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Abstract

Dengue viruses 1–4 (DENV1-4) rely heavily on the host cell machinery to complete their life cycle, while at the same time
evade the host response that could restrict their replication efficiency. These requirements may account for much of the
broad gene-level changes to the host transcriptome upon DENV infection. However, host gene function is also regulated
through transcriptional start site (TSS) selection and post-transcriptional modification to the RNA that give rise to multiple
gene isoforms. The roles these processes play in the host response to dengue infection have not been explored. In the
present study, we utilized RNA sequencing (RNAseq) to identify novel transcript variations in response to infection with
both a pathogenic strain of DENV1 and its attenuated derivative. RNAseq provides the information necessary to distinguish
the various isoforms produced from a single gene and their splice variants. Our data indicate that there is an extensive
amount of previously uncharacterized TSS and post-transcriptional modifications to host RNA over a wide range of
pathways and host functions in response to DENV infection. Many of the differentially expressed genes identified in this
study have previously been shown to be required for flavivirus propagation and/or interact with DENV gene products. We
also show here that the human transcriptome response to an infection by wild-type DENV or its attenuated derivative differs
significantly. This differential response to wild-type and attenuated DENV infection suggests that alternative processing
events may be part of a previously uncharacterized innate immune response to viral infection that is in large part evaded by
wild-type DENV.
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Introduction

Dengue viruses 1–4 (DENV1-4) are the world’s most prevalent

arthropod-borne viruses [1]. DENVs are responsible for an

estimated 50–100 million cases of debilitating or life-threatening

infection every year and an estimated 2.5 billion people in over

100 endemic countries are at risk of infection [1,2]. The economic

impact of DENVs has been estimated to be as high, if not higher

than other major global health menaces such as malaria,

tuberculosis, hepatitis, bacterial meningitis and others [3–8].

Despite the considerable health and economic impact, there are

as yet no licensed vaccines or antiviral drugs to combat DENVs

and an incomplete understanding of the biology of DENV

infection has hampered progress on both of these fronts.

Given the limited coding capacity of their ,11 kb RNA

genome, DENVs must parasitize the host cell machinery to

complete their life cycle. At the same time, these viruses must

effectively evade or suppress the host responses that act to restrict

their replication [9–11]. This interplay between host and virus and

the effect it has on host gene expression has been described

previously [12–29]. Largely uncharacterized, however, is whether

the transcriptional start site (TSS) and post-transcriptional

variations of host RNA, leading to the production of different

gene isoforms, may play a role in DENV infection. Differential

RNA processing is known to be a major factor underlying cellular

and functional complexity [30,31]. In order to interrogate TSS

and post-transcriptional RNA variations across the entire genome

in response to DENV infection, we harnessed the power of RNA

sequencing (RNAseq). RNAseq is a recently developed approach

to transcriptome profiling that permits a precise quantification of

RNA levels and their alternatively processed variants by means of

high throughput, massively parallel sequencing and subsequent

mapping of the resultant short sequence fragments onto a

reference genome [32,33].

We utilized two strains of DENV1 in our RNAseq study to

identify strain-specific TSS and post-transcriptional variations in

response to infection. The first strain, DENV1-16007, was isolated

from the serum of a patient in Thailand in 1964. The second strain

of DENV1 used in this study is an attenuated derivative of

DENV1-16007. This attenuated virus, DENV1-PDK13 was

passaged 13 times in primary dog kidney cells and was shown to

be immunogenic but minimally reactogenic in human volunteers
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[34,35]. Our RNAseq data indicate that significant differences

exist between these two strains of DENV1, not only at the

transcript level but also at the level of alternative splicing. Similar

trends were observed in RNAseq of an additional two low-

passaged DENV1 clinical isolates. These findings suggest that

subversion of the host response includes TSS and post-

transcriptional modification and is part of the mechanism of

virulence. These findings also suggest that variations in the viral

genome can have a profound effect in modifying host response to

infection.

Materials and Methods

Cells and virus stock
HuH7, C6/36 and BHK-21 cells were purchased from the

American Type Culture Collection (ATCC) and cultured accord-

ing to ATCC recommendation. DENV1 strains 16007 and

PDK13 were obtained from the Division of Vector-borne

Diseases, Centers for Disease Control and Prevention. Sequence

analysis in our laboratory indicates that these strains match the

published sequences for these viruses (GenBank accession numbers

AF180817.1 and AF180818.1, respectively). These viruses were

amplified three times in C6/36 cells prior to use in the current

study. Additionally, the DENV1 clinical isolates EDEN3300 and

SL107, which were obtained from previously reported studies

[36,37] and passaged in C6/36 cells for ,5 times were also

included. The supernatant of all virus cultures were harvested six

days post infection, clarified by centrifugation at 4506 g for

10 min at 4uC, filtered and concentrated by centrifugation at

30,0006 g for 3 hrs at 4uC. Virus pellets were re-suspended in

DMEM medium with 2% FBS (Invitrogen) and stored at 280uC
until use. Infectious titer was determined by plaque assay as

described previously [38].

Virus infection in HuH7 cells
HuH7 cells were seeded at 36106 per flask in 25 mm flasks and

incubated at 37uC for 24 hrs before infecting at a MOI of 20 with

each of the DENV strains for 1 hr at 37uC/5% CO2, with gentle

rocking every 15 min. The cells were then washed thoroughly and

replaced with DMEM medium supplemented with 2% FBS and

incubated for 20 hrs.

Immunofluorescence assay
Immunofluorescence assay was conducted according to a

previously described method [39]. Briefly, the cells from the virus

culture were washed once and re-suspended with PBS, and spotted

onto a Teflon coated glass slide, air dried and then immersed in

80% acetone for 10 min. The slide was rinsed with PBS and air-

dried. 2 ml antibody against prM protein (2H2 monoclonal

antibody) was added onto each well, incubated at 37uC for

45 min in a humidified chamber, and washed twice with PBS

before drying. FITC-conjugated goat anti-mouse IgG were diluted

1:30 with 0.1% Evan’s Blue and 2 ml was added onto each well.

Slides were then incubated at 37uC for 45 min in the humidified

chamber and then washed twice with PBS. Slides were dried and

mounted with buffered glycerol before imaging under a fluorescent

microscope.

Generation of whole-transcriptome cDNA library
Polyadenylated mRNA was isolated from HuH7 cells by three

rounds of selection with the Dynabeads mRNA Direct Kit

(Invitrogen) and assessed by electrophoresis on the Bioanalyzer

2100 (Agilent) for quality evaluation. For the RNAseq sample

preparation, the NEBNext mRNA Sample Prep Master Mix Set 1

was used according to the manufacturer’s protocol (NEB). Briefly,

0.5 ug mRNA was used for fragmentation and then subjected to

cDNA synthesis using SuperScript III Reverse Transcriptase

(Invitrogen) and random primers. The cDNA was further

converted into double stranded cDNA and after an end repair

process (Klenow fragment, T4 polynucleotide kinase and T4

polymerase), was ligated to Illumina paired end (PE) adaptors. Size

selection was performed using a 2% agarose gel, generating cDNA

libraries ranging in size from 275–325 bp. Finally, the libraries

were enriched using 15 cycles of PCR and purified by the

QIAquick PCR purification kit (Qiagen).

Sequence analysis
Libraries were sequenced on an Illumina GAIIx machine at

the National Cancer Center, Singapore (Control-NCC, 16007-

NCC, PDK13-NCC) or an Illumina HiSeq 2000 machine at the

Duke-NUS Genome Biology Facility, Singapore (Control-1,

Control-2, 16007-1, 16007-2, PDK13-1, PDK13-2). Resulting

reads were mapped to the hg19 build of the human genome

using Tophat v1.3.0 (http://tophat.cbcb.umd.edu/index.html)

with the coverage-search, microexon-search and butterfly-

search options. Differential isoform expression analysis was

done using Cufflinks v1.3.0 (http://cufflinks.cbcb.umd.edu/)

with the multi-read-correct (Cufflinks), -r and -s (Cuffcompare;

using the same annotation gtf and hg19 fasta files respectively as

in Tophat) and the mask-file (rRNA), frag-bias-correct (same

hg19 fasta file used for Tophat) and multi-read-correct options.

Differential splicing analysis was done using MISO v1.0 (http://

genes.mit.edu/burgelab/miso/docs/) using the default options.

Analysis of RNA sequencing quality was performed with

RNAseqC v1.7 (http://www.broadinstitute.org/cancer/cga/

rna-seqc) using the default options. Creation of proportional

Venn diagrams was done with freeware available at www.

venndiagram.tk. Hierarchical clustering of differentially regu-

lated isoforms was done with Partek v6.6 (http://www.partek.

com/). Pathway analysis of differentially regulated isoforms was

done using Ingenuity Pathway Analysis v9.0 (http://www.

ingenuity.com/).

Author Summary

Dengue is the most common insect-borne viral disease
globally. The continued absence of an effective therapy
stems from an incomplete understanding of disease
pathogenesis, of which the host response to infection is
thought to play a central role. While previous studies have
described the changes in total gene expression with
dengue virus infection, they have not been able to provide
any information on the subtle variations of the host RNA.
These variations lead to the production of gene isoforms
that can have a profound effect on gene function. In the
current study, we have used the newly developed
technique of RNA sequencing to more accurately interro-
gate the variations in the host RNA after infection with a
wild-type dengue virus or its attenuated derivative.
Findings from this study show that there is an extensive
amount of previously uncharacterized variation in host
RNA response to dengue infection. The response to
infection with the wild-type dengue also differs signifi-
cantly from infection with the vaccine strain. This suggests
that variations in the host RNA comprise a part of the host
response to viral infection that is in large part evaded by
wild-type dengue viruses.

Transcriptome Profile during Dengue Infection
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Validation of exon skipping by real-time PCR
Total RNA derived from mock-infected and DENV-infected

cells was used to synthesize cDNA using SuperScript III First

Strand Synthesis System (Invitrogen) with random hexamers

according to manufacturer’s instructions. Quantitative real-time

PCR was performed using LightCycler 480 Real-Time PCR

System (Roche Diagnostics GmbH, Germany) and LightCycler

480 SYBR Green I Master (Roche Diagnostics GmbH, Germany).

The reaction was carried out to simultaneously amplify exon-

skipped and exon-included isoforms using specific primers

complementary to the exons flanking each target exon (Table

S13). Percent exon exclusion levels were calculated as the

percentage of the isoform excluding an alternative exon divided

by the total abundance of the isoforms including and excluding the

alternative exon.

Statistical analysis
The statistical analysis employed to analyze biological triplicates

for each condition are as previously described using the software

Cufflinks and Mixture-of-Isoforms (MISO) [40,41]. Criteria used

to define significance are according to the standard options in the

Cufflinks and MISO programs. More detail is provided below.

Results

Experimental design and RNAseq results
To investigate the effect of DENV1-16007 (wild-type strain) and

DENV1-PDK13 (attenuated strain) infection on the transcriptome

of the human host, we infected human hepatoma cells (HuH7)

with each strain for 20 hours at a multiplicity of infection (MOI) of

20 (Figure 1A). The MOI of 20 was chosen so that the subsequent

RNAseq profiling would best reflect the infection-induced

alterations to the host transcriptome and not be either masked

by or derived from a large number of uninfected cells. We also

measured viral RNA over the first 30 hours of infection to address

the possibility that changes observed might be the result of a

delayed replication cycle by one of the viruses. Although the

absolute kinetics of the two viruses differ, the 20 hour time point

was chosen as it represents the stage in the primary round of

replication at which the genome copy numbers are most similar

between the two viruses (Figure 1B). Indirect immunofluorescence

staining for the pre-membrane protein (prM) production with 2H2

monoclonal antibody also showed similar infection levels for both

viruses at this time point (Figure 1C). Infections with wild-type and

attenuated strains were performed in three independent biological

replicate experiments. Mock-infected HuH7 cells treated in the

same way as the infected samples were also done in biological

triplicate and served as the control for our experiment. At twenty

hours post-infection, mRNA was extracted from all samples

independently, and poly-A enriched cDNA libraries were

constructed for 75-base, pair-end sequencing on an Illumina

GAIIx (one sample for each condition) or Illumina HiSeq2000

machine (two samples for each condition). RNA sequencing was

performed independently for each of these replicate experiments.

Mapping of reads (Bowtie, Tophat) and analysis of differential

transcriptome response (Cufflinks) to infection was performed

using the Tuxedo Suite of software [40,42]. Cufflinks utilizes

sequence fragments mapped to the reference genome to estimate

the abundance of each isoform arising from the gene. It then tests

for differential expression between experimental conditions.

Differential expression at the gene level is calculated and is

defined as the sum of differential expression of all isoforms at a

particular locus. Cufflinks also assesses differential splicing by

comparing the relative abundance of isoforms using the same

transcriptional start site [40]. As this definition of splicing

encompasses all different types of splicing events (see below)

[43], systematic analysis of these events for downstream validation

work is exceedingly difficult. In order to attain more detail about

the types of differential splicing in our samples, we used the MISO

software following mapping [41]. MISO utilizes a fixed library of

previously characterized splice events to predict alternative

splicing and reports the number of occurrences for each type of

splicing event: skipped exon (SE), mutually exclusive exons (MXE),

alternative 39 splice site (A3SS), alternative 59 splice site (A5SS),

alternative first exon (AFE), retained intron (RI), tandem

untranslated regions (Tandem UTR) [43]. MISO also utilizes a

different algorithm than Cufflinks to predict differential splicing

between samples which, when compared with the results from

Cufflinks, provides an additional level of stringency in selection of

candidates for downstream analysis.

To assess the quality of our libraries and sequencing performance

and to ensure that any differences observed between our samples

was due to the biology and not bias in sequencing, we used the open

source program RNAseqC to examine our data [44]. Results

indicate that despite using two different Illumina machines to

generate the sequences, the individual samples are highly compa-

rable to each other across all the metrics interrogated (Dataset S1).

Wild-type and attenuated DENV-1 strains induce
differential regulation of the host transcriptome

Over 18,000 changes to the host transcriptome were observed

in response to infection by the wild-type strain and .41,000 were

observed in response to infection with the attenuated strain

(Table 1). Differential isoform regulation is the largest category of

response due to infection by both strains. Interestingly, there are

over two-fold more differentially regulated isoforms following

infection with the attenuated than with the wild-type strain.

Similarly, infection with the attenuated strain also resulted in

three-fold more differentially regulated genes than infection with

the wild-type (Figure 2). In order to determine whether this large

differential response to infection was specific to these two strains or

whether the ‘quieter’ response to the parental DENV1-16007

strain was typical of wild-type DENV1s, we repeated our

experiment in HuH7 cells with two low passaged clinical isolates

(EDEN3300 and SL107) and compared them to our uninfected

control. RNAseq analysis for these isolates indicates even fewer

transcriptomic changes (Table 1), suggesting that attenuated virus

triggers more host cell response than wild-type viruses. This

observation is consistent with what has been reported for yellow

fever virus and its attenuated derivative, YF17D [45].

Qualitative analysis of the RNAseq data also provides insights

into the pathways that are essential to both strains or unique to one

strain. Ingenuity Pathway Analysis (IPA) of isoforms indicates that

the commonly regulated isoforms are enriched in pathways

associated with viral infection and modulation of protein transla-

tion. Examples include EIF2 signaling, prolactin signaling, acute

phase response signaling, regulation of EIF4 and p7056K and

glucocorticoid receptor signaling. Differential expression of path-

ways associated with cellular growth and proliferation such as

mTOR signaling and aryl hydrocarbon receptor signaling are also

enriched following infection with both strains (Figure 3A). Con-

versely, the pathways that are differentially regulated between the

wild-type and attenuated strains include the innate immune

response and cell cycle control. The top differentially regulated

host pathways associated only with wild-type strain infection are

involved with immunomodulation and cell cycle arrest, such as

PPAR/RXR activation pathway, G2/M DNA damage checkpoint,

ATM signaling and the PDGF signaling pathway (Figure 3C).

Transcriptome Profile during Dengue Infection
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Conversely, infection with the attenuated strain triggered pathways

associated with inflammation, induction of apoptosis and stress such as

the TNFR1 pathway, TWEAK signaling, NRF2-mediated oxidative

stress response, IGF -1 signaling and ERK5 signaling (Figure 3E). IPA

also identified molecular and cellular functions associated with both or

each of the strains (Figures 3B, 3D and 3F). Taken collectively, the

molecular and cellular functions in response to wild-type virus

infection are associated with cell signaling and metabolism while those

to attenuated virus are associated with transcriptional activation, cell

cycle modification and post-translational modification.

Differential splicing in the host transcriptome is largely
conserved between wild-type and attenuated DENV1
strains

Next, we interrogated the data for alternative splicing within the

isoforms sharing the same transcriptional start site. Interestingly,

80% and 74% of all differential splicing following infection with

the wild-type strain and attenuated strain, respectively, are

common to both viruses (Figure 2). This degree of commonality

in the splicing response to infection by each strain is significantly

different than what was observed for differential isoform and gene

regulation in response to infection. This novel finding suggests that

mechanisms responsible for the specific regulation of host splicing

may be critical for DENV1 propagation and thus remained

relatively unchanged during the attenuation process.

The candidate list from our Cufflinks analysis of alternatively

spliced transcripts for both strains of virus was then cross-

referenced against the list of skipped exon (SE) events generated by

MISO analysis. This cross comparison resulted in 79 total SE

events. To assess the accuracy of our alternative splicing

predictions, we performed qPCR on each of the predicted SE

events. Of the 79 events tested by qPCR, 32 (40%) were

Figure 1. Experimental design and analysis of infection. A. Timeline of experimental procedure and data analysis steps. B. Quantification of
viral copy number normalized to the cellular B2M gene expression at 0, 6, 12, 20 and 30 hours post infection. Asterisks indicate a p-value of less than
or equal to 0.05. C. Immunofluorescence analysis of Huh7 cells either mock-infected (top panel), infected with DENV1-16007 (middle panel) or
DENV1- PDK13 (bottom panel) and probed with antibody against prM protein (2H2) followed by FITC-conjugated goat anti-mouse IgG at 20 h post-
infection. The cell nuclei were counter-stained with Evan’s Blue.
doi:10.1371/journal.pntd.0002107.g001

Transcriptome Profile during Dengue Infection
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differentially expressed in the wild-type strain, the attenuated

strain or both in comparison to an uninfected control (Figure 4).

The splicing patterns were similar for both viruses across all time

points measured, indicating that our observations are not artifacts

of temporal sampling bias (Figure 4). Furthermore, the genes

involved in these splicing events belong to many of the same

pathways shown in Figure 3 suggesting that the virus is, at least in

part, exerting its influence on these pathways through alternative

splicing (Table S1). If this were true, the SE events should share

mechanisms of regulation by utilizing common RNA motifs within

and surrounding the identified SE’s. Indeed, using the software

RegRNA (http://regrna.mbc.nctu.edu.tw) [46] and setting an

arbitrary boundary of 250 nucleotides upstream and downstream

of the 39 and 59 splice-site of the SEs, respectively, we identified 74

predicted RNA regulatory motifs and elements which could be

bound by 17 RNA binding proteins. By using GeneCards (http://

www.genecards.org) to convert these putative motif binding

proteins into HUGO nomenclature, we observed that nearly

two thirds (11 of 17) of genes encoding these motif-binding

proteins are themselves differentially expressed following infection

Figure 2. Comparison of differential regulation of genes, isoforms and splicing in DENV1-16007 and DENV1-PDK13.
doi:10.1371/journal.pntd.0002107.g002

Table 1. Differential regulation of transcripts in response to DENV1 infection.

Cufflinks Uninfecteda vs PDK13a Uninfecteda vs 16007a Uninfecteda vs EDEN3300b Uninfecteda vs SL107b

Genes exp 9047 (4610 up/4437 down) 2859 (1818 up/1041 down) 5162 (109 up/5053 down) 5033 (251 up/4782 down)

Isoforms exp 23354 (12386 up/10968 down) 9298 (5332 up/3966 down) 6416 (775 up/5641 down) 7023 (965 up/6058 down)

TSS group exp 3189 1194 1429 1392

CDS exp 148 48 190 200

CDS 153 132 9 7

Promoters 2249 2112 148 184

Splicing 2983 2740 159 208

Total 41123 18383 13513 14047

MISO Uninfecteda vs PDK13a Uninfecteda vs 16007a

SE 515 322

MXE 76 55

A3SS 2 0

A5SS 2 5

AFE 0 0

RI 14 2

Tandem UTR 0 0

Total 609 384

Number of events in each category (Rows) predicted by Cuffdiff [40] (Top) and MISO [41] (Bottom) for Uninfected cells vs. DENV1-16007 infected cells (First column),
Uninfected cells vs. DENV1-PDK13 infected cells (Second column). The number of up- and down-regulated events is also described for the gene and isoform categories.
Superscript ‘‘a’’ indicates biological triplicates while superscript ‘‘b’’ indicates single measurement of the sample. Abbreviations used: differentially expressed genes
(Genes exp), differentially expressed isoforms (Isoforms exp), differentially expressed transcriptional start site group (TSS group exp), differentially expressed coding
sequence (CDS exp), differential coding output (CDS), differential promoter use (Promoters), differential splicing (Splicing), skipped exon (SE), mutually exclusive exons
(MXE), alternative 39 splice site (A3SS), alternative 59 splice site (A5SS), alternative first exon (AFE), retained intron (RI) and tandem untranslated region (Tandem UTR).
doi:10.1371/journal.pntd.0002107.t001

Transcriptome Profile during Dengue Infection
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by one or both of the DENV1 strains (Table S2). These results

suggest that DENV1 may be regulating alternative splicing of host

mRNA by a hitherto unknown mechanism.

Cross-platform, integrative analysis of results
Many differentially processed transcripts found in our study

have also been identified in genome-wide RNAi screens for

flavivirus host factors, differentially processed in microarray studies

of DENV-infected cells and/or shown to interact with DENV

gene products [10–29,47–51] (Jamison and Garcia-Blanco,

unpublished data). To gain additional functional insights into the

differentially regulated transcripts identified here, we compiled a

cross-platform integrative analysis of our data with other available

genomic data on host factors in DENV and other flaviviral

infection (Tables S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13).

Briefly, we examined 11 canonical pathways that were enriched in

our study and/or had been previously implicated in the DENV life

cycle: apoptosis, autophagy, clathrin-mediated endocytosis, inter-

feron signaling, lipid metabolism, oxidative phosphorylation,

regulation of stress granules and P-bodies, splicing-related RNA

post-transcriptional modification, ubiquitination, endoplasmic

reticulum stress, virus recognition and interferon induction. The

proportion of host factors for DENV or other flaviviruses identified

through functional genomic studies that were differentially

regulated following infection with the wild-type strain or the

attenuated strain is indicated in Table 2. Differential isoform

regulation of flaviviral host factors ranged from 15.5% to 60.6%

and is uniformly higher for the attenuated strain than the

pathogenic wild-type strain. Alternative splicing ranged from

7.3% to 24.2% and the rates of these events in the wild-type strain

Figure 3. Ingenuity pathway analysis. Pathway (A, C, E) and molecular and cellular function (B, D, F) analysis of common DENV1 response (A,
B), unique DENV1-16007 response (C, D) and unique DENV1-PDK13 response (E, F). The numbers within the pie-slices in panels B, D and F are the
number of isoforms belonging to the indicated molecular and cellular function.
doi:10.1371/journal.pntd.0002107.g003

Transcriptome Profile during Dengue Infection
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and its attenuated derivative were comparable (Table 2). The

intersection of specific host factors in these eleven canonical

pathways that are either required for flaviviral propagation or

involved in direct interaction with DENV proteins, which are

differentially regulated are graphically depicted in Figure 5.

Discussion

Investigation of host gene expression to date has relied primarily

on microarray technology [12–29]. This technology is insensitive

to the regulation of genes through alternative RNA processing.

Thus, detection of differential expression down to the level of

alternative isoforms has not been examined and the subtleties of

TSS and post-transcriptional modifications that can dramatically

alter the function of the derived proteins have been largely

ignored. These processes could be a mechanism by which DENV

attains specific isoforms of required host factors while suppressing

those that act to restrict its replication [27,52,53]. Indeed, the need

to understand the host response beyond simple gene expression is

underscored by the observation that DENV can modify the

splicing pattern of an endogenous gene, XBP1, to its advantage

[53]. Our findings indicate that there is an extensive amount of

previously uncharacterized gene isoforms and alternative process-

ing of host transcripts over a wide range of pathways and host

functions in response to DENV infection. Interestingly, the

DENV1-16007 and DENV1-PDK13 viruses only differ from

each other by 14 nucleotide and 8 amino acids [54], yet the host

transcriptional response to these viruses is pronounced. This

suggests that infection with different strains of DENV can result in

significantly different disease phenotypes despite few nucleotide

differences.

We have attempted, in this study, to provide a comprehensive

guide to the transcriptomic changes with DENV infection. By

analyzing our RNAseq data using two different programs,

Cufflinks and MISO [40,41], maximal information on RNA

transcript regulation, could be gleaned. Specific splice events could

hence be identified for subsequent mechanistic studies that clarify

their role in the host response. In particular, the integrative

analysis of this study with existing functional genomics data reveals

previously undocumented expression and post-transcriptional

regulation of required host factors that should serve as a road

map for future mechanistic investigations. A caveat, however, is

that our work only profiled the transcriptome at the end of a single

round of DENV replication. As hinted by Figure 4, both

quantitative and qualitative differences may exist in the tran-

scriptome at different stages of the virus life cycle. Furthermore,

the possibility exists that bystander uninfected cells may exert some

influence on the observed transcriptional changes although we

have attempted to minimize this by using a high MOI in our

experiments. Future studies may need to take these possibilities

into account.

The large difference in the number of alternative splicing events

identified by Cufflinks and MISO also underscores the fledgling

nature of RNAseq. While the former identifies all possible splicing

events from the data de novo, the latter relies on a pre-defined

library to map alternatively spliced transcripts. Additional studies

are needed to clarify whether Cufflinks over-estimated the number

of splice variants, or there are authentic variants absent from the

library used by MISO. Regardless, for transcriptome analysis of

host response to infection, RNAseq is superior to microarray in

terms of the breadth of information derived.

Our results also indicate that the human transcriptome response

to an infection by wild-type DENV or its attenuated derivative

differs significantly (Table 1, Figure 2). These differences suggest

that alternative processing events may be part of a previously

uncharacterized innate immune response to DENV1 infection that

is in large part evaded by wild-type strains. This second hypothesis

is supported by the greater than two-fold increase in the number of

differentially regulated transcripts when infected with the atten-

uated strain of DENV1 as compared to the parental wild type

strain of DENV1, many of which belong to pathways associated

with inflammation, induction of apoptosis and stress response

(Table 1, Figure 3). This inability to escape the innate immune

response achieved by the wild-type virus may explain the lack of

Figure 4. Validation of single exon skipping events predicted by both Cuffdiff and MISO. Values graphed are the log2 transformed fold
change differences between inclusion/skipping of the alternatively spliced exon in DENV1-16007 infected cells (red bars) or DENV1-PDK13 infected
cells (blue bars) compared to uninfected control cells for 0, 12, 20 and 30 hours post infection. Asterisks indicate a p-value of less than or equal to
0.05.
doi:10.1371/journal.pntd.0002107.g004

Table 2. Cross-platform analysis of DENV host factors.

Screen Reference Cell Line Used Identified Isoform Isoform Splicing Splicing

DENV (Drosophila) Sessions et al 2009 S2, HuH7 56 14 (25%) 24 (42.9%) 7 (12.5%) 7 (12.5%)

DENV (Human) Jamison et al Unpublished HuH7 943 191 (20.3%) 360 (38.2%) 90 (9.5%) 89 (9.4%)

HCV-Replicon Tai et al 2009 HuH7/Rep-Feo 97 27 (27.8%) 43 (44.3%) 12 (12.4%) 12 (12.4%)

HCV-Virus Li et al 2009 HuH7.5.1 263 68 (25.9%) 115 (43.7%) 30 (11.4%) 29 (11%)

WNV Krishnan et al 2008 HeLa 306 54 (17.6%) 105 (34.3%) 29 (9.5%) 34 (11.1%)

WNV Krishnan et al 2008 (Unpublished Hits) HeLa 1259 195 (15.5%) 369 (29.3%) 92 (7.3%) 101 (8%)

YFV Le Sommer et al 2012 HuH7 647 116 (17.9%) 217 (33.5%) 49 (7.6%) 54 (8.3%)

DENV UTR-BP’s Ward et al 2011 HuH7 62 26 (41.9%) 34 (54.8%) 14 (22.6%) 15 (24.2%)

DENV-Y2H Le Breton et al 2011 S. cerevisae, HEK293T 104 45 (43.3%) 63 (60.6%) 16 (15.4%) 17 (16.3%)

The number of host factors identified in each of the RNAi screens listed compared to the differentially regulated isoforms and differentially spliced genes for both the
wild-type DENV1-16007 and vaccine strain DENV1-PDK13. Percentages of overlap are indicated in parenthesis. The unpublished DENV screen by Jamison SF, Garcia-
Blanco, M.A. utilize the same siRNA library, cell line, general methodology and statistical analysis described in Le Sommer et al 2012. The unpublished hits from the WNV
screen are the full, unannotated results from the published Krishnan et al 2008 study.
doi:10.1371/journal.pntd.0002107.t002
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reactogenicity. It may also explain why antibody titer engendered

by vaccination is not as high as those observed following natural

infection unless supplemented with an adjuvant that stimulates this

innate immune response. This observation also suggests a

mechanism of pathogenicity where DENV regulates host tran-

scriptome changes by interacting with a group of RNA binding

proteins to control multiple splicing events.

The development of a live attenuated tetravalent vaccine for

DENV1-4 has bedeviled researchers for the past 60 years. The less

than optimal efficacy of the leading dengue vaccine candidate

makes an improved understanding of the molecular basis of a good

vaccine all the more critical [55]. The differential host tran-

scriptome response to infection with DENV1-16007 and DENV1-

PDK13 provides an insight into the characteristics of an

attenuated virus which, is likely a complex phenotype [45]. A

molecular understanding of the basis of attenuation could lead to a

quantitative approach to balancing reactogenicity and immuno-

genicity, which presently remains a hit-or-miss finding made only

after lengthy clinical trials.

In conclusion, we provide here a detailed view of the host cell

transcriptome response to infection with wild-type DENV-1 and

its attenuated derivative that could be useful for future studies on

the genetic determinants of viral virulence and attenuation.

Supporting Information

Dataset S1 RNASeQC analysis. To assess the quality of our

sequencing reactions and mapping, we used the open-source

software RNASeQC available at: http://www.broadinstitute.org/

cancer/cga/rna-seqc. Information about Total Reads, Mapped

Reads, Mate Pairs, Transcript-associated Reads and Strand

Specificity are output. Details about each information type are

listed below the corresponding table. Additionally, a Spearman

Correlation Matrix and Pearson Correlation Matrix were

produced for the samples. Tables listing the Coverage Metrics

are produced for the Bottom 1000 Expressed Transcripts, the

Middle 1000 Expressed Transcripts and the Top 1000 Expressed

Transcripts. Graphs depicting the Mean Coverage over the

Percentage of Transcript Length (59 to 39) and graphs depicting

Mean Coverage from the 39 End for Low Expressed Transcripts,

Medium Expressed Transcripts and High Expressed Transcripts

are also provided.

(PDF)

Table S1 Ingenuity pathway analysis of the 33 skipped
exon events found to be differentially regulated by
qPCR. 2log(p-value) reflects the statistical significance of the

indicated observation while the ratio refers to the number of genes

identified in the indicated pathway divided by the total number of

genes belonging to that pathway.

(XLS)

Table S2 Motif analysis of the RNA surrounding
skipped exons. The 500 base areas surrounding the skipped

exon described in Figure 4, as well as the exons themselves were

interrogated for the presence of RNA regulatory motifs and

elements. The predicted motif binding proteins were translated

into HUGO nomenclature and checked for differential regulation

following infection with DENV1-16007, DENV1-PDK13 or both.

(XLS)

Table S3 Cross-platform analysis of the apoptosis
pathway. Members of the apoptosis pathway were interrogated

for their appearance in an RNAi screen for Flaviviridae host factors

[10,11,48,49,51] (Jamison and Garcia-Blanco, unpublished data),

direct interaction with DENV gene products [47,50] and

differential regulation in a microarray study [12–29]. Differential

regulation following infection with DENV1-16007 and/or

DENV1-PDK13 was also interrogated for each member of these

pathways with the Cuffdiff values from the current experiment

recorded in each of the corresponding columns.

(XLS)

Table S4 Cross-platform analysis of the autophagy
pathway. Members of the autophagy pathway were interrogated

for their appearance in an RNAi screen for Flaviviridae host factors

[10,11,48,49,51] (Jamison and Garcia-Blanco, unpublished data),

direct interaction with DENV gene products [47,50] and

differential regulation in a microarray study [12–29]. Differential

regulation following infection with DENV1-16007 and/or

DENV1-PDK13 was also interrogated for each member of these

pathways with the Cuffdiff values from the current experiment

recorded in each of the corresponding columns.

(XLS)

Table S5 Cross-platform analysis of the clathrin-medi-
ated endocytosis pathway. Members of the clathrin-mediated

endocytosis pathway were interrogated for their appearance in an

RNAi screen for Flaviviridae host factors [10,11,48,49,51] (Jamison

and Garcia-Blanco, unpublished data), direct interaction with

DENV gene products [47,50] and differential regulation in a

microarray study [12–29]. Differential regulation following

infection with DENV1-16007 and/or DENV1-PDK13 was also

interrogated for each member of these pathways with the Cuffdiff

values from the current experiment recorded in each of the

corresponding columns.

(XLS)

Table S6 Cross-platform analysis of the interferon
signaling pathway. Members of the interferon signaling

pathway were interrogated for their appearance in an RNAi

screen for Flaviviridae host factors [10,11,48,49,51] (Jamison and

Garcia-Blanco, unpublished data), direct interaction with DENV

gene products [47,50] and differential regulation in a microarray

study [12–29]. Differential regulation following infection with

DENV1-16007 and/or DENV1-PDK13 was also interrogated for

each member of these pathways with the Cuffdiff values from the

current experiment recorded in each of the corresponding

columns.

(XLS)

Table S7 Cross-platform analysis of the lipid metabo-
lism pathway. Members of the lipid metabolism pathway were

Figure 5. Cross-platform analysis of human-Flaviviridae interactions. Members of eleven canonical pathways that have been previously
implicated to be important for DENV propagation were interrogated for their appearance in an RNAi screen for Flaviviridae host factors, direct
interaction with DENV gene products, differential regulation in a microarray study, differential isoform regulation following infection with DENV1-
16007 and/or differential isoform regulation following infection with DENV1-PDK13. Host factors identified in published and/or unpublished
Flaviviridae RNAi screens [10,11,48,49,51] (Jamison and Garcia-Blanco, unpublished data) were combined and are indicated by a black bar. Host
proteins found to interact DENV gene products [47,50] were combined and are indicated by a grey bar. Host genes found to be differentially
regulated in microarray studies [12–29] are indicated by the striped bar. A red bar indicates host isoforms found to be differentially regulated during
infection with DENV1-16007. A blue bar indicates host isoforms found to be differentially regulated during infection with DENV1-PDK13.
doi:10.1371/journal.pntd.0002107.g005

Transcriptome Profile during Dengue Infection

PLOS Neglected Tropical Diseases | www.plosntds.org 10 March 2013 | Volume 7 | Issue 3 | e2107



interrogated for their appearance in an RNAi screen for Flaviviridae

host factors [10,11,48,49,51] (Jamison and Garcia-Blanco, unpub-

lished data), direct interaction with DENV gene products [47,50]

and differential regulation in a microarray study [12–29].

Differential regulation following infection with DENV1-16007

and/or DENV1-PDK13 was also interrogated for each member of

these pathways with the Cuffdiff values from the current

experiment recorded in each of the corresponding columns.

(XLS)

Table S8 Cross-platform analysis of the oxidative
phosphorylation pathway. Members of the oxidative phos-

phorylation pathway were interrogated for their appearance in an

RNAi screen for Flaviviridae host factors [10,11,48,49,51] (Jamison

and Garcia-Blanco, unpublished data), direct interaction with

DENV gene products [47,50] and differential regulation in a

microarray study [12–29]. Differential regulation following

infection with DENV1-16007 and/or DENV1-PDK13 was also

interrogated for each member of these pathways with the Cuffdiff

values from the current experiment recorded in each of the

corresponding columns.

(XLS)

Table S9 Cross-platform analysis of the regulation of
stress granules and p-bodies pathway. Members of the

regulation of stress granules and p-bodies pathway were

interrogated for their appearance in an RNAi screen for Flaviviridae

host factors [10,11,48,49,51] (Jamison and Garcia-Blanco, unpub-

lished data), direct interaction with DENV gene products [47,50]

and differential regulation in a microarray study [12–29].

Differential regulation following infection with DENV1-16007

and/or DENV1-PDK13 was also interrogated for each member of

these pathways with the Cuffdiff values from the current

experiment recorded in each of the corresponding columns.

(XLS)

Table S10 Cross-platform analysis of the splicing
related RNA post-transcriptional modification pathway.
Members of the splicing related RNA post-transcriptional

modification pathway were interrogated for their appearance in

an RNAi screen for Flaviviridae host factors [10,11,48,49,51]

(Jamison and Garcia-Blanco, unpublished data), direct interaction

with DENV gene products [47,50] and differential regulation in a

microarray study [12–29]. Differential regulation following

infection with DENV1-16007 and/or DENV1-PDK13 was also

interrogated for each member of these pathways with the Cuffdiff

values from the current experiment recorded in each of the

corresponding columns.

(XLS)

Table S11 Cross-platform analysis of the ubiquitination
pathway. Members of the ubiquitination pathway were interro-

gated for their appearance in an RNAi screen for Flaviviridae host

factors [10,11,48,49,51] (Jamison and Garcia-Blanco, unpublished

data), direct interaction with DENV gene products [47,50] and

differential regulation in a microarray study [12–29]. Differential

regulation following infection with DENV1-16007 and/or

DENV1-PDK13 was also interrogated for each member of these

pathways with the Cuffdiff values from the current experiment

recorded in each of the corresponding columns.

(XLS)

Table S12 Cross-platform analysis of the endoplasmic
reticulum stress pathway. Members of the endoplasmic

reticulum stress pathway were interrogated for their appearance in

an RNAi screen for Flaviviridae host factors [10,11,48,49,51]

(Jamison and Garcia-Blanco, unpublished data), direct interaction

with DENV gene products [47,50] and differential regulation in a

microarray study [12–29]. Differential regulation following

infection with DENV1-16007 and/or DENV1-PDK13 was also

interrogated for each member of these pathways with the Cuffdiff

values from the current experiment recorded in each of the

corresponding columns.

(XLS)

Table S13 Cross-platform analysis of the virus recog-
nition and interferon induction pathway. Members of the

virus recognition and interferon induction pathway were interro-

gated for their appearance in an RNAi screen for Flaviviridae host

factors [10,11,48,49,51] (Jamison and Garcia-Blanco, unpublished

data), direct interaction with DENV gene products [47,50] and

differential regulation in a microarray study [12–29]. Differential

regulation following infection with DENV1-16007 and/or

DENV1-PDK13 was also interrogated for each member of these

pathways with the Cuffdiff values from the current experiment

recorded in each of the corresponding columns.

(XLS)

Table S14 Primers. The primer sequences used to validate the

SE exon events are detailed here.

(XLS)
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