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Abstract

Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease.
However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are
highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including
iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants
in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels
of 1.66 mg/L and 1.25 mg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has
higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia
nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher
concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread
occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated
disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts
controls.
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Introduction

Drinking water chlorination plays an important role in

preventing pathogen contamination against water-borne disease.

However, chemical disinfection leads to the formation of

halogenated disinfection by products (DBPs) due to reaction

with natural organic matter (NOM), and result in potential

health concerns [1]. Epidemiologic investigations have demon-

strated the associations between exposure to DBPs in drinking

water with cancers (bladder [2], colon [3] and rectum [4]),

adverse birth outcomes [5–11] and birth defects [12,13].

Toxicological assessments have also revealed that several DBPs

(e.g.,3-chloro-4-(dichloromethyl)-5-hydroxyl-2(5H) -furanone

(MX) and formaldehyde) are potential carcinogens [1]. Up to

now, about 600–700 DBPs have been identified in drinking

water [1,14], and only a few of DBPs have been evaluated for

adverse effects. Hence, only handful of regulations and guide-

lines have been established for DBPs; they include four

trihalomethanes (THMs) (chloroform, bromoform, bromodi-

chloromethane, and chlorodibromomethane) and five haloacetic

acids (HAAs) (monochloroacetic acid, dichloroacetic acid,

trichloroacetic acid, monobromoacetic acid and dibromoacetic

acid) [15–17]. More importantly, some DBPs, especially newly

emerging DBPs do not have maximum acceptable values and

are not required for routine surveillance.

Iodinated DBPs (I-DBPs) is a class of emerging DBPs identified

in drinking water [1]. The main I-DBPs include iodo-acids and

iodo-trihalomethanes. Although they have been found in finished

drinking water at ng/L to low-mg/L levels [18], recent studies

have demonstrated that iodinated DBPs were more cytotoxic and

genotoxic than their brominated and chlorinated analogues [18–

24]. Among I-DBPs, iodoacetic acid (IAA) and iodoform (IF) have

attracted much attention because IAA caused higher cytotoxicity

and genotoxicity in mammalian cells than MX [25], one of the

most mutagenic compounds in drinking water. IF, besides strong

odor, is the most cytotoxic among iodo-trihalomethanes [20], and

is known to be more toxic than the regulated THM4. Both IAA

and IF could be found in drinking water with chlorine,

chloramines, and ozone as disinfectant over the world. Earlier

study has demonstrated that the water source of coastal regions

often suffer from salt water intrusion and led to increase the

formation of I-DBPs [18].

Shanghai is a coastal city in east China. The Huangpu and

Yangtze Rivers are the two main water sources for Shanghai,

which provide 76.3% and 23.7% of raw water supply, respectively.

Because water sources are located in estuarine region, each year,
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from November to April, salt water intrusion accompany with

tidal effects and bring along halogenate compounds to various

water intake sources. In addition, high ammonia concentration

and serious organic matter pollution caused high chemical oxygen

demand, and this has become the major environmental and water

quality challenge for both the Huangpu River [26] and Yangtze

Rivers [27–29]. To reduce formation of DBPs [30], most water

plants in Shanghai used free chlorine followed by combined

chlorine with chloramines to disinfect drinking water. Therefore,

salt water intrusion and organic pollution become critical factors

affecting the formation of the DBPs, especially I-DBPs. Earlier

studies have been focused on regulated DBPs, few investigations

concerned the occurrence of more toxic I-DBPs in drinking water

of Shanghai, although recent evidence indicated that I-DBPs are

easily formed when waters are high in iodide and treated with

chloramines [18,19].

Thus, the objective of the present study was to carry out

a comprehensive study on the formation of IAA, IF, THM4 and

HAA9 in drinking water of 13 water plants of Shanghai that are

fed by the Huangpu or Yangtze Rivers. The total daily water

supply of 13 water plants is close to 1.6 billion gallons, which

covered 80% municipal water consumption of Shanghai and

provides water for 14 million residents. Subsequently, the impact

of I-DBPs formation was also investigated. Our results demon-

strated that DBPs varied markedly depending on their water

sources, seasons and treatment processes. The findings suggest that

the Huangpu River has higher IAA and IF than the Yangtze

River. Pre-chloramines increased IAA and IF formation, com-

pared with chlorine and ozone. To our best knowledge, this is the

first systematic study undertaken within China. The data obtained

will be valuable to regulators and water suppliers for iodinated

DBP detection and control.

Materials and Methods

Ethics Statement
This study belongs to a non-profit project supported by Chinese

Ministry of Science and Technology. All necessary permits were

obtained for the described field studies and approved by Shanghai

Municipal Water Affairs Bureau (2008ZX07421-004). The loca-

tion is not privately-owned or protected in any way and the field

studies did not involve endangered or protected species.

Drinking Water Samples
In 2010, water samples were collected in January (winter) and

July (summer) from 13 water plants in Shanghai. Raw water was

collected from the same sampling point for five water plants that

tap on Yangtze River and likewise from the eight water plants with

water supply from upstream of Huangpu River (Fig. S1). The

treatment process consists of preoxidation, coagulation, sedimen-

tation, sand filtration, and disinfection (Table 1, Fig. S2). Samples

were taken at the following locations: raw water before the

preoxidation; the effluent of the sedimentation basin; the effluent

of the sand filtration basin; and the finished water after

disinfection. Samples were collected according to US EPA (United

States Environmental Protection Agency) Method 552.3/551.1

[31,32].

DBP Analysis
IAA and HAA9 were quantified using a method similar to the

US EPA Method 552.3 [31]. The HAAs were converted to their

methyl esters and measured using gas chromatography/electron

capture detector (GC/ECD) (Shimadzu). IF and THM4 were

analyzed based on US EPA Method 551.1 [32]. The analytes were

measured using GC/ECD. Quality assurance showed good

reproducibility of the method, and limits of detection were

typically in the low mg/L range (Table S1).

Chloride, Bromide and Iodide Analysis
Chloride and bromide were quantified by ion chromatography

using the US EPA recommended Method 300.1 [33], analyzed

using ion chromatography (Dionex, USA). Iodide was determined

using a modified Maros’s method [34]. After 0.2 mL of 0.5 g/L

sodium thiosulfate, 0.1 mL of 2.5 M sulfuric acid, 0.5 mL 2-

Butanone, and 1 mL of 0.5 g/L potassium dichromate were

added to the water sample (10 mL), sample was shaken for 1 min,

and sat for 10 min. The mixture was then extracted with 10 mL

cyclohexane for 2 min. After discarding the lower phase of the

mixture, the organic layer was cleaned with 5 mL water twice and

dried with anhydrous Na2SO4. Extracts were analyzed with the

same instrument and column as for DBP analysis. Under the

splitless injection mode, 1 ml of sample was injected into the

column inlet. Helium was used as the carrier gas at a flow rate of

2 ml/min (constant flow). The initial temperature was 65uC for

3 mins and increased to 80uC at a rate of 5uC/min for 3 min,

finally post ran at 240uC for 5 min. The injector temperature was

230uC and the detector temperature was 260uC. Quality

assurance showed good reproducibility of the method, and limits

of detection were typically in the low mg/L range (Table S1).

pH, Ammonia Nitrogen (NH3-N), Dissolved Organic
Carbon (DOC), UV Absorbance Analysis
Water samples from the 13 water plants were also collected for

pH, NH3-N, DOC, and UV absorbance analysis. NH3-N was

quantified using a Nessler’s reagent spectrophotometry method

[35]. The NOM content was characterized using two parameters,

DOC and UV254. DOC was measured using TOC analyzer

(Sievers). UV254 (for detecting humic substance) was determined

using a UV/VIS Double beam spectrophotometer (Unico), and

specific UV absorbance (SUVA) was calculated as (UV254/DOC

6100.

Statistical Analysis
Data were analyzed using SPSS software (version 13.0, SPSS,

Chicago, IL). The relationships between the variables were

examined by simple Spearman correlation analysis. The non-

parametric test was conducted to determine the variance of DBPs

between oxidants. The statistical tests were two-tailed with

significance levels of 0.05.

Results and Discussion

Overview of Raw Water Characterization
The characteristics of raw water are presented in Table 2 and

Fig. S3. The pH values ranged from 7.0 to 7.7 in raw water among

the 13 drinking water plants. The median pH value (7.5) of the

Yangtze River was similar to the Huangpu River (7.2). In winter,

the medians NH3-N concentration of the Yangtze and Huangpu

Rivers were higher, compared with summer due to lower surface

runoff and slower nitrification processes. Owing to organic

contamination in the Huangpu River, a higher level of NH3-N

was detected compared with the Yangtze River for the winter

season (i.e., 0.98 versus 0.35 mg/L) and summer (i.e., 0.10 versus

0.06 mg/L). DOC and UV254 are indicators of dissolved organic

compounds and humic substances, respectively. The ranges of

DOC in the Yangtze and Huangpu Rivers were 2.4–4.2 mg/L

and 5.8–13.3 mg/L, respectively. Similarly, higher UV254 levels

were from the Huangpu River. This indicated that the water

Disinfection Byproducts in Water Plant of Shanghai
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quality of Huangpu River was more affected by organic

compounds and humic substances. However, the changes of

DOC and UV254 levels were not the same in different seasons.

DOC of the two rivers was high in summer owing to surface

runoff. Conversely, in winter, the level of UV254 of the two rivers

was not low. Seasonal variations of upriver tend to have higher

humic substance level. Another possibility is the cumulative effect

of organic compounds because biological activity is lower during

winter [36].

SUVA in the Yangtze River ranged from 2.7 to 9.6 L/

(mg?m), and from 2.2 to 5.2 L/(mg?m) in the Huangpu River.

When comparing the median levels of SUVA in raw water from

the Huangpu River against those from the Yangtze River in

winter, SUVA was higher in the Yangtze River (7.6 versus

4.2 L/(mg?m)). However, they were similar in summer (3.0

versus 3.3 L/(mg?m)). In contrast, the Yangtze River, with

a lower DOC, had a higher SUVA in winter, suggesting that

the NOM contained higher carbon aromacity and was

hydrophobic in character [30].

Higher chloride, bromide, and iodide levels were expected in

raw waters from the Yangtze River due to salt water intrusion.

However, it is interesting to note that the concentrations of

chloride, bromide, and iodide in the Huangpu River during winter

were higher than that of water from the Yangtze River. For

example, the median concentrations were twice as high as those

from the Yangtze River in winter (i.e., 39 versus 82 mg/L, 102

versus 322 mg/L, and 7 versus 16 mg/L, respectively) (Table 2).

Richardson et al. [18] also reported higher bromide and iodide

levels in an inland location which had fossilized seawater. It is very

likely that the Huangpu River was suffering from potential

industrial and agricultural pollution, as well as contamination by

natural organic compounds, such as humic substances. In winter,

surface runoff decreased which led to higher concentrations of

these compounds being detected in our samples.

Table 1. Summary of source water, treatment, and disinfection at 13 water plants.

Water plants Source Season Treatment Disinfectant

1–5 Yangtze River Winter Pre-free chlorine, coagulation, sedimentation, sand filtration Chloramines

Summer Pre-free chlorine, coagulation, sedimentation, sand filtration Chloramines

6, 8–12 Huangpu River Winter Pre- free chlorine, coagulation, sedimentation, sand filtration Chloramines

Summer Pre- free chlorine and ammonia, coagulation, sedimentation,
sand filtration

Chloramines

7 Huangpu River Winter Ozone, coagulation, sedimentation, sand filtration,
activated carbon

Chloramines

Summer Ozone, coagulation, sedimentation, sand filtration,
activated carbon

Chloramines

13 Huangpu River Winter Pre- free chlorine, coagulation, sedimentation, sand filtration Chloramines

Summer Ozone, coagulation, sedimentation, sand filtration,
activated carbon, ultraviolet

Chloramines

doi:10.1371/journal.pone.0059677.t001

Table 2. Raw water characteristics: comparison of water source and season.

Yangtze River Huangpu River

Parameters Winter Summer Winter Summer

Min Median Max Min Median Max Min Median Max Min Median Max

pH 7.2 7.4 7.6 7.4 7.6 7.7 7.0 7.2 7.4 7.1 7.4 7.6

NH3-N (mg/L) 0.33 0.35 0.39 0.01 0.06 0.40 0.72 0.98 1.56 0.05 0.10 0.21

DOC (mg/L) 2.4 2.9 3.9 2.4 3.8 4.2 5.8 6.2 8.2 6.3 7.1 13.3

UV254 (1/cm) 0.18 0.22 0.23 0.11 0.12 0.13 0.22 0.27 0.32 0.16 0.25 0.35

SUVA (L/(mg?m)) 4.6 7.6 9.6 2.7 3.0 5.7 3.4 4.2 5.2 2.2 3.3 4.7

Chloride (mg/L) 37 39 49 11 13 14 75 82 84 57 60 66

Bromide (mg/L) 101 102 146 20 24 45 302 322 328 194 206 223

Iodide (mg/L) 6 7 7 3 4 9 12 16 18 15 16 20

IAA (mg/L) 0 0 0 0 0 0 0 0 0 0 0 0

IF (mg/L) 0 0 0 0 0 0 0 0 0 0 0 0

HAA9 (mg/L) 1.30 2.13 3.61 ,1 ,1 ,1 4.25 4.80 5.93 ,1 1.26 2.56

THM4 (mg/L) ,1 ,1 ,1 ND ND ND ,1 ,1 ,1 ND 3.29 9.41

Note: DOC: dissolved organic carbon. SUVA: specific UV absorbance. IAA: iodoacetic acid. IF: iodoform. HAA9: chloro-, bromo-, dichloro-, dibromo-, bromochloro-,
bromodichloro-, dibromochloro-, trichloro-, and tribromoacetic acid. THM4: chloroform, bromoform, bromodichloromethane,and chlorodibromomethane. ND: not
detected.
doi:10.1371/journal.pone.0059677.t002
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Occurrence of I-DBPs
Our results found that both IAA and IF were presented in

finished water of 13 water plants in Shanghai, their concentrations

ranged from 0.03 to 1.66 mg/L, with the highest concentration of

1.66 mg/L for IAA and 1.25 mg/L for IF, respectively (Table 3,

Fig. S4). It is worth noting that IAA and IF were generally not

detected in the corresponding raw water, suggesting that IAA and

IF are formed during water treatment. Compared with samples

collected during summer, IAA and IF were often of higher

concentrations in the treated water of both rivers in winter. The

levels of IAA and IF in treated water from the Huangpu River

were higher than those from the Yangtze River, not only in winter

(i.e., 1.08 versus 0.39 mg/L and 0.85 versus 0.18 mg/L, re-

spectively) but also in summer (i.e., 0.27 versus 0.04 mg/L and

0.40 versus 0.01 mg/L, respectively).
The concentrations of HAA9 ranged from 3.31 to 48.55 mg/L

and THM4 ranged from 0.28 to 63.74 mg/L, with median values

of 19.59 and 23.50 mg/L in the finished water,respectively. The

levels of HAA9 in finished water from the Yangtze and Huangpu

Rivers were similar. However, in summer, the concentration of

THM4 in finished water from the Yangtze River (median of

56.91 mg/L) was twice as high as those from the Huangpu River

(median of 24.50 mg/L). Nevertheless, all the regulated HAAs and

THMs did not exceed the regulated maximum contaminant levels.

Relationship between Water Quality/Treatment and
Iodinated/Regulated DBPs Concentrations/Species
Distributions
Previous studies have suggested that pH, DOC, UV254, SUVA,

and iodide levels of raw water could contribute to the formation of

I-DBPs [18,37]. The Spearman correlations between raw water

quality and DBPs in finished water based on this study are shown

in Table 4. The parameters that positively influence IAA were

NH3-N, pH, iodide, and UV254; for IF, were UV254, iodide, NH3-

N, pH, and DOC (Table 4). We found that iodide had a close

relationship with chloride and bromide (Table S2), suggesting

positive correlations between chloride/bromide and potential

formation of IAA/IF.

The pH was considered to be an important factor in I-DBPs

formation. Ye et al. [38] reported that the formation of IAA was

favored under acidic conditions. The process of I-DBPs formation

depends on the rate of iodide oxidation to iodate and the reaction

with hypoiodous acid (HOI) and NOM [37,39]. Further, if the raw

water was low in pH, the rate of oxidation reactions to form iodite

and iodate was significantly reduced. At the same time, HOI has

a longer half life at low pH and, hence, more opportunity to react

with NOM to form I-DBPs. Our data showed that the levels of

IAA and IF were often higher in finished water from the Huangpu

River than that from the Yangtze River, especially during winter.

However, pH of the Huangpu River and Yangtze Rivers were

similar (median of 7.2 and 7.4) in winter. Correlation analysis also

demonstrated a general negative correlation between pH and

IAA/IF (Table 4), although UV254 might be an interfering factor

because of the close relationship between UV254 and pH (Table

S2).

In general, NOM (such as humic substances) is known to be one

of main influential precursors for the formation of I-DBPs, usually,

the higher the NOM level, the higher the concentration of I-DBPs.

Moreover, increasing iodide levels in raw water increased the

formation of I-DBPs [18]. Our results demonstrated that the levels

of I-DBPs were significantly higher in finished water of the

Huangpu River than those of the Yangtze River (Table 3). High

levels of UV254, and iodide in the Huangpu River contributed to

the formation of I-DBPs. Correlation analyses between UV254/io-

dide levels and IAA/IF were evident (Table 4). These findings are

consistent with an earlier report [18].

Almost all of the water plants used conventional treatment

processes, including peroxidation (chlorine or chloramines), co-

agulation, sedimentation, sand filtration, and disinfection except

for water plants 7 and 13 (Table 1). In summer, water plants 1 to 5

used only chlorine for preoxidation because of the low ammonia

level in the source water from the Yangtze River and it also offers

better water quality. On the contrary, in order to reduce regulated

Table 3. Finished water characteristics: comparison of water source and season.

Yangtze River Huangpu River

Parameters Winter Summer Winter Summer

Min Median Max Min Median Max Min Median Max Min Median Max

pH 7.1 7.3 7.4 7.5 7.7 7.9 6.7 7.1 7.2 6.9 7.2 7.6

NH3-N (mg/L) 0.20 0.24 0.35 0.17 0.32 0.35 0.57 0.77 1.30 0.21 0.42 0.85

DOC (mg/L) 2.1 2.6 3.1 2.4 3.2 3.7 3.3 5.3 5.7 3.9 5.4 5.9

UV254 (1/cm) 0.04 0.04 0.05 0.02 0.03 0.04 0.03 0.09 0.10 0.02 0.09 0.12

SUVA (L/(mg?m)) 1.2 1.7 2.1 0.5 1.0 1.1 0.9 1.7 2.4 0.4 1.7 2.1

Chloride (mg/L) 39 45 49 15 17 21 79 87 93 64 71 75

Bromide (mg/L) 47 74 104 1 8 14 199 270 289 115 149 270

Iodide (mg/L) 2 3 7 2 5 5 ,1 6.2 18 ND 5 11

IAA (mg/L) 0.24 0.39 0.51 0.03 0.04 0.04 0.49 1.08 1.66 0.05 0.27 0.46

IF (mg/L) 0.16 0.18 0.40 0.01 0.01 0.01 0.49 0.85 1.25 0.23 0.40 0.56

HAA9 (mg/L) 5.34 8.67 28.76 17.73 22.19 48.55 3.31 16.45 29.52 4.18 22.43 28.53

THM4 (mg/L) 0.60 4.09 30.51 40.12 56.91 63.74 0.60 4.47 10.34 19.83 24.50 38.33

Note: DOC: dissolved organic carbon. SUVA: specific UV absorbance. IAA: iodoacetic acid. IF: iodoform. HAA9: chloro-, bromo-, dichloro-, dibromo-, bromochloro-,
bromodichloro-, dibromochloro-, trichloro-, and tribromoacetic acid. THM4: chloroform, bromoform, bromodichloromethane, and chlorodibromomethane. ND: not
detected.
doi:10.1371/journal.pone.0059677.t003
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DBPs formation water plants 6, 8, 9, 10, 11, and 12 added

ammonia to the raw water to react with chlorine for chloramina-

tion. Whereas, in winter, because of the high levels of ammonia in

raw water, most of water plants used free chlorine for preoxida-

tion, as free chlorine would react with ammonia in raw water to

form chloramines.

Compared to chlorine, chloramines could reduce regulated

DBPs formation [18]. However, chloramination was also known to

enhance the formation of I-DBPs [18,19,30,40,41,42]. Both

chlorine and chloramines can oxidize iodide to HOI, but chlorine,

not chloramines, rapidly converts HOI to iodate [37,39]. Hence

HOI has a higher chance to react with NOM to form I-DBPs

during chloramination. Our results also showed that the levels of

THM4 were low owing to the use of chloramines as disinfectant in

the Yangtze River (Fig. S5). The levels of IAA and IF in water

plants using chloramines were higher than those using chlorine in

the Yangtze River. This is consistent with the findings of

Richardson et al. [18].

Ozone and biological activated carbon were used in water

plants 7 and 13. On the basis of earlier studies, pre-ozonation

could provide some benefits in controlling regulated and iodinated

DBPs in waters [43–46]. As shown in Fig. S5, Ozone could reduce

the formation of HAA9 (median = 4.18 mg/L) compared with

chloramines (median = 21.40 mg/L) in finished water from the

Huangpu River. However, we did not observe that ozone

significantly reduced I-DBPs formation when using chloramines

as disinfectant in the treatment processes (Fig. S5). Furthermore,

ozone has the potential to form oxygen-containing DBPs (e.g.,

bromate) in raw water that contain high bromide [43,47]. In

certain cases, when bromide concentrations are above 50 mg/L, it
may be necessary to use other control measures to lower bromate

formation (such as lowering of pH, ammonia addition) [48].

However, in the Huangpu River bromide concentrations some-

times can be higher than 50 mg/L, although the bromate level of

finished water is below 10 mg/L [49]. It is believe that the high

levels of NH3-N, and NOM in Huangpu River water might inhibit

bromate formation, as suggested by an earlier study [48].

In this study we did not observe water quality parameters had

a significant correlation with HAA9, although NOM showed

negative correlations with monochloroacetic acid, dichloroacetic

acid, bromochloroacetic acid, bromodichloroacetic acid, chloro-

form, and bromodichloromethane (Table S3). Only pH demon-

strated positive correlations with monochloroacetic acid and

dichloroacetic acid. Similarly, UV254, chloride, and bromide had

negative correlation with THM4 (Table 4). These results are rather

unexpected when compared to earlier studies [50–52]. The main

reason for these differences is that there could be many factors

affect the formation of HAAs/THMs. Further, the self-relations

among these parameters are also complex (Table S2). Addition-

ally, we also observed that HAAs/THMs concentrations in

drinking water of Shanghai are low and this could again affected

by many factors. We believe the current data available may not be

adequate to address the relationships between HAAs/THMs and

water quality parameters. More water samples with higher

sampling frequency are necessary to reveal the relationships

between various parameters to that of the regulated and un-

regulated DBPs distributions in drinking water in the future study.

IAA and IF commonly occurred in high iodide and chlor-

aminated drinking waters, but the levels of IAA and IF were

relatively low. The maximum concentrations of IAA and IF were

1.66 mg/L and 1.25 mg/L, respectively, and most of the time they

were at sub-ppb or ppt levels. Nevertheless, it is important to know

whether IAA and IF could have potential adverse human health

risks, at these levels in drinking water. It is suggested that both IAA

and IF in drinking water should be monitored routinely since it is

an issue of public health concern.

Conclusions
The levels of IAA and IF in finished water from the Huangpu

River were generally higher than those from the Yangtze River as

the water quality in the Huangpu River has been noted to be

deteriorated over the past years. Low pH, increasing iodide, NH3-

N, and NOM levels in the raw waters further increased the

formation of IAA and IF. Natural iodide presented in the water

sources could lead to higher concentrations of I-DBPs in drinking

water. We also noted that chloramines were more effective in

reducing the levels of THMs compared with chlorine. Organic

matter pollutants led to higher halide ion in the Huangpu River

than that caused by salinity intrusion in the Yangtze River. In

short, this study provides useful information concerning the

presence of various regulated and newly emerging DBPs in the

water plants in Shanghai. The findings also offer scientific basis for

a better understanding on the formation of IAA and IF in the

drinking water. We trust these data are useful not only for the

water suppliers and regulators in China but also other parts of the

world.

Supporting Information

Figure S1 Distribution of 13 water plants in Shanghai. m

denotes water plants with the Yangtze River as the raw water and N
denotes water plants with the Huangpu River as the raw water.

(TIF)

Figure S2 The treatment processes of 13 drinking water plants.

(TIF)

Figure S3 Raw water characteristics: Comparison of the

Yangtze River and the Huangpu River in winter and summer.

(A) Distribution of pH values in different rivers and seasons. (B)

Table 4. Simple correlation between raw water quality and DBPs in finished water.

pH NH3-N DOC UV254 SUVA Chloride Bromide Iodide

IAA 20.571* 0.769* 0.204 0.468* 0.221 0.781* 0.791* 0.478*

IF 20.529* 0.610* 0.503* 0.699* 0.028 0.901* 0.920* 0.654*

HAA9 0.170 20.245 20.085 20.245 20.215 20.211 20.167 20.060

THM4 0.423* 20.725* 20.076 20.444* 20.379 20.607* 20.586* 20.362

Note: *P,0.05. IAA: iodoacetic acid. IF: iodoform. HAA9: chloro-, bromo-, dichloro-, dibromo-, bromochloro-, bromodichloro-, dibromochloro-, trichloro-, and
tribromoacetic acid. THM4: chloroform, bromoform, bromodichloromethane, and chlorodibromomethane.
DOC: dissolved organic carbon. SUVA: specific UV absorbance.
doi:10.1371/journal.pone.0059677.t004
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Distribution of NH3-N and DOC values in different rivers and

seasons. (C) Distribution of UV254 and SUVA values in different

rivers and seasons. (D) Distribution of chloride, bromide, and

iodide in different rivers and seasons. (E) Distribution of DBPs in

different rivers and seasons.

(TIF)

Figure S4 Finished water characteristics: Comparison of the

Yangtze River and the Huangpu River in winter and summer. (A)

Distribution of pH values in different rivers and seasons. (B)

Distribution of NH3-N and DOC values in different rivers and

seasons. (C) Distribution of UV254 and SUVA values in different

rivers and season. (D) Distribution of chloride, bromide, and

iodide in different rivers and seasons. (E) Distribution of DBPs in

different rivers and seasons.

(TIF)

Figure S5 Relationship between oxidants and DBPs formation

in finished water, showing the comparison between water plants

using chloramines, ozone and chlorine in the Yangtze River and

the Huangpu River. *P , 0.05 vs. chlorine, # P , 0.05 vs. ozone.

(TIF)

Table S1 The parameters of detected methods for IAA, IF,

THM4, HAA9, and halide ion.

(DOCX)

Table S2 Simple correlation among raw water quality.

(DOCX)

Table S3 Simple correlation between raw water quality and

single HAA/THM.

(DOCX)
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