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Abstract

technologies and haplotype assembly algorithms.

of a real data set.

Background: Although single-SNP analysis has proven to be useful in identifying many disease-associated lodi,
region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and
haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality
haplotypes and genotypes may be available for analysis given the development of next generation sequencing

Results: As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an
association, we propose to use both of them with the purpose of preserving high power under both genotype and
haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the
performance of these two approaches based on a theoretical model, population genetics simulations and analysis

Conclusions: Based on a theoretical model, population genetics simulations and analysis of a central corneal
thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and
haplotype approach has a high potential utility for applications in association studies.

Keywords: Genotype-based tests, Haplotype-based tests, Association analysis, Test statistic combination

Background

The development of genotyping and sequencing
technologies has enabled scientists to investigate the
impact of genomic loci on complex disorders and
traits. Indeed, genome-wide association studies (GWAS)
and sequencing studies have identified many common
single-nucleotide polymorphisms (SNPs) (for GWAS pub-
lication list, see http://www.genome.gov/gwastudies/) and
rare variations [1-4] associated with common diseases.
Although single-SNP analysis has proven to be useful in
discovering many disease-associated loci, this strategy may
be limited due to very stringent significance threshold and
poor reproducibility [5]. Region-based association studies
have the advantages of less stringent significance level and
potentially higher power if multiple associated variants are
found within a region. Indeed, several empirical studies
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have demonstrated the superiority of genotype gene-based
association analysis over single-SNP strategy [6,7]. Also,
there is some theoretical [8,9] and empirical evidence that
haplotype-based tests may possess higher power than
SNP-based tests. When intending to use haplotypes in an
association study, one faces a problem of phase inference.
While several statistical algorithms have been developed
to infer unknown haplotypes from genotype data [10-12],
the improvements of sequencing technologies will enable
researchers to assemble haplotypes from sequencing data
with very high accuracy (for examples of existing assembly
algorithms, see Bansal et al. [13], Bansal et al. [14], and
Schatz et al. [15]). This opens up the opportunity to
use high-quality haplotypes and genotypes in sequencing
association studies.

Numerous studies have reported cases when haplotype-
based analysis resulted in detection of an association,
while SNP-based analysis either did not yield any signifi-
cant results or yielded much higher p-values [16-19]. A
haplotype-based test may be more powerful than a
genotype-based test if haplotypes tag a true causal variant
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better (although the imputation of untyped SNPs using
publicly available reference panels may also be a powerful
strategy), or if a SNP-SNP interaction is present within a
region. In general, it is unknown whether haplotype- or
genotype-based tests are more relevant for identifying an
association of a genomic region with a phenotype. In this
article we propose two statistical tests that explicitly
combine both genotype and haplotype information for the
purpose of preserving high power under both genotype and
haplotype disease scenarios. We investigate two methods
based on a combination of p-values from genotype- and
haplotype-based association tests. The first method is a
minimum of p-values (MinP-val), and the other is a sum
test statistic based on inverse standard normal transform-
ation of two p-values (SumP-val). Based on simulations,
theoretical power calculations and application to a GWAS
data set, we have highlighted the merits and the drawbacks
of genotype- and haplotype-based tests, and those of
our combined approaches. The major conclusions from
our work are as follows:

1. Combination of haplotype- and genotype-based test
statistics preserves power for both genotype and
haplotype disease models;

2. In some of the considered scenarios, the
performance of the MinP-val approach is
comparable to those of the SumP-val method;

3. MinP-val is much more robust than SumP-val when
one of the underlying tests has low power.

Methods

Genotype- and haplotype-based tests

Let us assume that we are interested in testing the joint
association of all the variants within a genomic region with
either a dichotomous phenotype or quantitative trait. Next,
assume we have chosen the two statistical tests for a
region-based association analysis: one genotype- and one
haplotype-based test. For haplotype-based tests haplotypes
can be inferred from genotypes [10-12] or assembled from
sequencing data [13,15,20]. Several conventional genotype-
based methods [21-23] are applicable for common
variants testing, whereas for sequencing data numerous
recently-developed rare variants approaches are available
[24-28]. Haplotype-based methodologies have also been
extensively published elsewhere [29-31], including rare
haplotype tests [32-34].

The combined approaches

Let us denote p-values from a genotype- and a haplotype-
based tests as p; and p, respectively. Our first approach is
SumP-val [35]. Let us consider the inverse standard
normal transformation of both p-values and which are
distributed as standard normal random variables under
the null hypothesis. Here, we assume that y,,y, is bivariate
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normal. The SumP-val test statistic is Pgym = ¥1 + ¥2. Under
the null hypothesis, it is distributed as a normal random
variable with zero mean and variance Var(y; - y,) = Var
(y1) + 2Cor(y1,y2) — Var(y,) =2 + 2p, where p is a correl-
ation coefficient between y; and y,, since two statistical
tests for the same genomic region may not be independ-
ent. The correlation coefficient p may be estimated via
permutation procedure. The rejection region is large
values of the test statistic, which is equivalent to low
values for p; and/or p,. The theoretical p-value for
SumP-val test is calculated as , where @(a,b,c) is a
value of normal cumulative distribution function with
mean b and variance ¢ taken at the point a.

Our second approach (MinP-val) is to utilize the
minimum of the two p-values as a test statistic,
namely, min{p;, po} [36]. Let us represent a test statistic as
min{py, po} = min{l - O©(y1), 1 - ©(y,)}, where y; and y,
defined above are distributed as standard normal random
variables under the null. Thus, the theoretical cumulative
distribution function of MinP-val test statistic under the
null hypothesis can be calculated as follows:

p(min{1-0(y,),1-®(y,)} < x) = P(1-max{D(y,), D(y,)} < x) =
= (1 <max{®y1, 2)}) = 1-P(1- —x > Dy,), 1-x > Dly,)) =
= )

(
1P(07(108) > 1,07 (19) > ).
(1)

where 0 <x < 1. Given the rejection region is small values
of the test statistic, theoretical p-value for MinP-val test is
straightforward to compute using (1).

Theoretical power model

Within our theoretical framework the following model is
adopted: the two test statistics S, and S, of the under-
lying genotype- and haplotype-based tests, respectively,
are assumed to asymptotically follow central chi-squared
distribution X? with 1 degree of freedom under the null
hypothesis, and non-central chi-squared X7, and X3,
with NCPs a and b, respectively, under the alternative
hypothesis. One of the examples of the test which results
in such null and alternative distributions is Rao’s score
test on, for example, genotype or haplotype scores
described in Additional file 1. Since the two tests are
applied to the same data, the chi-squared test statistics
are likely to be positively correlated. The correlation
between the two test statistics may vary from very low
to high. For example, if within a region there are few SNPs
in very high LD then we would expect the correlation
between the tests to be high. Alternatively, we would
expect the correlation to be low when variants within a
region are independent. The correlation is modeled via
underlying multivariate normal distribution, namely, to
simulate the test statistics S, X7, and S~ X7, a bivariate

(y1,y2) with mean (\/o_z, \/];),

normal random vector y =
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unit variances and correlation coefficient p >0 is gener-
ated, and the squares of the coordinates are taken as the
proxy for the test statistics: S, = 2, S, = y3. To estimate
the power of MinP-val and SumP-val tests we simulated
500,000 independent pairs (S,, S,) under the alternative
huypothesis, calculated the test statistics for the combined
approaches, and noted the share of statistically significant
pairs. This procedure was done for every theoretical
scenario (see “Results” section).

Population genetics simulations

King et al. [37] provided the SFS_CODE (http://sfscode.
sourceforge.net) implementation of population genetics
simulation for ANGPTL4 gene exons (http://home.
uchicago.edu/~crk8e). The authors assumed the demo-
graphic and distribution fitness effect parameters from
Boyko et al. [38] and Gutenkunst et al. [39]. Using the
SES_CODE program 1000 haplotype pools each containing
20000 sampled “individuals” (40000 chromosomes) from a
European population were generated. A data replicate was
created from each haplotype pool by iterative random sam-
pling of two haplotypes (thus, defining the genotype of an
“individual”) and assigning a dichotomous phenotype condi-
tional on a multi-site genotype or a pair of haplotypes. Each
data replicate contains 500 cases and 500 controls. Let us as-
sume that there are L variants within the genomic region of
interest, and the genotype of “an individual” { g 1,...,g1} is
constructed from the sampled haplotypes. To describe the
genotype-based disease model let us, without loss of general-
ity, denote the genotypes at rare (MAF < 1%) causal SNPs as
{gl,...,gc} , causal common SNP g ; (if present depending
on a model), and other SNPs as {g, ,,....8, }. Let us also de-
fine the assigned odds ratios of causal variants {by, ..., b, _1}.
The probability of a disease P(A) for a genotype-based
scenario is calculated from the following:

°g<11-)1(;21)> =l (1 001) igll‘)g bi). (@)

For the haplotype-based scenarios let us consider the
two sampled haplotypes {/,/,}. Also, denote H, and H,
as the sets of rare (frequency in a haplotype pool <1%)
and common causal haplotypes, respectively (depending
on the disease model H, may be empty). The probability
of a disease is defined as:

P(A) 0.01 2
log(l—P(A)) = lo (1 001) +; I{hieH, } log(d,)
+I{hjeH_} log(d.)),

(3)

where [{A} is an indicator of an event A, and {d,d_} are
the odds ratios for causal rare and common haplotypes,
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respectively. For our simulations, we considered three
phenotype models: “Rare” (only rare variants or haplotypes
are risk-contributing), “Common” (only common variants
or haplotypes), and “Both” (both types of variants or
haplotypes). Following the scenarios of exome-scale
simulations of Wu et al. [40], we have assigned 50%,
20% and 10% of the observed rare variants (haplotypes) to
be causal. Additionally, we chose one common causal
SNP (haplotype) for “Both” and “Common” models. The
odds ratios {b;} 1_1 in (2) and {d,d.} in (3) were assigned
as follows:

— for the “Rare” model: b;=d,=4,[=1,.,cand b,.;=d.=0

— for the “Both” model: b;=d,=3,l=1,.,cand b,.; =d,
=12

— for the “Common” model: b;=d,=1.5,/=1,..,c and
bey=d.=2

The average number of variants across data replicates
is shown in Table 1.

Real data analysis

For the purpose of demonstrating the performance of
the described methodologies we conducted a gene-based
analysis of the central corneal thickness (CCT) GWAS
data sets described in Vithana et al. [41]. Briefly, the
Singapore Indian Eye Study (SINDI), which is part of the
Singapore Indian Chinese Cohort Eye Study (SICC) [42],
consists of 2538 Indian subjects aged 40 and above, and
the Singapore Malay Eye Study (SiMES) [43-45] is a
genome-wide association study of CCT phenotype which
contains 2542 Malay subjects aged 40 and above. Both
SiMES and SICC adhered to the Declaration of Helsinki.
Ethics approval for the both studies was obtained from
the Singapore Eye Research Institute Institutional Review
Board [41]. The combined data set consists of 5080 indi-
viduals genotyped at 552318 SNPs after quality control. In
total, 5049 individuals were analyzed after excluding those
with missing phenotype. Also, we attempted to replicate all
the genome-wide significant regions using Chinese samples

Table 1 The average number of variants within a
region across 1000 data replicates in population
genetics simulations

Phenotype model Proportion of causal variants/haplotypes

50% 20% 10%

Haplotype common 324 316 316
Haplotype both 355 332 326
Haplotype rare 372 34.1 330
Genotype common 331 324 322
Genotype both 36.3 337 329
Genotype rare 376 344 330
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from the SICC. This data set contains 2837 samples with
non-missing phenotype and covariates (age and gender).
SNPs were mapped to genes based on the method outlined
by Zhao et al. [46]. Briefly, information on gene identifiers
(IDs), names, start and end positions on a chromosome
were downloaded from the NCBI Genome database
(http://www.ncbi.nlm.nih.gov/Genomes). Gene regions
included 10 kb upstream and downstream. Hierarchical
mapping scheme (coding > intronic > 5'UTR > 3'UTR) was
used if a variant was within 10 kb of multiple genes. The
remaining inter-gene variants between two genes were
grouped together. Haplotype inference was performed
using the software Beagle [10] with reference panel from
1000Genomes Project (http://www.1000genomes.org/). In
our analysis we adjusted for age, gender and the first ten
principal components from Eigenstrat [47].

Statistical tests for population genetics simulations and
real data application

Sequence Kernel Association Test (SKAT), introduced by
Wu et al. [40], is a variance component score test derived
from a semi-parametric regression model. It was initially
proposed to test the association of phenotype with multi-
site genotype; however, we also used SKAT to test an asso-
ciation of phenotype with haplotypes as described below.
To show the consistency of empirical results we applied the
same pair of underlying tests, namely, genotype SKAT and
haplotype SKAT with linear kernel and uniform weights, to
both population genetics simulations and real data. For
genotype SKAT all rare variants (MAF < 1% in the sample)
within a region were collapsed according to the method
described by Thalamuthu et al. [48]. Briefly, the collapsed
super-variant is the sum of minor alleles across rare variants
within a region; if this sum is greater than 2 then the value
of 2 is assigned. We did not apply weighting as described by
Wu et al. [40] because that would substantially decrease
power to identify an association with common SNPs.
Haplotype-based SKAT is SKAT applied to a haplotype
regression matrix R, which is constructed similar to those
used by Zaykin et al. [31]. First, we pooled all rare haplo-
types into one haplotype group, whereas each of the com-
mon haplotypes formed a separate haplotype group. Let us
define the following notations: # is a number of individuals;
{H,...Hy is the haplotype groups with H,; being the most

common group; R = {R,»,»}Z.ivfl is a haplotype regression
matrix; and {/;1;4;5} is a pair of haplotypes for i th individ-
ual. The haplotype matrix {R;} is constructed as follows:

R,’j = l{hi,leH/} + l{hiﬁzeHj},l' = 17 ...,Vl;j
=1,..,M-1, (4)

where [{A} is an indicator of an event A. If there were no
common haplotypes within a region, we formed three
groups of haplotype: those with a frequency less that 0.05%,
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those in between 0.05% and 0.1%, and those with a
frequency greater than 0.1%. For both tests we used the R
(http://www.r-project.org/) package SKAT (http://www.
hsph.harvard.edu/~xlin/software.html). For population gen-
etics simulations p-values for all the tests were estimated
using 1000 permutations. In real data analysis for the
underlying tests we used theoretical p-values as we believe
that they reasonably approximate empirical p-values given
large sample size and normally-distributed quantitative trait
[41]. Then we tested an assumption of bivariate normality
by applying the Shapiro-Wilk test (R package “mvnormtest”
http://cran.r-project.org/web/packages/mvnormtest/). If the
normality test was not significant on the genome-wide
level, we used theoretical p-values for both SumP-val
and MinP-val; otherwise we used permutations. The
permutation procedure and estimation of correlation
coefficient are described in the next section.

Permutation procedure and estimation of correlation
coefficient

To calculate theoretical p-values for the proposed methods
we estimated the correlation coefficient p using 500 permu-
tations. The difficulty in applying permutations lies in the
fact that the permutation procedure should preserve the
relationship between all the covariates, and also between
phenotype and covariates, but disrupt the relationship
between phenotype and genotype. Several techniques have
been developed for conducting permutation tests of partial
coefficients in a multiple regression model [49-51]. Among
them the permutation of residuals under the reduced model
[49] was shown to preserve correct type-1 error for t-test
[52] and was previously applied to microarray data analysis
[53]. As the SKAT test can be obtained from a semi-
parametric regression model [40], let us consider the follow-
ing genotype and haplotype regression models: Y=a; - f;
(P)- Cc—¢€ and Y=a, - f5(R) — Cc - ¢, where P is n x L col-
lapsed genotype matrix, 7 is the sample size, L is the num-
ber of common SNPs within a region plus one for collapsed
rare variants super-locus, Y is nx 1 vector of quantitative
phenotype (CCT), C is nx 12 matrix of covariates which
include age, gender and the first ten genotype principal
components obtained from Eigenstrat [47], R is haplotype
regression matrix, and f; and f; are unknown functions. To
obtain the permutation values for the test statistics the
reduced model Y=a-Cc-¢ is fitted, and a,c, ¢ are the
estimated constant coefficient, regression coefficients and
residuals, respectively. Next, the residuals € are permuted to
obtain ¢, and Y=a + Cc - &. The permuted statistic values
for both genotype and haplotype SKAT tests are calculated
as respective SKAT statistics from semi-parametric models
Y=a,-fi(P)-Cc-¢ and Y=a,-f5(R)- Cc-e. Each
p-value obtained from permutations was transformed using
the inverse standard normal transformation, and the value
of p was estimated by a Pearson correlation coefficient.
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Results

Theoretical power results

Depending on the disease model, one of the underlying
tests (genotype- or haplotype-based) is expected to be more
powerful than the other underlying test. So, we assume
that under the alternative hypothesis the non-centrality
parameter (NCP) of the more powerful underlying test is ,
and the NCP of the less powerful underlying test is b = a/2.
Figures 1 and 2 (Panel 1) show the power of MinP-val
and SumP-val strategies as a function of correlation
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coefficient p and NCP a at the fixed type-1 error of
0.05. As can be seen in Panel 1, power in general
decreases slightly with increasing correlation. Panel 2
depicts the difference in power between the com-
bined approaches and the more powerful underlying
test. It is notable that both MinP-val and SumP-val
achieved greater power than the more powerful
underlying test for lower correlation. Also, MinP-val
approach lost a maximum of 5% power for high
correlation and gained a maximum of 2% for low
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Figure 1 Performance of MinP-val approach under the theoretical models. Different lines across the panels correspond to different levels of
correlation p - 0, 0.3, 0.6 and 0.9. Panel 1: Power of MinP-val test as a function of NCP g and correlation p; Panel 2: Difference in power between
MinP-val and the more powerful underlying test as a function of NCP a and correlation p; Panel 3: Difference in power between MinP-val and
the less powerful underlying test as a function of NCP a and correlation p; Panel 4: Power of MinP-val test as a function of correlation p and the
ratio of NCP b to NCP of the more powerful underlying test (the latter is fixed at 10.5).
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Figure 2 The performance of SumP-val approach under the theoretical models. Different lines across the panels correspond to
different levels of correlation p - 0, 0.3, 0.6 and 0.9. Panel 1: Power of SumP-val test as a function of NCP a and correlation p;
Panel 2: Difference in power between SumP-val and the more powerful underlying test as a function of NCP a and correlation p;
Panel 3: Difference in power between SumP-val and the less powerful underlying test as a function of NCP a and correlation p;
Panel 4: Power of SumP-val test as a function of correlation p and the ratio of NCP b to NCP of the more powerful underlying test
(the latter is fixed at 10.5).

correlation, whereas for SumP-val these values are more
than 5% in both cases.

In Panel 3, where the difference in power between the
combined approaches and the less powerful underlying
test is shown, it can be seen that both MinP-val and
SumP-val are consistently better than the less powerful
test. This suggests that combination of statistical tests
may prove beneficial when the underlying disease model

is unknown. To investigate the impact of change of NCP
b on the performance of the proposed approaches we
fixed NCP a to be equal to 10.5 (corresponding to 90%
power of a chi-squared test with X7, distribution under
the alternative hypothesis, the type-1 error is 0.05). Panel
4 of Figures 1 and 2 depicts the power of MinP-val and
SumP-val as a function of correlation and a “fraction of
NCP” — the ratio of b to 10.5. As can be seen in Panel 4,
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MinP-val test achieved higher power than SumP-val in
the majority of scenarios. It is notable that SumP-val
lost much power when the value of 4 is low. Hence,
MinP-val approach is more robust with respect to
underperformance of one of the underlying tests.

Population genetics simulation results

Panel 4 of Figure 3 shows the empirical type-1 error esti-
mate for the theoretical level of 0.05 for all the tests. The
estimate of type-1 error is distributed as a binomial random
variable with 1000 trials and the probability of success 0.05
under the hypothesis of no inflation. The one-sided 99%
quantile of the described distribution is 0.067. As can be
seen, in our simulations the type-1 error was well
controlled for all the tests.

Panles 1-3 of Figure 3 depict the results of population
genetics simulations analysis for all the phenotype models
with 50%, 20% and 10% or rare causal variants/haplotypes,
respectively, at the fixed 5% type-1 error. For all the tests
1000 permutations were performed to estimate p-values.
Haplotypes were assumed to be known without ambiguity.
Under the genotype-based disease scenarios, genotype
SKAT is expected to be more powerful than haplotype
SKAT, and vice versa under the haplotype-based scenar-
ios. However, genotype SKAT was less powerful for many
genotype-based phenotype models. A possible explanation
of this observation is that when rare variants are strongly
associated with phenotype, for some statistical tests
pooling of rare haplotypes may be a better strategy than
pooling of rare variants. Also, it should be noted that
with the decrease in the percentage of causal rare
variants/haplotypes, the power for “Rare” and “Both”
phenotype models decrease substantially since for
these models rare variants/haplotypes are the major
carriers of an association signal. For “Common” pheno-
type model one common variant/haplotype has a signifi-
cant impact on phenotype; so, the decrease in power with
the lower proportion of causal rare variants/haplotypes is
not as high as for other phenotype models.

As can be seen from the Panels 1-3 of Figure 3, for all
the phenotype disease models, when both underlying
tests were almost equally powerful (e.g. Panel 1 haplo-
type disease scenario “Common” model, and genotype
disease scenario “Both” and “Common” models), the
power of both MinP-val and SumP-val were on the same
level or even higher than those of the underlying tests.
However, when genotype-based SKAT significantly
underperformed haplotype-based SKAT (e.g. Panel 1
haplotype disease scenario “Rare” and “Both”’models),
MinP-val approach showed slightly lower power than
the more powerful underlying test and greater power
compared with SumP-val approach. The maximum power
loss of SumP-val and MInP-val compared with the more
powerful underlying test across all phenotype models was
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6.3% and 3.8% respectively (haplotype disease scenario
“Both” model). These results are consistent with those
obtained from the theoretical power considerations, and
illustrate the great potential of the proposed methods in
their application to real association studies.

To examine the effect of phasing on our results we
repeated the analysis using the most probable haplotypes
inferred by Beagle [10]. The reference panel consisted
of 1094 simulated individuals to mimic the size of the
publicly available reference panel from the 1000 Genomes
Project (www.1000genomes.org). The results of this
analysis were very similar to those described above
(data not shown). In addition, we applied the proposed
methods with a different pair of underlying tests. The
results are similar to those described above. For more
details, see Additional files 1 and 2.

Application to central corneal thickness GWAS data set

A total of 552318 SNPs were mapped using the hierarch-
ical mapping algorithm described in the “Methods” section.
As a result, we obtained 36146 genes and between-gene
blocks. Regions that reached genome-wide significance
(1.38E-6 after Bonferroni correction) for at least one of the
four applied tests are presented in Table 2. We identified
all of the significant regions reported by Vithana et al. [41]:
COLB8A2 gene, an interval between the genes RXRA and
COL5AL1 and a region near ZNF469 gene. As can be seen
from Table 2, genotype-based SKAT and MinP-val tests
achieved genome-wide significance for all the five regions
listed, whereas SumP-val failed to reach genome-wide
significance for both RXRA-COL5A1 and C7orf42 regions.
This highlights that MinP-val approach performed better
than the SumP-val approach. Haplotype-based SKAT failed
to identify any association signal for four out of the five
regions. From our results it is clear that for this data set
genotypes were more relevant for identifying associated re-
gions. Judging from the performance of the Haplotype
SKAT there is no evidence of association of haplotypes
with a phenotype except for COL8A2 gene. It is also of
interest to compare our results to those reported by
Vithana et al. [41] for single-SNP analysis. For the two out
of three regions genotype-based SKAT and MinP-val
methods outperformed the single-SNP analysis and yielded
lower p-values, which may be explained by the utilization
of linkage disequilibrium (LD) within a region to boost
power. Given the sensitivity of SumP-val approach to
underperformance of one of the underlying tests, this
method showed higher p-values. To justify our assumption
of bivariate normality for calculation of p-values for the
proposed tests, we used the Shapiro-Wilk test. The corre-
sponding p-values for the significant regions are presented
in the (Additional file 1: Table S1) in the first row. All the
p-values, except those for COL8A2-TRAPPC3 region, are
non-significant at the genome-wide level, which suggests
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(See figure on previous page.)

Figure 3 Power comparison of genotype-based SKAT, haplotype-based SKAT, MinP-val and SumP-val tests for population genetics
simulations, and an estimate of empirical type-1 error. In each panel the top three disease models correspond to the haplotype-based
disease scenario, whereas the lower three correspond to the genotype-based scenario. Disease models “Rare”, “Both” and “Common” are
described in the section “Population genetics simulation”. Type-1 error is set to 5%. Panel 1: 50% of rare variants/haplotypes were assumed to be
causal; Panel 2: 20% of rare variants/haplotypes were assumed to be causal; Panel 3: 10% of rare variants/haplotypes were assumed to be causal;
Panel 4: empirical type-1 error estimate for simulations under the null hypothesis.

there is no evidence against the bivariate normality
assumption. The Shapiro-Wilk test of COL8A2-TRAPPC3
region yielded a marginally significant p-value on the
genome-wide level. Hence, the p-value for this region in
the Table 2 is based on permutations.

Table 3 shows the results of the replication analysis.
For the region COL8A2-TRAPPC3 the reported replication
p-value is based on permutations, whereas for other regions
there was no evidence against bivariate normality assump-
tion (Additional file 1: Table S1, second row). As can be
seen from Table 3, only RXRA-COL5A1 region was
significant after Bonferroni correction for all the tests
except for the haplotype-based SKAT. Our replication
results are consistent with those of Cornes et al. [54]
who found strong evidence of association of multiple
SNPs within the RXRA-COL5A1 region, and marginal
significance of COL8A2 SNP rs96067. It is worth noting
that in our analysis C7orf42 gene, which was not identified
by Vithana et al. [41], reached genome-wide significance
in SIMES + SINDI data set and had moderate p-value in
the replication dataset. Cornes et al. [54] found this gene
to be significant in a meta-analysis of SIMES, SINDI,
1883 samples from the Singapore Chinese Eye Study
and 798 samples from the Beijing Eye Study [55]. The
role of C7orf42 gene in central corneal thickness (CCT)
phenotype requires further investigation. The results of
our analysis suggest that RXRA-COL5A1 region may have
an impact on CCT phenotype.

In addition to the gene-based analysis, we tried to
replicate the four genome-wide significant SNPs found
by Vithana et al. [41] in our Chinese samples using
single-SNP analysis. Having tested an association of
these SNPs with CCT trait using trend test within a

linear additive model adjusting for age, gender and
the first ten principal components, we found that
none of the SNPs was significant on the corrected
type-1 error rate 0.0125=0.05/4. This result suggests
that gene-based replication may be a more powerful
strategy than single-SNP replication.

In addition to the main genome-wide analysis of
SiMES + SINDI data set, we applied the proposed
methods with a different pair of underlying tests to the
three regions reported by Vithana et al. [41]. Both
MinP-val and SumP-val identified the three regions on
genome-wide significance level. This result suggests that
our combined approaches work as well with other
underlying tests (for more details, see Additional file 1).

Discussion

When the underlying disease model is unknown, combin-
ing statistical tests tailored for different disease scenarios
may be a much better strategy than application of a statis-
tical test designed for one specific disease model. In this
article we have described the two approaches of combining
genotype- and haplotype-based statistical tests. The results
of theoretical power considerations, population genetics
simulations and real data analysis showed strong perform-
ance of MinP-val approach for different disease scenarios,
whereas SumP-val method was shown to perform poorly
when one of the underlying tests had low power. Our
analysis of SiIMES + SINDI identified the three regions
found by Vithana et al. [41], and additionally, the
C70rf42 gene. The replication analysis confirmed an asso-
ciation of RXRA-COL5A1 region, which is consistent with
the results of Cornes et al. [54], and showed a moderate
p-value for C7orf42 gene. The analysis of real data

Table 2 The results of the combined SiMES and SINDI data analysis and the single-SNP p-values from the original article

COL8A2 ZNF469-LOC100128913 RXRA-COL5A1 COL8A2- TRAPPC3 C70rf42
Chromosome 1 16 9 1 7
Number of SNPs 4 27 73 3 6
Genotype SKAT 3.68E-13 2.13E-15 4.06E-12 2.63E-08 2.55E-07
Haplotype SKAT 5.58E-10 0.149394 0.79 2.78E-05 0.005
MinP-val 3.68E-13 4.22E-15 8.11E-12 4E-08 4.96E-07
SumP-val 1.77E-11 9.44E-10 7.90E-06 4E-08 2.60E-05

Single-SNP analysis* rs96067: 54E-13

rs9938149: 1.63E-16 rs12447690: 1.92E-14

rs1536478: 3.5E-9 - -

Genome-wide significant p-values for gene-based tests are shown in bold. * SIMES and SINDI meta analysis p-values from Vithana et al. [41].
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Table 3 Replication results on Chinese samples from the Singapore Indian Chinese cohort eye study

COL8A2 ZNF469-LOC100128913 RXRA-COL5A1 COL8A2- TRAPPC3 C70rf42
Genotype SKAT 0.019 0.117 0.001 1 0014
Haplotype SKAT 0.599 0479 0.1 1 027
MinP-val 0.037 0.223 0.002 0.989 0.028
SumP-val 0.089 0.186 0.001 0.788 0.027

Single-SNP analysis* rs96067: 0.036

rs9938149: 0.4 r512447690: 0.03

1s1536478: 0.016 - -

Significant p-values are shown in bold. For single-SNP analysis the Bonferroni correction corresponds to the four tests. * Trend test within a linear

regression model.

highlighted the applicability of our combined approaches
to real association studies.

In our simulations the Haplotype SKAT was the most
powerful test in many cases, but in real data analysis it
performed the worst. It is not known beforehand
whether a genotype- or a haplotype-based test would
perform better; hence, our proposal to apply a combined
approach is a robust choice. Indeed, MinP-val did well
in both simulations and real data. This emphasizes the
major point of the combined strategy: MinP-val may
have slightly lower power when a disease model fits
Haplotype SKAT and higher power when the disease
model is closer to the second underlying tests. One of
the possible reasons for the apparent inconsistency of
Haplotype SKAT performance may be that for “Rare”
and “Both” simulation models we assumed that rare
variants bear the major association signal whereas in the
real data only common SNPs were present. However,
Haplotype SKAT performed well even for “Common”
model when a common SNP was causal. We suppose
that for this scenario genotype association translated
into an association of haplotypes with a phenotype,
which is possible if common SNPs within a region are in
high LD with each other. On the other hand, if a causal
common SNP within a region is in low LD with other com-
mon SNPs within a region then under a genotype-based
disease scenario haplotype-based test may have much lower
power than a genotype-based test which is observed in the
results of the real data analysis.

The methods proposed in this study may be easily
generalized to multiple statistical tests, namely, instead
of two underlying tests it is possible to apply more tests
and combine all of them via the described methodology.
In this case the arguments for theoretical p-value
calculation for the proposed approaches can be extended
in a straightforward manner.

Recently Derkach et al. [56] investigated the perform-
ance of the combined approaches, namely, the minimum
of p-values and the Fisher p-value combination, for rare
variants association scenarios. Although the approaches
we propose are similar, our major idea is different. We
combine two test statistics for the purpose of widening
the set of alternatives for which our test is powerful;

thus, we choose the underlying tests designed for very
different phenotype models, whereas Derkach et al. [56]
used linear and quadratic tests which are likely to be
both powerful under many models. As a result, our con-
clusions are different from those of Derkach et al. [56].
For example, the authors stated that “hybrid test statis-
tics provide much needed robustness in terms of power
for association tests”, whereas we observed that only
minimum p-value approach really preserves power when
one of the underlying tests underperforms. Secondly,
the authors found that in many cases Fisher method
outperforms both of the underlying tests, and the
minimum p-value approach. However, from our work
it is clear that SumP-val (which is similar to the Fisher
p-value combination) outperforms all the three tests
only when both of the underlying tests have comparable
power which is unlikely if the two underlying tests are
deliberately chosen to fit very different phenotype models.

One of the limitations of the proposed approaches is the
need to use permutations. For theoretical p-value calcula-
tion both SumP-val and MinP-val require a correlation
coefficient to be estimated via permutations. Moreover,
permutations need to be applied when asymptotic distribu-
tions of the underlying test statistics are unknown or
inadequate to describe the empirical distributions.

The described methodologies may be extended to pre-
serve power under other disease models. For example, the
combination of rare-variants and common-variants statis-
tical tests applied to a sequenced region may preserve high
power when either only rare or only common variants are
associated with a phenotype. However, it is not known how
the combined approaches will perform if both common
and rare variants are associated with phenotype.

Conclusions

In this study we have investigated the performance of
combined haplotype- and genotype-based tests for the
purpose of preserving high power under both genotype
and haplotype disease scenarios. Based on theoretical
power calculations, population genetics simulations
and analysis of the real data set we have illustrated
high performance and potential utility of combined
approaches for association studies.
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Additional file 1: Table S1. Shapiro-Wilk bivariate normality test
p-values for the genome-wide significant genes, additional simulation
and real data analysis results. Shapiro-Wilk test was used in real data
analysis to justify our assumption of bivariate normality for calculation of
theoretical p-values for MinP-val and SumP-val tests. Additional
simulations and real data analysis were performed using different pair of
underlying tests.

Additional file 2: Power comparison of the gene score haplotype
test, the gene score genotype test, MinP-val and SumP-val
statistical tests for population genetics simulations, and an estimate
of empirical type-1 error. In each panel the top three disease models
correspond to the haplotype-based disease scenario, whereas the lower
three correspond to the genotype-based scenario. Disease models “Rare”,
“Both” and “Common” are described in the section “Population genetics
simulation”. Type-1 error is set to 5%. Panel 1: 50% of rare variants/
haplotypes were assumed to be causal; Panel 2: 20% of rare variants/
haplotypes were assumed to be causal; Panel 3: 10% of rare variants/
haplotypes were assumed to be causal; Panel 4: empirical type-1 error
estimate for simulations under the null hypothesis.
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