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Abstract

The combination of an increasingly complex world, the vast prolif-

eration of data, and the pressing need to stay one step ahead of

competition has sharpened focus on using analytics and optimiza-

tion for decision making (see LaValle et al. (2010)). There is also a

need to computationally exploit the wealth of data available in op-

timization problems by providing a flexible framework for modeling

uncertainty that incorporates distributional information, while pre-

serving the computational tractability for practical implementation.

As motivated by the importance of such a decision making process,

I investigate this procedure under robust optimization and extend

the findings into real applications in health care operations man-

agement. This dissertation integrates the three aspects: theoretical

foundation, software tools and applications. We developed a modular

framework to obtain exact and approximate solutions to a class of

linear optimization problems with recourse with the goal to minimize

the worst-case expected objective over a probability distributions or

ambiguity set. This approach extends to a multistage problem and

improves upon existing variants of linear decision rules when recourse

are present. We also demonstrate the practicability of our framework

by developing a new algebraic modeling package named ROC, a C++

library that implements the techniques developed in theory part. In

addition, we apply this methodology in two hospital applications:

managing elective admission and patient flow control in emergency



department. For the two applications, we utilize the historical data

from Singapore public hospitals in our numerical study. The perfor-

mance of our approach could easily outperform other commonly used

strategies.
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1

Introduction

Decision making under uncertainty is essentially part of our daily life and busi-

ness. In that setting, decision-maker needs to make some decisions even before

observing the real value of underlying uncertain parameters. This process is

non-trivial and costly most times, perhaps punitively to do so. Decision analy-

sis has been deeply explored in economics, psychology, philosophy, mathematics

and statistics in order to make better solutions. Traditionally, people apply the

expected-value paradigm in their objective setting until mid-1960s when Dupa-

cova (1987) pointed the practical limitations of this approach, since it requires

the complete knowledge of underlying probability distribution which is hardly

true for most real world problems: data is not exactly known or measured. This

fact actually motivated the development of a mini-max approach (minimizing the

worst-case scenario), and drew significant attention in stochastic programming

literature, Scarf (1958). However, such approach usually requires finding the

worst-case probability distribution. Moreover, stochastic problems, especially

multistage ones, are notoriously difficult to solve either analytically or numer-

ically. Therefore, it is important to develop an approximate model which is

tractable and scalable when applied in practice. Under this circumstance, oper-

ations researchers look into robust optimization as an alternative way of dealing

with uncertainty which solves the worst case optimality.

1



1. INTRODUCTION

Robust optimization deals with data uncertainty by finding the optimal solu-

tions in a mini-max setting. The origins of robust optimization date back to the

establishment of modern decision theory in 1950s and the use of worst case anal-

ysis as a tool for the treatment of severe uncertainty. A. L. Soyster (1973) first

proposed the model which could guarantee feasibility for all possible instances

within a convex set. In mid 1990s, Ben-Tal and Nemirovski (1998, 1999) further

investigated the tractable robust counterparts of linear, semidefinite and other

convex type optimization problems. They also tried to apply similar method-

ology to solve multistage stochastic programming problems which suffer from

curse of dimensionality.

In either stochastic programming or robust optimization, a key modeling

concept for multi-period problems is the ability to define wait and see or re-

course decision variables. In reality, uncertainty will only be resolved at some

known time in the future. For instance, next years interest rate and next months

rainfall are unknown for now but known with certainty in future. Recourse de-

cision variables means those decisions can be made on a wait and see basis,

after the uncertainty is resolved. It is natural to connect recourse variables with

the underlying uncertain variables or dependability between them. Concern-

ing about the tractability and scalability of approximate stochastic programs,

Ben-Tal et al. (2004) propose an adjustable robust counterpart to address the

dynamic decision making under uncertainty. Chen et al. (2007) also suggested

a tractable approximate approach for solving a class of multistage chance con-

strained stochastic programs. They both applied linear decision rule to ensure

scalability in multistage models. Nevertheless, the resulting model usually yields

very conservative solutions which are far from optimality in the nominal model of

practical interests where partial information of underlying uncertainty is known.

Another issue with linear decision rules is that it cannot always ensure feasibility

even under simple complete recourse or the resulted solution is nonapplicable.

For this reason, Chen et al. (2008) extended the linear decision rule to deflected

2



1.1 Structure of the Dissertation

linear decision rule and segregated linear decision rule to solve such multistage

stochastic problems. The applications includes portfolio selection, inventory

management, network design under uncertainty. But the price is that such deci-

sion rules are difficult and too complicated to implement in reality since we need

to solve numerous sub problems in order to derive the primary one.

In addition, nearly all of these methods have been labor-intensive to trans-

form into solvable project (tractable robust counterparts). To our knowledge,

there is no general-purpose software which is of high performance and scalable

to solve robust optimization problems. Existing toolboxes for robust optimiza-

tion modeling include AIMMS and ROME (Goh and Sim (2009)). For AIMMS,

it only covers limited functionality of robust counterpart transformation and

affinely adjustable variables. For example, it does not include the expected term

or support more complex decision rules if needed. For ROME, it is a algebraic

modeling toolbox built in the MATLAB envirsonment which cannot solve large

scale robust optimization.

Being motivated by those questions encountered above, we aim to investi-

gate more in robust optimization both theoretically and practically, and further

contribute it to decision making under various applications.

1.1 Structure of the Dissertation

This dissertation is organized as three separate topics but coherently bonded.

The first topic is our theoretical foundations in distributionally robust opti-

mization with developed software tool. In the rest two topics, we study two

applications in health care operations management under robust optimization.

We conclude the thesis in the last part.

• Chapter 2: A practically efficient framework for distributionally

robust linear optimization

3



1. INTRODUCTION

We developed a modular framework to obtain exact and approximate so-

lutions to a class of linear optimization problems with recourse with the

goal to minimize the worst-case expected objective over a probability dis-

tributions or ambiguity set. The ambiguity set is specified by linear and

conic quadratic representable expectation constraints and the support set

is also linear and conic quadratic representable. We propose an approach

to lift the original ambiguity set to an extended one by introducing addi-

tional auxiliary random variables. We show that by replacing the recourse

decision functions with generalized linear decision rules that have affine de-

pendency on the uncertain parameters and the auxiliary random variables,

we can obtain good and sometimes tight approximations to a two-stage op-

timization problem. This approach extends to a multistage problem and

improves upon existing variants of linear decision rules. We demonstrate

the practicability of our framework by developing a new algebraic model-

ing package named ROC, a C++ library that implements the techniques

developed in this paper.

• Chapter 3: A Robust Optimization Model for Managing Elective

Admission in Hospital

The admission of emergency inpatients in a hospital is unscheduled, urgent

and takes priority over elective patients, who are usually scheduled several

days in advance. Hospital beds are a critical resource and the manage-

ment of elective admissions by enforcing quotas could reduce incidents of

shortfall. We propose a distributionally robust optimization approach for

managing elective admissions to determine these quotas. Based on an am-

biguous set of probability distributions, we propose an optimized budget

of variation approach that maximizes the level of uncertainty the admis-

sion system can withstand without violating the expected bed shortfall

constraint. We solve the robust optimization model by deriving a second

4



1.1 Structure of the Dissertation

order conic problem (SOCP) equivalent of the model. The proposed model

is tested in simulations based on real hospital admission data and we report

favorable results for adopting the robust optimization models.

• Chapter 4: Patient Flow Scheduling Study in Emergency De-

partment with Targeted Deadlines

Our work examines patient flow control in the Emergency Department

ED which is part of the core functionality units in hospitals. Doctors in

emergency departments usually decide which patient should be seen next

among all new patients and those returning patients whose prescribed tests

are ready to be checked. We analyze doctors decision behaviors in practice

under different workload from a large sample of historical data. In addition,

we propose an optimized scheduling policy with targeted deadlines in terms

of both first wait till the first consultation FW and overall length of stay

LoS in hospital. Our objective is to maximize the percentage of patients

who can meet those deadline constraints while keeping the extreme cases

in a reasonable level. We introduce a doctors effort level (α), which deals

with the uncertain service time in the optimization model. We aim to

minimize this effort level and meanwhile satisfy the deadline constraints.

In the numerical study, we compare 4 different policies: First Come First

Serve FCFS, Shortest Deadline First SDF , Huang et al. (2014) heuristic

policy HeuristicPolicy and our optimized policy OPT . Simulation study

shows our policy outperforms those commonly-used policies in terms of

both FW and LoS easily.

• Chapter 5: Conclusion and Discussion

In this chapter we conclude the thesis and discuss future research.

5



2

A practically efficient

framework for distributionally

robust linear optimization

Real world optimization problems are often confounded by the difficulties of ad-

dressing the issues of uncertainty. In characterizing uncertainty, Knight (1921)

is among the first to establish the distinction of risk, where the probability dis-

tribution of the uncertainty is known, and ambiguity, where it is not. Ambiguity

exists in practice because it is often difficult or impossible to obtain the true

probability distribution due to the possibly lack of available or “good enough”

empirical records associated with the uncertain parameters. However, in norma-

tive decision making, ambiguity is often ignored in favor of risk preferences over

subjective probabilities. Notably, Ellsberg (1961) demonstrates that choice un-

der the presence of ambiguity cannot be reconciled by subjective risk preferences

and his findings are corroborated in later studies including the groundbreaking

research of Hsu et al. (2005).

In classical stochastic optimization models, uncertainties are represented as

random variables with probability distributions and the decision makers opti-

6



mize the solutions according to their risk preferences (see, for instance, Birge

and Louveaux (1997), Ruszczynski and Shaprio (2003)). In particular, risk neu-

tral decision makers prefer solutions that yield optimal expected or average ob-

jectives, which are evaluated based on the given probability distributions that

characterize the uncertain parameters of the models. Hence, classical stochastic

optimization models do not account for ambiguity and subjective probability

distributions are used in these models whenever the true distributions are un-

available.

In recent years, research on ambiguity has garnered considerable research in-

terest in various fields including economics, mathematical finance and operations

research. In the case of ambiguity aversion, robust optimization is a relatively

new approach that deals with ambiguity in mathematical optimization problems.

In classical robust optimization, uncertainty is distribution free described by an

uncertainty set, which is typically in the form of a conic representable bounded

convex set (see Ben-Tal and Nemirovski (1998, 1999, 2000), Bertsimas and Brown

(2009), Bertsimas and Sim (2004), Ghaoui and Lebret (1997), El Ghaoui et al.

(1998)). Both risk and ambiguity should be taken into account in modeling an

optimization problem under uncertainty. From the decision theoretic perspec-

tive, Gilboa and Schmeidler (1989) propose to rank preferences based on the

worst-case expected utility or disutility over an ambiguity set of distributions.

Scarf (1958) is arguably the first to conjure such an optimization model when he

studies a single-product newsvendor problem in which the precise demand distri-

bution is unknown but is only characterized by its mean and variance. Indeed,

such models have been discussed in the context of minimax stochastic optimiza-

tion models (see Breton and EI Hachem (1995), Dupacova (1987), Shapiro and

Kleywegt (2002), Shapiro and Ahmed (2004), Žáčková (1966)), and recently in

the context of distributionally robust optimization models (see Chen and Sim

(2009), Chen et al. (2007), Delage and Ye (2010), Popescu (2007), Wiesemann

et al. (2014), Xu and Mannor (2012)).

7



2. A PRACTICALLY EFFICIENT FRAMEWORK FOR
DISTRIBUTIONALLY ROBUST LINEAR OPTIMIZATION

Many optimization problems involve dynamic decision makings in an envi-

ronment where uncertainties are progressively unfolded in stages. Unfortunately,

such problems often suffer from the “curse of dimensionality” and are typically

computationally intractable (see Ben-Tal et al. (2004), Dyer and Stougie (2006),

Shapiro and Nemirovski (2005)). One approach to circumvent the intractability

is to restrict the dynamic or recourse decisions to being affinely dependent of the

uncertain parameters, an approach known as linear decision rule. Linear decision

rules appear in early literatures of stochastic optimization models but are aban-

doned due to their lack of optimality (see Garstka and Wets (1974)). The interest

in linear decision rules is rekindled by Ben-Tal et al. (2004) in their seminal work

that extends classical robust optimization to encompass recourse decisions. To

further motivate linear decision rules, Bertsimas et al. (2010) establish the opti-

mality of linear decision rules in some important classes of dynamic optimization

problems under full ambiguity. In more general classes of problems, Chen and

Zhang (2009) improve the optimality of linear decision rules by extending lin-

ear decision rules to encompass affine dependency on the auxiliary parameters

that are used to characterize the support set. Chen et al. (2007) also use lin-

ear decision rules to provide tractable solutions to a class of distributionally

robust optimization problems with recourse. Henceforth, variants of linear and

piecewise-linear decision rules have been proposed to improve the performance of

more general classes of distributional robust optimization problems while main-

taining the tractability of these problems. Such approaches include the deflected

and segregated linear decision rules of Chen et al. (2008), the truncated lin-

ear decision rules of See and Sim (2009), and the bideflected and (generalized)

segregated linear decision rules of Goh and Sim (2010). Interestingly, there is

also a revival in decision rules for addressing stochastic optimization problems.

Specifically, Kuhn et al. (2011) propose primal and dual linear decision rules

techniques to solve multistage stochastic optimization problems that would also

quantify the potential loss of optimality as the result of such approximations.

8



Despite the importance of addressing uncertainty in optimization problems,

it is often ignored in practice due to the elevated complexity of modeling these

problems compared to their deterministic counterparts. A useful framework for

optimization under uncertainty should also translate to viable software solutions

that are potentially intuitive to the users and would enable them to focus on mod-

eling issues and relieve them from the burden of algorithm tweaking and code

troubleshooting. Software that facilitates robust optimization modeling have be-

gun to surface in recent years. Existing toolboxes for robust optimization include

YALMIP1, AIMMS2 and ROME3. Of those, ROME and AIMMS have provisions

for decision rules and hence, they are capable of addressing dynamic optimiza-

tion problems under uncertainty. AIMMS is a commercial software package that

adopts the classical robust linear optimization framework where uncertainty is

only characterized by the support set without distributional information. ROME

is an algebraic modeling toolbox built in the MATLAB environment that im-

plements the distributionally robust linear optimization framework of Goh and

Sim (2010). Despite the polynomial tractability, the reformulation approach of

Goh and Sim (2010) can be rather demanding, which could limit the scalability

potentially needed for addressing larger sized problems.

In this chapter, we develop a new modular framework to obtain exact and

approximate solutions to a class of linear optimization problems with recourse

with the goal to minimize the worst-case expected objective over an ambiguity

set of distributions. Our contributions to this paper are as follows:

1. We propose to focus on a standard ambiguity set where the family of dis-

tributions are characterized by linear and conic representable expectation

constraints and the support set is also linear and conic representable. As

we will show, the standard ambiguity set has important ramifications on

the tractability of the problem.

2. We adopt the approach of Wiesemann et al. (2014) to lift the original am-

9



2. A PRACTICALLY EFFICIENT FRAMEWORK FOR
DISTRIBUTIONALLY ROBUST LINEAR OPTIMIZATION

biguity set to an extended one by introducing additional auxiliary random

variables. We show that by replacing the recourse decision functions with

generalized linear decision rules that have affine dependency on the uncer-

tain parameters and the auxiliary random variables, we can obtain good

and sometimes tight approximations to a two-stage optimization problem.

This approach is easy to compute, extends to a multistage problem and

improves upon existing variants of linear decision rules developed in Chen

and Zhang (2009), Chen et al. (2008), Goh and Sim (2010), See and Sim

(2009).

3. We demonstrate the practicality of our framework by developing a new

algebraic modeling package named ROC, a C++ library that implements

the techniques developed in this paper.

Notations. Given a N ∈ N, we use [N ] to denote the set of running indices,

{1, . . . , N}. We generally use bold faced characters such as x ∈ <N and A ∈

<M×N to represent vectors and matrixes. We use [x]i or xi to denote the i

element of the vector x. We use (x)+ to denote max{x, 0}. Special vectors

include 0, 1 and ei which are respectively the vector of zeros, the vector of ones

and the standard unit basis vector. Given N,M ∈ N, we denote RN,M as the

space of all measurable functions from <N to <M that are bounded on compact

sets. For a proper cone K ⊆ <L (i.e., a closed, convex and pointed cone with

nonempty interior), we use the relations x �K y or y �K x to indicate that y−

x ∈ K. Similarly, the relations x ≺K y or y �K x imply that y−x ∈ intK, where

intK represents the interior of the cone K. Meanwhile, K∗ is the dual cone of K

with K∗ = {y : y′x ≥ 0,x ∈ K}. We use tilde to denote an uncertain or random

parameter such as z̃ ∈ <I without associating it with a particular probability

distribution. We denote P0(<I) as the set of all probability distributions on

<I . Given a random vector z̃ ∈ <I with probability distribution P ∈ P0(<I)

10



2.1 A two stage distributionally robust optimization problem

and function g ∈ RI,P , we denote EP(g(z̃)) as the expectation of the random

variable, g(z̃) over the probability distribution P. Similarly, for a set W ⊆ <I ,

P(z̃ ∈ W) represents the probability of z̃ being in the set W evaluated on the

distritbution P. Suppose Q ∈ P0(<I × <L) is a joint probability distribution

of two random vectors z̃ ∈ <I and ũ ∈ <L, then
∏
z̃ Q ∈ P0(<I) denotes

the marginal distribution of z̃ under Q. Likewise, for a family of distributions,

G ⊆ P0(<I ×<L),
∏
z̃ G represents the set of marginal distributions of z̃ under

all Q ∈ G, i.e.,
∏
z̃ G = {

∏
z̃ Q : Q ∈ G}.

2.1 A two stage distributionally robust optimization

problem

In this section, we focus on a two-stage optimization problem where the first

stage or here-and-now decision is a vector x ∈ <N1 chosen over the feasible

set X1. The cost incurred during the the first stage in association with the

decision x is deterministic and given by c′x, c ∈ <N1 . In progressing to the

next stage, a vector of uncertain parameters z̃ ∈W ⊆ <I1 is realized; thereafter,

we could determine the cost incurred at the second stage. Similar to a typical

stochastic programming model, for a given decision vector, x and a realization

of the uncertain parameters, z ∈ W, we evaluate the second stage cost via the

following linear optimization problem,

Q(x, z) = min d′y

s.t. A(z)x+By ≥ b(z)

y ∈ <N2

(2.1)

Here, A ∈ RI1,M×N1 , b ∈ RI1,M are functions that maps from the vector z ∈

W to the input parameters of the linear optimization problem. Adopting the

common assumptions in the robust optimization literature, these functions are

11
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affinely dependent on z ∈ <I1 and are given by,

A(z) = A0 +
∑
k∈[I1]

Akzk, b(z) = b0 +
∑
k∈[I1]

bkzk,

with A0,A1, ...,AI1 ∈ <M×N1 and b0, b1, ..., bI1 ∈ <M . The matrix B ∈ <M×N2

and the vector d ∈ <N2 are unaffected by the uncertainties, which corresponds

to the case of fixed-recourse as defined in stochastic programming literatures.

The second stage decision (wait-and-see) is represented by the vector y ∈

<N2 , which is easily determined by solving a linear optimization problem after

the uncertainty is realized. However, whenever the second stage problem is in-

feasible, we have Q(x, z) =∞, and the first stage solution, x would be rendered

meaningless. As in the case of a standard stochastic programming model, x has

to be feasible in X1 ∩X2, where

X2 = {x ∈ <N1 : Q(x, z) <∞ ∀z ∈W}.

Unfortunately, checking the feasibility of X2 is already NP-complete (see Ben-

Tal et al. (2004)), hence, for simplicity, we focus on problems with relatively

complete recourse, i.e.,

Assumption 1.

X1 ⊆ X2.

In the context of stochastic programming, complete recourse refers to the

characteristics of the recourse matrix, B such that for any t ∈ <M , there exists

y ∈ <N2 such that By ≥ t. Therefore, under complete recourse we have X2 =

<N1 .

12



2.1 A two stage distributionally robust optimization problem

Model of uncertainty

Adopting the standardized framework in Wiesemann et al. (2014), we assume

that the probability distribution of z̃ belongs to an ambiguity set, F as follows

F =


P ∈ P0

(
<I1
)

:

z̃ ∈ <I1

EP(Gz̃) = µ

EP(g(z̃)) �K0 σ

P(z̃ ∈W) = 1


(2.2)

with G ∈ <L1×I1 , µ ∈ <L1 , σ ∈ <L2 , g ∈ RI1,L2 and K0 ⊆ <L2 . The function g

is such that the set

G =
{

(z,u) ∈ <I1 ×<I2 : g(z) �K0 u
}

is conic representable. The support set W is conic representable, and we define

the set

W̄ = {(z,u) ∈ G : z ∈W} , (2.3)

such that for all z ∈ W, we have (z, g(z)) ∈ W̄. In particular, the explicit

formulation of W̄ is given by

W̄ =
{

(z,u) ∈ <I1 ×<I2 : ∃v ∈ <I3 , (z,u,v) ∈ Ŵ
}
, (2.4)

where we define Ŵ as the extended support set,

Ŵ =
{

(z,u,v) ∈ <I1 ×<I2 ×<I3 : Cz +Du+Ev �K h
}
,

with C ∈ <L3×I1 , D ∈ <L3×I2 , E ∈ <L3×I3 , h ∈ <L3 and K ⊆ <L3 being a

proper cone. The vector v is the new auxiliary variables associated with the

conic reformulation. Hence, we can partition [I3] into two disjoint subsets I3, Ī3,

I3∪ Ī3 = [I3] such that vi, i ∈ I3 are the auxiliary variables associated the repre-

13
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sentation of G while vi, i ∈ Ī3 are those associated with the support set W. Note

that for all z ∈W there exists v ∈ <I3 such that (z, g(z),v) ∈ Ŵ. Correspond-

ingly, there also exists a function, ν ∈ RI1,I3 that satisfies (z, g(z),ν(z)) ∈ Ŵ

for all z ∈W. We provide an explicit example as follows:

Example 2.1.1. The extended support set for

W =
{
z ∈ <I1 : ‖z‖1 ≤ Γ, ‖z‖∞ ≤ 1

}
G =

{
(z,u) ∈ <I1 ×<4 : g(z) ≤ u

}
g1(z) = |a1

′z|

g2(z) = (a2
′z)2

g3(z) = ((a3
′z)+)3

g4(z) = min{w′v : Hv �K f + Fz}

is given by

Ŵ =




z,u,



v1

v2

v3

v4




∈ <I1 ×<4 ×<I3 :

a1z ≤ u1,−a1z ≤ u1√
((a2

′z)2 +
(
u2−1

2

)2 ≤ u2+1
2

v1 ≥ 0, v1 ≥ a3
′z√

v2
1 +

(
v2−1

2

)2 ≤ v2+1
2√

v2
2 +

(
v1−u3

2

)2 ≤ v1+u3
2

w′v3 ≤ u4

Hv3 �K f + Fz

v4 ≥ z,v4 ≥ −z

1′v4 ≤ Γ,−1 ≤ z ≤ 1


Given z ∈ W, we can verify that u1 = |a1

′z|, u2 = (a2
′z)2, u3 = ((a3

′z)+)3,

u4 = min{d′v : Hv ≥ f + Fz}, v1 = (a3z)+, v2 = ((a3z)+)2, v3 =

arg min{d′v : Hv ≥ f + Fz}, v4 = (|z1|, . . . , |zI1 |)′ would be feasible in

the extended support set Ŵ. Moreover, v1, v2,v3 are those associated with the

set G, while v4 is related to the support set, W.

14



2.1 A two stage distributionally robust optimization problem

We refer interested readers to Wiesemann et al. (2014) for more information

of the expressibility of the ambiguity set. While the ambiguity set is general

to include semidefinite constraints, which can capture descriptive statistics such

as covariance, we may choose to work with ambiguity sets that are linear or

second order conic representation as they will lead to models that can be solved

efficiently using state-of-the-art commercial solvers such as CPLEX and Gurobi.

We will leave these explorations to future research as the purpose of this paper

is to provide the optimization framework as well as the software that we could

use to facilitate future studies.

For computational reasons, we impose the following Slater’s like conditions:

Assumption 2. There exists (z†,u†,v†) ∈ <I1 ×<I2 ×<I3 such that

Gz† = µ

u† < σ

Cz† +Du† +Ev† ≺K h.

Hence, (z†,u†,v†) ∈ intŴ.

Given the ambiguity set, F, we assume that the decision maker is ambiguity

averse and the second stage cost is evaluated based on the worst case expectation

over the ambiguity set given by

β(x) = sup
P∈F

EP (Q(x, z̃)) . (2.5)

Corresponding, the here-and-now decision is determined by minimizing the sum

of the deterministic first stage cost and the worst-case expected second stage

cost over the ambiguity set as follows:

min c′x+ β(x)

s.t. x ∈ X1.
(2.6)
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More generally, the second stage can involve a collection of K attributes βk(x),

k ∈ [K], each having similar structure as β(x) and the generalized model we

solve is as follows:

Z∗ = min c′x+ β(x)

s.t. ck
′x+ βk(x) ≤ ρk ∀k ∈ [K]

x ∈ X1,

(2.7)

with ck ∈ <N1 , k ∈ [K] and ρ ∈ <K . For simplicity, we will focus on deriving

the exact reformulation of β(x), which could then be integrated in Problem

(2.6) to obtain the optimum here-and-now decision, x ∈ X1. Naturally, similar

reformulations can be extended to derive the epigraphs of βk(x), k ∈ [K], which

could be incorporated into Problem (2.7) to obtain a tractable optimization

problem.

Observe that Problem (2.5) involves optimization of probability measures

over a family of distributions and hence, it is not a finite dimensional optimiza-

tion problem. Motivated from Wiesemann et al. (2014), we define the extended

ambiguity set, G which involves auxiliary random variables over the extended

support set Ŵ as follows:

G =


Q ∈ P0

(
<I1 ×<I2 ×<I3

)
:

(z̃, ũ, ṽ) ∈ <I1 ×<I2 ×<I3

EQ(Gz̃) = µ

EQ(ũ) ≤ σ

Q
(

(z̃, ũ, ṽ) ∈ Ŵ
)

= 1


. (2.8)

Proposition 1. The ambiguity set F in (2.2) is equivalent to the set of marginal

distributions of z̃ under Q, for all Q ∈ G, i.e.,

F =
∏
z̃

G.
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2.1 A two stage distributionally robust optimization problem

In particular, for a function ν ∈ RI1,I3 satisfying (z, g(z),ν(z)) ∈ Ŵ for all z ∈

W and P ∈ F, the probability distribution Q ∈ P0

(
<I1 ×<I2 ×<I3

)
associated

with the random variable (z̃, ũ, ṽ) ∈ <I1 ×<I2 ×<I3 such that

(z̃, ũ, ṽ) = (z̃, g(z̃),ν(z̃)) P-a.s.

also lies in G.

Proof. The proof is rather straightforward and a variant is presented in Wiese-

mann et al. (2014). We first show that
∏
z̃ G ⊆ F. Indeed, for any Q ∈ G, and

P =
∏
z̃ Q, we have EP(Gz̃) = EQ(Gz̃) = µ. Moreover, since Q ((z̃, ũ, ṽ) ∈

Ŵ) = 1, we have Q (z̃ ∈W) = 1 and Q(g(z̃) ≤ ũ) = 1. Hence, P(z̃ ∈ W) = 1

and

EP(g(z̃)) = EQ (g(z̃)) ≤ EQ(ũ) ≤ σ.

Conversely, suppose P ∈ F, we observe that P
(

(z̃, g(z̃)) ∈ Ŵ
)

= 1. Since

(z, g(z),ν(z)) ∈ Ŵ for all z ∈W, we can then construct a probability distribu-

tion Q ∈ P0

(
<I1 ×<I2 ×<I3

)
associated with the random variable (z̃, ũ, ṽ) ∈

<I1 ×<I2 ×<I3 so that

(z̃, ũ, ṽ) = (z̃, g(z̃),ν(z̃)) P-a.s.

Observe that

EQ(ũ) = EP (g(z̃)) ≤ σ

and

Q
(

(z̃, ũ, ṽ) ∈ Ŵ
)

= 1.

Hence, F ⊆
∏
z̃ G.
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Exact reformulation

Before we derive an exact reformulation for evaluating β(x), x ∈ X1, we need to

compute the worst case expectation of a piecewise linear convex function.

Proposition 2. Let U ∈ RI1,1 be a piecewise linear convex function given by

U(z) = max
p∈[P ]
{ζp′z̃ + ζ0

p}

for some ζp ∈ <I1 , ζ0
p ∈ <, p ∈ [P ]. Suppose

β∗ = sup
P∈F

EP(U(z̃))

is finite, then it can be expressed as a standard robust counterpart problem

β∗ = min r + s′µ+ t′σ

s.t. r + s′(Gz) + t′u ≥ U(z) ∀(z,u,v) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

(2.9)

or equivalently

β∗ = min r + s′µ+ t′σ

s.t. r ≥ πp′h+ ζ0
p ∀p ∈ [P ]

C ′πp = ζp −G′s ∀p ∈ [P ]

D′πp = −t ∀p ∈ [P ]

E′πp = 0, ∀p ∈ [P ]

πp �K∗ 0 ∀p ∈ [P ]

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

πp ∈ <L3 ∀p ∈ [P ].

(2.10)

Proof. Note that a more general result can be found in Wiesemann et al.
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2.1 A two stage distributionally robust optimization problem

(2014). We present an elementary proof, which would be beneficial to readers

who may not be familiar with such transformation. From Proposition 1, we have

equivalently

β∗ = sup
P∈F

EP

(
max
p∈[P ]
{ζp′z̃ + ζ0

p}
)

= sup
Q∈G

EP

(
max
p∈[P ]
{ζp′z̃ + ζ0

p}
)
.

By weak duality (referring to Isii (1962)), we have the following semi-infinite

optimization problem

β∗ ≤ β∗1 = inf r + s′µ+ t′σ

s.t. r + s′(Gz) + t′u ≥ max
p∈[P ]
{ζp′z + ζ0

p} ∀(z,u,v) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2 ,

where r ∈ <, s ∈ <L1 , t ∈ <L2 are the dual variables corresponding to the

expectation constraints of G. This is also equivalent to

β∗1 = inf r + s′µ+ t′σ

s.t. r ≥ sup
(z,u,v)∈Ŵ

{
(ζp −G′s)′z − t′u+ ζ0

p

}
∀p ∈ [P ]

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2 ,

(2.11)

By weak conic duality (see, for instance, Ben-Tal and Nemirovski (2001a)), we
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have for all p ∈ [P ],

sup
(z,u,v)∈Ŵ

{
(ζp −G′s)′z − t′u+ ζ0

p

}
≤ inf πp

′h+ ζ0
p

s.t. C ′πp = ζp −G′s

D′πp = −t

E′πp = 0

πp �K∗ 0

πp ∈ <L3 p ∈ [P ],

where πp ∈ <L3 ,∀p ∈ [P ] are the dual variables associated with the conic con-

stants in Ŵ. Hence, using standard robust counterpart techniques, we substitute

the dual formulations in Problem (2.11) to yield the following compact conic op-

timization problem

β∗2 = inf r + s′µ+ t′σ

s.t. r ≥ πp′h+ ζ0
p ∀p ∈ [P ]

C ′πp = ζp −G′s ∀p ∈ [P ]

D′πp = −t ∀p ∈ [P ]

E′πp = 0 ∀p ∈ [P ]

πp �K∗ 0 ∀p ∈ [P ]

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

πp ∈ <L3 ∀p ∈ [P ].

(2.12)

Observe that β∗ ≤ β∗1 ≤ β∗2 , and our goal is to establish strong duality by

showing β∗2 ≤ β∗. Then we will next approach Problem (2.12) by taking the
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dual, which is

β∗3 = sup
∑
p∈[P ]

(
ζ0
pαp + ζp

′z̄p
)

s.t.
∑
p∈[P ]

αp = 1

αp ≥ 0 ∀p ∈ [P ]∑
p∈[P ]

Gz̄p = µ

∑
p∈[P ]

ūp ≤ σ

Cz̄p +Dūp +Ev̄p �K αph ∀p ∈ [P ]

αp ∈ <, z̄p ∈ <I1 , ∀p ∈ [P ]

ūp ∈ <I2 , v̄p ∈ <I3 ∀p ∈ [P ].

(2.13)

Suppose (z†,u†,v†) ∈ <I1 × <I2 × <I3 satisfy the conditions in Assumption 2,

then we can construct a strictly feasible solution

αp =
1

P
, z̄p =

z†

P
, ūp =

u†

P
, v̄p =

v†

P
,

for all ∀p ∈ [P ]. Hence, since Problem (2.13) is strictly feasible and, as we

will subsequently show, is also bounded from above, strong duality holds and

β∗2 = β∗3 . Moreover, there exists a sequence of strictly feasible or interior solutions

{
(αkp, z̄

k
p, ū

k
p, v̄

k
p)p∈[P ]

}
k≥0

such that

lim
k→∞

∑
p∈[P ]

(
ζ0
pα

k
p + ζp

′z̄kp

)
= β∗3 .

Observe that for all k, αkp > 0,
∑
p∈[P ]

αkp = 1 and we can construct a sequence

of discrete probability distributions {Qk ∈ P0

(
<I1 ×<I2 ×<I3

)
}k≥0 on random
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variable (z̃, ũ, ṽ) ∈ <I1 ×<I2 ×<I3 such that

Qk

(
(z̃, ũ, ṽ) =

(
z̄kp
αkp
,
ūkp
αkp
,
v̄kp
α∗p

))
= αkp ∀p ∈ [P ].

Observe that,

EQk(Gz̃) = µ,EQk(ũ) ≤ σ,Qk((z̃, ũ, ṽ) ∈ Ŵ) = 1,

and hence Qk ∈ G for all k. Moreover,

β∗3 = lim
k→∞

∑
p∈[P ]

(
ζ0
pα

k
p + ζp

′z̄kp

)
= lim

k→∞

∑
p∈[P ]

αkp

(
ζ0
p + ζp

′ z̄
k
p

αkp

)

≤ lim
k→∞

∑
p∈[P ]

αkp

(
max
q∈[P ]

{
ζ0
q + ζq

′ z̄
k
p

αkp

})

= lim
k→∞

EQk

(
max
q∈[P ]
{ζ0
q + ζq

′z̃}
)

≤ sup
Q∈G

EQ(U(z̃))

= β∗.

Hence, β∗ ≤ β∗1 ≤ β∗2 = β∗3 ≤ β∗, and strong duality holds. Since β∗ is finite,

Problem (2.13) is bounded from above and hence, Problem (2.12) also solvable.

Noting that Q(x, z), x ∈ X1 is also a piecewise linear convex function of z, we

can easily extend Proposition 2 so that the function β(x) can be evaluated and

integrated in epigraphical form to solve Problem (2.7) as a standard optimization

problem.

Theorem 1. Let {p1, ...,pP } be the set of all extreme points of the polyhedra

P =

p ∈ <M :
B′p = d

p ≥ 0

 .
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For a given subset of extreme points indices, S ⊆ [P ], we define

β
S
(x) = min r + s′µ+ t′σ

s.t. r ≥ πi′h+ pi
′b0 − pi′A0x ∀i ∈ S

C ′πi =


p′i(b

1 −A1x)

...

p′i(b
I1 −AI1x)

−G′s ∀i ∈ S

D′πi = −t ∀i ∈ S

E′πi = 0 ∀i ∈ S

πi �K∗ 0 ∀i ∈ S

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

πi ∈ <L3 ∀i ∈ S.

(2.14)

If β(x), x ∈ X1 is finite, then

β
S
(x) ≤ β

[P ]
(x) = β(x).

Proof. From strong linear optimization duality, we can express Problem (2.1)

as

Q(x, z) = max p′(b(z)−A(z)x)

s.t. p ∈ P.
(2.15)

Since Q(x, z) is finite for all x ∈ X1 (Assumption 1), Problem (2.15) has an

extreme point optimum solution for all x ∈ X1. Hence, we can express Problem

(2.15) explicitly as a piecewise linear convex function of z as follows:

Q(x, z) = max
i∈[P ]
{pi′(b(z)−A(z)x)},

for all x ∈ X1. Since β(x) is finite, we can use Theorem 1 to derive the exact

reformulation for S = [P ], to achieve β(x) = β
[P ]

(x). It is trivial to see that if

23



2. A PRACTICALLY EFFICIENT FRAMEWORK FOR
DISTRIBUTIONALLY ROBUST LINEAR OPTIMIZATION

S1 ⊆ S2 ⊆ [P ], then

β
S1

(x) ≤ β
S2

(x) ≤ β
[P ]

(x).

Theorem 1 suggests an approach to compute the exact value of β(x), which

may not be a polynomial sized problem due to possibly exponential number of

extreme points. Unfortunately, the ”separation problem” associated with finding

the extreme point involves solving the following bilinear optimization problem,

max
p∈P

 sup
(z,u)∈W̄





p′(b1 −A1x)

...

p′(bI1 −AI1x)

−G′s

′

z + p′(b0 −A0x)− t′u




which is generally intractable. Nevertheless, Theorem (1) provides an approach

to determine the lower bound of β(x), which might be useful to determine the

quality of the solution. We will next show how we can tractably compute the

upper bound of β(x) via linear decision rule approximations.

2.2 Generalized linear decision rules

Observe that any function, y ∈ RI1,N2 satisfying

A(z)x+By(z) ≥ b(z) ∀z ∈W

would be an upper bound of β(x), x ∈ X1, i.e.,

β(x) ≤ sup
P∈F

EP(d′y(z̃)).

Moreover, equality is achieved if

y(z) ∈ arg min{d′y : A(z)x+By ≥ b(z)}
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for all z ∈ W. Hence, we can express β(x), x ∈ X1 as a minimization problem

over all measurable functions as follows:

β(x) = min sup
P∈F

EP(d′y(z̃))

s.t. A(z)x+By(z) ≥ b(z) ∀z ∈W

y ∈ RI1,N2 .

(2.16)

Unfortunately, Problem (2.16) is generally an intractable optimization problem

as there could potentially be infinite number of constraints and variables. An

upper bound of β(x) could be computed tractably by restricting y to a smaller

class of measurable functions that can be characterized by a polynomial number

of decision variables such as those that are affinely dependent on z or so called

linear decision rules as follows:

y(z) = y0 +
∑
j∈[I1]

yjzj ,

for some y0,yj ∈ <N2 , j ∈ [I1]. However, the following example shows that

linear decision rule may even be infeasible in problems with complete recourse.

Example 2.2.1. Consider the following complete recourse problem,

β = min sup
P∈F

EP(y(z̃))

s.t. y(z) ≥ z ∀z ∈ <

y(z) ≥ −z ∀z ∈ <

y ∈ R1,1

(2.17)

where

F =

{
P ∈ P0(<) : EP(|z̃|) ≤ 1

}
.

Clearly, y(z) = |z| is the optimal decision rule that yields β = 1. However, under

a linear decision rule here (i.e., y(z) = y0 + y1z for some y0, y1 ∈ <, we would
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encounter the following infeasibility issue

y0 + y1z ≥ z ∀z ∈ <

y0 + y1z ≥ −z ∀z ∈ <.
(2.18)

Using the extended ambiguity set G, we propose the following generalized

linear decision rule to encompass the auxiliary random variables ũ and ṽ as well.

For given subsets S1 ⊆ [I1], S2 ⊆ [I2], S3 ⊆ [I3], we define the following space of

affine functions,

LN (S1, S2, S3) =

y : <I1 ×<I2 ×<I3 → <N
∣∣∣ ∃y0,y1

i ,y
2
j ,y

3
k ∈ <N , ∀i ∈ S1, j ∈ S2, k ∈ S3 :

y(z,u,v) = y0 +
∑
i∈S1

y1
i zi +

∑
j∈S2

y2
juj +

∑
k∈S3

y3
kvk

 .

This decision rule generalizes the traditional linear decision rules that depends

only on the underlying uncertainty, z̃, in which case, we have S2 = S3 = ∅. The

segregated and extended linear decision rules found in Chen and Zhang (2009),

Chen et al. (2008), Goh and Sim (2010) are special cases of having S3 ⊆ Ī3,

which incorporate auxiliary variables of the support set in the generalized linear

decision rule. Based in the generalized linear decision rules, we obtain an upper

bound of β(x), x ∈ X1 as follows:

β̄(S1,S2,S3)(x) = min sup
Q∈G

EQ(d′y(z̃, ũ, ṽ))

s.t. A(z)x+By(z,u,v) ≥ b(z) ∀(z,u,v) ∈ Ŵ

y ∈ LN2(S1, S2, S3).

(2.19)

As the linear decision rule incorporates more auxiliary random variables, the

quality of the bound improves, albeit at the expense of increased model size.

Proposition 3. Given x ∈ X1, and S1 ⊆ S̄1 ⊆ [I1], S2 ⊆ S̄2 ⊆ [I2], and
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S3 ⊆ S̄3 ⊆ [I3], we have

β(x) ≤ β̄([I1],[I2],[I3])(x) ≤ β̄(S̄1,S̄2,S̄3)(x) ≤ β̄(S1,S2,S3)(x).

Proof. The proof is trivial and hence omitted.

Proposition 4. For x ∈ X1, Problem (2.19) is equivalent to the following robust

counterpart problem,

β̄(S1,S2,S3)(x) = min r + s′µ+ t′σ

s.t. r + s′(Gz) + t′u ≥ d′y(z,u,v) ∀(z,u,v) ∈ Ŵ

A(z)x+By(z,u,v)) ≥ b(z) ∀(z,u,v) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

y ∈ LN2(S1, S2, S3),

(2.20)
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or explicitly as

β̄(S1,S2,S3)(x) = min r + s′µ+ t′σ

s.t. r − d′y0 ≥ π′h

[C ′π]i = d′y1
i − [G′s]i ∀i ∈ S1

[C ′π]i = −[G′s]i ∀i ∈ [I1] \ S1

[D′π]j = d′y2
j − [t]j ∀j ∈ S2

[D′π]j = −[t]j ∀j ∈ [I2] \ S2

[E′π]k = d′y3
k ∀k ∈ S3

[E′π]k = 0 ∀k ∈ [I3] \ S3[
A0x+By0 − b0

]
l
≥ τ ′lh ∀l ∈ [M ]

[C ′τ l]i = [bi −Aix−By1
i ]l ∀l ∈ [M ],∀i ∈ S1

[C ′τ l]i = [bi −Aix]l ∀l ∈ [M ],∀i ∈ [I1] \ S1

[D′τ l]j = [−By2
j ]l ∀l ∈ [M ],∀j ∈ S2

[D′τ l]j = 0 ∀l ∈ [M ],∀j ∈ [I2] \ S2

[E′τ l]k = [−By3
k]l ∀l ∈ [M ],∀k ∈ S3

[E′τ l]k = 0 ∀l ∈ [M ],∀k ∈ [I3] \ S3

π �K∗ 0

τ l �K∗ 0 ∀l ∈ [M ]

r ∈ <, s ∈ <L1 , t ∈ <L2

π, τ l ∈ <L3 ,∀l ∈ [M ].

(2.21)

Proof. The proof follows from Proposition 2 and hence omitted.

In Example 2.2.1, we show that a linear decision rule that depends solely

on z̃ may become infeasible if the support is unbounded. Suppose, the absolute

deviations of z̃ are bounded, we show that there exists a generalized linear

decision rule involving the axillary random variable ũ that could resolve the

infeasibility issue.

Theorem 2. Suppose Problem (2.19) has complete recourse, then exists a gen-
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eralized linear decision rule

y ∈ LN (∅, [I1], ∅),

that is feasible in Problem (2.20) for the following family of distributions with

bounded absolute deviations

F1 =
{
P ∈ P0(<I1) : EP(|zi|) ≤ σi ∀i ∈ [I1]

}
, σ > 0.

Proof. The extended ambiguity set associate with F1 is

G1 =

Q ∈ P0(<I1 ×<I1) :
EQ(ũ) ≤ σ

Q((z̃, ũ) ∈ Ŵ) = 1

 ,

in which the extended support set is Ŵ = {(z,u) ∈ <I1×<I1 : u ≥ z,u ≥ −z}.

The linear decision rule y ∈ LN (∅, [I1], ∅) is given by

y(u) = y0 +
∑
i∈[I1]

y2
iui.

Using these parameters, we need to show that the linear decision rule y(u) is

feasible in the following problem,

min r + t′σ

s.t. r + t′u ≥ d′y0 +
∑
i∈I1

d′y2
iui ∀(z,u) ∈ Ŵ

By0 +
∑
i∈I1

By2
iui ≥ b0 −A0x+

∑
i∈I1

(bi −Aix)zi ∀(z,u) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

y(u) = y0 +
∑
i∈I1

y2
iui

y0,y2
i ∈ <N2 i ∈ [I1].

(2.22)
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Since B is complete recourse matrix, there exists ȳ0, ȳ2
i i ∈ [I1], such that

Bȳ0 ≥ b0 −A0x,

Bȳ2
i ≥ (bj −Ajx), Bȳ2

i ≥ −(bi −Aix) ∀i ∈ [I1].

Observe that given any a ∈ <, b ∈ <I1

x+ y′u ≥ a+ b′z ∀(z,u) ∈ Ŵ

if x ≥ a, and yi ≥ |bi|, i ∈ [I1]. Hence, a feasible solution for Problem (2.22)

would be

r = d′ȳ0

ti = max{d′ȳi, 0} ∀i ∈ [I1]

yj = ȳj ∀j ∈ {0} ∪ [I1]

The generalized linear decision rule achieves the exact value of β(x) for the

following instance.

Theorem 3. For a complete recourse problem with N2 = 1 and finite β(x), we

have

β(x) = β̄([I1],[I2],∅)(x).

Proof. For N2 = 1, the complete recourse matrix B ∈ <M×1 must satisfy either

B > 0 or B < 0. Observe that the problem

Q(x, z) = min dy

s.t. A(z)x+By ≥ b(z) ∀(z,u,v) ∈ Ŵ

y ∈ <,

is unbounded below whenever dB < 0. Since β(x) is finite and the second stage

decision variable y is unconstrained, we can assume without loss of generality

30



2.2 Generalized linear decision rules

that B > 0 and d ≥ 0. In which case,

Q(x, z) = d max
i∈[M ]

{
[b(z)−A(z)x]i

[B]i

}
.

Hence, applying Proposition 2, we have

β(x) = min d(r + s′ + t′σ)

s.t. r + s′(Gz) + t′u ≥ [b(z)−A(z)x]i
[B]i

∀i ∈ [M ], ∀(z,u,v) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2 .

(2.23)

The solution derived under generalized linear decision rule is

β̄([I1],[I2],∅)(x) = min r + s′ + t′σ

s.t. r + s′(Gz) + t′u ≥ dy(z,u) ∀(z,u,v) ∈ Ŵ

A(z)x+By(z,u) ≥ b(z) ∀(z,u,v) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

y ∈ L([I1], [I2], ∅),

or equivalently

β̄([I1],[I2],∅)(x) = min r + s′ + t′σ

s.t. r + s′(Gz) + t′u ≥ d(y0 + y1′z + y2′u) ∀(z,u,v) ∈ Ŵ

(y0 + y1′z + y2′u) ≥ [b(z)−A(z)x]i
[B]i

∀i ∈ [M ],∀(z,u,v) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

y0 ∈ <,y1 ∈ <I1 ,y2 ∈ <I2 .
(2.24)

Let (r†, s†, t†) be a feasible solution of Problem (2.23). We can construct a
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feasible solution (r, s, t, y0,y1,y2) to Problem (2.24) by letting

y0 = r,y1 = G′s,y2 = t, r = dr†, s = ds†, t = dt†,

which yields the same objective as Problem (2.23). Hence, β̄([I1],[I2],φ)(x) ≤ β(x)

and equality is achieved from Proposition 3.

Improvement over deflected linear decision rules

Chen et al. (2008), Goh and Sim (2010) propose a class of of piecewise linear

decision rules known as deflected linear decision rules which can also circumvent

the issues of infeasibility in complete recourse problems. The approach requires

to solve a set of subproblems given by

f∗i = min d′y

s.t. By = q

q ≥ ei

y ∈ <N2 , q ∈ <M ,

(2.25)

for all i ∈ [M ], which are not necessarily feasible optimization problems. Let

M ⊆ [M ] denote the subset of indices in which their corresponding subproblems

are feasible, i.e., M = {i ∈ [M ] : f∗i <∞}, and M̄ = [M ]\M. Correspondingly,

let (ȳi, q̄i) be the optimal solution of Problem (2.25) for all i ∈ M. Here,

f∗i = d′ȳi ≥ 0, i ∈ M is assumed or otherwise, Q(x, z) would be unbounded

from below. The solution to deflected linear decision is obtained by solving the
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following optimization problem,

β̄DLDR(x) = min sup
P∈F

EP(d′y(z̃)) +
∑
i∈M

f∗i sup
P∈F

EP((−qi(z̃))+)

s.t. A(z)x+By(z) = b(z) + q(z) ∀z ∈W

qi(z) ≥ 0 ∀i ∈ M̄, ∀z ∈W

y ∈ LN2([I1], ∅, ∅)

q ∈ LM ([I1], ∅, ∅).
(2.26)

Suppose (y∗, q∗) is the optimal solution of Problem (2.26), the corresponding

deflected linear decision rule is given by

yDLDR(z) = y∗(z) +
∑
i∈M

ȳi((−q∗i (z))+).

Chen et al. (2008), Goh and Sim (2010) show that yDLDR(z̃) is a feasible solution

of Problem (2.16). Moreover,

sup
P∈F

EP
(
d′yDLDR(z̃)

)
≤ β̄DLDR(x) ≤ β̄([I1],∅,∅)(x).

Our next result shows that the generalized linear decision rule can potentially

improve the bound provided by the deflected linear decision rule.

Proposition 5.

β̄([I1],[I2],∅)(x) ≤ β̄DLDR(x).

Proof. From Proposition 2, we have the equivalent form of β̄DLDR(x) as follows:
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β̄DLDR(x) = min r0 + s′0µ+ t′0σ +
∑
i∈M

f∗i (ri + s′iµ+ t′iσ)

s.t. r0 + s′0(Gz) + t′0u ≥ d′y(z) ∀(z,u,v) ∈ Ŵ

ri + s′i(Gz) + t′iu ≥ −qi(z) ∀i ∈M,∀(z,u,v) ∈ Ŵ

ri + s′i(Gz) + t′iu ≥ 0 ∀i ∈M,∀(z,u,v) ∈ Ŵ

ti ≥ 0 ∀i ∈ {0} ∪M

A(z)x+By(z) = b(z) + q(z) ∀(z,u,v) ∈ Ŵ

qi(z) ≥ 0 ∀i ∈ M̄

ri ∈ <, si ∈ <L1 , ti ∈ <L2 ∀i ∈ {0} ∪M

y ∈ LN2([I1], ∅, ∅)

q ∈ LM ([I1], ∅, ∅).
(2.27)

Similarly, we have the equivalent form of β̄([I1],[I2],∅)(x) as follows:

β̄([I1],[I2],∅)(x) = min r + s′µ+ t′σ

s.t. r + s′(Gz) + t′u ≥ d′y(z,u) ∀(z,u,v) ∈ Ŵ

A(z)x+By(z,u) ≥ b(z) ∀(z,u,v) ∈ Ŵ

t ≥ 0

r ∈ <, s ∈ <L1 , t ∈ <L2

y ∈ LN2([I1], [I2], ∅).

(2.28)

Let y†, q†, r†i , s
†
i , t
†
i , i ∈ {0} ∪M be a feasible solution of Problem (2.27). We

will show that there exists a corresponding feasible solution for Problem (2.28)
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with the same objective value. Let

r = r†0 +
∑
i∈M

dȳir
†
i

s = s†0 +
∑
i∈M

d′ȳis
†
i

t = t†0 +
∑
i∈M

d′ȳit
†
i ,

y(z,u) = y†(z) +
∑
i∈M

(
r†i + s†i

′
(Gz) + t†i

′
u
)
ȳi.

Observe that the objective value of Problem (2.28) becomes

r + s′µ+ t′σ = r†0 + s†0
′
µ+ t†0

′
σ +

∑
i∈M

(r†i + s†i
′
µ+ t†i

′
σ)d′ȳi

= r†0 + s†0
′
µ+ t†0

′
σ +

∑
i∈M

f∗i (r†i + s†i
′
µ+ t†i

′
σ).

We next check the feasibility of the solution in Problem (2.28). Note that t ≥ 0

and for all (z,u,v) ∈ Ŵ,

r + s′(Gz) + t′u = r†0 +
∑
i∈M

d′ȳir
†
i +

(
s†0 +

∑
i∈M

d′ȳis
†
i

)′
(Gz) +

(
t†0 +

∑
i∈M

d′ȳit
†
i

)′
u

= r†0 + s†0
′
(Gz) + t†0

′
u+

∑
i∈M

(
r†i + s†i

′
(Gz) + t†i

′
u
)
d′ȳi

≥ d′y†(z) +
∑
i∈M

(
r†i + s†i

′
(Gz) + t†i

′
u
)
d′ȳi

= d′y(z,u),

where the inequality follows from the first robust counterpart constraint in Prob-

lem (2.27). We now show the feasibility of second robust robust counterpart
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constraint in Problem (2.28). Observe that for all (z,u,v) ∈ Ŵ,

A(z)x+By(z,u) = A(z)x+By†(z) +
∑
i∈M

(
r†i + s†i

′
(Gz) + t†i

′
u
)
Bȳi

= b(z) + q†(z) +
∑
i∈M

(
r†i + s†i

′
(Gz) + t†i

′
u
)
q̄i

= b(z) +
∑
i∈M

q†i (z)ei +
∑
j∈M̄

q†j(z)ej +
∑
i∈M

(
r†i + s†i

′
(Gz) + t†i

′
u
)
q̄i

≥ b(z) +
∑
i∈M

q†i (z)ei +
∑
j∈M̄

q†j(z)ej +
∑
i∈M

(
r†i + s†i

′
(Gz) + t†i

′
u
)
ei

= b(z) +
∑
j∈M̄

q†j(z)ej +
∑
i∈M

(
q†i (z) + r†i + s†i

′
(Gz) + t†i

′
u
)
ei

≥ b(z).

The first inequality holds because q̄i ≥ ei and r†i + s†i
′
(Gz) + t†i

′
u ≥ 0 for all i ∈

M, (z,u,v) ∈ Ŵ. The second inequality is due to r†i + s†i
′
(Gz) + t†i

′
u ≥ −q†i (z)

for all i ∈ M, (z,u,v) ∈ Ŵ and q†i (z) ≥ 0 for all i ∈ M̄, (z,u,v) ∈ Ŵ. This

concludes our proof.

On the usage of linear decision rules

We introduce linear decision rules with the goal to obtain tractable formulations,

so that the optimal here-and-now decision x ∈ X1 can be determined and imple-

mented. For a given x ∈ X1, let y∗ be the optimal function of Problem (2.16),

and y∗GLDR be the optimal generalized linear decision rule of Problem (2.19).

For a given function, ν ∈ RI1,I3 satisfying (z, g(z),ν(z)) ∈ Ŵ for all z ∈W, the

function ŷGLDR ∈ RI1,N2 ,

ŷGLDR(z) = y∗GLDR (z, g(z),ν(z))
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is a feasible solution to Problem (2.16). Moreover, the objective satisfies

sup
P∈F

EP(d′ŷGLDR(z̃)) = sup
P∈F

EP
(
d′y∗GLDR (z̃, g(z̃),ν(z̃))

)
≤ sup

Q∈G
EQ
(
d′y∗GLDR (z̃, ũ, ṽ)

)
= β̄(S1,S2,S3)(x),

where the inequality is due to Proposition (1). Suppose

β(x) = sup
P∈F

EP(d′y∗(z̃)) = sup
P∈F

EP(d′ŷGLDR(z̃)) = β̄(S1,S2,S3)(x),

which is the case for complete recourse problems and N2 = 1, there is a tendency

to infer the optimality of ŷGLDR(z), such that

d′ŷGLDR(z) = d′y∗(z) ∀z ∈W.

However, this is not the case and we will demonstrate this fallacy in the following

simple example.

Example 2.2.2. Consider the following complete recourse problem,

β = min sup
P∈F

EP(y(z̃))

s.t. y(z) ≥ z ∀z ∈ <

y(z) ≥ −z ∀z ∈ <

y ∈ R1,1,

(2.29)

where

F =

{
P ∈ P0(<) : EP(z̃) = 0,EP(z̃2) ≤ 1

}
.

Clearly, y∗(z) = |z| is the optimal solution and it is also the optimal objective

value for all z ∈ <. However, under the generalized linear decision rule, we

obtain ŷGLDR(z) = 1+z2

2 , which is almost always greater than y∗(z) except at

z = 1 and z = −1. Incidentally, the worst case distribution P ∈ F corresponds
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to the two point distributions with P(z̃ = 1) = P(z̃ = 1) = 1/2. Hence, this

explains why the worst case expectations are the same.

Hence, from the above example, even if a generalized linear decision rule

were to provide a close approximation to β(x), x ∈ X1, the solution generated

by the decision rule could be a far cry from the optimal function, y∗. Therefore,

we advise against using the generalized decision rule as a policy guide for future

actions when uncertainty is realized. Instead, the second stage decision should

be determined by solving a linear optimization problem after the uncertainty is

resolved.

Another important feature of linear decisions rule is the ability to easily

enforce non-anticipative conditions, which are necessary to capture the nature

of multistage decisions where information is revealed in stages. For given subsets

Si1 ⊆ [I1], that reflects information dependency of recourse decisions, yi, i ∈ [N2],

we can consider the generalization of Problem (2.16) as follows:

γ∗(x) = min sup
P∈F

EP(d′y(z̃, ũ, ṽ))

s.t. A(z)x+By(z,u,v) ≥ b(z) ∀(z,u,v) ∈ Ŵ

yi ∈ RI1,1(Si1) ∀i ∈ [N2],

(2.30)

where we define the space of restricted measurable functions as

RI,N (S) =
{
y ∈ RI,N : y(v) = y(w) ∀v,w ∈ <I : vj = wj , j ∈ S

}
.

Problem (2.30) solves for the optimum measurable function y ∈ RI1,N2 that min-

imizes the worst case expected objective taking into account of the information

dependency requirement. Clearly, this problem would be much harder to solve

and we are not aware of a viable approach to compute the exact solution. Yet,

despite the difficulty, it is relatively simple to use generalized linear decision rules
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to obtain an upper bound as follows:

γ̄(x) = min sup
Q∈G

EQ(d′y(z̃, ũ, ṽ))

s.t. A(z)x+By(z,u,v)) ≥ b(z) ∀(z,u,v) ∈ Ŵ

yi ∈ L1(Si1, S
i
2, S

i
3) ∀i ∈ [N2],

(2.31)

where the subsets Si2 ⊆ [I2], Si3 ⊆ [I3], are appropriately selected to abide by

the information restriction imposed by Si1 ⊆ [I1], i ∈ [N2]. Again, we use the

generalized linear decision rules to enable us to obtain a reasonably good here-

and-now decision, x ∈ X1 that accounts for how decisions might be adjusted as

uncertainty unfolds over the stages. Similar to the standard adjustable robust

optimization technique, we propose the rolling or folding horizon implementa-

tion where we solve for the new here-and-now decision using the latest available

information as we proceed to the next stage.

In the next section, we will briefly describe a new algebraic modeling package

named ROC and show how it could be used to facilitate modeling of distribu-

tionally robust linear optimization problems.

2.3 ROC: Robust Optimization C++ package

We developed ROC as a proof of concept to provide an intuitive environment

for modeling and solving distributionally robust linear optimization problems

that will free the user from dealing directly with the laborious and error-prone

reformulations. ROC is developed in the C++ programming language, which is

fast, highly portable and well suited for deployment of robust optimization tech-

nologies in decision support system. We will briefly discuss the key aspects of

ROC and provide simple examples to illustrate the algebraic modeling package.

Most algebraic modeling packages for optimization are geared towards modeling

deterministic optimization problems. While a robust optimization problem may

be formulated as a deterministic optimization problem, it would be rather diffi-
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cult for the modeler to explicitly code, say Problem (2.31) using these algebraic

modeling packages.

A typical algebraic modeling package provides the standardized format for

declaration of decision variables, transcription of constraints and objective func-

tions, and interface with external solvers. ROC has additional features including

declaration of uncertain parameters and linear decision rules, transcriptions of

ambiguity sets and automatic reformulation of standard and distributionally

robust counterparts using the techniques described in this paper. The current

version of ROC solver is integrated with CPLEX and will be expanded to include

other solvers. We refer readers to http://www.meilinzhang.com/software for

more information on ROC.

Declaration of decisions, uncertain parameters and expressions

Code Segment 2.1 provides an example on how we define decision variables,

uncertain parameters and linear decision rules in ROC. The code illustrates how

the following deterministic decision variables are declared

x1 ∈ <, x2 ∈ [5,∞), x3 ∈ {0, . . . , 100}, x4 ∈ {0, 1}, s ∈ <6, t ∈ <5×8.

By C++ convention, an array of sized N is defined on indices 0, . . . , N − 1.

The variable x2 is also associated with the name “X2”, which would be useful

in output display of the model. Note that z̃1, z̃2, z̃3 are uncertain parameters in

< and ũ is a an array of uncertain parameters in <6. The linear decision rules

y1, y2, y3 are declared. The user can selectively include the linear dependency

using the addDR function. In this case, y1 is affinely dependent on z̃1, y2 is
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affinely dependent on (z̃2 + z̃3), and y3 has the same dependency as y1, i.e.,

y1(z̃1) = y0
1 + y1

1 z̃1

y2(z̃2, z̃3) = y0
2 + y1

2(z̃2 + z̃3)

y3(z̃1) = y0
3 + y1

1 z̃3.

where y0
1,y1

1,y0
2, y1

2, y0
3 and y1

3 are embedded decision variables that are declared

in association with the linear decision rules.

1 // Declaration of decisions and uncertain parameters

2 ROVar x1 , x2(5, ROInfinity , "X2"); // x1 , x2 continuous

decision variables

3 ROIntVar x3(0 ,10); // x3 Integer variable

4 ROBinVar x4; // x4 binary variables

5 ROVarArray s(6); // an array of 6 decision variables

6 ROUn z1 , z2 , z3; // three uncertain parameters

7 ROUnArray u(6); // an array of 6 uncertain parameters

8

9 // Define a 2D array of 5 by 8 decision variables

10 ROVar2DArray t(5);

11 for(int i = 0; i<5 ;i++)

12 t[i] = ROVarArray (8);

13

14 ROVarDR y1 , y2 ,y3; // two linear decision rules

15 // add dependency on uncertain parameters to linear decision

rule

16 y1.addDR(z1);

17 // add dependency on uncertain parameters to linear decision

rule

18 y2.addDR(z2+z3);

19 // clone dependency from y2

20 y3.clone(y1);

Code Segment 2.1: Declaration of decisions and uncertain parameters ROC.
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We can also declare an expression, which is an object to contain either a quadratic

function of decision variable or a biaffine function of the decision variables and

uncertain parameters. An expression permits linear operations on constants, de-

cision variables, uncertain parameters, linear decision rules and other expressions

and it is useful as temporary storage. Code Segment 2.2 show some examples of

expressions. Here, we have

expr1 : x2
1 + x2

expr2 : s1 + 2s4 − x1z̃1

expr3 : s1 + 2s4 − x1z̃1 + y0
2 + y1

2(z̃2 + z̃3)

expr4 : s1ũ1 + 2s2ũ2 + 3s3ũ3 + 4s4ũ4 + 5s5ũ5 + 6s6ũ6.

1 // Simple expressions

2 ROExpr expr1 , expr2 , expr3 , expr4;

3 expr1 = x1*x1 + x2;

4 expr2 = s[0] + 2 *s[3] - x1 * z1;

5 expr3 = expr2 + y2;

6

7 for(int i = 0; i < 6; i++)

8 expr4 += (i+1)*s[i]*u[i];

Code Segment 2.2: The use of expressions in ROC.

Modeling Ambiguity sets

The ability to comprehensively model distribuitionally ambiguity sets ROC apart

from other algebraic modeling packages. The ambiguitySet defined in Code

Segment 2.3 describes the following ambiguity set

G =

Q ∈ P0

(
<3 ×<6

)
:

(z̃, ũ) ∈ <3 ×<6

EQ(ũ1) = 1

Q
(

(z̃, ũ) ∈ Ŵ
)

= 1

 ,
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where

Ŵ =


(z,u) ∈ <3 ×<6 :

z1 ≥ z2

z2
1 ≤ z3

‖u‖∞ ≤ 5

‖u‖1 ≤ 4

‖u‖2 ≤ 3


.

1 ROConstraintSet ambiguitySet;

2 ambiguitySet.add(ROExpect(u[0]) ==1);

3 ambiguitySet.add(z1 >=z2);

4 ambiguitySet.add(ROSq(z1) <= z3);

5 ambiguitySet.add(RONormInf(u) <=5);

6 ambiguitySet.add(RONorm1(u) <=4)

7 ambiguitySet.add(RONorm2(u) <=3);

Code Segment 2.3: Definition of an ambiguity set in ROC.

Note that the statement ROSq(z1) <= z3 calls upon the function ROSq, which

returns a newly declared uncertain parameter, say ṽ so that ṽ ≤ z̃3. Internally

within the function, the epigraph of z̃2
1 ≤ ṽ is automatically converted to a

second order cone constraint,
√

( ṽ−1
2 )2 + z̃2

1 ≤ ṽ+1
2 . Hence, the user should be

disciplined in convex representation of constraints and avoid statements such

as ROSq(z1)>=7. Likewise, the functions RONorm1, RONorm2 and RONormInf are

provided within ROC for modeling convenience. These functions return newly

declared uncertain parameters and internally represent the epigraphs of these

functions using linear and second order conic constraints. The functions (such

as RONorm1) may declare other uncertain parameters that are hidden from the

user. Using this approach, we can also declare other common conic quadratic

representable functions within ROC including higher powers and approximations

of exponential functions, among others. We have also provided functions that

linearly approximates second order cones as proposed in Ben-Tal and Nemirovski

(2001b), which may be useful if linearity of the model is desired. Note that
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decision variables are not permitted in the description of ambiguity set and that

the user has the freedom to define multiple ambiguity sets.

Declaration of a model, adding constraints and the objective func-

tion

A ROC model consists of objects that represents a problem including constraints

and the objective function. Deterministic constraints can be added in the model

as shown in Code Segment 2.4, which models the following set of constraints

x2
1 + x2 ≤ t2,5

x2
1 − 2x1x2 + x2

2 ≤ 7

|x1 − x3| ≤ 7

(x2 − x3)+ ≤ x1

‖s‖1 ≤ 4t3,3

‖s‖2 ≤ 6(x1 + 2x2)

‖s‖∞ ≤ −x2
2

1′s ≤ 10.

Similar to the descriptions of ambiguity sets, the functions return newly declared

decision variables and internally represent the epigraphs of these functions using

linear and second order conic constraints.

1 ROModel model; // define a robust optimization

model

2 model.add(expr1 <= t[1][4]);

3 model.add(x1*x1 -2*x1*x2+ x2*x2 <= 7);

4 model.add(ROAbs(x1 -x3)<= 7 );

5 model.add(ROPos(x2 -x3)<= x1);

6 model.add(RONorm1(s)<= 4*t[2][2]);

7 model.add(RONorm2(s) <=6*(x1+2*x2) );

8 model.add(RONormInf(s)<= -x2*x2);

9 model.add(ROSum(s)<= 10);
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Code Segment 2.4: Model declaration with deterministic constraints in ROC.

More interestingly, ROC is able to model robust counterpart constraint such as,

1 model.add(ROConstraint(expr4 <= x1 , ambiguitySet));

which automatically reformulates the following robust counterpart,

s1u1 + 2s2u2 + 3s3u3 + 4s4u4 + 5s5u5 + 6s6u6 ≤ x1 ∀(z,u) ∈ Ŵ,

into a set of deterministic constraints. In the process, new decision variables

may be declared that are hidden away from the user. Note the ambiguity set

must be specified in the robust counterpart constraint, so that ROC can extract

the underlying uncertainty set Ŵ. Hence, different ambiguity sets can be de-

fined for use in different robust counterpart constraints. More interestingly, a

distributionally robust counterpart over the worst case expectation such as,

1 model.add(ROConstraint( (ROExpect(expr2) >= x3 + x1),

ambiguitySet));

which corresponds to

EQ(s1 + 2s4 − x1z̃1 + y0
2 + y1

2(z̃2 + z̃3)) ≥ x3 + x2 ∀Q ∈ G,

or equivalently as

sup
Q∈G

EQ(−(s1 + 2s4 − x1z̃1 + y0
2 + y1

2(z̃2 + z̃3))) ≤ −x3 − x2,

will be transformed to a set of deterministic constraints using Proposition 2.

The model should finally include an objective, which reflects either a mini-

mization or maximization problem. If the objective expression contains uncer-

tain parameters, then it must also incorporate the corresponding ambiguity set
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so the worst case objective can be evaluated. The following code segment illus-

trates an objective function that minimizes the worst case expectation of expr2

over the ambiguity set, G.

1 model.add( ROMinimize(ROExpect(expr2), ambiguitySet));

2.4 Computation Experiment

In our experiment, we consider a multiproduct newsvendor problem with N

different types of products, indexed by i. For product i, i ∈ [N ], its selling price

and order cost are denoted by pi and ci respectively. Manager needs to decide

each product’s order quantity xi, i ∈ [N ] before the demand z̃ = (z̃1, z̃2, ..., z̃N ) is

observed. Meanwhile, the total budget for purchasing all products is Γ. After the

demand becomes known, the selling quantity is decided as min{xi, zi}, i ∈ [N ].

In order to maximize the expected operating revenue, the problem could be

formulated as

Π∗ = max inf
P∈F

EP

∑
i∈[N ]

pi min{xi, z̃i}


s.t. c′x ≤ Γ

x ≥ 0

x ∈ <N .

To be consistent with the earlier framework, we formulate this as the following

minimization problem

Z∗ = −Π∗ = min −p′x+ sup
P∈F

EP

∑
i∈[n]

pi((xi − z̃i)+)


s.t. c′x ≤ Γ

x ≥ 0

x ∈ <N .

(2.32)
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To demonstrate the modeling power of the standardized framework for char-

acterizing distributional ambiguity, we present the following unusual but interest-

ing ambiguity set that is inspired by the structure of the optimization problem.

F =


P ∈ P0(<N ) :

EP(z̃) = µ

EP(z̃2
i ) ≤ µi2 + σ2

i ∀i ∈ [N ]

EP

∑
i∈[N ]

pi(µi − z̃i)+

 ≤ ψ
P(z̃ ∈W) = 1


, (2.33)

where

W = {z ∈ <n : 0 ≤ z̃ ≤ z̄} .

Correspondingly, the extended ambiguity set of F is given by

G =


Q ∈ P0(<N ×<N+1 ×<N ) :

EQ(z̃) = µ

EQ(ũi) ≤ µ2
i + σ2

i ∀i ∈ [N ]

EQ(ũN+1) ≤ ψ

Q((z̃, ũ, ṽ) ∈ Ŵ) = 1


,

(2.34)

where

Ŵ =


(z,u,v) ∈ <N ×<N+1 ×<N :

0 ≤ z̃ ≤ z̄

zi
2 ≤ ui ∀i ∈ [N ]

uN+1 ≥ p′v

v ≥ µ− z

v ≥ 0


.

Using the generalized linear decision rule, we solve the following two-stage
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distributionally robust optimization problem,

Z̄∗(S1, S2, S3) = min −p′x+ sup
Q∈G

EQ
(
p′y(z̃, ũ, ṽ)

)
s.t. c′x ≤ Γ

x ≥ 0

y(z,u,v) ≥ 0 ∀(z,u,v) ∈ Ŵ

y(z,u,v) ≥ x− z ∀(z,u,v) ∈ Ŵ

x ∈ <N

y ∈ LN (S1, S2, S3).

(2.35)

Formulating in ROC

Instead of deriving the explicit mathematical model of Problem (2.35), we present

the formulation in ROC, which will automatically transform the problem and call

upon a standard solver package such as CPLEX to obtain the solution. We first

define the decision variables, x ∈ <N , uncertain parameters, z̃ ∈ <N , ũ ∈ <N+1,

ṽ ∈ <N and the linear decision rule y ∈ R·,N as shown in Code Segment 2.5.

1 // Define Decision variables , decision rules and uncertain

parameters

2 ROVarArray x(N, 0, ROInfinity , "X");

3 ROVarDRArray y(N);

4 ROUnArray z(N), u(N+1), v(N);

Code Segment 2.5: Defining decision variables, uncertain parameters and linear

decision rule.

We next show how to characterize the dependency of the decision rule y. Code

Segment 2.6 presents an example where the decision rule y is defined in LN ([N ], [N+

1], [N ]), and hence it is fully dependent on all the uncertainty parameters includ-

ing the auxiliary ones.

1 // Adding dependency to linear decision rules

2 for(int i = 0; i < N; i++)

3 {
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4 for(int j = 0; j < N; j++)

5 {

6 y[i]. addDR(z[j]);

7 y[i]. addDR(u[j]);

8 y[i]. addDR(v[j]);

9 }

10 y[i]. addDR(u[N]);

11 }

Code Segment 2.6: Defining generalized linear decision rule in LN ([N ]), [N +

1]), [N ])

Next, we specify the ambiguity set G as shown in Code Segment 2.7.

1 // Construct the Ambiguity Set

2 ROConstraintSet ambiguitySet;

3 ROExpr unExpr;

4 for(int i = 0; i < N; i++)

5 {

6 ambiguitySet.add(ROExpect(z[i]) == mu[i]);

7 ambiguitySet.add(ROExpect(u[i]) <= mu[i]*mu[i] + sigma[i]*sigma

[i]);

8 ambiguitySet.add(z[i] >= 0);

9 ambiguitySet.add(z[i] <= barZ[i]);

10 ambiguitySet.add(ROSq(z[i]) <= u[i]);

11 ambiguitySet.add(v[i] >= 0);

12 ambiguitySet.add(v[i] >= mu[i] - z[i]);

13 unExpr += price[i] * v[i];

14 }

15 ambiguitySet.add(ROExpect(u[N]) <= psi);

16 ambiguitySet.add(u[N] >= unExpr);

Code Segment 2.7: Constructing the ambiguity set G.

Finally, Code Segment 2.8 show how the we model Problem (2.35) in ROC.

1 ROModel model; // define a robust optimization model

engine
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2

3 // Adding constraints to Model

4 ROExpr expr1;

5 for(int i = 0; i < N; i++)

6 {

7 expr1 += cost[i] * x[i];

8 model.add(ROConstraint(y[i] >= 0, ambiguitySet));

9 model.add(ROConstraint(y[i] >= x[i] - z[i], ambiguitySet));

10 }

11 model.add(expr1 <= budget);

12

13 // Adding objective expression

14 ROExpr objExpr1 , objExpr2;

15 for(int i = 0; i < N; i++)

16 {

17 objExpr1 -= price[i] * x[i];

18 objExpr2 += price[i] * y[i];

19 }

20 model.add( ROMinimize(objExpr1 + ROExpect(objExpr2), ambiguitySet

) );

21 model.solve();

Code Segment 2.8: Create the robust pptimization model.

Performance of the decision rules

For the purpose of comparison, we next formulate the model to evaluate Problem

(2.32) exactly. By observing that
∑
i∈[N ]

(ai)
+ = max

S:S⊆[N ]

(∑
i∈S

ai

)
, we can transform
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Problem (2.32) to the following problem

Z∗ = min −p′x+ sup
P∈F

EP

(
max

S:S⊆[N ]

(∑
i∈S

pi(xi − z̃i)

))
s.t. c′x ≤ Γ

x ≥ 0

x ∈ <N

(2.36)

Noting that the number of subsets of [N ] equals to 2N , we will study a small

problem so that it would be computationally variable to compare the quality

of solutions obtained by linear decision rules. Hence, we restrict to N = 10.

We solve for a particular instance with ψ = 100, Γ = 500 and the parameters

associated with the products are shown in Table 2.1.

Product ID price[i] pi cost[i] ci mu[i] µi sigma[i] σi z̄i
1 10.00 2.00 30.00 30.00 100

2 11.00 2.71 35.00 28.50 100

3 11.41 3.00 40.00 27.00 100

4 11.73 3.23 45.00 25.50 100

5 12.00 3.41 50.00 24.00 100

6 12.24 3.58 55.00 22.50 100

7 12.45 3.73 60.00 21.00 100

8 12.65 3.87 65.00 19.50 100

9 12.83 4.00 70.00 18.00 100

10 13.00 4.12 75.00 16.50 100

Table 2.1: Input parameters of multiproduct newsvendor problem

Table 2.2 shows the objective values of

Π∗1 = −Z̄∗(∅, ∅, ∅)

Π∗2 = −Z̄∗([N ], ∅, ∅)

Π∗3 = −Z̄∗([N ], [N + 1], ∅)

Π∗4 = −Z̄∗([N ], [N + 1], [N ])

Π∗ = −Z∗

and also presents the corresponding optimal solutions. We observe that the
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Problem Objective x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Π∗1 0 20.35 63.59 10.02 9.66 9.92 9.77 9.50 9.21 8.93 8.68

Π∗2 1172.26 0 0 0 0 0 0 0 0 21.97 100

Π∗3 1523.35 30 35 0 0 0 0 0 6.04 38.37 40.86

Π∗4 1851.17 30 35 40 45 23.47 0 0 0 0 0

Π∗ 1851.17 30 35 40 45 23.47 0 0 0 0 0

Table 2.2: Computational results for multiproduct newsvendor problem

improvement in objective values as the decision rule has dependent on greater

subsets of uncertain parameters. In particular, for the case of full dependency,

we have Π∗4 achieving the optimal objective value Π∗, underscoring the potential

and benefits of the generalized linear decision rule in addressing distributionlly

robust linear optimization problems.

Endnotes

1. YALMIP homepage: http://users.isy.liu.se/johanl/yalmip/. See also

Löberg (2012).

2. AIMMS homepage: http://www.aimms.com/.

3. ROME homepage: http://robustopt.com. See also Goh and Sim (2009).
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3

A Robust Optimization Model

for Managing Elective

Admission in Hospital

Beds are a critical resource in hospital operations. Overcrowding of Accident

and Emergency (A & E) is often due to availability (or rather the shortage)

of hospital beds (Wardrope and Driscoll (2003)); so is cancellation of elective

surgeries (Robb et al. (2004)). However, bed resources are expensive as the

hospitals need highly trained personnel to manage these beds. Work has been

done in the area of the acquisition and utilization of bed resources (e.g., Cochran

and Roche (2008), Harper and Shahani (2002), Kao and Tung (1981), Teow

and Tan (2008)). Harper and Shahani (2002) acknowledged the complexity of

the internal dynamics of a hospital (especially bed management), and used a

simulation model for patient flows and bed matching over time.

Typically, Day-of-Week (DoW) patterns of a hospital exhibit a wide range

of variations. Emergency admissions are beyond the control of the hospital,

while elective admissions are scheduled by the hospital. Nevertheless, often

the relative variation is largest in elective admissions, and larger in discharges
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than emergency admissions (Proudlove et al. (2007)). On days with high bed

occupancy, long wait time is encountered. On days with low bed occupancy,

beds are under-utilized. We have tightness of usage on one hand, and looseness

on the other. It is not the desired state.

Elective surgeries account for the majority of elective admissions, though

medical electives (non-surgical cases) do make up for some of these admissions.

Elective surgeries are procedures planned in advance and can be divided into day

surgery (DS), same day surgery admission (SDA) and inpatient admission (IP).

DS cases do not “consume” beds, while SDA cases require beds to accommodate

patient day after surgery. IP cases require beds one day before the surgery.

In general, hospitals will admit all emergency cases. As such, in a tight bed

situation, the tradeoff is to reduce the number of beds designated for elective

admissions. But a more prudent and sensible approach would be to make ad-

justments on a dynamic basis. What this entails is that when emergency cases

are fewer, then more beds could be assigned to elective cases, and vice versa.

This leads to an optimal control policy, which is to maximize bed utilization on

a daily basis by controlling the number of elective admissions. This requires a

more prudent scheduling of operating theatre sessions. However, a higher level of

complexity in planning ensues because of the high degree of uncertainty involved

in bed availability and its effect on admission rates.

Various models for managing patient admissions have been proposed in the

literature. Esogbue and Singh (1976) developed a method for determining opti-

mal distribution of beds in a ward using cut-off level via shortage and holding

costs. They assumed Poisson patient arrival distribution and negative exponen-

tial distribution for length of stay. Kao and Tung (1981) proposed an approach

for periodically reallocating beds to services to minimize the expected overflows,

using queueing models to approximate the population dynamics. In fact, queue-

ing theory and stochastic simulation are the main methodological tools in studies

of bed allocation and bed capacity (Cochran and Roche (2008), Gorunescui et al.

54



(2004), Lamiri et al. (2008), Vassilacopoulos (1985)). The underlying rationale

for researchers relying on these methodological tools is the uncertain nature of

the hospital unit vis-à-vis the number of patients as a result of random arrivals

and random lengths of stay. A thorough review on OR applications in healthcare

services in the United Kingdom can be found in Proudlove et al. (2007).

The admission of emergency inpatients is unscheduled and they are usually

warded within hours. In contrast, admission of elective patients is less pressing

and they can be warded on the day of admission or even several weeks later.

The flexibility vis-à-vis elective patients allows hospitals to manage the flow of

elective patients in a way as to “smooth out” the daily bed occupancy, a modus

operandus known as “elective smoothing”. This will ensure that on days with

spikes in emergency cases, the admission rate for elective patients can be reduced.

The converse applies. Some hospitals in Singapore have already incorporated this

mechanism into their decision support systems and it has led to improvements

when elective patient flow is high (Teow et al. (2007)). In these hospitals, the

admission quotas for elective patients are obtained by solving a deterministic

linear optimization problem without taking into account the variability of patient

arrivals and stay durations. While this achieves smoothing in expectation, it is

conceivable that efficacy would diminish when variability is high.

Due to the difficulties of obtaining true probability distributions and solv-

ing stochastic optimization problems, it is common in real world deployment of

optimization technology to ignore uncertainty. A fine level of analysis would be

required to obtain the distributions of patient arrivals and departure profile as a

function of admission quotas, which may not necessarily lead to a computational

tractable optimization problem. In recent years, robust optimization offers an

attractive alternative for addressing uncertainty in optimization modeling with-

out having to specify exact probability distributions. In many interesting cases,

the approach leads to computationally tractable optimization problems; see for

instance Ben-Tal and Nemirovski (1998), Bertsimas and Sim (2004), El Ghaoui
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et al. (1998). In classical robust optimization, uncertainty is represented by

an uncertainty set, which is usually a simple geometric convex set such as a l-

norm ball intersected with the support set, the minimal convex set that contains

the uncertainty. The modeler requires to articulate her ambiguity attitude4 by

specifying the budget of uncertainty parameter, which relates to the size of the

uncertainty set against what she seeks immunity.

While there are several proposed uncertainty sets and heuristics for specifying

budgets of uncertainty, these approaches may not naturally characterize the

uncertainty relating to patient movements within the hospital. In this paper, we

adopt the distributionally robust optimization approach for managing elective

admission in hospital, where uncertainty is characterized by the support set

and a restricted ambiguous set of probability distributions (or ambiguity set for

short); see for instance Chen et al. (2007, 2008), Delage and Ye (2010), Goh and

Sim (2009, 2010). Similar to the uncertainty set in classical robust optimization,

the proposed ambiguity set is adjustable via a so called budget of variation

parameter, which is the bound on the coefficient of variation of the uncertainty

parameters. The ambiguity set is enlarged by increasing the budget of variation,

which leads to greater uncertainty in the patient movements.

Quite apart from the usual paradigm of robust optimization, we propose an

approach to optimize the budget of variation while ensuring that the worst-case

expected maximum bed requirement over the planning horizon falls below the

bed capacity of the hospital. This approach is inspired by the actual problem for

which we have access to the data to attest the performance. The key challenge we

face is to model uncertainty in a way while keeping the computations tractable

so that we can obtain consistent improvement over the static approach for which

uncertainty is ignored. Interestingly, this could be achieved by solving a small

collection of computationally tractable optimization problems. We also study

the performance of this approach in a case study using real data.

The rest of this chapter is organized as follows. In Section 3.1, we establish
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3.1 Model formulation

a distributionally robust optimization model for managing elective admission

in hospital with incomplete information of uncertainties. We then investigate

deterministic formulation to this model by deriving a second order conic opti-

mization problem (SOCP) in Section 3.2. Numerical experiments using real data

are carried out in Section 3.3. Section 3.4 concludes this chapter.

Notation: We denote a random variable with a tilde sign, such as z̃. Matrices

and vectors are represented as upper and lower case boldface characters respec-

tively. If x is a vector, we use the notation xi to denote the ith component of

the vector. We represent uncertainty by a state-space Ω and a set (σ-algebra)

F of events. We use the notation x̃ ≥ ỹ to denote state-wise dominance over

all attributes, i.e, x̃(ω) ≥ ỹ(ω) for all ω ∈ Ω. We use P to denote a probability

measure on Ω and EP(x̃), σP(x̃) and cvP(x̃) denote respectively the expectation,

standard deviation and coefficient of variation of x̃ under P.

3.1 Model formulation

We consider a planning horizon of T days indexed by t = 0, 1, . . . , T − 1. Let ηt

be the decision variable representing the elective inpatients quota for the tth day

within the planning horizon. For simplicity of model presentation, we assume

that all inpatients are of the same type. We can easily refine the model to

consider quotas for different types of inpatients that may be characterized by

gender, discipline, and so forth. We detail how this is implemented in a public

hospital. At the beginning of day t = 0 (say at 8 am when clinics open), the

quotas η = (η0, . . . , ηT−1)′ will be determined and integrated within hospital

decision support system for assignment of admissions. As a public hospital, the

hospital does not reject elective admissions. During the operating hours of the

elective clinics, administrators work with the patients for their admission dates,

which would depend on the availability of quotas. The booking system is similar

to the airline booking system. When an elective bed request is submitted, the

57



3. A ROBUST OPTIMIZATION MODEL FOR MANAGING
ELECTIVE ADMISSION IN HOSPITAL

patient could only be assigned to the days where the quota is strictly greater

than the number of patients that have been assigned, which is represented as

η. Suppose this new elective patient is scheduled to be admitted on day l, the

corresponding ηl will be updated as ηl = ηl + 1. As we proceed to the next day,

the process is repeated and a new set of quotas will be computed using the latest

information on admission status.

We let X ⊆ ZT be the feasible space of admissible quotas. The feasible set

X should be specified accordingly to exclude trivial results such as zero assigned

quotas for elective patients. For instance, since the hospital sets aside a portion

of her capacity to serve elective patients, we enforce by constraining the total

quotas during the planning horizon to match the desired average number of

elective patients. In the rolling horizon implementation, it is also imperative to

ensure that the new set of quotas is able to accommodate previously assigned

elective admissions. For example, if 15 elective admissions have already been

assigned on day t = 6, we would impose a constraint η6 ≥ 15.

We next describe the dynamics of patient flow. Let L be the maximum

duration of stay for any patient. Note that by definition, inpatients are patients

who are warded for at least one day. To account for the total number of inpatients

on the tth day, we need to keep track of the admission status up to L− 1 days

before the planning horizon. Let T+ = {0, . . . , T − 1}, T−− = {−L+ 1, . . . ,−1}

and T = T−− ∪ T+. We denote p̃t,l and ãt,l to be respectively the number of

emergency and elective inpatients arriving on the tth day, t ∈ T and would be

warded for at least l days, l ∈ {1, . . . , L}. For instance, p̃1,1 refers to the total

number of emergency inpatients on day t = 1 and its value is uncertain. If d̃

of these patients are discharged on day t = 2, then p̃1,2 = p̃1,1 − d̃. Likewise

ã−1,2 refers to the number of elective inpatients that arrive on the previous day

(t = −1) and would be warded for at least 2 days. At the beginning of day t = 0,

doctors may not have reviewed the cases for discharge. Hence, the parameter

ã−1,2 is generally uncertain. For our purpose, we need to account for the number
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of inpatients during the planning horizon, i.e., on the days in T+. For inpatients

arriving on day t ∈ T−−, only the inpatients with the length of stay of at least l

days, l ≥ 1− t, may remain warded in the hospital during the planning horizon.

On the other hand, for patients arriving on day t ∈ T+, only the information

associated with inpatients with length of stay at least l days, l ≤ min{L, T − t}

will be needed to compute the quotas. Hence, for notational convenience, we

define Lt = {max{1, 1− t},max{1, 1− t}+ 1, . . . ,min{L, T − t}}, t ∈ T.

We now account for the total number of inpatients on the tth day during the

planning horizon, t ∈ T+. For example, the total number of inpatients on day

t = 0 can be computed as follows

ã0,1 + p̃0,1+ (arrivals/admissions on t = 0)

ã−1,2 + p̃−1,2+ (arrivals/admissions on t = −1 and warded for at least 2 days)

· · ·+ ã−L+1,L + p̃−L+1,L. (arrivals/admissions on t = −L+ 1 and warded for up to L days)

In general, it follows that the total inpatients on day t ∈ T+ can be computed

as ∑
(τ,l)∈Ut

(ãτ,l + p̃τ,l),

where the index set Ut is given by

Ut = {(τ, l) : τ ∈ T, l ∈ Lτ , l + τ = t+ 1} .

A bed shortfall occurs whenever the total number of inpatients exceeds the bed

capacity, which we denote by ct, t ∈ T+. Note that for generality, we assume that

bed capacity, which encompasses the physical beds and manpower availability, is

time dependent. Before we could specify an optimization problem, we first need

to account for the uncertainty concerning patients arrival and departure.
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3.1.1 Characterizing patient arrivals and departures uncertainty

We describe a nonparametric approach for characterizing the uncertainty on

patient arrivals and departures using information obtained from patient move-

ment records. Our aim is to introduce a model of uncertainty without imposing

excessive burden on the information requirement, which may otherwise deter

practical implementation. Instead of ignoring variability and assuming deter-

ministic parameters taking values at their empirical averages, which is usually

done in practice, we assume that the parameters are random variables with

known means. However, their precise distributions are unavailable but belong

to a restricted ambiguity set. To avoid being overly conservative, we control the

“size” of the ambiguity set by specifying the budget of variation, µ, which is the

upper bound of the coefficients of variations of all the uncertain parameters.

We next show how the uncertain parameters p̃t,l and ãt,l are interrelated,

which is the basis for characterizing the support of the uncertainty. Observe

that by definition, p̃t,l and ãt,l are nonincreasing in l. For inpatients arriving

before t = 0, their total admissions are known but their durations of stay may

be uncertain. Let p0
t and a0

t , t ∈ T−−, be respectively the number of remaining

emergency and elective inpatients who have arrived on day t and are still being

warded up to the beginning of day 0. The support of the uncertain parameters

p̃t,l and ãt,l is given by

p0
t ≥ p̃t,l ≥ p̃t,l′ ≥ 0,

a0
t ≥ ãt,l ≥ ãt,l′ ≥ 0,

for all t ∈ T−−, l, l′ ∈ Lt, l
′ > l. Similarly, for inpatients arriving during the

planning horizon t ∈ T+, the support of the associated uncertain parameters

p̃t,l, ãt,l, is given by

p0
t ≥ p̃t,l ≥ p̃t,l′ ≥ 0,

ηt ≥ ãt,l ≥ ãt,l′ ≥ 0,

for all t ∈ T+, l, l′ ∈ Lt, l
′ > l. For the emergency patients, the input parameter,
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p0
t is a prescribed upper bound of p̃t,l. For the elective patients, according to

the admission process we have described, the number of patients arriving at the

tth day and be warded at least l days, ãt,l, is an endogenous random variable

that depends on the quota, ηt. If ηt = 0, then it is clear that ãt,l = 0 for

all l ∈ Lt. We provide an example to illustrate this dependency. Suppose

at t = 1, η1 = 10, η2 = 1, η3 = 15, and the number of assigned electives,

η1 = 10, η2 = 0, η3 = 10, the hospital would be able to schedule new elective

patients at t = 2 or t = 3, but not at t = 1. If every elective patient turns up at

t = 1, then ã1,1 = 10. Hence, ãt,l is highly dependent on ηt.

Instead of assuming a probability distribution, we specify the ambiguity set

such that for each distribution, P in the set, the uncertain parameters are random

variables with known mean values and their coefficients of variations are bounded

below by µ. Specifically, for inpatients arriving before t = 0, i.e., t ∈ T−−, we

assume that

EP(p̃t,l) = p̄t,l,

EP(ãt,l) = āt,l,

for all l ∈ Lt, where p̄t,l and āt,l are respectively the empirical averages of p̃t,l

and ãt,l. Since these patients are already admitted, in principle, the parameters

p̄t,l, āt,l may be inferred from the patients’ likely duration of stay assessed by

their doctors. If such information is unavailable, then one may also use values

that are empirically estimated from historical records.

Observe that during the planning horizon, t ∈ T+, the uncertain parameters

p̃t,l, t ∈ T+ are associated with inpatients who have yet to arrive at the hospital.

Hence, we are able to obtain the empirical averages from patient movement

records as follows,

EP(p̃t,l) = p̄t,l,

for all t ∈ T+, l ∈ Lt. Unlike the previous case, the elective patients ãt,l, t ∈

T+, l ∈ Lt are associated with the quotas ηt. Clearly, the dependency on ηt
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would impact on how the parameters should be estimated and how the model

can be solved efficiently. Accordingly, we define new random variables α̃t,l as

α̃t,l =
ãt,l
ηt
,

for all t ∈ T+, l ∈ Lt to represent the proportion of patients who will be warded

at least l days with respect to the quota ηt. From the historical data on ãt,l and

ηt, we could determine its empirical average as

EP(α̃t,l) = ᾱt,l,

for all t ∈ T+, l ∈ Lt.

To formulate a tractable and scalable model that could be solved by com-

mercial solvers, we impose the following assumption.

Assumption 3. The descriptive statistics of α̃t,l are independent on ηt.

Assumption 3 has important ramifications on the computational tractability

of the model, which we will explain in Section 3.2. It leads to simpler estimation

of the descriptive statistics from data.

For notational simplicity, since we have the complete information for the

quotas assigned before t = 0, we define

α̃t,l =
ãt,l
ηt
, ᾱt,l =

āt,l
ηt
, α0

t =
a0
t

ηt
, ∀ t ∈ T−−, l ∈ Lt,

α0
t = 1, ∀ t ∈ T+.

Hence we can empirically determine the values for {ᾱt,l : t ∈ T, l ∈ Lt} and

{α0
t : t ∈ T−−} from the data.

Finally, the coefficients of variation of these parameters are bounded above

62



3.1 Model formulation

by the budget of variation, µ as follows

cvP(p̃t,l) ≤ µ,

cvP(α̃t,l) ≤ µ,

for all t ∈ T, l ∈ Lt. Hence, µ = 0, implies that the parameters are almost surely

certain and take values at their means. On the other extreme with µ =∞, then

essentially the variabilities of these parameters are not constrained by µ, but

could otherwise be limited by the support. We present the ambiguity set as a

function of the budget of variation, µ as follows.

F(µ) =



P :

P


 p0

t ≥ p̃t,l ≥ p̃t,l′ ≥ 0, ∀ (t, l′), (t, l) ∈ I, l′ > l

α0
t ≥ α̃t,l ≥ α̃t,l′ ≥ 0, ∀ (t, l′), (t, l) ∈ I, l′ > l


 = 1

EP(p̃t,l) = p̄t,l, ∀ (t, l) ∈ I,

EP(α̃t,l) = ᾱt,l, ∀ (t, l) ∈ I,

σP(p̃t,l) ≤ p̄t,lµ, ∀ (t, l) ∈ I,

σP(α̃t,l) ≤ ᾱt,lµ, ∀ (t, l) ∈ I



,

where

I := {(t, l) : t ∈ T, l ∈ Lt}.

and the parameters for characterizing the ambiguous set of distributions, {p0
t , α

0
t : t ∈

T}, {p̄t,l : (t, l) ∈ I}, {ᾱt,l : (t, l) ∈ I} are values obtained from the patient

movement records. Observe that the set F(µ) is nondecreasing in µ, i.e.,

F(µ) ⊆ F(µ′) ∀ µ′ ≥ µ.

Remark 1. For tractability purpose, the discrete nature of the the uncertain

arrivals of emergency and elective patients are not characterized in the ambiguity

set. The relaxation of integer random variables to continuous ones is a common

technique used in robust optimization to obtain tractable formulations. If we
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confine to integer random variables, we would have to enumerate exponentially

many scenarios to obtain an exact formation, which would lead to intractabil-

ity. This integrality gap can be significant. For instance, consider a univariate

random variable, p̃ taking values in {0, 1} and two distributionally ambiguity

sets

F1 = {P : EP(p̃) = 0.5,EP(p̃2) ≤ 0.12,P(p̃ ∈ [0, 1]) = 1}

and

F2 = {P : EP(p̃) = 0.5,EP(p̃2) ≤ 0.12,P(p̃ ∈ {0, 1}) = 1}.

Observe that the set, F1 is a conservative approximation of F2, which is an empty

set. Hence, the “integrality gap” can be arbitrarily bad. The ambiguity set we

consider in the bed management problem is far more complex, and we do not

see how the “integrality gap” can be eliminated in a computationally efficient

manner. Likewise, there are other types of distributional ambiguity information

that do not lead to computationally tractable formations. Among others, we are

unable to obtain tight and tractable formulations for ambiguity information such

as higher order moments with support, independence of random variables, and

so forth. As in the spirit of robust optimization models, the goal here is to model

uncertainty in its entire generality while keeping the model within the frame-

work for which current state-of-the-art commercial solvers can deliver. In our

computational study, we observe the importance of adjusting the conservative-

ness of the ambiguity set through the parameter µ. Hence, instead of fixing µ,

we will propose an approach of maximizing the size of the ambiguity set (hence,

the level of conservativeness) subject to a threshold constraint. In our computa-

tional studies, we observe this approach provides significant improvement over

an approach with fixed ambiguity set. As it would become clearer, the ambiguity

set, as we have defined, enables us to obtain the solution by solving a sequence

of tractable optimization problems.
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Remark 2. It would also be possible to extend our model to allow for multiple

layers of uncertainty, for example, by providing confidence intervals of mean es-

timates in the distributional ambiguity set. The key issue we face is how we can

calibrate the model of uncertainty so that we can have a reliable performance

from our data. After experimenting with several distributionally robust opti-

mization models such as incorporating variance estimates, confidence intervals

of mean estimates, we observe from our available data that the current model

provides consistency in performance improvement.

3.1.2 Distributionally robust optimization models

To circumvent the difficulties of obtaining probability distributions and solving

the complex stochastic model, the elective smoothing approach ignores uncer-

tainty and solves the following deterministic optimization problem:

ZD = min
η∈X

max
t∈T+

 ∑
(τ,l)∈Ut

(ᾱτ,lητ + p̄τ,l)− ct


 . (3.1)

The decision variables here are the quotas η = (ητ )τ∈T+ . Observe that the model

is essentially an attractive linear optimization problem if X is a polyhedron.

The aim of the objective function is not merely to minimize bed shortages that

might occur during the planning horizon, but rather to “smooth out” the daily

bed occupancy by minimizing the maximum occupancy over the horizon. This

is a service inspired criterion to better accommodate for fluctuations in bed

demands, which is known in the literature as elective smoothing. As illustrated

in Figure 3.1, even in the absence of bed shortages, the minimax criterion would

favor the bed allocation in Scenario 2, which is uniformly distributed, over that

of Scenario 1.

Nevertheless, despite being a tractable linear optimization problem, the model

ignores the potential impact of uncertainty and could lead to severe shortfalls in

hospital beds whenever bad scenarios arises. A natural extension of the elective
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Figure 3.1: An Illustrative example of bed allocation policy. -

smoothing approach to incorporate uncertainty is to minimize the worst-case

expected maximum bed excess over the planning horizon as follows

ZR(µ) = min
η∈X

sup
P∈F(µ)

EP

max
t∈T+

 ∑
(τ,l)∈Ut

(α̃τ,lητ + p̃τ,l)− ct


 . (3.2)

In the absence of uncertainty, i.e., µ = 0, it is clear that Model (3.1) is the same

as Model (3.2), hence ZD = ZR(0). As we increase the budget of variation µ,

the model takes into consideration more potential variations in the admission

process. In this approach, it is the onus of the modeler’s to set the budget of

variations, µ. We refer to this model the fixed budget model.

Optimized budget of variation model

The main challenge of Model (3.2) is how to specify the value of µ that would

yield the desired level of performance in controlling bed shortfalls. Intuitively,

a meagerly or overly specified budget of variation, µ may not adequately pro-

tect against potential bed shortfalls when the actual uncertainty is realized. In

practice, the parameter µ has to be tuned accordingly so that it gives the best
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overall performance on real data.

We note that Model (3.2) is only a means to cope with the issue of bed

shortfalls. In a well managed hospital, it is imperative that beds capacity should

exceed average demands, which implies ZD = ZR(0) ≤ 0. Extending this notion

to incorporate uncertainty, if ZR(µ) ≤ 0, for µ > 0, then we are guaranteed a

solution that ensures that for all P ∈ F(µ), the expected maximum bed excess

across the time periods is less then zero, i.e.,

EP

max
t∈T+

 ∑
(τ,l)∈Ut

(α̃τ,lητ + p̃τ,l)− ct


 ≤ 0, ∀ P ∈ F(µ).

In light of the above discussion, we propose another robust optimization

approach, i.e., to find the most reliable solution that would protect against the

worst uncertainty that might lead to bed shortfalls. In other words, we hope to

maximize the level of uncertainty that the system can absorb without going into

bed shortages. Hence, we push the boundary of uncertainty by maximizing the

budget of variation, µ subject to ZR(µ) ≤ 0 as follows

µ∗ = max µ

s.t. ZR(µ) ≤ 0

µ ∈ [0,∞).

(3.3)

Since the set F(µ) is nondecreasing in µ, the function ZR(µ) is also nondecreasing

in µ. As a result, Model (3.3) is feasible and finite if and only if ZR(0) ≤ 0 and

ZR(∞) ≥ 0. Moreover, it is reasonable to assume that the inequalities are strict

so that the bed capacity is sufficient to meet average demands but also not

overly excessive. As opposed to the fixed budget model, we refer to this model

the optimized budget model.

We note that the target value zero on the right hand side of the constraint

can further be adjusted accordingly to match the service level desired by the
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hospital. For simplicity, we leave it at zero.

The optimal solution of Model (3.3) can easily be obtained by binary search

and solving a sequence of subproblems in the form of Model (3.2) so that

ZR(µ∗) = 0.

3.2 Tractable formulation

In this section, we first study the inner maximization problem of Model (3.2),

and formulate it as a second order cone programming problem. Subsequently, we

develop a tractable formulation of Model (3.2) in form of a deterministic SOCP.

Since the problem is easy to solve when µ = 0, we will focus on the case for

which µ > 0. We first focus on the inner maximization problem in Model (3.2),

i.e.,

sup EP

(
maxt∈T+

{∑
(τ,l)∈Ut(α̃τ,lητ + p̃τ,l)− ct

})
s.t. EP(p̃τ,l) = p̄τ,l, ∀ (τ, l) ∈ I,

EP(p̃2
τ,l) ≤ p̄2

τ,l(1 + µ2), ∀ (τ, l) ∈ I,

EP(α̃τ,l) = ᾱτ,l, ∀ (τ, l) ∈ I,

EP(α̃2
τ,l) ≤ ᾱ2

τ,l(1 + µ2), ∀ (τ, l) ∈ I,

P
{

(p̃τ,l, α̃τ,l)(τ,l)∈I ∈Wp ×Wa

}
= 1,

(3.4)

where

Wp :=
{

(pτ,l)(τ,l)∈I : p0
τ ≥ pτ,l ≥ pτ,l′ ≥ 0, ∀ (τ, l), (τ, l′) ∈ I, l′ > l

}
,

Wa :=
{

(ατ,l)(τ,l)∈I : α0
τ ≥ ατ,l ≥ ατ,l′ ≥ 0, ∀ (τ, l), (τ, l′) ∈ I, l′ > l

}
.

Note also that Wp and Wa are actually the cross products of a number of sets

with respect to parameters τ ∈ T. In other words, Wp and Wa can be rewritten

as

Wp = Πτ∈TW
τ
p , Wa = Πτ∈TW

τ
a ,
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where

W τ
p :=

{
(pτ,l)l∈Lτ : p0

τ ≥ pτ,l ≥ pτ,l′ ≥ 0,∀ l, l′ ∈ Lτ , l
′ > l

}
, τ ∈ T,

W τ
a :=

{
(ατ,l)l∈Lτ : α0

τ ≥ ατ,l ≥ ατ,l′ ≥ 0, ∀ l, l′ ∈ Lτ , l
′ > l

}
, τ ∈ T.

Problem (3.4) is a maximization problem over a probability distribution func-

tion, which is generally an intractable optimization problem, see for instance

Murty and Kabadi (1987). However, under our model of uncertainty, we will

show an equivalent formulation of Problem (3.4), namely its dual problem, is a

minimization problem in the form of SOCP. As a result, Problem (3.4) can be

readily solved by existing commercialized SOCP solvers, such as CPLEX and

MOSEK.

For convenience in description, for each t ∈ T+, let ztτ,l denote the indicator

function defined by

ztτ,l =

 1, if τ + l = t+ 1,

0, otherwise,

for any (τ, l) ∈ I. Noticing that Ut = {(τ, l) ∈ I : τ + l = t + 1}, item∑
(τ,l)∈Ut(α̃τ,lητ + p̃τ,l) − ct in the objective of (3.4) can then be expressed as

below

∑
(τ,l)∈I

(α̃τ,lητ + p̃τ,l)z
t
τ,l − ct, ∀ t ∈ T+.

By applying duality theory, we derive an equivalent formulation of Problem

(3.4) as follows:

Theorem 4. Problem (3.4) has the same objective as the following optimization
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problem:

inf
ρ,(sτ,l,uτ,l,vτ,l,wτ,l)(τ,l)∈I

ρ+
∑

(τ,l)∈I

p̄τ,lsτ,l +
∑

(τ,l)∈I

p̄2
τ,l(1 + µ2)uτ,l

+
∑

(τ,l)∈I

ᾱτ,lvτ,l +
∑

(τ,l)∈I

ᾱ2
τ,l(1 + µ2)wτ,l

 (3.5)

s. t.
∑
τ∈T

πt1(sτ − ztτ ,uτ ) +
∑
τ∈T

πt2(vτ − ητztτ ,wτ ) + ρ+ ct ≥ 0, ∀ t ∈ T+,

uτ,l, wτ,l ≥ 0, ∀ (τ, l) ∈ I,

where for t ∈ T+, τ ∈ T,

πt1(sτ − ztτ ,uτ ) := min

∑
l∈Lτ

(
(sτ,l − ztτ,l)pτ,l + uτ,lp

2
τ,l

)∣∣∣∣∣∣ (pτ,l)l∈Lτ ∈W τ
p

 ,

πt2(vτ − ητztτ ,wτ ) := min

∑
l∈Lτ

(
(vτ,l − ητztτ,l)ατ,l + wτ,lα

2
τ,l

)∣∣∣∣∣∣ (ατ,l)l∈Lτ ∈W τ
a

 ,

and ρ ∈ <, sτ = (sτ,l)l∈Lτ , uτ = (uτ,l)l∈Lτ , vτ = (vτ,l)l∈Lτ , wτ = (wτ,l)l∈Lτ ,

ztτ = (ztτ,l)l∈Lτ .

70



3.2 Tractable formulation

Proof. The dual problem of Problem (3.4) can be written as

inf
ρ,(sτ,l,uτ,l,vτ,l,wτ,l)(τ,l)∈I

ρ+
∑

(τ,l)∈I

p̄τ,lsτ,l +
∑

(τ,l)∈I

p̄2
τ,l(1 + µ2)uτ,l

+
∑

(τ,l)∈I

ᾱτ,lvτ,l +
∑

(τ,l)∈I

ᾱ2
τ,l(1 + µ2)wτ,l


(3.6)

s.t. ρ+
∑

(τ,l)∈I

sτ,lpτ,l +
∑

(τ,l)∈I

uτ,lp
2
τ,l +

∑
(τ,l)∈I

vτ,lατ,l +
∑

(τ,l)∈I

wτ,lα
2
τ,l

≥
∑

(τ,l)∈Ut

(ατ,lητ + pτ,l)− ct, ∀ t ∈ T+, (pτ,l, ατ,l)(τ,l)∈I ∈Wp ×Wa,

uτ,l, wτ,l ≥ 0, ∀ (τ, l) ∈ I,

where sτ,l, uτ,l, vτ,l, wτ,l and ρ are the Lagrange multipliers corresponding to

the equality/inequality constraints concerning the first and second moments of

p̃τ,l and α̃τ,l, (τ, l) ∈ I, together with the implicit constraint that EP[1] = 1.

Evidently, the multipliers, uτ,l and wτ,l, (τ, l) ∈ I, corresponding to the inequality

constraints are all nonnegative. This property, as we shall see, is very important

in the subsequent analysis. Note that since the parameters of the ambiguity set

are obtained empirically, there exist probability distributions that are feasible

and hence, strong duality holds according to Shapiro (2001). Moreover, since

µ > 0, a distribution, P for which P
{

(p̃τ,l, α̃τ,l)(τ,l)∈I = (p̄τ,l, ᾱτ,l)(τ,l)∈I
}

= 1

would lead to expectation constraints that are strictly feasible.

Note that the system of inequality constraints in Problem (3.6) consists of

infinitely many constraints. Using the notation of vector ztτ,l, we can express the

inequality system in the dual problem (3.6) as

∑
(τ,l)∈I

(
(sτ,l − ztτ,l)pτ,l + uτ,lp

2
τ,l

)
+
∑

(τ,l)∈I

(
(vτ,l − ητztτ,l)ατ,l + wτ,lα

2
τ,l

)
≥ −ρ− ct, ∀ t ∈ T+, (pτ,l, ατ,l)(τ,l)∈I ∈Wp ×Wa,
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or equivalently,

min

 ∑
(τ,l)∈I

(sτ,l − ztτ,l)pτ,l +
∑

(τ,l)∈I

uτ,lp
2
τ,l

∣∣∣∣∣∣ (pτ,l)(τ,l)∈I ∈Wp


+ min

 ∑
(τ,l)∈I

(vτ,l − ητztτ,l)ατ,l +
∑

(τ,l)∈I

wτ,lα
2
τ,l

∣∣∣∣∣∣ (ατ,l)(τ,l)∈I ∈Wa


≥ −ρ− ct, ∀ t ∈ T+.

Note that the objectives in the above system are separable in (pτ,l)l∈Lτ ,

(ατ,l)l∈Lτ for τ ∈ T, respectively. Noticing that Wp and Wa can be written as

the cross products of some sets with respect to the parameter τ ∈ T, thereby the

“min” and “sum” operators on the left hand side are exchangeable. By recalling

the definitions of W τ
p , W τ

a , we have

∑
τ∈T

πt1(sτ − ztτ ,uτ ) +
∑
τ∈T

πt2(vτ − ητztτ ,wτ ) ≥ −ρ− ct, ∀ t ∈ T+.

Thus, the desired result follows immediately. This completes the proof.

Note that the equivalent formulation (3.5) in Theorem 4 is a deterministic

counterpart of the objective function, ZR(µ), of robust optimization model (3.2).

To derive a tractable reformulation, in what follows, we investigate the underly-

ing minimization problems in the constraints of (3.5), i.e., πti , i = 1, 2, t ∈ T+.

First, for any τ ∈ T, define an index set L+
τ := Lτ ∪ {1 + min{L, T − τ}}. We

state the results as follows.

Proposition 6. Given γ ∈ <. For t ∈ T+, the following statements hold true.

(i) For any τ ∈ T−−, the system of inequality

πt1(sτ − ztτ ,uτ ) ≥ γ (3.7)

is second order cone representable in the sense that there exist λtτ,l ≥ 0, l ∈
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L+
τ , such that (3.7) is equivalent to

∑
l∈Lτ

ytτ,l + p0
τλ

t
τ,1−τ + γ ≤ 0,

4uτ,ly
t
τ,l ≥

(
sτ,l − ztτ,l + λtτ,l − λtτ,l+1

)2
, ∀ l ∈ Lτ , (3.8)

ytτ,l ≥ 0,∀ l ∈ Lτ .

(ii) For any τ ∈ T+, the system of inequality (3.7) is second order cone repre-

sentable in the sense that there exist λtτ,l ≥ 0, l ∈ L+
τ , such that (3.7) is

equivalent to

∑
l∈Lτ

ytτ,l + p0
τλ

t
τ,1 + γ ≤ 0,

4uτ,ly
t
τ,l ≥

(
sτ,l − ztτ,l + λtτ,l − λtτ,l+1

)2
, ∀ l ∈ Lτ , (3.9)

ytτ,l ≥ 0,∀ l ∈ Lτ .

(iii) For any τ ∈ T−−, the system of inequality

πt2(vτ − ητztτ ,wτ ) ≥ γ (3.10)

is second order cone representable in the sense that there exist λtτ,l ≥ 0, l ∈

L+
τ , such that

∑
l∈Lτ

ytτ,l + α0
τλ

t
τ,1−τ + γ ≤ 0,

4wτ,ly
t
τ,l ≥

(
vτ,l − ητztτ,l + λtτ,l − λtτ,l+1

)2
, ∀ l ∈ Lτ , (3.11)

ytτ,l ≥ 0,∀ l ∈ Lτ .

(iv) For any τ ∈ T+, the system of inequality (3.10) is second order cone rep-
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resentable in the sense that there exist λtτ,l ≥ 0, l ∈ L+
τ , such that

∑
l∈Lτ

ytτ,l + α0
τλ

t
τ,1 + γ ≤ 0,

4wτ,ly
t
τ,l ≥

(
vτ,l − ητztτ,l + λtτ,l − λtτ,l+1

)2
, ∀ l ∈ Lτ , (3.12)

ytτ,l ≥ 0,∀ l ∈ Lτ .

Proof. (i). By definition, problem πt1(sτ − ztτ ,uτ ) can be written as

πt1(sτ − ztτ ,uτ ) = min
∑
l∈Lτ

(
uτ,lp

2
τ,l + (sτ,l − ztτ,l)pτ,l

)
(3.13)

s. t. p0
τ ≥ pτ,l ≥ pτ,l′ ≥ 0, ∀ l, l′ ∈ Lτ , l

′ > l.

Note that the above problem is a quadratic programming in which the coefficients

concerning the second degree are nonnegative as uτ,l ≥ 0 for l ∈ Lτ by Theorem

4. To solve this problem, we consider its dual as given below:

max
λλλtτ≥0

ζ(λtτ ), (3.14)

where ζ(λtτ ) is the associated Lagrange dual function, λtτ ∈ <|Lτ |+1 denotes the

vector of the corresponding Lagrange multipliers, and for any given set S, |S|

denotes the cardinality of S.

Let pτ = (pτ,l)l∈Lτ . For convenience in description and without loss of gen-

erality, we assume the indices of the entries in vector λtτ are consistent with

those of pτ , i.e., λtτ = (λtτ,l)l∈L+
τ

. Applying some basic operations, it gives the

Lagrange dual function as follows:

ζ(λtτ ) := min
(pτ,l)l∈Lτ

∑
l∈Lτ

(
uτ,lp

2
τ,l + (sτ,l − ztτ,l + λtτ,l − λtτ,l+1)pτ,l

)
− p0

τλ
t
τ,1−τ

 .

Note that the Slater’s condition holds true since the interior of the feasible
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region of Problem (3.13) is nonempty. By the strong duality theorem, the system

of inequality (3.7) can then be written as what follows. There exist λtτ,l ≥ 0, l ∈

L+
τ , such that

min
(pτ,l)l∈Lτ

∑
l∈Lτ

(
uτ,lp

2
τ,l + (sτ,l − ztτ,l + λtτ,l − λtτ,l+1)pτ,l

)− p0
τλ

t
τ,1−τ ≥ γ,

which, by virtue of the separability of the above minimization problem in pτ,l,

can be further reformulated as

∑
l∈Lτ

(
min
pτ,l

{
uτ,lp

2
τ,l + (sτ,l − ztτ,l + λtτ,l − λtτ,l+1)pτ,l

})
− p0

τλ
t
τ,1−τ ≥ γ. (3.15)

To investigate the quadratic programming problems on the left hand side of

(3.15), we consider the following two cases: (a) uτ,l > 0 for all l ∈ Lτ ; (b)

uτ,l = 0 for some l ∈ Lτ , respectively.

For case (a), solving the optimality condition of each minimization problem

involved, i.e., 2uτ,lpτ,l+sτ,l−ztτ,l+λtτ,l−λtτ,l+1 = 0, l ∈ Lτ , we immediately derive

the optimal solution and the corresponding optimal value, which are denoted by

p∗τ,l and f∗τ,l as follows:

p∗τ,l =
1

2uτ,l

(
ztτ,l − sτ,l + λtτ,l+1 − λtτ,l

)
, l ∈ Lτ ,

f∗τ,l = − 1

4uτ,l

(
sτ,l − ztτ,l + λtτ,l − λtτ,l+1

)2
, l ∈ Lτ .

Substituting the optimal value f∗τ,l to the inequality (3.15), it yields that

∑
l∈Lτ

1

4uτ,l

(
sτ,l − ztτ,l + λtτ,l − λtτ,l+1

)2
+ p0

τλ
t
τ,1−τ ≤ −γ. (3.16)

To derive a second order cone representation, we introduce the additional vari-
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ables ytτ,l, l ∈ Lτ , t ∈ T+ such that

1

4uτ,l
(sτ,l − ztτ,l + λtτ,l − λtτ,l+1)2 ≤ ytτ,l, l ∈ Lτ .

Thereby, system (3.16) is equivalent to

∑
l∈Lτ

ytτ,l + p0
τλ

t
τ,1−τ ≤ −γ,

4uτ,ly
t
τ,l ≥

(
sτ,l − ztτ,l + λtτ,l − λtτ,l+1

)2
, ∀ l ∈ Lτ , (3.17)

ytτ,l ≥ 0, ∀ l ∈ Lτ ,

which is a second order cone representation as desired.

For case (b), the analysis is similar to case (a), but becomes much simpler, as

the underlying problem reduces to a linear programming in this case. Noticing

that πt1(sτ − ztτ ,uτ ) is lower bounded by a constant γ, we then have sτ,l− ztτ,l +

λtτ,l − λtτ,l+1 = 0 and p∗τ,l = 0. Thereby, system (3.17) is valid as well.

(ii)− (vi). The arguments for these cases are similar to case (i). For brevity,

here we omit the details. This completes the proof.

Using Theorem 4 and Proposition 6, we are ready to derive the following

result concerning the tractability of robust optimization model (3.2), which is a

main result of this paper.

Theorem 5. Robust optimization model (3.2) is equivalent to the following
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SOCP

inf

ρ,η, (sτ ,uτ ,vτ ,wτ )τ∈T,

(λpτ ,λ
a
τ ,y

p
τ ,yaτ )τ∈T

ρ+
∑

(τ,l)∈I

p̄τ,lsτ,l +
∑

(τ,l)∈I

p̄2
τ,l(1 + µ2)uτ,l

+
∑

(τ,l)∈I

ᾱτ,lvτ,l +
∑

(τ,l)∈I

ᾱ2
τ,l(1 + µ2)wτ,l


s. t.

∑
(τ,l)∈I

yt,pτ,l +
∑

τ∈T−−
p0
τλ

t,p
τ,1−τ +

∑
τ∈T+

p0
τλ

t,p
τ,1 +

∑
(τ,l)∈I

yt,aτ,l

+
∑
τ∈T+

α0
τλ

t,a
τ,1 +

∑
τ∈T−−

α0
τλ

t,a
τ,1−τ ≤ ρ+ ct, ∀ t ∈ T+, (3.18)

4uτ,ly
t,p
τ,l ≥

(
sτ,l − ztτ,l + λt,pτ,l − λ

t,p
τ,l+1

)2
, ∀ t ∈ T+, (τ, l) ∈ I,

4wτ,ly
t,a
τ,l ≥

(
vτ,l − ητztτ,l + λt,aτ,l − λ

t,a
τ,l+1

)2
, ∀ t ∈ T+, (τ, l) ∈ I,

λt,pτ,l , λ
t,a
τ,l ≥ 0, ∀ t ∈ T+, τ ∈ T, l ∈ L+

τ ,

yt,pτ,l , y
t,a
τ,l ≥ 0, ∀ t ∈ T+, (τ, l) ∈ I,

uτ,l, wτ,l ≥ 0, ∀ (τ, l) ∈ I,

η ∈ X.

Proof. First, we rewrite the system of inequality constraints of Problem (3.5)

as

∑
τ∈T

πt1(sτ − ztτ ,uτ ) +
∑
τ∈T

πt2(vτ − ητztτ ,wτ ) ≥ −ρ− ct, ∀ t ∈ T+.(3.19)

Then according to Proposition 6 and applying some necessary operations, for

each t ∈ T+, there exist some Lagrange multipliers λt,pτ,l and λt,aτ,l , l ∈ L+
τ , τ ∈ T,
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such that (3.19) is equivalent to

∑
τ∈T+

∑
l∈Lτ

yt,pτ,l + p0
τλ

t,p
τ,1

+
∑

τ∈T−−

∑
l∈Lτ

yt,pτ,l + p0
τλ

t,p
τ,1−τ

+
∑
τ∈T+

∑
l∈Lτ

yt,aτ,l + α0
τλ

t,a
τ,1


+
∑

τ∈T−−

∑
l∈Lτ

yt,aτ,l + α0
τλ

t,a
τ,1−τ

 ≤ ρ+ ct, ∀ t ∈ T+,

4uτ,ly
t,p
τ,l ≥

(
sτ,l − ztτ,l + λt,pτ,l − λ

t,p
τ,l+1

)2
, ∀ t ∈ T+, (τ, l) ∈ I,

4wτ,ly
t,a
τ,l ≥

(
vτ,l − ητztτ,l + λt,aτ,l − λ

t,a
τ,l+1

)2
, ∀ t ∈ T+, (τ, l) ∈ I,

yt,pτ,l , y
t,a
τ,l ≥ 0, ∀ t ∈ T+, (τ, l) ∈ I.

On the other hand, according to Theorem 4, Model (3.2) is actually a “min-min”
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two-stage problem. Thus, Model (3.2) is equivalent to the following problem:

inf

ρ,η, (sτ ,uτ ,vτ ,wτ )τ∈T,

(λpτ ,λ
a
τ ,y

p
τ ,yaτ )τ∈T

ρ+
∑

(τ,l)∈I

p̄τ,lsτ,l +
∑

(τ,l)∈I

p̄2
τ,l(1 + µ2)uτ,l

+
∑

(τ,l)∈I

ᾱτ,lvτ,l +
∑

(τ,l)∈I

ᾱ2
τ,l(1 + µ2)wτ,l


s. t.

∑
τ∈T+

∑
l∈Lτ

yt,pτ,l + p0
τλ

t,p
τ,1

+
∑

τ∈T−−

∑
l∈Lτ

yt,pτ,l + p0
τλ

t,p
τ,1−τ


+
∑
τ∈T+

∑
l∈Lτ

yt,aτ,l + α0
τλ

t,a
τ,1

+
∑

τ∈T−−

∑
l∈Lτ

yt,aτ,l + α0
τλ

t,a
τ,1−τ


≤ ρ+ ct, ∀ t ∈ T+, (3.20)

4uτ,ly
t,p
τ,l ≥

(
sτ,l − ztτ,l + λt,pτ,l − λ

t,p
τ,l+1

)2
, ∀ t ∈ T+, (τ, l) ∈ I,

4wτ,ly
t,a
τ,l ≥

(
vτ,l − ητztτ,l + λt,aτ,l − λ

t,a
τ,l+1

)2
, ∀ t ∈ T+, (τ, l) ∈ I,

λt,pτ,l , λ
t,a
τ,l ≥ 0, ∀ t ∈ T+, τ ∈ T, l ∈ L+

τ ,

yt,pτ,l , y
t,a
τ,l ≥ 0, ∀ t ∈ T+, (τ, l) ∈ I,

uτ,l, wτ,l ≥ 0, ∀ (τ, l) ∈ I,

η ∈ X.

This completes the proof.

Our ability to solve the model and deploy the solution in practice critically

depends on the model’s computational tractability and efficiency. According to

Theorem 5, we obtain a SOCP reformulation of Model (3.2). If the feasible

set X is integral, then the problem becomes a SOCP problem with integrality

constraints, which can be solved by state-of-the-art commercial solvers such as

CPLEX. Assumption 3 allows us to obtain a tractable formation of the problem.

However, if we have more elaborate models, such as the standard deviation

of ãt,l being a function of
√
ηt, then it would lead to a nonlinear, nonconvex
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optimization problem, which we do not know how to solve to optimality.

3.3 Empirical studies

In this section, we study the performance of our robust optimization models

using real data from a public hospital in Singapore. Our data set consists of daily

admission and length of stay of both emergency and elective patients throughout

the year of 2008. For data sensitivity considerations, we scaled the original

data in a proportionate manner, and all following discussions are based on the

adjusted data. Emergency patients, averaging about 119 daily, account for about

82% of daily admissions. Their mean length of stay at 3.57 days exceeds that of

elective patients by about 1 day.

Figure 3.2 shows the autocorrelation plot of daily emergency admissions

across the year of 2008. Our investigation of seasonality in daily emergency

admissions reveals volatility across the days rather than across the months. The

patterns of elective admissions more or less mirror those appearing in the graph-

ics below for emergency admissions.

Figure 3.3 shows the average daily emergency admission pattern within a

week. There is an obvious weekly pattern. On average, we observe less emer-

gency admissions during the weekend. Within a week, we see the greatest number

of emergency admissions on Monday.

3.3.1 Numerical results

We have 366 days of retrospective data to evaluate and compare the performance

of various models. In fact, this is very difficult for us to perform a convincing

study based on those limited data points as we have to use the same data for

both learning (e.g. empirical mean, coefficient of variations) and calculation.

Therefore we suggest a way to impute our current data in order to provide a

longer periods with more days counted. We apply the re-sampling approach
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Figure 3.2: Autocorrelation of Daily Emergency Admissions. -

which only makes use of the current 366 data points we have. For example,

from day 0, suppose it is Sunday, we will sample only from all those historical

Sunday data points randomly with equal probability; and for day 1, suppose

it is Monday, we will sample only from all those historical Monday data points

randomly with equal probability and so on. In this way, we attain a sample

data including 5000 days emergency and elective inpatients arrivals. Moreover,

we retained the weekly arrival pattern of inpatients without knowing the exact

distribution information. And this method will work best when the arrivals of

inpatients are stationary which in reality may not be the case.

The numerical study commences on day T0. From the initial part of the data,

i.e. from day 1 through day T0 − 1, we can establish the number of emergency

and elective patients that have been warded in the hospital and their durations of

stay. Given the weekly periodicity of the data, we obtain the empirical averages

of the parameters (p̃t,l, α̃t,l) based on the day of the week t falls into.
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Figure 3.3: Average Daily Emergency Admissions by Weekday. - (Error
Bars Indicate Standard Deviations)
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We adopt a rolling horizon approach in our simulation study. Specifically, we

solve the elective admission problem repeatedly every seven days over a planning

horizon of T days until the end of the data is reached. In each problem we solve,

we impose a daily quota within the range [5, 80]. Moreover, the total quota for

the first seven days and the next seven days are set at 200. Hence, the feasible

region X for the quota is as follows:

X =

{
η ∈ Z14 : 5 ≤ ητ ≤ 80, τ ∈ {0, . . . , 13};

6∑
τ=0

ητ =

13∑
τ=7

ητ = 200

}
.

After obtaining the optimal elective admission quota η, we simulate the patient

admission process for the following seven days to evaluate the number of bed

shortfalls. We use the actual emergency admission and length of stay as reflected

in the data since these values are presumably independent of the quota. However,

we could not directly use the elective data, since the elective admissions would

be dependent on the quota imposed by our model. In the simulation study, we

impute these values from the data in the following way. Given the actual quota

η̂t and ât,l, the actual number of elective inpatients admitted on the tth day and

have stayed for at least l days, we impute the corresponding elective admission

values as at,l = bât,lηt/η̂t + 0.5c.

In our numerical study, we compare the solutions of the deterministic model

(3.1), the robust model (3.2) with different budget of variations,

µ ∈ {0.01, 0.02, 0.05, 0.1}

and the optimized budget of variation model (3.3). Note that the deterministic

model (3.1) corresponds to the fixed budget robust model (3.2) with µ = 0.

Under the above settings, we can obtain the solutions of our models within

reasonable time. Solving the integral relaxation of the problem takes about 2

to 3 seconds on a 12-core 2.4GHz Mac Pro computer using the CPLEX solver.
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For the mixed integer model, it requires about 10 to 20 seconds to obtain the

optimal solution. We observe that the optimal integer solutions are close to the

solution of the relaxed problem for which the integrality constraints are ignored.

We present the results under different configurations which differ in terms

of length of planning horizon T , maximum duration of emergency inpatients,

maximum duration of elective inpatients, hospital bed capacity, the starting

period T0 and rolling horizon days (counting periods). In Table 3.1, we list all

configuration settings for our simulation study.

Configurations 1 2 3 4 5 6 7 8

Plan Horizon 7 7 7 7 7 7 14 14

Max Duriation Elective 7 7 7 7 7 7 7 14

Max Duriation Emergent 7 14 14 14 14 14 14 14

Bed Capacity 550 600 600 600 620 620 620 620

Start Period 500 1000 1500 2000 2000 1000 1000 2000

Rolling Horizon (days) 500 1000 1000 1000 1000 2000 2000 1000

Table 3.1: Configuration settings for simulation study

In Table 3.2, we report the total bed shortages of the different models under

different configurations respectively. Apparently, our optimized models have a

significant performance improvements over other suggest models.

Configuration \ Models Deterministic Optimized µ = 0.01 µ = 0.02 µ = 0.05 µ = 0.1

1 49 43 48 69 102 173

2 1417 1124 1220 1301 1529 2456

3 1387 1074 1093 1089 1430 2283

4 2013 1747 1771 1763 2309 4095

5 368 289 307 297 445 1240

6 594 423 388 371 480 943

7 774 432 439 410 784 1100

8 910 685 723 695 789 1306

Table 3.2: Total bed shortages of the different models under given configurations

In Table 3.3, we report the maximum shortages on a daily base for the

different models under different configurations. For most times, our optimized

models yields a better results with smaller value of maximum bed shortage.
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Configuration \ Models Deterministic Optimized µ = 0.01 µ = 0.02 µ = 0.05 µ = 0.1

1 19 24 24 29 29 38

2 58 46 45 51 51 65

3 56 44 51 48 51 65

4 56 50 52 53 66 80

5 36 38 32 36 49 61

6 37 44 39 35 44 58

7 48 31 39 35 40 43

8 51 41 40 43 48 53

Table 3.3: Maximum bed shortages (daily based) of the different models under
given configurations

In Table 3.4, we report the total number of days suffering bed shortage for the

different models under different configurations. For most times, our optimized

models yields a better results with smaller value of the total number of days

suffering bed shortage.

Configuration \ Models Deterministic Optimized µ = 0.01 µ = 0.02 µ = 0.05 µ = 0.1

1 5 4 5 5 6 11

2 89 82 92 94 100 137

3 88 81 80 81 98 133

4 145 146 147 144 161 204

5 34 31 32 34 42 87

6 56 35 32 32 40 81

7 66 37 39 35 74 96

8 78 62 66 58 72 89

Table 3.4: Total number of days suffering bed shortage of the different models
under given configurations

In our computational study, we note that as we increase the budget of vari-

ation, µ the performance level of robust model (3.2) initially improves, but then

deteriorates as µ increases further. Hence, this underscores the importance of

adjusting the conservativeness of the ambiguity set through the parameter µ.

Besides, we observe that the optimal level of performance is achieved under

different µ when the model uses different starting dates, which suggests the ad-

vantage of our optimized budget of variation model, since it would be difficult

to determine the parameter µ prior to the simulation. In addition, we note that
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the optimized budget of variation model (3.3) consistently performs better than

other approaches, which suggests the superiority of this approach.

Though it is not reported in this study, we have also experimented with

several other distributionally robust optimization models, such as incorporating

variance estimates, confidence intervals of mean estimates. From the simula-

tion study, the current model that we introduced provides consistently good

performance without the need to have parameters’ estimation beyond their first

moments.

3.4 Conclusions

In this study, we present a new robust approach to manage elective admissions in

hospital. Our model contributes to the methodology of robust optimization. In

formulating our optimization model, instead of using the worst-case performance

as the objective, we propose to maximize the level of uncertainty such that the

worst-case performance meets a pre-specified target. In our problem, this method

proves to provide fairly good performance without tinkering with the model

parameters. We show how to solve our model efficiently and perform empirical

studies based on real data. The numerical results suggest that the optimized

budget of variation model (3.3) consistently generates better performance vis-à-

vis the other two approaches.

This research is done as part of a project with a public hospital in Singapore.

Currently, the hospital determines the quotas for different days of the week,

which they obtain by solving a deterministic linear optimization problem. The

approach is not dynamic and does not take into account uncertainty. Using

the data provided by the hospital, we are able to show significant improvement

in mitigating the bed shortfalls. The ultimate goal is to integrate our model

in the decision support system, which would require us to work closely with

the IT vendors so that we can obtain live updates from the system. Inspired
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by this work, we could apply our developed software for distributionally robust

optimization written in C++, so that we can easily deploy solutions that is easily

maintainable than the current approach of reformulating the robust counterpart.
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4

Patient Flow Scheduling Study

in Emergency Department

with Targeted Deadlines

The Emergency Departments (EDs) serve as an important part of healthcare,

through which 50% of non-obstetrical admissions occur (Pitts et al. (2008)).

However, we note that a considerable percentage of patients experience long

waiting or delay due to frequent congestions in the ED. Most hospital EDs oper-

ate near full capacity. Optimizing ED operations may have a significant effect on

the overall healthcare quality and cost (Geer and Smith (2004)). In this work, we

study how doctors response for system load, and examine what could be changed

to improve or optimize the decision process based on historical data and hospital

key performance indicators (KPI). The process used in Emergency Departments

is highly complex and involves different parties, spanning the spectrum of doc-

tors, nurses and tests. Despite the analytical challenges of ED models, we resort

to simulation to appropriately address those challenges.

Most hospital EDs have characterized emergency patients into several cate-

gories with ranked priorities (Patient Acuity Category scale, or PAC scale). For
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example, very sick and unstable patients (PAC 1&2) are usually treated with

highest priority with specially assigned resources, including radiology, lab, oper-

ating rooms, doctors and nurses. For this type of patients, the criterion are strict

and there is almost no tolerance for delay (5˜10 minutes) which leaves us little

space for patient flow control. Our focus here is PAC 3&4 patients (most are

walk-in patients) whose symptoms are mild to moderate and there is no present

threat to their lives. Those patients are treated in designated rooms and their

treatments do not interfere with PAC 1&2 patients. Therefore, this context gives

us more flexibility to operationally improve the process. In fact, our study of

historical data shows that doctors themselves (especially those experienced ones)

are behaving very differently over varying situations.

We utilize data from a Singapore public hospital covering over 200, 000 emer-

gent patient cases with detailed information on each patient’s diagnosis steps.

Working with electronic data actually helps us accurately reconstruct the origi-

nal operating process of ED and doctor’s decision contexts. The common steps

for PAC 3&4 patients in EDs are described in the Figure 4.1. Registration is

directly followed by the triage process, then after triage patients are ready for

doctors’ consultation. During this process, a large proportion of patients (over

60%) would return to doctors several times before ultimately discharged or ad-

mitted (ED case end). Tests (POCT, Radiology, Meditation, Lab tests and

Procedure) may be ordered during this period. Patients in EDs typically exhibit

high uncertainty in the volume, diagnosis types and service time lengths. Their

care delivery is most likely to affected by not only disease type (endogenous

factor) but also hospital factors, including doctors, congestion severity caused

by peer patients (exogenous factors). Take into account these recorded data,

we could evaluate the doctors’ behavioral response which may influence the pa-

tient selection decisions. Although those data sets are from Singapore hospitals,

their ED deployment, including various operating units (radiology, lab, surgery

rooms) and systematic software platforms (e.g. SAP) are common practice for

89



4. PATIENT FLOW SCHEDULING STUDY IN EMERGENCY
DEPARTMENT WITH TARGETED DEADLINES

most EDs worlds wide. Therefore, our proposed methodology and explored phe-

nomena may also be applicable in other EDs beyond Singapore.

Figure 4.1: Emergency Department (ED) patient flow process. -

Hospitals often face the tradeoff among the following factors:

1. Length of Stay (LoS): the time when a patient arrives in the ED to the

time s/he departs the ED;

2. First Wait (FW): the waiting time of a patient from registration till his or

her first consultation;

3. Re-attending Rate: revisit rate resulting from an adverse event that oc-

curred during the initial visit or from inappropriate care;

4. Left without being seen.

The first two factors are our major concerns here: LoS and FW. The re-attending

rate is mostly caused by clinical results which may indirectly result in system

congestion. As for left without being seen, we may not be able to study effectively

due to lack of relevant data. Ideally the shorter the LoS and FW the better we

desire. Here we use the similar requirements designed by the Singpore health

care system since our objective is to maximize the percentage of patients whose

FW and LoS are within targeted deadlines while maintain a reasonable limit

for those patients who could not meet the targets. In this work, we propose a

flow control algorithm based on dynamically solving a target based optimization

model. In our model, we introduce a doctor’s effort level (α), which deals with
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the uncertain service time. If the doctor puts more effort or work faster (high

α), the service time will be reduced as a result. Another criteria is to minimize

doctors’ effort level which is subject to the condition that all patients should

meet their deadline constraints. This selection process may incur the “fairness”

(e.g. served by first come first serve) concern to some extent, but it is comparable

to the current process where “unfairness” exists too.

For numerical testing, we build our simulation framework which could cap-

ture the essentials of the ED system being modeled. Our testing framework

includes almost all classes of objects, e.g. patients, doctors, different functional

nurses or operators (radiology) and other resources. The process framework

upon which the modeling tool is developed is similar to Figure 4.1. Doctors

could either select patients from the triage pool (new patient pool) or his or her

own consultation pool (there is only one doctor in charge for each patient, so

patients should only return to the same doctor). For radiology, lab, procedure,

POCT and medication operations, those are task oriented, i.e., once the doctor

or nurses order a new test task, this task will be put into its relevant task pool

and operators would pick a task from their designated task pool only.

Most importantly, we compare the performance of our approach via simula-

tion with three commonly used policies: First Come First Serve (FCFS), Shortest

Deadline First (SDF) and Huang et al. (2014)’s heuristic policy (HeuristicPol-

icy). Due to ethical reasons, we may not be able to run a field experiment for

different flow control policies. In the numerical setting, we apply the conven-

tional heavy-traffic where the system converges to the critical load and consider

only one doctor so far for simplicity. Deriving the optimal policy in such a com-

plex system with uncertainty is both analytically and numerically challenging.

Our policy may not achieve global optimality in the ED dynamics. We have de-

termined that our proposed optimization algorithm could easily outperform the

other three policies on given measures, whereas a small proportion of patients

can be worse off but are of limited effects.
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Our work contributes to the analytic work in healthcare operations research

that studies ED patient flow control. Our approach is very different from the

traditional queueing method, but based on the optimization model which utilizes

historical information to deal with uncertainty.

In summary, we make the following key contributions:

• Data analysis of doctors’ response for system load: Applying a large patient-

level data set of over 200, 000 ED cases, we study the effects of different

factors which may affect doctors’ behaviors, including service acceleration,

multi-tasking;

• Proposed a patient flow scheduling policy: In order to maximize the per-

centage of patients who could be served within targeted deadlines, we de-

velop a robust optimization model and estimate its performance in simu-

lation. The performance results could easily outperform other commonly

recommended policies.

The rest of this chapter is structured as follows. Section 4.1 describes the system

context and data sets we collected in the study. Section 4.2 is the data analysis

of doctors’ behavior on patient selection where we study how doctors adjust

their service rate according to system load. Section 4.3 develops the target

based optimization model for patient selection process and provides its analytical

results. Section 4.4 is the simulation study of different policies and summarizes

our work.

4.1 Clinical Setting and Data

We collected a large dataset from a major Singapore public hospital, comprising

of nearly 200,000 emergency department visits over the course of two years.

The average daily arrivals are around 400 with strong periodicity on different

day of the week, e.g., Monday arrivals are highest, while Thursday arrivals are
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lowest. In our study, PAC 3&4 (“walk-ins”) patients are served in separate area

with dedicated resources (doctors, nurses, equipments, laboratories) as compared

to PAC 1&2 (e.g. ambulance arrivals) patients. We solely focus on PAC 3&4

visits which follows a more standardized process of registration, triage, treatment

(consultation and tests) while PAC 1&2 patients are required to be treated

immediately. The majority of ED arrivals (≥ 70%) belong to PAC 3&4 and our

data sets contain 167, 000 such cases.

Most hospital EDs (Singapore, US, Europe) operate in a similar manner.

Upon arrival, patients first go for registration and an electronic patient record is

initiated with the current time stamp and patient basic information (gender, age,

name, contact, complaint and etc.). Thereafter, triage nurses will see the patient

and assesses his or her condition, measures vital signs, and record the chief

complaint. Triage nurses could also order several POCT (Point-of-care testing,

e.g., ECG, heart rate) test for the patient, but radiology, lab, and medication

orders by nurses are not permitted in our studied hospital. The beginning and

ending timestamp of triage will be marked as well as chief complaint. After

triage, all patients wait in a shared room for doctors’ consultation or treatment.

Patients will be called for service by doctors when doctors are available.

When a new patient is firstly assigned to a doctor, the doctor will mark the

start time of this consultation and this patient’s in charge doctor, i.e., the pa-

tient needs to see the same doctor during his or her ED sojourn before the case

ends (in rare cases patient change the doctor halfway). After doctor meets and

examines the patient, the doctor usually generates a mental list of possible diag-

noses and decides a treatment process. Most of the times, doctor orders several

diagnostic tests or treatments, such as lab tests, medications at the end of cur-

rent consultation. At this point, the patient will temporarily leave the doctor’s

room and wait outside for test, treatment calls or both. All tests and treat-

ments including POCT, lab, procedure, medication and radiology are recorded

electronically in the patient database. For each test and treatment order, an
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Case no Task Category ... Status Order Time Ack Time Finish Time Close Time ...

Table 4.1: Electronic task record data fields

electronic record is stored in the system tracking system, for example, Table

4.1 shows the format of task record. Lab specimens are sent to the hospital’s

central lab by pneumatic tube for processing. Other tests and treatments are

performed locally by ED nurses. For lab, POCT, and radiology tests which can

only be closed by doctors, patients are required to return to the same doctor for

assessments before the tests are closed out. Therefore, the patient may go back

to his or her doctor several times before case ends. In the last consultation, the

doctor may decide that whether the patient needs to be admitted or referred

otherwise the patient will be discharged directly. If the patient needs to be ad-

mitted or referred, the doctor will send the “admission” or “referral” request to

the responsible departments. At the end of that point, all consulations for this

patient are over, but the case may not end (“admission” or “referral” may take

several hours to be done). Anyway, patients will no longer be in the doctor’s

consultation pool, but they are still waiting in ED. This waiting time on average

takes 3˜4 hours, also called “boarding” period, and relies on other departments

but beyond ED’s control. In our study we will exclude this “boarding” period.

Requests for tests and treatments, i.e., x-rays, medication, are generally per-

formed in FCFS order by the in charge nurses. There are 4 time stamps (TSs)

for every operation: Start TS, Acknowledge TS, Finish TS and Close TS. For

example, the doctor may order an x-ray test for the patient, the ordering time

is stored as the Start TS, and when the operator in radiology room receives the

order, he or she will generate the Acknowledge TS. Once this x-ray test is over,

a Finish TS is generated. When doctor reviews the result of x-ray which is also

the point indicating the Close TS.
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4.1.1 Data Processing

The data set record patient-level characteristics (gender, age, race, nationality,

etc.), and complete time stamps of the progress of each visit. Since PAC 1&2

patients are treated with dedicated rooms and providers, we consider only the

PAC 3&4 patients (in fact hospital do not differentiate between PAC 3 and

PAC 4 type patients, all are recorded as PAC 3). We utilize patient data from

167,000 patient (PAC 3&4) visits in 2011 and 2012 from the studied Singapore

hospital. The capacity of this hospital is kept at a stable level without further

expansion. Since all electronic records of tests and treatments are stored in one

file while consultation, registration time stamps and patient level characteristics

are stored in another file, we have to derive the individual patient profile (all tests

and treatment service time, consultation time and process sequence) indirectly

and the only connection keys are patient ID and doctors. Service time and

consultation time could be calculated from tasks’ starting and ending period

and sequence could be confirmed via the sorted tasks. Therefore, we have the

following derived patient profile as shown in Figure 4.2.

Figure 4.2: A sample patient profile. -
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4.2 Data Analysis of Doctors’ Response to System

Load

Traditionally, we thought doctors would (not strictly) select patients in first-

come-first-served (FCFS) manner according to their registration time or waiting

time. However, waiting time may not be consistent with registration time since

patients may go through several rounds of waiting if tests or treatments are

ordered in the way. In our studied hospitals, doctors can have their own decision

policy and they may not necessarily follow FCFS or other commonly known

criterions. In this section we will study the doctors’ decision process in detail.

Based on our on site observations, doctors display diverse behaviors as responses

to the system load.

4.2.1 System Load Vs. Service Acceleration

We are interested in how system load may affect the actual service rate of servers.

In the classical queuing theory, service rate is not subject to the system status

(Wolff (1989)). Nevertheless, in reality we could easily find many examples which

show that this assumption is false, especially in our hospital ED setting. From

the historical operation data, we find that there is a strong dependence between

system state and service rate. Similarly, Batt and Terwiesch (2012) also shows

the empirical findings on this connection. In fact, in our observations we find

doctors may adjust their service rate according to the ED system load. When

there is an increase in congestion, doctors may take numerous ways to speed

up their service rate. In this part, we describe two primary mechanisms that

doctors may take at work to adjust their speed.

Multitasking

We first focus on doctors’ multitasking behavior. In our ED setting, after

seeing the doctor, the doctor may send him or her for another test (out of the

doctor’s treatment room). Thus, during this period when the patient is out
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for testing, doctor may select another patient for consultation even though the

former patient case has not ended yet. We may interpret this multitasking as

doctors being simultaneously responsible for multiple patients, but individual

consultations are not necessarily performed simultaneously. Therefore, when

patients are out for prescribed tests such as radiology, doctors could make use

of those “empty” periods to see other patients, which avoids a wastage of doc-

tors’ time. From the patients’ point of view, this activity could shorten their

waiting time especially for their first wait and accelerate the overall service rate.

Literatures also demonstrate that multitasking may incur additional switching

“costs” which hinders productivity (Pashler (1994)). However, most P3&P4 ED

cases are commonly seen and the procedures are more or less standard and not

complex. We could assume this switching “costs” to be negligilble. Another

reason we study multitasking is that doctors are not only using this for service

acceleration, but also for adjusting their decision strategy – they are not strictly

following a FCFS policy.

Shortened consultation time length

The other mechanism we study here is doctors’ individual consultation time

lengths – a major measure for doctors’ service rate. Based on the historical data,

it is statistically sufficient to show that the consultation time length would be

shortened when system status becomes congested. This “rushing” behavior is

also found in other literatures (Kc and Terwiesch (2009), Schultz et al. (1998))

where they show servers simply work faster.

Other mechanisms which we do not list here may also be relevant to service

rate adjustment, e.g., staffing for nurses, doctors and equipments.

4.2.2 Data Description & Analytical Results

The data set contains detailed information for each patient visit, such as patient

demographics, chief complaint, attending doctor, and time stamps and in charge
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Variable Mean Value

Age 39.6

Female 56%

Service Time 3.8 hrs

First Wait 45 mins

No. of tests 3.2

Table 4.2: Summary Statistics of Patients

person of all major events. Table 4.2 provides descriptive statistics of the patient

population. We are interested to know about how doctors select the next patient

for consultation (either from new patients or from returning patients) and sys-

tem load’s influence on doctors’ service rate. The census measure we choose to

indicate ED system load is the number of patients in the ED who has registered

but their cases not end yet. Other measures could be new patients census, ED

in-service census or boarding census (Batt and Terwiesch (2012)). In our setting,

we divide the study period into 1-hour intervals and take the average number of

patients in the ED as our census variables. The rest of our analysis on system

load is solely based on the overall number of patients in the ED including both

new patients and in-service patients. The hospital also takes this as a key indi-

cator for their crowd level in ED. Similarly, we use the 1-hour average number

of patients in charge by the same doctor as a measure for doctor’s multitasking.

For much of the analysis here, we focus on a single chief complaint to study

the connection between the system load and service rate. Generally speaking,

triage nurse would determine and record patients’ chief complaint. According to

the ICD code (000 - 999), there are 19 primary chief complaints. The most com-

mon chief complaint in ED is upper respiratory tract infection, which accounts

for 12% of all P3&4 ED cases. In Figure 4.3, we plot the mean consultation

time with respect to system status. We find that doctors would spend less time

on individual consultation when ED become more congested. Equivalently, the

service rate is higher when the system load is high.

Multitasking reveals doctors’ another mechanism for service acceleration by
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Figure 4.3: Individual consultation time length Vs. system status. -

making efficient use of their time. In fact, from our studied data we observe that

doctors tend to take more patients simultaneously as shown in Figure 4.4.

Figure 4.4: Doctor’s multitasking Vs. system status. -

4.3 Optimizing Patient Flow Control

For simplicity of model presentation, this section we build the basic ED model

with a single doctors (or server) whose service time (exclusively for consulta-
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tion) is uncertain. Doctor based on system load or status may exhibit different

service speeds even for the same type of patients. Patient types could be clus-

tered into multiple groups, for example, certain type of patients may take longer

consultation time by the same doctor under the same system load. We assume

that patients’ treatment processes (including consultations and tests) are inde-

pendent of doctor, i.e., patients’ treatment is a standard process. So we could

cluster all patients into distinct clusters based on their disease types which we

assume could be identified during the triage stage. In the previous section, we

understand that doctors would adjust their service speed according to the sys-

tem load. Here we introduce the concept of doctor’s effort level, denoted by α

where α ∈ [0, 1], and this effort level may decide how long the consultation may

take for certain type of patient. Specifically, we allow α = 1 (maximum effort)

where service time goes to zero while α = 0 (minimum effort) service time can

be ∞.

4.3.1 Notations

Given parameters:

• I: number of patients, indexed by i = 1, ..., I;

• I: set of all patients;

• I0: set of new patients who are ready for first consultation;

• L0: number of patients need to be scheduled in new patient pool;

• I1: set of returning patients who are ready for consultation;

• L1: number of patients need to be scheduled in doctor’s processing pool;

• Ti: the target waiting time for patient i;

• s̄i: upper bound of patient i ’s current service time;
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• si: lower bound of patient i ’s current service time;

Uncertain Variables and Set:

• s̃i: upcoming service time of patient i, where s̃i ∈ [si, s̄i] ;

Decision Variables:

• xik : indicating whether patient i has been arranged in position k, where

xik ∈ {0, 1}, xi = (xi1, ..., xi(L0+L1))
′and X = (x1, ...,xI);

• α: doctor’s effort level, and α ∈ [0, 1] , e.g., α = 1 means maximum effort

while α = 0 means minimum effort.

The dynamics of our patient flow work as follows. Once a doctor is available, he

or she may decide to pick a patient from either new patient pool I0 or returning

patient pool I1. So every event is triggered by doctor’s status change (e.g.,

consultation finish). However, the service time for each consultation is uncertain

and we are making decisions in a centralized system. Doctor is making decisions

out of both the new patient pool I0 and returning patient pool I1. Hence the

uncertain service time may affect all waiting patients in the design. Meanwhile,

the uncertain service time is a function we defined as (1− α)− quantile, i.e.

Definition 4.3.1. Given doctor’s effort level α , uncertain service time s̃i, ∀i ∈ I

are functions defined as follows

s̃i(α) = inf {s : P (s̃i ≤ s) ≥ 1− α} (4.1)

where P ∈ F(α) with

F(α) =

{
P : P

(
si ≤ s̃i(α) ≤ s̄i ∀i ∈ I

)
= 1

}
.

As time passes, doctors and patients statuses are updated accordingly. During

the process, new patients may join and old patients may be discharged or sent
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for tests. Regarding the value of s̃i(α), ∀i ∈ I, we could obtain from historical

data by deriving the statistical quantiles.

4.3.2 Model Setup

We are subjected to the constraints that the patients’ waiting should be within

the targeted deadline, but this is not always achievable if system experiences

congestion. In most EDs the system load is close the their capacity upper bound,

thus a possible key performance indicator (KPI) is the percentage of overall

patients which could meet the deadline constraints. However, the disadvantage

of this probability measure is its computational intractability which may deter

its practical implementation. Instead of solving a complex stochastic problem,

we come up with the objective to minimize the doctor’s effort level in order to

meet the target:

α∗ = min
X∈X(α)

α

where we let X(α) be the feasible space of scheduling solutions.

If patient i is assigned to the doctor in position (l + 1), then this patient’s

waiting time could be calculated as

∑l

k=1

∑
i∈I0∪I1

xiks̃i

where i′ is the index for current patient. In addition, patient i’s waiting length

should be no more than his or her threshold Ti. So patients’ waiting constraints

are organized as follows:

∑l

k=1

∑
i∈I0∪I1

xiks̃i ≤
∑

i∈I0∪I1
xi(l+1)Ti + (1−

∑
i∈I0∪I1

xi(l+1))M,

l = 1, .., (L0 + L1 − 1)

(4.2)

102



4.4 Simulation Study

where M is a given large number. The other constraints includs:

∑
i∈I0∪I1

xil ≥
∑

i∈I0∪I1
xi(l+1), ∀l = 1, .., (L0 + L1 − 1)∑L0+Lj

k=1
xik = 1, ∀i ∈ I0 ∪ I1∑

i∈I0∪I1
xik ≤ 1, ∀k = 1, ..., (L0 + L1)

. (4.3)

The first constraint is the sequencing compliance. The second constraint requires

every patient to be assigned to at least one doctor. The third constraint ensures

each position to be filled with no more than one patient.

We note that this optimization problem α∗ is monotonically increasing in s̃i,

∀i ∈ I. Since for any α ≤ α‡, we have

s̃i(α) ≥ s̃i(α‡) .

And set X(s̃) (s̃ = (s̃1, ..., s̃I)
′ ) is defined as

X(s̃) =

X
∣∣∣∣∣∣∣∣∣∣
X satisfy constraints in 4.2

X satisfy constraints in 4.3

i ∈ I,∀k = 1, . . . , (L0 + Lj)

 .

We could easily derive the following property and thus find the optimal α∗ using

binary search, since for any given α, we could get the value of s̃i = s̃i(α) defined

in 4.1 from historical data.

Lemma 6. For any given value sets (s̃(α)) and (s̃(α‡)) where α ≤ α‡, we have

X(s̃(α)) ⊇ X(s̃(α‡)).

4.4 Simulation Study

In our simulation study, we use a simplified ED setting where only two types

of patients are considered. One patient type is with single consultation and
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after the consultation patient will be discharged. The other type is with two

consultations as one radiology test is ordered in between. This setting highlights

or emphasizes on returning patients as well as new patients. The two types

of patient profile are listed in the Figure 4.5 and Figure 4.6. We evaluate the

performance of our proposed policy and other commonly-used policies in terms

of both first waiting and length of stay in the ED.

Figure 4.5: Tested patient profiles – single consultation. -

Figure 4.6: Tested patient profile – two consultations with one radiology
test. -

4.4.1 Other policies

We run the simulation under four different policies which are listed here. And

the detailed description on the system setting for all policies is as follows.

First Come First Servie (FCFS)

We prioritize patient according to their registration time: select patient with

earlier registration time stamps among all “available” patients.
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Shortest Deadline First (SDF)

We would select the patient whose waiting is closest to the deadline. We

use the following way to define the deadline (wseq n is the waiting time for nth

consultation )

Dseq 1 = 30mins

Dseq 2 = (D − wseq 1)mins

where Dseq n is the waiting threshold for nth consultation.

Heuristic Policy from Huang et al.(2014) (HeuristicPolicy)

For given ε ≥ 0, if all new patients satisfy

wseq 1
i ≤ Dseq 1 − ε,∀i ∈ I0,

then we would select patients from available returning patients first. Otherwise,

select the new patient with earliest registration time.

Optimized Target Based Policy(OPT)

The decision is made by solving the optimization problem in the previous

section. And the threshold waiting limit is same as the waiting limit in shortest

deadline first policy. However, we may not always have a feasible solution if

congestion happens and some patient already waits longer than the threshold.

In such case, we would suggest another optimization model for that decision

making.

In the relaxed model we fixed the service time si = EP(s̃i) (the mean value

of s̃i from distribution P and in the simulation we use empirical average instead)
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and put this given value into the following problem.

min maxi∈I(w
seq n
ik −Dseq n)

s.t. wseq ni(l+1) =
∑l

k=1

∑
i∈I0∪I1

xiksi − (1− xi(l+1)) ∗M,

∀i ∈ I0 ∪ Ij , l = 1, .., (L0 + Lj − 1)

where wseq nik is the waiting time of patient i if assigned to doctor at position k

during the nth consultation.

4.4.2 Input Settings

We get two years ED data from a public Singapore hospital and derive all pa-

tient cases’s individual service time. Furthermore, based on the characteristics of

patient cases and their specified ICD (International Statistical Classification of

Diseases and Related Health Problems) code, we clustered those cases into two

major groups with differentiated service time distributions. Empirical analysis

shows that patients’ service time distribution is close to the lognormal distri-

bution. In our patient input files, we use the derived lognormal parameters of

service time distribution to generate our patients service time.

We consider a single doctor case with two different patient profiles and two

cluster types of patients. The cluster type of patients would determine quantile

statistics of service time. Input including two different files: patients arrival and

patients profile records, see example in Table 4.3 and 4.4.

Patients ID registration time cluster type

5711104333I 3:06:07 PM type 1

Table 4.3: Example of input files on patients arrival
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Patients ID task sequence task type service time consult sequence

5711104333I 1 Triage 1 N.A

5711104333I 2 consult 5 1

5711104333I 3 radiology 6 N.A

5711104333I 4 consult end 10 2

Table 4.4: Example of input files for all patients profile

Other parameters are listed as follows

• Percentage of Type 1 and Type 2 patients : 25% Vs. 75%;

• Percentage of Patients with radiology test : 50%;

• Distribution of consultation time for each cluster type of patients (time

unit is minute):

Patient Cluster Type I : ∼ lognormal(1.2, 0.85)

Patient Cluster Type II : ∼ lognormal(1.9, 0.86)

Patients Arrival

We assume patients’ arrival is Possion process, so the time interval between

two adjacent patients follows exponential distribution. Therefore, we set

TSi = TSi−1 + exponential(λ)

where TSi is the registration time stamp for ith patient (patient i − 1 arrives

earlier than patient i, i ∈ Z+) and λ is the parameter for exponential distribution.

4.4.3 Simulation Outcomes

We run the simulation and compared the four different policies listed in Section

5.1. Since we are concerned with the percentage of patients who could meet the
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targeted deadline in terms of both first waiting and overall length of stay, related

terms are defined as follows.

• Dseq 1 : waiting threshold for the first consultation;

• wseq 1
i : waiting time of patient i for his or her first consultation, i ∈ I;

• DLoS : threshold of patients’ overall length of stay in the ED;

• LoSi : length of stay of patient i in the ED, i ∈ I;

Our performance critiriors could be reprensented as:

• P(wseq 1
i ≤ Dseq 1), probability that a new patient would see doctor within

targeted deadline (e.g. 30 minutes);

• EP(wseq 1
i ), the expected first waiting time of patients;

• EP(LoSi), the expected length of stay of patients.

We test three configurations of input parameters with different thresholds and

system load. In addition to the listed performance critirions, we plot the density

graph and quantile statistics for both first waiting time and overall length of

stay.

4.4.3.1 Configuration 1

Configuration parameters are listed below in Table 4.5.
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Notation Description Value

λ patient arrival rate which follows possion distribution 0.07

µ service rate of doctor 0.08

λ/µ service load 88%

ε threshold part for HeuristicPolicy (minutes) 5

T simulation duration, in terms of minutes 50000

N number of patients see by the system 3002

Dseq 1 time limit for first waiting (minutes) 45

D time limit for the accumulated waiting (minutes) 90

Table 4.5: Configuration 1’s input parameters

Figure 4.7 shows the density plot for the overall length of stay in ED under

configuration 1

Figure 4.7: Density plot for patients’ length of stay under different poli-
cies. - (configuration 1)
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Figure 4.8 shows the density plot for the first waiting time of patients in ED

under configuration 1

Figure 4.8: Density plot for patients’ first waiting time under different
policies. - (configuration 1)

Table 4.6 shows the performance results for P(wseq 1
i ≤ Dseq 1) , EP(wseq 1

i )

and EP(LoSi) (configuration 1).

Policy P(wseq 1
i ≤ Dseq 1) EP(wseq 1

i ) EP(LoSi)

FCFS 49% 84.33 103.32

SDF 55% 63.69 114.68

HeuristicPolicy 52% 66.85 113.94

OPT 81% 63.43 112.80

Table 4.6: Performance Measure for FCFS, SDF, HeuristicPolicy and OPT (con-
figuration 1).

Table 4.7 shows the performance results for the overall length of stay’s quan-
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tile information (configuration 1).

Policy 40% 50% 60% 70% 80% 90%

FCFS 49.0 68.0 89.0 123.0 174.0 251.0

SDF 51.0 69.0 96.0 130.0 187.0 289.0

HeuristicPolicy 49.0 65.0 90.0 129.0 187.0 289.0

OPT 29.0 39.0 52.0 77.0 133.0 334.0

Table 4.7: Length of stay’s quantile under FCFS, SDF, HeuristicPolicy and OPT
(configuration 1).

Table 4.8 shows the performance results for patients’ first waiting quantile

information (configuration 1).

Policy 40% 50% 60% 70% 80% 90%

FCFS 30.0 47.0 69.0 102.0 153.0 231.0

SDF 24.0 36.0 53.0 76.0 114.0 171.0

HeuristicPolicy 30.6 43.0 56.0 77.0 114.0 172.0

OPT 8.0 12.0 17.0 27.0 44.0 186.0

Table 4.8: First waiting’s quantile under FCFS, SDF, HeuristicPolicy and OPT
(configuration 1).

4.4.3.2 Configuration 2

We slightly change the thresholds for first waiting and accumulated waiting

(Dseq 1 and D). Configuration parameters under configuration 2 are listed in

Table 4.9.
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Notation Description Value

λ patient arrival rate which follows possion distribution 0.07

µ service rate of doctor 0.08

λ/µ service load 88%

ε threshold part for HeuristicPolicy (minutes) 5

T simulation duration, in terms of minutes 50000

N number of patients see by the system 3002

Dseq 1 time limit for first waiting (minutes) 60

D time limit for the accumulated waiting (minutes) 120

Table 4.9: Configuration 2’s input parameters

Figure 4.9 shows the density plot for the overall length of stay in ED under

configuration 2

Figure 4.9: Density plot for patients’ length of stay under different poli-
cies. - (configuration 2)
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Figure 4.10 shows the density plot for the first waiting time of patients in

ED under configuration 2

Figure 4.10: Density plot for patients’ first waiting time under different
policies. - (configuration 2)

Table 4.10 shows the performance results for P(wseq 1
i ≤ Dseq 1) , EP(wseq 1

i )

and EP(LoSi) (configuration 2).

Policy P(wseq 1
i ≤ Dseq 1) EP(wseq 1

i ) EP(LoSi)

FCFS 57% 84.33 103.32

SDF 64% 63.69 114.68

HeuristicPolicy 59% 67.85 112.94

OPT 84% 64.43 111.80

Table 4.10: Performance Measure for FCFS, SDF, HeuristicPolicy and OPT (con-
figuration 2).

Table 4.11 shows the performance results for the overall length of stay’s
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quantile information (configuration 2).

Policy 40% 50% 60% 70% 80% 90%

FCFS 49.0 68.0 89.0 123.0 174.0 251.0

SDF 51.0 69.0 96.0 130.0 187.0 289.0

HeuristicPolicy 49.0 67.0 87.0 124.0 187.0 289.0

OPT 31.0 42.0 57.0 83.0 127.0 351.0

Table 4.11: Length of stay’s quantile under FCFS, SDF, HeuristicPolicy and OPT
(configuration 2).

Table 4.12 shows the performance results for patients’ first waiting quantile

information (configuration 2).

Policy 40% 50% 60% 70% 80% 90%

FCFS 30.0 47.0 69.0 102.0 153.0 231.0

SDF 24.0 36.0 53.0 76.0 114.0 171.0

HeuristicPolicy 30.0 48.0 62.0 79.0 115.0 172.0

OPT 10.0 15.0 21.6 32.0 52.0 161.0

Table 4.12: First waiting’s quantile under FCFS, SDF, HeuristicPolicy and OPT
(configuration 2).

4.4.3.3 Configuration 3

We increase the service load in the simulation and evaluate their performance.

Configuration parameters under configuration 3 are listed in Table 4.13.
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Notation Description Value

λ patient arrival rate which follows possion distribution 0.075

µ service rate of doctor 0.08

λ/µ service load 93%

ε threshold part for HeuristicPolicy (minutes) 5

T simulation duration, in terms of minutes 50000

N number of patients see by the system 3250

Dseq 1 time limit for first waiting (minutes) 60

D time limit for the accumulated waiting (minutes) 120

Table 4.13: Configuration 3’s input parameters

Figure 4.11 shows the density plot for the overall length of stay in ED under

configuration 3

Figure 4.11: Density plot for patients’ length of stay under different
policies. - (configuration 3)
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Figure 4.12 shows the density plot for the first waiting time of patients in

ED under configuration 3

Figure 4.12: Density plot for patients’ first waiting time under different
policies. - (configuration 3)

Table 4.14 shows the performance results for P(wseq 1
i ≤ Dseq 1) , EP(wseq 1

i )

and EP(LoSi) (configuration 2).

Policy P(wseq 1
i ≤ Dseq 1) EP(wseq 1

i ) EP(LoSi)

FCFS 35% 112.33 131.32

SDF 45% 85.69 147.68

HeuristicPolicy 40% 88.85 145.94

OPT 77% 84.43 146.30

Table 4.14: Performance Measure for FCFS, SDF, HeuristicPolicy and OPT (con-
figuration 3).

Table 4.15 shows the performance results for the overall length of stay’s
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quantile information (configuration 3).

Policy 40% 50% 60% 70% 80% 90%

FCFS 90.0 110.0 133.0 157.0 194.0 268.5

SDF 89.0 111.0 141.0 179.0 221.0 305.0

HeuristicPolicy 84.0 104.5 137.0 180.0 220.6 304.3

OPT 36.0 50.0 73.0 113.0 233.0 364.0

Table 4.15: Length of stay’s quantile under FCFS, SDF, HeuristicPolicy and OPT
(configuration 3).

Table 4.16 shows the performance results for patients’ first waiting quantile

information (configuration 3).

Policy 40% 50% 60% 70% 80% 90%

FCFS 70.0 90.0 113.0 137.0 173.0 245.5

SDF 54.0 69.0 86.0 103.0 130.6 189.0

HeuristicPolicy 61.0 72.0 86.0 103.0 130.0 190.0

OPT 12.0 18.0 28.0 44.0 74.0 294.0

Table 4.16: First waiting’s quantile under FCFS, SDF, HeuristicPolicy and OPT
(configuration 3).

4.4.4 Performance Discussion

We have shown performance results of different proposed policies above. In

terms of performance measure P(wseq 1
i ≤ Dseq 1), our optimized policy signifi-

cantly outperform the other three policies. This superiority also applies to the

percentage of patient cases which are met within given threshold as shown in

those quantile information tables (Table 4.7, 4.11 and 4.15). Meanwhile, the

expected value of both FW and LoS are not always dominant to the other three

approaches. In fact, we observe that the extreme cases (e.g. ≥ 90%-quantile) in

our optimized polices are waiting or staying longer (about 20% worse off). This
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could be a tradeoff by letting a majority of patients meet those targets first. In

reality, we might assume this situation be within a reasonable range.

Summarizing, the OPT method provides better and more stable performance.

And the optimization problem can be solved very efficiently in any modern

Mixed Integer Programming (MIP) solvers. A possible limitation of our cur-

rent methodology is that we only provide the case with a single doctor. Copping

with multiple severs (doctors) will be more complex, since it requires some bal-

ancing strategy among all available servers. Nevertheless, our research shed

light on solving this patient flow control problem in reality both analytically and

practically.
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5

Conclusion and Discussion

In this dissertation we investigate three topics regarding decision making un-

der uncertainty, ranging from extensible theoretical framework, software tools

to practical applications. Our proposed framework under distributionally ro-

bust linear optimization could be widely applied, due to its rich expressiveness

of uncertainty, extensibility of multi-stage problem and computational advan-

tage. Constructing the uncertainty set could simply be driven by available data,

especially in this big data era. And the uncertainty form is specified by only

linear and conic quadratic representable expectation constraints. Our general-

ized decision rule in the recourse functions could easily outperform other existing

decision rules such as linear decision rule, extended linear decision rule and de-

flected linear decision rule. Besides the difficulties it may arise in transforming

the original problem into a tractable robust counterpart optimization, we have

developed a software modeling package named ROC (written in C++ but could

be easily encapsulated) which saves the effort of manual transformation. As the

next phase of verification our theoretical foundation, we have explored the area

of health-care operations management, and picked two research questions: (1)

How to optically assign elective admission bed quotas when facing the challenge

of uncertain demand of emergency inpatients? (2) How to optimize the patient

flow control in the emergency department with targeted deadlines?
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The two applications both make use of the data provided by Singapore hos-

pitals, and we are able to show significant improvements in their respective

performance. Our ultimate goal is to let practitioners be able to implement

our model or policy in hospital’s decision support system easily. In addition

to the contributions we emphasized in the thesis, this dissertation sheds light

on the discipline of future Business Analytics or data driven decision making.

Future research can further exploiting the framework and methodology we pro-

posed here and apply this work to more practical applications, e.g., appointment

scheduling, resource allocation, and project management.

For patient flow scheduling problem, we have shown some preliminary results

and more work needs to be done in order to make it more practicable and would

be eventually be implemented. In the future research, we will continue to work

on this part. The study so far only focuses on a single doctor’s case and cannot

be extended to multiple doctors case, let alone if doctors are of different types.

We will add new methodologies to extend our current work within a multiple

doctors’ context. For example, the service rate will be no longer single doctor

based, it could be a time, patient or even system state based variable. And more

differentiate would be made between new patients and returning patients.

Other future research can continue exploiting the theoretical framework built

for distributionally robust optimization. For example, we may add nonlinear

constraints or decision rules to current linear framework. Next, we could incor-

porate other types of problems such as SDP in conic programming if efficient

SDP solver become available.
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