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Abstract

A great majority of genetic markers discovered in recent genome-wide association studies have small effect sizes, and they
explain only a small fraction of the genetic contribution to the diseases. How many more variants can we expect to
discover and what study sizes are needed? We derive the connection between the cumulative risk of the SNP variants to
the latent genetic risk model and heritability of the disease. We determine the sample size required for case-control studies
in order to achieve a certain expected number of discoveries in a collection of most significant SNPs. Assuming similar
allele frequencies and effect sizes of the currently validated SNPs, complex phenotypes such as type-2 diabetes would
need approximately 800 variants to explain its 40% heritability. Much smaller numbers of variants are needed if we assume
rare-variants but higher penetrance models. We estimate that up to 50,000 cases and an equal number of controls are
needed to discover 800 common low-penetrant variants among the top 5000 SNPs. Under common and rare low-
penetrance models, the very large studies required to discover the numerous variants are probably at the limit of practical
feasibility. Under rare-variant with medium- to high-penetrance models (odds-ratios between 1.6 and 4.0), studies
comparable in size to many existing studies are adequate provided the genotyping technology can interrogate more and
rarer variants.
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Introduction

The advent of affordable high-throughput genotyping technol-

ogy has led to numerous large-scale genome-wide association

studies. A striking and disappointing feature of the discoveries

made is the mostly small effect sizes. The first major results in type-

2 diabetes [1] reported 9 validated SNPs, one on the TCF7L2

gene having odds ratio (OR) 1.37, while the others had ORs

between 1.12 and 1.20. A co-dominant model is commonly

assumed, and the stated OR is per risk allele; we adopt the same

model throughout. A more recent meta-analysis aiming at

expanding the number of associated SNPs for type-2 diabetes

[2] combined data from 3 major studies, involving 4,549 cases and

5,579 controls, using genome-wide scans of 2.2 million typed and

imputed SNPs. The study identified 11 SNPs that were validated

in stage 2 (21,461 subjects) and stage 3 (32,514 subjects). The ORs

of these SNPs based on the combined data range from 1.05 to

1.15.

Similar results have been reported in other complex diseases: for

example, in breast cancer [3] the top 11 SNPs at final validation

stage (involving 21,860 cases and 22,578 controls) have ORs

ranging from 1.04 to 1.26. To get an overview, we downloaded the

compilation of all GWAS results from http://www.genome.gov/

26525384. As of 3 March 2009 the website includes 273

publications and 1213 SNPs. We removed studies (i) of non-

disease traits; (ii) that did not have replications; (iii) that did not

report risk allele frequencies or p-values or ORs. ORs were

computed from the largest available data, i.e. including data from

the replication studies. Following (iii), quantitative traits were

excluded because they did not report ORs. Using these criterion

we ended up with 383 SNPs from 101 studies; the list is given in

the Supplementary Material (Table S1).

The histogram in Figure 1 confirms that the great majority of

discovered SNPs have small ORs. The median OR is 1.25. Forty

percent (153/383) of the ORs are ƒ1:2; 60% (230/383) are ƒ1:3
and 80% (306/383) are ƒ1:5. Only three percent of the ORs (10/

383) are w3. The small frequency of ORs between 1 and 1.1

suggests that many existing studies are not large enough to

discover ORs in that range, and there are likely many more SNPs

with ORs in that range that remain to be discovered.

As has been commented by many authors [4,5,6], these small

effects mean that the current discoveries explain only a small

fraction of the genetic contribution to the disease. In this paper we

will address two questions: how many more disease-associated

SNPs remain to be discovered? What sample sizes are required to

discover them? The first question depends on the genetic

architecture (e.g., the allele frequencies and penetrance of the

remaining variants) that underlies the heritability of the disease.

Intuitively, given the weak effects we observe currently, a large

number of variants is required to explain a heritability of

approximately 40% for type-2 diabetes [7] or 30% for breast

cancer [8]. An alternative suggestion is that rare variants with

higher penetrance, missed by the present genotyping, explain most

of the heritability. We investigate the second question by

estimating the sample size required for a case control study

conducted to discover the multiple variants. It is not obvious to

know, for example, what is required to discover 500 common low-

penetrant variants or some other number of rare variants.
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Results

As an illustrative case study, we consider results from type-2

diabetes, where we have 9 SNPs from [1] and 11 SNPs from [2].

OR estimates are taken from the largest available combined

sample. The specific SNP information is given in Table 1.

The distribution of the risk for type-2 diabetes attributable to

the SNPs in Table 1 is given in Figure 2. The sum of the

proportions is 100%. The dotted curve is the normal approxima-

tion. The graph shows the population heterogeneity in suscepti-

bility to diabetes, as assumed in quantitative genetic analysis (see

Materials and Methods). Assuming 10% overall prevalence of

type-2 diabetes in the population, the 5% of the population at

highest risk have 16% chance of being affected. This same group

has an OR of 2.1 relative to the average risk group, and an OR of

4.2 relative to the 5% at lowest risk. The great promise of genomic

medicine is individualized prognosis; to achieve 90% sensitivity

and 90% specificity for such a prognosis, we would need an OR of

(0.9/0.1)/(0.1/0.9) = 81. This means that the current result is still

very far from the goal of individualized prognosis.

The variance of the distribution in Figure 2, reflecting the

contribution of the 20 SNPs, is 0.13. Using formula (4), the

contribution of the 20 SNPs to the liability variance is 3.8%

~0:13
�

0:13zp2
�

3
� �� �

. Compared to the known heritability of

type-2 diabetes, which is around 40% [7], this means we have

discovered only a small fraction of the potential genetic

contribution to the disease. (Poulsen et al. [7] actually reported a

wide range of heritability estimates (26% to 61%) depending how

type-2 diabetes is defined; we take 40% as an intermediate value.)

From (4), to achieve a heritability of 40%, we need var gð Þ~2:19,

which can be achieved by discovering more variants.

How Can We Improve the Current Results?
Discoveries of More Variants by Performing Larger and

Larger Studies. Suppose we double the number of type-2

diabetes SNPs from 20 to 40, all assumed to be independent and of

similar effect sizes to the current SNPs. Then the 5% of individuals

with the highest risk have an OR of 2.7 relative to the average risk

group, and an OR of 7.2 relative to the 5% at lowest risk. With

100 independent SNPs, these ORs increase to 4.5 and 20.5.

However, larger studies tend to discover smaller effect sizes; beside

the direct impact of increased power to detect weaker effect sizes,

larger studies also increase disease heterogeneity. Distinct disease

subtypes might be due to different risk alleles, so mixing all

different subtypes in a large study will tend to dilute the effect sizes.

Discoveries of Variants with Larger Effect Sizes
If we find 20 SNPs with twice the observed effect sizes in the

diabetes study, the odds-ratio of the 5% at the highest risk relative

to the average risk group is 4.1, and relative to the 5% at the

lowest risk is 17.0. We can search for larger effect sizes by studying

more homogeneous sub-populations, for example, those defined

by (i) more specific phenotypes (e.g. early onset cases), or (ii)

familial cases of the disease. We might also search for larger effects

among gene-gene or gene-environmental interactions, where by

‘interaction’ we mean the deviation from the log-additive model.

However, studying a more homogenous sub-population will

require (i) even larger overall sample sizes to overcome increased

multiplicity and stratification, and (ii) more detailed data on

phenotype, lifestyle and environmental factors. To illustrate the

problem in the analyses of interactions, if we start with 106

Figure 1. Distribution of 383 ORs from 101 GWA studies listed
in the Supplementary table (Table S1).
doi:10.1371/journal.pone.0007969.g001

Table 1. The top 9 SNPs from [1] (the first 9 on the first
column) and 11 SNPs from [1].

SNP Freq. OR SNP Freq. OR

Rs10811661 0.83 1.20 rs12779790 0.183 1.11

Rs4402960 0.29 1.14 rs7961581 0.269 1.09

Rs1470579 0.30 1.17 rs7578597 0.902 1.15

Rs7754840 0.31 1.12 rs4607103 0.761 1.09

Rs1111875 0.53 1.13 rs10923931 0.106 1.13

rs13266634 0.65 1.12 rs1153188 0.733 1.08

Rs7903146 0.26 1.37 rs17036101 0.927 1.15

rs5219 0.47 1.14 rs2641348 0.107 1.10

Rs1801282 0.86 1.14 rs9472138 0.282 1.06

rs864745 0.501 1.10 rs10490072 0.724 1.05

‘Freq.’ refers to the frequency and ‘OR’ the odds-ratio of the risk allele.
doi:10.1371/journal.pone.0007969.t001

Figure 2. Distribution of latent genetic risk derived for the
type-2 diabetes example, computed using (1) and (2).
doi:10.1371/journal.pone.0007969.g002
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markers, just for two-way SNP-SNP interactions, we would need

to search among 1012 hypotheses, so severe constraints are needed

to make the search practically feasible and statistically meaningful.

It is worth noting that gene-gene interactions, which are clearly

plausible, also tend to generate rare composite-genotypes. Two

relatively common SNPs, each with a MAF of 0.3, can for example

produce an interacting genotype with a MAF of 0:34 ~0:0081ð Þ,
assuming independence and interaction among the minor

homozygous alleles only. The problem is worse if several SNPs

are interacting. So the detection of gene-gene interactions will be

at least as hard as detection of rare variants.

Different types of variants, for example copy-number variants,

insertion/deletion or epigenetic changes as measured by methylation

status, have the potential for enlarging the search space for disease-

causing variants. To contribute beyond what is already captured by

the SNP array platforms, these variants have to be independent

(not in linkage disequilibrium) with the existing SNP markers.

How Many More Disease Variants Can We Discover?
The number of variants to be discovered is determined by (i) the

total genetic contribution to the disease, and (ii) the genetic

‘architecture’ of the disease. This architecture is a function of the

allele frequencies and effect sizes; for example, we might have com-

mon low-penetrant variants or rare high-penetrant variants. Given

the current bias in genotyping common SNPs, it seems unlikely that

we have missed many common-variants with medium or high effect-

sizes, as they would have been discovered in the large-sample studies.

What is more likely to remain are the common variants of

low effect-sizes, or rare variants with low, medium or high effect-sizes.

Let us first assume that the causal variants to be discovered are

similar in ORs and allele frequencies to the SNPs found in [2]. Note

that the OR range (1.05 to 1.15) in [2] is already lower than the range

from an earlier study (1.12 to 1.20, excluding the TCF7L2, from [1]).

To explain the 40% heritability of type-2 diabetes we need 812 variants

(including the 20 variants already discovered). Figure 3 (solid curve)

shows the number of causal variants as a function of the heritability for

the common-variant model with low effect-sizes.

To get a better understanding we compare several genetic

models with various distributions of MAFs and effect sizes as

follows, with details given in Table 2:

A. Common-low: this is as described above paragraph.

B. Modest-low: the MAFs are half of the MAFs in A, but with

the same effect sizes.

C. Rare-low: the MAFs are one-fifth of the MAFs in A, but with

the same effect sizes.

D. Rare-medium: the MAFs are one-fifth of the MAFs in A, but

the log-ORs are 5-times larger.

E. Rare-high: the MAFs are one-tenth of the MAFs in A, but the

log-ORs are 10-times larger.

F. Very-rare-high: the MAFs are one-hundredth of the MAFs in

A, but the log-ORs are 10-times larger.

Figure 3 also shows the number of causal variants as a function

of the heritability for the different genetic architectures. As

expected, the worst in terms of potential discoveries is rare-variant

low-penetrant model (C), which requires 3114 variants to explain a

heritability of 0.4. In contrast, for model E, where we set the allele

frequencies to be 10-times smaller (MAF range 0.0073 to 0.05) and

log ORs 10-times larger (OR range 1.63 to 4.05), we only need 80

rare variants. Very-rare variants (model F, with MAF range

0.00073 to 0.005) are challenging enough just to observe them in a

study, and we need approximately 600 of them even with relatively

high effect-sizes. These extreme models pose other statistical

difficulties, which we discuss in the next section.

Sample Size Issues
How large should our study be to capture multiple causal variants?

Most sample size computations for association studies are based on

the power to detect a single variant, allowing for the standard

significance level. Such an approach is not applicable to deal with the

discovery of multiple causal variants, since we then have to consider

the impact of multiple testing problem. We thus adapt a method from

microarray gene-expression studies [9], where we consider the

expected number of true positives in a list of top SNPs. Because of LD

and multiple SNP markers within a haplotype block, a single causal

variant may be tagged by multiple significant markers. To be

concrete, assume that an average of 3 markers will be significant for

each causal variant; this does not affect our conclusions. For the null

SNPs, we assume that the MAFs vary according to this distribution:

MAF 0.05 0.1 0.2 0.3 0.4

proportion 0.35 0.25 0.15 0.13 0.12

This roughly follows the MAF distribution of the SNPs in

chromosome 22 of the control group in the Wellcome-Trust case-

control consortium data [10]. The exact shape is not crucial for

our computations.

For the causal variants, under each model, the MAFs and ORs

follow the distributions in Table 2. For each model, the MAFs are

discretized into 5 equally-spaced values within the assumed range,

and each MAF has equal proportion. The OR range is similarly

split. For example, for model A, the MAFs are distributed with

equal proportion at (0.073, 0.180, 0.286, 0.393, 0.500), the ORs

are (1.15, 1.125, 1.100, 1.075, 1.05).

We assume that we use arrays with 1 M markers for models A

and B. To be able to capture rare variants, we assume 10 M-

marker arrays for model D, and 100M-marker arrays for model E.

Figure 4 shows the expected number of causal variants that will be

discovered as a function of the number of cases in a case-control

Figure 3. The number of variants required to explain the
corresponding heritability. The labels A–F refer to the genetic
models given in Table 2.
doi:10.1371/journal.pone.0007969.g003
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study, with equal number of controls. For example, in model A, to

capture about 330 of the 812 causal variants in the top 1000 SNPs,

we need a study with at least 25,000 cases and 25,000 controls. (Since

we assume 3 significant markers per causal variant, when all the

causal variants are discovered with large enough sample size, the top

1000 SNPs will in the average contain the top 333 causal SNPs.) In

such a study, we expect about 600 of the 812 causal variants in the top

5000 SNPs. The large number of null SNPs in this list of top 5000

SNPs means that further validation studies are required to identify the

causal variants. Approximately 50,000 cases and 50,000 controls are

needed to capture the 812 causal variants among the top 5000 SNPs.

The worse scenario regarding sample size is model B, the model

of rare variants with low effect-sizes, where at least 125,000 cases

and 125,000 controls are needed to discover approximately 1400

variants among the top 5000 SNPs. However, the detection of rare

variants in models D and E is surprisingly within reach with the

kind of sample sizes achieved by consortium studies performed

today. This is of course a function of the assumed MAFs and ORs;

Table 2. Various models of genetic architecture and the number of variants needed to explain a heritability of 0.4.

Scenario by Freq- Effect-sizes Range of MAFs Range of ORs Number of variants for h2~0:4

A. Common-low 0.073–0.499 1.05–1.15 812

B. Modest-low 0.0365–0.2495 1.05–1.15 1368

C. Rare-low 0.0146–0.0998 1.05–1.15 3114

D. Rare-medium 0.0146–0.0998 1.28–2.01 144

E. Rare-high 0.0073–0.0499 1.63–4.05 80

F. Very-rare-high 0.00073–0.00499 1.63–4.05 608

doi:10.1371/journal.pone.0007969.t002

Figure 4. The expected number of discoveries of causal variants as a function of the number of cases in a case-control study, with
equal number of controls. The models refer to those in Table 2 in terms of the range of MAFs and ORs of the risk alleles of non-null variants. For
models A and B, we plot the expected number of discoveries among the top 1000 (solid), 2000 (dashed) and 5000 SNPs (dotted); for models D and E,
they among the top 100 (solid), 200 (dashed) and 500 SNPs (dotted).
doi:10.1371/journal.pone.0007969.g004
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if we reduce the MAFs or the ORs, or both, the sample size

requirement will increase.

Discussion

Our current search in genome-wide association studies (GWAS)

is based on the common-disease common-variant model. It might

be argued that the distribution of validated SNPs supports this

model [5]; for example, 18 of the 20 validated SNPs for type-2

diabetes in Table 1 have MAFs w10%. Of the 383 SNPs from the

recent GWAS (see Introduction), 87% (335/383) have MAFs

w0:1. This observation is of course biased since statistical power is

higher for larger MAFs and the current genotyping technology

prioritizes SNPs with larger MAFs. The current array technology

from Affymetrix and Illumina, directly and indirectly via LD, has a

good coverage of the HapMap 4 M SNPs. However, an

assessment in a resequenced region of 76 genes [11] shows that

the current products, including Affymetrix 6.0 and Illumina 1 M,

have substantially low coverage of the complete common variation

with MAFs §0:05. So there could still be other common causal

variants that are not yet covered by existing arrays.

We have used heritability as the basis to estimate the number of

remaining variants, where heritability is defined as the genetic

contribution to the variance of the liability of the disease. In

comparison, Yang et al. [12] used the population attribution

fraction (PAF), roughly the genetic contribution to the proportion

of the disease in the population. While it is straightforward to

compute the PAF from a set of known SNPs, it is not obvious how

to get the total PAF from all the (known and unknown) causal

variants. This is a disadvantage compared to our approach, since

heritability is commonly reported for most diseases.

Our computation shows that a large number of low-penetrant

variants are needed to account for a heritability of 30–40%. This

poses a major challenge, requiring enormous sample sizes (e.g.

model B in Figure 4 to discover these variants. While such large

samples are feasible in some existing consortia, a complicating

factor that comes with larger and larger studies is the potential

dilution of signal that results from the need to include

heterogeneous populations and/or heterogeneous phenotypes.

For example, it is clear from studies on the hereditary forms of

breast cancer that mutations in the BRCA1 and BRCA2 genes are

often specific to individual populations [13]. If distinct sub-

phenotypes are due to different susceptibility genes, a study that

combines these heterogeneous phenotypes will yield diluted effects.

A smaller number of rare medium- to high-penetrant variants

are needed to account for the heritability. The current SNP array

platforms are not able to genotype very rare SNPs, but,

surprisingly, if denser arrays were available and the ORs were of

medium size (e.g, 1.28 to 2.01 in model D), we would only need

modestly large sample sizes to detect these rare variants. Such

sample sizes are comparable to many existing genome-wide

association studies, so they are well within reach. We might also

search for higher-penetrant variants in subsets of populations, for

example, by more strictly-defined phenotypes or by studying

familial cases.

One natural question about the rare-variant model with large

effect-sizes (e.g., model E) is whether existing data already rule it

out. Is it possible to miss such rare alleles using the existing tagging

SNPs? The case of the CHEK2 1100delC mutation is a relevant

example. It has an allele frequency of approximately 0.5% and an

OR of 2.7 for sporadic breast cancer and 4.8 for familial breast

cancer [14]. Yet the CHEK2 gene does not appear among the top

SNPs in the largest most recent breast cancer association study [3].

So rare-variant model with large effect-sizes is still a possibility.

Very rare variants (MAFsv0.01) will create methodological

problems. First of all, they are not represented in the current

highest-density genotyping arrays. Another problem is the

measurement accuracy: since genotype calling is based on

fluorescent intensity and clustering, it will be hard to distinguish

very rare variants from genotyping errors. Also, as they are likely

to occur after the out-of-Africa migration, rare variants are likely

to be population specific, which means that we cannot simply

combine different study cohorts. Some of these problems might be

solved by the complete sequencing method, but this technology is

still too expensive for large studies.

Age-related macular degeneration [15] and exfoliation glauco-

ma [16] are unusual among phenotypes studied through GWAS,

with large effects from common variants that have been identified

in limited samples. Nonetheless, they show that there are traits

with marked allelic homogeneity. Other very recent example is

transferrine concentration [17], where 40% of the variance is

explained by a single locus. However, it is impossible to judge

beforehand which complex traits will display such a genetic

architecture.

To appreciate the scope of our challenge in genetic dissection of

complex phenotypes, it is useful to consider the genetics of cystic

fibrosis (CF), a ‘simple’ Mendelian disease of the mucus glands of

the lungs, liver and pancreas. CF is a recessive disorder, caused by

mutations in CFTR, a 230,000-base long gene on chromosome

7q31.2. Deletion of codon 508 (phenylalanine), first identified in

1988 [18], is found in 66% of the cases. However, there are more

than 1000 other deleterious mutations, a great majority of which

are very rare variants. It is known that the clinical manifestations

of the disease, for example prognosis, vary substantially; while

these correlate with the type of mutations [19,20], the genotype

explains only a small portion of the clinical variability.

This highlights two salient points: (i) If a simple genetic disease

such as CF can have more than 1000 functional deleterious

variants, are there reasons to believe that the number and

spectrum of functional mutations (in terms of non-synonymous

substitutions, stop-mutations, deletions, splice mutations etc.,)

should be different for genes with more subtle effects on complex

diseases? (ii) Monogenic diseases such as CF also have phenotypic

diversity, and this diversity is still poorly explained by the

underlying genetics. If anything, the phenotypic diversity of within

each complex disease tends to be wider than that of simple

Mendelian diseases, so our challenge will be even greater.

Different disease subtypes are likely due to different (combinations

of) causal variants; however, due to sample-size problems, our

case-control samples are combined over these subtypes, so, the

effects of the functional variants will be diluted. In conclusion,

substantial challenges remain in finding genetic explanation of the

common diseases.

Materials and Methods

Heterogeneity in Susceptibility
In quantitative genetic analysis of a complex disease we usually

assume a latent susceptibility (or liability) that varies between

individuals [21]. The liability can be due to genetic and

environmental factors; heritability is the proportion of the variance

in liability due to genetic factors. Putting existing discoveries into

this framework helps answer our questions.

Starting with the estimated odds-ratio and allele frequency for

each SNP, assume that the SNPs act independently and

multiplicatively. Suppose we have K SNPs with MAF p1, . . . ,pK .

Each SNP generates 3 genotypes (AA, AB or BB) with frequencies

p2
k, 2pk 1{pkð Þ and 1{pkð Þ2. Assuming the K SNPs combine

Genetic Variants
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randomly, there are 3K possible combinations, each with

associated log OR and proportion given by:

logOR~
X

k

aklogORk ð1Þ

p~P
k

qk, ð2Þ

where the sum and the product is over different SNPs in the

configuration, ak is the number of risk alleles (0, 1 or 2) and qk is the

frequency of the k th genotype; qk[ p2
k,2pk 1{pkð Þ, 1{pkð Þ2

n o
depending on the genotype.

The collection of log ORs with its proportions represents the

risk distribution implied by the collection of SNPs. For K~20, the

total number of combinations 3K is very large, so we need to group

the log ORs into intervals and combine the proportions

accordingly. Such grouping is also useful for plotting; see Figure 2.

From the risk distribution we can evaluate its variance. Since

each term in the summation (1) is a scaled-binomial variate with

parameters 2,pkð Þ and log OR as the scale, the variance of the

distribution is given by

var~2
X

pk 1{pkð Þ logORkð Þ2:

Here we see the relationship between the number of variants and

the variance of the risk distribution: if we add more variants into

the formula above we will increase the variance. For example, if

we double the number of variants with another set that has similar

MAFs and ORs, we will double the variance; i.e., the number of

variants varies linearly with the variance. Thus finding the number

of variants to achieve a certain variance is straightforward.

The number of variants is connected to heritability through the

variance. First note that the log OR in Figure 2 corresponds

directly to the latent susceptibility model well known in statistical

genetics:

logitp~b0zg, ð3Þ

with random genetic effect g distributed as N 0,var gð Þð Þ (e.g.,

[22]). In this model, the constant term b0 is determined the overall

prevalence of the disease. The contribution of the genetic factors

to the liability of the disease is so-called heritability:

h2~
var gð Þ

var gð Þzp2=3
, ð4Þ

where p2
�

3 is the variance of the standard logistic distribution

[22].

Sample Size Computation
For each SNP, consider the observed log OR as the test statistic,

and let h be the true OR. In a case-control study of n cases and n

controls, the observed log OR is approximately N m,s2
� �

, with

m~logh ð5Þ

s2~
1

np 1{pð Þ , ð6Þ

where p is the MAF of the SNP. The parameter h is the OR per

allele, and we assume Hardy-Weinberg equilibrium so each

subject contributes two independent alleles for each SNP.

To use the method in [9], we first need F zð Þ, which is the

marginal distribution of the statistics from all SNPs. In general,

accounting the contribution from all the SNPs, F zð Þ will follow a

mixture distribution of the form:

F zð Þ~
ð

m,s2

w z; m,s2
� �

dG m,s2
� �

, ð7Þ

where the w z; m,s2
� �

is the normal density with mean m and

variance s2, and G m,s2
� �

is the joint distribution of mean and

variance of the log ORs across the SNPs. From (5) and (6),

G m,s2
� �

is determined by the joint distribution of true OR and

MAF across the SNPs. Thus we can study the effect of various

distributions of MAFs and ORs on the sample size needed to

detect the non-null SNPs. From the mixture model we can also get

F0 zð Þ, the marginal distribution of the null SNPs, those that are

not associated with the case-control status.

In practice the joint distribution of ORs and MAFs is

discretized, as given in the example in the Results section, so the

mixture (7) becomes

F zð Þ~
X

k

pkw z; mk,s2
k

� �
,

where the index k runs over all possible (OR, MAF)-combinations,

and pk, mk and s2
k are the corresponding proportion, mean and

variance associated with the k th (OR, MAF)-combination. For

the null SNPs we get

F0 zð Þ~
X

k

pkw z; 0,s2
k

� �
,

where now k runs over all the (OR, MAF)-combinations with true

OR hk~1. These distributions give the false discovery rate (FDR),

using

FDR zð Þ~ p0P0 Zj jwzð Þ
P Zj jwzð Þ ,

where p0 is the proportion of null SNPs, assumed very close to

one, and P0 and P are the probabilities computed under the

distributions F0 and F , respectively. Once we have the FDR, we

can use the method in [9] to evaluate the sample size required to

achieve a certain FDR level. Finally, given a certain FDR level, the

expected number of discoveries in a collection of N top SNPs is

N 1{FDRð Þ.

Supporting Information

Table S1 Table of Recent GWAS used in the Introduction

Found at: doi:10.1371/journal.pone.0007969.s001 (1.01 MB

XLS)
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