
TEMPORAL CODING AND LEARNING IN

SPIKING NEURAL NETWORKS

YU QIANG

NATIONAL UNIVERSITY OF SINGAPORE

2014

TEMPORAL CODING AND LEARNING IN

SPIKING NEURAL NETWORKS

YU QIANG

(B.Eng., HARBIN INSTITUTE OF TECHNOLOGY)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014

DECLARATION

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

YU Qiang

31 July 2014

Acknowledgements

Looking back to my time as a PhD student, I would say it is challenging

but exciting. Based on my experience, learning is important over education,

especially for being an independent researcher. The PhD career is full of

difficulties and challenges. To overcome these, fortunately, I received valuable

helps from others. Therefore, I would like to take this opportunity to thank those

who gave me supports and guidance during my hard times.

I would like to take this time to thank National University of Singapore

(NUS) and Institute for Infocomm Research (I2R) for all of the funding they

were able to provide to me in order to make this thesis possible.

The first person I would like to thank is my PhD supervisor, Associate

Professor TAN Kay Chen, for introducing me to the front-edge research area

of theoretical neuroscience. I remember at the beginning of my study when

I was frustrated about those unexpected negative results, he encouraged me

with kindness but not blame. He said “this is normal and this is what a ‘re-

search’ is!”. Besides, he also helped me to get used to the life in the university,

which is the basis for a better academic life. I learned much from him, not only

skills for research, but also other skills for being a mature man. Thanks for his

encouragement, valuable supervision and great patience.

Another important person I would like to thank is Dr. TANG Huajin, for

his professional guidance in my research. His motivation and advice helped me

a lot. He always puts the student’s work to high priority. Whenever I walked to

his door for a discussion, he would stop his work and turn around to discuss the

i

results. For every manuscript I sent to him, he edited it sentence by sentence,

and taught me how to write a scientific paper with proper English.

I would also like to thank Professor LI Haizhou, Dr. YU Haoyong, ZHAO

Bo and Jonathan Dennis for their valuable ideas during our cooperations. I

would also like to express my gratitude to Associate Professor Abdullah Al

Mamun and Assistant Professor Shih-Cheng YEN for their suggestions during

my qualification exam, and for taking time to read my work carefully.

It was also a pleasure to work with all the people in the lab. My great

thanks also goes to my seniors who shared their experience with me: Shim Vui

Ann, Tan Chin Hiong, Cheu Eng Yeow, Hu Jun, Yu Jiali, Yuan Miaolong, Tian

bo and Shi Ji Yu. I would like to thank people who make my university life

memorable and enjoyable: Gee Sen Bong, Lim Pin, Arrchana, Willson, Qiu

Xin, Zhang Chong and Sim Kuan. I would also like to express my gratitude to

the lab officers, HengWei and Sara, for their continuous assistance in the Control

and Simulation lab.

Last but not least, thanks to my family for their selfless love, patience and

understanding they had for me throughout my PhD study. This thesis would not

be possible without the ensemble of these causes.

YU Qiang

30/July/2014

ii

Contents

Acknowledgements i

Contents iii

Summary vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Background . 2
1.2 Spiking Neurons . 3

1.2.1 Biological Background 4
1.2.2 Generations of Neuron Models 5
1.2.3 Spiking Neuron Models 6

1.3 Neural Codes . 8
1.3.1 Rate Code . 10
1.3.2 Temporal Code . 11
1.3.3 Temporal Code V.S. Rate Code 12

1.4 Temporal Learning . 13
1.5 Objectives and Contributions 18
1.6 Outline of the Thesis . 20

2 A Brain-Inspired Spiking Neural Network Model with Temporal
Encoding and Learning 22
2.1 Introduction . 23
2.2 The Spiking Neural Network 27

2.2.1 Encoding . 28
2.2.2 Learning . 29
2.2.3 Readout . 29

2.3 Temporal Learning Rule . 30

iii

2.4 Learning Patterns of Neural Activities 35
2.5 Learning Patterns of Continuous Input Variables 38

2.5.1 Encoding Continuous Variables into Spike Times 38
2.5.2 Experiments on the Iris Dataset 39

2.6 Discussion . 42
2.7 Conclusion . 44

3 Rapid Feedforward Computation by Temporal Encoding and Learn-
ing with Spiking Neurons 45
3.1 Introduction . 46
3.2 The Spiking Neural Network 49
3.3 Single-Spike Temporal Coding 51
3.4 Temporal Learning Rule . 57

3.4.1 The Tempotron Rule 58
3.4.2 The ReSuMe Rule . 58
3.4.3 The Tempotron-like ReSuMe Rule 60

3.5 Simulation Results . 61
3.5.1 The Data Set and The Classification Problem 61
3.5.2 Encoding Images . 62
3.5.3 Choosing Among Temporal Learning Rules 63
3.5.4 The Properties of Tempotron Rule 65
3.5.5 Recognition Performance 68

3.6 Discussion . 72
3.7 Conclusion . 75

4 Precise-Spike-Driven Synaptic Plasticity 76
4.1 Introduction . 77
4.2 Methods . 80

4.2.1 Spiking Neuron Model 80
4.2.2 PSD Learning Rule . 82

4.3 Results . 86
4.3.1 Association of Single-Spike and Multi-Spike Patterns . . 86
4.3.2 Generality to Different Neuron Models 92
4.3.3 Robustness to Noise 94
4.3.4 Learning Capacity . 97
4.3.5 Effects of Learning Parameters 100
4.3.6 Classification of Spatiotemporal Patterns 102

4.4 Discussion and Conclusion . 105

5 A Spiking Neural Network System for Robust Sequence Recognition108

iv

5.1 Introduction . 109
5.2 The Integrated Network for Sequence Recognition 112

5.2.1 Neural Encoding Method 113
5.2.2 The Sequence Decoding Method 115

5.3 Numerical Simulations . 117
5.3.1 Learning Performance Analysis of the PSD Rule 118
5.3.2 Item Recognition . 122
5.3.3 Spike Sequence Decoding 128
5.3.4 Sequence Recognition System 131

5.4 Discussions . 134
5.4.1 Temporal Learning Rules and Spiking Neurons 134
5.4.2 Spike Sequence Decoding Network 136
5.4.3 Potential Applications in Authentication 136

5.5 Conclusion . 137

6 Temporal Learning in Multilayer Spiking Neural Networks Through
Construction of Causal Connections 139
6.1 Introduction . 140
6.2 Multilayer Learning rules . 142

6.2.1 Spiking Neuron Model 142
6.2.2 Multilayer PSD Rule 143
6.2.3 Multilayer Tempotron Rule 145

6.3 Heuristic Discussion on the Multilayer Learning Rules 147
6.4 Simulation Results . 149

6.4.1 Construction of Causal Connections 149
6.4.2 The XOR Benchmark 152
6.4.3 The Iris Benchmark . 157

6.5 Discussion and Conclusion . 159

7 Conclusions 161
7.1 Summary of Contributions . 161
7.2 Future Work . 165

Bibliography 167

Author’s Publications 178

v

Summary

Neurons in the nervous systems transmit information through action

potentials (or called as spikes). It is still mysterious that how neurons with

spiking features give rise to powerful cognitive functions of the brain. This

thesis presents detailed investigation on information processing and cognitive

computing in spiking neural networks (SNNs), trying to reveal and utilize

mechanisms how the biological systems might operate. Temporal coding

and learning are two major concerns in SNNs, with coding describing how

information is carried by spikes and with learning presenting how neurons

learn the spike patterns. The focus of this thesis varies from a neuronal

level to a system level, including topics of spike-based learning in single

and multilayer neural networks, sensory coding, system modeling, as well as

applied development of visual and auditory processing systems. The temporal

learning rules proposed in this thesis show possible ways to utilize spiking

neurons to process spike patterns. The systems consisting of spiking neurons

are successfully applied to different cognitive tasks such as item recognition,

sequence recognition and memory.

Firstly, a consistent system considering both the temporal coding and

learning is preliminarily developed to perform various recognition tasks. The

whole system contains three basic functional parts: encoding, learning and

readout. It shows that such a network of spiking neurons under a temporal

framework can effectively and efficiently perform various classification tasks.

The results suggest that the temporal learning rule combined with a proper

vi

encoding method can provide basic classification abilities of spiking neurons

on different classification tasks. This system is successfully applied to learning

patterns of either discrete values or continuous values. This integrated system

also provides a general structure that could be flexibly extended or modified

according to various requirements, as long as the basic functional parts inspired

from the biology do not change.

Motivated by recent findings in biological systems, a more complex system

is constructed in a feedforward structure to process real-world stimuli from a

view point of rapid computation. The external stimuli are sparsely represented

after the encoding structure, and the representations have some properties of

selectivity and invariance. With a proper encoding scheme, the SNNs can be

applied to both visual and auditory processing. This system is important in the

light of recent trends in combining both the coding and learning in a systematic

level to perform cognitive computations.

Then, a new temporal learning rule, named as the precise-spike-driven

(PSD) synaptic plasticity rule, is developed for learning hetero-association

of spatiotemporal spike patterns. Various properties of the PSD rule are

investigated through an extensive experimental analysis. The PSD rule is

advantageous in that it is not limited to performing classification, but it is

also able to memorize patterns by firing desired spikes at precise time. The

PSD rule is efficient, simple, and yet biologically plausible. The PSD rule is

then applied in a spiking neural network system for sequence recognition. It

shows that different functional subsystems can consistently cooperate within

a temporal framework for detecting and recognizing a specific sequence. The

vii

results indicate that different spiking neural networks can be combined together

as long as a proper coding scheme is used for the communications between each

other.

Finally, temporal learning rules in multilayer spiking neural networks are

investigated. As extensions of single-layer learning rules, the multilayer PSD

rule (MutPSD) and multilayer tempotron rule (MutTmptr) are developed. The

multilayer learning is fulfilled through the construction of causal connections.

Correlated neurons are connected through fine tuned weights. The MutTmptr

rule converges faster, while the MutPSD rule gives better generalization ability.

The proposed multilayer rules provide an efficient and biologically plausible

mechanism, describing how synapses in the multilayer networks are adjusted to

facilitate the learning.

viii

List of Tables

2.1 Classification performance on Iris dataset 41

3.1 The classification performance of tempotron and SVM on MNIST 71

4.1 Multi-Category Classification of Spatiotemporal Patterns 104

6.1 XOR Problem Description for Multilayer SNNs 152
6.2 Convergent results for the XOR problem 155

ix

List of Figures

1.1 Structure of a typical neuron 4
1.2 A typical spatiotemporal spike pattern 9
1.3 Spike-Timing-Dependent Plasticity(STDP) 14

2.1 A functional SNN architecture for pattern recognition 27
2.2 Dynamics of the tempotron response 32
2.3 Learning windows of STDP and the tempotron rule 33
2.4 Examples of discrete-valued patterns 36
2.5 Classification results for different patterns of activities 37
2.6 Classification results for learning Iris dataset 40

3.1 Architecture of the visual encoding model 53
3.2 Illustration of DoG filters . 55
3.3 Illustration of invariance gained from max pooling operation . . 55
3.4 Illustration of the processing results in different encoding pro-

cedures . 56
3.5 Illustration of the ReSuMe learning rule 59
3.6 Examples of handwritten digits from MNIST dataset 61
3.7 Suitability of ReSuMe rule for the chosen neuron model 63
3.8 Learning speed comparison of different rules 64
3.9 Evaluation of the tempotron capacity 66
3.10 Robustness of the tempotron against jitter noise 67
3.11 Recognition demonstration of digits by tempotron 69
3.12 The classification performance of tempotron and SVM 70
3.13 Weight demonstration of the tempotron after learning 72
3.14 Spiking Neural Network for Sound Recognition 74

4.1 Illustration of the neuron structure 81
4.2 Demonstration of the weight adaptation in PSD 84
4.3 Illustration of the temporal sequence learning of a typical run . . 88
4.4 Effect of the learning on synaptic weights and the evolution of

distance along the learning process 89

x

4.5 Illustration of the adaptive learning of the changed target trains . 90
4.6 Illustration of a typical run for learning multi-spike pattern . . . 92
4.7 Learning with different spiking neuron models 93
4.8 Robustness of the PSD rule . 96
4.9 Memory capacity of the PSD rule 98
4.10 Effect of decay constant τs on the distribution of weights 101
4.11 Effects of η and τs on the learning 102
4.12 Classification of spatiotemporal patterns 104

5.1 System structure for sequence recognition 113
5.2 A simple phase encoding method 114
5.3 The neural structure for spike sequence recognition 115
5.4 The performance of the PSD rule on the XOR task 119
5.5 The convergent performance 121
5.6 Illustration of the OCR samples 122
5.7 Performance of the number of desired spikes under jitter noise . 124
5.8 Performance of different rules under jitter noise 125
5.9 Performance of different rules under reversal noise 127
5.10 A reliable response of the spike sequence decoding system . . . 129
5.11 An unreliable response of the spike sequence decoding system . 130
5.12 The performance of the combined sequence recognition system . 132
5.13 Performance on a target sequence with one semi-blind item . . . 133
5.14 Voice samples of digit Zero . 137

6.1 Structure and plasticity of multilayer PSD 144
6.2 Similarity between PSD and tempotron 146
6.3 Construction of causal connections 150
6.4 Demonstration of XOR with Multilayer PSD 153
6.5 Demonstration of XOR with Multilayer Tempotron 154
6.6 Effect of the learning rate on the convergence of the XOR task . 156
6.7 Performance of multilayer learning rules on the Iris task 158

7.1 Sensory systems for cognitions 166

xi

Chapter 1

Introduction

Since the emergence of the first digital computer, people are set free from

heavy computing works. Computers can process a large amount of data with

high precision and speed. However, compared to the brain, the computer still

cannot approach a comparable performance considering cognitive functions

such as perception, recognition and memory. For example, it is easy for

human to recognize the face of a person, read papers and communicate with

others, but hard for computers. Mechanisms that utilized by the brain for

such powerful cognitive functions still remain unclear. Neural networks are

developed for providing a brain-like information processing and cognitive

computing. Theoretical analysis on neural networks could offer a key approach

to reveal the secret of the brain. The subsequent sections provide detailed

background information, as well as the objectives and the challenges of this

thesis.

1

CHAPTER 1. INTRODUCTION

1.1 Background

The computational power of the brain has attracted many researchers to

reveal its mystery in order to understand how it works and to design human-

like intelligent systems. The human brain is constructed with around 100

billion highly interconnected neurons. These neurons transmit information

between each other to perform cognitive functions. Modeling neural networks

facilitates investigation of information processing and cognitive computing

in the brain from a mathematical point of view. Artificial neural networks

(ANNs), or simply called neural networks, are the earliest work for modeling

the computational ability of the brain. The research on ANNs has achieved a

great deal in both theories and engineering applications. Typically, an ANN is

constructed with neurons which have real-valued inputs and outputs.

However, biological neurons in the brain utilize spikes (or called as action

potentials) for information transmission between each other. This phenomenon

of the ‘spiking’ nature of neurons has been known since the first experiments

conducted by Adrian in the 1920s [1]. Neurons will send out short pulses

of energy (spikes) as signals, if they have received enough input from other

neurons. Based on this mechanism, spiking neurons are developed with a same

capability of processing spikes as biological neurons. Thus, spiking neural

networks (SNNs) are more biologically plausible than ANNs since the concept

of spikes, rather than real values, is considered in the computation. SNNs are

widely studied in recent years, but questions of how information is represented

by spikes and how the neurons process these spikes are still unclear. These two

2

CHAPTER 1. INTRODUCTION

questions demand further studies on neural coding and learning in SNNs.

Spikes are believed to be the principal feature in the information process-

ing of neural systems, though the neural coding mechanism remains unclear. In

1920s, Adrian also found that sensory neurons fire spikes at a rate monotonically

increasing with the intensity of stimulus. This observation led to the widespread

adoption of the hypothesis of a rate coding, where neurons communicate purely

through their firing rates. Recently, an increasing body of evidence shows that

the precise timing of individual spikes also plays an important role [2]. This

finding supports the hypothesis of a temporal coding, where the precise timing

of spikes, rather than the rate, is used for encoding information. Within a

‘temporal coding’ framework, temporal learning describes how neurons process

precise-timing spikes. Further research on temporal coding and temporal

learning would provide a better understanding of the biological systems, and

would also explore potential abilities of SNNs for information processing and

cognitive computing. Moreover, beyond independently studying the temporal

coding and learning, it would be more important and useful to consider both in

a consistent system.

1.2 Spiking Neurons

The rough concept of how neurons work is understood: neurons send out

short pulses of electrical energy as signals, if they have received enough of

these themselves. This principal mechanism has been modeled into various

mathematical models for computer use. These models are built under the

3

CHAPTER 1. INTRODUCTION

inspiration of how real neurons work in the brain.

1.2.1 Biological Background

A neuron is an electrically excitable cell that processes and transmits in-

formation by electrical and chemical signaling. Chemical signaling occurs

via synapses, specialized connections with other cells. Neurons form neural

networks through connecting with each other.

Computers communicate with bits; neurons use spikes. Incoming signals

change the membrane potential of the neuron and when it reaches above a

certain value the neuron sends out an action potential (spike).

Dendrite

Soma

Nucleus

Axon

Axon
terminal

Figure 1.1: Structure of a typical neuron. A neuron typically possesses a soma,
dendrites and an axon. The neuron receives inputs via dendrites and sends output

through the axon.

As is shown in Figure 1.1, a typical neuron possesses a cell body (often

called soma), dendrites, and an axon. The dendrites serve as the inputs of the

neuron and the axon acts as the output. The neuron collects information through

its dendrites and sends out the reaction through the axon.

Spikes cannot cross the gap between one neuron and the other. Connec-

tions between neurons are formed via cellular interfaces, so called synapses. An

4

CHAPTER 1. INTRODUCTION

incoming pre-synaptic action potential triggers the release of neurotransmitter

chemicals in vesicles. These neurotransmitters cross the synaptic gap and bind

to receptors on the dendritic side of the synapse. Then a post-synaptic potential

will be generated [3, 4].

The type of synapse and the amount of released neurotransmitter determine

the type and strength of the post-synaptic potential. The membrane potential

would be increased by excitatory post-synaptic potential (EPSP) or decreased

by inhibitory post-synaptic potential (IPSP). Real neurons only use one type of

neurotransmitter in all their outgoing synapses. This makes the neuron either be

excitatory or inhibitory [3].

1.2.2 Generations of Neuron Models

From the conceptual point of view, all neuron models share the following

common features:

1. Multiple inputs and single output: The neuron receives many inputs and

produces a single output signal.

2. Different types of inputs: The output activities of neurons are charac-

terized by at least one state variable that usually corresponding to the

membrane potential. An input from the excitatory/inhibitory synapses will

increase/decrease the membrane potential.

Based on these conceptual features, various neuron models are developed.

Artificial neural networks are already becoming a fairly old technique within

computer science. The first ideas and models are over fifty years old. The first

5

CHAPTER 1. INTRODUCTION

generation of artificial neuron is the one with McCulloch-Pitts threshold. These

neurons can only give digital output. Neurons of the second generation do not

use a threshold function to compute their output signals, but a continuous acti-

vation function, making them suitable for analog input and output [5]. Typical

examples of neural networks consisting of these neurons are feedforward and

recurrent neural networks. They are more powerful than their first generation

[6].

Neuron models of the first two generations do not employ the individual

pulses. The third generation of neuron models raises the level of biological

realism by using individual spikes. This allows incorporating spatiotemporal

information in communication and computation, like real neurons do.

1.2.3 Spiking Neuron Models

For the reasons of greater computational power and more biological plausibility,

spiking neurons are widely studied in recent years. As the third generation

of neuron models, spiking neurons increase the level of realism in a neural

simulation.

Spiking neurons have an inherent notion of time that makes them seem-

ingly particularly suited for processing temporal input data [7]. Their nonlinear

reaction to input provides them with strong computational qualities, theoretical-

ly requiring just small networks for complex tasks.

6

CHAPTER 1. INTRODUCTION

Leaky Integrate-and-Fire Neuron (LIF)

The leaky integrate-and-fire neuron [4] is the most widely used and best-known

model of threshold-fire neurons. The membrane potential of the neuron Vm(t)

is dynamically changing over time, as:

τm
dVm
dt

= −Vm + I(t) (1.1)

where τm is the membrane time constant in which voltage ‘leaks’ away. A

bigger τm can result in a slower decaying process of Vm(t). I(t) is the input

current which is a weighted sum from all incoming spikes.

Once a spike arrives, it is multiplied by corresponding synaptic efficacy

factor to form the post-synaptic potential that changes the potential of the

neuron. When the membrane potential crosses a certain threshold value, the

neuron will elicit a spike; after which the membrane potential goes back to a

reset value and holds there for a refractory period. Within the refractory time,

the neuron is not allowed to fire.

From both the conceptual and computational points of view, the LIF model

is relatively simple comparing to other spiking neuron models. An advantage of

the model is that it is relatively easy to integrate it in hardware, achieving a very

fast operation. Various generalizations of the LIF model have been developed.

One popular generalization of the LIF model is the Spike Response Model

(SRM), where a kernel approach is used in neuron’s dynamics. The SRM is

widely used due to its simplicity in analysis.

7

CHAPTER 1. INTRODUCTION

Hodgkin-Huxley Model (HH) and Izhikevich Model (IM)

The Hodgkin-Huxley (HH) model was based on experimental observations with

the large neurons found in squid [8]. It is by far the most detailed and complex

neuron model. However, this model is less suited for simulations of large

networks since the realism of neuron model comes at a large computational

cost.

The Izhikevich model (IM) was proposed in [9]. By choosing different

parameter values in the dynamic equations, the neuron model can function

differently, like bursting or single spiking.

1.3 Neural Codes

The world around us is extremely dynamic, that everything changes continuous-

ly over time. The information of the external world goes into our brain through

the sensory systems. Determining how neuronal activity represents sensory

information is central for understanding perception. Besides, understanding the

representation of external stimuli in the brain directly determines what kind of

information mechanism should be utilized in the neural network.

Neurons are remarkable among the cells of the body in their ability to

propagate signals rapidly over large distances. They do this by generating

characteristic electrical pulses called action potentials or, more simply, spikes

that can travel down nerve fibers. Sensory neurons change their activities

by firing sequences of action potentials in various temporal patterns, with the

presence of external sensory stimuli, such as light, sound, taste, smell and touch.

8

CHAPTER 1. INTRODUCTION

It is known that information about the stimulus is encoded in this pattern of

action potentials and transmitted into and around the brain.

Although action potentials can vary somewhat in duration, amplitude and

shape, they are typically treated as identical stereotyped events in neural coding

studies. Action potentials are all very similar. In addition, neurons in the brain

work together, rather than individually, to transfer the information.

Temporal-dim

S
p
a
ti
o
-d
imi

j

Neuron

Population

Spatiotemporal

Pattern

Figure 1.2: A typical spatiotemporal spike pattern. A group of neurons (Neuron Group)
works together to transfer the information, with each neuron firing a spike train in
time. All spike trains from the group form a pattern with both spatio- and temporal-
dimension information. This is called spatiotemporal spike pattern. The vertical lines

denote spikes.

Figure 1.2 shows a typical spatiotemporal spike pattern. This pattern

contains both spatial and temporal information of a neuron group. Each neuron

fires a spike train within a time period. The spike trains of the whole neuron

group form the spatiotemporal pattern. The spiking neurons inherently aim to

process and produce this kind of spatiotemporal spike patterns.

The question is still not clear that how this kind of spike trains could con-

vey information of the external stimuli. A spike train may contain information

9

CHAPTER 1. INTRODUCTION

based on different coding schemes. In motor neurons, for example, the strength

at which an innervated muscle is flexed depends solely on the ‘firing rate’, the

average number of spikes per unit time (a ‘rate code’). At the other end, a

complex ‘temporal code’ is based on the precise timing of single spikes. They

may be locked to an external stimulus such as in the auditory system or be

generated intrinsically by the neural circuitry [10].

Whether neurons use the rate code or the temporal code is a topic of

intense debate within the neuroscience community, even though there is no clear

definition of what these terms mean. The followings further present a detailed

overview of the rate code and the temporal code.

1.3.1 Rate Code

Rate code is a traditional coding scheme, assuming that most, if not all,

information about the stimulus is contained in the firing rate of the neuron.

Because the sequence of action potentials generated by a given stimulus varies

from trial to trial, neuronal responses are treated statistically or probabilistically.

They may be characterized by firing rates, rather than by specific spike

sequences. In most sensory systems, the firing rate increases, generally non-

linearly, with increasing stimulus intensity [3]. Any information possibly

encoded in the temporal structure of the spike train is ignored. Consequently,

the rate code is inefficient but highly robust with respect to input noise.

Before encoding external information into firing rates, precise calculation

of the firing rates is required. In fact, the term ‘firing rate’ has a few different

definitions, which refer to different averaging procedures, such as an average

10

CHAPTER 1. INTRODUCTION

over time or an average over several repetitions of experiment. For most cases

in the coding scheme, it considers the spike count within an encoding window

[11]. The encoding window is defined as the temporal window that contains the

response patterns that are considered as the basic information-carrying units of

the code. The hypothesis of the rate code receives support from the ubiquitous

correlation of firing rates with sensory variables [1].

1.3.2 Temporal Code

When precise spike timing or high-frequency firing-rate fluctuations are found

to carry information, the neural code is often identified as a temporal code [12].

A number of studies have found that the temporal resolution of the neural code

is on a millisecond time scale, indicating that precise spike timing is a significant

element in neural coding [13, 14].

Neurons, in the retina [15, 16], the lateral geniculate nucleus (LGN) [17]

and the visual cortex [14,18] as well as in many other sensory systems [19, 20],

are observed to precisely respond to the stimulus on a millisecond timescale.

These experiments support hypothesis of the temporal code, in which precise

timings of spikes are taken into account for conveying information.

Like real neurons, communication is based on individually timed pulses.

The temporal code is potentially much more powerful for encoding information

with respect to the rate code. It is possible to multiplex much more information

into a single stream of individual pulses than you can transmit using just the

average firing rates of a neuron. For example, the auditory system can combine

the information of amplitude and frequency very efficiently over one single

11

CHAPTER 1. INTRODUCTION

channel [21].

Another advantage of the temporal code is speed. Neurons can be made to

react to single spikes, allowing for extremely fast binary calculation. The human

brain, for example, can recognize faces in as little as 100 ms [22, 23].

There are several kinds of temporal code that have been proposed, like

latency code, interspike intervals code and phase of firing code [11]. Latency

code is a specific form of temporal code, that encoding information in the timing

of response relative to the encoding window, which is usually defined with

respect to stimulus onset. The latency of a spike is determined by the external

stimuli. A stronger input could result in an earlier spike. In the interspike

intervals code, the temporally encoded information is carried by the relative

time between spikes, rather than by their absolute time with respect to stimulus

onset. In the phase of firing code, information is encoded by the relative timing

of spikes regarding to the phase of subthreshold membrane oscillations [11,24].

1.3.3 Temporal Code V.S. Rate Code

In the rate code, a higher sensory variable corresponds to a higher firing rate.

Although there are few doubts as to the relevance of this firing rate code, it

neglects the extra information embedded in the temporal structure.

Recent studies have shown neurons in the vertebrate retina fire with

remarkable temporal precision. In addition, temporal patterns in spatiotemporal

spikes can carry more information than the rate-based code [25–27]. Thus,

temporal code serves as an important component in neural system.

Since the temporal code is more biologically plausible and computational-

12

CHAPTER 1. INTRODUCTION

ly powerful, a temporal framework is considered throughout this study.

1.4 Temporal Learning

Learning is a process to acquire new knowledge or modify existing knowledge.

Researchers have gone a long way to explore the secret of learning mechanisms

in the brain. In neuroscience, the learning process is found to be related to

synaptic plasticity, where the synaptic weights are adjusted along the learning.

In 1949, Donald Hebb introduced a basic mechanism that explained the

adaptation of neurons in the brain during the learning process [28]. It is called

the Hebbian learning rule, where a change in the strength of a connection is

a function of the pre- and post-synaptic neural activities. When neuron A

repeatedly participates in firing neuron B, the synaptic weight from A to B

will be increased.

The Hebbian mechanism has been the primary basis for learning rules in

spiking neural networks, though detailed processes of the learning occurring

in biological systems are still unclear. According to the schemes on how

information is encoded with spikes, learning rules in spiking neural networks

can be generally assorted into two categories: rate learning and temporal

learning.

The rate learning algorithms, such as the spike-driven synaptic plasticity

rule [29, 30], are developed for processing spikes presented in a rate-based

framework, where mean firing rates of the spikes are used for carrying

information. However, since the rate learning algorithms are formulated in a

13

CHAPTER 1. INTRODUCTION

rate-based framework, this group of rules cannot be applied to process precise-

time spike patterns.

To process spatiotemporal spike patterns with a temporal framework, the

temporal learning rule is developed. This kind of learning rule can be used to

process information that is encoded with a temporal code, where precise timing

of spikes acts as the information carrier. Development of the temporal learning

rule is imperative considering an increasing body of evidence supporting the

temporal code.

Among various temporal rules, several rules have been widely studied,

including: spike-timing-dependent plasticity (STDP) [31, 32], the tempotron

rule [33], the SpikeProp rule [34], the SPAN rule [35], the Chronotron rule [36]

and the ReSuMe rule [37].

Synaptic

change

(a)

LTP

LTD

0

pre postt t tD = -

0tD >0tD <

(b)

0 0.2 0.4 0.6 0.8 1

0

500

1000

Time (sec)

P
o
te

n
ti
a
l

11 11.2 11.4 11.6 11.8 12

0

500

1000

Time (sec)

Figure 1.3: Spike-Timing-Dependent Plasticity (STDP). (a) is a typical asymmetric
learning window of STDP. Pre-synaptic spike firing before post-synaptic spike will
cause long-term potentiation (LTP). Long-term depression (LTD) occurs if the order of
these two spikes is reversed. (b) shows the ability of STDP to learn and detect repeating
patterns that embedded in continuous spike trains. Shaded areas denote the embedded
repeating patterns, and the blue line shows the potential trace of the neuron. Along the

learning with STDP, the neuron gradually detects the target pattern by firing a spike.

STDP is one of the most commonly and experimentally studied rules in

recent years. STDP is in agreement with Hebbs postulate because it reinforces

14

CHAPTER 1. INTRODUCTION

the connections with the pre-synaptic neurons that fired slightly before the

postsynaptic neuron, which are those that ‘took part in firing it’. STDP describes

the learning process depending on the precise spike timing, which is more

biologically plausible. The STDP modification rule is shown as the following

equation:

∆wij =

A+ · exp(∆t

τ+
) , ∆t 6 0

−A− · exp(−∆t

τ−
) , ∆t > 0

(1.2)

where ∆t denotes the time difference between the pre- and post-synaptic spikes.

A+, A− and τ+, τ− are parameters of learning rates and time constants,

respectively.

As is shown in Figure 1.3(a), if pre-synaptic spike fire before the post-

synpatic spike, long-term potentiation (LTP) will happen. Long-term depression

(LTD) occurs when the firing order is reversed.

Figure 1.3(b) shows that neurons equipped with STDP can automatically

find the repeating pattern which is embedded in a background. The neuron will

emit a spike at the presence of this pattern [38–40].

However, STDP characterizes synaptic changes solely in terms of the

temporal contiguity of the pre-synaptic spike and the post-synaptic potential

or spike. This is not enough for learning spatiotemporal patterns since it would

cause silent response sometimes.

The tempotron rule [33] is one such temporal learning rule where neurons

are trained to discriminate between two classes of spatiotemporal patterns. This

learning rule is based on a gradient descent approach. In the tempotron rule, the

synaptic plasticity is governed by the temporal contiguity of pre-synaptic spike,

15

CHAPTER 1. INTRODUCTION

post-synaptic depolarization and a supervisory signal. The neurons could be

trained to successfully distinguish two classes by firing a spike or by remaining

quiescent.

The tempotron rule is an efficient rule for the classification of spatiotem-

poral patterns. However, the neurons do not learn to fire at precise time. Since

the tempotron rule mainly aims at decision-making tasks, it cannot support the

same coding scheme used in both the input and output spikes. The time of the

output spike seems to be arbitrary, and does not carry information. To support

the same coding scheme through the input and output, a learning rule is needed

to let the neuron not only fire but also fire at the specified time. In addition, the

tempotron rule is designed for a specific neuron model, which might limit its

usage on other spiking neuron models.

By contrast, the SpikeProp rule [34] can train neurons to perform a

spatiotemporal classification by emitting single spikes at the desired firing time.

The SpikeProp rule is a supervised learning rule for SNNs that based on gradient

descent approach. The major limitation is that the SpikeProp rule and its

extension in [41] do not allow multiple spikes in the output spike train. To solve

this problem, several other temporal learning rules, such as the SPAN rule, the

Chronotron rule and the ReSuMe rule, have been developed to train neurons to

produce multiple output spikes in response to a spatiotemporal stimulus.

In both the SPAN rule and the Chronotron E-learning rule, the synaptic

weights are modified according to a gradient descent approach in an error

landscape. The error function in the Chronotron rule is based on the Victor &

Purpura distance [42] in which the distance between two spike trains is defined

16

CHAPTER 1. INTRODUCTION

as the minimum cost required to transform one into the other, while in the

SPAN rule the error function is based on a metric similar to the van Rossum

metric [43] where spike trains are converted into continuous time series for

evaluating the difference. These arithmetic calculations can easily reveal why

and how networks with spiking neurons can be trained, but the arithmetic-based

rules are not a good choice for designing networks with biological plausibility.

The biological plausibility of error calculation is at least questionable.

From the perspective of increased biological plausibility, the Chronotron

I-learning rule and the ReSuMe rule are considered. The I-learning rule is

heuristically defined in [36] where synaptic changes depend on the synaptic

currents. According to the I-learning rule, its development seems to be based

on a particular case of the Spike Response Model [4], which might also limit its

usage on other spiking neuron models or at least is not clearly demonstrated.

Moreover, those synapses with zero initial weights will never be updated

according to the I-learning rule. This will inevitably lead to information loss

from those afferent neurons.

In view of the two aspects presented above, i.e., the biological plausibility

and the computational efficiency, one major purpose of this study was to

combine the two aspects for a new temporal learning rule and develop a

comprehensive research framework within a system where information is

carried by precise-timing spikes.

17

CHAPTER 1. INTRODUCTION

1.5 Objectives and Contributions

Even though many attempts have been devoted to exploring mechanisms used in

the brain, a majority of facts about spiking neurons for information processing

and cognitive computing still remain unclear. The research gaps for current

studies on SNNs are summarized below:

1. Temporal coding and temporal learning are two of the major areas in SNNs.

Various mechanisms are proposed based on inspirations from biological

observations. However, most studies on these two areas are independent.

There are few studies considering both the coding and the learning in a

consistent system [30, 34, 44–46].

2. Over the rate-based learning algorithms, the temporal learning algorithms are

developed for processing precise-timing spikes. However, these temporal

learning algorithms focus more on the aspects of either arithmetic or

biological plausibility. Either side of these two aspects would not be a

good choice considering both the computational efficiency and the biological

plausibility.

3. Currently, there are few studies on the practical applications of SNNs [30,34,

45–47]. Most studies only focus on theoretical explorations of SNNs.

4. Learning mechanisms for building causal connections have not been clearly

investigated.

The main aim of this study is to explore and develop cognitive computa-

tions with spiking neurons under a temporal framework. The specific objectives

18

CHAPTER 1. INTRODUCTION

of this research are:

1. To develop an integrated consistent system of spiking neurons, where both

the coding and the learning are considered from a systematic level.

2. To develop a new temporal learning algorithm that is both simple for

computation and also biologically plausible.

3. To investigate various properties of the proposed algorithm, such as memory

capacity, robustness to noise and generality to different neuron models, etc.

4. To investigate the ability of the proposed SNNs applying to different

cognitive tasks, such as image recognition, sound recognition and sequence

recognition, etc.

5. To investigate the temporal learning in multilayer spiking neural networks.

The significance of this study is two-fold. On one hand, such models pro-

posed in this study may contribute to a better understanding of the mechanisms

by which the real brains operate. On the other hand, the computational models

inspired from biology are interesting in their own right, and could provide

meaningful techniques for developing real-world applications.

This thesis is restricted to computer simulations for exploring cognitive

computations of spiking neurons. There is no intention to perform experiments

on biological systems since this is beyond the scope of this study. The

computations of spiking neurons in this study are considered in a temporal

framework rather than a rate-based framework. This is because mounting

evidence shows that precise timing of individual spikes plays an important role.

19

CHAPTER 1. INTRODUCTION

In addition, the temporal framework offers significant computational advantages

than the rate-based framework.

1.6 Outline of the Thesis

In the area of theoretical neuroscience, the general target is to provide a

quantitative basis for describing what nervous systems do, understanding how

they function, and uncovering the general principles by which they operate.

It is a challenging area since multidisciplinary knowledges are required for

building models. Investigating spike-based computation serves as a main

focus for conducting the research work of this study. To further specify the

research scope, the temporal framework is considered in this study. In order

to achieve the aforementioned objectives, a general system structure has been

devised. Further investigations on individual functional parts of the system

are conducted. The organization of the remaining chapters of this thesis is as

follows.

Chapter 2 presents a brain-inspired spiking neural network system with

simple temporal encoding and learning. With a biologically plausible super-

vised learning rule, the system is applied to various pattern recognition tasks.

The proposed approach is also benchmarked with the nonlinearly separable task.

In Chapter 3, more complex and biologically plausible system structures

are developed based on the one proposed in Chapter 2. The encoding

system provides different levels of robustness, and enables the spiking neural

networks to process real-world stimuli, such as images and sounds. Detailed

20

CHAPTER 1. INTRODUCTION

investigations on the encoding and learning are also provided.

In Chapter 4, a novel learning rule, namely Precise-Spike-Driven (PSD)

synaptic plasticity, is proposed for training the neuron to associate spatiotempo-

ral spike patterns. The PSD rule is simple, efficient, and biologically plausible.

Various properties of this rule are investigated.

Chapter 5 presents the application of the PSD rule on sequence recogni-

tion. In addition, the classification ability of the PSD rule is investigated and

benchmarked against other learning rules.

In Chapter 6, the learning in multilayer spiking neural networks is

investigated. Causal connections are built to facilitate the learning. Several

tasks are used to analyze the learning performance of the multilayer network.

Finally, Chapter 7 presents the conclusions of this thesis and some future

directions.

21

Chapter 2

A Brain-Inspired Spiking Neural

Network Model with Temporal

Encoding and Learning

Neural coding and learning are important components in cognitive memory

systems, by processing the sensory inputs and distinguishing different patterns

to provide higher level brain functions such as memory storage and retrieval.

Benefiting from biological relevance, this chapter presents a spiking neural

network of leaky integrate-and-fire (LIF) neurons for pattern recognition. A

biologically plausible supervised synaptic learning rule is used so that neurons

can efficiently make a decision. The whole system contains encoding, learning

and readout. Utilizing the temporal coding and learning, networks of spiking

neurons can effectively and efficiently perform various classification tasks. The

proposed system can learn patterns of either discrete values or continuous values

through different encoding schemes.

22

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

2.1 Introduction

The great computational power of biological systems has drawn increasing

attention from researchers. Although the detailed information processing

involved in memory is still unclear, observed biological processes have inspired

many computational models operating at power efficiencies close to biological

systems. Pattern recognition is the ability to identify objects in the environment.

As is a necessary step in all cognitive processes including memory, it is better to

consider pattern recognition from brain-inspired models which could potentially

provide great computational power.

In order to approach biological neural networks, the artificial neural

networks (ANNs) are developed as simplified approximations in terms of

structure and function. Since early neurons of the McCulloch-Pitt neuron

in 1940s and the perceptron in 1950s [48], referred as the first generation

neuron models, ANNs have been evolving towards more neural-realistic models.

Different from the first generation neurons in which step-function threshold is

used, the second generation neurons use continuous activation functions (like a

sigmoid or radial basis function) as threshold for output determination [49].

The first two generations are referred as traditional neuron models. Studies

on biological systems disclose that neurons communicate with each other

through action potentials. As the third generation neuron model, spiking

neurons raise the level of biological realism by utilizing spikes. The spiking

neurons dealing with precise timing spikes improve the traditional neural

models on both the aspects of accuracy and computational power [50]. Among

23

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

different kinds of spiking neuron models, the leaky integrate-and-fire (LIF)

model is the most widely used spiking neuron model [30, 33, 34, 40, 46, 47, 51]

due to its simplicity and computational effectiveness.

Encoding is the first step in creating a memory, which considers how

information is represented in the brain. Although results remains unclear,

there are strong reasons to believe that it is optimal using pulses to encode the

information for transmission [52]. The inputs to a spiking neuron are discrete

spike times. Rate coding and temporal coding are two basic and widely studied

schemes of encoding information in these spikes. In the rate coding the average

firing rate within a time window is considered, while for the temporal coding

the precise timings of spikes are considered [11]. Neurons, in the retina [16,23],

the lateral geniculate nucleus (LGN) [17] and the visual cortex [14] as well as

in many other sensory systems, are observed to precisely respond to stimuli on

a millisecond timescale [13]. Temporal patterns can carry more information

than rate-based patterns [25–27]. The capability of encoding information in

the timing of single spikes to compute and learn realistic data is demonstrated

in [53]. The scheme of utilizing single spikes to transfer information could

potentially be beneficial for efficient pulse-stream very large scale integration

(VLSI) implementations.

Many algorithms for spiking neural networks (SNNs) have been proposed.

Based on arithmetic calculations, the SpikeProp [34, 53] was proposed for

training SNNs, similar in concept to the backpropagation algorithm developed

for traditional neural networks [54]. Others use bio-inspired algorithms, such as

spike timing dependent plasticity (STDP) [31,55–57], the spike-driven synaptic

24

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

plasticity [30], and the tempotron rule [33]. Although the arithmetic calculations

can easily reveal why and how networks can be trained, the arithmetic-based

rules are not a good choice building networks with a biological performance.

STDP is found to be able to learn distinct patterns in an unsupervised way [40],

and it characterizes synaptic changes solely in terms of the temporal contiguity

of presynaptic spikes and postsynaptic potentials or spikes. In the spike-driven

synaptic plasticity [30], a rate coding is used. The learning process is supervised

and stochastic, in which a teacher signal steers the output neuron to a desired

firing rate. Being different with spike-driven synaptic plasticity, the tempotron

learning rule [33] is efficient to learn spiking patterns where information is

embedded in precise timing spikes.

Although SNNs show promising capability in playing a similar perfor-

mance as living brains due to their more faithful similarity to biological neural

networks, the big challenge of dealing with SNNs is reading data into and out

of them, which requires proper encoding and decoding methods [58]. Some

existing SNNs for pattern recognition (as in [30, 59]) are based on the rate

coding. Different from these SNNs, we focus more on the temporal coding

which could potentially carry the same information efficiently using less number

of spikes than the rate coding. This could largely facilitate the computing speed.

In this chapter, we build a bio-inspired model of SNNs containing

encoding, learning and readout. Neural coding and learning are the main

considerations in this chapter, since they are important components in cognitive

memory system by processing the sensory inputs and distinguishing different

patterns to allow for higher level brain functions such as memory storage and

25

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

retrieval [60]. Inspired by the local receptive fields of biological neurons, the

encoding neuron integrates information from its receptive field and represents

the encoded information through precise timing of spikes. The timing scale of

spikes is on a millisecond level which is consistent with biological experimental

observations. The readout part uses a simple binary presentation to represent

fired or non-fired state of the output neuron.

The main contribution of this chapter lies in the approaches of designing

SNNs for pattern recognition. Pattern recognition helps to identify and sort

information for further processing in brain systems. A new coming pattern is

recognized upon paying attention and similarity to previously learned patterns

which obtained through weight modification. Recognition memory is formed

and stored in synaptic strengths. Inspired by biology, spiking neurons are

employed for computation in this chapter. The proposed functional system

contains encoding, learning and readout parts. We demonstrate that, utilizing

the temporal coding and learning, networks of spiking neurons can effectively

and efficiently perform various classification tasks.

The rest of this chapter is organized as follows. Section 2.2 presents the

architecture of the spiking neural network. Section 2.3 describes the temporal

learning rule we used in our approaches. The relationship between this rule

and well-studied STDP is also introduced. Section 2.4 shows the ability of the

network to learn different patterns of neural activities (discrete-valued vectors).

Section 2.5 shows the SNN for learning continuous input variables. We use

the well-known Iris dataset problem to benchmark our approach against several

existing methods. Finally, we end up with discussions in Section 2.6, followed

26

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

by conclusions in the last section.

2.2 The Spiking Neural Network

In this section, we describe the whole system architecture of spiking neurons for

obtaining recognition memory. The system composes of 3 functional parts: the

encoding part, the learning part and the readout part (see Figure 2.1). A stimulus

consists of several components. The components are partially connected to

encoding neurons to generate encoded spiking information. The encoding

neurons are fully connected to learning neurons.

stimuli

encoding

neurons

learning

neurons

Encoding

Learning

readout

Readout

b1
b2 bM

Si
Sj Sk

Output

Figure 2.1: Architecture for pattern recognition. Left: A schematic of the system
architecture. Right: Encoding neuron model. It has one output and M input points
connected to part of the stimulus. It performs a mapping function that converts a value

string to a temporal spike.

Each part plays a different functional role in the system: the encoding

layer generates a set of specific activity patterns that represent various attributes

of external stimuli; the learning layer tunes the neurons’ weights making sure

particular neurons can respond to certain patterns correctly; the readout part

27

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

extracts information about the stimulus from a given neural response. Through

this architecture, the problem of getting data into and out of the spiking neural

network is solved, and the task of pattern recognition could be fulfilled.

2.2.1 Encoding

The encoding part aims to generate spike patterns that represent the input

stimuli. The temporal encoding is used over the rate-based encoding when

patterns within the encoding window provide information about the stimulus

that cannot be obtained from spike count. The latency code [11] is a simple

example of temporal encoding. It encodes information in the timing of response

relative to the encoding window, which is usually defined with respect to

the stimulus onset. The single spike latencies are used to encode stimulus

information in our system. Within the encoding window, each input neuron

fires only once.

Each encoding neuron has M input points (Figure 2.1) which are selected

from components of the stimulus. It performs a specific function to convert

the input points into latencies within the encoding window. For example, if the

stimulus is composed of binary values (0 or 1), the function of the encoding

neuron is to convert the binary strings into temporal patterns of discrete spikes.

The encoding time window is chosen to be hundreds of milliseconds, consistent

with biological observations.

28

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

2.2.2 Learning

The learning part of the network is composed of one layer of tempotrons [33].

The encoding neurons are fully connected to the learning neurons. The number

of synapses to a learning neuron is equal to the number of encoding neurons

(Nen) according to the structure. As used in the perceptron [61] and tempotron

[33] learning rules, the ratio of the number of random patterns that a neuron

can correctly classify over the number of its synapses, is used to measure the

memory load. The maximum number of randomly generated patterns that

a tempotron can learn is roughly 3 times the number of its synapses [33].

Therefore, as long as the number of patterns does not exceed the critical load

value, the network can perform the task well. If there are too many patterns, the

number of encoding neurons should be increased correspondingly. The learning

neurons generate action potentials when the internal neuron state crosses a firing

threshold. The tempotron rule is used to train neurons to react at a desired firing

state when presented to incoming stimuli.

2.2.3 Readout

The readout part aims to extract information about the stimulus from responses

of the learning neurons. In this part, we can use a binary sequence to represent

a certain class of patterns for the reason that each learning neuron can only

discriminate two groups. Each learning neuron responds to a stimulus by firing

(1) or not firing (0). So, the total N learning neurons as the output can represent

a maximum number of 2N classes of patterns. The number of learning neurons

29

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

is determined by the number of classes in the recognition task. For example,

four readout could be sufficient for a group of patterns containing 16 classes.

2.3 Temporal Learning Rule

Temporal learning rules aim to deal with information encoded by precise-timing

spikes. One of the most commonly studied rules is spike-timing-dependent

plasticity (STDP) which has emerged in recent years as experimentally most

studied form of synaptic plasticity (see [31, 55–57, 62] for reviews). According

to STDP, the plasticity depends on the intervals between pre- and post-synaptic

spikes. The basic mechanisms of plasticity found in STDP are the long

term potentiation (LTP) and the long term depression (LTD). However, STDP

characterizes synaptic changes solely in terms of the temporal contiguity of

presynaptic spikes and postsynaptic potentials or spikes. In addition, to get

convergence of learning with STDP, a suitable balance of many parameters is

needed [57]. In [33], the tempotron learning rule is presented. In this rule,

the synaptic plasticity is governed by the temporal contiguity of pre-synaptic

spike and post-synaptic depolarization, and a supervisory signal. The tempotron

can make appropriate decision under the supervisory signal by tuning fewer

parameters than STDP. Moreover, the tempotron rule also uses mechanisms of

LTP and LTD to fulfill synaptic plasticity as in STDP. Because of the discrete

nature of spikes, the evaluation of neural dynamics in our study is performed on

a time step of dt = 1 ms.

The neuron model used here is a leaky integrate-and-fire (LIF) neuron

30

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

driven by exponential decaying synaptic currents generated by its synaptic

afferents. The potential of the neuron is a weighted sum of postsynaptic

potentials (PSPs) from all incoming spikes:

V (t) =
∑
i

wi
∑
j

K(t− tji) + Vrest (2.1)

where wi and tji are the synaptic efficacy and the j-th firing time of the i-th

afferent. Vrest is the rest potential of the neuron. K denotes a normalized PSP

kernel:

K(t− tji) = V0 · (exp(
−(t− tji)

τm
)− exp(

−(t− tji)
τs

)) (2.2)

where τm and τs denote decay time constants of membrane integration and

synaptic currents. We choose τm = 4τs = 15ms in the following sections.

V0 normalizes PSP so that the maximum value of the kernel is 1. K(t − tji) is

a causal filter that only considers spikes tji ≤ t. The kernel function is shown

in Figure 2.2. Each afferent spike will cause a change on the potential of post-

synaptic neuron. The height of the PSP is modulated by the synaptic efficacy wi

to get effective post-synaptic potential. The final potential of the post-synaptic

neuron is a summation over all afferents.

In the classification task, each input pattern belongs to one of two classes

(which are labeled by P+ and P−). One neuron can discriminate these patterns

by firing or not. When a P+ pattern is presented to the neuron, it should fire

a spike; when a P− pattern is presented to the neuron, it should keep silent by

not firing. The neuron learns patterns by changing its synaptic efficacies (wi)

whenever there is an error. If the neuron fails to fire in response to a P+ pattern,

this is denoted as a P+ error. If the neuron erroneously fires a spike in response

31

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

0 0.05 0.1 0.15
0

5

10

A
ffe

re
nt

 #

0 0.05 0.1 0.15

−0.5

0

0.5

1

Time(s)

V
(t

)

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

Time(s)

K
(t

)

PSP kernel

Vthr

Figure 2.2: Dynamics of the tempotron response. Left top: examples of spiking
patterns. There are two patterns (blue and green) and each spike from an input afferent
is denoted by a dot. The Y axis show input identification number. Left bottom: neural
potential traces. Each color of lines corresponds to the same color patterns on the left
top. In this neuron model, the potential boundaries at the threshold and the rest potential

are ignored. Right: normalized PSP kernel.

to a P− pattern, it is denoted as a P− error. Depending on the type of error, the

learning rule is as:

∆wi =

λ+
∑

tji<tmax
K(tmax − tji), if P+ error;

−λ−
∑

tji<tmax
K(tmax − tji), if P− error;

0, otherwise.

(2.3)

where tmax denotes the time at which the neuron reaches its maximum potential

value in the time domain. λ > 0 is a constant representing the learning rate (we

set λ+ = λ− = λ = 0.005 here). It denotes the maximum change on synaptic

efficacies.

The tempotron updates its weights whenever it fails to respond as the

same desired state as the instructor. It means that, within the presentation

time of a pattern (T), the neuron will perform weight modification as long as

its firing state violates the instructor. Such a method requires the supervisory

signal to evaluate neuron’s responding state at each time step. A trial updating

32

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

method could also be adopted where the synaptic weights are modified at the

end of each pattern presentation. This method only requires the instructor to

make evaluation at the end of pattern presentation. Considering efficiency and

biological realism, we adopt the dynamic updating method. Whenever an error

occurs, the neuron will immediately update its weights. Each spike firing prior

to tmax will result in a change on the corresponding synapse. The shape of

the learning window follows kernel K and the changing amount of the weight

depends on the time difference between tji and tmax. If we only consider single

spike coding and the latest spike updating, the learning rule will be simplified

as:

∆wi =

λ+K(tmax − ti)Θ(tmax − ti), if P+ error;

−λ−K(tmax − ti)Θ(tmax − ti), if P− error;

0, otherwise.

(2.4)

where ti is the spike time of the i-th afferent, and Θ(·) is a heaviside function.

This simplified rule is used in the rest of this chapter.

Synaptic

change
(a)

LTP

LTD

0

pre postt t tD = -

0tD >0tD <
Synaptic

change
(b)

LTP

LTD

0

maxpret t tD = -

Figure 2.3: Learning windows of different rules. The blue lines denote the LTP process
and the dashed red lines denote the LTD process. (a) is the learning window for STDP;

(b) is for tempotron rule.

From a biological perspective, a training algorithm should adapt synaptic

weights based on the states of pre and post-synaptic neurons to keep with

33

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

Hebbian theory. Normally, a longer time difference will result in a little

weight change while a shorter time difference results in a larger change, as like

processes in biological systems. In the tempotron rule, two STDP-like windows

are used to adjust the synaptic weights (see Figure 2.3). The LTP window is

used to increase the synaptic weights and the LTD window is for depressing the

weights, whenever the neuron fails to respond in a desired output.

The learning process uses a supervisory signal. Although so far there is no

strong experimental confirmation of the supervisory signal, an increasing body

of evidence shows that this kind of learning is also exploited by the brain [63].

The most documented evidence for this type of rule comes from studies on the

cerebellum and the cerebellar cortex [64, 65]. In addition, there is evidence

that the supervisory signals are provided to the learning modules by sensory

feedback [66] or other supervisory neural structures in the brain [65]. In the

tempotron, the supervisory signal is only for determining the polarity of synaptic

changes. Classical error feedback is a possible way to implement this control

of polarity. A neuromodulator released by the supervisory system can induce

the control of adaptation. This control occurs for several neuromodulatory

pathways, such as dopamine and acetylcholine [33, 67, 68]. In addition, the

gating role of the supervisory signal has strong biological resonance such as

voltage-gated calcium channels and NMDA receptors. Their involvements in

the induction of long term plasticity are well established [69, 70].

34

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

2.4 Learning Patterns of Neural Activities

Many ways of encoding memory patterns in neural networks have been studied.

The memory patterns encoded in synaptic weights can be taken to be binary

vectors, as well as they can also be taken to be drawn from a distribution

with several discrete activity values or from a continuous distribution [60]. In

Hopfield network [71], memory patterns are expressed through the activities

of neurons, where the states of the neurons have binary values (+1 for active

neuron and -1 for inactive neuron). In some other networks, non-binary coding

schemes [72] are also introduced.

In the previous section, the ability of the tempotron to separate temporal

patterns is introduced. However, the following questions arise: can this method

be used to recognize memory patterns mentioned above in this section? If so,

how can it perform the task?

The patterns are n-dimensional vectors and the value of each element in

the vector refers to neuron’s activity which can be drawn from several discrete

values. The coding schemes used here are same as that in Treves and Rolls [73].

The activity η of each neuron follows a probability distribution function p(η):

p(η) =

(1− c)δ(η − η0) + cδ(η − η1), (binary)

(1− 4c
3

)δ(η − η0) + cδ(η − η1) + c
3
δ(η − η2), (ternary)

(1− 2c)δ(η) + 4ce−2η, (exponential)
(2.5)

where δ(x) is the Dirac’s function: δ(x) = 1 (x = 0), 0 (otherwise). c is the

coding level which is defined as the mean level of the network activity [60, 73].

As explorations for the ability of the tempotron to classify different

35

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

patterns of activities, we use binary and ternary patterns as stimuli. The ternary

patterns represent a simple non-binary structure. We also use variable coding

levels to see the performance. The pattern vectors are generated according to

Equation (2.5).

The activity values we choose for binary patterns are η0 = 0 and η1 = 1,

and for ternary patterns are η0 = 0, η1 = 1 and η2 = 2. Some examples of

binary and ternary patterns are shown in Figure 2.4.

1 2 3 4 5

0

20

40

60

80

100

Patterns

N
eu

ro
n

#

Binary Patterns

1 2 3 4 5

0

20

40

60

80

100

Patterns

N
eu

ro
n

#

Ternary Patterns

Figure 2.4: Examples of binary and ternary patterns with c=0.2. The neural activities
are shown in gray scale (the maximal activity value is shown in black, and the minimal
activity value is in white). There are 5 patterns in each sub-figure and only the activities

of 100 neurons are included.

Pattern is stored in an n-dimensional vector with discrete values of activity.

We use the system architecture of spiking neurons to classify pattern vectors (see

Figure 2.1). The layer of encoding neurons performs a function converting the

pattern vector into temporal pattern for the tempotron to classify. We only use

one learning neuron to test the ability of the tempotron learning two groups of

patterns.

36

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

To test the performance, we generate 100 memory patterns with 1024

elements, and the activity value of each element is randomly drawn according

to the probability distribution function presented in Equation (2.5). Then we

randomly assign half of patterns to one group and others to another group. We

also use different coding levels (c = 0.2 and c = 0.5) in our simulation. In

order to control the encoding time window in a scale around 250 ms, we set

the number of input points of the encoding neuron to 8 and 5 for binary and

ternary patterns, respectively. Each element of the pattern vector is connected

to only one encoding neuron and the connections between the pattern vector

and encoding neurons are in order. For example, in binary patterns, the first 8

elements connect to the first encoding neuron and the second 8 elements connect

to the second and the last 8 connect to the last encoding neuron. The encoding

neuron in this case acts as a converter that translates a binary or ternary string

into a spike timing.

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1
Binary Patterns

Iteration

C
or

re
ct

 R
at

e

c=0.2
c=0.5

0 5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

C
or

re
ct

 R
at

e

Ternary Patterns

c=0.2
c=0.5

Figure 2.5: Classification results for different patterns of activities. The pattern is 1024-
dimensional vector. The total number of patterns is 100 (each class has 50) in each

simulation.

From Figure 2.5, we see the tempotron can successfully learn different

patterns of activities that are presented in discrete values. After several learning

37

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

iterations, the neuron can correctly classify discrete-valued patterns under

different coding levels. Thus, we successfully investigate a method for spiking

neurons to perform classification on discrete-valued patterns.

2.5 Learning Patterns of Continuous Input Vari-

ables

In this section, we conduct experiments with our spiking neural network on

classifying patterns with continuous variables. We use the Iris dataset to

benchmark our approach against several existing methods.

2.5.1 Encoding Continuous Variables into Spike Times

To encode the continuous variables into spike times on a precision of mil-

lisecond level, we employ a similar approach as in [34] based on arrays of

receptive fields. As a result, each input variable is represented by a group

of neurons with graded and overlapping sensitivity profiles. This approach

is biologically plausible and well studied method for representing real-valued

parameters [34, 74].

We adopt the same encoding setup as in [34, 75], where each input

dimension is encoded by an array of one-dimensional Gaussian receptive fields.

For a variable x in a range [xmin, xmax], n neurons with different Gaussian

receptive fields are used to encode. The center and width of the i-th neuron

are set to µi = xmin + (2 · i − 3)/2 · (xmax − xmin)/(n − 2) and σi =

38

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

1/1.5 · (xmax − xmin)/(n − 2), respectively. The activation values of the n

neurons encoding the variable x are calculated. Highly activated neurons will

fire early and less activated neurons will fire later or not fire.

Through this temporal encoding approach, two important benefits could be

obtained. Firstly, a sparse coding, allowing for efficient simulation as in [76],

is achieved through a small set of significantly activated neurons. Secondly, an

optimal number of neurons could be roughly obtained for each independently

encoded variable [34].

2.5.2 Experiments on the Iris Dataset

The three-class Iris dataset is used to benchmark our approach since it is perhaps

one of the best known databases to be found in the recognition literature. The

different three classes represent the different species of the Iris plant, including

Iris Setosa Canadenisis (Class 1), Iris Veriscolor (Class 2) and Iris Virginica

(Class 3). The dataset contains 150 samples, 50 for each class. Each sample has

4 input variables: sepal length, sepal width, petal length and petal width. The

latter two classes are not linearly separable from each other.

To encode these data, we firstly normalize the 4 variables into a same

range. Each input variable is encoded by n = 12 neurons with Gaussian

receptive fields. Thus, for each input pattern, the 48 activation values between 0

and 1 can be calculated. We ignore activation values below 0.1 since they are too

weak to stimulate a spike. These activation values are then linearly converted

to delay times, associating t = 0 with activation value 1 and later times up to

t = 100 ms with lower activation values. The spike times are rounded to dt = 1

39

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

ms precision. The dataset is split into two sets and classified using two-fold

cross-validation.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Iteration No.

C
or

re
ct

 R
at

e
0.95

Figure 2.6: Correct rate for classifying Class 2 from the other classes vs. iterations for
training. The plot is averaged over 100 runs.

Before the multi-class problem, it is necessary to investigate the perfor-

mance of a single spiking neuron to classify two classes. Through this process, a

proper stopping criteria for the purpose of training the network could be chosen.

We simulate one spiking neuron to separate Class 2 from the other classes.

We set the maximum number of iterations for training to be Maxiter = 200.

According to Figure 2.6, the neuron can rapidly reach a high accuracy (0.95)

within tens of training iterations, and it stabilizes at high accuracy for further

training.

For balancing between a high simulation speed and a high accuracy, it

is reasonable to choose a lower Maxiter according to Figure 2.6. We set

Maxiter = 100 for the multi-class problem. After each training period, the

neuron will fall into two cases. We refer Case1 as that the neuron successfully

40

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

Table 2.1: Comparison of different training algorithms: results for Iris dataset

Algorithm Inputs Hidden Outputs Iterations Training Testing
MatlabBP 50 10 3 2.6× 106 98.2%± 0.9 95.5%± 2.0
MatlabLM 50 10 3 3750 99.0%± 0.1 95.7%± 0.1

SpikeProp [34] 50 10 3 1000 97.4%± 0.1 96.1%± 0.1
SpikeProp [50] 17 8 3 37 ≥ 95% 92.7%

SWAT 16 208 3 500 95.5%± 0.6 95.3%± 3.6
Tem 48 - 3 less than 100 99.63%± 0.81 92.55%± 3.3

TemCase1 48 - 3 less than 100 100% 93.09%± 2.94
TemCase2 48 - 3 less than 100 98.9%± 1.06 91.49%± 3.74

separates all samples in the training set before Maxiter reaches, and Case2 as

that the neuron still cannot separate all samples at the end of maximum number

of training iterations.

For the three-class Iris problem, we employ only one neuron per output

class, and the output neuron with the strongest activation state represents the

class association. The training is stopped either when the Maxiter reaches or

when the neuron successfully separates all training samples before Maxiter

reaches. After 100 runs of training and testing, the averaged classification

accuracy for the training set is 96.63% and for testing set is 92.55%. Among

the 100 runs of training, we find there are 66 runs in which all the three

neurons are trained in Case1, and 34 runs where at least one neuron is trained in

Case2. We refer these two situations as TemCase1 and TemCase2 respectively.

Interestingly, in the case of TemCase1, the classification accuracy for both the

training set and testing set is improved, reaching 100% and 93.09%, respectively.

Table 2.1 presents the results of our approach against several existing

algorithms for the Iris dataset. MatlabBP and MatlabLM, representing tradi-

tional artificial neural network, are built-in functions of Matlab that implement

the backpropagation and Levenberg-Marquardt training algorithms. SpikeProp

[34, 50] and SWAT [46], as spiking neural networks applied on Iris dataset,

41

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

are also used to benchmark our approach. The SpikeProp, as the first supervised

training algorithm for SNNs, was an adaptation of gradient-descent-based-error-

backpropagation method [34]. An efficient SpikeProp for Iris classification was

presented in [50], where less synaptic weights were used.

As is shown in Table 2.1, the training accuracy of our approach slightly

surpasses other approaches, and the testing accuracy is comparable and accept-

able. Some of the state-of-the-art approaches such as [77, 78] that come from

hybrid-system approach, can even result in a higher accuracy (normally over

96%). However, it is extremely time consuming to train if genetic algorithms

are used in the hybrid system. Although the classification accuracy of our

approach does not beat other approaches at this moment, the ability to use a

biologically plausible SNN to do the task is highlighted. With a comparable

and acceptable classification accuracy, our approach is more efficient and

effective than other methods as listed in Table 2.1. It can perform the task

comparably well with less neurons (without a layer of hidden neurons) and

with less number of learning iterations (within 100). This preliminary approach

with biologically plausible SNN demonstrates the great computational power

inherited from biology. Continued improvements on this approach could be

explored to perform better than conventional machine-learning algorithms.

2.6 Discussion

In this section, we discuss several considerations regarding biological relevance

that benefit the procession in our approach.

42

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

The computational power of biological neurons attracts the community

to develop models for computation on action potentials. The average firing

rate of neuron is generally assumed to be the coding scheme, with the success

in neural network modeling and the substantial electrophysiological support.

However, there has been increasing number of reports showing that precise

timings of action potentials carry significant information. In addition, it has

been demonstrated that the temporal coding with precise timings can carry more

information than the rate coding scheme. The usage of time-to-first-spike coding

facilitate the computational speed in SNNs. For machine learning purposes,

efficient implementations of SNNs can be obtained by the event nature of spikes.

The encoding scheme used in this chapter is inspired from receptive fields

of biological neurons. Each neuron receives a partial information from external

stimuli. The encoding window of the temporal patterns is chosen to be on a scale

of hundreds of milliseconds, which matches the biological evidence [11,13,26].

Although the encoding window could be flexible by scaling up or down, a choice

from biology could make this approach consistent and compatible with other

bio-inspired models in the case of combination.

Besides biological plausibility, another benefit of a biologically inspired

spiking system would be that it offers the possibility of real-time learning

systems. Biological neural networks need to respond in real time to real-

world stimuli. The needs for fast reactive systems normally shadow classical

computing approaches which have mostly focused on off-line problems. Thus,

the responding speed is another reason for the choice of spiking neural networks.

43

CHAPTER 2. A BRAIN-INSPIRED SPIKING NEURAL NETWORK MODEL WITH TEMPORAL ENCODING AND
LEARNING

2.7 Conclusion

This chapter presents an architecture of spiking neurons to approach pattern

recognition on various classification tasks such as recognition of neural activities

and continuous input variables. The recognition memory is formed through

weights modification during the learning process. A new pattern could be

recognized through matching what the network has learnt. Since the temporal

encoding and learning in this chapter are believed to be inherited from the

biological neural systems, the biological plausibility of the approach is a main

aspect in this study considering machine learning as a main target. A general

SNN system for pattern recognition is proposed, where it contains encoding,

learning and readout. Our approach is benchmarked using the Iris dataset

problem, and the results highlight the capability of our approach to classify

nonlinearly-separable data effectively and efficiently.

44

Chapter 3

Rapid Feedforward Computation

by Temporal Encoding and

Learning with Spiking Neurons

The previous chapter presents a general structure of spiking neural network

for pattern recognition, showing that the SNN has the ability to learn different

patterns of activities and continuous input variables [79]. However, considering

some real-world stimuli (such as images and sounds), a more complex and

proper encoding is required for the network to process them.

In this chapter, a more complex and biologically plausible system is

developed from an extension on the previous simple system. As we know,

primates perform remarkably well in cognitive tasks such as pattern recognition.

Motivated from recent findings in biological systems, a unified and consistent

feedforward system network with a proper encoding scheme and supervised

temporal rules is built for processing real-world stimuli. The temporal rules are

45

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

used for processing the spatiotemporal patterns. To utilize these rules on images

or sounds, a proper encoding method and a unified computational model with

consistent and efficient learning rule are required. Through encoding, external

stimuli are converted into sparse representations which also have properties

of invariance. These temporal patterns are then learned through biologically

derived algorithms in the learning layer, followed by the final decision presented

through the readout layer. The performance of the model is also analyzed and

discussed.

3.1 Introduction

Primates are remarkably good at cognitive skills such as pattern recognition.

Despite decades of engineering effort, the performance of the biological visual

system still outperforms the best computer vision systems. Pattern recognition

is a general task that assigns an output value to a given input pattern. It is

an information-reduction process which aims to classify patterns based on a

priori knowledge or statistical information extracted from the patterns. Typical

applications of pattern recognition includes automatic speech recognition,

handwritten postal codes recognition, face recognition and gesture recognition.

There are several conventional methods to implement pattern recognition,

such as maximum entropy classifier, Naive Bayes classifier, decision trees,

support vector machines (SVM) and perceptrons. We refer these methods as

traditional rules since they are less biologically plausible compared to spiking

time involved rules described later. Compared to human brain, these methods

46

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

are far from reaching comparable recognition. Humans can easily discriminate

different categories within a very short time. This motivates us to investigate

computational models for rapid and robust pattern recognition from a biological

point of view. At the same time, inspired by biological findings, researchers

have come up with different theories of encoding and learning. In order to

bridge the gap between those independent studies, a unified systematic model

with consistent rules is desired.

A simple feedforward architecture might account for rapid recognition

as reported recently [22]. Anatomical back projections abundantly appear

almost every area in the visual cortex, which puts the feedforward architecture

under debate. However, the observation of a quick response appeared in

inferotemporal cortex (IT) [80] most directly supports the hypothesis of the

feedforward structure. The activity of neurons in monkey IT appears quite

soon (around 100 ms) after stimulus onset [81]. For the purpose of rapid

recognition, a core feedforward architecture might be a reasonable theory of

visual computation.

How information is represented in the brain still remains unclear. How-

ever, there are strong reasons to believe that using pulses is the optimal

way to encode the information for transmission [52]. Increasing number of

observations show that neurons in the brain precisely response to a stimulus.

This support the hypothesis of the temporal coding.

There are many temporal learning rules proposed for processing spatiotem-

poral patterns, including both supervised and unsupervised rules. As opposed to

the unsupervised rule, a supervised one could potentially facilitate the learning

47

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

speed with the help of an instructor signal. Although so far there is no strong

experimental confirmation of the supervisory signal, an increasing body of

evidence shows that this kind of learning is also exploited by the brain [63].

Learning schemes focusing on processing spatiotemporal spikes in a

supervised manner have been widely studied. With proper encoding methods,

these schemes could be applied to image categorization. In [30], the spike-

driven synaptic plasticity mechanism is used to learn patterns encoded by mean

firing rates. A rate coding is used to encode images for categorization. The

learning process is supervised and stochastic, in which a teacher signal steers

the output neuron to a desired firing rate. According to this algorithm, synaptic

weights are modified upon the arrival of pre-synaptic spikes, considering the

state of post-synaptic neuron’s potential and its recent firing activity. One of

the major limitations of this algorithm is that it could not be used to learn

patterns presented in the form of precise timing spikes. Different from the spike-

driven synaptic plasticity, the tempotron learning rule [33] is efficient to learn

spike patterns in which information is embedded in precise timing spikes as

well as in mean firing rates. This learning rule modifies the synaptic weights

such that a trained neuron fires once for patterns of corresponding category

and keeps silent for patterns of other categories. The ReSuMe learning rule

[37, 47] is also a supervised rule in which the trained neuron can fire at desired

times when corresponding spatiotemporal patterns are presented. It has been

demonstrated that the tempotron rule and the ReSuMe rule are equivalent under

certain conditions [82].

Although spiking neural networks (SNNs) show promising capabilities

48

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

in achieving a performance similar to living brains due to their more faithful

similarity to biological neural networks, one of the main challenges of dealing

with SNNs is getting data into and out of them, which requires proper

encoding and decoding methods. The temporal learning algorithms are based

on spatiotemporal spike patterns. However, the problem remains how to

represent real-world stimuli (like images) by spatiotemporal spikes for further

computation in the spiking network. To deal with these problems, a unified

systematic model, with consistent encoding, learning and readout, is required.

The main contribution of this chapter lies in the design of a unified

systematic model of spiking neural network for solving pattern recognition

problems. To the best of our knowledge, this is the first work in which

complex classification task is solved through combination of biologically

plausible encoding and supervised temporal learning. The system contains

consistent encoding, learning and readout parts. Through the network, we fill

the gap between real-world problem (image encoding) and theoretical studies of

different learning algorithms for spatiotemporal patterns. Finally, our approach

suggests a plausibility proof for a class of feedforward models of rapid and

robust recognition in the brain.

3.2 The Spiking Neural Network

In this section, the feedforward computational model for pattern recognition

is described. The model composes of 3 functional parts: the encoding part,

the learning part and the readout part. This structure is similar to the one in

49

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

Figure 2.1, but with a more complex structure for encoding and readout.

Considering the encoding, the latency code is a simple example of

temporal coding. It encodes information in the timing of response relative to

the encoding window, which is usually defined with respect to the stimulus

onset. The external stimuli would trigger neurons to fire several spikes in

different times. From biological observations, visual system can analyze a new

complex scene in less than 150 ms [23,83]. This period of time is impressive for

information processing considering billions of neurons involved. This suggests

that neurons exchange only one or few spikes. In addition, it is shown that

subsequent brain region may learn more and earlier about the stimuli from the

time of first spike than from the firing rate [23].

Therefore, we use single spike code as the encoding mechanism. Within

the encoding window, each input neuron fires only once. This code is simple

and efficient, and the capability of encoding information in the timing of single

spikes to compute and learn realistic data has been shown in [53]. Compared to

rate coding as used in [30], this single spike coding would potentially facilitate

computing speed since less spikes are involved in the computation.

Our single spike coding is similar to the rank order coding in [84, 85]

but taking into consideration of the precise latency of the spikes. In the rank

order coding, the rank order of neurons’ activations is used to represent the

information. This coding scheme is still under research. Taking the actual

neurons’ activations into consideration but not their rank orders, our proposed

encoding method could convey more information than the rank order coding.

Since this coding utilizes only a single spike to transmit information, it could

50

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

also potentially be beneficial for efficient very large scale integration (VLSI)

implementations.

In the learning layer, supervised rules are used since they could improve

the learning speed with the help of the instructor signal. In this chapter, we

investigate the tempotron rule and the ReSuMe rule.

The aim of the readout part is to extract information about the stimulus

from the responses of learning neurons. As an example, we could use a binary

sequence to represent a certain class of patterns in the case that each learning

neuron can only discriminate two groups. Each learning neuron responds to a

stimulus by firing (1) or not firing (0). Thus, the total N learning neurons as the

output can represent a maximum number of 2N classes of patterns.

A more suitable scheme for readout would be using population response.

In this scheme, several groups are used and each group, containing several

neurons, is one particular representation of the external stimuli. Different groups

compete with each other by a voting scheme in which the group with the most

amount of firing neurons would be the winner. This scheme is more compatible

with the real brain since the information is presented by the cooperation of a

group of neurons rather than one single neuron [86].

3.3 Single-Spike Temporal Coding

We have mentioned the function of the encoding layer is to convert stimulus

into spatiotemporal spikes. In this section, we illustrate our encoding model of

single-spike temporal coding, which is inspired from biological agents.

51

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

The retina is a particular interesting sensory area to study neural infor-

mation processing, since its general structure and functional organization are

remarkably well known. It is widely believed that information transmitted from

retina to brain codes the intensity of the visual stimuli at every place in visual

field. The ganglion cells (GCs) collect the information from their receptive fields

which could best drive spiking responses [87]. In addition, different ganglion

cells might have overlapped centers of receptive fields [88]. A simple encoding

model of retina is described in [84] and is used in [85]. The GCs are used as the

first layer in our model to collect information from original stimuli.

Focusing on emulating the processing in visual cortex, a realistic model

(HMAX) for recognition has been proposed in [89] and widely studied [22, 90,

91]. It is a hierarchical system that closely follows the organization of visual

cortex. The HMAX performs remarkably well with natural images by using

alternate simple cells (S) and complex cells (C). Simple cells (S) gain their

selectivity from a linear sum operation, while complex cells (C) gain invariance

through a nonlinear max pooling operation. Like the HMAX model, in order to

obtain an invariant encoding model to some extent, a complex cells (CCs) layer

is used in our model. In the brain, equivalents of CCs may be in V1 and V4

(see [92] for more details).

In our model (see Figure 3.1), the image information (intensity) is

transmitted to GCs through photo-receptors. Each GC linearly integrates at

its soma the information from its receptive field. Their receptive fields are

overlapping and their scales are generally distributed non-uniformly over the

visual field. DoG (difference of gaussian) filters are used in the GCs layer since

52

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

Stimuli CCs

T

nerve

Spatiotemporal spikesGCs

Figure 3.1: Architecture of the visual encoding model. A gray-scale image (as the
stimuli) is presented to the encoding layer. The photo-receptors transmit the image
information analogically and linearly to the corresponding ganglion cells (GCs). Each
ganglion cell collects information from its receptive field (an example shown as the red
dashed box). There are several layers of GCs and each has a different scale of receptive
field. The complex cells (CCs) collect information from a local position of GCs and a
MAX operation among these GCs determines the activation value of CC unit. Each CC
neuron would fire a spike according to their activations. These spikes are transmitted to

the next layer as the spatiotemporal pattern in particular time window (T).

this filter is believed to mimic how neural processing in the retina of the eye

extracts details from external stimuli [93, 94]. Several different scales of DoG

would construct different GCs images. The CCs unit would operate a nonlinear

max pooling to obtain an amount of invariance. Max pooling over the two

polarities, different scales and different local positions provides contrast reverse

invariance, scale invariance and position invariance, respectively. Biophysically

plausible implementations of the MAX operation have been proposed in [95],

and biological evidences of neuron performing MAX-like behavior have been

found in a subclass of complex cells in V1 [96] and cells in V4 [97].

The activation value of CC unit would trigger a firing spike. Strongly

activated CCs will fire earlier, whereas weakly activated will fire later or not at

53

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

all. The activation of the GC is computed through the dot product as:

GCi :=< I, φi >=
∑
l∈Ri

I(l) · φi(l) (3.1)

where I(l) is the luminance of pixel l which is sensed by the photo-receptor. Ri

is the receptive field region of neuron i. φi is the weight of the filter.

The GCs compute the local contrast intensities at different spatial scales

and for two different polarities: ON- and OFF-center filters. We use the simple

DoG as our filter where the surround has three times the width of the center. The

DoG has the form as:

DoG{s,lc}(l) = Gσ(s)(l − lc)−G3·σ(s)(l − lc) (3.2)

Gσ(s)(l) =
1

2π · σ(s)2
· exp(− ‖l‖2

2 · σ(s)2
) (3.3)

where Gσ(s) is the 2D Gaussian function with variance σ(s) which depends on

the scale s. lc is the center position of the filter.

An example of the DoG filter is shown in Figure 3.2. An OFF-center filter

is simply an inverted version of an ON-center receptive field. All the filters are

sum-normalized to zero and square-normalized to one so that when there is no

contrast change in the image the neuron’s activation would be zero and when

the image is same with the filter the neuron’s activation would be 1. Therefore,

all the activations of the GCs are scaled to the same range ([-1, 1]).

The CCs max over different polarities according to their absolute values at

same scale and same position. Through this max operation, the model gain

a contrast reverse invariance (Figure 3.3a). From the property of the polar

filters, only one could be positive activated for a given image. Similarly, the

54

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

a.

-15 -10 -5 0 5 10 15
-5

0

5

10

15
x 10

-3

0

20

0

20

-5

0

5

10

15

x 10
-3

b.

c. d.

Figure 3.2: Linear filters in retina. (a) is an image of the ON-center DoG filter, whereas
(b) is an image of the OFF-Center filter. (c) is the one-dimensional show of the DoG

weights and (d) is the 2-dimensional show.

AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAA

AAAA AAA AAA

a. b.

c.

Figure 3.3: Illustration of invariance gained from max pooling operation. (a) the
contrast reverse invariance by max pooling over polarities. (b) the scale invariance
by max pooling over different scales. (c) the local position invariance by max pooling

over local positions. The red circle denotes the maximally activated one.

scale invariance is increased by max pooling over different scales at the same

position (Figure 3.3b). Finally, the position invariance is increased by pooling

over different local positions (Figure 3.3c). The dimension of images is reduced

since only the max activated value in a local position is preserved.

55

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

Figure 3.4 shows the basic processing procedures in different encoding

layers. Through the encoding, the original image is sparsely presented in the

CCs (Figure 3.4f).

a. b. c.

d. e. f.

Figure 3.4: Illustration of the processing results in different encoding procedures. (a) is
the original external stimulus. (b) and (c) are the processing results in layer GCs with
different scales. (d), (e) and (f) are the processes in the CCs layer. (d) is the result of
max pooling over different scales. (e) is max pooling over different local positions. (f)

is the sub-sample from (e).

The final activations of CCs are used to produce spikes. Strongly activated

neurons would fire earlier, whereas weakly activated ones would fire later or not

at all. The spike latencies are then linearly mapped into a predefined encoding

time window. These spatiotemporal spikes are transmitted to the next layer for

computation.

In our encoding scheme, we consider the actual values of neurons’

activations to generate spikes but not the rank order of these activations as

used in [84, 85]. This could carry more information than the rank order coding

which only considers the rank order of different activations and ignores the exact

56

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

differences between different activations. For example, there are 3 neurons

(n1,n2 and n3) having their activations (C1, C2 and C3) in the range of [0,1].

Pattern P1 is represented by (C1 = 0.1, C2 = 0.3 and C3 = 0.9); pattern P2 is

represented by (C1 = 0.29, C2 = 0.3 and C3 = 0.32). In rank order coding,

it will treat P1 and P2 as same patterns since the rank orders are same. For our

encoding, in contrast, P1 and P2 would be treated as totally different patterns.

In addition, the rank order coding would be very sensitive to the noise since

the encoding time of one neuron depends on other neurons’ rank. For example,

if the least activated value is changed to a max activated value because of a

disturbance, the rank of all the other neurons would be changed. However in

our proposed algorithm only the information of the disturbed neuron would be

affected.

3.4 Temporal Learning Rule

Temporal learning rule aims at dealing with information encoded by precise

timing spikes. In this section, we consider supervised mechanisms like the

tempotron rule and the ReSuMe rule that could be used for training neurons

to discriminate between different spike patterns. Whether a LTP or LTD

process occurs depends on the supervisory signal and the neuron’s activity.

This kind of supervisory signal can facilitate the learning speed compared to

the unsupervised method.

57

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

3.4.1 The Tempotron Rule

In Chapter 2, the tempotron rule is introduced in detail including neuron

dynamics and plasticity. For the reason of simplicity and clearance, we briefly

introduce it here again.

In binary classification problem, each input pattern presented to the neuron

belongs to one of two classes (which are labeled by P+ and P−). One neuron

can make decision by firing or not. When a P+ pattern is presented to the

neuron, it should elicit a spike; when a P− pattern is presented, it should keep

silent by not firing. The tempotron rule modifies the synaptic weights (wi)

whenever there is an error. This rule performs like gradient-descent rule that

minimizes a cost function as:

C =

Vthr − Vtmax , if the presented pattern is P+;

Vtmax − Vthr, if the presented pattern is P−.
(3.4)

where Vtmax is the maximal value of the post-synaptic potential V .

Applying the gradient descent method to minimize the cost leads to the

tempotron learning rule (refer to Chapter 2 for more details).

3.4.2 The ReSuMe Rule

The ReSuMe described in [47] is a supervised method that aims to produce

desired spike trains in response to the given input sequence. According to this

rule, the synaptic weights are modified according to the following equation:

dωi(t)

dt
= λ[Sd(t)− Sout(t)][a+

∫ ∞
0

W (s)Si(t− s)ds] (3.5)

58

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

where λ is the learning rate, a is a constant, W is a learning window with a

exponential form (W (s) = Ae−s/τE). Sd(t), Sout(t) and Si(t) are the target,

post- and pre-synaptic spike trains, respectively. Although the shape of learning

window is not restricted to exponential form, this shape can result in a better

performance of convergence [98]. The spike trains have the following form:

S(t) =
n∑
f=1

δ(t− tf) (3.6)

where tf denotes the moment of the f -th spike in the train, n denotes the total

number of spikes in the train, δ(x) is the impulse function δ(x) = 1 if x = 0 (or

0 otherwise).

W(s)

s=td-ti

wio

S

S

i

d

t

W(s)

s=tout-ti

wio

S

S

i

out

t

io

Figure 3.5: Illustration of the ReSuMe learning rule. (a) demonstrates that the synaptic
plasticity depends on the correlation between the pre- and postsynaptic firing times,
and on the correlation between pre- and desired firing times. (b) demonstrates that the
synaptic weight is potentiated whenever a desired spike is observed. (c) shows that the
synaptic weight is depressed whenever the trained neuron fires. This figure is revised

from [37].

Figure 3.5 illustrates the ReSuMe learning rule. The synaptic efficacy

depends not only on the correlation between the pre-synaptic and post-synaptic

firing times but also on the correlation between the pre-synaptic and desired

firing times. A desired spike would result in synaptic potentiation, and a post-

synaptic spike would result in synaptic depression.

59

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

After a learning trial, the total synaptic change is:

∆ωi =λa(nd − nout) + λΣtdΣti≤tdW (td − ti) (3.7)

− λΣtoutΣti≤toutW (tout − ti)

where nd and nout are the number of spikes from the desired and the actual

output spike trains respectively. ti is the pre-synaptic spike time.

The ReSuMe rule could be used for both the batch learning and the online

learning.

3.4.3 The Tempotron-like ReSuMe Rule

As proposed in [82], the tempotron learning rule is a particular case of ReSuMe

rule under certain conditions. The rule discussed here is a connection between

the tempotron rule and the ReSuMe rule.

Considering to apply ReSuMe to the tempotron setup, the combined rule

can be approached. The neuron is only allowed to fire once or not. After a spike

is emitted, the neuron shunts all its incoming spikes immediately. If there is only

one spike, regardless of its time, it is reasonable to consider the neuron firing at

tmax. This learning rule follows [82]:

∆wi =

λa+ λ

∑
ti≤tmax

W (tmax − ti), if nd = 1,nout = 0;

−λa− λ
∑

ti<tout
W (tout − ti), if nd = 0,nout = 1;

0, if nd = nout.

(3.8)

When a = 0 and W (s) = K(s), the combined rule is equivalent to the

tempotron learning rule. This implicates that the tempotron rule is a particular

case of the ReSuMe rule.

60

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

3.5 Simulation Results

In this section, several simulations are performed to test the performance of the

network and different learning rules.

3.5.1 The Data Set and The Classification Problem

The stimuli from real world typically have a complex statistical structure. It is

quite different from idealized case of random patterns often considered. In the

real world, the stimuli hold large variability in a given class and have a high level

of correlation between members of different classes. The data set we considered

here is the MNIST digits (see Figure 3.6).

Figure 3.6: Examples of handwritten digits from MNIST dataset.

The MNIST data set contains a large number of examples of hand-written

digits, which consists of ten classes (digits 0 to 9) of examples and each

example is an image of 28 × 28 pixels. The MNIST data set is available

from http://yann.lecun.com/exdb/mnist, where many classification results from

different methods are also listed. All images from this data set are gray-scale.

61

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

3.5.2 Encoding Images

Each image is presented to the encoding layer, and is then converted into

spatiotemporal pattern. We use the coding strategy discussed previously through

which the output is sparse, as is observed in biological agents [99].

For simplicity of applying the encoding algorithm to the data set, we

distribute GCs with different receptive fields all over the image (each pixel).

The image size in GCs is same as the input image. Considering examples of

28-by-28 images, we choose two scales for the filters (σ = 1 for 5 × 5 pixels

as scale 1, and σ = 2 for 7 × 7 pixels as scale 2). The CCs layer performs the

max pooling operation on the previous GCs layer. For local position operation

we choose 6 × 6 pixels and we set the overlap pixels to be 3 in one axis (x or

y) for sub-sampling operation. A detailed process of max operation is described

in [89].

The application of all these processes produces a set of analog values,

corresponding to the activation levels of our CCs unit. The strongly activated

cell will fire earlier, whereas the weakly activated will fire later or not at all. The

spike latencies are linearly mapped into a predefined encoding time window

(100 ms in this study). The activation values are linearly converted to delay

times, associating t = 0 with activation value 1 and later times up to 100 ms

with lower activation values. The neurons with activation value of 0 (or below a

chosen small value) will not fire due to the weak activation.

An illustration of encoding an image is shown in Figure 3.4. Our scheme

is to extract the basic information and encode it to a spatiotemporal spike

62

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

pattern. Through the whole encoding structure, a sparse representation of the

original incoming image is finally obtained. Using this sparse representation to

generate the spike pattern would, to some extent, be compatible with biological

observations in retina.

3.5.3 Choosing Among Temporal Learning Rules

In the tempotron rule, we specify the following parameters. The ratio between

the membrane and the synaptic constants is fixed at τm/τs = 4. The threshold

Vthr is set to 1 and Vrest is set to 0. We use τm = 10 ms and λ = 0.002.

For comparison purpose, in the ReSuMe we use the similar neuron model

as the one in the tempotron rule. However, the difference is that when the neuron

emits a spike, its potential is reset to a rest value (0 here) and is hold there for a

refractory period (3 ms here).

0 100 200
0

100

200

300

Time(ms)

A
ff
e
re

n
t
#

0 T

Desired spikes

Actual spikes after learning

Figure 3.7: Illustration of the suitability of ReSuMe rule for the chosen neuron model.
The input pattern contains 300 afferent synapses and each fires once only. These spikes
are generated randomly with uniform distribution. For the desired spike, 3 random

spiking times are chosen.

Since the ReSuMe rule is based only on the spiking times, it could work

independently on the used spiking neuron models [47]. To verify the suitability

of this rule for our chosen neuron model, we generate a spike pattern and force

63

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

the neuron to respond at desired times. We choose 300 afferent synapses and

each fires only once in the time window. The timing of each spike is generated

randomly with uniform distribution between 0 and T . After learning, the neuron

could perform as the desired way (see Figure 3.7).

1 2 3
0

10

20

30

It
er
at
io
n
s

a) b) c)

Figure 3.8: The number of iterations needed for the correct classification of spike
patterns, through different learning rules. (a) is the tempotron learning rule. (b) is
the tempotron-like ReSuMe rule. (c) is the ReSuMe rule in which if the neuron fires, it
should spike at a desired time. Over 100 experiments with different initial conditions,
the averages (4.95, 7.36 and 14.48) and standard deviations (0.8454, 1.7438 and 12.014)

are obtained for (a),(b) and (c), respectively.

To compare the learning speed of different learning rules, we generate 30

spatiotemporal patterns and each pattern contains 120 afferent synapses. The

spiking times are generated randomly with a uniform distribution between 0

and T . We randomly choose 3 patterns as one category that is needed to be

discriminated from others. We record the minimum times of iterations for

different rules to learn these patterns correctly. We perform this experiment

for 100 times and the results are shown in Figure 3.8.

According to Figure 3.8, there is no significant difference of learning speed

between the tempotron rule and tempotron-like ReSuMe rule. This is because

the only difference between these two rules is the kernel windows which have a

64

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

similar effect on the synaptic change. However, compared to the ReSuMe rule,

the tempotron rule is much faster (about 3 times as the ReSuMe rule). Besides

this, the learning speed of the ReSuMe varies significantly for different initial

conditions (such as the number of patterns, the initial weights and the learning

rate). For the sake of fast recognition, we choose the tempotron rule as our

learning rule.

3.5.4 The Properties of Tempotron Rule

Since the tempotron rule is chosen, a test on its properties is needed.

Capacity

As is used for perceptron [61], the ratio of the number of random patterns (Np)

that correctly classified by the neuron over the number of its synapses (Nin), α =

Np/Nin, is used to measure the load of the neuron. An important characteristic

of neuron’s capacity is the maximum load that it can learn. As studied in [33],

the maximum recognition load of a tempotron can reach 3 approximately, which

means that the number of patterns the neuron can learn could roughly approach

to 3 times the number of synapses connected to it.

For our chosen neuron, a test on its load is shown in Figure 3.9. We set

Nin = 100 and generate different number of spike patterns within a fixed time

window (T = 100 ms). Each afferent fires only once and the spiking time

is randomly chosen from uniform distribution within T . The mean number

of cycles of pattern presentations for error-free classification is shown versus

the load (α). Although a more robust estimation of the load is feasible by

65

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

0.5 1 1.5 2 2.5
0

200

400

600

800

Ite
ra

tio
ns

Load (α)

Figure 3.9: The mean number of iterations of pattern presentations for error-free
classification versus neuron load. The patterns are randomly generated within the fixed
time window (100ms). The number of synapses is 100. Data are averaged over 20 runs.

allowing a small percentage of false alarms, the rigorous condition of error-free

classification is useful to testify the neuron’s ability of classifying all assigned

patterns successfully.

According to Figure 3.9, the neuron could successfully learn the patterns

within several tens of iterations if the load is not very high (below 1.5), but the

number of iterations would increase sharply when the load is over 1.5. This

means that under a higher load the neuron needs more time to learn the patterns

or the learning process could never converge.

This load test, to some extent, could guarantee the learning convergence

when the tempotron neuron is applied to our chosen recognition task. In our

task, there are only ten categories and patterns in each category share some

common features. Compared to the randomly generated patterns, the neuron’s

capacity might be sufficient to learn these real-world stimuli.

66

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

Robustness

In some cases, the external noise might change the encoded spike patterns more

or less. The tempotron rule should hold some level of robustness to tolerate

the noise. To assess the robustness of the learning rule, we trained the neuron

with a number of patterns (α = 1). Then we tested the performance of the

neuron when facing with jittered versions of previous learned patterns. The

jittered pattern was generated by adding a Gaussian noise to all spike times of a

template pattern. The robust performance of the neuron is shown in Figure 3.10.

0 2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Standard Deviation (ms)

C
or

re
ct

 R
at

e

Figure 3.10: The mean correct rate of classification on jittered spike patterns. The
jittered pattern is generated by adding Gaussian noise with standard deviation to all

spike times of a template pattern.

According to Figure 3.10, the performance of correct recognition decreas-

es with increasing jitter. Within a limited jitter range (0-3 ms), the performance

stays in a relatively high level (over 0.8). This indicates the learning rule is

robust to the presence of temporal noise to some extent.

67

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

3.5.5 Recognition Performance

The combined system is applied to recognize different patterns. To see the

ability of our system network on the recognition task, we use a small data set

from the MNIST (50 digits and 5 for each category). And we choose four

neurons as the readout. We call this readout as the fully distributed scheme

with no redundancy (each neuron codes for one bit). After several iterations of

training, the network can recognize all the patterns in this data set. Here, we

take the recognition results of several digits as an example (Figure 3.11). If the

potential of the learning neuron crosses the threshold, namely it fires, the value

of this neuron is considered as 1, otherwise it is 0. In Figure 3.11, when image

“0” shows up to the network, none of the learning neurons fire, so the result is

[0000]. For image “3”, the result is [0011], and for “9” it’s [1001]. This indicates

that the tempotron rule applied in our model could recognize different classes

of images successfully.

However, using only four neurons as the readout in a binary format might

be very sensitive to changes of input images, especially considering the real-

world stimuli in which samples hold large variability in a given class and

overlap with members in different classes. If only one neuron misclassified

the incoming pattern while others correctly responded, the pattern was still

wrongly classified. Researchers have found that neighboring neurons have

similar response properties. Depending on this, neural groups are used for

assembly computing [86].

Thus, we use several grouped pools as our readout. We firstly consider a

68

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

0 0.1 0.2
-0.5

0

0.5

1

1.5

Neuron 1

V
(t

)

Time(s)

0 0.1 0.2
-0.5

0

0.5

1

1.5

Neuron 2

0 0.1 0.2
-0.5

0

0.5

1

1.5

Neuron 3

0 0.1 0.2
-0.5

0

0.5

1

1.5

Neuron 4

0 0.1 0.2
-0.5

0

0.5

1

1.5

0 0.1 0.2
-0.5

0

0.5

1

1.5

0 0.1 0.2
-0.5

0

0.5

1

1.5

0 0.1 0.2
-0.5

0

0.5

1

1.5

0 0.1 0.2
-0.5

0

0.5

1

1.5

0 0.1 0.2
-0.5

0

0.5

1

1.5

0 0.1 0.2
-0.5

0

0.5

1

1.5

0 0.1 0.2
-0.5

0

0.5

1

1.5

T T T T

TTTT

T T T T

Figure 3.11: Recognition results of digits by Tempotron learning rule. Here shows 4
learning neurons (Neuron 1 to 4) and 3 images. The neuron responds to an image by
firing (1) or not (0). The results for “0”, “3” and “9” are [0000], [0011] and[1001],

respectively.

distributed code with redundancy: 4 pools of 20 neurons each. Each pool codes

for one binary feature as in Figure 3.11. A voting system decides if the binary

feature is 0 or 1 based on the voting majority in this pool. Then we consider a

localist scheme with redundancy, where each pool of 20 neurons codes for only

one category. For an incoming stimulus, it is classified into a category according

to the pool which has the most amount of voting neurons fired. If two or more

pools have the same maximal firing number, the incoming stimulus is classified

as unknown pattern.

These two schemes of readout with redundancy are used. For cross-

validation, we choose 500 digits (50 images for each category) as our training

set and randomly choose other 100 images from the MNIST data set as the

testing set. In the training phase, each neuron is trained with a sub-training

set chosen from the training set. This sub-training set consists of examples

69

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

randomly chosen from the corresponding category and also other categories.

After training, the performance is tested on both training set and testing set.

The correct rate on the testing set is around 50% for the distributed code with

no redundancy, and is around 79% for the localist code with redundancy. For

distributed code, although the robustness for coding one bit feature is improved

comparing to single neuron code, it is still not comparable to the localist one.

This is due to that in the distributed code the final decision highly depends

on correct reaction of each pool, but in the localist code it only depends on a

correct major voting of one corresponding pool. Thus, in the localist scheme,

the robustness is not only due to the redundancy but also to the localist aspect.

This localist scheme is considered in our following experiments.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 R

a
te

Unknown Rate

Wrong Rate

Correct Rate

Tempotron on
Training Set

Tempotron on
Testing Set

SVM on
Training Set

SVM on
Testing Set

Figure 3.12: The classification performance of tempotron and SVM. The system
is trained 40 times each for tempotron and SVM. After each training time, the
generalization is performed on both the training and testing set. The averages and

standard deviations are plotted.

To make a comparison with the benchmark machine learning method,

70

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

Table 3.1: The classification performance of tempotron and SVM on MNIST

Tempotron Rule SVM
Percentage(%)

Training Testing Training Testing

Correct Rate 93.67± 0.67 78.5± 1.85 90.24± 0.98 79.33± 2.03

Wrong Rate 4.48± 0.58 18.35± 1.85 6.88± 0.78 18.15± 1.69

Unknown Rate 1.86± 0.61 3.15± 1.64 2.89± 0.86 2.53± 2.04

SVMs are chosen to perform the classification on the CCs activation values.

Since SVM also has a binary decision behavior, we set the same classification

condition on training and testing as for tempotron. The performances of both the

tempotron and SVM on the training set and testing set are shown in Figure 3.12.

The corresponding recognition rates are shown in Table 3.1.

According to Figure 3.12, our network with the tempotron rule performs

at a high correct rate (around 93.7%) on the training set and at an acceptable

correct rate (around 79%) on the testing set, especially considering the small

data set (500 images) used for training. Comparing with SVM under the same

condition of our encoding model, the performances of spiking neurons are better

than SVM for the training set and comparable to SVM for the testing set. From

a biological point of view, our system attempts to perform robust and rapid

recognition with a brain-like architecture.

To investigate the states of the spiking neurons in one grouped pool after

learning, a picture of the average weights is shown in Figure 3.13. According to

Figure 3.13, the grouped neurons, cooperating together, roughly grab a general

and basic feature of the learned category. Taking digit 0 as an example, the

center weights are mostly inhibited since these neurons are rarely activated by

the incoming stimulus 0 through our encoding model.

71

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

Inhibited

Excited

Figure 3.13: Average weights of the spiking neurons in the pool representing digit 0 and
3. Left: Image samples of digit 0 and 3 from MNIST are listed. Right: The picture of
the average weight of the spiking neurons in corresponding group. Inhibited afferents
are plotted black, while excited ones are plotted gray-scale according to their weights.

3.6 Discussion

Discussions on the proposed system are given as follows.

Encoding Benefits from Biology

Through the layers of GCs and CCs the external stimuli are sparsely represented

in the activation values of CCs units. These activation values are used to

generate spiking patterns in a time domain. It already has been shown that

coding schemes based on the firing rates are unlikely to be efficient enough

for fast information processing [84, 100]. Considering the rapid processing in

the brain and billions of neurons involved, a temporal code which uses single

spikes is, in principle, capable of carrying substantial information about the

external stimuli [23] and facilitating the computational speed. In several sensory

systems, shorter latencies of spikes result from stronger stimulation [101, 102].

In our encoding layer, the strongly activated neurons would fire earlier, whereas

the weakly activated neurons would fire later or not at all. The chosen encoding

72

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

window of the temporal patterns is on a scale of hundreds of milliseconds, which

matches the biologically experimental results as mentioned in [11, 13, 26]. In

addition, our encoding is efficient and the spiking output is sparse as observed

in biological retinas [99, 103].

Types of Synapses

The types of synapses are determined by the signs of their efficacies, with

positive values corresponding to excitatory synapses and negative values to

inhibitory synapses. Although this model is far from biological realism, it is

proved to be a useful computational approach [47]. In the neuron model, the

sign of synapse could change by learning. The learning also works when the

signs of synapses are not allowed to change, but the capacity is reduced. For

a practical usage for multiple-class problem, changing sign is allowed in the

neuron model. This can be realized by altering the balance between excitatory

and inhibitory pathways [33].

Schemes of Readout

Using a binary version of readout, the network is shown to be capable to finish

a simple recognition task on a small data set. However, this kind of readout

would be very sensitive to each neuron’s performance in the readout. If only one

neuron misclassifies the pattern while others do a correct classification, the final

readout would also be wrong since it depends on all the neurons in a binary form.

Using grouped pools could effectively compensate this. In nervous systems such

as visual cortical areas [104] and hippocampus [105], information is commonly

73

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

expressed through populations or clusters of cells rather than through single

cell [106]. This strategy is robust since damage to a single cell will not have a

catastrophic effect on the whole population. Through learning, neurons in the

same group try to find the common features discriminating that category, and

through voting, the most active group would be chosen. Another meaningful

aspect of the readout is that there is an unknown decision. Since some samples

in one category are quite similar to other categories (for example the digit “5” in

the second row of Figure 3.6), it is reasonable to label them as unknown rather

than wrong. A further processing could be done for these unknown samples.

�������

�	
����

�
��

�
���

����

���������

��	�����
��������
�
��
���������
	�

������

�����

�
�������

����

 ���!

���������
�����
 "��������#

�������

$
��

%
�
�
�
�
&
��
�

'��
	����������
��

$�
����� ('�$!

)������#�

*�&�������

����

���+��

�
�

�
��

�
#
�
��
�

 �
�#

�
��

#
�,

&
��
��

%
�
�
�
�
&
!

�������

�	
���

�
�
�

��

���

�
��

�

�

�

�

�

�

�

�

�

� �!�

�� �!�

�
�
��

�
��
�

�
�

,
�

�
�
�

+
�
	�

�
�

Figure 3.14: The proposed LSF-SNN system for sound recognition. Firstly the
keypoints are detected and the corresponding LSFs are extracted. Then, the SOM map
is used to produce the output spatiotemporal spike patterns. These patterns are then

learnt by the tempotrons for recognition.

Extension of the Network for Robust Sound Recognition

In addition to the recognition on images, we also proposed a SNN for

recognizing sounds. The general structure remains the same, where functional

parts of encoding, learning and readout are involved. The major difference of the

two systems is the encoding part. With a proper encoding scheme for sounds,

the SNN can perform the recognition well. We propose a novel approach based

on the temporal coding of Local Spectrogram Features [44], which generates

74

CHAPTER 3. RAPID FEEDFORWARD COMPUTATION BY TEMPORAL ENCODING AND LEARNING WITH
SPIKING NEURONS

spikes that are used to train the following neurons. The general structure for

sound recognition is shown in Figure 3.14. Our experiments demonstrate the

robust performance of this system across a variety of noise conditions, such that

it is able to outperform the conventional frame-based baseline methods. More

details can be found in [44].

3.7 Conclusion

A systematic computational model by using consistent temporal encoding,

learning and readout has been presented to explore brain-based computation

especially in the regime of pattern recognition. It is a preliminary attempt

to perform rapid and robust pattern recognition from a biological point of

view. The schemes used in this model are efficient and biologically plausible.

The external stimuli are sparsely represented after our encoding and the

representations have properties of selectivity and invariance. Through the

network, the temporal learning rules can be applied to processing real-world

stimuli.

75

Chapter 4

Precise-Spike-Driven Synaptic

Plasticity

This chapter proposes a new temporal learning rule, namely the Precise-Spike-

Driven (PSD) Synaptic Plasticity, for processing and memorizing spatiotempo-

ral patterns. PSD is a supervised learning rule that is analytically derived from

the traditional Widrow-Hoff rule and can be used to train neurons to associate

an input spatiotemporal spike pattern with a desired spike train. Synaptic

adaptation is driven by the error between the desired and the actual output

spikes, with positive errors causing long-term potentiation and negative errors

causing long-term depression. The amount of modification is proportional

to an eligibility trace that is triggered by afferent spikes. The PSD rule is

both computationally efficient and biologically plausible. The properties of

this learning rule are investigated extensively through experimental simulations,

including its learning performance, its generality to different neuron models, its

robustness against noisy conditions, its memory capacity, and the effects of its

76

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

learning parameters.

4.1 Introduction

With the same capability of processing spikes as biological neural systems,

spiking neural networks (SNNs) [4, 107, 108] are more biologically realistic

and computationally powerful than the traditional artificial neural networks

(ANNs). Spikes are believed to be the principal feature in the information

processing of neural systems, though the neural coding mechanism, i.e., how

information is encoded in spikes still remains unclear. The temporal codes

describe one possibility, where information is conveyed through precise times of

spikes. However, the complexity of processing temporal codes [33, 109] might

limit their usage in SNNs, which demands the development of efficient learning

algorithms.

Supervised learning was proposed as a successful concept of information

processing [110]. Neurons are driven to respond at desired states under

a supervisory signal, and an increasing body of evidence shows that this

kind of learning is exploited by the brain [63–66]. Supervised mechanism

has been widely used to develop various learning algorithms for processing

spatiotemporal spike patterns in SNNs [30, 33–37, 45].

SpikeProb [34] is one of the first supervised learning algorithms for

processing precise spatiotemporal patterns in SNNs. However, in its original

form, SpikeProb cannot learn to reproduce a multi-spike train. The tempotron

rule [33], another gradient descent approach that is evaluated to be efficient for

77

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

binary temporal classification tasks, cannot output multiple spikes either. As

the tempotron is designed mainly for pattern recognition, it is unable to produce

precise spikes. To produce a desired spike train, several learning algorithms

have been proposed such as ReSuMe [37, 47], Chronotron [36] and SPAN [35].

These three learning rules are all capable of training a neuron to generate a

desired spike train in response to an input stimulus. In the Chronotron, two

learning rules are introduced. One is analytically-derived (E-learning) and

another one is heuristically-defined (I-learning). The I-learning rule is more

biologically plausible but comes with less memory capacity than the E-learning

rule. The performance of the I-learning rule depends on the weight initialization,

where initial zero values can cause information loss from the corresponding

afferent neurons. The E-learning rule and the SPAN rule are both based on

an error function of the difference between the actual output spike train and

the desired spike train. Their applicability is therefore limited to the tractable

error evaluation, which might be unavailable in actual biological networks and

inefficient from a computational point of view. These arithmetic-based rules can

reveal explicitly how SNNs can be trained but the biological plausibility of the

error calculation is somewhat questionable.

In this chapter, we propose an alternative learning mechanism called

Precise-Spike-Driven (PSD) synaptic plasticity, that is able to learn the associa-

tion between precise spike patterns. Similar to ReSuMe [37] and SPAN [35], the

PSD rule is derived from the Widrow-Hoff (WH) rule but based on a different

interpretation. The PSD rule is derived analytically based on converting the

spike trains into analog signals by applying the spike convolution method. Such

78

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

an approach is rarely reported in the existing learning rule studies [35]. Synaptic

adaptation in the PSD is driven by the error between the desired and the actual

output spikes, with positive errors causing long-term potentiation (LTP) and

negative errors causing long-term depression (LTD). The amount of adaptation

depends on an eligibility trace determined by the afferent spikes. Without

complex error calculation, the PSD rule provides an efficient way for processing

spatiotemporal patterns. We show that the PSD rule inherits the advantageous

properties of both arithmetic-based and biologically realistic rules, being simple

and efficient for computation, and yet biologically plausible. Furthermore, the

PSD is an independent plasticity rule that can be applied to different neuron

models. This straightforward interpretation of the WH rule also provides a

possible direction for further exploitation of the rich theory of ANNs, and

minimizes the gap between the learning algorithms of SNNs and the traditional

ANNs.

Various properties of the PSD rule are investigated through an extensive

experimental analysis. In the first experiment, the basic concepts of the

PSD rule are demonstrated, and its learning ability on hetero-association of

spatiotemporal spike pattern is investigated. In the second experiment, the

PSD rule is shown to be applicable to different neuron models. Thereafter,

experiments are conducted to analyze the learning rule regarding its robustness

against noisy conditions, its memory capacity, effects of the learning parameters

and its classification performance. Finally, a detailed discussion about the PSD

rule and several related algorithms is presented.

79

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

4.2 Methods

In this section, we begin by presenting the spiking neuron models. We

then describe the PSD rule for learning hetero-association between the input

spatiotemporal spike patterns and the desired spike trains.

4.2.1 Spiking Neuron Model

The leaky integrate-and-fire (LIF) model is firstly considered. The dynamics of

each neuron evolves according to the following equation:

τm
dVm
dt

= −(Vm − E) + (Ins + Isyn) ·Rm (4.1)

where Vm is the membrane potential, τm = RmCm is the membrane time

constant, Rm = 1 MΩ and Cm = 10 nF are the membrane resistance

and capacitance, respectively, E is the resting potential, Ins and Isyn are the

background current noise and synaptic current, respectively. When Vm exceeds

a constant threshold Vthr, the neuron is said to fire, and Vm is reset to Vreset for

a refractory period tref . We set E = Vreset = 0 mV and Vthr = E + 18 mV for

clarity, but any other values as E = −60 mV will result in equivalent dynamics

as long as the relationships among E, Vreset and Vthr are kept.

For the post-synaptic neuron, we model the input synaptic current as:

Isyn(t) =
∑
i

wiI
i
PSC(t) (4.2)

where wi is the synaptic efficacy of the i-th afferent neuron, and I iPSC is the

un-weighted postsynaptic current from the corresponding afferent.

I iPSC(t) =
∑
tj

K(t− tj)H(t− tj) (4.3)

80

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

where tj is the time of the j-th spike emitted from the i-th afferent neuron,H(t)

refers to the Heaviside function, K denotes a normalized kernel and we choose

it as:

K(t− tj) = V0 ·
(

exp(
−(t− tj)

τs
)− exp(

−(t− tj)
τf

)
)

(4.4)

where V0 is a normalization factor such that the maximum value of the kernel is

1, τs and τf are the slow and fast decay constants respectively, and their ratio is

fixed at τs/τf = 4.

oi

A
ff

e
r
e

n
t

N
e

u
r
o

n
s

i
w

i

s y n
I

d

Figure 4.1: Illustration of the neuron structure. The afferent neurons are connected to
the post-synaptic neuron through synapses. Each emitted spike from afferent neurons
will trigger a post-synaptic current (PSC). The membrane potential of the post-synaptic
neuron is a weighted sum of all incoming PSCs from all afferent neurons. The yellow

neuron denotes the instructor which is used for learning.

Figure 4.1 illustrates the neuron structure. Each spike from the afferent

neuron will result in a post-synaptic current (PSC). The membrane potential

of the post-synaptic neuron is a weighted sum of all incoming PSCs over all

afferent neurons.

In addition to the LIF model, we also investigate the flexibility of the PSD

rule to different neuron models. For this, we use the IM model [9], where the

81

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

dynamics of the IM model is described as:

dVm/dt = 0.04V 2
m + 5Vm + 140− U + Isyn + Ins

dU/dt = a(bVm − U)

if Vm ≥ 30 mV ,

then Vm ← c, U ← U + d

(4.5)

where Vm again represents the membrane potential. U is the membrane recovery

variable. The synaptic current (Isyn) is in the same form as described before, and

Ins again represents the background noise. The parameters a = 0.02, b = 0.2,

c = −65 and d = 8 are chosen such that the neuron exhibits a regular spiking

behavior which is the most typical behavior observed in cortex [9].

For computational efficiency, the LIF model is used in the following

studies, unless otherwise stated.

4.2.2 PSD Learning Rule

In this section we describe in detail the PSD learning rule. Note that the

spiking neuron models were developed from the traditional neuron models. In

a similar way, we develop the learning rule for spiking neurons from traditional

algorithms. Inspired by [35], we derive the proposed rule from the common WH

rule. The WH rule is described as:

∆wi = ηxi(yd − yo) (4.6)

where η is a positive constant referring to the learning rate, xi, yd and yo

refer to the input, the desired output and the actual output, respectively.

Note that because the WH rule was introduced for the traditional neuron

82

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

models such as perceptron, the variables in the WH rule are regarded as real-

valued vectors. In the case of spiking neurons, the input and output signals are

described by the timing of spikes. Therefore, a direct implementation of the WH

rule does not work for spiking neurons. This motivates the development of the

PSD rule.

A spike train is defined as a sequence of impulses triggered by a particular

neuron at its firing time. A spike train is expressed in the form of:

s(t) = Σfδ(t− tf) (4.7)

where tf is the f -th firing time, and δ(x) is the Dirac function: δ(x) = 1 (if x =

0) or 0 (otherwise). Thus, the input, the desired output and the actual output of

the spiking neuron are described as:
si(t) = Σfδ(t− tfi)

sd(t) = Σgδ(t− tgd)

so(t) = Σhδ(t− tho)

(4.8)

The products of Dirac functions are mathematically problematic. To solve

this difficulty, we apply an approach called spike convolution. Unlike the

method used in [35], which needs a complex error evaluation and requires spike

convolution on all the spike trains of the input, the desired output and the actual

output, we only convolve the input spike trains.

s̃i(t) = si(t) ∗ κ(t) (4.9)

where κ(t) is the convolving kernel, which we choose to be the same as

Equation (4.4). In this case, the convolved signal is in the same form as IPSC

83

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

in Equation (4.3). Thus, we use IPSC as the eligibility trace for the weight

adaptation. The learning rule becomes:

dwi(t)

dt
= η[sd(t)− so(t)]I iPSC(t) (4.10)

Equation (4.10) formulates an online learning rule. The dynamics of this

learning rule is illustrated in Figure 4.2. It can be seen that the polarity of the

synaptic changes depends on three cases: (1) a positive error (corresponding to a

miss of the spike) where the neuron does not spike at the desired time, (2) a zero

error (corresponding to a hit) where the neuron spikes at the desired time, and

(3) a negative error (corresponding to a false-alarm) where the neuron spikes

when it is not supposed to.

()
i
S t

()
i

P SC
I t

()
d
S t

()
o
S t

()
i
tw

Figure 4.2: Demonstration of the weight adaptation in PSD. Si(t) is the presynaptic
spike train. Sd(t) and So(t) are the desired and the actual postsynaptic spike train,
respectively. IiPSC(t) is the postsynaptic current and can be referred to as the eligibility
trace for the adaptation ofwi(t). A positive error, where the neuron does not spike at the
desired time, causes synaptic potentiation. A negative error, where the neuron spikes
when it is not supposed to, results in synaptic depression. The amount of adaptation is
proportional to the postsynaptic current. There will be no modification when the actual

output spike fires exactly at the desired time.

Thus, the weight adaptation is triggered by the error between the desired

and the actual output spikes, with positive errors causing long-term potentiation

84

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

and negative errors causing long-term depression. No synaptic change will

occur if the actual output spike fires at the desired time. The amount of synaptic

changes is determined by the current I iPSC(t).

With the PSD learning rule, each of the variables involved has its own

physical meaning. Moreover, the weight adaptation only depends on the current

states. This is different from rules involving STDP, where both the pre- and

post-synaptic spiking times are stored and used for adaptation.

By integrating Equation (4.10), we get:

∆wi = η

∫ ∞
0

[sd(t)− so(t)]I iPSC(t)dt (4.11)

= η
[∑

g

∑
f

K(tgd − t
f
i)H(tgd − t

f
i)−

∑
h

∑
f

K(tho − t
f
i)H(tho − t

f
i)
]

This equation could be used for trial learning where the weight modifica-

tion is performed at the end of the pattern presentation.

In order to measure the distance between two spike trains, we use the

van Rossum metric [111] but with a different filter function as described in

Equation (4.4). This filter is used to compensate for the discontinuity of the

original filter function. The distance can be written as:

Dist =
1

τ

∫ ∞
0

[f(t)− g(t)]2dt (4.12)

where τ is a free parameter (we set τ = 10 ms here), f(t) and g(t) are filtered

signals of the two spike trains that are considered for distance measurement.

Noteworthily, this distance parameter Dist is not involved in the PSD

learning rule, but is used for measuring and analyzing the performance of

the learning rule, which reflects the dissimilarity between the desired and the

85

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

actual spike trains. In the following experiments, different values of Dist are

used for analysis depending on the problems. For single-spike and multi-spike

target trains, we set Dist to be 0.2 and 0.5, respectively, corresponding to an

average time difference of around 2.5 ms for each pair of the actual and desired

spikes. Smaller Dist can be used if exact association is the main focus, e.g.,

Dist = 0.06 corresponds to a time difference about 0.6 ms, where no obvious

dissimilarity can be seen between the two spike trains.

4.3 Results

In this section, several experiments are presented to demonstrate the character-

istics of the PSD rule. The basic concepts of the PSD rule are first examined, by

demonstrating its ability to associate a spatiotemporal spike pattern with a target

spike train. Furthermore, we show that the PSD has desirable properties, such

as generality to different neuron models, robustness against noise and learning

capacity. The effects of the parameters on the learning are also investigated.

Then, the application of the proposed algorithm to the classification of spike

patterns is also shown.

4.3.1 Association of Single-Spike and Multi-Spike Patterns

This experiment is devised to demonstrate the ability of the proposed PSD rule

for learning a spatiotemporal spike pattern. The neuron is trained to reproduce

spikes that fire at the same spiking time of a target train.

86

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

Experiment setup

The neuron is connected with n afferent neurons, and each fires a single spike

within the time interval of (0, T). Each spike is randomly generated with

a uniform distribution. We set n = 1000, T = 200 ms here. To avoid a

single synapse dominating the firing of the neuron, we limit the weight below

wmax = 6 nA. The initial synaptic weights are drawn randomly from a normal

distribution with mean value of 0.5 nA and a standard deviation of 0.2 nA.

For the learning parameters, we set η = 0.01wmax and τs = 10 ms. The

target spike train can be randomly generated, but for simplicity, we specify it

as [40, 80, 120, 160] ms to evenly distribute the spikes over the whole time

interval T .

Learning process

Figure 4.3 illustrates a typical run of the learning. Initially, the neuron is

observed to fire at any arbitrary time and with a firing rate different from the

target train, resulting in a large distance value. The actual output spike train

is quite different from the target train at the beginning. During the learning

process, the neuron gradually learns to produce spikes at the target time, and that

is also reflected by the decreasing distance. After finishing the first 10 epochs of

learning, both the firing rate and the firing time of the output spikes match those

in the target spike train. The dynamics of neuron’s membrane potential is also

shown in Figure 4.3. Whenever the membrane potential exceeds the threshold,

a spike is emitted and the potential is kept at reset level for a refractory period.

The detailed mathematical description governing this behavior was presented

87

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50
E

p
o

c
h

s

0 20 40 60 80 100 120 140 160 180 200
0

10

20

V
m

Time (ms)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

V
m

0 20
0

5

10

15

20

25

30

35

40

45

50

Distance

Figure 4.3: Illustration of the temporal sequence learning of a typical run. The neuron is
connected with n = 1000 synapses, and is trained to reproduce spikes at the target time
(denoted as light blue bars in the middle). The bottom and top show the dynamics of the
neuron’s potential before and after learning, respectively. The dashed red lines denote
the firing threshold. In the middle, each spike is denoted as a dot. The right figure shows

the spike distance between the actual output spike train and the target spike train.

previously in the section on the Spiking Neuron Model.

This experiment shows the feasibility of the PSD rule to train the neuron

to reproduce a desired spike train. After several learning epochs, the neuron can

successfully spike at the target time. In other words, the proposed rule is able

to train the neuron to associate the input spatiotemporal pattern with a desired

output spike train within several training epochs. The information of the input

pattern is stored by a specified spike train.

Causal weight distribution

We further examine how the PSD rule drives the synaptic weights and the

evolution of the distance between the actual and the target spike trains. In order

88

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

to guarantee statistical significance, the task described in Figure 4.3 is repeated

100 times. Each time is referred to as one run. At the initial point of each run,

different random weights are used for training.

����������	
�����������
��

0 5 10 15 20 25 30 35 40 45 50
0

20

40

D
is
ta
n
c
e

Epochs

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

W
t(
a
ft
e
r)

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

W
t(
b
e
fo
re
)

Figure 4.4: Effect of the learning on synaptic weights and the evolution of distance
along the learning process. The top and the middle show the averaged weights before
and after learning, respectively. The height of each bar in the figure reflects the
corresponding synaptic strength. All the afferent neurons are chronologically sorted
according to their spike time. The target spikes are overlayed on the weights figure
according to their time, and are denoted as red lines. The bottom shows the averaged
distance between the actual spike train and the desired spike train along the learning

process. All the data are averaged over 100 runs.

As can be seen from Figure 4.4, the initial weights are normally distributed

around 0.5 nA, which reflects the fact that there are no significant differences

among the input synapses. This initial distribution of weights is expected due

to the experimental setup. After learning, a causal connectivity is established.

According to the learning rule, the synapses that fire temporally close to the

time of the target spikes are potentiated. Those synapses that result in undesired

output spikes are depressed. This temporal causality is clearly reflected on

the distribution of weights after learning (Figure 4.4). Among those causal

89

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

synapses, the one with a closer spiking time to the desired time normally has

a relatively higher synaptic strength. The synapses firing far from the desired

time will have lower causal effects. Additionally, the evolution of distance along

the learning shows that the PSD rule successfully trains the neuron to reproduce

the desired spikes in around ten epochs. The results also validate the efficiency

of the PSD learning rule in accomplishing the single association task.

Adaptive learning performance

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

E
p

o
c
h

s

Time (ms)
0 20

0

5

10

15

20

25

30

35

40

45

50

Distance

Figure 4.5: Illustration of the adaptive learning of the changed target trains. Each dot
denotes a spike. At the beginning, the neuron is trained to learn one target (denoted
by the light blue bars). After 25 epochs of learning (the dashed red line), the target is
changed to another randomly generated train (denoted by the green bars). The right
figure shows the distance between the actual output spike train and the target spike train

along the learning process.

At the beginning, the neuron is trained to learn a target train as in the

previous tasks. After one successful learning, the target spike train is changed

to another arbitrarily generated train, where the precise spike time and the firing

rate are different from the previous target. We discover that, with the PSD

learning rule, we successfully train the neuron to learn the new target within

90

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

several epochs. As shown in Figure 4.5, during learning, the neuron gradually

adapts its firing status from the old target to the new target.

Learning multiple spikes

In the scenario considered above, all afferent neurons are supposed to fire only

once during the entire time window. The applicability of the PSD rule is not

limited to this single spike code. We further illustrate the case where each

synaptic input transmits multiple spikes during the time window. We again

use the same setup as above, but each synaptic input is now generated by a

homogeneous Poisson process with a random rate ranging from 5 − 25 Hz.

Multiple spikes increase the difficulty of the learning since these spikes interfere

with the local learning processes [47].

As shown in Figure 4.6, the learning although slower, is again successful.

The interference of local learning processes results in fluctuations of the output

spikes around the target time. In the subsequent learning epochs, the neuron

gradually converges to spiking at the target time. This experiment demonstrates

that the PSD rule deals with multiple spikes quite well. Compared to multiple

spikes, the single spike code is simple for analysis and efficient for computation.

Thus, for simplicity, we use the single spike code in the following experiments

where each afferent neuron fires only once during the time window.

These experiments clearly demonstrate that the PSD rule is capable of

training the neuron to fire at the desired time. The causal connectivity is

established after learning with this rule. In the following sections, some more

challenging learning scenarios are taken into consideration to further investigate

91

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Time (ms)

A
ff
e

re
n

t
#

0 10 20
0

5

10

15

20

25

30

35

40

45

50

E
p
o

c
h
s

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

E
p

o
c
h
s

Time (ms)

0 100
0

5

10

15

20

25

30

35

40

45

50

Distance

E
p
o

c
h
s

Figure 4.6: Illustration of a typical run for learning multi-spike pattern. Each dot
denotes a spike. The top left shows the input spikes from the first 50 afferent neurons
out of 1000. Each synaptic input is generated by a homogeneous Poisson process with
a random rate from 5− 25 Hz. The bottom left shows the neuron’s output spikes. The
right column shows the distance between the actual output spike train and the target

spike train along learning.

the properties of the PSD rule.

4.3.2 Generality to Different Neuron Models

We carry out this experiment to demonstrate that the PSD learning rule is

independent of the neuron model. In this experiment, we only compare the

results of learning association for the LIF and IM neuron models that were

described previously. For a fair comparison, both neurons are connected to the

92

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

same afferent neurons, and they are trained to reproduce the same target spike

train. The setup for generating the input spatiotemporal patterns is the same as

the experiment in Figure 4.5. The connection setup is illustrated in Figure 4.7.

Except for the neuron dynamics described in Equation (4.1) and Equation (4.5)

respectively, all the other parameters are the same for the two neurons.

�

�

�
��
�
�
�
�
��
�
�
	
�

�
�

�

0 20 40 60 80 100 120 140 160 180 200
0

10

20

V
m

Before

0 20 40 60 80 100 120 140 160 180 200
0

10

20

V
m

After

0 20 40 60 80 100 120 140 160 180 200
-100

0

100

V
m

Before

0 20 40 60 80 100 120 140 160 180 200
-100

0

100

V
m

After

�

��

�

Figure 4.7: Learning with different spiking neuron models. The LIF and IM neuron
models are considered. The left panel shows the connection setup of the experiment.
Both the two neurons are connected to the same n = 1000 afferent neurons, and are
trained to reproduce target spikes (denoted by the yellow parts). The right panel shows
the dynamics of neurons’ potential before and after learning. The dashed red lines

denote the firing threshold.

The dynamic difference between the two types of spiking neuron models

is clearly demonstrated in Figure 4.7. Although the neuron models are different,

both of the neurons can be trained to successfully reproduce the target spike

train with the proposed PSD learning rule. It is seen that the two neurons fire at

arbitrary time before learning, while after learning they fire spikes at the desired

time.

In the PSD rule, synaptic adaptation is triggered by both the desired spikes

and the actual output spikes. The amount of updating depends on the presynaptic

93

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

spikes firing before the triggering spikes. That is to say, the weight adaptation of

our rule is based on the correlation between the spiking time only. This suggests

the PSD has the generality to work with various neuron models, a capability

similar to that of the ReSuMe rule [47].

4.3.3 Robustness to Noise

In previous experiments, we only consider the simple case where the neuron

is trained to learn a single pattern under noise-free condition. However, the

reliability of the neuron response could be significantly affected by noise. In

this experiment, two noisy cases are considered: stimuli noise and background

noise.

Experiment setup

In this experiment, a single LIF neuron with n = 500 afferent neurons is

tested. Initially, a set of 10 spike patterns are randomly generated as in previous

experiments. These 10 spike patterns are fixed as the templates. The neuron

is trained for 400 epochs to associate all patterns in the training set with a

desired spike train (the same train as is used before). Two training scenarios

are considered in this experiment, i.e., deterministic training (in the noise-free

condition) and noisy training. In the testing phase, a total number of 200 noise

patterns are used. Each template is used to construct 20 testing patterns. We

determine the association to be correct, if the distance between the output spike

train and the desired spike train is lower than a specified level (0.5 is used here).

94

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

Input jittering noise

In the case of input jittering noise, a Gaussian jitter with a standard deviation

(σInp) is added to each input spike to generate the noise patterns. The strength

of the jitter is controlled by the standard deviation of the Gaussian. The top row

in Figure 4.8 shows the learning performance. In the deterministic training, the

neuron is trained purely with the initial templates. In the noisy training, a noise

level of 3 ms is used. Different levels of noise are used in the testing phase

to evaluate the generalization ability. For the deterministic training, the output

stabilizes quickly and can exactly converge to the desired spike train within tens

of learning epochs. However, the generalization accuracy decreases quickly

with the increasing jitter strength. In the scenario of noisy training, although the

training error cannot become zero, a better generalization ability is obtained.

The neuron can successfully reproduce the desired spike train with a relatively

high accuracy when the noise strength is not higher than the one used in the

training. In conclusion, the neuron is less sensitive to the noise if the noisy

training is performed.

Background current noise

In this case, the background current noise (Ins) is considered as the noise

source. The mean value of Ins is assumed zero, and the strength of the noise is

determined by its variance (σIns). A strength of 10 nA noise is used in the noisy

training. We report the results in the bottom row of Figure 4.8. Similar results

are obtained as with the first case. Although the output can quickly converge to

zero error in the deterministic training, the generalization performance is quite

95

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

0 100 200 300 400
0

1

2

3

4

5

Epoch

D
is

ta
n

c
e

0 100 200 300 400
0

1

2

3

4

5

Epoch

D
is

ta
n

c
e

0 2 4
0

20

40

60

80

100

σ
Inp

 (ms)

C
o

rr
e

c
t
R

a
te

determ. training

noisy training

0 5 10 15 20
0

20

40

60

80

100

σ
Ins

 (nA)

C
o

rr
e

c
t
R

a
te

determ. training

noisy training

������������	

�������

�����
������� ������

��
�
�
�

��
��
�
�

�
�
	�

��
�
�
�

�
�
��
�

0 100 200 300 400
0

1

2

3

4

5

Epoch

D
is

ta
n

c
e

0 100 200 300 400
0

1

2

3

4

5

Epoch

D
is

ta
n

c
e

Figure 4.8: Robustness of the learning rule against jittering noise of input stimuli and
background noise. The top row presents the case where the noise comes from the input
spike jitters. The bottom row presents the case of background noise. The neuron is
trained under noise-free conditions (denoted as deterministic training), or is trained
under noisy conditions (denoted as noisy training). In the training phase (left two
columns), the neuron is trained for 400 epochs. Along the training process, the average
distance between the actual output spike train and the desired spike train is shown. The
standard deviation is denoted by the shaded area. In the testing phase (right column),
the generalization accuracies of the trained neuron on different levels of noise patterns
are presented. Both the average value and the standard deviation are shown. All the

data are averaged over 100 runs.

sensitive to the noise. The association accuracy drops quickly when the noise

strength increases. When the neuron is trained with noise patterns, it becomes

less sensitive to the noise. A relatively high accuracy can be obtained with a

noise level up to 14 nA.

This experiment shows that the neuron trained under noise-free conditions

will be significantly affected by noise in the testing phase. Such an influence

of noise on the timing accuracy and reliability of the neuron response has

been considered in many studies [33, 35, 36, 47, 112, 113]. Under the noisy

training, the trained neuron demonstrates high robustness against the noise. The

noisy training enables the neuron to reproduce desired spikes more reliably and

96

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

precisely.

4.3.4 Learning Capacity

As used for the perceptron [61] and tempotron [33,45] learning rules, the ratio of

the number of random patterns (p) that a neuron can correctly classify over the

number of its synapses (n), α = p/n, is used to measure the memory load. An

important characteristic of a neuron’s capacity is the maximum load that it can

learn. In this experiment, the memory capacity of the PSD rule is investigated.

Experiment setup

We devise an experiment that has a similar setup to that in [35]. A number of

p patterns are randomly generated in the same process as previous experiments,

where each pattern contains n spike trains and each train has a single spike. The

patterns are randomly and evenly assigned to c different categories. Here we

choose c = 4 for this experiment. A single LIF neuron is trained to memorize all

patterns correctly in a maximum number of 500 training epochs. The neuron is

trained to emit a single spike at a specified time for patterns from each category.

The desired spikes for the 4 generated categories are set to the time of 40, 80,

120 and 160 ms, respectively. A pattern is considered to have been correctly

memorized by the neuron if the distance between the actual spike train and the

desired train is below 0.2. The learning process is considered a failure if the

number of training epochs reaches the maximum number.

97

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

Maximum load factor

Figure 4.9 shows the results of the experiment for the case of 500, 750 and

1000 afferent neurons, respectively. All the data are averaged over 100 runs.

In each run, different initial weights are used. As seen from Figure 4.9, the

number of epochs required for the training increases slightly as the number of

patterns increases when the load is not too high, but a sharp increase of learning

epochs occurs after a certain high load. This suggests that the task becomes

tougher with an increasing load. It is also noted that a larger number of synapses

leads to a bigger memory capacity for the same neuron. It is reported that the

maximum load factors for 500, 750 and 1000 synapses are 0.144, 0.133 and

0.124, respectively.

Figure 4.9: The memory capacity of the PSD rule with different numbers of synapses.
The neuron is trained to memorize all patterns correctly in a maximum number of 500
epochs. The reaching points of 500 epochs are regarded as failure of the learning. The
marked lines denote average learning epochs and the shaded areas show the standard
deviation. The dashed line at 100 epochs is used for evaluating the efficient load αe

described in the main text. All the data are averaged over 100 runs.

98

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

Efficient load factor

Besides the maximum load factor, we heuristically define another factor, the

efficient load αe. The neuron can learn patterns efficiently with a relatively

high load when the number of patterns does not exceed a certain value (pe).

The efficient load factor is denote as αe = pe/n. When the load is below

αe, the neuron can reliably memorize all patterns with a small number of

training epochs. There are different ways to define αe. We show two possible

ways. One is to derive the definition from a mathematical calculation such as

(dEpochs/dp)pe = δ, where δ is a specified value (for example δ = 0.5). A

simpler method is where a specified number of training epochs is used. The

corresponding number of patterns that can be correctly learnt is considered

as pe. For simplicity, we use the latter as an example for demonstration and

the specified number of epochs is set to 100. As seen from Figure 4.9, the

efficient load factors for 500, 750 and 1000 synapses are 0.112, 0.109 and 0.108,

respectively. Surprisingly, these efficient load factors seem to all be around a

stable value which only changes slightly across different numbers of synapses.

This fixed value of efficient load factor for different values of n indicates that the

number of patterns that a neuron can efficiently memorize grows linearly with

the number of afferent synapses. It is worth noting that the concept of efficient

load factor αe provides an important guideline for choosing the load of patterns

when a reliable and efficient training is required.

99

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

4.3.5 Effects of Learning Parameters

Two of the major parameters involved in the PSD learning rule are the learning

rate η and the decay constant τs. In this section, we aim to investigate the effects

of these parameters on the learning process.

Small τs results in strong causal weight distribution

As a decay constant, τs is an important parameter involved in the postsynaptic

current. It determines how long a presynaptic spike will still have causal

effect on the postsynaptic neuron. In the phase of synaptic adaptation, τs also

determines the magnitude of modification on the synaptic weights at the time

of a triggering spike. Thus, τs will affect the distribution of weights after the

training. To look into this effect, we conduct an experiment with a similar setup

as in Figure 4.4 but with different values of τs. Here we choose τs = 3, 10 and

30 ms. As can be seen from Figure 4.10, a smaller τs (3 ms) can result in a

very uneven distribution with only a few synapses being given relatively higher

weights. A flat distribution is obtained with an increasing τs. This is because

τs determines how long the causal effect of an afferent spike will sustain. A

smaller τs means that only the nearer neighbors are involved in generating the

desired spikes, hence resulting in a smaller number of causal synapses. With a

smaller number of causal synapses, a higher synaptic strength will be required

to generate spikes at the desired time. On the other hand, with a larger τs, a

wider range of causal neighbors can contribute to generating the desired spikes,

and therefore a lower synaptic strength will be sufficient. The synaptic strength

and distribution for different values of τs are obtained as in Figure 4.10.

100

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

����������	
�����������
��

0 20 40 60 80 100 120 140 160 180 200
0

1

2

W
t(

a
ft

e
r) τ

s
=3 ms

0 20 40 60 80 100 120 140 160 180 200
0

1

2

W
t(

A
ft

e
r) τ

s
=30 ms

0 20 40 60 80 100 120 140 160 180 200
0

1

2
W

t(
a
ft

e
r) τ

s
=10 ms

Figure 4.10: Effect of decay constant τs on the distribution of weights. The averaged
weights after learning are shown. The height of each bar reflects the synaptic strength.
The afferent neurons are chronologically sorted according to their spike time. The target
spikes are overlayed and denoted as red lines. Cases of τs = 3, 10 and 30 ms are

depicted. All the data are averaged over 100 runs.

Effects of both η and τs on the learning

We further conduct another experiment to evaluate the effects of both η and τs

on the learning. In this experiment, a single LIF neuron with n = 500 afferent

neurons is considered. The neuron is trained to correctly memorize a set of 10

spike patterns randomly generated over a time window of 200 ms. The neuron

is trained in a maximum number of 500 epochs to correctly associate all these

patterns with a desired spike train of [40, 80, 120, 160] ms. We denote that a

pattern is correctly memorized if the distance between the output spike train and

the desired spike train is below 0.06. If the number of training epochs exceeds

500, we regard it as a failure. We conduct an exhaustive search over a wide

range of η and τs. Figure 4.11 shows how η and τs jointly affect the learning

performance, which can be used as a guidance to select the learning parameters.

101

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

With a fixed τs, a larger η results in a faster learning speed (shown in Figure 4.11,

right panel), but when η is increased above a critical value (e.g., 0.1 for τs = 30

ms in our experiments), the learning will slow down or even fail. For small

η, a larger τs leads to a faster learning, however, for large η, a larger τs has

the opposite effect. As a consequence, when τs is set in a suitable range (e.g.,

[5,15] ms), a wide range of η can result in a fast learning speed (e.g., below 100

epochs).

0.2 0.4 0.6 0.8 1 1.2 1.4

5

10

15

20

25

30

35

40

Learning Rate (η)

τ
s
 (

m
s
)

50

100

150

200

250

300

350

400

450

500

10
-2

10
-1

10
0

0

50

100

150

200

250

300

350

400

450

500

Learning Rate (η)

L
e

a
rn

in
g

 E
p

o
c
h

s

τ
s
=3 ms

τ
s
=10 ms

τ
s
=30 ms

Figure 4.11: Effects of η and τs on the learning. The neuron is trained in a maximum
number of 500 epochs to correctly memorize a set of 10 spike patterns. The average
learning epochs are recorded for each pair of η and τs. The reaching points of 500
epochs are regarded as failure of the learning. The left shows an exhaustive investigation
of a wide range of η and τs, and the data are averaged over 30 runs. A small number
of learning parameters are examined in the right figure, and the data are averaged over

100 runs.

4.3.6 Classification of Spatiotemporal Patterns

In this experiment, the ability of the proposed PSD rule for classifying

spatiotemporal patterns is investigated by using a multi-category classification

task. The setup of this experiment is similar to that in [35]. Three random

spike patterns representing three categories are generated in a similar fashion

to that in the previous experiments, and they are fixed as the templates. A

102

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

Gaussian jitter with a standard deviation of 3 ms is used to generate training

and testing patterns. The training set and the testing set contain 3 × 25 and

3 × 100 samples, respectively. Three neurons are trained to classify these

three categories, with each neuron representing one category. Different neurons

for each category can be specified to fire different spike trains. However, for

simplicity, all the neurons in this experiment are trained to fire the same spike

train ([40, 80, 120, 160] ms). The experiment is repeated 100 times, with each

run having different initial conditions.

After training, classification is performed on both the training and the

testing set. In the classification task, we propose two decision-making criteria:

absolute confidence and relative confidence. With the absolute confidence

criterion, only if the distance between the desired spike train and the actual

output spike train of the corresponding neuron is smaller than a specified value

(0.5 is used here), then the input pattern will be regarded as being correctly

classified. As for the relative confidence criterion, a scheme of competition is

used. The incoming pattern will be labeled by the winning neuron that produces

the closest spike train to its desired spike train.

Figure 4.12 shows the average classification accuracy for each category

under the two proposed decision criteria. From the absolute confidence

criterion, we see that the neuron successfully classifies the training set with an

average accuracy of 99.65%. The average accuracy for the testing set is 77.11%.

Noteworthily, under the relative confidence, both the average accuracies for the

training and the testing set reach 100%. The performance for the classification

task is therefore significantly improved by the relative confidence decision

103

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

1 2 3
0

20

40

60

80

100

Category

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Training Set

Testing Set

���������	
�������

1 2 3
0

20

40

60

80

100

Category

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Training Set

Testing Set

���
�����	
�������

Figure 4.12: The average accuracies for the classification of spatiotemporal patterns.
There are 3 categories to be classified. The average accuracies are represented by shaded
bars. Two types of criteria for making decision are proposed and investigated. The left
is the absolute confidence criterion, and the right is the relative confidence criterion. All

the data are averaged over 100 runs.

Table 4.1: Multi-Category Classification of Spatiotemporal Patterns

Accuracy (%) Category 1 Category 2 Category 3
Training Testing Training Testing Training Testing

Absolute Confidence 99.6 83.15 99.68 80.06 99.68 68.12

±1.21 ±6.79 ±1.09 ±4.73 ±1.23 ±6.09
Relative Confidence 100 100 100 100 100 100

Tempotron 100 99.65 100 99.74 100 99.61

±1.21 ±1.01 ±1.0

making criterion. With the absolute confidence criterion, the trained neuron

strives to find a good match with the memorized patterns. However, with the

relative confidence criterion, the trained neuron attempts to find the most likely

category through competition.

For the classification of spatiotemporal patterns, the tempotron is an

efficient rule [33] in training LIF neurons to distinguish two classes of patterns

by firing one spike or by keeping quiescent. We use the tempotron rule to

benchmark the PSD rule in the classification of spatiotemporal patterns. The

tempotron rule is applied to perform the same classification task as above. The

classification accuracies are shown in Table 4.1. As can be seen from Table 4.1,

104

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

our proposed rule with the relative confidence criterion has a comparable

performance to the tempotron rule. Moreover, the PSD rule is advantageous in

that it is not limited to performing classification, but it is also able to memorize

patterns by firing desired spikes at precise time.

4.4 Discussion and Conclusion

The PSD rule is proposed for the association and recognition of spatiotemporal

spike patterns. In summary, the PSD rule transforms the input spike trains into

analog signals by convolving the spikes with a kernel function. By using a

kernel function, the analog signals are presented in the simple form of synaptic

currents. It is biologically plausible because it allows us to interpret the signals

with physical meaning. Synaptic adaptation is driven by the error between

the desired and the actual output spikes, with positive errors causing LTP and

negative errors causing LTD. The amount of synaptic adaptation is determined

by the transformed signal of the input spikes (postsynaptic currents here) at the

time of modification occurrence. When the actual spike train is the same as the

desired spike train, the adaptation of the weights will be terminated.

There is a supervisory signal involved in the PSD rule. The most

documented evidence for supervised rules comes from studies of the cerebellum

and the cerebellar cortex [64, 65]. It is shown that supervisory signals

are provided to the learning modules by sensory feedback [66] or other

supervisory neural structures in the brain [65]. A neuromodulator released

by the supervisory system can induce the control of the adaptation. This

105

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

control occurs for several neuromodulatory pathways, such as dopamine and

acetylcholine [67,68]. Experimental evidence shows that N-methyl-D-aspartate

(NMDA) receptors are critically involved in the processes of LTP and LTD

[114–116]. After opening the NMDA channels, the resulting Ca2+ entry

then activates the biochemistry of potentiation which leads to LTP [116].

Suppression of NMDA receptors by spike-mediated calcium entry may be a

necessary step in the induction of LTD [32, 116]. The synaptic modification

can be implemented through a supervisory control of opening or suppression of

these NMDA channels.

The PSD rule is simple and efficient in synaptic adaptation. Utilizing the

postsynaptic current as the eligibility trace for weight adaptation is a simple and

efficient choice. The same signals of postsynaptic currents are also used in the

synaptic adaptation as in the neuron dynamics, unlike the learning rules such

as [34, 35, 47] where different sources of signals were used. Thus, the number

of signal sources involved in the learning is reduced, which will directly benefit

the computation. Secondly, unlike the arithmetic-based rules [34–36], where a

complex error calculation is required for the synaptic adaptation, the PSD rule is

based on a simple form of spike error between the actual and the desired spikes.

The synaptic adaptation is driven by these precise spikes without complex error

calculation. As a matter of fact, the weight modification only depends on

currently available information (shown as Figure 4.2). Additionally, due to the

ability of the PSD rule to operate online, it is suitable for real-time applications.

According to the PSD rule, different kernels, such as the exponential kernel and

α kernel, can also be used in convolving the spikes to provide different eligibility

106

CHAPTER 4. PRECISE-SPIKE-DRIVEN SYNAPTIC PLASTICITY

traces.

The PSD rule is designed for processing spatiotemporal patterns, where the

exact time of each spike is used for information transmission. The PSD rule is

unsuitable for learning patterns under the rate code because this rule is designed

to process precise-timing spikes by its nature. The rate code uses the spike

count but not the precise time to convey information. Like other spatiotemporal

mapping algorithms, including ReSuMe [37], Chronotron [36] and SPAN [35],

the PSD rule cannot guarantee successful learning of an arbitrary spatiotemporal

spike pattern. A sufficient number of input spikes around the desired time are

required for establishing causal connections. In other words, the temporal range

covered by the desired spikes should be covered by the input spikes.

In most of the experiments, a single spike code is used for afferent neurons,

where each input neuron only fires a single spike during the entire time window.

This single spike code is chosen for various reasons but more than one spike

is also allowed for the PSD rule. Firstly, a single spike code is simple for

analysis and efficient for computation. Secondly, there is strong biological

evidence supporting the single spike code. The PSD rule is also suitable for

multi-spike train (results shown in Figure 4.6). When the number of spikes

from each afferent neuron is not high enough, the neuron can produce the

desired spike train after several epochs. When the number of spikes increases,

the learning becomes slower and more difficult to converge. Additionally, the

biological plausibility of an encoding scheme that can use multiple spikes to

code information is still unclear.

107

Chapter 5

A Spiking Neural Network System

for Robust Sequence Recognition

This chapter proposes a biologically plausible network architecture with spiking

neurons for sequence recognition. This architecture is a unified and consistent

system with functional parts of sensory encoding, learning and decoding. This

system is the first attempt that helps to reveal the systematic neural mechanisms

considering both the upstream and the downstream neurons together. The

whole system is consistently combined in a temporal framework, where the

precise timing of spikes is considered for information processing and cognitive

computing. Experimental results show that our system can properly perform

the sequence recognition task with the integration of all three functional parts.

The recognition scheme is robust to noisy sensory inputs and it is also invariant

to changes in the intervals between input stimuli within a certain range.

The classification ability of the temporal learning rule used in our system is

investigated through two benchmark tasks including an XOR task and an optical

108

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

character recognition (OCR) task. Our temporal learning rule outperforms other

two benchmark rules that are widely used for classification. Our results also

demonstrate the computational power of spiking neurons over perceptrons for

processing spatiotemporal patterns.

5.1 Introduction

As one of the cognitive abilities, sequence recognition refers to the ability

to detect and recognize the temporal order of discrete elements occurring in

sequence. Such sequence decoding operations are required for processing

temporally complex stimuli such as speech where important information is

embedded in patterns over time. However, the biophysical mechanisms by

which neural circuits detect and recognize sequences of external stimuli are

poorly understood.

Sequence information processing is a general problem that the brain

needs to solve. Several approaches with the design of traditional artificial

neural network structures [117,118] have been considered and implemented for

processing temporal information. The functionality of the brain for sequence

recognition is mimicked through the artificial structures. However, these neural

structures do not consider the building units of spiking neurons. Recognizing

sequences of external stimuli with spiking features in the brain still remains an

open question. Numerous studies have put efforts separately to computational

mechanisms with spiking neurons, where some focus on neural representations

of the external information [11] while others focus on the internal procession

109

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

of either upstream or downstream neurons [33–36, 47, 119–122]. Relatively

few proposals exist for recognizing the sequence of incoming stimuli from a

systematic level of view. Thus, a structure based on spiking neural networks

is demanded. Such a spiking neural system for sequence recognition should

contain several functional parts including neural coding, learning and decoding.

With these functional parts integrating with each other, the system could process

information from levels of upstream encoding neurons to levels of downstream

decoding neurons.

Among several different temporal learning rules, without complex error

calculation, the PSD rule is simple and efficient from the computational point of

view, and yet biologically plausible [119]. In the classification of spatiotemporal

patterns, the PSD rule can even outperform the efficient tempotron rule [119].

Moreover, the PSD rule is not limited to the classification, but can also train

the neuron to associate the spatiotemporal spike patterns with the desired spike

trains.

Recently, a new decoding scheme with spiking neurons has been proposed

to describe how downstream neurons with dendritic bistable plateau potentials

can perform the decoding of spike sequences [120, 121]. The transition dy-

namics of this downstream decoding network is demonstrated to be equivalent

to that of a finite state machine (FSM). This decoding scheme has the same

computational power as the FSM. It is capable of recognizing an arbitrary

number of spike sequences [121]. However, as a part of a whole system,

this decoding only describes the behavior of the downstream neurons. How

the upstream neurons behave and communicate with the downstream neurons

110

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

remains unclear.

In this chapter, a unified and consistent system with spiking neurons is

proposed for sequence recognition. To the best of our knowledge, this is

the first attempt to consider a spiking system for sequence recognition with

functional parts of sensory coding, learning and decoding. This work helps

to reveal the systematic neural mechanisms considering all the processes of

sensory coding, learning and downstream decoding. Such a system bridges the

gap between these independently studied processes. The system is integrated

in a consistent scheme by processing precise-timing spikes, where temporal

coding and learning are involved. The sensory coding describes how external

information is converted into neural signals. Through learning, the neurons

adapt their synaptic efficacies for processing the input neural signals. The

decoding describes how the output neurons extract information from the neural

responses. The sequence recognition of the proposed biologically plausible

system is realized through the combination of item recognition and sequence

order recognition. Identifying the input stimuli is required before recognizing

the sequence order. The recognition scheme is robust to noisy sensory input and

it is also insensitive to changes in the intervals between input stimuli within a

certain range. The experiments present spiking neural networks as a paradigm

which can be used for recognizing sequences of incoming stimuli.

The rest of this chapter is organized as follows. In section 5.2, detailed

descriptions are presented about the methods used in our integrated system,

including the sensory encoding method, the temporal learning rule and the

spike sequence decoding method. Section 5.3 shows the performances of our

111

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

approach through numerical simulations. Detailed investigation and analysis

on different parts of the system are presented firstly. The classification

ability of the temporal learning rule is initially investigated using the XOR

benchmark task. Then a practical optical character recognition (OCR) task

is applied to investigate the functionality of our system on item recognition.

The performance of the spike sequence decoding system is investigated by

using a synthetic sequence of spikes. Finally, the ability of the whole system

on sequence recognition is demonstrated. Discussions about our system are

presented in section 5.4, followed by a conclusion in section 5.5.

5.2 The Integrated Network for Sequence Recog-

nition

In this section, the whole system for sequence recognition is described, as

well as the corresponding schemes used in different parts. The systematic

model contains three functional parts including sensory encoding, learning

and decoding (see Figure 5.1). The encoding neurons are used to generate

spatiotemporal spike patterns that represent the external stimuli. The learning

neurons focus on recognizing each input stimulus, and we call this recognition

process as item recognition. The decoding neurons are used for recognizing

the sequence order of the input stimuli based on the output of previous item

recognition, and we call this recognition process as spike sequence recognition.

In the learning layer, we use the PSD rule to train the neurons for item

recognition since this rule is simple and efficient. Detailed descriptions about

112

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

the PSD rule could be referred in Chapter 4.

�

����������	��
��

�
���
��

����
�

����
�
��

����
�

�

��
������
���
�

�

����������
����

����
��

����
�

�

��������	��
���

�����
����

�� ��

����

Figure 5.1: Illustration of the system for sequence recognition. The system contains
three functional parts which are used for sensory encoding, item recognition and spike
sequence recognition, respectively. The encoding neurons convert the external stimuli
to spatiotemporal spike patterns. The learning neurons would recognize the content of
each input item based on the corresponding spatiotemporal spike pattern. The sequence

order of the input stimuli would be recognized through the decoding neurons.

5.2.1 Neural Encoding Method

An increasing body of evidence shows that action potentials are related to the

phases of the intrinsic subthreshold membrane potential oscillations (SMOs)

[123–125]. These observations support the hypothesis of a phase code [24,

113, 126]. Such a coding method can encode and retain information with high

spatial and temporal selectivity [24]. Following the coding methods presented

in [24, 113], we propose a new simple phase encoding method. Our encoding

mechanism is presented in Figure 5.2.

Each encoding unit contains a positive neuron (Pos), a negative neuron

(Neg) and an output neuron (Eout). Each encoding unit is connected to an

113

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

�

�

�

����

����

���	�

�
�

��

�
	�

������ ���

Figure 5.2: Illustration of the phase encoding method. (a) shows the structure of an
encoding unit. Each encoding unit contains a positive neuron (Pos), a negative neuron
(Neg) and an output neuron (Eout). The encoding unit receives signals from an input
and a subthreshold membrane potential oscillation (SMO). (b) shows the dynamics of
the encoding. A positive (negative) input will drive the membrane potential upwards
(downwards) from the SMO. Whenever the membrane potential crosses the threshold
(Pthr or Nthr), the neuron (Pos or Neg) will fire. The firing of either the Pos neuron

or the Neg neuron will immediately trigger the firing of the Eout neuron.

input signal and a SMO. A positive (negative) input will cause an upward

(downward) shift from the SMO. The firing of either the Pos neuron or the

Neg neuron will immediately cause the firing of the Eout neuron. The SMO

for the i-th encoding unit is described as:

SMOi = M cos(ωt+ φi) (5.1)

where M is the magnitude of the SMO, ω is the phase angular velocity and φi

is the initial phase. φi is defined as:

φi = φ0 + (i− 1) ·∆φ (5.2)

where φ0 is the reference phase and ∆φ is the phase difference between nearby

encoding units. We set ∆φ = 2π/Nen where Nen is the number of encoding

units.

114

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

5.2.2 The Sequence Decoding Method

In this part, we describe the sequence decoding method used for the decoding

neurons in our system. A network of neurons with dendritic bistable plateau

potentials can be used to recognize spike sequences [121]. Based on this idea,

we build our decoding system as presented in Figure 5.3. This decoding network

can recognize a specific sequence order of the spike inputs from the excitatory

input neurons.

�� �� �� �� ��

�� �� �� �� �� ��

	� 	� 	� 	� 	�

���

���������������

�����������������

Figure 5.3: The neural structure for spike sequence recognition. E0-5 denote the
excitatory input neurons. S1-5 and D1-5 denote the soma and the dendrite respectively.

Inh denotes the inhibitory neuron.

The dynamics of the membrane potential of the soma is described as:

τsm
dVsm
dt

=− (Vsm − Er) + gds(Vdr − Vsm) + Is + IA + Ins (5.3)

where Vsm and Vdr denote the potential of the soma and the dendrite respec-

tively; τsm = 20 ms is the membrane time constant; Er = −70 mV is the

resting membrane potential; gds = 0.35 is the conductance from the dendrite

to the soma; Is is the synaptic current on the soma; IA is the A-type potassium

current; Ins is a background current, and is set to zero here.

115

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

The A-type potassium current [127, 128] is activated near the resting

potential and inactivated at more depolarized potentials. IA in the soma is given

by:

IA = −gA · a∞ · V 3
sm · b(t) · (Vsm − EK) (5.4)

where gA = 10 is the conductance; EK = −90 mV is the reversal potential of

the potassium current; a∞ and b(t) are the activation and inactivation variables

respectively, and they are given by:
a∞ = 1

1+exp
(
−(Vsm+70)/5

)
τA

db
dt

= −b+ 1

1+exp
(
(Vsm+80)/6

) (5.5)

where τA = 5 ms is a time constant.

The synaptic current on the soma is given by:

Is = −gAs · (Vsm − EE)− gGs · (Vsm − EI) (5.6)

where gAs and gGs are the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) and gamma-amino-butyric-acid (GABA) synaptic conductances

respectively. The AMPA and GABA synaptic conductances mediate synaptic

excitation and inhibition respectively. EE = 0 mV and EI = −75 mV are the

reversal potential of excitatory and inhibitory synapses respectively.

The dynamics of the membrane potential of the dendrite is described as:

τdr
dVdr
dt

= −(Vdr − Er) + gsd · (Vsm − Vdr) + Idr (5.7)

where τdr = 10 ms is the time constant of the dendrite; gsd = 0.05 is the

conductance from the soma to the dendrite; Idr is the synaptic current on the

116

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

dendrite, and is given by:

Idr =− gAd · (Vdr − EE)− gGd · (Vdr − EI) (5.8)

− gNd · Vdr
1 + exp

(
− (Vdr + 30)/5

)
where gAd and gGd are the AMPA and GABA synaptic conductances respec-

tively; gNd is the N-methyl-D-aspartate (NMDA) synaptic conductance that is

responsible for the transient bistable plateau potential.

An incoming spike arrives at a synapse with strength G will cause changes

on synaptic conductances g: g → g+G. On the dendrite, a spike to an excitatory

synapse will cause gAd → gAd + G and gNd → gNd + 5G. Without incoming

spikes, all the synaptic conductances will decay exponentially. The decay time

constants for both the AMPA and GABA conductances are 5 ms. For the

NMDA conductance, the decay time constant is 150 ms. gNd is not allowed

to exceed 10 due to a saturation.

The inhibitory neuron is modeled as a single compartment quadratic LIF

neuron [120, 121]. It can respond with a short latency (here 2 ms) to an

excitatory spike input. The details of the inhibitory neuron model are described

in [120].

5.3 Numerical Simulations

In this section, several experiments are presented to demonstrate the charac-

teristics of our model. Through simulations, we investigate the abilities of

our system mainly for item recognition and sequence recognition. A correct

recognition on the input items is an essential step for further recognizing a

117

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

specific sequence.

Firstly, in section 5.3.1, the exclusive OR (XOR) problem is used to

preliminarily analyze the classification ability of the temporal learning rule

on spike patterns. In section 5.3.2, a set of optical characters with images of

digits 0-9 is used for analysis, and the performance of the item recognition

system is individually investigated and analyzed with these digits under different

noisy conditions. Section 5.3.3 shows the performance of our spike sequence

decoding system where the downstream neurons could recognize a specific

spike sequence. Finally, in section 5.3.4, the performance of the whole system

on recognizing both the items and the sequence order is presented.

5.3.1 Learning Performance Analysis of the PSD Rule

The XOR problem is a linearly nonseparable task, and it is a benchmark widely

used for investigating the classification ability of SNNs recently [34, 129–131].

Thus, we also use the XOR problem to investigate the performance of the PSD

rule firstly. Different from approaches in [34, 129, 130] where a simple output

with only one single spike is used, we apply the PSD rule to represent the

categories by the associated target trains with multiple precise-timing spikes.

Similar to the setup in [47, 131], we randomly generate two homogeneous

poisson spike trains with a firing rate of 50 Hz in a time window of 200 ms.

These two spike trains represent 0 or 1 respectively, and they are used to

form the four inputs of the XOR problem: (0, 0), (0, 1), (1, 0) and (1, 1)

(see Figure 5.4(a)). We also employ the concept of reservoir computing with

a network of Liquid State Machine (LSM) like in [47, 131, 132]. The LSM

118

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

������ ������ ������ ������

���

���

�	�

�
�

0 100 200
0

50

100

150

200

250

300

Time (ms)

E
p

o
c
h
s

0 100 200
0

50

100

150

200

250

300

0 100 200
0

50

100

150

200

250

300

0 100 200
0

50

100

150

200

250

300

0 100 200 300
0

2

4

6

8

10

Epochs

D
is

t

0 100 200 300
0

2

4

6

8

10

0 100 200 300
0

2

4

6

8

10

0 100 200 300
0

2

4

6

8

10

100 150 200
0

20

40

60

80

100

Time (ms)

N
u
m

b
e

r
o

f
s
p

ik
e
s

50 100 150
0

20

40

60

80

100

50 100 150
0

20

40

60

80

100

100 150 200
0

10

20

30

40

50

60

70

63

37

100 99

1

100

1

99 97

3

53

47

32

68

Figure 5.4: The performance of the PSD rule on the XOR task. (a) is an illustration
of the four inputs of the XOR task. (b) shows the output spike signals for each of
the four input patterns during learning in a typical run. ‘×’ denotes the desired spike
time. (c) and (d) are the results of the output neuron after 100 runs. (c) is the average
spike distance between the desired and the actual output spike trains. The average spike
distance for each input pattern is presented. (d) is the spike histogram showing the

distribution of the actual output spikes.

uses spiking neurons connected by dynamic synapses to project the inputs to a

higher-dimensional feature space, which can facilitate the classification. The

network used in this experiment consists of two input neurons, a noise-free

reservoir with 500 LIF neurons and one readout neuron.

We specify a target spike train for each category. For inputs of (0, 0)

119

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

and (1, 1), the output neuron is trained to spike at [110, 190] ms, while for

(0, 1) and (1, 0), it is trained to fire another target train of [70, 150] ms. The

initial synaptic weights of the output neuron are randomly drawn from a normal

distribution with a mean value of 0.5 nA and a standard deviation of 0.2 nA.

This initial condition of synaptic weights is also used for other experiments in

this chapter. These synaptic weights are adjusted by the PSD rule with a set of

learning parameters η = 0.01 and τs = 10 ms. The results are averaged over

100 runs.

Figure 5.4(b) shows the results of a typical run, with the actual output

spikes for each of the four input patterns during the learning. At the beginning,

both the firing rates and the precise timings of the output spike trains are

different from those of the target spike trains. After tens of learning epochs,

the readout neuron can gradually learn to fire the target spike trains according to

different input patterns. After hundreds of learning epochs, the readout neuron

stabilizes at the target spike trains. This phenomenon can be also seen from the

spike distance between the actual and the target spike trains (see Figure 5.4(c)).

A larger spike distance occurs at the beginning due to the initial conditions,

followed by a gradually decreasing spike distance along the learning, and it

finally converges to zero. Figure 5.4(d) shows the distribution of the actual

output spikes corresponding to the four input patterns. From these histograms,

we can see our approach with the PSD rule obtains better performance than that

in [131]. Firstly, there are no undesired extra spikes or missing desired spikes

in our approach. In the 100 runs of experiments, the trained neuron fires exactly

100 spikes around each desired time. Secondly, the actual output spikes are

120

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

precisely and reliably close to the desired time. The maximum error of spike

time is around 1 ms. Thus, the learning success rate of our approach is higher

than that in [131].

���

���

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Epochs

A
v
e
ra

g
e
 D

is
t

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Epochs

E
u

c
li
d
e

a
n

 d
is

ta
n
c
e

 o
f
w

e
ig

h
ts

Figure 5.5: The convergent performance. (a) shows the average spike distance over all
the four input patterns. (b) is the Euclidean distance between the weights before and

after each learning epoch. All the results are averaged over 100 runs.

Figure 5.5 shows the convergent performance during the learning process.

The average spike distance over all four input patterns is presented as well

as the Euclidean distance between the weights before and after each learning

epoch. As can be seen from Figure 5.5, irregular distances occur at the first

several learning epochs because of the random initial conditions. After that,

the distances gradually decrease and converge to zero. The zero spike distance

corresponds to the readout neuron firing exactly the target spike train, and the

zero weight distance implies that there are no more changes occurring on the

weights. These two distance graphs also show the ability of the PSD rule to

modify the weights in order to produce the desired output spikes. Either of

these two types of distance can be used as a stopping criterion for the learning

121

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

process.

This experiment with the XOR problem demonstrates the ability of the

PSD rule for classifying spatiotemporal patterns. Detailed investigations on

performance of item recognition and sequence order recognition of our system

are presented at following.

5.3.2 Item Recognition

In this section, we consider the performance of our system on the item

recognition. A set of optical characters with images of digits 0-9 is used.

Each image has a size of 20 × 20 black/white (B/W) pixels, and each would

be destroyed by a reversal noise where each pixel is randomly reversed with

a probability denoted as the noise level. Some clean and noisy samples are

demonstrated in Figure 5.6.

0 5 10 15 20

(a)

(b)

Figure 5.6: Illustration of the OCR samples. (a) shows the template images. (b) shows
image samples with different levels of reversal noise.

The phase encoding method illustrated in Figure 5.2 is used to convert the

digit images into spatiotemporal spike patterns. Each pixel acts as an input to

122

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

each encoding unit, with a W/B pixel causing a positive/negative shift from the

SMO. Through a fine tuning of the values of M , P /N and Pthr/Nthr, we set the

encoded spikes to occur at peaks of the SMOs. The number of encoding units

is equal to the number of pixels which is 400 here. We set the oscillation period

of the SMOs to be 200 ms which corresponds to a frequency of 5 Hz.

We select 10 learning neurons trained by the PSD rule, with each learning

neuron corresponding to one category. The learning parameters in the PSD rule

are set to be η = 0.06 and τs = 10 ms. All the learning neurons are trained

to fire a target spike train with the corresponding category. The target spike

train is set to be evenly distributed over the time window Tmax (200 ms here)

with a specified number of spikes n. The firing time of the i-th target spike:

ti = i/(n+ 1) · Tmax, i = 1, 2...n. We choose n = 4 by default, otherwise will

be stated. In item recognition, a relative confidence criterion is used [119] with

the PSD rule, where the incoming pattern is represented by the neuron that fires

the most closest spike train to its target spike train.

In this section, two noisy scenarios are considered: (1) spike jitter

noise where a Gaussian jitter with a standard deviation (denoted as the jitter

strength) is added into each encoded spike; (2) reversal noise (as illustrated in

Figure 5.6(b)) where each pixel is randomly reversed with a probability denoted

as the noise level.

Spike jitter noise

In this scenario, the templates of the digit images are firstly encoded into

spatiotemporal spike patterns. After that, jitter noises are added to generate

123

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

noisy patterns. The learning neurons are trained for 100 epochs with a jitter

strength of 2 ms. In each learning epoch, a training set of 100 patterns, with 10

for each category, is generated. After training, a jitter range of 0-8 ms is used

to investigate the generalization ability. The number of the testing patterns for

each jitter strength is set to 200. The PSD rule is applied with different numbers

of target spikes (n =1, 2, 4, 6, 8, 10). All the results are averaged over 100 runs.

0 1 2 3 4 5 6 7 8
20

30

40

50

60

70

80

90

100

Jitter Noise Level (ms)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

n=1
n=2
n=4
n=6
n=8
n=10

Figure 5.7: The performance of the PSD rule with different numbers of target spikes
under the case of jitter noise.

Figure 5.7 shows the effects of the number of the target spikes on the

learning performance of the PSD rule. As can be seen from Figure 5.7, when

n is low (e.g. 1, 2), the recognition performance is also relatively low. An

increasing number of the target spikes can improve the recognition performance

significantly (see n = 1, 2 → n = 4, 6). However, a further increase in the

number of target spikes (n = 6 → n = 8, 10) would reduce the recognition

performance. The reasons for this phenomenon are due to the local temporal

features associated with each target spike. For small number of target spikes, the

124

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

neurons make decision based on a relatively less number of temporal features.

This small number of features only covers a part range of the whole time

window, which inevitably leads to a lower performance compared to a more

number of spikes. However, when the number of spikes continues increasing, an

interference of local learning processes [47] occurs and increases the difficulty

of the learning. Thus, a higher number of spikes normally cannot lead to a better

performance due to the interference.

Figure 5.8: The performance of different rules under the case of jitter noise. The PSD
rule uses n = 4 target spikes. The PSD rule outperforms the other two rules in the

considered task.

Figure 5.8 shows the performance of different learning rules for the same

classification task. We use a similar approach for the perceptron rule as in [131,

132], where the spatiotemporal spike patterns are transformed into continuous

states by a low-pass filter. The target spike trains are separated into bins of size

tsmp, with tsmp = 2 ms being the sampling time. The target vectors for the

perceptron contain values of 0 and 1, with 1 (or 0) corresponding to those bins

that contain (or not contain) a target spike in the bin. The input vectors for the

125

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

perceptron are sampled from the continuous states with tsmp. The input pattern

will be classified by the winning perceptron that has the closest output vector to

the target vector.

As can be seen from Figure 5.8, the PSD rule outperforms both the

tempotron rule and the perceptron rule. The inferior performance of the

perceptron rule can be explained. The complexity of the classification for the

perceptron rule depends on the dimensionality of the feature space and the

number of input vectors for decisions. A value of tsmp = 2 ms will generate

100 input vectors for each input pattern. These 100 points in 400-dimensional

space are to be classified into 1 or 0. This can increase the difficulty for the

perceptron rule, let alone considering a large number of input patterns from

different categories. Without separating the time window into bins, the spiking

neurons by their nature are more powerful than the traditional neurons such as

the perceptron. Both the PSD rule and the tempotron rule are better than the

perceptron rule. The PSD rule is better than the tempotron rule since the PSD

rule makes a decision based on a combination of several local temporal features

over the entire time window, but the tempotron rule only makes a decision by

firing one spike or not based on one local temporal feature.

Reversal noise

In this scenario, the reversal noise is used for generating noisy patterns as

illustrated in Figure 5.6(b). The learning neurons are trained for 100 epochs

with a reversal noise level randomly drawn from the range of 0-10% in each

learning epoch. Meanwhile, a training set of 100 noisy patterns, with 10 for

126

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

each category, is generated for each learning epoch. After training, another

number of 100 noisy patterns are generated and used to test the generalization

ability.

Figure 5.9: The performance of different rules under the case of reversal noise. The
PSD rule uses n = 4 target spikes. The PSD rule outperforms the other two rules even

when the noise level is high.

As can be seen from Figure 5.9, the performances of all the three rules

decrease with the increasing noise level. The performance of the PSD rule again

outperforms the other two rules as in the previous scenario. Spiking neurons

trained by the PSD rule can obtain a high classification accuracy (around 85%)

even when the reversal noise reaches a high level (15%). The performance of the

perceptron rule in this scenario is much better than that in the previous scenario.

This is because of the type of the noise. The performance of the perceptron

rule is quite susceptible to the changes in state vectors. Every spike of the input

spatiotemporal spike patterns in the case of spike jitter noise suffers a change,

while in the case of reversal noise, a change only occurs with a probability of

the reversal noise level. This is to say, the elements in a filtered state vector have

127

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

a less chance to change under the reversal noise than that under the jitter noise.

Thus, the performance of the perceptron rule under the reversal noise is better

than that under the jitter noise.

These results demonstrate our item recognition is robust to different noisy

sensory inputs. A reliable recognition on the incoming item is essential for

further sequence recognition.

5.3.3 Spike Sequence Decoding

In this section, we investigate the performance of our decoding system for

spike sequence recognition. The structure of this decoding system is presented

in Figure 5.3. This decoding structure can recognize a specific sequence of

E0, E1...E5. We denote the synaptic connections as: E0→D1 (G0), E1-5→S1-

5 (G1), E1-5→D2-5 (G2), S1-5→D2-5 (G3), Inh→D1-5 (G4), and Inh→S1-5

(G5). We set G0 = 5, G1 = 2.5, G2 = G3 = 3, G4 = 5, G5 = 6. We generate

a spike input feeding into our decoding system, with Figure 5.10 showing a

200 ms interval between nearby spikes and 230 ms for Figure 5.11.

As can be seen from Figure 5.10, the decoding system successfully

recognizes the sequence through a firing from S5. A strong, excitatory input

to the dendrite can make its potential go to a plateau potential that is transiently

stable for a time. The plateau potential of the dendrite then drives the potential

of the soma to a high depolarized state. Without the plateau potential of the

dendrite, the potential of the soma stays near the resting potential. We refer the

high depolarized state of the soma as the UP state, and the state near the resting

potential as the DOWN state. Two conditions are required to make a soma fire:

128

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

0 500 1000 1500 2000 2500
-80

-60

-40

S
1

 (
m

V
)

0 500 1000 1500 2000 2500
-80

-60

-40

S
2

0 500 1000 1500 2000 2500
-80

-60

-40

S
3

0 500 1000 1500 2000 2500
-80

-60

-40

S
4

0 500 1000 1500 2000 2500
-80

-60

-40

S
5

Time (ms)

0 500 1000 1500 2000 2500

-50

0

D
1

 (
m

V
)

0 500 1000 1500 2000 2500

-50

0

D
2

0 500 1000 1500 2000 2500

-50

0

D
3

0 500 1000 1500 2000 2500

-50

0

D
4

0 500 1000 1500 2000 2500

-50

0

D
5

Time (ms)

��� �

�� �� �� �� �	 �
 �� �� �� �
 ��

����

Figure 5.10: A reliable response of the spike sequence decoding system. A synthetic
spike sequence is used as the input (denoted as ‘Seq’). The target sequence pattern of
E0, E1...E5 is highlighted by the shaded area. The potentials of the somas (S1 − 5)
and the dendrites (D1 − 5) are shown. The interval spike time in the input sequence
is 200 ms. The neurons can be successfully activated to fire when the target sequence

presents.

(1) the potential of the soma sustains in the UP state (2) when an excitatory spike

input comes to this soma.

Under the experimental setup of our decoding system, the UP state of

the soma can sustain for a period around 225 ms, during which the soma can

reliably fire a desired spike when corresponding excitatory neuron fires. We

refer this period as the reliable period. When the time interval between spikes is

129

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

0 500 1000 1500 2000 2500
-80

-60

-40

S
1

 (
m

V
)

0 500 1000 1500 2000 2500
-80

-60

-40

S
2

0 500 1000 1500 2000 2500
-80

-60

-40

S
3

0 500 1000 1500 2000 2500
-80

-60

-40

S
4

0 500 1000 1500 2000 2500
-80

-60

-40

S
5

Time (ms)

0 500 1000 1500 2000 2500

-50

0

D
1

 (
m

V
)

0 500 1000 1500 2000 2500

-50

0

D
2

0 500 1000 1500 2000 2500

-50

0

D
3

0 500 1000 1500 2000 2500

-50

0

D
4

0 500 1000 1500 2000 2500

-50

0

D
5

Time (ms)

��� �

�� �� �� �� �	 �
 �� �� �� �
 ��

����

Figure 5.11: An unreliable response of the spike sequence decoding system. The
interval spike time in the input sequence is 230 ms. When the interval time is over
a certain range (225 ms for this experimental setup), the neurons cannot be activated
to fire even when the target sequence presents. This is because that the potential of the

soma cannot sustain in the UP state for a such long interval.

shorter than the reliable period, the decoding system can perform the recognition

well (see Figure 5.10). When the time interval between input spikes is longer

than the reliable period, the UP state of a soma no longer sustains at a reliably

high state. This leads to that a corresponding excitatory input spike no longer

reliably drives a spike on the soma (see Figure 5.11).

The experimental results indicate that our spike sequence decoding system

is invariant to changes in the intervals between input spikes within a certain

130

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

range.

5.3.4 Sequence Recognition System

In this section, the performance of the proposed whole system is investigated.

The sensory encoding, temporal learning and spike sequence decoding are

consistently combined together for sequence recognition. We perform the

experiment with the previous digit set used in section 5.3.2.

These optical digits are used to form a sequence pattern, with each digit

image in the sequence being destroyed by a reversal noise level of 15%. We

can specify a target sequence through building connections between the output

neurons of the item recognition network and the excitatory input neurons of

the spike sequence decoding network. For the reason of simplicity, we specify

a target sequence order of digits as: 012345. Thus, the learning neurons

corresponding to the categories in this target sequence are connected to the

excitatory input neurons in the sequence decoding network one by one. Each

digit image is presented for 200 ms. Additionally, the interval between two

successive images is not allowed to exceed 25 ms, guaranteeing a reliable

performance of the spike decoding system, which is further explained in the

following part.

We construct a sequence pattern of 6 segments, with 6 images for each

segment. Every image in this sequence is randomly chosen from the 10

categories. Then the target sequence of 012345 is embedded into this sequence,

with a probability of 1/3 replacing each initial segment in the sequence. After

this, we feed the whole sequence to our system. The target of our system is to

131

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

detect and recognize the target sequence embedded in the whole sequence.

3 5 9 8 8 7 0 1 2 3 4 5 6 9 5 6 5 7 1 2 6 3 2 6 0 1 2 3 4 5 3 0 3 9 2 0

3 5 9 3 8 7 0 1 2 3 4 5 6 9 5 6 5 0 1 2 6 3 2 6 0 1 2 3 1 5 3 0 3 2 2 0

Item Seq

Item Recog

Spks Recog

S1

S2

S3

S4

S5

Recognized

1 sec

E0

E2

E3

E4

E5

E1

Figure 5.12: The performance of the combined sequence recognition system. An image
sequence input is fed into the sequence recognition system. Each image suffers a
reversal noise of 15%. The target of this system is to detect and recognize a specified
target sequence of 012345 (the shaded areas). ‘Item Seq’ denotes the input sequence of
the images. ‘Item Recog’ is the output results of the learning neurons, with the blue/red
color representing correct/incorrect recognition. Each output of the learning neurons
results a spike in the corresponding excitatory input neurons of the spike decoding
network (‘Spks E’). S1-5 denote the spike output of neurons in the sequence decoding

network.

Figure 5.12 shows the performance of our system for sequence recogni-

tion. An important step before recognizing the sequence order is to correctly

recognize each input item. Only after knowing what is what, a recognition on

the sequence order can be applied. The detected target sequence is represented

by the firing of S5. As can be seen from Figure 5.12, the first target sequence

is successfully recognize through the sequential firing of S1-5, while the second

target sequence is not correctly recognized due to a failure recognition on image

‘4’.

In addition, we conduct another experiment, where one item in the target

sequence is semi-blind. This semi-blind item is conditioned to a specific range.

132

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

Item Seq

Item Recog

Spks Recog

S1

S2

S3

S4

S5

7 7 2 6 6 1 0 1 2 5 4 5 7 2 5 6 8 9 0 1 2 3 4 5 8 2 9 3 1 2 0 1 2 1 4 5 0 1 2 8 4 5 7 0 5 7 0 1

7 7 2 6 6 1 0 1 2 5 4 5 7 2 5 6 8 9 0 1 2 3 4 5 8 2 9 3 1 2 0 1 2 1 4 5 0 1 2 8 4 5 7 0 5 7 0 1

1 sec

Recognized

E1

E2

E3

E4

E5

E0

Figure 5.13: Performance on a target sequence with one semi-blind item. The input
sequence is considered in a noise-free condition. The target of this system is to detect
and recognize a specified target sequence of 012?45 where ‘?’ is from a specific range
of 5-9 (illustrated in the shaded light-cyan areas). The shaded light-pink areas show
some interference sequence patterns where ‘?’ is not chosen from the allowed range.

We specify a target sequence of 012?45, where ‘?’ is restricted to the range

of 5-9. Other digits of ‘?’ being out of this specific range lead to non-

target sequences. For the sake of simplicity, this experiment is conducted in

a noise-free condition. We randomly construct an input sequence with 48 items,

and then embed the target sequences, as well as some interference sequences,

into the input sequence. In order to detect and recognize the semi-blind

target sequences, we reconstruct the connections between the output neurons

of the item recognition network and the excitatory input neurons of the spike

sequence decoding network, with all learning neurons for digit 5-9 connecting

to E3 in Figure 5.3. Other connections are not changed. As can be seen

from Figure 5.13, the semi-blind target sequences are successfully recognized,

and those interference sequences are also successfully declined. Our system

133

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

successfully recognizes the target sequence of 012?45 with ‘?’ only belonging

to 5-9.

These experiments show that our system with spiking neurons can perform

the sequence recognition well, even under some noisy conditions. Item

recognition is an essential step for a successful recognition of the target

sequence. The step before recognizing the sequence order is to recognize what

are the items in the input sequence. A failure recognition of the item in the target

sequence would directly affect the further recognition on the sequence order.

5.4 Discussions

In this chapter, a biologically plausible system with spiking neurons is presented

for sequence recognition. Discussions based on the simulation results are as

follows.

5.4.1 Temporal Learning Rules and Spiking Neurons

The PSD rule [119], proposed in the concept of processing and memorizing

spatiotemporal spike patterns, is applied in our system for item recognition.

In the PSD rule, the synaptic adaptation is driven by the precise timing of the

actual and the target spikes. Without a complex error calculation, the PSD rule

is simple and beneficial for computation [119]. According to the classification

tasks considered in this chapter, the PSD rule outperforms both the tempotron

rule [33, 45] and the perceptron rule [131, 132].

The computational power of the spiking neurons over the traditional

134

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

neurons (perceptrons) is reflected by the better performance of both the PSD

rule and the tempotron rule than the perceptron rule (see Figure 5.8 and

Figure 5.9). This is because that the spiking neurons, by their nature, are

designed for processing in a time domain with a complex evolving dynamics

on the membrane potential. A major difference between the perceptrons and the

spiking neurons is this dynamic membrane potential. The perceptrons calculate

current states in a static manner that only based on the current inputs, while the

spiking neurons evolve current states in a dynamic manner that not only based

on the current inputs but also the past states. Additionally, due to the ability

of the spiking neurons to operate online, it can benefit the computation of a

sequential procession with time elapsing.

Between the two temporal learning rules for spiking neurons, the perfor-

mance of the PSD rule is better than the tempotron rule. The decisions made

by the neurons under the PSD rule are based on a combination of several local

temporal features over the whole time window. By contrast, the tempotron rule

trains a neuron to make a decision only based on one local temporal feature if the

neuron is supposed to fire a spike. A decision based on several local temporal

features would result in a better performance than that only based on one local

temporal feature. In addition, the PSD rule is not limited to a classification

task, but it can also train a neuron to associate spatiotemporal patterns with the

specified desired spike trains.

135

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

5.4.2 Spike Sequence Decoding Network

Our spike sequence decoding network is biologically realistic that can behave

like FSM to recognize spike sequences [120, 121]. The functionality of this

network is achieved through transitions between the UP and DOWN states of

neurons. Transitions between bistable membrane potentials are widely observed

through various experiments in cortical pyramidal neurons in vivo [133, 134].

The transitions between the states are controlled by feedforward excitation,

lateral excitation and feedforward inhibition. The neurons enter the UP state

if their dendrites have a plateau potential. The neurons will return to the DOWN

state from the UP state when enough long time elapses without excitatory

input spikes. In addition, the recognition is robust to time warping of the

sequence. The recognition is intact as long as the interval between input

spikes lies in a specific range which can be quite broad (see Figure 5.10 and

Figure 5.11). Invariance to time warping is beneficial for tasks like speech

recognition [7, 135].

5.4.3 Potential Applications in Authentication

Our system provides a general structure for sequence recognition. With proper

encoding mechanisms, this system could also be applied to acoustic, tactual

and olfactory signals in addition to visual signals. The processes of the item

recognition and the sequence order recognition in our system could be used

for user authentication to access approval. It provides a double-phase checking

scheme for gaining access. Only if both the items and also their orders are

136

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

correct, the person would be allowed to access.

(a) (b) (c) (d) (e)

Figure 5.14: Voice samples of digit ‘Zero’. (a), (b) and (c) are samples spoken by a
person in clean conditions with a similar manner for each recording. (d) is a sample
under a 5dB noise and (e) is a warped sample spoken in a different manner. The top
panel and the bottom panel show the sound waves and the corresponding spectrograms

respectively.

We preliminarily applied these concepts to the speech task with our

previously proposed encoding scheme [44] for sounds. The voices of ten digits

were considered. It is still a very challenging task for spiking neurons to process

audio signals due to variations of speed, pitch, tone and volume. Our system

could be successful in the case where words are spoken in a similar manner such

as samples (a)-(c) in Figure 5.14, but it would be failed if the voice is changed

significantly like (d) and (e) in Figure 5.14. Further study is required for speech

recognition with spiking neurons, and further results would be presented in our

next stage.

5.5 Conclusion

In this chapter, a biologically plausible network is proposed for sequence

recognition. This is the first attempt to solve the sequence recognition with

137

CHAPTER 5. A SPIKING NEURAL NETWORK SYSTEM FOR ROBUST SEQUENCE RECOGNITION

the network of spiking neurons by considering both the upstream and the down-

stream neurons together. The system is consistently integrated with functional

parts of sensory encoding, learning and decoding. The system operates in

a temporal framework, where the precise timing of spikes is considered for

information processing and cognitive computing. The recognition performance

of the system is robust to different noisy sensory inputs, and it is also invariant

to changes in the intervals between input stimuli within a certain range.

138

Chapter 6

Temporal Learning in Multilayer

Spiking Neural Networks Through

Construction of Causal

Connections

This chapter presents a new supervised temporal learning rule for multilayer

spiking neural networks. We present and analyze the mechanisms utilized in

the network for the construction of causal connections. Synaptic efficacies are

finely tuned for resulting in a desired post-synaptic firing status. Both the PSD

rule and the tempotron rule are extended to multiple layers, leading to new rules

of multilayer PSD (MutPSD) and multilayer tempotron (MutTmptr). The al-

gorithms are applied successfully to classic linearly non-separable benchmarks

like the XOR and the Iris problems.

139

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

6.1 Introduction

In biological nervous systems, neurons communicate with others through

action potentials (spikes). To emulate this phenomenon, spiking neurons are

introduced to process spike information. Due to the spiking feature, the spiking

neurons are more biologically plausible and computationally powerful than

traditional neuron models like perceptron.

Information could be carried by spikes either in a rate-based form or a

precise spike-based form. Increasing evidence shows that individual spikes with

precise time play a significant role in transmitting information. Neurons can

learn more and faster from the spike-based code than the rate-based code.

Considering the spatiotemporal spike patterns, many learning rules have

been proposed to understand how neurons process the information. Most of

temporal learning methods, such as tempotron [33], ReSuMe [37], Chronotron

[36], SPAN [35] and PSD [119], only focus on the learning of single spiking

neurons or single-layer SNNs. These learning rules are biologically plausible to

some extent. However, the real nervous systems are extremely complex network

with a large number of neurons interconnecting with each other. Investigations

on the level of single neurons or single-layer networks might be insufficient to

simulate the cognitive functions of the brain. Therefore, research on multilayer

SNNs is demanded.

Some gradient-descent-based learning rules such as SpikeProp [34] and

its extensions [50, 129] are proposed to train the network with hidden neurons

to output a target spike train. The derivations of these rules are based on the

140

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

explicit dynamics of the SRM model, which limit the applicability of these rules

to other neuron models. The same problem is also involved in another gradient-

descent-based rule proposed in [75]. Although the gradient-descent-based rules

are effective, they lack biological explanation. The complex error calculation

involved in the learning is at least questionable. In [130], an extension of the

ReSuMe rule is proposed for multilayer SNNs, where the weights are updated

according to STDP and anti-STDP processes. This ReSuMe-based multilayer

learning rule requires back propagation of the network error. When the number

of layers increases, the evaluation of the network error will become more

complex. Again, such a complex error evaluation is also debatable considering

the real nervous systems.

In this chapter, we propose a new supervised learning rule for multilayer

spiking neural networks. This rule is an extension of the PSD rule introduced

in Chapter 4. Without complex error evaluation, the learning is simple and

efficient, and yet biologically plausible. In addition, we also proposed a

multilayer learning for the tempotron rule. Through our multilayer learning,

causal connections are constructed between layers of spiking neurons.

The rest of this chapter is organized as follows. In section 6.2, the proposed

learning rules for multilayer SNNs are presented, including multilayer PSD

(MutPSD) rule and multilayer tempotron (MutTmptr) rule. Heuristic discus-

sions about our multilayer learning rules are presented in section 6.3. Section

6.4 presents the simulation results. Construction of the causal connections is

firstly demonstrated. The properties and power of the MutPSD and MutTmptr

rules are showcased by linearly non-separable tasks including the XOR problem

141

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

and the Iris dataset task. Finally, discussions of the multilayer learning rules, as

well as the conclusion, are presented in section 6.5.

6.2 Multilayer Learning rules

In this section, we describe the learning schemes in the feedforward multilayer

spiking neural networks. Firstly, the neuron model used in this chapter is

introduced. Then, the multilayer PSD (MutPSD) rule is described, followed

by the introduction of multilayer tempotron (MutTmptr) rule.

6.2.1 Spiking Neuron Model

For the sake of simplicity, our neuron model consists of a leaky integrate-

and-fire neuron driven by synaptic currents generated by its afferents. The

potential of the neuron is a weighted sum of postsynaptic currents (PSCs) from

all incoming spikes:

V (t) =
∑
i

wiI
i
PSC(t) + Vrest (6.1)

where wi and I iPSC are the synaptic efficacy and the PSC of the i-th afferent.

Vrest is the rest potential of the neuron. The dynamics of the I iPSC is as follow:

I iPSC(t) =
∑
tj

K(t− tj)H(t− tj) (6.2)

where tj is the time of the j-th spike emitted from the i-th afferent neuron,H(t)

refers to the Heaviside function, K denotes a normalized kernel and we choose

it as:

K(t− tj) = V0 ·
(

exp(
−(t− tj)

τs
)− exp(

−(t− tj)
τf

)
)

(6.3)

142

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

where V0 is a normalization factor such that the maximum value of the kernel is

1, τs and τf are the slow and fast decay constants respectively, and their ratio is

fixed at τs/τf = 4.

For the neurons in the hidden layers, we utilize a fire-and-shutdown

scheme as in [33]. This can guarantee a single spike scheme in the hidden

neurons if the neurons receive enough strong stimulus. Increasing experimental

evidence suggests that neural systems use exact time of single spikes to transmit

information [23, 83, 136]. Visual system can analyze a new complex scene in

less than 150 ms [23, 83]. This period of time is impressive for information

processing considering billions of neurons involved. This suggests that neurons

exchange only one or few spikes. In the tactile system, it is shown that the time

of the first spike contains important information about the external stimuli [136].

In addition to the biological plausibility, first spikes also serve as an efficient way

to transmit information. Subsequent brain region may learn more and earlier

about the stimuli from the time of the first spikes [23]. The benefits of the

first spike suit the role of hidden neurons acting as the information transmitter

between the input and output neurons.

6.2.2 Multilayer PSD Rule

The PSD rule [119] for single neurons or single layer network is described as:

dwi(t)

dt
= η[sd(t)− so(t)]I iPSC(t) (6.4)

The polarity of the synaptic changes depends on three cases: (1) a positive

error (corresponding to a miss of the spike) where the neuron does not spike

143

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

at the desired time, (2) a zero error (corresponding to a hit) where the neuron

spikes at the desired time, and (3) a negative error (corresponding to a false-

alarm) where the neuron spikes when it is not supposed to.

In the single-layer PSD, only the direction of synaptic modification is

used. The amount of modification depends on the current input PSC. Based on

this idea, a multilayer PSD (MutPSD) rule can be developed. The instructor

signals that only containing directions of modifications are back propagated

to all synapses in the multilayer feedforward network, while the amount of

synaptic change depends on the corresponding PSC received by each synapse.

h

d

o

i

Hidden
Neurons

Output
Neuron

Input
Neurons

o

d

w
pre post

PSC

(a)

()preS t

()PSC t

()dS t

()oS t

()tw

delay

(b)

(c)

Figure 6.1: Structure and plasticity of multilayer PSD. (a) is the structure of the
multilayer network where input neurons are connected to the output neuron through
hidden neurons. (b) shows the synaptic structure. The synaptic plasticity in the
multilayer network is driven by the desired signal (d) and the actual output signal
(o). (c) demonstrates the scheme for synaptic plasticity. A desired spike will result
in potentiation, while an actual output spike will lead to depression. The amount of

synaptic modification depends on the PSC signal.

Figure 6.1(a) shows the multilayer structure. For the reason of simplicity,

one layer of hidden neurons is considered, but the algorithm can be extended

to networks with more hidden layers similarly. The instructor signals are used

to guide the synaptic modification direction of all synapses. Considering the

144

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

synaptic delays d, the MutPSD rule can be described as:

∆wi = η

∫ ∞
0

[sd(t)− so(t)]I iPSC(t− d)dt (6.5)

= η
[∑

g

I iPSC(tgd − d)−
∑
h

I iPSC(tho − d)
]

where tgd and tho denotes the g-th desired spike and the h-th actual output spike,

respectively. The synaptic structure is shown in Figure 6.1(b).

The dynamics of synaptic plasticity is demonstrated in Figure 6.1(c).

Similar to the single-layer PSD, the weight adaptation in the MutPSD is

triggered by the error between the desired and the actual output spikes, with

positive errors causing long-term potentiation (LTP) and negative errors causing

long-term depression (LTD). No synaptic change will occur if the actual output

spike fires at the desired time. The amount of synaptic changes is determined

by the signal I iPSC .

6.2.3 Multilayer Tempotron Rule

The tempotron learning rule [33] was introduced to train a single neuron

to discriminate between spatiotemporal spike patterns. Neurons are trained

to distinguish between two classes by firing at least one spike or remaining

quiescent. Whenever a neuron failed to fire a spike corresponding to a positive

pattern, LTP will occur; if the neuron fired a spike to a negative pattern, LTD

will happen.

The tempotron rule and the PSD rule are similar to some extent. In both

rules, the instructor signals are used to guide the direction of the synaptic

modification, either potentiation or depression. The amount of synaptic change

145

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

Synaptic

change

LTP

LTD

0

ref
pret t tD = -

Figure 6.2: Similarity between the PSD rule and the tempotron rule on learning
windows. The amount of synaptic change depends on the time difference ∆t between

the afferent spikes tpre and the reference time tref .

depends on the time difference between the afferent spikes and the reference

time tref . Figure 6.2 shows the learning windows. In the tempotron rule, tmax

is the reference time for updating synaptic weights. In the PSD rule, tref refers

to td or to. In the tempotron rule, it refers to tmax. In both the tempotron rule

and the PSD rule, only the pre-synaptic spikes that precede the reference time

can induce the change of synaptic weights, resulting in a construction of causal

connections.

Based on the similarity with the PSD rule, a multilayer tempotron

(MutTmptr) rule can be developed as an extension of the single layer tempotron.

The synaptic plasticity for MutTmptr is described as follow:

∆wi =

η
∑

ti<tmax
K(tmax − ti − d), if P+ error;

−η
∑

ti<tmax
K(tmax − ti − d), if P− error;

0, otherwise.

(6.6)

where tmax denotes the time at which the neuron reaches its maximum potential

value in the time domain, and d denotes the synaptic time delay. The above

146

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

equation is equivalent to the follow:

∆wi =

η · I iPSC(tmax − ti − d), if P+ error;

−η · I iPSC(tmax − ti − d), if P− error;

0, otherwise.

(6.7)

where I iPSC denotes the post-synaptic current (PSC) of the corresponding

synapse.

The instructor signal, containing the modification direction, is back

propagated to all synapses in the multilayer network. The amount of synaptic

change depends on the PSC signal. Equation 6.5 and Equation 6.7 are used to

conduct the following simulations.

6.3 Heuristic Discussion on the Multilayer Learn-

ing Rules

In this section, we use a simple three-layer network (see Figure 6.1) to

analyze the process of the synaptic modification in our MutPSD and MutTmptr

rules. For simplicity, neurons are connected through synapses without delays.

Synaptic change between the input and the hidden neurons is denoted as ∆wih.

∆who refers to the change between the hidden and the output neurons.

The following cases would occur along the learning.

1. The output neuron fires a spike at to in MutPSD or fires a spike to negative

patterns in MutTmptr:

The LTD process will occur. The depression is back propagated to all

147

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

synapses, resulting in ∆wih < 0 and ∆who < 0. The excitatory synapses

will become less excitatory and the inhibitory synapses will become more

inhibitory. This could eliminate the wrong spike of the output neuron. A

decrease inwho could cause the decrease in the potential of the output neuron,

thus the spike could be eliminated. The decrease in wih would result in a

silent response of the hidden neuron. Without the stimulating signal (spikes)

from the hidden neuron, the output neuron could become silent as desired.

2. The output neuron fails to fire a spike at td in MutPSD or keeps silent to a

positive pattern in MutTmptr:

The LTP process will occur. Similar to the depression process, the po-

tentiation is back propagated to all synapses, resulting in ∆wih > 0 and

∆who > 0. The excitatory synapses will become more excitatory and the

inhibitory synapses will become less inhibitory. As a result, the potential of

the output neuron could be increased, leading to a spike correspondingly.

3. The output neuron reacts correctly as desired:

In the MutPSD rule, this means the output neuron only fires at the time of td.

In the MutTmptr rule, it means the output neuron fires at least one spike to

positive patterns and keeps silent to negative patterns. If the output neuron

responds as desired, no synaptic modification occurs.

The instructor signal guides the direction of the synaptic modification,

leading the output neuron to a desired response if such a solution exists.

148

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

6.4 Simulation Results

In this section, several simulation experiments are conducted to demonstrate the

capabilities of the algorithm. Firstly, through the association of spatiotemporal

spike pattern by the MutPSD rule, we demonstrate how the causal connections

are constructed. Both the MutPSD and the MutTmptr rules are then applied to

classic benchmarks, including the XOR problem and the Iris dataset.

6.4.1 Construction of Causal Connections

In order to demonstrate the construction of causal connections, the MutPSD rule

is used to train the neuron to associate the input spatiotemporal spike pattern

with a desired spike train.

Technical Details

We construct the network in the structure of 50× 100× 1, without the synaptic

delay. The input spatiotemporal spike pattern connects with the network through

the input neurons. The spatiotemporal spike pattern is designed in a single-spike

manner, where each input neuron only fires once within a time window of 30ms.

The output neuron is trained, within a max number of training epochs (150), to

fire a desired spike train of [10, 20, 30] ms. The initial weights are uniformly

distributed in the range of [0, 0.5]. We set η = 0.01 and τs = 7ms. The learning

is considered converged when each of the actual output spike approaches to the

corresponding desired spike within a precision of 0.1 ms.

149

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

 ! " "! # #! $ $!

"

$

%

!

&'()*+(,-

./
0
1
2*
3

 ! " "! # #! $ $!

%

4

5

"

&'()*+(,-

6
'7
7
)
/
*3

 ! " "! # #! $ $!

!

"

"!

8
0
9
:
;

&'()*+(,-

 " #

!

"

"!

<',2=/:)

*

*

./;

8>:

Hidden #

In
p

u
t

#
O

u
tp

u
t

(a)

(b)

(c)

(d)

(e)

Figure 6.3: Construction of causal connections. The multilayer network is trained to
output a desired spike train associating with the input pattern. (a) is the demonstration
of the input spatiotemporal spike pattern. (b) shows the spikes of the hidden neurons
before learning (blue) and after learning (magenta). Vertical red lines denote the target
time. (c) shows the actual output spikes along the learning epochs. The spike distance
between the desired and actual output spike trains is also shown. Shaded bars denote the
desired spike time. (d) demonstrates the weight matrix of the network that relating to
the target time of 10 ms. The intensity reflects the weight value, and white boxes mean
the corresponding connections do not fire before this target time. (e) demonstrates a
connection view of the corresponding part in (d). Shaded neurons mean that they fired
before 10 ms, thus they are wired up to construct causal connections. The weight

strength is denoted by the line width.

Analysis of the Learning

Figure 6.3(a) shows the input spatiotemporal spike pattern. The network is

trained to associate this spike pattern with the desired spike train. As is shown

in Figure 6.3(c), the output neuron gradually learns to fire at the desired times.

At the begin, both the firing rate and the precise time of the output spikes are

different from those of the desired spikes. Along the learning, the output neuron

can successfully fire the desired spikes. This can also be reflected through the

spike distance graph, where a small distance denotes a big similarity between

150

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

the desired and the actual output spike trains.

Figure 6.3(b) shows the firing behavior of the hidden neurons. Before

learning, the spikes of the hidden neurons are far away from the desired time,

thus it is difficult for these hidden spikes causing desired output spikes. After

learning, a sufficient number of hidden spikes appear before each desired spike.

These hidden spikes are necessary for resulting in spikes at the desired times.

We denote those pre-synaptic spikes that resulting in a post-synaptic spike as

the causal spikes. Another necessary factor for causing desired spikes is that the

synaptic weights corresponding to the causal spikes should be fine tuned.

Figure 6.3(b) demonstrates one necessary factor with respect to the causal

spikes. The other necessary factor regarding to the weights are shown in

Figure 6.3(d)(e). For simplicity, only the causal connections for firing a target

spike at 10 ms are shown. Figure 6.3(d) shows the weight matrix of the

network. For example, the red rectangle reflects the weights relating to a specific

hidden neuron, with upper figure showing connections from input neurons to

this hidden neuron, and lower figure representing the weight from this hidden

neuron to the output neuron. In the weight matrix figure, the white boxes mean

the corresponding connections do not have causal spikes. Figure 6.3(e) shows

the connection structure corresponding to the part in Figure 6.3(d). Neurons

without causal spikes do not have effect on the desired spikes. As can be seen

from the figure, causal neurons are connected with fine tuned weights, including

both the excitatory and inhibitory synapses.

151

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

Table 6.1: XOR Problem Description for Multilayer SNNs

XOR input Encoded Spike Input (ms) MutPSD Output (ms) MutTmptr Output
(0, 0) 0 0 0 16 Fire
(0, 1) 0 6 0 10 Silent
(1, 0) 6 0 0 10 Silent
(1, 1) 6 6 0 16 Fire

6.4.2 The XOR Benchmark

The XOR problem is a linearly nonseparable task, and it is a classic benchmark

problem widely used for investigating the classification ability of spiking neural

networks recently [34,129–131]. Thus, we also use the XOR task to investigate

the ability of our MutPSD and MutTmptr rules in this section. Detailed

experimental setup and results are presented as follows.

Technical Details

Similar to [34], the input and output patterns for the XOR task are encoded into

spikes (as can be seen in Table 6.1). The XOR input of 0/1 is directly converted

to the spike input of 0/6 ms. In addition to these two inputs, a third neuron with

an input spike at 0 ms is used to serve as the time reference. Without this time

reference, pattern (0, 0) and (1, 1) would be identical in the view of spikes, thus

the network would be unable to distinguish them.

We choose the network structure as 3 × 5 × 1. Additionally, multiple

sub connections (mSub) with different delays were used. We set mSub = 15,

with delays ranging from 0 to 12 ms. The network was trained with η = 0.01

and τs = 7 ms, otherwise will stated. The network was simulated with a time

window of 30 ms and a time step of 0.1 ms.

152

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

Demonstration of the Learning

The capabilities of both the MutPSD and the MutTmptr rules on the XOR task

are demonstrated here. In the MutPSD rule, the output neuron is required to

fire desired spikes with a precision of 0.2 ms corresponding to different input

patterns. In the MutTmptr rule, instead of firing precisely, the output neuron is

only required to correctly fire or not fire corresponding to an input pattern.

10 20 30

1

2

3

In
p
u

t
#

Time (ms)

10 20 30

1

2

3

10 20 30

1

2

3

10 20 30

1

2

3

0 10 20
0

20

40

60

80

100

Time (ms)

E
p
o

c
h

0 10 20
0

20

40

60

80

100

0 10 20
0

20

40

60

80

100

0 10 20
0

20

40

60

80

100

0 5 10 15
0

20

40

60

80

100

Distance

0 5 10
0

20

40

60

80

100

Time (ms)

E
p
o

c
h

0 5 10
0

20

40

60

80

100

0 5 10
0

20

40

60

80

100

0 5 10
0

20

40

60

80

100

0 5 10
0

20

40

60

80

100

������ ������ ������ ������

Figure 6.4: Demonstration of the MutPSD rule for the XOR task. The top row shows
the four spike input patterns of the XOR task. The middle row shows the actual output
spikes according to each input pattern. The shaded bars denote the desired spike time.
The average spike distance is also shown on the right. The bottom row shows the output

spikes of the hidden neurons for the input pattern of (0, 0).

Figure 6.4 demonstrates the MutPSD rule can successfully train the

network to learn the XOR task. As is shown in Chapter 5, the single-layer PSD

cannot directly learn this task, unless a reservoir network is used to enrich the

153

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

dimension of the input space. In our MutPSD rule, a small number of hidden

neurons with adjustable weights are sufficient for the XOR task. Along the

learning, the output neuron gradually learns to fire desired spikes corresponding

to different input patterns. The spike distance between the desired and the actual

output spikes decreases gradually. The synaptic efficacies of the hidden neurons

are also modified along the learning, which is reflected from the adjustment of

their spike times. The adjusted spike time of the hidden neurons can facilitate the

output neuron to fire desired spikes. These hidden spikes serve as the stimulating

sources for the output neuron.

������

10 20 30

1

2

3

Time (ms)

In
p

u
t
#

10 20 30

1

2

3

10 20 30

1

2

3

10 20 30

1

2

3

5 10 15

1

2

3

4

5

Time (ms)

H
id

d
e

n
 #

5 10 15

1

2

3

4

5

5 10 15

1

2

3

4

5

5 10 15

1

2

3

4

5

10 20 30
0

0.5

1

Time (ms)

V
m

10 20 30
0

0.5

1

10 20 30
0

0.5

1

10 20 30
0

0.5

1

������ ������ ������

Figure 6.5: Demonstration of the MutTmptr rule for the XOR task. The top row shows
the four spike input patterns of the XOR task. The middle row shows the actual output
spikes of the hidden neurons according to each input pattern. The bottom row shows

the membrane potentials of the output neuron for each corresponding input pattern.

As can be seen from Figure 6.5, the MutTmptr rule can also train the

network to perform the XOR task well, with the output neuron firing a spike

154

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

Table 6.2: Convergent results for the XOR problem.

Precision of convergence (ms) No. of epochs for convergence Successful rate (%)
Bohte [34] 0.71 250 -
McKennoch [137] 1.0 127 -
Sporea [130] 1.0 137 98
MutPSD 1.0 86 100
MutTmptr - 37 100

for patterns of (0, 0) and (1, 1), and keeping silent for (0, 1) and (1, 0). The

hidden neurons fire differently for each input pattern. Again, these spikes

from the hidden neurons serve as the stimulating sources for the output neuron.

Noteworthily, although 5 hidden neurons are chosen for the XOR task, only a

small number of these hidden neurons (#1, #4, #5) are utilized. Therefore, our

multilayer learning rule can effectively select a sufficient number of resources

that are enough to fulfill the task.

Convergence of the Learning

In order to investigate the convergent performance of our multilayer learning

rules, the previous demonstration experiment is conducted for 50 runs. For the

MutPSD rule, a precision of 1 ms is used as in other studies [130, 137]. The

average results are reported in Table 6.2.

Table 6.2 shows our multilayer learning rules are more efficient for the

XOR task. To train the output neuron to spike precisely corresponding to

different patterns, our MutPSD rule has a faster convergent speed compared

to other rules. A higher successful rate of runs is also obtained compared to that

in [130]. In addition, with less number of learning parameters, our MutPSD rule

is simpler compared to multilayer ReSuMe rule in [130]. Regardless of firing

precisely, the MutTmptr rule converges even faster. This is expected since only

155

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

a response of fire or not fire is considered for the MutTmptr rule. Such a binary

response can simplify the learning compared to those rules for precise response

in time.

10
−3

10
−2

10
−1

0

50

100

150

200

250

300

350

400

Learning Rate (η)

L
e
a
rn

in
g
 E

p
o
c
h
s

MutTmptr

MutPSD

Figure 6.6: Effect of the learning rate on the convergence of the XOR task. Results are
averaged over 50 runs.

Figure 6.6 shows the effect of the learning rate η on our multilayer learning

rules. As can be seen in this figure, a smaller η results in a slower learning speed.

The learning becomes faster with an increasing η. However, a further increase

in η cannot benefit the learning. The successful rate of runs can be decreased

with a larger η (results are not shown here). Additionally, the learning speed of

the MutTmptr rule is always faster than that of the MutPSD rule. As discussed

before, this is because the MutTmptr rule only needs to train the neuron to have

a binary response of fire or not, regardless of the precise time of the response.

156

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

6.4.3 The Iris Benchmark

In oder to investigate the recognition performance of our multilayer rules, the

classic Iris benchmark task is considered. The dataset consists of three classes of

Iris flowers, with one class being linearly separable from the other two classes,

and two classes being nonlinearly separable with each other. Each class contains

50 samples and each sample is represented by 4 variables.

Technical Details

To encode the variables of Iris, we use the same population encoding scheme

as in [34, 75], where each feature is encoded separately by an array of Gaussian

functions with different centers. For a variable x in a range [xmin, xmax], n

neurons with different Gaussian receptive fields are used to encode. The center

and width of the i-th neuron are set to µi = xmin + (2 · i − 3)/2 · (xmax −

xmin)/(n − 2) and σi = 1/1.5 · (xmax − xmin)/(n − 2), respectively. Each

feature is encoded as n (set as 5) spike times between 0 and 10 ms. Thus, the

total number of input neurons is 4× 5 + 1 = 21. The number of hidden neurons

is selected as 8. The number of sub connections is set to 5, and each synapse

has a synaptic delay between 0 and 10 ms. Three networks of 21 × 8 × 1 are

constructed with each network for one class. The upper limit of training epochs

is set to 300. For the MutPSD rule, each network is trained to fire a desired train

of [15, 25] ms corresponding to the correct input class, and to keep silent for

other classes. In the MutTmptr rule, each network is trained to fire a spike for

the positive class, and to keep silent for other classes.

157

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

Analysis of the Learning

We use a winner-take-all scheme for the readout. For the MutPSD rule, the

network with closest spike distance dominates the class of the input pattern.

For the MutTmptr rule, two different winner-take-all readout schemes are

investigated. One regards to the fire status (denoted as MutTmptr Fire), and

the other one regards to the maximum potential (denoted as MutTmptr Vmax).

��� ���

40 60 80 100
70

75

80

85

90

95

100

Training Size

T
ra

in
in

g
 A

c
c
u

ra
c
y
 (

%
)

MutTmptr_Vmax

MutTmptr_Fire

MutPSD

40 60 80 100
70

75

80

85

90

95

100

Training Size

T
e

s
tin

g
 A

c
c
u

ra
c
y
 (

%
)

MutTmptr_Vmax

MutTmptr_Fire

MutPSD

Figure 6.7: Performance of multilayer learning rules on the Iris task. (a) and (b) show
the training and testing accuracy, respectively. Results are averaged over 10 runs.

As can be seen from Figure 6.7, the MutTmptr rule can learn the

training set better than the MutPSD rule, while the MutPSD rule has a better

generalization performance. It can be seen from Figure 6.7(b), the testing

accuracy tends to increase with the increasing number of samples used for

training. If only output spikes are considered for the readout, the MutPSD

rule performs better than the MutTmptr Fire rule. This is because the MutPSD

rule makes decision based on a combination of several local temporal features,

but the MutTmptr rule only uses single temporal feature for the decision. In

addition, the MutTmptr rule requires all the three nets to response correctly for

158

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

a correct decision. This is another factor affects its performance. If we use the

maximum potential for the decision, the performance is improved significantly

(see MutTmptr Vmax in Figure 6.7(b)).

6.5 Discussion and Conclusion

In this chapter, we proposed two learning rules for multilayer SNNs, namely the

multilayer PSD rule (MutPSD) and the multilayer tempotron rule (MutTmptr).

These two rules are similar, where a supervisor signal, containing the synaptic

modification direction, is back propagated to the synapses in the network.

Without complex error evaluation as in [34, 75, 130], our multilayer learning

rules are simpler and more efficient. In addition, it is not biologically

plausible for the neurons to back propagated a calculated error, or it is at least

questionable. A global neuromodulatory signal, determining the polarity of the

synaptic changes, would be more feasible [33].

The amount of synaptic change depends on the pre-synaptic currents.

This scheme, combined with the supervisor signal, can help to construct the

causal connections between neurons. Correlated neurons are connected with

fine tuned weights, resulting in a desired response at the output neuron. The

hidden neurons serve as the information transmitter between the input and

output neurons.

The MutTmptr rule has a faster convergent speed than the MutPSD rule.

This is because the MutTmptr rule only trains the network to respond correctly

with a binary status, either fire or not. For the MutPSD rule, the precise spike

159

CHAPTER 6. TEMPORAL LEARNING IN MULTILAYER SPIKING NEURAL NETWORKS THROUGH
CONSTRUCTION OF CAUSAL CONNECTIONS

time of the output neuron is also considered. This makes the learning more

difficult than the MutTmptr rule. However, the MutPSD rule has a better

generalization ability compared to the MutTmptr rule. This is due to that, the

MutPSD makes a decision based on a combination of several local temporal

features, while the MutTmptr uses only a single local temporal feature for a

decision.

In summary, both the MutPSD and the MutTmptr rules are simple, efficient

and yet biologically plausible. We demonstrate the mechanisms that how the

causal connections are constructed in the multilayer spiking neural networks.

The performances of our multilayer learning rules are investigated through the

two classic benchmark tasks, that is the XOR task and the Iris dataset problem.

The MutTmptr rule can provide a faster learning speed, while the MutPSD rule

gives a better generalization ability.

160

Chapter 7

Conclusions

In this chapter, the main results of this thesis are summarized, and some possible

future directions are also provided.

7.1 Summary of Contributions

In Chapter 2, a consistent system considering both the temporal coding and

learning was preliminarily developed to perform various recognition tasks.

The whole system was constructed by three basic functional parts: encoding,

learning and readout. It was found that such a network of spiking neurons

under a temporal framework can effectively and efficiently perform various

classification tasks. The results suggest that the temporal learning rule combined

with a proper encoding method can provide basic classification abilities of

spiking neurons on different classification tasks. This proposed system can

learn patterns of either discrete values or continuous values through different

encoding schemes. It is likely that an effective and efficient learning could be

161

CHAPTER 7. CONCLUSIONS

attributed to a suitable encoding where encoded spatiotemporal patterns from

different categories are easily separable. This system is important since it

integrates both the coding and the learning on a systematic level. The integrated

system also provides a general structure that could be flexibly extended or

modified according to various requirements, as long as the basic functional parts

inspired from the biology do not change. This can significantly benefit future

studies on a systematic level.

In Chapter 3, a more complex and biologically plausible system was

developed from an extension of the previous system introduced in Chapter 2.

Motivated by recent findings in biological systems, this system was constructed

in a feedforward structure to process real-world stimuli from a view point

of rapid computation. It was found that the external stimuli are sparsely

represented after the encoding structure, and the representations have some

properties of selectivity and invariance. These properties of the encoding

structure could be attributed to simple cells and complex cells alternately used

in HMAX which is a hierarchical system that closely follows the organization of

visual cortex. The simple cells gain their selectivity from a linear sum operation,

while the complex cells obtain invariance through a nonlinear max pooling

operation. The properties of selectivity and invariance in the encoding structure

can facilitate further procession in downstream neurons. It was also found that

the tempotron rule is a proper choice among different temporal learning rules

when the learning speed is mainly considered. Compared to the ReSuMe rule,

the tempotron rule can accomplish a recognition task faster and more reliably.

The results also showed that a robust response from the readout layer can be

162

CHAPTER 7. CONCLUSIONS

obtained through groups of neurons rather than single neurons. These results

suggest that grouped pools of neurons are more reliable and biologically realistic

than single neurons considering a decision-making task in the readout layer. A

possible explanation is that the readout would be very sensitive to each neuron’s

response if single neurons are considered. The final decision would be wrong

even if only one neuron misclassifies an input pattern. The significance of this

study is that it would provide a possible direction of applying spiking neurons

into real-world recognition tasks. It is also important in the light of recent trends

in combining both the coding and learning on a systematic level to perform

cognitive computations.

In Chapter 4, a new temporal learning rule, named as the precise-spike-

driven (PSD) synaptic plasticity rule, was developed for learning hetero-

association of spatiotemporal spike patterns. Various properties of the PSD

rule were also investigated through an extensive experimental analysis. It was

found that the PSD rule could successfully train neurons to associate a sparse

spatiotemporal pattern with a desired spike train. This is due to the successful

establishment of the causal connections along the learning. Sufficient synaptic

strength is required for those afferent neurons firing around a desired spike

time to stimulate this desired spike. It was also found that the PSD rule can

also perform classification of spatiotemporal spike patterns. The PSD rule

with the relative confidence criterion has a comparable performance to the

tempotron rule. Moreover, the PSD rule is advantageous in that it is not limited

to performing classification, but it is also able to memorize patterns by firing

desired spikes at precise time. The contribution of this study is that a temporal

163

CHAPTER 7. CONCLUSIONS

learning rule is developed for spiking neurons from both the view points of

simplicity and biological plausibility.

In Chapter 5, a spiking neural network system for sequence recognition

was developed. The PSD rule was applied and further investigated for practical

applications in this study. It was found that different functional subsystems

can consistently cooperate within a temporal framework for detecting and

recognizing a specific sequence. The results indicate that different spiking

neural networks can be combined together as long as a proper coding scheme is

used for the communications between networks. This study is significant since

it provides a possible explanation of mechanisms that might be used in the brain

for sequence recognition.

In Chapter 6, two temporal learning rules were proposed for multilayer

spiking neural networks, namely the multilayer PSD rule (MutPSD) and

the multilayer tempotron rule (MutTmptr). These two multilayer rules are

extensions of the single layer PSD and tempotron rules. The multilayer learning

is fulfilled through the construction of causal connections. Correlated neurons

are connected through fine tuned weights. It was found that the MutTmptr rule

converges faster, while the MutPSD rule gives better generalization ability. The

fast convergent speed of the MutTmptr rule is due to the binary response of

either fire or not. The good generalization ability of the MutPSD rule could be

attributed to the combination of several local temporal features for a decision.

The significance of this study is that it provides an efficient and biologically

plausible mechanism, describing how synapses in the multilayer network are

adjusted to facilitate the learning.

164

CHAPTER 7. CONCLUSIONS

7.2 Future Work

It is still one of the greatest challenges facing science today to understand

the brain due to the limitations of current technology. Instead of directly

performing experiments on biological systems, this thesis was restricted to

computer simulations to explore the cognitive abilities of spiking neurons.

Due to the nature of this approach, the applicability would not be exactly

suitable to the real brain. The modeling assumptions used in this study are

based on the recent experimental findings, which may restrict the biological

plausibility of the model to a certain degree. Future experimental findings

from the neuroscience could further benefit our understandings about the brain.

Further research is therefore needed to develop new models considering these

new findings. The computers could then perform cognitive computations more

like the brain, which could further benefit the area of artificial intelligence.

This thesis did not consider computations under a rate-based framework.

This is because mounting evidence shows that precise timing of individual

spikes plays an important role. The temporal framework also offers signif-

icant computational advantages over the rate-based framework. Since it is

indisputable that the rate coding is also used in the functioning of the brain,

it would be interesting and valuable to explore computations under a framework

considering both the rate coding and the temporal coding.

Come to cognitive functions, the best man-made computer still cannot

even give a comparable performance to the brain. Such cognitions of the

brain actually rely on both the neuronal and the systematic levels. It would be

165

CHAPTER 7. CONCLUSIONS

Speech

Noise

Noise

Feature-
Sensitive Cells

Decision-
Making Cells

(a) (b)

Figure 7.1: Sensory systems for cognitions. (a) and (b) demonstrate a visual and
auditory system, respectively.

interesting and valuable to further investigate how spiking features of a neuron

could enrich the computational power, and how system with layers of spiking

neurons could process information for cognitive functions. Sensory systems

share a similar general system structure with functional parts of encoding,

learning and decoding. Such a structure preliminarily describes the building

blocks required for an intelligent system. One of the long-range goals is to

develop an intelligent cognitive system with spiking neurons, and to utilize

it on practical tasks such as visual or auditory processing (see Figure 7.1).

To accomplish this, cooperation between both computational and experimental

approaches would be required.

166

Bibliography

[1] E. Adrian, The Basis of Sensation: The Action of the Sense Organs. W.
W. Norton, New York, 1928.

[2] R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make
sense,” Trends in Neurosciences, vol. 28, no. 1, pp. 1–4, 2005.

[3] E. R. Kandel, J. H. Schwartz, T. M. Jessell, et al., Principles of neural
science, vol. 4. McGraw-Hill New York, 2000.

[4] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press, 1 ed., 2002.

[5] J. Vreeken, “Spiking neural networks, an introduction,” Institute for
Information and Computing Sciences, Utrecht University Technical
Report UU-CS-2003-008, 2002.

[6] W. Maass, G. Schnitger, and E. D. Sontag, “On the computational
power of sigmoid versus boolean threshold circuits,” in Foundations of
Computer Science, 1991. Proceedings., 32nd Annual Symposium on,
pp. 767–776, IEEE, 1991.

[7] J. J. Hopfield and C. D. Brody, “What is a moment? Transient synchrony
as a collective mechanism for spatiotemporal integration,” Proceedings of
the National Academy of Sciences, vol. 98, no. 3, pp. 1282–1287, 2001.

[8] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve.,” The
Journal of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[9] E. M. Izhikevich, “Simple model of spiking neurons.,” IEEE Transac-
tions on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[10] W. Gerstner, A. K. Kreiter, H. Markram, and A. V. Herz, “Neural
codes: firing rates and beyond,” Proceedings of the National Academy
of Sciences, vol. 94, no. 24, pp. 12740–12741, 1997.

[11] S. Panzeri, N. Brunel, N. K. Logothetis, and C. Kayser, “Sensory neural
codes using multiplexed temporal scales,” Trends in Neurosciences,
vol. 33, no. 3, pp. 111–120, 2010.

167

BIBLIOGRAPHY

[12] P. Dayan and L. Abbott, “Theoretical neuroscience: computational
and mathematical modeling of neural systems,” Journal of Cognitive
Neuroscience, vol. 15, no. 1, pp. 154–155, 2003.

[13] D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M. Alonso, and
G. B. Stanley, “Temporal precision in the neural code and the timescales
of natural vision,” Nature, vol. 449, no. 7158, pp. 92–95, 2007.

[14] W. Bair and C. Koch, “Temporal precision of spike trains in extrastriate
cortex of the behaving macaque monkey.,” Neural Computation, vol. 8,
no. 6, pp. 1185–1202, 1996.

[15] M. J. Berry and M. Meister, “Refractoriness and neural precision.,” The
Journal of Neuroscience, vol. 18, no. 6, pp. 2200–2211, 1998.

[16] V. J. Uzzell and E. J. Chichilnisky, “Precision of spike trains in primate
retinal ganglion cells.,” Journal of Neurophysiology, vol. 92, no. 2,
pp. 780–789, 2004.

[17] P. Reinagel and R. C. Reid, “Temporal coding of visual information in the
thalamus,” The Journal of Neuroscience, vol. 20, no. 14, pp. 5392–5400,
2000.

[18] Z. F. Mainen and T. J. Sejnowski, “Reliability of spike timing in
neocortical neurons,” Science, vol. 268, no. 5216, pp. 1503–1506, 1995.

[19] F. Gabbiani, W. Metzner, R. Wessel, and C. Koch, “From stimulus
encoding to feature extraction in weakly electric fish,” Nature, vol. 384,
no. 6609, pp. 564–567, 1996.

[20] M. Wehr and A. M. Zador, “Balanced inhibition underlies tuning and
sharpens spike timing in auditory cortex,” Nature, vol. 426, no. 6965,
pp. 442–446, 2003.

[21] W. Maass and C. M. Bishop, Pulsed neural networks. MIT press, 2001.

[22] T. Serre, A. Oliva, and T. Poggio, “A feedforward architecture accounts
for rapid categorization,” Proceedings of the National Academy of
Sciences, vol. 104, no. 15, pp. 6424–6429, 2007.

[23] T. Gollisch and M. Meister, “Rapid neural coding in the retina with
relative spike latencies.,” Science, vol. 319, no. 5866, pp. 1108–1111,
2008.

[24] Z. Nadasdy, “Information encoding and reconstruction from the phase of
action potentials,” Frontiers in Systems Neuroscience, vol. 3, p. 6, 2009.

[25] R. Kempter, W. Gerstner, and J. L. van Hemmen, “Spike-Based
Compared to Rate-Based Hebbian Learning.,” in NIPS’98, pp. 125–131,
1998.

168

BIBLIOGRAPHY

[26] A. Borst and F. E. Theunissen, “Information theory and neural coding.,”
Nature Neuroscience, vol. 2, no. 11, pp. 947–957, 1999.

[27] J. J. Hopfield, “Pattern recognition computation using action potential
timing for stimulus representation,” Nature, vol. 376, no. 6535, pp. 33–
36, 1995.

[28] D. Hebb, The Organization of Behavior: A Neuropsychological Theory.
Taylor & Francis Group, 2002.

[29] S. Fusi, “Spike-driven synaptic plasticity for learning correlated patterns
of mean firing rates,” Reviews in the Neurosciences, vol. 14, no. 1-2,
pp. 73–84, 2003.

[30] J. M. Brader, W. Senn, and S. Fusi, “Learning Real-World Stimuli
in a Neural Network with Spike-Driven Synaptic Dynamics,” Neural
Computation, vol. 19, no. 11, pp. 2881–2912, 2007.

[31] G. Q. Bi and M. M. Poo, “Synaptic modification by correlated activity:
Hebb’s postulate revisited,” Annual Review of Neuroscience, vol. 24,
pp. 139–166, 2001.

[32] R. C. Froemke, M.-m. Poo, and Y. Dan, “Spike-timing-dependent
synaptic plasticity depends on dendritic location,” Nature, vol. 434,
no. 7030, pp. 221–225, 2005.

[33] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns spike
timing-based decisions,” Nature Neuroscience, vol. 9, no. 3, pp. 420–428,
2006.

[34] S. M. Bohte, J. N. Kok, and J. A. L. Poutré, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1-4, pp. 17–37, 2002.

[35] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “SPAN:
Spike Pattern Association Neuron for Learning Spatio-Temporal Spike
Patterns,” International Journal of Neural Systems, vol. 22, no. 04,
p. 1250012, 2012.

[36] R. V. Florian, “The Chronotron: A Neuron that Learns to Fire Temporally
Precise Spike Patterns,” PLoS One, vol. 7, no. 8, p. e40233, 2012.

[37] F. Ponulak, “ReSuMe–new supervised learning method for spiking neural
networks,” tech. rep., Institute of Control and Information Engineering,
Poznoń University of Technology, 2005.

[38] R. Guyonneau, R. van Rullen, and S. J. Thorpe, “Neurons Tune to the
Earliest Spikes Through STDP,” Neural Computation, vol. 17, no. 4,
pp. 859–879, 2005.

169

BIBLIOGRAPHY

[39] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Spike timing dependent
plasticity finds the start of repeating patterns in continuous spike trains,”
PloS One, vol. 3, no. 1, p. e1377, 2008.

[40] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Competitive stdp-based
spike pattern learning,” Neural Computation, vol. 21, no. 5, pp. 1259–
1276, 2009.

[41] O. Booij et al., “A gradient descent rule for spiking neurons emitting
multiple spikes,” Information Processing Letters, vol. 95, no. 6, pp. 552–
558, 2005.

[42] J. D. Victor and K. P. Purpura, “Metric-space analysis of spike trains:
theory, algorithms and application,” Network: Computation in Neural
Systems, vol. 8, no. 2, pp. 127–164, 1997.

[43] M. C. Van Rossum, G. Bi, and G. Turrigiano, “Stable Hebbian learning
from spike timing-dependent plasticity,” The Journal of Neuroscience,
vol. 20, no. 23, pp. 8812–8821, 2000.

[44] J. Dennis, Q. Yu, H. Tang, H. D. Tran, and H. Li, “Temporal coding of
local spectrogram features for robust sound recognition,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 803–807, 2013.

[45] Q. Yu, H. Tang, K. C. Tan, and H. Li, “Rapid feedforward computation
by temporal encoding and learning with spiking neurons,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 24, no. 10,
pp. 1539–1552, 2013.

[46] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “SWAT:
A Spiking Neural Network Training Algorithm for Classification
Problems,” IEEE Transactions on Neural Networks, vol. 21, no. 11,
pp. 1817–1830, 2010.

[47] F. Ponulak and A. J. Kasinski, “Supervised Learning in Spiking Neural
Networks with ReSuMe: Sequence Learning, Classification, and Spike
Shifting.,” Neural Computation, vol. 22, no. 2, pp. 467–510, 2010.

[48] H. Adeli and S. L. Hung, Machine learning – Neural networks, genetic
algorithms, and fuzzy sets. NY: John Wiley and Sons, 1995.

[49] W. Maass, “Lower bounds for the computational power of networks of
spiking neurons,” Neural Computation, vol. 8, no. 1, pp. 1–40, 1996.

[50] S. Ghosh-Dastidar and H. Adeli, “Improved spiking neural networks
for EEG classification and epilepsy and seizure detection,” Integrated
Computer-Aided Engineering, vol. 14, no. 3, pp. 187–212, 2007.

[51] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Fast and adaptive
network of spiking neurons for multi-view visual pattern recognition,”
Neurocomputing, vol. 71, no. 13, pp. 2563–2575, 2008.

170

BIBLIOGRAPHY

[52] P. X. Tsukada M., “The spatiotemporal learning rule and its efficiency
in separating spatiotemporal patterns,” Biological Cybernetics, vol. 92,
pp. 139–146, 2005.

[53] S. M. Bohte, E. M. Bohte, H. L. Poutr, and J. N. Kok, “Unsupervised
Clustering with Spiking Neurons by Sparse Temporal Coding and Multi-
Layer RBF Networks,” IEEE Transactions on Neural Networks, vol. 13,
pp. 426–435, 2002.

[54] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” tech. rep., DTIC Document, 1985.

[55] R. Kempter, W. Gerstner, and J. L. van Hemmen, “Hebbian learning and
spiking neurons,” Physical Review E, vol. 59, no. 4, pp. 4498–4514, 1999.

[56] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian
learning through spike-timing-dependent synaptic plasticity,” Nature
Neuroscience, vol. 3, pp. 919–926, 2000.

[57] R. Legenstein, C. Naeger, and W. Maass, “What Can a Neuron Learn
with Spike-Timing-Dependent Plasticity?,” Neural Computation, vol. 17,
pp. 2337–2382, 2005.

[58] C. Johnson and G. K. Venayagamoorthy, “Encoding real values into
polychronous spiking networks,” in IJCNN, pp. 1–7, 2010.

[59] S. Mitra, S. Fusi, and G. Indiveri, “Real-Time Classification of Complex
Patterns Using Spike-Based Learning in Neuromorphic VLSI,” vol. 3,
no. 1, pp. 32–42, 2008.

[60] H. Tang, H. Li, and R. Yan, “Memory dynamics in attractor networks
with saliency weights,” Neural Computation, vol. 22, no. 7, pp. 1899–
1926, 2010.

[61] E. Gardner, “The space of interactions in neural networks models,”
Journal of Physics, vol. A21, pp. 257–270, 1988.

[62] R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modifica-
tion induced by natural spike trains,” Nature, vol. 416, no. 6879, pp. 433–
438, 2002.

[63] E. I. Knudsen, “Supervised learning in the brain,” Journal of Neuro-
science, vol. 14, no. 7, pp. 3985–3997, 1994.

[64] W. T. Thach, “On the specific role of the cerebellum in motor learning
and cognition: clues from PET activation and lesion studies in man,”
Behavioral and Brain Sciences, vol. 19, no. 3, pp. 411–431, 1996.

[65] M. Ito, “Mechanisms of motor learning in the cerebellum,” Brain
Research, vol. 886, no. 1-2, pp. 237–245, 2000.

171

BIBLIOGRAPHY

[66] M. R. Carey, J. F. Medina, and S. G. Lisberger, “Instructive signals
for motor learning from visual cortical area MT,” Nature Neuroscience,
vol. 8, no. 6, pp. 813–819, 2005.

[67] R. C. Foehring and N. M. Lorenzon, “Neuromodulation, development
and synaptic plasticity.,” Canadian Journal of Experimental Psychol-
ogy/Revue canadienne de psychologie expérimentale, vol. 53, no. 1,
pp. 45–61, 1999.

[68] J. K. Seamans, C. R. Yang, et al., “The principal features and
mechanisms of dopamine modulation in the prefrontal cortex.,” Progress
in Neurobiology, vol. 74, no. 1, pp. 1–57, 2004.

[69] M. Randic, M. Jiang, and R. Cerne, “Long-term potentiation and long-
term depression of primary afferent neurotransmission in the rat spinal
cord,” The Journal of Neuroscience, vol. 13, no. 12, pp. 5228–5241, 1993.

[70] C. Hansel, A. Artola, and W. Singer, “Relation Between Dendritic
Ca2+ Levels and the Polarity of Synaptic Long-term Modifications in
Rat Visual Cortex Neurons,” European Journal of Neuroscience, vol. 9,
no. 11, pp. 2309–2322, 2006.

[71] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the National Academy
of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[72] A. Treves and E. T. Rolls, “What determines the capacity of autoassocia-
tive memories in the brain?,” Network: Computation in Neural Systems,
vol. 2, no. 4, pp. 371–397, 1991.

[73] A. Treves, “Graded-response neurons and information encoding in
autoassociative memory,” Physical Review A, vol. 42, no. 4, pp. 2418–
2430, 1990.

[74] C. W. Eurich and S. D. Wilke, “Multi-Dimensional Encoding Strategy of
Spiking Neurons,” Neural Computation, vol. 12, pp. 1519–1529, 2000.

[75] Y. Xu, X. Zeng, L. Han, and J. Yang, “A supervised multi-spike learning
algorithm based on gradient descent for spiking neural networks,” Neural
Networks, vol. 43, pp. 99–113, 2013.

[76] A. Delorme, J. Gautrais, R. van Rullen, and S. Thorpe, “SpikeNET: A
Simulator For Modeling Large Networks of Integrate and Fire Neurons,”
Neurocomputing, vol. 24, pp. 26–27, 1999.

[77] K. C. Tan, E. J. Teoh, Q. Yu, and K. C. Goh, “A hybrid evolutionary
algorithm for attribute selection in data mining,” Expert Systems with
Applications, vol. 36, no. 4, pp. 8616–8630, 2009.

[78] M. Fallahnezhad, M. H. Moradi, and S. Zaferanlouei, “A hybrid higher
order neural classifier for handling classification problems,” Expert
Systems with Applications, vol. 38, no. 1, pp. 386–393, 2011.

172

BIBLIOGRAPHY

[79] Q. Yu, H. Tang, K. C. Tan, and H. Yu, “A brain-inspired spiking neural
network model with temporal encoding and learning,” Neurocomputing,
vol. 138, pp. 3–13, 2014.

[80] D. I. Perrett, J. K. Hietanen, M. W. Oram, and P. J. Benson, “Organization
and functions of cells responsive to faces in the temporal cortex,”
Philosophical Transactions of the Royal Society of London, Series B,
vol. 335, pp. 23–30, 1992.

[81] C. P. Hung, G. Kreiman, T. Poggio, and J. J. DiCarlo, “Fast readout of
object identity from macaque inferior temporal cortex,” Science, vol. 310,
no. 5749, pp. 863–866, 2005.

[82] R. V. Florian, “Tempotron-Like Learning with ReSuMe,” in Proceedings
of the 18th international conference on Artificial Neural Networks, Part
II, ICANN ’08, (Berlin, Heidelberg), pp. 368–375, Springer-Verlag,
2008.

[83] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, no. 6582, pp. 520–522, 1996.

[84] R. Van Rullen and S. J. Thorpe, “Rate coding versus temporal order
coding: what the retinal ganglion cells tell the visual cortex.,” Neural
Computation, vol. 13, no. 6, pp. 1255–1283, 2001.

[85] L. Perrinet, M. Samuelides, and S. J. Thorpe, “Coding static natural
images using spiking event times: do neurons cooperate?,” IEEE
Transactions on Neural Networks, vol. 15, no. 5, pp. 1164–1175, 2004.

[86] J. Ranhel, “Neural Assembly Computing,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 6, pp. 916–927, 2012.

[87] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional
architecture of monkey striate cortex.,” The Journal of physiology,
vol. 195, no. 1, pp. 215–243, 1968.

[88] Burkart and Fischer, “Overlap of receptive field centers and representa-
tion of the visual field in the cat’s optic tract,” Vision Research, vol. 13,
no. 11, pp. 2113 – 2120, 1973.

[89] Riesenhuber and T. Poggio, “Hierarchical models of object recognition
in cortex,” Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025, 1999.

[90] T. Masquelier and S. J. Thorpe, “Unsupervised Learning of Visual Fea-
tures through Spike Timing Dependent Plasticity,” PLoS Computational
Biology, vol. 3, no. 2, 2007.

[91] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, pp. 411–426, 2007.

173

BIBLIOGRAPHY

[92] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio,
“A theory of object recognition: Computations and circuits in the
feedforward path of the ventral stream in primate visual cortex,” in AI
Memo, 2005.

[93] C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal
ganglion cells of the cat.,” The Journal of Physiology, vol. 187, no. 3,
pp. 517–552, 1966.

[94] M. J. McMahon, O. S. Packer, and D. M. Dacey, “The classical receptive
field surround of primate parasol ganglion cells is mediated primarily by a
non-GABAergic pathway.,” The Journal of Neuroscience, vol. 24, no. 15,
pp. 3736–3745, 2004.

[95] A. J. Yu, M. A. Giese, and T. Poggio, “Biophysiologically Plausible
Implementations of the Maximum Operation,” Neural Computation,
vol. 14, no. 12, pp. 2857–2881, 2002.

[96] I. Lampl, D. Ferster, T. Poggio, and M. Riesenhuber, “Intracellular
measurements of spatial integration and the MAX operation in complex
cells of the cat primary visual cortex,” Journal of Neurophysiology,
vol. 92, no. 5, pp. 2704–2713, 2004.

[97] T. J. Gawne and J. M. Martin, “Responses of primate visual cortical
neurons to stimuli presented by flash, saccade, blink, and external
darkening,” Journal of Neurophysiology, vol. 88, no. 5, pp. 2178–2186,
2002.

[98] F. Ponulak, “Analysis of the resume learning process for spiking neural
networks,” Applied Mathematics and Computer Science, vol. 18, no. 2,
pp. 117–127, 2008.

[99] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: a strategy employed by V1?,” Vision Research, vol. 37, no. 23,
pp. 3311–3325, 1997.

[100] J. Gautrais and S. Thorpe, “Rate coding versus temporal order coding: a
theoretical approach,” Biosystems, vol. 48, no. 1-3, pp. 57 – 65, 1998.

[101] D. S. Reich, F. Mechler, and J. D. Victor, “Independent and Redundant
Information in Nearby Cortical Neurons,” Science, vol. 294, pp. 2566–
2568, 2001.

[102] M. Greschner, A. Thiel, J. Kretzberg, and J. Ammermüller, “Complex
spike-event pattern of transient ON-OFF retinal ganglion cells.,” Journal
of Neurophysiology, vol. 96, no. 6, pp. 2845–2856, 2006.

[103] J. J. Hunt, M. R. Ibbotson, and G. J. Goodhill, “Sparse Coding on the
Spot: Spontaneous Retinal Waves Suffice for Orientation Selectivity,”
Neural Computation, vol. 24, no. 9, pp. 2422–2433, 2012.

174

BIBLIOGRAPHY

[104] W. Usrey and R. Reid, “Synchronous activity in the visual system,”
Annual Review of Physiology, vol. 61, no. 1, pp. 435–456, 1999.

[105] M. Wilson and B. McNaughton, “Dynamics of the hippocampal
ensemble code for space,” Science, vol. 261, no. 5124, pp. 1055–1058,
1993.

[106] A. Pouget, T. Dyan, and R. Zemel, “Information processing with
population codes,” Nature Reviews Neuroscience, vol. 1, pp. 125–132,
2000.

[107] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Internation-
al Journal of Neural Systems, vol. 19, no. 04, pp. 295–308, 2009.

[108] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[109] M. N. Shadlen and J. A. Movshon, “Synchrony unbound: review a critical
evaluation of the temporal binding hypothesis,” Neuron, vol. 24, pp. 67–
77, 1999.

[110] B. Widrow and M. Lehr, “30 years of adaptive neural networks:
Perceptron, madaline, and backpropagation,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1415–1442, 1990.

[111] M. Rossum, “A novel spike distance,” Neural Computation, vol. 13, no. 4,
pp. 751–763, 2001.

[112] F. Rieke, D. Warland, Rob, and W. Bialek, Spikes: Exploring the Neural
Code. Cambridge, MA: MIT Press, 1st ed., 1997.

[113] J. Hu, H. Tang, K. C. Tan, H. Li, and L. Shi, “A spike-timing-based
integrated model for pattern recognition,” Neural Computation, vol. 25,
no. 2, pp. 450–472, 2013.

[114] A. Artola, S. Bröcher, and W. Singer, “Different voltage-dependent
thresholds for inducing long-term depressiona and long-term potentiation
in slices of rat visual cortex,” Nature, vol. 347, pp. 69–72, 1990.

[115] A. Ngezahayo, M. Schachner, and A. Artola, “Synaptic activity
modulates the induction of bidirectional synaptic changes in adult mouse
hippocampus,” The Journal of Neuroscience, vol. 20, no. 7, pp. 2451–
2458, 2000.

[116] J. Lisman and N. Spruston, “Postsynaptic depolarization requirements for
LTP and LTD: a critique of spike timing-dependent plasticity,” Nature
Neuroscience, vol. 8, no. 7, pp. 839–841, 2005.

[117] J. A. Starzyk and H. He, “Spatio-temporal memories for machine
learning: A long-term memory organization.,” IEEE Transactions on
Neural Networks, vol. 20, no. 5, pp. 768–780, 2009.

175

BIBLIOGRAPHY

[118] V. A. Nguyen, J. A. Starzyk, W.-B. Goh, and D. Jachyra, “Neural network
structure for spatio-temporal long-term memory.,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 23, no. 6, pp. 971–983,
2012.

[119] Q. Yu, H. Tang, K. C. Tan, and H. Li, “Precise-spike-driven synaptic
plasticity: Learning hetero-association of spatiotemporal spike patterns,”
PLoS One, vol. 8, no. 11, p. e78318, 2013.

[120] D. Z. Jin, “Spiking neural network for recognizing spatiotemporal
sequences of spikes,” Physical Review E, vol. 69, no. 2, p. 021905, 2004.

[121] D. Z. Jin, “Decoding spatiotemporal spike sequences via the finite state
automata dynamics of spiking neural networks,” New Journal of Physics,
vol. 10, no. 1, p. 015010, 2008.

[122] S. Byrnes, A. N. Burkitt, D. B. Grayden, and H. Meffin, “Learning
a sparse code for temporal sequences using STDP and sequence
compression,” Neural Computation, vol. 23, no. 10, pp. 2567–2598,
2011.

[123] R. R. Llinas, A. A. Grace, and Y. Yarom, “In vitro neurons in mammalian
cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz
frequency range,” Proceedings of the National Academy of Sciences,
vol. 88, no. 3, pp. 897–901, 1991.

[124] J. Jacobs, M. J. Kahana, A. D. Ekstrom, and I. Fried, “Brain oscillations
control timing of single-neuron activity in humans,” The Journal of
Neuroscience, vol. 27, no. 14, pp. 3839–3844, 2007.

[125] K. Koepsell, X. Wang, V. Vaingankar, Y. Wei, Q. Wang, D. L. Rathbun,
W. M. Usrey, J. A. Hirsch, and F. T. Sommer, “Retinal oscillations carry
visual information to cortex,” Frontiers in Systems Neuroscience, vol. 3,
p. 4, 2009.

[126] C. Kayser, M. A. Montemurro, N. K. Logothetis, and S. Panzeri, “Spike-
phase coding boosts and stabilizes information carried by spatial and
temporal spike patterns,” Neuron, vol. 61, no. 4, pp. 597–608, 2009.

[127] N. Schoppa and G. Westbrook, “Regulation of synaptic timing in the
olfactory bulb by an A-type potassium current,” Nature Neuroscience,
vol. 2, no. 12, pp. 1106–1113, 1999.

[128] O. Shriki, D. Hansel, and H. Sompolinsky, “Rate models for conductance
based cortical neuronal networks,” Neural Computation, vol. 15, no. 8,
pp. 1809–1841, 2003.

[129] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning algorithm
for multiple spiking neural networks with application in epilepsy and
seizure detection,” Neural Networks, vol. 22, no. 10, pp. 1419–1431,
2009.

176

BIBLIOGRAPHY

[130] I. Sporea and A. Grüning, “Supervised learning in multilayer spiking
neural networks,” Neural Computation, vol. 25, no. 2, pp. 473–509, 2013.

[131] Y. Xu, X. Zeng, and S. Zhong, “A new supervised learning algorithm for
spiking neurons,” Neural Computation, vol. 25, no. 6, pp. 1472–1511,
2013.

[132] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[133] B. L. Lewis and P. O’Donnell, “Ventral tegmental area afferents to the
prefrontal cortex maintain membrane potential ‘up’states in pyramidal
neurons via D1 dopamine receptors,” Cerebral Cortex, vol. 10, no. 12,
pp. 1168–1175, 2000.

[134] J. Anderson, I. Lampl, I. Reichova, M. Carandini, and D. Ferster,
“Stimulus dependence of two-state fluctuations of membrane potential
in cat visual cortex,” Nature Neuroscience, vol. 3, no. 6, pp. 617–621,
2000.

[135] R. Gütig and H. Sompolinsky, “Time-warp–invariant neuronal process-
ing,” PLoS Biology, vol. 7, no. 7, p. e1000141, 2009.

[136] R. S. Johansson and I. Birznieks, “First spikes in ensembles of
human tactile afferents code complex spatial fingertip events,” Nature
Neuroscience, vol. 7, no. 2, pp. 170–177, 2004.

[137] S. McKennoch, D. Liu, and L. G. Bushnell, “Fast modifications
of the spikeprop algorithm,” in Neural Networks, 2006. IJCNN’06.
International Joint Conference on, pp. 3970–3977, IEEE, 2006.

177

Author’s Publications
The publications that were published, accepted, and submitted during the course
of the author are listed as follows.

Journals

1. Q. Yu, H. Tang, K. C. Tan, and H. Li, “Temporal Learning in Multilayer
Spiking Neural Networks Through Construction of Causal Connections”, to
be submitted, 2014.

2. Q. Yu, R. Yan, H. Tang, K. C. Tan, and H. Li, “A Spiking Neural Network
System for Robust Sequence Recognition”, IEEE Transactions on Neural
Networks and Learning Systems, resubmitted after revision, 2014.

3. Q. Yu, H. Tang, K. C. Tan, and H. Yu, “A Brain-inspired Spiking Neural
Network Model with Temporal Encoding and Learning”, Neurocomputing,
vol. 138, pp. 3-13, 2014.

4. Q. Yu, H. Tang, K. C. Tan, and H. Li, “Precise-Spike-Driven Synaptic
Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns”,
PLoS One, vol. 8, no. 11, pp. e78318, 2013.

5. Q. Yu, H. Tang, K. C. Tan, and H. Li, “Rapid Feedforward Computation by
Temporal Encoding and Learning with Spiking Neurons”, IEEE Transaction-
s on Neural Networks and Learning Systems, vol. 24, no. 10, pp. 1539-1552,
2013.
PS: This paper was selected as a featured article of TNNLS, and introduced
in IEEE Computational Intelligence Society. It was also selected as one of
research highlights, and highlighted in A∗STAR Research.

Conferences

1. Q. Yu, S. K. Goh, H. Tang, and K. C. Tan, “Application of Precise-Spike-
Driven Rule in Spiking Neural Networks for Optical Character Recognition”,
The 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems
(IES’2014), accepted, Nov. 10-12, 2014, Singapore.

2. B. Zhao, Q. Yu, R. Ding, S. Chen, and H. Tang, “Event-Driven Simulation of
the Tempotron Spiking Neuron”, in IEEE Biomedical Circuits and Systems
Conference (BioCAS), in press, Oct 22-24, 2014, Lausanne, Switzerland.

178

3. Q. Yu, H. Tang, and K. C. Tan, “A New Learning Rule for Classification of
Spatiotemporal Spike Patterns”, in IEEE International Joint Conference on
Neural Networks (IJCNN), in press, Jul 6-11, 2014, Beijing, China.

4. B. Zhao, Q. Yu, H. Yu, S. Chen, and H. Tang, “A Bio-inspired Feedforward
System for Categorization of AER Motion Events”, in IEEE Biomedical
Circuits and Systems Conference (BioCAS), pp. 9-12, Oct 31-Nov 2, 2013,
Rotterdam, Netherlands.

5. J. Dennis, Q. Yu, H. Tang, H. D. Tran, and H. Li, “Temporal Coding of Local
Spectrogram Features for Robust Sound Recognition”, in IEEE Acoustics,
Speech and Signal Processing (ICASSP), pp. 803-807, May 26-31, 2013,
Vancouver, Canada.
PS: This paper was highlighted in ScienceDaily Report as “Audio Processing
Computers Following the Brains Lead”, Nov 6, 2013.

6. Q. Yu, K. C. Tan, and H. Tang, “Pattern Recognition Computation in A
Spiking Neural Network with Temporal Encoding and Learning”, in IEEE
International Joint Conference on Neural Networks (IJCNN), pp. 466-472,
Jun 10-15, 2012, Brisbane, Australia.

7. H. Tang, Q. Yu, and K. C. Tan, “Learning Real-World Stimuli by Single-
Spike Coding and Tempotron Rule”, in IEEE International Joint Conference
on Neural Networks (IJCNN), pp. 466-472, Jun 10-15, 2012, Brisbane,
Australia.

8. C. H. Tan, E. Y. Cheu, J. Hu, Q. Yu, and H. Tang, “Associative Memory
Model of Hippocampus CA3 Using Spike Response Neurons”, in IEEE 18th
International Conference on Neural Information Processing (ICONIP), pp.
493-500, Nov 14-17, 2011, Shanghai, China.

179

