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Abstract

Background: Babies born at lower gestational ages or smaller birthweights have a greater risk of poorer health in later life.
Both the causes of these sub-optimal birth outcomes and the mechanism by which the effects are transmitted over decades
are the subject of extensive study. We investigated whether a transcriptomic signature of either birthweight or gestational
age could be detected in umbilical cord RNA.

Methods: The gene expression patterns of 32 umbilical cords from Singaporean babies of Chinese ethnicity across a range
of birthweights (1698–4151 g) and gestational ages (35–41 weeks) were determined. We confirmed the differential
expression pattern by gestational age for 12 genes in a series of 127 umbilical cords of Chinese, Malay and Indian ethnicity.

Results: We found that the transcriptome is substantially influenced by gestational age; but less so by birthweight. We show
that some of the expression changes dependent on gestational age are enriched in signal transduction pathways, such as
Hedgehog and in genes with roles in cytokine signalling and angiogenesis. We show that some of the gene expression
changes we report are reflected in the epigenome.

Conclusions: We studied the umbilical cord which is peripheral to disease susceptible tissues. The results suggest that
soma-wide transcriptome changes, preserved at the epigenetic level, may be a mechanism whereby birth outcomes are
linked to the risk of adult metabolic and arthritic disease and suggest that greater attention be given to the association
between premature birth and later disease risk.
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Introduction

Birth outcomes defined by gestational age and birth weight have

far reaching consequences across the life-course. For instance

young adults born prematurely or at very low birthweights have

significantly lower bone density than do their larger and term-born

peers [1]. The prenatal environment has been linked to the risk of

disease in later life [2,3,4,5,6,7,8]. Children born either prema-

turely or small for gestational age have reduced insulin sensitivity

and are at higher risk for type 2 diabetes mellitus [7,8]. Little is

known of the molecular mechanisms by which these longer-term

consequences for the offspring are transmitted, although epige-

netic mechanisms appear to be implicated [9]. Umbilical cord

tissue is a readily available tissue and offers a source of RNA and

DNA for an assessment of the genomic and epigenomic state of the

neonate. Molecular biomarkers that reveal early life experience

and predict later disease risk would be valuable as a means to

identify high-risk patients, and could be a starting point to

designing therapeutic interventions [9,10,11]. While several

groups have found transcriptomic [12,13] and epigenetic marks

[14,15,16,17,18,19,20,21] in the umbilical cord associated with
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extreme intrauterine experience or birth outcomes, of particular

interest to us and relevant to global health concerns are the

molecular mechanisms of inter-individual variability operating

within the normal range [22], as long-term effects of the prenatal

state can be readily demonstrated within children of normal

birthweight and gestation [9,23,24].

GUSTO (Growing Up in Singapore Towards healthy Out-

comes) is a Singapore-based birth cohort study [25]. From this

deeply phenotyped cohort we profiled the transcriptome of 32

umbilical cords collected at birth from ethnic Chinese babies in

Singapore hospitals. Transcriptomic change significantly related to

gestational age were discovered and then validated by q-PCR

analysis across an expanded set of 127 multiethnic samples.

Pathway analysis revealed enrichment of differential transcription

by gestational age in hedgehog signalling genes: GLI2, GLI3, and

SMO, and others downstream of the pathway with a role in

skeletal development, defects of which are associated with early-

onset osteoarthritis. In addition, inflammatory mediators such as

CXCL14 and Il1RL1 were differentially expressed, as well as

HSD11B1, a gene with known implications in development [26].

Furthermore, a subset of the differentially expressed genes was

found to also differ in DNA methylation levels in a manner

associated with gestational age. We suggest that lower birth weight

and particularly earlier (within the near term range) gestational

ages, leaves an epigenetic echo that affects the risk for diseases such

as type 2 diabetes mellitus and osteoarthritis in later life.

Results

To ascertain the independent roles of both gestational age and

birth weight, which are positively correlated, we selected normal

birth weight samples to match the gestational ages of the extreme

birth weight samples [Figure 1 and Table 1], and subjected them

to expression microarray analysis. After probe quality control and

inter-sample quantile normalisation of the 32 RNA samples

interrogated on the array, the data for two samples failed quality

control (MAD scores ,25) and were removed from subsequent

analyses. The removed samples were from the #37 week_NBW

and from the .37 w_NBW groups and are highlighted in Figure 1.

Three series of technical replicates were included in the

experiment, they clustered together in 10 cases out of 12; when

the full dataset was subjected to unsupervised hierarchical

clustering demonstrating that the intra-sample variation is lower

than the inter-sample variation [Figure S1]. Therefore the data

were declared of acceptable quality and the replicates were

combined.

To examine the pattern of relatedness between individual

transcriptomes and to identify potential underlying associations

with birth outcomes, principal component analysis was performed

on the dataset. We found that within the normal birth weight

samples, PC1 separated the samples by gestational age (p,0.05,

R = 0.76) [Figure 2A]. When extreme birth weight samples were

included in the analysis, there was still a separation by gestational

age, but the correlation was not as strong (p,0.05, R = 0.55)

[Figure 2B]. However there was no significant relationship

(p,0.05) with birth weight, gender or maternal age for any of

the first five components returned from the principal component

analysis. Therefore we concluded that the majority of the signal in

the dataset is driven by gestational age and not by birth weight,

suggesting that for infants born within the normal range of birth

weights and gestational ages, gestational age is a stronger driver of

umbilical cord transcriptomes than is birth weight.

Next, we utilized linear regression to identify which probe

expression levels were most highly correlated with gestational age,

and then determine if any associated with birth weight. As

predicted from the above, we found more probes for which

expression correlated with gestational age, (530 had a p-value

,0.001) [Table S1] than with birthweight (8 had a p-value

,0.001) [Table S2]. Some of the probes most strongly correlated

with gestational age mapped to hedgehog ligand GLI2 [Figure

S2A] and hedgehog receptor smoothened, SMO [Figure S2B].

Figure S3 shows the correlation of expression of a probe mapping

to transforming growth factor receptor beta 1 (TGFBR1) with

birthweight.

ANOVA tests were performed to identify gene expression

associated with gestational age, by comparing the normal birth

weight samples from the two different gestational age groups

delimited by 37 weeks (i.e. #37 w_NBW vs. .37 w_NBW), 64

probes passed an FDR correction for multiplicity of q,0.05

[Table S3]. Other probes with nominally significant p-values

(,0.05) (not passing FDR) and outlier fold changes included those

mapping to desmocollin 1 (DSC1), a cadherin protein involved in

epithelial cell adhesion in desmosomes [27], which had the highest

fold change [Figure S2C]. We also performed an ANOVA on all

samples grouped by gestational age regardless of birthweight, and

DSC1 still had the one of the highest fold changes [Figure S2D].

The 64 probes which passed FDR in the gestational age

comparison were capable of organising the samples by gestational

age when used in hierarchical clustering. Clustering on just the

normal birth weight samples gave the cleanest result [Figure 3A].

However, when the extreme birth weight samples were included,

the bifurcating pattern still significantly separated the samples in

respect to their gestational age (average gestational age of left

branch = 36.96 weeks, average gestational age of right branch

= 39.12 t-test p-value = 0.0003) [Figure 3B].

We also performed ANOVAs to identify genes for which

transcript levels were differential for birth weight, by comparing

the low birth weight (LBW) group with the #37 w_NBW group;

and the high birth weight (HBW) group with the .37 w_NBW

group. No probes passed an FDR correction for multiplicity

(adjusted p,0.05), in either comparison. Eight probes correspond-

ing to five known genes co-varied with BW (p,0.05) and had

p,0.05, fc.1.5 in both ANOVA tests [Table S4 and Figure S3].

We selected some of the strongest expression changes along with

some of the more interesting genes from a disease-related

perspective and assayed their expression levels in 127 additional

samples. Twenty-two genes in all were tested with a range of

significance in the array data (Table S5). Generally there was a

concordance between the magnitude of the fold change in the

ANOVA and repetition in the expansion set (average absolute fold

change replicating group (shown in figure 4 and table S5) = 2.52,

average absolute fold change non-replicating group (shown in

table S5) = 1.47, t-test p = 0.026). The replicating group comprises

genes whose mRNA levels had a significant relationship with

gestational age in the qPCR expanded study. The non-replicating

group are those genes whose mRNA levels did not achieve

significance against gestational age in the expanded qPCR study.

Of this set, 12 genes showed p,0.1 in a t-test between the less than

37 weeks gestational age (,37 w) and more than 37 weeks

gestational age (.37 w) groups, they are illustrated in Figure 4.

Pathway enrichment analysis was performed on the 45 genes

mapping to the 64 probes which had FDR ,0.05 for gestational

age. The most enriched gene ontology (GO) process was skeletal

system development (Fisher’s exact test p-value = 8.4e25), with 4/

129 genes related to this processes showing significant changes:

MATN3, MSX1, PITX1 and BMP8B.

Pathway enrichment analysis was also performed on 445 genes

mapping to the 530 probes co-varying with gestational age

Transcriptome in Late Pregnancy
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(p,0.001, by univariate regression). The most enriched GeneGO

map was ‘‘Hedgehog and PTH signalling pathways in bone and

cartilage development’’ (Fisher’s exact test p-value = 3.3e24) with

5/24 genes for the pathway showing significant changes: SMO,

GNAS, GLI2, COL1A1 and COL1A2. We also noted that the

expression of GLI3, another central component of the hedgehog

pathway, was correlated with gestational age. Components of

hedgehog signalling and bone development pathways have been

shown to interact with each other, and we were able to generate a

subnetwork of genes enriched for differential expression for

gestational age [Figure 5]. For most of the genes in figure 5,

transcript levels were higher in the #37 week gestation group.

Schroeder et al (2011) [28] showed that the DNA methylation

profile of umbilical cords reflects gestational age. Therefore, we

surveyed the DNA methylome of a representative subset of twenty,

of the samples originally examined by gene expression micro-

arrays. Of the twelve genes with validated differential expression

by gestational age (Figure 4), eight genes (67%) had concordant

differential CpG methylation levels by gestational age (Pearson

covariate ,0.05) [Table 2]. Of note were the three canonical

members of the Hedgehog signalling pathway GLI2, GLI3 and

SMO, which showed methylation at multiple CpGs varying with

gestational age. A specific CpG dinucleotide in the 59UTR of GLI3

(cg17530977) was one of the 41 CpGs whose methylation levels

reached experiment-wide significance for gestational age in

Schroeder et al (2011) [28]. While this CpG was not significant

in our study, other similarly located CpGs close to the 59UTR,

transcription start site and within the gene body suggest coherent

results with Schroeder et al’s findings. Intriguingly we found a

significant correlation across samples for a subset of CpGs in

table 2, both by comparing the values within each sample with no

regard to phenotype and by comparing the ratios between

Figure 1. RNA Expression Microarray Study Design. Gestational age in weeks (y-axis) and birth-weight in grams (x-axis) of the samples
analysed by expression microarrays are symmetrical to allow somewhat independent comparisons for birth-weight and gestational age. Samples are
classified into high birth weight group (.3700 g) in orange; low birthweight group (,2500 g) in green; normal birthweight and gestational age less
than or equal to 37 weeks in blue; or normal birthweight and gestational age more than 37 weeks in red. Two samples that failed QC are shown as
non-filled circles.
doi:10.1371/journal.pone.0039744.g001

Table 1. Demographic and Characteristics of the Participants.

RNA expression array (n = 32) PCR (n = 120) DNA methylation array (n = 20)

N (%) Mean (SD) N (%) Mean (SD) N (%) Mean (SD)

Gender Female 16 (50%) 51 (43%) 11 (55%)

Male 16 (50%) 69 (58%) 9 (45%)

GA (weeks) #37 weeks 14 (44%) 36 (1) 9 (8%) 36 (1) 10 (50%) 36 (1)

.37 weeks 18 (56%) 39 (1) 111 (93%) 39 (1) 10 (50%) 40 (1)

BW (g) LBW (,2500) 8 (25%) 2056 (1799) 24 (20%) 2280 (125) 5 (25%) 2069 (202)

NBW (2500–3700) 16 (50%) 3099 (191) 67 (56%) 3141 (320) 10 (50%) 3046 (153)

HBW (.3700) 8 (25%) 4076 (62) 29 (24%) 4073 (319) 5 (25%) 4086 (51)

Ethnic Group Chinese 32 (100%) 58 (48%) 20 (100%)

Malay 37 (31%)

Indian 25 (21%)

Parity 0.6 (1) 0.9 (1) 0.6 (1)

Maternal age 34 (4) 34 (4) 31 (5) 35 (3)

doi:10.1371/journal.pone.0039744.t001
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differential gestational age pairs (Text S1). Similarly, we also

considered DNA methylation changes in the eight genes showing

the most significant differential expression for birthweight, and

found 4 (33%) with significant methylation differences by

birthweight [table S6].

Discussion

Babies born at lower gestational ages and birth weights carry an

increased susceptibility for a range of diseases [29,30,31,32,33,34],

although there is considerable variation in outcome at the level of

the individual. Prognostic markers, such as expression levels of

candidate genes, might predict which individuals are on a

developmental path towards a higher risk of disease, particularly

as these trajectories need not involve children of abnormal

gestational age or birthweight. We were able to study gene

expression pattern in umbilical cords over a broad birthweight

range and explored the spectrum of near-term and term

gestational ages, i.e. from 35 to 41 weeks by leveraging the

availability of birth tissue specimens collected within the Singapore

GUSTO cohort study.

Our study was designed to investigate the molecular correlates

of both birthweight and gestational age. Perhaps surprisingly,

considering the dominant focus on birth weight, we found that

gestational age (even when excluding prematurity), is a very

important factor driving the transcriptome. Birthweight, even at

extremes, is not. This finding is supported by two recent papers

sampling umbilical cord blood from Caucasian and African-

American mothers in the Conditions affecting Neurocognitive

Development and Learning in Early Childhood (CANDLE)

cohort. Adkins et al (2012) [35] failed to find significant

associations with birth weight at either the transcript or CpG

methylation level. However, Schroeder et al (2011) [28] found

significant associations of CpG methylation with gestational ages,

within the normal range. Our conclusion also is supported by the

work of Cohen et al (2007) [36] who also found transcriptome-

wide statistical associations with gestational age. Finally, at the

functional level, morphology in specific brain regions at 6-years of

age is better predicted by gestational age than by birth weight [37].

Our findings are in contrast to those of Mason et al (2010) [38]

who found the largest component of variation in the umbilical

Figure 2. The largest source of variation in the transcriptomics data is associated with gestational age across samples. Prinicipal
component analysis using the RNA expression microarray data across just the normal birthweight samples (A) or across all samples (B), returned
principal component 1 (x-axis) which has a significant correlation with gestational age of the samples. Samples are classified into high birth weight
group (.3700 g) in orange; low birthweight group (,2500 g) in green; normal birthweight and gestational age less than or equal to 37 weeks in
blue; or normal birthweight and gestational age more than 37 weeks in red.
doi:10.1371/journal.pone.0039744.g002

Figure 3. Expression signature for gestational age organises
samples into gestational age groups. Hierarchical clustering of
samples (columns) by the expression levels of the 64 probes (rows)
significantly associated with gestational age (adjusted p-value,0.05),
organises normal birth weight samples perfectly by gestational age
group (A) and organises all samples into two clusters with significantly
different gestational ages (B). Z-score normalised logged expression
levels are denoted in the heat map (green for low, red for high, white
for intermediate). X-axis colour bars denote sample classification: high
birth weight group (.3700 g) in orange; low birthweight group
(,2500 g) in green; normal birthweight and gestational age less than
or equal to 37 weeks in blue; or normal birthweight and gestational age
more than 37 weeks in red. Gestational age is also represented as a
continuous variable in the x-axis colour bar in (B) green for low, red for
high, white for intermediate.
doi:10.1371/journal.pone.0039744.g003
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cord blood transcriptome of neonates was not related to

gestational age. Differences in tissues and sample sets may explain

this inconsistency.

Our study suggested differential expression of the Hedgehog

pathway by gestational age. This conclusion is the result of

statistical analysis of the microarray data and only genes GLI2,

GLI3, SMO, COL1A1 and MATN3 have been independently

validated in the expanded qPCR sample set. The Hedgehog

pathway has been shown to affect chondrocyte and osteoblast

differentiation [39,40]. Fetal bone development accelerates in late

pregnancy and has a complex relationship with birthweight and

gestational age [41,42]. Lower gestational age and lower birth

weights are associated with lower bone mass in infancy and

adulthood [1,43] and possibly with later development of osteopo-

rosis [44,45]. Lewis et al (2012) [46] reported that a higher

placental PHLDA2 expression was associated with a lower fetal

femur growth velocity. Dennison et al (2001) [47], found that the

relationship between lumbar spine bone mineral density and

birthweight varied according to vitamin D receptor genotype.

In addition, we saw the differential expression in the microarray

data only, of the hedgehog target genes PITX1, MATN3, and

RUNX2. Expression of transcription factor PITX1 has been shown

during hind limb development in regions giving rise to cartilage

joints, long bones and skeletal muscles, while its partial inactiva-

tion led to a progressive formation of osteoarthritis-like phenotype

in aging Pitx1+/2 mice [48]. Polymorphisms in PITX1 have also

been recently associated with osteoarthritis in a Chinese popula-

tion [49]. MATN3 is a cartilage-specific matrix protein, mutations

in which result in early-onset osteoarthritis [50]. The RUNX2

transcription factor is also downstream of the hedgehog pathway

and necessary for chrondrocyte and osteoblast differentiation and

bone formation [51]. During osteoblast differentiation, RUNX2

upregulates the expression of bone matrix protein genes including

COL1A1, COl1A2 [52] and the BMP family [52], which were also

differentially expressed for gestational age in our study. Mutations

in COL1A1 and COL1A2 have implicated in the inheritance of

osteogenesis imperfecta and have a relationship with bone mineral

density in Chinese populations [53].

Other genes differentially expressed in umbilical cords in

relationship to gestational age and replicated in our qPCR study

fall into the cytokine and angiogenesis pathways. CXCL14 belongs

to the family of CXC cytokines with a function in monocyte

activation [54]. It has recently been associated with regulating

metabolism, as it was shown that overexpression enhances obesity

induced insulin resistance [55,56]. In contrast, CXCL142/2

knockout mice are leaner and have a lower body weight [57].

Increased expression levels of CXCL14 in #37 week gestation

babies may thus trigger a trajectory towards insulin resistance later

in life [7,58]. Interestingly, CXCL14 expression has been associated

with reactive oxygen species, whereby downregulation of CXCL14

leads to a stimulation of angiogenesis in head and neck cancer

[59]. The relatively high levels of CXCL14 in umbilical cord from

Figure 4. Twelve transcripts have differential expression levels in gestational age groups across the 120 sample replication set. Fold
change with regard to the median sample of the more than 37 weeks gestation group, is shown on the y-axis. Gene names are shown above each
panel. P-values from the 2 group tests are shown within each panel. Data is represented as a box plot where the 2–3 quartile range is within the box,
the median is denoted by a horizontal line within the box, the min and max are denoted by horizontal lines outside of the box and single outliers are
represented by crosses.
doi:10.1371/journal.pone.0039744.g004
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#37 week gestation babies may reflect a restrictive intrauterine

environment such as a dysfunctioning placenta [60]. The protein

IL1RL1 belongs to the interleukin 1 receptor family [61]. It is

involved in eosinophilic inflammation which is linked to the

allergic phenotype [62]. Moreover, polymorphisms in the IL1RL1

gene are associated with the onset of asthma in Caucasian

populations [63]. In our studies, we found a decreased mRNA

expression of IL1RL1 in cord tissue derived from Asian babies

born at lower gestational age. We do not know the functional

impact of this down-regulation of mRNA expression of IL1RL1

and whether there is an overshooting compensatory expression

later in development. IL-33 is the natural ligand for IL1RL1 and

promotes angiogenesis by stimulating endothelial NO synthase

[64]. Therefore, a decrease in NO production is directly linked to

lowered expression of the receptor for IL-33 (IL1RL1) and could

reflect a supporting causative factor in the etiology of fetal growth

restriction. Endothelial NO synthase (eNOS) is the primary

isoenzyme expressed in human placenta but was found to be

expressed in umbilical cord as well [65]. Insufficient nitric oxide

production may associate with the pathogenesis of preeclampsia, a

condition often leading to preterm birth. The activity of NO

synthase in women with placental insufficiency was reported to be

below normal levels [66].

Fetal development requires efficient umbilical blood flow, which

in turn depends on the fetal vascular tree within the placenta.

Enhanced angiogenesis influences neonatal birth weights and

pregnancy outcomes (reviewed in [67]). We saw decreased

expression of ANTXR2 in umbilical cords of less than 37 weeks

gestation babies, ANTXR2 was recently reported to promote

endothelial proliferation and morphogenesis during sprouting

angiogenesis [68].

The Hedgehog signalling pathway has many functions, but

separate from its function in bone formation (see above), the

Hedgehog signalling pathway also plays a role in angiogenesis

[69]. Using a model of mouse hind limb ischemia, Benameur et al.

have shown that the hedgehog pathway promotes neovascularisa-

tion via the activation of eNOS and therefore increased nitric oxide

production [70]. It is tempting to speculate about the nature of

hedgehog pathway activation at lower gestational ages and

whether activation of this pathway can be seen as a compensatory

mechanism to counteract the generally anti-angiogenic gene-

expression footprint observed in the #37 weeks gestation

neonates.

Another gene of interest expressed at decreased levels in the

#37 weeks gestation group was HSD11B1. HSD11B1 is a

bidirectional enzyme most associated with converting the inactive

metabolite cortisone to the cortisol, which promotes insulin

resistance and obesity [71]. Moreover, polymorphisms in

HSD11B1 have been linked to insulin resistance and metabolic

syndrome in multiple populations [72,73]. Transcript levels have

been shown to be elevated in fetal membranes at late gestation

[26] and to increase in mouse liver in response to high fat diets,

leading to greater levels of insulin and hepatic lipid accumulation

[74]. Both known hydroxysteroid-dehydrogenase isoforms

HSD11B1 and HSD11B2 play a crucial role in maintaining

physiological levels of maternal stress-induced glucocorticoids, and

dysregulation of enzyme activity can lead to IUGR in rodent

models [75] as well as human pregnancies [76]. The overexpres-

sion of isoform HSD11B1 in .37 weeks gestation neonates is in

line with published observations [26]. It is tempting to speculate

whether enzymatic activities of the HSD11 isoforms are changed

in a gestational age dependent manner, as this has been

demonstrated in children born small for gestational age with lack

of catch-up growth who were found to have lower activity of

HSD11B1 [77].

Figure 5. Subnetwork enriched for differential expression by gestational age. Nodes represent genes and are coloured by the fold change
of their transcripts by gestational age (blue for positive association with gestational age, pink for negative association). No probe for PTHR1 was
included on the array. Arrows represent literature-verified interactions and the colours denote the type of interaction (green for activation, red for
inhibition and blue for co-expression).
doi:10.1371/journal.pone.0039744.g005
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We suggest that differential expression observed in the umbilical

cord transcriptome corresponding to gestational age is partly

driven by specific DNA methylation changes. Schroeder et al

(2011) [28] found that gestational age within the normal range

significantly drives DNA methylation. Interestingly one of the

CpGs which reached experiment-wide significance in their study

was located in GLI3, a gene with transcript levels significantly

varying with gestational age in our study. We have also measured

the methylation state of the umbilical cords in our study and report

concordant relationships with DNA methylation for 8 of the 16

genes replicated in our qPCR study as having significant

concordance with gestational age at the expression level, including

hedgehog transcription factor GLI3.

DNA methylation is an epigenetic mechanism that could

explain the persistence of birth outcomes on disease susceptibility

in later life [78]. Relton et al (2012) [79] recently reported DNA

methylation variance in nine genes at birth, persisting to gene

expression differences at 11–13 years of age and associating with

body composition at nine years of age. Specific methylation

differences correlating to gestational age could drive both the

transcriptome of the umbilical cord at birth and have conse-

quences in specific tissues at later ages. We chose here to assay the

genomics of umbilical cord tissue as the only available somatic

tissue. It is unknown if the genomic state of the umbilical cord

correlates with that of the other tissues of the fetus, especially in

those that give rise to diseases that have developmental origins.

However, the available data suggests that DNA methylation

patterns are generally conserved across tissues and there are

examples of individually-variable epigenetic marks being soma-

wide [80]. Godfrey et al (2011) [9] have shown that methylation of

a site in the RXRa gene promoter in the umbilical cord correlates

with body composition in later life, suggesting widespread

influences across multiple tissues. It is a limitation of our study

that results on whole umbilical cord tissue cannot be attributed to

specific cell lineages. However, by using this heterogeneous tissue

we anticipate that we have enriched for soma-wide changes.

In this study, we have made use of frozen umbilical cord tissue

derived from an Asian population. By designing the study to

independently examine both birth weight and gestational age, we

were able to find expression changes significant for gestational age.

Furthermore, by combining gene expression microarray data with

corresponding data from the latest Infinium 450 K human

methylation bead array chip (Illumina), our results provide insights

into the epigenetic profile of babies with differing birth outcomes.

This may allow the development of novel predictive epigenetic

markers for non-communicable diseases prevalent in Asia.

Materials and Methods

Clinical Populations and Sample Collection
All specimens were from babies born at the KK Women’s and

Children’s Hospital (KKH) and the National University Hospital

(NUH), in Singapore. These hospitals are part of the GUSTO

birth cohort study [25]. Written parental consent to participate in

the study was given and hard copies are stored by the GUSTO

data team. Ethical approval for the study and the consent forms

and contents was granted, by the ethics boards of both KKH and

NUH, which are centralised Institute Review Board (CIRB) and

Domain Specific Review Board (DSRB), respectively. Gestational

age was defined from a dating ultrasound (10–12 weeks) followed

by an additional scan at 18–22 weeks.

The discovery microarray analysis sample set consisted of a total

of 32 umbilical cords from babies of Chinese ethnicity. Maternal

ages were restricted to between 20–40 years. It was designed to

include eight low birth weight samples (defined as ,2500 g), eight

high birth weight (.3700 g) samples and sixteen normal birth

weight babies with gestational ages matching the extreme

birthweight samples. The average birth weight in the GUSTO

cohort was 3081 g, which is comparable to the average across a

larger Singaporean sample of 3183 g. for a term infant (unpub-

lished data). All children had a gestational age in the range of 35–

37 (shorter gestational age) or 38–41 weeks (longer gestational

age), to allow comparison across the range of normal gestational

age. This resulted in four groups, each comparable for birthweight

and/or gestational age and matched for gender and maternal age.

The expanded replication sample set of 127 umbilical cords for

qPCR analysis did not include any of those from the discovery set,

and were from babies of Chinese, Indian and Malay ethnicities.

The 20 samples analysed for DNA methylation were a subset of

the discovery microarray analysis set of 32. [See Table 1 for

sample characteristics]. Umbilical cord tissue samples were

collected at the time of delivery, flushed with saline to remove

fetal blood and flash-frozen in liquid nitrogen within 30 min of

collection.

RNA Extraction
Umbilical cord tissue (300 mg) was first placed in a sterile

Dispomix tube and homogenized for 55 s for 3 cycles in 3 ml of

Trizol using the Dispomix (Medic Tools, AG, Zug, Switzerland).

After spinning down the debris, the supernatants were divided

equally into three 2 ml tubes. 200 ul of chloroform were added to

each tube, vortexed vigorously and centrifuged for 15 min at 4uC.

The aqueous phase was carefully transferred to a new tube

containing 1 ul of linear acrylamide. An equal amount of

isopropanol was added and mixed by inversion. After incubating

at 220uC overnight to precipitate the RNA, the pellet was

obtained by centrifuging at 13,200 rpm for 10 min at 4uC. The

RNA pellet was washed twice in 70% (v/v) ethanol, air-dried and

resuspended in RNase-free water. The isolated RNA was then

purified using the RNeasy Mini Kit (Qiagen, Hilden, Germany).

On-column DNase digestion was carried out before the first wash

step according to the manufacturer’s instructions. The purified

RNA was then eluted in 30 ml of RNase-free water and stored at

280uC. RNA concentration and purity were measured using a

nanodrop ND-8000 spectrophotometer (Nanodrop Technologies,

Wilmington, DE, USA), and RNA integrity was determined using

the Agilent 2100 Bioanalyzer and RNA 6000 Nano Labchips

(Agilent Technologies, Santa Clara, CA, USA).

Expression Microarray
Gene expression analysis was carried out with 3 sets of duplicate

technical replicates from the 32 study subjects. All subsequent

experimental steps followed the manufactures instructions. Briefly,

Cy3-labelled cRNA was generated from 100 ng of total RNA

using the Quick Amp Labelling Kit (One-Color) (Agilent

Technologies, Santa Clara, CA, USA). Hybridization perfor-

mance was assessed by means of 10 proprietary spike-in controls

incorporated into the cRNA synthesis procedure. The labelled

cRNA was then purified and hybridized onto Agilent SurePrint

G3 Human Gene Expression (8660 K) microarrays in a rotating

(10 rpm) hybridization oven for 17 h at 65uC, after which they

were washed and processed with proprietary buffers and solutions.

The microarrays were then scanned at a resolution of 3 mm on an

Agilent scanner using an extended dynamic range (PMT 10/100).

The image data were processed using default values in feature

extraction version 10.7.1.1 (Agilent Technologies, Santa Clara,

CA, USA).
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Agilent ‘‘.txt’’ files were outputted from the scanner and loaded

into Arraystudio (Omicsoft). Signal extraction was performed from

the gProcessedSignal value incorporating background subtraction.

All expression values were log transformed. All probes with

expression levels less than two standard deviations above

background were removed. Values across replicate probes were

averaged. Data were normalised amongst samples using quantile

normalisation. Two samples with MAD scores ,25 were

removed from the analysis. Duplicate data for the same sample

were averaged. Data were subjected to principal component

analysis and unsupervised hierarchical clustering (correlation

distance, complete link). To identify probes significantly correlated

with gestational age, both univariate regression and one-way

ANOVAs (multiple testing correction: Benjamimi Hochberg) were

performed.

Processed and raw data is deposited in GEO, series accession =

GSE37100.

Quantitative Real Time-PCR
erse transcribed using a High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems Inc, ABI, CA, USA).

PCR reactions were prepared using 10 ul of Power SyBr Green

PCR 26 Master mix (Applied Biosystems Inc, ABI, Foster City,

CA, USA), 1 ul of each primer (2 uM), and 20 ng of cDNA in a

total reaction volume of 20 ul. One hundered and twenty seven

new samples were selected and PCR for each sample was done in

triplicates in 384-well plates using the ABI 7900 HT Sequence

Detection System. Cycle parameters used were 10 min at 95uC (1

cycle), then 15 s at 95uC and 1 min at 60uC (40 cycles). A

dissociation step was added at the end of each run to check for

amplification specificity. Twenty-two target genes and two

endogenous control genes (GAPDH and beta-actin) were ana-

lyzed. The characteristics of the samples are shown in Table1.

The 2{DDCT [81] was applied to calculate relative quantification of

target genes. For each target gene, the threshold cycles (CT ) of

samples provided from the equipment software (SDS 2.4) were

normalized by the average CT of both controls using

DC
T , T arg et

~C
T , T arg et

{CT ,AvgControl:. A sample (DCT is very close

to the group mean) from .37 weeks gestation group was then

selected as the reference and then the DCT of all samples were

normalized by this reference using DDCT ,Sample~DCT ,Sample{

DCT ,Reference. Finally, the fold changes of all samples were

calculated by 2{DDCT . All samples were grouped as either ,37

weeks gestation or as .37 weeks gestation. The differences

between the two groups were examined by one way ANOVA.

Pathway and Network Analysis
Pathway enrichment and de novo network discovery were

performed in GeneGO metacore [82]. Pathway enrichment was

calculated using a hypergeometric distribution against both Gene

Ontologies and GeneGo pathway maps. Results were corrected

for FDR using Benjamini-Hochberg. Network discovery was

performed using the ‘‘shortest path’’ and ‘‘direct interactions’’

module. Low confidence, indirect and ‘‘influence by expression’’

interactions were pre-filtered and canonical pathway interactions

were retained.

IlluminaH InfiniumH HD Genome-wide Methylation Assay
Genomic DNA methylation analysis was carried out with 3 sets

of duplicate technical replicates from 20 study subjects. All

subsequent experimental steps followed the manufacturers’

instructions. After extraction of genomic DNA from frozen

umbilical cord specimens according to standard procedures,

1 mg was bisulfite converted using EZ-96 DNA MethylationTM

Gold Kit (Zymo Research, Irvine, CA, USA). Successful

conversion was confirmed via methylation-specific PCR prior to

proceeding with subsequent steps of the Infinium assay protocol.

The bisulfite converted genomic DNA was isothermally amplified

at 37uC for 22 hrs, enzymatically fragmented, purified and

hybridized on an InfiniumH HumanMethlyation 450 BeadChip

(Illumina Inc., San Diego, CA, USA) at 48uC for 18 hrs. After

which, the BeadChip was then washed to remove any un-

hybridized or non-specific hybridized DNA. Labelled single-base

extension was performed on primers hybridized with DNA, and

the hybridized DNA was removed. The extended primers were

stained with multiple layers of fluorescence, the BeadChip was

then coated using a proprietary solution and scanned using the

IlluminaH iScan system. The image data were processed with the

Genome StudioTM Methylation Module software.

The intensity files (.idat) produced by the Illumina iSCAN

system were loaded into GenomeStudio’s methylation module for

signal extraction. Background subtraction was performed by

averaging the signals from the internal negative control beads.

CpGs with less than three beads for either probe for any sample

(18,603), or with signal detection p-values (calculated from the

individual bead intensities) less than 0.05 (2,949) for any sample,

were discarded for all samples. This step removed 4.4% of the

485,577 CpGs assayed. Data were normalized to the internal

controls, which were designed to be housekeeping genes with no

CpGs in the probe (samples the variation inherent in the array). b-

values were then calculated, which are the ratio of the methylated

probe intensity and the overall intensity. The b-value for an ith

interrogated CpG site was calculated by:

bi~
max (yi,methy,0)

max (yi,unmethy,0)z max (yi,methy,0)za

Where yi,unmethy and yi,unmethy are the intensities measured by

the ith methylated and unmethylated probes respectively, averaged

over the replicate beads, and ‘‘a ’’ is a constant offset(by default

100). Therefore b -values range between 0–1, with 0 representing

no methylation and 1 representing 100% methylation.

Tables of CpG b-values across samples were exported from

GenomeStudio and loaded into Arraystudio for downstream

analysis. As a further QC step MAD scores were calculated for the

sample sets. MAD is a robust measure of statistical dispersion and

is defined as the median of the absolute deviations from the data’s

median:

MAD~Mediani(DXi{medianj(Xj)D)

MADScore~

CorrelationDifferenceSample{MedianCorrelationDifference

MAD � 1:46138189

Samples with a MAD score of less than 25 were discarded.

Principal component analysis and hierarchical clustering were

performed to observe the clustering of technical replicates and

discernible batch effects. No batch effects were observed. The

intra-sample deviation was lower than the inter-sample deviation.

Regression analysis was performed against gestational age to

identify CpGs whose methylation levels co-varied. CpGs with a

regression p,0.05, mapping to a gene whose differential
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expression by gestational age was replicated, were reported. No

CpGs passed a Benjamin-Hochberg correction for multiple

testing.

Supporting Information

Figure S1 Hierarchical clustering of the full data set
shows that replicates cluster together. However, there is no

discernable clustering by birthweight or gestational age group.

Each sample is represented as a column in the heatmap and probe

by a row in the heatmap. Heatmap colouring is on normalised

expression level (green = low, white = intermediate, red = high).

Dendogram of sample clustering is above the heatmap. Colour

bars showing sample group (HBW = gold, LBW = green,

#37w_NBW = blue, .37w_NBW = red) and gestational age

(green = low, white = intermediate, red = high).

(TIF)

Figure S2 Tests for differential expression by gesta-
tional age return transcript levels co-varying with
gestational age and significantly different between
gestational age groups. A and B, Examples of significantly

co-varying transcript level by gestational age: probe

A_23_P209246, mapping to the GLI2 (A) and probe

A_23_P70818, mapping to the SMO (B) log2 expression levels

across samples are represented on the y-axis and gestational ages

of those samples are represented on the x-axis. Samples with

gestational age #37 weeks are denoted in blue, .37 weeks in red.

C and D, Results from 1-way ANOVA tests for transcripts whose

expression levels are significantly different between samples with

gestational age #37 weeks and samples with gestational age .37

weeks. Average differences in expression levels between the two

gestational age groups are represented on the x-axis, 2log10

pvalues from the ANOVA tests are represented on the y-axis.

Probes above the horizontal red line have nominal pvalues ,0.05.

Probes in the black box in C have FDR corrected pvalue,0.05.

Transcripts mapping the genes mentioned in the text are

highlighted in red and labelled. C, contains only samples of

normal birthweight i.e. #37w_NBW vs. .37w_NBW. D, includes

all samples i.e. LBW and #37w_NBW vs. .37w_NBW and HBW.

(TIF)

Figure S3 Example of significantly co-varying tran-
script level by birthweight: probe A_33_P331451 (map-
ping to the TGFBR1) log2 expression levels across
samples are represented on the y-axis and birth weights
of those samples are represented on the x-axis. LBW

samples are denoted in green, NBW samples in purple and HBW

samples in blue.

(TIF)

Table S1 Probes whose expression levels co-varied with
gestational age with a p,0.001 by Pearson’s regression.
(XLSX)

Table S2 Probes whose expression levels co-varied with
birth weight with a p,0.001 by Pearson’s regression.
(DOCX)

Table S3 Probes whose expression levels were signifi-
cantly different between gestational age groups with
FDR corrected pvalue of ,0.005.
(DOCX)

Table S4 Probes whose expression levels co-varied with
birth weight (p,0.001 by Pearson’s) and were signifi-
cantly different between birth weight groups (p,0.05 by
ANOVA) and had a fold change between birthweight
groups of .1.5.

(DOCX)

Table S5 20 genes studied in expanded sample set of
120 by qPCR. The replicating group comprises genes whose

mRNA levels had a significant relationship with gestational age in

the qPCR expanded study. The non-replicating group are those

genes whose mRNA levels did not achieve significance against

gestational age in the expanded qPCR study.

(DOCX)

Table S6 Genes containing probes whose transcript
levels were significantly different between birthweight
groups in the microarray analysis and also containing
CpGs whose methylation levels correlated with birth-
weight in the Infinium analysis.

(DOCX)

Text S1 Detailed description analysis of correlation
between mRNA level and DNA methylation state across
samples paired fro gestational age. Four CpGs from table 2

in CHRDL2, GLI2 and HSD11B1 had significant (p,0.05)

correlation of GA ratios between RNA expression and DNA

methylation, when all the samples were used to create 17 non-

unique pairs.

(DOCX)
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