done by treatment with 
(NH4)2S aqueous solution (36%) for 10 minutes at 25 °C.  (b) A top-view SEM 

image of a fabricated p-MOSFET. 
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3.3 Result and Discussion 

3.3.1 Electrical Characterization of Ge1-xSnx p-MOSFETs 

Fig. 3.7 shows the inversion capacitance C – voltage V characteristics of a 

Ge0.958Sn0.042 p-MOSFET with (NH4)2S passivation working from the depletion 

region to strong inversion region (where capacitance was measured between the 

gate and source/drain terminals).  The gate length LG and gate width W of the 

measured p-MOSFET are 15 and 100 μm, respectively.  The frequency f of the 

measurement is 10, 30, 50, 80 or 100 kHz.  Strong frequency dispersion is 

observed when the f varies from 10 to 100 kHz.  This indicates that a large amount 

of interface trap charges are present in the TaN/Al2O3/(NH4)2S-passivated 

Ge0.958Sn0.042 stack [151]-[152]. 

 

 

Fig. 3.7. Inversion C – V curve of Ge0.958Sn0.042 p-MOSFET with (NH4)2S 
passivation.  The capacitance was measured between the gate and source/drain 

terminals.  The frequency of the measurement is 10, 30, 50, 80 or 100 kHz.  
Strong frequency dispersion indicates the existence of trap charges in the gate 

stack. 
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Fig. 3.8. |ID| – VGS, IS – VGS, and IB – VGS curves of a Ge0.958Sn0.042 p-MOSFET 
with (NH4)2S passivation in the linear (VDS = - 0.05 V) and saturation (VDS = - 0.5 

V) regions.  The transistor has high IB, resulting in the leakage floor of |ID| is more 
than 1 order of magnitude higher than that of IS in the subthreshold region. 

 
 

 

Fig. 3.9.  |ID| – VDS output characteristics of the same device at various gate 
overdrive voltages. 
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Fig. 3.8 plots the drain current |ID| – gate-to-source voltage VGS, source 

current IS – VGS and body current IB – VGS curves in the linear (drain-to-source 

voltage VDS = – 0.05 V) and saturation (VDS = – 0.5 V) regions of a typical 

Ge0.958Sn0.042 p-MOSFET with (NH4)2S passivation.  Both the source and body 

terminals are connected to ground.  LG and W of the transistor are 5.5 μm and 100 

μm, respectively.  The transistor has high IB, which is the drain-to-body junction 

reverse leakage current, resulting in the leakage current floor of |ID| is more than 1 

order of magnitude higher than that of IS in the subthreshold region. 

It should be noted that the Ni(GeSn) metallic S/D structure was utilized for 

process simplicity.  Compared with Si p/n junction diodes, typical metal/Si 

Schottky diodes have 103 to 108 larger reverse saturation currents, which are 

determined by thermionic emission of majority carriers over the Schottky barrier 

[5].  Si p-MOSFETs with metal silicide S/D have exhibited high leakage currents 

due to the reverse leakage current of the Schottky drain- to-body junctions [153]-

[154].  For indium gallium arsenide (In1-bGabAs) channel n-MOSFETs with self-

aligned Ni-InGaAs metallic S/D, X. Zhang et al. have demonstrated that the drain-

to-body (Ni-InGaAs/p-In1-bGabAs) junction also suffers from high reverse leakage 

current, and forming an n+-In1-bGabAs/p-In1-bGabAs junction helps to suppress the 

junction leakage current significantly [155].  Likewise, the drain-to-body 

[(Ni(GeSn)/n-Ge1-xSnx] junction reverse leakage current could be reduced by 

forming an p+-Ge1-xSnx/n-Ge1-xSnx junction with optimized conditions of p-type 

dopant implantation and activation. 
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Fig. 3.10. Gm – VGS characteristics of the same device in Fig. 3.8 at VDS of – 0.05 
V and – 0.5 V. 

 
 

 

Fig. 3.11. |JG| – VGS characteristics of the same device in Fig. 3.8 at VDS of – 0.05 
V and – 0.5 V.  The measured |JG| was normalized by gate area with VGS between 
– 1.5 V and 0.5 V.  The |JG| of less than 10-5 A/cm2 at a gate bias voltage of VTH – 

1 V was achieved, indicating the potential for further scaling of the dielectric layer.  
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Fig. 3.9 shows the |ID| – VDS output characteristics of the same device.  VGS 

is varied from gate overdrive voltage VGS – VTH of 0 to – 1.2 V in step of – 0.2 V.  

A key design parameter, the transconductance Gm, is the incremental change in ID 

resulting from an incremental change in VGS at a given VDS.  Fig. 3.10 shows the 

Gm – VGS characteristics at VDS in the linear and saturation regions of the same 

device.  Fig. 3.11 shows the gate leakage current density |JG| – VGS characteristics 

of the same device at VDS of – 0.05 V and – 0.5 V.  The measured gate leakage 

current density was normalized by gate area with VGS between – 1.5 V and 0.5 V.  

The gate leakage current density of less than 10-5 A/cm2 at a gate bias voltage of 

VTH – 1 V was achieved.  This indicates the potential for further scaling of the 

dielectric layer. 

 

 

Fig. 3.12.  IDSat (measured at VGS – VTH of – 1 V) versus LG for Ge0.958Sn0.042 p-
MOSFETs with (NH4)2S passivation. 
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Fig. 3.13. Rtotal (between the source and drain terminals) versus LG for 

Ge0.958Sn0.042 p-MOSFETs at VDS = – 0.05 V and VGS – VTH = – 1 V.  The high S/D 
resistance significantly limits the drive current of the transistors.   Experimental 

data points are plotted using symbols.  Linearly fitted line is drawn using dashed 
line.  The intercept of the linearly fitted line with the vertical axis yields RS/D (~18 
kΩ-µm). 

 
 

 

Fig. 3.14. S versus LG for Ge0.958Sn0.042 p-MOSFETs at VDS = – 0.05 V.  The high 
subthreshold swing values in this work indicate that the density of interfacial state 

traps around mid-gap should be high. 
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Fig. 3.12 plots IDSat (measured at VGS – VTH of – 1 V and VDS of – 0.5 V) 

versus LG for Ge0.958Sn0.042 p-MOSFETs with (NH4)2S passivation.  It is noted that 

the transistors have relatively low drive currents in this work, which are severely 

affected by the high S/D series resistance RS/D.  RS/D is the sum of the source 

resistance RS and drain resistance RD, where RS equals RD because of device 

symmetry.  Fig. 3.13 plots the total resistance RTotal between the source and drain 

terminals versus LG for Ge0.958Sn0.042 p-MOSFETs at VDS = – 0.05 V and VGS – 

VTH = – 1 V.  Measured data points are plotted as symbols.  Linearly fitted line is 

drawn using dashed line.  The intercept of the linearly fitted line with the vertical 

axis yields RS/D (~18 kΩ-µm), which is quite high as compared with that of other 

p-MOSFETs with self-aligned Ni(GeSn) metallic S/D in our group [88].  The high 

RS/D may result from the over etch of Ni(GeSn), when etching the unreacted Ni 

using concentrated H2SO4 solution.  For selective etching of Ni with respect to 

NiGe, it is reported that the selectivity, which is the ratio of the etch rate of the 

target material being etched (6 nm/minute for Ni) to the etch rate of other material 

(1.7 nm/minute for NiGe), is low [156]. 

Subthreshold swing S is the number of millivolts required to increase VGS 

to produce a factor of 10 increase in the decimal logarithm of IS in the 

subthreshold region, which is an important device performance metric in 

evaluation of the gate stack interface quality.  Fig. 3.14 plots S versus LG for 

Ge0.958Sn0.042 p-MOSFETs at VDS = – 0.05 V.  The relatively high subthreshold 

swing values in this work indicate that the density of interfacial state traps around 

mid-gap should be high.   
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Fig. 3.15 shows the extracted μeff versus inversion carrier density Ninv.  The 

effective mobility was extracted using a total resistance slope-based approach 

[157] 

G

total
inv

eff

L

R
WqN






1
 ,                                                   (3.1) 

where ΔLG and ΔRtotal are the gate length difference of the two measured 

Ge0.958Sn0.042 p-MOSFETs used for mobility extraction and their difference in the 

total resistance extracted by IS – VGS characteristics in the linear region, 

respectively.  Ninv is obtained by integrating the inversion C – V curve measured at 

f of 100 kHz as shown in Fig. 3.7.  The (NH4)2S-passivated devices exhibit higher 

effective mobility than the universal Si hole mobility [158] in the entire inversion 

carrier density range. 

 

 

Fig. 3.15. μeff versus Ninv of Ge0.958Sn0.042 p-MOSFETs with (NH4)2S passivation.  

(NH4)2S-passivated devices were observed to have higher hole mobility than the 
universal Si hole mobility in the entire Ninv range. 
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3.3.2 Physical Characterization of S-passivated Ge1-xSnx Surface 

In this work, S was used to passivate the dangling bonds at the Ge1-xSnx 

channel surface during the passivation as illustrated in the schematic shown in Fig. 

3.16(a).  This helps to prevent the native oxide formation on the sample surface, 

before loading them into the ALD chamber for Al2O3 deposition. 

SIMS was carried out to examine S distribution in the blanket S-passivated 

sample with a 2-nm Al2O3 capping layer.  The S passivation layer is preserved 

after the deposition of high-k dielectric [Fig. 3.16(b)].  Apart from being an oxide-

preventing layer, this interfacial layer may act as a barrier between the high-k 

dielectric and Ge1-xSnx channel to help to prevent interactions and inter-diffusion.  

Similar result was also observed for (NH4)2S-passivated Ge in Ref. [134]. 

 

 

Fig. 3.16.   (a) Schematic of S-passivated Ge1-xSnx surface.  S is used to passivate 

the dangling bonds at the channel surface and prevent oxide formation before 
Al2O3 deposition.  (b) SIMS profiles of S-passivated Ge1-xSnx surface with Al2O3 
capping.  SIMS was performed as an external service job at the Institute of 

Materials Research and Engineering. 
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To investigate the effect of (NH4)2S passivation on the interfacial chemical 

bonding between the high-k gate dielectric and Ge1-xSnx, samples with Al2O3 

formed on Ge1-xSnx surfaces with and without (NH4)2S passivation were prepared 

for XPS analysis.  The measurement was performed using a VG ESCALAB 220i-

XL imaging XPS, which was performed by Dr. Zheng Zhang in the Institute of 

Materials Research Engineering.  Monochromatic aluminium (Al) Kα x-ray 

(1486.6 eV) was employed for analysis with photoelectron take-off angle of 90° 

with respect to the surface plane. 

Fig. 3.17(a) and (b) show the Ge 2p3/2 and Sn 3d5/2 core level spectra, 

respectively, of Ge0.958Sn0.042 samples with or without (NH4)2S passivation.  Ge-O, 

Ge-Ge, Sn-Sn bonds were observed for the samples with or without (NH4)2S 

passivation.  Ge-O peak is reduced as compared with that for the non-passivated 

surface, indicating that (NH4)2S passivation helps to supress the formation of Ge-

O.  However, Ge-O bond cannot be fully eliminated, implying that the surface is 

not fully covered by S.  A recent study of the (NH4)2S-passivated Ge surface 

reveals that the Ge surface is not fully covered by S after the treatment, and the 

residual Ge oxides were detected regardless of the passivation time [137].  The 

presence of these residual oxides should not be desired in the gate stack, as it 

results in the high density of interface traps of the Ge0.958Sn0.042 p-MOSFETs.  The 

large amount of interface traps can explain strong frequency dispersion in 

inversion C – V curves (Fig.7) and large subthreshold swing values (Fig. 14). 
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Fig. 3.17.   (a) Ge 2p3/2 and (b) Sn 3d5/2 spectra of Ge1-xSnx samples with or 

without (NH4)2S passivation. 
 

 

3.3.3 Discussion 

Quasi-ballistic transport dominates the drive currents of the transistors, as 

devices are scaled into deep sub-100 nm regime.  In the quasi-ballistic regime, 

IDsat of a MOSFET is limited by the thermal injection velocity vinj and is given by 

[18]-[19] 
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where Cox is the gate oxide capacitance and rc is the backscattering coefficient.   

The thermal injection velocity was experimentally found to be proportional to the 

low field mobility [20]-[21].  Therefore, Fig. 3.18 benchmarks the extracted low-

field carrier mobility, i.e. peak μeff, of the Ge1-xSnx p-MOSFETs with (NH4)2S 

passivation in this work with the reported (100)-oriented Ge1-xSnx channel p-
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MOSFETs so far in Refs. [61]-[63], [91], and [159].  It should be noted that the 

peak μeff value was obtained from the devices without post metal annealing (PMA) 

in Ref. [91].  Although PMA was demonstrated to increase peak mobility, we only 

focus on the impact of pre-gate passivation/cleaning techniques.  (NH4)2S-

passivated p-MOSFETs demonstrate the highest peak μeff among them, which 

indicates the potential to provide the highest v inj. 

 

 

Fig. 3.18. Benchmarking of peak μeff of the (100)-oriented Ge1-xSnx p-MOSFETs 

achieved by different pre-gate passivation/cleaning techniques.  (NH4)2S 
passivation gives the highest peak mobility in low inversion carrier density region. 
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Since the devices we benchmarked here are long-channel transistors, the 

effective carrier mobility in high inversion carrier density region is still an 

important parameter, reflecting the carrier transport and scattering.  Fig. 3.19 

compares the effect of different pre-gate passivation/cleaning techniques on μeff 

extracted at Ninv of 5 × 1012 cm-2 of Ge1-xSnx p-MOSFETs in Refs. [61]-[63], [91], 

and [159].  The effective mobility of the (NH4)2S-passivated transistor degrades 

substantially with increasing inversion carrier density, leading to lower mobility in 

the high inversion carrier density region as compared with those with Si 

passivation reported in Refs. [61], [63], and [91].  The mobility degradation 

should be attributed to the combined effect of Coulomb scatter ing and inversion 

carrier loss due to interface traps located at the Al2O3/Ge1-xSnx interface. 

 

 

Fig. 3.19. Benchmarking of μeff extracted at Ninv of 5 × 1012 cm-2 of the (100)-
oriented Ge1-xSnx p-MOSFETs achieved by different pre-gate passivation/cleaning 

techniques.  μeff of (NH4)2S-passivated transistor drops substantially as Ninv 
increases. 
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The existence of interface traps in the gate stack should be attributed from 

the non-effective S passivation on the channel surface.  The consequences of the 

presence of interface traps near the valence band edge of Ge1-xSnx can be 

explained by the energy band diagrams and the positions of Fermi level and the 

charge neutrality level ECNL.  The charge neutrality level of surface states is the 

position for the Fermi level that renders the surface without a net charge, where is 

shown to be located ~0.1 eV above the valence band edge of Ge surface by 

calculation [160] and experiment [161].  The charge neutrality level also locates 

near the valence band edge of Ge1-xSnx surface [162].  When the Fermi level is 

above the charge neutrality level, the interface is negatively charged due to the 

ionized acceptor-type states (occupied by electrons).  When the Fermi level is 

below the charge neutrality level, the ionized donor-type states (empty or 

occupied by holes) build up a large number of positively charged interface charges.  

Fig. 3.20(a) shows the interface trap density energy distribution of 

acceptor-type and donor-type traps and the energy band diagram near the n-type 

Ge1-xSnx surface channel of a p-MOSFET, when the Fermi level is located at the 

charge neutrality level.  It is usually assumed the donor-type traps are present 

close to EV and acceptor-type traps are located near EC, as shown in the diagram 

[163].  The shaded area represents the total charged interface traps, associated 

with the positions of charge neutrality level and Fermi level.  In this case, the 

transistor is in weak inversion region.  Most of the acceptor-type traps that are 

above Fermi level and most of the donor-type traps that are located below Fermi 

level are therefore not ionized.  On the contrary, when the transistor is operating in 

inversion regime as depicted in Fig. 3.20(b), the Fermi level of Ge1-xSnx moves 

down to below the charge neutrality level.  Most of the donor-type traps that are 
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now located above the Fermi level become positively charged by consuming the 

inversion charges (holes).  Therefore, these positively charged interface traps 

degrade the effective mobility by severe Coulomb scattering [76].  But at even 

higher inversion charge densities (in the strong inversion region), the trapped 

charge at the interface should be screened by the inversion carriers, which 

mitigates this effect on the mobility. 

 

(a) 

 

(b) 

 

Fig. 3.20. Interface trap density energy distribution of acceptor-type and donor-

type traps and energy band diagram near the n-type Ge1-xSnx surface channel of a 
p-MOSFET, (a) when the Fermi level is located at the charge neutrality level, or 

(b) when the transistor is operating in the strong inversion regime. It is commonly 
assumed that bands of donor-type and acceptor-type states are separate [163].  The 
shaded area represents the total charged interface traps, associated with the 

positions of charge neutrality level and Fermi level. 
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In addition, when the transistor is biased from the region depicted in Fig. 

3.20(a) to region depicted in Fig. 3.20(b), a portion of the inversion carriers (holes) 

consumed by the donor-type traps in Ge1-xSnx surface plays another role in 

effective mobility degradation in the high inversion carrier density region.  The 

extraction of mobility is based on the equation DSinveff

G

S VqN
L

W
I  .  R. Zhang et  

al. observed the inversion carrier loss due to large amount of interface traps near 

the valence band edge of Ge [165].  These interface traps are fast traps, which 

have small time constants and can respond at frequencies ranging from 1 kHz to 1 

MHz.  Therefore, the extracted inversion carrier density by integrating the 

inversion C – V curve at 100 kHz (Fig. 3.7) includes two parts: 1) the inversion 

carriers that contribute to the current in the channel, and 2) the interface traps that 

do not supply any mobile carrier in the channel but just responds in the C – V  

measurement.  As a result, Ninv, which was obtained by integrating the inversion C 

– V curve, overestimates the actual mobile carriers that contribute to the current.  

This leads to underestimation of the mobility of the mobile carriers. 
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3.4 Summary 

In this Chapter, surface passivation by treatment with (NH4)2S aqueous 

solution (36%) was explored for the gate stack of high-mobility Ge0.958Sn0.042 p-

MOSFETs with self-aligned Ni(GeSn) metallic S/D.  High-quality single-

crystalline Ge0.958Sn0.042 films were grown on Ge (100) substrate as the channel 

material.  Ge0.958Sn0.042 p-MOSFETs with pre-gate (NH4)2S passivation show 

decent transfer and output characteristics, and demonstrate  a higher peak μeff in 

comparison with those of other (100)-oriented Ge1-xSnx p-MOSFETs reported so 

far.  However, μeff in high Ninv region is still lower than that of those with low-

temperature Si passivation. 
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Chapter 4 

 

Improving the Thermal Stability of Nickel 

Stanogermanide by Incorporation of Platinum 

 

4.1 Introduction 

Germanium-tin (Ge1-xSnx) alloy is a promising alternative channel material 

in metal-oxide-semiconductor field-effect transistors (MOSFETs) for high-

performance logic applications, as it has higher mobilities than germanium (Ge) 

[48],[61]-[63],[86]-[91],[123]-[131].  In addition, Ge1-xSnx is lattice-mismatched 

to Ge, and can be utilized as source and drain (S/D) stressors to introduce 

compressive strain to Ge channel for hole mobility enhancement in Ge p-

MOSFETs [111],[166]-[167]. 

Nickel germanide (NiGe) has been widely investigated as a self-aligned 

S/D contact material for Ge MOSFETs [96]-[110].  However, the poor thermal 

stability of NiGe inhibits its application to Ge MOSFETs.  To resolve this issue, 

the incorporation of platinum (Pt) [168]-[169], zirconium (Zr) [170], palladium 

(Pd) [171] or titanium (Ti) [172] has been investigated to improve the thermal 

stability of NiGe by suppressing agglomeration during thermal annealing process. 

Likewise, nickel stanogermanide [Ni(GeSn)] formed by the reaction of Ni 

and Ge1-xSnx can be a self-aligned S/D contact material for Ge1-xSnx MOSFETs, as 

well as Ge p-MOSFETs with Ge1-xSnx S/D stressors [111]-[113].  As discussed in 
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Chapter 2, the thermal stability of Ni(GeSn) has to be improved as it is also 

susceptible to agglomeration during anneal [112].  Particularly, degradation of 

Ni(GeSn) at temperatures between 350 °C and 500 °C may not be acceptable for 

back-end-of- line processes or for a gate- last process where anneals may be 

performed after contact formation, such as post-deposition anneal (PDA) 

[91],[173]-[174].  Therefore, a contact metallization process for Ge1-xSnx with 

good thermal stability is needed. 

In this Chapter, a multi-phase Pt-incorporated stanogermanide 

metallization scheme on Ge1-xSnx/Ge (100) substrate is investigated for the first 

time.  The solid-phase reaction in a NiPt/Ge1-xSnx/Ge (100) system is studied.  

Ni(GeSn) and Ptx(GeSn)y phases are detected by X-ray diffraction (XRD).  

Therefore, the NiPt stanogermanide film formed on single-crystalline Ge1-xSnx/Ge 

(100) substrate is hereafter referred to as [Ni(GeSn) + Ptx(GeSn)y].  Electrical 

characterization using micro four-point probes and material characterization using 

scanning electron microscopy (SEM), atomic force microscopy (AFM), and 

transmission electron microscopy (TEM) indicate that the incorporation of Pt 

improves the thermal robustness of stanogermanide contacts and suppresses 

agglomeration.  A model is proposed to explain the agglomeration of Ni(GeSn) 

during the solid-state reaction of Ni and Ge1-xSnx at 450 °C and above and the 

effect of Pt incorporation.  Part of this work is published in Refs. [175]-[176]. 
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4.2 Experimental Details  

Using 4- inch n-type Ge (100) wafers as starting substrates, Ge1-xSnx thin 

films were epitaxially grown by a solid source molecular beam epitaxy (MBE) 

system at 180 °C [56].  After ex situ pre-epitaxy cleaning in dilute hydrofluoric 

acid (HF:H2O = 1:10), the Ge wafers were loaded into the MBE growth chamber.  

This MBE growth, which has been discussed in detail in Chapter 3, was done by 

our collaborators (Prof. Buwen Cheng’s group) at the Institute of Semiconductors, 

Chinese Academy of Sciences, Beijing, China. 

 

 

Fig. 4.1. (a) XTEM image of ~130-nm-thick epitaxial Ge0.947Sn0.053 film grown 

on Ge (100) substrate.  (b) HRTEM image showing the periodic arrangement of 
atoms across the defect-free interface between Ge1-xSnx and Ge.  (c) HRXRD (004) 
and (224) curves showing Ge1-xSnx grown on Ge (100) substrate is fully strained 

and the substitutional Sn composition is 5.3%.  The TEM and HRXRD were 
performed as external service jobs at the Institute of Materials Research and 

Engineering (IMRE). 
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To calculate the substitutional Sn composition, high-resolution XRD 

(HRXRD) was performed on the as-grown Ge1-xSnx thin films.  To obtain good 

XRD signal from the epitaxial film, a relative thick Ge1-xSnx film was used for 

material characterization.  Fig. 4.1(a) shows the cross-sectional TEM (XTEM) 

image of ~130-nm-thick Ge1-xSnx film on Ge (100) substrate.  Defect- free 

interface between single-crystalline Ge1-xSnx and Ge can be observed by high 

resolution TEM (HRTEM) as shown in Fig. 4.1(b).  HRXRD (004) and (224) 

curves are shown in Fig. 4.1(c).  The perpendicular and in-plane lattice constants 

of strained Ge1-xSnx are obtained to be 0.56461 nm and 0.57235 nm, respectively.  

Assuming tetragonal distortion of the epitaxial Ge1-xSnx layer grown on Ge (100) 

substrate, the lattice constant of unstrained Ge1-xSnx is calculated to be 0.56908 

nm.  Taking the lattice constants of Ge and Sn to be 0.564613 nm and 0.648920 

nm, respectively [148], the Sn composition is obtained to be 5.3% by applying 

Vegard’s law.  The Ge0.947Sn0.053 film is fully strained to Ge (100) substrate. 

~16-nm-thick Ge0.947Sn0.053 film grown on n-type Ge (100) substrate was 

used for this study.  A cyclic clean was used for pre-deposition cleaning, which 

involves treating the wafers with deionized water followed by dilute hydrofluoric 

acid (HF:H2O = 1:50) in each cycle.  6 nm of mixture of Ni and Pt was deposited 

by co-sputtering in a magnetron sputtering system.  The molar ratio of Ni to Pt is 

~3, as obtained by Energy Dispersive X-Ray Analysis (EDX).  For the control 

samples, 6 nm of pure Ni was deposited.  All samples were subjected to a rapid 

thermal anneal (RTA) process in a nitrogen gas (N2) ambient for metal 

stanogermanide formation.  The annealing temperature is 350 °C, 450 °C, 500 °C, 

or 550 °C.  The annealing time is kept at 30 s.  Some of the metal stanogermanide 

samples formed at 350 °C were subjected to a second anneal in N2 ambient at 500 



 63 

°C for 60 s, which is a typical PDA condition used in transistor fabrication [91], 

[173]-[174].  All experimental splits are summarized in Table 4.1.  

XRD was carried out to identify the phase and crystal orientation of the 

annealed samples.  SEM and AFM were used to analyze surface morphology of 

the metal stanogermanide films.  XTEM was used for analyzing the layer structure.  

Micro four-point probe measurement was employed to measure sheet resistance 

RSh of the stanogermanide film. 

 
 

Table 4.1. Summary of experimental splits. 

 

Sample ID Metal(s) 

Annealing 

Temperature(s) 

(°C) 

Annealing  

Time(s) 

1-1 Ni 350 30 

1-2 Ni 450 30 

1-3 Ni 500 30 

1-4 Ni 550 30 

1-5 Ni 
350 (1st anneal)  

+ 500 (2nd anneal) 
30 (1st anneal)  

+ 60 (2nd anneal) 

2-1 Ni:Pt = 3:1 350 30 

2-2 Ni:Pt = 3:1 450 30 

2-3 Ni:Pt = 3:1 500 30 

2-4 Ni:Pt = 3:1 550 30 

2-5 Ni:Pt = 3:1 
350 (1st anneal)  

+ 500 (2nd anneal) 

30 (1st anneal)  

+ 60 (2nd anneal) 
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4.3 Characterization of Metal Stanogermanides  

4.3.1 Phase Identification: XRD 

 

Fig. 4.2. XRD spectra of (a) Ni/Ge1-xSnx/Ge (100) and (b) NiPt/Ge1-xSnx/Ge (100) 

samples after annealing at various temperatures for 30 s.  The XRD was 
performed as an external service job at the IMRE. 
 

 

Fig. 4.2 illustrates XRD spectra obtained on (a) Ni/Ge1-xSnx/Ge (100) and 

(b) NiPt/Ge1-xSnx/Ge (100) samples after annealing at various temperatures for 30 

s.  Any peak of pure Sn or Sn alloys cannot be observed in all of the samples, 

probably because of the low substitutional Sn composition.  Identical profiles are 

observed for Ni/Ge1-xSnx/Ge (100) samples after annealing at temperatures 

ranging from 350 °C to 550 °C as shown in Fig. 4.2(a).  Ni monostanogermanide 

is formed, with the Ni(GeSn) peaks closely coinciding with those of Ni 

monogermanide due to the small amount of Sn [112]-[113].  Likewise, the 

incorporation of Pt results in Pt2(GeSn)3 and Pt3(GeSn)2 peaks closely coinciding 

with those of Pt2Ge3 and Pt3Ge2, respectively, for NiPt/Ge1-xSnx/Ge (100) samples 
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after annealing at temperatures ranging from 350 °C to 550 °C as shown in Fig. 

4.2(b) [177]. 

 

4.3.2 Sheet Resistance: Micro Four-point Probe Measurement 

RSh values of stanogermanide films formed at various temperatures were 

measured by micro four-point probes as shown in Fig. 4.3.  It should be noted that 

the RSh of the Ni/Ge1-xSnx/Ge (100) sample after annealing at 550 °C is too large 

to be measured by the micro four-point probes used in this work.  For the Ni/Ge1-

xSnx/Ge (100) samples, RSh increases significantly from 52.5 to 8.8 × 103 Ω/square, 

indicating that there may be a substantial change of surface morphology from 450 

to 500 °C.  In contrast, RSh of [Ni(GeSn)+Ptx(GeSn)y] is relatively stable from 350 

to 500 °C, indicating that the film quality is stable up to 500 °C. 

 

 

Fig. 4.3 RSh of Ni/Ge1-xSnx/Ge (100) and NiPt/Ge1-xSnx/Ge (100) samples after 
annealing at various temperature measured by micro four-point probes that was 

performed by Mr. Eugene Kong in our group. 
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4.3.3 Surface Morphology: SEM and AFM 

Top-view SEM characterization was performed to examine the 

morphological evolution of the samples after annealing at different temperatures 

for 30 s.  SEM images in Fig. 4.4 show the contrast in film morphology for Ni 

stanogermanide films from 350 to 550 °C.  The surface of the Ni/Ge1-xSnx/Ge (100) 

sample after annealing at 350 °C is smooth [Fig. 4.4(a)].  As the 

stanogermanidation temperature increases to 450 °C, the Ni stanogermanide film 

becomes rough as the exposed Ge1-xSnx surface begins to appear [Fig. 4.4(b)].  

Discrete Ni(GeSn) islands are observed after annealing at 500 °C and beyond 

[Fig. 4.4(c) and (d)].  Similar result can be seen in Refs. [111] and [112].  This 

explains the sharp increase of RSh of Ni(GeSn) from 450 to 500 °C as shown in 

Fig. 4.4.  SEM images of NiPt/Ge1-xSnx/Ge (100) samples after annealing at 

various temperatures are shown in Fig. 4.5.  After annealing at each temperature, 

the surface morphology of the Pt- incorporated stanogermanide film is observably 

better than that of pure Ni stanogermanide film.  The NiPt/Ge1-xSnx/Ge (100) 

sample remains smooth after annealing at 450 °C [Fig. 4.5(b)], and is still almost 

continuous after annealing at 500 °C [Fig. 4.5(c)].  Agglomeration occurs only 

after annealing at 550 °C [Fig. 4.5(d)].  The surface morphological evolution of 

NiPt/Ge1-xSnx/Ge (100) sample after annealing at various temperatures is also 

consistent with the electrical characteristics as shown in Fig. 4.3. 
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Fig. 4.4. Top-view SEM images of the Ni/Ge1-xSnx/Ge (100) samples after RTA 

for 30 s at (a) 350 °C, (b) 450 °C, (c) 500 °C, and (d) 550 °C.  Scale bar is shown 
in (a), and all the images are of the same scale. 

 
 

 

Fig. 4.5. Top-view SEM images of the NiPt/Ge1-xSnx/Ge (100) samples after 
RTA for 30 s at (a) 350 °C, (b) 450 °C, (c) 500 °C, and (d) 550 °C.  Scale bar is 

shown in (a), and all the images are of the same scale. 
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Fig. 4.6. AFM images of the Ni/Ge1-xSnx/Ge (100) samples after RTA for 30 s at 

(a) 350 °C, (b) 450 °C, (c) 500 °C, and (d) 550 °C. 
 

 

 

Fig. 4.7. AFM images of the NiPt/Ge1-xSnx/Ge (100) samples after RTA for 30 s 

at (a) 350 °C, (b) 450 °C, (c) 500 °C, and (d) 550 °C. 
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AFM images in Figs. 4.6 and 4.7 show the surface morphology of Ni/Ge1-

xSnx/Ge (100) and NiPt/Ge1-xSnx/Ge (100) samples after annealing for 30 s at 

different temperatures, respectively.  The AFM scanning area is 1 μm × 1 μm.  

The Ni/Ge1-xSnx/Ge (100) sample annealed at 350 °C for 30 s has a smooth 

surface [Fig. 4.6(a)].  Grain boundary grooving can be clearly observed for the 

Ni/Ge1-xSnx/Ge (100) sample after annealing at 450 °C [Fig. 4.6(b)].  Further grain 

separation occurs for the sample after annealing at 500 °C [Fig. 4.6(c)].  The 

surface of Ni/Ge1-xSnx/Ge (100) sample after annealing at 550 °C turns to be 

extremely rough due to the formation of large discrete islands [Fig. 4.6(d)].  The 

NiPt/Ge1-xSnx/Ge (100) sample is still smooth after annealing at 350 °C [Fig. 

4.7(a)], 450 °C [Fig. 4.7(b)] or 500 °C [Fig. 4.7(c)].  After annealing at 550 °C, 

the surface becomes rough due to agglomeration [Fig. 4.7(d)].  Based on the 

results of surface morphology inspected by SEM and AFM, Pt- incorporated 

stanogermanide films exhibit enhanced thermal stability up to 500 °C compared 

with pure Ni stanogermanide films. 

 

4.3.4 Layer Structure: TEM 

To examine the interfacial structure, XTEM images were taken on the 

Ni/Ge1-xSnx/Ge (100) and NiPt/Ge1-xSnx/Ge (100) samples after annealing at 450 

°C and 500 °C.  Grain boundary grooving can be clearly observed for the Ni/Ge1-

xSnx/Ge (100) sample after annealing at 450 °C, resulting in the non-uniformity of 

Ni stanogermanide film thickness [Fig. 4.8(a)].  Discrete Ni(GeSn) island and 

exposed Ge1-xSnx surface are observed after annealing at 500 °C [Fig. 4.8(b)].  In 

contrast, the thickness of the multi-phase Pt- incorporated stanogermanide film 
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formed at 450 °C is much more uniform than that of the Ni stanogermanide film 

formed at the same temperature [Fig. 4.9(a)].  In comparison with the 

agglomerated Ni(GeSn) film formed at 500 °C, the Pt- incorporated 

stanogermanides film formed at 500 °C is still continuous [Fig. 4.9(b)]. 

 

 

Fig. 4.8. XTEM images of Ni/Ge1-xSnx/Ge (100) samples after annealing at (a) 
450 °C and (b) 500 °C.  The TEM in Fig. 4.8(a) and Fig. 4.9(a) were done by Dr. 

Qian Zhou in our group; the TEM in Fig. 4.8(b) and Fig. 4.9(b) were performed as 
external service jobs at IMRE. 

 
 

 

Fig. 4.9. XTEM images of NiPt/Ge1-xSnx/Ge (100) samples after annealing at (a) 
450 °C and (b) 500 °C. 
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4.3.5 Impact of Post-deposition Anneal 

SEM and AFM images were taken on (a) Ni/Ge1-xSnx/Ge (100) and (b) 

NiPt/Ge1-xSnx/Ge (100) samples annealed at 350 °C for stanogermanide formation, 

which were then subject to PDA.  After PDA, the Ni stanogermanide film 

becomes very rough, due to the formation of discrete stanogermanide islands as 

shown Fig. 4.10 (a) and Fig. 4.11(a).  In contrast, the Pt- incorporated 

stanogermanide film is still continuous as shown in Fig. 4.10 (b) and Fig. 4.11(b), 

indicating there is no degradation after PDA. 

 

 

Fig. 4.10. Top-view SEM images of (a) Ni/Ge1-xSnx/Ge (100) sample and (b) 

NiPt/Ge1-xSnx/Ge (100) sample annealed at 350 °C for stanogermanide formation, 
which were then subject to a second anneal at 500 °C for 60 s (PDA). 
 

 

 

Fig. 4.11. AFM images of (a) Ni/Ge1-xSnx/Ge (100) sample and (b) NiPt/Ge1-

xSnx/Ge (100) sample annealed at 350 °C for stanogermanide formation, which 
were then subject to PDA. 
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4.4 Discussion 

 

Fig. 4.12. Schematics illustrating the evolution of the stanogermanide films on 

single-crystalline Ge1-xSnx during annealing, starting from (a) perfect coverage, to 
(b) grain boundary grooving, and to (c) island formation. 
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atoms, typically through diffusion, results in the grain boundary grooving.  When 

the grooves become sufficiently deep to expose the underlying Ge1-xSnx film, the 

discrete islands of metal stanogermanide are formed. 

XRD results have revealed that the Pt-incorporated multi-phase 

stanogermanide film is a mixture of Ptx(GeSn)y and Ni(GeSn) as shown in Fig. 

4.2(b).  In comparison with Ni-Ge bond (290 kJ/mol), the stronger Pt-Ge bond 

(400 to 500 kJ/mol) makes the atomic diffusion be more difficult at the surface 

and interface, and along grain-boundaries [168].  Therefore, the incorporation of 

Pt retards the transformation from perfect coverage of stanogermanide film on 

Ge1-xSnx [Fig. 4.12(a)] to grain boundary grooving [Fig. 4.12(b)]. 

When grain boundary grooving occurs, two local equilibrium balances 

need to be satisfied as shown in Fig. 4.12(b).  They are the balance of the 

stanogermanide surface energy σS and the stanogermanide-stanogermanide grain-

boundary energy σGB and the balance of the stanogermanide-Ge1-xSnx interface 

energy σI and σGB, respectively, as shown in Equations (4.1) and (4.2) [179]-

[180]. 

SSGB  cos2 ,                                                          (4.1) 

IIGB  cos2 ,                                                          (4.2) 

where S  and I  are the contact angles at the surface and interface, respectively.  

Incorporating Pt in stanogermanide film reduces GB  upon alloying [181].  In 

addition, the incorporation of Pt has the effect of increasing σS and σI [182]-[183].  

According to Equations (4.1) and (4.2), these two effects slow down the 

increasing of θS and θI, and therefore retard the transformation from grain 

boundary grooving to island formation. 
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XTEM images shown in Section 4.3.4 are the direct proof that the 

incorporation of Pt slows down the transformation from perfect coverage, to the 

grain boundary grooving, and to island formation.  After annealing at 450 °C, the 

grain boundary grooving occurs only for the case of the Ni stanogermanide film 

[Fig. 4.8(a)].  Uniform [Ni(GeSn) + Ptx(GeSn)y] on Ge1-xSnx [Fig. 4.9 (a)] 

indicates that the Pt- incorporated stanogermanide film still covers the Ge1-xSnx 

almost perfectly.  In addition, XTEM image in Fig. 4.8(b) shows evidence of 

island formation for the Ni/Ge1-xSnx/Ge (100) sample after annealing at 500 °C.  

In contrast, XTEM image in Fig. 4.9(b) shows that the Pt- incorporated 

stanogermanide film is still continuous with slight grain boundary grooving after 

annealing at the same temperature.  This confirms the onset of island formation is 

delayed due to the incorporation of Pt. 
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4.5 Summary 

In this Chapter, a thermally stable Pt-incorporated stanogermanide 

metallization scheme is achieved.  SEM and AFM images indicate that the surface 

of Ni/Ge1-xSnx/Ge (100) sample becomes rough after annealing at 450 °C, which 

is the cause of the sharp increase in RSh from 450 to 500 °C.  In contrast, SEM and 

AFM images show that the surface of NiPt/Ge1-xSnx/Ge (100) sample is still 

smooth even after annealing at 500 °C, which is consistent with the result of sheet 

resistance measurement.  Only the Pt- incorporated stanogermanide film formed at 

350 °C is still smooth after a second anneal at 500 °C for 60 s. 

The incorporation of Pt has the effect of slowing down the transformation 

not only from perfect coverage to grain boundary grooving, but also from grain 

boundary grooving to island formation.  This explains that the incorporation of Pt 

improves the thermal robustness of stanogermanide contacts and suppresses 

agglomeration. 
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Chapter 5 

 

Towards Highly Doped N-type Germanium-

Tin: Low Annealing Temperature for 

Reduced Dopant Diffusion and the Use of 

Elevated Implant Temperature for Self-

crystallization and Improved Dopant 

Activation 

 

5.1 Introduction 

Germanium-Tin (Ge1-xSnx) can potentially be used in future logic 

applications, as it has higher carrier mobilities than Ge [48],[61]-[64],[86]-

[91],[123]-[131].  To realize high-performance Ge1-xSnx n-channel metal-oxide-

semiconductor field-effect transistors (n-MOSFETs) [92],[124],[125],[129] and 

Ge1-xSnx tunneling field-effect transistors (TFETs) [184]-[187], the source/drain 

(S/D) series resistance RS/D needs to be below 300 Ω-μm [35].  Therefore, high n-

type dopant activation in Ge1-xSnx is needed. 

Single-crystalline Ge1-xSnx grown by non-equilibrium processes such as 

molecular beam epitaxy (MBE) [49]-[57] and chemical vapor deposition (CVD) 

[58]-[60] is metastable.  When metastable Ge1-xSnx is subsequently annealed 

during dopant activation, Sn segregation could occur and therefore x may decrease.  
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For annealing temperatures higher than 540 °C, high-resolution X-ray diffraction 

(HRXRD) analysis shows that the substitutional Sn composition in epitaxial 

Ge0.922Sn0.078 decreases gradually as annealing temperature increases [188].  Ge1-

xSnx is less thermally stable for higher Sn compositions (e.g. x = 0.1 in Ref. [82]).  

Annealing at temperatures above 400 °C (e.g. dopant activation) results in not 

only Sn segregation but also nanodot formation, which is detrimental for transistor 

[82]. 

On the other hand, n-type dopants generally have high diffusion 

coefficients in Ge (e.g. 4.38 × 10−2 cm2/s for phosphorus (P) at temperatures 

ranging from 600 °C to 850 °C [115]), rendering high-temperature dopant 

activation anneals unsuitable for shallow junction formation in Ge.  If the 

incorporation of a small amount of Sn does not change the diffusion behavior of 

n-type dopants, high-temperature anneals may be likewise not preferable for 

activation of n-type dopants in Ge1-xSnx.  To obtain a high concentration of active 

n-type dopants with shallow junction depth, a delicate balance between dopant 

activation and dopant diffusion has to be achieved. 

In the first part of this Chapter, we investigate Ge0.976Sn0.024 n+/p junction 

formation using phosphorus ion (P+) implant without heating the substrate during 

the implant.  Various rapid thermal annealing (RTA) temperatures are investigated 

to activate the dopants.  The electrically active P depth profile in the Ge1-xSnx is 

extracted using a spreading resistance probe (SRP).  The current I – voltage V  

characteristics of the transfer length method (TLM) test structures that were used 

to extract contact resistivity and n+/p junction diodes are also studied.  Part of this 

work is published in Ref. [189]. 
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Recently, it was reported that hot ion implant, which involves ion 

implantation at elevated substrate temperature (500 °C), can achieve a higher P 

activation in Ge than ion implantation at room temperature (RT) [190].  In 

addition, amorphizing ion implants have been shown to induce the formation of 

twin boundary defects or polycrystalline fin during silicon (Si) fin doping [191].  

Hot implant avoids amorphization during implant due to self-crystallization and 

has been demonstrated as an excellent source/drain extension (SDE) doping 

technique for the narrow fins of FinFETs [192]-[194].  However, there are no 

reports of hot implant in Ge1-xSnx alloys so far. 

Therefore, in the second part of this Chapter, we investigate the effect of 

P+ implant temperature on the material properties of epitaxial Ge1-xSnx alloy and 

the electrical characteristics of TLM test structures and n+/p junction diodes.  Hot 

P+ implant maintains the single-crystallinity of Ge1-xSnx during the implant.  In 

addition, after post- implant RTA at 450 °C for 3 minutes, samples implanted at 

elevated temperature (400 °C) achieve a lower contact resistivity ρC than samples 

implanted at room temperature, indicating higher P dopant activation for hot P+ 

implant in Ge1-xSnx after RTA.  Part of this work is published in Ref. [195]. 
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5.2 Material Characterization of Ge0.976Sn0.024 

4-inch gallium-doped (5 × 1017 cm-3) Ge (100) wafers were used as 

starting substrates for Ge1-xSnx growth and for fabrication of Ge control diodes.  

After ex situ pre-epitaxy cleaning in dilute hydrofluoric acid (HF:H2O = 1:10), the 

Ge wafers were loaded into the growth chamber of a solid source MBE system.  

Single-crystalline Ge1-xSnx films were epitaxially grown at 180 °C [56].  Ge1-xSnx 

has an unintentional p-type doping concentration of 5 × 1016 cm−3, as obtained by 

Hall measurement, due to the presence of vacancies in the films [145]-[147].  The 

MBE growth process was done by our collaborators (Prof. Buwen Cheng’s group) 

at the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, 

and has been discussed in detail in Chapter 3. 

Cross-sectional transmission electron microscopy (XTEM) image of a 

~170-nm-thick Ge1-xSnx film on Ge substrate is shown in Fig. 5.1(a).  High-

resolution TEM (HRTEM) images depict a high-quality single-crystalline Ge1-

xSnx film without observable defects near the Ge1-xSnx/Ge interface [Fig. 5.1(b)] 

and at the surface [Fig. 5.1(c)].  Atomic force microscopy (AFM) image of the 

Ge1-xSnx surface shows a smooth surface with a root-mean-square (RMS) 

roughness of 0.37 nm with a scanning area of 10 μm × 10 μm as shown in Fig. 

5.1(d).  (004) and (224) reciprocal space maps (RSM) obtained using HRXRD 

[Figs. 5.2(a) and (b)] show that the film is fully strained to the Ge substrate and 

the substitutional Sn composition is determined to be 2.4%. 
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Fig. 5.1. (a) XTEM image of ~ 170-nm-thick epitaxial Ge0.976Sn0.024 film grown 
on Ge (100) substrate.  HRTEM images of the defect- free (b) Ge1-xSnx/Ge 
interface and (c) Ge1-xSnx surface.  (d) AFM image of the Ge1-xSnx surface with a 

RMS roughness of 0.37 nm with a scanning area of 10 μm × 10 μm.   The TEM 
was performed as an external service job at the Institute of Materials Research and 

Engineering (IMRE). 
 
 

 

Fig. 5.2. (a) (004) and (b) (224) RSM obtained using HRXRD show that the Ge1-

xSnx film has a substitutional Sn composition of 2.4% and is fully strained to the 
Ge substrate.  The HRXRD was performed as an external service job at IMRE. 
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5.3 Ge0.976Sn0.024 n
+
/p Junction Formation by RT P

+
 Implant and 

 RTA at Various Activation Temperatures 

5.3.1 Experimental Details 

To evaluate the properties of n+/p junctions, TLM test structures formed on 

n+-Ge1-xSnx regions and Ge1-xSnx n
+/p junction diodes were fabricated.  A 100-nm-

thick silicon dioxide (SiO2) isolation layer was deposited by sputter, covered with 

patterned photoresist (PR), and etched to define active regions using a chlorine-

based plasma etching process.  P+ implant was performed at energy of 20 keV and 

a dose of 2 × 1015 cm−2 into the active regions, followed by PR removal.  The 

implant was performed as an external service job at the INNOViON Corporation, 

San Jose, California, USA.  Dopant loss during subsequent thermal annealing 

activation by out-diffusion from Ge surface has been reported [196].  A 50-nm 

SiO2 capping layer was then intentionally deposited by sputter to prevent most of 

this loss [197].  The samples were activated at 300 °C for 10 minutes, 350 °C for 

10 minutes, or 400 °C for 5 minutes.  After dopant activation, patterned PR was 

used as the mask to etch SiO2 contact openings, followed by 100-nm-thick 

aluminum (Al) deposition by e-beam evaporator and liftoff to form metal contacts. 

Secondary ion mass spectroscopy (SIMS) was used to examine P 

distribution in the implanted samples.  The electrically active P depth profile in 

Ge1-xSnx was studied using SRP. 



 82 

5.3.2 Electrical Characterization 

Fig. 5.3(a) depicts the top-view scanning electron microscopy (SEM) 

image of a fabricated TLM test structure.  The inset image of Fig. 5.4 shows the 

schematic of a TLM test structure in cross-sectional view and top view.  Contact 

width Z is 100 μm; contact spacing d varies from 3 μm to 100 μm.  Fig. 5.3 shows 

the I – V characteristics of TLM test structures with various contact spacings d 

formed on the n+-Ge1-xSnx regions activated using post- implant RTA at (b) 300 °C 

for 10 minutes, (c) 350 °C for 10 minutes, and (d) 400 °C for 5 minutes. 

It has been demonstrated that the Fermi level Ef at the metal/Ge interface is 

pinned at the valence band edge EV of Ge, resulting in a high electron Schottky 

barrier height (SBH) ΦB and therefore a large ρC of metal/n-type Ge [161],[198].  

Fermi level pinning toward EV also occurs for metal/n-type Ge1-xSnx contacts 

[162].  Therefore, ohmic contact can only be achieved between metal and highly 

doped n-type Ge1-xSnx, due to conduction via electron tunneling through the 

Schottky barrier. 

Fig. 5.3(e) compares I – V curves of TLM test structures with a given 

spacing of 3 μm for the three splits.  The sample activated by annealing for 10 

minutes at 300 °C or 350 °C does not yield a linear relationship between the 

voltage applied and the current that flows through the contacts (non-ohmic 

behavior).  This indicates that the annealing is insufficient for phosphorus 

activation to form a highly doped n-type region.  On the other hand, the sample 

activated at 400 °C for 5 minutes demonstrates ohmic behavior. 

Fig. 5.4 shows the total resistance RTotal versus d obtained from the TLM 

test structure formed by annealing at 400 °C for 5 minutes, which shows ohmic 
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behavior.  RTotal is given by I/V at V = 0.5 V and is linear function of d.  The ρC is 

extracted to be 2.7 × 10-4 Ω-cm2, which is given by 
Slope

ZRC 
2

.  RC is the contact 

resistance, given by RTotal/2 at the intercept of a linearly fitted line with the vertical 

axis (where d = 0) [199]. 

 

 

Fig. 5.3. (a) Top-view SEM image of the fabricated TLM test structure.  Z is 100 
μm; d varies from 3 μm to 100 μm.  I – V characteristics of TLM test structures 

with various contact spacings formed on the n+-Ge1-xSnx regions activated using 
post-implant RTA at (b) 300 °C for 10 minutes, (c) 350 °C for 10 minutes, and (d) 

400 °C for 5 minutes.  (e) Comparison of I – V curves of TLM test structures with 
a given spacing of 3 μm for the three splits.  The TLM test structures activated for 
10 minutes at 300 °C and 350 °C show non-ohmic behavior.  On the other hand, 

the sample activated at 400 °C for 5 minutes demonstrates a good ohmic contact 
between Al and n+-Ge1-xSnx. 
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Fig. 5.4.  RTotal versus d obtained from TLM test structure formed by post-

implant annealing at 400 °C for 5 minutes.  The inset image shows the schematic 
of a TLM test structure in cross-sectional view and top view.  ρC of 2.7 × 10 -4 Ω-
cm2 is obtained. 

 

 

P SIMS depth profile of the as-implanted sample, and P SIMS and SRP 

depth profiles of the sample after activation at 400 °C for 5 minutes are shown in 

Fig. 5.5.  The projected range of P+ implant RP in the as- implanted Ge1-xSnx is 16 

nm.  Low thermal budget is preferred to minimize dopant diffusion in this work.  

Negligible phosphorus diffusion is achieved during RTA at 400 °C, indicating the 

potential for shallow junction formation.  The sample activated at 400 °C achieves 

a maximum active dopant concentration of 2.1 × 1019 cm-3.  Although SIMS 

shows phosphorus concentration near the sample surface can obtain 2 × 1020 cm-3 

after activation at 400 °C, only 10% of phosphorus atoms are electrically active in 

Ge1-xSnx. 
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Fig. 5.5. P SIMS depth profile of the as- implanted sample, and P SIMS and SRP 
depth profiles of the sample after dopant activation at 400 °C for 5 minutes.  

Annealing at 400 °C for 5 minutes causes negligible P diffusion and achieves a 
maximum active electron concentration of 2.1 × 1019 cm-3.  The SIMS and SRP 

were performed as external service jobs at IMRE and Evans Analytical Group, 
Sunnyvale, California, USA, respectively. 
 

 

Fig. 5.6(a) shows the I – V characteristics of Ge1-xSnx n
+/p junction diodes 

formed by post- implant anneals at 300 °C for 10 minutes, 350 °C for 10 minutes, 

and 400 °C for 5 minutes, as well as the as- implanted sample without dopant 

activation.  Forward current Iforward in the series-resistance- limited regime (V = – 

1.0 V) increases and reverse current Ireverse decreases monotonically as the 

activation temperature increases.  A good rectifying diode was demonstrated using 

dopant activation temperature at 400 °C with the highest Iforward and the lowest 

Ireverse. 
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Fig. 5.6. (a) I – V characteristics of Ge1-xSnx n+/p junction diodes formed by 

annealing at 300 °C for 10 minutes, 350 °C for 10 minutes, and 400 °C for 5 
minutes, as well as the as- implanted sample without dopant activation.  (b) 

Comparison of n for n+/p diodes activated by various annealing conditions.  The 
diode formed by annealing at 400 °C for 5 minutes demonstrates the highest 
Iforward, the lowest Ireverse, and the smallest n. 
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where q is the elementary charge, Dn is the diffusion coefficient for electrons, τn is 

the carrier lifetime for electrons, ni is the intrinsic carrier concentration, NA is the 

acceptor impurity concentration, k is the Boltzmann constant, T is the temperature, 
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dominates.  When both current densities are comparable, n has a value between 1 

and 2.  Comparison of ideality factor for Ge1-xSnx n+/p diodes activated by 

different annealing conditions is shown in Fig. 5.6(b).  According to Equation 5.1, 

the relatively high n of Ge1-xSnx diodes should be attributed to the low τn, due to 

not only the unrecovered implantation- induced defects, but also the defects 

because of low-temperature epitaxial growth of Ge1-xSnx on lattice-mismatched Ge 

substrate.  Although n decreases as the dopant activation temperature increases, it 

should be noted the sample activated at 400 °C still has a relatively high n (1.3). 

 

5.3.3 Comparison of Ge1-xSnx and Ge n+/p Diodes 

Fig. 5.7(a) shows I – V characteristics of the Ge1-xSnx and Ge n+/p diodes 

formed under various dopant activation conditions.  A high Iforward of 320 A/cm2 at 

− 1 V is achieved for the Ge1-xSnx diode activated at 400 °C for 5 minutes, which 

is four times higher than that of the Ge control sample activated at 700 °C for 30 s 

and much higher than that of the Ge control sample activated at 400 °C for 5 

minutes. 

The Ge1-xSnx diode formed at 400 °C shows a higher Ireverse, compared with 

the Ge diodes.  This is attributed to the following factors: 1) reduced band gap EG 

in Ge1-xSnx; 2) lower p-type doping concentration in the Ge1-xSnx epitaxial layer 

than in the Ge substrate; and 3) higher defect density in the epitaxial Ge1-xSnx film 

(due to low-temperature growth) than in the Ge substrate.  Considering the 

compressive strain effect in Ge0.976Sn0.024 grown on Ge [48],[149], EG of 

Ge0.976Sn0.024 is ∼50 meV lower than that of relaxed Ge.  In addition, the Ge1-xSnx 

has a p-type doping concentration of 5 × 1016 cm−3, which is lower than that of the 
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Ge substrate (5 × 1017 cm−3).  A combined effect of the reduced EG and the lower 

p-type doping concentration in Ge1-xSnx leads to 1.8 orders of magnitude higher 

diode current in the exponential region compared with the Ge control.  In the 

reverse bias, the difference in the leakage current of Ge1-xSnx and Ge diodes is 

larger (2.9 orders of magnitude), of which 1.1 orders of magnitude should be 

attributed to the higher defect density in the Ge1-xSnx. 

Ge1-xSnx p-i-n photodetectors usually have more than 1 order of magnitude 

higher dark current IDark than the Ge control, possibly due to much higher 

generation-current density associated with recombination-generation centers 

within the depletion region as reported in Refs. [201] and [202].  IDark is the 

reverse leakage current that flows through the photodiode when no photons are 

entering the device, which is referred to as Ireverse in diodes in this work [203]. 

 

Fig. 5.7. (a) I – V characteristics of a Ge1-xSnx n+/p junction diode formed by 
post-implant annealing at 400 °C for 5 minutes, a Ge n+/p junction diode formed 

by annealing at 400 °C for 5 minutes, and a Ge n+/p junction diode formed by 
annealing at 700 °C for 30 s.  (b) n of the n+/p diodes showing in (a). 
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Fig. 5.7(b) shows the ideality factor of the Ge1-xSnx n
+/p diode activated at 

400 °C is 1.3, which is higher than that of Ge diode activated at 400 °C or 700 °C.  

According to Equation 5.1, a smaller τn due to the higher defect density in Ge1-

xSnx than in Ge could result in a higher n. 

 

5.3.4 Discussion 

Technology computer aided design (TCAD) simulation of the Al-

contacted Ge1-xSnx n
+/p junction on Ge substrate was performed to solve Poisson's 

equation and the carrier continuity equations using a 2D device simulator Taurus 

Medici [204].  The specified physical models used in this simulation include the 

concentration-dependent mobility model, the parallel field mobility model, the 

Schottky barrier tunneling model, the Shockley-Read-Hall (SRH) recombination 

model, and the Auger recombination model.  Fig. 5.8(a) depicts the Ge1-xSnx n
+/p 

junction on p-type Ge substrate with detailed parameters used for simulation.  The 

thickness values of the Al, n+-Ge1-xSnx, p-Ge1-xSnx and p-Ge layers are 100 nm, 50 

nm, 150 nm, and 10 μm, respectively.  The width of the structure is 2 μm.  The 

doping concentration of p-Ge1-xSnx and p-Ge are 5 × 1016 cm-3 and 5 × 1017 cm-3, 

respectively.  The doping concentration of n+-Ge1-xSnx is 5 × 1018 cm-3, 2 × 1019 

cm-3, 5 × 1019 cm-3 or 1 × 1020 cm-3.  The doped regions are uniformly doped for 

simplicity.  The metal is connected to n+-Ge1-xSnx with a Schottky barrier height 

of 0.58 eV [162],[198]. 

Fig. 5.8(b) shows I – V characteristics of the Ge1-xSnx n+/p diodes with 

various doping concentrations in n+-Ge1-xSnx region.  Iforward increases 

monotonically with increasing doping concentration in n+-Ge1-xSnx layer.  Energy 
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band diagrams having an concentration of 2 × 1019 cm-3 (top) or 5 × 1018 cm-3 

(bottom) of highly doped n-type Ge1-xSnx are shown in Fig. 5.9(a).  Parts of the 

two band diagram curves (depth from 95 to 125 nm) are superimposed in Fig. 

5.9(b), showing an obvious difference in the barrier width for electrons to tunnel.  

In addition, the more heavily doped semiconductor should be more conductive.  

Therefore, the more heavily doped split should have a lower series resistance of 

the diode, due to a lower contact resistance between Al and n+-Ge1-xSnx because of 

a shallower barrier, and a lower resistance of n+-Ge1-xSnx region.  This leads to the 

enhancement of the forward bias current as shown in Fig. 5.8(b). 

 

 

Fig. 5.8. (a) Ge1-xSnx n
+/p diode on p-Ge substrate used for simulation.  Detailed 

parameters used in this simulation are shown.  (b) Iforward of Ge1-xSnx n
+/p diode 

increases monotonically with increasing doping concentration in n+-Ge1-xSnx layer.  
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Fig. 5.9. (a) Energy band diagrams of a Ge1-xSnx n
+/p structure on Ge substrate 

with uniform dopant concentrations of (top) 2 × 1019 cm-3 or (bottom) 5 × 1018 cm-

3 in the n+-Ge1-xSnx region, with an Al contact to n+-Ge1-xSnx.  (b) Superimposing 

the two curves in (a), highlighting the barrier width narrowing due to the higher 
doping concentration in the n+-Ge1-xSnx region. 
 

 

The combined effect of barrier width narrowing and improved conduction 

of n+ region for the fabricated Ge1-xSnx diode formed by RTA at 400 °C with the 

most heavily doped n+ region results in the lowest series resistance of the diode, 

which should be the reason that the diode formed by RTA at 400 °C achieves the 

highest Iforward among the Ge1-xSnx diodes as shown in Fig. 5.6(a).  Likewise, this 

effect also leads to the enhancement in Iforward of the Ge1-xSnx diode as compared 

with Ge diodes [Fig. 5.7(a)]. 
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atoms in Ge are incorporated in the Ge lattice as dopant-vacancy inactive clusters 

[AnVm] (A ∈ {P, As, Sb}) [117],[205],[206].  High- temperature activation (> 

450 °C) is therefore required to annihilate the residual defects, which are 

thermally unstable [207].  Therefore, the higher P activation in the Ge1-xSnx 

sample annealed at 400 °C could be due to trapping of vacancies in Ge by the 

incorporated Sn atoms, leading to a low concentration of the inactive PnVm [208]. 
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5.4 Self-Crystallization and Improved Dopant Activation by 

Hot  P
+
 Implant in Ge0.976Sn0.024 

5.4.1 Experimental Details 

Fig. 5.10(a) depicts a schematic of the hot P+ implant setup.  The 

Ge0.976Sn0.024 samples were put on 12- inch Si carrying wafers during P+ implant.  

The carrying wafer was then loaded into the ion implanter chamber and placed on 

a platen that can be heated by a heater.  Fig. 5.10(b) shows platen temperature 

versus process time during the hot P+ implant process.  The platen temperature 

was set to 400 °C during hot P+ implant.  After the platen temperature was stable, 

P+ implant was performed at an elevated temperature at energy of 20 keV and a 

dose of 2 × 1015 cm−2.  The temperature of the Ge1-xSnx samples, which cannot be 

measured directly, should be close to 400 °C during hot P+ implant.  After that, the 

wafers were moved from the platen to the load lock for cooling.  P+ implant at 

room temperature (~20 °C) using the same implant energy and dose was 

performed as the control.  The implant was done by our collaborators at Applied 

Materials – Varian Semiconductor Equipment, Gloucester, Massachusetts, USA. 

P depth profiles of the implanted samples with or without RTA were 

examined by SIMS.  XTEM was performed to investigate the damage induced by 

implant and the possible residual disorder after thermal treatment.  TLM test 

structures were fabricated to extract ρC and sheet resistance RSh.  Diodes were 

fabricated to investigate the electrical characteristics of the n+/p junction.  The 

fabrication of TLM test structures and diodes were done by Dr. Pengfei Guo, Dr. 

Xiao Gong and Mr. Cheng Guo in our group, which are similar to the devices that 

have been discussed in Section 5.3.1.  To achieve an excellent contact between the 
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diode samples and the stage of the probe station, 200 nm of nickel (Ni) was 

deposited on the back of the diode samples after removing the native oxides by a 

fluorine-based plasma etching process.  This step was done by Dr. Bin Liu in our 

group. 

 

(a) 

 
(b) 

 

Fig. 5.10. (a) Schematic of the hot P+ implant setup.  P+ implant performed at 
energy of 20 keV and a dose of 2 × 1015 cm−2.  (b) Platen temperature as a 
function of process time during the P+ hot implant process.  The implant was done 

by our collaborators at Applied Materials – Varian Semiconductor Equipment, 
Gloucester, Massachusetts, USA. 
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5.4.2 Material Characterization 

Fig. 5.11(a) and Fig. 5.12(a) show the XTEM images of the as- implanted 

RT P+ sample and the as- implanted hot P+ sample, respectively.  RT P+ implant 

amorphizes the top 50 nm of the Ge1-xSnx sample, as the implanted dose of 2 × 

1015 cm-2 is above the amorphization threshold dose in Ge [209].  The 

amorphous/crystalline (a/c) interface is relatively smooth after the high-dose 

implant [210].  On the contrary, for the sample implanted at 400 °C, the Ge1-xSnx 

lattice remains single-crystalline, due to the self-crystallization of Ge1-xSnx during 

implant.  However, a defect band of ~60 nm wide was observed at ~40 nm from 

the surface. 

 

 

Fig. 5.11.  XTEM images of (a) the as- implanted RT sample and (b) the sample 
after post- implant annealing at 450 °C for 3 minutes.  RT P+ implant amorphizes 

the top 50 nm of the sample.  After SPE at 450 °C, the Ge1-xSnx film converts to 
single-crystalline without any observable defect.  The TEM images were taken by 
Dr. Qian Zhou in our group. 
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The XTEM image in Fig. 5.11(b) shows that the RT-implanted Ge1-xSnx 

film converts to single-crystalline without observable defects, after 3 minutes of 

solid-phase epitaxy (SPE) at 450 °C.  Fig. 5.12 (b) shows the XTEM image of the 

hot- implanted sample after annealing at 450 °C for 3 minutes.  The left inset 

HRTEM image shows the lattice fringes near the surface.  However, interstitial-

type extended defects are observed in the right inset HRTEM image, which are 

dislocation loops on {111} planes as shown in the right inset HRTEM image 

[211]. 

 

 

Fig. 5.12.  (a) XTEM image of the as- implanted hot P+ sample.  The as-implanted 
hot- implanted sample remains single-crystalline, and a defect band is observed.   
(b) XTEM image of the sample implanted at 400 °C and annealed at 450 °C for 3 

minutes.  The left inset HRTEM image shows the lattice fringes near the surface, 
while the HRTEM image in the right inset shows a dislocation loop on the (111) 

plane.  The TEM in (a) was done by Dr. Qian Zhou in our group; the TEM in (b) 
was performed as an external service job at IMRE. 
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Fig. 5.13.  P SIMS depth profiles for the samples right after implant at 20 °C and 

400 °C, and the sample implanted at 20 °C after post- implant RTA at 400 °C.  The 
hot- implanted sample has a deeper junction as compared with the one implanted at 

room termperature, due to the lack of an amorphous layer at the surface.  In 
addition, RTA at 400 °C for 3 minutes causes negligible P diffusion.  The SIMS 
was done by Dr. Sin Leng Lim at the Department of Physics, NUS. 

 
 

Fig. 5.13 depicts P SIMS depth profiles for as- implanted samples 

implanted at 20 °C and 400 °C.  The P SIMS depth profile for a sample implanted 

at room temperature followed by annealing at 400 °C for 3 minutes is included to 

confirm that the 400 °C RTA does not cause obvious P diffusion.  The hot-

implanted sample has a deeper junction due to the absence of an amorphous layer 

during implant, leading to more severe channeling effect.  A shallower junction 

can be achieved by reducing the implant energy, therefore channeling is not a 

serious problem. 
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Fig. 5.14.  P SMIS depth profile of the as- implanted hot P+ sample in Fig. 5.13 
superimposed on the XTEM image of the same sample.  A vacancy-rich region 

and a interstitial-rich region are expected to exist. 
 

 

 

Fig. 5.15.  Phosphorus depth profiles for samples implanted at 20 °C or 400 °C 

and annealed at 450 °C for 3 minutes.  The SIMS was performed as an external 
service job at the IMRE. 
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Fig. 5.14 shows the P SIMS depth profile of the sample implanted at 

400 °C in Fig. 5.13 superimposed on the XTEM image of the same sample.  After 

hot P+ implant, although there is no amorphization layer formed at the surface, the 

separation between interstitials and vacancies is expected to occur, leading to a 

vacancy-rich region towards the surface and a deeper interstitial-rich region in the 

bulk [212]-[213]. 

Fig. 5.15 shows P SIMS depth profiles for samples implanted at 20 °C and 

400 °C and annealed at 450 °C for 3 minutes.  The presence of an additional P 

peak deeper in the Ge1-xSnx after annealing at 450 °C for 3 minutes could indicate 

the presence of a vacancy-rich region and an interstitial-rich region in the single-

crystalline Ge1-xSnx film, as vacancies can enhance P diffusion in the Ge1-xSnx 

matrix while a large number of interstitials act as a sink for vacancies and can 

suppress P diffusion [207],[214]-[215].  It should be noted that there is a 10-nm-

thick SiO2 capping layer for the samples during implant as shown in Fig. 5.15, 

which leads to a slight difference of the junction depth compared with the samples 

without SiO2 capping layer during implant as shown in Figs. 5.13 and 5.14. 

 

5.4.3 Electrical Characterization 

Fig. 5.16 shows Rtotal versus d obtained from the TLM test strucute formed 

by implantation at 20 °C or 400 °C and annealing at 450 °C or 500 °C for 3 

minutes.  ρC and RSh are given by 
Slope

ZRC 
2

 and Slope Z , respectively.  Fig. 5.17 

shows that the samples implanted at 400 °C achieve lower (a) contact resistivity 
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between Al and n+-Ge1-xSnx and (b) sheet resistance of n+-Ge1-xSnx for both 

annealing temperatures, compared with the one implanted at 20 °C. 

 

 

Fig. 5.16.  Rtotal versus d obtained from TLM test structures formed by P+ implant 
at various implant and annealing conditions. 

 
 

 

Fig. 5.17.  After post- implant RTA at 450 °C or 500 °C for 3 minutes, the hot-
implanted samples show both (a) lower ρC and (b) lower RSh, as compared with the 

RT-implanted samples. 
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Fig. 5.18.  (a) I – V characteristics of n+/p diodes formed by P+ implant at various 

implant and annealing conditions.  (b) The diodes formed by implantation at 20 °C 
or 400 °C and annealing for 3 minutes at 450 °C or 500 °C gives similar n. 

 
 

Fig. 5.18(a) shows the I – V characteristics of n+/p diodes formed by 

implantation at 20 °C or 400 °C, followed by annealing at 450 °C or 500 °C for 3 
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temperature (450 °C or 500 °C) could further improve the material qualty of the 
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temperature growth process as dicussed in Section 5.3.3. 
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implanted at 400 °C and annealed at 450 °C gives the highest median Iforward, as a 

result of having the lowest RS.  Except for the sample implanted at 400 °C and 

annealed at 500 °C for 3 minutes, the rest of the splits show good rectifying 

behavior with the median Iforward/Ireverse of more than 104.  The degraded rectifying 

behavior of the diodes formed by hot P+ implant is due to higher Ireverse, compared 

with those formed by RT implant.  This could be attributed to the more defects 

located at the depletion region of the hot- implanted samples [Fig. 5.12(b)] than 

that of the RT-implanted samples [Fig. 5.11(b)], after dopant activation. 

 

 

Fig. 5.19.  (a) Cumulative probability plot shows that P+ implant at 400 °C and 

annealed at 450 °C achieve the highest Iforward at -1 V.  (b) Cumulative probability 
plot shows most of the splits show good rectifying behavior with the median 
Iforward/Ireverse of more than 104, except for the sample implanted at 400 °C and 

annealed at 500 °C for 3 minutes. 
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5.4.4 Discussion 

For ohmic contacts between metal and highly doped semiconductor, 

current conduction is dominated by tunneling.  ρC depends exponentially on the 

surface doping concentration NS and the ΦB, and is given by [216] 
















S

SB
C

N

m

qh




*4
exp ,                                                    (5.2) 

where h is the Planck constant, m* is the effective mass of the carriers tunneling 

across the contact, εS is the dielectric constant of the semiconductor. 

As Ef at the metal/Ge1-xSnx interface is pinned near EV of Ge1-xSnx [162], 

all samples should have the same ΦB.  As the hot- implanted sample has lower ρC 

than the RT-implanted sample after post- implant RTA at 450 °C or 500 °C, the 

hot- implanted sample should have higher NS, according to Equation 5.2.  Besides, 

the hot- implanted sample has a lower total phosphorus concentration nTotal near 

the surface as shown in the P SIMS depth profiles for samples annealed at 450 °C 

(Fig. 5.15).  Therefore, hot implant achieves higher NS despite a lower nTotal, 

which indicates that it should have higher dopant activation rate given by NS/nTotal.  

This result is important and consistent with the discovery of the improved P 

activation in Ge realized by hot implant compared to RT implant in Ref. [190].  M. 

A. Razali et al. claimed that hot P+ implant in Ge can achieve low level of stable 

inactive PnVm (discussed in Section 5.3.4 ) and therefore good activation of P 

[190]. 
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5.5 Summary 

In this Chapter, a well-behaved Ge0.976Sn0.024 n+/p junction diode was 

formed at a relatively low temperature of 400 °C for reduced dopant diffusion.  

The SRP analysis shows that a high concentration of P was achieved for P+-

implanted epitaxial Ge1-xSnx after dopant activation.  Other than high carrier 

mobility, Ge1-xSnx alloy with a high P dopant concentration and low thermal 

budget for forming a shallow n+/p junction is a promising candidate for future 

scaled high-mobility transistors. 

In addition, hot P+ implant was investigated on Ge0.976Sn0.024.  Hot P+ 

implant maintains the single-crystallinity of the Ge1-xSnx film during implant.  

After RTA at 450 °C for 3 minutes, the hot- implanted sample has a lower contact 

resistivity than the RT-implanted sample despite a lower total phosphorus 

concentration at the surface.  Higher P dopant activation, together with a self-

crystalline process, makes hot P+ implant a promising technique in future Ge1-xSnx 

transistor applications. 
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Chapter 6 

 

Conclusion and Future Work 

 

6.1 Conclusion and Contributions of This Thesis 

As continuous scaling of silicon (Si) metal-oxide-semiconductor field-

effect transistors (MOSFETs) for better speed performance currently faces 

significant challenges, novel technologies and device structures are required to 

further enhance the drive current of the MOSFETs at a reduced supply voltage.  

Exploring high-mobility channel materials such as germanium (Ge) and III-V 

compound semiconductors to replace Si is deemed as a solution to extend the 

complementary metal-oxide-semiconductor (CMOS) road map. 

Germanium-tin (Ge1-xSnx), which is predicted to have even higher carrier 

mobilities than Ge [48], could potentially be a promising alternative channel 

material.  The motivation of this thesis is to address various technical challenges 

in realizing Ge1-xSnx channel MOSFETs as a candidate for the sub-10 nm 

technology node applications.  In particular, a surface passivation technique for 

Ge1-xSnx p-MOSFETs has been investigated to fully exploit the benefits of its high 

hole mobility.  Next, a thermally stable self-aligned source/drain (S/D) contact 

metallization scheme for Ge1-xSnx MOSFETs has been developed.  Last, we work 

on achieving high n-type doping concentration for low S/D parasitic resistance 

RS/D of Ge1-xSnx n-MOSFETs.  The major conclusion and contributions of this 

work are elucidated in this section. 
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6.1.1 Ge1-xSnx p-MOSFETs with (NH4)2S Passivation 

Ammonium sulfide [(NH4)2S] passivation for the gate stack of high-

mobility Ge0.958Sn0.042 p-MOSFETs was explored in Chapter 3 [131].  High-

quality single-crystalline Ge0.958Sn0.042 films were epitaxially grown on Ge (100) 

substrate by a solid source molecular beam epitaxy (MBE) system.  Before gate 

dielectric deposition, (NH4)2S passivation was done by treatment with (NH4)2S 

aqueous solution (36%) for 10 minutes at 25 °C.  The (NH4)2S-passivated 

Ge0.958Sn0.042 p-MOSFETs show decent transfer and output characteristics, and 

demonstrate a higher peak effective mobility in comparison with those of other 

(100)-oriented Ge1-xSnx p-MOSFETs reported so far [61]-[63],[91],[159].  This 

passivation technique, which is compatible with a high-k dielectric deposition 

process, is attractive to form high-quality gate stack to explore the full potential of 

Ge1-xSnx at future technology nodes. 

 

6.1.2 Improving Thermal Stability of Ni(GeSn) by Incorporation of Pt 

A thermally stable platinum (Pt) - incorporated stanogermanide 

metallization scheme for Ge1-xSnx transistors was investigated in Chapter 4 [176].  

The incorporation of Pt improves the thermal robustness by suppressing 

agglomeration during the solid-state reaction between Ni and Ge1-xSnx.  The 

surface of Ni/Ge1-xSnx sample becomes rough after annealing at 450 °C observed 

by scanning electron microscopy (SEM) and atomic force microscopy (AFM), 

which is the cause of the sharp increase in sheet resistance from 450 to 500 °C.  In 

contrast, SEM and AFM images show the surface of NiPt/Ge1-xSnx sample is still 

reasonably smooth even after annealing at 500 °C, which is also consistent with 
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the result of sheet resistance measurement.  Only the Pt- incorporated 

stanogermanide film formed at 350 °C is still smooth after a second anneal at 

500 °C for 60 s.  This NiPt-based contact scheme is therefore more attractive than 

the pure Ni-based one for integration in high-performance Ge1-xSnx MOSFETs. 

 

6.1.3 Towards Highly Doped N-type Ge1-xSnx 

Chapter 5 documents the efforts towards highly doped n-type Ge1-xSnx for 

low RS/D of Ge1-xSnx n-MOSFETs.  We first investigated Ge0.976Sn0.024 n+/p 

junction formation using phosphorus ion (P+) implant without heating the 

substrate during the implant [189].  Various rapid thermal annealing (RTA) 

temperatures were investigated to activate the dopants.  Activation temperature as 

low as 400 °C is demonstrated to obtain active doping concentration of 2.1 × 1019 

cm-3 for P+- implanted Ge0.976Sn0.024.  Ge1-xSnx alloy with a high dopant 

concentration and low thermal budget for forming a shallow n+/p junction is a 

promising candidate for future scaled high-mobility transistors. 

In addition, we investigated the effect of P+ implant temperature on the 

material properties of epitaxial Ge1-xSnx alloy and the electrical characteristics of 

the transfer length method (TLM) test structures and n+/p junction diodes [195].  

Implant at elevated temperature of 400 °C was explored to maintain the single-

crystallinity of Ge0.976Sn0.024 during implant and achieve a lower contact resistivity 

after activation at 450 °C as compared with the room-temperature implant.  

Higher phosphorus dopant activation, together with a self-crystalline process, 

makes hot implant a promising technique in future Ge1-xSnx transistor applications. 
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6.2 Future Directions 

In summary, this thesis has developed several exploratory technology 

options to address various challenges in high-mobility Ge1-xSnx MOSFETs.  

Preliminary assessment of the various technology options on gate stack formation 

and source/drain engineering show promising results for realizing high-

performance Ge1-xSnx MOSFETs.  Moving forward, further exploration and more 

thorough analysis has to be dealt with for possible adoption in future CMOS 

technology nodes and high-volume manufacturing.  In addition, more related 

studies need to done to further open up new research and development 

opportunities for Ge1-xSnx MOSFETs.  Some of the suggestions for further 

directions are highlighted in this section. 

 

6.2.1 Cost Effective Integration of Ge1-xSnx on Si Substrates 

Given the maturity of Si manufacturing technology, it is very likely that Si 

will still be used for the overall substrate in mainstream manufacturing [217].  It is 

crucial to incorporate the less abundant and more expensive Ge1-xSnx on a large 

(e.g. 300 mm) Si wafer to reduce the considerable costs associated with 

developing non-Si bulk substrates.  The aspect-ratio-trapping growth technique 

can be utilized for growing high-quality Ge1-xSnx on Si cost effectively for logic 

applications [42]-[44], [73].  This is, however, lacking in the literature.   

Furthermore, it has to be pointed out that there is no confinement of defects along 

the direction of the trench using the aspect-ratio-trapping technique, as the defect 

trapping at the oxide side walls is limited to one direction [73].  Further efforts 

also need to be devoted to solve this problem. 
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6.2.2 Surface Passivation for Ge1-xSnx p-MOSFETs 

For further investigation on (NH4)2S-passivated Ge1-xSnx p-MOSFETs, an 

in-depth analysis of interface trap density energy distribution across the Ge1-xSnx 

band gap could be conducted by the frequency-dependent full conductance 

method [218]-[219].  In addition, alternative surface passivation techniques, which 

have been demonstrated to be promising for high-performance Ge p-MOSFETs, 

can also be explored for Ge1-xSnx p-MOSFETs, such as plasma post oxidation 

[165], high pressure oxidation [220], and passivation with indium aluminum 

phosphide [94]. 

 

6.2.3 Optimization of Pt Composition in Ni(GeSn) for Ge1-xSnx p-MOSFETs 

The incorporation of Pt improves the thermal robustness of the 

stanogermanide as discussed in Chapter 4.  As the molar ratio of Ni to Pt is ∼3, 

the sheet resistance of the stanogermanide that is formed at 350 °C is higher than 

that of pure Ni(GeSn) due to the formation of high-resistive Pt2Ge3.  Therefore, 

the Pt composition should be tuned.  In addition, it is necessary to extract the 

contact resistance between the Pt- incorporated stanogermanide and p+-Ge1-xSnx, 

and a low contact resistance is desired.  Furthermore, the optimized Pt-

incorporated contact scheme should be integrated in Ge1-xSnx p-MOSFETs. 

 

6.2.4 Realizing High-performance Ge1-xSnx n-MOSFETs 

Although Ge1-xSnx n-MOSFETs have recently been demonstrated 

[92],[124],[125],[129], the drive current of the reported Ge1-xSnx n-MOSFETs is 

still low.  There are still opportunities for further improving the performance of 
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Ge1-xSnx n-MOSFETs.  First, it is critical to obtain low RS/D of Ge1-xSnx n-

MOSFETs by achieving high doping concentration for low resistance S/D regions 

using the methods discussed in Chapter 5.  In addition, more novel doping and/or 

activation techniques, such as S/D structure with in situ doping [119], laser 

annealing [121], and co-implantation [221], should be explored.  Last, it is equally 

important to explore innovative gate stack formation technologies on Ge1-xSnx n-

MOSFETs.  The passivation using indium aluminum phosphide, which has been 

recently investigated on high-performance Ge n-MOSFETs [94], is one of the 

most promising technologies to explore. 

 

6.2.5 Strain Techniques to Enhance the Hole Mobility of Ge1-xSnx P-

MOSFETs 

From the 90-nm technology node, strain engineering has been adopted as 

an important performance booster to significantly improve the effective carrier 

mobilities and therefore drive current of MOSFETs [8].  The simulation work 

done by X. Gong et al. [222] shows the induced uniaxial compressive strain 

results in reduced effective mass of Ge1-xSnx for the topmost valence band where 

holes primarily occupy.  In addition, the uniaxial compressive strain increases the 

light-hole (LH) to heavy-hole (HH) band separation, reducing the interband 

scattering for holes.  This indicates the hole mobility can be enhanced by inducing 

compressive strain in the Ge1-xSnx channel.  Consequently, novel strain techniques, 

such as diamond like carbon [223] or phase-change liner stressor [224], should be 

explored to further enhance the hole mobility and thereby drive current of Ge1-

xSnx p-MOSFETs.  
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