
Enhancing the Usability of XML Keyword Search

ZENG YONG

(B.Eng, South China University of Technology, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my super-

visor, Professor Ling Tok Wang, who has provided invaluable guidance in every

stage of my research work. I am very grateful for the countless hours he has spent

supervising me and discussing with me. It has been five years since I became a

student of Prof. Ling. During the five years, I have learned a lot from Prof. Ling,

from how to identify research problems to how to tackle a research problem. His

rigorous attitude on research inspires me to think critically in my research. His

technical advice is essential to the completion of this thesis, while his kindness and

wisdom will keep inspiring me to move forward in the rest of my life.

Moreover, I also feel very grateful for the guidance given by my senior, Dr.

Bao Zhifeng, who has collaborated with me for every piece of my research work.

He has provided me with continues help through out my whole Ph.D study. His

encouragement and calm manner had always helped me regain my confidence in

my research.

Besides, I would also like to thank Prof. Stephane Bressan and Prof. Tan Kian-

Lee for serving on my thesis committee and providing many useful comments on

i

the thesis.

Last but not least, I wish to express my appreciation to my family, especially

my wife DU YINGJUN, for their support to me, even at the most difficulty time

in my Ph.D study.

ii

CONTENTS

Acknowledgement i

Summary viii

1 Introduction 1

1.1 Background . 1

1.1.1 XML and Data Model . 1

1.1.2 Querying XML . 4

1.2 Research Problem: Enhancing the Usability of XML Keyword Search 6

1.3 Contributions of This Dissertation 9

1.3.1 MisMatch Problem in Keyword Search over XML without ID

References . 10

1.3.2 MisMatch Problem in Keyword Search over XML with ID

References . 11

1.3.3 Query Result Presentation 12

1.4 Thesis Outline . 13

iii

2 Related Work 14

2.1 Labeling for XML . 14

2.2 Structured Query on XML . 17

2.3 Keyword Search on XML . 18

2.3.1 Tree Model . 18

2.3.2 Graph Model . 24

2.4 Query Refinement . 25

2.4.1 Query Cleaning . 25

2.4.2 Query Relaxation . 27

2.4.3 Query Substitution . 27

2.4.4 MisMatch Problem in Structured and Unstructured Data . . 29

2.5 Query Results Visualization . 31

3 MisMatch Problem in Keyword Search Over XML without ID

References 35

3.1 Introduction . 35

3.2 Preliminaries . 41

3.2.1 Semantics and Data Model 41

3.2.2 General Query Result Format 43

3.3 Detecting the Mismatch Problem 44

3.3.1 Detecting The MisMatch Problem based on Target Node Type 51

3.4 Finding Explanations and Suggested Queries 52

3.4.1 Distinguishability . 53

3.4.2 Two-phase Solution . 55

3.4.3 Ranking the Suggested Queries 62

3.4.4 Summary of Features of Our Approach 63

3.5 Efficient Approximate Results Detection 63

iv

3.5.1 Node Labeling . 64

3.5.2 Logical Operation . 66

3.6 Algorithms . 66

3.6.1 Data Processing and Index Construction 66

3.6.2 Solving the MisMatch problem 68

3.7 Experiments . 71

3.7.1 Experimental Settings . 72

3.7.2 Frequency of the MisMatch Problem 73

3.7.3 Sensitivity of the MisMatch Detector 73

3.7.4 Quality of the Suggested Queries 74

3.7.5 Comparison to XRank . 78

3.7.6 Sample Query Processing Time 79

3.7.7 Scalability Test . 81

3.8 XClear Demo System . 84

3.9 Conclusion . 85

4 MisMatch Problem in Keyword Search Over XML with ID Ref-

erences 87

4.1 Introduction . 87

4.2 Preliminaries . 90

4.2.1 Semantics and Data Model 90

4.2.2 Reference Types . 91

4.3 Transforming Query Processing over XML IDREF Digraph to XML

Tree . 92

4.3.1 Naive Approach: Real Replication 92

4.3.2 Our Approach: Virtual Replication 94

4.3.3 Query Evaluation . 98

v

4.4 Sequential References and Cyclic References 100

4.4.1 Sequential References . 101

4.4.2 Cyclic References . 101

4.4.3 Reachability Table Space Complexity 102

4.5 Further Extension and Optimization for Query Evaluation 103

4.5.1 Removing unnecessary checking of the reachability table . . 103

4.5.2 Adding Distance and Path to Reachability Table 104

4.6 Solving the MisMatch Problem in XML IDREF Digraph 105

4.6.1 Target Node Type for Detecting MisMatch Problem 107

4.6.2 Distinguishability for Measuring Keywords’ Importance . . . 109

4.6.3 exLabel for Efficient Approximate Results Detection 112

4.7 Algorithms . 114

4.8 Experiments . 117

4.8.1 Keyword Search on XML IDREF Digraph 117

4.8.2 MisMatch Solution on XML IDREF Digraph 121

4.9 Conclusion . 127

5 Query Result Presentation of XML Keyword Search 129

5.1 Introduction . 129

5.2 Building XMAP . 135

5.2.1 Generating Layers for XMAP 135

5.2.2 Index of XMAP . 138

5.3 XMAP Working with a Search Engine 141

5.3.1 Static Approach: Highlight all Query Results in XMAP . . . 141

5.3.2 Dynamic Approach: Generate a New Display 143

5.4 Algorithms . 146

5.4.1 Index Construction . 146

vi

5.4.2 Retrieving data from the index 148

5.5 Experiments . 149

5.6 XMAP Demo System . 151

5.7 Conclusion . 153

6 Conclusion and Future Work 154

6.1 Conclusion . 154

6.2 Future Work . 160

Bibliography 165

Appendix A: XClear Demo System 177

Appendix B: XMAP Demo System 182

Appendix C: Integrating XClear and XMAP 187

vii

SUMMARY

XML has become a de facto standard of information representation and ex-

change over the Internet. It has been used extensively in many applications. Such

semi-structured data is normally queried by rigorous structured query languages,

e.g., XPath, XQuery, etc. In recent years, keyword search on XML has become more

and more popular due to its easy-to-use query interface. It provides an opportunity

to explore the semi-structured data without knowing the data schema or learning

the sophisticated structured query languages. It is becoming an equally important

counterpart of structured query and an important way for novice to explore XML

database.

XML keyword search has been abundantly studied in the last ten years. The re-

search efforts mainly focus on defining what should be returned as results (matching

semantics) and designing efficient algorithms for a certain matching semantics.

However, in XML keyword search, how to reduce the gap between users’ search

intention and the query results remains a challenge. Even for the mature web

search, users have to reformulate and resubmit their queries 40% to 52% of the

time in order to get what they want [86]. Therefore, enhancing the usability by

viii

handling the mismatch between users’ search intention and the query results is an

important issue, no matter for web search, XML keyword search, or any other kind

of search. In this dissertation, we will study how to enhance the usability of XML

keyword search by addressing the following challenges.

First, we study the mismatch results in XML keyword search without consider-

ing ID references. In this case, the XML data can be modeled as a tree. We develop

a low-cost post-processing algorithm on the results of query evaluation to detect

the mismatch and generate helpful suggestions to users. The solution is based on

two novel concepts that we introduce: Target Node Type and Distinguishability.

Target Node Type represents the type of node a query result intends to match,

and distinguishability is used to measure the importance of the query keywords in

a query. Our solution can work with any LCA-based matching semantics and is

orthogonal to the choice of result retrieval method adopted. We have also built an

interactive XML keyword search engine, called XClear [104], with our mismatch

solution incorporated. The demo system is available at [104]. The details of the

demo system will be presented in Appendix A.

Second, we try to extend our mismatch solution to XML data with ID references

considered. Then the XML data is usually modeled as a digraph, where keyword

query results are usually computed by graph traversal. We call such a digraph as

XML IDREF digraph in this dissertation. We observe that an XML IDREF digraph

is mainly a tree structure with a portion of reference edges. It motivates us to

propose a novel method to transform an XML IDREF digraph with ID references

to a tree model, such that we can exploit abundant efficient XML tree search

methods. Subsequently our mismatch solution designed for an XML tree can still

apply.

Third, after the results are retrieved from the search engine, they need to be

ix

presented to users. To further bridge the mismatch gap between users’ search

intention and the query results, we improve the result presentation method for XML

keyword search, which plays an important role in users’ digesting and exploring of

the query results. The traditional way of returning a list of subtrees as query

results is insufficient to meet the information needs of users. We find that such a

presentation is imprecise and could be misleading. Users could misunderstand the

query results. Therefore we propose an interactive and novel result presentation

model, call XMAP, to visualize and work as a complementary component of the

XML keyword search engine, in order to enhance the usability of XML keyword

search. It allows users to view the inter-relationship among the query results and

also further explore the query results according to their information needs. A

demo system of XMAP has also been built [101], whose details will be presented

in Appendix B.

Besides, we also discussed about how to integrate the two demo systems men-

tioned above, XClear and XMAP, in Appendix C.

x

LIST OF FIGURES

1.1 An Example XML Document about Store Inventory (inventory.xml) 2

1.2 XML Tree for inventory.xml in Figure 1.1 3

1.3 XML IDREF Digraph for inventory.xml in Figure 1.1 4

2.1 A sample XML Tree With Dewey Label (bookstore.xml) 16

2.2 Relationship among Main Keyword Search Techniques 22

2.3 Timeline for Main Keyword Search Techniques 24

2.4 Comparison of Query Refinement Approaches 28

3.1 Sample XML Document about an Online Shopping Mall 37

3.2 An XML Tree with Nodes Labeled by exLabels 64

3.3 Schema Tree Flattening and Virtual Bitmap Construction 64

3.4 Schema Graph of IMDB Dataset 72

3.5 Average Quality Measure of Suggested Queries 76

3.6 Precision for Top-5 results of XClear vs. XRANK 78

3.7 Processing Time for some Sample Queries 80

3.8 Impact of Data Size. 81

xi

3.9 Impact of Distinguishability Threshold τ 82

3.10 Scalability Test of Random Queries 83

3.11 Suggested Queries & Sample Query Result 84

4.1 An Example XML Document (with Dewey Labels) 89

4.2 Naive Method: Real Replication . 94

4.3 Advanced Method: Virtual Replication (Two Parts) 95

4.4 Constructing Reachability Table for Sequential References 100

4.5 Constructing Reachability Table for Cyclic References 102

4.6 Sample XML Document with ID References 105

4.7 Schema Graph of Figure 4.6 . 111

4.8 Query Execution Time (45MB data Size) 119

4.9 Query Execution Time (200MB Data Size) 119

4.10 Schema Graph of ACMDL Dataset (some parts are omitted because

full schema graph is too big to display) 123

4.11 Average Quality Measure of Suggested Queries 123

4.12 Processing Time for some Sample Queries 125

4.13 Impact of Data Size. 126

4.14 Scalability Test of Random Queries 127

5.1 Sample XML Document about the Chain-stores in a Company . . . 130

5.2 Working of A Typical Digital Map System 133

5.3 Generating layer2 and layer3 for Figure 5.1 134

5.4 Index of the data shown in Figure 5.1 137

5.5 Query results highlighted of the query “Allen female” at layer3 . . . 142

5.6 Context Display for the Query Results of Query “pencil black” . . . 145

5.7 Average Retrieval Time for Each Layer 150

xii

5.8 Screenshot of XMAP for the query in Example 5.1 151

5.9 Screenshot of XMAP for the query in Example 5.1 (zoomed in) . . 152

1 Architecture of XClear System . 178

2 Suggested Queries & Sample Query Result 179

3 Reasoning of “why” . 180

4 Architecture of XMAP . 183

5 Screenshot of XMAP for a query “pencil black” addressing Motiva-

tion 1 . 184

6 Screenshot of XMAP for a query “pencil black” (zoomed in) 184

7 Screenshot of XMAP for a query “Allen female” addressing Motiva-

tion 2 . 185

8 Architecture of XML ClearMap . 188

9 XML ClearMap for Query without MisMatch Problem 189

10 Result Exploration Display of XML ClearMap 191

11 XML ClearMap for Query with MisMatch Problem 192

xiii

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 XML and Data Model

XML (eXtensible Markup Language) has become a de facto standard of infor-

mation representation and ex-change over the Internet. As compared to HTML

which focuses on displaying and formatting data, XML does not have predefined

elements and attributes. It provides a flexible way for users to define their own

elements and attributes and define the structure of the data. With its powerful ex-

pressiveness and the recommendation of the World Wide Web Consortium (W3C),

XML has been extensively used by many applications over the internet. Actually

XML is a simplified subset of Standard Generalized Markup Language (SGML),

whose specification is considered too complex to use and implement. XML’s spec-

ification keeps the essence of SGML’s power and extensibility with a much simpler

1

specification.

Figure 1.1 shows an XML document describing the inventory information of a

store, including items, quantity, suppliers, etc. Generally, the XML document is

organized in a hierarchical structure, where the data is bounded in a pair of starting

tag and ending tag. For example, the tag “store inventory” at line 1 is the root

node of the whole XML document. It forms a pair with the tag at line 29. Line

2 to line 28 are the content within the root node. “stock” (line 2) and “supplier”

(line 25) are two children of the root node “store inventory”.

01 <store_inventory>

02 <stock>

03 <category>

04 <name>stationery</name>

05 <item id="i001" supplier="sp21">

06 <name>pencil</name>

07 <color>black</color>

08 <quantity>300</quantity>

09 </item>

10 <item id="i002" supplier="sp21">

11 <name>pencil</name>

12 <color>yellow</color>

13 <quantity>50</quantity>

14 </item>

15 </category>

16 <category>

17 <name>make-up</name>

18 <item id="i201" supplier="sp21">

19 <name>pencil</name>

20 <color>black</color>

21 <quantity>300</quantity>

22 </item>

23 </category>

24 </stock>

25 <supplier id="sp21">

26 <name>Alps</name>

27 <phone>380945</phone>

28 </supplier>

29 </store_inventory>

Figure 1.1: An Example XML Document about Store Inventory (inventory.xml)

Besides, each item or supplier has an ID attribute. And the relationship between

2

the item and the supplier is expressed by the ID references among the data. For

example, at line 5 of the document, the item has an ID as “i001”. Its supplier is

referencing to the supplier with ID being “sp21”, which is at line 25.

stock
0.0

store_inventory
0

supplier
0.1

sid
0.1.0

name
0.1.1

sp21 Alps

category
0.0.0

item
0.0.0.1

phone
0.1.2

62358

id
0.0.0.1.0

supplier
0.0.0.1.1

i001 sp21

name
0.0.0.1.2

pencil

color
0.0.0.1.3

black

quantity
0.0.0.1.4

300

name
0.0.0.0

stationery

item
0.0.0.2

id
0.0.0.2.0

supplier
0.0.0.2.1

i002 sp21

name
0.0.0.2.2

paper

color
0.0.0.2.3

yellow

quantity
0.0.0.2.4

50

item
0.0.1.1

id
0.0.1.1.0

supplier
0.0.1.1.1

i201 sp21

name
0.0.1.1.2

pencil

color
0.0.1.1.3

black

quantity
0.0.1.1.4

150

category
0.0.1

name
0.0.1.0

make-up

Figure 1.2: XML Tree for inventory.xml in Figure 1.1

If the ID reference relationship is not considered in the XML document, an XML

document can be modeled as a tree. Each element or attribute in the XML data

corresponds to one node in the tree; each element-subelement or element-attribute

relationship in the XML document corresponds to an edge in the tree. For example,

Figure 1.2 shows the tree model for the XML document in Figure 1.1. To uniquely

identify each node in the tree, we assign each node a unique label, where we adopt

dewey label [93]. The formal explanation of XML labeling scheme has to wait until

the related work in Section 2.

As a comparison, if the ID reference relationship is considered, then an XML

document is no longer a tree. Because for each reference node r in the XML doc-

ument, the reference forms an edge from r to the element node which it references

to. Therefore, an XML document considering ID references is usually modeled as a

digraph, which we called as XML IDREF digraph in this dissertation. For example,

Figure 1.3 shows the XML IDREF digraph for the XML document in Figure 1.1.

3

stock
0.0

store_inventory
0

supplier
0.1

sid
0.1.0

name
0.1.1

sp21 Alps

category
0.0.0

item
0.0.0.1

phone
0.1.2

62358

id
0.0.0.1.0

supplier
0.0.0.1.1

i001

name
0.0.0.1.2

pencil

color
0.0.0.1.3

black

quantity
0.0.0.1.4

300

name
0.0.0.0

stationery

item
0.0.0.2

id
0.0.0.2.0

supplier
0.0.0.2.1

i002

name
0.0.0.2.2

paper

color
0.0.0.2.3

yellow

quantity
0.0.0.2.4

50

item
0.0.1.1

id
0.0.1.1.0

supplier
0.0.1.1.1

i201

name
0.0.1.1.2

pencil

color
0.0.1.1.3

black

quantity
0.0.1.1.4

150

category
0.0.1

name
0.0.1.0

make-up

Figure 1.3: XML IDREF Digraph for inventory.xml in Figure 1.1

Comparing Figure 1.3 to Figure 1.2, we can see that the only difference is: the

value under each reference node becomes an edge starting from the reference node

to the corresponding element node.

1.1.2 Querying XML

There are mainly two categories of queries on XML data, i.e., structured queries

and keyword queries. For structured queries, it is similar to SQL queries in rela-

tional database. Before a user can retrieve information from the XML data, the

user is required to learn the complex query language and to be familiar with the

schema of the XML data. XPath [11] and XQuery [13] are two structured query

languages designed for XML data. The core pattern of XPath and XQuery queries

is the called twig pattern.

Example 1.1. For the XML data tree in Figure 1.2, if we want to find the phone

number of supplier Alps, we can issue the following XQuery query:

FOR $p IN

document(“inventory.xml”)//supplier[name=“Alps”]/phone

4

RETURN $p

The core part of the query is to specify a supplier node in the XML document

which has a descendent with name being “Alps”.

As we can see from the Example 1.1, issuing a correct query according to the

rigorous structured query language may not be an easy task for novice. In contrast,

keyword search, which is the major form of retrieval method in information retrieval

systems (like Google, Bing, etc.), can free users from learning complex query lan-

guage and data schema before they issue a query. Therefore, XML keyword search

is becoming more and more popular in recent years [85, 31, 62, 99, 36, 88, 64]. With

XML keyword search, users can easily issue a keyword query in the same way they

use any web search engine.

Example 1.2. If we want to search for the phone number of supplier “Alps” in the

XML data tree in Figure 1.2, we can simply issue a keyword query “Alps phone”.

According to the existing XML keyword search methods, like LCA [85], SLCA [99]

or ELCA [31], the result being returned will be the subtree rooted at node sup-

plier:0.1, which contains the information of the required supplier, like phone num-

ber, supplier id, etc.

Comparing structured queries and keyword queries on XML data, we can see

that, keyword queries is much easier to use and more user-friendly. However, XML

keyword search still faces some challenges on how to enhance the usability for

keyword search users.

5

1.2 Research Problem: Enhancing the Usability

of XML Keyword Search

Inspired by the great success of keyword search on web, keyword search on

XML data has emerged and is becoming more and more popular. XML keyword

search has attracted a lot of research effort and been abundantly studied in the

last ten year. Existing research works mainly focus on two topics: defining what

should be returned as results (matching semantics) and designing efficient algo-

rithms for a certain matching semantics. Unlike web search, where the data is a set

of documents, XML keyword search mainly focuses on how to extract the desired

information from one single XML document which is organized in a hierarchical

structure. Therefore, the first job of XML keyword search is to define the matching

semantics, i.e., what should be returned as results for a keyword query. All existing

matching semantics so far, such as SLCA [99, 36], ELCA [31], entity-based SLCA

[64] are all based on the concept of lowest common ancestor (LCA). The basic idea

of LCA is to find the smallest subtree which contains all the keywords in users’

query. Both SLCA and ELCA try to define a subset of LCA which is regarded

as meaningful. Besides, another part of research effort focuses on the proposals

of efficient result retrieval methods based on a certain matching semantics. For

example, [62, 99, 88, 64] improve the result retrieval methods for computing SLCA

nodes and [31, 110] for computing ELCA nodes.

However, in XML keyword search, how to reduce the gap between users’ search

intention and the query results remains a challenge. Even for the mature web

search, users have to reformulate and resubmit their queries 40% to 52% of the

time in order to get what they want [86]. Therefore, enhancing the usability of

keyword search by handling the mismatch between users’ search intention and the

6

query results is an important issue, no matter for web search, XML keyword search,

or any other kind of keyword search. If we do not detect the mismatch between

users’ search intention and the query results, users will be confused by the mismatch

results returned by the search engine. For example, in XML keyword search, if what

users search for is unavailable in the XML data, existing keyword search methods

will still return a list of mismatch results, which will confuse the users. This is

because existing keyword search methods simply return the smallest subtrees in

the XML data which contain all the query keywords. But they do not consider

users’ search intention and detect the mismatch between users’ search intention

and the query results.

Example 1.3. For the XML data in Figure 1.2, suppose a user wants to search for

a yellow pencil in the inventory data, she may issue a query Q = {‘pencil’,‘yellow’}

to search for a pencil. Unfortunately, no pencil can meet all her requirements. The

only available color for pencil is black. However, existing keyword search methods,

such as LCA [85], SLCA [99], ELCA [31] or even the most recent variant [51] of

LCA, still can find some subtrees containing all the query keywords as results. One

query result is the subtree rooted at category:0.0.0, where keyword ‘pencil’ matches

one item while the keyword ‘yellow’ match another item. Obviously, the subtree

rooted at category is not expected by the user. It contains too much irrelevant in-

formation, i.e. all items under a category. Therefore, simply returning the smallest

subtree containing all the query keywords without inferring users’ search intention

could lead to mismatch results, which will confuse users.

As we can see, without considering users’ search intention during XML keyword

search could lead to some mismatch results. It is confusing and time-consuming for

users to read and understand such mismatch results. So a solution to detect the

mismatch results and provide some informative suggestion to users is in demand.

7

Besides, after the results are retrieved from the search engine, it needs to be

presented to the user. To further bridge the gap between users’ search intention and

the query results, we find that how to present the results in a proper way is also an

important issue. It plays an important role in users’ digesting and exploring of the

query results. The traditional way of XML keyword search is to return and show a

list of independent subtrees as query results. However, it is insufficient to meet the

information needs of users because it does not consider the fact that all the results

are actually interconnected within a single XML tree. Showing the results as some

independent subtrees is imprecise and could be misleading. Users may understand

the results wrongly and have difficulty picking up the most suitable results from

the result list.

Example 1.4. For the XML data tree in Figure 1.2, a query “pencil black” will

get the following results by LCA:

1. Subtree rooted at node item:0.0.0.1, which contains keywords “pencil” and

“black”.

2. subtree rooted at node item:0.0.1.1, which contains keywords “pencil” and

“black”.

Traditional XML keyword search method will return and show the above two re-

sults as two independent subtrees. Without showing the relationships among these

two results, it is hard to know that these two results are actually belonging to two

different categories. One is a normal pencil belonging to stationery category while

the other is a make-up pencil belonging to make-up category. Therefore, the tra-

ditional way of showing query results as independent subtrees could be misleading

and imprecise. A proper way for result presentation is in demand.

8

From the example above, we can see that all the data in an XML tree is inter-

connected by the hierarchical structure. Therefore, each query result of XML

keyword search is a part of the XML data tree rather than a piece of independent

information. Among the query results (subtrees), they may have sibling or con-

tainment relationships. Without showing such relationships, the results could be

misleading and imprecise. Users will misunderstand the results and it will hurt the

usability of XML keyword search.

Therefore, we need a solution to detect the mismatch results in XML keyword

search and give useful suggestion to users, as well as providing a proper and precise

way to visualize the query results. It will help reduce the gap between users’ search

intention and the query results, which is crucial for improving the usability of XML

keyword search.

The intuitive idea of our solution addressing such problems is (1) to infer users’

search intentions and examine the actual query results for possible mismatch, then

generate helpful suggestion based on the available data; (2) to provide users an

interactive mechanism for browsing and exploring the query results in a context of

the whole XML document.

1.3 Contributions of This Dissertation

In this dissertation, we focus on improving the usability of XML keyword search

by reducing the gap between users’ search intention and the query results. We

tackle the problem in two aspects, namely mismatch caused by result retrieval and

mismatch caused by result presentation. First, we will try to detect and solve the

mismatch in the query results over the XML tree model. Then we will propose

a novel approach to transform an XML IDREF digraph to an XML tree model,

9

such that our solution on XML tree can be applied to the XML IDREF digraph

as well. Second, for query result presentation, we propose a map-like model for

presenting the query result in a proper way within the global context of the whole

XML document and in an interactive way.

1.3.1 MisMatch Problem in Keyword Search over XML

without ID References

If we do not consider the ID references in an XML document, then the XML

document can be modeled as a tree. Most of the research efforts in XML keyword

search are focusing on the XML tree model. As we have discussed in the previous

section, existing keyword search methods [99, 36, 31, 64] are all based on the con-

cept of lowest common ancestor (LCA). They will all try to return a set of subtrees

containing all the query keywords as query results, regardless of users’ search in-

tention. Even what users search for is unavailable in the XML data, they are not

able to be aware of such a fact and will still return a list of erroneous mismatch

results to users. We call this MisMatch problem in XML keyword search. In this

case, it poses three challenges for a search engine to help users: (1) how to design

a detection method to distinguish queries with the MisMatch problem from those

without; (2) how to explain why the query leads to mismatch results; (3) how to

find good suggestions, and what should be a good way to present them to users.

Our solution to the MisMatch problem is based on two novel concepts that we

introduce: 1) Target Node Type, which is used to infer users’ search intention and

detect the MisMatch problem; 2) Distinguishability, which is exploited to measure

the importance of users’ query keywords and help generate helpful suggestions

to users. Our approach has three noteworthy features: (1) for queries with the

MisMatch problem, it generates the explanation, suggested queries and their sample

10

results as the output to users, helping users judge whether the MisMatch problem

is solved without reading all query results; (2) it is portable as it can work with any

LCA-based matching semantics and is orthogonal to the choice of result retrieval

method adopted; (3) it is lightweight in the way that it occupies a very small

proportion of the whole query evaluation time.

1.3.2 MisMatch Problem in Keyword Search over XML

with ID References

XML documents usually contain some ID nodes and IDREF nodes to represent

reference relationships among the data. If the ID references in an XML document

are considered, an XML document is usually modeled as a digraph by existing

works, where the keyword query results are computed by graph traversal [37, 26,

44, 35]. We call such a graph as XML IDREF digraph. Then the keyword search

problem on an XML IDREF digraph is reduced to the problem of finding Minimal

Steiner Tree (MST) or its variants in a digraph, where an MST is defined as a

minimal subtree containing all query keywords in either its leaves or root. Since

this problem is NP-complete [28], a lot of works are interested in finding the “best”

answers of all possible MSTs, i.e. finding top-K results according to some criteria,

like subtree size, diameter etc.

As compared to keyword search over XML tree model, keyword search over XML

IDREF digraph poses new challenges. Since finding all MSTs in a graph is an NP-

complete problem, efficiency is one of the notable issues. But more importantly,

the matching semantics, i.e. MST, is also defined without considering users’ search

intention. Therefore, mismatch results are still possible to be returned by existing

methods in keyword search over XML IDREF digraph.

To solve the MisMatch problem for keyword search over XML IDREF digraph,

11

we propose a novel method to transform an XML IDREF digraph with ID/IDREF

to a tree model, such that we can exploit the XML tree search methods to work on

XML IDREF digraph, and subsequently our MisMatch solution designed for XML

tree still applies to XML IDREF digraph. We transform an XML IDREF digraph

to a tree model by virtually replicating the subtrees being referenced. Our tree

model consists of two parts: an XML tree and a table (called reachability table),

which is capable of handling different kinds of reference patterns in an XML IDREF

digraph.

1.3.3 Query Result Presentation

To further reduce the gap between users’ search intention and the query results,

how to present the query results in a proper way also plays an important part. We

find that, the traditional way of presenting the query results as a list of independent

subtrees is imprecise and could be misleading. Actually each query result of XML

keyword search is a part of the XML data tree rather than a piece of independent

information. Among the query results (subtrees), they may have sibling or contain-

ment relationships. Without showing such relationships, users may misunderstand

the query results and digest the information wrongly.

To improve the usability by addressing the above issues, we propose a map-like

model for presenting the query results in the global context and in an interactive

way. It can work as a complementary component of the XML keyword search en-

gine. We present the query results in the context of the whole XML document

such that users can clearly view the context and the relationship among the query

results. Besides, an interactive mechanism is also provided for user to further ex-

plore the query results.

12

The works included in this thesis have resulted in a number of publications,

more specially, [102] and [104], [103], [105] and [101].

1.4 Thesis Outline

This dissertation is organized follows.

• Chapter 2 presents the related work. The surveyed topics include XML query

languages, XML labeling schemes, XML structured queries, XML keyword

queries for both labeled tree and directed graph models, query refinement

and query results presentation.

• Chapter 3 studies the mismatch results in XML keyword search without con-

sidering ID references.

• Chapter 4 talks about how to extend our mismatch solution to XML keyword

search with ID references considered.

• Chapter 5 discusses our solution to present the XML keyword search results

in a proper and interactive way, which allows users to manipulate and further

explore the query results.

• Chapter 6 concludes the thesis with future work.

13

CHAPTER 2

RELATED WORK

XML keyword search has been studied for more than ten years. In this chapter,

we are going to review the literature related to XML keyword search. As XML has

become the standard of information representation and ex-change over the Internet,

querying XML documents has attracted a lot of research efforts. There are mainly

two kinds of queries on XML data, namely structured queries and keyword queries,

both of which will require some labeling scheme to accelerate the query processing.

Due to the intrinsic ambiguity of keyword search, query refinement and query result

visualization are also important to improve the user experience. In the following

sections we will review the related work on each of the above related topics.

2.1 Labeling for XML

During the processing of structured queries and keyword queries on XML data,

it needs to uniquely identify each XML node as well as determining the structural

14

relationship between any two nodes (e.g., Ancestor-Descendant (AD) relationship

or Parent-Child (PC) relationship). To server such a purpose, many works focus

on how to assign each node in an XML tree a special label, such that the structural

relationship between two nodes can be easily inferred by just comparing the labels,

meanwhile the label size should be kept as small as possible.

Basically there are three categories of labeling schemes, i.e. containment label-

ing scheme, Dewey labeling scheme and dynamic labeling scheme.

In containment labeling scheme [106], each node in the XML tree is assigned

a label (start, end, level), where start and end denote a range that contains all

its descendants’ ranges and level denotes the level of a node in the XML tree. For

example, if a node n is an ancestor of a node m, then the following property must

holds: startn < startm < endm < endn. Therefore, the relationship between two

nodes can be easily calculated:

• Ancestor-Descendant (AD) relationship. Node n is an ancestor of node m if

and only if startn < startm < endm < endn.

• Parent-Child (PC) relationship. Node n is the parent of node m if and only

if node n is an ancestor of m and leveln = levelm − 1.

Another labeling scheme widely adopted is Dewey labeling scheme [90]. The

label for each node in the XML tree is formed by concatenating the label of its

parent with its own local order. In other words, a Dewey label represent a unique

path from the root node to that node. Take the XML tree in Figure 2.1 as an

example, the Dewey label of the root node is 0; the first child of the root will be

with Dewey label 0.0 and the second child will be with Dewey label 0.1. Given the

Dewey label of any two nodes, i.e. node n with Dewey label a1.a2...ai and node m

with Dewey label b1.b2...bj, the relationship between these two nodes can also be

15

calculated by comparing their Dewey labels:

• Ancestor-Descendant (AD) relationship. Node n is an ancestor of node m if

and only if i < j and a1 = b1, a2 = b2, ..., ai=bi.

• Parent-Child (PC) relationship. Node n is the parent of node m if and only

if node n is an ancestor of m and i = j − 1.

Figure 2.1: A sample XML Tree With Dewey Label (bookstore.xml)

However, containment labeling scheme and Dewey labeling scheme only consider

the case of a static XML tree. If some updates are applied to the XML tree, like

inserting a node or deleting a node, it will affect the existing labels and some of

them will need to be changed accordingly. To cater for the need of labeling an

XML tree which will be frequently updated, many dynamic labeling schemes have

emerged.

One strategy to avoid relabeling is to reserve some labels for future usage. [60]

tried to reserve some space between two adjacent labels. But it may need to relabel

the whole XML tree when the reserved labels are used up later on. [78] proposed a

hierarchical labeling scheme called ORDPATH, which is a variant of Dewey label.

It reserves even and negative numbers for future node insertion. However, label size

is not well controlled by such a method. Another strategy to avoid relabeling is to

make use of some encoding scheme. Quaternary Encoding for Dynamic XML data

16

(QED) [55] is proposed to avoid relabeling. It guarantees that there always exist

a QED label in between two adjacent QED labels. [97] proposed a vector based

labeling scheme, which can also avoid relabeling but achieve better scalability for

skewed node insertions. Later DDE (Dynamic DEwey) [98] is proposed with more

compact label size and better query performance.

2.2 Structured Query on XML

XML queries can be classified into structured queries and keyword queries. As

a counter part of XML keyword queries, structured queries in XML are similar to

SQL queries in relational database. It requires users to have some pre-knowledge

of the schema of the XML data before they issue a query. XPath [11] and XQuery

[13] are two structured query languages of XML recommended by W3C (World

Wide Web Consortium).

XPath [11] is a structured query language where users can specify a path struc-

ture as the constraints. Then it will return a node or a set of nodes which satisfy

the structure constraints to the users. There are thirteen axes in the XPath spec-

ification. Seven of them are most commonly used: ancestor, descendant, parent,

child, preceding, following, attribute. For example, “/” denotes parent-child rela-

tionship and “//” denotes ancestor-descendent relationship. An XPath expression

consists of one or more segments. An expression A/B denotes to find all the nodes

with name “B” which has a parent with name “A”. For instance, a path expression

“bookstore/book/title” issued on the XML tree in Figure 2.1 is to find the title of

available books in the bookstore. Then the results being returned will be a set of

nodes {< title > Pippi < /title >, < title > Superman < /title >}.

XQuery [13] is built based on XPath by introducing FLWOR (For-Let-Where-

17

Order by-Return) constructs to offer more expressiveness. It can be viewed as a

an extension of XPath, which allows users to define their own functions. It has

been standardized as the major XML query language. For example, the following

XQuery expression

FOR $b IN document(“bookstore.xml”)//book

LET $a := $b//author

WHERE contains ($a, ”Winston”)

RETURN $b

tries to find the books which is written by Winston.

The essential operation in structured queries processing is twig pattern match-

ing. Twig pattern is a tree specifying the path structure pattern. Twig pattern

matching is to find all the instances in an XML tree which satisfy the twig pattern

constraint. How to reduce the processing time of twig pattern match has attracted

a lot of research efforts [68, 21, 95, 15, 41, 42]. Among them, the holistic join [15]

approach and its variants [42, 21, 68, 77, 41] have been proven to be able to avoid

producing too many useless intermediate results.

2.3 Keyword Search on XML

In XML keyword search, extensive research efforts have been conducted to find

the smallest sub-structures in the XML data that contains all query keywords, in

either the tree data model or the directed graph (i.e. digraph) data model.

2.3.1 Tree Model

In tree data model, LCA (lowest common ancestor) semantics is first proposed

and studied in [85, 31] to find the lowest XML nodes, each of which contains all

18

query keywords within its subtree. Let lca(m1, ..., mn) be the lowest common an-

cestor of nodes m1,...,mn. For a given query Q = {k1,...,kn} and an XML document

D, Li denotes the inverted list of ki. Then the LCAs of Q on D are defined as

LCA(Q) = {v | v = lca(m1, ...,mn),mi ∈ Li(1 ≤ i ≤ n)}. Extended from Google’s

Pagerank algorithm for ranking, XRank [31] takes into account the proximity of

the keywords and the references between attributes. Its aim is to find the top-k

relevant answer. Ranking is one of the important job in this work. First it tries

to define what should be returned as the query results. One important property

defined in the work is: if a descendant of a answer node is also another answer

node, then they cannot share a keyword node (which directly contain the keyword)

in their answers. After that a PageRank-similar approach is used to compute the

weight of each nodes in the XML document. With the weight, it computes the

relevance between a node and a keyword. Then the relevance between a node and

a query is measured by the sum of relevance to each keyword in the query. A

stack-based algorithm is proposed to compute all the answer nodes in O(n) com-

plexity. But in case of huge documents, inverted list for each keyword might be

huge. Therefore, another algorithm, RDIL, targeted at top-k answer is proposed,

which keeps finding the answers until no remaining nodes can form an answer with

higher relevance than the so-far top-k results.

A variation of LCA is XSEarch [23], which proposed a concept called intercon-

nection. Let n and n′ be two nodes in an XML tree T , T |n,n′ be the shortest path

from n to n′, then n and n′ are interconnected if one of the following conditions

holds:

1) T |n,n′ does not contain two distinct nodes with the same label.

2) The only two distinct nodes in T |n,n′ with the same label are n and n’.

The intuition of such a property is that it distincts the attributes which belong

19

to different entities. XSEarch tries to find a set of answer nodes, where each answer

node should contains all query keywords and every two keyword-matching nodes

should be interconnected. However, the complexity for the approach calculating

such results is NP-complete. So XSEarch only requires that each keyword-matching

node should be interconnected with at least one other keyword-matching node. This

looser condition is called star-interconnected and makes it possible to find all the

results in polynomial time.

Subsequently, SLCA (smallest LCA [62, 99]) is proposed to find the smallest

LCAs that do not contain other LCAs in their subtrees. In other words, SLCA is a

node containing all the query keywords while none of its descendant also contains

all the query keywords. It is claimed that SLCA is more suitable to be the answers

for XML keyword search. To find all SCLAs, normally 2 tasks must be finished:

finding all LCAs and remove all ancestor nodes among such LCAs being found. It

is costly to find all the LCAs. When the number of keywords increases and the

number of nodes containing each keyword increases, the number of combination

will be huge. XKSearch [99] optimizes this as it directly finds out SLCAs in one

step by following a particular order such that impossible search space is pruned.

[99] proposed several algorithms to find the SLCAs efficiently. The first algorithm is

called “Indexed Lookup Eager Algorithm”. It transforms SLCA-finding problem on

a sequence of keywords into a problem that repeatedly find SLCAs of two keywords.

It is expressed by the following formula:

slca(S1, ..., Sk) = slca(slca(S1, ..., Sk−1), Sk) = slca(slca(slca(S1, ..., Sk−2), Sk−1), Sk)

= ..., where Si is a set of nodes that directly contain the ith query keyword. To

compute slca(S1, S2), it first sorts S1 in preorder. Then for each node vi in S1, it

finds slca(vi, S2). It will judge whether slca(vi, S2) is in slca(S1, S2) by comparing

it to slca(vi+1, S2). Another method proposed in this work is a stack-based algo-

20

rithm, which is a modification of XRank [31]. It has an additional step to clear the

flags in order to rule out of the LCAs which are not SLCAs.

Multiway-SLCA [88] generalized SLCA to support keyword search involving

combinations of AND and OR boolean operators. For a query Q with any combi-

nation AND and OR operator, it rewrites the query Q in DNF (Disjunctive Normal

Form). Then it evaluates the query in two stages: first, it evaluates each disjunc-

tion in Q using an existing AND-query evaluation algorithm; second, the results of

the individual evaluations are combined by eliminating intermediate SLCAs that

are ancestor nodes of some other intermediate SLCAs.

Besides of LCA and SLCA, another matching semantics, MCT (minimum con-

necting trees), is also proposed. It aims to find the minimum connecting trees

by excluding sub-trees not covering any query keyword. Essentially, it checks all

combinations of nodes from the inverted lists and computes an MCT (minimum

connecting tree) for each combination. Then it merges the resulting MCT into the

list of results, called Grouped Distance Minimum Connecting Trees (GDMCTs),

whose size is controlled within the user-specified threshold. A stack-based algo-

rithm is also proposed to maintain a minimum amount of information that allows

the efficient and timely output of the GDMCTs.

ELCA [31], which is also a widely adopted subset of LCA, is defined as: a node

v is an ELCA node of a query Q if the subtree Tv rooted at v contains at least

one occurrence of all query keywords, after excluding the occurrences of keywords

in each subtree Tv′ rooted at v’s descendant node v′ and already contains all query

keywords. [56] proposed Valuable LCA (VLCA) by eliminating redundant LCAs

that should not contribute to the answer, but also retrieves the false negatives

filtered out wrongly by SLCA.

XSeek [64] identifies the return nodes by inferring the pattern of the search

21

keywords. The idea behind is simple but useful. Firstly, it finds out all the matching

nodes for each query keyword. Then the keyword-matching nodes are classified into

two categories: return nodes and search predicates. For a non-leaf node v matching

a query keyword, if none of its descendants is both a value node and keyword-

matching node, then v is called a return node. Otherwise it’s called predicates.

For a query, if return node exists, then the return node and its descendants will be

returned as the result. Otherwise it will return the first entity node along the path

from the SLCA node to root.

LCA-based

XRANK-2003

Xseek-2007

XKSearch-

2005

XSEarch-

2003

MCT-2006

SLCA-based

MLCA-based

Multiway-

SLCA-2007

MaxMatch-

2008

*stack based algorithm

*ranking method (pagerank)

* similar SLCA

*incorporate meaningful

LCA search in XQuery

Find smallest LCA:

LCA does not contain other LCAs

*optimize performance of finding SLCAs

(by skipping redundant intermediate LCA computation)

*combinations of AND and OR boolean operators

efficient algorithms to compute SLCAs

(using left match, right match node...)

exclude the subtrees

rooted at the LCAs that

do not cover query keywords

*use SLCA to get the rooted nodes

*analyze input to get subtree/path

focus on identifying return

information

*variation of LCA

*ranking

MLCA-2004

Figure 2.2: Relationship among Main Keyword Search Techniques

22

Based on SLCA, [65] further proposed an axiomatic way to decide whether a

result is relevant to a keyword query in term of the monotonicity and consistency

properties w.r.t the XML data and query. This is the first novel algorithm that

satisfies both the properties of monotonicity and consistency. [66] studied how to

differentiate the search results of an XML keyword query, aiming to save user efforts

in investigating and comparing potentially large results.

XReal [8] proposed a statistical way to identify the search target candidates. It

proposes an IR-style method to handle the keyword search problem, which is the

first one to exploit the statistics of underlying XML database to address search

intention identification, keyword ambiguity and relevance oriented ranking as a

single problem. Given a query of several keywords, firstly, it tries to find which

type of node is most likely the type user is searching for. The nodes of such

node type should contain all the keywords in the subtrees and not to be deeply

nested in the XML. Secondly, it tries to decide which type is most likely to be the

correspondent of each keyword. It’s similar to the previous step except that it does

not require the node type to contain all keywords and not to be deeply nested.

After that a formula is proposed to compute the similarity between an XML node

and the query, which is utilized to do the ranking.

Most of the techniques proposed so far are making use of Dewey labeling

scheme for query evaluation. Recently, some studies [108, 109] point out that

the comparison operation for Dewey labels is one of the most time-consuming op-

erations in XML keyword query evaluation. Some efficient methods for calculating

LCA/SLCA/ELCA [108, 109] are proposed to pre-compute some possible common

ancestor nodes in order to avoid the comparison operation on Dewey labels.

Figure 2.2 shows some main techniques in XML keyword search and the rela-

tionships among them. Figure 2.3 shows a time line for some main approaches.

23

Figure 2.3: Timeline for Main Keyword Search Techniques

2.3.2 Graph Model

An XML document considering ID references is usually modeled as a directed

graph (digraph) [37]. Keyword search on a digraph is usually reduced to the Steiner

Tree problem or its variants: given a digraph G = (V,E), where V is a set of nodes

and E is a set of edges, a keyword query result is defined as a minimal directed

subtree T in G such that the leaves or the root of T contain all keywords in

the query. The Steiner tree problem is NP-complete [28], and many works are

interested in finding the “best” answers of all possible Steiner trees, i.e. finding

top-k results according to some criteria, like subtree size (sum of length of all

edges in the subtree), diameter (maximum distance between any two nodes in the

subtree), etc. Backward expanding strategy is used by BANKS [12] to search for

Steiner trees in a digraph. It starts the searching from the nodes which directly

contain the query keywords. Then it concurrently runs multiple threads to traverse

from those nodes until they find some common nodes which connect to all query

keywords. To improve the efficiency, BANKS-II [44] proposed a bidirectional search

strategy to reduce the search space, which searches as small portion of digraph as

possible. It starts a backward searching from the nodes directly containing the

keywords. Meanwhile, it also conducts a forward searching starting from the nodes

which have been visited during backward searching. Later [26] designed a dynamic

24

programming approach (DPBF) to identify the top-k Steiner trees containing all

query keywords. With some slightly modification on DPBF, a variant of DPBF to

output the top-k results in increasing weight order is also proposed in the work.

BLINKS [35] proposes a bi-level index and a partition-based method to prune and

accelerate searching for top-k results in a digraph. It first divides the XML nodes

into several blocks. Then it builds intra-block index and inter-block index for all

the nodes. With the index which conveys the connectivity information among

and within the blocks, it can prune some unnecessary search space. XKeyword [37]

presented a method to optimized the query evaluation by making use of the schema

of the XML document. It infers the possible schema structure of the potential

results such that it can avoid some search space which will not lead to any results

complied with that structure.

2.4 Query Refinement

In this section, we will have a literature study for existing query refinement

techniques. We will first study three main techniques in query refinement: query

cleaning, query relaxation and query substitution. They are designed to handle

different query refinement problems. MisMatch problem is one problem which

can be handled either by query relaxation or query substitution. In the end of

this section, we will talk about how the MisMatch problem is handled by existing

research works in structured data and unstructured data, while there is no work

on such a topic on semi-structured data yet.

2.4.1 Query Cleaning

Query cleaning is to correct spelling errors with different kinds of techniques.

It is usually done by measuring the difference between wrong keywords and correct

25

keywords in a dictionary.

[80] proposed a method which considers not only the spelling error but also

the TF/IDF feature of the data while correcting keywords. It handles both the

segmentation problem and spelling correction. Each keyword in a keyword query is

corresponding to a set of similar keywords which is already in the database. Picking

up one new keyword from each set can form a new query. However, computing

all combination is too costly. The paper proposed a dynamic algorithm to get the

combinations which is with high quality. To measure the quality of the new queries,

three factors are considered: 1) TF-IDF feature of each new keyword 2) length of

keyword segments 3) spelling error.

[69] extends the traditional query cleaning techniques to the context of XML

considering the structural feature of the XML data. Each keyword in a keyword

query is corresponding to a set of similar keywords which is already in the database.

Every combination of the new keywords from all these sets is an alternative query.

This paper propose a new way to measure the quality of the alternative queries. The

quality function is based on a list of factors borrowed from the probabilistic theory

and some existing language model: 1) typographical errors (single edit errors);

2) probability of users being interested in a particular query by unigram language

model and dirichlet smoothing ; 3) XML tree structure and keyword query semantics

by the formula proposed in XReal [8], which help to identify the units of information

in the XML data and measure the quality of query in a finer granularity. Then the

authors combine all the above factors into one final formula to measure the quality

of each alternative query.

26

2.4.2 Query Relaxation

Query relaxation is to delete some of the query constraints to get more results.

[70, 76] proposed methods that measure the importance of each attribute in the

database with the help of approximate functional dependencies, which is computed

by data samples in the database. First it makes a dependence graph between at-

tributes and perform a topological sort over the graph. Functional dependencies

can be used to derive the attribute dependence graph that is needed. But, full

functional dependencies with 100% support between all pairs of attributes are of-

ten not available. Therefore approximate functional dependencies is used between

attributes to develop the attribute dependence graph with attributes as nodes. At-

tributes that can determine more attributes will have higher importance. Then

according to the importance of each attribute, they try to reduce the constraints

on an existing query.

[73, 74] proposed another method which adopts the machine learning way to

learn some rules from the database. It learns decision rules that express the implicit

relationships among the various domain attributes; then it uses nearest neighbor

techniques to identify the learned rule that is most similar to the failing query;

finally, it uses the attribute values from this most-similar learned rule to relax

the constraints from the failing query. For each failed query, with the predicted

attribute whose value is more likely not able to be satisfied, it comes up with

another similar query which ensures to get nonempty results. The target of all

query relaxation methods is to ensure more relevant results are retrieved.

2.4.3 Query Substitution

Query substitution is to replace some keywords of the original query which gets

no result. [43] proposed a method which identified related queries and phrases by

27

triggering
condition

processing
phase

goal major
solution

get sam-
ple result
without
one more
query

Query
Cleaning

typos
exists/no
result

post pro-
cessing

correct
typos

to find
similar-
spelling
words

no

Query
Relax-
ation

no result post pro-
cessing

get more
results

to delete
some
key-
words

no

Query
Substitu-
tion

no result post pro-
cessing

get more
results

to re-
place
with
syn-
onyms

no

Figure 2.4: Comparison of Query Refinement Approaches

user query logs. The training data used comes from logs of user web accesses. This

data contains web searches annotated with user ID and timestamp. A candidate

reformulation is a pair of successive queries issued by a single user on a single day.

Because it is believed that successive queries from a single user is a reformulation

of the same query. Then pair independence hypothesis likelihood ratio is proposed

to measure the importance of each query pair. Pairs with high importance suggests

that there is a strong dependence between the pair of queries. Then a coming new

query will be broken up into segments, and replaced by some segments which is

statistically significant related. In other words, this approach will try to modify

the query by some pre-computed queries and phrases based on similarity, which is

given by the machine learning model. Later, [107] proposed methods to improve

query substitution by selecting a better training set for the machine learning model.

It selects the most informative samples to train the relevance model for query

rewriting according to a new linear regression model.

28

To summarize, we compare the main features of the available keyword query

refinement techniques according to some criteria, as shown in Figure 2.4. We can

see that all the above techniques operate at a shallow level. I.e., whether there

is any typo or whether the result is an empty set. They do not consider users’

search intention, nor do they consider the mismatch between the results and such

intention.

2.4.4 MisMatch Problem in Structured and Unstructured

Data

When users issue a query to a database, they have expectations about the

results. If what they search for is unavailable in the database, the system will

return an empty result or erroneous mismatch results. This is called the MisMatch

Problem. Users will need some help and suggestions in such a case. How to detect

such a problem and generate useful suggestion becomes a research problem, which

may involves multiple query refinement techniques. To the best of our knowledge,

so far there is no work on the MisMatch problem in XML keyword search. So we

will look at how the MisMatch problem is handled in either structured data and

unstructured data in information retrieval.

MisMatch Problem in Structured Data. When structured queries are issued

over structured data (relational tables), the MisMatch problem (i.e. what users

search for is unavailable in the database) leads to empty result. E.g., a structured

query select ∗ from T where A =′ 11′ and B =′ 20′ will return empty result if no

tuple in table T is with attribute A being 11 and B being 20. Users need some help

on how to revise the query to get some results, either by dropping or modifying some

constraints. It has attracted a lot of research efforts such as [38, 76, 73, 74], where

the problem is also known as failing queries, non-answer queries. [76] proposed

29

a method to remove some constraints of the query with the help of approximate

functional dependencies, and then execute the new queries to finally find some

alternative queries. [73, 74] proposed another method which adopts the machine

learning way to solve the problem. Given a structured query, it will first learn some

decision rules related to the query from database. Those decision rules are about

the condition for a particular query constraint to hold learned from the data. E.g., a

rule could be like AttributeA > 60 and AttributeB ̸= “female” =⇒ AttributeC >

200. Then according to those decision rules, it will change the constraints in the

query in order to make it not lead to empty result. Recently, some research works

[38, 18, 92] have been done trying to pinpoint the constraint in the structured query

which causes the empty result, such that we can explain to users why empty result

is returned. [38] tried to identify the attribute of the tuples which are excluded

from the final result set (empty set). It is done by changing the attributes of the

excluded tuples until they are included in the result set. [18] proposed an approach

to explain the empty result by pinpointing the manipulation operation(s) in the

query plan that excludes the missing tuples. Later [92] pointed out that it will be

more helpful if the database can even provide a refined query, which is formed by

using some optional predicates to replace the original predicates in the query.

MisMatch Problem in Unstructured Data. When keyword queries are issued

over unstructured data (in web search), the MisMatch problem will lead to a list

of mismatch results. E.g., a keyword query “Vaio W red” in order to find a laptop

model V aio W with red color may not get any meaningful result if such a color

is unavailable for such a model. In web search, results being returned could be a

lot of web pages containing those three keywords. However, “Vaio W” could be

in one part of the web page while “red” appears in another part of the web page.

Those are some mismatch results which are not expected by users. Detecting such

30

a MisMatch problem requires to analyze whether the keywords are ‘semantically’

related in the results. Such analysis is challenging because the data is unstructured.

One way to alleviate the problem is to mine some similar and popular queries from

query log, like “Vaio W blue” could be a similar query in the query log as “Vaio

W red”. The drawback of such an approach is also obvious: those popular queries

mined could also lead to mismatch results. [43] tried to modify the query by some

pre-computed queries and phrases based on user query log and similarity, which

is given by a machine learning model. Later, [107] proposed methods to improve

query substitution by selecting a better training set for the machine learning model.

However, such similar queries mined from query log cannot be guaranteed to have

meaningful results themselves.

Since the results of XML keyword search are very different, which are some

subtrees with structure, none of the above techniques consider tree structure and

can be used to detect MisMatch problem in XML keyword search.

2.5 Query Results Visualization

Query results visualization is an indispensable part of a keyword search engine.

It takes charge of how to present the query results to users, which will directly

affect the readability of the query results and the usability of the search engine.

Meanwhile, it also offers possibilities for user interaction, which allows users to

further manipulate and explore the query results. Therefore, it has attracted a lot

of research efforts [87, 25, 24, 53, 34, 16, 17, 72, 19].

Query results visualization is closely related to the form of data and the form of

results. Different forms of data and query results require different ways for optimal

visualization. There is no single way which can work well on all forms of data.

31

Although it has attracted a lot of research efforts in web search, in terms of XML

keyword search, so far there is very few works on results visualization for XML

keyword search.

There are mainly three categories of visualization techniques for web search,

namely list-based approach, graphics-based approach and hybrid approach of the

pervious two. The list-based approach keeps the traditional ordered list visualiza-

tion adding visual aids such as bolding words in the paragraphs [45] or clustering

web pages and presenting a tree view [53, 19] along with the list. The graphics-based

approach represents search results in a graphical environment where the visualiza-

tion can either be 2D [19, 87] or 3D [16, 72]. The hybrid approach integrates the

previous two approaches. For example, Google Maps [3] is a typical application

which equipped with the hybrid approach for result visualization. When present-

ing the query result, it shows the traditional result list as well as an interactive

graphical interface.

Most of the research work is focusing on the list-based approach and graphics-

based approach since the hybrid approach is obvious and intuitive. Some of the

works are based on the idea of presenting the results in a spiral figure. RankSpiral

[87] focuses on displaying the results of one single query from multiple search engine

to users in a graphical way. It exploits a spiral figure and displays all the titles of

the retrieved documents on the spiral. It allows users to browse a large amount

of information in one screen and examine document clusters in more detail. [25]

tries to apply a similar approach to an image search engine for image browsing.

NIRVE [24] is proposed to handle the visualization task where there are a lot of

search results. It draws the icon of each search result on a 3D spiral with the

highest ranked documents in the center. It also provides a tool called Keyword

Sliders which allow the user to accentuate documents which contain the keywords

32

considered to be especially important.

Besides, some of the works are presenting the results in an interactive work

space. Lighthouse [53] is hybrid approach which integrates the traditional ranked

result list and the clustering visualization. It visualized the documents as clustered

circles which can reflect the relevance among the documents. Meanwhile, it also

accepts users’ relevance feedback to further refine the approach. It is claimed to be

able to help users locate the interesting documents among all the results. Sparkler

[34] is a graphics-based approach to present multiple result sets of multiple queries

on the same screen. It makes use of a bulls eye layout with star plots, where a

document is plotted on each star spoke based on its rankings by the queries or

search engines. Users can progressively improve their queries by looking at the dif-

ference between different result sets. Such an approach also provides an interactive

component for users to manipulate and explore the results. WebBook/WebForage

[16] organized the web search results in a 3D workspace, which enables users to

manipulate the results in an interactive way. Users can group the retrieved docu-

ments to a group in the form of a book. Order is also adjustable for all books and

documents. WebQuery [17] aims to visually show the pages related to the result

set in a graphical way. I.e., pages which are hyper-linked by the search results

will be shown to users. Users can view the connectivity among the web pages and

explore the related pages following the graphical connectivity links. CardVis [72]

introduces card metaphor to visually displays web search results with additional

related terms. It is suitable for the case that the results can be organized as a collec-

tion of disconnected graphs. The visualization presents the details of the structure

and contents of the focus graph. MetaSpider [19] tries to improve the precision of

query results by further processing the retrieved documents from primary search

engines. All the operations are post-processing. It includes validation, indexing,

33

and categorizing. Then it will draw the cluster results on a self-organizing 2D map.

34

CHAPTER 3

MISMATCH PROBLEM IN KEYWORD

SEARCH OVER XML WITHOUT ID

REFERENCES

3.1 Introduction

When users issue a query to a database, they have expectations about the

results. If what they search for is unavailable in the database, due to reasons like

product removed from shelves, clothes size unavailable, etc., the result they seek

may not be found in the database. In such a case, the system will return an empty

result or erroneous mismatch results. We call this the MisMatch Problem.

For example, a user wants to search for a laptop. She wants the model Vaio W

with color being red. If red color is unavailable for laptop Vaio W in the database,

then obviously the user will not get what she wants no matter how the data is

35

organized or what kind of query it is.

The MisMatch problem is a natural and common problem. It can happen in any

form of information retrieval over data of any structure, i.e. can be either structured

query or keyword query on structured, unstructured and semi-structured data.

Such a problem has attracted a lot of research effort in the context of structured

queries on structured data [38, 18, 76, 73, 74], with descriptions such as failing

queries and non-answer queries. However, no such work has been done in the context

of keyword search on semi-structured data. This is an important area to address.

According to our experiments conducted on XClear, an XML keyword search engine

available at [104], users suffered from such a problem for 27% of their queries. This

is our central concern in this chapter.

What can we offer to help the user? Ideally, we can get the following help if we

are interacting with a human:

1. Notification: “Sorry, we do not have such a product.”

2. Explanation: “Because red color is unavailable for Vaio W.”

3. Suggestion: “You can choose some other available colors: black, blue and white.”

When structured queries are issued over structured data (relational tables), the

MisMatch problem (i.e. what users search for is unavailable in the database) leads

to empty result. Detecting the problem is trivial because empty result is obvious.

A message (notification part) will be given to users. Some existing works [38, 18]

try to explain the non-answer queries by pinpointing the constraint causing the

empty result (explanation part). Some works [76, 73, 74] focus on generating some

alternative constraints to come up with some suggested queries (suggestion part).

When keyword queries are issued over unstructured data (in web search), the

MisMatch problem will lead to a list of mismatch results. It is even difficult to detect

36

electronics
0.0

online_mall
0

Alan
Priceshop

0.0.0

name
0.0.0.0

EStage

rating
0.0.0.1

4.6

ID
0.0.0.2

SP072

laptop
0.0.0.3

shop
0.0.1

books
0.1

brand
0.0.0.3.0

model
0.0.0.3.1

Hellet
Packard

Pavilion

color
0.0.0.3.2

red

grocery
0.2

owner
0.3

color
0.0.0.3.3

purple

price
0.0.0.3.4

$469

OS
0.0.0.3.5

Windows
7

laptop
0.0.0.4

brand
0.0.0.4.0

model
0.0.0.4.1

Sony Vaio W

color
0.0.0.4.2

white

color
0.0.0.4.3

blue

price
0.0.0.4.5

$449

OS
0.0.0.4.6

Windows
vista

color
0.0.0.4.4

pink

name
0.0.1.0

Blue Pro

rating
0.0.1.1

4.7

ID
0.0.1.2

SP066

laptop
0.0.1.3

brand
0.0.1.3.0

model
0.0.1.3.1

Hellet
Packard

Omni

color
0.0.1.3.2

black

price
0.0.1.3.3

$399

OS
0.0.1.3.4

Windows
7

... ...

Keyword Frequency:
�red� - 90
�price� - 200
�Vaio W� - 1

Figure 3.1: Sample XML Document about an Online Shopping Mall

the problem in the first place. Because most likely the results being returned are not

empty. It could be the case that the query keywords appearing in one document are

far away from each other and not semantically related. E.g., for a keyword query

‘Vaio W red’, if color red is not available for laptop Vaio W, there still can be many

webpages being returned, where ‘Vaio W’ appears in one part of the webpage

while ‘red’ appears in another part of the webpage. It leads to mismatch results.

Therefore, we need to analyze whether the keywords are ‘semantically’ related in

the results. Such analysis is challenging because the data is unstructured. A limited

solution to a part of the problem (only the suggestion generation part) is to mine

some similar and popular queries from query log [43, 107] and show them to users

(suggestion part). But the downside is that such popular queries do not guarantee

to have reasonable results.

In this chapter, we focus on identifying and solving the MisMatch problem in

the context of keyword search over XML data which is without ID references. For

XML data with ID references, we will study it later in Chapter 4. Now, let us take

a look at how the MisMatch problem behaves in XML keyword search without ID

references.

Example 3.1. An XML data tree without ID references in Figure 3.1 describes

37

the item information of an online shopping mall. Suppose a user wants to buy a

laptop. She prefers Sony’s Vaio W with red color, and wants to know how much

it is. Then she may issue a query Q = {‘Vaio’,‘W’,‘red’,‘price’} to search for

a laptop. Unfortunately, no laptop can meet all her requirements. Vaio W only

has three colors: white, blue and pink. Existing keyword search methods, such as

LCA (Lowest Common Ancestor) [85], SLCA [99], ELCA [31] or even the most

recent variant [51] of LCA, still can find some results containing all query keywords.

One of the query results is the subtree rooted at shop:0.0.0, where keyword ‘red’

matches one laptop while the rest keywords match another laptop. Obviously, the

subtree rooted at shop is not expected by the user, as it contains too much irrelevant

information, i.e. all laptops. What is worse, there could be hundreds of shops

selling Viao W and therefore hundreds of mismatch results are returned. In this

case, imagine if the user was interacting with a salesman, she would be informed

of the unavailability of the product and suggested with some other available colors

for the laptop Vaio W. 2

As we can see, the MisMatch problem in XML keyword search also leads to a

list of mismatch results. It poses three challenges for a search engine to help users:

(1) how to design a detection method to distinguish queries with the MisMatch

problem from those without; (2) how to explain why the query leads to mismatch

results; (3) how to find good suggestions, and what should be a good way to present

them to users.

Our solution to the MisMatch problem is to run a small post-processing job at

the end of the query evaluation, consisting of two components, namely detector and

suggester. The former addresses the first challenge above, and the latter addresses

the remaining two. The reason for a post-processing solution is that we want to

make our solution as general as possible and can be applied to any existing XML

38

keyword search method.

The central idea of our technique for mismatch detection is based on the notion

of Target Node Type (see Section 3.3 for the formal definition). Intuitively, Target

Node Type denotes the type of node a query result r intends to match. We calculate

it at schema level. Meanwhile, the actual root of result r is calculated at data level

by existing techniques. If r’s root does not match its Target Node Type, we claim

that r misses the target. We can perform a similar check on all results of a query Q.

If all results of a query Q miss their targets, then we say that Q has the MisMatch

problem.

Once a mismatch is detected, we propose a concept called Distinguishability

to find ‘important’ keywords in the original query, and use these to explain the

reason for the mismatch and to suggest possible relaxations. Distinguishability

is inspired by the tf*idf scoring measure proposed in IR [83] while taking the

structural property of XML data into account. Then based on each query result r

we try to find some ‘approximate’ query results, which contain these ‘important’

query keywords and are structurally consistent with r, while having reasonable

replacement for the rest ‘less-important’ query keywords. Finally, the explanation

and suggested queries can be inferred from the approximate results. To further

improve the user experience, our suggester also generates a sample result for each

suggested query Q′ even without evaluating the query Q′, which helps users to

judge whether Q′ is helpful.

Putting these together, we have our complete algorithm. The input of our

algorithm is a (ranked) list of all results returned by search engine. For a user

query that has the MisMatch problem, the output of our algorithm consists of

three parts:

1. An explicit notification to user: “what you search for is not available”.

39

2. An explanation on which keyword(s) in the query leads to mismatch results.

3. Some data-driven suggested queries, which guarantee to have reasonable re-

sults.

Note that there are many possible relaxations of a given query, and many of these

may themselves also be empty (result in mismatch). It is important to ensure that

the suggestions given have at least some results and are not mismatch themselves.

As discussed in the related work section, there is a great body of work on query

relaxation and on generating partial match answers. These systems, while valuable,

do not address all three of the challenges we described above, and hence are not

suited for our problem context. In particular, many of them generate large lists of

possible partial match answers that the user has to wade through even to realize

that there is a mismatch at all.

In summary, our major contributions in this chapter include:

1. We identify the MisMatch problem in XML keyword search. We detect the

MisMatch problem by investigating into the query results and inferring the

Target Node Type for each query result. It is portable as it can work with

any LCA-based matching semantics and is orthogonal to the choice of result

retrieval method.

2. We design a data-driven approach to generate explanation and suggested

queries by finding approximate query results, which contain important key-

words in the original query Q while having consistent structure with the

results of Q. We propose Distinguishability, which is a structure-aware tf*idf

scoring measure, to quantify the importance of keywords.

3. We propose a novel bitmap-based labeling scheme to accelerate finding ap-

proximate results. As a result, the MisMatch detector and suggester is

40

lightweight : it takes only 4% of the whole query processing time.

4. We build a search engine called XClear [104] which embeds the MisMatch

problem detector and suggester. Extensive experiments have verified the

effectiveness, efficiency and scalability of our method.

We present preliminaries in Section 3.2. Detecting the MisMatch problem is

in Section 3.3. Section 3.4 discusses how to find the explanations and suggested

queries. Section 3.5 presents our labeling scheme for efficient approximate results

detection. Section 3.6 presents indices and algorithms. Experiments are in Section

3.7 and Section 3.9 summarizes this chapter.

3.2 Preliminaries

3.2.1 Semantics and Data Model

We will first make the assumption of semantics we have for an XML document

and also define the data model we use for an XML document without ID references.

In our solution, we assume that there is no outer semantics provided, which is also

the assumption for most of the existing works in XML keyword search. In other

words, we assume that we only have the XML document itself with the accompanied

schema specification, like DTD or XML Schema. The following information from

DTD or XML Schema will be used in our solution: 1) which attributes in the XML

document are the ID attributes or IDREF attributes (to identify ID reference links);

2) the number of possible occurrences of a sub-element/attribute appearing under

a parent node (to be used in our MisMatch solution). Outer semantics, such as ER

model [20], ORA-SS model [27, 63], can help identify in the XML data that which

nodes represent objects, object attributes, relationships, relationship attributes,

41

etc. Such information is not conveyed in an XML document or its accompanied

schema specification. Instead, it only stores the data in a nested tree structure.

Therefore, based on the information in an XML document without ID references,

we model it as a rooted, labeled and ordered tree. Each node of the tree corresponds

to an element of the XML data, and it has a tag name and (optionally) some value.

Each edge of the tree corresponds to the containment relationship between a parent

node and a child node. An edge means a parent node and a child node is related,

while it is not specified how they are related. E.g., a parent node with tag name

house and a child node with tag name person just means these two nodes are

related while it is unknown that whether the person owns the house or the person

rents the house.

Without loss of generality, we simply use the word “node” to mean the node in

an XML tree. To accelerate the keyword query processing, all existing works adopt

the dewey labeling scheme [93]. As shown in Figure 3.1, for a node n its dewey label

consists of a sequence of components that implicitly contain all ancestor nodes on

the path from the document root to n. E.g., from laptop:0.0.0.3, it is easy to find

that the label of its parent is 0.0.0.

Definition 3.1. Node Type. The type of a node n in an XML tree, denoted as

n.type, is the tag name path from root to n.2

In the rest of the chapter, the tag name of n is used to represent the node type

of n if no ambiguity is caused.

Definition 3.2. Keyword Match Node. A node n is called a keyword match

node for a keyword k if the tag name or the value part of n contains k. 2

Definition 3.3. Subtree-contain. A node n is said to subtree-contain another

node m if n equals to m or there exists a directed path from n to m. n is also said

to subtree-contain the keywords in m’s tag name or value part.

42

E.g., in Figure 3.1, the node type of laptop:0.0.0.3 is online mall/electronics/shop

/laptop; color:0.0.0.3.2 is a keyword match node w.r.t. keyword ‘red’; laptop:0.0.0.3

is said to subtree-contain node color:0.0.0.3.2; laptop:0.0.0.3 is also said to subtree-

contain keyword ‘red’ as ‘red’ is the value part of color:0.0.0.3.2.

3.2.2 General Query Result Format

To define a general format to represent the query results, let us look at the

existing matching semantics first. All existing matching semantics so far, such as

SLCA [99, 36], ELCA [31], entity-based SLCA [64] are all based on the concept of

lowest common ancestor (LCA). Let lca(m1, ...,mn) be the lowest common ancestor

of nodes m1,...,mn. For a given query Q = {k1,...,kn} and an XML document D, Li

denotes the inverted list of ki. Then the LCAs of Q on D are defined as LCA(Q)

= {v | v = lca(m1, ...,mn),mi ∈ Li(1 ≤ i ≤ n)}. Both SLCA and ELCA define

a subset of LCA(Q), and we refer readers to Chapter 2 for detailed definitions of

SLCA and ELCA, and their relationships with LCA.

Definition 3.4. Query Result Format. For a keyword query Q={k1, ...,kn},

we define the format of a query result r as:

r = (vlca,

{
m1,m2, ...,mn

}
)

where mi is a keyword match node w.r.t. keyword ki (i ∈ [1, n]), and vlca is the

lowest common ancestor of nodes m1,..., mn, i.e. vlca = lca(m1, ...,mn). 2

Defn. 3.4 is highly general in two aspects: (1) it is compatible with any existing

LCA-based matching semantics adopted by search engines, because one necessary

condition for a node v to be an SLCA (or ELCA) node of a query Q is: v must

be a lowest common ancestor of a set of keyword match nodes mi w.r.t. Q. (2)

43

Our query result format forms the skeleton for both Path Return (returning the

paths in the XML tree from each LCA node to its keyword match nodes) [36, 56]

and subtree Return (returning the subtree rooted at each LCA node) [31, 99]. This

observation is important in explaining the portability feature of our solution to

detect and resolve the MisMatch problem later in Section 3.4.4.

3.3 Detecting the Mismatch Problem

In this section, we would like to present how to detect the MisMatch problem.

First, the detector should infer user’s possible search target(s) based on the

query results. Since a keyword can match different types of nodes, user’s search

target may be various for a certain query. E.g., keyword “price” can match an

owner’s name (node owner:0.3) or the price of a product (node price:0.0.0.3.4) in

Figure 3.1. But a certain query result r corresponds to a unique search target.

Because each query keyword has a unique corresponding keyword match node in a

given query result r. Therefore, we introduce a concept called Target Node Type

(TNT) to denote the node type which a query result r intends to match.

To infer the TNT of a result r, we propose to use node types to simulate the

semantics of each keyword match node.

Example 3.2. For the query Q = {‘V aio’,‘W ’,‘red’,‘price’} in Example 3.1, if

the user is interacting with a salesman, the salesman will know that the user is

finding a laptop because the salesman knows the meaning of each query keyword.

Here for XML keyword search, one result is r = (0.0.0, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.3.2,

0.0.0.4.5}). We use node types to simulate the semantics of each keyword match

node. The node types of each distinct keyword match node are (‘Vaio’ and ‘W’

match the same node):

44

0.0.0.4.1: {online mall/electronics/shop/laptop/model}

0.0.0.3.2: {online mall/electronics/shop/laptop/color}

0.0.0.4.5: {online mall/electronics/shop/laptop/price}.

Then we can know that the user inputs three kinds of information: laptop model,

laptop color and laptop price. The user’s search intention, i.e. a laptop, corresponds

to the node type “online mall/electronics/shop/laptop”, which is closely related to

the above three node types. 2

Following a similar philosophy of LCA, which finds the lowest/smallest nodes

connecting all query keywords as the most relevant results, we define the lowest

node type which connects to all the above node types at schema level as the Target

Node Type, where the formal definition will be introduced later. It is the most

relevant node type connecting to users’ input information. E.g., in Example 3.2,

{online mall/electronics/shop/laptop} is the lowest node type connecting to lap-

top model, laptop color and laptop price at schema level even though no laptop

can meet all the requirements at data level.

However, an XML document actually comes with some constraints on how many

nodes of a type ta can be subtree-contained by another node of type tb. E.g., a lap-

top node (of node type online mall/electronics/shop/laptop) can subtree-contains

only one laptop model node (of node type online mall/electronics/shop/laptop/

model) while it can subtree-contain more than one laptop color node (of node

type online mall/electronics/shop/laptop/color). Similarly, a shop node (of node

type online mall/electronics/shop) can subtree-contains multiple laptop node and

therefore a shop node also can subtree-contains multiple laptop model nodes.

Such constraints will affect the inferring of Target Node Type when we try to

find the lowest node type connecting to users’ input information at a schema level.

Example 3.3. Suppose a user wants to find a shop selling two laptop models, both

45

model Pavilion and Omni produced by Hewlett Packard, she may issue a query

Q = {‘Hewlett’, ‘Packard’, ‘Pavilion’, ‘Omni’} in Figure 3.1, which contains two

different laptop model names. If the user is interacting with a salesman, the sales-

man will know the user is not finding a particular laptop but something related

to two different laptops, e.g. a shop selling those two laptops. Here in terms of

XML keyword search, one query result is a subtree rooted at an eletronics node:

r=(0.0,{0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.1.3.1}). The node types of each distinct

keyword match node are (‘Hewlett’ and ‘Packard’ match the same node):

0.0.0.3.0: {online mall/electronics/shop/laptop/brand}

0.0.0.3.1: {online mall/electronics/shop/laptop/model}

0.0.1.3.1: {online mall/electronics/shop/laptop/model}.

The user’s keywords are describing one laptop brand and two different laptop mod-

els, i.e., the user inputs two different laptop names matching two different lap-

top models. In such a case, assuming one laptop can only have one laptop model

name in the data, the lowest node type connecting the above three node types is

no longer online mall/electronics/shop/laptop. Because there are two different

laptop model nodes here while a laptop node can subtree-contain only one laptop

model node. Instead, the lowest node type connecting the above three node types

is online mall/electronics/shop because a shop node can subtree-contain multiple

laptop model nodes. Therefore, we can infer that the search intention is to find a

shop selling two laptop models rather than finding a particular laptop model. 2

The containment constraints among different types of nodes can be easily in-

ferred from the schema of the XML document (if any). E.g. DTD is a commonly

used XML schema language, where operator * (zero or more occurrences), + (one

or more occurrences), ? (zero or one occurrence) are used to specify the num-

ber of occurrences of sub-elements or attributes under a particular type of node.

46

If the schema of the XML document is unavailable, we can still infer such con-

straints simply by scanning the XML document to summarize a DataGuide [29].

Let t1.maxContain(t2) be the maximum number of nodes of type t2 which can be

subtree-contained by another node of type t1. The range is [0,+∞]. E.g., in Figure

3.1, if a laptop node can subtree-contain at most one laptop model node, then we

have laptop.maxContain(model) = 1; if a shop node can subtree-contain multiple

laptop nodes, we have shop.maxContain(laptop) = +∞; besides, since shop node

is the parent of laptop node and laptop node is the parent of model node, we can

further infer shop.maxContain(model) = +∞ by multiplying the above two val-

ues. Such a calculation can be done offline based on either the schema (if any) or

the DataGuide (summarized by scanning the XML document).

Now we need to count the number of occurrences of each different node type

for the keyword match nodes. Let T = {t1, t2, ..., tx} be a set of different node types

for the keyword match nodes. As some of the keyword match nodes could be of the

same node type, let count(ti) be the number of keyword match nodes which are of

type ti. E.g. for the query result in Example 3.3, there are three distinct keyword

match nodes : two of them are of type online mall/electronics/shop/laptop/model

and one of them is of type online mall/electronics/shop/laptop/brand. In this

case, T = {brand, model}, count(brand) = 1 and count(model) = 2.

We are trying to find the most relevant node type connecting to users’ input as

the TNT, i.e., to find the lowest node type which can connect to all keyword match

nodes ’ node types at schema level. Next we will define the Target Node Type of a

result r formally.

First, TNT should be related to and connecting to each node type in T, i.e. the

TNT should be a common prefix of the node types in T. Second, a node of the

Target Node Type should be able to subtree-contain all occurrences of each node

47

type in T. Last, TNT should be as low as possible such that it can connect to each

node type in T as closely as possible. So we define the extended TNT formally as

follows:

Definition 3.5. Target Node Type (TNT) for a single query result. Given

a query Q = {k1, k2, ..., kn} and a query result r = (vlca, {m1,m2, ...,mn}) on an

XML document D, let T = {t1, t2, ..., tx}1 be the set of different node types for m1

to mn, the Target Node Type TNT (r) for result r is defined as:

TNT (r) = t

such that t satisfies the following 3 conditions

- Condition 1: t ∈ commonPrefix(t1, t2, ..., tx);

- Condition 2: t.maxContain(ti) ≥ count(ti), i ∈ [0, x];

- Condition 3: @t′ such that t′ is a descendent of t and t′ also satisfies condition 1

and condition 2,

where commonPrefix(t1, t2, ..., tx) represents all possible common prefixes for a set

of node types; t.maxContain(ti) represents the maximum number of ti type nodes

which can be subtree-contained by a t type node; count(ti) represents the number of

different keyword match nodes in m1 to mn which are of node type ti. 2

TNT is the lowest node type which can connect to all keyword match nodes’

node types at schema level. It is defined at the schema level by making use of node

types, no matter whether what users search for exist in the XML document at data

level or not. To calculate the TNT for a given result, we check the prefixes of each

node type in T from the lowest one upwards, see whether it satisfies condition 2.

In the following two examples, we will infer the TNT according to the above

definition for two sample queries, both of which are with the MisMatch problem,

1ti may not necessarily be a one-to-one mapping to mi. Because two keyword match nodes,
say mi and mj , could be of the same node type.

48

i.e., what users search for is unavailable in the data. In Example 3.4, all keyword

match nodes are of different node types; in Example 3.5, some keyword match nodes

are of the same node type.

Example 3.4. For the query Q = {‘V aio’,‘W ’,‘red’,‘price’} in Example 3.1, one

of the results is r = (0.0.0, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.3.2, 0.0.0.4.5}), where the

node types of each distinct keyword match node are (‘Vaio’ and ‘W’ match the

same node):

0.0.0.4.1: {online mall/electronics/shop/laptop/model} (denoted as t1)

0.0.0.3.2: {online mall/electronics/shop/laptop/color} (denoted as t2)

0.0.0.4.5: {online mall/electronics/shop/laptop/price} (denoted as t3).

The set of distinct node types T = {t1, t2, t3}, where count(t1) = 1, count(t2) = 1

and count(t3) = 1.

Then we check the prefixes of all node types in T. The lowest one is t =

“online mall/electronics/shop/laptop”. Suppose we have the following constraints

(either inferred from the XML schema or by scanning the XML document): one

laptop node can subtree-contain one model node, one price node and multiple color

nodes. In other words, model and price are both single-value attributes for laptop,

and color is a multi-valued attribute of laptop. Then it will satisfy: t.maxContain(t1) =

1 ≥ count(t1) = 1, t.maxContain(t2) = +∞ ≥ count(t2) and t.maxContain(t3) =

1 ≥ count(t3).

Therefore, TNT (r) = t = “online mall/electronics/shop/laptop” even though

no laptop can meet all the user’s requirements at data level. It is the lowest node

type which can connect to all keyword match nodes’ node types at schema level. 2

Example 3.5. For the query Q = {‘Hewlett’,‘Packard’,‘Pavilion’,‘Omni’} in

Example 3.3, since there is no shop selling both of these models in Figure 3.1, the

results being returned are not shops as expected by the user. One of the results

49

is r = (0.0, {0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.1.3.1}), where the node types of each

distinct keyword match node are (‘Hewlett’ and ‘Packard’ match the same node):

0.0.0.3.0: {online mall/electronics/shop/laptop/brand} (denoted as t1)

0.0.0.3.1: {online mall/electronics/shop/laptop/model} (denoted as t2)

0.0.1.3.1: {online mall/electronics/shop/laptop/model} (denoted as t2 which is

the same as the previous one).

The set of distinct node types T = {t1, t2}, where count(t1) = 1 and count(t2) =

2.

Then we check the prefixes of all node types in T. The lowest one is t =

“online mall/electronics/shop/laptop”. Suppose we have the following constraints

(either inferred from the XML schema or by scanning the XML document): one

laptop node can only subtree-contain one brand node and one model node. In

other words, brand and model are both single-value attributes for laptop. Then

we will have: t.maxContain(t1) = 1 ≥ count(t1) = 1 but t.maxContain(t2) =

1 � count(t2) = 2. As we can see, t is not the TNT as a laptop node cannot

subtree-contain two model nodes.

Then we will check another prefix t′ = “online mall/electronics/shop”, which

is just above t. Suppose we have the following constraints in the XML document

(either inferred from the XML schema or by scanning the XML document): one

shop node can subtree-contain multiple brand nodes while it can subtree-contain

multiple model nodes, then we have: t′.maxContain(t1) = +∞ ≥ count(t1) = 1

and t.maxContain(t2) = +∞ ≥ count(t2) = 2.

Therefore, Target Node Type of result r is TNT (r) = t′ = “online mall/

electronics/shop”. It is the lowest node type which can connect to all keyword

match nodes’ node types at schema level. 2

Our solution assumes there is no outer semantics provided. Because usually

50

XML data exists without such information, so that we use node types to simulate

semantics, where two nodes of the same type will be with the same semantics.

If we do have outer semantics, like thesaurus, ontology, etc., we can further im-

prove our approach such that we can even tell that node types “/laptop/color” and

“/notebook/color” are with the same semantics while node types “/owner/name”

and “/product/name” are with different semantics. This will be one of our future

work.

3.3.1 Detecting The MisMatch Problem based on Target

Node Type

With the Target Node Type of a query result r being inferred, the detector

should figure out whether there is a mismatch between the TNT (see Defn. 3.5) of

r and the actual root of r, namely vlca.

Definition 3.6. Given a query Q = {k1, k2, ..., kn} and a query result r = (vlca, {m1,

m2, ...,mn}) on the XML data D, if vlca is not of the same node type as TNT (r),

the query result r misses the target. 2

For result r in Example 3.4, vlca.type = shop ̸=laptop = TNT (r), so we say r

misses the target. Now, we can formally define the MisMatch problem.

Definition 3.7. MisMatch Problem. Given a query Q and its results R re-

trieved from the keyword search engine, Q has the MisMatch problem if all r ∈ R

misses the target. 2

Here we choose to take a conservative approach: we only judge a query to have

the MisMatch problem when there is a mismatch for all possible search intentions.

Such a conclusion holds for all users with different intentions. E.g., for the result r

in Example 3.4, we inferred that it misses the target. In a similar way, we will also

51

calculate a TNT for each of the other results (if any). We will claim that the query

has the MisMatch problem only if all the results miss their corresponding target.

Moreover, users usually investigate the retrieved results starting from the top-

ranked ones. Therefore, without loss of generality, we can also easily extend Defn.

3.7 by considering the top-K retrieved results of Q.

Time Complexity of the detector is O(|R|), which is very efficient. As discussed

in Sec. 5.2.2 later, we store the type information of each node when building the

keyword inverted list. Thereby for each r∈R, TNT (r) can be computed in O(1)

time assuming the number of keywords in a query and the depth of the XML tree

are bounded by some constants.

3.4 Finding Explanations and Suggested Queries

As discussed in Section 3.3, the main feature of the MisMatch problem is: there

does not exist a single TNT node that subtree-contains all query keywords. So

the query keywords have to scatter in more than one TNT node and then lead

to a mismatch result. As a result, the root of the returned subtree is always an

ancestor of the TNT nodes which are expected by the user. Given a user query

Q={k1, k2, ..., kn} and a mismatch query result r=(vlca,{ m1,m2, ...,mn}), where

mi is a keyword match node for ki, the basic idea to find the explanations and some

promising suggested queries can be illustrated in three steps.

Step 1: Since each keyword match node mi in r may contain several keywords K in

Q, we first propose a tf*idf -inspired heuristic called distinguishability to score the

importance of such K.

Step 2: We then try to find the approximate query results, i.e. r′ = (v′lca,{m′
1,m

′
2, ...,m

′
n}),

which are some subtrees containing the ‘important’ keywords (derived by Step 1).

52

An ideal approximate result r′ should satisfy the following properties: (a) the node

type of r′ should be the same as TNT (r); (b) for each keyword match node mi in

original result r, there always exists a node m′
i that has the same node type as mi

(i ∈ [1, n]). By such properties, it can ensure at least the structure of r′ and r are

consistent with each other.

Step 3: Then, we can pinpoint which keyword(s) in the user’s query lead to the

mismatch results, i.e. the query keywords not contained by the approximate re-

sults. This is the explanation part. We can further infer the suggested queries by

replacing those keywords with the keywords associated with the aforementioned m′
i

(in approximate result) in step 2.

Step 1 is illustrated in Section 3.4.1, and the last two steps are described in

Section 3.4.2. Lastly, we complement our suggester by discussing how to rank the

suggested queries in Section 3.4.3.

3.4.1 Distinguishability

In this section, we will present a concept to measure the importance of query

keywords, namely distinguishability. We find that the importance of query keywords

is closely related to what type of nodes they match. E.g., in Figure 3.1, keyword

‘blue’ can match either a shop name name:0.0.1.0 or a laptop color color:0.0.0.4.3.

When it matches a shop name, most likely it is important since few shop names

contain the keyword ‘blue’; when it matches a laptop color, it may be less important

since many color nodes contain the keyword ‘blue’. Therefore, we propose the

concept of distinguishability.

Distinguishability D(K, t) represents the importance of the query keywords K

when K matches a node of type t, which also means this node of type t subtree-

contains each keyword in K. Large D(K, t) means K is important with respect to

53

t.

Recall Step 1 in Section 3.4, K actually represents the query keywords derived

from the keyword match node(s). To quantifyD(K, t), we propose a scoring measure

inspired by Term Frequency * Inverse Document Frequency (tf*idf) [83], which is

widely used in information retrieval.

For tf, we can simply count the keyword frequency in an XML node. In this

work we focus on data-centric XML documents, where each XML node does not

contain long text and in most cases keyword frequency is 1. The same problem is

also pointed out by [33], so we follow [33] and do not consider tf in the formula.

For idf, it tells that the keywords contained by fewer documents are more im-

portant. Similar to idf, we have Intuition 1 in the context of XML. Let ft be the

number of nodes of type t, and fK
t be the number of nodes which are of node type

t and subtree-contain each keyword in K.

Intuition 1. idf(K, t). If few nodes of type t contain keywords K, K should

be important with respect to the node type t. Formally, the smaller the fK
t is as

compared to ft, the larger the idf(K, t) should be.

As there are many variants of idf to follow Intuition 1, we define idf(K, t) =

1− fK
t

ft
. In this way, idf(K, t) is normalized in [0,1).

The tf*idf works by assuming there is only one type of (flat) document, but in

the context of XML data there is more than one type of node. The type of the

node alone may also contribute to the importance of the keywords that match the

node. Let us look at a motivating example first.

Example 3.6. Consider a keyword ‘price’ in Figure 3.1. It can match both an

owner node and all price nodes. When ‘price’ matches a price node, it may not

be important as there are many price nodes and all of them contain ‘price’. Ac-

cordingly, idf({‘price’},price)=0 because fK
t =ft. When it matches the owner node,

54

it should be important as there is one and only one owner across the whole XML

data. But since fK
t =ft=1, idf({‘price’},owner)=0 as well. As we can see, simply

by tf*idf, we cannot distinguish these two cases (idf is 0 for both cases). Because

the idea of tf*idf assumes there is only one type of node while we have nodes of

different types and we need to consider the weight of different node types. 2

So we have Intuition 2 to cater for the node type weight (ntw).

Intuition 2. ntw(t). The weight of a node type t is inversely proportional to ft

within the XML data.

Therefore, We define ntw(t) = 1
ft
. Finally, we can define D(K, t) to capture the

concept of distinguishability as:

D(K, t) = idf(K, t) + ntw(t) = 1− fK
t

ft
+

1

ft
(1 ≤ fK

t ≤ ft) (3.1)

It is easy to verify that the range of distinguishability is (0,1].

3.4.2 Two-phase Solution

In order to find the explanation and suggested queries, we first need to find some

‘important’ query keywords (in terms of distinguishability) from the result r of the

original query. So first of all, we need to set a threshold τ 2, say τ=90%. Those

keywords whose distinguishability is higher than τ are considered as ‘important’

and must be kept. Besides, we find that those ‘important’ keywords K are indeed

derived from the keyword match node(s) of r, thereby we may need to consider two

independent cases at the same time:

(1) K is derived from a single keyword match node of r;

(2) K is derived from multiple keyword match nodes of r, i.e., combing the keywords

2The choice of an appropriate τ will be discussed in the experimental study.

55

from multiple keyword match nodes could achieve high distinguishability.

Then the remaining task is to find the approximate results, each containing the

important keywords K, from which suggested queries are inferred.

Phase 1: based on single keyword match node

In Phase 1, we derive important keywords from a single keyword match node

and find the approximate results as follows:

Given a user query Q and a mismatch query result r=(vlca,{m1,m2, ...,mn}), each

keyword match node mi contains some keyword(s) Ki in Q. For each distinctmi, we

calculate the distinguishability D(Ki,mi.type). If it is larger than the threshold,

then we try to find a TNT node containing mi as an approximate result. Let

the path from vlca to mi be (vlca/p1/p2/.../pj/mi), where p1,p2,....,pj are the nodes

between vlca and mi. Then we proceed to traverse each node v′lca from p1 down to

mi (i.e. v
′
lca∈ {p1, p2, ..., pj,mi}), and verify whether the subtree rooted at v′lca can

form an approximate query result r′=(v′lca,{ m′
1,m

′
2, ...,m

′
n}) w.r.t. r.

Definition 3.8. Approximate Result. Given a query result r=(vlca,{m1,m2, ...,mn})

for a query Q, r′ = (v′lca, {m′
1, m

′
2, ...,m

′
n}) is an approximate result if r′ have the

following two properties:

• P1: v′lca.type = TNT (r)

• P2: m′
i.type = mi.type, for i ∈ [1, n].

P1 is to ensure v′lca of r′ should have the same node type as the TNT that

result r intends to match (but fail to do so). P2 is to ensure a consistency of the

internal structure of r and r′ in the way that, each node type appearing in the

keyword match node of r must also appear in those of r′. Intuitively speaking, the

56

node type of each keyword match node implicitly reflects the constraint that user

intends to specify for the desired query result. Therefore we need to keep all of

them in the approximate result. As an analogy, it is an implicit representation

of predicates specified in a structured query, whereas the difference is that in a

keyword query you have no way to specify constraint on the structural relationship

among keywords.

Since there can be many approximate results, a promising approximate result

should be with minimal changes to the original result while keeping those mi which

contains the important query keywords. That is why we need to calculate the

distinguishability for each mi. If mi contains important query keywords (in terms

of distinguishability), we will find the approximate result on the path from vlca to

mi, such that we can make sure mi will be kept within the approximate result.

We want mi to be the same node as m′
i if possible, as we want to make minimal

changes. In other words, only if mi is not in the subtree rooted at v′lca, it will be

replaced by a distinct node m′
i.

In this section we focus on how to find approximate results and suggested queries

first. How to rank them will be discussed in Section 3.4.3.

Suggested Query and Sample Query Result. After the approximate query

results are found, the explanation and suggested query can be inferred easily by the

following way: 1) for each different keyword match node mi which is not the same

node as m′
i, the query keyword(s) in mi is the reason for the mismatch results;

2) the suggested query can be generated by replacing the keywords in mi with

the associated value of m′
i, highlighted by an underline. Besides, the approximate

query result will be used as a sample query result for the corresponding suggested

query.

Next, we will use two running examples to illustrate how we find the suggested

57

queries and sample query result. The following two running examples correspond

to the queries in Example 3.4 and Example 3.5 respectively.

Example 3.7. For query Q ={‘Vaio’,‘W’,‘red’,‘price’} in Example 3.4, one query

result is r=(0.0.0, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.3.2, 0.0.0.4.5}), where there are only

three distinct keyword match nodes. So we calculate three distinguishability values

w.r.t. the query keywords in the three keyword match nodes: D({‘V aio’, ‘W ’},model)

= 100%, D({‘red’}, color) = 68.2%, D({‘price’}, price) = 0.5%.

Since D({‘Vaio’, ‘W’},model)>τ=90%, it is important and must be kept. Then

we check the path from shop:0.0.0 (vlca) to model:0.0.0.4.1 (mi), which is (shop:0.0.0/

laptop :0.0.0.4/model:0.0.0.4.1). In Example 3.4 we know TNT (r) = laptop, so

we check the subtree rooted at laptop:0.0.0.4. For each keyword match node mi in

the original result r, within the subtree rooted at 0.0.0.4, we can always find a node

m′
i with the same type. E.g. for the keyword match node 0.0.0.3.2 in r, we can find

node 0.0.0.4.2 with the same node type: (0.0.0.4.2).type = color = (0.0.0.3.2).type.

As a result, the set of m′ nodes is: {0.0.0.4.1, 0.0.0.4.1, 0.0.0.4.2, 0.0.0.4.5}.

Therefore, an approximate query result r′ is constructed:

r′ = (0.0.0.4, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.4.2, 0.0.0.4.5})

Compared to r, keyword match node color:0.0.0.3.2 is changed to color:0.0.0.4.2.

Node color:0.0.0.3.2 contains keyword ‘red’ and the content of color:0.0.0.4.2 is

‘white’. So the keyword ‘red’ in user’s query leads to the mismach results. The

suggested query can also be inferred as {‘Vaio’, ‘W’,‘white’, ‘price’} by changing

‘red’ to ‘white’, and r′ is its corresponding sample result. Similarly, we can also

find suggested queries by changing ‘red’ to ‘blue’ or ‘pink’. 2

Example 3.8. For query Q={‘Hewlett’,‘Packard’,‘Pavilion’,‘Omni’} in Example

58

3.5, where the user wants to search for a shop selling both the laptop model ‘Pavilion’

and ‘Omni’. However, there is no such shop which sells both of the laptop models.

One query result is a subtree rooted at an electronics node: r=(0.0,{0.0.0.3.0,

0.0.0.3.0, 0.0.0.3.1, 0.0.1.3.1}), where there are only three distinct keyword match

nodes. So we calculate three distinguishability values w.r.t. the query keywords

in the three keyword match nodes: D({‘Hewlett’, ‘Packard’}, brand) = 75.5%,

D({‘Pavilion’},model) = 100%, D({‘Omni’},model) = 100%.

Since both D({‘Pavilion’},model) and D({‘Omni’},model) are larger than the

threshold τ (90%), both of them are important. So we will check the follow-

ing two paths for finding approximate results: path from electronics:0.0 (vlca)

to model:0.0.0.3.1 (mi); path from electronics:0.0 (vlca) to model:0.0.1.3.1 (mi).

Here we will take the first path as an example to illustrate how to check the path,

which is (electronics:0.0/shop:0.0.0/laptop:0.0.0.3/model:0.0.0.3.1). In Example

3.5 we know TNT (r) = shop, so we check the subtree rooted at shop:0.0.0. For

each keyword match node mi in the original result r, within the subtree rooted

at 0.0.0, we can always find a node m′
i with the same type. E.g. for the key-

word match node 0.0.1.3.1 in r, we can find node 0.0.0.4.1 with the same node

type: (0.0.0.4.1).type = model = (0.0.1.3.1).type. Thus the set of m′ nodes is:

{0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.0.4.1}. Therefore, an approximate query result

r′ is constructed:

r′ = (0.0.0, {0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.1, 0.0.0.4.1})

Compared to r, keyword match nodemodel:0.0.1.3.1 is changed to model:0.0.0.4.1.

Node model:0.0.1.3.1 contains keyword ‘Omni’ and the content of model:0.0.0.4.1

is ‘Vaio W’. So the keyword ‘Omni’ in user’s query leads to the mismach results.

The suggested query can also be inferred as {‘Hewlett’,‘Packard’,‘Pavilion’,‘Vaio’,‘W’}

59

by changing ‘Omni’ to ‘Vaio W’. Because shops selling these two models are avail-

able. r′ is the corresponding sample result. 2

Note that, if we set the threshold τ to a very low value, say zero, which means

all keywords are with acceptably high distinguishability, then we will examine all

the TNT nodes containing at least one of the keyword match nodes. This can cover

all possibilities but of course more time will be consumed. We will show in the

experiment (Section 3.7) that most likely it is not necessary.

Phase 2: based on multiple keyword match nodes

When the important keywords are derived from multiple keyword match nodes

mi, i.e., combing the keywords from multiple keyword match nodes could achieve

high distinguishability, we need to compute the lowest common ancestor of thesemi,

denoted by v, in order to calculate distinguishability. This is the only difference

as compared to Phase 1. Let K be the query keywords subtree-contained by v.

Then the rest job is similar to Phase 1, where we calculate D(K, v.type) and if it

is acceptably high, we will check the path from vlca to v to find the approximate

result(s). Please refer to Algorithm 1 for details on our two-phase solution.

However, it requires 2n times of calculation to get all possible lowest common

ancestors of any subset of the n keyword match nodes. But we find Property 1 to

help fulfill it in linear time.

Property 1. Let M = {m1,m2, ...,mn} be the set of distinct keyword match nodes

for a query result (mi ̸= mj if i ̸= j), sorted by their Dewey labels. Then all possible

lowest common ancestors (LCA) for any subset S of M , where |S| ≥ 2, are in the

set

{lca(m1,m2), ..., lca(mi,mi+1), ..., lca(mn−1,mn)}.

60

Proof. (By Induction) Step 1: For n = 2, this property obviously holds. Step 2:

We assume that for n=k − 1, all LCAs of any subset of Mk−1={m1,m2,...,mk−1}

are in {lca(m1,m2), lca(m2,m3),...,lca(mk−2,mk−1)}. We will show that for a

set of k nodes Mk={m1,m2,...,mk−1,mk}, all possible LCAs are in the set L=

{lca(m1,m2),lca(m2,m3),..., lca(mk−1,mk)}. SupposeDewey(mk−1)=a1.a2...aj.aj+1...

andDewey(mk)=a1.a2 ...aj.a
′
j+1..., letm

′ = lca(mk−1,mk), thenDewey(m′)=a1.a2...aj.

As nodes are sorted by Dewey label, there does not exist another nodemi inMk such

that lca(mi,mk) is a descendant of m
′; otherwise, Dewey(mi) should be of the form

a1.a2...aj.a
′
j+1... and mi should appear between mk−1 and mk. So for any subset

containingmk, namely {m′
1,m

′
2, ...,mk}, their LCA must not be a descendant ofm′.

If the LCA node equals tom′, it is in L; if the LCA node is an ancestor ofm′, we can

get the following because finding LCA is equal to finding the longest common pre-

fix of Dewey labels of a set of nodes: lca({m′
1,m

′
2, ...,mk})=lca({m′

1,m
′
2, ...,m

′})=

lca({m′
1,m

′
2, ...,mk−1}), which is also in L according to the assumption. Besides,

for subsets not containing mk, their LCAs will also be in L according to the as-

sumption.

With Property 1, for a query that has MisMatch problem, we only need to

conduct at most n− 1 times of LCA computations to find all possible approximate

results. We will use Example 3.9 to illustrate how we infer suggested queries for

Phase 2.

Example 3.9. Suppose a user wants to find a laptop which is of brand Hewlett

Packard with purple color running windows vista. She may try to issue a query

Q={‘Hewlett’, ‘Packard’, ‘purple’, ‘windows’, ‘vista’} in Figure 3.1. One of the

query results is r=(0.0.0,{0.0.0.3.0, 0.0.0.3.0, 0.0.0.3.3, 0.0.0.4.6, 0.0.0.4.6}). By

Defn. 3.6 we know that TNT (r) = laptop but the result is a subtree rooted at a

shop node. Therefore it misses the target.

61

Suppose Hewlett Packard only has two models with purple color. The keywords

matching brand:0.0.0.3.0, color:0.0.0.3.3 and OS:0.0.0.4.6 are not of high distin-

guishability (90%) in Phase 1: D({‘Hewlett’,‘Packard’},brand)=75.5%; D({‘windows’,

‘vista’}, OS)=42.5%; D({‘purple’},color)= 80.7%. Now in phase 2, by Property 1,

all possible lowest common ancestors of the keyword match nodes are 0.0.0.3 and

0.0.0. Take 0.0.0.3 as an example, we will find that the keywords subtree-contained

by laptop:0.0.0.3 have high distinguishability:

D({‘Hewlett’, ‘Packard’, ‘purple’},laptop)=98.4%

Note that the above three keywords are actually from two keyword match nodes,

i.e., brand:0.0.0.3.0 and color:0.0.0.3.3.

Then similar to Phase 1, we will try to find an approximate query result along

the path from r’s vlca to laptop:0.0.0.3, i.e. (shop:0.0.0/laptop:0.0.0.3). Finally

we find the approximate result rooted at laptop:0.0.0.3 and get a suggested query by

changing keywords ‘windows vista’ to ‘windows 7’. 2

3.4.3 Ranking the Suggested Queries

After all suggested queries are generated, we build a preliminary ranking model

to judge the quality score of a suggested query with the following factors:

1. Number of keywords (in original query) that need to be changed, denoted as

cn. The larger cn is, the lower score should be.

2. Distance between the approximate query result root v′lca and original query

result root vlca, denoted as dt (dt is equal to the length difference of their

Dewey labels). The larger dt is, the higher score should be. Because a more

compact subtree is preferred.

3. Sum of distinguishability of the keywords that need to be changed, denoted

62

as
∑

D. The larger
∑

D is, the lower score should be. Because we prefer

not to replace keywords those are with high distinguishability.

To sum up the above ranking factors, we calculate the ranking score by taking

a product of them:

score =
1

ecn
× (1− 1

edt
)× 1

e
∑

D
(3.2)

3.4.4 Summary of Features of Our Approach

To summarize, our MisMatch detector and suggester have the following features.

First, it is portable: by capturing the LCA commonality among existing search

semantics in defining the format of query result (Defn. 3.4), our approach can

work with any LCA-based matching semantics (recall Section 3.2.2); since our

approach is a post-processing of the query evaluation, it is orthogonal to the result

retrieval method adopted. Second, it is result-driven: our approach accepts the

results of the original query as input, and recall Section 3.4.2 the suggester finds

the important keywords (to be kept in suggested queries) from each result, to

guarantee the empirical quality of suggestions. Third, it is lightweight : it occupies

a small proportion of the whole query evaluation time, as discussed in Section 3.5

later.

3.5 Efficient Approximate Results Detection

Recall Defn. 3.8, to check whether a TNT node is an approximate query result,

the core operation is to verify whether the two properties P1 and P2 hold. Check-

ing P1 is trivial, so we aim to achieve an efficient check of P2 by designing a novel

node labeling scheme and the corresponding logical operations.

63

3.5.1 Node Labeling

Since our suggester needs to frequently access the type of a node along the

way to finding suggested queries, we first collect all node types in XML data.

By simply scanning the XML file, we can get a schema tree which contains all

node types using DataGuide [29]. E.g., for the XML data in Figure 3.2, we can

construct a schema tree as shown in Figure 3.3(a), where each node in the schema

tree represents a unique node type. Note that each node in Figure 3.3 should be

a node type represented as a path (according to Defn. 5.2), but for simplicity we

use a tag name instead because there is no ambiguity.

Figure 3.2: An XML Tree with Nodes Labeled by exLabels

Figure 3.3: Schema Tree Flattening and Virtual Bitmap Construction

Then, we use a bitmap to denote all node types in the schema tree, where each

bit in the bitmap corresponds to a specific type. We purposefully decide which bit

corresponds to which type as follows:

• Flatten the schema tree level by level in a top-down manner. Suppose a node

n has k children, then n will be inserted into a place between its ⌊k
2
⌋th and

64

(⌊k
2
⌋ + 1)th children. As a result, n will maintain its position between its

neighbors and neighbors’ children. Figure 3.3(a), (b) and (c) show such a

process of flattening.

• Construct a virtual bitmap as shown in Figure 3.3(d). Each distinct node

type has a unique position number in bitmap. E.g., F’s position number is

3.

Such a bit-to-type mapping has a nice property: the bits of all node types that

appear in a specific subtree in XML will stay together. As we can see later, this

property helps ensure the label size as compact as possible.

For a node n in the XML tree, the subtree rooted at n may contain different

types of nodes. To indicate which node types appear in its subtree STn, we assign

n a label (a, b, bm), called exLabel. Here, a is the smallest position number (in the

bitmap) of the node type appearing within STn; similarly, b is the largest position

number of the node type appearing within STn. bm is a sub-sequence of the bitmap

(of the schema tree) from position a to b, indicating which type of nodes can be

found in the subtree rooted at n. In particular,

• bm[i]=1, if the node type at position a+i−1 in bitmap appears in the subtree

rooted at n;

• bm[i]=0, otherwise. (i∈[1,b-a+1])

Example 3.10. In Figure 3.2, for the subtree rooted at node B circled by the dotted

line, it contains nodes of types E, B and G. According to the bitmap in Figure

3.3(d), the position number is 1 for E, 2 for B and 4 for G. Among the four node

types ranging from position 1 to 4, bm of node B indicates which of those four node

types appear in B’s subtree STB. As a result, bm=1101 as the 3rd node type F

does not appear in STB, and B’s exLabel = (1,4,‘1101’). Note that the exLabel of

65

B is compact because the bits representing E, B and G are staying together, which

is the benefit from the aforementioned bit-to-type mapping. 2

3.5.2 Logical Operation

Similar to node labeling, for a query result r = (vlca, {m1, m2, ...,mn}), we

can intentionally construct an exLabel to represent its node type information even

though it is not a node at all. Let a′ (b′) be the smallest (largest) position number

of the node type for mi, and the label for the query result is denoted as (a′, b′, bm′).

Having a query result label (a′, b′, bm′) and a subtree root label (a, b, bm), we can

verify property P2 by examining the following containment relation: (a′, b′, bm′) ⊆

(a, b, bm).

This relationship holds only if a ≤ a′ ≤ b′ ≤ b and all bits that appear in bm′ also

appear in bm. This can be efficiently done by a logical AND operation on bm′ and

bm.

Example 3.11. In Figure 3.2, suppose a query result r = (vlca, {m1, m2}), where

m1.type = B, m2.type = G. Then the exLabel for r is (2,4,‘101’). If we want to

check whether an approximate query result exists in the subtree rooted at the left

node B in Figure 3.2, whose exLabel is (1,4,‘1101’), then we know the approximate

query result exists because (2,4,‘101’) ⊆ (1,4,‘1101’). 2

3.6 Algorithms

3.6.1 Data Processing and Index Construction

In the phase of XML document parsing, we collect all distinct node types and

generate a bitmap code for each node type as discussed in Section 3.5.1. For each

66

node n visited, we assign a Dewey label deweyID [93] to n; get the node type tn of

n; construct an exLabel for n. To speed up the query processing and refinement,

three indexes are built.

The first index is called replacement table, which is a B+ tree storing each node

with (t,deweyID) as its key. Such an index has the following property: by scanning

rightwards of the position (t,deweyID), we can find all the nodes of type t under the

subtree rooted at deweyID. Recall in Section 3.4.2, after we find an approximate

query result r′, we need to materialize the replacement nodes within r′ in order

to infer the suggested query. Since we know the type t of each replacement node

and the deweyID of the root node of r′, with replacement table, we can easily

materialize all such nodes by calling getReplacement (t,deweyID). The second

index is to maintain the exLabel and type info for each node.

To speed up the computation of distinguishability, particularly for parameter

fK
t in Formula 3.1, the third index called inverted index is built: For each combi-

nation of a distinct node type t and a distinct keyword k (in XML data), we build

an inverted list containing all nodes of type t where each node subtree-contains

keyword k. Those inverted lists are grouped by node type t. As a result, fK
t can

be computed by simply computing the intersection of the inverted lists for each

keyword in K under node type t [52]. Operation getDist(deweyID,K) returns the

distinguishability of a set of keywords K w.r.t. the type of the node with deweyID.

Here, we analyze the space complexity of the third index - inverted index. To

simplify our analysis, we assume the average degree of each node is d, average

level of the XML is L and average keyword frequency is F . For a traditional

inverted index, every keyword in the data will be counted once for representing

the corresponding node in inverted list. In our inverted index, every keyword

will be counted at most L times because every keyword appearing in a node is

67

also a keyword for all its ancestor nodes. Let’s say root, it is the ancestor of all

nodes below, so it subtree-contains all keywords. If keyword frequency is F , every

keyword will be counted 1/F times for the root level of the tree because the same

keywords will be counted as one for one node. And every keyword will be counted

1/(F/d) times for level 2 because keywords frequency for subtree rooted at level 2

will become F/d. Similarly, we can know a keyword will be counted at most the

following times:

d0

F
+

d1

F
+ ...+

dxlog
F
d y

F
+ 1 + 1 + ...+ 1︸ ︷︷ ︸

totally L terms

Note that when the keyword frequency becomes 1 at a certain level, all frequen-

cies of levels below it will be 1, which is expressed by the term dxlog
F
d y

F
.

Let the size of a traditional inverted index be size, average level be L. Then

for the worst case, where average keyword frequency is 1, the space complexity of

our index is O(L ∗ size).

3.6.2 Solving the MisMatch problem

The main procedure is presented in Algorithm 1, where the input is the query

Q and its retrieved results R. First it checks each result of Q (line 2) and calculates

its TNT (line 3). Once one of the results does not miss the target, which means

what the user wants is in the retrieved results, it will terminate the process (line

4). Otherwise, it constructs an exLabel for the query result (line 6) as discussed in

Section 3.5.2.

For Phase 1 (in Section 3.4.2), it checks each keyword match node nd of the

query result (line 8). If the distinguishability is larger than the threshold τ (line

9), the TNT node on the path from the vlca to this node will be checked in order to

find an approximate query result (line 10). Whether an approximate query result

68

Algorithm 1: MisMatchResolver(Q,R)
input : user query Q=keywords[m], Q’s results R
output : null if no MisMatch problem; suggestedQueries + one sample result n

for each Q′∈suggestedQueries otherwise
1 suggestedQueries ←∅;
2 foreach r ∈ R do
3 if r.vlca.type = getTNT (r) then
4 return null;

5 foreach r ∈ R do
6 rExlabel = constructExlabel(r);
7 {Phase 1}
8 foreach nd ∈ r.matchnodes do
9 if getDist(nd.dewey, nd.keywords)>τ then

10 foreach n ∈ nodes on the path from r.vlca to nd AND
n.type = getTNT (r) do

11 if contain(getExLabel(n.dewey), rExlabel) then
12 QuerySuggester(n, r, suggestedQueries);

13 {Phase 2}
14 sort(r.matchnodes);
15 for i = 1 to (r.matchnodes.length-1) do
16 Let v = getLCA(r.matchnodes[i], r.matchnodes[i+ 1]);
17 kwinside = getQueryKwsInside(r, v);
18 if getDist(v, kwinside)>τ then
19 foreach n ∈ nodes on the path from r.vlca to v AND

n.type = getTNT (r) do
20 if contain(getExLabel(n.dewey), rExlabel) then
21 QuerySuggester(n, r, suggestedQueries);

22 return suggestedQueries.sort();

exists can be easily checked by examining the containment relationship between

the exLabels (line 11), as described in Section 3.5.2. If an approximate query

result exists, the explanations and suggested queries will be inferred by calling

QuerySuggester() (line 12).

For Phase 2 (in Section 3.4.2), we sort the keyword match nodes (line 14) and

check the LCA node of every two adjacent keyword match nodes (line 16) according

to Property 1. Then we need to find which query keywords are subtree-contained

by this LCA node (line 17). Afterwards, we follow the same steps (line 18-21) as

Phase 1. Finally, it returns the suggested queries (line 22) sorted by the ranking

69

formula in Section 3.4.3, attached with one sample result for each suggested query.

Algorithm 2: QuerySuggester(v′lca, r, sugQueries)

input : the approximate result root v′lca, the query result being changed r and
the suggested queries sugQueries

output : new suggested queries + one sample result v′lca
1 i = 0;
2 foreach nd ∈ r.matchnodes do
3 if nd is not a descendant of v′lca then
4 replace[i++] = getReplacement(nd.type, v′lca.dewey);

5 foreach n1 ∈ replace[1],...,ni ∈ replace[i] do
6 sugQueries = sugQueries

∪
(r.matchnodes[1]→ n1,...,

r.matchnodes[i]→ ni);

Given the approximate result root and the original query result, Algorithm

2 presents how to infer the suggested queries. Keyword match nodes which are

not in the subtree rooted at v′lca will be replaced by nodes in v′lca that have the

same node type according to property P2 in Defn. 3.8 (line 2-4). For a keyword

match node that needs to be changed, there may be more than one replacement

node to replace it. Such nodes can be retrieved from index by calling the function

getReplacement() (line 4). Note that there might be more than one keyword match

node needed to be changed, so suggested queries will be inferred by considering all

possible cases (line 6).

Algorithm 3: contain(elx, ely)

input : exLabel elx and exLabel ely
output : a boolean indicating whether elx contains ely

1 if (elx.a 6 ely.a and ely.b 6 ela.b)==false then
2 return false;
3 bmTemp = subset of elx.bm from position ely.a to ely.b;
4 if (bmTemp & ely.bm)==ely.bm then
5 return true;
6 return false;

Algorithm 3 presents the function, contain(), to examine the containment re-

lationship between two exLabels, i.e., the first contains the second. As discussed

70

Table 3.1: 10 of the Sample Queries on IMDB
IMDB:90MB
Query suggested

queries
best-3 suggested queries (Format: explanation → suggested
options)

Q1 Gladiator Spanish 5 (language): Spanish → English / Japanese / French
Q2 Spielberg DiCaprio Action

movie
6 (genres): Action → Biography / Crime / Drama

Q3 Neo hacker phonebooth 3061 (keyword): phonebooth → computer / software / programmer
Q4 Joel Ethan 0 None
Q5 Italy Betty Fisher 12 (country): Italy → France / Canada / USA
Q6 Spielberg Schwarzenegger 58 (cast name): Schwarzenegger→ Meredith Brooks / Jim Con-

roy / Dean Spunt
Q7 Terminator 3 cast Sarah 19 (cast name): Sarah → Nick Stahl / Claire Danes / Kristanna

Loken
Q8 Panic Room 2001 11 (year): 2001 → 2002

(title): Panic Room → Promised Land / Nowhere Road
Q9 Ettore The Man movie 1189 (director name): Ettore → Ethan Coen / Salvatore Maira /

Massimo Sani
Q10 boy death ghost love 992 (keyword): love → orphanage / bully / bomb

in Section 3.5.2, one condition for the relationship to be held is that the range of

the second label should be contained by the first (line 1-2). After that, we need

to make sure every bit that appears in the second label also appears in the first.

Since the bitmap length of the two may not be the same, we shrink the first bitmap

as the same length as the second (line 3). Then bit checking can be done by only

doing a logical AND operation on two bitmaps (line 4). Finally, every element in

the second label’s vector should be less than or equal to the corresponding element

in the first label’s vector (line 5).

3.7 Experiments

We have conducted extensive experiments to verify the effectiveness, efficiency

and scalability of our approach. For expository convenience, we refer to our Mis-

Match Detector & Suggester as MisMatch D&S. We have also built an interactive

XML keyword search engine called XClear [104], where the MisMatch D&S is in-

corporated.

71

Figure 3.4: Schema Graph of IMDB Dataset

3.7.1 Experimental Settings

All experiments are conducted on a 2.83GHz Core 2 Quad machine with 3GB

RAM running 32-bit windows 7. All codes are implemented in Java. Berkeley DB

Java Edition [1] is used to store all indexes for our algorithms.

Data Set. Three real datasets are tested: (1)IMDB3 90MB, where around 200,000

movies of recent years are selected in our dataset. Each movie contains information

like title, rating, director, etc. (2) DBLP 520MB, which contains publications since

1990. (3) IEEE Publication 90MB from INEX4.

Query Set. Our query set contains 18 queries for each of the datasets, all of which

are collected from the real-world user log data of our system. 10 sample queries

for IMDB and their best-3 suggested queries (if any) are shown in Table 3.1. For

better understanding of the queries, the schema tree of the IMDB dataset is given

in Figure 3.4. Besides, 1000 random queries are generated for each dataset as well

(see Section 3.7.7), where the max (average) number of results is 2691 (169).

User Study Methodology and Ground Truth. For each dataset, we employ 15

assessors to pick up the queries with the MisMatch problem, and their judgements

are based on both the queries given and their respective results 5. We obtained the

3http://www.imdb.com/interfaces
4https://inex.mmci.uni-saarland.de/
5Since different users could have many different search intentions even for the same keyword

72

ground truth by judging a query to have the MisMatch problem if at least 8 of the

15 assessors agree on that. Eventually, 9 (10, 10) out of the 18 queries for IMDB

(DBLP, IEEE) have the MisMatch problem.

Keyword Search Method. Here we choose SLCA [99], which is one of the most

efficient ones so far. Since no SLCA-based search method proposed so far has

result ranking component, for the experiment we adopt the result ranking scheme

of XRank [31].

Table 3.2: Sensitivity of the MisMatch Detector
IMDB dataset DBLP dataset IEEE dataset

Precision 90% 91% 100%
Recall 100% 100% 100%

3.7.2 Frequency of the MisMatch Problem

We have done a survey among 15 participants. Each participant is required

to issue 30 queries in XClear [104], an XML keyword search engine, to find some

movies they are interested in the IMDB dataset. Each participant is asked to judge

whether her queries have the MisMatch problem according to the query results. The

same experiments are also conducted on DBLP and IEEE datasets. We find that,

averagely users suffered from such a problem for 27% of their queries.

3.7.3 Sensitivity of the MisMatch Detector

With the ground truth obtained from the human assessors, as discussed in

Section 3.7.1, we study the precision and recall of our MisMatch detector. Let A be

the set of queries that do have MisMatch problem. Let B be the set of queries that

query, we do not want to confine the search intentions to some pre-defined options. So we did
not show any pre-defined search intentions to users for reference or let them choose, which could
affect users’ decision.

73

our detector claims to have MisMatch problem. Then the precision=|A ∩ B|/|B|,

while recall=|A ∩B|/|A|. The result for queries on each dataset is shown in Table

3.2. We find:

(1) Our detector achieves a perfect recall, i.e. we do not miss any query that does

have MisMatch problem. This is because the detector checks all the results of Q

before deciding whether Q has MisMatch problem (by Definition 3.7).

(2) A non-perfect precision tells that we may accidentally identify some queries

without MisMatch problem as problematic. E.g. for Q4 ‘Joel Ethan’ in Table 3.1

issued on IMDB, no person in database has such a name. For such a query, it is

ambiguous that whether the user intends to find a movie related to two persons, or

to find a person with that name which does not exist. In this case, our approach

infers movie as the TNT, but some users may think it is to find one person but

with the name wrongly input. Note that in fact no existing approach can solve the

ambiguous query thoroughly [8].

3.7.4 Quality of the Suggested Queries

We first have a glance at how explanations and suggestions look like for real-

world queries in Table 3.1. For Q8, ‘Panic Room’ (‘2001’) is associated with

the node of type title (year), but no single movie contains all keywords. Natu-

rally, one suggestion is to find a movie with the same title but different year (e.g.

‘2001’→‘2002’), or to find a movie with the same year but different title (e.g. ‘Panic

Room’→‘Promised Land’). Note that we do not replace the keyword(s) directly,

instead we first replace the keyword match node, then derive the keywords as re-

placement. The term inside the parenthesis in Table 3.1 indicates the type of the

node in which the replacement is involved. The left hand side of the arrow is the

keyword(s) which lead to the mismatch problem (explanation part). Q3 has 3061

74

suggestions, because Q3 has a large number of results, and our suggester works by

checking each result to generate suggestions (if any).

Evaluation Method

We select the queries with the MisMatch problem for each dataset to conduct

a user study.

To conduct a fair evaluation, we are aware of two things. First, we invite both

experts and novices to participate the task of scoring the suggested query. For

DBLP and IEEE, we ask three CS research students and three undergraduates in

other faculties; for IMDB, we ask three movie fans and three non-fans. The partic-

ipants are shown the matching results of each query, the best-5 suggested queries

together with the corresponding sample query results. Second, the participants are

asked to score the quality of each suggested query by using the Cumulated Gain-

based evaluation (CG) metric [40] (from 0 to 5 points, 5 means best while 0 means

worst). In contrast to traditional metrics like precision and recall which adopt a

binary judgement (yes or no), CG is aware of the fact that all results are not of

equal relevance to user.

Evaluation of Overall Quality

The average scores for best-3 and best-5 suggestions are shown in Figure 3.5 6.

We can find for queries with the MisMatch problem, our approach is able to find

reasonable suggested queries for them, and subsequently it leads to more meaningful

results; the scores for best-3 suggestions are always higher than those of best-5,

which also shows the effect of our query ranking scheme.

Although our suggested queries can lead to better query results, some are still

6Here by default we adopt τ = 0.9. Experiment on effects of threshold setting is discussed in
Section 3.7.4.

75

 0

 1

 2

 3

 4

 5

Q1 Q2 Q3 Q5 Q6 Q7 Q8 Q9 Q10

best-3 suggested queries
best-5 suggested queries

(a) IMDB

 0

 1

 2

 3

 4

 5

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9 QD10

best-3 suggested queries
best-5 suggested queries

(b) DBLP

 0

 1

 2

 3

 4

 5

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10

best-3 suggested queries
best-5 suggested queries

(c) IEEE

Figure 3.5: Average Quality Measure of Suggested Queries

given low scores by some participants because new keywords and old keywords

are not semantically similar, such as the replacement for Q10 in Table 3.1. But

considering semantics is out of the scope of this chapter.

Most likely, the best-3 suggested queries will be viewed by the struggling users.

So in the rest of the chapter, when we talk about the quality of the suggested

queries, we mean the average score of the best-3 suggested queries.

Study of the query ranking scheme

We further study how the proposed ranking factors for ranking suggested query

affect the overall quality of suggested queries. The ranking factors include cn, dt

and
∑

D, as discussed in Section 3.4.3. The scores for the suggested queries of

each case are shown in Table 3.3. Please ignore the choice of τ for the time being.

76

By comparing the scores in a columnwise way, we find:

(1) The model taking all ranking factors always outperforms any models that miss

one of the three ranking factors.

(2) Without considering the distinguishability of the keywords to be replaced (i.e.,∑
D), the suggested query quality decreases more than the case without any of

the other two factors. It shows that distinguishability plays an important role.

Table 3.3: Suggestion Quality w.r.t. different τ and ranking factors
τ all ranking factors no cn no dt no

∑
D

IMDB

0.9 4.63 4.30 4.37 4.13
0.6 4.63 4.30 4.37 4.13
0.3 4.63 4.30 4.37 4.13
0.0 4.63 4.30 4.37 4.13

DBLP

0.9 4.71 4.39 4.39 4.13
0.6 4.71 4.36 4.42 4.18
0.3 4.71 4.36 4.42 4.18
0.0 4.71 4.36 4.42 4.18

IEEE

0.9 4.68 4.34 4.41 4.18
0.6 4.68 4.34 4.42 4.19
0.3 4.68 4.34 4.42 4.19
0.0 4.68 4.34 4.42 4.19

Study of distinguishability threshold

Impact of parameters on Effectiveness

Besides the query ranking scheme, recall Section 3.4.2, the choice of the distin-

guishability threshold τ will determine what ‘important’ keywords to keep in sug-

gestions, thereby may lead to different candidates for suggested queries Q′s, which

in turn may affect the overall quality of Q′s. Therefore, we adopt 4 choices of τ ,

from strong (0.9) to weak (0), as shown in Table 3.3.

By comparing the scores in a rowwise way, we can see that the best suggested

queries usually do not change even when we set a smaller threshold τ . It is because

77

we have already found the best suggested queries when we set a high τ like 0.9,

since preserving the keywords with high distinguishability is more reasonable as

discussed in Section 3.4. Later we will also study the impact of τ on the efficiency

of our approach in Section 3.7.7.

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q5 Q6 Q7 Q8 Q9 Q10

XRank
XClear

(a) IMDB (XRANK’s precision = 0)

 0

 0.2

 0.4

 0.6

 0.8

 1

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9QD10

XRank
XClear

(b) DBLP (XRANK’s precision = 0)

 0

 0.2

 0.4

 0.6

 0.8

 1

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9QE10

XRank
XClear

(c) IEEE (XRANK’s precision = 0)

Figure 3.6: Precision for Top-5 results of XClear vs. XRANK

3.7.5 Comparison to XRank

To further verify the importance of the MisMatch D&S, we compare our XClear

system that incorporates the MisMatch D&S with a well-known LCA-based search

engine XRank [31]. For queries with MisMatch problem, XRank may still return a

ranked list of query results while XClear returns a ranked list of suggested queries.

Therefore, for a fair comparison, we retrieve the results for each suggested query

produced by XClear, rank them using XRank’s result ranking scheme, and then

78

pick the top-5 results to compare with the top-5 results of XRank. A result is

regarded as relevant if 8 of the 15 assessors agree on that; otherwise it is regarded

as irrelevant. Figure 3.6 shows the precision of top-5 results of queries on our three

datasets, which is calculated as (number of relevant results in top-5 results)/5. We

find for queries with MisMatch problem, XRank cannot find any relevant result,

leading to a precision of zero. Because XRank is not aware of the fact that what

user searches for may not exist, but return the full matches as ‘perfect results’,

which are usually the whole XML data tree.

3.7.6 Sample Query Processing Time

For each query in Table 3.1, we run our algorithm 10 times and collect the

average processing time on hot cache, as shown in Figure 3.7(a). The query result

ranking time is too small to display. Moreover, we record the time used by the

MisMatch D&S part. We have three observations from Figure 3.7(a):

(1) The MisMatch D&S only takes a small portion of the whole query processing

time. On average, it is around 4% for our query set. For the queries on which

MisMatch D&S spends less than 1ms, it is too small to display in Figure 3.7(a).

Besides, on average the detector spends about 1/40 time of the suggester because

it only needs to check the node type of the results as discussed in Section 3.5.

(2) When more suggested queries are generated, the processing time of MisMatch

D&S is relatively longer. E.g., as we can see in Table 3.1, Q3 generates more

suggested queries than the other queries, so MisMatch D&S consumes more time.

(3) For the query that has no MisMatch problem, MisMatch D&S introduces a

negligibly small time as compared to the query evaluation time. Because it will

terminate once it finds a query result without the MisMatch problem. E.g. for

Q4 which intends to find the movie by two directors, since there exist such kind of

79

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

MisMatch D&S 0.369 0.594 3.541 0.78 0.534 1.081 0.501 0.403 2.468 1.576

Result Ranking 0.022 0.022 0.044 0.042 0.38 0.011 0.011 0.012 0.479 0.104

SLCA 4.498 7.519 5.277 162.236 149.886 12.923 2.155 2.614 208.047 34.018

0

50

100

150

200

T
im
e(
m
s)

(a) IMDB (MisMatch D&S = MisMatch Detector & Suggester)

Q
D1

Q
D2

Q
D3

Q
D4

Q
D5

Q
D6

Q
D7

Q
D8

Q
D9

Q
D10

MisMatch D&S 3.467 1.632 1.933 9.365 1.08 1.36 0.858 2.805 2.034 2.064

Result Ranking 0.288 0.027 0.03 0.106 0.02 0.02 0.024 0.639 0.052 0.1

SLCA 239.111 18.914 20.886 112.226 5.71 50.33 23.484 657.119 164 66.554

0
50

100
150
200
250
300
350
400
450
500
550
600
650

T
im
e(
m
s)

(b) DBLP

Q
E1

Q
E2

Q
E3

Q
E4

Q
E5

Q
E6

Q
E7

Q
E8

Q
E9

Q
E10

MisMatch D&S 1.073 1.32 1.416 1.538 1.119 0.609 0.793 0.472 1.115 0.76

Result Ranking 0.018 0.06 0.198 0.032 0.019 0.045 0.236 0.025 0.013 0.105

SLCA 3.356 5.89 75.905 13.293 7.204 12.923 118.255 6.657 5.4 43.039

0

50

100

T
im
e(
m
s)

(c) IEEE

Figure 3.7: Processing Time for some Sample Queries

80

movies, Q4 does not have the MisMatch problem, and our MisMatch D&S takes

only 0.05ms.

Figure 3.7(b) and 3.7(c) show the processing time for 10 (out of the total 18)

queries on DBLP and IEEE, where we can get similar observations.

90 MB 135 MB 180 MB 225 MB 270 MB

MisMatch D&S 1.20 1.89 2.52 3.11 3.76

Result Ranking 0.12 0.16 0.21 0.26 0.34

SLCA 47.73 70.66 98.72 119.19 154.06

0
20
40
60
80

100
120
140
160

T
im
e(
m
s)

Query Processing Time v.s. Data Size

(a) IMDB

520 MB 1040 MB

MisMatch D&S 1.64 3.21

Result Ranking 0.13 0.68

SLCA 130.01 448.88

0

100

200

300

400

T
im
e(
m
s)

Query Processing Time v.s. Data Size

(b) DBLP

Figure 3.8: Impact of Data Size.

3.7.7 Scalability Test

Recall that our detector checks all results of a query before concluding the

existence of the MisMatch problem, and for each query result, our suggester tries

to derive suggested query. Therefore, the processing time of the MisMatch D&S

should be dependent on the number of suggested queries found, which in turn

depends on

• the size of the XML data being queried, and

• the choice of the distinguishability threshold τ , and

• the number of results investigated by MisMatch D&S

Sample Queries

Firstly, we conduct our scalability test by studying the impact of increasing

81

data size on the MisMatch D&S. We run the queries on IMDB and DBLP with

different sizes. Figure 3.8 shows the average processing time of one query on the

datasets, where we have two observations.

(1) The processing time of the MisMatch D&S increases linearly w.r.t. the data size.

Because larger data size leads to possibly larger number of results, and our D&S

needs to check all results to decide the MisMatch existence and find suggestions

based on each result.

(2) As the query processing time increases w.r.t. the data size as well, the MisMatch

D&S only takes around 4% of the whole query processing time regardless of the

data size.

 600

 800

 1000

 1200

 1400

 1600

0.9 0.6 0.3 0

#
 o

f
S

u
g
g
es

te
d
 Q

u
er

ie
s

Threshold τ

MisMatch D&S

(a)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 600 800 1000 1200 1400

T
im

e(
m

s)

of Suggested Queries

MisMatch D&S

(b)

Figure 3.9: Impact of Distinguishability Threshold τ

Secondly, we study the impact of the distinguishability threshold τ on the pro-

cessing time of our MisMatch D&S. Figure 3.9 shows the average number of sug-

gested queries generated for one query w.r.t. different distinguishability threshold

τ and the corresponding processing time, where the choice of τ is same as that of

the query quality study (in Section 3.7.4). As we can see, more suggested queries

will be generated when τ is set to be smaller. Meanwhile, it will take longer to

process. Because when threshold τ is set lower, more keywords will be considered

as with acceptably high distinguishability, and we will check more TNT nodes and

82

therefore find out more suggested queries. As discussed in Section 3.7.4, most likely,

setting τ to 0.9 can find the same best suggested queries as setting τ to 0.6, 0.3

and even 0.0. So we set τ to 0.9 as a balance between efficiency and effectiveness.

To summarize, MisMatch D&S takes a very small portion of the keyword query

processing time, while can come up with some helpful suggested queries to users

for possible MisMatch problem.

Random Queries

Besides the real-world sample queries, we further study the performance of our

D&S over random queries. Keywords in IMDB dataset are randomly picked to

form queries of length 2∼5 and those with MisMatch problem will be kept. We

record the first 1000 of such queries and count the suggested queries output by

our D&S. The distribution of these queries with different ranges for the number

of suggestions is shown in Figure 3.10(a), from which we find most queries will

result in suggested queries no larger than 500. Similar to our findings on sample

queries, Figure 3.10(b) reports the linear relationship between the D&S time and

the number of suggested queries on random queries.

10%

20%

30%

40%

50%

60%

70%

[0,500)

[500,1000)

[1000,1500)

[1500,2000)

[2000,2500)

[2500,3000)

others

%
 o

f
R

an
d

o
m

 Q
u

er
ie

s

of Suggested Queries (range)

Random Queries

(a) Distribution

 1

 1.5

 2

 2.5

 3

 3.5

 4

[0,500)

[500,1000)

[1000,1500)

[1500,2000)

[2000,2500)

[2500,3000)

T
im

e(
m

s)

of Suggested Queries (range)

MisMatch D&S

(b) D&S Time

Figure 3.10: Scalability Test of Random Queries

83

3.8 XClear Demo System

Addressing the MisMatch problem, We have built an interactive XML keyword

search engine called XClear [104]. It can detect the MisMatch problem and show

users why the MisMatch problem exists, as well as provide result-driven suggested

queries to bridge the mismatch gap.

Figure 3.11 shows a screenshot of XClear for a query Q=‘Inception Spanish’ in

order to find the Spanish version of a movie Inception. On the left hand side it

shows the query results returned by a widely adopted matching semantics SLCA

[99]. As we can see from the results, there is no movie Inception with language

Spanish. Therefore, help is needed for the user.

 showing 1-5 of 600 results:

1. Answer Root: <imdb>

2. Answer Root: <imdb>

......

 (SLCA+Ranking 0.208 seconds, MM component 0.01 seconds)

What you search for may not exist. Did you mean:

Sample Query Result:

Suggested Query: Inception English
(more

queries)
(why)

qu
(

Inception Japanese

Inception French

Pulp Fiction Spanish

The Godfather II Spanish

Raiders of Lost Ark Spanish Inception Chinese

(more

queries)

Other alternative suggested queries:

Figure 3.11: Suggested Queries & Sample Query Result

Addressing such a problem, as shown in the right part of Figure 3.11: (1)

XClear gives a notification “What you search for may not exist” to the user. This

is a crucial part to form a complete solution to the MisMatch problem. Because

without the notification, users have to struggle with reading throughout the results

until realizing what they search for may not exist. (2) It provides the best suggested

query and its sample result. (3) A “why” button (next to the suggested query) is

provided for users to get further reasoning on why we generate this suggested query.

84

Please refer to Appendix A for more details of the XClear system.

3.9 Conclusion

In this chapter, we first identified and defined the MisMatch problem, in which

what users intend to search for does not exist in the XML data. In such a case,

existing keyword search methods will still return a list erroneous mismatch results.

All existing keyword search methods for XML tree are LCA-based, which try to

find some subtrees containing all the query keywords as query results, regardless of

users’ search intention. We proposed a low-cost post-processing algorithm on the

results of query evaluation to detect the MisMatch problem and generate helpful

suggestions to users. The detection is done by inferring users’ possible search

target, called Target Node Type, based on each query result. We choose to take

a conservative approach: we only judge a query to have the MisMatch problem

if none of the query results matches its corresponding Target Node Type. Such

a conclusion holds for all users with different intentions. Our detection method

can also be easily extended to detect whether a query has MisMatch problem for

a particular search intention: we can first classify the query results by different

TNT; For the results of a particular TNT, if all of them miss the target, then we

can judge the query has MisMatch problem for that particular search intention.

After detection, if the query is without the MisMatch problem, the original

results will be returned without any suggestion. Otherwise, query suggestion will

be generated for the queries with MisMatch problem. First, it will measure the

importance of the query keywords according to a newly defined measure inspired by

Term Frequency * Inverse Document Frequency (tf*idf), called distinguishability.

Second, approximate results containing the important keywords will be discovered

85

in the XML data. Third, to form the suggested queries, new keywords will be found

within the approximate results to replace the less important keywords in the original

query. Both of these keywords are required to be from the same type of nodes in

order to make sure the semantics of the keywords are the same. Finally, a score

function is proposed to rank the suggested queries taking the following three factors

into consideration: the number of keywords which need to be replaced, the sum of

distinguishability of the keywords that need to be replaced and the compactness

of the approximate result. To discover the approximate results efficiently, a novel

bitmap labeling scheme is also proposed. The empirical study on three real datasets

in experiments demonstrates the effectiveness and efficiency of our approach. It

evaluates the detection accuracy and suggestion quality, as well as the efficiency

and scalability.

Our approach has four main features: (1) both detector and suggester are result-

driven; (2) it adopts explanations, suggested queries and their sample results as

the output to users, helping users judge whether the MisMatch problem is solved

without reading all query results; (3) it is portable as it can work with any LCA-

based matching semantics and orthogonal to the choice of result retrieval method;

(4) it is lightweight as it occupies a very small proportion of the whole query

evaluation time.

86

CHAPTER 4

MISMATCH PROBLEM IN KEYWORD

SEARCH OVER XML WITH ID

REFERENCES

4.1 Introduction

In Chapter 3 we have discussed the solution to the MisMatch problem for key-

word search over XML tree, where ID references are not considered. When we

consider the ID references in the XML, an XML document will be modeled as a

digraph rather than a tree, which we called XML IDREF digraph.

In this chapter, we are trying to extend our solution for XML tree model onto

XML IDREF digraph with ID references considered. We propose a novel method

to transform an XML IDREF digraph to a tree model such that we can exploit

existing XML tree search methods. Our solution can outperform the traditional

87

XML IDREF digraph search methods by orders of magnitude in efficiency while

generating a similar set of results as existing XML IDREF digraph search methods.

What is more, in such a way, our proposed mismatch solution dedicated for XML

tree in Chapter 3 can be applied to XML IDREF digraph.

For keyword search over XML IDREF digraph, it poses new challenges for

solving the MisMatch problem. Because the matching semantics and keyword

search methods for XML IDREF digraph are different from those for XML tree. In

order to solve the MisMatch problem in XML IDREF digraph, we will first compare

the difference between keyword search over XML IDREF digraph and XML tree.

XML documents usually contain some ID nodes and IDREF nodes to represent

reference relationships among the data. For example, Figure 4.1 shows an XML

document about a company with project, part and supplier. Each node is assigned a

unique Dewey label [93]. Every part used by each project has a reference indicating

its supplier. An XML document with ID/IDREF is usually modeled as a digraph,

where the keyword query results are usually computed by graph traversal [37, 26,

44, 35]. Then the problem is reduced to the problem of finding Minimal Steiner

Tree (MST) or its variants in a digraph, where an MST is defined as a minimal

subtree containing all query keywords in either its leaves or root. Since this problem

is NP-complete [28], a lot of works are interested in finding the “best” answers of

all possible MSTs, i.e. finding top-K results according to some criteria, like subtree

size, etc. However, the matching semantics, i.e. MST, is also defined without

considering users’ search intention. Therefore, mismatch results are still possible

to be returned by existing methods in keyword search over XML IDREF digraph.

As a comparison, if we do not consider ID/IDREF, an XML document can be

modeled as a tree. Keyword search on an XML tree can be much more efficient

based on the tree structure. The results are defined as minimal subtrees containing

88

project
0.0

company
0

supplier
0.12

sid
0.12.0

name
0.12.1

s001 Alps

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

supplier
Ref

0.0.1.3

name
0.0.0

sunfire

part
0.0.2

name
0.0.2.0

p2

quantity
0.0.2.1

50

price
0.0.2.2

100

supplier
Ref

0.0.2.3

...

...

phone
0.12.2

62358

...

containment edge

reference edge

Figure 4.1: An Example XML Document (with Dewey Labels)

all query keywords, which is actually a variant of MST adapted to XML tree.

Because in a tree, finding an MST for a set of nodes reduces to finding the lowest

common ancestor (LCA) of that set of nodes, which can be efficiently addressed

by node label computation. For example, if we do not consider the ID/IDREF in

Figure 4.1, given a query Q=“p1 price”, a node labeled 0.0.1.0 matches keyword

“p1” and another node labeled 0.0.1.2 matches keyword “price”, then the MST

connecting these two nodes is actually the subtree rooted at their lowest common

ancestor (LCA), i.e. node 0.0.1. Calculating the LCA simply requires calculating

the common label prefix of those two nodes, i.e. 0.0.1 is the prefix of 0.0.1.0 and

0.0.1.2. It is very efficient and does not need any graph traversal.

There are abundant efficient XML tree search methods available, which effi-

ciently calculate the query results based on node labels rather than graph traver-

sal. They build inverted lists of query keywords, in the form of (keyword :

dewey1, dewey2, dewey3, ...), where deweyi represents the label of a node containing

the keyword. More over, we have already proposed a solution for the MisMatch

problem for keyword search over XML tree in Chapter 3, which makes use of the

concept of Target Node Type and Distinguishability.

We observe that, an XML IDREF digraph is indeed a tree with a portion of

reference edges. Such an observation offers a great opportunity to solve the Mis-

89

Match problem in keyword search over XML IDREF digraph, as well as speeding

up the processing the keyword query on XML IDREF digraph. In this chapter, in-

stead of adopting traditional graph search methods, we propose a novel approach to

transform an XML IDREF digraph to a tree model, such that we can exploit XML

tree search methods to evaluate keyword queries on XML IDREF digraph. Then

our solution to the MisMatch problem in XML tree still applies to XML IDREF

digraph. Meanwhile, such a method can also accelerate the query evaluation for

keyword search over XML IDREF digraph. The rest of the chapter is organized

as follows. Preliminaries are in Section 4.2. We discuss how to transform an XML

IDREF digraph to a tree model for efficient query evaluation in Section 4.3 and

how it works on complex reference patterns in Section 4.4. Further extension of our

approach is in Section 4.5. Solving the MisMatch problem in XML IDREF digraph

is discussed in Section 4.6. The algorithm is presented in Section 4.7. Experiments

are in Section 4.8 and we conclude in Section 4.9.

4.2 Preliminaries

4.2.1 Semantics and Data Model

Similar to most of the existing works in XML keyword search, we assume that

there is no outer semantics provided. In other words, we assume that we only have

the XML document itself with the accompanied schema specification, like DTD or

XML Schema. The following information from DTD or XML Schema will be used

in our solution: 1) which attributes in the XML document are the ID attributes

or IDREF attributes (to identify ID reference links); 2) the number of possible oc-

currences of a sub-element/attribute appearing under a parent node (to be used in

our MisMatch solution). Outer semantics, such as ER model [20], ORA-SS model

90

[27, 63], can help identify in the XML data that which nodes represent objects,

object attributes, relationships, relationship attributes, etc. Such information is

not conveyed in an XML document or its accompanied schema specification. In-

stead, it only stores data as a nested tree structure with some special reference

attributes being able to point from one node to another. Therefore, we model an

XML document with ID references as a digraph, where each node of the graph cor-

responds to an element of the XML data, with a tag name and (optionally) some

value. Each containment relationship between a parent node a and a child node b

in the XML data corresponds to a containment edge in the digraph, represented

as a → b. Each ID/IDREF reference in the XML data corresponds to a reference

edge in the digraph, represented as a 99K b, where a is the IDREF node and b is

the ID node. Thus an XML IDREF digraph is denoted as G = (V,E,R), where V

is a set of nodes, E is a set of containment edges and R is a set of reference edges.

We use Tn to denote the query result rooted at node n. A node n is usually

represented by its label or tag:label, where tag is the tag name of n. To accelerate

the keyword query processing on XML tree model, existing works adopt the dewey

labeling scheme [93], as shown in Figure 4.1.

4.2.2 Reference Types

If the reference edges are not considered, an XML IDREF digraph will reduce to

an XML tree. There are three types of reference edges in an XML IDREF digraph:

basic references (as mentioned in our data model), sequential references and cyclic

references. When an object a references an object b, while b also references a third

object c, sequential references occur. Cyclic references happen when containment

edges and reference edges form a cycle in an XML IDREF digraph.

Example 4.1. Figure 4.4(a) shows an example of sequential references: one part

91

has a reference to one supplier, which in turn has a reference to an employee as her

manager. The references among part, supplier and employee form the sequential

references. Figure 4.5(a) shows an XML IDREF digraph with cyclic references: a

book has some references to its authors, while each author has some recommend

references to some books. If an author recommends its own book, a cycle is formed.

2

4.3 Transforming Query Processing over XML

IDREF Digraph to XML Tree for Basic Ref-

erences

In order to fully exploit the power of tree search methods over the XML digraph,

we realize two challenges to tackle: (1) how to transform an XML IDREF digraph

to a proper tree model, which can work with different reference patterns; (2) how to

apply existing tree search techniques onto such a tree model. We start addressing

these challenges by focusing on the case of basic references first, then discuss how

the proposed solution can handle sequential and cyclic cases in Section 4.4.

4.3.1 Naive Approach: Real Replication

As shown in Figure 4.1, every IDREF node in an XML IDREF digraph points to

a particular object with a unique ID value. An object is in the form of a subtree.

Therefore, a straightforward yet naive transformation is to just to make a real

replication of all such subtrees being referenced. For every reference edge a 99K b

in the XML IDREF digraph, we make a replication of the subtree Tb rooted at

b and put it under a. Figure 4.2 shows a transformed XML tree based on the

92

XML IDREF digraph in Figure 4.1, where the subtrees in dotted circles are the

replication of the subtree T0.12.

The transformed XML tree is identical to the original XML IDREF digraph in

the sense that they can infer each other. As a result, any existing keyword search

method designed for XML tree can be applied on it. They can now find the query

results which previously can only be found by graph search methods.

Example 4.2. Suppose a user wants to find the parts provided by supplier Alps by

issuing Q=“Alps part” on the XML IDREF digraph in Figure 4.1. There are a lot

of possible MSTs connecting the keywords, and two of them are as below:

(1) an MST rooted at part:0.0.1, i.e. 0.0.1→0.0.1.399K0.12→0.12.1;

(2) an MST rooted at part:0.0.2, i.e. 0.0.2→0.0.2.3 99K0.12→0.12.1;

According to our real replication method, we will transform the XML IDREF di-

graph to a tree by replication, which is shown in Figure 4.2. Then we can apply

an XML tree search method, say ELCA [100], to the transformed tree. ELCA will

first get the following inverted lists of dewey labels for each query keyword:

(1) “Alps”: 0.0.1.3.1, 0.0.2.3.1, 0.12.1

(2) “part”: 0.0.1, 0.0.2, ...

Then it will scan the inverted lists and compute the following results: (1) the

subtree Tpart:0.0.1, which is the LCA computed from node 0.0.1.3.1 and node 0.0.1;

(2) the subtree Tpart:0.0.2, which is computed from node 0.0.2.3.1 and 0.0.2. They

are the same as the two sample results found in the XML IDREF digraph. 2

However, even though the real replication approach can work well for the case

of basic references, it is not usable in practice because:

• The number of nodes will increase due to the replication of subtrees. We will

show in Section 4.4 that, in the worse case, the number of nodes will increase

93

project
0.0

company
0

supplier
0.12

sid
0.12.0

name
0.12.1

s001 Alps

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

supplier
Ref

0.0.1.3

name
0.0.0

sunfire

part
0.0.2

name
0.0.2.0

p2

quantity
0.0.2.1

50

price
0.0.2.2

100

supplier
Ref

0.0.2.3

...

...

phone
0.12.2

62358

...

sid
0.0.1.3.0

name
0.0.1.3.1

s001 Alps

phone
0.0.1.3.2

62358

sid
0.0.2.3.0

name
0.0.2.3.1

s001 Alps

phone
0.0.2.3.2

62358

Figure 4.2: Naive Method: Real Replication

exponentially for the case of sequential references and cyclic references. The

space cost is unacceptable in practice.

• Some duplicate results may be generated (as shown in Example 4.3).

Example 4.3. If we issue a query Q=“Alps phone” to find the phone number of

supplier Alps in Figure 4.1, the real replication method will get the transformed

XML tree in Figure 4.2 and do the keyword search on it. By ELCA search method,

we get three results: Tsupplier:0.12, TsupplierRef :0.0.1.3 and TsupplierRef :0.0.2.3 respectively.

The last two results, which are the same as the first one, are actually redundant.

Because they are found within the replicated subtrees, while the same results should

have already been found in the original subtree. 2

4.3.2 Our Approach: Virtual Replication

As discussed in the previous section, real replication is not usable in practice.

From Example 4.3 we observe that, a result is redundant if it is found within the

replicated subtrees, because it must have been found in the original subtree as well.

Thus, a result is non-redundant only if the root of the result is not within any

94

replicated subtree. Based on this observation, we find that the cost of replicating

the subtrees is not necessary because we do not need to search within any replicated

subtree.

Instead, we propose to use a special node, i.e. the IDREF node, to virtually

represent the whole replicated subtree (without inducing any new node), which is

able to find the same set of non-redundant results as the real replication method.

This is what we call virtual replication. For instance, Figure 4.3(a) shows the

idea of using one node to represent the whole replicated subtree. As compared to

Figure 4.2 of real replication, here we use node supplierRef:0.0.1.3 in Figure 4.3(a)

to represent the whole replicated subtree under it.

project
0.0

company
0

supplier
0.12

sid
0.12.0

name
0.12.1

s001 Alps

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

supplier
Ref

0.0.1.3

name
0.0.0

sunfire

part
0.0.2

name
0.0.2.0

p2

quantity
0.0.2.1

50

price
0.0.2.2

100

supplier
Ref

0.0.2.3

...

...

phone
0.12.2

62358

...

represent the same
subtree rooted at

0.12

represent the same
subtree rooted at

0.12

(a) Part 1: XML tree (b) Part 2:
Reachability Table

Figure 4.3: Advanced Method: Virtual Replication (Two Parts)

Example 4.4. Recall the query Q=“Alps part” in Example 4.2, the real replica-

tion method gets the following non-redundant results in Figure 4.2: Tpart:0.0.1 and

Tpart:0.0.2 These two results are non-redundant because their roots, part:0.0.1 and

part:0.0.2, are not within any replicated subtree.

Now by virtual replication, keyword “Alps” will no longer match the node 0.0.1.3.1

and 0.0.2.3.1 in Figure 4.2. Instead, it will match two IDREF nodes 0.0.1.3 and

node 0.0.2.3 in Figure 4.3(a), because we use these two IDREF nodes to represent

95

the whole replicated subtrees. But the final results are still the same: (1) Tpart:0.0.1,

which is computed from node 0.0.1.3 (matching keyword “Alps”) and node 0.0.1

(matching keyword “part”) in Figure 4.3(a); (2) Tpart:0.0.2, which is computed from

node 0.0.2.3 (matching keyword “Alps”) and 0.0.2 (matching keyword “part”). 2

In this manner, we do not induce any new node while it is able to get the same

set of non-redundant results as the real replication method.

In other words, Virtual Replication will find the same set of non-redundant

results as Real Replication. Following is the proof.

Proof. (a ≺ b denotes that node a is an ancestor of b. a ≼ b denotes that a ≺ b or

a = b.) Step 1: to prove that every non-redundant result found by real replication

can also be found by the virtual replication. Let any non-redundant result found

by the real replication be Tr, which is a subtree rooted at node r. It should be

an LCA of a set of nodes Mreal = {n1, n2, ..., nk, n̂1, , n̂2, ..., n̂l} matching the query

keywords, where n̂j is a match node appearing in a replicated subtree and ni is

a match node not in any replicated subtree. Each match node corresponds to a

keyword in the query. The LCA relationship can be represented as two properties:

¬ r ≼ ni(1 ≤ i ≤ k), r ≼ n̂j(1 ≤ j ≤ l); @r′ ≺ r s.t. r′ ≼ ni(1 ≤ i ≤ k) and

r′ ≼ n̂j(1 ≤ j ≤ l). In the virtual replication method, suppose we use an IDREF

node N̂j to represent the replicated subtree which n̂j is in, we have ® N̂j ≼ n̂j.

Then we can prove that the same result Tr can also be calculated based on the

following set of match nodes Mvirtual = {n1, n2, ..., nk, N̂1, , N̂2, ..., N̂l}. Formally,

we need to prove r is the LCA of Mvirtual. Since Tr is a non-redundant result, we

have ¯ r ≺ N̂j(1 ≤ j ≤ l). So from ¬ and ¯, we have ° r ≼ ni(1 ≤ i ≤ k),

r ≼ N̂j(1 ≤ j ≤ l). Next we need to prove ± @r′ ≺ r s.t. r′ ≼ ni(1 ≤ i ≤ k) and

r′ ≼ N̂j(1 ≤ j ≤ l) by contradiction. If ± is not true, with ® we can infer that

∃r′ ≺ r s.t. r′ ≼ ni(1 ≤ i ≤ k) and r′ ≼ N̂j ≼ n̂j(1 ≤ j ≤ l), which contradicts with

96

. So with ° and ± being true, r is the LCA of Mvirtual as well. Step 1 is finished.

Step 2: to prove that every non-redundant result found by virtual replication can

also be found by real replication. The proof is similar to step 1, which is omitted

here due to space limitation. 2

In order to know which IDREF node represents which subtree, we need a data

structure to keep track of the information that which subtree will be replicated

under which IDREF node. For such a purpose, we maintain a table called reach-

ability table, as shown in Figure 4.3(b). The table is based on a concept called

reachable.

Definition 4.1. Reachable. Given an IDREF node n, if there is a directed path

from n to a node m in the XML IDREF digraph, where the last edge of the path is

an reference edge, then we say m is a reachable ID node of n.

Example 4.5. Given the XML IDREF digraph in Figure 4.1, we can find that

from the IDREF node 0.0.1.3, there is a directed path from it to node 0.12, where

the path ends with a reference edge. So node 0.12 is a reachable ID node for node

0.0.1.3. Similarly, node 0.12 is a reachable ID node for node 0.0.2.3. 2

For every pair of (IDREF node, reachable ID node), we store it as a tuple into

a table called reachability table, indexed by the attribute “reachable ID node”.

Every pair of (IDREF node, reachable ID node) means the subtree rooted at the

reachable ID node will be replicated under the IDREF node. E.g., the reachability

table inferred from the XML IDREF digraph in Figure 4.1 is shown in Figure

4.3(b). The reachability table can be computed offline by a breadth-first search

based on each node and the algorithm is presented in Section 4.7.

97

4.3.3 Query Evaluation

So far we have completed the transformation from an XML IDREF digraph

to an advanced tree model. Given an XML IDREF digraph G = (V,E,R), we

transform G to a novel tree model consisting of two parts:

1. An XML tree GT = (V,E, ∅), which is exactly the same as G with all the

reference edges dropped.

2. A reachability table table, which maintains the information of which subtree

will be virtually replicated under which IDREF node.

Now, we will present how to make an efficient keyword query evaluation based on

our transformed tree model.

As discussed in Section 4.1, existing keyword search methods on XML tree do

not traverse the tree to search query results. Instead, they compute results based

on nodes’ labels, e.g., the dewey label. Such labels are stored in an inverted list

index in form of keyword : dewey1, dewey2, dewey3, ..., where deweyi represents a

node containing the keyword. Any LCA-based keyword search method for XML

tree will build such an index. Given a keyword query Q = {k1, k2, ..., kn}, they will

retrieve an inverted list for each keyword ki, and then compute the results based

on the inverted lists.

Similarly, after we transform an XML IDREF digraph to tree model in virtual

replication, we will also build such an inverted list index. Our tree model consists

of an XML tree and a reachability table. The inverted list index will be built on

the XML tree, while later the reachability table will help to expand the inverted

lists to handle ID/IDREF.

With the index ready, we exploit the existing XML tree keyword search methods

and evaluate a keyword query on our tree model in three steps:

98

1. Retrieve the inverted lists for each keyword in a query.

2. Expand the inverted lists retrieved in step 1.

3. Apply an existing XML tree keyword search method to the expanded inverted

lists.

Step 1. Given a query Q = “k1k2...kn”, one inverted list will be retrieved from

the index for each keyword. E.g., given a query Q=“Alps part”, based on our tree

model in Figure 4.3, we will first retrieve the inverted lists as follows:

“Alps” : 0.12.1

“part” : 0.0.1, 0.0.2, ...

Take note that the keyword “Alps” only matches one node, i.e. 0.12.1, because

the inverted list is built on the XML tree in Figure 4.3(a). So in this step, we only

find out the nodes in the XML tree matching the keywords before replication.

Step 2. With the help of the reachability table, we will try to find out whether

there is any node in the replicated subtree matching the keywords as well. We can

do it in the following way: for each dewey label retrieved in step 1, we check each of

its ancestors to see whether the ancestor appears in the reachable ID node column

of the reachability table. If yes, we add the corresponding IDREF nodes to the

inverted list.

E.g., for the dewey label 0.12.1 retrieved in step 1 in the above example, 0.12.1

has two ancestor (prefix): 0.12 and 0. We can find that its ancestor 0.12 appears in

the Reachable ID node column of the reachability table in Figure 4.3(b). This means

the subtree T0.12 is reachable by some IDREF nodes and it should be replicated

under those IDREF nodes. So the keyword should match those IDREF nodes as

well. Then we add the corresponding IDREF nodes to the inverted list. But its

ancestor 0 does not appear in the Reachable ID node column. After that, the

99

expanded inverted list will be:

“Alps” : 0.0.1.3, 0.0.2.3, 0.12.1

After we do the same thing to the “part” inverted list, it will become:

“part” : 0.0.1, 0.0.2, ...

The reachability table is organized in a B+ tree and indexed by the column

Reachable ID node. So given the dewey label of a reachable ID node, the corre-

sponding IDREF nodes can be retrieved efficiently.

Step 3. After step 2, the final inverted lists are ready. Now we can apply any

existing keyword search methods designed for XML tree, like SLCA, ELCA, etc.,

as all of them operate on the inverted lists for result computation.

4.4 Sequential References and Cyclic References

Section 4.3 presents our solution on transformation and query evaluation for

basic references case which does not involve sequential and cyclic references. In

this section we would like to discuss how they are capable of handling the cases of

sequential references and cyclic references as well.

project
0.0

company
0

supplier
0.12

sid
0.12.0

name
0.12.1

s001

part
0.0.1

name
0.0.1.0

p1

quantity
0.0.1.1

100

price
0.0.1.2

200

name
0.0.0

sunfire
0.0.0.0

...

...

Manager
Ref

0.12.2

...

supplierRef
0.0.1.3

employee
0.88

eid
0.88.0

age
0.88.1

e009 34Alps

(a) XML IDREF Digraph with Sequential References (b) Its Reachability
Table

Figure 4.4: Constructing Reachability Table for Sequential References

100

4.4.1 Sequential References

In this case, e.g. in Figure 4.4(a), to make a complete replication, the subtree

rooted at employee:0.88 should be replicated not only under managerRef:0.12.2,

but also supplierRef:0.0.1.3. Therefore, if we adopt the real replication approach in

Section 4.3.1, the number of nodes may increase exponentially in terms of the num-

ber of levels of sequential references, as one subtree could have multiple references

to some other subtrees.

For the virtual replication in Section 4.3.2, we do not need to induce any new

nodes into the XML IDREF digraph. For the XML IDREF digraph in Figure 4.4(a),

according to Definition 4.1, we just construct a reachability table as shown in Figure

4.4(b). E.g., there is a directed path from supplier:0.0.1.3 to employee:0.88, where

the path ends with a reference edge. So node 0.88 is a reachable ID node for node

0.0.1.3.

4.4.2 Cyclic References

In the case of cyclic references, our reachability concept in Definition 4.1 is

still able to handle it. E.g., in Figure 4.5(a), there is a directed path from node

authorRef:0.0.3 to node author:0.12, where the path ends with a reference edge.

So node 0.12 is a reachable ID node for node 0.0.3. There is also a path from node

authorRef:0.0.3 to node book:0.0, where the path ends with a reference edge. So

node 0.0 is also a reachable ID node for node 0.0.3. So we will have a reachability

table shown in Figure 4.5(b), and we can find that every ID node in a cycle is

reachable by all the IDREF nodes in that cycle.

One thing to take note here is that, due to the cyclic references, the XML

IDREF digraph will be transformed in to an infinite tree. But our tree model by

virtual replication is still capable to handle it because the virtual replication only

101

cares about the reachability relationship from an IDREF node to another ID node.

Even the tree is an infinite tree, the reachability table is still finite. Because the

number of nodes are finite and reachability is a binary relationship. So there are

at most n(n− 1) reachability relationships given the number of nodes n.

book_club
0

author
0.12

name
0.12.0

gender
0.12.1

Bill Gates male

book
0.0

title
0.0.0

The Road
Ahead

year
0.0.1

1995

publisher
0.0.2

Viking
Books

authorRef
0.0.3

...

genre
0.12.2

...

recommend
0.12.3

Computer

(a) XML IDREF Digraph with Cyclic References (b) Its Reachability Table

Figure 4.5: Constructing Reachability Table for Cyclic References

4.4.3 Reachability Table Space Complexity

Let the number of IDREF nodes in an XML IDREF digraph be L, where each

IDREF node corresponds to one reference edge, then there could be at most L

different ID nodes which are referenced by a reference edge. In the worst case, if

every IDREF node can reach all these L ID nodes, then the space complexity is

O(L2) in the worst case. The worst case only happens when all the ID/IDREF

nodes forms a big cycle. Furthermore, the L IDREF nodes only occupy a small

portion of all nodes in an XML IDREF digraph in practice (around 5% in real-life

data set in our experiments in Section 4.8). This is because every IDREF node

must belong to a particular object in the XML, and the attribute information of

an object, like ID, name, etc., can only be described by non-IDREF nodes.

102

4.5 Further Extension and Optimization for Query

Evaluation

In this section, we will further extend our transformed tree model to offer more

features catering for different applications, like ranking module, etc.

4.5.1 Removing unnecessary checking of the reachability

table

For query evaluation on our transformed XML tree model, we need to expand

the inverted lists by checking the reachability table. However, we find that many

of the checking is unnecessary. E.g., given the reachability table in Figure 4.3(b)

and the following inverted lists to be expanded: “Alps” : 0.12.1 and “part” : 0.0.1,

0.0.2,

As discussed in Section 4.3.3, in step 2 we need to check the ancestor of each

dewey label to see whether their ancestors appear in the Reachable ID node column

of the reachability table. But the ancestors of 0.0.1, 0.0.2, ... do not appear in that

column, thus the checking is in vain. To avoid unnecessary checking, we can add

a check bit to each dewey label in the inverted list index, indicating whether we

need to check such a dewey in the reachability table. E.g., the above inverted lists

will become “Alps” : 0.12.1(true) and “part” : 0.0.1(false), 0.0.2(false),

Now we only need to check those dewey labels with the check bit being true.

Here, only the ancestors of 0.12.1 will be checked in reachability table. Such a

check bit can be computed during offline by checking whether the ancestors of each

dewey label appear in the Reachable ID node column of the reachability table.

103

4.5.2 Adding Distance and Path to Reachability Table

Some of the XML tree keyword search methods need to rank the query results

by some criteria. For example, one of the common criteria is the size of the results.

It is usually measured by the sum of path length from the result root to each

match node. To meet such a need, we can extend our virtual replication method

(in Section 4.3.2) by adding a column called distance and a column called path to

the reachability table. The distance value records the distance from the IDREF

node to the reachable ID node. The path value records the path from the IDREF

node to the reachable ID node. If an IDREF node can reach a reachable ID node

by more than one paths, we record the distance/path of the shortest one. Because

substructure with minimal size is in favor in both XML tree search and XML

IDREF digraph search.

Take the reachability table in Figure 4.4(b) as an example. We can extend the

table with a distance column and a path column. E.g., for the second tuple, the

distance value is 3 because the IDREF node supplierRef:0.0.1.3 need to go through

a path 0.0.1.399K0.12→0.12.299K0.88 to the reachable ID node employee:0.88. We

can store such a path in the path column and its length in the length column.

Therefore, the distance values for all the three tuples will be 1, 3 and 1 respectively.

With the path column and length column in the reachability table, we can find

the path or path length from the answer root to a match node of some query

keywords. The path consists of three parts: (1) path/distance from the answer

root to the IDREF node; (2) path/distance from the IDREF node to the reachable

ID node; (3) path/distance from the reachable ID node to the match node. The

first and the third part can be found in the XML tree, the second part can be found

in the reachability table path/distance column.

For example, given a result root part:0.0.1 and a match node eid:0.88.0 in Fig-

104

ure 4.4, the path/distance from the result root to the match node is the sum of

three parts: (1) path/distance from part:0.0.1 to supplierRef:0.0.1.3 (length is 1);

(2) path/distance from supplierRef:0.0.1.3 to employee:0.88 (length is 3), which can

be found in the reachability table path/distance column; (3) path/distance from em-

ployee:0.88 to eid:0.88.0 (length is 1). Therefore the total path 0.0.1→0.0.1.399K0.12

→0.12.299K0.88→0.88.0 and the length is 5.

catalog
0.0

online_mall
0

shop
0.0.1

name
0.0.1.0

EStage

laptop
0.0.1.1

shop
0.0.2

catalog
0.1

laptopRef
0.0.1.1.1

catalog
0.2

price
0.0.1.1.0

$469

laptop
0.0.1.2

laptopRef
0.0.1.2.1

price
0.0.1.2.0

$449

name
0.0.2.0

iVerge

...

...

laptop_info
0.1.2

brand
0.1.2.1

model
0.1.2.2

Sony Vaio W

color
0.1.2.3

blue

ID
0.1.2.0

ltp032

laptop_info
0.1.1

brand
0.1.1.1

model
0.1.1.2

Hellet
Packard

Pavilion

color
0.1.1.3

red

ID
0.1.1.0

ltp027

laptop
0.0.2.1

laptopRef
0.0.2.1.1

price
0.0.2.1.0

$439

OSRef
0.1.2.4

ID
0.2.1.0

os001

name
0.2.1.1

Windows
7

OS
0.2.1

containment edge

reference edge

category
0.0.0

shop

category
0.1.0

laptop

category
0.2.0

OS

Figure 4.6: Sample XML Document with ID References

4.6 Solving the MisMatch Problem in XML IDREF

Digraph

We have transformed the XML IDREF digraph to tree model such that we

can adopt the efficient LCA-based XML tree search methods. Even though the

keyword search technique over XML IDREF digraph is somehow different from

the keyword search technique over XML tree, MisMatch problem could still exist.

Because MisMatch problem exists in any form of information retrieval over data of

any structure, as discussed in Chapter 3 Section 3.1.

105

Example 4.6. Figure 4.6 is an XML document with ID references describing an

online shopping mall, where the containment edges and reference edges are presented

by solid line (→) and dashed line (99K) respectively. Each shop sells some laptops.

Each laptop node can have some IDREF nodes, i.e. laptopRef nodes, pointing to

the laptop information, which can be reused by different shops to avoid duplication.

Suppose a user wants to find the price of a laptop with model being Vaio W and

red color, she may issue a query Q = {‘V aio’,‘W ’,‘red’,‘price’} over the data in

Figure 4.6. But red color is unavailable for model Vaio W. Therefore, what will be

returned is a list of mismatch results. One of the results is a subtree tree rooted at

shop:0.0.1, with three keyword match nodes:

0.1.2.2 for keyword ‘Vaio’ and ‘W’,

(following a path 0.0.1→0.0.1.1→0.0.1.1.199K0.1.2→0.1.2.2)

0.1.1.3 for keyword ‘red’,

(following a path 0.0.1→0.0.1.2→0.0.1.2.199K0.1.1→0.1.1.3)

0.0.1.1.0 for keyword ‘price’.

(following a path 0.0.1→0.0.1.1→0.0.1.1.0)

As we can see, shop is returned because there is no laptop that can meet all the

requirements. So MisMatch problem exists and mismatch results are returned.

In this section, we will talk about how we can apply our solution to the Mis-

Match problem dedicated for XML tree in Chapter 3 here to the transformed tree

model. We adopt the LCA-based XML tree search methods on our transformed

tree model and our MisMatch problem solution in Chapter 3 can be applied to any

LCA-based keyword search methods. In this section we will make the necessary

modification to the MisMatch solution for XML tree (as discussed in Section 3) to

apply it onto the XML IDREF digraph.

Recall Chapter 3, the solution to the MisMatch problem is based on two novel

106

concepts we proposed: Target Node Type (TNT) and Distinguishability. The pro-

cess includes three main steps: 1) Detecting the MisMatch problem by calculat-

ing the Target Node Type; 2) Measuring the keywords importance based on the

distinguishability; 3) Efficiently discovering approximate results, from which the

suggested queries can be inferred.

4.6.1 Target Node Type for Detecting MisMatch Problem

for XML IDREF Digraph

Given a result, the central idea to calculate the Target Node Type is getting the

node type of each keyword match node and count their occurrences, as discussed in

Chapter 3 Section 3.3. But in an XML IDREF digraph, there could be more than

one paths from one node to another. Therefore, there could have more than one

node types for a given node. This is different from XML tree. E.g., for the node

laptop info:0.1.1 in Figure 4.6, there are two possible paths from the document

root node to it. One is through ID reference and the other one is not through ID

reference. So there are two different node types for that node, i.e., node type “on-

line mall/catalog/laptop info” and “online mall/catalog/shop/laptop/laptopRef/

laptop info”. Therefore, to define the query result format, we need to specify

which path it goes through from the answer root to each keyword match node.

So first of all, we will define the format of search result for XML IDREF digraph,

which is slightly different from the format for XML tree in Defn. 3.4:

Definition 4.2. Query Result Format for XML IDREF Digraph. For a

keyword query Q={k1, ...,kn} issued on the XML data with ID references, we define

the format of a query result r as:

r = (vlca,

{
m1(path1),m2(path2), ...,mn(pathn)

}
)

107

where mi is a keyword match node w.r.t. keyword ki (i ∈ [1, n]); vlca is the root

node of the result subtree, which connects to the keyword match node m1 to mn;

pathi is the path from vlca to mi. 2

Comparing to Defn. 3.4, the only difference is that we need to specify the path

from the result root to each keyword match node, as there could be more than one

path from one node to another in an XML IDREF digraph. E.g. in Figure 4.6,

there is multiple paths from node onine mall:0 to node laptop info:0.1.1, either

through the reference edges or not through the reference edges. As discussed in

Section 4.5.2, with the help of reachability table, the paths from the result root to

each keyword match node can be recorded when we calculate the results. Therefore,

the query results can be represented in the above format.

Secondly, to calculate the Target Node Type (TNT) of a result r, we need

to get the node type of each keyword match node and count their occurrences.

Given a result r = (vlca, {m1(path1),m2(path2), ...,mn(pathn)}), the node type of

mi consists of two parts: (1) path from document root to vlca; (2) path from vlca

to mi, i.e. pathi. We can just combine these two parts to get the node type of mi.

After the node type for each keyword match node is ready, we can now calculate

the TNT of a given result and detect the MisMatch problem in the same way in

Section 3.3.

Example 4.7. For a query Q = {‘V aio’,‘W ’,‘red’,‘price’} issued in Figure 4.6,

one of the results is

r = (0.0.1, {

0.1.2.2 (0.0.1→0.0.1.1→0.0.1.1.199K0.1.2→0.1.2.2),

0.1.2.2 (0.0.1→0.0.1.1→0.0.1.1.199K0.1.2→0.1.2.2),

0.1.1.3 (0.0.1→0.0.1.2→0.0.1.2.199K0.1.1→0.1.1.3),

0.0.1.1.0 (0.0.1→0.0.1.1→0.0.1.1.0)}).

108

The node types of these keyword match nodes are (‘Vaio’ and ‘W’ match the same

node):

0.1.2.2: {online mall/catalog/shop/laptop/laptopRef/laptop info/model} (denoted

as t1)

0.1.1.3: {online mall/catalog/shop/laptop/laptopRef/laptop info/color} (denoted

as t2)

0.0.1.1.0: {online mall/catalog/shop/laptop/price} (denoted as t3).

The set of distinct node types T = {t1, t2, t3}, where count(t1) = 1, count(t2) = 1

and count(t3) = 1.

Then we check the prefixes of all node types in T. The lowest one is t =

“online mall/catalog/shop/laptop”. Suppose we have the following constraints (ei-

ther by examining the XML schema or scanning the XML document): t.maxContain(t1)

= 1 ≥ count(t1) = 1, t.maxContain(t2) = 1 ≥ count(t2) and t.maxContain(t3) =

1 ≥ count(t3).

Therefore, by Defn. 3.5, TNT (r) = t = “online mall/catalog/shop/laptop”

even though no laptop can meet all the user’s requirements at data level.

4.6.2 Distinguishability for Measuring Keywords’ Impor-

tance

Recall Chapter 3 Section 3.3 that we have proposed the concept of distinguisha-

bility to measure the importance of the query keywords contained in a certain key-

word match node in XML tree model. However, in an XML IDREF digraph, the

reference edges can make the structure a bit complex. There could be sequential

references (a node a references a node b, and then a descendent of b also references

a third node c) and cyclic references (containment edges and references edge form

a cycle). Then there can be exponentially many node types. This poses challenges

109

for directly adopting the distinguishability formula (i.e. Equation 3.1 in Chapter

3). But we also notice that many node types in an XML IDREF digraph are

actually representing the same type of information. Therefore, in computing the

distinguishability in XML digraph, we propose to exploit the node types to replace

each other when they are representing the same type of information.

Recall Equation 3.1 in Chapter 3, distinguishability D(K, t) measures the im-

portance of the query keywords K when K match a node of type t. It is defined

based on two variables ft and fK
t . ft is the number of nodes of type t; fK

t is the

number of nodes which are of node type t and subtree-contain each keyword in K.

In Chapter 3, we store a ft value for each distinct node type t; to calculate fK
t ,

we build the following inverted index: for each combination of a distinct node type

t and a distinct keyword k (in the XML data), we build an inverted list containing

all nodes of type t where each node subtree-contains keyword k. As a result, fK
t

can be computed by simply computing the intersection of the inverted lists for each

keyword in K under node type t.

Here for the XML IDREF digraph, it will be good if we could build the same

index. However, there could be exponentially many node types in the XML IDREF

digraph. So it is not feasible to store a ft value for each distinct node type t and

build an inverted index for each combination of a distinct node type t and a distinct

keyword k.

Comparing the node types in an XML tree to those in an XML IDREF digraph,

we notice that many node types in an XML IDREF digraph are actually represent-

ing the same type of information. For example in Figure 4.6, the node type ta= “on-

line mall/catalog/laptop info” and tb=“online mall/catalog/shop/laptop/laptopRef/

laptop info” are actually representing the same type of information, i.e. laptop info.

If we extract the schema graph of the XML document, as shown in Figure 4.7, it

110

will be clearer that these two node types actually represent the same type of infor-

mation, i.e. they correspond to the same schema node in the schema graph. Node

type ta contains no ID reference edge in its path while tb contains ID reference edge

in its path.

online_mall

shop

name laptop

catalog

laptopRefprice

laptop_info

brand model colorID OSRef ID name

OS

Schema Graph

category

Figure 4.7: Schema Graph of Figure 4.6

Definition 4.3. Solid & Virtual Node Type We call a node type which does

not contain ID reference edges in its path as solid node type; a node type which

contains ID reference edges in its path as virtual node type.

Since solid node types do not include ID reference edges, the number of solid

node types equals to the number of schema nodes in the schema graph. For example

in Figure 4.7, the number of solid node types is 17 as there are 17 schema nodes

in the schema graph, while the number of virtual node types can be exponentially

many. But it is easy to know from the schema graph that, every virtual node type

corresponds to a solid node type, i.e. they correspond to the same schema node in

the schema graph.

Therefore, to calculate the distinguishability, a feasible solution is to use the

distinguishability for a solid node type to simulate the distinguishability for a virtual

111

node type, if they are representing the same type of information. Let solid(t) be

the corresponding solid node type for a virtual node type t, then we can define the

distinguishability as follows:

D(K, t) =

1− fK

t

ft
+ 1

ft
, if t is a solid node type.

D(K, solid(t)), if t is a virtual node type.

(4.1)

If a node type t is a solid node type, we define it the same way as Equation 3.1;

if a node type t is a virtual node type, we use the distinguishability for solid(t) to

simulate its distinguishability value.

So now we can store a ft value for each distinct solid node type and build an

inverted index for each combination of a distinct solid node type t and a distinct

keyword k. Then distinguishability can calculated based on such indexes in the

same way as discussed in Chapter 3 Section 3.6.

4.6.3 exLabel for Efficient Approximate Results Detection

for XML IDREF Digraph

With distinguishability, we know which keywords are important. The next step

is to find the approximate results which contain those important keywords and also

have replacement for the less important keywords.

In Chapter 3, the approximate results are found based on exLabel assigned to

each node in the XML document, which is discussed in Chapter 3 Section 3.5. The

exLabel is bitmap-based. Every node n’s exLabel records what types of nodes are

subtree-contained by n. Each bit of the exLabel corresponds to a particular node

type and the value of the bit indicates whether such a node type appear in the

subtree rooted at n.

112

Similar to the case of calculating distinguishability, there could be exponentially

many node types in an XML IDREF digraph (including solid node types and virtual

node types). Every node n in the data could have exponentially many node types

appearing in the subtree rooted at n. Therefore, it is not a feasible solution to

record all node types in n’s exLabel.

Actually the purpose of exLabel is: we want to check the exLabel of a node

n to see whether n can be an approximate result. If the exLabel shows that

node n subtree-contains replacement for a particular type of nodes, then it could

be an approximate result. In XML IDREF digraph, every virtual node type cor-

responds to a solid node type representing the same type of information. E.g.

in Figure 4.4, the solid node type ta= /company/supplier and the virtual node

typetb=/company/project/part/supplierRef/supplier are actually representing the

same type of information. There are relatively small number of solid node types in

an XML IDREF digraph.

So a feasible solution is to use the solid node types to represent the virtual node

types in the exLabel (which is actually a bitmap). For example, if a node n subtree-

contains some nodes of virtual node type t, then we can set the bit for node type

solid(t) in the exLabel because solid(t) represent the same type of information as

t. Then the maximum size of an exLabel (number of bits) equals to the number of

different solid node types in the XML IDREF digraph.

Then the approximate results can be efficiently found based on the exLabel,

as discussed in Chapter 3 Section 3.5. Each approximate result subtree-contains

replacement nodes for the keyword match nodes containing the less important key-

words, where such replacement nodes and the keyword match nodes represent the

same type of information. So the suggested queries can be inferred by replacing

those less important keywords with the keywords in the replacement nodes.

113

One thing to take note here is that, to make sure each suggested query does

not have MisMatch problem itself, we need to check whether the TNT of the

approximate result is the same as its root’s node type before we return the suggested

query to users.

Algorithm 4: transformXMLGraphToTree(XT)

input : XML IDREF Digraph XG
output : Transformed XML Tree XT and reachability table RT

1 // Construct reachability table
2 Table RT ;
3 assignDeweyLabel(XG); //regardless of reference edges
4 foreach IDREF node n ∈ XG do
5 np = the ID node which n references to;
6 Queue nodesToExplore={np};
7 Set exploredNodes = {∅};
8 while nodesToExplore ̸= ∅ do
9 v = nodesToExplore.removeFirst();

10 if exploredNodes.notContains(v) then
11 exploredNodes = exploredNodes ∪ v;
12 foreach IDREF node m ∈ the subtree rooted at v do
13 mp = the node which m references to;
14 nodesToExplore.add(mp);

15 foreach node r ∈ exploredNodes do
16 RT .addTuple(n.dewey, r.dewey);

17 XT = removeAllReferenceEdges(XG); // Generate the XML tree
18 return XT and RT ;

4.7 Algorithms

In this section, we present Algorithm 4 to transform an XML IDREF digraph to

our tree model, which consists of an XML tree and a reachability table. After that,

we will present Algorithm 5 for solving the MisMatch problem in XML IDREF

digraph.

Given an XML IDREF digraph, the XML tree part can be easily generated by

removing all the reference edges (line 17). The main task here is to generate the

114

reachability table. We will first assign a dewey label to each node in the XML

IDREF digraph (line 3). Then based on each IDREF node n in the XML IDREF

digraph (line 4), we do a breadth-first search to explore the reachable ID nodes

until no more new ID node can be further explored (line 5-14). The first node to

be explored is the ID node being referenced by n and it will be pushed to a queue

(line 5-6). The ID nodes which have been visited will be stored in a set (line 7).

Each time we will take a node from the queue to explore until there is no more

node in the queue (line 8-9). If the node taken from the queue is not visited before

(line 10), we will visit it and mark it as explored (line 11). Then we will further

explore within the node. For each IDREF node within it (line 12), we will add the

corresponding ID node to the queue (line 13-14), which stores the nodes waiting

to be explored. This process will terminate until no more node to explore (line 8).

Finally, it will add all reachable ID nodes to the reachability table (line 15-16).

For the algorithm of doing query evaluation based on our tree model, it is similar

to the 3 steps discussed in Section 4.3.3 and existing XML tree search algorithms

can be easily found in the literature [64, 99, 100]. So the pseudo code will be

omitted here.

Next we will present Algorithm 5 for solving the MisMatch problem for XML

IDREF digraph. The input is the query Q, its retrieved results R and the reach-

ability table RT . First it checks each result of Q (line 3) and infer its TNT (line

4-12). This is the major difference comparing to Algorithm 1 in Chapter 3 Section

3.6. For each keyword match node (line 6), if the node is not an expanded node,

as discussed in Step 2 in Section 4.3.3 (line 7), then the node type of node n is

the path from the document root to n (line 8). If the node is an expanded node,

then the node type of n consists of 3 parts: path from the document root to the

IDREF node; 2) the path from the IDREF node to the ID node, which is recorded

115

in the reachability table; 3) the path from the ID node to n (line 10). After the

node types of the keyword match nodes are ready, the TNT can be calculated by

checking the conditions discussed in Definition 3.5 in Chapter 3 Section 3.3. Once

one of the results does not miss the target, which means what the user wants is in

the retrieved results, it will terminate the process (line 14). Otherwise, it will gen-

erate the suggested queries for each query result as discussed in Chapter 3 Section

3.5.2 (line 16-17).

Algorithm 5: MisMatchResolver(Q,R,RT)

input : user query Q=keywords[m], Q’s results R and reachability table RT
output : null if no MisMatch problem; suggestedQueries + one sample result n

for each Q′∈suggestedQueries otherwise
1 suggestedQueries ← ∅;
2 {Detector}
3 foreach r ∈ R do
4 {infer TNT of r}
5 nodeTypes ← ∅;
6 foreach n ∈ r.matchnodes do
7 if n.iExpandedNode = false then
8 type = pathFromRootTo(n);
9 else

10 type =
pathFromRootTo(n.idrefNode)+RT .getRecordedPath(n.idrefNode,
n.idNode)+solidPathFromTo(n.idNode, n);

11 nodeTypes.add(type);

12 tnt = getTntByCheckingConditions(nodeTypes);
13 if r.vlca.type = tnt then
14 return null;

15 {Suggester}
16 foreach r ∈ R do
17 {This part of pseudo code to get suggested query suggestedQueries is the

same as Algorithm 1 in Chapter 3 Section 3.6.}
18 return suggestedQueries.sort();

116

4.8 Experiments

In this section, we will first present the experimental results comparing our

approach with two graph-search-based methods. One is XKeyword [37], which is

dedicated for XML IDREF digraph by making use of the XML schema. Another

one is BLINKS [35], which is one of the most efficient pure digraph search method

so far by building a bi-level index. After that, we will present the experimental

study of the MisMatch solution working on XML IDREF digraph.

Experimental Settings. All algorithms are implemented in Java. The experi-

ments were performed on a 2.83GHz Core 2 Quad machine with 3GB RAM running

32-bit windows 7. Berkeley DB Java Edition [1] is used to organize our reachabil-

ity table in a B+ tree and store the inverted lists. MySQL [75] is used to support

XKeyword. BLINKS does not need any database support since it is an in-memory

approach.

Data Set. To test the real impact of the keyword search methods, we use a 200MB

subset of real-life XML data set with ID/IDREF, ACMDL 1 , in our experiments.

It contains publications from 1990 to 2001 indexed by the ACM Digital Library.

There are 38K publications and 253K citation (as IDREF) among the publications.

Totally 4.5M XML nodes and 4.8M XML edges are included. We can see that

IDREF nodes (253K) are 5% of all XML nodes.

4.8.1 Keyword Search on XML IDREF Digraph

Comparing The Results

There are abundant search methods available designed for XML tree. Here we

adopt one of them, i.e. ELCA [100], to work on our transformed tree model. Most

1Thanks to Craig Rodkin at ACM Headquarters for providing the ACMDL dataset.

117

Table 4.1: Result Overlap Between Our Approach and Graph Methods
Graph Methods XKeyword BLINKS
keywords 2 3 4 5 2 3 4 5

Average Result Overlap 77.9% 83.0% 85.4% 82.9% 92.1% 89.0% 90.5% 91.2%

of the XML tree methods focus on finding a meaningful subset of all possible results

with regard to users’ search intention. However, studying whether these subset of

results are meaningful regarding users’ search intention is not the main focus of

this chapter. So here we study the similarity between the subset found by tree

methods and the subset found by graph methods in terms of result overlap rather

than users’ search intention.

We generate 100 random queries with two keywords, three keywords, four key-

words and five keywords respectively. For each group of queries, we compare the

top-20 results found by XKeyword and BLINKS on the original XML IDREF di-

graph, to the top-20 results found by ELCA on our transformed tree model. For

a fair comparison, all results are ranked by the size of the corresponding Minimal

Steiner Tree, i.e. the sum of the path length.

Table 4.1 shows the average result overlap between our approach and the graph

methods, which is calculated as (# of same results in top-20)/20. Two results are

the same only if the root and each match node are the same.

As we can tell from Table 4.1, averagely 16 out of top-20 results are the same

between our approach and XKeyword, while averagely 18 out of top-20 results are

the same between our approach and BLINKS. Because XKeyword sets a maximum

result size to constraint the search space, sometimes it finds less than 20 results.

Therefore the result overlap is smaller.

118

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS

Transformed Tree

(a) keyword frequency 10

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS

Transformed Tree

(b) keyword frequency 100

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS

Transformed Tree

(c) keyword frequency 1000

Figure 4.8: Query Execution Time (45MB data Size)

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS(out of memory error)

Transformed Tree

(a) keyword frequency 10

 1

 10

 100

 1000

 10000

 100000

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS(out of memory error)

Transformed Tree

(b) keyword frequency 100

 1

 10

 100

 1000

 10000

 100000

 1e+006

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

of keywords

XKeyword
BLINKS(out of memory error)

Transformed Tree

(c) keyword frequency 1000

Figure 4.9: Query Execution Time (200MB Data Size)

Performance

Next we will study the performance of our approach with the transformed tree

model. XML tree search methods can be very efficient. E.g., ELCA can com-

pute the results by linearly scanning the inverted lists. Here we will compare our

approach with two digraph search methods, XKeyword and BLINKS. However,

BLINKS is an in-memory approach, which throws out-of-memory errors when han-

dling the ACMDL date set. In order to be able to compare the performance of

these three approaches, we have to downgrade the data set size to 45MB, which

is the maximum data size BLINKS can handle on our machine 2. Later we will

compare on the full data set with only our approach and XKeyword.

Figure 4.8 shows the execution time of the three approaches. Our approach

performs a full ELCA computation while XKeyword and BLINKS perform a top-

2BLINKS throws out-of-memory error when the data set size is larger than 45MB for ACMDL.
A recent survey [22] also has a similar conclusion.

119

20 results computation. We generate 100 random queries for each combination of

keyword frequency and # of keywords. We can see that our approach outperforms

XKeyword by orders of magnitude. This is because XKeyword stores the node

information in relational tables to accommodate very large graphs, then the results

computation is based on table join. Although schema information can help prune

some search space, it is still not efficient.

For BLINKS, our approach is faster than it by an order of magnitude when

keyword frequency is 100 or 1000. But our approach runs neck and neck with

BLINKS when the frequency is around 10. We find that this is because BLINKS

is an in-memory approach, which loads the whole graph into memory and does not

need to access disk during the whole query evaluation. Yet it is not scalable to

large data set. With 1.5 GB heap size assigned to JVM on our machine, 45MB

is the maximum data size it can handle without out of memory. A recent survey

[22] also has a similar conclusion. For our approach, we store the inverted lists and

reachability table in database, so the disk access dominates the query evaluation

time when keyword frequency is low.

Now we will compare XKeyword and our approach on the full data set. Figure

4.9 shows the experiment results. As we can see, our approach is still orders of

magnitude faster than XKeyword on full data set. Comparing Figure 4.9 to Figure

4.8, we find that XKeyword consumes more time even the keyword frequency in a

query is the same. This is because XKeyword is based on table join. Larger data

set will lead to larger tables. Therefore XKeyword requires more time to join the

tables for results regardless of keyword frequency.

120

4.8.2 MisMatch Solution on XML IDREF Digraph

In this section, to verify the effectiveness and efficiency of the MisMatch solution

working on XML IDREF digraph, we have conducted a set of experiments that are

similar to the experiments in Chapter 3 Section 3.7. For expository convenience,

we refer to our Extended MisMatch Detector & Suggester as Extended MisMatch

D&S.

Query Set. Our query set contains 18 queries for the dataset, all of which are

collected from the real-world user log data of our system. 10 sample queries and

their best-3 suggested queries (if any) are shown in Table 4.2. For better under-

standing of the queries, the schema tree of the ACMDL dataset is given in Figure

4.10. Besides, 1000 random queries are generated as well (see Section 4.8.2).

User Study Methodology and Ground Truth. We employ 15 assessors to

pick up the queries with the MisMatch problem, and their judgements are based on

both the queries given and their respective results3. We obtained the ground truth

by judging a query to have the MisMatch problem if at least 8 of the 15 assessors

agree on that. Eventually, 9 out of the 18 queries have the MisMatch problem.

For ACMDL dataset (with ID reference), some of the suggested queries are

found involving ID references while some of them are found without involving ID

references. E.g. for QA1 in Table 4.2, according to the dataset, Jeffrey Ullman

did not publish any paper at INFOCOMM or reference any INFOCOMM paper

in his paper. The results being returned are all mismatch results. The suggested

options PODS and SIGMOD are found without involving ID references, which are

the conferences Jeffrey Ullman has published papers at. Another suggested option

KDD is found involving ID references. KDD is suggested because some KDD papers

3Since different users could have many different search intentions even for the same query, we
do not want to confine the search intentions to some pre-defined options. So we did not show any
pre-defined search intentions to users for reference or let them choose, which could affect users’
decision.

121

Table 4.2: 10 of the Sample Queries on ACMDL
ACMDL (with ID references)
Query suggested

queries
best-3 suggested queries (Format: explanation → suggested
options)

QA1 Jeffrey Ullman INFOCOMM 207 (proceeding): INFOCOMM → PODS / SIGMOD / KDD
QA2 Ling Tok Wang KDD 1993 112 (year): 1993 → 2000

(proceeding): KDD → SAC / ACM Transaction on Database
Systems

QA3 Michael Stonebraker PODS 285 (proceeding): PODS → CHI / OOPSLA / SIGMOD
QA4 Victor Vianu PODS 1999 89 (year): 1999 → 2000 / 1998 / 1997
QA5 Hanspeter Pfister database 971 (title): database→ Integrated volume compression and visu-

alization /
The VolumePro real-time ray-casting system /
VolVis a diversified volume visualization system

QA6 Michael Franklin 2000 0 None
QA7 Tan Kian-lee robot 229 (title): robot → A framework for modeling buffer replacement

strategies /
Sampling from databases using B+-trees /
Rule-assisted prefetching in Web-server caching

QA8 SIGIR England 1985 992 (country): England → Canada
(year): 1985 → 1984 / 1980

QA9 David Dewitt skyline 68 (title): skyline → The 007 Benchmark /
A status report on the OO7 OODBMS benchmarking effort /
Crash recovery in client-server EXODUS

QA10 Tan Kian-lee Michael
Franklin

52 (author): Michael Franklin → Chua Tat-Seng / Ooi Beng-
Chin / Li Jiandong

are referenced in Jeffrey’s papers and such paper reference relationship is expressed

by XML reference edges. However, such information is not reflected simply by the

suggested queries. This is why our MisMatch Module also returns a sample result

for each suggested query to help users understand our suggestion.

Evaluation Method

We select the queries with the MisMatch problem for each dataset to conduct

a user study.

To conduct a fair evaluation, we are aware of two things. First, we invite both

experts and novices to participate the task of scoring the suggested query. We ask

three CS research students and three undergraduates in other faculties. The par-

ticipants are shown the matching results of each query, the best-5 suggested queries

together with the corresponding sample query results. Second, the participants are

asked to score the quality of each suggested query by using the Cumulated Gain-

122

acm

proceeding*

conference_rec ... proceeding_rec

conference_loc

city state country

isbn copyright_year publisherproc_name article_rec*...

content

proceeding_name title doi_number display_label ... author* references

ref

ref_seq_no ref_text ref_id

id

...

containment edge

reference edge

Figure 4.10: Schema Graph of ACMDL Dataset (some parts are omitted because
full schema graph is too big to display)

based evaluation (CG) metric [40] (from 0 to 5 points, 5 means best while 0 means

worst). In contrast to traditional metrics like precision and recall which adopt a

binary judgement (yes or no), CG is aware of the fact that all results are not of

equal relevance to user.

 0

 1

 2

 3

 4

 5

QA1 QA2 QA3 QA4 QA5 QA7 QA8 QA9 QA10

best-3 suggested queries
best-5 suggested queries

Figure 4.11: Average Quality Measure of Suggested Queries

Evaluation of Overall Quality

The average scores for best-3 and best-5 suggestions are shown in Figure 4.11.

We can find for queries with the MisMatch problem, our approach is able to find

123

reasonable suggested queries for them, and subsequently it leads to more meaningful

results; the scores for best-3 suggestions are always higher than those of best-5,

which also shows the effect of our query ranking scheme.

Most likely, the best-3 suggested queries will be viewed by the struggling users.

So in the rest of the paper, when we talk about the quality of the suggested queries,

we mean the average score of the best-3 suggested queries.

Study of the query ranking scheme and distinguishability threshold

Table 4.3: Suggestion Quality w.r.t. different τ and ranking factors

τ all ranking factors no cn no dt no
∑

D

ACMDL

0.9 4.61 4.32 4.35 4.10
0.6 4.61 4.32 4.35 4.10
0.3 4.61 4.32 4.35 4.10
0.0 4.61 4.32 4.35 4.10

We further study how the proposed ranking factors for ranking suggested query

affect the overall quality of suggested queries. The ranking factors include cn, dt

and
∑

D, as discussed in Chapter 3 Section 3.4.3. The scores for the suggested

queries of each case are shown in Table 4.3. Please ignore the choice of τ for the

time being. By comparing the scores in a columnwise way, we find:

(1) The model taking all ranking factors always outperforms any models that miss

one of the three ranking factors.

(2) Without considering the distinguishability of the keywords to be replaced (i.e.,∑
D), the suggested query quality decreases more than the case without any of

the other two factors. It shows that distinguishability plays an important role.

By comparing the scores in a rowwise way, we can see that the best suggested

queries usually do not change even when we set a smaller threshold τ . It is because

we have already found the best suggested queries when we set a high τ , since

124

preserving the keywords with high distinguishability is more reasonable as discussed

in Chapter 3 Section 3.4.

Efficiency

For each query in Table 4.2, we run our algorithm 10 times and collect the

average processing time on hot cache, as shown in Figure 4.12. The query result

ranking time is too small to display. Moreover, we record the time used by the

Extended MisMatch D&S.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Extended MisMatch D&S 3.08 1.95 2.21 1.60 5.68 0.25 1.35 3.55 1.13 1.17

Result Ranking 0.19 0.10 0.21 0.08 0.05 0.20 0.23 0.08 0.13 0.15

ELCA based on Transformed

Tree
528.02 32.55 198.19 105.60 39.63 61.04 42.25 246.48 149.00 67.94

0.00

100.00

200.00

300.00

400.00

500.00

T
im
e(
m
s)

Figure 4.12: Processing Time for some Sample Queries (The result ranking time is
too small to display.)

The Extended MisMatch D&S only takes a small portion of the whole query

processing time, as shown in Figure 4.12. The processing time of the Extended

MisMatch D&S for all ten queries are less than 10ms. So it could be too small to

display in Figure 4.12.

Scalability

Sample Queries

Firstly, we conduct our scalability test by studying the impact of increasing

125

data size on the Extended MisMatch D&S. We run the queries on ACMDL with

different sizes. Figure 4.13 shows the average processing time of one query on the

datasets. The processing time of the Extended MisMatch D&S increases linearly

w.r.t. the data size. Because larger data size leads to possibly larger number of

results, and our Extended MisMatch D&S needs to check all results to decide the

MisMatch existence and find suggestions based on each result.

200 MB 400 MB 600 MB

Extended MisMatch

D&S
2.44 5.51 8.79

Result Ranking 0.11 0.72 1.36

ELCA based on

Transformed Tree
140.24 403.72 682.33

0

200

400

600

T
im
e(
m
s)

Query Processing Time v.s. Data Size

Figure 4.13: Impact of Data Size.

Random Queries Besides the real-world sample queries, we further study the

performance of our Extended MisMatch D&S over random queries. Keywords

ACMDL datasets are randomly picked to form queries of length 2∼5 and those with

MisMatch problem will be kept. We record the first 1000 of such queries and count

the suggested queries output by our Extended MisMatch D&S. The distribution of

these queries with different ranges for the number of suggestions is shown in Figure

4.14(a), from which we find most queries will result in suggested queries no larger

than 500. Similar to our findings on sample queries, Figure 4.14(b) reports the

linear relationship between the Extended MisMatch D&S processing time and the

number of suggested queries on random queries.

126

10%

20%

30%

40%

50%

60%

70%

[0,500)

[500,1000)

[1000,1500)

[1500,2000)

[2000,2500)

[2500,3000)

others

%
 o

f
R

an
d

o
m

 Q
u

er
ie

s

of Suggested Queries (range)

ACMDL

(a) Distribution

 1

 1.5

 2

 2.5

 3

 3.5

 4

[0,500)

[500,1000)

[1000,1500)

[1500,2000)

[2000,2500)

[2500,3000)

T
im

e(
m

s)

of Suggested Queries (range)

ACMDL

(b) MisMatch Processing Time

Figure 4.14: Scalability Test of Random Queries

4.9 Conclusion

In this chapter, we observed that an XML IDREF digraph is mainly a tree

structure with a portion of reference edges. It motivated us to proposed a novel

method to transform an XML IDREF digraph with ID/IDREF to a tree model,

such that we can exploit abundant efficient XML tree search methods and our

mismatch solution for XML tree can be applied to XML IDREF digraph as well.

Existing keyword search methods for XML IDREF digraph compute the query

results by graph traversal. Then the keyword search problem on an XML IDREF

digraph is reduced to the problem of finding Minimal Steiner Tree (MST) or its

variants in a digraph, where an MST is defined as a minimal subtree containing all

query keywords in either its leaves or root. Since finding all MSTs in a digraph is

an NP-complete problem, efficiency is one of the notable issues.

We proposed to transform an XML IDREF digraph to a tree model by virtually

replicating the subtrees being referenced. Our tree model consists of two parts: an

XML tree and a table (called reachability table), which is capable of handling

different kinds of reference patterns in an XML IDREF digraph. Based on the

reachability table, we designed a query evaluation framework on our tree model

127

which includes an extra step than traditional LCA-based XML tree search methods,

i.e. expanding the inverted lists with those nodes within the duplicated subtrees.

This is done by checking the reachability table. Our approach can work with any

existing XML tree search method. The experimental results show that our approach

is orders of magnitude faster than the traditional search methods on XML IDREF

digraph while generating a similar set of results as existing XML IDREF digraph

search methods. Since the traditional search methods on XML IDREF digraph find

the results by graph traversal, it could be as inefficient as NP-complete. After we

have transformed the XML IDREF digraph to tree model and adopted the XML

tree search methods, we further applied our mismatch solution dedicated for XML

tree onto the transformed XML tree model. The key steps of the mismatch solution,

i.e. MisMatch problem detection and suggestion generation, can be applied here

as they can work with any LCA-based XML keyword search methods.

128

CHAPTER 5

QUERY RESULT PRESENTATION OF

XML KEYWORD SEARCH

5.1 Introduction

As we discussed in Chapter 3 and Chapter 4, keyword search is an important

way for novice to explore XML documents. It has attracted a lot of research efforts

on how to retrieve the proper results for a keyword query. After the results are

retrieved from the search engine, the results need to be presented to users, which is

an unavoidable yet important topic for XML keyword search, as well as any other

form of information retrieval. To further reduce the gap between users’ search

intention and the query results, how to present the query results in a proper way

plays an important part. As discussed in Chapter 2 Section 2.5, different forms of

data and query results require different ways for optimal visualization. Existing

visualization techniques for other forms of data, like relational data, web data, etc.,

129

Figure 5.1: Sample XML Document about the Chain-stores in a Company

will not work well on XML as none of them consider the tree structure in XML.

So far there is very few works on result visualization for XML keyword search. In

this chapter, we will study the query result presentation problem mainly on XML

data without ID references. For such a problem on XML data with ID references,

it will be one of our future work.

For XML data without ID references, the traditional way on result presentation

is to return a list of subtrees as query results. We find that it is insufficient to

meet the information needs of users. Such a presentation is imprecise and could be

misleading. Next we will see some motivations, based on which we propose a new

exploration model on XML database as a complementary component of the XML

keyword search engine. It is designed to enhance users’ search experience in XML

keyword search and bridge the mismatch gap between users’ search intention and

the query results.

Motivation 1 All the data in an XML tree is inter-connected by the hierarchical

structure. Therefore, each query result of XML keyword search is a part of the

XML data tree rather than a piece of independent information. Among the query

results(subtrees), they may have sibling and containment relationships. Without

showing such relationships, the results are imprecise and could be misleading.

130

Example 5.1. An XML data tree in Figure 5.1 describes the chain-store informa-

tion of a company, including information like address, cashier, item etc. Each node

in the figure is assigned a unique ID, which will be used in the rest of the chapter.

For the XML tree in Figure 5.1, a query “pencil black” will get the following results

by LCA:

1. subtree rooted at node r13(item),

2. subtree rooted at node r17(item),

3. subtree rooted at node r27(item).

Without showing the relationships among the results, it is hard to know that the

third result is completely different from the first two results because it is a make-up

pencil rather than a normal pencil. It is imprecise and misleading such that users

will understand the query results wrongly. As a comparison, if we display the results

in the context of the whole XML data tree, this can be easily identified by the user.

2

Motivation 1 leads to a demand of showing the relationships among the query

results and the context of the query results.

Motivation 2 Users’ interaction with a search engine is not a one-time transac-

tion. Many users will issue a serious of queries progressively to further explore the

returning query results [86]. Therefore, users need some ”means” to make adjust-

ment to the query results in order to further explore what they want. So far, the

only means for users to adjust the query results is by changing and re-submitting

the keyword query .

Example 5.2. For a query “Allen female” issued in Figure 5.1, whose search

intention is somehow ambiguous, one of the results by LCA is the leftmost subtree

131

rooted at node r3(cashier). It meets the information needs for those who are finding

information of a cashier.

Since this is a database for chain-stores, some people may want to go further to

find the chain-store with cashier Allen. Then the current results cannot meet their

information needs. He may need to take further action. But the crucial thing is

that, so far there is only one way for a user to take further action to find what she

wants: to change the keywords and re-submit the query. 2

However, to change the keywords and re-submit the query is not trivial. For

the case in Example 5.2, users who are searching for chain-stores need to add more

keywords to make their search intention more specific. Since the user may not know

much about the database, she may not know what keywords to add in. There are

a lot of choices: “store”, “shop”, “chain-store”, etc. But we can observe that, what

the user wants, i.e. the information of a chain-store, is just above the subtree of

the cashier. To reach what she wants, the user only needs to adjust the query

result to a higher level by some means (if there is any) rather than revising and

re-submitting the query.

Therefore, Motivation 2 calls for an easier way for users to further explore the

query results to find what they want.

Based on Motivation 1 and 2, we propose our Map-Like Exploration Model on

XML Database (XMAP), which can work as a complementary component of the

XML keyword search engine or even work independently as a new way to explore

XML data. XMAP displays the XML data tree as a whole to users. Users can zoom

in/out the display and move left/right/up/down the display. The query results will

be highlighted on the global display. Therefore, it provides users an easy way to

interact with XML data addressing Motivation 1 and 2.

132

XMAP explores the XML data tree following a similar way in which we explore

a digital map, such as Google Maps [3], Yahoo Maps [7], etc. When users search

on a digital map, besides a list of results being returned, an interactive map is

also available to help users consume and adjust the query results. The interactive

map can be either a component of a geographic data search engine or even as an

independent model to explore geographic data.

A

B
C E

F G
B

AB
A

C G

Layer 1
Layer 2

Layer 3
zoom out

zoom in zoom in

zoom out

E
Window

Figure 5.2: Working of A Typical Digital Map System

Before we go into the detail of XMAP working on XML data, let us have a quick

review on how a typical digital map [71, 47] works. Figure 5.2 shows the working

process of a traditional digital map system, which is adopted by XMAP:

• to support the zoom in/out function, the system needs to generate multiple

layers of data, each of which is a complete map but has different scales of

details. Higher level has less details and thereby its size is smaller.

• the area of a user’s device where the map can be displayed is called the

window. To simplify the discussion, we can assume the window size is fixed

. The system will extract a “window” of content from a specific layer to the

user.

• when a user moves left/right/up/down the map, the missing data to be dis-

played in the window will be transferred from the system to the user; when

a user zooms in (out), the current layer providing data to the user will be

133

changed to a lower (higher) layer. Note that the window size is fixed even

the current layer is changed.

In this chapter, we will address the challenges and give solutions in building a

map-like exploration model on XML database.

(a) Layer2 of Figure 5.1 (b) Layer3 of Figure 5.1

Figure 5.3: Generating layer2 and layer3 for Figure 5.1

Our main contributions in this chapter include:

1. We point out that returning a list of subtrees as the results of a keyword

query on XML is not sufficient to meet the information needs of different

users. We address the needs for a way to easily adjust the query results and

show the query results in the global context.

2. We propose a novel exploration model, XMAP, to work as a complementary

component of the XML keyword search engine, in order to enhance users’

search experience. It can even work independently as a new way to explore

the XML database. We find a reasonable way to generate different layers for

XMAP on XML data. Meanwhile, we also build a practical index indexing

all the layers generated.

The rest of the chapter is organized as follows. We present how to generate layers

and build index for XMAP in Section 5.2. Section 5.3 discusses how to highlight

134

the query results in XMAP. Section 5.4 presents the algorithms. Experimental

evaluation is in Section 5.5. Then we conclude in Section 5.7.

5.2 Building XMAP

As we can see in Section 5.1, the most important tasks for building a digital

map system are 1) to generate multiple layers with different scales of details; 2) to

build index for retrieving data from different layers. However, due to the difference

between XML data and geographic data, these two main tasks pose new challenges

to XMAP working on XML database, which we will discuss in the following two

subsections.

5.2.1 Generating Layers for XMAP

Let the number of layers be n, which is decided by the scale factor s:

Definition 5.1. Scale factor s is the width1 ratio of two adjacent layers, i.e.

s = width(layeri)/width(layeri+1).

Scale factor is normally set to a number from 2 to 5. E.g., Google Maps set it

to 2.

Layer1 is the most detailed layer; layern is the most abstract layer and supposed

to be with a size such that it can fit into the users’ window. Therefore, the relation

between n and s is:

width(layer1)/s
n−1 = width(window) (5.1)

1Height can also be used for a digital map system, where each layer has a fixed height:width
ratio.

135

which means layer1, the most detailed layer, will be scaled to generate layer2,

layer3, ..., layern.

Therefore, layer1 is easy to generate. We only need to present the whole XML

as a tree without losing any detail on layer1. Then every node in the XML has its

own coordinates (x, y) on the layer. Note that these coordinates will be the global

coordinates and unchanged in other layers, because the other layers are generated

based on layer1.

Now we need to generate layer2 up to layern, which is the main problem in

this subsection. Normally, for geographic data, these layers will be generated by

scaling layer1 with fixed height:width ratio. The fixed height:width ratio is required

because of the demand of reflection of reality. E.g., the shape of a country should

not be changed no matter which layer it is in.

However, an XML database normally stores millions of similar-structured data

at the same hierarchical level. E.g., right below a node of a chain-store, there

might be a great amount of nodes representing items being sold. Therefore, the

height:width ration is almost zero for layer1. It will be problematic when we gener-

ate the other layers with fixed height:width ratio. For example, layern is supposed

to fit into the user’s window. But the almost-zero height:width ratio leads to the

fact that layern will not be readable because it is just like a horizontal line presented

in the user’s window.

Therefore the challenge is how to scale on the dimension of width when we

generate layer2 to layern. Our solution to the challenge is to merge the compatible

subtrees into groups in the XML data tree, in order to scale the layer on the

dimension of width. Before introducing the concept of compatible, we will define a

term which will be used.

Definition 5.2. Node Type The type of a node v in the XML tree, denoted as

136

v.type, is the tag name path from root node of the XML tree to v.

For example in Figure 5.1, the node type of node r13(item) is “company/chain-

store/category/item”.

Definition 5.3. Compatible Given an XML data tree, two subtrees T1 and T2

are said to be compatible if and only if they satisfy the following conditions:

1. the root of T1 and the root of T2 are siblings;

2. the root of T1 and the root of T2 correspond to the same node type.

For example, in Figure 5.1, the subtrees surrounded by a dash line rectangle

on the right hand side are compatible. The roots of the three subtrees are: node

r13(item), node r17(item) and node r21(item). They are siblings and of the same

node type.

With the concept of compatible, to generate layeri+1 from layeri, we can merge

the compatible subtrees into a group in order to hide the details and shrink the

layer on the dimension of width.

Figure 5.4: Index of the data shown in Figure 5.1

Since some subtrees will be hidden in a group, we need to show a summary of

the information in a group. Here we adopt [39] to generate a snippet as a summary

for the information of a group. Asides from the snippet, we can also show the value

range for some of the important nodes appearing in the group.

137

Besides, XML data has a hierarchical structure. The data that is nearer to

the leaf node tends to be a piece of more-detailed information. E.g., in Figure

5.1, the category information is more abstract than the item information. Hence,

when we generate layers, item information should be hidden first and then the

category information. So we will group the compatible subtrees in a bottom-up

manner, which means a subtree T will not be merged with other subtrees until all

the compatible subtrees in T have already been merged.

Figure 5.3 shows the merging process for the data shown in Figure 5.1. When

generating layeri+1 from layeri, how many subtrees will be merged into one group

will depend on the scale factor. E.g., suppose there are 100 compatible subtrees

and the scale factor is 3. There is no need to merge all the 100 compatible subtrees

into one group. Maybe merging 3 compatible subtrees into one group is sufficient

to shrink the width by 2/3.

5.2.2 Index of XMAP

With all the layers ready, now we need to organize the index for efficient retrieval

of data from different layers. Since R-tree [32] is a popular data structure used for

spatial access methods, here we will propose a revised R-tree data structure tailored

for indexing the layers generated in Section 5.2.1.

Normally, R-tree is used to index spatial data in a single multi-dimensional

space. However, in XMAP, there are a number of closely related layers, which

means there are a number of two-dimensional space. One possible solution is to

build one R-tree index for each layer. But we observed that each layer is closely

related to one another. Following we will propose a revised R-tree index, which

can index all the layers in one R-tree rather than multiple R-trees.

As we can observe in the Section 5.2.1, XMAP has the following two properties:

138

1. P1: each layeri of XMAP is generated based on a previous layeri−1 by merging

compatible subtrees together. Therefore, amongst the layers, there exists an

intrinsic hierarchical structure.

2. P2: each layeri shrinks based on the previous layeri−1 by a scale factor (see

Definition 5.1).

These two properties inspired us to index all the layers in one revised R-tree,

where each level of the R-tree corresponds to a layer in XMAP. P1 can ensure the

hierarchical structure of the tree index. P2 can ensure that each level of the tree

index has more entries than the previous level by a certain scale, i.e. the scale

factor.

Figure 5.4 shows our index for the data shown in Figure 5.1. The striped entries,

called group entries, represent a group in the XMAP layer; the pure-color entries,

called node entries, represent a regular node in a XMAP layer. Each entry in the

index has a pointer pointing to the storage data, which can be either a regular

XML node data or the summary information of a group. This is different from a

normal tree index where only the leaf entries have such pointers.

As shown in Figure 5.4, the first level of the index keeps track of the data on

layern, the second level of the index keep track of the data on layern−1, and so on

and so forth. For example, at the second level of the index, entry r31 corresponds

to the group r31 shown in Figure 5.3(a). More group nodes will appear at level 2

if there are more item information shown in Figure 5.1.

When we index the layers, we need to take note of the following two things:

1. A node entry only needs to appear in the index once while the same group

entry could appear several times. It is because we can observe that when we

find a node entry at level i, we know that the node entry also appear at level

139

i+1 and onwards. E.g., entry r1 only appear at level 1 in Figure 5.4, which

also means it is also a part of level 2 and level 3 in the index. Because node

r1 in Figure 5.1 never merge with any subtree and therefore will appear at

all layers.

2. From the index we can know that, because the outdegree of an entry in the

index depends on how many subtrees are merged together. Therefore, when

we merge compatible subtrees to generate layers in Section 5.2.1, we prefer

to merge as less number of subtrees as possible. E.g., suppose there are 1000

compatible subtrees of node type A, 1000 compatible subtrees of node type

B, the scale factor is 2. Then to shrink the layer by scale factor 2, we may

have three different choices: 1) merging 1000 compatible subtrees of node

type A into one group without making any changes to those of node type B;

2) merging 1000 compatible subtrees of node type B into one group without

making any changes to those of node type A; 3) merging every two compatible

subtrees of A into a group and merging every two compatible subtrees of B

into a group. We prefer the third choice because it will reduce the outdegree

of the index entry.

As we can see from Figure 5.4, group entries are intentionally put in the front

of the index node, so that the group entries can fit into a disk page. If the scale

factor is s, approximately there will be s groups/subtrees merged into one group,

so there are s group entries in an index node approximately2. These s group entries

in an index node can be stored in one disk page. Besides, we can easily arrange the

layout of layer1, such that the area represented by the same-level entries will not

overlap with each other. Therefore, the complexity of search is at most O(logsN),

where N is the total number of XML nodes.

2Figure 5.4 can show this property better if more data is available in Figure 5.1.

140

5.3 XMAP Working with a Search Engine

When XMAP works as a complementary component of an XML keyword search

engine, there is one more task to accomplish: we need to figure out some ways to

highlight the query results in XMAP. For example, suppose a search engine will

display a list of five query results on a showing page, these five query results will

need to be highlighted in XMAP.

The layout of XMAP is generated statically offline based on the XML data

regardless of any query. But the query results are generated dynamically based

on each coming query from users. Basically, there are two ways to highlight the

query results in XMAP. In this section we will study both of them. (1) The first

approach is a static approach. We can highlight the query results right in XMAP,

i.e. highlight the area for each result in XMAP using colors, lines, etc. However,

sometimes those results are far away from each other in XMAP. It is not easy to

show the relationship among those results because there are too many irrelevant

subtrees in between them. What is worse, those results may not be visible at the

same layer in XMAP. These pose challenges to the first approach. (2) The second

approach is to dynamically generate a new display based on the query results, i.e.,

assembling all result subtrees together to form a new display. After that users pick

up any result they want to further explore. Then we try to highlight the that

particular result subtree in the XMAP. Then we can avoid the drawbacks of the

static approach.

5.3.1 Static Approach: Highlight all Query Results in XMAP

An intuitive and easy solution is to highlight all the query results directly in

XMAP. If all the nodes of the query results are visitable at the layer at which the

141

Figure 5.5: Query results highlighted of the query “Allen female” at layer3

user is browsing, it is easy to highlight the results because we only need to highlight

the nodes by color, lines, etc. However, the nodes of the query results sometimes

are not available at users’ current layer. In other words, the nodes will be available

only when the user zooms in to an appropriate layer. In this case, the user may

not be able to judge which result may be better and which group she should zoom

in first.

Therefore, to further enhance users’ search experience, we need to find a way to

highlight the query results even if the relevant nodes are not available at the user’s

current layer.

Our solution to highlight the query results whose nodes are not available at the

current layer is: we show the important nodes and paths of a query result in the

area of the summary information of a group. Figure 5.5 shows a result highlighted

at a certain layer.

Now we will define skeleton of a query result, which is considered as important

nodes and paths of a query result.

Definition 5.4. Skeleton For a query result R, where the user’s query keywords

are matched to a set of nodes {v1, v2, ..., vk}, the skeleton of R are defined as a

142

set of nodes {LCA(v1, v2, ..., vk), v1, v2, ..., vk} and the paths linking all these nodes.

Function LCA() returns the lowest common ancestor of a set of nodes3.

So when the nodes of a query result are not available at a certain layer, the

query result will be highlighted by showing its skeleton at the summary area of the

corresponding group at the layer.

Example 5.3. For a keyword query “Allen female” issued on the XML data shown

in Figure 5.1, the leftmost subtree rooted at node r3(cashier) is one of the results by

LCA. The query keywords are matched to the nodes {r4, r5}. Then the skeleton of

the query result is the set of nodes {LCA(r4, r5), r4, r5} and the paths linking them,

which is shown in the orange rectangle in Figure 5.5. Therefore, when the user is

browsing at layer3, its skeleton is shown at the summary area of the corresponding

group. 2

Another drawback of the static approach is, if the query results are far away

from each other in the XML tree, the results will be divided by the content in

between them. In such a case, the relationship among the query results will be

hard to show on users’ screen. Therefore, we try to overcome this drawback by

proposing a dynamic approach as shown in Section 5.3.2.

5.3.2 Dynamic Approach: Generate a New Display by As-

sembling the Query Results

As discussed in the previous section, one drawback of the static approach is

that a lot of irrelevant information will be shown in between the result subtrees if

the result subtrees are far away from each other in the XML data. To overcome

the drawback, we proposed the dynamic approach: to generate a new display by

3Other matching semantics are also applicable. We only use LCA as an example for illustration.

143

assembling the query result subtrees together. Such a display is generated dynami-

cally catering for a particular query and its results. We call such a display Context

Display, which is to help users understand the relationship among the result sub-

trees. Then users pick up any result on the display which they want to further

explore. Only after that, we will show users the XMAP with that particular result

subtree highlighted.

To generate a display to show the relationship among the query results, we need

to show how the result subtrees are connected together in the XML document. An

intuitive way is to assemble the result subtrees by showing the paths in the XML

document which connect all the result roots. Given a set of result subtrees with

their roots being {r1, r2, ..., rn}, we will include the following information to form

the display: (1) the result subtrees; (2) the LCA node l of r1, r2, ..., rn; (3) the path

from l to ri for each i ∈ [1, n].

Example 5.4. For a keyword query “pencil black” issued on the XML data shown

in Figure 5.1, it will get the following results by LCA:

1. subtree rooted at node r13(item),

2. subtree rooted at node r17(item),

3. subtree rooted at node r27(item).

By assembling the results together, we can get a new display as shown in Figure

5.6(a), which is dynamically generated and can show the relationship among the

results subtrees. It consists of three parts: (1) the result subtrees, which is in the

dashed rectangles. (2) the LCA node r1 of all the result subtree roots. (3) the paths

connecting r1 and all the result subtree roots, which involve node r11 and r25.

With the context display, users can easily tell that result 1 and result 2 are under

the same category while result 3 is under another another category. Meanwhile, all

144

these three results are under the same chain-store. In such a way, the relationship

among the three results is clearly presented to users. 2

category

chain-store

item

nam e
pencil

color
black

brand
Palom ino

item

nam e
pencil

color
black

brand
FirstChoice

item

nam e
pencil

color
black

brand
Lancom e

categoryr11

r1

r13

r14 r15 r16 r18 r19 r20

r17

r25

r27

r28 r29 r30

(a) Basic Context Display

category

chain-store

address
#12 W est Str

type
stationery

item

nam e
pencil

color
black

brand
Palom ino

item

nam e
pencil

color
black

brand
FirstChoice

item

nam e
pencil

color
black

brand
Lancom e

type
m ake up

category

r2

r11

r1

r13

r14 r15 r16 r18 r19 r20

r17

r25

r26

r27

r28 r29 r30

r12

(b) Enhanced Context Display

Figure 5.6: Context Display for the Query Results of Query “pencil black”

As we can see from the above example, although we can know that the three

result subtrees are under different categories, users do not have more information

on what categories they are. Therefore, a very natural way to enhance the context

display is to show more information for the nodes which are on the paths connecting

145

the result subtree roots. E.g., for the node r1, r11 and r25 in Figure 5.6, we can

show one child node for each of them, where such a child node should identify its

parent. Figure 5.6(b) shows an enhanced context display for Figure 5.6(a). The

three nodes in the dashed circles are shown because they can well identify their

parents.

If the XML data is modeled using some semi-structured data model, like ORA-

SS (Object-Relationship-Attribute Model for Semi-Structured Data) [27, 63], we

can choose to show the Identifier/Key node of an Object to construct an enhanced

context display. If such semantics is unavailable, it can be discovered by some ex-

isting algorithms [58] for XML data. Actually ORA-SS can capture the semantics

that which nodes in the XML data represent objects, object attributes, relation-

ships, relationship attributes, etc. Such semantics can further help with the query

result presentation. E.g., sometimes a result subtree could be very big and contains

multiple levels of Objects nested within the subtree. In that case, we can make use

of ORA-SS to pinpoint the Object which is searched for by users, and show the

Object to users rather than showing the whole result subtree. How to make full

use of ORA-SS to further improve the result presentation for XML keyword search

is one of our future work.

5.4 Algorithms

5.4.1 Index Construction

To support the function of XMAP, a revised R-tree index is needed to be built

as discussed in Section 5.2.2. The revised R-tree index is built based on the layers

generated. So in order to build the index, the layers need to be generated first.

Algorithm 6 shows the main procedure to build the index.

146

Algorithm 6: buildIndex(XML, window, s)

input : XML data tree XML, window size window, scale factor s
output : Revised R-tree index index

1 Database¡dewey, node-groupInfo¿ layer;
2 parseXML(XML, layer[1]);
3 n = LOG(s, layer[1].getWidth()/window.width) + 1;
4 foreach i ∈ 2 to n do
5 compatibleList = findCompatibleSubtrees(layer[i− 1]);
6 k = widthMeasure(compatibleList, s, layer[i− 1]);
7 layer[i] = merge(k, compatibleList, layer[i− 1]);

8 contructRTreeLevel(1, layer[n], index);
9 foreach j ∈ n− 1 to 1 do

10 contructRTreeLevel(n− j + 1, layer[j], index);
11 return index;

Since we need to record the layout of each layer, we may need to store a large

amount of data if the XML data is huge. Therefore, we use a database to record

the layout of each layer (line 1). The tuple of the database is in the form of (dewey,

node-groupInfo). The key is a Dewey [93] label dewey assigned to each node or

group4 to facilitate compatible subtree detection. The data part is the information

about the node or group, including coordinates, summary information, etc. Next

we will generate layer1, which can be accomplished when the XML data tree is

parsed. So we parse the XML data tree and generate layer1 (line 2). With layer1

generated, we can calculate the number of layers according to Equation 5.1 (line

3). Then we will generate layer2 to layern (line 4 to 7). First we need to check the

previous layer to find out all the compatible subtrees that can be merged at this

stage (line 5). Note that we find compatible subtrees in a bottom-up manner as

discussed in Section 5.2.1. With the list of compatible subtrees, we can measure

the width and figure out how many compatible subtrees should be merged into

a group to shrink the layer by the scale factor (line 6). Then we can merge the

4For a group, which contains a set of compatible subtrees, we will arbitrarily choose one subtree
and use its dewey label to represent this group. This dewey label is already sufficient to be used
to detect the sibling relationship between this group and any other subtrees.

147

compatible subtrees to generate the layer (line 7).

With all the layers ready, now we can construct the revised R-tree index ac-

cording to each layer as discussed in Section 5.2.2. We will construct level 1 based

on layern (line 8). After that we will construct level 2 to n accordingly (line 9 to

10).

5.4.2 Retrieving data from the index

In our index, not only the leaf entry, but also every level of entry has pointers

pointing to storage data. Therefore the way we retrieve data will be a bit different.

Algorithm 7 presents how the data will be retrieved from the index by a recursive

function.

Algorithm 7: retrieveData(coor, wind, level, indexNode)

input : if a user request for an area of data, coor is the coordinates of the top
left corner of the area; the user’s window size wind; level is the level on
which data will be retrieved; indexNode is for recursive call usage,
initially pass in the root of the index tree

output : data in the requested area
1 if level < indexNode.level then
2 return;
3 requiredData ← ∅;
4 area = (coor.x, coor.y, coor.x+ wind.width, coor.y + wind.height);
5 foreach entry e ∈ indexNode do
6 if e.coordinates ∈ area then
7 if e is a node entry then
8 requiredData.add(e→ nodeData);
9 else

10 retrieveData(coor, wind, level, e→ pointerNextLevel);

11 return requiredData;

The parameter indexNode is for recursive usage. Initially, the root of the index

will be passed in as indexNode. When the level of indexNode is higher than the

required level, function will return (line 1 to 2). Otherwise, the area, in which the

data is requested, will be decided (line 4). The next step is to check all the entries

148

in indexNode (line 5). If the entry represents some data in the required area (line

6), the data will be part of the return: (1) if the entry is a node entry, the data will

be added to the return (line 7 to 8); (2) if the entry is a group entry, a recursive call

is used to retrieve data from the index node which is pointed by the group entry

(line 9 to 10).

5.5 Experiments

We have conducted some experiments to verify the performance of our new

index. We mainly study two aspects of the index: index size and efficiency.

All experiments are conducted on a 2.83GHz Core 2 Quad machine with 3GB

RAM running 32-bit windows 7. All codes are implemented in Java. The dataset

we used is IMDB5 100MB, where around 200,000 movies of recent years are selected

in our dataset. Each movie contains information like title, rating, director, cast,

etc.

Table 5.1: Index Size for Subsets of IMDB dataset
Dataset Size XML Nodes Layers Index Size (KB)

1MB 50,429 6 1,125
10MB 504,288 8 10,085
100MB 4,531,695 10 90,633

Index Size. First of all, we study the index size of our index introduced in Section

5.2.2. The IMDB dataset is 100MB. To study how the index size will increase

when the data size increases, we extract a 1MB subset and a 10MB subset from

the 100MB dataset as two new datasets. Then we build up the index with scale

factor 4 on each of them. The number of layers needed is calculated according to

Equation 5.1. Table 5.1 shows the index sizes for the three datasets.

5http://www.imdb.com/interfaces

149

As shown in the table, the index size increases linearly as the dataset size

increases. This is a preferred property of our index. Here for the IMDB datasets,

the index size is slightly larger or smaller than the dataset size. This is because

the size of our index depends on the number of nodes in the XML as we are

building index on the XML nodes. IMDB dataset is data centric and it contains

a huge number of nodes, where each node only contains a short textual content,

like “movie”, “The Matrix”, etc. Our index needs to store the coordinates of each

node as discussed in Section 5.2.1. The coordinates are formed of four integers

representing an area of a rectangle. So here for IMDB dataset, the size of the

coordinates are almost the same as the size of the textual content of each node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Layer10Layer9 Layer8 Layer7 Layer6 Layer5 Layer4 Layer3 Layer2 Layer1

T
im

e(
m

s)

Average Retrieval Time for Each Layer

Figure 5.7: Average Retrieval Time for Each Layer

Efficiency. Secondly, we also test the efficiency of our index. We evaluate the

retrieval time on the index of the 100MB dataset. The index indexed 10 layers of

data. For each layer, we generate 100 random queries and each query retrieves a

window of data from that layer. The window size is set to be 1024 * 768 (pixel).

Figure 5.7 shows the average retrieval time of the 100 random queries for each

layer. We can find that accessing higher layer, which is more abstract, will cost

less time. This is because of two reasons. Firstly, accessing a higher layer does

150

not require to search until the leaf nodes of the index. E.g., retrieval of data from

layer9 only requires accessing the index from level 1 to level 2, as discussed in

Section 5.2.2. Secondly, group entries represent a larger area than the node entries.

So getting a window of data from a higher layer will get less number of entries.

5.6 XMAP Demo System

To overcome the shortcoming of existing techniques for displaying query results,

we developed the system XMAP [101] to enhances users’ search experience by 1)

showing query results in a more human-understandable way in the global context

of the whole XML document; 2) providing users an easy way to make adjustment

to the query results without revising and resubmitting the keyword query. So far

the system mainly focuses on XML data without ID references, as adding support

for XML data with ID references to the system is one of our future work.

zoom bar

navigation pad

returned

by

existing

XML

keyword

search

methods

new XMAP interactive component

results highlight

results context

zoom and navigation

Figure 5.8: Screenshot of XMAP for the query in Example 5.1

Figure 5.8 shows a screenshot of XMAP for the query “pencil black” in Example

5.1. As we can see, on the left hand side, it shows the results returned by existing

XML keyword search methods page by page. On the right hand side, the XMAP

display window works as an interactive component for users to visualize, manipulate

151

and further explore the query results.

Addressing Motivation 1 XMAP displays the results in a global context, which

makes it much easier to digest the query results. As shown in Figure 5.8, for the

query “pencil black”, the three pencils being returned, namely A, B and C, are

not all in the same category. From XMAP display, we can easily know that result

C is a make up pencil rather than a normal pencil. This is not possible to know

with the traditional result list without XMAP. On the left hand side of the XMAP

display window, users can use the zoom slider bar to zoom in/out the results to

see more details, as shown in Figure 5.9.

Addressing Motivation 2 In the XMAP display window, a dragging pad and

zoom sliding bar are provided for user to move left/right/up/down and zoom in/out,

to further explore the query results and XML data. In this way, users with different

search intentions can easily adjust the query results to meet their information

needs without revising and resubmitting the keyword query. E.g., for the query

“Allen female” in Example 5.2, user can easily use the dragging pad to explore the

information of a cashier or the chain-store just above it.

zoom bar

navigation pad

Figure 5.9: Screenshot of XMAP for the query in Example 5.1 (zoomed in)

Please refer to the Appendix B of the thesis for more details of the XMAP

system.

152

5.7 Conclusion

In this chapter, we point out that returning a list of subtrees as the results

of a keyword query on XML is not sufficient to meet the information needs for

different users. Because the query results as subtrees are actually inter-connected

in the XML document, where they may have silbling/containment relationships. It

is imprecise and could be misleading without showing proper context of the results.

To further bridge the mismatch gap between users’ search intention and the query

results, a way to easily adjust the query results and show the query results in the

global context is in demand. To address the problem, we propose our map-like

exploration model, XMAP, to work as a complementary component of the XML

keyword search engine, in order to enhance users’ search experience and bridge the

mismatch gap. We proposed a visualization way to generate different layers for

the XML data with different levels of details, such that users can zoom in/out the

display to meet their needs with different levels of details. Meanwhile, all results

are visualized in the context of the whole XML document. The context of the

query results could act as an important part for users to understand the results.

Besides, we also build a variant of R-tree index indexing all the layers generated,

where each layer corresponds to one level in the R-tree index. After that we also

provide solutions to highlight the query results by showing the structure of the

results: either statically highlighting the query results in XMAP or dynamically

generating a context display by assembling the result subtrees.

153

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Due to the easy-to-use query interface, XML keyword search has been a hot

research topic and abundantly studied in the last 10 years. In this thesis, we focus

on improving the usability of XML keyword search. Existing works mainly focus

on defining matching semantics and proposing efficient algorithms for computing

query results for a particular matching semantics. However, how to reduce the

mismatch gap between users’ search intention and the query results remains a

challenge. Users have to reformulate and resubmit their queries 40% to 52% of the

time in order to get what they want [86] even for the mature web search. In order

to bridge the mismatch gap, we try to tackle the challenges in the following three

aspects:

• We find that traditional keyword search methods on XML tree will return

a list of erroneous mismatch results to users when what they search for is

154

unavailable in the data. We define it as the MisMatch problem in XML key-

word search. Based on the abundant meta data and the structure in the XML

document, we propose a novel concept called Target Node Type (TNT) to

infer users’ search intention from the query results. With the inferred search

intention, we can easily check whether each query result complies with its

corresponding TNT for MisMatch problem. Users need explanation and sug-

gestion when the results are mismatched with their expectation. We propose

a data-driven approach to discover the keywords which cause the MisMatch

problem and generate some suggested queries based on another concept we

introduced, distinguishability, which is used to measure the importance of

query keywords. The suggested queries guarantee to have reasonable results.

• We then extend our mismatch solution from XML tree onto XML IDREF

digraph considering the ID references in the XML data. Traditional keyword

search methods on XML IDREF digraph adopt pure graph search or its vari-

ants. However, such pure graph search techniques suffer from efficiency issue

since such techniques can be as inefficiency as NP-complete. We notice that

XML IDREF digraph is actually mainly a tree plus a portion of ID refer-

ence edges. So We try to convert the XML IDREF digraph to a tree model

such that we can apply the efficient XML tree search methods and apply our

previous mismatch solution as well.

• Besides, we point out that the traditional way of showing a list of independent

subtrees as query results is imprecise and could be misleading. We improve

the existing result presentation model by showing the query results in the

global context of the whole XML document and providing a way to easily

further explore the query results.

155

After handling the mismatch caused by result retrieval and mismatch caused

by result presentation, we theoretically and experimentally demonstrate the effec-

tiveness of our approach in improving the usability of XML keyword search. We

will conclude each of above aspects in the following sections.

MisMatch Problem in Keyword Search Over XML without ID Refer-

ences

In Chapter 3, we identify the MisMatch problem in XML keyword search. We

develop a low-cost post-processing algorithm on the results of query evaluation to

detect and solve the MisMatch problem specially for XML tree. Since all existing

keyword search methods for XML tree are LCA-based, they will all try to return

a set of subtrees (with or without ranking) containing all the query keywords as

query results, regardless of users’ search intention. Even what users search for is

unavailable in the XML data, they are not able to be aware of such a fact and

will still return a list of erroneous mismatch results to users. Therefore, to solve

the MisMatch problem, we propose a post-processing methodology to detect the

mismatch between users’ search intention and the returned results.

(1) For detecting the MisMatch problem, we propose a novel concept called

Target Node Type (TNT) to infer users’ search intention for each query result.

TNT is defined making use of the structure information in the XML data. With

the TNT inferred, we then compare each query result with its corresponding TNT

for the MisMatch problem. We choose to take a conservative approach: we only

judge a query to have the MisMatch problem if none of the query results matches its

Target Node Type. Such a conclusion holds for all users with different intentions.

If the query is without the MisMatch problem, the original results will be returned

without any suggestion. Otherwise, query suggestion will be generated for the

queries with MisMatch problem.

156

(2) To generate suggestion to users for the MisMatch problem, we take the

following approach: First, we propose a novel measure called distinguishability

to measure the importance of query keywords. Second, we try to discover the

approximate results containing the important keywords in the XML data. Third, to

form the suggested queries, we will find some new keywords within the approximate

results to replace the less important keywords in the original query. Both of these

keywords are required to be from the same type of nodes in order to make sure

the semantics of the keywords are the same. Finally, a score function is proposed

to rank the suggested queries taking the following three factors into consideration:

the number of keywords which need to be replaced, the sum of distinguishability

of the keywords that need to be replaced and the compactness of the approximate

result. Our approach generating the suggested queries is data-driven such that the

suggested queries guarantee to have no MisMatch problem and have reasonable

results.

(3) To discover the approximate results efficiently, we also propose a novel

bitmap labeling scheme. The empirical study on three real datasets in experiments

demonstrates the effectiveness and efficiency of our approach. It evaluates the

detection accuracy and suggestion quality, as well as the efficiency and scalability.

(4) A search engine called XClear [104] which embeds the MisMatch problem

solution is also built.

MisMatch Problem in Keyword Search Over XML with ID References

Later in Chapter 4, we observe that an XML IDREF digraph (with ID refer-

ences considered) is mainly a tree structure with a portion of reference edges. We

propose a novel method to transform an XML IDREF digraph with ID/IDREF to

a tree model, such that we can exploit the XML tree search methods to work on

XML IDREF digraph, and subsequently our MisMatch solution designed for XML

157

tree still applies to the XML IDREF digraph. Existing keyword search methods

for XML IDREF digraph compute the query results by graph traversal. Then the

keyword search problem on an XML IDREF digraph is reduced to the problem of

finding Minimal Steiner Tree (MST) or its variants in a digraph, where an MST in

a digraph is defined as a minimal directed subtree containing all query keywords

in either its leaves or root. Since finding all MSTs in a digraph is an NP-complete

problem, efficiency is one of the notable issues. What is more, the matching seman-

tics and the keyword search methods are different from those for an XML tree. So

it poses new challenges when we try to extend our mismatch solution from XML

tree mode to XML IDREF digraph .

(1) We propose a novel way to transform an XML IDREF digraph to a tree

model by virtually replicating the subtrees being referenced. Our tree model con-

sists of two parts: an XML tree and a table (called reachability table), which is

capable of handling different kinds of reference patterns in an XML IDREF di-

graph. The experimental results show that our approach is orders of magnitude

faster than the traditional search methods for XML IDREF digraph while generat-

ing a similar set of results as existing XML IDREF digraph search methods, which

could be as inefficient as NP-complete.

(2) After we transfer an XML IDREF digraph to the tree model and adopted

the XML tree search methods, the key steps of the mismatch solution, namely

MisMatch problem detection and suggestion generation, can be applied here with

necessary variation. The major variation is 1) if a keyword match node is within a

replicated subtree, we need to infer its node type with the help of the reachability

table; 2) since there could be exponentially many node types in an XML IDREF

digraph, it is not a feasible solution to consider all those node types when we

calculate distinguishability or build the exLabel for each node in the data. But we

158

notice that many node types are actually representing the same type of information

(see Chapter 4 Section 4.6). So a feasible solution is that, when we calculate

distinguishability or build exLabel, we use the node types without ID reference edge

in its path, called solid node types, to simulate other node types which represent

the same type of information.

Query Result Presentation of XML Keyword Search

In Chapter 5 we point out that the traditional method of presenting the query

results as a list of independent subtrees is imprecise and misleading. Users could

misunderstand the results because such subtrees are actually interconnected in the

XML document and simply showing such subtrees is insufficient and misleading.

In order to further reduce the gap between users’ search intention and the query

results, we need to present the query results in a precise way with proper context

provided. Actually each query result of XML keyword search is a part of the

XML data tree rather than a piece of independent information. Among the query

results (subtrees), they may have sibling or containment relationships. Without

showing such relationships, users may misunderstand the query results and digest

the information wrongly.

(1) To improve the usability by addressing the above issues, we propose a map-

like model, call XMAP, for presenting the query result in the global context of the

whole XML document and in an interactive way. It can work as a complementary

component of the XML keyword search engine. We propose a visualization way

to generate different layers for the XML data with different levels of details, such

that we can provide users an interactive mechanism to zoom in/out or navigate the

display according to their needs viewing different levels of details. Meanwhile, the

query results are presented in the context of the whole XML document. Therefore,

users can clearly view the context and the relationship among the query results,

159

where the context of the query results is an important part for users to understand

the results.

(2) Besides, we also build a variant of R-tree index indexing all the layers gener-

ated, where each layer corresponds to one level in the R-tree index. A demo system

of XMAP has also been built [101].

Finally, to provide a complete experience of our research work done to enhance

XML keyword search usability, we have also discussed about how to integrate the

two demo system mentioned above, XClear and XMAP, in Appendix C.

6.2 Future Work

Improving the usability of XML keyword search is an important issue as it is

necessary to make XML keyword search usable for average daily users. While in

this thesis we have proposed several solutions, we would like to further explore this

topic in several directions in the future.

Making Use of ORA-SS Model For MisMatch Problem

In this thesis, we proposed a solution for the MisMatch problem in XML key-

word search. In our solution we assume that there is no outer semantics available.

In other words, we only have the XML document itself with the accompanied

schema specification, like DTD or XML Schema. As a future work, we would

like to further explore the topic of using ORA-SS (Object-Relationship-Attribute

Model for Semistructured Data) [27, 63] to further improve the MisMatch solution.

ORA-SS is an XML data model which models an XML document by objects, ob-

ject attributes, relationships, relationship attributes, etc. Most of the semantics

captured by ORA-SS data model is not able to be expressed by DTD or XML

160

Schema. Because DTD or XML Schema only captures the hierarchical structure of

the XML document but not the semantics of objects, relationships, etc. For exam-

ple, relationship attributes in the data can only be expressed as normal attributes

using DTD or XML Schema; n-ary relationship (n>2) cannot be expressed in DTD

or XML Schema, etc.

In the MisMatch solution, one important step is to infer the Target Node Type

(TNT) in order to know whether the query result is consistent with the TNT.

Our current solution is inferring the TNT based on the structural property of

the XML document, i.e. node types. If the XML data is model with ORA-SS

model, it can capture the semantics that which nodes in the XML data represent

objects, object attributes, relationships, relationship attributes, etc. With such

semantics available, we can better infer Target Node Type and therefore improve

the accuracy of the MisMatch problem detection. For example, suppose there is

an XML document describing some information about employees in a company,

each employee node can contain multiple qualification nodes as its children. Each

qualification node contains a university node and a graduate year node. In this

case, if the data is modeled by ORA-SS model, we can know that employee nodes

are object nodes while qualification nodes are not object nodes but multi-valued

composite attributes of the employee object. With the information where the object

nodes are located, we can avoid inferring non-object nodes as the Target Node Type,

like qualification node in this case. Therefore with a more accurate Target Node

Type, we can achieve better accuracy for the MisMatch problem detection.

So with the semantics provided by ORA-SS model, we can study how to make

use of them to infer users’ search intention in a more systematic and precise way

and improve the MisMatch problem detection.

Making Use of ORA-SS Model For Result Presentation

161

If an XML document is model with ORA-SS model, it can greatly help with the

result presentation. Since an XML document, or even a subtree of a query result,

can be too huge to display to users. In that case, deciding what information to hide

and what information to show is an unavoidable topic. With the help of ORA-SS

model, we can improve the result presentation in many ways.

Knowing which nodes represent objects, object attributes, relationships, rela-

tionship attributes, etc., we can choose to show the object nodes which are users’

search target, as well as the attributes of those desired objects. In such a manner,

even a result subtree contains multiple levels of objects nested within the subtree,

we can easily choose to show those desired object nodes and hide the other object

nodes. For example, suppose there is a document describing some information of a

shopping mall. Under the mall node there could be many shop nodes representing

different shops. If users’ search target is to find the information of a shopping mall,

then we can only show the node which represents the mall object as well as the

attribute nodes of the mall object, like address, phone number, etc. Under the

mall node, there are many object nodes representing different shops in the shop-

ping mall. We can hide them as they are not the desired objects. We can also

provide a mechanism for users to expand those shop nodes if they want.

From ORA-SS we can also know which attribute is the ID attribute of an object.

With such information, we can avoid showing the same object multiple times for

query result presentation, by removing those duplicated objects with the same ID

attribute value. For example, suppose there is an XML document describing some

suppliers and the parts they supply, where there is an m : m binary relationship

between object supplier and object part. If part nodes are designed to be under

the supplier nodes, then the same part could be duplicated under many different

supplier nodes because many suppliers could supply the same part. In this case,

162

if users want to find the information of a particular part and input the name of

the part, there will be many duplicated answers being returned as the same part

could be duplicated many times under different supplier nodes in the XML data.

Knowing the ID attribute of an object can help us removing those duplicated

objects with the same ID attribute value when we display the query results. Note

that here the data of supplier and part is stored without using ID references and

there is an m : m relationship among supplier and part, so the same part has to be

duplicated multiple times under different suppliers. In this case, we are not able to

use DTD or XML Schema to specify the ID attributes of objects , as DTD or XML

Schema can only define ID attributes for reference purpose and does not allow two

nodes in the XML data with the same ID attribute value.

Besides, being able to locate relationship attribute nodes can also greatly help

with displaying the results in an understandable way. E.g., if users are trying to

find the price of a laptop, we need to show the node representing the laptop object

as well as the price attribute of the laptop. Meanwhile, it is also important to show

the node representing the shop object which sells that laptop. Because price is

usually designed to be a relationship attribute between a shop object and a laptop

object.

Thus, we can try to make full use of ORA-SS model to improve result presen-

tation for XML keyword search and it can be a promising direction.

MisMatch Solution for Schema-independent Keyword Search Method

Currently, most of the XML keyword search techniques are sensitive to the

schema of the XML data. In other words, even for the same keyword query, query

results could be very different if the schema is designed differently. However, key-

word search is becoming more and more popular because users do not have to learn

the schema of the data before they can issue a query. So normally users do not

163

know the schema of data and the query results they expect from the search engine

are not depending on the schema design.

For example, suppose we need to store some data about teachers and students.

We can design the schema of XML in two possible ways: 1) teacher nodes are on

top of student nodes; 2) student nodes are on top of teacher nodes. For a query

containing two student ID, “stuID1 stuID2”, existing LCA-based search techniques

can find a common teacher who teaches those two students in the first schema

design. However, for the second schema design, the query will get the root of

the document as the query result. This is because LCA-based search techniques

are trying to find some subtrees containing all query keywords as results. Being

sensitive to schema design will require users to dig into the schema design of the

XML data, which is obviously not a desired feature.

Recently, [49] proposed a schema-independent keyword search method for XML

data, which is not sensitive to the schema design when generating results for a

keyword query, i.e., it returns the same set of answers even for different schemas of

the same data content. This is done by defining a new matching semantics called

CR (Common Relative), where ancestors and descendants of a node u are also

relatives of u. Since our MisMatch solution is for the traditional Lowest-Common-

Ancestor-based matching semantics, how to extend our MisMatch solution onto the

recent schema-independent keyword search method needs to be further studied.

164

BIBLIOGRAPHY

[1] Berkeley DB. http://www.sleepycat.com.

[2] Bing Maps. http://maps.bing.com.

[3] Google Maps. http://maps.google.com.

[4] jQuery JavaScript Library. http://jquery.com.

[5] Raphael JavaScript Library. http://raphaeljs.com.

[6] XML ClearMap. http://xclearmap.comp.nus.edu.sg.

[7] Yahoo Maps. http://maps.yahoo.com.

[8] Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu. Effective xml key-

word search with relevance oriented ranking. In ICDE, pages 517–528, 2009.

[9] Zhifeng Bao, Jiaheng Lu, Tok Wang Ling, Liang Xu, and Huayu Wu. An

effective object-level xml keyword search. In DASFAA, pages 93–109, 2010.

165

[10] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The r*-tree: An efficient and robust access method for points and

rectangles. In SIGMOD, pages 322–331, 1990.

[11] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndez, Michael

Kay, Jonathan Robie, and Jrme Simon. Xml path language (xpath) 2.0. In

W3C Recommendation, 2010.

[12] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and

S. Sudarshan. Keyword searching and browsing in databases using banks. In

ICDE, pages 431–440, 2002.

[13] Scott Boag, Don Chamberlin, Mary F. Fernndez, Daniela Florescu, Jonathan

Robie, and Jrme Simon. Xquery 1.0: An xml query language. In W3C

Recommendation, 2010.

[14] Eric Brill and Robert C. Moore. An improved error model for noisy channel

spelling correction. In ACL, pages 286–293, 2000.

[15] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:

optimal xml pattern matching. In SIGMOD, pages 310–321, 2002.

[16] Stuart K. Card, George G. Robertson, and William York. The webbook and

the web forager: An information workspace for the world-wide web. In CHI,

pages 111–117, 1996.

[17] S. Jeromy Carrière and Rick Kazman. Webquery: searching and visualizing

the web through connectivity. In Selected papers from the sixth international

conference on World Wide Web, pages 1257–1267, 1997.

[18] Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–

534, 2009.

166

[19] Hsinchun Chen, Haiyan Fan, Michael Chau, and Daniel Dajun Zeng. Metaspi-

der: Meta-searching and categorization on the web. JASIST, 52(13):1134–

1147, 2001.

[20] Peter P. Chen. The entity-relationship model - toward a unified view of data.

ACM Trans. Database Syst., 1(1):9–36, 1976.

[21] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On boosting holism in xml twig

pattern matching using structural indexing techniques. In SIGMOD, pages

455–466, 2005.

[22] Joel Coffman and Alfred C. Weaver. An empirical performance evaluation

of relational keyword search techniques. IEEE Trans. Knowl. Data Eng.,

26(1):30–42, 2014.

[23] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. Xsearch:

A semantic search engine for xml. In VLDB, pages 45–56, 2003.

[24] J Cugini, C Piatko, and S Laskowski. Interactive 3d visualization for docu-

ment retrieval. In Proceedings of the Workshop on New Paradigms in Infor-

mation Visualization and Manipulation, pages 3–10, 1996.

[25] Ricardo da Silva Torres, Celmar G. Silva, Claudia Bauzer Medeiros, and

Heloisa Vieira da Rocha. Visual structures for image browsing. In CIKM,

pages 49–55, 2003.

[26] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin

Lin. Finding top-k min-cost connected trees in databases. In ICDE, pages

836–845, 2007.

[27] Gillian Dobbie, Wu Xiaoying, Tok Wang Ling, and Mong Li Lee. Ora-ss:

Object-relationship-attribute model for semistructured data. In Technical

167

Report TR 21/00, School of Computing, National University of Singapore,

Singapore, 2001.

[28] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. In Networks,

pages 195–207, 1971.

[29] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation

and optimization in semistructured databases. In VLDB, pages 436–445,

1997.

[30] Jiafeng Guo, Gu Xu, Hang Li, Xueqi Cheng, and Xueqi Cheng. A unified and

discriminative model for query refinement. In SIGIR, pages 379–386, 2008.

[31] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.

Xrank: Ranked keyword search over xml documents. In SIGMOD, pages

16–27, 2003.

[32] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.

In SIGMOD, pages 47–57, 1984.

[33] Marios Hadjieleftheriou, Amit Chandel, Nick Koudas, and Divesh Srivastava.

Fast indexes and algorithms for set similarity selection queries. In ICDE,

pages 267–276, 2008.

[34] Susan Havre, Elizabeth G. Hetzler, Kenneth A. Perrine, Elizabeth Jurrus,

and Nancy Miller. Interactive visualization of multiple query results. In

INFOVIS, pages 105–112, 2001.

[35] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Blinks: ranked keyword

searches on graphs. In SIGMOD, pages 305–316, 2007.

168

[36] Vagelis Hristidis, Nick Koudas, Yannis Papakonstantinou, and Divesh Sri-

vastava. Keyword proximity search in xml trees. IEEE Trans. Knowl. Data

Eng., 18(4):525–539, 2006.

[37] Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Keyword

proximity search on xml graphs. In ICDE, pages 367–378, 2003.

[38] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the

provenance of non-answers to queries over extracted data. PVLDB, 1(1):736–

747, 2008.

[39] Yu Huang, Ziyang Liu, and Yi Chen. Query biased snippet generation in xml

search. In SIGMOD, pages 315–326, 2008.

[40] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of

ir techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[41] Haifeng Jiang, Hongjun Lu, and Wei Wang. Efficient processing of twig

queries with or-predicates. In SIGMOD, pages 59–70, 2004.

[42] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig

joins on indexed xml documents. In VLDB, pages 273–284, 2003.

[43] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating

query substitutions. In WWW, pages 387–396, 2006.

[44] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi

Desai, and Hrishikesh Karambelkar. Bidirectional expansion for keyword

search on graph databases. In VLDB, pages 505–516, 2005.

169

[45] M. Kickmeier and D. Albert. The effects of scanability on information search:

An online experiment. In Proceedings of HCI 2003: Designing for Society,

pages 33–36, 2003.

[46] Benny Kimelfeld and Yehoshua Sagiv. Combining incompleteness and rank-

ing in tree queries. In ICDT, pages 329–343, 2007.

[47] Daisuke Kitayama, Takahiro Teratani, and Kazutoshi Sumiya. Digital map

restructuring method based on implicit intentions extracted from users’ op-

erations. In ICUIMC, pages 45–53, 2008.

[48] Karen Kukich. Techniques for automatically correcting words in text. ACM

Comput. Surv., pages 377–439, 1992.

[49] Thuy Ngoc Le, Zhifeng Bao, and Tok Wang Ling. Schema-independence in

xml keyword search. In ER, 2014 (to appear).

[50] Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, and Jiaheng Lu.

From structure-based to semantics-based: Towards effective xml keyword

search. In ER, pages 356–371, 2013.

[51] Ki-Hoon Lee, Kyu-Young Whang, Wook-Shin Han, and Min-Soo Kim. Struc-

tural consistency: enabling xml keyword search to eliminate spurious results

consistently. VLDB J., 19(4):503–529, 2010.

[52] Daniel Lemire, Owen Kaser, and Kamel Aouiche. Sorting improves word-

aligned bitmap indexes. Data Knowl. Eng., 69(1):3–28, 2010.

[53] Anton Leuski and James Allan. Lighthouse: Showing the way to relevant

information. In INFOVIS, pages 125–129, 2000.

170

[54] Changqing Li and Tok Wang Ling. Qed: a novel quaternary encoding to

completely avoid re-labeling in xml updates. In CIKM, pages 501–508, 2005.

[55] Changqing Li, Tok Wang Ling, and Min Hu. Efficient processing of updates

in dynamic xml data. In ICDE, pages 13–22, 2006.

[56] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. Effective key-

word search for valuable lcas over xml documents. In CIKM, pages 31–40,

2007.

[57] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.

Ease: an effective 3-in-1 keyword search method for unstructured, semi-

structured and structured data. In SIGMOD, pages 903–914, 2008.

[58] Luochen Li, Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, and Stéphane Bres-

san. Discovering semantics from data-centric xml. In DEXA, pages 88–102,

2013.

[59] Mu Li, Muhua Zhu, Yang Zhang, Ming Zhou, and Ming Zhou. Exploring

distributional similarity based models for query spelling correction. In ACL,

pages 1025–1032, 2006.

[60] Quanzhong Li and Bongki Moon. Indexing and querying xml data for regular

path expressions. In VLDB, pages 361–370, 2001.

[61] Wen-Syan Li, K. Selçuk Candan, Quoc Vu, and Divyakant Agrawal. Re-

trieving and organizing web pages by “information unit”. In WWW, pages

230–244, 2001.

[62] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-free xquery. VLDB, pages

72–83, 2004.

171

[63] Tok Wang Ling, Mong Li Lee, and Gillian Dobbie. Applications of ora-ss: An

object-relationship-attribute data model for semistructured data. In IIWAS

’01: Proceedings of 3rd International Conference on Information Integration

and Web-based Applications and Serives.

[64] Ziyang Liu and Yi Chen. Identifying meaningful return information for xml

keyword search. In SIGMOD, pages 329–340, 2007.

[65] Ziyang Liu and Yi Chen. Reasoning and identifying relevant matches for xml

keyword search. PVLDB, 1(1):921–932, 2008.

[66] Ziyang Liu, Peng Sun, and Yi Chen. Structured search result differentiation.

PVLDB, 2(1):313–324, 2009.

[67] Jiaheng Lu, Zhifeng Bao, Tok Wang Ling, Xiaofeng Meng, and Xiaofeng

Meng. Xml keyword query refinement. In KEYS, pages 41–42, 2009.

[68] Jiaheng Lu, Tok Wang Ling, Chee Yong Chan, and Ting Chen. From region

encoding to extended dewey: On efficient processing of xml twig pattern

matching. In VLDB, pages 193–204, 2005.

[69] Yifei Lu, Wei Wang, Jianxin Li, and Chengfei Liu. Xclean: Providing valid

spelling suggestions for xml keyword queries. In ICDE, pages 661–672, 2011.

[70] Ye Ma, Derong Shen, Yue Kou, and Wei Liu. An effective query relaxation

solution for the deep web. In APWeb, pages 649–659, 2008.

[71] Toshiyuki Masui, Mitsuru Minakuchi, George R. Borden IV, and Kouichi

Kashiwagi. Multiple-view approach for smooth information retrieval. In ACM

Symposium on User Interface Software and Technology, pages 199–206, 1995.

172

[72] Sougata Mukherjea and Yoshinori Hara. Visualizing world-wide web search

engine results. In IV, pages 400–407, 1999.

[73] Ion Muslea. Machine learning for online query relaxation. In KDD, pages

246–255, 2004.

[74] Ion Muslea and Thomas J. Lee. Online query relaxation via bayesian causal

structures discovery. In AAAI, pages 831–836, 2005.

[75] MySQL. http://www.mysql.com.

[76] Ullas Nambiar and Subbarao Kambhampati. Answering imprecise queries

over autonomous web databases. In ICDE, pages 45–54, 2006.

[77] Bo Ning, Guoren Wang, and Jeffrey Xu Yu. A holistic algorithm for efficiently

evaluating xtwig joins. In DASFAA, pages 571–579, 2008.

[78] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon

Schaller, and Nigel Westbury. Ordpaths: Insert-friendly xml node labels. In

SIGMOD, pages 903–908, 2004.

[79] Fuchun Peng, Nawaaz Ahmed, Xin Li, Yumao Lu, and Yumao Lu. Context

sensitive stemming for web search. In SIGIR, pages 639–646, 2007.

[80] Ken Q. Pu and Xiaohui Yu. Keyword query cleaning. PVLDB, 1(1):909–920,

2008.

[81] Yonggang Qiu, Hans-Peter Frei, and Hans-Peter Frei. Concept based query

expansion. In SIGIR, pages 160–169, 1993.

[82] Knut Magne Risvik, Tomasz Mikolajewski, Peter Boros, and Peter Boros.

Query segmentation for web search. In WWW (Posters), 2003.

173

[83] Gerard Salton and Michael J. McGill. Introduction to Modern Information

Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[84] Peter Sanders and Frederik Transier. Intersection in integer inverted indices.

In ALENEX, pages 71–83, 2007.

[85] Albrecht Schmidt, Martin L. Kersten, and Menzo Windhouwer. Querying

xml documents made easy: Nearest concept queries. In ICDE, pages 321–

329, 2001.

[86] Amanda Spink, Bernard J. Jansen, Dietmar Wolfram, and Tefko Saracevic.

From e-sex to e-commerce: Web search changes. IEEE Computer, 35(3):107–

109, 2002.

[87] Anselm Spoerri. Rankspiral: Toward enhancing search results visualizations.

In INFOVIS, pages 18–19, 2004.

[88] Chong Sun, Chee Yong Chan, and Amit K. Goenka. Multiway slca-based

keyword search in xml data. In WWW, pages 1043–1052, 2007.

[89] Yufei Tao, Stavros Papadopoulos, Cheng Sheng, and Kostas Stefanidis. Near-

est keyword search in xml documents. In SIGMOD, pages 589–600, 2011.

[90] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram,

Eugene J. Shekita, and Chun Zhang. Storing and querying ordered xml using

a relational database system. In SIGMOD, pages 204–215, 2002.

[91] Arash Termehchy and Marianne Winslett. Using structural information in

xml keyword search effectively. ACM Trans. Database Syst., 36(1):4–52, 2011.

[92] Quoc Trung Tran and Chee-Yong Chan. How to conquer why-not questions.

In SIGMOD, pages 15–26, 2010.

174

[93] V. Vesper. http://www.mtsu.edu/vvesper/dewey.html.

[94] Bienvenido Vlez, Ron Weiss, Mark A. Sheldon, David K. Gifford, and

David K. Gifford. Fast and effective query refinement. In SIGIR, pages

6–15, 1997.

[95] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Structural join order

selection for xml query optimization. In ICDE, pages 443–454, 2003.

[96] Jinxi Xu, W. Bruce Croft, and W. Bruce Croft. Query expansion using local

and global document analysis. In SIGIR, pages 4–11, 1996.

[97] Liang Xu, Zhifeng Bao, and Tok Wang Ling. A dynamic labeling scheme

using vectors. In DEXA, pages 130–140, 2007.

[98] Liang Xu, Tok Wang Ling, Huayu Wu, and Zhifeng Bao. Dde: from dewey

to a fully dynamic xml labeling scheme. In SIGMOD, pages 719–730, 2009.

[99] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest

lcas in xml databases. In SIGMOD, pages 537–538, 2005.

[100] Yu Xu and Yannis Papakonstantinou. Efficient lca based keyword search in

xml data. In EDBT, pages 535–546, 2008.

[101] Yong Zeng, Zhifeng Bao, Guoliang Li, and Tok Wang Ling. Exploring xml

data is as easy as using maps. In CIKM, pages 2497–2500, 2013, demo paper.

http://zengyong.comp.nus.edu.sg/xmap.jsp.

[102] Yong Zeng, Zhifeng Bao, Tok Wang Ling, H. V. Jagadish, and Guoliang Li.

Breaking out of the mismatch trap. In ICDE, pages 940–951, 2014.

175

[103] Yong Zeng, Zhifeng Bao, Tok Wang Ling, and Guoliang Li. Efficient xml

keyword search: From graph model to tree model. In DEXA, pages 25–39,

2013.

[104] Yong Zeng, Zhifeng Bao, Tok Wang Ling, and Guoliang Li. Removing the

mismatch headache in xml keyword search. In SIGIR, pages 1109–1110, 2013,

demo paper. http://xclear.comp.nus.edu.sg.

[105] Yong Zeng, Zhifeng Bao, Tok Wang Ling, and Luochen Li. Malex: a map-

like exploration model on xml database. In SIGMOD workshop KEYS, pages

32–38, 2012.

[106] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.

Lohman. On supporting containment queries in relational database manage-

ment systems. In SIGMOD, pages 425–436, 2001.

[107] Wei Vivian Zhang, Xiaofei He, Benjamin Rey, and Rosie Jones. Query rewrit-

ing using active learning for sponsored search. In SIGIR, pages 853–854, 2007.

[108] Junfeng Zhou, Zhifeng Bao, Wei Wang, Tok Wang Ling, Ziyang Chen,

Xudong Lin, and Jingfeng Guo. Fast slca and elca computation for xml

keyword queries based on set intersection. In ICDE, pages 905–916, 2012.

[109] Junfeng Zhou, Xingmin Zhao, Wei Wang, Ziyang Chen, and Jeffrey Xu Yu.

Top-down keyword query processing on xml data. In CIKM, pages 2225–2230,

2013.

[110] Rui Zhou, Chengfei Liu, and Jianxin Li. Fast elca computation for keyword

queries on xml data. In EDBT, pages 549–560, 2010.

176

APPENDIX A: XCLEAR DEMO

SYSTEM

Addressing the MisMatch problem, we have built an interactive XML keyword

search engine called XClear [104], following our research work in Chapter 3. It can

detect the MisMatch problem and show users why the MisMatch problem exists,

as well as providing result-driven suggested queries to users. The system mainly

focuses on XML data without ID references, while it will be one of our future

work to add support for XML data with ID reference according to the solution in

Chapter 4.

The architecture of XClear is shown in Figure 1. The Index Constructor con-

structs indexes for efficiently retrieving query results and maintaining node type

information for the nodes in the XML data. The Results Searcher generates query

results for the keyword query. After query results are generated, Results Ranker

will rank the query results. The key feature of XClear lies in the MM Component,

which has the original query and its results as input. It consists of three parts:

(1) MisMatch Problem Detector infers the potential search targets and checks

177

the MisMatch problem from the query results as discussed in Chapter 3. If the

MisMatch problem exists, the Suggested Query Generator will be triggered. (2)

Suggested Query Generator generates the suggested queries and a sample re-

sult for each suggested query, for user to verify its quality. (3) Suggested Query

Ranker ranks all suggested queries according to our ranking model (Chapter 3).

The ranked suggested queries and the corresponding sample query results will be

returned to the user.

Detection
Info

Figure 1: Architecture of XClear System

Next we will show how XClear can greatly enhance user’s search experience

in terms of three aspects: efficient, effective and user-friendly. As the ultimate

goal, we want to demonstrate the ability of XClear in (1) showing the user why

the mismatch exists and (2) providing result-driven suggested queries to bridge the

mismatch gap.

We would like to highlight the UI design on how to further improve users’ search

experience. Figure 2 shows a screenshot for a query Q=‘Inception Spanish’ in order

to find the Spanish version of a movie Inception.

First, as shown in the left part of Figure 2, after the query results are computed

178

 showing 1-5 of 600 results:

1. Answer Root: <imdb>

2. Answer Root: <imdb>

......

 (SLCA+Ranking 0.208 seconds, MM component 0.01 seconds)

What you search for may not exist. Did you mean:

Sample Query Result:

Suggested Query: Inception English
(more

queries)
(why)

qu
(

Inception Japanese

Inception French

Pulp Fiction Spanish

The Godfather II Spanish

Raiders of Lost Ark Spanish Inception Chinese

(more

queries)

Other alternative suggested queries:

Figure 2: Suggested Queries & Sample Query Result

and ranked, each result is displayed as a tree rather than plain text, which makes

the query results more highlighted and intuitive to user. Nodes in the XML data are

represented as rectangles and values are represented as text. Each query keyword

contained in the keyword match node will be shown in bold font such that the user

can easily judge how her keywords are related to each other and whether the results

are of her interest.

Next, MM Component will check all the retrieved results for the MisMatch

problem. If the query has the MisMatch problem (see Chapter 3), XClear proceeds

to generate and rank the suggested queries. Here for the query ‘Inception Spanish’,

there is no Spanish version of the movie Inception in our database. So as we can see

in Figure 2, the answer root for each result is imdb, where the language ‘Spanish’

matches one movie while the movie name ‘Inception’ matches another. Thus, what

the user searches for does not exist and Q has the MisMatch problem.

As shown in the right part of Figure 2, first, a notification “What you search

for may not exist” is displayed to the user. Second, the best suggested query and

its sample result are provided. In the sample query result, the new keywords for

replacement are highlighted in pink color and italic font, so that user can easily find

179

 We find that the top-K (10) results all miss the target.
E.g., the first query result:

 where your keyword(s):

"Inception" match a node of type "imdb/movie/title"

"Spanish" match a node of type "imdb/movie/ls/language"

Such a result’s LCA is of node type “imdb”.

But Target Node Type(TNT) of the result should be "imdb/movie",
which is defined as the Longest Common Path of the above node

types matched by each keyword.

“imdb” ≠"imdb/movie"
The result misses the target. So do all the other top-K

results. Therefore, what you search for may not exist.

Next we will try to find suggested queries.

Measuring the importance of the query keywords according to

our concept of Distinguishability (high value means high

importance):

Keyword Match Nodes Distinguishability

"Inception" 1.0

"Spanish" 0.913

we find an approximate query result in the XML data which you

may be searching for:

where keyword "English" can be a replacement for your keyword

"Spanish".

So we suggest you a new query Inception English.

Figure 3: Reasoning of “why”

out the difference between the new query and the original query. Third, a “why”

button (next to the suggested query) is provided for user to get further reasoning

on why we generate this suggested query. If the user agrees on the suggested query

after viewing the sample result, she can submit the new query by simply clicking on

the suggested query; otherwise, users can also view some other alternative suggested

queries or even find more suggested queries by clicking the “more queries” button.

All the suggested queries are derived from the XML data and guaranteed to have

reasonable query results. E.g., the movie Inception has four languages in the data:

English, Japanese, French and Chinese, which correspond to four of the suggested

180

queries provided on the right of Figure 2.

Figure 3 shows the reasoning behind the suggested query after user click the

“why” button in Figure 2. Such a step-by-step reasoning provides an intuitive yet

clear way to illustrate how a suggested query is derived. It starts from the reason

why MisMatch problem exists, and then displays the approximate results and high-

lights the ‘important’ query keywords, and finally shows how the suggested query is

inferred. The detailed reasoning can give the user a comprehensive understanding

on how we generate the suggested query.

181

APPENDIX B: XMAP DEMO SYSTEM

To tackle the drawbacks of the traditional way of displaying query results, we

have developed the system XMAP [101] following our research work in Chapter 5,

which offers a new and visual way for users to explore XML data and enhances

users’ search experience by 1) providing users an easy way to make adjustment to

the query results without revising and resubmitting the keyword query; 2) showing

the query results in a more precise and human-understandable way in the global

context. The system mainly focuses on XML data without ID references. Support

for XML data with ID references in the system will be one of our future work.

The system architecture of XMAP is shown in Figure 4. All the functionalities

are supported by the components running at two sides: browser end and server

end.

At browser end, it includes three components: UI controller, MapPainter and

Cache Manager. UI controller captures the operations of the user. If the operations

require to change the display in user’s window, e.g. a zoom-in operation, it will

pass a command toMapPainter, which is in charge of drawing the display according

to the parameters (such as the number of current layer, the region needed to be

182

displayed etc.), and highlighting the query results in the display. If some data is

not available locally at the browser end (cache), it will inform the Cache Manager

to load in the missing data. Each component in browser end is implemented in

JavaScript.

At the server end, there are two main components: Index Constructor and

Request Handler. Index Constructor constructs an R-tree liked index (see Chapter

5) for indexing the layers generated, so that MALEX can efficiently locate a specific

region of data on a specific layer. Request Handler is a component handling all the

data requests from the browser end. It will extract the required area of data through

the index and send them to the user.

Figure 4: Architecture of XMAP

Figure 5 shows a screenshot of XMAP for the query “pencil black” in Chapter 5

Example 5.1. As we can see, on the left hand side, it shows the results returned by

existing XML keyword search methods page by page. On the right hand side, the

XMAP display window works as an interactive component for users to visualize,

manipulate and further explore the query results.

XMAP Display (with Dynamically-loaded Data) On the right hand side of

Figure 5, a XMAP display window is available to enhance users’ search experience.

In the display window, users can see the XML data from a specific layer (see Chapter

183

5) in a map-like style. Data needed for display is dynamically loaded. For each

XML node, the content of the node is shown in a 2-D rectangle, where tag names

are shown in normal font and values are shown in italic font. The 3-D rectangles

represent groups, each of which is a group of compatible subtrees as discussed in

Chapter 5. On the surface of the 3-D rectangles, a summary of the group will be

shown and the query results will also be highlighted.

zoom bar

navigation pad

returned

by

existing

XML

keyword

search

methods

new XMAP interactive component

results highlight

results context

zoom and navigation

Figure 5: Screenshot of XMAP for a query “pencil black” addressing Motivation 1

Note that in Figure 5, on the left pane, the query results are displayed page

by page if there are too many results. The results on the current page will be

highlighted at the XMAP display, which is located at the right pane. Each query

result is highlighted by an orange rectangle. The letter assigned to each result is

zoom bar

navigation pad

Figure 6: Screenshot of XMAP for a query “pencil black” (zoomed in)

184

also shown to help users distinguish the query results easily. Once user clicks on a

particular result on the left pane, it will automatically take her to the corresponding

subtree in the right pane (similar to Google Map).

zoom bar

navigation pad

Figure 7: Screenshot of XMAP for a query “Allen female” addressing Motivation
2

Addressing Motivation 1 in Chapter 5, which leads to a demand of showing

the relationships among the query results and the context of the query results.

XMAP displays the results in a global context, which makes it much easier to

digest the query results. E.g., for the query “pencil black” in Figure 5, the three

pencils being returned, namely A, B and C, are not all in the same category. From

XMAP display, we can easily know that result C is a make up pencil rather than a

normal pencil. This is not possible to know with the traditional result list without

XMAP. On the left hand side of the XMAP display window, users can use the

zoom slider bar to zoom in/out the results to see more details, as shown in Figure

6. After zoomed in, users can now see the full subtree of the results.

Addressing Motivation 2 in Chapter 5, which calls for an easier way for

users to further explorer the query results to find what they want. In the XMAP

display window, a dragging pad and sliding bar are provided for user to move

left/right/up/down and zoom in/out, to further explore the query results and XML

185

data. In this way, users with different search intentions can easily adjust the query

results to meet their information needs without revising and resubmitting the key-

word query. As shown in Figure 7, for a query “Allen female”, the user can easily

use the dragging pad to explore the information of a cashier or the chain-store just

above it. The user can see very easily from XMAP that the chain store which Allen

works in is located at #12 West Str.

186

APPENDIX C: INTEGRATING

XCLEAR AND XMAP

Since XClear and XMAP are two different systems focusing on query result

refinement and query result visualization respectively, to provide a complete expe-

rience of all features in both systems, we have tried to integrate XClear and XMAP

into one single system. We gave it a name XML ClearMap [6] which is coming from

both the name XClear and XMAP. It is built by integrating XClear and XMAP

with various enhancement. The major task for such an integration is to build a

communication module to let XClear and XMAP work together. Besides, during

the integration, the user interface of XMAP component is slightly different from the

user interface mentioned in Appendix B because some UI implementation library

has been changed 1. So far the system mainly focuses on XML data without ID

references, as adding support for XML data with ID references to the system is one

of our future work.

1We have changed the web page UI library from jQquery v1.9.0 [4] to Raphael 1.11.1 [5] ,
considering that the latter can provide better efficiency. Such a change caused the UI to be
slightly different.

187

Figure 8: Architecture of XML ClearMap

Figure 8 shows the system architecture of XML ClearMap. The whole system

consists of two parts. One part is the front end running at users’ browsers. The

other part is the back end running on the server.

At the front end, which runs at users’ browsers, it contains an XClear module,

an XMAP module and a Communication Module. Both of the XClear Module and

the XMAPModule work in the same way as they do in the XClear demo system and

XMAP demo system. So here we will only talk about how they will cooperate with

each other rather than breaking down these two components. XClear Module gets

users’ keyword query and then send it to the server side for query evaluation (server

end will be talked about later). After the server finishes the query evaluation,

query results and query suggestion (if the query has MisMatch problem) will be

returned to the XClear Module. Then XClear Module will show the query results

and the query suggestion (if any) to the users. Since XMAP is to help visualize

188

the query results, XClear Module needs to pass the query results to the XMAP

Module. This process is done by the Communication Module, which will take the

query results and convert them to the format required by the XMAP Module.

When the XMAP Module get the query results with required format from the

Communication Module, it will visualize the results in XMAP. Besides, XMAP is

an interactive visualization module. Users can further explore the query results in

XMAP. Sometimes the data which users are exploring may not be available at the

browser side. In such a case, XMAP needs to dynamically load the missing data

from the server side. It will send a request to the server side, i.e. XMAP Server in

Figure 8. Then the required data will be sent to the XMAP Module.

At the server end, it contains two servers: XClear server and XMAP server.

Both of them work independently and provide data to the XClear Module and

XMAP Module respectively at the browser end. These two parts are the same as

in the XClear demo system and XMAP demo system, details of which can be found

in Appendix A and Appendix B.

Figure 9: XML ClearMap for Query without MisMatch Problem

Figure 9 shows a screenshot of XML ClearMap for a query “Jagadish”, which

189

is without the MisMatch problem. As we can see, search bar is on the top of the

page. If the query is without the MisMatch problem, there will be a hint under the

search bar telling users that the query is without the MisMatch problem. On the

left hand side of the screenshot, it is the result displaying window, where the result

is shown in a traditional way. Each result is a subtree. In order to offer a way for

users to see how the results relate to each other and to further explore the query

results, we have a Result Context Display window on the right hand side of Figure

9, which is dynamically generated by the XMAP module based on the query results.

Each grey rectangle represents a node in the XML data. The result subtrees are

highlighted with pink border and result number. Besides of the result subtrees, the

paths which connect each subtree are also shown. E.g., the query “Jagadish” in

Figure 9 get a lot of author nodes as query results. But they are interconnected

in the XML data rather than some independent subtrees. This is well expressed

in the Result Context Display window, where we can see they are interconnected

and under different inproceedings nodes. Besides, for each inproceedings node, we

also show an attribute which can identify it, i.e., showing the title node under the

inproceedings node.

In the Result Context Display window in Figure 9, users can click the result

by the result number to further explore a particular result. After users’ click, a

new window called Result Exploration Display window will appear on the top of

the current window, as shown in Figure 10. This window is to help users further

explore the query result which users just clicked. It will locate the result subtree

in the whole XML data. Users can explore and see any part of the XML data

by navigating using a mouse. Users can drag the display to see the part which is

not showing in the window. To zoom in, users can click the “zoom” icon or the

suspension point. Then the display will be zoomed in and locate to the part which

190

Figure 10: Result Exploration Display of XML ClearMap

is being clicked by users. To zoom out, users can click the “zoom out” button on

the top of the Result Exploration Display window. To close the Result Exploration

Display window, users can click the close button on the top right corner of the

Result Exploration Display windows.

For queries with the MisMatch problem, the XClear server will detect the prob-

lem and generate useful suggestion and return them to users. As shown in Figure

11, a box with suggestion for MisMatch problem will be shown under the search

bar, which is the same as the XClear demo system. It includes hint, suggested

queries, sample result, reasoning, etc. Since the suggestion is similar to the XClear

demo system, we will not explain them here. Please refer to Appendix A for more

detail.

The XML ClearMap embeds the XClear component and XMAP component to

provide a complete experience of our research work enhancing the usability of XML

keyword search. It can detect the MisMatch problem and give useful suggestion

191

Figure 11: XML ClearMap for Query with MisMatch Problem

to users. Meanwhile, it also provides an easy and interactive way for users to

understand how the query results relate to each other and further explore the

query results. It greatly enhance usability and move XML keyword search one step

forward to be built as a user-friendly and industrialized product.

192

