
COMPARATIVE STUDIES, FORMAL SEMANTICS AND
PVS ENCODING OF CSP#

SHI LING

NATIONAL UNIVERSITY OF SINGAPORE
2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48799149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMPARATIVE STUDIES, FORMAL SEMANTICS AND
PVS ENCODING OF CSP#

SHI LING

(B.Eng., East China Normal University (China), 2009)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources

of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Shi Ling
12 August 2014

3

g0900455
New Stamp

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to those who assisted

me, in one way or another, with my Ph.D study in the past five years.

First and foremost, I am deeply indebted to my supervisor Dr. Dong Jin Song for his

guidance, encouragement and insight throughout the course of my doctoral program. His

careful reading and constructive criticism of early drafts and many other works made this

thesis possible.

I am grateful to my mentors, Dr. Sun Jun and Dr. Liu Yang, for their valuable suggestions

and comments on my research works. I am also thankful to Dr. Qin Shengchao and Dr.

Zhao Yongxin for their research collaborations.

I would like to thank my thesis committee, Dr. Chin Wei Ngan and Dr. Hugh Anderson,

who have provided constructive feedback through GRP to this final thesis. My thanks also

goes to anonymous referees who have reviewed and provided valuable comments to previous

publications that are parts of this thesis.

To my labmates, thank you for your support and friendship, for the stimulating discussions,

and for all the fun we have had along the way.

I sincerely thank my parents Shi Jianhong and Gu Lanfeng, and my aunt Shi Juying for

their love, encouragement and support in my years of study.

Finally and most importantly, I would like to express my appreciation to my beloved husband

Chen Chunqing for his ceaseless love, encouragement, and support.

4

Contents

List of Tables . i

1 Introduction and Overview 1

1.1 Motivation and Goals . 1

1.2 Thesis Outline . 5

1.3 Acknowledgement of Published Work . 6

2 Background 9

2.1 The CSP# Language . 9

2.1.1 Syntax . 10

2.1.2 Concurrency . 12

2.1.3 A CSP# Example - the Peg Solitaire Game 12

2.2 UTP Theory . 15

2.3 Prototype Verification System . 17

3 Comparison of CSP Extensions and Tools 21

3.1 CSPM vs. CSP#: Syntax . 22

3.1.1 Data Perspective . 23

3.1.2 Process Perspective . 25

3.2 CSPM vs. CSP#: Operational Semantics . 27

3.2.1 SKIP . 28

i

3.2.2 CHAOS . 28

3.2.3 Channel Communication . 29

3.2.4 Shared variables . 32

3.2.5 Parallel composition . 34

3.2.6 Interleaving . 37

3.2.7 General choice . 38

3.2.8 Conditional choice . 38

3.2.9 Renaming . 39

3.2.10 Untimed timout . 40

3.2.11 Discussion . 40

3.3 Verification Tool Support . 41

3.3.1 Verification . 41

3.3.2 Experiment . 43

3.3.3 Discussion . 47

3.4 Summary . 47

4 A UTP Semantics for CSP# 49

4.1 Denotational Semantics of CSP# . 51

4.1.1 Semantic Model . 51

4.1.2 Semantics of Expressions and Programs 55

4.1.3 Semantics of Processes . 56

4.2 Algebraic Laws . 68

4.2.1 State Guard . 68

4.2.2 Sequential Composition . 69

4.2.3 Parallel Composition . 70

4.3 The Closed Semantics . 79

4.4 Summary . 81

ii

5 Encoding CSP# Denotational Semantics into PVS 85

5.1 The Theory of Semantic Model . 87

5.1.1 The Theory of Observational Variables 87

5.1.2 The Theory of Healthiness Conditions 89

5.2 The Theories of Expressions and Programs . 91

5.3 The Theory of Processes . 95

5.3.1 Primitives . 95

5.3.2 Sequential Composition . 96

5.3.3 Event prefixing . 97

5.3.4 Synchronous Channel Output/Input 97

5.3.5 Data Operation Prefixing . 99

5.3.6 Choice . 99

5.3.7 State Guard . 100

5.3.8 Parallel Composition . 101

5.3.9 Interleave . 107

5.3.10 Hiding . 107

5.3.11 Refinement . 109

5.3.12 Recursion . 109

5.4 Mechanical Proof of Laws . 110

5.5 Summary . 112

6 Conclusion 115

6.1 Contributions . 115

6.2 Future Work . 117

Bibliography 119

iii

Appendix A CSP# Models for Benchmark Systems 127

A.1 Readers-writers Problem . 127

A.2 Dinning Philosopher . 128

A.3 Milner’s Cyclic Scheduler . 129

A.4 The Peg Solitaire Game . 129

A.5 Knight’s Tour . 131

A.6 The Tower of Hanoi Puzzle . 132

A.7 Concurrent Stack . 133

A.8 Peterson’s Algorithm . 135

Appendix B Monotonicity of CSP# Process Combinators 137

iv

Summary

Concurrency becomes an important and necessary property of large and complex systems.
Many concurrent systems feature various interactions between execution processes, which
are often communications via synchronous/asynchronous message passing or through shared
resources. The intricate execution nature and common mission-critical feature of concurrent
systems demand rigorous modelling and analysis methods at the early system design stage.

Communicating Sequential Processes (CSP) is a well-known formal specification language to
model and analyse concurrent systems. Considerable efforts have been made to extend CSP
to support emerging system features like data aspects by integrating declarative specification
languages like Z, although the resulting CSP extensions lack automated analysis support.

Recently, Communicating Sequential Programs (CSP#) has been proposed to integrate high-
level CSP-like process operators with low-level program constructs on the shared variables.
Although these CSP-like extensions support similar types of concurrent systems, there are
subtle and substantial differences between them, not only modelling features, but also tool
support and verifiability. Our first work is to conduct comprehensive comparisons between
CSP# and CSPM (a noticeable CSP extension) from the perspectives of operational seman-
tics and verification capabilities together with eight benchmark systems. These comparisons
provide insights for users to select suitable languages/tools for various concurrent systems.

CSP# operational semantics has been defined and used in its PAT model checker. However,
it is not compositional, and lacks the support of compositional verification. Our second work
is to propose a compositional denotational semantics of CSP# using the Unifying Theories of
Programming (UTP). Our denotational semantics blends communication events with state
transitions containing shared variables, and captures all possible concurrency behaviours. It
also considers the interference of the environment to process behaviours. We further define
a set of algebraic laws capturing the distinct features of CSP#.

Proving our defined algebraic laws is important as such proofs can validate the correctness
of the CSP# denotational semantics, although manual proving is tedious and subtle mis-
takes can easily occur. Moreover, a high grade of automated verification can save much
human effort. Therefore, our third work is to encode CSP# denotational semantics into the
Prototype Verification System (PVS), an integrated framework for formal specification and
verification. Our encoding not only checks the semantics consistency, but also builds up a
theoretic foundation for mechanical verification of CSP# models.

Key words: Concurrency, Shared Variables, Denotational Semantics, UTP, En-
coding, PVS

v

List of Tables

3.1 Similar syntax among CSP, CSPM and CSP# 23

3.2 Experiment results on refinement checking . 44

3.3 Experiment results on solving puzzles . 45

3.4 Experiment results on shared variables . 46

3.5 Experiment results on LTL checking . 46

5.1 Predicate formalisation in PVS . 89

5.2 CSP# process syntax . 96

i

Chapter 1

Introduction and Overview

1.1 Motivation and Goals

Concurrency becomes an important and necessary property of widespread distributed sys-

tems such as networks of bank ATMs and Hadoop Mapreduce framework. Many concurrent

systems feature various interactions between execution processes, which are often commu-

nications via synchronous/asynchronous message passing or through shared resources. The

intricate execution nature and commonly mission-critical feature of such concurrent sys-

tems demand rigorous modelling and analysis methods at the early system design stage.

One approach is applying formal methods that are mathematically based languages, tech-

niques, and tools for the specification, development and verification of these concurrent

systems [17]. This approach has been increasingly adopted by industry [96]. For example,

Microsoft Hyper-V Hypervisor for virtualization (a technique allowing multiple guest oper-

ating systems to run concurrently on a single hardware platform) has been formally verified

to prevent the risk of malicious attack [18].

Formal specification languages, as the basis for applying formal methods, are used to model

1

1.1. MOTIVATION AND GOALS 2

high-level system behaviour and properties. There are mainly two groups of formal speci-

fication languages: one has focused on the data aspects of the system, for example, Z [81],

VDM (Vienna Development Method) [36] and B [2], while the other has emphasized on the

behaviour of the system, such as CSP (Communicating Sequential Processes) [29] and CCS

(Calculus of Communicating Systems) [49]. A language from one group can express only a

particular characteristic of a system. For example, Z notation, based on the set theory and

predicate logic, is used to specify the data states of the system; however, the associated data

operations are modelled in a declarative style, and cannot be executed. On the other hand,

process algebras, CSP for example, supports process constructs such as parallel composi-

tion, deterministic and non-deterministic choices to describe system behaviours, although

the data state and its operations cannot be concisely specified.

In order to solve the above problem, many specification languages integrating two or more

existing languages have been proposed. Examples on enhancing CSP include Circus [95]

(an integration of CSP and the Z language), CSP-OZ [23, 79] (an integration of CSP and

Object-Z [80]) and TCOZ [46] (an integration of Timed CSP [74] and Object-Z). Because

declarative specification languages like Z are very expressive and not executable, automated

analysing (in particular, model checking) systems that are modelled using these integrated

languages is extremely difficult. Another noticeable CSP extension is CSPM [62] that is a

machine-readable dialect of CSP. CSPM combines CSP with a functional programming lan-

guage. In addition, CSPM is supported by two analysis tools, i.e., FDR (Failures Divergence

Refinement) [45] and ProB [37], and has been applied to a number of systems [44, 70, 9].

Recently, CSP# [83] (short for Communicating Sequential Programs, pronounced as “CSP

sharp”) has been proposed to model and analyse concurrent systems. It integrates high-level

CSP-like process operators with low-level program constructs such as assignments and while

loop. Shared variables are directly supported in CSP#, and their operations are expressed

as procedural codes; namely, operations are represented as terminating sequential programs,

1.1. MOTIVATION AND GOALS 3

which can be composed using the high-level (CSP-like) compositional operators. CSP#

is supported by a general model checker PAT [82, 85] (short for Process Analysis Toolkit,

available at http://www.patroot.com) for system analysis.

Although both CSP# and CSPM support CSP-like modelling notations and can deal with

similar types of concurrent systems, there are subtle and substantial differences between

them. For example, concurrency is captured differently; CSPM supports synchronous chan-

nel communications only, while CSP# supports both synchronous/asynchronous channels

and shared variables. Those differences can lead to different verification capabilities empow-

ered by their respective analysis tools, i.e., FDR and ProB for CSPM , and PAT for CSP#.

Currently no comprehensive comparison of these CSP extensions is available, although such

effort is important and desired for users to select appropriate languages/tools for various

concurrent systems from the perspectives of modelling and verification.

In this thesis, we conduct a systematic comparison of CSP# and CSPM . We firstly compare

the syntactic differences in terms of data and process perspectives. To explore the deep

difference of process operators, we next investigate the operational semantics of processes,

and develop certain translation rules between these two languages. Last but not least, we

compare their model checking techniques and measure their verification capabilities through

eight benchmark systems. These benchmarks are designed from different perspectives, i.e.,

specification models involving puzzle solving and shared variables, and verification properties

covering refinement checking and LTL checking.

Our above comparison focuses on the operational semantics of CSP# that interprets the be-

haviour of CSP# models using labelled transition systems (LTS). Nevertheless, the existing

CSP# operational semantics [83] is not fully abstract. Two behaviourally equivalent pro-

cesses with respect to the operational semantics may behave differently under some process

context which involves shared variables, for instance. In other words, the operational seman-

tics of CSP# is not compositional and thus lacks the support of compositional verification of

http://www.patroot.com

1.1. MOTIVATION AND GOALS 4

process behaviours. Meanwhile, model checking method based on the operational semantics

is certainly limited by the state explosion problem. In practice, the method can only be

used for checking the finite state transition systems. Therefore, there is a need for defining

a compositional denotational semantics to explain the notations of the CSP# language and

further developing theorem proving approach to complement the model checking approach

for system verification, which are exactly the second and third piece work in this thesis.

Denotational semantics formalises the meaning of a language by constructing mathematical

objects, called denotations, to represent the expressions in the language [94]. To define CSP#

denotational semantics, we apply the Unifying Theories of Programming (UTP) [31], a uni-

fied framework for defining denotational semantics for programs across different program-

ming paradigms, to constructing a semantic model which can cover not only communications

but also shared variable paradigm. In our work, we firstly define an observation-oriented

denotational semantics for CSP# based on the UTP framework in an open environment,

where process behaviours can be interfered with by the environment. We also prove the com-

positionality properties of our proposed semantics for CSP# process combinators. Secondly,

to make the semantics of CSP# more complete, on one hand, we construct the algebraic

semantics by defining a set of algebraic laws [30] concerning the distinct features of CSP#.

On the other hand, we define a closed semantics to capture restrictive behaviours where

the model of a whole system has been built or the behaviour of the environment has been

modelled.

Proving our deduced algebraic laws is important as such proofs can validate the correctness

of our proposed CSP# denotational semantics. However, manual proving is tedious, and

subtle mistakes or omissions can easily occur at any stage of the proofs. Moreover, a high

grade of automated verification of system properties can save much human effort. Therefore,

a tool that allows semantics mechanisation and supports mechanical proof is needed. In

this thesis, we mechanise our defined denotational semantics into the Prototype Verification

1.2. THESIS OUTLINE 5

System (PVS) [54], which is an integrated framework for formal specification and verification.

Our mechanisation covers the semantic model, expressions, sequential programs, and CSP#

processes, based on PVS built-in set theories. We use the predefined function subset?

to represent the refinement relationship, and formalise the fixed point theory to represent

recursive processes. In addition, we apply the PVS prover to validating the consistency of

the semantics and mechanically proving essential laws of our formalisations so as to check

the correctness of our encoding.

1.2 Thesis Outline

Our main work consists of the comprehensive comparison of CSP# and CSPM in terms

language syntax, operational semantics and reasoning power of their supporting tools, the

construction of CSP# denotational semantics using the UTP framework, and the develop-

ment of an interactive theorem proving framework for system verification.

Chapter 2 gives the background knowledge of specification languages and tools used in the

presented work. We first review the CSP# specification language. Next we briefly describe

the UTP theory with three essential elements. Lastly, we introduce the PVS specification

language and its interactive prover.

Chapter 3 illustrates the comprehensive comparison of CSP# and CSPM . Firstly, we show

the syntactic differences of these two languages followed by comparing the operational se-

mantics. We also discuss the possible transformation between CSP# and CSPM models.

Secondly, we characterise various reasoning techniques and verifiable properties of FDR,

ProB and PAT, respectively. Next, we explore the strengths and limits of the languages and

tools by modelling and verifying eight benchmark systems, each of which is designed to show

particular features of the languages or the tools. Lastly, we investigate the reasons behind

the experiment results; particularly, the semantic differences between CSP# and CSPM lead

1.3. ACKNOWLEDGEMENT OF PUBLISHED WORK 6

to different state spaces and optimizations in model checking.

Chapter 4 provides a UTP semantics for CSP#. We firstly develop CSP# semantic model

followed by detailed process semantics, based on the UTP framework in an open environ-

ment. Our semantic model includes observational variables which record process behaviours

and healthiness conditions that identify the valid predicates of the theory for CSP#. We

also define refinement rules to check the equivalence of two CSP# specifications. Secondly,

we present a set of algebraic laws that concerns the distinct features of CSP#. All the laws

are proved based on the denotational semantics. Lastly, we derive a closed semantics from

the proposed open semantics by considering a closed environment.

Chapter 5 mechanises the denotational semantics of CSP# in PVS. First we formalise the

definition of observational variables and healthiness conditions in PVS. Based on this formal-

isation, we encode the syntax and semantics of arithmetic expressions, Boolean expressions

and sequential programs. Further, the semantics of processes and refinement relationship is

mechanised. Lastly, we conduct mechanical proofs of important algebraic laws and lemmas

based on the encoding in PVS.

Chapter 6 concludes the thesis with contributions and some possible future directions of

research.

1.3 Acknowledgement of Published Work

Most of the work presented in this thesis has been published in international conference

proceedings.

• An Analytical and Experimental Comparison of CSP Extensions and Tools [77].

This paper was published at the 14th International Conference on Formal Engineering

Methods (ICFEM’2012). This work is presented in Chapter 3.

1.3. ACKNOWLEDGEMENT OF PUBLISHED WORK 7

• A UTP Semantics for Communicating Processes with Shared Variables [78].

This paper was published at the 15th International Conference on Formal Engineering

Methods (ICFEM’2013). This work is presented in Chapter 4.

In addition, the work in Chapter 5 has been submitted for publication.

We have published two papers which are relevant to my future work but not part of this

thesis. The topics covered by these papers are:

• Modeling and Verification of Transmission Protocols: A Case Study on

CSMA/CD Protocol [76]. We conduct a case study on a transmission protocol,

CSMA/CD protocol. We first model the protocol using the Stateful Timed CSP

specification language, and then verify critical properties such as deadlock freeness

and collision detection in a given bounded delay using the PAT tool.

• Modeling and Verifying Hierarchical Real-time Systems using Stateful Timed

CSP [84]. We propose a specification language called Stateful Timed CSP and an au-

tomated approach for verifying Stateful Timed CSP models. We further enhance the

PAT model checker with the techniques to support the analysis of real-time systems

and show its usability/scalability via verification of real-world systems.

1.3. ACKNOWLEDGEMENT OF PUBLISHED WORK 8

Chapter 2

Background

In this chapter, we introduce some background information on the notations, theories and

tools that are employed in this thesis. This chapter is divided into three parts. Section 2.1

introduces CSP# including its syntax and concurrency mechanisms. Section 2.2 gives a

brief description of the UTP theory. The PVS specification language and interactive prover

are presented in Section 2.3.

2.1 The CSP# Language

CSP# [83] integrates CSP-like compositional operators with sequential program constructs

such as assignments and while loops. It directly supports shared variables which are not

available in CSP [29]. Shared variables can be updated in sequential programs. Besides,

CSP# is supported by a general model checker PAT [85].

9

2.1. THE CSP# LANGUAGE 10

2.1.1 Syntax

A CSP# model may consist of definitions of constants, variables, channels, and processes. A

constant is defined by keyword #define followed by a name and a value, e.g., #define max 5.

A global variable is declared with keyword var followed by a name and an initial value, e.g.,

var x = 2. A channel is declared using keyword channel with a name and a non-negative

buffer size, e.g., channel ch 2. A process is specified in the form of Proc(i1, i2, . . . , in) =

ProcExp, where Proc is the process name, (i1, i2, . . . , in) is an optional list of process pa-

rameters and ProcExp is a process expression. The BNF description of ProcExp is shown

below with short descriptions, where P and Q are processes, a is an action, e is a non-

communicating event, ch is a channel, exp is an arithmetic expression, m is a bounded

variable, prog is a sequential program updating global shared variables1, b is a Boolean

expression, and X1 is a set of actions.

P ::= Stop | Skip – primitives
| a → P – event prefixing
| ch!exp → P | ch?m → P(m) – channel output/input
| e{prog} → P – data operation prefixing
| [b]P – state guard
| if (b) {P} else {Q} – conditional choice
| P 2 Q | P u Q | P [] Q – external/internal/general choices
| P ; Q – sequential composition
| P \ X1 – hiding
| P ‖ Q | P ||| Q – parallel/interleaving
| P 4 Q – interrupt
| ref (Q) – process reference

In the above BNF description, process Stop is the process that communicates nothing and

Skip is the process that terminates successfully. Event prefixing a → P engages in action a

first and afterwards behaves as process P .

1The grammar rules of the sequential program can be found in PAT user manual.

2.1. THE CSP# LANGUAGE 11

In CSP#, there are two types of channels, synchronous and asynchronous. A synchronous

channel with buffer size 0 sends/receives messages synchronously and its communication is

achieved by a pairwise handshaking mechanism. Specifically, a process ch!exp → P which is

ready to perform an output through ch will be enabled if another process ch?m → P(m) is

ready to perform an input through the same channel ch at the same time, and vice versa. An

asynchronous channel with pre-defined buffer size sends/receives messages asynchronously.

To be specific, process ch!exp → P evaluates the expression exp and puts the value of exp

into the tail of the respective buffer and behaves as P ; process ch?m → P(m) gets the top

element in the respective buffer, assigns it to variable m and then behaves as P .

In process e{prog} → P , prog is executed atomically with the occurrence of e. Process

[b]P waits until condition b becomes true and then behaves as P . Conditional choice

if (b) {P} else {Q} behaves as P if b evaluates to true, and behaves as Q otherwise.

There are three types of choices in CSP#: external choice P 2 Q is resolved only by the

occurrence of a visible event, internal choice P u Q is resolved non-deterministically, and

general choice P [] Q is resolved by any event.

Sequential composition P ; Q behaves as P until P terminates and then behaves as Q .

Process P \ X1 hides all occurrences of actions in X1. In process P ‖ Q , P and Q run in

parallel, and they synchronise on common communication events. In contrast, in process

P ||| Q , P and Q run independently (except for communications through synchronous

channels and shared variables). Process P 4 Q behaves as P until the first occurrence of a

visible event from Q . A process expression may be given a name for referencing. Recursion

is supported by process referencing.

2.1. THE CSP# LANGUAGE 12

2.1.2 Concurrency

As mentioned earlier, concurrent processes in CSP# can communicate through shared vari-

ables, events, or channels.

Shared variables in CSP# are globally accessible; they can be read and written by different

(parallel) processes. Shared variables can be used in guard conditions, sequential programs

associated with non-communicating events, and expressions in the channel outputs; nonethe-

less, they can only be updated in sequential programs. Furthermore, to avoid any possible

data race problem when programs execute atomically, sequential programs from different

processes are not allowed to execute simultaneously.

In CSP#, a synchronisation event, which is also called an action, occurs instantaneously,

and its occurrence may require simultaneous participation by more than one processes. In

contrast, a communication over a synchronous channel is two-way between a sender process

and a receiver process. Namely, a handshake communication ch.exp occurs when both

processes ch!exp → P and ch?m → Q(m) are enabled simultaneously. We remark that this

two-way synchronisation is different from CSPM where multi-part synchronisation between

many sender and receiver processes is allowed [62].

2.1.3 A CSP# Example - the Peg Solitaire Game

We here use the peg solitaire game as an example to elaborate the expressiveness of CSP#.

This example is also one of the eight benchmark systems used in Chapter 3, Section 3.3.2.

Peg solitaire game is a game for one player to move pegs on a board with holes. A valid

move is to jump a peg orthogonally over an adjacent peg into a hole which is two positions

away and then remove the jumped peg. There are four orthogonal directions, namely, up,

down, left, and right. The goal is to empty the entire board except for a solitary peg in the

2.1. THE CSP# LANGUAGE 13

initial empty hole. The following picture shows the starting of this game with 32 pegs.

We first model the board as a global shared variable which is a two-dimension array.

var board [H][W] =
[X ,X ,P ,P ,P ,X ,X ,
X ,X ,P ,P ,P ,X ,X ,
S ,P ,P ,P ,P ,P ,P ,
P ,P ,P ,E ,P ,P ,P ,
P ,P ,P ,P ,P ,P ,P ,
X ,X ,P ,P ,P ,X ,X ,
X ,X ,P ,P ,P ,X ,X];

Here H and W are the size of the arrow and column for the board, X is a non-slot, P is a

slot with a peg and E is an empty slot. All of them are defined as constant integers.

#define X − 1; #define P 1; #define E 2; #define W 7; #define H 7;

Next we capture four directions of jumps of a peg. Each jump is represented by a process. For

example, process Up(i , j) denotes that a peg at the position (i , j) jumps upwards, provided

its upside position is occupied by a peg and the destination is empty (represented by guard

[board [i−2][j] == E && board [i−1][j] == P]); after the jump, the original and the jumped

positions become empty (by the sequential program board [i − 2][j] = P ; board [i − 1][j] =

E ; board [i][j] = E). Here variable pegsCounter indicates the number of existing pegs on

the board; initially its value is 32, and the value is reduced by 1 after a valid move (by

2.1. THE CSP# LANGUAGE 14

pegsCounter − −). Process Peg(i , j) uses external choice to model all possible jumps of a

peg.

var pegsCounter = 32;
Up(i , j) = [i − 2 >= 0]([board [i − 2][j] == E && board [i − 1][j] == P]

up{board [i − 2][j] = P ; board [i − 1][j] = E ; board [i][j] = E ;
pegsCounter −−; } → Game());

Left(i , j) = [j − 2 >= 0]([board [i][j − 2] == E && board [i][j − 1] == P]
left{board [i][j − 2] = P ; board [i][j − 1] = E ; board [i][j] = E ;

pegsCounter −−; } → Game());
Down(i , j) = [i + 2 < H]([board [i + 2][j] == E && board [i + 1][j] == P]

down{board [i + 2][j] = P ; board [i + 1][j] = E ; board [i][j] = E ;
pegsCounter −−; } → Game());

Right(i , j) = [j + 2 <W]([board [i][j + 2] == E && board [i][j + 1] == P]
right{board [i][j + 2] = P ; board [i][j + 1] = E ; board [i][j] = E ;

pegsCounter −−; } → Game());
Peg(i , j) = [board [i][j] == P](Up(i , j) 2 Left(i , j) 2 Down(i , j) 2 Right(i , j));

To complete our model, process Game covers the behaviour of any peg on the board using

the external choice.

Game() = 2 i : {0..H − 1}; j : {0..W − 1}@ Peg(i , j);

We can leverage the PAT model checker to deduce a solution by checking a reachability

assertion, where the goal condition specifies that only one peg is on the board at the initial

empty hole.

#define initEmptyX 3; #define initEmptyY 3;
#define goal pegsCounter == 1 && board [initEmptyX][initEmptyY] == P ;
#assert Game() reaches goal ;

2.2. UTP THEORY 15

2.2 UTP Theory

The Unifying Theories of Programming (UTP) [31] is proposed by Hoare and He, to deal

with program semantics. It is a unified framework to combine denotational semantics, op-

erational semantics, and algebraic semantics for formal specification, design and implemen-

tation of programs and computer systems. UTP uses the theory of relations as a unifying

basis to define denotational semantics for programs across different programming paradigms,

e.g., imperative programming paradigm (C language for instance), functional programming

paradigm (such as LISP [47], ML [50, 89], and Haskell [33]), and high order programming

paradigm (e.g., Java language).

For each programming paradigm, programs are generally interpreted as relations between

initial observations and subsequent (intermediate or final) observations of the behaviours

of their execution. Relations are represented as predicates over observational variables to

capture all aspects of program behaviours.

Theories of programming paradigms in the UTP framework are differentiated by their al-

phabet, signature and healthiness conditions. The alphabet is a set of observational variables

recording external observations of the program behaviour. The signature defines the syntax

to represent the elements of a theory. The healthiness conditions are a selection of laws

identifying valid predicates that characterise a theory.

The observational variables in the alphabet of a theory record the observations that are

relevant to program behaviours. Variables of initial observations are undashed, constitut-

ing the input alphabet of a relation, and variables of subsequent observations are dashed,

constituting the output alphabet of a relation. For example, in the imperative paradigm,

variables x , y , . . . , z record the initial state of program variables, and x ′, y ′, . . . , z ′ record the

final state of program variables. In a theory of reactive processes, Boolean variable wait

distinguishes the intermediate observations of a waiting state from the observations of a

2.2. UTP THEORY 16

final state for reactive processes; Boolean variable ok records the stability of program, i.e.,

whether it is in a stable state or in a divergent state; variable tr records the interaction

between a process and its environment; ref records the set of events that could be refused

before the observation.

The signature of a theory is a set of atomic components called primitives and combinators.

The primitives in the signature of relational programming are assignment x := e, empty

skip, top > for miracle and bottom ⊥ for abort. The combinators are conditional P / b .Q ,

composition P ; Q , nondeterminism P uQ and recursion µX • F (X). Here, x is a variable

in the alphabet, e is an expression, P and Q are predicates describing behaviours of two

programs, X is a recursive variable standing for a predicate, and F is a monotonic function.

A healthiness condition is associated with observational variables in the alphabet. It is

defined by an idempotent function φ on predicates. Every healthy program represented by

predicate P must be a fixed point: P = φ(P).

For example, if a program has not started, the observation of its behaviour is impossible.

This can be captured by a healthiness condition H (P) = ok ⇒ P requiring that program

satisfies the following equation:

P = H (P) or P = ok ⇒ P .

In the above example, if Boolean variable ok is true, then program starts and its behaviour

is described by predicate P . If ok is false, then its behaviour is not restricted as predicate

ok ⇒ P is true.

2.3. PROTOTYPE VERIFICATION SYSTEM 17

2.3 Prototype Verification System

Prototype Verification System (PVS) [54, 19] is an integrated environment for the develop-

ment and analysis of formal specifications. It combines an expressive modelling language

with an interactive prover that has powerful theorem proving capabilities.

The specification language is based on classical typed higher-order logic. Its type system

consists of base types such as Boolean (bool), integer (int), real numbers (real) and type

constructors for function types, tuple types, and record types. A function type is usually of

the form [D -> R], where D and R are type expressions, denoting the domain and range of

the function respectively. Tuple types (also called product types) have the form [T1, ...,

Tn], where the Ti are type expressions. Projection function ‘1 is used to project the ith

element of the tuple. Record types are of the form [# a1:T1, ..., an:Tn #]. The ai are

called record accessor or fields and the Ti are types. For example, a record type R consisting

of an integer number x and a Boolean variable b is specified as R:TYPE = [# x: int, b:

bool], given a record r: VAR R, its x-component is accessed by r‘x.

The type system of the PVS is augmented with predicate subtypes and dependent types.

Subtypes can be specified in two different ways. Given a type X and predicate P on the

elements of X, a subtype of X with respect to P can be specified as either T: TYPE={x:X|P(x)}

or T: TYPE = (P). The type checking of subtypes is undecidable, and may lead to proof

obligations, called type correctness conditions (TCCs). Users are required to discharge these

TCCs with the assistance of the PVS prover.

Another important feature of PVS type system is the provision of abstract datatypes. Famil-

iar data structures of programming languages such as lists and binary tress can be specified

in PVS using the abstract datatypes. For example, the following PVS specification declares

a list using abstract datatype.

2.3. PROTOTYPE VERIFICATION SYSTEM 18

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

To be specific, list is parametric in type T, and has two constructors null and cons:

null takes no arguments and cons takes two arguments, where the first is of the type T

and the second is a list. Two predicates null? and cons? are recognisers: null? holds for

exactly those elements of the list datatype that are identical to null, and cons? holds for

exactly those elements of the list datatype that are constructed using cons. Note that two

accessors, car and cdr, correspond to the two arguments of cons; they can only be applied

to lists which satisfy the cons? predicate.

A PVS specification is given as a collection of parameterised theories. Each theory may

consist of declarations, definitions and formulas. Declarations are used to define types, vari-

ables, constants, and so on. Type declarations introduce new type names to the theory.

Variable declarations introduce new variables with their associated types. In addition, vari-

ables are local when they are defined in binding expressions which may involve keywords

such as FORALL for the universal quantifier ∀ and LAMBDA for the symbol λ in lambda ex-

pressions. Constant declarations introduce new constants with their associated types and

an optional value, and constants can be functions, relations or the usual (0-ary) constants.

For example, the declaration f: [nat -> nat] = (lambda (x: nat): x + 1) defines

a total function f (by the symbol ->) where, the domain and range are natural numbers,

and its output value is one more than input value.

PVS supports recursive definitions, which are total functions. Hence, it must be ensured

that all recursive functions terminate, specified by a measure expression. The measure

expression follows the MEASURE keyword and ends with an optional order relation following

a BY keyword. The recursive definition generates a termination TCC which denotes that

2.3. PROTOTYPE VERIFICATION SYSTEM 19

the measure function applied to recursive arguments decreases with respect to a well-formed

ordering. A proof obligation must be discharged by users.

Formula can be declared to introduce axioms using the keyword AXIOM and theorems using

the keyword LEMMA. Axioms can be referenced by the command lemma during proofs. The

body of the formula is a Boolean expression. Moreover, PVS supports the name overloading

technique which allows the same name from different theories or within a single theory. The

collections of theories are organised by means of importings.

The PVS prover [75] is based on a sequent calculus and proofs are constructed interactively

by building a proof tree. The goal of users is to construct a complete proof tree where all of

the leaves are recognised true. Each node in a proof tree is a proof goal which is a sequent

consisting of a list of formulas called antecedents and a list of formulas called consequents.

The intuitive interpretation of a proof goal is that the conjunction of the antecedents implies

the disjunction of the consequents.

The PVS prover provides a collection of powerful proof commands to perform induction,

propositional and equality reasoning, rewriting, model checking and so on. For example, a

frequently used proof command is grind, which does skolemization, instantiation, simplifi-

cation, rewriting and applying decision procedures.

2.3. PROTOTYPE VERIFICATION SYSTEM 20

Chapter 3

Comparison of CSP Extensions and

Tools

Communicating Sequential Processes (CSP), a prominent member of the process algebra

family, has been designed to formally model concurrent systems. It has been applied to

a variety of safety-critical systems [96, 7, 27]. With the increasing size and complexity of

concurrent systems, CSP becomes deficient to model systems with non-trivial data structures

(e.g., array) or functional aspects. To solve this problem, many considerable efforts on

enhancing CSP have been made. Two noticeable extensions with automated tool support

are CSPM and CSP#. The former combines CSP with a functional programming language,

and the latter integrates CSP-like process operators with sequential programs. Although

these CSP-like extensions support similar types of concurrent systems, subtle and substantial

differences exist including not only concurrency mechanisms provided by the languages, but

also verification capabilities empowered by their analysis tools.

A comprehensive investigation of these CSP extensions from various perspectives would

certainly facilitate users to determine appropriate languages/tools for concurrent systems

21

3.1. CSPM VS. CSP#: SYNTAX 22

with specific characteristics. The above importance motivates us to conduct a systematic and

thorough comparison between CSPM and CSP# as the first attempt to our best knowledge.

Our comparison can benefit users from the following three aspects. First, assessment criteria

are proposed for choosing a suitable modelling language, which includes special system

features such as shared variables and desired properties like compositional refinement. Next,

our experiments with eight benchmark systems offer in-depth qualitative analysis of tool

capability and efficiency, specifically, FDR [45] and ProB [37] for CSPM and PAT [85] for

CSP#. Last but not least, transformation discussed in this chapter can help users to change

their models between CSPM and CSP#, and hence to utilize different reasoning power of

their respective reasoning tools.

This remainder of the chapter is organized as follows. Section 3.1 shows syntactic differences

between CSPM and CSP# in terms of data and process perspectives. Section 3.2 compares

the operational semantics of CSPM and CSP#. Section 3.3 investigates the properties

and verification techniques of FDR, ProB and PAT with experiments on eight benchmark

systems. Section 3.4 concludes this chapter with the discussion of related work.

3.1 CSPM vs. CSP#: Syntax

CSPM enriches CSP with an expression language that is based on functional foundations.

It mainly uses event synchronisation to specify concurrent systems, and supports operators

like linked parallel P [c < − > c′]Q in which two different channels c and c′ from processes

P and Q respectively run synchronously. CSP# not only inherits event synchronisation

and compositional process constructs from CSP, but also supports additional features like

asynchronous channel communication, imperative programs, etc.

In this section, we elaborate the differences between these two languages in terms of their

3.1. CSPM VS. CSP#: SYNTAX 23

syntax. Table 3.1 shows common process definitions of CSP, CSPM and CSP#1, where P

(and Q) is a process with an optional list of parameters; a is an event name; A and A′ are

sets of event names and channel expressions; b is a Boolean expression; c and c′ are channel

names; e is an expression; x and x ′ are variables; and V is a set of accepted values. We

illustrate the detailed differences from data and process perspectives, shown in Sections 3.1.1

and 3.1.2 respectively.

CSP CSPM CSP# Description
STOP STOP Stop deadlock
SKIP SKIP Skip termination
CHAOS CHAOS(A) - chaotic process
a → P a → P a → P event prefixing
c!e → P c?x?x ′ : V !e → P c!e → P channel
c?x → P c?[b]x → P communication
P 2 Q P [] Q P [∗] Q external choice
P u Q P |∼| Q P <> Q internal choice
P ; Q P ; Q P ; Q sequential composition
P \ A P \ A P \ A hiding
x := e - x := e assignment
P C b B Q if b then P else Q if b then P else Q conditional choice

P ‖ Q
P [| A |]Q
P [A || A′]Q P ‖ Q parallel composition
P [c < − > c′]Q

P ||| Q P ||| Q P ||| Q interleaving
P 4Q P/\Q P interrupt Q interrupt

Table 3.1: Similar syntax among CSP, CSPM and CSP#

3.1.1 Data Perspective

CSPM supports functional paradigm, where higher-order functions and declarative pro-

gramming are supported. In addition, process parameters in CSPM can be processes, func-

tions, and channels. This is not available in CSP# which adopts imperative paradigm,

although this limitation may be resolved partially through ‘clever’ modelling. For in-

1Note that these are CSP# representations in PAT text editor.

3.1. CSPM VS. CSP#: SYNTAX 24

stance, a CSPM concrete process System = P(Sys1,Sys2) associated with an abstract

process P(P1,P2) = a → P1 [] b → P2 can be translated to a CSP# concrete process

System = a → Sys1 [∗] b → Sys2, where Sys1 and Sys2 are processes. However, it may not

be possible to specify abstract process behaviour (e.g., process P in this example) in CSP#,

whose parameters are processes.

CSPM enables rich data expressions such as sequences, sets, Boolean, tuples, and lambda

calculus. It also allows users to define data types using the reserved word “datatype”. CSP#

directly supports integers, Boolean, array of integers or Boolean. In addition, it supports

user-defined data types and corresponding operations using imperative languages like C#2,

C, or Java. Functions can be declared in CSPM following the functional paradigm, while

in CSP#, they are encoded as processes or defined as static C# methods (which can be

invoked via method call in CSP# models).

A channel in CSPM is declared with an explicit type. Values communicated through a

channel must be in their type range; otherwise, an error is reported at run time by FDR and

ProB. Moreover, CSPM is dynamically typed in FDR; namely, there is no way to declare the

types of functions and variables (process parameters), while ProB can type check the CSPM

models in a dynamic or (optional) static way [38]. In contrast, CSP# is weak typed (a.k.a.

loose typing) and therefore no type information is required when declaring a variable or

channel. Channels are declared with its name and buffer size. If the buffer size is 0, then it

is declared as a synchronous channel, otherwise it is an asynchronous channel. The process

parameters and channel input variables can take in values with different types at different

time. As long as there is no type mismatch (e.g., using an integer as a guard condition), the

execution can proceed; otherwise, invalid type casting exception is raised at run time.

2C# is the best supported language in PAT and used as the representative language in this chapter.

3.1. CSPM VS. CSP#: SYNTAX 25

3.1.2 Process Perspective

One big difference is that CSP# directly supports shared variables. Unlike CSPM which

excludes assignments of shared variables [45], CSP# treats assignments as an important

modelling feature. In CSP#, an event can be associated with an imperative program, which

is executed atomically together with the occurrence of the event. For instance, an event

associated with a program (referred to as a data operation) is written as a{prog} → P

where prog is the program and a is an event name. We remark that a shared variable

can be modelled as a process parallel to the one that uses the variable (see [29] and [66]).

Recently, shared variable analyser (SVA) [66], a front-end of FDR, has been developed to

convert programs (like C programs) with shared variables into CSPM models, in which

shared variables are modelled as variable processes; reading from/writing to those shared

variables are carried out over channels. We illustrate the modelling of shared variables in

Section 3.2.4.

Asynchronous channels, as a popular and practical type of communication mechanism for

networked systems, are directly supported in CSP#. Given an asynchronous channel ac with

a positive buffer size, ac!e → P evaluates expression e with the current variable valuation,

puts the value into the tail of the respective buffer for ac and then behaves as P . In contrast,

ac?x → P (and ac?[b]x → P) gets the top element from the respective buffer, assigns it

to variable x and then behaves as P (the latter further constrains the received data to

satisfy the Boolean condition b). Buffers store messages in a first-in-first-out (FIFO) order.

Notice that asynchronous channels in CSP# are similar to those supported in Promela [32].

Although asynchronous channels are not directly supported in CSPM , they can be modelled

as buffer processes by event synchronisation, which will be shown in Section 3.2.3.

In CSPM , users are required to indicate synchronised events in three kinds of parallel com-

positions, which are, sharing (P [| A |]Q) that runs processes P and Q in parallel and forces

3.1. CSPM VS. CSP#: SYNTAX 26

them to synchronise on events in set A, alphabetized parallel (P [A ‖ A′]Q) that runs P

and Q in parallel, allowing P and Q to only perform events from A and A′ respectively,

and forcing P and Q to synchronise on common events from A and A′, and linked parallel

(P [c ↔ c′]Q) that runs P and Q in parallel, forcing them to synchronise on the c and c′

events and then hides the synchronised events. On the other hand, CSP# supports only

alphabetized parallel composition and frees users from specifying explicit alphabets of pro-

cesses in parallel; a sophisticated procedure [83] calculates automatically a default alphabet

of a process which is the set of events that constitute the process expression. Nevertheless,

this procedure may not work when an event name consists of global variables or process

parameters which change through recursive calls; in such a case, users need to specify the

alphabet of a process. Notice that in order to avoid data race, data operations are not a

part of the alphabet and therefore are never synchronised.

In CSP#, an event can have the name tau to represent the invisible event τ in event prefixing

or data operations, e.g., tau → Stop or tau{prog} → Stop. With the support of tau event,

users can avoid using hiding operator to explicitly hide some visible events by naming them

tau. External and internal choices are supported in both languages. Moreover, CSP#

allows general choice P []Q in which the choice is resolved by any event. This operator is

more like the CCS + operator, which can be resolved by a τ event performed by either

process. Nonetheless, the general choice operator can be simulated in CSPM [65].

Besides the above common conditional choice, CSP# copes with two additional types of

conditional choices to facilitate modelling: atomic conditional choice ifa b {P} else {Q}

and blocking conditional choice ifb b {P}. With the former, the checking of condition b is

to be conducted atomically with the occurrence of the first event in P or Q . The latter is

blocked when b is unsatisfied.

Both CSPM and CSP# define Boolean guard b&P and [b]P respectively; a process waits

until condition b becomes true and then behaves as P . Replicated process operators, such as

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 27

replicated external/internal choices, replicated parallel and interleaving, are also supported

in both languages. Chaotic process (CHAOS(A)), event renaming (P [[c ← c′]]), and untimed

timeout (P [> Q) defined in CSPM are not directly handled in CSP#. We discuss how to

model these features using CSP# operators in Section 3.2.

So far we have shown the syntactic differences between CSPM and CSP#. Both CSPM

and CSP# support dedicated syntax which is unavailable in the other. Some special syntax

operators in one can be indirectly achieved in the other. For instance, the CHAOS process

in CSPM can be defined in CSP# using choices and event prefixing (discussed in the next

section). Nonetheless, it is not always trivial to support some dedicated syntax operators

such as shared variables in CSPM and channel communications in CSP# (which can involve

multiple processes).

3.2 CSPM vs. CSP#: Operational Semantics

Operational semantics describes the sequences of computational steps that a model can

take. We illustrate the operational semantics of CSPM and CSP# in the form of labelled

transition systems (LTS). An LTS is a tuple L = (S , init ,→) where S is a set of system

configurations; init ∈ S is an initial system configuration and →: S × Σ ∪ {X, τ} × S is a

labelled transition relation. Note that Σ ∪ {X, τ} is the event space where Σ is the set of

visible events, X denotes a successful termination, and τ is an invisible event.

A system configuration S in CSPM is a pair of processes and environment where the latter

maps variable identifiers to values such as data, processes, or a distinguished error con-

figuration. In CSP#, S is composed of two components (V ,P) where V maps variable

names (or channel names) to values (or sequences of items in buffers), and P is a process

expression. The operational semantics of a process construct is depicted by associated fir-

ing rule(s). CSPM and CSP# share similar firing rules for some process constructs like

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 28

interrupt [62, 72, 83]. In the following subsections, we elaborate the differences in terms of

operational semantics of all process constructs. Note that the firing rules for CSPM adopt a

simple approach which only deals with processes with no free identifiers, same as [62], thus

environment in CSPM is not included in the firing rules below.

3.2.1 SKIP

Process SKIP means termination; namely, X takes place followed by doing nothing, as

captured by Stop in CSP#, whereas this is denoted by a special process term Ω in CSPM .

For simplicity, we use prefix M to refer to CSPM firing rules (e.g., M skip), and # for CSP#

(e.g., # skip) below.

[M skip]

SKIP X→ Ω

[# skip]

(V ,Skip)
X→ (V ,Stop)

Notice that in both CSPM and CSP#, X may only be the last event of a trace. The

semantic difference shown above thus will not result in different verification results in FDR,

ProB and PAT3. Nonetheless, it should be noticed that this difference leads to a different

semantics for parallel composition as we show later.

3.2.2 CHAOS

Process CHAOS in CSPM denotes the most non-deterministic process.

[M c1]
CHAOS(A)

τ→ STOP

a ∈ A
[M c2]

CHAOS(A)
a→ CHAOS(A)

3except deadlock-freeness checking; namely, a process is deadlock free iff it satisfies the deadlock-freeness
assertion in FDR and ProB, whereas it has to satisfy both deadlock-freeness and nontermination assertions
in PAT.

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 29

CHAOS(A) is not directly supported by CSP# because of two main reasons. First, users

have to specify all the events in set A to model CHAOS , whereas CSP# is designed to

free users from specifying events associated with processes (if possible). Second, CHAOS

is more useful in the failures/divergences checking, whereas CSP# models focus more on

states/LTL checking. CHAOS(A) can be manually captured in CSP# by constructing an

equivalent process including all events. For example, let set A contains events a and b, one

way to model CHAOS(A) process in CSP# can be as follows.

CHAOS A = tau → Stop [] a → CHAOS A [] b → CHAOS A

3.2.3 Channel Communication

Channel communications are crucial in concurrent systems and they are classified into two

types: synchronous and asynchronous. CSPM directly supports the former, whereas CSP#

supports both. Both languages have their own operational semantics to interpret channel

communications, which is elaborated below. The transformation of channel communication

between CSPM and CSP# is discussed later.

A general format to express a channel communication is cf → P , where c is a channel

name, f a sequence of communication fields, and P a process with the scope of the prefix.

A communication field can be an output (by !e where e is an expression), an unconstrained

input (by ?x where x is a variable), or a constrained input (by ?x : V in CSPM where V is

a value range, and by ?[b]x in CSP# where b is a Boolean condition).

In CSPM , channels are synchronous and communications are achieved by means of event

synchronisation. Specifically, assuming the type of data communicated over channel c is

T , c!e → P outputs a communication c.v where v is the value of e and v ∈ T , and

c?x → P accepts an input of the form {c.v | v ∈ T}; c?x : V → P imposes an additional

constraint for c.v , namely, v ∈ V . As a channel can be associated with a sequence of

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 30

communication fields in CSPM , multi-part communications involving multiple data transfers

can occur within a single action. For instance, c?x : V !e → P engages communications of

the form {c.v ′.v | v ′.v ∈ T ∧ v ′ ∈ V } where v is a value of e. The firing rule of the

CSPM channel communication is presented below, where function comms(cf) returns the

set of communications described by cf and function subs(a, cf ,P) returns a process whose

identifier in process P bounded by cf is substituted by event a.

a ∈ comms(cf)
[M com]

cf → P a→ subs(a, cf ,P)

In CSP#, a channel is defined as a buffer which stores messages in a first-in-first-out (FIFO)

order. Channels are synchronous when their buffer sizes are zero, in which case communica-

tions are realized by the hand shaking mechanism. Channels are asynchronous when their

buffer sizes are bigger than zero, and their communications are achieved by the message

passing mechanism. Sending and receiving multiple messages at one time are supported

in both synchronous and asynchronous communications. We show below the firing rules of

CSP# for channel communications.

• A synchronous communication occurs when both processes c!e → P and c?x → P

(or c?[b]x → P) can be executed simultaneously and the messages passed match

(and condition b is true); event c.v is transferred where v is the value of e with the

latest valuation eva(V , e). In the following firing rule which is associated with parallel

composition (the case for interleaving is similar), process Q [eva(V , e)/x] replaces x

with the new value v .

(V , c!e → P)
c!eva(V ,e)→ (V ,P), (V , c?[b]x → Q)

c?[b]x→ (V ,Q),
(V ∧ x = eva(V , e))⇒ b

[# par1]

(V , c!e → P ‖ c?[b]x → Q)
c.eva(V ,e)→ (V ,P ‖ Q [eva(V , e)/x])

• An output process ac!e → P , where ac is an asynchronous channel, is enabled if the

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 31

associated buffer is not full. The process first evaluates e and then pushes the value

into the tail of respective buffer for ac (denoted by function app(V , ac!e)), followed

by the execution of P .

ac is not full in V
[# out]

(V , ac!e → P)
ac!eva(V ,e)→ (app(V , ac!e),P)

• A constrained input process ac?[b]x → P is enabled if the associated buffer size is

not empty and b is valid with the latest valuation (denoted by function top(ac)). The

process pops (denoted by function pop(V , ac?x)) and assigns the top element from the

buffer to x , followed by the execution of P . Note that the checking of b is unnecessary

for an unconstrained input process.

ac is not empty in V ∧ (V ∧ x = top(ac))⇒ b
[# in]

(V , ac?[b]x → P)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x])

We exemplify below how CSP# captures CSPM multi-part synchronous channels and how

CSP# asynchronous channels are represented in CSPM . The event-like channel commu-

nication in CSPM can be modelled as alphabetised event-based synchronisation in CSP#.

We capture the channel communication by expanding the channel values according the type

values. Specifically, an output process c!e → P is translated to a process c.e → P in CSP#,

and an input process is transformed into a CSP# model which enumerates all possible

communications using the general choices ([]) to combine relevant event prefixing processes.

Taking the following CSPM model of a vending machine (VM) as an example,

1. datatype Drink = Sprite | Coke | Tea | Coffee
2. channel offer : Drink
3. VM = offer?x : diff (Drink , {Coffee})→ VM

where process VM can perform any communication in the form {offer .x | x ∈ diff (Drink ,

{Coffee}) ∧ x ∈ Drink}; function diff (Drink , {Coffee}) restricts that a vending machine

can offer any drink except coffee. This VM can be captured by the following CSP# process

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 32

where all possible communications are explicitly specified.

VM = offer .Sprite → VM [] offer .Coke → VM [] offer .Tea → VM

An asynchronous channel in CSP# can be modelled as a CSPM process which represents

the FIFO buffer by sending/receiving messages to/from other processes. We provide such a

CSPM process below, where a sequence is defined in process Buffer to store the message in

the FIFO order, and rcv and snd are channels.

1. Buffer(c, 〈 〉,N) = rcv?c?x → Buffer(c, 〈x 〉,N)

2. Buffer(c, s a 〈a〉,N) = #s < N − 1&rcv?c?x → Buffer(c, 〈x 〉a s a 〈a〉,N)
[] snd !c!a → Buffer(c, s,N)

In the above Buffer process, line 1 describes the situation where the buffer is empty, and

hence only receiving messages from other process is allowed. Line 2 depicts message receiving

and sending when the buffer is not full. This Buffer process can be used to run in parallel

with other process, say P , to perform asynchronous channel communication; for instance,

a communication over an asynchronous channel ac with buffer size 2 can be modelled as

P [snd ↔ rcv , rcv ↔ snd]Buffer(ac, 〈 〉, 2). We remark that asynchronous channel can be

regarded as a special kind of shared variable, which is discussed in the next section; the

above way modelling asynchronous channels in CSPM is similar to the way of handling

shared variables in CSPM .

3.2.4 Shared variables

Shared variables are important in modelling shared resources. Variables in Hoare’s CSP

processes are local and disjoint. We elaborate below how shared variables are supported by

CSP# directly and CSPM indirectly.

CSP# uses shared variables to model data states and operations in a procedural style.

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 33

The operations are modelled as terminating sequential programs in the form a{prog} → P ,

where programs prog can contain local variables4, if-then-else statements, while loops, the

invocation of external libraries written in C#/Java (through the reflection techniques). The

execution of the programs is atomic together with the occurrence of associated events. In the

following firing rules, function upd(V , prog) returns a modified valuation function according

to the particular semantics of the program; in prog , both shared and local variables can be

used and updated.

[# dataOp]
(V , a{prog}5 → P)

a→ (upd(V , prog),P)

Shared variables can be modelled in CSPM indirectly as discussed in [66]. To be specific,

a shared variable is represented by a variable process which is executed concurrently with

other user processes which invoke the variable. Variable processes are modelled as read-

/write operations, and hence user processes can read from/write to the shared variables by

CSPM synchronous communication. For example, the following processes Var(v , val) and

Var A(j , v , val) execute together as a variable process to denote a shared variable v , where

val is the value of v and j denotes a unique id of a user process which invokes v . The

constraint that only one process is allowed to read/write v is specified in Var A which is

triggered by event start at?j !v from Var .

1. Var(v , val) = read?i !v !val → Var(v , val)
2. [] write?i !v?x → Var(v , x) [] start at?j !v → Var A(j , v , val)
3. Var A(j , v , val) = read .j !v !val → Var A(j , v , val)
4. [] write.j !v?x → Var A(j , v , x) [] end at?j !v → Var(v , val)

The following CSP# model and CSPM model represent the same system which sums three

process parameters, where the processes are selected non-deterministically from three pro-

cesses. In the CSP# model, sum and count are shared variables with initial value 0, and

4The scope of local variables is within prog , and they are not stored in valuation function V .
5Event a can also be an invisible event, denoted as tau, then the transition event becomes τ .

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 34

their updates are executed atomically with the occurrence of event add in process P(i).

1. var count = 0; var sum = 0;
2. P(i) = [count < 3]add{sum = sum + i ; count = count + 1; } → P(i);
3. System() = ||| i : {1..3}@P(i);

In the CSPM model below, the shared variables sum and count are modelled as variable

processes Var(sum, 0) and Var(count , 0). In addition, process P(i) is defined by a sequence

of variable access events (e.g., events start at !i !count and end at !i !count for count).

1.datatype VarDt = count | sum T = {1..3} Range = {0..10}
2. P(i) = start at !i !count → read !i?count?x → x < 3 & add

→ start at !i !sum → read !i?sum?y → write!i !sum!(y + i)
→ write!i !count !(x + 1) → end at !i !sum → end at !i !count → P(i)

3. Processes() = ||| i : {1..3}@P(i)
4. Variables() = Var(count , 0) ||| Var(sum, 0)
5. SharedEvent = {read .t .v .val , write.t .v .val , start at .t .v , end at .t .v |

t ← T , v ← VarDt , val ← Range}
6. System() = Variables() [| SharedEvent |] Processes()

As shown above, CSP# allows users to specify shared variables and their operations in a

way similar to imperative programming languages, which allows users to see variable states

at each simulation step. In contrast, CSPM supports shared variables by means of auxiliary

processes and events; the additional operations may result in more system states during

model checking, as shown later in our experiments.

3.2.5 Parallel composition

The firing rules of parallel composition P ‖ Q in CSPM and CSP# are similar except

the way of handling the X event. Both languages require distributed termination: process

P ‖ Q terminates if both P and Q terminate. This requirement is satisfied in CSP# by the

following firing rule.

(V ,P)
X→ (V ,P ′), (V ,Q)

X→ (V ,Q ′)
[# par2]

(V ,P ‖ Q)
X→ (V ,Stop)

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 35

In addition, CSPM allows the termination of a paralleled process to be independent of its

associated process. Firing rules [M par1] below describes that if process P performs a tick

action to P ′, which means it has terminated, then then termination of the parallel process

involves an invisible event τ and P becomes Ω denoting the termination of P ; operator ‖
X

is

a general form of three kinds of parallel operators in CSPM .

P X→ P ′
[M par1]

P ‖
X
Q τ→ Ω ‖

X
Q

[M par2]

Ω ‖
X

Ω
X→ Ω

The firing rule for Q is similar to [M par1]. When both processes become Ω, the parallel

process terminates under the firing rule [M par2]. Notice that the verification results es-

pecially on non-terminating checking of parallel composition in CSPM and CSP# are the

same although the former needs two more steps.

Parallel processes involving synchronous channels in CSP# have been discussed early in

Section 3.2.3 (by the firing rule [# par1]). Parallel processes involving asynchronous chan-

nels execute independently, described by 14 rules from [# par3] to [# par16]. Firing rules

[# par3], [# par4], [# par5], [# par6], [# par7] and [# par8] describe two asynchronous

channel communications (input or output) run in parallel. ac1 and ac2 are asynchronous

channel names, which may be the same or not.

ac1 is not full in V
[# par3]

(V , ac1!e → P ‖ ac2!e → Q)
ac1!eva(V ,e)→ (app(V , ac1!e),P ‖ ac2!e → Q)

ac2 is not full in V
[# par4]

(V , ac1!e → P ‖ ac2!e → Q)
ac2!eva(V ,e)→ (app(V , ac2!e), ac1!e → P ‖ Q)

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 36

ac1 is not empty in V ∧ (V ∧ x = top(ac1))⇒ b
[# par5]

(V , ac1?[b]x → P ‖ ac2?[b]x → Q)
ac1?top(ac1)→ (pop(V , ac1?x),P [top(ac1)/x]

‖ ac2?[b]x → Q)

ac2 is not empty in V ∧ (V ∧ x = top(ac2))⇒ b
[# par6]

(V , ac1?[b]x → P ‖ ac2?[b]x → Q)
ac2?top(ac2)→ (pop(V , ac2?x), ac1?[b]x → P

‖ Q [top(ac2)/x])

ac1 is not full in V
[# par7]

(V , ac1!e → P ‖ ac2?[b]x → Q)
ac1!eva(V ,e)→ (app(V , ac1!e),

P ‖ ac2?[b]x → Q)

ac2 is not empty in V ∧ (V ∧ x = top(ac2))⇒ b
[# par8]

(V , ac1!e → P ‖ ac2?[b]x → Q)
ac2?top(ac2)→ (pop(V , ac2?x),

ac1!e → P ‖ Q [top(ac2)/x])

Firing rules [# par9], [# par10], [# par11] and [# par12] describe asynchronous channel

output/input run in parallel with synchronous channel output/input. Note that c denotes

synchronous channel name and ac denotes asynchronous channel name.

ac is not full in V
[# par9]

(V , ac!e → P ‖ c!e → Q)
ac!eva(V ,e)→ (app(V , ac!e),P ‖ c!e → Q)

ac is not empty in V ∧ (V ∧ x = top(ac))⇒ b
[# par10]

(V , ac?[b]x → P ‖ c!e → Q)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x] ‖

c!e → Q)

ac is not full in V
[# par11]

(V , ac!e → P ‖ c?[b]x → Q)
ac!eva(V ,e)→ (app(V , ac!e),P ‖ c?[b]x → Q)

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 37

ac is not empty in V ∧ (V ∧ x = top(ac))⇒ b
[# par12]

(V , ac?[b]x → P ‖ c?[b]x → Q)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x] ‖

c?[b]x → Q)

Firing rules [# par13], [# par14], [# par15] and [# par16] describe asynchronous channel

output/input runs in parallel with an event prefixing process or a data operation (denoted

by process Q).

ac is not full in V
[# par13]

(V , (ac!e → P) ‖ Q)
ac!eva(V ,e)→ (app(V , ac!e),P ‖ Q)

ac is not empty in V ∧ (V ∧ x = top(ac))⇒ b
[# par14]

(V , (ac?[b]x → P) ‖ Q)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x] ‖ Q)

(V ,Q)
a→ (V ,Q ′), a 6∈ αP ∩ αQ

[# par15]
(V , (ac!e → P) ‖ Q)

a→ (V , (ac!e → P) ‖ Q ′)

(V ,Q)
a→ (V ,Q ′), a 6∈ αP ∩ αQ

[# par16]
(V , (ac?[b]x → P) ‖ Q)

a→ (V , (ac?[b]x → P) ‖ Q ′)

3.2.6 Interleaving

In CSPM , interleaving process P ||| Q executes processes P and Q completely indepen-

dently. The interleaving process in CSP# also executes P and Q independently, except

the circumstances which involve communication through shared variables and synchronous

channels. The firing rule on interleaving processes with synchronous channel communication

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 38

is as follows.

(V , c!e → P)
c!eva(V ,e)→ (V ,P), (V , c?[b]x → Q)

c?[b]x→ (V ,Q),
(V ∧ x = eva(V , e))⇒ b

[# int]

(V , c!e → P ||| c?[b]x → Q)
c.eva(V ,e)→ (V ,P ||| Q [eva(V , e)/x])

3.2.7 General choice

CSPM and CSP# have the same interpretation of external choice which is resolved by

the occurrence of a visible event and internal choice which is resolved nondeterministically.

Additionally, CSP# supports general choice P []Q which is resolved by any event, either

invisible or visible. We present the firing rules below associated to the general choice in

CSP# where a ∈ Σ ∪ {X, τ}.

(V ,P)
a→ (V ′,P ′)

[# gen1]
(V ,P [] Q)

a→ (V ′,P ′)

(V ,Q)
a→ (V ′,Q ′)

[# gen2]
(V ,P [] Q)

a→ (V ′,Q ′)

3.2.8 Conditional choice

CSP# supports three types of conditional choice: 1) classic conditional choice if b {P} else {Q}

executes P if b is evaluated to be true, and else performs Q (see rules [# con1] and [# con2]),

2) atomic conditional choice ifa b {P} else {Q} behaves similarly to classic choice except

that the condition checking is conducted atomically with the occurrence of the first event

in P or Q (see rule [# con3] and [# con4]), and 3) blocking conditional choice ifb b {P}

is similar to Boolean guards [b]P in CSP# (which is equivalent to b&P in CSPM) except

that the checking of blocking condition and the execution of P are separated in ifb (see rule

[# con5]). We remark that CSPM supports only one type of conditional choice, which is

equivalent to atomic conditional choice in CSP#.

V � b
[# con1]

(V , if b {P} else {Q}) τ→ (V ,P)

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 39

V 6� b
[# con2]

(V , if b {P} else {Q}) τ→ (V ,Q)

V � b, (V ,P)
a→ (V ′,P ′), a ∈ Σ ∪ {X, τ}

[# cond3]
(V , ifa b {P} else {Q}) a→ (V ′,P ′)

V 6� b, (V ,Q)
a→ (V ′,Q ′), a ∈ Σ ∪ {X, τ}

[# cond4]
(V , ifa b {P} else {Q}) a→ (V ′,Q ′)

V � b
[# cond5]

(V , ifb b {P}) τ→ (V ,P)

3.2.9 Renaming

CSPM supports renaming which renames a visible event when an associated process is

running, shown in the rule [M r3]. In theory, event renaming P [[R]] can be represented in

CSP# by a process Q which is almost the same as P except the visible event from relation

R being replaced. However, modelling the renaming process manually in CSP# may not be

easy when the renaming relation is complicated, and it may lead to larger specifications in

terms of line of code (LOC).

P τ→ P ′
[M r1]

P [[R]]
τ→ P ′[[R]]

P X→ P ′
[M r2]

P [[R]]
X→ Ω

P a→ P ′, a R b, a, b ∈ Σ
[M r3]

P [[R]]
b→ P ′[[R]]

3.2. CSPM VS. CSP#: OPERATIONAL SEMANTICS 40

3.2.10 Untimed timout

Process untimed timeout P [> Q in CSPM executes P for an unspecified amount of time

followed by performing Q . The firing rules shown below specify that the untimed timeout

process initially allows P to decide the choice with any visible action ([M unt2]), while at

any moment it can timeout, and becomes to Q ([M unt3]), or if P performs an invisible

event τ to P ′, then P [> Q will perform a τ transition to P ′[> Q as timeout is not resolved

by τ action ([M unt1]).

P τ→ P ′
[M unt1]

P [> Q τ→ P ′[> Q

P a→ P ′, a ∈ Σ
[M unt2]

P [> Q a→ P ′

[M unt3]
P [> Q τ→ Q

3.2.11 Discussion

We have identified differences between CSPM and CSP# in terms of their operational seman-

tics, and also discussed some possible translations between these two languages, especially

their channel communications. Through the analysis, we can draw some general guidelines

of their modelling features: CSPM ’s adoption of functional paradigm and support of more

primitives such as CHAOS and renaming provide an approach to specify concurrent systems,

starting with an abstract model first, which can then be refined to more concrete one. CSP#

supports more primitives for modelling different forms of communication, and it is feasible to

specify concrete system behaviours which require hand shaking, message passing and shared

resources. In term of expressiveness, it can be shown that CSPM and CSP# are equivalent

as both CSPM and CSP# process can be transformed into a normal form, which involves

event-prefixing, internal choice and recursion only [62].

3.3. VERIFICATION TOOL SUPPORT 41

3.3 Verification Tool Support

CSPM is supported by FDR which is designed primarily for refinement checking in terms of

trace, failures, divergences, refusals and revivals. ProB was initially designed as an animator

and model checker for B method [2], and recently it supports CSPM with improvements on

static type checking and associative tuples [38]; ProB integrates type checking, animation

and model checking together. CSP# is supported by PAT which is an extensible framework

for system modelling, simulation and verification. PAT implements a number of model

checking techniques catering for different properties such as LTL properties and refinement

checking [82, 40, 41]. In the following, Section 3.3.1 illustrates the verification capabilities

of FDR, ProB (for CSPM) and PAT (for CSP#), including properties supported and their

model checking techniques; Section 3.3.2 investigates the efficiency of the three tools.

3.3.1 Verification

FDR, ProB and PAT support the analysis of many common properties such as deadlock,

livelock, determinism, and refinement checking which includes trace, failure, and failures/-

divergences refinement. In addition, FDR supports two additional refinement models: the

refusal testing model and the revivals model [45]. In the refusal testing model [43], a process

is represented by a sequence of alternating refusal sets and events, possibly terminating in

deadlock where the refusal set are a set of all events. In unstable states where no proper

refusal can be observed, the refusal set is represented by a special null refusal value. In the

revivals model [64], a process is represented by a tuple with three elements, the process’s

finite traces, the finite traces on which it can deadlock and a set of revivals. A revival is

of the form (s,X , a) denoting that the process might accept event a after completing the

trace s, where X is a stable refusal set observed before event a happens. PAT supports

additional properties like reachability analysis, i.e., if a system can reach a bad state (e.g.,

3.3. VERIFICATION TOOL SUPPORT 42

array overflow).

Model checking LTL properties is common in practice. Although it is not directly supported

in FDR, the relationship between refinement checking and LTL model checking has been

studied (e.g., [63, 51]). Particularly, Leuschel et al. [39] applied an emptiness test in a refine-

ment between an unexpected specification and a process; the process is a synchronisation of

the implementation and a CSP process for an LTL formula. This approach has to deal with

the high complexity of synchronisation in FDR, and the process to construct CSP processes

from LTL formulas is arduous. Lowe [43] used a refusal testing model to conduct the refusal

refinement between a CSP process which denotes an LTL formula and its implementation;

those supported LTL formulas exclude operators eventually (�), until (U), and negation.

In contrast, ProB and PAT support various LTL formulas and analysis directly. Moreover,

these formulas can constrain both states and events, and be analysed under five types of

fairness assumptions [85] in PAT.

FDR, ProB, and PAT all provide basic model checking techniques such as breadth first search

and (bounded) depth first search. In addition, PAT implements the anti-chain approach

in which the complete subset construction and computing the complete state space of the

product are avoided for checking refinement [90]. Further, PAT applies Loop/SCC searching

algorithm for LTL verification under fairness assumptions. To cope with the problem of state

space explosion during verification, FDR and PAT develop their own reduction techniques.

To be specific, FDR proposes a hierarchical compression approach consisting of six methods

to process an LTS representing a CSPM model [45, 62, 66]: enumerations, strongly node-

labelled bisimulation, τ -loop elimination, diamond elimination, normalization, and factoring

by semantic equivalence. On the other hand, PAT deploys three techniques. First, using

the atomic sequence construct (denoted by atomic{P}), where a sequence of statements

in a process executes as one super-step without any inference, to realize simple partial

order reduction (POR). Second, applying POR dedicated to refinement checking to not only

3.3. VERIFICATION TOOL SUPPORT 43

τ transitions but also visible events (in some case which is not supported in FDR [85]).

Last but not least, providing process counter abstraction for parameterized systems under

fairness against LTL formulas [87]. We remark that the implementation of FDR’s hierarchical

compression methods for CSP# in PAT is nontrivial due to shared variables supported in

CSP#. For instance, a τ event in CSP# may update shared variables and therefore the

event cannot not be pruned for compression.

3.3.2 Experiment

In this section, we evaluate the efficiency of FDR, ProB and PAT by verifying eight bench-

mark systems: readers/writers (R/W), dining philosophers problem (DP), Milner’s cyclic

scheduler (MCS) [49], peg solitaire puzzle, chess knight tour puzzle, the tower of Hanoi

puzzle, concurrent stack [41] and Peterson’s algorithm [59]. The experiments with FDR and

ProB are performed on an Intelr CPU E6550 (2.33 GHz) PC with 4GB memory running

on 32-bit Linux. PAT is experimented with the same PC but on a 32-bit Windows.

We conduct four sets of experiments. The CSP# models for these benchmark systems

are in Appendix A. The first set investigates the performance of refinement checking, by

verifying the same model and assertion with different reduction techniques. The results are

shown in Table 3.2, where N is the number of processes. Column State shows the number

of visited states, and column Time(s) records running time of the verification in seconds.

Value “-" in a cell denotes that the experiment is aborted due to either memory overflow

or execution time exceeding two hours. For readers/writers (R/W) models, although FDR

applies some dedicated compression techniques, PAT has better performance. For dining

philosopher (DP) models, FDR performs extremely well because of the strategy discussed

in [67]. However, other experiments show that this strategy may not be as efficient for other

models. For Milner’s cyclic scheduler (MCS), PAT is comparable to FDR in terms of the

number of states per second. FDR processes the LTS by applying its compression methods,

3.3. VERIFICATION TOOL SUPPORT 44

whereas PAT applies a simple reduction method, i.e., using the keyword atomic to give

higher priority to local events which are not synchronised, not updating any variable and

not mentioned in the property.

Model N Property FDR ProB PAT
State Time(s) State Time(s) State Time(s)

R/W 6 P [T= S 8 0.024 61365 125.94 9 0.04
R/W 200 P [T= S 202 1.434 - - 203 0.11
R/W 500 P [T= S 502 19.651 - - 503 0.057
R/W 1000 P [T= S 1002 156.162 - - 1003 0.108
DP 6 P [F= S 1 0.06 14510 82.42 1762 0.174
DP 8 P [F= S 1 0.071 - - 22362 2.995
DP 12 P [F= S 1 0.104 - - - -
MCS 20 P [FD= S 40 0.043 - - 60 0.114
MCS 50 P [FD= S 100 0.086 - - 150 0.143
MCS 100 P [FD= S 200 0.246 - - 300 0.53

Table 3.2: Experiment results on refinement checking

The second set compares the performance of three model checkers on solving puzzles, inspired

by the work in [56]. The CSPM and CSP# models for these puzzles make the best use of

their modelling power: CSP# specifies the puzzles using shared variables, which are solved

by PAT through reachability analysis, whereas CSPM models the puzzles using multi-part

event synchronisation, which are solved by FDR and ProB through trace refinement. In

addition, FDR simulates a bounded DFS algorithm by searching the divergence of a new

system, in order to find a smaller counterexample. This new system, like a watchdog, can

only perform up to N events of the target implementation process, and then performs an

infinite number of events [56]; this approach can be used provided that the target process

is loop-free. Table 3.3 shows the performance results, where column FDR-Div records the

results of states and time using this algorithm; value N .A. means there is no model with

divergence checking to solve the puzzle. From Table 3.3, we can observe that the divergence

checking approach can be used in the solitaire and chess knight tour models. However,

this approach cannot always significantly improve performance, because it depends on the

3.3. VERIFICATION TOOL SUPPORT 45

searching order. Moreover, it is costly to check if a system is loop-free or not, which is the

premise for applying this approach. PAT solves the two puzzles in a reasonable time, and

it is faster in the knight example than FDR and FDR-Div. For the Hanoi puzzle, FDR has

a better performance because the compression techniques it uses can effectively reduce the

state space.

Model N FDR FDR-Div ProB PAT
State Time(s) State Time(s) State Time(s) State Time(s)

Solitaire 26 4048216 46.303 1 0.169 - - 11950 5.356
Solitaire 29 28249254 387.737 1 0.217 - - 104395 54.681
Solitaire 32 - - 1 5.318 - - 10955 5.301
Solitaire 35 - - 1 377.297 - - 443230 279.454
Knight 5 508450 3.522 1 0.037 - - 4256 0.29
Knight 6 - - 1 15.399 - - 129269 9.143
Knight 7 - - 1 94.713 - - 77238 6.754
Hanoi 6 729 0.052 N.A. N.A. 1667 57.84 5775 0.416
Hanoi 7 2187 0.086 N.A. N.A. 4969 196.5 92680 6.837
Hanoi 8 6561 0.181 N.A. N.A. 14853 660.59 150918 11.524

Table 3.3: Experiment results on solving puzzles

The third set explores the performance of FDR and PAT on verifying two models which

involve shared variables. The first example is a concurrent stack which allows multiple

readers to access the shared variable at the same time, but only one writer to update

the value; readers cannot access the shared variable when it is written. The modelling of

shared variables in CSPM follows the approach discussed in Section 3.2.4. Results of this

example in Table 3.4 show that PAT performs better than FDR for checking trace refinement

(P [T = S), and this is because PAT uses DFS with anti-chain algorithm in the trace

refinement. This algorithm is effective when the specification is non-deterministic. Here, N

is the number of processes and ConcurrentStack ∗ 2 in the Model column means that the

stack size is 2. The second example is the Peterson algorithm. We obtain the CSPM model

from the shared variable analyser (SVA) [66]. To be fair, the CSP# model is specified at the

same level of granularity as the CSPM model. The results show that PAT performs better.

This is because local events associated as atomic statements in CSP# reduce the states

3.3. VERIFICATION TOOL SUPPORT 46

significantly, whereas CSPM model defines additional events to represent reading/writing

operations of shared variables. Although these additional events can be hidden as internal

events to apply existing compression techniques in FDR, the effect is minor because the type

range of reading/writing channels and operations over different variables can easily lead to

state space explosion.

Model N Property FDR PAT
State Time(s) State Time(s)

Concurrent Stack*2 3 P [T= S 453456 3.833 10860 1.023
Concurrent Stack*2 4 P [T= S - - 189920 75.915
Concurrent Stack*2 5 P [T= S - - 693828 293.382

Peterson 3 mutual exclusion 1011 1.192 3257 0.105
Peterson 4 mutual exclusion 105493 20.067 104686 3.776
Peterson 5 mutual exclusion 14810779 387.645 5722863 294.005

Table 3.4: Experiment results on shared variables

The fourth set explores the performance on verifying LTL properties. We adopt the approach

proposed by Lowe [43] to construct a CSPM process for the LTL formula and use FDR

to perform the refusal refinement checking. As this approach cannot deal with operator

eventually (3), we ignore the checking of property 23eat .0 in FDR. Table 3.5 indicates that

PAT performs better than FDR and ProB. Notice that property 23eat .0 can be verified to

be true using PAT under the strong or global fairness assumption.

Model N Property Result FDR ProB PAT
State Time(s) State Time(s) State Time(s)

RW 6 2!error true 8 0.023 122722 104.8 15 0.059
RW 200 2!error true 202 1.455 - - 403 0.086
RW 500 2!error true 502 19.901 - - 1003 0.071
RW 1000 2!error true 1002 154.33 - - 2003 0.148
DP 6 23eat .0 false N.A. N.A. 2420 1.11 166 0.019
DP 8 23eat .0 false N.A. N.A. 13312 1.75 256 0.024
DP 12 23eat .0 false N.A. N.A. - - 460 0.049

Table 3.5: Experiment results on LTL checking

3.4. SUMMARY 47

3.3.3 Discussion

We have explored the supporting tools of CSPM and CSP#, namely, FDR, ProB and PAT,

by comparing their model checking techniques and analysing their verification capabilities

through eight benchmark systems. Our exploration leads to the following four general and

practical rules for choosing these tools. First, FDR can be the best candidate when powerful

built-in compression techniques are applicable in refinement checking. Second, PAT is a

better choice to verify properties of models which involve shared variables. Third, to verify

LTL properties, we can use ProB for CSPM models or FDR for some model where LTL

formula can be verified by refusal checking, and PAT for CSP# model. Lastly, PAT may be a

better option to handle models where atomic reductions are applicable (e.g., readers/writers

and Peterson algorithm).

3.4 Summary

In this chapter, we presented a comprehensive comparison of CSPM and CSP#, and their

supporting tools FDR, ProB and PAT. We explored their modelling features from the view of

their syntax and operational semantics. We also investigated the reasoning power of CSPM

and CSP# in terms of the capability and efficiency of their supporting tools. We derive

the following guidelines from our comparison for selecting appropriate modelling language

and reasoning tools for particular concurrent systems. 1) CSPM may be more suitable

to model systems with abstract behaviour, and systems which involve multi-part event

synchronisation. On the other hand, CSP# could be a better candidate to handle systems

which implement hand shaking or message passing communication mechanisms, and systems

which need shared variables. 2) To perform the refinement checking, the decision relies on

the reduction techniques which are more applicable (compression methods in FDR, atomic

reduction in PAT) to the models. To verify LTL properties, we can use ProB for CSPM

3.4. SUMMARY 48

models or FDR for some model (discussed in Section 3.3), and PAT for CSP# models.

Lastly, PAT may be a better option to verify systems with shared variables.

As for related work, Carvalho et al. [13] have made an initial step to explore the differences

between CSPM and CSP#. They compared the two languages from the data and behavioural

aspects. Our work here substantially extends their effort by an in-depth and a wider range

of comparisons; for instance, we investigate their intrinsic differences from the operational

semantics aspect. Roscoe [1] has briefly described tools which can animate, analyse, and

verify CSP models; these tools include FDR, ProB, PAT, ARC [57] and so on. He introduces

these tools with strengths and limits from a high level. Our work can be considered as a

concrete guideline for these tools, in particular, FDR, ProB for CSPM , and PAT for CSP#,

with intensive experiments.

Chapter 4

A UTP Semantics for CSP#

Formal semantics of a specification language represents the mathematically precise and rig-

orous meaning of expressions in that language. This semantics thus provides a foundation to

analyse system behaviours or system design described in such a language. Formal semantics

is usually classified into three groups, operational, denotational and axiomatic. As shown in

Chapter 3, the small step operational semantics of CSP# has been formally defined, which

is used in PAT as the execution firing rules [83]. The operational semantics in general has

some limitations in the following aspects. First, operational semantics is hard to compare

programs in different specification languages. Second, operational semantics cannot specify

conditions under which two different programs written in the same language are equal or

one refines the other. Third, operational semantics cannot specify how transition rules are

selected. For example, is the choice made in advance or at run time? In addition, the defined

operational semantics for CSP# is not compositional, and thus lacks the support of com-

positional verification of process behaviours. Therefore, there is a need for a compositional

denotational semantics to explain the notations of the CSP# languages.

The challenge of defining a denotational semantics for CSP# is to develop an appropriate

49

Chapter 4. A UTP Semantics for CSP# 50

semantic model which can cover not only communications but also shared variable paradigm.

The Unifying Theories of Programming (UTP) [31] is a unified framework for defining de-

notational semantics for programs across different programming paradigms, suitable for

defining the denotational semantics for CSP#.

In this chapter, we present an observation-oriented denotational semantics for the CSP#

language based on the UTP framework in an open environment, where process behaviours

can be interfered with by the environment. The proposed semantics not only provides a

rigorous meaning of the language, but also deduces algebraic laws describing the properties

of CSP# processes. To deal with shared variables, we lift traditional event-based traces

into hybrid traces (capturing both states and events) for recording process behaviours. To

handle different types of synchronisation in CSP# (i.e., event-based and synchronised hand-

shake), we construct a comprehensive set of rules on merging traces from processes which

run in parallel/interleaving. These rules capture all possible concurrency behaviours between

event/channel-based communications and global shared variables.

The contributions of our work are summarized as follows.

• The proposed semantic model deals with not only communicating processes, but also

shared variables. It can model both event-based synchronisation and synchronised

handshake over channels. Moreover, our model can be adapted/enhanced to define the

denotational semantics for other languages which possess similar concurrency mecha-

nisms.

• The defined denotational semantics overcomes the limitations of operational semantics

mentioned above. For example, we define the refinement and equivalent relationship

between programs written in CSP#.

• A closed semantics can be derived from our open denotational semantics by focusing

on special types of hybrid traces. The closed semantics can be linked with the CSP#

4.1. DENOTATIONAL SEMANTICS OF CSP# 51

operational semantics in [83].

The remainder of this chapter is organized as follows. Section 4.1 constructs the observation-

oriented denotational semantics in an open environment based on the UTP framework;

healthiness conditions are also defined to characterise the semantic domain. Section 4.2

discusses the algebraic laws for CSP#. Section 4.3 presents a closed semantics derived from

the open semantics. Section 4.4 concludes this chapter with the discussion of related work.

4.1 Denotational Semantics of CSP#

In this section, we first define the semantic model including the observational variables and

healthiness conditions. We then define the denotational semantics of arithmetic and Boolean

expressions as well as the denotational semantics of sequential programs. Based on the

semantic model and the semantics of expressions and programs, we define the denotational

semantics of CSP# processes.

4.1.1 Semantic Model

To address the challenge of designing an appropriate CSP# semantic model to cover both

communication and shared variables paradigms, we blend communication events with states

containing shared variables. Namely, we introduce hybrid traces to record the interactions

of processes with the global environment; each trace is a sequence of pairs, and each pair

is either a pair of shared variable states or comprised of a pre-state and a communication

event.

4.1. DENOTATIONAL SEMANTICS OF CSP# 52

4.1.1.1 Observational Variables

The following variables are introduced in the alphabet of observations of CSP# process

behaviour. Some of them, i.e., ok , ok ′, wait , wait ′, ref , and ref ′, are similar to those in

the UTP theory for CSP [31]. The key difference is that the event-based traces in CSP are

changed to hybrid traces capturing both states and events.

• ok , ok ′: Boolean describe the stability of a process.

ok = true records that the process has started in a stable state, whereas ok = false

records that the process has not started as its predecessor has diverged.

ok ′ = true records that the process has reached a stable state, whereas ok ′ = false

records that the process has diverged.

• wait , wait ′: Boolean distinguish the intermediate observations of waiting states from

the observations of final states.

wait = true records that the execution of the previous process has not finished, and

the current process starts in an intermediate state, while wait = false records that the

execution of the previous process has finished and the current process may start.

wait ′ = true records that the next observation of the process is in an intermediate

state, while wait ′ = false records that the next observation is in a terminated state.

• ref , ref ′: PEvent denote a set of actions and channel inputs/outputs that can be

refused before or after the observation. The set Event denotes all possible actions

and channel input/output directions (e.g., ch?, ch!). An input direction ch? denotes

any input through channel ch, and a channel output direction ch! denotes any output

through channel ch.

• tr , tr ′: seq((S × S⊥) ∪ (S × E)) record a sequence of observations (state pairs or

communication events) on the interaction of processes with the global environment.

4.1. DENOTATIONAL SEMANTICS OF CSP# 53

– S is the set of all possible mappings (states), and a state s : VAR→ T is a function

which maps global shared variables VAR into values of T. Notice that we use T

to denote the types of variables and channel messages.

– E is the set of all possible events, including actions, channel inputs/outputs and

synchronous channel communications. Note that non-communicating events are

excluded from the set.

– S × S⊥ is the set of state pairs, and each pair consists of a pre-state recording

the initial variable values before the observation and a post-state recording the

final values after the observation. S⊥ =̂ S ∪ {⊥} represents all states, where the

improper state ⊥ indicates non-termination. Remark that the state pair is used

to record the observation for the sequential program.

– S × E denotes a set of occurring events under the pre-states. The reason of

recording the pre-state is that the value of the expression which may contain

shared variables in a channel output shall be evaluated under this state.

4.1.1.2 Healthiness Conditions

Healthiness conditions are defined as equations in terms of an idempotent function φ on

predicates. Every healthy program represented by predicate P must be a fixed point under

the healthiness condition of its respective UTP theory, i.e., P = φ (P).

In CSP#, a process can never change the past history of the observations; instead, it can

only extend the record, captured by function R1. We use predicate P to represent the

semantics of the CSP# process below.

R1: R1(P) = P ∧ tr ≤ tr ′

The execution of a process is independent of the history before its activation, captured by

function R2.

4.1. DENOTATIONAL SEMANTICS OF CSP# 54

R2: R2(P(tr , tr ′)) = us P(s, s a (tr ′ − tr))

As mentioned earlier, variable wait distinguishes a waiting state from the final state. A

process cannot start if its previous process has not finished, or otherwise, the values of all

observational variables are unchanged, characterised by function R3.

R3: R3(P) = II C wait B P

where P C b B Q =̂ b ∧ P ∨ ¬b ∧ Q and II =̂ (¬ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧ wait ′ =

wait ∧ ref ′ = ref). Here II states that if a process is in a divergent state, then only the

trace can be extended, or otherwise, it is in a stable state, and the values of all observational

variables remain unchanged.

When a process is in a divergent state, it can only extend the trace. This feature is captured

by function CSP1.

CSP1: CSP1(P) = (¬ok ∧ tr ≤ tr ′) ∨ P

Every process is monotonic in the observational variable ok ′. This monotonicity property is

modelled by function CSP2 which states that if an observation of a process is valid when

ok ′ is false, then the observation should also be valid when ok ′ is true.

CSP2: CSP2(P) = P ; (ok ⇒ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref)

We below use H to denote all healthiness conditions satisfied by the CSP# process.

H = R1 ◦R2 ◦R3 ◦CSP1 ◦CSP2

From the above definition, we can see that although CSP# satisfies the same healthiness

conditions of CSP, observational variables tr , tr ′ in our semantic model record additional in-

formation for shared variable states. We adopt the same names for the idempotent functions

used in CSP for consistency. In addition, function H is idempotent and monotonic [14, 31].

4.1. DENOTATIONAL SEMANTICS OF CSP# 55

4.1.2 Semantics of Expressions and Programs

In this section, we first present the syntax of a subset of arithmetic expressions, Boolean

expressions and sequential programs, and next define their denotational semantics which

will be used in Section 4.1.3.

prog ::= x = exp – assignment
| prog1; prog2 – composition
| if b then prog1 else prog2 – conditional
| while b do prog – iteration

exp ::= v | x | exp1 + exp2 | exp1 − exp2 | exp1 ∗ exp2 | exp1/exp2
b ::= true | false | exp1 op exp2 | ¬b | b1 ∧ b2 | b1 ∨ b2

where op ∈ {=, 6=, <,≤, >,≥}

In the above syntax representation, x is a global shared variable, v is a value, exp, exp1 and

exp2 are arithmetic expressions, b, b1 and b2 are Boolean expressions, and prog , prog1 and

prog2 are sequential programs updating global shared variables.

Definition 1 (Arithmetic Expression). Let Aexp be the type of arithmetic expressions, the

evaluation of the expression is defined as a function A : Aexp→ (S→ T).

A[[n]](s) = n
A[[x]](s) = s(x)
A[[exp1 + exp2]](s) = A[[exp1]](s) +A[[exp2]](s)
A[[exp1 − exp2]](s) = A[[exp1]](s)−A[[exp2]](s)
A[[exp1 ∗ exp2]](s) = A[[exp1]](s) ∗ A[[exp2]](s)
A[[exp1/exp2]](s) = A[[exp1]](s)/A[[exp2]](s)1

Definition 2 (Boolean Expression). Let Bexp be the type of Boolean expressions, given a

valuation, function B returns whether a boolean expression is valid, defined as B : Bexp →

(S→ Boolean).

1We assume the expression is well-defined (i.e., A[[exp2]](s) 6= 0).

4.1. DENOTATIONAL SEMANTICS OF CSP# 56

B[[true]](s) = true
B[[false]](s) = false

B[[exp1 op exp2)]](s) =

 true A[[exp1]](s) op A[[exp2]](s)

false otherwise
B[[¬b]](s) = ¬(B[[b]](s))
B[[b1 ∧ b2]](s) = B[[b1]](s) ∧ B[[b2]](s)
B[[b1 ∨ b2]](s) = B[[b1]](s) ∨ B[[b2]](s)

Definition 3 (Sequential Program). Let Prog be the type of sequential programs, function C

returns the updated valuations after executing the program, defined as C : Prog→ (S → S⊥).

C[[x := exp]] = {(s, s[n/x]) | s ∈ S ∧ n = A[[exp]](s)}
C[[prog1; prog2]] = {(s, s ′) | ∃ s0 ∈ S • (s, s0) ∈ C[[prog1]]

∧(s0, s ′) ∈ C[[prog2]]} ∪
{(s,⊥) | (s,⊥) ∈ C[[prog1]]}

C[[if b then prog1 else prog2]] = {(s, s ′) | B[[b]](s) = true ∧ (s, s ′) ∈ C[[prog1]]} ∪
{(s, s ′) | B[[b]](s) = false ∧ (s, s ′) ∈ C[[prog2]]}

C[[while b do prog]] = {(s, s ′) | (s, s ′) ∈ C[[µX • F (X)]]}

In the above definition, F (X) =̂ if b then prog ; X else skip, C[[skip]] = {(s, s) | s ∈ S},

C[[true]] = {(s, s ′) | s ∈ S, s ′ ∈ S⊥}, and µX • F (X) =̂
⋂

n F n(true).

4.1.3 Semantics of Processes

In this section, we construct an observation-oriented semantics for all CSP# process oper-

ators based on our proposed UTP semantic model for CSP#. We define the semantics in

an open environment to achieve the compositionality property; namely, a process may be

interfered with by the environment. In Section 4.1.1.1, we have defined a hybrid trace to

record the potential events and state transitions in which a process P may engage; for ex-

ample, the trace tr ′ = 〈(s1, s ′1)〉a〈(s2, a2)〉 describes the transitions of process P . In an open

environment, tr ′ may contain an (implicit) transition (s ′1, s2) as the result of interference by

the environment where states s ′1 and s2 can be different.

4.1. DENOTATIONAL SEMANTICS OF CSP# 57

In the following, we illustrate our semantic definitions for the CSP# process operators, and

present the refinement definition. Note that asynchronous channels and general choice are

not discussed in this section; the former can be simulated easily with global variables, and

the latter can be simulated by other CSP# operators, shown in Chapter 3. A denotational

semantics for the interrupt operator in the Unifying Theory has been defined in [48].

4.1.3.1 Primitives

Deadlock process Stop never engages in any event or updates shared variables, and it is

always waiting.

Stop =̂ H(ok ′ ∧ tr ′ = tr ∧ wait ′)

The semantics shows that the trace is unchanged and process is in a waiting state (repre-

sented by wait ′ being true). In addition, Stop refuses all events, so the final value of the

refusal set, ref ′, is left unconstrained.

Process Skip terminates immediately without any event or state change occurring.

Skip =̂ H(∃ ref • II)

Reactive identity II constrains that if a process terminates, then there is no change on the

trace. The initial refusal of Skip is irrelevant to its behaviour, defined by the existential

quantifier. After termination, the refusal set ref ′ is arbitrary.

4.1.3.2 Event Prefixing

Process a → P engages in event a first and afterwards behaves as process P . Event a defined

here is an action which occurs instantaneously, and may require simultaneous participation

by more than one processes.

4.1. DENOTATIONAL SEMANTICS OF CSP# 58

a → P =̂ H

 ok ′ ∧


a 6∈ ref ′ ∧ tr ′ = tr

Cwait ′B

∃ s ∈ S • tr ′ = tr a 〈(s, a)〉


 ; P

The above semantics shows two possible behaviours: when a process is waiting to engage

in action a, it cannot refuse this action during the waiting period (represented by predicate

a 6∈ ref ′), and its trace is unchanged; or a process performs action a and terminates with its

trace extended with this observation (by predicate tr ′ = tra〈(s, a)〉). Since the environment

may interfere with the process behaviour and make a transition on the shared variable states,

we use state s from the variable state set S to denote the initial state before the observation.

Note that the semantics of sequential composition “; ” is defined in Section 4.1.3.5.

4.1.3.3 Synchronous Channel Output/Input

In CSP#, messages can be sent/received synchronously through channels. The synchronisa-

tion is pairwise, involving two processes. Specifically, a synchronous channel communication

ch.exp can take place only if an output ch!exp is enabled and a corresponding input ch?m

is also ready.

ch!exp → P =̂ H

 ok ′ ∧


ch? 6∈ ref ′ ∧ tr ′ = tr

Cwait ′B

∃ s ∈ S • tr ′ = tr a 〈(s, ch!A[[exp]](s))〉


 ; P

The above semantics of synchronous channel output depicts two possible behaviours: when

a process is waiting to communicate on channel ch, it cannot refuse any channel input

over ch provided by the environment to perform a channel communication (represented by

predicate ch? 6∈ ref ′), and its trace is unchanged; or a process performs the output through

ch and terminates without divergence. The observation of the trace is recorded as a tuple

4.1. DENOTATIONAL SEMANTICS OF CSP# 59

(s, ch!A[[exp]](s)), where the value of the output message is evaluated under the pre-state

s. Here function A defines the semantics of arithmetic expressions, and its definition is in

Definition 1. After the output occurs, the process behaves as P .

ch?m → P(m) =̂ ∃ v ∈ T •

H

 ok ′ ∧


ch! 6∈ ref ′ ∧ tr ′ = tr

Cwait ′B

∃ s ∈ S • tr ′ = tr a 〈(s, ch?v)〉


 ; P(v)


As shown above, the semantics of synchronous channel input is similar to channel output

except that when a process is waiting, it cannot refuse any channel output provided by

the environment, and after the process receives a message v from channel ch, its trace is

appended with a tuple (s, ch?v). In addition, parameter m cannot be modified in process

P ; namely, it becomes constant-like and its value is replaced by value v .

4.1.3.4 Data Operation Prefixing

In CSP#, sequential programs are executed atomically together with the occurrence of

an event, called data operation. The updates on shared variables are observed after the

execution of all programs as illustrated below.

e{prog} → Skip =̂ H


ok ′ ∧ ∃ s ∈ S •



wait ′ ∧ tr ′ = tr a 〈(s,⊥)〉

C(s,⊥) ∈ C[[prog]]B

¬wait ′ ∧ ∃ s ′ ∈ S • (tr ′ = tr a 〈(s, s ′)〉

∧(s, s ′) ∈ C[[prog]])




If the evaluation of the program does not terminate (represented by predicate (s,⊥) ∈

C[[prog]]), then the process is in a waiting state, and its trace is extended with the record

of non-termination. On the other hand, if the evaluation succeeds and terminates, then

the process terminates and the state transition is recorded in the trace. In our definition,

4.1. DENOTATIONAL SEMANTICS OF CSP# 60

the non-communicating event is not recorded in the trace since such an event would not

synchronise with other events; instead, its effect can be described by the updates on shared

variable states. Thus the non-communicating event is used as a label to indicate the updates

on shared variables. Note that post-state s ′ after the observation is associated with the pre-

state s under the semantics of sequential programs ((s, s ′) ∈ C[[prog]]). Function C defines

the semantics of programs by structured induction [94], its definition is in Section 4.1.2.

The data operation prefixing process e{prog} → P is thus defined as sequential composition

of data operation and P .

e{prog} → P =̂ (e{prog} → Skip); P

4.1.3.5 Sequential Composition

In process P ; Q , P takes control first and Q starts only when P has finished.

P ; Q =̂ ∃ obs0 • (P [obs0/obs ′] ∧Q [obs0/obs])

The semantics of sequential composition shows that if process P diverges, then so does the

process P ; Q ; if process P is in a waiting state, then the following process Q cannot start;

if P terminates, then process Q starts immediately and the final observation of process P

is the initial observation of process Q . In the above definition, the term obs represents the

set of observational variables ok , wait , tr , and ref , as is the case of obs0 and obs ′.

4.1.3.6 Choice

Internal choice denotes that process P u Q behaves like either P or Q . The selection is

made internally and non-deterministically, not affected by the environment.

P u Q =̂ P ∨Q

4.1. DENOTATIONAL SEMANTICS OF CSP# 61

External choice denotes that for process P 2 Q , the selection of process P or Q is controlled

by the environment, i.e., the choice is resolved by the occurrence of the first visible event.

P 2 Q =̂ H((P ∧Q)C Stop B (P ∨Q))

The above definition shows that if no observation has been made and termination has not

occurred (i.e., process Stop is true), then the process has both possible behaviours of P and

Q . Alternatively, if an observation had been made, (i.e., process Stop is false.), then process

behaviour will be either that of P or that of Q depending on from which choice is made.

4.1.3.7 State Guard

Process [b]P waits until condition b becomes true and then behaves as P . Moreover, the

checking of condition b is performed simultaneously with the occurrence of the first event of

process P .

[b]P =̂ P / (B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′) . Stop

The semantics states that if the Boolean guard b is satisfied under the state from the initial

observation of P , represented by π1(head(tr ′ − tr)), then the observation of whole process

is the same as P , or otherwise, process behaves as process Stop. Function π1 selects the

first element of a tuple and function head returns the first element of a sequence. Note that

the semantics of traditional conditional choice if (b) {P} else {Q} can be equivalent to the

semantics of [b]P ∨ [¬b]Q .

4.1.3.8 Parallel Composition

The parallel composition P ‖ Q executes P and Q in the following way: (1) common

actions of P and Q require simultaneous participation, (2) synchronous channel output in

4.1. DENOTATIONAL SEMANTICS OF CSP# 62

one process occurs simultaneously with the corresponding channel input in the other process,

and (3) other events of processes occur independently.

In CSP, the semantics of parallel composition is defined in terms of the merge operator ‖M

in UTP [31], where the predicate M captures how to merge two observations. To deal with

channel-based communications and shared variable updates in CSP#, we here define a new

merge predicateM (X) to model the merge operation. The set X contains common actions of

both processes (denoted by set X1) and all synchronous channel inputs and outputs (denoted

by set X2). Namely,

P ‖ Q =̂

 P [0.ok , 0.wait , 0.ref , 0.tr/ok ′,wait ′, ref ′, tr ′] ∧

Q [1.ok , 1.wait , 1.ref , 1.tr/ok ′,wait ′, ref ′, tr ′]

 ; M (X)

where

M (X) =̂



(ok ′ = 0.ok ∧ 1.ok) ∧

(wait ′ = 0.wait ∨ 1.wait) ∧

(ref ′ = (0.ref ∩ 1.ref ∩ X2) ∪ ((0.ref ∪ 1.ref) ∩ X1)

∪ ((0.ref ∩ 1.ref)− X1 − X2))

(tr ′ − tr ∈ (0.tr − tr ‖X 1.tr − tr))


; Skip

The predicate M (X) captures four kinds of behaviours of a parallel composition. First, the

composition diverges if either process diverges (represented by predicate ok ′ = 0.ok ∧ 1.ok).

Second, the composition terminates if both processes terminate (wait ′ = 0.wait ∨ 1.wait).

Third, the composition refuses synchronous channel outputs/inputs that are refused by both

processes (0.ref ∩1.ref ∩X2), all actions that are in the set X1 and refused by either process

((0.ref ∪ 1.ref) ∩ X1), and actions that are not in the set X1 but refused by both processes

((0.ref ∩ 1.ref) − X1 − X2). Last, the trace of the composition is a member of the set of

traces produced by the trace synchronisation function ‖X as elaborated below.

4.1. DENOTATIONAL SEMANTICS OF CSP# 63

Function ‖X models how to merge two individual traces into a set of all possible traces;

there are nine cases from six groups. In the following definitions, s, s ′, s1, s ′1, s2, s ′2 are

representative elements of variable states, a, a1, a2 are representative elements of actions,

ch is a representative element of channel names, and v is a value with type T.

• (1) If both input traces are empty, the result is a set of an empty sequence (denoted

by case-1); (2) if only one input trace is empty, the result is determined based on the

first observation of that non-empty trace: (i) if that observation is an action in the set

X which requires synchronisation, then the result is a set containing only an empty

sequence, or otherwise, the first observation is recorded in the merged trace (case-2);

if the first observation is (ii) a channel input/output/communication (case-3) or (iii)

a state pair (case-4), then the observation is recorded in the merged trace.

case-1 〈 〉 ‖X 〈 〉 = {〈 〉}

case-2 〈(s, a)〉a t ‖X 〈 〉 =

 {〈 〉} if a ∈ X

{〈(s, a)〉a l | l ∈ t ‖X 〈 〉} otherwise

case-3 〈(s, h)〉a t ‖X 〈 〉 = {〈(s, h)〉a l | l ∈ t ‖X 〈 〉}, where h ∈ {ch?v , ch!v , ch.v}

case-4 〈(s, s ′)〉a t ‖X 〈 〉 = {〈(s, s ′)〉a l | l ∈ t ‖X 〈 〉}

• When a communication is over a synchronous channel, if the first observations of

two input traces match (see Definition 4 below), then a synchronisation may occur

(denoted by the set G1) or at this moment a synchronisation does not occur (denoted

by the set G2). Otherwise, a synchronisation cannot occur. Here, two observations are

matched provided that both channel input and output from two processes respectively

are enabled under the same pre-state.

Definition 4 (Match). Given two pairs p1 = (s1, h1) and p2 = (s2, h2), we say that

they are matched if both s1 = s2 and {h1, h2} = {ch?v , ch!v} are satisfied, denoted as

4.1. DENOTATIONAL SEMANTICS OF CSP# 64

match(p1, p2).

case-5 〈(s1, h1)〉a t1 ‖X 〈(s2, h2)〉a t2 =

 G1 ∪ G2 match((s1, h1), (s2, h2))

G2 otherwise

where h1, h2 ∈ {ch?v , ch!v , ch.v}, G1 =̂ {〈(s1, ch.v)〉 a l | l ∈ t1 ‖X t2}, and G2 =̂

{〈(s1, h1)〉a l | l ∈ t1 ‖X 〈(s2, h2)〉a t2} ∪ {〈(s2, h2)〉a l | l ∈ 〈(s1, h1)〉a t1 ‖X t2}.

• When two actions (a1 and a2) are synchronised, there are five cases with respect to the

initial states (s1 and s2) and actions from the first observation of two input traces: (1)

both actions are in the set X but different, (2) actions from X are the same but under

different pre-states, (3) actions from X are the same and under the same pre-state,

(4) one of the actions is not in X , and (5) both actions are not in X . As shown in

case-6 below, the result is a set containing only an empty sequence for cases (1) and

(2). A synchronisation occurs under case (3), although it is postponed to occur under

case (4). Either action can occur for case (5).

case-6 〈(s1, a1)〉a t1 ‖X 〈(s2, a2)〉a t2 =

{〈 〉} a1, a2 ∈ X ∧ a1 6= a2

{〈 〉} a1, a2 ∈ X ∧ a1 = a2 ∧ s1 6= s2

{〈(s1, a1)〉a l | l ∈ t1 ‖X t2} a1, a2 ∈ X ∧ a1 = a2 ∧ s1 = s2

{〈(s1, a1)〉a l | l ∈ t1 ‖X 〈(s2, a2)〉a t2} a1 6∈ X ∧ a2 ∈ X

{〈(s1, a1)〉a l | l ∈ t1 ‖X 〈(s2, a2)〉a t2}

∪

{〈(s2, a2)〉a l | l ∈ 〈(s1, a1)〉a t1 ‖X t2}

a1 6∈ X ∧ a2 6∈ X

• When the merge operation is on an action a and channel input ch?v , output ch!v ,

communication ch.v , or a post-state s ′2, (1) if a is from the set X , then its occurrence is

postponed (G3), (2) or otherwise, either observation from two processes occurs (G3∪G4).

case-7 〈(s1, a)〉a t1 ‖X 〈(s2, h)〉a t2 =

 G3 if a ∈ X

G3 ∪ G4 otherwise

4.1. DENOTATIONAL SEMANTICS OF CSP# 65

where h ∈ {ch?v , ch!v , ch.v , s ′2}, G3 =̂ {〈(s2, h)〉 a l | l ∈ 〈(s1, a)〉 a t1 ‖X t2}, and

G4 =̂ {〈(s1, a)〉a l | l ∈ t1 ‖X 〈(s2, h)〉a t2}.

• When the merge operation is over two state pairs or the operation is on a state pair

and a channel input/output/communication, either observation from two processes

can occur as only one process can update shared variable(s) at a time when processes

run in parallel.

case-8 〈(s1, s ′1)〉 a t1 ‖X 〈(s2, h)〉 a t2 = {〈(s1, s ′1)〉 a l | l ∈ t1 ‖X 〈(s2, h)〉 a t2} ∪

{〈(s2, h)〉a l | l ∈ 〈(s1, s ′1)〉a t1 ‖X t2} where h ∈ {s ′2, ch?v , ch!v , ch.v}

• Finally , function ‖X is symmetric.

case-9 t1 ‖X t2 = t2 ‖X t1

4.1.3.9 Interleave

In the open environment, processes P and Q run independently (except communications

through synchronous channels) for P ||| Q . The semantics of the interleave operator defined

below is similar to that of parallel operator except the set X which only contains synchronous

channel outputs and inputs.

P ||| Q =̂ P ‖M (X) Q

The merge predicate M (X) is the same as the definition in Section 4.1.3.8.

4.1.3.10 Hiding

The hiding operator makes all occurrences of actions in X1 hidden from the environment of

the process. The actions in set X1 are not recorded in the process trace.

P \ X1 =̂ H(∃ s • P [s,X1 ∪ ref ′/tr ′, ref ′] ∧ (tr ′ − tr) = hide(s − tr ,X1)); Skip

4.1. DENOTATIONAL SEMANTICS OF CSP# 66

The definition of hiding is defined by renaming the final trace of P as s, and restricting s to

the trace which contains all the events of process P except those in set X1, captured by the

function hide. The final refusal set is the union of refusal set of P and set X1. Note that

Action denotes a set of actions.

hide : seq((S× E) ∪ (S× S⊥))× PAction → seq((S× E) ∪ (S× S⊥))
hide(〈 〉) =̂ 〈 〉

hide(〈(s, e)〉a t) =̂

 hide(t ,X1) if e ∈ X1

〈(s, e)〉a hide(t ,X1) otherwise

4.1.3.11 Recursion

Let X be a variable standing for a call to a recursive process, F be a monotonic function

from CSP# processes to CSP# processes, the semantics of recursion µX • F (X) is defined

as the weakest fixed point, which is the greatest lower bound of all the fixed points of F with

the bottom element H (true) and the top element H (false); namely, u{X | X w F (X)}. The

definition of refinement order w is shown in Definition 5.

4.1.3.12 Refinement

Refinement calculus is designed to produce correct programs, assisting in the software devel-

opment. In the UTP theory, it is expressed as logic implication; an implementation (denoted

as predicate P) satisfying a specification (denoted as predicate S) is formally expressed by

universal quantification implication ∀ a, a ′, · · · • P ⇒ Q , where a, a ′, · · · are all observational

variables of the alphabet, which must be the same for the specification and implementation.

The universal quantification implication is usually denoted as [P ⇒ Q]. The definition of

refinement in CSP# is given as below.

Definition 5 (Refinement). Let P and Q be predicates for processes with the same shared

4.1. DENOTATIONAL SEMANTICS OF CSP# 67

variable state space, the refinement P w Q holds iff [P ⇒ Q].

The refinement ordering in our definition is strong; every observation that satisfies P must

also satisfy Q . The observation includes all process behaviours, i.e., stability, termination,

traces, and refusals. Moreover, the record of the trace considers both variable states and

event occurrences. For example, given a process P = [x = 2]b → Skip 2 [x 6= 2]c → Skip,

and a process Q = [x = 2]b → Skip 2 [x 6= 2]d → Skip, the refinement P w Q does not hold

although one observation satisfies both processes when x is equal to 2. A counterexample is

that when x is not equal to 2, processes P and Q perform action c and d , respectively.

Notice that we only allow that in the trace sequence of process P , every element shall be

the same as its counterpart in Q . In other words, our refinement prevents atomic program

operations updating shared variables from being refined by non-atomic program operations

which make the same effect. For example, given a process P = e{x = x + 1} → e{x =

x + 1} → Skip, and a process Q = e{x = x + 2} → Skip, the refinement P w Q does not

hold.

Definition 6 (Equivalence). For any two CSP# processes P and Q, P is equivalent to Q

if and only if P w Q ∧Q w P.

Lemma 1 (Monotonicity). All process combinators defined in the CSP# language are mono-

tonic.

The proofs of Lemma 1 are in Appendix B.

Theorem 1 (Compositional). The open semantics of CSP# is compositional.

Proof Given process combinator F and processes P ,Q such that P and Q are equivalent

with respect to the open semantics, we have P w Q and Q w P according to Definition 6.

According to Lemma 1, both F (P) w F (Q) and F (Q) w F (P), which indicates F (P) =

F (Q), i.e., the open semantics is compositional. 2

4.2. ALGEBRAIC LAWS 68

4.2 Algebraic Laws

In this section, we present a set of algebraic laws concerning the distinct features of CSP#.

All algebraic laws can be established based on our denotational model. That is to say, if

the equality of two syntactically different processes is algebraically provable, then the two

processes are also equivalent with respect to the denotational semantics. Moreover, these

algebraic laws can be used as auxiliary reasoning rules to prove process equivalence during

theorem proving.

4.2.1 State Guard

Law guard - 1 enables the elimination of nested guards.

guard - 1 [b1]([b2]P) = [b1 ∧ b2]P

Proof:

[b1]([b2]P) [4.1.3.7]

=


(P / (B(b2)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′) . Stop)

/(B(b1)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′).

Stop

 [predicate calculus]

=




P ∧ B(b2)(π1(head(tr ′ − tr))) = true∧

tr < tr ′∧

B(b1)(π1(head(tr ′ − tr))) = true


∨
Stop ∧ ¬(B(b2)(π1(head(tr ′ − tr))) = true∧

tr < tr ′∧

B(b1)(π1(head(tr ′ − tr))) = true)





[Def . 2]

4.2. ALGEBRAIC LAWS 69

=

(P ∧ B(b2 ∧ b1)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)

∨

(Stop ∧ ¬(B(b2 ∧ b1)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′))

[4.1.3.7]

= [b1 ∧ b2]P 2

Law guard - 2 shows the distribution of the state guard through parallel composition,

external choice and internal choice.

guard - 2 [b](P1 op P2) = [b]P1 op [b]P2 where, op ∈ {‖,2,u}

Proof: The guard b1 constrains that the pre-state of the initial observation of the compo-

sition process should satisfy the condition, since the pre-state of the initial observation of

the composition process can be from either process P1 or P2 (see Section 4.1.3.6, 4.1.3.8),

so the condition should be satisfied by the initial observation of both processes. 2

Law guard - 3 shows that process [false]P behaves like Stop because its guard can never

be fired.

guard - 3 [false]P = Stop

Proof:

[false]P [4.1.3.7]

= P / (B(false)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′) . Stop [Def . 2]

= P / (false ∧ tr < tr ′) . Stop [predicate calculus]

= Stop 2

4.2.2 Sequential Composition

seq - 1 (P1; P2); P3 = P1; (P2; P3)

seq - 2 P1; (P2 u P3) = (P1; P2) u (P1; P3)

seq - 3 (P1 u P2); P3 = (P1; P3) u (P2; P3)

4.2. ALGEBRAIC LAWS 70

seq - 4 P = Skip; P

seq - 5 P = P ; Skip

seq - 1 shows that sequential composition is associative. seq - 2, 3 show the distribution of

sequential composition through external choice. seq - 4, 5 show that process Skip is the left

and right unit of sequential composition, respectively. The semantics of CSP# sequential

composition and Skip is the same as in CSP, so the proofs of the above laws are not shown.

4.2.3 Parallel Composition

par - 1, 2 show that parallel composition is commutative and associative. Consequently,

the order of parallel composition is irrelevant.

par - 1 P1 ‖ P2 = P2 ‖ P1

Proof:

P1 ‖ P2 [4.1.3.8]

= (P1[0.obs/obs ′] ∧ P2[1.obs/obs ′]); M (X)

 symmetry of M(X) and

predicate calculus


= (P2[0.obs/obs ′] ∧ P1[1.obs/obs ′]); M (X) [4.1.3.8]

= P2 ‖ P1 2

par - 2 (P1 ‖ P2) ‖ P3 = P1 ‖ (P2 ‖ P3), provided that common actions and synchronous

outputs/inputs among processes P1, P2 and P3 (denoted as set X) are the same.

4.2. ALGEBRAIC LAWS 71

Proof:

(P1 ‖ P2) ‖ P3 [4.1.3.8]

=



((P1[0.obs/obs ′] ∧ P2[1.obs/obs ′]);

M (X))[0.obs/obs ′]

∧

P3[1.obs/obs ′]


; M (X)

 associativity of M(X),

predicate calculus



=



P1[0.obs/obs ′]

∧

((P2[0.obs/obs ′] ∧ P3[1.obs/obs ′]);

M (X))[1.obs/obs ′]


; M (X) [4.1.3.8]

= P1 ‖ (P2 ‖ P3) 2

Law par - 3 shows that process Skip is the unit of parallelism.

par - 3 Skip ‖ P = P = P ‖ Skip

Proof:

Skip ‖ P [par− 1]

= P ‖ Skip 2

P ‖ Skip [4.1.3.8]

= P ‖M (X) Skip [UTP parallel]

= ((P [0.obs/obs ′]) ∧ (Skip[1.obs/obs ′])); M (X1) [4.1.3.1]

= ((P [0.obs/obs ′]) ∧ (H(∃ ref • II)[1.obs/obs ′])); M (X1) [H]

4.2. ALGEBRAIC LAWS 72

=



((P [0.obs/obs ′]) ∧

(wait ∧ ¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr

∧ wait ′ = wait ∧ ref ′ = ref) ∨

(¬wait ∧ ¬ok ∧ tr ≤ tr ′) ∨

(¬wait ∧ ∃ ref • (ok ′ ∧ tr ′ = tr∧

wait ′ = wait ∧ ref ′ = ref))



 1.obs

/obs ′





; M (X1)


propo-

sitional

calculus



=



((P [0.obs/obs ′]) ∧

(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr

∧ wait ′ = wait ∧ ref ′ = ref) ∨

(¬wait ∧ ok ′ ∧ tr ′ = tr

∧ wait ′ = wait)


[1.obs/obs ′]


; M (X1)

 P is

CSP1



=



((CSP1(P)[0.obs/obs ′]) ∧

(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr

∧wait ′ = wait ∧ ref ′ = ref) ∨

(¬wait ∧ ok ′ ∧ tr ′ = tr

∧ wait ′ = wait)


[1.obs/obs ′]


; M (X1) [CSP1]

=



((P ∨ ¬ok ∧ tr ≤ tr ′)[0.obs/obs ′]) ∧

(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr

∧ wait ′ = wait ∧ ref ′ = ref) ∨

(¬wait ∧ ok ′ ∧ tr ′ = tr

∧ wait ′ = wait)



 1.obs

/obs ′




; M (X1) [P is R3]

4.2. ALGEBRAIC LAWS 73

=



((R3(P) ∨ ¬ok ∧ tr ≤ tr ′)[0.obs/obs ′]) ∧

(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait

∧ ref ′ = ref) ∨

(¬wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait)


 1.obs

/obs ′




; M (X1) [R3]

=




wait ∧ II ∨

¬wait ∧ P ∨

¬ok ∧ tr ≤ tr ′

 [0.obs/obs ′])

∧

(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait

∧ ref ′ = ref) ∨

(¬wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait)


 1.obs

/obs ′





; M (X1)

[II and propositional calculus]

=





(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait

∧ ref ′ = ref) ∨

(¬wait ∧ P)


[0.obs/obs ′])

∧

(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait

∧ ref ′ = ref) ∨

(¬wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait)


 1.obs

/obs ′





; M (X1)

[predicate calculus]

4.2. ALGEBRAIC LAWS 74

=





(¬ok ∧ tr ≤ 0.tr) ∨

(wait ∧ 0.ok ∧ 0.tr = tr

∧ 0.wait = wait ∧ 0.ref = ref) ∨

(¬wait ∧ P [0.obs/obs ′])


∧

(¬ok ∧ tr ≤ 1.tr) ∨

(wait ∧ 1.ok ∧ 1.tr = tr

∧ 1.wait = wait ∧ 1.ref = ref) ∨

(¬wait ∧ 1.ok ∧ 1.tr = tr

∧ 1.wait = wait)





; M (X1)

 propositional

calculus



=



(¬ok ∧ tr ≤ 0.tr ∧ tr ≤ 1.tr) ∨

(¬ok ∧ tr ≤ 0.tr ∧ wait ∧ 1.ok ∧ 1.tr = tr

∧ 1.wait = wait ∧ 1.ref = ref) ∨

(¬ok ∧ tr ≤ 0.tr ∧ ¬wait ∧ 1.ok ∧ 1.tr = tr ∧ 1.wait = wait) ∨

(¬ok ∧ tr ≤ 1.tr ∧ wait ∧ 0.ok

∧0.tr = tr ∧ 0.wait = wait ∧ 0.ref = ref) ∨

(wait ∧ 0.ok ∧ 1.ok ∧ 0.tr = 1.tr = tr

∧ 0.wait = 1.wait = wait ∧ 0.ref = 1.ref = ref) ∨

(¬ok ∧ tr ≤ 1.tr ∧ ¬wait ∧ (P [0.obs/obs ′])) ∨

(¬wait ∧ 1.ok ∧ 1.tr = tr ∧ 1.wait = wait ∧ P [0.obs/obs ′])



; M (X1)

[4.1.3.8 and M (X)]

4.2. ALGEBRAIC LAWS 75

=



(¬ok ∧ tr ≤ 0.tr ∧ tr ≤ 1.tr) ∨

(¬ok ∧ tr ≤ 0.tr ∧ wait ∧ 1.ok

∧ 1.tr = tr ∧ 1.wait = wait ∧ 1.ref = ref) ∨

(¬ok ∧ tr ≤ 0.tr ∧ ¬wait ∧ 1.ok

∧ 1.tr = tr ∧ 1.wait = wait) ∨

(¬ok ∧ tr ≤ 1.tr ∧ wait ∧ 0.ok

∧ 0.tr = tr ∧ 0.wait = wait ∧ 0.ref = ref) ∨

(wait ∧ 0.ok ∧ 1.ok ∧ 0.tr = 1.tr = tr

∧ 0.wait = 1.wait = wait ∧ 0.ref = 1.ref = ref) ∨

(¬ok ∧ tr ≤ 1.tr ∧ ¬wait ∧ (P [0.obs/obs ′])) ∨

(¬wait ∧ 1.ok ∧ 1.tr = tr ∧ 1.wait = wait ∧ (P [0.obs/obs ′]))



;





(ok ′ = 0.ok ∧ 1.ok) ∧

(wait ′ = 0.wait ∨ 1.wait) ∧

(ref ′ = ((0.refa ∪ 1.refa) ∩ X1) ∪ ((0.refa ∩ 1.refa)− X1)

∪ (0.refc ∩ 1.refc ∩ X2)) ∧

(tr ′ − tr ∈ (0.tr − tr ‖X 1.tr − tr))


; Skip


[seq− 1]

4.2. ALGEBRAIC LAWS 76

=





(¬ok ∧ tr ≤ 0.tr ∧ tr ≤ 1.tr) ∨

(¬ok ∧ tr ≤ 0.tr ∧ wait ∧ 1.ok

∧ 1.tr = tr ∧ 1.wait = wait ∧ 1.ref = ref) ∨

(¬ok ∧ tr ≤ 0.tr ∧ ¬wait ∧ 1.ok

∧ 1.tr = tr ∧ 1.wait = wait) ∨

(¬ok ∧ tr ≤ 1.tr ∧ wait ∧ 0.ok

∧ 0.tr = tr ∧ 0.wait = wait ∧ 0.ref = ref) ∨

(wait ∧ 0.ok ∧ 1.ok ∧ 0.tr = 1.tr = tr

∧ 0.wait = 1.wait = wait ∧ 0.ref = 1.ref = ref) ∨

(¬ok ∧ tr ≤ 1.tr ∧ ¬wait ∧ (P [0.obs/obs ′])) ∨

(¬wait ∧ 1.ok ∧ 1.tr = tr ∧ 1.wait = wait ∧ (P [0.obs/obs ′]))



;



(ok ′ = 0.ok ∧ 1.ok) ∧

(wait ′ = 0.wait ∨ 1.wait) ∧

(ref ′ = ((0.refa ∪ 1.refa) ∩ X1) ∪ ((0.refa ∩ 1.refa)− X1)

∪ (0.refc ∩ 1.refc ∩ X2)) ∧

(tr ′ − tr ∈ (0.tr − tr ‖X 1.tr − tr))





; Skip

[4.1.3.5]

4.2. ALGEBRAIC LAWS 77

=





(¬ok ∧ tr ≤ 0.tr ∧ tr ≤ 1.tr) ∨

(¬ok ∧ tr ≤ 0.tr ∧ wait ∧ 1.ok

∧ 1.tr = tr ∧ 1.wait = wait ∧ 1.ref = ref) ∨

(¬ok ∧ tr ≤ 0.tr ∧ ¬wait ∧ 1.ok

∧ 1.tr = tr ∧ 1.wait = wait) ∨

(¬ok ∧ tr ≤ 1.tr ∧ wait ∧ 0.ok

∧ 0.tr = tr ∧ 0.wait = wait ∧ 0.ref = ref) ∨

(wait ∧ 0.ok ∧ 1.ok ∧ 0.tr = 1.tr = tr

∧ 0.wait = 1.wait = wait ∧ 0.ref = 1.ref = ref) ∨

(¬ok ∧ tr ≤ 1.tr ∧ ¬wait ∧ (P [0.obs/obs ′])) ∨

(¬wait ∧ 1.ok ∧ 1.tr = tr ∧ 1.wait = wait

∧ (P [0.obs/obs ′]))


∧

(ok ′ = 0.ok ∧ 1.ok) ∧

(wait ′ = 0.wait ∨ 1.wait) ∧

(ref ′ = ((0.refa ∪ 1.refa) ∩ X1) ∪ ((0.refa ∩ 1.refa)− X1)

∪ (0.refc ∩ 1.refc ∩ X2)) ∧

(tr ′ − tr ∈ (0.tr − tr ‖X 1.tr − tr))





; Skip

[predicate calculus]

4.2. ALGEBRAIC LAWS 78

=



(¬ok ∧ tr ≤ tr ′) ∨

(¬ok ∧ wait ∧ tr ≤ tr ′ ∧ ok ′ = 0.ok ∧Ψ1) ∨

(¬ok ∧ ¬wait ∧ tr ≤ tr ′ ∧ wait ′ = 0.wait) ∨

(¬ok ∧ wait ∧ tr ≤ tr ′ ∧ ok ′ = 1.ok ∧Ψ2) ∨

(wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref) ∨

(¬ok ∧ ¬wait ∧ tr ≤ tr ′ ∧Ψ3) ∨

(¬wait ∧ ok ′ = 0.ok ∧ tr ′ = 0.tr ∧ wait ′ = 0.wait

∧ ref ′ = 0.ref ∧ (P [0.obs/obs ′]))



2; Skip

 predicate

calculus



=


(¬ok ∧ tr ≤ tr ′) ∨

(wait ∧ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref) ∨

(¬wait ∧ P)

 ; Skip [II]

=


(wait ∧ II) ∨

(¬wait ∧ P) ∨

(¬ok ∧ tr ≤ tr ′)

 ; Skip [R3]

=

 R3(P) ∨

(¬ok ∧ tr ≤ tr ′)

 ; Skip [P is R3]

= (P ∨ ¬ok ∧ tr ≤ tr ′); Skip [CSP1]

= CSP1(P); Skip [P is CSP1]

= P ; Skip [seq− 5]

= P 2

2Ψ1, Ψ2 and Ψ3 are logic formulae in terms of ref ′, 0.ref and 1.ref .

4.3. THE CLOSED SEMANTICS 79

4.3 The Closed Semantics

So far, we have constructed an open semantics for CSP#. Namely, the denotational seman-

tics is defined in an open environment. The interference by the environment is implicitly

captured in the hybrid trace which collects the potential events or state transitions in which

a process may engage. For example, given a trace 〈(s1, s ′1)〉 a 〈(s2, e)〉, the transition from

state s ′1 to s2 is implicit, and it is performed by the environment. In addition, the envi-

ronment can change the states, so it is not necessary to ensure that state s ′1 is the same as

s2. Thus the system and environment alternate in making transitions. From Theorem 1,

the open semantics maintains the compositionality of the processes. Therefore, it supports

compositional verification of process behaviours.

However, if we look at it in another light, there is no need to retain all possible transitions

from the environment if we have already built the model of the whole system or the behaviour

of the environment has been modelled as a process. In this situation, we attempt to consider

a closed semantics for the CSP# language. Fortunately, the closed semantics does not need

to be defined from the scratch; it can be generated from the open semantics. Thus, we first

introduce the definition of closed traces to judge which trace exactly describes the process

behaviour in a closed environment.

Definition 7 (Closed Trace). A hybrid trace tr is closed, represented as cl(tr), if it satisfies

the following two conditions.

(1) For any state pair which is not the last element in the trace, the post-state is passed as

the pre-state of its immediate subsequent element, i.e., ∀ 0 ≤ i < #tr − 1,∃ s, s ′ ∈ S • (tri =

(s, s ′)⇒ s ′ = π1(tr(i+1)))
3.

(2) For any event which is not the last element in the trace, it should share the same pre-

state with its immediate subsequent element, i.e., ∀ 0 ≤ i < #tr − 1, ∃ s ∈ S, e ∈ E • (tri =

3tri returns the (i + 1)th element of the sequence tr .

4.3. THE CLOSED SEMANTICS 80

(s, e)⇒ s = π1(tr(i+1))).

Informally speaking, a closed trace has this property: two adjacent elements in the trace are

associated by a common state; the post-state of the former equals to the pre-state of the

latter if the former is a state transition; the pre-state is shared if the former is an event. Note

that every element in a hybrid trace has a pre-state but only the state transition possesses a

post-state because the pre-state is not changed when an event occurs. Since the environment

cannot update the shared state, a closed trace is identified as the behaviour of the process

in the closed environment. For convenience, given a set of hybrid traces, denoted as the set

HT , we define CL(HT) to represent the set of all closed traces in HT . Obviously, we have

CL(HT) ⊆ HT .

Now, we can generate the closed semantics (denoted by [[P]]closed) from the open semantics

([[P]]open) for any communicating process P . The relation between them is revealed by

Definition 8.

Definition 8 (Closed Semantics). [[P]]closed =̂ [[P]]open ∧ cl(tr) ∧ cl(tr ′)

According to the open semantics, two processes that are semantically equivalent can generate

the same traces tr , tr ′. Further, any two closed traces generated from their open traces are

the same. Thus the equality with respect to the open semantics is preserved by the closed

semantics, which is shown in Theorem 2.

Theorem 2. [[P]]open = [[Q]]open ⇒ [[P]]closed = [[Q]]closed

However, we cannot imply that [[P]]open = [[Q]]open is true when [[P]]closed = [[Q]]closed holds.

Furthermore, given that [[P]]closed = [[Q]]closed , the law P ‖ R = Q ‖ R may be invalid; the

compositionality fails in the closed semantics as shown by Example 1.

Example 1. Given a process P = a{x = 2} → ([x = 2]b → Skip 2 [x 6= 2]c → Skip), and

a process Q = a{x = 2} → ([x = 2]b → Skip 2 [x 6= 2]d → Skip), the closed semantics

4.4. SUMMARY 81

of processes P and Q is the same, while their open semantics is not the same because after

executing event a, process P may execute event c, and process Q may execute event d

when the value of variable x is not equal to 2 in their pre-states. Therefore, given a process

R = e{x = 3} → Skip, there is a case that after executing the events a and e sequentially,

process P ‖ R will execute event c while process Q ‖ R will execute event d , and thus the

law P ‖ R = Q ‖ R is not satisfied.

4.4 Summary

In this chapter, we have defined a denotational semantics in an open environment for the

CSP# language based on the UTP framework. The formalised semantics covers different

types of concurrency, i.e., communications and shared variable paradigm. In addition, a set

of algebraic laws have been proposed based on the denotational model for CSP#. Further-

more, a closed semantics has been derived from the open denotational semantics by focusing

on the particular hybrid traces.

The work in this chapter is related to the denotational semantics of CSP which has been

defined using two approaches. On one hand, Roscoe [62] and Hoare [29] provided a trace

model, a stable-failures model and a failures-divergences model for CSP processes. In the

trace model, every process is mapped to a set of traces which capture sequences of event

occurrences during the process execution. In the stable-failures model, every process is

mapped to a set of pairs, and each pair consists of a trace and a refusal. In the failures-

divergences model, every process is mapped to a pair, where one component is a set of

traces that can lead to divergent behaviours, and the other component contains all stable

failures which are all pairs, and each pair is in the form of a trace and a refusal. On the

other hand, Hoare and He [31] defined a denotational semantics for CSP processes using

the UTP theory. Each process is formalised as a relation between an initial observation and

4.4. SUMMARY 82

a subsequent observation; such relations are represented as predicates over observational

variables which record process stability, termination, traces and refusals before or after the

observation. Cavalcanti and Woodcock [14] related the UTP theory of CSP to the failures-

divergences model of CSP.

The aforementioned denotational semantics for CSP does not deal with data aspects. To

solve this problem, several attempts have been done to provide the denotational semantics

for languages which integrate CSP with state-based notations. For example, Oliveira et

al. [53] presented a denotational semantics for Circus based on a UTP theory. The proposed

semantics includes two parts: one is for Circus actions, guarded commands, etc., and the

other is for Circus processes which contain an encapsulated state, a main action, etc. How-

ever, this proposed semantics assumes that the sets of variables in processes shall be disjoint

when those processes run in parallel or interleaving. Qin et al. [61] formalised the denota-

tional semantics of Timed Communicating Object Z (TCOZ) based on the UTP framework.

Their unified semantic model can deal with channel-based and sensor/actuator-based com-

munications, although shared variables in TCOZ are restricted to only sensors/actuators.

There exists some work on shared-variable concurrency. Brooks [10] defined a denotational

semantics for a shared-variable parallel language, where the semantic model considers state

transitions only, and thus cannot be directly applied to communicating processes. Zhu

et al. [97] derived a denotational semantics from the proposed operational semantics for

the hardware description language Verilog. In addition, they [98] derived the denotational

semantics from the algebraic semantics for Verilog to explore the equivalence of two semantic

models. Recently, they [100] proposed a probabilistic language PTSC which integrates

probability, time and shared-variable concurrency. The operational semantics of PTSC

is explored and a set of algebraic laws are presented via bisimulation. Furthermore, a

denotational semantics using the UTP approach [99] is derived from the algebraic laws

based on the head normal form of PTSC constructs. These semantic models lack expressive

4.4. SUMMARY 83

power to capture more complicated system behaviours like channel-based communications.

4.4. SUMMARY 84

Chapter 5

Encoding CSP# Denotational

Semantics into PVS

There are two popular approaches in formal verification, model checking [16, 5] and theo-

rem proving [15, 69]. The model checking approach constructs a finite model of a system

and checks automatically and exhaustively if this model meets a property; a great advan-

tage of this approach is the fully automatic checking process, although the exhaustive state

exploration feature constrains its support for infinite state systems in general. As a comple-

mentary approach to model checking, the theorem proving approach consists of specifying

both systems and properties in certain mathematical logic and proving the correctness by

logic inference; the formal proofs are often developed with interactive theorem provers.

In Chapter 4, we have defined a denotational semantics for CSP# in order to complement

the existing CSP# operational semantics which was used for the model checking approach

for CSP#. In addition, we also presented a set of algebraic laws and proved the soundness

of these laws with respect to the denotational semantics. However, manually proving such

laws is difficult and tedious, and subtle mistakes or omissions can easily occur at any stage of

85

Chapter 5. Encoding CSP# Denotational Semantics into PVS 86

the proofs. Moreover, a high grade of automated verification of system properties can save

much human effort. Therefore, a tool that allows semantics mechanisation and supports

mechanical proofs is needed.

In this chapter, we mechanise the CSP# denotational semantics in the Prototype Verification

System (PVS) [54], which is a fundamental and the most important step towards the theorem

proving approach for CSP#. PVS is an interactive theorem prover based on classical higher-

order logic, similar to other theorem provers such as HOL [26], Isabelle [58] and Coq [6]. We

use PVS as a demonstration of our encoding. Certainly we can also choose other powerful

theorem provers like Coq to achieve the goal of mechanising CSP# semantics.

Mechanisation is also known as semantic embedding which encodes one specification lan-

guage or logic into another. Semantic embedding is usually classified into deep embedding

and shallow embedding [8, 3, 4]. The former formalises both syntax and semantics of the

embedded language inside the host language, and the latter concentrates only the semantics

of the embedded language [93]. We apply a hybrid embedding [28] to CSP#, namely, deep

embedding of expressions and sequential programs and shallow embedding of process se-

mantics. Our approach can avoid complex and tedious effort on defining abstract datatypes

and semantic functions for the expressive CSP# process operators. Nevertheless, theorems

about CSP# process semantics can still be proved as shown below.

Our mechanisation approach includes three parts which will be illustrated in the following

subsections. First the theory of semantic model defines observational variables and healthi-

ness conditions (Section 5.1). Based on the semantic model theory, we define the theory of

expressions and programs which encodes carefully the syntax and semantics of arithmetic ex-

pressions, Boolean expressions and sequential programs (Section 5.2). Further, the semantics

of processes and refinement relationship are formalised in the theory of process (Section 5.3).

At the end of this section, we conduct mechanical proofs of important algebraic laws and

lemmas based on the encoding in PVS (Section 5.4).

5.1. THE THEORY OF SEMANTIC MODEL 87

5.1 The Theory of Semantic Model

The first challenge of the semantic model encoding is to develop an appropriate data struc-

ture to represent the observational variables and relations over observational variables. The

second challenge is to capture different types of events dedicated to CSP#. To address these

challenges, we adopt PVS abstract datatype constructor to handle event types and PVS set

theory to model relations as illustrated below.

5.1.1 The Theory of Observational Variables

CSP# supports concurrency over communications and shared variables. We first define the

shared variable state and event type in PVS. In Chapter 4, Section 4.1.2, we use T to denote

the abstract type for variable values, and here we initialise the type to be int which is the

type of integer in PVS for simplicity. The following shows the formalised type for variable

states (S), the non-terminating state (abort) and all states (S abort).

Vars: TYPE+

S: TYPE+ = [Vars -> int]

abort: TYPE+ = {bot}

S_abort: DATATYPE

BEGIN

is_S(left_s: S): is_S?

is_abort(right_b: abort): is_abort?

END S_abort

In the above specification, type S is encoded as a function from variable type Vars to int.

We define all states as a disjoint union by using a PVS abstract datatype: functions is S

and is abort are constructors, functions is S? and is abort? are recognisers of the type

[S abort -> bool], and determine whether the argument is constructed using the corre-

sponding constructor. Note that a similar fashion of applying the PVS abstract datatype is

5.1. THE THEORY OF SEMANTIC MODEL 88

used throughout the rest of the section to model complex CSP# types.

CSP# supports both event synchronisation and pairwise handshake through synchronous

channels. Thus event E includes actions, synchronous channel inputs, outputs and commu-

nications. To represent E, we define a datatype as follows.

E: DATATYPE WITH SUBTYPES RefE, Channelcom

BEGIN

action(ac:Ta): action?: RefE

input(ci:Ti): input?: RefE

output(co:To): output?: RefE

chancom(cm:Tm): chancom?: Channelcom

END E

Here, Ta is the type of actions, Ti is the type of channel inputs, To is the type of chan-

nel outputs, and Tm is the type of channel communications. Subtypes RefE and Channelcom

denote the set of refused events and channel communications, respectively.

In our semantics, programs are interpreted as relations between initial observations and

subsequent observations of their execution behaviours. Namely, relations are represented as

predicates over observational variables. In Chapter 4, Section 4.1.1.1, we have defined eight

variables to capture all aspects of program behaviours. In PVS, we use a record type to

represent all observational variables, and a set of such records to represent a relation.

Obs: TYPE = [# ok:bool, ok1:bool, wait:bool, wait1:bool, ref:set[RefE], ref1:set[RefE],

tr:Trace, tr1:Trace #]

Relation: TYPE = set[Obs]

In the above formalisation, a dashed variable is represented by its undashed variable name

suffixed with number 1, e.g., ok1 denotes variable ok ′. In our semantics for the trace, we use

sequence to record the observations on the interaction of the process with its environment.

We use the PVS predefined datatype list explained in Chapter 2, Section 2.3 to represent

the sequence. Thus an empty sequence can be represented by a null list (null), and sequence

5.1. THE THEORY OF SEMANTIC MODEL 89

Predicate PVS
P {pre:Obs|P(pre)}
¬P {pre:Obs|NOT P(pre)}
P ∧Q {pre:Obs|P(pre) AND Q(pre)}
P ∨Q {pre:Obs|P(pre) OR Q(pre)}
P ⇒ Q {pre:Obs|P(pre) IMPLIES Q(pre)}

Table 5.1: Predicate formalisation in PVS

concatenation can be formalised by the predefined function append over the list.

StateTrans: TYPE+ = [S, S_abort]

StateEvent: TYPE+ = [S, E]

SE: DATATYPE

BEGIN

s_t(s_s1:StateTrans): s_t?

s_e(s_event:StateEvent): s_e?

END SE

Trace: TYPE = list[SE]

Based on the formalisation of observational variables and relation, we next illustrate how

to formalise the detailed predicates in PVS. In general, a predicate P on the observational

variables is encoded as a set {pre:Obs|P(pre)}, and logic operators ¬, ∧, ∨ and ⇒ are for-

malised as NOT, AND, OR, and IMPLIES respectively in PVS. A summary of the formalisation

is shown in Table 5.1, where P and Q are predicates, and P and Q are relations in PVS.

5.1.2 The Theory of Healthiness Conditions

CSP# satisfies the healthiness conditions R1 to R3 for reactive processes. In this section,

we concentrate the encoding of R1 and R3 in PVS, and R2 will be handled as one future

step.

5.1. THE THEORY OF SEMANTIC MODEL 90

P: VAR Relation

R1(P): Relation = {pre:Obs|P(pre) AND pre‘tr <= pre‘tr1}

II: Relation = {pre:Obs|(pre‘ok = false AND pre‘tr <= pre‘tr1) OR (pre‘ok1 = true AND

pre‘tr1 = pre‘tr AND pre‘wait1 = pre‘wait AND pre‘ref1 = pre‘ref)}

R3(P): Relation = {pre:Obs|IF pre‘wait = true THEN II(pre) ELSE P(pre) ENDIF}

Healthiness condition R1 is formalised as a function R1. Specifically R1 takes an arbi-

trary relation P as an input and returns a relation satisfying a predicate which is modelled

as a set of observational variables (also called records); each record is a member of the rela-

tion (denoted as P(pre)) and its final trace extends the initial trace (denoted as pre‘tr <=

pre‘tr1). Function R3 specifies that for each element pre, if the value of pre‘wait is true,

then pre is a member of the reactive identity relation II, or otherwise, it is a member of

relation P.

In addition, CSP# satisfies two healthiness conditions CSP1 and CSP2 for communicating

sequential processes, defined as follows.

CSP1(P): Relation = {pre: Obs|(pre‘ok = false AND pre‘tr <= pre‘tr1) OR P(pre)}

CSP2(P): Relation = {pre:Obs|EXISTS (p:Obs): P(p) AND

(pre‘ok = p‘ok AND pre‘wait = p‘wait AND pre‘ref = p‘ref AND pre‘tr = p‘tr) AND

((p‘ok1 => pre‘ok1) AND pre‘wait1 = p‘wait1 AND pre‘ref1 = p‘ref1 AND pre‘tr1 = p‘tr1)}

Function CSP1 denotes that for each element pre, when the value of pre‘ok is false,

its trace shall be extended, or it remains unchanged. The sequential composition ; in

CSP2(P) = P ; (ok ⇒ ok ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref) is explicitly formalised;

namely, for each element pre, its undashed variable value is the same as the undashed vari-

able value of an element from relation P, e.g., pre‘ok = p‘ok, while its dashed variable value

is the same as the dashed variable value from the second program, e.g., ok ′ is represented

by pre‘ok1. Meanwhile, the dashed variable value of an element from relation P is the same

as the undashed variable value in the second program, e.g., ok in the second program is

represented by p‘ok1.

5.2. THE THEORIES OF EXPRESSIONS AND PROGRAMS 91

Finally, processes in CSP# are defined by satisfying all the healthiness conditions. Our

definition of processes relies on PVS subtyping: process is a subtype of Relation, where

function H is the composition of four healthiness condition functions, and predicate H(P) =

P depicts that P is idempotent.

H(P): Relation = CSP2(CSP1(R3(R1(P))))

process: TYPE = {P| H(P) = P}

5.2 The Theories of Expressions and Programs

In this section, we first present the encoding of arithmetic expression syntax and semantics

in PVS as below. Here, we define an abstract datatype Aexp to represent the syntax of

arithmetic expressions, and a recursive function aeval to denote the semantics of arithmetic

expressions, which uses PVS case construct to capture different expression types in Aexp.

5.2. THE THEORIES OF EXPRESSIONS AND PROGRAMS 92

% syntax for arithmetic expressions

Aexp: Datatype

BEGIN

anum(n:int): anum?

avar(x:Vars): avar?

aplus(exp1,exp2:Aexp): apluse?

aminus(exp1,exp2:Aexp): aminus?

amult(exp1,exp2:Aexp): amult?

END Aexp

% auxiliary type for arithmetic expressions

S_int: TYPE+ = [S -> int]

% semantics for arithmetic expressions

aeval(a: Aexp): RECURSIVE S_int =

(CASES a of

anum(n): lambda (s:S): n,

avar(x): lambda (s:S): s(x),

aplus(exp1,exp2): lambda (s:S): (aeval(exp1)(s) + aeval(exp2)(s)),

aminus(exp1,exp2): lambda (s:S): (aeval(exp1)(s) - aeval(exp2)(s)),

amult(exp1, exp2): lambda (s:S): (aeval(exp1)(s) * aeval(exp2)(s))

ENDCASES)

MEASURE a by <<

The formalisation of the syntax and semantics of Boolean expressions is similar to that

of arithmetic expressions, shown below.

5.2. THE THEORIES OF EXPRESSIONS AND PROGRAMS 93

% syntax for boolean expressions

Bexp: Datatype

BEGIN

bbool(b:bool): bbool?

beq(exp1,exp2:Aexp): beq?

blt(exp1,exp2:Aexp): blt?

bnot(b:bool): bnot?

band(b1,b2:Bexp): band?

bor(b1,b2:Bexp):bor?

END Bexp

% auxiliary type for arithmetic expressions

S_bool: TYPE+ = [S -> bool]

% semantics for boolean expressions

beval(b: Bexp): RECURSIVE S_bool =

(CASES b of

bbool(b): lambda (s:S): b,

beq(exp1,exp2): lambda (s:S):

(IF aeval(exp1)(s) = aeval(exp2)(s) THEN TRUE ELSE FALSE ENDIF),

blt(exp1,exp2): lambda (s:S):

(IF aeval(exp1)(s) < aeval(exp2)(s) THEN TRUE ELSE FALSE ENDIF),

bnot(b): lambda (s:S): (NOT b),

band(b1,b2): lambda (s:S): (beval(b1)(s) AND beval(b2)(s)),

bor(b1,b2): lambda (s:S): (beval(b1)(s) OR beval(b2)(s))

ENDCASES)

MEASURE b BY <<

Base on the formalisation of arithmetic and Boolean expressions, we present the encoding

of program syntax and semantics below.

5.2. THE THEORIES OF EXPRESSIONS AND PROGRAMS 94

1 % program syntax

2 Prog: Datatype

3 BEGIN

4 skip: skip?

5 assign(x:Vars, exp:Aexp): assign?

6 seq(prog1,prog2: Prog): seq?

7 if_prog(ifcond:Bexp, thn,els:Prog): if?

8 END Prog

9

10 % state relation

11 S_S_abort: TYPE+ = [S -> S_abort]

12 % skip function

13 skip_ceval:S_S_abort = lambda (s:S): is_S(s)

14 % update function: ignore checking the variable declaration

15 update_ceval (x:Vars, v: S_int): S_S_abort =

16 lambda (s: S): (let n = v(s) in is_S(s WITH [(x) := n]))

17 % sequence function

18 seq_ceval(s_prog1, s_prog2: S_S_abort): S_S_abort =

19 lambda (s:S): (IF is_abort?(s_prog1(s)) THEN is_abort(bot)

20 ELSE let s0 = s_prog1(s) in s_prog2(left_s(s0)) ENDIF)

21 % if function

22 if_ceval(s_b:S_bool, s_prog1, s_prog2: S_S_abort): S_S_abort =

23 lambda (s:S): (IF s_b(s) THEN s_prog1(s) ELSE s_prog2(s) ENDIF)

24

25 % sequential program semantics

26 ceval(p:Prog): RECURSIVE S_S_abort =

27 (CASES p of

28 skip: skip_ceval,

29 assign(x,exp): update_ceval (x, aeval(exp)),

30 seq(prog1,prog2): seq_ceval(ceval(prog1),ceval(prog2)),

31 if_prog(ifcond,thn,els): if_ceval(beval(ifcond),ceval(thn),ceval(els))

32 ENDCASES)

33 MEASURE p BY <<

5.3. THE THEORY OF PROCESSES 95

In the above PVS specifications, we model the program semantics by a recursive function

ceval, which uses PVS case construct to capture different program types in Prog. For ex-

ample, the evaluation of sequential composition program (at line 30) is defined by a function

seq ceval which has two branches: given a state s, if the evaluation of program s prog1

does not terminate, then the function returns a state representing nontermination (at line

19), or otherwise, it returns the final state after the execution of two sequential programs

(at line 20). Note that the type of s0 is S abort, if it is directly encoded as the input of

s prog2, the typechecking finds an error which is a wrong type of the first argument to

s prog2; namely, it expects type S but finds type S abort, thus we use the accessor to cast

the type to be S (denoted as left s(s0)). Here, functions aeval at line 29 and beval at line

31 evaluate arithmetic and Boolean expressions respectively. Currently, while-loop program

is not supported in our framework, and it will be one of our future works.

5.3 The Theory of Processes

PVS has a fixed syntax, and users cannot introduce new symbols. Thus we cannot directly

use the standard CSP# process notations. Instead, we use the existing symbols in PVS,

and summarize the standard CSP# syntax and our PVS encoding in Table 5.2, where X1

is a set of actions of the type Ta, and process Pi is a parametric process of the type [int

-> process]. Note that recursive processes cannot be directly defined in PVS. We apply

‘µ-calculus’ theory [31] to formalising them, and the detailed formalisation is presented in

Section 5.3.12.

5.3.1 Primitives

Following the guideline on how to formalise a relation in PVS (Section 5.1.1), it is straight-

forward to define primitive processes Stop and Skip in PVS, shown as follows.

5.3. THE THEORY OF PROCESSES 96

Operation CSP# PVS
Stop Stop Stop
Skip Skip Skip
event prefixing a → P a >> P
channel output ch!exp → P ch_o_exp >> P
channel input ch?m → P(m) ch_i_m >> Pi
data operation prefixing e{prog} → P e_prog >> P
state guard [b]P [||](b,P)
external choice P 2 Q P /\Q
internal choice P u Q P \/ Q
sequential composition P ; Q P ++ Q
hiding P \ X1 Hid(P,X1)
parallel P ‖ Q Par(P, Q)(X)
interleaving P ||| Q Inter(P, Q)(X)

Table 5.2: CSP# process syntax

Stop: process = H({pre|pre‘ok1=true AND pre‘tr1=pre‘tr AND pre‘wait1=true});

Skip: process = H({pre|(pre‘ok=false AND pre‘tr<=pre‘tr1) OR

(pre‘ok1=true AND pre‘tr1=pre‘tr AND pre‘wait1=pre‘wait)});

5.3.2 Sequential Composition

The semantics of sequential composition P ; Q is defined as the merge of two processes with

the value of dashed observational variables in P being the same as the value of undashed

variables in Q . The formalisation of sequential composition in PVS is defined as follows.

P, Q: VAR process

++(P, Q): process = H({pre|EXISTS (p,q: Obs): P(p) AND Q(q) AND

(pre‘ok=p‘ok AND pre‘wait=p‘wait AND pre‘ref=p‘ref AND pre‘tr=p‘tr) AND

(p‘ok1=q‘ok AND p‘wait1=q‘wait AND p‘ref1=q‘ref AND p‘tr1=q‘tr) AND

(pre‘ok1=q‘ok1 AND pre‘wait1=q‘wait1 AND pre‘ref1=q‘ref1 AND pre‘tr1=q‘tr1)});

To be specific, for each element pre, its undashed variable value is the same as the un-

dashed variable value of an element from process P, and its dashed variable value is the

same as the dashed variable value of an element from Q. Meanwhile, the dashed variable

5.3. THE THEORY OF PROCESSES 97

value of an element from P is the same as the undashed variable value of an element from

Q, e.g., p‘ok1=q‘ok.

5.3.3 Event prefixing

The formalisation of event prefixing a >> P contains two parts: first we define a prefixed

action Skip(a), and then compose the action with process P.

Skip(a): process = H({pre|pre‘ok1=true AND

((pre‘wait1=true AND NOT pre‘ref1(action(a)) AND pre‘tr1=pre‘tr) OR

(pre‘wait1=false AND EXISTS(s:S): (pre‘tr1=append(pre‘tr,

cons(s_e(s,action(a)),null)))))});

>>(a, P): process = (Skip(a) ++ P);

Here the PVS predefined function append appends the action a to the end of the trace

pre‘tr. Constructor cons takes two arguments, the first is a pair s e(s,action(a)) con-

sisting of a pre-state and an event, and the second is an empty list, and returns a trace

capturing the behaviour of action a.

5.3.4 Synchronous Channel Output/Input

We first construct three tuples to respectively represent the type of synchronous channel

input, output, and communication. Each tuple consists of three elements: the first is a

string denoting a channel name, the second is a flag denoting the communication type, and

the third is a number indicating the message.

% Type for input, output and communication symbol

T_i: TYPE+ = i; T_o: TYPE+ = o; T_m: TYPE+ = m

% Type for channel input, output and communication

Ti: TYPE = [string, T_i, int]

To: TYPE = [string, T_o, int]

Tm: TYPE = [string, T_m, int]

5.3. THE THEORY OF PROCESSES 98

We next encode the syntax of channel input and output into PVS, similar to the way

of defining above, where type Vars denotes variable names (Section 5.1.1) and type Aexp

denotes the syntax of arithmetic expressions (Section 5.2).

% Syntax type for channel output/input/communication

Ti_syntax: TYPE = [string, T i, Vars]

To_syntax: TYPE = [string, T o, Aexp]

Based on the above encoding of event type and syntax definitions, the synchronous channel

output is defined as follows.

1 ch_o_exp: VAR To_syntax %("ch",o,exp)

2 OutC(ch_o_exp): process = H({pre|pre‘ok1=true AND

3 ((pre‘wait1=true AND FORALL (v:int):(NOT pre‘ref1(input((ch o exp‘1,i,v)))) AND

4 pre‘tr1=pre‘tr) OR

5 (pre‘wait1=false AND EXISTS(s:S): (pre‘tr1=append(pre‘tr,

6 cons(s_e(s,output((ch o exp‘1,ch o exp‘2,aeval(ch o exp‘3)(s)))),null)))))});

7 >>(ch_o_exp, P): process = (OutC(ch_o_exp) ++ P);

In our proposed denotational semantics, predicate ch? 6∈ ref ′ denotes a process refuses

all inputs. Here, we constrain explicitly that no input is in the refused set (shown at line 3).

Different from the above encoding of synchronous channel output, the formalisation of syn-

chronous channel input below takes parametric process Pi into account. We model the

input prefixing by a set of observational variable records, where each record is a member of

the sequential composition of a channel input process InC(ch i m, v) and process Pi(v).

Value v denotes a possible message. In this way, parametric process Pi can also be applied

to multiple indexed processes, for example, process Pi can be of the type [int,...,int ->

process].

5.3. THE THEORY OF PROCESSES 99

ch_i_m: VAR Ti_syntax %("ch",i,m)

InC(ch_i_m, v): process = H({pre|pre‘ok1=true AND

((pre‘wait1=true AND FORALL (v1:int):(NOT pre‘ref1(output((ch i m‘1,o,v1)))) AND

pre‘tr1=pre‘tr) OR

(pre‘wait1=false AND EXISTS(s:S):(pre‘tr1=append(pre‘tr,

cons(s_e(s,input((ch i m‘1,ch i m‘2,v))),null)))))});

>>(ch i m, Pi): process = H({pre|EXISTS(v:int):member(pre,(InC(ch i m, v) ++ Pi(v)))});

5.3.5 Data Operation Prefixing

To formalise the semantics of data operation prefixing in PVS, we first define the syntax for

the non-communicating event associated with sequential program. Such data operation is

of the type Tuple with two elements, [Tnc, Prog], one is an uninterpreted type denoting

non-communicating events, and the other defines the syntax for sequential programs.

Tnc: TYPE % non-communicating event

Td_syntax: TYPE = [Tnc, Prog]

e prog: VAR Td_syntax %(e,prog)

Data(e_prog): process = H({pre|pre‘ok1=true AND EXISTS(s:S):

((pre‘wait1=true AND ceval(e_prog‘2)(s)=is_abort(bot) AND

pre‘tr1=append(pre‘tr,cons(s_t(s,is_abort(bot)),null))) OR

(pre‘wait1=false AND ceval(e_prog‘2)(s)/=is_abort(bot) AND

EXISTS(s1:S):(ceval(e_prog‘2)(s)=is_S(s1) AND

pre‘tr1=append(pre‘tr,cons(s_t(s,is_S(s1)),null)))))});

>>(e_prog, P): process = (Data(e_prog) ++ P);

5.3.6 Choice

The internal choice indicates that process P u Q behaves like either P or Q .

\/(P, Q): process = H({pre|P(pre) OR Q(pre)});

5.3. THE THEORY OF PROCESSES 100

Regarding the external choice of two processes P and Q , if no observation has been made

and termination has not occurred (i.e., the predicate of process Stop being true as indicated

by Stop(pre)), then it behaves like the conjunction of P and Q , or otherwise, it behaves as

the disjunction. The formalisation of external choice is shown below.

/\(P, Q): process = H({pre|(Stop(pre) AND P(pre) AND Q(pre)) OR

(NOT Stop(pre) AND (P(pre) OR Q(pre)))});

5.3.7 State Guard

The behaviour of process [b]P is determined by the evaluation of boolean condition b.

The evaluation is modelled by function g beval, which first checks whether two input

traces fulfil an extension relationship (specified by an overloading function <(t,t1) for

trace prefixing). If no, g beval returns false. Otherwise, g beval evaluates b (beval(b))

under the pre-state of the first element from the extended trace performed by process

P . As a trace (in our denotational semantics) records two kinds of observations, i.e.,

state transition and event occurrence, its evaluation thus consists of two parts, namely,

length(t) < length(t1) AND s t?(nth((t1-t),0)) and length(t) < length(t1) AND

s e?(nth((t1-t),0)), where the PVS function nth returns the (n + 1)th element from the

trace. For example, nth((t1 - t), 0) represents the predicate head(t1− t) describing the

initial observation on the trace of a process.

5.3. THE THEORY OF PROCESSES 101

b: VAR Bexp

t, t1: VAR Trace

g_beval(b, t, t1): bool =

IF <(t,t1) THEN

IF length(t) < length(t1) AND s_t?(nth((t1-t),0)) THEN

beval (b) ((s_s1(nth((t1-t),0)))‘1)

ELSE

(IF length(t) < length(t1) AND s_e?(nth((t1-t),0)) THEN

beval (b) ((s_event(nth((t1-t),0)))‘1)

ELSE false

ENDIF)

ENDIF

ELSE false

ENDIF;

[||](b,P):process = H({pre|(g_beval(b,pre‘tr,pre‘tr1)=true AND P(pre)) OR

(g_beval(b,pre‘tr,pre‘tr1)=false AND Stop(pre))});

5.3.8 Parallel Composition

As mentioned in Chapter 4, Section 4.1.3.8, the semantics of parallel composition captures

different types of merge. We model parallel composition in PVS below.

1 P, Q: VAR process

2 X: VAR set[RefE]

3 Par(P, Q)(X): process = H({pre|EXISTS (p,q: Obs, X1,X2: set[RefE]): P(p) AND Q(q) AND

4 pre‘ok=p‘ok AND pre‘wait=p‘wait AND pre‘ref=p‘ref AND pre‘tr=p‘tr AND

5 pre‘ok=q‘ok AND pre‘wait=q‘wait AND pre‘ref=q‘ref AND pre‘tr=q‘tr AND

6 pre‘ok1=(p‘ok1 AND q‘ok1) AND pre‘wait1=(p‘wait1 OR q‘wait1) AND

7 pre‘ref1=union(union(inter(inter(p‘ref1,q‘ref1),X2),

8 inter(union(p‘ref1,q‘ref1), X1)), (inter(p‘ref1,q‘ref1)-X1-X2)) AND

9 X1={x:RefE|action?(x) AND X(x) AND (NOT input?(x)) AND (NOT output?(x))} AND

10 X2={x:RefE|(input?(x) OR output?(x)) AND X(x) AND (NOT action?(x))} AND

11 member(pre‘tr1-pre‘tr, tr_syn(p‘tr1-p‘tr, q‘tr1-q‘tr, X))})

5.3. THE THEORY OF PROCESSES 102

In the above formalisation, the value of an undashed observational variable of the paral-

lel composition is the same as the counterpart of processes P and Q , captured by a list of

conjunctions at lines 4-5. On the other hand, the dashed variables capture four kinds of

behaviour: 1. the divergence (pre‘ok1=(p‘ok1 AND q‘ok1) at line 6), 2. the termination

(pre‘wait1=(p‘wait1 OR q‘wait1) at line 6), 3. the refusal (at lines 7-10) where we derive

the set X1 and X2 from the set X, X1 denotes common actions, and X2 denotes synchronous

channel inputs and outputs, 4. the trace of the composition is a member of the set of traces

produced by the trace synchronisation function tr syn at line 11.

We remark that the definition of trace synchronisation function is composed of nine cases

from six groups. In PVS, we formalise the definition in terms of all seven trace types:

an empty trace, a non-empty trace consisting of state transitions, actions in the set X,

actions not in X, synchronous channel outputs/inputs/communications. That is to say, our

formalisation captures 49 scenarios of two traces. Considering the page limit, we illustrate

the function definition corresponding to the different cases with the code fragment.

Empty Trace The specification below covers the scenarios where the first input is an

empty trace; we use null to indicate an empty trace. Line 5 models the result when both

input traces are empty (case-1). When the second input trace is not empty, the result is

determined by the first observation of the second input trace. Lines 9-13 divide case-2 where

the observation is an action (checked by recogniser action?) into two cases depending on

whether the action is in the set X (checked by X((s event(se))‘2)). Lines 15-16 depict

case-3 where the observation is a synchronous channel input/output/communication, and

lines 6-8 are for case-4 when the observation is a state transition.

5.3. THE THEORY OF PROCESSES 103

1 tr1, tr2: VAR Trace

2 tr_syn(tr1, tr2, X): RECURSIVE set[Trace] =

3 CASES tr1 OF

4 null: CASES tr2 OF

5 null: {t1: Trace|t1=null},

6 cons(se,t): IF s_t?(se) THEN

7 {t1:Trace|EXISTS(l:Trace): t1=cons(se,l) AND member(l,

8 tr_syn(tr1,t,X))}

9 ELSE (IF action?((s_event(se))‘2) THEN

10 IF X((s_event(se))‘2) THEN

11 {t1: Trace|t1=null}

12 ELSE {t1:Trace|EXISTS(l:Trace): t1=cons(se,l) AND

13 member(l, tr_syn(tr1,t,X))}

14 ENDIF

15 ELSE {t1:Trace|EXISTS(l:Trace): t1=cons(se,l) AND

16 member(l, tr_syn(tr1,t,X))}

17 ENDIF)

18 ENDIF

19 ENDCASES,

20 ...

21 ENDCASES

22 MEASURE length(tr1)+length(tr2)

Synchronous Channel Input and Output The following fragment formalises case-5,

i.e., the synchronisation between one synchronous channel input and output. Line 9 denotes

the match condition which checks the equivalence of three entities: the pre-states of two

input traces (s1‘1 = s2‘1), the channel names (c1‘1=(co(s2‘2))‘1), and the messages

through the channel (c1‘3 = (co(s2‘2))‘3). When the match condition is valid, there are

two possible behaviours depending on whether a synchronous channel communication occurs

(lines 10-14) or not (lines 15-16). Otherwise, lines 17-18 handle the case when the condition

is invalid.

5.3. THE THEORY OF PROCESSES 104

1 tr_syn(tr1, tr2, X): RECURSIVE set[Trace] =

2 CASES tr1 OF

3 cons(se1,t1): CASES se1 OF

4 s_e(s1): CASES s1‘2 OF

5 input (c1): CASES tr2 OF

6 cons(se2,t2): CASES se2 OF

7 s_e(s2):

8 IF output ?(s2‘2) THEN

9 (IF s1‘1=s2‘1 AND c1‘1=(co(s2‘2))‘1 AND c1‘3=(co(s2‘2))‘3 THEN

10 {t3:Trace|(EXISTS(se3:SE)(s3:StateEvent)(l:Trace):s_e?(se3)

11 AND (s_event(se3))‘1=s1‘1 AND chancom?((s_event(se3))‘2)

12 AND (cm((s_event(se3))‘2))‘1=c1‘1 AND (cm((s_event(se3))‘2))‘3=c1‘3

13 AND (cm((s_event(se3))‘2))‘2=m

14 AND t3= cons(se3,l) AND member(l, tr_syn(t1,t2,X)))

15 OR (EXISTS(l: Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X)))

16 OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X))))}

17 ELSE {t3:Trace|EXISTS(l: Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X)))

18 OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X)))}

19 ENDIF)

20 ELSE ...

21 ...

22 ENDCASES

23 MEASURE length(tr1)+length(tr2)

Both Actions When encoding case-6, namely, synchronisation between two actions, there

are five scenarios: 1. both actions are in the set X but different (lines 9-11), 2. actions are

the same but from different pre-states (lines 12), 3. actions are the same and from the same

pre-states (lines 13-14), 4. an action is not in X (line 16), and 5. both actions are not in X

(lines 25, 27-28).

5.3. THE THEORY OF PROCESSES 105

1 tr_syn(tr1, tr2, X): RECURSIVE set[Trace] =

2 CASES tr1 OF

3 cons(se1,t1): CASES se1 OF

4 s_e(s1): CASES s1‘2 OF

5 action(a): IF X(action(a)) THEN

6 CASES tr2 OF

7 cons(se2,t2): CASES se2 OF

8 s_e(s2):

9 IF action?(s2‘2) THEN

10 IF X(s2‘2) THEN

11 IF action(a)/=s2‘2 THEN {t3:Trace|t3=null}

12 ELSE (IF s1‘1/=s2‘1 THEN {t3:Trace|t3=null}

13 ELSE {t3:Trace|EXISTS(l:Trace): t3=cons(se1,l) AND

14 member(l, tr_syn(t1,t2,X))} ENDIF)

15 ENDIF

16 ELSE {t3:Trace|EXISTS(l:Trace): t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X))}

17 ENDIF

18 ELSE ...

19 ...

20 ELSE % action(a) is not in the set X

21 CASES tr2 OF

22 cons(se2,t2): CASES se2 OF

23 s_e(s2):

25 IF action?(s2‘2) THEN

26 IF X(s2‘2) THEN ...

27 ELSE {t3:Trace|EXISTS(l: Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X)))

28 OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X)))}

29 ...

30 ENDCASES

31 MEASURE length(tr1)+length(tr2)

Action and Other Type When a synchronisation is between one action and an event

or a state transition, the result is determined by the action. If it is in the set X, then its

5.3. THE THEORY OF PROCESSES 106

occurrence is postponed (line 10), or otherwise, either observation occurs (lines 17-18).

1 tr_syn(tr1, tr2, X): RECURSIVE set[Trace] =

2 CASES tr1 OF

3 cons(se1,t1): CASES se1 OF

4 s_e(s1): CASES s1‘2 OF

5 action(a): IF X(action(a)) THEN

6 CASES tr2 OF

7 cons(se2,t2): CASES se2 OF

8 s_e(s2):

9 IF action?(s2‘2) THEN ...

10 ELSE {t3:Trace|EXISTS(l:Trace): t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X))}

11 ...

12 ELSE % action(a) is not in the set X

13 CASES tr2 OF

14 cons(se2,t2): CASES se2 OF

15 s_e(s2):

16 IF action?(s2‘2) THEN ...

17 ELSE {t3:Trace|EXISTS(l: Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X)))

18 OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X)))}

19 ...

20 ENDCASES

21 MEASURE length(tr1)+length(tr2)

State Transition and Other Type When a synchronisation is between two state tran-

sitions (lines 6-7), or between a state transition and a channel input/output/communication

(lines 9-11), either observation can occur.

5.3. THE THEORY OF PROCESSES 107

1 tr_syn(tr1, tr2, X): RECURSIVE set[Trace] =

2 CASES tr1 OF

3 cons(se1,t1): CASES se1 OF

4 s_t(s1): CASES tr2 OF

5 cons(se2,t2): CASES se2 OF

6 s_t(s2):{t3:Trace|EXISTS(l: Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X)))

7 OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X)))},

8 s_e(s2): IF action?(s2‘2) THEN ...

9 ELSE {t3:Trace|EXISTS(l: Trace): (t3=cons(se1,l) AND

10 member(l,tr_syn(t1,tr2,X)))

11 OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X)))}

12 ...

13 ENDCASES

14 MEASURE length(tr1)+length(tr2)

5.3.9 Interleave

The semantics of interleaving process P ||| Q is similar to the semantics of parallel operator,

except the set X which only contains synchronous channel outputs and inputs.

Inter(P, Q)(X): process = Par(P, Q)(X)

5.3.10 Hiding

In process P \ X1, all the occurrence of actions in set X1 are not observed or controlled by

the environment. We formalise the hiding operator as follows.

1 X1: VAR set[Ta]

2 Hid(P,X1): process = H({pre|EXISTS (s:Obs, X:set[RefE]): P(s) AND

3 pre‘ok=s‘ok AND pre‘wait=s‘wait AND pre‘ref=s‘ref AND pre‘tr=s‘tr AND pre‘ok1=s‘ok1

4 AND pre‘wait1=s‘wait1 AND pre‘tr1=append(pre‘tr, hide(s‘tr1-s‘tr,X1)) AND

5 pre‘ref1=s‘ref1-X AND X={x:RefE|action?(x) AND X1(ac(x)) AND (NOT input?(x)) AND

6 (NOT output?(x))}})

5.3. THE THEORY OF PROCESSES 108

The above definition depicts that the behaviour of hiding process is the same as P except

the final value of refusals and traces. Specifically, the refusals are defined as that from P

excluding the hiding actions in X. Since the refusals has the type set[RefE] and set X1 is

of the type set[Ta], we cannot directly use the set extraction function in PVS. Instead,

we construct a set of elements of the type RefE containing only actions (specified by lines

5-6). To model the actions hiding in a trace, we define a function hide which is a recursive

function over the trace structure.

hide(t,X1): RECURSIVE Trace =

CASES t OF

null: null,

cons(x1, x2): (IF s_e?(x1) THEN

IF action?(s_event(x1)‘2) THEN

IF X1(ac((s_event(x1))‘2)) THEN

hide(x2,X1)

ELSE cons(x1,hide(x2,X1))

ENDIF

ELSE cons(x1,hide(x2,X1))

ENDIF

ELSE cons(x1,hide(x2,X1))

ENDIF)

ENDCASES

MEASURE length(t)

Here, we use PVS CASES expressions to discuss two patterns of the trace. If the trace

contains an action from set X1 (specified as X1(ac((s event(x1))‘2))), we remove this ac-

tion from the trace (specified as hide(x2,X1)). Otherwise, this trace is unchanged (specified

as cons(x1,hide(x2,X1))).

5.3. THE THEORY OF PROCESSES 109

5.3.11 Refinement

We define symbol |> to represent the refinement operator (w) in the following PVS specifi-

cations, where the PVS predefined function subset? checks whether set P is a subset of set

Q. Namely, process P refines Q iff the formalisation P is a subset of Q in our encoding.

|>(P,Q): bool = subset?(P,Q)

5.3.12 Recursion

In CSP#, the semantics of recursion process is defined using the weakest fixed point, which

is the greatest lower bound of all the fixed points. We define the fixed point theory below

where glb(SX) denotes the greatest lower bound of any set SX of processes, monotonic?(F)

checks whether F is a monotonic mapping, and mu(G) represents the weakest fixed point

given a monotonic mapping G.

SX: VAR set[process]

X, Y: VAR process

pre: VAR Obs

glb(SX): process = H({pre|FORALL (X: (SX)): X(pre)})

F: VAR [process -> process]

monotonic?(F): bool = FORALL X,Y: X |> Y IMPLIES F(X) |> F(Y)

G: VAR (monotonic?)

mu(G): process = glb({X| X |> G(X)})

The main properties of glb and mu are provided below and they have been proved in PVS.

5.4. MECHANICAL PROOF OF LAWS 110

glb_is_bound_L1A: LEMMA FORALL (X: (SX)): X |> glb(SX)

glb_is_sup_L1B: LEMMA (FORALL (X: (SX)): X |> Y) IMPLIES glb(SX) |> Y

closure_mu: LEMMA mu(G) |> G(mu(G))

smallest_closed: LEMMA X|> G(X) IMPLIES X |> mu(G)

fixed_point: LEMMA G(mu(G)) = mu(G)

weakest_fixed_point: LEMMA G(X) = X IMPLIES X |> mu(G)

5.4 Mechanical Proof of Laws

So far, we have formalised our denotational semantic model and process semantics in PVS. In

this section, we apply the PVS typechecker to validating the consistency of the denotational

semantics and the PVS prover to mechanically proving essential laws of our formalisations

so as to check the correctness of our encoding.

Typechecker in PVS analyses the theory for semantic consistency [55]. It usually checks the

semantic constraints, determines the types of expressions, and resolves names. After type-

checking, proof obligations, called type correctness conditions(TCCs) are generated which

are mostly related to predicate subtypes and termination in the recursive definitions. In our

work, we have discharged 84 TCCs for the process semantics theory. These TCCs are mainly

from the subtypes requiring that every CSP# process satisfies the idempotent property and

terminations of recursive definitions such as trace synchronisation function.

Based on our semantic formalisation in PVS, we can derive many important properties.

We have mechanically proved a set of important laws that are essential in the verification

of CSP# programs. Regarding the properties of healthiness conditions, we have proved

that conditions R1, R3, CSP1, and CSP2 are idempotent and commutative. For example, the

following PVS proof script is used to prove the commutativity property of R1 and CSP1.

5.4. MECHANICAL PROOF OF LAWS 111

R1_CSP1_commutative :

|-------

1 FORALL (P: Relation): CSP1(R1(P)) = R1(CSP1(P))

Rule? (skolem!)

Skolemizing,

this simplifies to:

R1_CSP1_commutative :

|-------

1 CSP1(R1(P!1)) = R1(CSP1(P!1))

Rule? (expand* "CSP1" "R1")

Expanding the definition(s) of (CSP1 R1),

this simplifies to:

R1_CSP1_commutative :

|-------

1 (pre: Obs |

(NOT pre‘ok AND pre‘tr <= pre‘tr1) OR P!1(pre) AND pre‘tr <= pre‘tr1)

=

(pre_1: Obs |

((NOT pre_1‘ok AND pre_1‘tr <= pre_1‘tr1) OR P!1(pre_1))

AND pre_1‘tr <= pre_1‘tr1)

Rule? (apply-extensionality :hide? t)

Applying extensionality,

this simplifies to:

5.5. SUMMARY 112

R1_CSP1_commutative :

|-------

1 ((NOT x!1‘ok AND x!1‘tr <= x!1‘tr1) OR P!1(x!1) AND x!1‘tr <= x!1‘tr1)

=

(((NOT x!1‘ok AND x!1‘tr <= x!1‘tr1) OR P!1(x!1)) AND x!1‘tr <= x!1‘tr1)

Rule? (grind)

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

In the above proof script, command skolem! introduces Skolem constant for the universally

quantified variable P in the lemma, command expand* expands the definitions of CSP1 and

R1, command apply-extensionality :hide? t uses extensionality to prove equality, and

command grind installs rewrites and repeatedly applies simplification.

From these lemmas, we show that our formalisation of condition H is idempotent and every

CSP# process is healthy. We have also proved that some important algebraic laws of

CSP# processes: internal choice is commutative and idempotent; the parallel composition

is commutative (par-1); etc.

5.5 Summary

In this chapter, we encoded the denotational semantics of CSP# into the PVS theorem

prover. The type consistency of mechanised semantics was validated by proving the TCCs

generated from typechecking. The mechanisation provides a framework for developing me-

chanical verification for CSP# specifications, for example, to check process equivalence based

on the formalised refinement relation. Based on the encoding, we also proved properties of

healthiness conditions and algebraic laws related to process definitions in PVS, which can

act as auxiliary reasoning rules to improve verification automation. Our framework is conve-

5.5. SUMMARY 113

nient for specifying and analysing complex systems, and it can be easily extended to analyse

similar concurrency languages.

The work in this chapter is related to the mechanisation of various CSP models. Camil-

leri [11] encoded the trace model of CSP and later a variation of the failures-divergences

model [12] into the HOL system [25]. Dutertre and Schneider [21] formalised the trace

model of CSP in PVS, tailored to reason about security protocols; Wei and Heather [91]

extended this formalisation to the stable-failures model in order to verify liveness proper-

ties. Tej and Wolff [88] encoded the failures-divergences model in Isabelle/HOL. Isobe and

Roggenbach [34, 35] improved this work with tool support from CSP-Prover which handles

more CSP models including trace model, stable-failures model and stable-revivals model [71].

However, all the above formalisation of various CSP models lacks the support of complex

data.

There exists other research on encoding denotational semantics of integrated languages with

CSP. For example, Oliveira et al. [52] presented the mechanisation of the UTP semantics of

Circus in ProofPower-Z [60]; the formalised semantics is defined using a set-based theory.

Moreover, the mechanical proof of various refinement laws was conducted in [53]. Wei et

al. [92] encoded the UTP semantics of Timed Circus in PVS, where the formalisation of

time operators Delay, Timeout and Deadline was presented. Our work follows a similar way

of their encoding, but covers the formalisation of sequential programs such as assignments,

sequential composition on shared variables, while Timed Circus supports assignments on

local variables only. Moreover, we formalise different event types covering both event syn-

chronisation and pairwise handshake through synchronous channels.

This work is also related to research on formalisation of UTP theories. Feliachi et al. [22]

formalised a part of UTP theory in Isabelle/HOL including theories of alphabetised relations

and designs. Recently Foster and Woodcock [24] improved the mechanisation of UTP theory,

by defining a unified type for predicates and supporting more operators and meta-theoretic

5.5. SUMMARY 114

proofs; their Isabelle/UTP currently supports theories of relations and designs, and provides

a platform for mechanising the semantics for specification languages like CSP.

Chapter 6

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss possible future

directions of our work.

6.1 Contributions

This thesis presents systematic research work centred on a highly expressive formal mod-

elling language CSP# which supports concurrent systems with global shared variables. The

research work includes the conduction of a comprehensive comparison of CSP# with other

CSP extensions, construction of CSP# denotational semantics, and encoding CSP# deno-

tational semantics into a theorem prover. Specifically, four main contributions of this thesis

are summarized below.

• In Chapter 3, we have compared CSP# and CSPM , popular CSP extensions for con-

current systems, from a wide range of aspects to identify subtle differences. First, we

explored the modelling features in terms of language syntax and operational seman-

tics. Second, we investigated the reasoning power of their analysis tools, namely, PAT

115

6.1. CONTRIBUTIONS 116

for CSP#, FDR and ProB for CSPM from the view of tool capability and efficiency.

The qualitative analysis was made by conducting experiments on eight benchmark

systems to verify different properties; the designed benchmarks can also be applied

to experiments on the comparison of PAT with other tools. Further we discussed

the guideline for choosing an appropriate modelling language and reasoning tools for

particular concurrent systems.

• In Chapter 4, we have proposed a denotational semantic model to deal with commu-

nication based concurrency and shared-variable based concurrency. We have defined

hybrid traces (capturing both states and events) for recording process behaviours in-

volving shared variables. Moreover, our model can be adapted/enhanced to define the

denotational semantics for other languages which possess similar concurrency mech-

anisms. Based on this semantic model, we have defined a denotational semantics for

CSP# processes. Our definition covers communications through event-based synchro-

nisation and pairwise synchronised handshake over channels. The refinement relation-

ship between processes has also been presented.

• To make the semantics of CSP# more complete, on one hand, we have defined a set

of algebraic laws which concern the distinct features of CSP# like shared variables

(Chapter 4, Section 4.2). These laws are established based on the denotational seman-

tics, which partially prove the correctness of denotational semantics. On the other

hand, we have derived a closed semantics from the open denotational semantics by

focusing on certain particular types of hybrid traces to consider a closed environment

(Chapter 4, Section 4.3).

• In Chapter 5, we have mechanised CSP# denotational semantics in the PVS theo-

rem prover, which forms the foundation towards the theorem proving approach to

verify complex CSP# models. First, we have encoded the semantic model including

observational variables and healthiness conditions. Based on this encoding, we have

6.2. FUTURE WORK 117

formalised the semantics of expressions and sequential programs. Further, we have

mechanised the process semantics and refinement relationship. Last but not least, we

have applied the PVS typechecker to validating the consistency of the semantics and

the PVS prover to mechanically proving essential laws of our formalisations so as to

validate the correctness of our encoding.

6.2 Future Work

In this section, we outline some possible extensions to our work presented in this thesis.

We have defined a closed semantics for CSP# which considers the situation where the model

of the whole system has been built or the behaviour of the environment has been modelled.

To ensure the consistency between different semantics of the same language, i.e., CSP#, our

next step is to link the proposed closed denotational semantics of CSP# to its operational

semantics [83] by applying the step relation in UTP [31].

Regarding the development of a theorem proving framework for CSP#, we have mechanised

the CSP# denotational semantics into PVS. An immediate step is to validate more complex

laws and properties of the mechanised theories, for example, to cover all algebraic laws in

Chapter 4, Section 4.2. Once validated, these laws and properties can serve as auxiliary

reasoning rules to improve verification automation in PVS. Moreover, as the ultimate goal

of our mechanisation framework is to support verification of concurrent systems modelled in

CSP#, we plan to specify and verify common benchmark system (e.g., the dining philoso-

phers problem); we are keen to leverage induction techniques to deal with infinite state

systems.

In our systematic comparison of CSP# and another popular CSP extension CSPM , we have

explored the classical model checking techniques used by their respective tools, namely, PAT

6.2. FUTURE WORK 118

for CSP#, FDR and ProB for CSPM . In the future, we will extend the comparison to more

advanced techniques such as SAT-based FDR [56] and BDD-based PAT [42]. In addition, we

have discussed possible translation between CSP# and CSPM models from the comparison.

Thus, proving the semantics equivalence of the translation and its implementation are our

goals as well.

Beyond CSP# which is the focus of this thesis, we can extend our work to handle other

models supporting more features such as time and probability. For example, Stateful Timed

CSP [86, 84] extends CSP# with time process constructs like timeout and deadline; we

can compare Stateful Timed CSP and Timed CSP [68, 73, 20, 74] (which extends Hoare’s

CSP with real-time constructs like WAIT) including their tool support, followed by defining

denotational semantics for Stateful Timed CSP.

Bibliography

[1] http://www.cs.ox.ac.uk/ucs/CSPtools.html. 3.4

[2] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996. 1.1, 3.3

[3] C. M. Angelo, L. J. M. Claesen, and H. D. Man. Degrees of Formality in Shallow
Embedding Hardware Description Languages in HOL. In Proceedings of the 6th In-
ternational Workshop on Higher Order Logic Theorem Proving and Its Applications,
pages 89–100. Springer-Verlag, 1994. 5

[4] C. Attiogbé. Mechanization of an Integrated Approach: Shallow Embedding into
SAL/PVS. In Proceedings of the 4th International Conference on Formal Engineering
Methods (ICFEM 2002), pages 120–131, 2002. 5

[5] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008. 5

[6] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliâtre, H. Herbelin, G. Huet,
P. Manoury, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saïbi, and
B. Werner. The Coq Proof Assistant Reference Manual Version 6.1. INRIA-
Rocquencourt-CNRS-ENS Lyon, Dec. 1996. 5

[7] G. Barrett. Model Checking in Practice: The T9000 Virtual Channel Processor. IEEE
Transations on Software Engineering, 21(2):69–78, 1995. 3

[8] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. V. Tassel. Expe-
rience with Embedding Hardware Description Languages in HOL. In Proceedings of
the International Conference on Theorem Provers in Circuit Design: Theory, Practice
and Experience, pages 129–156, 1992. 5

[9] P. J. Broadfoot and A. W. Roscoe. Tutorial on FDR and Its Applications. In SPIN
Model Checking and Software Verification, page 322. Springer Berlin Heidelberg, 2000.
1.1

[10] S. D. Brookes. Full Abstraction for a Shared-Variable Parallel Language. Information
and Computation, 127(2):145–163, 1996. 4.4

119

http://www.cs.ox.ac.uk/ucs/CSPtools.html

BIBLIOGRAPHY 120

[11] A. J. Camilleri. Mechanizing CSP Trace Theory in Higher Order Logic. IEEE Tran-
sations on Software Engineering, 16(9):993–1004, 1990. 5.5

[12] A. J. Camilleri. A Higher Order Logic Mechanization of the CSP Failure-Divergence
Semantics. In IV Higher Order Workshop, Banff 1990, pages 123–150. Springer Lon-
don, 1991. 5.5

[13] G. H. P. Carvalho, T. Dias, A. Mota, and A. Sampaio. Analytical Comparison of
Refinement Checkers. In SBMF, pages 61–66, 2011. 3.4

[14] A. Cavalcanti and J. Woodcock. A Tutorial Introduction to CSP in Unifying Theories
of Programming. In Refinement Techniques in Software Engineering, volume 3167 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006. 4.1.1.2, 4.4

[15] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, Inc., 1997. 5

[16] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.
5

[17] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys, 28(4):626–643, 1996. 1.1

[18] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A Practical System for Verifying Concurrent C. In
Proceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, volume 5674 of Lecture Notes in Computer Science, pages 23–42. Springer,
2009. 1.1

[19] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction to
PVS. In Workshop on Industrial-Strength Formal Specification Techniques, 1995. 2.3

[20] J. Davies. Specification and Proof in Real-Time Systems. PhD thesis, Oxford Univer-
sity, 1991. 6.2

[21] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication
protocols. In TPHOLs, pages 121–136. Springer, 1997. 5.5

[22] A. Feliachi, M.-C. Gaudel, and B. Wolff. Unifying Theories in Isabelle/HOL. In
Unifying Theories of Programming, volume 6445 of Lecture Notes in Computer Science,
pages 188–206. Springer Berlin Heidelberg, 2010. 5.5

[23] C. Fischer. Combining Object-Z and CSP. In FBT, pages 119–128, 1997. 1.1

[24] S. Foster and J. Woodcock. Unifying Theories of Programming in Isabelle. In Unifying
Theories of Programming and Formal Engineering Methods, volume 8050 of Lecture
Notes in Computer Science, pages 109–155. Springer Berlin Heidelberg, 2013. 5.5

BIBLIOGRAPHY 121

[25] M. J. C. Gordon. HOL: a proof generating system for Higher Order Logic. In VLSI
Specification, Verification and Synthesis, pages 73–128. 1988. 5.5

[26] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993. 5

[27] A. Hall and R. Chapman. Correctness by Construction: Developing a Commercial
Secure System. IEEE Software, 19:18–25, 2002. 3

[28] J. Helin. Combining Deep and Shallow Embeddings. Electronic Notes in Theoretical
Computer Science, 164(2):61–79, 2006. 5

[29] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 1.1, 2.1,
3.1.2, 4.4

[30] C. A. R. Hoare, I. J. Hayes, J. He, C. Morgan, A. W. Roscoe, J. W. Sanders, I. H.
Sørensen, J. M. Spivey, and B. Sufrin. Laws of Programming. Communications of the
ACM, 30(8):672–686, 1987. 1.1

[31] C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
1.1, 2.2, 4, 4.1.1.1, 4.1.1.2, 4.1.3.8, 4.4, 5.3, 6.2

[32] G. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003. 3.1.2

[33] P. Hudak, S. Peyton Jones, and P. Wadler. Report on the Programming Language
Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM SIGPLAN
Notices, 27(5), 1992. 2.2

[34] Y. Isobe and M. Roggenbach. A Generic Theorem Prover of CSP Refinement. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 3440 of Lecture
Notes in Computer Science, pages 108–123. Springer Berlin Heidelberg, 2005. 5.5

[35] Y. Isobe and M. Roggenbach. Proof Principles of CSP – CSP-Prover in Practice. In
Dynamics in Logistics, pages 425–442. Springer Berlin Heidelberg, 2008. 5.5

[36] C. B. Jones. Systematic software development using VDM (2nd ed.). Prentice-Hall,
Inc., 1990. 1.1

[37] M. Leuschel and M. Butler. ProB: A Model Checker for B. In FME 2003: Formal
Methods, volume 2805, pages 855–874. Springer Berlin Heidelberg, 2003. 1.1, 3

[38] M. Leuschel and M. Fontaine. Probing the depths of CSP-M: A new FDR-compliant
validation tool. In Proceedings of the 10th International Conference on Formal Methods
and Software Engineering, ICFEM ’08, pages 278–297. Springer-Verlag, 2008. 3.1.1,
3.3

BIBLIOGRAPHY 122

[39] M. Leuschel, T. Massart, and A. Currie. How to make FDR Spin LTL model checking
of CSP by refinement. In FME 2001: Formal Methods for Increasing Software Pro-
ductivity, volume 2021 of Lecture Notes in Computer Science, pages 99–118. Springer
Berlin Heidelberg, 2001. 3.3.1

[40] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model Checking Linearizability via Refine-
ment. In Proceedings of the 2Nd World Congress on Formal Methods, FM ’09, pages
321–337. Springer-Verlag, 2009. 3.3

[41] Y. Liu, W. Chen, Y. A. Liu, J. Sun, S. J. Zhang, and J. S. Dong. Verifying Linearizabil-
ity via Optimized Refinement Checking. IEEE Transactions on Software Engineering,
39(7):1018–1039, 2013. 3.3, 3.3.2, A.7

[42] Y. Liu, J. Sun, and J. S. Dong. PAT 3: An Extensible Architecture for Building
Multi-domain Model Checkers. In IEEE 22nd International Symposium on Software
Reliability Engineering (ISSRE 2011), pages 190–199, 2011. 6.2

[43] G. Lowe. Specification of communicating processes: temporal logic versus refusals-
based refinement. Formal Aspects of Computing, 20(3):277–294, 2008. 3.3.1, 3.3.2

[44] G. Lowe and B. Roscoe. Using CSP to detect errors in the TMN protocol. IEEE
Transactions on Software Engineering, 23:659–669, 1997. 1.1

[45] F. S. E. Ltd. Failures-Divergence Refinement - FDR2 User Manual (version 2.91),
2010. 1.1, 3, 3.1.2, 3.3.1

[46] B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Transations on
Software Engineering, 26(2):150–177, 2000. 1.1

[47] J. McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press, 1962. 2.2

[48] A. A. McEwan and J. Woodcock. Unifying Theories of Interrupts. In Proceedings
of the 2nd International Conference on Unifying Theories of Programming, UTP’08,
pages 122–141. Springer-Verlag, 2010. 4.1.3

[49] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989. 1.1, 3.3.2, A.3

[50] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
2.2

[51] T. Murray. On the limits of refinement-testing for model-checking CSP. Formal Aspects
of Computing, 25(2), 2013. 3.3.1

[52] M. Oliveira, A. Cavalcanti, and J. Woodcock. Unifying Theories in Proofpower-Z. In
Proceedings of the First International Conference on Unifying Theories of Program-
ming, UTP’06, pages 123–140. Springer-Verlag, 2006. 5.5

[53] M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP Semantics for Circus. Formal
Aspects of Computing, 21(1-2):3–32, 2009. 4.4, 5.5

BIBLIOGRAPHY 123

[54] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
Proceedings of the 11th International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag, 1992. 1.1, 2.3,
5

[55] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System
Guide. SRI International, November 2001. 5.4

[56] H. Palikareva, J. Ouaknine, and A. W. Roscoe. Faster FDR Counterexample Gener-
ation Using SAT-Solving. Electronic Communications of the EASST, 23, 2009. 3.3.2,
6.2

[57] A. N. Parashkevov and J. Yantchev. ARC - A tool for efficient refinement and equiv-
alence checking for CSP. In In IEEE International Conference on Algorithms and
Architectures for Parallel Processing ICA3PP ’96, pages 68–75, 1996. 3.4

[58] L. C. Paulson. Isabelle: a Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer, 1994. 5

[59] J. L. Peterson and A. Silberschatz. Operating System Concepts (2Nd Ed.). Addison-
Wesley Longman Publishing Co., Inc., 1985. 3.3.2, A.8

[60] ProofPower. http://www.lemma-one.com/proofpower/index/index.html. 5.5

[61] S. Qin, J. S. Dong, and W.-N. Chin. A Semantic Foundation for TCOZ in Unifying
Theories of Programming. In FME 2003: Formal Methods, volume 2805 of Lecture
Notes in Computer Science, pages 321–340. Springer Berlin Heidelberg, 2003. 4.4

[62] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, 1997.
1.1, 2.1.2, 3.2, 3.2.11, 3.3.1, 4.4

[63] A. W. Roscoe. On the expressive power of CSP refinement. Formal Aspects of Com-
puting, 17:93–112, 2005. 3.3.1

[64] A. W. Roscoe. Revivals, stuckness and the hierarchy of CSP models. Journal of Logic
and Algebraic Programming, 78(3):163–190, 2009. 3.3.1

[65] A. W. Roscoe. CSP is Expressive Enough for Pi. In Reflections on the work of C.A.R.
Hoare. Springer, 2010. 3.1.2

[66] A. W. Roscoe. Understanding Concurrent Systems. Springer-Verlag New York, Inc.,
2010. 3.1.2, 3.2.4, 3.3.1, 3.3.2

[67] A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson,
and J. B. Scattergood. Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In Proceedings of the First International
Workshop on Tools and Algorithms for Construction and Analysis of Systems, TACAS
’95, pages 133–152, 1995. 3.3.2

BIBLIOGRAPHY 124

[68] A. W. Roscoe and G. M. Reed. A Timed Model for Communicating Sequential Pro-
cesses. Theoretical Computer Science, 58:249–261, 1988. 6.2

[69] J. Rushby. Theorem proving for verification. In Modeling and Verification of Parallel
Processes, volume 2067 of Lecture Notes in Computer Science, pages 39–57. Springer
Berlin Heidelberg, 2001. 5

[70] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A. W. Roscoe. Modelling and
Analysis of Security Protocols. Addison-Wesley Professional, 2000. 1.1

[71] D. G. Samuel, M. Roggenbach, and Y. Isobe. The Stable Revivals Model in CSP-
Prover. Electronic Notes in Theoretical Computer Science, 250(2):119–134, 2009. 5.5

[72] B. Scattergood. The Semantics and Implementation of Machine-Readable CSP. PhD
thesis, University of Oxford, 1998. 3.2

[73] S. Schneider. Correctness and Communication in Real-Time Systems. PhD thesis,
Oxford University, 1989. 6.2

[74] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. John Wiley
and Sons, 2000. 1.1, 6.2

[75] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide.
SRI International, November 2001. 2.3

[76] L. Shi and Y. Liu. Modeling and Verification of Transmission Protocols: A Case Study
on CSMA/CD Protocol. In Proceedings of the 2010 Fourth International Conference
on Secure Software Integration and Reliability Improvement Companion, SSIRI-C’10,
pages 143–149. IEEE Computer Society, 2010. 1.3

[77] L. Shi, Y. Liu, J. Sun, J. S. Dong, and G. Carvalho. An Analytical and Experi-
mental Comparison of CSP Extensions and Tools. In Proceedings of the 14th Inter-
national Conference on Formal Engineering Methods (ICFEM’12), volume 7635 of
Lecture Notes in Computer Science, pages 381–397. Springer Berlin Heidelberg, 2012.
1.3

[78] L. Shi, Y. Zhao, Y. Liu, J. Sun, J. S. Dong, and S. Qin. A UTP Semantics for
Communicating Processes with Shared Variables. In Proceedings of the 15th Inter-
national Conference on Formal Engineering Methods (ICFEM’13), volume 8144 of
Lecture Notes in Computer Science, pages 215–230. Springer Berlin Heidelberg, 2013.
1.3

[79] G. Smith. A Semantic Integration of Object-Z and CSP for the Specification of Con-
current Systems. In FME ’97: Industrial Applications and Strengthened Foundations
of Formal Methods, volume 1313, pages 62–81. Springer Berlin Heidelberg, 1997. 1.1

[80] G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers, 2000.
1.1

BIBLIOGRAPHY 125

[81] J. M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988. 1.1

[82] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revisited: Introducing a Process
Analysis Toolkit. In Proceedings of the Third International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2008), volume 17
of Communications in Computer and Information Science, pages 307–322. Springer,
2008. 1.1, 3.3

[83] J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating Specification and Programs for
System Modeling and Verification. In The 3rd IEEE International Symposium on The-
oretical Aspects of Software Engineering (TASE’09), pages 127–135. IEEE Computer
Society, 2009. 1.1, 2.1, 3.1.2, 3.2, 4, 6.2

[84] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and É. André. Modeling and Verifying
Hierarchical Real-time Systems using Stateful Timed CSP. ACM Transactions on
Software Engineering and Methodology (TOSEM), 22(1):3:1–3:29, 2013. 1.3, 6.2

[85] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification un-
der Fairness. In The 21st International Conference on Computer Aided Verification,
volume 5643 of CAV’09, pages 709–714. Springer, 2009. 1.1, 2.1, 3, 3.3.1

[86] J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying Stateful Timed CSP Using Implicit
Clocks and Zone Abstraction. In Proceedings of the 11th International Conference
on Formal Engineering Methods (ICFEM 2009), volume 5885 of Lecture Notes in
Computer Science, pages 581–600. Springer, 2009. 6.2

[87] J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair Model Checking with
Process Counter Abstraction. In FM 2009: Formal Methods, volume 5850 of Lecture
Notes in Computer Science, pages 123–139. Springer Berlin Heidelberg, 2009. 3.3.1

[88] H. Tej and B. Wolff. A corrected failure divergence model for CSP in Isabelle/HOL. In
FME ’97: Industrial Applications and Strengthened Foundations of Formal Methods,
volume 1313 of Lecture Notes in Computer Science, pages 318–337. Springer Berlin
Heidelberg, 1997. 5.5

[89] J. D. Ullman. Elements of ML programming (ML97 ed.). Prentice-Hall, Inc., 1998.
2.2

[90] T. Wang, S. Song, J. Sun, Y. Liu, J. S. Dong, X. Wang, and S. Li. More anti-chain
based refinement checking. In Proceedings of the 14th International Conference on
Formal Engineering Methods (ICFEM’12), volume 7635 of Lecture Notes in Computer
Science, pages 364–380. Springer Berlin Heidelberg, 2012. 3.3.1

[91] K. Wei and J. Heather. Embedding the stable failures model of CSP in PVS. In
Proceedings of the 5th International Conference on Integrated Formal Methods, IFM’05,
pages 246–265. Springer-Verlag, 2005. 5.5

BIBLIOGRAPHY 126

[92] K. Wei, J. Woodcock, and A. Burns. Embedding the Timed Circus in PVS. Technical
report, University of York, 2009. 5.5

[93] M. Wildmoser and T. Nipkow. Certifying Machine Code Safety: Shallow versus Deep
Embedding. In Theorem Proving in Higher Order Logics (TPHOLs 2004), pages 305–
320. Springer, 2004. 5

[94] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, 1993. 1.1, 4.1.3.4

[95] J. Woodcock and A. Cavalcanti. A Concurrent Language for Refinement. In Proceed-
ings of the 5th Irish Conference on Formal Methods, IW-FM’01, pages 93–115. British
Computer Society, 2001. 1.1

[96] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. S. Fitzgerald. Formal Methods:
Practice and Experience. ACM Computing Surveys, 41(4), 2009. 1.1, 3

[97] H. Zhu, J. P. Bowen, and J. He. From Operational Semantics to Denotational Seman-
tics for Verilog. In CHARME, pages 449–466, 2001. 4.4

[98] H. Zhu, J. He, and J. P. Bowen. From algebraic semantics to denotational semantics
for Verilog. Innovations in Systems and Software Engineering, 4(4):341–360, 2008. 4.4

[99] H. Zhu, S. Qin, J. He, and J. P. Bowen. PTSC: probability, time and shared-variable
concurrency. Innovations in Systems and Software Engineering, 5(4):271–284, 2009.
4.4

[100] H. Zhu, F. Yang, J. He, J. P. Bowen, J. W. Sanders, and S. Qin. Linking Opera-
tional Semantics and Algebraic Semantics for a Probabilistic Timed Shared-Variable
Language. The Journal of Logic and Algebraic Programming, 81(1):2–25, 2012. 4.4

Appendix A

CSP# Models for Benchmark

Systems

This appendix contains the CSP# models of the benchmark systems used in Chapter 3, Sec-

tion 3.3.2. Each subsection below describes one benchmark system, specifically, an overview

of the benchmark system and desired properties, followed by the corresponding CSP#model.

A.1 Readers-writers Problem

Readers-writers problem deals with the situations where many threads may access the same

shared memory at a time for reading and writing. A natural constraint is that no process

can access the shared memory for reading or writing when another process is writing to

the same memory. In this model, a controller is used to guarantee the correct coordination

among multiple readers/writers. The verified properties are trace refinement and a LTL

property.

127

A.2. DINNING PHILOSOPHER 128

////////////////The Model//////////////////
#define M 200;
Writer() = startwrite → stopwrite → Writer();
Reader() = startread → stopread → Reader();
Reading(i) = [i == 0]Controller() 2

[i == M] stopread → Reading(i − 1) 2

[i > 0 && i < M] (startread → Reading(i + 1) 2

stopread → Reading(i − 1));
Controller() = startread → Reading(1)

2 stopread → error → Controller()
2 startwrite → (stopwrite → Controller() 2

stopread → error → Controller());
ReadersWriters() = Controller() ‖ (||| {M } @ (Reader() ||| Writer()));
Implementation() = ReadersWriters() \ {startread , stopread , startwrite, stopwrite};
Specification() = error → Specification();
#alphabet Reading {startread , stopread};
////////////////The Properties//////////////////
#assert Implementation() refines Specification();
#assert ReadersWriters() |= 2!error ;

A.2 Dinning Philosopher

In our model, five philosophers sit around a table. Each philosopher can eat the meal if

and only if he/she picks forks on his/her right and left sides, and both folks will be released

after the philosopher finishes. This model is deadlock free and the properties are failure

refinement and a LTL property.

////////////////The Model//////////////////
#define N 5;
Phil(i) = get .i .i → get .i .(i + 1)%N → eat .i → put .i .(i + 1)%N → put .i .i → Phil(i);
Fork(x) = get .x .x → put .x .x → Fork(x) 2

get .(x + N − 1)%N .x → put .(x + N − 1)%N .x → Fork(x);
Phil0 = get .0.1 → get .0.0→ eat .0→ put .0.1→ put .0.0→ Phil0;
College() = Phil0 ‖ Fork(0) ‖ (‖ x : {1..N − 1}@(Phil(x) ‖ Fork(x)));
Implementation() = College() \ {get .0.0, get .0.1, put .0.0, put .0.1, get .1.1, get .1.2,

put .1.1, put .1.2, get .2.2, get .2.3, put .2.2, put .2.3, get .3.3, get .3.4,
put .3.3, put .3.4, get .4.4, get .4.0, put .4.4, put .4.0};

Specification() = u i : {0..N − 1}@eat .i → Specification();

A.3. MILNER’S CYCLIC SCHEDULER 129

////////////////The Properties//////////////////
#assert Implementation refines < F > Specification;
#assert College() |= 23 eat .0;

A.3 Milner’s Cyclic Scheduler

This scheduling algorithm is described by Milner in 1989 [49]. N processes are activated

in a cyclic manner: process i activates process i + 1 for i < N − 1 and process N − 1

activates process 0. Moreover, a process cannot be re-activated before it has terminated.

The property is failures/divergences refinement describing that the implemented scheduler

follows a cyclic way.

////////////////The Model//////////////////
#define N 20;
#alphabet Cell {c.i , c.((i + 1)%N)};
Cell(i) = ifa (i > 0) {

c.i → a.i → c.((i + 1)%N) → atomic{b.i → Skip}; Cell(i)
}else{
a.0 → c.1 → atomic{b.0 → Skip}; c.0 → Cell(i)
};

MilnerAcyclic() = ‖ x : {0..N − 1} @ Cell(x);
Implementation() = MilnerAcyclic() \ {c.0, b.0, c.1, b.1, c.2, b.2, c.3, b.3, c.4, b.4,
c.5, b.5, c.6, b.6, c.7, b.7, c.8, b.8, c.9, b.9, c.10, b.10, c.11, b.11, c.12, b.12, c.13, b.13,
c.14, b.14, c.15, b.15, c.16, b.16, c.17, b.17, c.18, b.18, c.19, b.19};

Spec(n) = a.n → Spec((n + 1)%N);
SPECIFICATION () = Spec(0);
////////////////The Properties//////////////////
#assert Implementation() refines < FD > SPECIFICATION ();

A.4 The Peg Solitaire Game

The peg solitaire game is a game for one player to move pegs on a board with holes. A valid

move is to jump a peg orthogonally over an adjacent peg into a hole which is two positions

A.4. THE PEG SOLITAIRE GAME 130

away and then remove the jumped peg. There are four orthogonal directions, namely, up,

down, left, and right. The goal is to empty the entire board except for a solitary peg in

the initial empty hole. A solution is deduced by checking a reachability assertion, where the

goal condition specifies that only one peg is on the board at the initial empty hole.

////////////////The Model//////////////////
#define X − 1;
#define P 1;
#define E 2;
#define initEmptyX 3;
#define initEmptyY 3;
#define W 7;
#define H 7;
var board [H][W] =

[X ,X ,P ,P ,P ,X ,X ,
X ,X ,P ,P ,P ,X ,X ,
P ,P ,P ,P ,P ,P ,P ,
P ,P ,P ,E ,P ,P ,P ,
P ,P ,P ,P ,P ,P ,P ,
X ,X ,P ,P ,P ,X ,X ,
X ,X ,P ,P ,P ,X ,X];

var pegsCounter = 32;
Up(i , j) = [i − 2 >= 0]([board [i − 2][j] == E &&

board [i − 1][j] == P]up{board [i − 2][j] = P ;
board [i − 1][j] = E ; board [i][j] = E ;
pegsCounter −−; } → Game());

Left(i , j) = [j − 2 >= 0]([board [i][j − 2] == E &&
board [i][j − 1] == P]left{board [i][j − 2] = P ;

board [i][j − 1] = E ; board [i][j] = E ;
pegsCounter −−; } → Game());

Down(i , j) = [i + 2 < H]([board [i + 2][j] == E &&
board [i + 1][j] == P]down{board [i + 2][j] = P ;

board [i + 1][j] = E ; board [i][j] = E ;
pegsCounter −−; } → Game());

Right(i , j) = [j + 2 <W]([board [i][j + 2] == E &&
board [i][j + 1] == P]right{board [i][j + 2] = P ;

board [i][j + 1] = E ; board [i][j] = E ;
pegsCounter −−; } → Game());

Peg(i , j) = [board [i][j] == P](Up(i , j) 2 Left(i , j) 2 Down(i , j) 2 Right(i , j));
Peg(i , j) = [board [i][j] == P](Up(i , j) 2 Left(i , j) 2 Down(i , j) 2 Right(i , j));
Game() = 2 i : {0..H − 1}@2 j : {0..W − 1}@ Peg(i , j);

A.5. KNIGHT’S TOUR 131

////////////////The Properties//////////////////
#define goal pegsCounter == 1 && board [initEmptyX][initEmptyY] == P ;
#assert Game() reaches goal ;

A.5 Knight’s Tour

The Knight’s tour is a mathematical problem involving a knight on a chessboard. The knight

is placed on the empty board, and moving according to the rules of chess, must visit each

square exactly once. A knight’s tour is called a closed tour if the knight ends on a square

attacking the square from which it began (so that it may tour the board again immediately

with the same path). Otherwise the tour is open.

////////////////The Model//////////////////
#define N 5;
//the board is a N ∗ N matrix
var board [N ∗ N];
var steps = 0;
//there are 8 ways of jumping
Knight(i , j) = [i − 2 >= 0 && j − 1 >= 0] Move0(i , j) 2

[i − 2 >= 0 && j + 1 < N] Move1(i , j) 2

[i − 1 >= 0 && j − 2 >= 0] Move2(i , j) 2

[i − 1 >= 0 && j + 2 < N] Move3(i , j) 2

[i + 1 < N && j − 2 >= 0] Move4(i , j) 2

[i + 1 < N && j + 2 < N] Move5(i , j) 2

[i + 2 < N && j − 1 >= 0] Move6(i , j) 2

[i + 2 < N && j + 1 < N] Move7(i , j);
//each jump will update the board and counter
Move0(i , j) = [board [(i − 2) ∗ N + j − 1] == 0]jump0{board [(i − 2) ∗ N + j − 1] = 1;

steps + +} → Knight(i − 2, j − 1);
Move1(i , j) = [board [(i − 2) ∗ N + j + 1] == 0]jump1{board [(i − 2) ∗ N + j + 1] = 1;

steps + +} → Knight(i − 2, j + 1);
Move2(i , j) = [board [(i − 1) ∗ N + j − 2] == 0]jump2{board [(i − 1) ∗ N + j − 2] = 1;

steps + +} → Knight(i − 1, j − 2);
Move3(i , j) = [board [(i − 1) ∗ N + j + 2] == 0]jump3{board [(i − 1) ∗ N + j + 2] = 1;

steps + +} → Knight(i − 1, j + 2);
Move4(i , j) = [board [(i + 1) ∗ N + j − 2] == 0]jump4{board [(i + 1) ∗ N + j − 2] = 1;

steps + +} → Knight(i + 1, j − 2);

A.6. THE TOWER OF HANOI PUZZLE 132

Move5(i , j) = [board [(i + 1) ∗ N + j + 2] == 0]jump5{board [(i + 1) ∗ N + j + 2] = 1;
steps + +} → Knight(i + 1, j + 2);

Move6(i , j) = [board [(i + 2) ∗ N + j − 1] == 0]jump6{board [(i + 2) ∗ N + j − 1] = 1;
steps + +} → Knight(i + 2, j − 1);

Move7(i , j) = [board [(i + 2) ∗ N + j + 1] == 0]jump7{board [(i + 2) ∗ N + j + 1] = 1;
steps + +} → Knight(i + 2, j + 1);

Game(i , j) = start{board [i ∗ N + j] = 1} → Knight(i , j);
GameInstance = Game(0, 0);
////////////////The Properties//////////////////
#define goal (board [0] == 1 && board [1] = 1 && board [2] = 1 && board [3] = 1

&& board [4] = 1 && board [5] = 1 && board [6] = 1 && board [7] = 1
&& board [8] = 1 && board [9] = 1 && board [10] = 1 && board [11] = 1
&& board [12] = 1 && board [13] = 1 && board [14] = 1 && board [15] = 1
&& board [16] = 1 && board [17] = 1 && board [18] = 1 && board [19] = 1
&& board [20] = 1 && board [21] = 1 && board [22] = 1 && board [23] = 1
&& board [24] = 1);

#assert GameInstance reaches goal ;

A.6 The Tower of Hanoi Puzzle

The tower of Hanoi puzzle consists of three rods and a number of disks of different sizes

which can slide onto any rod. The puzzle starts with the disks neatly stacked in order of

size on one rod, the smallest at the top, thus making a conical shape. The puzzle is solved

when disks are moved to the target rod where disks are stacked in order of size. Information

of disk order on each rod is modelled as global shared variables, for example, a shared array

column1 in our CSP# model.

////////////////The Model//////////////////
#define N 6;
var column1[N + 1];
var column2[N + 1];
var column3[N + 1];
var size[4];
Init() = ini{size[1] = N ; size[2] = 0; size[3] = 0; column1[1] = 6; column1[2] = 5;
column1[3] = 4; column1[4] = 3; column1[5] = 2; column1[6] = 1; } → Skip;

A.7. CONCURRENT STACK 133

Move1To2() = ifa((size[1] > 0&&column1[size[1]] < column2[size[2]]) ‖
(size[1] > 0&&size[2] == 0)) {

move.1.2.column1[size[1]]{size[2] = size[2] + 1;
column2[size[2]] = column1[size[1]]; size[1] = size[1]− 1; } → Skip };

Move1To3() = ifa((size[1] > 0&&column1[size[1]] < column3[size[3]]) ‖
(size[1] > 0&&size[3] == 0)) {

move.1.3.column1[size[1]]{size[3] = size[3] + 1;
column3[size[3]] = column1[size[1]]; size[1] = size[1]− 1; } → Skip };

Move2To1() = ifa((size[2] > 0&&column2[size[2]] < column1[size[1]]) ‖
(size[2] > 0&&size[1] == 0)) {

move.2.1.column2[size[2]]{size[1] = size[1] + 1;
column1[size[1]] = column2[size[2]]; size[2] = size[2]− 1; } → Skip };

Move2To3() = ifa((size[2] > 0&&column2[size[2]] < column3[size[3]]) ‖
(size[2] > 0&&size[3] == 0)) {

move.2.3.column2[size[2]]{size[3] = size[3] + 1;
column3[size[3]] = column2[size[2]]; size[2] = size[2]− 1; } → Skip };

Move3To1() = ifa((size[3] > 0&&column3[size[3]] < column1[size[1]]) ‖
(size[3] > 0&&size[1] == 0)) {

move.3.1.column3[size[3]]{size[1] = size[1] + 1;
column1[size[1]] = column3[size[3]]; size[3] = size[3]− 1; } → Skip };

Move3To2() = ifa((size[3] > 0&&column3[size[3]] < column2[size[2]]) ‖
(size[3] > 0&&size[2] == 0)) {

move.3.2.column3[size[3]]{size[2] = size[2] + 1;
column2[size[2]] = column3[size[3]]; size[3] = size[3]− 1; } → Skip };

Move() = Move1To2() 2 Move1To3() 2 Move2To1() 2
Move2To3() 2 Move3To1() 2 Move3To2();

System() = Init(); System1();
System1() = Move(); System1();
////////////////The Properties//////////////////
#define goal (column3[1] == 6&&column3[2] == 5&&
column3[3] == 4&&column3[4] == 3&&column3[5] == 2&&column3[6] == 1);

#assert System() reaches goal ;

A.7 Concurrent Stack

A concurrent stack allows multiple readers to access the shared variable at the same time,

but only one writer to update the value; readers cannot access the shared variable when

it is written.[41]. The verified property is trace refinement denoting that the trace of the

A.7. CONCURRENT STACK 134

concrete stack implementation is a subset of the trace of the abstract one.

#define N 3; //number of processes
#define SIZE 2; //stack size
var H = 0; //shared head pointer for the concrete implementation
var HL[N]; //local variable to store the temporary head value
var HA = 0; //shared head pointer for the abstract implementation
var HLA[N]; //local variable to store the temporary head value
////////////////The Concrete Implementation Model//////////////////
// Algorithm 2, procedure push
Push(i) = push inv .i → τ{HL[i] = H ; } → PushLoop(i);
PushLoop(i) =

ifa (HL[i] == H) {
τ{if (H < SIZE) {H = H + 1; } HL[i] = H ; }
→ push res.i .HL[i]{HL[i] = 0} → Skip

} else {
τ{HL[i] = H ; } → PushLoop(i)

};
// Algorithm 2, procedure pop
Pop(i) = pop inv .i → τ{HL[i] = H ; } → PopLoop(i);
PopLoop(i) =

if (HL[i] == 0) {
pop res.i .0{HL[i] = 0} → Skip

} else {
(ifa(HL[i] ! = H) {

τ{HL[i] = H ; } → PopLoop(i)
} else {
τ{H = H − 1; HL[i] = H ; } →

pop res.i .(HL[i] + 1){HL[i] = 0} → Skip
})

};
Process(i) = (Push(i) 2 Pop(i)); Process(i);
Stack() = ||| x : {0..N − 1}@Process(x);
//////////////The Abstract Specification Model//////////////////
// Algorithm 3, procedure push
PushAbs(i) = push inv .i → τ{if (HA < SIZE) {HA = HA + 1; };

HLA[i] = HA; } → push res.i .HLA[i]{HLA[i] = 0; } → Skip;

A.8. PETERSON’S ALGORITHM 135

// Algorithm 3, procedure pop
PopAbs(i) = pop inv .i →

(ifa(HA == 0) {
τ{HLA[i] = −1} → pop res.i .(HLA[i] + 1){HLA[i] = 0; } → Skip

} else {
τ{HA = HA − 1; HLA[i] = HA; } →
pop res.i .(HLA[i] + 1){HLA[i] = 0; } → Skip

});
ProcessAbs(i) = (PushAbs(i) 2 PopAbs(i)); ProcessAbs(i);
StackAbs() = ||| x : {0..N − 1}@ProcessAbs(x);
////////////The Properties//////////////////
#assert Stack() refines StackAbs();

A.8 Peterson’s Algorithm

Peterson’s algorithm [59], a concurrent programming algorithm, is designed for mutual ex-

clusion that allows two processes to share a single-use resource without conflicts with only

shared memory for communication. The algorithm can be generalized for more than two pro-

cesses, as modelled in our experiment. The property is mutual exclusion, which is specified

by reachability assertion in CSP# model.

////////////////The Model//////////////////
#define N 3;
var step[N];
var pos[N];
var counter = 0; //which counts how many processes are in the critical session.
Process(i) = localupdate.i .1 → Repeat(i , 1); css.i{counter = counter + 1; } →

csse.i{counter = counter − 1; } → reset{pos[i] = 0; } → Process(i);
Repeat(i , j) = [j < N] update.i .1{pos[i] = j ; } → update.i .2{step[j] = i ; } →

atomic{localupdate.i .j .true → localupdate.i .j .true.0→ Skip};
Repeat1(i , true, 0, j); atomic{localupdate.i .j + 1→ Skip};
Repeat(i , j + 1)

2 [j == N] Skip;

A.8. PETERSON’S ALGORITHM 136

Repeat1(i , lb, k , j) = [k < N]ifa(lb && k ! = i){
Repeat2(i , lb, k , j)
}else{
Skip; atomic{localupdate.i .j .lb.k + 1→ Skip};
Repeat1(i , lb, k + 1, j)}

2 [k == N]Skip;
Repeat2(i , lb, k , j) = [lb && pos[k] >= pos[i]]

(ifa(step[j] == i){
atomic{localupdate.i .j .true.k → Skip}; Repeat2(i , true, k , j)
}else{
atomic{localupdate.0.j .false.k → Skip}; Repeat2(i , false, k , j)})

2 [!lb ‖ pos[k] < pos[i]]Skip; atomic{localupdate.i .j .lb.k + 1→ Skip};
Repeat1(i , lb, k + 1, j);

Peterson() = ||| i : {0..N − 1}@Process(i);
////////////The Properties//////////////////
#define goal counter > 1;
#assert Peterson() reaches goal ;

Appendix B

Monotonicity of CSP# Process

Combinators

This appendix presents the detailed proof of the monotonicity of the CSP# process con-

structs. Given any two processes P and Q such that P w Q , then given any process R, the

following auxiliary laws should be satisfied.

Law A.1

(P ∧ R) w (Q ∧ R), provided that P w Q .

137

Appendix B. Monotonicity of CSP# Process Combinators 138

Proof:

(P ∧ R) w (Q ∧ R) [w]

= [(P ∧ R)⇒ (Q ∧ R)] [propositional calculus]

= [((P ∧ R)⇒ Q) ∧ ((P ∧ R)⇒ R)] [propositional calculus]

= [((P ⇒ Q) ∨ (R ⇒ Q)) ∧ ((P ⇒ R) ∨ (R ⇒ R))] [assumption]

= [(true ∨ (R ⇒ Q)) ∧ ((P ⇒ R) ∨ (R ⇒ R))] [propositional calculus]

= [true ∧ true] [propositional calculus]

= true 2

Law A.2

(P ∨ R) w (Q ∨ R), provided that P w Q .

Proof:

(P ∨ R) w (Q ∨ R) [w]

= [(P ∨ R)⇒ (Q ∨ R)] [propositional calculus]

= [(P ⇒ (Q ∨ R)) ∧ (R ⇒ (Q ∨ R))] [propositional calculus]

= [((P ⇒ Q) ∨ (P ⇒ R)) ∧ ((R ⇒ Q) ∨ (R ⇒ R))] [assumption]

= [true ∨ (P ⇒ R)) ∧ ((R ⇒ Q) ∨ (R ⇒ R))] [propositional calculus]

= [true ∧ true] [propositional calculus]

= true 2

The CSP# sequential composition construct is monotonic (see Law A.3 and Law A.4).

Law A.3

(P ; R) w (Q ; R), provided that P w Q .

Appendix B. Monotonicity of CSP# Process Combinators 139

Proof:

(P ; R) w (Q ; R) [w]

= ∀ obs, obs ′ • ((P ; R)⇒ (Q ; R))1 [4.1.3.5]

= ∀ obs, obs ′ •


∃ obs0 • (P [obs0/obs ′] ∧ R[obs0/obs])

⇒

∃ obs0 • (Q [obs0/obs ′] ∧ R[obs0/obs])


 assumption, w

and Lemma 2


= true 2

Lemma 2. ∀ obs, obs ′ • (∃m • (P(obs,m) ∧R(m, obs ′))⇒ ∃m • (Q(obs,m) ∧R(m, obs ′)))

holds, provided that ∀ obs, obs ′ • (P(obs, obs ′)⇒ Q(obs, obs ′)).

Proof :

1The term obs represents the set of observational variables ok , wait , tr , as is the case of obs ′.

Appendix B. Monotonicity of CSP# Process Combinators 140

1 ∀ obs, obs ′ • (P(obs, obs ′)⇒ Q(obs, obs ′)) premise

2 obs1 ∀ obs ′ • (P(obs1, obs ′)⇒ Q(obs1, obs ′)) ∀ obs e 1

3 obs ′1 P(obs1, obs ′1)⇒ Q(obs1, obs ′1) ∀ obs ′ e 2

4 ∃m • (P(obs1,m) ∧ R(m, obs ′1)) assumption

5 m0 P(obs1,m0) ∧ R(m0, obs ′1) ∃m e 4

6 P(obs1,m0)⇒ Q(obs1,m0) ∀ obs ′ e 2

7 P(obs1,m0) ∧e1 5

8 Q(obs1,m0) ⇒e 6, 7

9 R(m0, obs ′1) ∧e2 5

10 Q(obs1,m0) ∧ R(m0, obs ′1) ∧i 8, 9

11 ∃m • (Q(obs1,m) ∧ R(m, obs ′1)) ∃m i 10

12 ∃m • (Q(obs1,m) ∧ R(m, obs ′1)) ∃m 4, 5− 11

13 ∃m • (P(obs1,m) ∧ R(m, obs ′1))⇒

∃m • (Q(obs1,m) ∧ R(m, obs ′1)) ⇒ i 4− 12

14 ∀ obs ′ • (∃m • (P(obs1,m) ∧ R(m, obs ′))⇒

∃m • (Q(obs1,m) ∧ R(m, obs ′))) ∀ obs ′ i 3− 13

15 ∀ obs, obs ′ • (∃m • (P(obs,m) ∧ R(m, obs ′))⇒

∃m • (Q(obs,m) ∧ R(m, obs ′))) ∀ obs i 2− 14

Law A.4

(R; P) w (R; Q), provided that P w Q .

Appendix B. Monotonicity of CSP# Process Combinators 141

Proof:

(R; P) w (R; Q) [w]

= ∀ obs, obs ′ • ((R; P)⇒ (R; Q)) [4.1.3.5]

= ∀ obs, obs ′ •


∃ obs0 • (R[obs0/obs ′] ∧ P [obs0/obs])

⇒

∃ obs0 • (R[obs0/obs ′] ∧Q [obs0/obs])


 assumption, w

and Lemma 3


= true 2

Lemma 3. ∀ obs, obs ′ • (∃m • (R(obs,m) ∧ P(m, obs ′))⇒ ∃m • (R(obs,m) ∧ P(m, obs ′)))

holds, provided that ∀ obs, obs ′ • (P(obs, obs ′)⇒ Q(obs, obs ′)).

Proof :

Appendix B. Monotonicity of CSP# Process Combinators 142

1 ∀ obs, obs ′ • (P(obs, obs ′)⇒ Q(obs, obs ′)) premise

2 obs ′1 ∀ obs • (P(obs, obs ′1)⇒ Q(obs, obs ′1)) ∀ obs ′ e 1

3 obs1 P(obs1, obs ′1)⇒ Q(obs1, obs ′1) ∀ obs e 2

4 ∃m • (R(obs1,m) ∧ P(m, obs ′1)) assumption

5 m0 R(obs1,m0) ∧ P(m0, obs ′1) ∃m e 4

6 P(m0, obs ′1)⇒ Q(m0, obs ′1) ∀ obs e 2

7 P(m0, obs ′1) ∧e2 5

8 Q(m0, obs ′1) ⇒e 6, 7

9 R(obs1,m0) ∧e1 5

10 R(obs1,m0) ∧Q(m0, obs ′1) ∧i 8, 9

11 ∃m • (R(obs1,m) ∧Q(m, obs ′1)) ∃m i 10

12 ∃m • (R(obs1,m) ∧Q(m, obs ′1)) ∃m 4, 5− 11

13 ∃m • (R(obs1,m) ∧ P(m, obs ′1))⇒

∃m • (R(obs1,m) ∧Q(m, obs ′1)) ⇒ i 4− 12

14 ∀ obs • (∃m • (R(obs,m) ∧ P(m, obs ′1))⇒

∃m • (R(obs,m) ∧Q(m, obs ′1))) ∀ obs i 3− 13

15 ∀ obs, obs ′ • (∃m • (R(obs,m) ∧ P(m, obs ′))⇒

∃m • (R(obs,m) ∧Q(m, obs ′))) ∀ obs ′ i 2− 14

Synchronous output/input is monotonic (see Law A.5 and Law A.6).

Law A.5

(ch!exp → P) w (ch!exp → Q), provided that P w Q .

Appendix B. Monotonicity of CSP# Process Combinators 143

Proof:

(ch!exp → P) [4.1.3.3]

= H

 ok ′ ∧


ch? 6∈ ref ′ ∧ tr ′ = tr

Cwait ′B

∃ s ∈ S • tr ′ = tr a 〈(s, ch!A[[exp]](s))〉


 ; P


assum-

ption

and A.4



w H

 ok ′ ∧


ch? 6∈ ref ′ ∧ tr ′ = tr

Cwait ′B

∃ s ∈ S • tr ′ = tr a 〈(s, ch!A[[exp]](s))〉


 ; Q [4.1.3.3]

= ch!exp → Q 2

Law A.6

(ch?m → P(m)) w (ch?m → Q(m)), provided that ∀m ∈ T • P(m) w Q(m).

Proof:

ch?m → P(m) [4.1.3.3]

= ∃ v ∈ T •

H

 ok ′ ∧


ch! 6∈ ref ′ ∧ tr ′ = tr

Cwait ′B

tr ′ = tr a 〈(s, ch?v)〉


 ; P(v)




assumption,

A.4, and predi-

cate calculus



w ∃ v ∈ T •

H

 ok ′ ∧


ch! 6∈ ref ′ ∧ tr ′ = tr

Cwait ′B

tr ′ = tr a 〈(s, ch?v)〉


 ; Q(v)

 [4.1.3.3]

= ch?m → Q(m) 2

The CSP# data operation prefixing construct is monotonic (see Law A.7).

Appendix B. Monotonicity of CSP# Process Combinators 144

Law A.7

(e{prog} → P) w (e{prog} → Q), provided that P w Q .

Proof:

e{prog} → P [4.1.3.4]

= H


ok ′ ∧



∃ s ∈ S • (tr ′ = tr a 〈(s,⊥)〉 ∧ (s,⊥) ∈ C[[prog]])

Cwait ′B

∃ s, s ′ ∈ S • (tr ′ = tr a 〈(s, s ′)〉 ∧ (s, s ′) ∈ C[[prog]]

∧(s,⊥) 6∈ C[[prog]])




; P

[assumption and A.4]

w H


ok ′ ∧



∃ s ∈ S • (tr ′ = tr a 〈(s,⊥)〉 ∧ (s,⊥) ∈ C[[prog]])

Cwait ′B

∃ s, s ′ ∈ S • (tr ′ = tr a 〈(s, s ′)〉 ∧ (s, s ′) ∈ C[[prog]]

∧(s,⊥) 6∈ C[[prog]])




; Q [4.1.3.4]

= e{prog} → Q 2

The CSP# state guard is monotonic (see Law A.8).

Law A.8

[b]P w [b]Q , provided that P w Q .

Appendix B. Monotonicity of CSP# Process Combinators 145

Proof:

[b]P w [b]Q [4.1.3.7 and w]

=


P / B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′) . Stop

⇒

Q / B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′) . Stop


[predicate calculus]

=






(P ∧ B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)

⇒

(Q ∧ B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)


∨

(P ∧ B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)

⇒

(Stop ∧ ¬(B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′))




∧


(Stop ∧ ¬(B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′))

⇒

(Q ∧ B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)


∨

(Stop ∧ ¬(B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′))

⇒

(Stop ∧ ¬(B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′))






[predicate calculus]

Appendix B. Monotonicity of CSP# Process Combinators 146

=





(P ⇒ Q)

∨

((B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)⇒ Q)

∨
(P ∧ B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)

⇒

(Stop ∧ ¬(B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′))




∧


(Stop ∧ ¬(B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′))

⇒

(Q ∧ B(b)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′)


∨

true




[assumption and predicate calculus]

= true ∧ true [predicate calculus]

= true 2

The CSP# parallel composition is monotonic (see Law A.9 and Law A.10).

Law A.9

P || R w Q || R

provided that P w Q , and common actions and synchronous channel outputs/inputs of the

two parallel processes (denoted as set X) are the same.

Appendix B. Monotonicity of CSP# Process Combinators 147

Proof:

P w Q [w]

= [P ⇒ Q] [predicate calculus]

= [P [0.obs/obs]⇒ Q [0.obs/obs]] [w]

= P [0.obs/obs] w Q [0.obs/obs] [Law A.1]

=

(P [0.obs/obs] ∧ R[1.obs/obs])

w

(Q [0.obs/obs] ∧ R[1.obs/obs])

[Law A.3]

⇒

(P [0.obs/obs] ∧ R[1.obs/obs]); M (X)

w

(Q [0.obs/obs] ∧ R[1.obs/obs]); M (X)

[4.1.3.8]

= P || R w Q || R 2

Law A.10

R || P w R || Q ,

provided that P w Q , and common actions and synchronous channel outputs/inputs of the

two parallel processes (denoted as set X) are the same.

Appendix B. Monotonicity of CSP# Process Combinators 148

Proof:

P w Q [w]

= [P ⇒ Q] [predicate calculus]

= [P [1.obs/obs]⇒ Q [1.obs/obs]] [w]

= P [1.obs/obs] w Q [1.obs/obs] [A.1]

=

(P [1.obs/obs] ∧ R[0.obs/obs])

w

(Q [1.obs/obs] ∧ R[0.obs/obs])

[predicate calculus]

=

(R[0.obs/obs] ∧ P [1.obs/obs])

w

(R[0.obs/obs] ∧Q [1.obs/obs])

[A.3]

⇒

(R[0.obs/obs] ∧ P [1.obs/obs]); M (X)

w

(R[0.obs/obs] ∧Q [1.obs/obs]); M (X)

[4.1.3.8]

= R || P w R || Q 2

Since the semantics of other CSP# processes (i.e., event prefixing, external/internal choice

and recursion) is the same as that of CSP, the proof is ommited here.

	 List of Tables
	1 Introduction and Overview
	1.1 Motivation and Goals
	1.2 Thesis Outline
	1.3 Acknowledgement of Published Work

	2 Background
	2.1 The CSP# Language
	2.1.1 Syntax
	2.1.2 Concurrency
	2.1.3 A CSP# Example - the Peg Solitaire Game

	2.2 UTP Theory
	2.3 Prototype Verification System

	3 Comparison of CSP Extensions and Tools
	3.1 CSPM vs. CSP#: Syntax
	3.1.1 Data Perspective
	3.1.2 Process Perspective

	3.2 CSPM vs. CSP#: Operational Semantics
	3.2.1 SKIP
	3.2.2 CHAOS
	3.2.3 Channel Communication
	3.2.4 Shared variables
	3.2.5 Parallel composition
	3.2.6 Interleaving
	3.2.7 General choice
	3.2.8 Conditional choice
	3.2.9 Renaming
	3.2.10 Untimed timout
	3.2.11 Discussion

	3.3 Verification Tool Support
	3.3.1 Verification
	3.3.2 Experiment
	3.3.3 Discussion

	3.4 Summary

	4 A UTP Semantics for CSP#
	4.1 Denotational Semantics of CSP#
	4.1.1 Semantic Model
	4.1.2 Semantics of Expressions and Programs
	4.1.3 Semantics of Processes

	4.2 Algebraic Laws
	4.2.1 State Guard
	4.2.2 Sequential Composition
	4.2.3 Parallel Composition

	4.3 The Closed Semantics
	4.4 Summary

	5 Encoding CSP# Denotational Semantics into PVS
	5.1 The Theory of Semantic Model
	5.1.1 The Theory of Observational Variables
	5.1.2 The Theory of Healthiness Conditions

	5.2 The Theories of Expressions and Programs
	5.3 The Theory of Processes
	5.3.1 Primitives
	5.3.2 Sequential Composition
	5.3.3 Event prefixing
	5.3.4 Synchronous Channel Output/Input
	5.3.5 Data Operation Prefixing
	5.3.6 Choice
	5.3.7 State Guard
	5.3.8 Parallel Composition
	5.3.9 Interleave
	5.3.10 Hiding
	5.3.11 Refinement
	5.3.12 Recursion

	5.4 Mechanical Proof of Laws
	5.5 Summary

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	Bibliography
	Appendix A CSP# Models for Benchmark Systems
	A.1 Readers-writers Problem
	A.2 Dinning Philosopher
	A.3 Milner's Cyclic Scheduler
	A.4 The Peg Solitaire Game
	A.5 Knight's Tour
	A.6 The Tower of Hanoi Puzzle
	A.7 Concurrent Stack
	A.8 Peterson's Algorithm

	Appendix B Monotonicity of CSP# Process Combinators

