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Abstract

Background: Global hypomethylation of repetitive DNA sequences is believed to occur early in tumorigenesis.
There is a great interest in identifying factors that contribute to global DNA hypomethylation and associated cancer
risk. We tested the hypothesis that plasma S-adenosylmethionine (SAM) level alone or in combination with genetic
variation in DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) was associated with global DNA methylation
extent at long interspersed nucleotide element-1 (LINE-1) sequences.

Methods: Plasma SAM level and LINE-1 DNA methylation index were measured using stored blood samples
collected from 440 healthy Singaporean Chinese adults during 1994-1999. Genetic polymorphisms of 13 loci in
DNMT1, DNMT3A and DNMT3B were determined.

Results: LINE-1 methylation index was significantly higher in men than in women (p = 0.001). LINE-1 methylation
index was positively associated with plasma SAM levels (p ≤ 0.01), with a plateau at approximately 78% of LINE-1
methylation index (55 nmol/L plasma SAM) in men and 77% methylation index (50 nmol/L plasma SAM) in women.
In men only, the T allele of DNMT1 rs21124724 was associated with a statistically significantly higher LINE-1
methylation index (ptrend = 0.001). The DNMT1 rs2114724 genotype modified the association between plasma SAM
and LINE-1 methylation index at low levels of plasma SAM in men.

Conclusions: Circulating SAM level was associated with LINE-1 methylation status among healthy Chinese adults.
The DNMT1 genetic polymorphism may exert a modifying effect on the association between SAM and LINE-1
methylation status in men, especially when plasma SAM level is low. Our findings support a link between plasma
SAM and global DNA methylation status at LINE-1 sequences.
Background
Inter-individual variation in DNA methylation extent has
been associated with increased risk for many chronic di-
seases including cancer [1-4]. Global DNA hypomethy-
lation, the genome-wide loss of methylcytosine, has been
observed in malignant and benign tumors and normal tis-
sues surrounding tumors, indicating that global DNA
hypomethylation may be one of the early molecular events
in carcinogenesis [5-7]. This reduced global DNA
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methylation impacts repetitive DNA sequences rich in
CpG dinucleotides such as long interspersed nucleotide
element-1 (LINE-1). Methylation extent at LINE-1 se-
quences, as a surrogate marker of global DNA methylation
status, varies by gender, age and environmental and life-
style factors [3,8-14].
Methylation of DNA requires the methyl donor S-

adenosylmethionine (SAM), a key metabolite in one-
carbon metabolism (OCM). DNA methyltransferase
(DNMT) enzymes transfer a methyl moiety from SAM to
the 5th carbon of the cytosine pyrimidine ring at target
CpG dinucleotides. A number of epidemiologic studies
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have evaluated the association between OCM nutrients,
such as folate, and the risk of cancer [15-17]. The molecular
mechanism for the OCM-cancer association is not com-
pletely understood. One hypothesis is that an altered ba-
lance in OCM metabolites results in an insufficient supply
of methyl moieties for DNMT-catalyzed reactions, resulting
in global hypomethylation at DNA sequences [18,19].
In addition to nutrient-related inter-individual vari-

ation in the supply of methyl moieties, genetic variation
that impacts the activity level of the DNMT enzyme
may influence global DNA methylation. DNMT1 is the
primary enzyme for maintenance of DNA methylation,
whereas DNMT3A and DNMT3B function primarily
(but not exclusively) as de novo methyltransferases
which are responsible for the establishment of DNA
methylation patterns in early embryonic development
[20-25]. Genetic variation in these DNMTs might influ-
ence DNA methylation levels and modify the association
between SAM status and global DNA methylation.
To advance our understanding of how OCM contributes

to cancer susceptibility, there is a need for the establish-
ment of a direct link of plasma SAM and other OCM me-
tabolites to DNA methylation status. In this study, we
tested the hypothesis that plasma SAM level, alone or in
combination with DNMT1, DNMT3A and DNMT3B
genetic variation, was associated with methylation levels
at LINE-1 sequences in a healthy human population.

Methods
Study subjects
The Singapore Chinese Health Study (SCHS) is a population-
based prospective cohort investigation of diet and the risk
for cancer and other chronic diseases. The detailed study
design of the SCHS has been described previously [26]. In
brief, Chinese men and women aged 45 – 74 years who
were permanent residents in Singapore were invited to par-
ticipate in the study from April 1993 through December
1998. A total of 63,257 participants (85% of the eligible in-
dividuals) were enrolled. Baseline information including
demographic and lifestyle factors, medical history, family
history of cancer and usual dietary intake was collected
through in-person interviews at recruitment.
A 3% random sample of the cohort was contacted to do-

nate blood or urine samples starting in 1994. By the end of
cohort participant enrollment in 1999, 1,194 subjects do-
nated blood (n = 906) or buccal cells (n = 288). Two 10-mL
tubes of blood were drawn from each cohort participant
and immediately placed on ice during the transportation to
the National University of Singapore. At the laboratory,
one tube blood was processed and separated into plasma,
buffy coat, and red blood cells, and the other for serum.
All blood components were stored in a liquid nitrogen
tank at -180°C until 2001, when they were moved to -80°C
freezers for long term storage. The present study was based
on the subjects who were included in a nested study on
plasma homocysteine initiated in 1996-1997 [26]. By that
time, 509 subjects had donated blood samples. These sub-
jects had somewhat higher education, lower prevalence of
smoking, and higher prevalence of alcohol intake than the
overall SCHS participants, but otherwise were comparable
to the whole cohort participants in terms of age, height,
body weight, and BMI. This study was approved by the In-
stitutional Review Boards at the University of Minnesota
and the National University of Singapore. Prior to study
participation, written informed consent was obtained from
participants.

SNP selection and genotype determinations
We selected common single nucleotide polymorphisms
(SNPs) of DNMT1, DNMT3A and DNMT3B with a mi-
nor allele frequency (MAF) ≥20%, given the relatively
small sample size of the present study. Six SNPs were
chosen based on their reported association with cancer
[27,28]: rs2114724, rs2241531, rs1863771, rs1699593, and
rs75616428 for DNMT1 and rs1550117 for DNMT3A.
Additional 12 SNPs were selected for haplotype tagging
using Han Chinese (CHB) data in the International
HapMap Project database (Tagger Pairwise method,
HapMap Data Rel 27 Phase II + III, Feb09, on NCBI B36
assembly, dbSNP b126): rs2228611, rs2288350 and
rs7253062 for DNMT1; rs6722613, rs7575625, rs7581217,
rs7587636, rs12987326, rs12999687, rs13036246 and
rs34048824 for DNMT3A; and rs2424908 and rs6141813
for DNMT3B. One SNP of DNMT1 (rs1863771) failed in
the Sequenom assay design, and 2 SNPs of DNMT1
(rs1699593 and rs75616428) did not display genetic
variation. Two SNPs of DNMT3A (rs12987326 and
rs12999687) were excluded from the analysis because they
were not in Hardy-Weinberg equilibrium (p <0.05). As a
result, we report a total of 13 SNPs (4 SNPs of DNMT1, 7
SNPs of DNMT3A, and 2 SNPs of DNMT3B).
DNA was extracted from stored buffy coats using a

Qiagen QIAmp 96 DNA Blood Kit (Qiagen Inc.), and
genotype determination was performed in multiplex
using the Sequenom MALDI-TOF mass spectrometry
system (Sequenom Inc.) by the University of Minnesota
BioMedical Genomics Center (BMGC). Each 96-well
plate contained positive and negative controls.

Laboratory measurements
We used stable-isotope dilution liquid chromatography-
electrospray ionization (ESI) tandem mass spec
trometry (LC-ESI-MS/MS) to determine SAM and
S-adenosylhomocysteine (SAH) concentrations in
plasma. Calibrators and internal standards (2H3-SAM
and 2H4-SAH) were included in each analytical run for
calibration. One-mM stock solutions of each standard
were diluted in distilled water to perform a 5-point
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calibration curve (Table 1). Sample preparation involved
ultrafiltration utilizing microcentrifugal filter units,
Microcon YM-10, 10 kDa NMWL (Millipore). Samples
were prepared by the addition of 100 μL mobile phase A
containing 10 – 50 μmol/L labeled-isotope internal stan-
dards to 30 μl of standard or plasma. Sample filtrate was
transferred to a microtiter plate for analysis. Chromato-
graphic separation was achieved on an EZ-faast 250 ×
2.0 mm 4 μ AAA-MS analytical column (Phenomenex)
maintained at 36°C at a flow of 250 μL/min with a binary
gradient with a total run time of 12 minutes. Solvents for
HPLC were: (A) 4 mM ammonium acetate, 0.1% formic
acid and 0.1% heptafluorobutyric acid (pH = 2.5); and (B)
100% methanol and 0.1% formic acid. The compounds
were detected by multiple reaction monitoring (MRM)
using positive-ESI. Sample separation and injection was
performed by a Shimadzu Prominence LC System
interfaced with a 4000 Q TRAP® LC-MS/MS (ABSciex).
All data were collected using Analyst software version
1.4.2. The inter-assay precision (CV%) was 6.2 – 9.2% for
SAM and 5.9 – 10.4% for SAH.
LINE-1 DNA methylation was quantified using the

quantitative bisulfite PCR pyrosequencing method devel-
oped by Yang et al [29]. Genomic DNA from peripheral
lymphocytes was sodium bisulfite treated using the EZ-96
DNA Methylation Kit, converting non-methylated cyto-
sine residues into uracil, according to the manufacturer’s
protocol (Zymo Research). Bisulfite converted DNA was
PCR amplified using Hotstar Taq Polymerase (Qiagen
Inc.). For pyrosequencing, the PCR product was purified
using a biotin-labeled primer and Streptavadin Sepharose
beads (GE Healthcare). The bead immobilized PCR pro-
duct was purified, washed, denatured using a NaOH solu-
tion, and washed again using the Pyrosequencing Vacuum
Prep Tool (Pyrosequencing, Inc.). PCR amplifications were
done in triplicate and the extent of methyl cytosine rela-
tive to the total cytosine and thymine (%) at each of 4
CpG sites was measured. The average of methylation
across the four CpG sites was computed for each replicate,
and the average of three replicate measurements of LINE-1
DNA methylation was used as LINE-1 methylation index
(%) for each sample in the analysis.

Statistical analysis
Twenty-nine subjects with missing values of LINE-1
methylation index were excluded. Of the remaining 480
subjects, 16 subjects who had missing values (n = 14) or
Table 1 Mass transitions and method statistics for the determ

Analyte Analyte
MRM (m/z)

Labeled
isotope

Labeled isotope
MRM (m/z)

Retention
(minut

SAM 399→ 250 2H3-SAM 402→ 250 7.1

SAH 385→ 136 2H4-SAH 389→ 138 6.8
extremely high values (n = 2) of plasma SAM level, and
24 subjects whose serum creatinine values were missing
(n = 23) or extremely high (n = 1) were also excluded. As
a result, a total of 440 subjects were included in the ana-
lysis of plasma SAM level and LINE-1 methylation
index. In addition, 8 subjects with missing values for 2
or more genotypes were omitted in the analysis of
DNMT1, DNMT3A, and DNMT3B genotypes and haplo-
types and LINE-1 methylation index.
All analyses were conducted in men and women separ-

ately, given the difference in LINE-1 methylation index be-
tween sexes [30-32]. Spline curves were created to visualize
the association between plasma SAM and LINE-1 methyla-
tion index and to determine acut-off value of low LINE-1
methylation index. Using cut points identified in the spline
curves, LINE-1 methylation index was compared across
plasma SAM categories (<55 nmol/L and ≥55 nmol/L for
men and <50 nmol/L, 50 – 90 nmol/L and ≥90 nmol/L for
women) using multiple linear regression modeling with age
at blood draw and serum creatinine level as covariates. We
adjusted the analysis for serum creatinine level because it
has been associated with the SAM-SAH ratio [33,34], and
was associated with both plasma SAM level and LINE-1
methylation index in our study population. Similarly,
LINE-1 methylation index was compared across genotypes
of each DNMT. Haplotypes with a 5% or more frequency
were constructed. Logistic regression modeling was used to
calculate the odds of being in the low LINE-1 methylation
index group (<78% for men and <77% for women) for each
haplotype relative to the most frequently observed haplo-
type. A series of spline curves for the relationship between
plasma SAM and LINE-1 methylation index by DNMT ge-
notypes were created to evaluate a potential modifying ef-
fect of DNMT genotypes on the association between
plasma SAM level and LINE-1 methylation index.
Haplotype analysis was performed using R version

2.13.2, haplostat package. All other analyses were
conducted using SAS version 9.2 (SAS Institute Inc.). All
reported p values are two-sided, and those that were < 0.05
were considered to be statistically significant. A signifi-
cance level was adjusted as p < 0.0038 (0.05/13 SNPs) for
multiple testing of DNMT SNPs and LINE-1 methylation
index using the Bonferroni correction method.

Results
The average age of the 440 study subjects was 58.1 y
(standard deviation (SD), 7.8 y; range, 46 – 77 y).
ination of plasma SAM and SAH

Inter-assay precision

time
es)

LOQ
(nmol/L)

Calibration
curve

Level 1
(CV%)

Level 2
(CV%)

5 400 – 25 nmol/L 9.2 6.2

5 400 – 25 nmol/L 10.4 5.9
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Approximately 72% of the study subjects had body mass
index (BMI) below 24 while only 4% had BMI of 28 or
above. Men had slightly higher education level than
women; 40% of men had secondary school or some college
education, while 25% of women attained the same level of
education. About 56% of men and 7% of women were past
or current smokers. Approximately 30% of men and 7% of
women consumed alcoholic beverages on a regular basis.
The mean plasma SAM level was higher in men
(69.7 nmol/L; range, 26.6 – 156.0 nmol/L) than women
(63.3 nmol/L; range, 17.2 – 149.0 nmol/L); however, the
geometric mean of plasma SAM level after adjustment for
age at blood draw and serum creatinine level was compar-
able (63.3 nmol/L in men and 63.9 nmol/L in women).
Plasma SAM level was higher with higher BMI and never
smoking status in men, and with older age in women in
our study population [35]. Plasma SAM level was not dif-
ferent by education level, alcohol intake, and menopausal
status (in women). Plasma SAM level was not associa-
ted with methylenetetrahydrofolate reductase (MTHFR)
Table 2 LINE-1 methylation index (%) by demographic and lif

Men

n Mean (95% CI)a

LINE-1 methylation (%) 192 78.1 (77.8 – 78.4)b

Age

<50 25 77.8 (77.0 – 78.7)

50 – 59 79 77.8 (77.3 – 78.3)

60 – 69 71 78.2 (77.7 – 78.7)

≥70 17 79.3 (78.2 – 80.3)

BMI

<20 23 78.3 (77.4 – 79.2)

20 – <24 112 77.8 (77.4 – 78.3)

24 – <28 49 78.4 (77.7 – 79.0)

≥28 8 78.9 (77.4 – 80.4)

Level of education

No formal school 27 77.8 (76.9 – 78.6)

Primary school 89 77.9 (77.5 – 78.4)

Secondary school 53 78.5 (77.9 – 79.1)

Some college or above 23 78.2 (77.2 – 79.1)

Smoking status

Never 84 78.2 (77.7 – 78.7)

Past 49 78.0 (77.4 – 78.7)

Current 59 78.0 (77.4 – 78.6)

Alcohol intake

None 135 78.1 (77.7 – 78.5)

<7 drinks/week 42 78.1 (77.4 – 78.8)

≥7 drinks/week 15 78.0 (76.9 – 79.2)
aAdjusted for age at blood draw.
bp for difference between men and women was 0.001.
C677T genotype or plasma total homocysteine (tHcy) level
[35]. Comorbid conditions that may affect the absorption
of nutrients in OCM (stomach or duodenum ulcer, partial
removal of stomach, and polyps of intestine) were not as-
sociated with plasma SAM level or LINE-1 methylation
index (data not shown).
LINE-1 methylation index was normally distributed

ranging from 68.7% to 83.4% with an average of 77.7% in
all subjects. Table 2 shows the mean levels of LINE-1
methylation index across different groups of age, BMI,
level of education, smoking and alcohol consumption for
men and women separately. The mean LINE-1 methyla-
tion index was statistically significantly higher in men
(78.1%) than in women (77.3%) (p = 0.001). LINE-1
methylation index was positively associated with age in
men, but not in women. High BMI was associated with
slightly lower LINE-1 methylation index in women only.
There was no statistically significant difference in LINE-
1 methylation index by level of education, smoking sta-
tus or alcohol consumption, in both sexes.
estyle factors in the Singapore Chinese health study

Women

ptrend n Mean (95% CI)a ptrend

- 248 77.3 (77.1 – 77.6)b -

0.04 41 77.0 (76.3 – 77.8) 0.82

123 77.6 (77.1 – 78.0)

55 77.2 (76.5 – 77.8)

29 77.1 (76.3 – 78.0)

0.31 38 77.3 (76.5 – 78.1) 0.08

143 77.6 (77.2 – 78.0)

56 76.9 (76.3 – 77.5)

11 76.1 (74.7 – 77.6)

0.28 93 77.0 (76.5 – 77.6) 0.19

94 77.5 (77.0 – 78.0)

52 77.6 (76.9 – 78.3)

9 77.6 (76.0 – 79.2)

0.60 234 77.4 (77.1 – 77.7) 0.21

2 78.5 (75.1 – 81.9)

12 76.4 (74.9 – 77.8)

0.98 231 77.4 (77.1 – 77.7) 0.12

13 77.1 (75.7 – 78.4)

4 75.3 (72.9 – 77.7)
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Figure 1 shows spline curves of LINE-1 methylation
index by plasma SAM level. LINE-1 methylation index
was positively associated with plasma SAM level, with a
plateau at approximately 78% methylation (55 nmol/L
plasma SAM) in men and 77% methylation (50 nmol/L
plasma SAM) in women, with a second rise in methyla-
tion at 90 nmol/L plasma SAM for women.
Men with plasma SAM level at 55 nmol/L or above had

statistically significantly higher LINE-1 methylation index
than men with low plasma SAM level (p = 0.01) (Table 3).
Similarly, in women, there was a statistically significant
positive trend in LINE-1 methylation index across the
three categories of plasma SAM level (ptrend = 0.005).
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Figure 1 LINE-1 methylation and plasma SAM level in men (A) and w
level. ** Solid lines: mean LINE-1 methylation index corresponding to the m
confidence intervals.
The associations between DNMT SNPs and LINE-1
methylation index are presented in Table 4. There was
no statistically significant association between any of the
13 SNPs and LINE-1 methylation index in women. In
men, there was a statistically significant positive associ-
ation between the number of variant allele (T) of the
DNMT1 rs2114724 and LINE-1 methylation index
(ptrend = 0.001). In contrast, the number of variant allele
(T) of the DNMT3A rs758127 was inversely associated
with LINE-1 methylation index (ptrend = 0.008). However,
this association did not reach the significance level after
taking into account for multiple comparisons. LINE-1
methylation index was not associated with any other
80 100 120 140 160

AM level (nmol/L)

80 100 120 140 160

AM level (nmol/L)

omen (B). * Adjusted for age at blood draw and serum creatinine
ean plasma SAM level; dashed lines: upper and lower 95%



Table 3 LINE-1 methylation index (%) by plasma SAM level in the Singapore Chinese health study

Men Women

SAM (nmol/L) n LINE-1 methylationa p SAM (nmol/L) n LINE-1 methylationa ptrend

< 55 38 77.3 (76.6 – 78.0) 0.01 < 50 48 76.6 (75.9 – 77.2) 0.005

≥ 55 154 78.3 (77.9 – 78.6) 50 – < 90 180 77.5 (77.1 – 77.8)b

≥ 90 20 78.3 (77.2 – 79.4)c

aMean (95% CI) adjusted for age at blood draw and serum creatinine level.
bp = 0.02 compared to plasma SAM levels <50 nmol/L.
cp = 0.01 compared to plasma SAM levels <50 nmol/L.
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SNPs examined (Table 4) or haplotypes of individual
DNMTs (data not shown).
Finally, we examined whether the DNMT1 rs2114724

genotype modified the association between plasma SAM
level and LINE-1 methylation index (Figure 2). Below
the threshold of 78% LINE-1 methylation index
(55 nmol/L plasma SAM), plasma SAM level was posi-
tively associated with LINE-1 methylation index in men
carrying the CC genotype of DNMT1 rs2114724, while
there was no association between plasma SAM and
LINE-1 methylation index in men possessing the CT or
TT genotype. Among men carrying variant genotypes,
LINE-1 methylation index was constantly at or above
78% regardless of plasma SAM level. Such an effect
modification by the DNMT1 rs2114724 genotype was
not observed among women. Other SNPs of DNMT1,
DNMT3A and DNMT3B did not modify the SAM-LINE-1
methylation association (data not shown).

Discussion
Inter-individual variation in DNA methylation, specific-
ally global hypomethylation of DNA in circulating lym-
phocytes, has been associated with risk for several
diseases including cancer. Our results showed that
LINE-1 methylation index, as a surrogate marker of glo-
bal DNA methylation status, was positively associated
with plasma SAM level, and this dose-response relation-
ship plateaued at approximately 78% methylation for
men (at 55 nmol/L SAM) and 77% methylation for
women (at 50 nmo/L SAM). These findings support the
hypothesis that circulating SAM level influences global
DNA methylation. In addition, we have described gen-
etic variation in DNMT1 that influences LINE-1 methy-
lation and possibly modifies the association between
plasma SAM and LINE-1 methylation in men.
One possible explanation for the observed plateau in

LINE-1 methylation with increasing SAM is an active in-
hibition of DNA methylation by SAH. After providing a
methyl moiety for methylation, SAM is converted to
SAH, an established competitive inhibitor of DNMTs
[36-38]. We have previously demonstrated a significant
positive association between plasma levels of SAM and
SAH in this study population [35]. However, neither
plasma SAH level nor the SAM:SAH ratio was
associated with LINE-1 methylation index (data not
shown). Future studies are needed to firmly establish the
presence of this plateau and the biologic drivers of its
formation.
Methyltransferase enzymes are necessary to establish

and maintain the epigenome, and in mice, DNMT1 mu-
tation results in global DNA hypomethylation [39,40].
DNMT1 enzyme is expressed in proliferating cells and
somatic tissues with a major function as a maintenance
methyltransferase, copying the existing parental-strand
DNA methylation pattern onto the daughter strand after
DNA replication [20,21]. In contrast, DNMT3A and
DNMT3B are enzymes that are highly expressed in em-
bryonic cells, early embryos, and germ cells, where de
novo DNA methylation occurs, but are downregulated in
somatic tissues [41].
One striking observation across studies is consistently

lower LINE-1 methylation among women [11,30,31]. The
mechanism of this sex difference is not established. How-
ever, LINE-1 elements are believed to be involved in X
chromosome inactivation [42] and the X chromosome is
enriched nearly 2-fold for LINE-1 elements compared
with autosomes [43]. A recent study reported that the
major group of LINE-1 promoter regions were signifi-
cantly hypomethylated on inactive X chromosomes com-
pared with active X chromosomes [30]. They also
reported that while total LINE-1 methylation extent was
lower in women compared with men, methylation at spe-
cific LINE-1 elements on autosomes was not differentially
methylated by gender. This differential biologic pressure
for LINE-1 methylation on the sex chromosome may
underlie the gender difference observed in our and other
epidemiologic studies.
The present study has several limitations. One concern

is the possible degradation of SAM in stored plasma
samples during prolonged storage. The median plasma
SAM level in the present study (63.3 nmol/L; interquar-
tile range, 54.5 – 76.0 nmol/L) was somewhat lower
compared with the reference values in populations in
Europe (70 – 128 nmol/L) [44]. However, the wide range
of plasma SAM value (50 – 150 nmol/L) in various stud-
ies might be due to different study populations and la-
boratory methods [36,45-50]. In our study population,
we measured plasma tHcy level in the same subjects at



Table 4 LINE-1 methylation index (%) by genotypes of DNMT1, DNMT3A and DNMT3B in the Singapore Chinese health
study

Men Women

na Mean (95% CI)b p ptrend na Mean (95% CI)b p ptrend

DNMT1

rs2114724

CC 90 77.7 (77.2 – 78.1) 0.001 126 77.2 (76.8 – 77.6) 0.38

CT 71 78.3 (77.8 – 78.8) 0.06 98 77.6 (77.1 – 78.1) 0.25

TT 21 79.3 (78.4 – 80.3) 0.002 20 77.4 (76.3 – 78.5) 0.75

rs2241531

GG 44 77.9 (77.2 – 78.5) 0.11 61 77.1 (76.5 – 77.7) 0.71

CG 94 78.1 (77.6 – 78.5) 0.60 121 77.5 (77.1 – 78.0) 0.29

CC 46 78.6 (78.0 – 79.2) 0.11 63 77.3 (76.7 – 77.9) 0.70

rs2288350

CC 55 78.5 (77.9 – 79.1) 0.05 74 77.4 (76.8 – 78.0) 0.57

CT 93 78.1 (77.6 – 78.6) 0.31 115 77.5 (77.0 – 77.9) 0.85

TT 38 77.6 (76.9 – 78.3) 0.05 55 77.1 (76.5 – 77.8) 0.53

rs7253062

GG 109 78.3 (77.9 – 78.7) 0.12 149 77.3 (76.9 – 77.7) 0.92

GA 72 77.8 (77.3 – 78.3) 0.13 83 77.5 (76.9 – 78.0) 0.71

AA 4 77.6 (75.4 – 79.8) 0.54 11 77.1 (75.7 – 78.6) 0.78

DNMT3A

rs1550117

CC 113 78.3 (77.8 – 78.7) 0.10 146 77.5 (77.1 – 77.9) 0.30

CT 58 78.0 (77.4 – 78.5) 0.39 92 77.1 (76.6 – 77.6) 0.24

TT 15 77.3 (76.2 – 78.4) 0.12 8 77.3 (75.6 – 79.0) 0.83

rs6722613

GG 93 78.0 (77.6 – 78.5) 0.87 101 77.4 (76.9 – 77.9) 0.69

GA 69 78.2 (77.7 – 78.8) 0.58 112 77.4 (76.9 – 77.8) 0.93

AA 24 78.0 (77.1 – 78.9) 0.93 33 77.2 (76.3 – 78.0) 0.65

rs7575625

AA 115 78.2 (77.8 – 78.6) 0.29 148 77.3 (76.9 – 77.7) 0.79

AG 59 78.2 (77.7 – 78.8) 0.86 83 77.3 (76.8 – 77.8) 0.98

GG 11 77.0 (75.7 – 78.2) 0.08 15 77.6 (76.4 – 78.9) 0.66

rs7581217

CC 59 78.5 (78.0 – 79.1) 0.008 83 77.5 (77.0 – 78.0) 0.92

CT 94 78.1 (77.7 – 78.6) 0.27 114 77.1 (76.7 – 77.6) 0.26

TT 33 77.2 (76.4 – 77.8) 0.006 49 77.6 (76.9 – 78.3) 0.90

rs7587636

GG 95 78.1 (77.6 – 78.5) 0.89 116 77.2 (76.8 – 77.7) 0.95

GA 68 78.2 (77.6 – 78.7) 0.86 103 77.6 (77.1 – 78.0) 0.32

AA 22 78.1 (77.2 – 79.1) 0.94 27 77.0 (76.0 – 77.9) 0.57

rs13036246

CC 102 78.0 (77.5 – 78.4) 0.26 129 77.5 (77.1 – 77.9) 0.14

CT 68 78.2 (77.7 – 78.7) 0.47 106 77.3 (76.8 – 77.7) 0.48

TT 15 78.6 (77.5 – 79.7) 0.31 10 76.1 (74.6 – 77.6) 0.08

rs34048824

TT 116 78.1 (77.7 – 78.5) 0.61 150 77.3 (76.9 – 77.7) 0.70

TC 58 78.3 (77.8 – 78.9) 0.59 77 77.3 (76.8 – 77.9) 0.99

CC 10 77.1 (75.8 – 78.5) 0.18 18 77.7 (76.5 – 78.8) 0.57

Inoue-Choi et al. BMC Cancer 2013, 13:389 Page 7 of 11
http://www.biomedcentral.com/1471-2407/13/389



A

B

60

65

70

75

80

85

90

0 20 40 60 80 100 120 140 160

LI
N

E
-1

 m
et

hy
la

tio
n 

in
de

x 
(%

)

Plasma SAM level (nmo/L)

60

65

70

75

80

85

90

0 20 40 60 80 100 120 140 160

LI
N

E
-1

 m
et

hy
la

tio
n 

in
de

x 
(%

)

Plasma SAM level (nmo/L)

Figure 2 LINE-1 methylation and plasma SAM by DNMT1 rs2114724 genotype in men (A) and women (B). * Adjusted for age at blood
draw and serum creatinine level. ** Black line: the wild type genotype (CC) (n = 90 for men and n = 126 for women); red line: variant genotypes
(CT and TT) (n = 93 for men and n = 118 for women); dashed lines: upper and lower 95% confidence intervals.

Table 4 LINE-1 methylation index (%) by genotypes of DNMT1, DNMT3A and DNMT3B in the Singapore Chinese health
study (Continued)

DNMT3B

rs2424908

CC 61 77.9 (77.3 – 78.4) 0.83 88 77.4 (76.9 – 77.9) 0.88

CT 79 78.4 (77.9 – 78.9) 0.18 121 77.3 (76.9 – 77.8) 0.88

TT 44 77.9 (77.2 – 78.6) 0.96 37 77.3 (76.5 – 78.1) 0.91

rs6141813

AA 82 78.0 (77.5 – 78.5) 0.76 103 77.2 (76.8 – 77.7) 0.74

AG 73 78.3 (77.8 – 78.8) 0.35 115 77.4 (77.0 – 77.9) 0.56

GG 30 78.0 (77.2 – 78.8) 0.99 27 77.3 (76.3 – 78.2) 0.94

aSubjects with missing data on a genotype of each SNP were excluded from an analysis.
bAdjusted for age at blood draw.
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two different times with more than 10 years apart (in
1996 – 1997 and in 2010). High correlation between the
two tHcy measurements (r, 0.70) indicates that the deg-
radation of Hcy, and possibly SAM, might have been min-
imal. Furthermore, degradation of plasma SAM would not
result in the observed associations, given that it occurred
in a non-differential manner. LINE-1 is the most common
family of retrotransposons in the human genome and ac-
counts for at least 17% of human DNA, but methylation
extent at LINE-1 is not a direct measurement of global
DNA methylation [51,52]. LINE-1 is dispersed across the
genome; however, because there is a mix of both active
and inactive LINE-1 elements present in the genome, it
cannot be viewed as either a passive dosimeter of methyla-
tion processes or a reflection of methylation processes at
active chromatin. Therefore, we are limited in our inter-
pretation of LINE-1 methylation index in examining expo-
sures and disease risk. Whether the methylation status of
other surrogate markers of global DNA methylation across
the genome are associated with plasma SAM levels re-
mains to be investigated in future studies. Another limita-
tion of the present study is potentially limited variability in
LINE-1 methylation because all of the study subjects were
cancer-free, healthy individuals. A relatively small sample
size is also a limitation. We did not have enough power to
test an interaction between plasma SAM, DNMT genetic
polymorphisms and the LINE-1 methylation index. Lastly,
our study did not investigate other factors that may affect
the SAM-SAH ratio, such as glucose-6-phosphate de-
hydrogenase deficiency, folate transport deficiency, and
other genetic factors (e.g., glycine N-methyltransferase:
GNMT), as cofounders. Nonetheless, our data suggest that
genetic variation in DNMT may influence LINE-1 methy-
lation index in peripheral blood in a Chinese population
in South Asia.

Conclusion
Our findings provide supporting data for the association
between circulating SAM level and DNA methylation at
LINE-1 sequences in peripheral blood in healthy Chinese
men. While preliminary, our data also suggest that this
link between plasma SAM level and global DNA methy-
lation at LINE-1 sequences in men may be modified by
DNMT1 genetic variation.
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