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Summary

Video-related problems often involve high-dimensional data anal-

ysis. In this thesis, we explore the theoretical and algorithmic

aspects of their low-dimensional structures, including sparsity

in vectors and low rank matrices, among others. Specifically,

we address various motion-related problems such as motion seg-

mentation and object tracking.

In the first part of the thesis, we re-formulate the 3-D motion

segmentation from two perspective views as a subspace clus-

tering problem, utilizing the classic epipolar constraint of an

image pair. We then combine the point correspondence infor-

mation across multiple image frames via a collaborative clus-

tering step, in which tight integration is achieved via a mixed

norm optimization scheme. Our method effectively addresses

several longstanding real-world challenges in the motion seg-

mentation problem, including perspective effects, model selec-

tion and missing data, obtaining state-of-the-art performance

in handling the aforementioned challenges.

In the preceding, the model selection methods to estimate the

number of motion groups is based on an over-segment and

merge approach, where the merging step is based on the prop-

erty of the ℓ1-norm of the mutual sparse representation of two

over-segmented groups. In the next part of the thesis, we pro-

pose a more general model selection approach, which only needs

an affinity matrix as input. This approach solves clustering and
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model selection in a joint manner with an indicator matrix for-

mulation, in which the clustering cost is penalized by a Frobe-

nius inner product term and the group number estimation is

achieved by a rank minimization. We further add a sparsity

term to discover structures in the data. Rather than adopt-

ing the conventional convex relaxation approach wholesale, we

represent the original problem more faithfully by taking full ad-

vantage of the particular structure present in the optimization

problem and solving it efficiently using the Alternating Direc-

tion Method of Multipliers. The highly constrained nature of

the optimization provides our algorithm with the robustness to

deal with the varying and often imperfect input affinity matrices

arising from different applications and different group numbers.

Lastly, we exploit the low-dimensional structures present in the

object tracking problem to speed up the ℓ1 Tracker. We learn

the coefficient patterns of the sparsity model and solve small

scale ℓ2 norm minimization problems instead of the high cost ℓ1

norm minimization problems, resulting in a very fast tracking

algorithm. We also propose a novel sparsity model by consider-

ing the problem from a different angle, leading to an algorithm

with better tracking robustness.
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Chapter 1

Introduction

Our society has invested massively in the collection and processing of data

of all kinds, resulting in an overwhelming amount of data generated and

collected every day. Among these data, many of them are high-dimensional.

For example, a single digital image with modest quality contains more than

a million pixels. Such high dimensionality is usually considered impossi-

ble to analyze using classic techniques in statistics because the number

of data points required to successfully fit a general Lipschitz function in-

creases exponentially with the dimension of the data. This is often de-

scribed metaphorically as the “curse of dimensionality” [35]. Fortunately,

it is often valid that real data have some certain low-dimensional struc-

tures, such as sparsity and low-rank. In this case, the high dimensionality

can result in desirable data redundancy which makes it possible to provably

and exactly recover the correct parameters of the structure. This is often

referred to as the “blessing of dimensionality” [35].

This phenomenon appears in many computer vision problems. For ex-

ample, face recognition community has observed that the images of faces

under varying illumination and expression lie on low-dimensional subspaces

[15]. This observation motivates many dimension reduction approaches to

exploiting the low-dimensional structures in the raw image data. The ear-
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1. INTRODUCTION

liest work is the famous Eigenface [104], which essentially adopt principal

component analysis (PCA) [53] to select an optimal low-rank approxima-

tion in the ℓ2 sense. Later works include Fisherfaces [15], Laplacianfaces

[49] and some variants [57, 62]. More recently, the theories from com-

pressive sensing [23, 36] offer better representation of the data, leading

to a breakthrough in face recognition [113]. Other similar examples from

computer vision community include foreground detection [40], non rigid

structure from motion (NRSfM) [32], photometric stereo [114], motion seg-

mentation [39, 68], etc. In all these examples, compressive sensing plays

a key role in recent developments of the algorithms and make significant

advancements in performance.

The advent of the compressive sensing builds upon the fundamental

fact that we can reconstruct sparse or compressible signals accurately via

ℓ1 minimization (convex relaxation of ℓ0) from a very limited number of

measurements if the sensing matrix obeys the restricted isometry property

(RIP) property [20, 23, 36]. This result equivalently shows its ability to

correct sparse errors/outliers when recovering signals, leading to success in

handling occlusions in face recognition [113] and visual tracking [73]. In

the spectral domain, since cardinality corresponds to the rank of a matrix,

sparsity corresponds to low-rank. Thus, nuclear norm (defined as the sum

of singular values) is a convex relaxation of the rank function. Notably,

nuclear norm minimization are shown effective in completing a partially

observed low-rank matrix (low-rank matrix completion) [22] and in recov-

ering a low-rank matrix with sparse corruptions (Robust PCA) [21]. This

result leads to success in foreground detection in [40] and shadow/highlight

removal in photometric stereo [114].

With these main results of compressive sensing at our disposal, the

challenge now is to identify and model the low-dimensional structures in

the various specific research problems. For example, the low-dimensional
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subspace might contain structures such as a union of subspaces or other

sparsity patterns. The class of ”sparse” models could also be extended be-

yond sparse vectors and low rank matrices to include other low-dimensional

structures such as a sum of few permutation matrices, which are ubiqui-

tous in many problem domains. We envisage the use of these new class of

sparse models will offer more generality and better performance than many

conventional approaches to problems in video analysis, thereby overcoming

the challenges that limit the use and growth of video analytic software. In

this thesis, we focus on motion-related problems and aim to exploit the

underlying structures of the data inherent in these problems. More specif-

ically, we consider the motion segmentation problem and the attendant

model selection, as well as the object tracking problem.

1.1 Motion Segmentation

Motion segmentation is a challenging problem in visual motion analysis.

The idea is to segment the scene into multiple rigid-body motions, based

on the point trajectories or optical flow observed in multiple camera views.

It is a challenging problem because it requires simultaneous estimation of

an unknown number of motion models, without knowing which measure-

ments correspond to which model. This problem can be cast as a subspace

clustering problem in which point trajectories associated with each mo-

tion are to be clustered together. Recent works [39, 68, 83] introduced

compressed sensing techniques to subspace segmentation. We seek to ex-

tend these sparsity-based techniques as there are many difficulties with

the current motion segmentation techniques. For instance, most current

techniques cannot handle perspective effects because of the subspace as-

sumption. Moreover, they cannot automatically estimate the number of

motion clusters and can only tolerate a small amount of missing entries

3



1. INTRODUCTION

and outliers. Our novel contributions include:

• better capturing the global structures of data than current sparse

techniques via the mixed norm approach.

• better estimating the number of motion clusters via a over-segment

and merge approach, where the merging step is based on the prop-

erty of the ℓ1-norm of the mutual sparse representation of two over-

segmented groups.

• better handling the conditions where missing data, noise, and outliers

are prevalent.

1.2 Model Selection

As have been mentioned above, estimating the number of motion groups

remains very much an open problem in motion segmentation. In the wider

context, this is also known as the model selection problem and it appears

in many clustering or segmentation tasks, such as image segmentation [91],

protein clustering [70] and so on. Just like in the case of motion segmenta-

tion, model selection is a common and essential problem in all such tasks.

A common way to estimate the group number follows from the spectral

clustering framework [71]; it counts the number of zero eigenvalues of the

Laplacian matrix of the affinity graph. However, this method does not

perform very well in practice when the data contain structures at different

scales of size and density, and when data are contaminated by noise. In

these cases, these eigenvalues deviate from zero in a complex manner, and

it is non-trivial to determine the number of eigenvalues close to zero in a

robust manner. While this method belongs to the spectral graph method

[3, 68, 87, 93, 97], the other kind of method is the information-theoretic

method [2, 55, 72, 85, 94, 100], which aims to balance the goodness of fit
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against the complexity of the model. The major drawback of this kind of

method is that they are usually model-dependent. To overcome these prob-

lems, we propose in this thesis a general and robust algorithm to perform

simultaneous clustering and model selection (SCAMS) with only an affinity

matrix as input. To explore the low-dimensional structures hidden in the

affinity matrix, we apply the low rank and sparsity constraints and solve

the original non-convex problems, yet by taking advantage of the particu-

lar structure present in the optimization problem, we are able to put forth

a tractable solution. Note that in many cases, the convex proxy to the

original NP-hard problems may not be a good approach - an approximate

solution to the right problem can be better than the exact solution to the

wrong problem. This problem is especially severe when there are outliers

very large in magnitudes, a situation that could very well arise in many

real problems. In this case, there might be a need to represent the original

problem more faithfully rather than just adopting the conventional convex

relaxation approach.

1.3 Visual Tracking

It has been shown that promising tracking accuracy can be achieved by

modeling the target appearance by a sparse representation of the template

set, resulting in the so-called ℓ1 Tracker [73]. However, the ℓ1 Tracker is

limited by its high computational cost which is dominated by that of the

ℓ1-norm minimization. Though significant acceleration is achieved by the

Minimum Error Bound [74] and a fast solver to the ℓ1-norm minimization

using Accelerated Proximal Gradient (APG) [13], it is still not fast enough

for a normal PC. To further accelerate the ℓ1 Tracker, we propose to learn

the sparsity patterns for the template set, performing a quick update on

these patterns when the templates are changed. With the learnt sparsity
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patterns, we are able to recover the sparse coefficients by ℓ2 norm mini-

mization. Note that the ℓ1-norm minimization only needs to be carried

out when the template set is updated, thus leading to significant saving of

computational cost.

Other than the preceding proposed acceleration, we also propose a novel

sparsity model to describe the visual tracking problem. Unlike previous

methods, we model a template appearance using a sparse representation of

the candidate set, instead of the other way round (i.e. modeling a candidate

using the template set). As a result, a large number of candidates can be

filtered out, followed by some simple manipulations to determine the best

candidate from the remaining small set.

1.4 Structure of the Thesis

The organization of this thesis is as follows.

In Chapter 2, we better exploit the sparsity patterns in the 3D motion

segmentation problem, such that several well-known real-world challenges

in this problem are effectively addressed; these challenges include perspec-

tive effects, missing data, and unknown number of motions. We first formu-

late the 3-D motion segmentation from two perspective views as a subspace

clustering problem, utilizing the epipolar constraint of an image pair. We

then combine the point correspondence information across multiple im-

age frames via a collaborative clustering step, in which tight integration

is achieved via a mixed norm optimization scheme. For model selection,

we propose an over-segment and merge approach, where the merging step

is based on the property of the ℓ1-norm of the mutual sparse representa-

tion of two over-segmented groups. The resulting algorithm can deal with

incomplete trajectories and perspective effects substantially better than

state-of-the-art two-frame and multi-frame methods. Part of the results in
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this chapter appeared in [65].

In Chapter 3, we jointly address the clustering and model selection

problems in a more general setting with an indicator matrix formulation,

in which the clustering cost is penalized by a Frobenius inner product term

and the group number estimation is achieved by a rank minimization. As

affinity graphs generally contain positive edge values, a sparsity term is fur-

ther added to avoid the trivial solution and exploit the structures. Rather

than adopting the conventional convex relaxation approach wholesale, we

represent the original problem more faithfully by taking full advantage of

the particular structure present in the optimization problem and solving

it efficiently using the Alternating Direction Method of Multipliers. The

highly constrained nature of the optimization provides our algorithm with

the robustness to deal with the varying and often imperfect input affinity

matrices arising from different applications and different group numbers.

Part of the results in this chapter appeared in [64]

In Chapter 4, we accelerate the ℓ1 Tracker by learning the sparsity pat-

terns of the template set. With the learnt sparsity patterns, we are able

to recover the sparse coefficients of candidate samples by some small-scale

ℓ2 norm minimizations, resulting in a very fast algorithm. In addition to

that, we propose an alternative sparsity model, which models the template

appearance by a sparse approximation over the candidate set. In this case,

a large number of candidates are immediately filtered out according to

whether they are chosen to represent the templates or not. Then the opti-

mal candidate is chosen as the one with the largest observation likelihood

from the retained candidate set. This sparsity model exploits the tracking

problem from a novel perspective and achieves better performance even

with the simplest setting.

In Chapter 5, we conclude the thesis with some discussions and list some

open questions and potential future developments related to this thesis.

7



1. INTRODUCTION

8



Chapter 2

Collaborative Clustering for

Perspective Motion

Segmentation

This chapter addresses real-world challenges in the motion segmentation

problem, including perspective effects, missing data, and unknown number

of motions. It first formulates the 3-D motion segmentation from two per-

spective views as a subspace clustering problem, by utilizing the epipolar

constraint of an image pair. It then combines the point correspondence

information across multiple image frames via a collaborative clustering

step, in which tight integration is achieved via a mixed norm optimiza-

tion scheme. For model selection, we propose an over-segment and merge

approach, where the merging step is based on the property of the ℓ1-norm

of the mutual sparse representation of two over-segmented groups. The

resulting algorithm can deal with incomplete trajectories and perspective

effects substantially better than state-of-the-art two-frame and multi-frame

methods. Experiments on a 62-clip dataset show the significant superiority

of the proposed idea in both segmentation accuracy and model selection.
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2. COLLABORATIVE CLUSTERING FOR PERSPECTIVE
MOTION SEGMENTATION

2.1 Introduction

Scenes with multiple motions are very common in reality, which leads to an

increasing interest in dynamic scene analysis. Among all issues in dynamic

scene understanding, 3-D motion segmentation is an essential problem. It

refers to the problem of clustering trajectories according to n motions.

These trajectories correspond to several objects undergoing n different

rigid-body motions relative to a static or moving camera. The success

of motion segmentation helps to further develop applications in dynamic

scenes, such as tracking, recognition, reconstruction, etc. The challenge in

this problem is to segment the trajectories only considering motion cues in

the scene. Previous approaches to this problem can be roughly separated

into the multi-frame and the two-frame methods.

Multi-frame methods. Multi-frame methods have been studied mostly

under the affine assumption. This kind of methods can be traced back

to the early work of [17, 98], and the ensuing multi-frame methods [31,

39, 42, 45, 56, 68, 83, 96, 105, 118] are based on this assumption and one

can solve the problem using either a factorization or a subspace separation

framework. Under the affine assumption, the trajectories of a rigid motion

across multiple frames lie in an affine subspace with a dimension of no more

than 3, or a linear subspace with a dimension of at most 4. That is, let

xfp ∈ R2 be the image coordinate of 3-D points X̃p ∈ P3 in frame f , where

”∼” denote the homogeneous representation, then

xfp = AfX̃p (2.1)

where Af = Kf


1 0 0 0

0 1 0 0

0 0 0 1


 Rf tf

0T 1

 ∈ R2×4 is the affine camera

matrix for frame f , which depends on the camera intrinsic parametersKf ∈

10
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R2×3, the camera relative rotation matrix Rf ∈ R3×3 and the translation

vector tf .

Assume there are F frames and P 3-D points, from (2.1), the measure-

ment matrix W ∈ R2F×P , whose columns are the image point trajectories,

can be presented as

W =

2F×P︷ ︸︸ ︷
x11 · · · x1P

...
. . .

...

xF1 · · · xFP

 =

2F×4︷ ︸︸ ︷
A1

...

AF


4×P︷ ︸︸ ︷[

X̃1 · · · X̃P

]
(2.2)

It is immediate that rank(W) ≤ 4. Since the last entry of X̃p is always 1,

the trajectories lie in an affine subspace of dimension at most 3. However,

most works consider the trajectories lie in a linear subspace of dimension

at most 4. Therefore, motion segmentation problem can be formulated

based on a factorization or subspace separation framework. For indepen-

dent rigid-body motions, trajectories undergoing different motions live in

an independent linear subspace and have no intersection [31]. For articu-

lated motions, trajectories undergoing different motions live in an different

linear subspace but have one or two dimensional intersection [101, 117, 118].

As an extension to perspective camera model, the projection equation

(2.1) becomes

λfpx̃fp = PfX̃p (2.3)

where λfp is the projective depth of point p relative to frame f , x̃fp ∈ P2

denote the homogeneous representation of the image coordinate and Pf ∈

R3×4 is the general projective matrix for frame f . Because λfp is unknown

for all trajectories, the measurement matrix is now a function of λ, which

11
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can also be factorized as before

W(λ) =

3F×P︷ ︸︸ ︷
λ11x̃11 · · · λ1P x̃1P

...
. . .

...

λF1x̃F1 · · · λFP x̃FP

 =

3F×4︷ ︸︸ ︷
P1

...

PF


4×P︷ ︸︸ ︷[

X̃1 · · · X̃P

]
(2.4)

It is clear from (2.4) that if λfp is known for all trajectories, the rank of

W(λ) is less than 4, thus subspace clustering can be applied to segment

the scene into multiple motions. The Sturm/Triggs(ST) algorithm [95]

analyzed the case of static scene to recovery the structure and camera pose

of the scene, while Li et al. [63] extended the iterative ST algorithm [48, 102]

to the case of multiple rigid-body motions by simultaneously estimating the

depth information and separating the motion groups iteratively.

Two-frame methods. Two-view methods are usually based on the epipo-

lar geometry, and are thus capable of handling perspective effects. The mo-

tion model fitting and selection are carried out by either statistical meth-

ods [52, 61, 88, 100] or algebraic methods [84, 106, 112]. The statistical

methods start with a random or guided sampling, followed by estimating

the likelihoods of the generated motion model hypotheses, at the end of

which the models with high quality (likelihood) are selected. The algebraic

methods fit a mixture of fundamental matrices by linearizing the multi-

linear relationship between correspondences in a high-dimensional space.

Then correspondences are assigned to the motion models with the smallest

fitting errors.

The multi-frame methods have been better developed, partly due to the

elegance of its formulation and partly due to the release of the Hopkins155

database [103], which contains largely clips with little perspective effects.

Recently, the class of multi-frame affine methods has been further enlarged

by the powerful subspace clustering algorithms [39, 68]. However, we argue
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(a) (b)

(d)(c)

Figure 2.1: Motion segmentation results of two sequences with strong per-
spective effects using SSC. The ground truths are shown in (a) and (c),
and the SSC results in (b) and (d) respectively. In (b), part of the green
object is classified as belonging to the background, and in (d) the green
object captures some of the background points.

that the current crop of multi-frame affine methods does not confront sev-

eral real world issues, despite ever-decreasing and near perfect classification

rate on Hopkins155. There are three major drawbacks of the multi-frame

affine methods when compared to the two-frame methods.

Firstly, multi-frame affine methods suffer from their inability to deal

with perspective effects, while this presents no problem in the two-frame

method; it becomes a significant consideration when using shorter lenses for

shooting outdoor sequences. Figure 2.1 shows the results of two sequences

with perspective effects from Hopkins155 ; these results are produced by

the state-of-the-art clustering algorithm – sparse subspace clustering (SSC)

[39]. Compared to the near zero errors achieved by SSC for the other
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(a) (b)

(c)

Figure 2.2: (a) 60 trajectories obtained with the full-length requirement,
and (b) 524 trajectories without the full-length requirement. (c) The data
matrix, with black area indicating missing entries.

sequences in Hopkins155 without strong perspective effects, the erroneous

segmentation results in these clips are especially notable: in Figure 2.1(b),

part of the green object is classified as belonging to the background, and

in Figure 2.1(d) the green object captures some of the background points.

Secondly, multi-frame affine methods generally require the trajectories

to have full-length. If one simply filters out the trajectories which are absent

in some frames, the density of the trajectories is likely to be significantly

decreased, resulting in lack of coverage of many parts of the sequence. The

full-length requirement also makes it difficult to deal with objects entering

into or departing from the scene and suffering from temporary occlusion.

Figure 2.2(a) shows the feature points of the “delivery van” data with the

full-length requirement on the trajectories. It is observed that they are

much sparser than the density of those in Figure 2.2(b), which only re-

quires the trajectories to appear in at least two frames. Clearly, two-frame

methods suffer to a much lesser extent from the missing entry issue. One

may argue that matrix completion techniques can help to fill in the missing

entries [26]. However, Candès and Tao [24] have proven a lower bound on
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the necessary number of uniformly distributed samples, below which no

algorithm can guarantee correct recovering of the missing entries. Unfortu-

nately, motion segmentation data often violate this condition. Figure 2.2(c)

shows the data matrix of the “delivery van” data, which has about 50%

missing entries and is non-uniformly distributed. Even it is by no means

the most challenging data, it is difficult to recover the missing entries.

Thirdly, the number of motion groups is usually assumed to be known

a priori for multi-frame affine methods. It is indeed a strong indication

that model selection is actually difficult for motion segmentation. Related

to this issue is the fact that the number of motion groups in each clip of

the Hopkins155 dataset remains unchanged throughout the frames, which

makes it easy to indulge in the aforementioned assumption. In real videos,

the number of motion groups may change throughout a clip as moving

objects enter or leave the scene. Without coming to grips with this fun-

damental issue, the application of these works to real life problems will

be severely hampered. By comparison, the two-frame methods are much

better-placed to estimate exactly when moving objects enter or leave the

scene.

Despite the relative merits of the two-frame methods over the multi-

frame affine methods, less effort is devoted to the two-frame approach in

recent years. On the one hand, it is partly due to the belief that multiple

frames contain much more information that should be exploited. Contrary

to such belief, we will show in Section 2.4 that the performance of the

two-frame method is generally quite adequate; we may indeed question the

wisdom of abandoning the two-frame method too hastily, especially in view

of the information we lost through these feature points discarded because

of the full-length requirement. On the other hand, there are clearly scenes

where an observation period as short as two frames may confound the two-

frame approach. For example, two objects may be moving with the same
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motion for a short while but diverge thereafter.

In this chapter, we propose a multi-frame approach that is rooted in

two-frame analysis, with a mixed norm formulation that couples the multi-

frame information in an integrated manner. Beginning with a single image

pair, we revisit the epipolar constraint of two-perspective-view (TPV) ,

leading to a subspace segmentation problem formulation that segments the

null spaces of the appropriate equations. Thus, the idea of subspace separa-

tion applies and one can follow the SSC approach in converting the motion

segmentation problem into a graph partitioning problem based on an affin-

ity matrix. We prefer the sparse self-expression affinity of SSC, because

of its good performance and some degree of tolerance to dependent sub-

spaces [93]. A more powerful formulation that integrates multiple frames

then follows, in which we derive an aggregated affinity matrix from multi-

ple image pairs and seek a joint sparse coefficient recovery across multiple

image pairs, i.e., the sparse affinity coefficients of a particular trajectory

should be consistently distributed across multiple image pairs in the sense

that this trajectory should use the same set of other trajectories to ex-

press itself across all image pairs. This is formulated as a constrained

mixed norm minimization problem, whose relaxed version is convex and

can be solved efficiently with Alternating Direction Method of Multipliers

(ADMM) method [18, 66].

Another important contribution of our work in this chapter lies in its

robust model selection scheme. We first make a rough model estimation

by analyzing the Laplacian matrix of the affinity matrix and over-segment

the data into groups. Then we perform merging by a scheme that takes

advantage of the loose grouping already available. Specifically, we use the

data points in one group to sparsely represent each data point in another

group. Based on Soltanolkotabi and Candès’ scheme of outlier rejection

[93], which declares a data point to be an outlier if the ℓ1-norm of its
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sparse coding vector is above a fixed threshold, we can decide which data

points in the second group are inliers w.r.t. the first group and which are

outliers. Based on the statistics of the ℓ1-norm, they can then be proceed

to merge the groups or leave them as they are.

To summarize, our major contributions are as follows.

• We return motion segmentation to its two-frame perspective root and

then tightly integrate the information from correspondences across

multiple frames into a unified mixed-norm optimization scheme. This

results in a collaborative clustering algorithm that deals with perspec-

tive effects naturally and yet can leverage fully on the information

present in multiple frames. It also handles incomplete trajectories

much more reliably than those generic matrix completion schemes

or motion segmentation methods with built-in completion schemes

such as [83, 105]. Ambiguous feature matches can also be handled

naturally.

• Inspired by the efficient outlier rejection scheme [93], we propose a

simple yet coherent model selection algorithm, which also solves a se-

ries of mixed norm optimization problems; it follows an over-segment

and merge scheme where the merging is based upon the mutual sparse

representation of two groups.

• We then carry out extensive evaluation over a dataset containing 64

video sequences, with a balanced mix of clips with two and three

motions, ranging from small to wide field of view, and with different

amount of missing data. The results show that our joint inference

scheme can produce significantly more accurate and reliable results

than those methods individually estimating two-view motion models,

followed by a loosely-coupled fusion step, or those state-of-the-art

multi-frame methods such as SSC and LRR (low rank representation
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[68]). More importantly, it offers scope for hope in realizing a motion

segmentation scheme that is more adequate to the purpose of deal-

ing with real world sequences with challenges such as missing data,

unknown number of motions, and perspective effects.

2.1.1 Related work

There have been a plethora of multi-frame approaches. In the literature.

Costeira and Kanade [31] propose to segment the motion of multiple inde-

pendently moving objects according to the shape interaction matrix which

is built from the singular value decomposition (SVD) of the trajectory

matrix. However, this method fails when motion groups are partially de-

pendent and it is very sensitive to noise [56]. Multi-Stage Learning [96] is

a probabilistic approach which learns the parameters of a mixture model

using the Expectation Maximization (EM) algorithm. Gruber [45] also

presents an EM based algorithm which handles noise as well as missing

data and can easily incorporate prior knowledge. Generalized principal

component analysis (GPCA) [105] is an algebraic method, which equates

subspace clustering with polynomial fitting and differentiation. The local

subspace affinity method (LSA) [118] unifies the mixture of dependent and

independent motions by estimating a local linear manifold. Then, an affin-

ity matrix is established from the principal angles between these manifolds,

after which spectral clustering is applied. While LSA uses a fixed size of

neighboring points, local best-fit flats (LBF) [122] finds the optimal local

neighborhoods, which is proven to improve the performance significantly.

Agglomerative lossy compression (ALC) [83] find the segmentations by min-

imizing the coding length of the segmented data. Most recently, Elhamifar

and Vidal [39] bring sparse representation into subspace clustering and ap-

ply them to motion segmentation. The key idea is to sparsely represent

a feature point trajectory by other trajectories from the same subspace.
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LRR [68] is another compressive sensing technique brought into subspace

clustering. It finds the lowest rank representation of all data jointly, upon

which an affinity graph is defined for subsequent clustering. Another thread

of research is the projective factorization method [63] which extends the

camera model to perspective, but it needs an iterative process that alter-

nates between the estimation of the depths and the segmentation of the

point trajectories. Furthermore, it still has the full-length requirement on

the trajectories, and the depth estimation is highly dependent on the initial

segmentation. Unlike the previous trajectory based multi-view methods,

Cheriyadat and Radke [27] decompose the velocity profiles of point tracks

into different motion components and corresponding non-negative weights

using non-negative matrix factorization (NNMF) . Then the motions are

segmented based on the derived weights. Our method revisits the two-

view epipolar constraint equation in the language of subspace clustering

and thus there is much similarity in terms of how subspace separation is

performed. However, it does not have to make concession in terms of the

camera modeling, and its multi-frame extension does not suffer from the

strictness of requiring features to be present in all frames.

While many of these methods perform very well with Hopkins155, sig-

nificant problems remain, as reviewed in the preceding paragraphs. Our

key concern here is to tackle these challenges not well represented in Hop-

kins155. In contrast to the aforementioned approaches, our modeling of

the problem is based on the epipolar constraint and does not make con-

cession in terms of the camera projection, and its multi-frame extension

does not suffer from the restriction of requiring features to be present in

all frames. While projective factorization [63] extends the camera model

to perspective, it needs an iterative process that alternates between the

estimation of the depths and the segmentation of the trajectories. Further-

more, it still requires full-length trajectories, and the depth estimation is
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highly dependent on the initial segmentation.

There have also been a lot of two-frame methods in the literature. There

are many early works that deal with the two-frame case, early examples

being [111, 79, 92, 99] and the more recent work of Wolf and Shashua’s

two-body fundamental matrix [112]. Then Vidal et al. [106] extend the

later to general multi-body fundamental matrix and linearize it in a high

dimensional space. The clustering of correspondences is then achieved

by choosing the minimum Sampson distance from the correspondence to

the estimated fundamental matrix. Li [61] proposes another mixture-of-

fundamental-matrices model and formulates it as a linear programming

problem. The Robust Algebraic Segmentation (RAS) algorithm[84] uses a

hybrid perspective constraint to unify the representation of epipolar and

homography constraints; its algebraic process is similar to GPCA. Jian et

al. [52] simultaneously obtain the number of motions and group the motion

trajectories based on the mixture of Dirichlet process models. Schindler and

Suter [88] randomly sample sufficient motion models and choose the mod-

els by maximizing the geometrically robust information criterion (GRIC) .

Our two-view method is similar in that it uses the two-view epipolar con-

straints, though we do not explicitly estimate the fundamental matrices

but directly cluster the correspondences. More importantly, our formula-

tion allows multi-frame extension in an integrated manner and can handle

incomplete and ambiguous features in a natural way.

Model selection remains very much an open problem in motion segmen-

tation. While the number of zero eigenvalues of the Laplacian matrix can

be related to the number of connected components of the affinity matrix,

the challenge lies in determining the number of eigenvalues close to zero in a

robust manner [68, 93]. Some other methods [29, 38, 52, 61, 89, 88, 100] ex-

plicitly generate motion hypotheses and balance the goodness of fit against

the complexity of the model. In general, the hypothesis generation step
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is crucial in determining its success. Models with a high number of pa-

rameters face the predicament of generating a sufficiently large number

of hypotheses while coping with the prohibitive computational cost. Bad

samplings often result in failure for these methods, with the results varying

each time due to the sampling procedure. Moreover, it is difficult, proba-

bilistically speaking, to sample an all-inlier minimal set when estimating a

high order model, because the number of samples required by the minimal

set is relatively larger. Thus, [52, 89] uses calibrated cameras and [38] uses

homography, both to reduce the number of points necessary to estimate

a motion model. For the same purpose, [61, 88] design guided sampling

steps. A unconventional method [28] uses multiple kernel learning to con-

duct a series of kernel optimizations. Then the model selection criterion

stems from the idea that if two structures are indeed separate instances of

the generic model, the optimized kernel will have a high alignment with

the target kernel. However, it also suffers from the sampling step. Our

method eschews this costly hypothesis generation step but instead takes

advantage of the over-segmented grouping provided by the spectral clus-

tering. We then leverage on the recent theoretical result [93] which provides

a principled way to detect outlier points based on the ℓ1 norm of the sparse

representation of the point. This in turn allows us to perform merging of

two over-segmented groups in a very robust way.

Two closely related works [89, 38] use two-view constraint to segment

trajectories of a video sequence. However, our work differs from theirs in

several key ways. First, the two related works both sample many model

candidates for each image pair, followed by a model estimation. It is worth-

while noting that poor sampling often results in failure for these methods,

and the results may vary every time due to the sampling procedure. More-

over, it is difficult to sample an all-inlier minimal set when estimating a

high order model, because the number of the minimal set is relatively larger.
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Thus, [89] uses calibrated cameras and [38] uses homography, where both

can reduce the number of points necessary to estimate a motion. Second,

the two-view motion segmentation and the linking of the frame-to-frame

correspondences are somehow separated in their cases. In our scenario, we

put all frame-to-frame correspondences into a global optimization scheme,

and the linking information is also considered to construct a unified affinity

matrix, which makes the linking more natural and is expected to achieve

more optimal solutions.

Lastly, some recent research addresses the need to obtain a denser set of

trajectories [19, 60]. These works aim to cover the image domain without

too many large gaps. However, they only carry out the segmentation in

the 2D domain, mainly due to computational consideration. Thus, motions

that deviate from the simple 2D model may lead to a wrong segmentation.

Our work pays the price of a lower trajectory density for a more accurate

motion model and a higher quality data input.

The rest of this chapter is organized as follows. Section 2 discusses the

TPV subspace in detail. Section 3 describes the joint clustering algorithm

and the ℓ1-norm based merging scheme. Then, our experimental results

are illustrated in Section 4. Finally, we draw the conclusion in Section 5.

2.2 The TPV Motion Subspace

Assume xp = (xp, yp, 1)
T and x′

p = (x′
p, y

′
p, 1)

T are the homogeneous coor-

dinates of two corresponding points of a 3-D point p in two frames. Their

relationship is governed by the epipolar constraint [48] expressed as follows:

x′
p
T
Fxp = 0, (2.5)
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where F
.
=


f11 f12 f13

f21 f22 f23

f31 f32 f33

 ∈ R3×3 is the fundamental matrix, which

connects correspondences under the same rigid motion in two views. A

classic algorithm to compute F is the 8-point algorithm [48], in which each

correspondence gives rise to one linear equation in the unknown entries of

F as follows:

( x′
pxp x′

pyp x′
p y′pxp y′pyp y′p xp yp 1 )f = 0, (2.6)

where f = ( f11 f12 f13 f21 f22 f23 f31 f32 f33 )
T is the 9×1 vector made

up of the entries of F in row-major order. The coefficients of this equation

are arranged in a column vector, denoted as wp. Clearly, those wp under

the same rigid motion k form a hyperplane perpendicular to fk, which we

refer to as the TPV motion subspace. Since fk is a 9×1 vector, the dimension

of this subspace is at most 8.

A fundamental matrix determines the relationship of a camera pair

uniquely [48]. Thus, in general the set of wp for points undergoing the

same rigid motion k forms a unique hyperplane perpendicular to fk. How-

ever, for points in special configuration, they fail to uniquely determine

the fundamental matrix. These include correspondences lying on a plane

in space or those only related by a pure rotation about the camera center.

In both cases, point correspondences are related by a homography matrix

H
.
=


h11 h12 h13

h21 h22 h23

h31 h32 h33

 ∈ R3×3, i.e.,

[x′
p]×Hxp = 0, (2.7)

where [x]× ∈ R3×3 denotes the skew-symmetric matrix associated with x.
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If we rewrite equation (2.7) in a linear form, wp is related to a 9×3 matrix

H′:

wT
p H

′ = 0, (2.8)

where

H′ = [ h1 h2 h3 ]

h1 = ( 0 0 0 h31 h32 h33 −h21 −h22 −h23 )
T ,

h2 = ( −h31 −h32 −h33 0 0 0 h11 h12 h13 )
T ,

h3 = ( h21 h22 h23 −h11 −h12 −h13 0 0 0 )
T .

It can be observed from (2.8) that those wp under the aforementioned de-

generate configurations fall on the intersection of three hyperplanes, each

of which is perpendicular to one column of H′. Here, each column of H′

is independent of one another in general and thus the rank of H′ is 3.

Thus, wp under these degenerate configurations lie in a lower dimensional

subspace with dimension no more than 6. Fortunately, there are various

subspace separation algorithms [39, 68] that can handle subspaces with dif-

ferent dimensions and the above situation should pose no special problem.

2.3 Clustering Motion Subspaces

2.3.1 Sparse subspace clustering

The preceding section has reduced the motion segmentation task to that

of clustering subspaces of dimension at most 8 in R9 in general. The data

are now collected in a data matrix W = [w1 · · ·wP ]. The SSC algorithm

can be used directly to perform subspace clustering for the case of single

image pair; the case of multiple image pairs requires joint sparsity and will

be discussed in Section 2.3.1.2.
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2.3.1.1 Single image pair

We briefly review the SSC algorithm in the context of the TPV motion

subspace: each column wp can be represented as a linear combination of

the other columns wq

wp =
P∑

q=1,q ̸=p

cqwq = Wp̂cp, (2.9)

where P is the number of correspondences,Wp̂ = [w1 · · ·wp−1 wp+1 · · ·wP ] ∈

RD×P−1 is the matrix obtained from W by removing its p-th column and

cp ∈ RP−1 is the vector made up of the coefficients cq. Generally, the solu-

tion for (2.9) is not unique and the key idea of SSC is to obtain a sparsest

solution for cp via solving the following relaxed ℓ1 optimization problem

min ∥cp∥1 s.t. wp = Wp̂cp. (2.10)

The nonzero entries in the optimal solution cp indicate that the correspond-

ing trajectories inWp̂ belong to the same subspace aswp. The optimization

problem for every trajectory is collected and written succinctly in matrix

form as

min ∥C∥1 s.t. W = WC, diag(C) = 0. (2.11)

where diag(C) are the diagonal entries of the matrix C, and diag(C) = 0

is introduced to avoid the trivial solution.

According to [39], since the optimal solution C∗ to problem (2.11) mea-

sures the pairwise linear correlations among trajectories, it can be naturally

used to construct an affinity matrix A with Aij = |C∗
ij|+ |C∗

ji|, after which

spectral clustering algorithms can be applied to obtain the desired segmen-

tation into the respective subspaces.
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Figure 2.3: Illustration of the ℓ1,1,2 norm minimization. The entries (i, j)
of C(l) should be sparse and its support set should be consistent across
different C(l).

2.3.1.2 Multiple image pairs

A naive way to extend the SSC algorithm to multi-view case is to compute

results from many image pairs individually and design a voting scheme to

determine to which group the data points should belong. An alternative

way is to accumulate the individual affinity matrices or adopt the multi-

view spectral clustering method [124]. However, these methods operate

on each image pair separately, and have not exploited the linkage between

the multiple image pairs in a more integral manner. Here, we seek to

incorporate all image pairs into a unified optimization process.

Assuming we have L image pairs, and since each image pair yields a

correspondence matrix W(l), L corresponding coefficient matrices C(l) will

be constructed by SSC. The key here is to solve for all C(l) together and

require them to share a common sparsity profile. In other words, the non-

zero entries ofC(l) should be sparse and those columns corresponding to the

same trajectory across the different C(l) should share the same support set.

This amounts to solving a joint sparse optimization problem [81], which
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can be relaxed into the following mixed norm minimization problem:

min
∑P

i=1

∑P
j=1

√∑L
l=1(c

(l)
ij )

2

s.t. W(l) = W(l)C(l), diag(C(l)) = 0,

l = 1, . . . , L,

(2.12)

where c
(l)
ij is the (i, j)-th element of C(l) for the l-th image pair. Referring to

Figure 2.3, this operation can be visualized as stacking all C(l) into a tensor

C ∈ RP×P×L, and then minimizing the number of non-zero entries in the

aggregate matrix formed by summing all c
(l)
ij along the third dimension l. In

analogy to the ℓ1,2 norm being the norm that approximately measures the

number of non-zero columns, we can call our norm the ℓ1,1,2 norm. Denote

C∗ as the optimal solution. We similarly construct an affinity matrixA with

its element Aij =
√∑L

l=1(c
∗(l)
ij )2+

√∑L
l=1(c

∗(l)
ji )2. Then spectral clustering

is applied as in the two-frame case.

Notice that the correspondences can be missing in some image pairs,

here “missing” means a trajectory is invisible in either one or both of the

image pair. In this case, we fill in with a 09×1 column vector for the

missing data so as to ensure that all W(l) have the same dimension. More

specifically, if a trajectory p is missing in the image pair l, then in the l-th

correspondence matrix W(l), the p-th column w
(l)
p = 09×1. Our rationales

for filling in with 09×1 are twofold: 1) when we want to obtain the sparse

coding for the p-th point, the optimal solution for the missing data in the

l-th image pair is 0(P−1)×1, not incurring any cost in equation (2.12), nor

biasing the solution for other C(l) in any way. 2) Conversely when we

want to recover the sparse coding for other points, e.g. q, the missing data

will not be chosen to represent the point q in the l-th image pair since it

contributes nothing to the representation of q. This allows us to treat a

trajectory with missing data in a uniform manner, without affecting the

joint optimization scheme.
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2.3.1.3 Handling ambiguous matches

In real applications, feature trackers often bring in noisy or even heavily

corrupted trajectories, especially if we want to seek a denser coverage of fea-

tures over the entire image. In order to recover the sparse coefficients from

the corrupted observations, it is straightforward to consider the following

regularized minimization problem:

min
∑P

i=1

∑P
j=1

√∑L
l=1(c

(l)
ij )

2 + λ
∑L

l=1 ∥E(l)∥ℓ

s.t. E(l) = W(l) −W(l)C(l), diag(C(l)) = 0,

l = 1, . . . , L,

(2.13)

where λ is a weight used to adjust the effect of the two parts and ∥ · ∥ℓ

indicates a particular choice of regularization strategy. Here we choose

ℓ1,2 norm to model sample-specific corruptions and outliers [68], whose

minimization forces E(l) to be column sparse.

After obtaining an optimal solution (C∗,E∗) (where E∗ ∈ RD×P×L is a

tensor stacked from E∗(l)), we could detect erroneous matches by looking for

those columns with large ℓ2 norms in any of the E∗(l). If a corrupted match

is detected in E∗(l), we will delete it from image pair l but preserve the

correct matches of that trajectory in other image pairs unless all matches

of that trajectory are corrupted.

2.3.2 Merging via coefficient analysis

As the number of motion groups is usually not known a priori in reality,

we have to come to grips with the model selection problem. In view of

the difficulty of cluster detection, we propose to first over-segment the

data based on the number of zero eigenvalues of the Laplacian matrix of

the affinity matrix, and then attempt to merge the clusters later via the

following model selection scheme. Based on the work of Soltanolkotabi and

28



Clustering Motion Subspaces

o

{{ 1

L1

o

{{ 1

L1

p p

Figure 2.4: Illustration of the magnitudes of the ℓ1 norm when point p is
represented by points from the “red” subspace (left) or from the “bule”
and “green” subspace (right). The ℓ1 norm of the later case is larger.

Candès’ outlier detection scheme [93], we propose a simple yet coherent

model selection algorithm based on analysis of the ℓ1-norm of the mutual

representation of two over-segmented groups, which is able to correctly

merge groups from the same subspace by a simple threshold.

For multiple independent subspaces, a point can be treated as an outlier

w.r.t a group to which it does not belong. On the one hand, the coefficient

vector of an outlier is expected to be less sparse due to the optimization

scheme of the sparse affinity pursuit. On the other hand, even if the ex-

pansion of a data point is also sparse enough, its ℓ1 norm is more likely

to be large if the points chosen to represent this point are from different

subspaces. The former situation is well explained in [93], and Figure 2.4

illustrates the second situation. We assume data points are located uni-

formly at random on the unit hypersphere (data vectors are normalized)

as in [93]. As can be seen in Figure 2.4, if the points chosen to represent

the point p in the “red” subspace are from the “blue” and the “green”

subspace, the ℓ1 norm is larger than the norm obtained in the case that

the points are chosen from the “red” subspace. In summary, if the ℓ1 norm

of the coefficients vector is large, it is more likely to connect points from
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different subspaces.

Given a data point q ∈ RD and a group of points {pi}Mi=1 stacked as the

columns of the matrix P ∈ RD×M and spanning the subspace S, if we use

P to represent q, i.e. q = Pc, we can obtain a coefficient vector c ∈ RM .

According to Theorem 1.3 of [93], the data point q has a high probability

of being an outlier w.r.t S if the ℓ1-norm of the sparsest solution c is larger

than a threshold ϵ = λ(M−1
D

)
√
D (λ is a threshold ratio function; for details,

see [93]). Based on this theorem, we can determine the relationship between

two groups.

Now consider two groups of points obtained from the over-segmentation

step, P ∈ RD×M and Q ∈ RD×N , whose columns {pi}Mi=1 and {qi}Ni=1 are

extracted from subspaces Su and Sv respectively. If we sparsely represent

the points in P using the points in Q:

min ∥C∥1

s.t. P = QC,
(2.14)

the columns of C ∈ RN×M are the coefficient vectors corresponding to

the data points in P. Based on the aforementioned outlier determination

scheme, if u = v and Q adequately represents Sv, the points in P should be

inliers w.r.t Q, and thus the ℓ1-norms of columns {ci}Mi=1 in C are expected

to be small. For robustness, we compare the median value of all ℓ1-norms

of {ci}Mi=1 against the threshold ϵ to decide if P should be merged into

Q. For notational convenience, we denote the above using a relationship

matrix R with its elements defined as

Rpq = medianM
i=1(∥ci∥1). (2.15)

Similarly, we can obtain C′ ∈ RM×N by representing Q using P and com-

pute the relationship Rqp. Note that this relationship is oriented, and in
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general, Rpq ̸= Rqp.

The above analysis can be extended to the case for the multiple image

pairs in a manner analogous to the collaborative clustering algorithm in

(2.12). Assuming L image pairs, we rewrite (2.14) as

min
∑N

i=1

∑M
j=1

√∑L
l=1(c

(l)
ij )

2

s.t. P(l) = Q(l)C(l), diag(C(l)) = 0,

l = 1, . . . , L,

(2.16)

where P(l) andQ(l) are the data matrices of the two groups in the l-th image

pair, C(l) is the corresponding coefficient matrix, and c
(l)
ij is the (i, j)-th

element of C(l). Notice that this formulation is similar to the collaborative

clustering algorithm in (2.12), but the data matrices in the l.h.s. and r.h.s.

are different. And here we solve for this optimization problem to calculate

the relationship of two groups. The relationship Rpq (2.15) is also changed

accordingly:

Rpq = medianM
i=1(medianL

l=1(∥c
(l)
i ∥1)). (2.17)

After obtaining the oriented relationships of all over-segmented groups, we

claim the two groups belong to each other if both descriptions are smaller

than a threshold ϵ, thus merging is applied between these two groups. If

one description is larger than ϵ but the other one is smaller than ϵ, we claim

one group belongs to the other group, thus we will also merge these two

groups. If both descriptions are larger than ϵ, we claim these two groups

exclude each other, so we will not merge them. We iteratively merge two

groups according to the aforesaid threshold ϵ until there is no more merging

possible. The details of the merging step are summarized in Algorithm 1.

One might question what if some of the groups are too small or degener-

ate such that they do not adequately represent the underlying subspace S.

Clearly, such groups are common occurrences, but it is also true that there
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Algorithm 1 ℓ1-norm based merging

Input: Set of motion groups {Pk}k=1...K , ϵ
P0 ← Current set of groups
for k = 1→ (K − 1) do
for each group pair do
Compute relationship matrix R according to (2.17).

end for
if min(R) < ϵ then
1.(i, j) = find(min(R))
2.Merge the groups i and j
3.Pk ← Current set of groups

else
return Pk

end if
end for
return Pk

invariably exist some other groups whose points fully span the subspace S.

In such cases, the former will be judged to belong to and merged into the

latter. 1

2.4 Experiments

2.4.1 Results on single image pairs

In this subsection, we evaluate the performance of the two-frame version

of our algorithm on the Hopkins155 database (denoted as TPV in Tables

2.1, 2.2 and 2.3) to gauge the effectiveness of our two-frame method. We

compute the classification error as the percentage of misclassified points

w.r.t the ground truth and list the average classification errors. We choose

the first and the last frames of all sequences as the image pair for the

testing, which avoids cases with short observation periods and ensures that

all correspondences in the scene have sufficient displacements in the image

plane. For the sake of comparison, we assume the number of motion groups

1Even if a motion group consists of say, just two walls, the degenerate case of the
over-segmentation yielding two walls cleanly (and thus not mergeable) seldom arises;
instead, the points of the two walls are usually segmented non-exactly by our over-
segmentation step.

32



Experiments

Table 2.1: Classification errors (%) for sequences with 2 motions

Method ALC GPCA LSA SSC LRR TPV
Checkerboard: 78 sequences
Mean 1.49 6.09 2.57 1.12 1.50 1.81
Median 0.27 1.03 0.27 0.00 0.00 0.00
Traffic: 31 sequences
Mean 1.75 1.41 5.43 0.02 0.52 1.10
Median 1.51 0.00 1.48 0.00 0.00 0.00
Other: 11 sequences
Mean 10.70 2.88 4.10 0.62 2.41 1.26
Median 0.95 0.00 1.22 0.00 0.00 0.00
All: 120 sequences
Mean 2.40 4.59 3.45 0.82 1.33 1.57
Median 0.43 0.38 0.59 0.00 0.00 0.00

is known in this experiment, like what many algorithms did. We also list

the classification errors when applying ALC[83], GPCA[105], LSA[118],

SSC[39] and LRR[68] to the affine motion subspace for comparison.

It can be seen from Table 2.3 that TPV yielded average classification

errors of less than 5% for the two and three motions, which is only slightly

worse off than those of SSC and LRR applied to multiple views assuming

affine model. The results indicate that segmentation from two properly

chosen views is almost as good as segmentation from the multiple views.

What is noteworthy is that the 2-frame TPV algorithm outperforms the

multi-frame GPCA and LSA algorithms on all categories. We believe that

this is due to a combination of factors such as the better modeling of

perspective effect and the choice of better clustering methods.

2.4.2 Results on multiple image pairs

We now evaluate the complete algorithm using multiple image pairs with-

out knowing the number of motion groups and with challenges like missing

data and perspective effects. The data used in this evaluation comprise

62 video sequences, of which 50 are from Hopkins155. Since Hopkins155
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Table 2.2: Classification errors (%) for sequences with 3 motions

Method ALC GPCA LSA SSC LRR TPV
Checkerboard: 26 sequences
Mean 5.00 31.95 5.80 2.97 2.56 5.12
Median 0.66 32.93 1.77 0.27 0.10 1.57
Traffic: 7 sequences
Mean 8.86 19.83 25.07 0.58 1.80 1.82
Median 0.51 19.55 23.79 0.00 0.00 0.18
Other: 2 sequences
Mean 21.08 16.85 7.25 1.42 4.25 1.93
Median 21.08 16.85 7.25 1.42 4.25 1.93
All: 35 sequences
Mean 6.69 28.66 9.73 2.45 2.51 4.98
Median 0.67 28.26 2.33 0.20 0.00 0.79

Table 2.3: Classification errors (%) on Hopkins155

Method ALC GPCA LSA SSC LRR TPV
All: 155 sequences
Mean 3.36 10.02 4.86 1.18 1.59 2.34

has a very unbalanced number of 2-motion and 3-motion clips (120 and

35 respectively), we retain only the 50 original seed videos (the other 105

2-motion clips are created by splitting off from the 3-motion clips). More

importantly, to evaluate the performance under missing data and perspec-

tive effects, we added 12 clips with incomplete trajectories, of which 4 are

from [89] and the other 8 are captured by us using a handheld camera with

a wide angle lens. The newly captured sequences contain about 100 frames

each, some of which experience heavy occlusions, posing significant chal-

lenge to the matrix completion task, as we shall see later. Of the resultant

62 motion clips, 26 contain two motions, 36 contain three motions, 12 suf-

fer from missing data, and 9 have strong perspective effects (some of these

categories are not mutually exclusive). We refer to this combined dataset

as the 62-clip dataset.

We denote our complete algorithm as M-TPV for multiple-TPV. We
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compare the performance of M-TPV to seven state-of-the-art approaches:

ALC [83], GPCA [106], LBF [122], LRR [68], Multi-Scale Motion Clustering

(MSMC) [38], Ordered Residual Kernel (ORK) [29] and SSC [39]. For ALC,

we use the provided rather simple matrix completion method and test 101

different values from 10−5 to 103 for the noisy level as in [83], and then

we record the best segmentations with the smallest average error rate. For

MSMC, since the default scales (the number of interval frames between an

image pair, with the default scales being h1, h5 and h25) did not perform

well in these sequences, we tried several combinations and report the error

rates corresponding to the following scales: h5, h10 and h25. For SSC, since

the model selection method based on spectral gap[93] performed poorly in

these real data, we choose the second order difference (SOD) method as in

LBF. Note that the SOD method is also used in a similar manner to support

SSC in [122]. For those algorithms which do not explicitly handle missing

data, such as LBF, LRR, ORK and SSC, we recover the data matrix using

Chen’s matrix completion approach [26], which in our experience has the

best performance among various competing algorithms (such as OptSpace

[78], GROUSE [10] and etc.). For those algorithms which have a random

element in their results, such as ORK and MSMC, we repeat 100 times and

record the best results.

Table 2.4 shows the performance of these methods on the 62-clip dataset.

Since the estimated number of motion groups may not be the same as the

ground truth number, we exhaustively test all the cluster pairings to obtain

the best error rates. Furthermore, to investigate if good model selection

results in good segmentation, the error rates obtained by only considering

sequences where the number of motions is correctly estimated are shown in

Table 2.5. We also show some qualitative results obtained with the newly

captured clips in Figure 2.5.

The evaluation in Table 2.4 can be divided into three parts.
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Table 2.4: Classification results on 62-clip dataset

Method ALC GPCA LBF LRR MSMC ORK SSC M-TPV

Classification error (%) - clips with perspective effect: 9 clips
Mean 16.18 43.66 20.00 16.31 19.17 22.94 25.68 8.20
Classification error (%) - clips with missing data: 12 clips
Mean 25.38 39.64 20.17 26.03 14.64 24.11 27.41 7.71
Classification error (%) - clips without missing data: 50 clips
Mean 22.03 16.89 15.66 9.82 14.19 12.98 13.09 7.56
Classification error (%) - all: 62 clips
Mean 22.67 21.29 16.53 12.98 14.27 15.13 15.86 7.59
Group number estimation - all 62 clips
# correct 21 33 29 35 25 37 33 46

Table 2.5: Classification results on 62-clip dataset (only considering se-
quences where the number of motions is correctly estimated)

Method ALC GPCA LBF LRR MSMC ORK SSC M-TPV

Classification error (%) - clips with perspective effect: 9 clips
Mean 0.35 40.83 12.14 14.83 0.58 20.24 9.68 0.46
Classification error (%) - clips with missing data: 12 clips
Mean 0.43 28.77 18.47 29.46 1.06 22.33 17.22 0.91
Classification error (%) - clips without missing data: 50 clips
Mean 18.28 16.20 11.90 5.26 2.59 4.15 2.01 2.78
Classification error (%) - all: 62 clips
Mean 14.88 16.58 5.90 5.95 2.34 8.08 5.17 2.37

In the first part, the classification error rates of the 9 clips with strong

perspective effects are presented. Our method is the only one with an

error rate of less than 10%, which shows the superiority of the proposed

approach. Although ALC and MSMC also reported good results when the

number of motion groups is correctly estimated, perspective effects have a

significant detrimental impact on their model selection steps, resulting in

substantially higher error rates of ALC and MSMC.

In the second part of Table 2.4, the impact of missing data is investi-

gated. Our approach again outperformed the other methods with a less

than 10% error rate. GPCA broke down mainly due to the instability of

36



Experiments

the Power Factorization method used for filling in missing data. Those

methods based on the matrix completion of [26] for filling in, such as LBF,

ORK and SSC, performed well in some sequences, but the overall deleteri-

ous impact is evident, attesting to the difficulty faced by a general-purpose

matrix completion algorithm in dealing with the structured pattern of the

missing data. Among these methods, it is also remarkable that the so-far

top-performing LRR failed in the model selection of 11 sequences, which

implies that the model selection step in LRR is very sensitive to how the

spectral values have been changed in the recovered matrix. Of the only

sequence whose motion number is correctly estimated (the “Van” clip,

first column of Figure 2.5 ), LRR has a very poor classification error rate.

MSMC failed in those sequences with complicated objects and backgrounds

due to its simple motion model based on homography. Even if this method

uses a higher-order motion model, the significant increase in model com-

plexity will pose a lot of difficulties for the sampling procedure, rendering

its performance very much suspect.

The last comparison is based on the 50 seed videos from the Hop-

kins155 ’s dataset. These clips are relatively easy, because they have com-

plete trajectories. The average classification error of our method on all 50

clips is 7.56%, while that considering only cases having correct motion num-

ber estimation is 2.78%. The more meaningful figure of 7.56% is clearly the

best compared to other state-of-the-art motion segmentation algorithms.

These figures also demonstrate that model selection remains a recalcitrant

problem, and to achieve real progress in motion segmentation, we must

meet this challenge heads-on.

If we only consider the segmentation results of the sequences with cor-

rect number of motion estimation in Table 2.5, all approaches except ALC

and GPCA yielded near zero error rates. This fact demonstrates that these

methods can almost give perfect segmentation if the model selection part
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can be well solved. Thus, we believe model selection is the urgent problem

we need to improve next.

The last two rows of metrics in Table 2.4 measure the overall perfor-

mance, from which it can be seen that our method outperformed the rest

in all significant aspects. It has 46 correct motion number estimation out

of 62 clips (next best is 37), and the average classification error of all clips

is 7.59% (next best is 12.98%). These overall performances demonstrate

that our method is capable of handling the various real challenges in the

motion segmentation problem.

2.5 Conclusions

We solve the 3D motion segmentation problem of multiple frames rooted in

the epipolar geometry of two perspective views via a collaborative cluster-

ing algorithm. This approach highly integrates multiple frame information

with a mixed norm optimization, which is able to avoid the disadvantages

of multi-frame methods and enjoy the rich information provided by mul-

tiple frames. We also propose a method to evaluate the relationship of

two groups based on a similar optimization scheme. Leveraging on this,

we first over-segment the motion groups, and then merge them according

to the relationships. The experiments on the Hopkins155 database and

the new sequences showed that the proposed algorithm outperforms the

state-of-the-art methods in meeting the various challenges.
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Figure 2.5: Qualitative results of the real data with missing entries. The
segmentation results of the 50-th frames of the sequences are presented.
From left to right are the “Van”, “Girl” and “Swing” clips.
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Chapter 3

Simultaneous Clustering and

Model Selection

In the preceding chapter, the model selection method to estimate the num-

ber of motion groups is based on an over-segment and merge approach,

where the merging step is based on the property of the ℓ1-norm of the mu-

tual sparse representation of two over-segmented groups. In this chapter,

we propose a more general model selection approach

While clustering has been well studied in the past decade, model selec-

tion has drawn less attention. In this chapter, we address both problems

in a joint manner with an indicator matrix formulation, in which the clus-

tering cost is penalized by a Frobenius inner product term and the group

number estimation is achieved by a rank minimization. As affinity graphs

generally contain positive edge values, a sparsity term is further added

to avoid the trivial solution. Rather than adopting the conventional con-

vex relaxation approach wholesale, we represent the original problem more

faithfully by taking full advantage of the particular structure present in

the optimization problem and solving it efficiently using the ADMM. The

highly constrained nature of the optimization provides our algorithm with

the robustness to deal with the varying and often imperfect input affinity
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matrices arising from different applications and different group numbers.

Evaluations on the synthetic data as well as two real world problems show

the superiority of the method across a large variety of settings.

3.1 Introduction

Many computer vision problems, such as image segmentation, multi-structure

recovery and so on, involve solving the clustering problem at some point.

Often, an affinity graph is set up and then fed into a spectral clustering

framework [71] to infer the clustering of the data into groups. Such spectral

graph methods include Ratio Cut [46], Normalized Cut [91], etc. However,

deciding on the number of clusters remains an open problem for all such

algorithms.

The simplest way to estimate the group number is to count the number

of zero eigenvalues of the Laplacian matrix of the affinity graph. However,

it does not perform very well in practice when data contain structures at

different scales of size and density, and when data are contaminated by

noise. In these cases, these eigenvalues deviate from zero in a complex

manner, and it is non-trivial to determine the number of eigenvalues close

to zero in a robust manner.

In this chapter, we propose a novel algorithm to perform simultaneous

clustering and model selection (SCAMS). Given an affinity matrix A with

non-negative entries, our task can be conceptually viewed as discovering

which A(i, j) are small enough; this is essentially saying that elements i

and j are dissimilar and should be placed in different clusters. Just as

importantly, we should also ensure that elements i and j are not linked in-

directly through other elements in the graph. This is realized by adopting

an indicator matrix formulation explained as follows. We take the Frobe-

nius inner product of the affinity matrix A and G = ZZT , where Z is an
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indicator matrix whose rows indicate to which group a point belongs. We

maximize this Frobenius inner product term ⟨A,G⟩ so as to keep G as

close to the data term A as possible, while at the same time, we impose

several constraints so as to ensure meaningful solutions forG. Firstly, there

should be a trade-off between the complexity of the model and goodness

of fit. The model complexity is indicated by the rank of G (see Section

3.3); thus, we seek to minimize the rank of G to discriminate against a

more complex model. Secondly, we should also limit the cardinality of G

— the number of nonzero entries in G — so as to discover structure in the

data (indicated by the sparsity pattern of G). In fact, without this penalty

term on cardinality, we will end up with the trivial solution of G being the

all-one matrix (all data belong to one cluster). Together with the {0, 1}

constraint on G, this formulation in effect examines the connectivity of the

entire graph and tends to set G(i, j) to one if elements i and j are linked

indirectly through other elements. This highly constrained formulation also

provides our algorithm with the robustness to deal with the varying and of-

ten imperfect input affinity matrices generated from different applications

and different group numbers (despite the best efforts of works to generate

these matrices [39, 68, 108]). Figure 3.1 shows a recovery result of our

algorithm. Notice that our algorithm is able to recover a nearly perfect 0-1

block diagonal G from the contaminated affinity matrix.

Our problem now involves solving for a low-rank and sparse matrix

G, subject to a number of constraints over the integer variables, all of

which lead to an NP-hard problem. In many problem instances, the convex

proxy to an NP-hard problem may not be a good approach. Instead, there

might be a need to represent the original problem more faithfully — an

approximate solution to the right problem can be better than the exact

solution to the wrong problem. In our case, we take full advantage of the

particular structure present in the optimization problem, optimizing over
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Figure 3.1: Left: A contaminated affinity matrix A with 5 clusters. Right:
The recovered G contains 5 almost perfect blocks. Further processing by
the proposed Boolean matrix factorization algorithm will obtain perfect
blocks from this G.

the rank and ℓ0-norm directly and yet solving the problem efficiently using

the ADMM method [18, 66].

A common heuristic to obtain the final clustering is to factorize G back

to ZZT using Cholesky decomposition [44], and assign each data point to

the index with the maximum value in each row of Z. However, Cholesky

decomposition occasionally produces bad results even if G contains nearly

perfect blocks because it does not impose any Boolean constraint on the

factor matrices. Thus, we propose a variant of an existing Boolean matrix

factorization (BMF) algorithm [76] to finesse a better decomposition.

The contribution of this chapter is summarized as follows.

• We formulate the model selection as a rank minimization problem,

leading to a joint optimization of clustering and model selection. Triv-

ial solution is avoided by adding a sparsity penalty term. The low

rank penalty, together with other constraints that enforce the indi-

cator matrix formulation, highly constrains the solution space and

provide our algorithm with the ability to repair imperfections in the

affinity matrix, e.g. filling in the connectivity gap or ignoring dubious

connections.
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• The inner optimization subproblems in each iteration are designed to

take full advantage of the particular structure present in our problem.

This results in an effective and efficient algorithm that represents the

original problem more faithfully and works well under a wider range of

changing conditions such as increasing group number and noise level.

Our extensive experiments shed light on how the different attributes

of the affinity matrices constructed by different methods impact on

model selection, further highlighting the strength of our algorithm.

• We propose a novel Boolean matrix factorization algorithm to obtain

a better decomposition which lends itself to more accurate clustering.

3.2 Related works

There have been many algorithms devised for the clustering problem; we

will briefly review some major approaches here. In the spectral graph

approach, one needs to determine the number of zero eigenvalues of the

Laplacian matrix of the affinity graph in a robust manner. Heuristics par-

ticularly designed for this purpose include the eigengap heuristic, the elbow

criterion, the gap statistic [97], the silhouette index [87], and several recent

measures [3, 68, 93]. In the information-theoretic approach, one aims to

balance the goodness of fit against the complexity of the model. A classical

measure is the Akaike Information Criterion (AIC) [2], which is followed

by many variants [55, 100]. Another measure is based on compression effi-

ciency, such as the Minimum Description Length (MDL) [72, 85, 94]. The

major drawback of this kind of methods is that they are usually model-

dependent. Among the many clustering methods, one can also distinguish

another category which is based on the stability of the solutions [16, 59].

The stability is measured by the pairwise similarities between clustering

results with respect to perturbations such as sub-sampling or the addition
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of noise, and the optimal number of clusters is then given by the most

stable solution. Many of the above methods involve particular choices to

be made at the outset, for example the value of a particular thresholding

parameter. Many of them also require that the number of clusters to be

found by another criterion. That is, a two-step procedure is performed: a

clustering criterion determines the optimal assignments for a given number

of clusters and a separate criterion measures the goodness of the classi-

fication to determine the number of clusters. Our method involves very

little domain-specific assumptions, and it performs a joint optimization of

clustering and model selection in one single step. While our algorithm also

involves choice of weights, the experimental results show that these chosen

values works well across a wide range of different settings, which is not

what can be said about other compared methods.

Our method is also related to the probabilistic mixture model approach

in the sense that both combine clustering and model selection in a single

step. However, in the probabilistic mixture approach, one needs to assume

that the data can be described by a mixture of multivariate distributions

with some parameters that determine their shape with known distribution

of the data. Our method involves no such assumption. Another similarity

between such probabilistic mixture model approach and our method lies

in the objective function. In fact, if we view our affinity matrix A as

a covariance matrix, the objective functions are identical except for the

integer constraint(e.g. see [11, 25, 77]).

Lastly, we have in the preceding section likened the optimization as one

of discovering which affinity values are small enough to be set as zero. This

can be regarded as a thresholding operation on the affinity values. In fact,

if we know the threshold, we can convert our problem into a correlation

clustering (CC) problem [12]. We can either use the original unweighted

form of CC, in which the affinity matrix A defines a graph with all edges
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assigned weights of either +1 or −1 (representing “similar” and “dissim-

ilar” respectively), or one can use the general form of CC with real edge

weights [9, 33]. In either case, CC maximizes the Frobenius inner product

term ⟨A,ZZT ⟩ which is identical to our problem. The difficulty of this line

of approach is in determining a proper threshold to distinguish between

“similar” and “dissimilar”. Our method eschews such direct thresholding

and instead utilizes the generic low rank and sparsity assumption to per-

form the operation. Furthermore, the CC problem is an instance of the

quadratic semi-assignment problem (QSAP) [107], which is NP-complete

when the cluster number is unknown. Our method provides a tractable so-

lution via carefully exploiting the structure of the problem and appropriate

relaxations, and we show in our experiments that the results are of good

quality and stable across a range of noise level and cluster number.

3.3 Clustering with Model Selection

3.3.1 Problem formulation

Suppose we are given a graph G = (V,E,A), where V = {vi}Ni=1 is the

set of the N nodes, E ⊆ V × V denotes the set of the edges between the

nodes, and A ∈ RN×N is an affinity matrix constructed by some method,

with each element A(i, j) ≥ 0 being the affinity between sample vi and

vj. A(i, j) = 0 suggests that vi and vj are completely dissimilar, and thus

likely to be disconnected, while A(i, j) > 0 means there is the possibility

for the two nodes to be clustered into the same group. The larger the value,

the more likely these two nodes should be in the same group. Now the task

is to cluster these N nodes into K groups, where the group number K is

unknown a priori and needs to be estimated.

For ease of problem formulation, let us assume for now thatK is known.

Denote Z ∈ RN×K as the indicator matrix, whose row entries indicate to
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which group the points belong, i.e.., if point i belongs to group k, Z(i, k) =

1 and the remaining entries of the i-th row are all 0’s. Thus, if point i and

j belong to the same group, ⟨Z(i, :),Z(j, :)⟩ = 1; otherwise, ⟨Z(i, :),Z(j, :

)⟩ = 0, where ⟨·, ·⟩ denote the inner product of two vectors, or the Frobenius

inner product of two matrices, as the case may be. As discussed before, we

want to maximize the following objective function:

f(Z) = ⟨A,ZZT ⟩ = tr(ATZZT ), (3.1)

where tr(·) indicates the trace operator of the given matrix.

From the preceding, we have G = ZZT ; therefore, G is positive semi-

definite (PSD) and the rank of G is exactly K. We can convert the above

problem into the following minimization problem over G by adding a neg-

ative sign in front of the affinity matrix and denoting W = −A:

min . tr(WTG),

s.t. G ∈ S+,

diag(G) = 1,

rank(G) = K,

G ∈ {0, 1}N×N ,

(3.2)

where S+ is the PSD cone and diag(·) are the diagonal entries of the matrix,

this constraint merely reflecting the fact that the same point cannot be split

into different groups.

Since K is unknown a priori and usually K ≪ N , we estimate it by

minimizing the rank of G. However, this will result in a trivial solution for

G, i.e., the all one matrix, which is rank-one and “covers” all the entries

of the affinity matrix by 1. To avoid the trivial solution, we further add

an ℓ0 penalty on G to enforce sparsity on its entries. This would force

the optimization to only insert ones at those G(i, j) locations where the
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magnitude of the corresponding A(i, j) is large. Accordingly, we now have

min . tr(WTG) + λrank(G) + γ||G||0,

s.t. G ∈ S+,

diag(G) = 1,

G ∈ {0, 1}N×N ,

(3.3)

where || · ||0 is the ℓ0 norm, which counts the number of nonzero elements,

and λ and γ are the parameters to weigh the respective penalty terms. To

make the problem tractable, we first relax the constraint G ∈ {0, 1}N×N

to obtain real-valued entries G ∈ [0, 1]N×N . Next, instead of replacing

the rank and the ℓ0 norm with their convex proxies, we optimize them di-

rectly by taking full advantage of the particular structure present in the

problem. In particular, as we will show later, the resulting inner opti-

mization problems can be solved analytically by eigen-decomposition and

soft-thresholding operations. By now, the problem to be solved has the

following form

min . tr(WTG) + λrank(G) + γ||G||0,

s.t. G ∈ S+,

diag(G) = 1,

G ∈ [0, 1]N×N .

(3.4)

3.3.2 Solver

For efficiency, we adopt the ADMM method [18, 66] to solve this problem.

We first convert (3.4) to the following equivalent problem:

min . tr(WTG) + λrank(G) + γ||H||0 + g(H),

s.t. G ∈ S+,

G = H− diag(H) + I,

(3.5)
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where g is the indicator function of the convex set [0, 1]N×N , which returns 0

if it is in the set,∞ otherwise, andH is an intermediate variable introduced

to make the problem tractable. The augmented Lagrange function is

L = tr(WTG) + λrank(G) + γ||H||0 + g(H)+

tr(YT (G−H+ diag(H)− I))+

1
2µ
∥G−H+ diag(H)− I∥2F ,

s.t. G ∈ S+,

(3.6)

where Y is the Lagrange parameter, and µ > 0 is a penalty parameter.

The function can be minimized with respect to G and H alternatingly,

by fixing the other variable, and then updating the Lagrange multipliers

Y. The overall framework of the alternating direction method is shown in

Algorithm 2, with the detailed solver for each subproblem to be described

later.

Algorithm 2 Solving (3.4) by ADMM

Input: Negative affinity matrix W, parameters λ and γ.
Initialize: G = H = Y = 0N×N , µ = 106, ρ = 1.1, µmin = 10−10 and
ϵ = 10−8.
while not converged do
Step 1 Fix the others and update G as
G =argminG ∥G−H+µ(W+Y)∥2F+2µλrank(G),
s.t. G ∈ S+.
Step 2 Fix the others and update H as
H′ = argminH ∥H−G− µY∥2F + 2µγ∥H∥0 + g(H),
H = H′ − diag(H′) + I.
Step 3 Update the multipliers
Y = Y + 1

µ
(G−H).

Step 4 Update the parameter µ by µ = max(µ
ρ
, µmin).

Step 5 Check the convergence conditions:
∥G−H∥∞ ≤ ϵ.

end while

Solving G. In step 1 of Algorithm 2, the solution of G involves mini-

mizing the rank plus a convex quadratic function in the PSD cone. It can

be efficiently solved using the following theorem. The proof is analogous
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to that of Theorem 16 in [80], with the nuclear norm replaced by the rank.

Theorem 1. For any square matrix S ∈ RN×N , the unique closed form

solution to the optimization problem

G∗ = argminG ∥G− S∥2F + λrank(G),

s.t. G ∈ S+.
(3.7)

takes the form

G∗ = QHλ(Λ)QT , (3.8)

where QΛQT is the spectrum(eigen-) decomposition of Ŝ = (S+ST )/2 and

Hλ(·) is the thresholding operator acting on each element of the matrix,

and defined as

Hλ(v) =


0 if v < 0 or v2 ≤ λ,

v otherwise .

(3.9)

Proof. See Appendix A.1.

Solving H. In step 2 of Algorithm 2, the update of H′ involves minimiz-

ing the ℓ0 norm plus a convex quadratic function in the convex set [0, 1]N×N .

Since this problem is obviously separable, each element can be optimized

individually and simple manipulation suggests the following theorem.

Theorem 2. For any matrix M ∈ RM×N , the unique closed form solution

to the optimization problem

H∗ = argmin
H
∥H−M∥2F + γ∥H∥0 + g(H), (3.10)

takes the form

H∗ = Tγ(M). (3.11)

where Tγ(·) is the thresholding operator acting on each element of the ma-
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trix, and is defined as

Tγ(v) =


1 if v > 1 and min(v2, 2v − 1) > γ

0 else if v < 0 or v2 ≤ γ or v > 1

v otherwise .

(3.12)

Proof. See Appendix A.2.

With the closed-form solutions, global minimums are assured for both

sub-problems. Nevertheless, the algorithm as a whole does not have guar-

antee to convergence as the two sub-problems are non-convex. As far as

we know, there is no general convergence theory for ADMM applied to

non-convex problems, but numerical results in [90] on low-rank matrix fac-

torization show that ADMM performed well for solving certain non-convex

models. Indeed, our algorithm also has strong convergence behavior em-

pirically.

3.4 Constrained Boolean Matrix Factoriza-

tion

As the Cholesky decomposition occasionally yields poor binary result of

Z even if G is nearly a 0-1 block diagonal matrix, we adapt the idea of

BMF to achieve a better decomposition. Our proposed BMF method is

similar to the Asso algorithm [75, 76] but takes into account the additional

PSD constraint, and that each row of Z contains only one 1 (this latter

constraint can be interpreted as an orthonormal constraint under Boolean

algebra).

For the sake of completeness, we first give a brief introduction of BMF;

for more details, see [75, 76]. We then formally define our BMF problem

with its PSD and orthonormal constraints.
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BMF aims to (approximately) represent a Boolean matrix as the Boolean

product of two Boolean matrices. Here “Boolean” matrix means that the

matrix contains only 0’s and 1’s. Using the superscript b to stand for

Boolean matrix, let Bb ∈ {0, 1}N×K and Cb ∈ {0, 1}K×M be the two

Boolean matrices, whose Boolean matrix product, Bb ◦Cb yields Ab, with

Ab(i, j) = ∨K
k=1B

b(i, k)Cb(k, j), and the OR operation ∨ is the normal sum

but with addition defined as 1 + 1 = 1. Our problem can now be formally

defined as

Problem 1. Constrained Boolean Matrix Factorization (CBMF)

with the PSD and Boolean orthonormal constraints. Given a Boolean

matrix Gb ∈ {0, 1}N×N and an upper bound K0, find Boolean matrix

Zb ∈ {0, 1}N×K, K ≤ K0, such that Zb satisfies

min . |Gb ⊕ (Zb ◦ ZbT )|,

s.t. ZbT ◦ Zb = IK×K ,
(3.13)

where | · | is the norm of a Boolean matrix and defined as the number of 1’s

in it, i.e., |Ab| =
∑

i,j A
b(i, j), and ⊕ is the Exclusive-OR operation applied

element-wise, and defined as the normal addition but with 1 + 1 = 0.

The original Asso algorithm solves the BMF problem via the heuristic

approach of generating the candidate columns using pairwise association

accuracies. More specifically, it generates a matrixD withD(i, j) = ⟨Gb(i, :

),Gb(j, :)⟩/⟨Gb(j, :),Gb(j, :)⟩, i.e., D(i, j) is the association accuracy as de-

fined in association rule mining [1] for rule Gb(j, :) ⇒ Gb(i, :). After D is

binarized to a Boolean matrix Db (see Algorithm 3), the columns of the

factor matrices are selected from the columns of Db in a greedy fashion.

In the context of our problem with the two additional constraints, the al-

gorithm is modified as follows. Firstly, each candidate column of Db is

concatenated to the current Zb, and the next best Zb is the one that mini-

mizes (3.13). Note that by virtue of the formulation, the PSD constraint is
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Algorithm 3 The AssoCBMF algorithm
Input: G, K0

Initialize: Construct the Boolean matrix Gb from G with rounding
threshold tb = 0.5, Zb ← [ ], e =∞, td = 0.1.
for τ = 0.1, 0.2, . . . , 1 do

Construct Db with Db(i, j) = ⟨Gb(i,:),Gb(j,:)⟩
⟨Gb(j,:),Gb(j,:)⟩ > τ .

for k = 1, 2, ..., K0 do
i = argmini |Gb ⊕ ([Zb Db(:, i)] ◦ [Zb Db(:, i)]T )|.
Zb ← [Zb Db(:, i)].

Delete all j-th columns with ⟨Db(:,i),Db(:,j)⟩
∥Db(:,i)∥∥Db(:,j)∥ > td from Db.

if Db is empty or (3.13) is not reduced in this loop
break

end if
if ∥G− ZbZbT∥2F < e
Zb∗ = Zb.
e = ∥G− ZbZbT∥2F .

end if
end for

end for
return Zb∗

automatically satisfied. This step is repeated K ≤ K0 times until there is

no candidate column in Db left or (3.13) cannot be reduced anymore. Sec-

ondly, to reduce the probability that a row of Zb contains multiple 1’s and

violates the Boolean orthonormal constraint, we only retain as candidate

those columns which are sufficiently different from the selected columns

(based on some threshold td) for the next iteration. The full details are

presented in Algorithm 3, in which the input K0 is usually selected as the

rank of G.

Since we only approximately enforce the orthonormal constraint, it is

possible for a row of Zb to contain multiple 1’s. Usually, these constitute

a very small proportion of the rows. Thus, most points can be uniquely

assigned to clusters and the clusters are adequately populated. As a result,

we can resolve the assignment conflict by a simple post-processing step

as follows. We postpone the cluster assignment of all those points with

conflicts. Assuming the resultant clustering is X = {X1, . . . , XK} and

that there is an unassigned data point i, we assign the point i to the
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group XK′ with whose members it has the largest affinity; that is, K ′ =

argmaxk
∑

j∈Xk
A(i, j), whereA is the affinity matrix as defined in Section

3.1.

3.5 Experiments

In this section, we compare our method with various model selection meth-

ods. In the spectral graph approach, the key to performance lies in how

well one is able to determine the number of eigenvalues close to zero in

the Laplacian matrix. We choose as representatives of these spectral graph

methods both the basic gap heuristic (GH) method [71] as baseline, as

well as one of the most robust ones—the soft thresholds (ST) method [68]

which produces the best result reported in the motion segmentation prob-

lem so far. In addition to these two methods, we also compare with a

model specific method—the second order difference (SOD) method [122],

which reports state-of-the-art results in several datasets. A potential dis-

advantage of SOD is that it requires knowledge of the model; in particular,

the subspace dimension is assumed known and constant. Note also that

its model selection does not depend solely on the affinity matrix, hence

requiring the original data as input. Since the performance of the model

selection step also depends on the type of affinity matrix passed in, we

also experiment with different ways of constructing the affinity matrix. We

choose the two state-of-the-art algorithms in subspace clustering, SSC [39]

and LRR [68] 1, to construct affinity matrices. For ST and SOD, we use

the same parameter settings as in the original papers; for SCAMS, we use

the fixed values of λ = 2 and γ = 0.005 in all the experiments.

To evaluate algorithm performance, we adopt the Rand index (RI) [82]

as a measure of similarity between two data clusterings. This metric counts

1Here, by SSC and LRR, we refer only to those part of the respective algorithms
that produce the affinity matrix, i.e., not including the original model selection step
proposed by the authors.
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the pairs of points on which two clusterings agree or disagree. It is a better

metric compared to the classification error rate when the number of groups

is unknown. It is defined as follows.

Definition 1. Given a set of N elements V = {vi}Ni=1 and two clusterings

of V, namely X = {X1, . . . , Xr} with r clusters and Y = {Y1, . . . , Ys} with

s clusters. We define

• a: the number of pairs that are in the same cluster in both X and Y.

• b: the number of pairs that are in the different clusters in both X and

Y.

• c: the number of pairs that are in the same cluster in X but in the

different clusters in Y.

• d: the number of pairs that are in the different clusters in X but in

the same cluster in Y.

The Rand index, RI, is

RI =
a+ b

a+ b+ c+ d
. (3.14)

Note that RI has a value between 0 and 1, with 0 indicating that the two

data clusters do not agree on any pair of points and 1 indicating that the

data clusters are exactly the same.

3.5.1 Synthetic data

We first investigate the performance of the various methods using syn-

thetic data with different noise levels and varying number of groups. Sim-

ilar to [93], we sample K subspaces chosen uniformly at random from d-

dimensional subspaces in R50. We then sample 50 points on each subspace

and normalize them to unit-norm vectors for the experiments. When sam-

pling a subspace, we randomly sample d orthogonal basis vectors in R50.

56



Experiments

Affinity by LRR

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level

R
I

 

 

GH
ST
SOD
SCAMS−CK
SCAMS

Affinity by SSC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level

R
I

 

 

GH
ST
SOD
SCAMS−CK
SCAMS

Figure 3.2: Comparison on the Synthetic Data when the noise level changes.

For each subspace, we sample 50 points from it by randomly combining

the d basis vectors, and then we normalize the sampled point vectors to

unit-norm vectors. To add noise, we perturb each unit-norm point vector

by a noisy vector chosen independently and uniformly at random on the

sphere of radius ρ (the larger this radius is, the bigger the noise is, so it re-

flects the noise level). And then, it is normalized to have unit norm again.

More specifically, if x is the point vector, z is the noise, the noisy sample

x̃ = x+z
∥x+z∥22

, where ∥z∥22 = ρ.
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3.5.1.1 Different noise levels

In the noise level test, we fix K = 5, with each group having different

dimensions of d = [2, 4, 6, 8, 10] respectively. The latter is to reflect model

degeneracy, quite a common occurrence in real-world applications. As per

[93], we perturb each unit-norm data point by adding a noisy vector chosen

independently and uniformly at random on the sphere of radius ρ (noise

level) in R50. We consider 11 different noise levels: ρ = 0, 0.05, . . . , 0.5.

The test runs 20 times and the average results are reported in the top of

Figure 3.2.

As can be seen, despite the increasing noise, SCAMS performs consis-

tently well (above 0.9) using either SSC or LRR to construct the affinity

matrix. SOD performs less well although its performance also does not

degrade much with increasing noise level. In contrast, the performances of

GH and ST degrade significantly when the noise level increases. This ex-

periment shows that SCAMS is more robust to noise. One may also notice

that when the affinity matrix is provided by SSC, the RIs of all methods

are somewhat off the perfect score of 1 even with the noise level at 0. This

is probably because the LASSO version of SSC that we use is designed

for noisy data at all levels. Unfortunately, this results in a slight loss of

accuracy in the affinity matrix when the noise level is 0.

3.5.1.2 Varying group numbers

In the group number test, we fix the noise level ρ = 0.05 and gradually

increase the group number K from 1 to 12. For a given K, each of the K

groups has a different dimension d ranging from [2, 4, . . . , 2K] respectively.

Note that the sum of the dimension of the subspaces is greater than the

ambient dimension of 50 when K > 6. As K increases still more, the

various subspaces become increasingly dependent, posing difficulties for the

construction of affinity matrix by SSC and LRR. This raises the spectre of

58



Experiments

Affinity by LRR

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Subspaces

R
I

 

 

GH
ST
SOD
SCAMS−CK
SCAMS

Affinity by SSC

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Subspaces

R
I

 

 

GH
ST
SOD
SCAMS−CK
SCAMS

Figure 3.3: Comparison on the Synthetic Data when the number of sub-
spaces changes.

poor-quality affinity matrix as the number of groups increases. We again

repeat the experiment 20 times and report the average results in the bottom

of Figure 3.3.

As is evident again, SCAMS performs consistently well (above 0.9) with

both versions of affinity matrix. SOD is a second order method, and its

mechanism can only handle those cases when group number is greater than

one. Other than this drawback, SOD again produces fairly competitive

results, its performance not degrading significantly until group number
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exceeds 8 or 9. ST is also fairly competitive but degrades earlier when

the affinity matrix is constructed by LRR. GH and SOD perform badly

when the group number is 1. In general, one can say that the performances

of most methods are affected by the declining quality of affinity matrices

when the subspaces or groups increasingly overlap, with the effect being

more pronounced in the case of LRR-constructed affinity matrix. On the

other hand, some methods (notably GH) are seemingly affected by the

sparser connectivity of the SSC-constructed affinity matrix, especially when

the group number is small. Only our method is adequate to the handling of

the varied attributes of the affinity matrices produced by different methods

and under changing conditions.

To show the improvement brought about by the CBMF algorithm in

Section 3.4, we also report the result of SCAMS using just Cholesky de-

composition (SCAMS-CK) to perform the G = ZZT factorization. While

the improvement is not significant in the case of the affinity matrix pro-

duced by LRR, it is significant when the affinity matrix is constructed by

SSC and the group number is small. This performance boost is further

corroborated in the later motion segmentation experiment in which CBMF

improves the RI score by about 0.02.

3.5.2 Motion segmentation

We further evaluate the performance of SCAMS in dealing with real world

problems. In this subsection, we tackle the motion segmentation prob-

lem using the Hopkins155 [103] as dataset. This dataset comprises 155

sequences containing either two or three motions. This problem can be

formulated as a subspace clustering problem, because the trajectories of a

rigid motion across multiple frames lie in an affine subspace with a dimen-

sion of no more than 3, or a linear subspace with a dimension of at most

4 under the affine camera assumption [103]. In our experiments, we use
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the original 2F -dimensional feature trajectories without any compression,

where F is the number of frames in each sequence. The results in Table

3.1 report the RI scores averaged over the 155 sequences.

Table 3.1: RI on Hopkins155

Affinity by LRR Affinity by SSC
Method Mean Median Mean Median
GH 0.6584 0.6490 0.7699 0.7418
ST 0.9154 0.9815 0.9095 0.9972
SOD 0.9026 0.9923 0.8834 0.9944
SCAMS 0.9202 0.9827 0.9068 0.9740

Since this dataset is almost noise-free and contains a small number

of subspaces in each sequence, all the methods except GH perform well

and there is no significant difference among these methods. GH’s poor

performance can be correlated with the corresponding simulation results

in the preceding section. Firstly, when the affinity matrix is produced by

LRR, slight noise can be detrimental to the GH method. Secondly, when

the affinity matrix is produced by SSC, GH performs badly with a small

group number.

3.5.3 Face clustering

The other real world problem that we address is the face clustering problem.

In this subsection, we test the algorithms on the Extended YaleB dataset

[43], which contains cropped frontal human face images of 38 subjects. Each

subject has 64 images taken under different light illuminations. Figure 3.4

Figure 3.4: Examples of face images. Images of 6 subjects (32 images for
each subject) are shown here, where each row corresponds to a subject.
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Figure 3.5: Comparison on the Extended YaleB dataset with increasing
number of subjects.

shows some image examples. This problem can also be cast as a subspace

clustering problem, because images of a subject with a fixed pose and

varying illumination lie close to a linear subspace of dimension 9 [14]. To

evaluate the performance of our algorithm, we randomly pick K subjects

(K ranging from 5 to 15) and cluster the features associated with these

subject images. As a preprocessing step, we resize the images to 42 × 48,

and then use PCA to reduce the dimensionality of the vectorized raw pixel

features to 30. We repeat the experiment 20 times and show the average
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results in Figure 3.5.

As can be seen from Figure 3.5 and has been observed earlier, the

affinity matrix constructed by LRR still poses problems for most meth-

ods (though to varying degrees) when the number of groups increases. In

contrast, SCAMS performs consistently well (above 0.9) even when the

LRR-constructed affinity matrix is not in an obliging form for most other

methods. With SSC-constructed affinity matrix, all methods yield promis-

ing and more stable results, at least with respect to the number of subjects

tested in this experiment. SCAMS performs consistently better than most

other algorithms, with GH also turning in a stable performance. This

latter phenomenon is again consistent with the results of the synthetic ex-

periment.

3.6 Discussion and Conclusion

We simultaneously solve the model selection and clustering problems in

a unified optimization scheme. The original structure of the affinity ma-

trix is preserved by the Frobenius inner product (the data term) and the

sparsity penalty, both terms acting locally. The rank minimization en-

forces global smoothness and tends to reduce the complexity of the model.

These global and local considerations reveal the underlying structure of the

clusters, resulting in a near-perfect 0-1 block diagonal matrix. Our highly-

constrained indicator matrix formulation also has the effect of rectifying

imperfections in the affinity matrix, such as filling in connectivity gap in

the SSC-constructed affinity matrix. We then propose a constrained BMF

to obtain a better decomposition and this in turn yields better assignments

of data points. The experiments on the synthetic data as well as two real

world problems show that our method performs significantly better with

noisy data and large number of groups. Our experiments with both the
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LRR- and SSC-constructed affinity matrix reveal their different charac-

ters, and further showcase the strength of our proposed SCAMS method

in handling different types of affinity matrices.
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Chapter 4

Visual Tracking via Sparsity

Patten Learning and An

Alternative Sparsity Model

Recently sparse representation has been successfully applied to visual track-

ing by modeling the target appearance using a sparse approximation over

the template set. However, this approach is limited by its high computa-

tional cost, which is dominated by that of the ℓ1-norm minimization. In

the first part of this chapter, we speed up the method by learning the spar-

sity patterns of the template set. With the learnt sparsity patterns, we

are able to recover the “sparse coefficients” of the candidate samples by

some small-scale ℓ2-norm minimizations; this results in a very fast tracking

algorithm. In the second part of this chapter, we propose an alternative

sparsity model, which, reversing the role of the template and candidate,

models the template appearance using a sparse approximation over the

candidate set. In this case, a large number of candidates can be imme-

diately filtered out according to whether they are chosen to represent the

templates or not. Then the optimal candidate is chosen as the one with

the largest observation likelihood from the retained candidate set. This
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sparsity model exploits the tracking problem from a novel perspective and

achieves better performance even with the simplest setting. Experiments on

a recently released benchmark with 50 challenging video sequences show

significant runtime efficiency and tracking accuracy achieved by the two

proposed algorithms.

4.1 Introduction

Visual tracking (or object tracking) plays an important role in numerous

vision applications such as security surveillance, vehicle navigation, activity

recognition and human computer interface. Given an initial state (such as

position and size) of a target either manually annotated or automatically

detected in the first frame of a video sequence, the goal of visual tracking

is to estimate the states of the target in the subsequent frames. Although

many tracking methods have been proposed [8, 30, 47, 50, 73, 86] in recent

decades, it remains a challenging problem due to various factors such as

partial occlusions, illumination changes, pose changes, background clutter

and viewpoint variation.

Among these methods, the ℓ1 tracker [73] proposed by Mei and Ling

is especially notable as it is the first work that brings the sparse represen-

tation and compressed sensing techniques [23, 36] to the visual tracking

problem. Similar to the sparsity based method for the face recognition

problem [113] mentioned in Chapter 2, the ℓ1 tracker represents candidate

samples by a sparse linear combination of templates; these templates in-

clude true templates from the tracked object and trivial templates used to

handle noise or occlusion. The optimal candidate should use as few trivial

templates as possible and keep a low reconstruction error as well.

For the sparsity based methods, the candidate states are usually es-

timated in a particle filter framework, which approximates the posterior
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distribution by importance sampling. The accuracy of the approximation

generally increases with the number of samples used. To achieve a reason-

able accuracy, these methods usually need to solve hundreds of ℓ1-norm

related minimization problems for each frame during the tracking process.

As a consequence of the large computational cost of the ℓ1-norm minimiza-

tion, the tracker is prevented from being used in a real time system such

as real time security surveillance.

In this chapter, we propose two sparsity based ideas to improve the

computational speed of visual tracking: 1) the first idea speeds up the

conventional ℓ1 tracker by sparsity pattern learning (SPL) ; 2) the other

idea considers the visual tracking problem from a different perspective,

reversing the roles played by the template and candidate.

Visual tracking via sparsity pattern learning. We propose to learn

the sparsity patterns for the template set. Rather than solving hundreds

of ℓ1-norm minimization problems, we solve the small-scale ℓ2-norm mini-

mization problems with the learnt sparsity patterns. More specifically, we

express each object template in the template set using the other templates

(including the trivial templates) and record the positions of the nonzero

coefficients as a sparsity pattern of that template. When we test a can-

didate, we choose the basis vectors (i.e the templates) according to each

learnt sparsity pattern, reconstruct the candidate by solving the ℓ2-norm

minimization problems with the chosen basis vectors, and represent the

observation likelihood with the minimum reconstruction errors from dif-

ferent sparsity patterns. Since the patterns are sparse, the scales of the

ℓ2-norm minimization problems are small and thus can be solved rapidly.

Subsequently the sparsity patterns would need to be recomputed with the

update of the templates. However, this only happens occasionally in the

tracking process. Moreover, we design fast methods to update the sparsity

patterns w.r.t. the previously learnt results.
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Time (frame no.)

Coefficients of the

best candidates

Figure 4.1: The coefficient vectors of the best patches in different frames
are shown in sequence. The supports of these coefficient vectors contain
only a few combinations. And coefficient vectors in neighboring frames has
shown similar patterns.

The reason that we express the candidate in this way is based on the

consideration that the appearance of the target object will not usually

change significantly or only change gradually, which has been verified in

figure 4.1. Therefore, it is likely to be able to use the previously used

basis vectors to represent the current target appearance. Since the sparsity

patterns are updated with the changes of the templates, it means that

any occlusion that introduces appearance change gradually will be tracked

and the sparsity pattern updated in a timely fashion. Thus our approach

can also handle occlusions like previous ℓ1 trackers. One critical issue for

our approach might be rapid changes of the object appearance resulting

from abrupt illumination changes or fast motions. In this case, the learnt

sparsity pattern may not be able to represent the target appearance and

thus causes failure in tracking.

An alternative sparsity model for visual tracking. We also propose

an alternative sparsity model that relooks at how the tracking problem can

be formulated. In this model, we swap the roles of the candidate and object

template sets in the ℓ1-norm minimization problem. In other words, we
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express the template appearance using a sparse linear combination of the

candidates. If a candidate sample is not chosen to represent any template,

it is unlikely to be the correct candidate for further tracking and hence

directly rejected.

Since this new model pursues a sparsest representation from the can-

didates, it is likely to choose the true target as a basis vector if it exists

in the candidate set. That is, in the ideal case, if the appearance of the

object does not change and the true target exists in the candidate set, the

sparsest solution would be a coefficient vector with all zeros except one

entry corresponding to the true target. In the real world with noise and

outliers, it is likely to choose the true target as the most important vector

(large coefficient value), together with a few other candidates to model the

noise or outliers (e.g. occlusions). Since the true target furnishes the most

important basis vector, the reconstruction error would be very large if we

remove it from the retained candidate set. Therefore, the observation like-

lihood can be computed from the reconstruction error by removing each

candidate from the retained candidate set. The larger the error is, the more

important the candidate is and the higher the likelihood of the candidate.

Given the fact that the number of object templates is usually very small

(10 in most ℓ1 trackers), the new sparsity model only needs to solve several

ℓ1 minimization problems. Though the dictionary will be larger, we do not

need to use trivial templates. Therefore, there are n×N unknowns in our

case and (N + 2D) × n unknowns for the conventional ℓ1 tracker, where

D, N and n are the data dimension, number of templates and candidates

respectively. And if we implement the algorithms in matrix form using

ADMM, the scale of our problem is smaller, given the fact that ADMM

is dominated by matrix multiplications and elementwise operations. As

can be seen from the experimental results later, the speed of our simple

novel model is close to the ℓ1 tracker that has been accelerated by using
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both minimum error bound [74] and APG [13] together. It should be noted

that in this case, the SPL approach mentioned above cannot be applied,

because now the dictionary is always changing for each frame. In terms of

tracking accuracy, a very basic version of this novel idea with the alternative

holistic sparse representation shows better performance comparing to the

previous ℓ1 trackers [73, 13, 74, 121] using the conventional holistic sparse

representation. Note that it has been pointed out in the latest benchmark

paper [115] that besides holistic representation, other components such

as local sparse representation and background information are critical for

effective tracking. We did not implement these other components in this

thesis as we are only looking at how adopting a different perspective to

the sparse representation might improve performance. As a consequence,

compared to those trackers with more information (e.g. [51] and [123]), the

performance of our simple tracker with the holistic sparse representation

alone is somewhat inferior. However, it is not difficult to integrate these

information into our tracker, just as [51] and [123] did.

To summarize, our major contributions are as follows.

• We accelerate the ℓ1 tracker by first learning the sparsity patterns

of the template set and then reconstructing the candidates with the

learnt patterns, resulting in a very fast algorithm. We also propose

fast methods to update the sparsity patterns using the previously

learnt results.

• We formulate the visual tracking problem from a different perspective

and propose an alternative sparsity model for visual tracking. A

simple setting of the novel sparsity model shows better performance

than conventional ℓ1 trackers on a recently released benchmark.
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4.2 Related Works

Previous approaches to the visual tracking problem can be roughly sepa-

rated into the generative and discriminative methods.

Generative methods learn the appearance model of the target object

and track the object by a state searching scheme w.r.t. the matching

score. Incremental visual tracking (IVT) [86] is a subspace based track-

ing method, which learns appearance changes by incremental PCA. Visual

tracking decomposition (VTD) [58] decomposes the observation and motion

model into multiple basic models by sparse PCA, resulting in multiple basic

trackers. Then all basic trackers communicate with one another through

an interactive Markov Chain Monte Carlo (MCMC) framework to achieve

the tracking result.

The aforementioned ℓ1 tracker also belongs to this category and there

are many extensions [13, 51, 67, 74, 109, 110, 116, 121, 123]. Among them,

bounded particle resampling (BPR) [74] and L1APG [13] are two direct

extensions proposed to improve the tracking speed. L1BPR [74] calculates

the minimum error bound of candidates by solving the ℓ2-norm minimiza-

tion problems and discards the candidates with large errors in a resampling

stage. Thus the number of ℓ1-norm minimizations is reduced. Essentially,

it rejects some candidates by ℓ2-norm minimization, thus avoiding having

to perform ℓ1-norm minimization for these candidates. Our SPL algo-

rithm, however, converts all ℓ1-norm minimization problems into ℓ2-norm

minimization problems and is thus more efficient. L1APG [13] accelerates

the ℓ1 tracker via a fast numerical solver (i.e. APG), while our algorithm

adopts ADMM to solve the ℓ1-norm minimization problem during the SPL

stage. Note that ADMM has been proven to be faster than APG and also

shows higher precision in the RPCA problem [66].

Other representative sparsity based tracking methods are reviewed be-

low. For a comprehensive survey, please refer to [120]. ASLA [51] exploits
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the partial and spatial information of the target by sparse presentation of

local patches. LSK [67] also uses a local sparse appearance model. Spar-

sity based collaborative model (SCM) [123] exploits both holistic templates

and local representations and designs a collaborative model with both gen-

erative and discriminative abilities. MTT [121] utilizes joint sparsity to

respect the underlying relationships between sampled particles. [110] up-

dates the object templates via an online robust non-negative dictionary

learning algorithm and establishes its equivalence to the ℓ1 tracker.

Discriminative methods learn binary classifiers and find the best de-

cision boundary for separation of the target object and the background.

Multiple instance learning (MIL) [8] proposes an online multiple instance

learning approach, which considers the samples within positive or negative

bags. Tracking-Learning-Detection (TLD) [54] decomposes the tracking

task into tracking, learning and detection. It uses an online semi-supervised

learning algorithm and is able to recover from failure because of its detec-

tion phase. Context tracker (CXT) [34] exploits the context information;

the similar regions are also tracked to avoid drifting and the local key-

points around the truth target with consistent co-occurrence and motion

correlation are used to support the tracker. Compressive tracking (CT)

[119] reduces the dimensionality of foreground and background samples by

a random sparse projection matrix, resulting in effective features, which

can be separated using a naive Bayes classifier. Struck [47] formulates the

tracking problem as one of structured output prediction, which directly

predicts the change in object location between frames.

Besides visual tracking, another closely related research problem is dy-

namic compressive sensing [41, 5]. Dynamic compressive sensing considers

dynamic systems when recovering sparse signals. These dynamics may

arise from time varying signals, streaming measurements or adaptive sig-

nal transforms. One focus of the dynamic compressive sensing problem is
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to quickly update the solution of the ℓ1-norm minimization problem for a

varied system from an already solved ℓ1 problem of the original system,

which is closely related to the update of sparsity patterns in our algorithm.

A popular solution to this problem is the homotopy methods [41, 6, 7],

which solve an optimization problem by gradually transforming it into a

related problem for which the solution is either available or easy to com-

pute, following a so called homotopy path.

Another closely related work is the fast abnormal event detector [69],

which also learns the sparsity patterns but uses it to detect outliers (ab-

normal events). In this work, there is no step for sparsity pattern update.

4.3 Background

To facilitate the presentation of our approaches, we first give a brief review

of the particle filter framework for visual tracking [4] and the ℓ1 tracker

[73].

4.3.1 Particle filter for visual tracking

Particle filter [37] is also known as the sequential Monte Carlo method for

importance sampling. It has been widely used in visual tracking due to its

simplicity and effectiveness. In the context of visual tracking, let zt be the

observation at frame t and st be the state variable describing the location

and shape of a target. The tracking problem estimates the posterior state

distribution p(st|z1:t), where z1:t = {z1, z2, . . . , zt}. Mathematically, it can

be calculated using a two-stage Bayesian sequential estimation, which up-

dates the filtering distribution recursively:

p(st|z1:t−1) =

∫
p(st|st−1)p(st−1|z1:t−1)dst−1, (4.1)
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p(st|z1:t) =
p(zt|st)p(st|z1:t−1)

p(zt|z1:t−1)
. (4.2)

Since direct calculation of the above distribution is practically intractable,

the particle filter approach approximates p(st|z1:t) by a set of samples

{sit}ni=1 (a.k.a. particles) with importance weights {wi
t}ni=1. These sam-

ples are generated by sequential importance distribution q(st|s1:t−1, z1:t)

and the weights are updated as

wi
t = wi

t−1

p(zt|sit)p(sit|sit−1)

q(st|s1:t−1, z1:t)
. (4.3)

Following the assumption of the first order Markov process, q(st|s1:t−1, z1:t) =

p(st|st−1), the weights are then updated as wi
t = wi

t−1p(zt|sit). In this case,

the weights of some particles may keep increasing, falling into a degener-

ate case. To avoid such a case, in each step, samples are re-sampled to

generate a new sample set with equal weights according to their weights

distribution.

4.3.2 The ℓ1 tracker

For the ℓ1 tracker, the state variable st is the affine transformation with six

parameters. The state transition distribution p(st|st−1) is modeled inde-

pendently by a Gaussian distribution, and the observation model p(zt|st)

reflects the similarity between the candidate and the target templates. Un-

der the particle filter framework, it is important to model this similarity,

and the ℓ1 tracker formulates it from the error approximated by the target

templates using ℓ1-norm minimization.

Given a template set Tt ∈ RD×Nt , whose columns are the vectorized

and normalized templates at frame t, let Yt ∈ RD×nt be the corresponding

candidate set, whose columns represent the vectorized target patches. For
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each candidate patch yi
t, the ℓ1 tracker [73] solves the following problem:

cit = min
c

1

2
∥yi

t −Dtc∥2F + λ∥c∥1, s.t. c ≥ 0, (4.4)

where Dt = [Tt, I,−I] and I is the identity matrix, which presents the triv-

ial template set. Then cit can be divided into two parts [cit(1 : Nt); c
i
t(Nt+1 :

Nt + 2D)], which correspond to the coefficients for the template set and

trivial template set respectively. And the observation likelihood is derived

from the reconstruction error

p(zt|xt) =
1

Γ
exp(−α∥yi

t −Ttc
i
t(1 : Nt)∥2F ), (4.5)

where α is a constant controlling the shape of the Gaussian kernel and Γ is

a normalization factor. The optimal patch is chosen as the candidate with

the maximum observation likelihood. Then the template set is updated

accordingly. For more details about the ℓ1 tracker and template update,

please refer to [73, 74].

4.4 Visual Tracking via Sparsity Pattern Learn-

ing

4.4.1 Sparsity Pattern Learning

With a slight abuse of notation, we ignore the subscript t from now on,

and let T ∈ RD×N be the template set as in the previous section. For each

template ti in T, we solve the following minimization problem:

min
c

1
2
∥ti −Dc∥2F + λ∥c∥1,

s.t. c ≥ 0, c(i) = 0,
(4.6)
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which essentially uses the other template and trivial patches to sparsely

represent the template patch ti. We rewrite it in a matrix form:

min
C

1
2
∥T−DC∥2F + λ∥C∥1,

s.t. C ≥ 0, Ω(C) = 0, (4.7)

where Ω(·) are the entries of the matrix with the same row and column

number, i.e. {C(i, i)}Ni=1. This minimization is very similar to the outlier

version of the sparse subspace clustering algorithm [39], but the purpose of

this minimization in our algorithm is completely different.

(4.7) can be efficiently solved using the ADMM method [18, 66]. We

first convert (4.7) to the following equivalent problem:

min 1
2
∥T−DC∥2F + λ∥J∥1,

s.t. C = J− Ω(J),

J ≥ 0,

(4.8)

where J is the intermediate variables introduced to make the problem

tractable. The augmented Lagrange function is

L =1
2
∥T−DC∥2F + λ∥J∥1+

tr(LT (C− J+ Ω(J)) + 1
2µ
∥C− J+ Ω(J)∥2F ,

(4.9)

where L is the Lagrange multiplier, and µ > 0 is a penalty parameter, which

affects the convergence of the algorithm. The function can be minimized

with respect to C and J alternatingly, by fixing the other variable, and

then updating the Lagrange multiplier L. The overall framework of the

alternating direction method is shown in Algorithm 4,

After solving C, we record the sparsity pattern of each column ci. More

specifically, for each column ci in C, assume there are ki non-zero entries.

We construct a selection matrix Si ∈ R(N+2D)×ki such that DSi comprises
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Algorithm 4 Solving (4.8) by ADMM

Input: template set T ∈ RD×N , parameters λ and µ.
Initialize: C = J = L = 0(N+2D)×N , D = [T, I,−I] ∈ RD×(N+2D),
ϵ = 10−8.
while not converged do
Step 1 Fix the others and update C as
C = (DTD+ 1

µ
I)−1(DTT− L+ 1

µ
J).

Step 2 Fix the others and update J as
J′ = Tλµ(µL+C),
J = J′ − Ω(J′),
J = max(0,J),
where Tτ (·) is the shrinkage-thresholding operator acting on each

element of the matrix, and is defined as Tτ (v) = Πg(|v| − τ)sgn(v),
and Πg is the projection operator acting on each element of the matrix,

and is defined as Πg(v) =

{
0 if v < 0,

v otherwise .

Step 3 Update the multipliers
L = L+ 1

µ
(C− J).

Step 4 Check the convergence conditions:
∥C− J∥∞ ≤ ϵ.

end while

only those columns in D corresponding to the non-zeros entries in ci. Thus,

when we test the candidate patches Y, we only solve the following least

squares problem:

min
ĉ

1
2
∥yi −DSj ĉ∥2F ,

s.t. ĉ ≥ 0,

i = 1, . . . , n,

j = 1, . . . , N.

(4.10)

The optimal candidate patch is then obtained according to the usual mea-

sure of observation likelihood. Now the remaining problem is how to quickly

update D and C if we know the solution at the previous time t.

4.4.2 Fast update of the sparsity patterns

Since the most costly part of Algorithm 4 is the inverse operation (DTD+

1
µ
I)−1, we perform a fast update of the inverse using the results from the

previous computation.
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Since the template update of the ℓ1 tracker replaces only one column of

D during the update [73], we assume one column p of D is replaced by a

column q at time t+1, so Dt+1 = D− [0 · · · p · · · 0] + [0 · · · q · · · 0] =

D+ [0 · · · (q− p) · · · 0]. Let Q = [0 · · · (q− p) · · · 0]. Then

DT
t+1Dt+1 +

1
µ
I = DTD+ 1

µ
I+QTD+DTQ+QTQ

= A+ v1u
T
1 + u1v

T
1 + u2u

T
2 ,

(4.11)

where u1 = DT (q− p), v1 = [0 · · · 1 · · · 0]T , u2 = [0 · · · q · · · 0]T , and

q =
√

(q− p)T (q− p). Consequently, the inverse of (DT
t+1Dt+1 +

1
µ
I) can

be updated by applying the Sherman - Morrison formula (see Appendix

B.2) three times. Note that we use the same ADMM algorithm as in

Algorithm 4, but Ct+1 is initialized as is the optimal solution of (4.7) at

time t, so usually Ct+1 is already very close to the optimal solution.

The fast update can also be achieved if D is incrementally updated.

We assume D is updated at time t+ 1 and Dt+1 = [D d]. We now update

Ct+1. We again use the same ADMM algorithm as in Algorithm 4, but

Ct+1 is initialized as Ct+1 =

 C 0

0T 0

, where C is the optimal solution

of (4.7) at time t. Meanwhile, the most time consuming part – the inverse

of (DT
t+1Dt+1 +

1
µ
I) – is updated by a blockwise inversion (see Appendix

B.1). Since

DT
t+1Dt+1 +

1
µ
I =

 DT

dT

[
D d

]
+ 1

µ
I

=

 DTD+ 1
µ
I DTd

dTD dTd+ 1
µ

 =

 A b

bT d

 ,

(4.12)
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where A = DTD+ 1
µ
I, b = DTd and d = dTd+ 1

µ
. Thus,

 A b

bT d


−1

=

 A−1 + 1
m
A−1bbTA−1 − 1

m
A−1b

− 1
m
bTA−1 1

m

 , (4.13)

where m = d− bTA−1b.

With the fast update procedures, an optimal strategy is to start one

thread for updating the dictionary and sparsity patterns and another thread

for solving (4.10) for tracking.

4.5 An Alternative Sparse Representation

Approach

In this section, we propose a novel sparsity model for visual tracking, in

which we reverse the roles of the template and candidate set in the sparse

representation.

With the candidate samples Y ∈ RD×n, the conventional ℓ1 tracker

models the candidate appearance using a sparse representation of the tem-

plate set. Unlike the conventional ℓ1 tracker, we use the candidate set as a

dictionary and model the template appearance using a sparse linear com-

bination of the candidate set. Formally, for each template ti in T we solve

the following problem:

min
c

1
2
∥ti −Yc∥+ λ∥c∥1,

s.t. c ≥ 0.
(4.14)

If a candidate sample turns in zero scores in c for all templates, it can be di-

rectly filtered out from the candidate set. In other words, if this candidate

sample is not selected to represent any template, it is unlikely to be the

tracked target. Since the template appearance is sparsely reconstructed,
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there are only a few candidates retained for each template. For the retained

candidate set of each template, we remove a candidate each time and cal-

culate the reconstruction error to derive the observation likelihood. More

specifically, let Yi ∈ RD×ni be the retained candidate set for the template

ti. For the j-th candidate yj
i , we remove it from Yi and denote the new

matrix as Yĵ
i . We then solve

cj = min
c
∥ti −Yĵ

i c∥2F , (4.15)

and compute the observation likelihood from the reconstruction error

p(zt|xt) =
1

Γ
exp(α∥ti −Yĵ

i cj∥2F ), (4.16)

where α is a constant controlling the shape of the Gaussian kernel and

Γ is a normalization factor as before. Note that in (4.16), the larger the

reconstruction error is, the more important this candidate is, which is in

contrast to (4.5). The tracking result is then chosen as the candidate

with the maximum observation likelihood. For candidates appearing in

multiple sets for different templates, we choose the maximum value as this

candidate’s observation likelihood.

4.6 Experiments

In this section, we evaluate the performance of the two proposed trackers

on a recent online object tracking benchmark [115]. This dataset consists

of 50 commonly used video sequences with fully annotated bounding boxes.

It categorizes the sequences by annotating them with different attributes,

such as illumination variation, occlusion, fast motions, background clutters

and so on. Note that one sequence may have several attributes, so these

categories are not mutually exclusive. With the categories, we can better
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analyze the performance of the trackers under different conditions.

We denote our tracker with sparsity pattern learning as L1SPL and the

alternative sparsity model as L1ASM in the evaluation. Our trackers are

implemented with MATLAB and run on a PC with Intel i7 CPU 2.9 GHz.

L1SPL runs at about 15 frames per second (fps), which is much faster than

the original ℓ1 tracker [73] and 7-8 times faster than L1APG [13] 1 (2 fps on

the same PC). L1ASM also runs at about 2 fps without any accelerating

technique, which is comparable to L1APG. We note that the cost of sparse

reconstruction using L1SPL is very low, being several orders faster than

L1APG. However, the real speed bottleneck is now the sampling procedure

with affine transformation.

Following the evaluation methodology in the benchmark paper [115],

we use the precision plot measuring the center location error and success

plot measuring the bounding box overlap for quantitative analysis.

The center location error is defined as the average Euclidean distance

between the center locations of the tracked objects and the groundtruth.

Then the average error over all the frames of a sequence is used to rate the

overall performance on that sequence. However, when the tracker loses the

target, the output location can be arbitrary and the average error value

may not show the tracking performance authentically. Thus precision plot

has been adopted to measure the overall tracking performance. It shows the

percentage of frames whose estimated location is within the given threshold

distance of the ground truth.

The bounding box overlap is defined as area(rt
∩

rg)

area(rt
∪

rg)
, where area(·) re-

turns the area of the region, rt and rg are the tracked bounding box and

groundtruth bounding box respectively, and
∩

and
∪

represent the inter-

section and union of two regions respectively. Following [115], we count

1The tested L1APG has been accelerated by both the minimum error bound [74]
and APG [13] together, whereby the minimum error bound significantly reduces the
number of ℓ1-norm minimizations
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the number of successful frames whose overlap area is larger than a given

threshold. The success plot shows the ratios of successful frames at the

thresholds varying from 0 to 1. Using one success rate value at a specific

threshold for evaluation may not be fair or representative. Therefore, we

use the area under curve (AUC) of each success plot to rank the tracking

algorithms as in [115].

We test our trackers using the one-pass evaluation (OPE). In other

words, we run them throughout a test sequence with initialization from

the ground truth position in the first frame and draw the average precision

or success rate. For the compared 29 trackers which have been evaluated

in [115], we directly use the reported results in that paper. Most of these

trackers with high performance have been reviewed in section 4.2. For the

works which have not been reviewed, more details can be found in [115].

Figure 4.2 shows the overall performance of the trackers. Due to the limited

space, those approaches ranked very low are dropped in the figure.

It can be observed from the precision plots in Figure 4.2 that L1SPL

outperforms L1APG by 2.4%, and its performance is very close to that

of L1APG considering the success rate in Figure 4.2. The performance of

L1APG is worse off probably because it only iterates a maximum of 5 times

when solving the ℓ1-norm minimization, which means the APG ℓ1 solver

may not have converged in practice. This amounts to sacrificing perfor-

mance for efficiency, but even then, it is still not fast enough. Given that

the L1SPL is 7-8 times faster than L1APG, the accuracy performance of

L1SPL is very satisfactory; we believe that L1SPL achieves better balance

between performance and efficiency.

In figure 4.2, the performance of L1ASM is shown to be better than

all those algorithms using only holistic sparse representation i.e. L1SPL,

L1APG and MTT. It is ranked 9 in the precision plots and 10 in the success

plots. Of those methods whose performances are superior to L1ASM, there
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Figure 4.2: Overall visual tracking performance plots

are two other sparsity based methods, i.e. ASLA [51] and SCM [123].

ALSA uses local sparse representation and SCM further adds discriminative

ability to the tracker. As mentioned in [115], local models are useful when

the appearance of target is partially changed, such as partial occlusion

or deformation; background information is critical for effective tracking

because discriminative ability makes the tracker more robust to the drifting

problem. Thus, a combination of all (i.e. SCM) is ranked top in the

evaluation. As a method with only holistic sparse representation, L1ASM
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is ranked a creditable top 10 overall. We believe that it is a better sparsity

model and there is room to further improve it by combining the local and

background information.

We also depict the performance plots of various categories with sev-

eral different attributes and analyze the performance of our trackers under

different factors. Here, we only depict those categories with occlusion,

deformation and illumination variation in Figure 4.3, Figure 4.4, and Fig-

ure 4.5 respectively. The complete attribute-based performance plots are

shown in Appendix C.1

In the occlusion category, both L1PSL and L1ASM perform well. It

shows that the acceleration using SPL does not degrade the ability of han-

dling occlusion. Indeed, L1ASM shows better results, which are even close

to that of those methods with structured learning and local sparse repre-

sentations (e.g. Struck and TLD).

In the deformation category, L1SPL works well. Again it shows that

gradual changes of the object appearance won’t affect the accelerated ℓ1

tracker using SPL. L1ASM works less well, but it still outperforms L1APG,

MTT and many other methods.

In the next category, illumination variation poses significant challenge

to L1SPL. As illumination variation may cause rapid appearance changes,

the learnt sparsity patterns may not be suitable for the reconstruction in

the next frame. Thus, the ranking of L1SPL in this category is very low.

Fortunately, L1ASM still performs well in this category.

4.7 Conclusions

We propose two visual tracking approaches. L1SPL is a fast ℓ1 tracker,

which learns sparsity patterns of the templates and thus only needs to

solve small-scale ℓ2-norm minimization problems. The reconstruction step
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Figure 4.3: Visual tracking performance plots - Occlusion

is several orders faster than the ℓ1-norm minimization. The speed of the

whole procedure is 7-8 times faster than the ℓ1 tracker accelerated by APG.

The performance of L1SPL is close to or even slightly better than those

previous ℓ1 trackers. L1ASM considers the tracking problem from a novel

perspective, expressing the template appearance using a sparse linear com-

bination of the candidate samples. With this novel sparsity model, and

without any of local and background representation, L1ASM is creditably

ranked in the top 10 out of 31 trackers on a recent benchmark. The per-
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Figure 4.4: Visual tracking performance plots - Deformation

formance of L1ASM is better than all those sparsity based methods using

only holistic sparse representation.
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Figure 4.5: Visual tracking performance plots - Illumination Variation
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Chapter 5

Conclusions and Future Works

In this thesis, we have considered three topics that exploit the low-dimensional

structures of several motion problems, obtaining better low-dimensional

models for them, solving the real world challenges often encountered in

these problems, and achieving state-of-the-art performance on the stan-

dard datasets. Below we summarize the major contributions of the thesis

and then put forth potential future works related to this thesis.

5.1 Summary of Contributions

For the 3D motion segmentation problem (Chapter 2), we propose a joint

sparsity model, which combines affinities of the point correspondence in

multiple image pairs. This novel sparsity model is capable of handling

perspective effect because it is based on the epipolar constraint of two

views, while simultaneously leveraging the rich information across multiple

frames, avoiding ambiguities caused by a short observation duration of

two frames. The nature of the joint sparsity model also leads to a simple

means to handle missing data, without having to revise the optimization

mechanism.

Embedded in any segmentation/clustering problem is the model selec-

tion problem (Chapter 3), which aims to estimate the number of clusters.

For this problem, we propose a simultaneous low-rank and sparse model,

where the rank function models the complexity of the model and the car-
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dinality function is used to avoid the trivial solution and suppress small

affinities. Under the ADMM framework, we solve two nonconvex subprob-

lems, which are a more faithful representation of the original problem than

that using the convex relaxation approach. Though it is hard to prove

its convergence, it shows strong convergence behavior in our experiments.

With these global and local costs and some other constraints, this model

usually reveals the underlying structures of the affinity matrix, resulting in

a perfect block diagonal matrix up to a permutation. This block diagonal

matrix can then be directly used to indicate the data elements’ clusters by

factorization.

For the object tracking problem (Chapter 4), a common sparsity based

approach models the candidate appearance using a sparse linear combi-

nation of the templates. However, this approach suffers from high com-

putational cost that prevents its use in real-time applications. To speed

up the method, we learn the patterns of the sparsity model and convert

the high cost ℓ1 norm minimization problems into the small scale ℓ2 norm

minimization problems. As a result, significant speedup is achieved with-

out loss of performance. In addition, we propose an alternative sparsity

model, which, reversing the roles of the candidates and templates, utilizes

the candidate samples to sparsely represent the templates. This allows

us to rapidly prune away large number of candidates which are not cho-

sen for any template recovery, following which the observation likelihood is

calculated based on the reconstruction error in a slightly different way. Fi-

nally the optimal candidate is chosen as per previous methods. This novel

sparsity model outperforms other similar methods using holistic sparse rep-

resentation and shows competitive results compared to other approaches

augmented with additional information such as local sparse appearance

model and background information.
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5.2 Future Works

The works in this thesis are related to a couple of interesting problems,

which might be worth further exploration.

5.2.1 Motion segmentation

Even after solving many real world challenges inherent in motion segmen-

tation, it is still hard to segment motions in a very long sequence or for

real-time applications. One reason is that the dimension of the data can

be very high; the other reason is that the data are not processed in an

online fashion. Both reasons suggest the use of dynamic subspace cluster-

ing approach. This approach solves the subspace clustering problem using

temporal sliding windows; this brings with it gradual subspace variation,

element changing and even vector dimension changing. It is possible to use

the sparsity pattern learning and fast pattern update techniques proposed

in Chapter 4 to solve this problem.

5.2.2 Clustering and model selection

One urgent work is to establish the theoretical guarantee for the conver-

gence of ADMM applied to nonconvex problems. Existing work proves the

Karush-Kuhn-Tucker (KKT) conditions and a preliminary convergence re-

sult indicating that whenever the algorithm converges, it must converge to

a stationary point [90].

If the number of groups is given a prior, it is possible to design a fixed

rank clustering representation as a competitive approach compared to spec-

tral clustering.

Given the strong relationship between the QSAP problem and the

Markov random field (MRF) labeling problem, another potential research

direction is to cross-breed the latest research results between the clustering

and labeling problems, both for speed and performance.
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5.2.3 Visual tracking

The novel sparsity model, which models the template appearance using

a linear combination of the candidate samples, has not been thoroughly

exploited. Theoretical analysis of the model and deeper understanding of

its performance should be established. Another possible research direction

is to consider it as a filter and integrate it into the particle filter or other

searching mechanism. The motion model or dynamic model can be simi-

larly integrated. With all these components installed, it will be more likely

to predict good locations to track, which will reduce the searching range

and thus further improve the tracking efficiency and robustness.
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Appendix A

A.1 Proof of Theorem 1

Similar to the proof of Theorem 16 in [80], we can first transfer problem

(3.7) to the following equivalent problem:

G∗ = argminG ∥G− Ŝ∥2F + λrank(G),

s.t. G ∈ S+. (1)

Note that Ŝ = (S+ ST )/2.

Then following the proof of Theorem 14 in [80], we can similarly transfer

problem (1) to

{ξ∗i }Ni=1 = argmin{ξi}Ni=1

∑N
i ∥ξi − λi∥2F + λ∥ξi∥0,

s.t. ∀i, ξi > 0, (2)

where {λi}Ni=1 are the diagonal entries of Λ. Note that Λ is from the

spectrum(eigen-) decomposition of Ŝ = QΛQT . Then the proof will be

identical to the first part of the proof of Theorem 2.

A.2 Proof of Theorem 2

Since optimization of the elements of H in Equation 3.10 are separable,

each elements hij can be optimized individually:

∑
i,j

min
hij

(hij −mij)
2 + γ∥hij∥0 + g(hij). (3)
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If hij ̸= 0, the best (hij − mij)
2 + γ∥hij∥0 can achieve is γ with hij =

mij; if hij = 0, (hij − mij)
2 + γ∥hij∥0 = m2

ij. Thus, the minimum of

(hij −mij)
2 + γ∥hij∥0 is min(m2

ij, γ), with each term achieved by hij = 0

and hij = mij respectively. Thus, if m
2
ij ≤ γ, hij = 0; otherwise, hij = mij.

With the additional box constraint [0, 1], if the minimum is achieved by

hij = mij < 0, we project hij to 0, because 0 is the closest value to mij < 0

in [0, 1], and the cost of γ∥hij∥0 is 0; if the minimum is achieved by hij =

mij > 1, we should also project it to [0, 1]. In this case, the minimum is

min(m2
ij, (1 −mij)

2 + γ), with each term achieved by hij = 0 and hij = 1

respectively. Thus, if 2mij > γ + 1, hij = 1; otherwise, hij = 0.
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B.1 Blockwise Inversion

Matrices can be inverted blockwise by using the following analytic inversion

formula: A B

C D


−1

=

 A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

 .

(4)

B.2 Sherman - Morrison Formula

Suppose A is an invertible square matrix and u, v are vectors. Suppose

furthermore that 1 + vTA−1u ̸= 0. Then the Sherman - Morrison formula

states that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (5)
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Appendix C

C.1 More Visual Tracking Results based on

Attributes

Figure C.1: Visual tracking performance plots - Fast Motion
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Figure C.2: Visual tracking performance plots - Background Clutter
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Figure C.3: Visual tracking performance plots - Motion Blur
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Figure C.4: Visual tracking performance plots - In-Plane Rotation
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Figure C.5: Visual tracking performance plots - Low Resolution
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Figure C.6: Visual tracking performance plots - Out-of-Plane Rotation

116



Appendix C

Figure C.7: Visual tracking performance plots - Out-of-View
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Figure C.8: Visual tracking performance plots - Scale Variation
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