
ON THE PRIVACY AND UTILITY OF

SOCIAL NETWORKS

YI SONG

(B.Com., SOUTHEAST UNIVERSITY)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2014

ACKNOWLEDGMENTS

My first and foremost thank goes to my supervisor Prof. Stéphane Bressan who

has supported me during the past five years and influenced me in many ways. He is

a very friendly man with wisdom and humor. His insights in research and rigorous

attitude are invaluable for my research. His heuristic guidance in our discussion

made me think and work very independently. He provided valuable suggestions for

the problems that I encountered not only in my research, but also in the everyday

life. I will benefit from what I have learned from him, not only for a Ph.D. degree,

but also for the rest of my life. I am deeply grateful to him.

I would like to thank Prof. Tan Kian Lee, Prof. Phan Tuan Quang, and Prof.

Talel Abdessalem for serving on my thesis committee and providing many useful

comments on the thesis.

I appreciate all the people coauthoring with me, especially Prof. Panagiotis

Karras and Dr. Sadegh Nobari. Their contributions further strengthened the

technical quality and literary presentation of our papers.

I would like to thank to my lab-mates, my friends, and my colleagues at SAP

Research & Innovation during my internship, as well as all the other people with

whom I have been working together in the past five years.

I would like to thank to my beloved parents, Song Jianming and Xu Qin. Their

unconditional love has brought me into the world, raised me, and supported my

decision to pursue a Ph.D. degree.

Last but not least, my deepest love is reserved for my husband, Tan Jin Han,

who has been accompanying and taking care of me every day.

ii

Publications

Materials in this thesis are revised from the following list of our previous publica-

tions.

• Yi Song, Panagiotis Karras, Sadegh Nobari, Giorgos Cheliotis, Mingqiang

Xue, Stéphane Bressan. “Discretionary Social Network Data Revelation with

a User-Centric Utility Guarantee”, 21st ACM International Conference on

Information and Knowledge Management (CIKM 2012) Maui, USA

• Yi Song, Stéphane Bressan. “Fast Community Detection”, 24rd Interna-

tional Conference on Database and Expert Systems Applications (DEXA

2013)Prague, Czech Republic

• Yi Song, Stéphane Bressan. “Force-directed Layout Community Detection”,

24rd International Conference on Database and Expert Systems Applications

(DEXA 2013) Prague, Czech Republic

• Yi Song, Sadegh Nobari, Xuesong Lu, Panagiotis Karras, Stéphane Bressan.

“On the Privacy and Utility of Anonymized Social Networks”, The 13th Inter-

national Conference on Information Integration and Web-based Applications

& Services (iiWAS 2011) Ho Chi Minh City, Vietnam

• Yi Song, Xuesong Lu, Stéphane Bressan, Panagiotis Karras. “On the Privacy

and Utility of Anonymized Social Networks”, IJARAS 4(2): 1-34 (2013)

• Xuesong Lu, Yi Song, Stéphane Bressan. “Fast Identity Anonymization on

Graphs”, 23rd International Conference on Database and Expert Systems

Applications (DEXA 2012) Vienna, Austria

The following is a list of other publications I have participated in during my

Ph.D study.

iii

• Yi Song, Panagiotis Karras, Stephane Bressan, Qian Xiao. “Sensitive Label

Privacy Protection on Social Network Data”, 24th International Conference

on Scientific and Statistical Database Management (SSDBM 2012) 25-27 June

2012 Chania, Crete, Greece

• Xuesong Lu, Giorgos Cheliotis, Xiyue Cao, Yi Song, Stephane Bressan. “The

Configuration of Networked Publics on the Web: Evidence from the Greek

Indignados Movement”, ACM Web Science 2012 (WebSci 2012) Evanston,

Illinois

• Jianhua Qu,Yi Song, Stephane Bressan. “PSOGD: A New Method for Graph

Drawing”, 4th International Workshop on Graph Data Management: Tech-

niques and Applications (GDM 2013) In Conjunction with IEEE International

Conference on Data Engineering (ICDE 2013) Brisbane, Australia

• Yi Song, Daniel Dahlmeier, Stephane Bressan. “Not So Unique in the Crowd:

a Simple and Effective Algorithm for Anonymizing Location Data”, ACM

SIGIR Workshop PIR 2014 Brisbane, Australia

iv

Contents

1 Introduction 1

1.1 Graph anonymization . 3

1.2 Community Detection . 4

1.3 Contributions . 5

1.3.1 Fast Identity Anonymization on Graphs 6

1.3.2 Graph Anonymization with Reachability Constraints 7

1.3.3 Fast Community Detection 7

1.3.4 Force-directed Layout Community Detection 8

1.3.5 Local Closeness Community Detection 9

1.4 Organization of the Thesis . 10

2 Background and Related Work 11

2.1 Background . 11

2.1.1 Graph Models . 11

2.1.2 Metrics . 12

2.2 Community Detection Related Work 17

2.2.1 Traditional methods . 17

2.2.2 Random-walk based methods 18

2.2.3 Modularity-based methods 19

2.2.4 Clique-based methods . 19

2.2.5 Agglomerative algorithms 20

2.2.6 Local algorithms . 21

v

2.2.7 Alternative algorithms . 22

2.3 Graph Anonymization Related Work 24

2.3.1 Attack Taxonomy . 24

2.3.2 Anonymity . 27

2.3.3 Anonymization Approaches 29

3 Graph Anonymization 35

3.1 Fast Identity Anonymization on Graphs 36

3.1.1 Overview . 36

3.1.2 Algorithm . 39

3.1.2.1 The greedy examination Algorithm 40

3.1.2.2 The edge creation Algorithm 42

3.1.2.3 The relaxed edge creation Algorithm 43

3.1.2.4 The Fast K -degree Anonymization Algorithm . . . 45

3.1.3 Performance Evaluation . 46

3.1.3.1 Experimental Setup 46

3.1.3.2 Data Sets . 46

3.1.3.3 Effectiveness Evaluation 47

3.1.3.4 Efficiency Evaluation 51

3.1.4 Summary . 52

3.2 Graph Anonymization with Reachability Constraints 53

3.2.1 Overview . 53

3.2.1.1 A Practical Example 54

3.2.1.2 The potential for structural attacks 56

3.2.1.3 Our proposal . 57

3.2.2 Reachability Preservation 59

3.2.2.1 Problem Definition 62

3.2.2.2 Relaxing the Reachability Requirement 64

3.2.2.3 Algorithm . 66

vi

3.2.3 Experimental Evaluation . 69

3.2.3.1 Data Description 69

3.2.3.2 Utility Assessment 70

3.2.3.3 Resistance to Structural Attacks 75

3.2.4 Discussion . 77

3.2.5 Summary . 79

4 Community Detection 80

4.1 Force-directed Layout Community Detection 81

4.1.1 Overview . 81

4.1.2 Background . 82

4.1.3 Algorithm . 83

4.1.4 Experimental Evaluation . 84

4.1.4.1 Data Sets . 85

4.1.4.2 Analysis of non-overlapping community detection . 85

4.1.4.3 Analysis of overlapping community detection . . . 89

4.1.4.4 Complexity . 90

4.1.5 Summary . 90

4.2 Fast Disjoint and Overlapping Community Detection 91

4.2.1 Overview . 91

4.2.2 Algorithm . 92

4.2.2.1 Fast Disjoint Community Detection 92

4.2.2.2 Fast Overlapping Community Detection 95

4.2.2.3 Complexity Analysis 96

4.2.3 Experiment . 97

4.2.3.1 Data sets . 99

4.2.3.2 Metrics . 101

4.2.3.3 Experimental Assessment for Disjoint Community

Detection . 102

vii

4.2.3.4 Experimental Assessment for Overlapping Commu-

nity Detection . 109

4.2.4 Summary . 115

4.3 Local Closeness Community Detection 116

4.3.1 Overview . 116

4.3.2 Motivation . 117

4.3.2.1 Closeness Centrality 117

4.3.2.2 Local Outlier Factor 118

4.3.3 Local Closeness Factor . 120

4.3.3.1 Definitions . 120

4.3.3.2 Properties of Local Closeness Factor 124

4.3.3.3 Bound for LCF . 124

4.3.3.4 LCF for community detection 125

4.3.4 Algorithm . 126

4.3.4.1 Choice of Parameters 130

4.3.4.2 Complexity Analysis 131

4.3.5 Experiment . 131

4.3.5.1 Data sets . 132

4.3.5.2 Metrics . 133

4.3.5.3 Result analysis . 133

4.3.6 Summary . 139

5 Conclusion and Future Work 142

5.1 Conclusion . 142

5.2 Future Work . 144

A On the Privacy and Utility of Anonymized Social Networks 169

A.1 k-degree anonymity . 169

A.2 k-automorphism . 170

A.3 Utility Metrics . 172

viii

A.4 Data Sets . 173

A.5 Experiments . 175

A.6 Summary . 185

B GPU-based Parallel Particle Swarm Optimization Methods for

Graph Drawing 186

ix

SUMMARY

The connectedness of social networks inspires the study of social networks for ap-

plications in various fields such as sociology, marketing and biology. Online Social

Network Sites (SNSs) allow users to discover and share information about them-

selves and their peers. Data that is produced on a large scale from these networks

brings challenges to the exploration of data utility, as well as the protection of data

privacy.

We look into both problems from a graph perspective. In particular, we focus

on community detection and graph anonymization. Graphs analyses facilitate the

study of relationships or social interactions of online social networks modeled as

graphs. Community detection constitutes an important tool for the analysis, by ex-

ploring the network structure and associated information. It provides insights into

the network characteristics and structural properties, and thus, the social phenom-

ena that take place. On the other hand, to protect data from private information

disclosure, prevent malicious use and to ease the user concerns, graph anonymiza-

tion approaches are in demand. Graph anonymization approaches perturb graphs

under certain constraints such that the released data has a certain level of guaran-

teed privacy or data utility.

In this thesis, we discuss the concepts, related works and the problems of graph

anonymization and community detection. We then design algorithms to solve the

problems, respectively.

First, we study the problem of graph anonymization that protects the privacy of

sensitive information in social network data. The target is to perturb the structures

of naive anonymized graphs in such a way that, after anonymization, the graphs are

capable of resisting attacks and preserving usersṕrivacy. We study the shortcomings

of an existing state-of-the-art algorithm and propose a heuristic algorithm that not

x

only overcomes the shortcomings, but also improves the effectiveness and, most

importantly, the efficiency of large graphs. Next, we propose a user-centric utility-

driven paradigm, as opposed to the commonly used privacy-driven paradigm, and

an algorithm that anonymizes graphs with a utility guarantee, while certain graph

properties are preserved. We aim to offer an informative view of the network for

users while resisting certain structural attacks.

Second, we study the problem of community detection on a simple graph that

explores beneficial knowledge, based on the graph structures underlying social net-

works. The target is to discover structural communities utilizing various graph

properties. We propose three algorithms that detect communities based on a wide

range of graph structural properties, including the degree and clustering coeffi-

cient, closeness among the vertices, and the physical forces among the vertices

when simulating the whole graph as a physical system, respectively. Through a

comprehensive experimental study on both the real world network and synthetic

data sets, the proposed solutions are shown to be efficient and effective.

xi

List of Tables

4.1 Performance Comparison between FR-EM,FR-KM and GN 85

4.2 Description of data sets . 101

4.3 Description of data sets . 132

A.1 Description of data sets . 175

B.1 Parameters of the algorithm . 191

B.2 Information of Group 4 . 192

xii

List of Figures

3.1 ED: Email-Urv. 48

3.2 CC: Email-Urv. 48

3.3 ASPL: Email-Urv. 48

3.4 ED: Wiki-Vote. 48

3.5 CC: Wiki-Vote. 48

3.6 ASPL: Wiki-Vote. 48

3.7 ED: Email-Enron. 49

3.8 CC: Email-Enron. 49

3.9 ASPL: Email-Enron. 49

3.10 Execution time on Email-Urv. 51

3.11 Execution time on Wiki-Vote. 51

3.12 Execution time on Email-Enron. 51

3.13 Speedup of FKDA vs. KDA on Email-Urv. 51

3.14 Speedup of FKDA vs. KDA on Wiki-Vote. 51

3.15 Speedup of FKDA vs. KDA on Email-Enron. 51

3.16 Visualization of connections in Xing 55

3.17 Visualization of connections in LinkedIn 56

3.18 Example of path revelation. 61

3.19 Graphs G1 and G2 having the same G2 63

3.20 Degree distribution (DD) and geodesic distribution (GD) results . . 70

3.21 Earth mover’s distance of degree distribution and geodesic distribution 71

xiii

3.22 Graph properties with increasing distortion, Flickr (a-d) and Gnutella

(e-h) . 74

3.23 Precision and Recall, False negatives and False positives, Flickr (a-b)

and Gnutella (c-d) . 75

3.24 Success rate of structural attack . 76

4.1 Performance Comparison between multiple dimension FR-KM and

GN . 86

4.2 Modularity for varying number of clusters 87

4.3 Running time for varying number of clusters for Email-URV, Wiki-

Vote, and Facebook data set . 88

4.4 Precision for varying average degree of synthetic graphs 88

4.5 Zachary’s Karate Club data partitioned into overlapping clusters . . 89

4.6 Membership strength . 89

4.7 Example . 95

4.8 Communities for Karate Club data by different algorithms 102

4.9 Communities for Dolphin data by different algorithms 102

4.10 Measurements on real world graphs 104

4.11 Measurements on synthetic graphs 105

4.12 Community distribution . 106

4.13 Running time for large graphs . 106

4.14 Measurements on graphs with varying average degree 111

4.15 Measurements on graphs with varying size 112

4.16 Measurements on graphs with varying average degree 113

4.17 Measurements on graphs with varying size 113

4.18 Community distribution . 114

4.19 Running time comparison . 114

4.20 Vertex V has 4 one-step neighbors and 20 two-step neighbors. . . . 119

4.21 Zachary’s Karate Club example . 123

xiv

4.22 The number of vertex migrations during each iteration. 131

4.23 Comparison of NMI value on three sets of graphs. 135

4.24 Omega value comparison on three sets of graphs. 135

4.25 Comparison of modularity, conductance, internal density, cut ratio, weighted

community clustering, average community size on graphs with different

average degree . 136

4.26 Effects of the number of iterations and effects of refinement 137

4.27 Changing values of NMI and Omega with parameter k varying. 138

4.28 Comparison of running time on on three sets of graphs. 140

4.29 Comparison of NMI value and running time on real world networks. . . 140

A.1 k-degree anonymous graphs, for various values of k 170

A.2 k-automorphic graphs, for various values of k 171

A.3 Denstiy . 176

A.4 Graph diameter and radius . 177

A.5 Mean geodesic distance . 177

A.6 Algebraic connectivity . 178

A.7 Geodesic distribution . 179

A.8 Degree distribution . 180

A.9 Clustering Coefficient . 180

A.10 Centrality metrics . 182

A.11 Remaining proportion of influential vertices 183

A.12 Earth mover’s distance . 183

A.13 Edit distance . 183

A.14 Edit distance vs density . 184

B.1 Drawing of group 1 by PSOGD and F-R 192

B.2 Drawing of group 2 by PSOGD and F-R 193

B.3 Drawing of group 3 by PSOGD and F-R 193

B.4 Drawing of group 4 by PSOGD and F-R 193

xv

B.5 Evolutionary drawing with varying number of particles by PSOGD 194

B.6 Fitness curve . 195

B.7 Comparison of running time . 196

xvi

Chapter 1

Introduction

Milgram’s small world experiment in the United States [110], forerunner in the field

of social network analysis, identified the small-world phenomenon. The experiment

was designed to count the number of intermediaries via which letters could be sent

to the target contact, from individuals who are in different cities and randomly

chosen. The result suggests that the distance between two individuals is usually

rather small, not exceeding six steps. Similarly, Watts’s experiment [154] shows

that the average number of intermediaries via which an e-mail message can be

delivered to a target was around six. Leskovec and Horvitz [94] found the average

distance among users of an instant messaging system to be 6.6. In view of the

connectedness of real-world social networks, it is of the same interest or even more

to study online social networks that have grown sharply, and are producing huge

quantities of data.

Online Social Network Sites (SNSs) allow users to discover and share infor-

mation about themselves and their peers, while they provide researchers with a

valuable tool for social, cultural, and media studies via data analysis and mining

[120]. The capacity to exchange information in such networks rests on an assumed

1

underlying trust among users [65]. While trust is thicker among people with strong

interpersonal ties, it also affects one’s ability to cultivate and mobilize weak social

ties for the transfer of valuable information [97]. Trust is thus essential not only for

bonding social capital, associated with strong ties, but also for bridging social cap-

ital, associated with weak social ties and information-seeking behavior [75]. SNSs

are valuable for the development of both types of social capital, while the posi-

tive effects of their use may be stronger for bridging social capital [55]. In short,

the technological affordances of SNSs provide leverage in building weak ties and

bridging social capital, while the value of these ties for an individual is mediated

by interpersonal trust [97].

In order to safeguard such trust, as well as the institutional trust that users

place in the owners and administrators of the SNS, the privacy of users has to

be guarded from malicious users, as well as from malicious data recipients when

data is published to third parties. The data from online social networks raises

the interest of marketers, politicians, and sociology researchers, as well as hackers

and terrorists. Mining and analyzing the data should only benefit legitimate users

while no one, and more critically, no malicious user, should be able to access or

infer private information.

We use simple graphs, graphs with only vertices and edges, to model social

networks. Each vertex represents a user, and each edge connecting two users rep-

resents the strong social ties in the form of relationships or interactions between

these two users. Ever since the emergence of graph theory in the 18th century

[57], and developments in the following centuries [19], graphs have become useful

representations of systems in numerous areas, e.g. biology, sociology and trans-

portation. Graph analysis has gradually become crucial to social network analysis

which started in the 1930’s. Graph analysis facilitates the study of relationships or

2

social interactions of the underlying networks represented.

However, the publication and analyzing of social network data entails a privacy

threat to their users. Researchers, such as the authors of [7], quickly observed

that simply hiding the identities of the users in a social network may not suffice

to protect privacy. Indeed, the structure of the graph itself may leak sufficient

information for an adversary with minimal external knowledge to infer the identity

of users, for instance. Consequently, several graph anonymization algorithms have

been proposed, that not only remove identity, but also perturb graph content and

structure while trying to preserve utility for the sake of mining and analysis.

Therefore, we focus on both aspects in social network analysis. In the utility

aspect, we study the detection of structural communities in graphs. In the privacy

aspect, we study graph anonymization techniques that anonymize the graph data

before data releasing, such that graphs after anonymization are capable of resisting

attacks and preserving users’ privacy.

1.1 Graph anonymization

Graph anonymization emerges from the privacy concerns in data publication. It

is observed that simply hiding the identities of the users in a network may not

sufficient to protect privacy [7]. Indeed, the structure of the graph itself may leak

sufficient information for an adversary with minimal external knowledge to infer the

identity of users, for instance. Consequently, graph anonymization algorithms have

been proposed that not only remove identity but also perturb the graph content

and structure while trying to preserve utility for the use of analysis.

In some cases, users want to keep their private relationships or personal infor-

mation to themselves, therefore the goal of graph anonymization has been extend

3

to prevent not only identity disclosure but also link disclosure and attribute disclo-

sure. Ways to perturb the graph include the addition/deletion of vertices/edges,

generalization of attributes associated with vertices or edges, generalization of ver-

tices, etc. To measure how much perturbation is induced to the graph and thus

how much utility is left, one common method is to compare the measurements on

the graphs before and after anonymization.

1.2 Community Detection

Community study constitutes an important part of the graph analysis [157]. It pro-

vides insights into the network characteristics and structural properties [153, 135],

and thus, the social phenomena that take place either online or offline [16, 145, 148].

Communities can be described as explicit or implicit, where explicit communities

are created based on human decisions and member consent, e.g. Facebook Groups,

and implicit communities are assumed to exist in the network and waiting to be

discovered [122]. The implicit communities are related to network structure and

are the targets of the most community detection methods.

Community is a group of vertices that have more connections to each other

inside the group, than to the vertices outside the group. As a feature of social net-

works, it was first called community structure in [69]. For social network, communi-

ties suggest quick channels of information flow or better connectedness. Efficiently

discovering such structures helps users to identify individuals who are closely re-

lated, and facilitates information dissemination, which is instrumental for the study

of social behaviors [2], viral marketing [26], politics [56], and etc.

Community detection is sometimes referred to as graph clustering. While find-

ing communities is similar to clustering analysis in the sense that they generate

4

clustering assignments for each object, community detection focuses on the net-

work topology. A variety of methods have been proposed to detect communities.

As a user may belong to more than a single community, which is common in social

networks, some methods are designed to discover overlapping communities instead

of disjoint communities. Modularity is one of the popular concepts applied to mea-

sure the quality of the communities. Modularity is defined based on this idea that

edges between vertices in the same community are dense, but are sparse between

different communities. It is defined as the number of edges falling within groups

minus the expected number in an equivalent graph with edges placed at random,

where the equivalent graph means the graph with same number of edges and the

same distribution of degree[115].

1.3 Contributions

Our main contributions in this thesis include the design of algorithms in two im-

portant parts of social network analysis: privacy protection of sensitive information

in social network data and exploration of beneficial knowledge based on the graph

structures underlying social networks.

We first design algorithms to anonymize graphs so that social network data can

be revealed in a way that restricts information from malicious users while benefiting

benevolent users, e.g. expanding social circles and establishing new social ties.

Then, we propose techniques to assist the users with the effective analysis of data

in a manner of community detection, which provides users with insights into the

densely connected groups in the social networks and thus, the diffusion of influence

and information and users’ social opportunity.

Social network is modeled as simple graph. We explore the structural informa-

5

tion rather than semantic information. Edges are of the same type, and so are the

vertices. Edges are not associated with weights, and vertices are not associated

with attributes. Nevertheless, our methods consider the connectedness between

individuals who may or may not connect. We quantify such connectedness based

on several graph properties, e.g. degree, clustering coefficient, closeness centrality,

geodesic distance, etc. While we conduct experiments to examine the effectiveness

and efficiency of our algorithms, the empirical results give a good indication of the

effectiveness of the quantifications.

We list the achievements so far as follows.

1.3.1 Fast Identity Anonymization on Graphs

Liu and Terzi proposed the notion of k -degree anonymity to address the problem

of identity anonymization in graphs. A graph is k -degree anonymous if, and only

if, each of its vertices has the same degree as that of, at least, k -1 other vertices.

The anonymization problem is to transform a non-k -degree anonymous graph into

a k -degree anonymous graph, by adding or deleting a minimum number of edges.

Liu and Terzi proposed an algorithm that remains a reference for k -degree ano-

nymization. The algorithm consists of two phases. The first phase anonymizes

the degree sequence of the original graph. The second phase constructs a k -degree

anonymous graph with the anonymized degree sequence by adding edges to the

original graph. We propose a greedy algorithm that anonymizes the original graph

by simultaneously adding edges to the original graph and anonymizing its degree

sequence. We thereby avoid testing the realizability of the degree sequence, which

is a time consuming operation. We empirically and comparatively evaluated our

new algorithm. The experimental results show that our algorithm is indeed more

efficient and more effective than the algorithm proposed by Liu and Terzi on large

6

real graphs.

1.3.2 Graph Anonymization with Reachability Constraints

Existing research addresses the graph anonymization problem by following an ap-

proach popular in the database community: a model of data privacy is defined,

and the data is rendered in a form that satisfies the constraints of that model while

aiming to maximize some utility measure. Still, there is no consensus on a clear

and quantifiable utility measure over graph data. We take a different approach: we

define a utility guarantee, in terms of certain graph properties being preserved, that

should be respected when releasing data, while otherwise distorting the graph to

an extent desired for the sake of confidentiality. We propose a form of data release

which builds on current practice in social network platforms: A user may want

to see a subgraph of the network graph, in which that user as well as hisconnec-

tions and affiliates participate. Such a snapshot should not allow malicious users

to gain private information, yet provide useful information for benevolent users.

We propose a mechanism to prepare data for user viewing under this setting. In

an experimental study with real data, we demonstrate that our method preserves

several properties of interest more successfully than methods that randomly distort

the graph to an equal extent, while withstanding structural attacks proposed in the

literature.

1.3.3 Fast Community Detection

We propose algorithms for the detection of disjoint and overlapping communities in

networks. The algorithms exploit both degree and clustering coefficient of vertices

as these metrics characterize dense connections, which we hypothesize as being in-

dicative of communities. Each vertex independently seeks the community to which

7

it belongs, by visiting its neighbouring vertices and choosing its peers on the basis

of their degrees and clustering coefficients. The algorithms are intrinsically data

parallel. We devised a version for Graphics Processing Unit (GPU). We empiri-

cally evaluate the performance of our methods. We measure and compare their

efficiency and effectiveness to several state-of-the-art community detection algo-

rithms. Effectiveness is quantified by metrics, namely, modularity, conductance,

internal density, cut ratio, weighted community clustering and normalized mutual

information. Additionally, average community size and community size distribu-

tion are measured. Efficiency is measured by the running time. We show that our

methods are both effective and efficient. Meanwhile, the opportunity to parallelize

our algorithm yields an efficient solution to the community detection problem.

1.3.4 Force-directed Layout Community Detection

We propose a graph-layout-based method for detecting communities in networks.

We first project the graph onto a Euclidean space using the Fruchterman-Reingold

algorithm, a force-based graph drawing algorithm. We then cluster the vertices

according to Euclidean distance. The idea is a form of dimension reduction. The

graph drawing in two or more dimensions provides a heuristic decision as to whether

vertices are connected by a short path approximated by their Euclidean distance.

We studied community detection for both disjoint and overlapping communities.

For the case of disjoint communities, we used k-means clustering. For the case

of overlapping communities, we used fuzzy-c means algorithm. We evaluated the

performance of our different algorithms for varying parameters and number of it-

erations. We compared the results to several state of the art community detection

algorithms, each of which clusters the graph directly or indirectly according to

geodesic distance. We show that, for non-trivially small graphs, our method is

8

both effective and efficient. We measure effectiveness using modularity when the

communities are not known in advance and precision when the communities are

known in advance. We measure efficiency with running time.

1.3.5 Local Closeness Community Detection

We propose an algorithm for the detection of structural communities in graphs,

which leverages a local notion of closeness centrality. The algorithm is able to

detect communities in the presence of overlaps. We define this local notion of

closeness centrality by adapting the measures used in the local outlier factor algo-

rithm to graphs. The main idea is to restrict the local neighborhood explored for

the computation of a local notion of closeness centrality. This is done by computing

distance, reachability distance and density of a vertex within its nearest neighbors.

It is inspired by the local outlier factor algorithm where local reachability density

and local outlier factor are computed with their nearest neighbors. The efficiency

of our algorithm arises from the definition and application of this local notion of

closeness centrality. We present the notion and the algorithm using this notion. We

found that our algorithm is more effective and efficient than the algorithm using

closeness centrality. We also compared the performance of our algorithm with that

of two state-of-the-art community detection algorithms for overlapping communi-

ties: a label propagation algorithm, a game theory algorithm and a probabilistic

model algorithm. We empirically evaluated the performance of our algorithm with

varying parameters, and assessed effectiveness by calculating the normalized mu-

tual information and omega index between the set of communities found, and the

known set of communities. We show that our algorithm displays generally com-

petitive performance on both synthetic graphs and real world graphs. It is more

effective and efficient than the three algorithms for large sparse graphs.

9

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents a detailed review

of background knowledge and related work. Chapter 3 and 4 present the main

contributions in this thesis, which includes two graph anonymization algorithms

(Section 3.1 and 3.2), a force-directed layout-based community detection method

(Section 4.1), a vertex-centric community detection method (Section 4.2), and a

local closeness community detection method (Section 4.3). Finally we conclude and

propose the possible directions in the future work in Chapter 5.

10

Chapter 2

Background and Related Work

Our framework starts by modeling social networks as graphs. Anonymization tech-

niques are applied to the graphs if they are going to be released, so that user

privacy is preserved. On the other hand, we analyze the graphs, either original or

anonymized, for practical applications. Out of all the kinds of graph analysis, we

focus on the techniques that find dense structural communities according to graph

topology. In the following discussions, we first review the general notions about

graphs in Section 2.1. Then we review the community detection approaches in

different categories in Section 2.2. Section 2.3 discuss the concepts and approaches

related to graph anonymization.

2.1 Background

2.1.1 Graph Models

Social networks are modeled by graphs with vertices corresponding to individuals or

entities, and edges corresponding to relationships or interactions among individuals.

Vertices may have attributes. For example, in social networks, individuals may

11

have profiles containing information about their age, date of birth, occupation and

interests. Edges may have attributes such as edge type or weight.

In a simple and usual case, a network is formally modeled as a simple graph

G = (V,E). V is a set of vertices representing entities in the network and E,

{(u, v)|u, v ∈ V }, is a set of edges representing relations or interactions between

entities. G is undirected, un-weighted, and has no self-loop.

Other types of graphs have also been used to model social networks, such as

bipartite graphs, graphs with weighted edges, graphs whose vertices have attributes

and edges have attributes, graphs whose edges have been distinguished by sensitive

or non-sensitive, etc. In our work, we focus on the simple graph where structural

information is the main consideration.

2.1.2 Metrics

In this thesis, we are concerned with the topological properties of social networks.

We therefore consider the metrics that quantify various structural properties of

graphs. These properties or features of graphs such as connectivity and centrality

are typically used for studying, for instance, information diffusion in social networks

[73].

Degree of a vertex v of a graph is the number of edges incident to the vertex.

Eccentricity of a vertex v means the greatest distance between v and any other

vertex.

Diameter is the maximum graph eccentricity of all the vertex in a graph.

Radius is the minimum graph eccentricity of any vertex in a graph.

Density is the ratio of the number of edges to the number of possible edges in

an undirected simple graph, defined as: D = 2e
n(n−1)

. n is the number of vertices. e

is the number of edges.

12

Average shortest path length, also known as mean geodesic distance, is

the average of shortest paths for all possible pairs of vertices. The shortest path

length between two vertices in a simple graph is defined as the least number of

hops from one vertex to the other.

Degree centrality of vertex v is the number of vertices adjacent to it in

graph G. For comparison between different graphs, we use the normalized degree

centrality: CD(v) = d
n−1

, d is the degree of vertex v, and n the number of vertices

of graph G. A higher degree centrality may mean more connections one individual

has, thus indicating a larger social circle in a social network.

Closeness centrality of vertex vi is the inverse of the mean geodesic distance

of vi to all the other vertices in the graph: CC(vi) = n−1∑n
i 6=j g(vi,vj)

where n is the

number of vertices of graph G, g(vi, vj) is the geodesic distance between vi and any

other vertices in graph G. Closeness centrality measures how close a vertex is to all

the other vertices. The higher the value is, the important the vertex is, since the

closer a vertex is to the other vertices in a social network or information network,

the faster information can be exchanged for example.

Betweenness centrality of vertex vi is the ratio of the number of shortest

paths that pass vi to the total number of shortest paths in graph G: CB(vi) =∑
vs 6=vi 6=vt∈V

σst(vi)
σst

. σst is the total number of shortest paths between vertex vs and

vertex vt, and σst(vi) is the number of shortest paths between vertex vs and vt that

pass through vertex vi. The higher the value of betweenness centrality, the more

important a vertex is.

Eigenvector centrality of vertices is the principle eigenvector of the network’s

adjacency matrix. It indicates each vertex’s importance according to its connections

to important vertices (the concept used in Google’s Pagerank algorithm [25].)

Algebraic connectivity [35] is the second smallest eigenvalue of the Laplacian

13

matrix of a graph G. It suggests how well connected a graph is. If the graph is

disjoint, which is to say the graph has more than one component, then its algebraic

connectivity value is 0. Otherwise the upper bound for algebraic connectivity for

the graph is the minimum cut set [48] while the lower bound is 1
nD

where n is the

number of vertices of graph G. D is the diameter of graph G.

Earth mover’s distance (EMD) [131] measures the distance between two

probability distributions. It suggests the minimum amount of work that must be

performed to transform one distribution to another. To further analyze degrees of

vertices, we apply it to the degree distributions of graphs.

Edit distance is used as the total number of edges deleted inserted: Cost(G,G∗) =

(E(G)
⋃
E(G∗))−(E(G)

⋂
E(G∗)), where E(G) is the set of edges in graph G, and

E(G∗) is the set of edges in the anonymized graph G∗.

Clustering coefficient indicates the extent to which vertices in a graph tend to

cluster together. It can be measured globally and locally.

Global clustering coefficient is the count of triangles and triples in the whole

graph. It is defined as: 3∗4
Λ

. 4 is the number of triangles, and Λ is the number of

connected triples.

Local clustering coefficient is defined for each vertex. Local clustering co-

efficient of vertex vi is Ci =
|ejk|

ki∗(ki−1)
. vj and vk are the neighbors of vi. |ejk| is

the number of edges between the neighbors of vi while ki is the number of vi’s

neighbors.

We introduce community related metrics as follows.

Modularity [114] is defined as

modularity =
1

2m
Σi,j∈V (Aij −

kikj
2m

)δ(ci, cj) (2.1)

where Aij = 1 if i and j are connected, otherwise Aij = 0, and δ(ci, cj) = 1 if i

14

and j belong to the same cluster, otherwise δ(ci, cj) = 0. Modularity is defined

based on this idea that edges between vertices in the same community are dense,

and are sparse between different communities. To find communities with natural

division, modularity is defined as the number of edges falling within groups minus

the expected number in an equivalent (the same number of edges and the same

degree distribution) graph with edges placed at random [115].

The revised modularity for overlapping communities is defined as:

QE
ov =

1

2m
ΣcΣi,j∈c[Aij −

kikj
2m

]
1

OiOj
(2.2)

where Oi is the number of communities to which vertex i belongs, and Oj is the

number of communities to which vertex j belongs.

Conductance for a set of vertices S is defined as

conductance(S) =
cs

2ms + cs
(2.3)

where cs = |(u, v) ∈ E : u ∈ S, v /∈ S|. It is the number of edges with one end in

the set and the other end outside the set. ms = |(u, v) ∈ E : u ∈ S, v ∈ S|. It is

the number of edges in S.

Internal density for a set of vertices S is defined as

InternalDensity(S) =
ms

ns(ns − 1)/2
(2.4)

where ms is the same as above. ns is the number of vertices in S. Internal Density

is the internal edge density of S.

Cut ratio for a set of vertices S is defined as

CutRatio(S) =
cs

ns(n− ns)
(2.5)

15

Cut Ratio is the fraction of existing edges out of all possible edges having one end

outside the cluster.

Weighted community clustering [124] for a set of vertices S is defined as

WCC(S) =
1

|S|
∑
x∈S

f(x, S) (2.6)

where f(x, S) = t(x,S)
t(x,V)

∗ vt(x,V)
|S\x|+vt(x,V \s) if t(x, V) 6= 0; f(x, S) = 0 if t(x, V) = 0.

t(x, S) is the number of triangles that vertex x closes with vertices in S and vt(x, S)

is the number of vertices in S that form at least one triangle with x.

High modularity suggests dense connections between the vertices within com-

munities, but sparse connections between vertices in different communities, while a

modularity value of zero suggests the connections within communities are no better

than those in random graphs which have no community structures. Conductance,

internal density, and cut ratio measure the quality of communities in terms of in-

ternal and external connectivity. WCC measures the community quality based on

the closed triangles. High WCC suggests a higher probability of closed triangles

among the vertices within communities, compared to those between communities.

Additionally, we can use a widely adopted metric called normalized mutual in-

formation (NMI) [91] to measure the similarity between detected disjoint or over-

lapping communities and ground truth.

Normalized Mutual Information (NMI) of two sets of communities {C1}

and {C2} is defined as:

NMI(X|Y) = 1− [H(X|Y) + H(Y |X)]/2, (2.7)

where H(X)(H(Y)) is the entropy of the random variable X(Y) associated with

the set of community {C1}({C2}), and H(X|Y) is the conditional entropy of X

16

with respect to Y . NMI indicates the similarity between two sets of communities.

Omega Index is also a metric based on two sets of communities. It measures how

many pairs of vertices belong together in the same number of communities. Both

the NMI and Omega Index yield values between 0 and 1, with value 1 corresponding

to a perfect match between the two sets of communities.

2.2 Community Detection Related Work

Community detection dates back to Weiss and Jacobson’s work [156] in 1955. They

sought work groups within a government agency by studying the matrix of working

relationships. A large number of approaches were proposed after Girvan and New-

man’s work [69, 114] in 2002. Their method identifies and removes the between-

cluster edges iteratively, according to the betweenness centrality. The graph is

disjointed, and consequently results in communities.

2.2.1 Traditional methods

Community detection is sometimes referred to as graph clustering. Basically, it

can be categorized into partition clustering, hierarchical clustering, and spectrum

clustering [61]. Hierarchical clustering can be further divided into divisive cluster-

ing, and agglomerative clustering. Partition clustering is dividing the vertices into

groups with a possible predefined size or predefined number of groups, so as to

maximize/minimize a given metric. Hierarchical clustering computes the pairwise

vertex similarities, and then iteratively merges the vertices with sufficient high sim-

ilarity or divides clusters by removing the edges between vertices with sufficiently

low similarities. Spectrum clustering projects vertices to some spaces and partitions

them, based on the eigenvectors of matrices.

17

In the following sections (2.2.3-2.2.7), we review the specific methods according

to a different classification scheme that is based on the features of the methods.

We emphasize that many methods may fall into more than one category. In this

case, we only classified them according to what we consider their main features.

2.2.2 Random-walk based methods

Several methods [123, 84, 149, 107, 129] are based on the idea of random walks.

Pons and Latapy [123] calculated the similarities which they call distance, between

pairs of adjacent vertices and between communities, by using short random walks,

Then, they adopted Ward’s [152] agglomerative hierarchical clustering approach to

find communities. Community structures are obtained and represented as a tree

called dendrogram. Jin et al. [84] proposed an algorithm based on the Markov ran-

dom walk to unfold the communities, and extracted them with a cut-off criterion

based on conductance. Dongen [149] utilized the Markov Chain to simulate the

random walks. This work is based on the idea that if starting at a vertex and then

traveling to other vertices randomly, the possibility of staying within the clusters is

higher compared to travelling between the clusters, because there are more edges

within the cluster than between clusters. The method is based on the transition

probability matrix with adjustments. In the long run, this effect will disappear,

so Dongen designed an algorithm that stops half way in the Markov Chain. [107]

proposed using random walks with restarts to find significant clusters in large-scale

protein networks. The idea is to expand a given cluster to include the protein with

the highest proximity to the current cluster. Rosvall and Bergstrom [129] com-

bined an information theoretic approach and random walk to detect communities

in weighted and directed network.

18

2.2.3 Modularity-based methods

Several authors [114, 36, 117, 76, 77] focused on modularity, which was first pro-

posed by Girvan and Newman [69]. Girvan and Newman in [114] proposed a

divisive method to identify communities. The edges with the highest betweenness

are removed iteratively, thus disconnecting the graph and creating communities.

The best partition has the highest modularity. Clauset [36] proposed a method

based on the assumption of a lack of global knowledge about the graph, and thus

communities are detected by exploring one vertex at a time. Clauset defined a

local measurement of community structure called locally modularity, and proposed

an agglomerative algorithm to maximize the local modularity of the communities

detected. Nicosia et al. [117] optimized modularity for overlapping communities on

directed graphs. Gregory’s method [76] finds overlapping communities by extend-

ing Girvan and Newman’s method. Instead of removing an edge after identifying

the edge with high betweenness, vertices are split. They defined vertex between-

ness, which is calculated according to the edge betweenness, for the vertices to

decide which, how and when to split. Gregory [77] improved the complexity of the

algorithm by computing local betweenness instead of global betweenness. Still the

problem with these methods is the scalability of the algorithms due to betweenness

computation.

2.2.4 Clique-based methods

Some methods are based on cliques. Du et al. [50] used maximal cliques for com-

munity detecting instead of star-shaped subgraphs. The problem of star clustering

[6], as they pointed out, is that the verteice with high degrees do not necessarily

mean involvement in a community. Therefore, they proposed an algorithm called

ComTector. It enumerates all maximal cliques, finds the clustering kernel in each

19

group of the overlapping maximal cliques, assigns the rest vertices to the closest

kernels, and then merges fractional communities. Palla et al. [67] designed the

clique percolation method which finds all cliques of size k and thus the communi-

ties. They defined a community as the union of all k-cliques that can be reached

from each other through a series of adjacent k-cliques, where two k-cliques are ad-

jacent if they share k-1 vertices. Communities are connected union of k-cliques.

Cui et al. [43] focused on finding overlapping communities given an online query

vertex. They pointed out that defining a community as a k-clique component, an

example of which can be seen in [67], is too restrictive. They relaxed the com-

munity requirement by defining a γ-quasi-k-clique and define a community as a

γ-quasi-k-clique component. The components are obtained by a depth-first search

on the clique graph.

2.2.5 Agglomerative algorithms

The methods [37, 3] detect community in an agglomerative way. Clauset et al. [37]

proposed a greedy hierarchical agglomerative algorithm. It starts from each vertex

being a community, and joins two communities at each iteration. Two communities

are selected, based on the requirement of maximizing modularity increment. They

used a dendrogram to represent the whole process. Ahn et al. Ahn et al. [3] defined

clusters as sets of edges. They found hierarchical community structures through

single-linkage hierarchical clustering, which groups edges pairwise according to their

edge similarity until all edges are in the same cluster. Edge similarity is defined

by the Jaccard index, where the sample sets are the immediate neighboring non-

common vertices of the two edges.

20

2.2.6 Local algorithms

Some methods [11, 12, 72, 91, 41, 36] detect community locally. Baumes et al.

[11, 12] proposed two heuristics to detect locally dense subgraphs as communities.

Two subgraphs with significant overlap can be locally optimal, and are overlapping

communities. The first heuristic finds disjoined clusters by deleting high-ranking

vertices, and then adds the deleted vertices to one or more clusters. The second

heuristic starts from randomly chosen seeds, and then adds or deletes one vertex

at a time until the density metric cannot be further improved. Goldberg et al. [72]

proposed an additional requirement to Baumes et al.’s algorithms, that requires

the community to be a connected sub-graph. According to a density metric, the

density of a community cannot be improved with the removal or addition of a single

vertex. Lancichinetti et al. [91] proposed an algorithm that is capable of finding

both hierarchical and overlapping communities. A fitness function of clusters is

designed. Each cluster starts from a single vertex. Neighbors of vertices in the

clusters are added and deleted one by one, as long as the fitness increases. The

cluster is formed when the fitness reaches a local maximum. Then another unvisited

vertex is chosen randomly to start forming a cluster. The algorithm proceeds until

all vertices have been assigned to clusters. The vertices may be assigned to different

clusters, which forms overlapping communities. Michele et al. [41] proposed an

algorithm that democratically allows each vertex to choose their communities in

their local views. Specifically, the method extracts the ego network of each vertex,

applies a label propagation algorithm to the subgraph and then combines the results

of all vertices. The algorithm is parallelizable and incremental.

21

2.2.7 Alternative algorithms

As time evolves, a sequence of networks is generated. Some methods [44, 17] con-

sider dynamic networks. Cuzzocrea et al. [44] proposed a match-based community

detection algorithm for dynamic network. Algorithms were proposed to capture

and model various kinds of community transitions, by matching network snapshots

of adjacent time steps. Boden et al. [17] detected communities at each time step

using the DB-CSC approach [78], and then match the communities by projecting

the vertices of a graph onto a dimensional vector space and check whether the two

given samples were generated from the same underlying distribution.

Some methods detect communities based on structural and extra information,

e.g. vertex attributes, edge content, and event information [99, 130, 126, 17]. Li

et al. [99] proposed an agglomerative clustering method for detecting communities

based on event information. They designed a special type of edge called virtual links

connecting a pair of vertices representing individuals from different events who do

not have direct interactions but who work on some similar topics. The algorithm

starts by having the members from each event form an initial community. Then it

detects similar events in terms of overlapping vertices and virtual links, and then

merges them to form bigger communities in an agglomerative way until the quality

of the detected communities in the merging process have become maximal. Ruan

et al. [130] designed a method for community detection by combining content and

link information to strengthen the community signal. The similarity of content

is measured and is used to sharpen the link strength, where link strength is an

estimation of probability for an edge to reside within a community. Content edges

are constructed based on the content similarities. The algorithm samples the union

of content edges and normal graph edges with bias to retain edges that are relevant

in local neighborhoods for each vertex. Then graph partition algorithms can be

22

applied to the sampled graph and output clusters. Qi et al. [126] proposed an

edge-induced matrix factorization model to detect community incorporating edge

content, which they believe provides a number of distinguishing characteristics of

the communities which cannot be modeled by vertex content. They designed a

latent representation which can effectively expose the community factors with the

use of both structure and edge content, and then well-known clustering methods

can be applied to the latent vectors to find communities of edge. Finally, vertices

can be assigned to those communities correspondingly.

Jierui and Boleslaw [161] improved the speaker-listener label propagation algo-

rithm to make it possible for disjoint community detection [127] to be capable of

detecting overlapping communities. Each vertex holds one or multiple labels and

iteratively updates the labels according to the popular labels among its neighbors.

The algorithm scales linearly with the number of edges. Similarly, [93] used la-

bel propagation, but their method detects community in an active semi-supervised

way.

Zhang et al. [173] proposed a method that combines spectral mapping, fuzzy

clustering and the optimization of a quality function. Graphs are projected to a low

dimensionality Euclidean space, and then the vertices are clustered by fuzzy c-mean

algorithm. Yan and Gregory [164] proposed an optimization for existing community

detection algorithms. Pairwise vertex similarities are measured beforehand, and

existing algorithms are applied on the graph with the vertex similarities as edge

weights.

23

2.3 Graph Anonymization Related Work

The need for more involved graph anonymization stems from one shortcoming

of naive anonymization [7]. Naive anonymization replaces the identities of ver-

tices with synthetic identifiers before publishing the graph. With minimal external

knowledge, adversaries may be able to recover these identities from the graph struc-

ture. In this section, we discuss the attacks, anonymity, and the anonymization

approaches proposed previously.

2.3.1 Attack Taxonomy

Backstrom et al. [7] proposed active attack and passive attack on social net-

works. An active attack uses a strategy that plants a unique small graph into

the network by creating fake accounts before releasing, and then tries to find this

planted graph in the anonymized graph after release, so as to get information about

the targets. A passive attack , as opposed to an active attack, aims to identify

targets in anonymized graphs according to graph patterns that are formed by ex-

isting accounts in the social networks, instead of accounts purposely created by

attacks. For these two attacks, adversaries have the structural information about

subgraphs in the released graphs.

Adversaries can have various types of background knowledge to breach the

privacy of data. The ability to attack depends on background knowledge of adver-

saries. For example, an adversary may use knowledge of quasi-identifiers to detect

the identities in tabular data. Because of the versatile information contained, ad-

versaries’ background knowledge may be any of the following:

• vertex knowledge: An individual vertex has information such as degree,

attributes and labels. Degree is one of the most important topology charac-

24

teristics about one vertex in graph. It represents the number of relationships

or interactions an individual has with other individuals. Accurate degree in-

formation is not hard to get as long as it has not been perturbed. Vertex

attributes (identity excluded) can be sensitive or non-sensitive and may func-

tion as identifiers, similarly to tabular data. One example is NodeInfo [33],

which is defined as information that is attached to a vertex, and any identi-

fying information such as name or personal identify number is excluded.

• link knowledge: We define any link-related but not structural information

as link knowledge, such as edge weight and type.

• structural knowledge: Structural knowledge includes the paths between

pairs of vertices or neighborhood structural information of a certain vertex,

such as a subgraph around the vertex. This kind of information is the main

background knowledge for adversaries and makes the biggest difference be-

tween graph data and tabular data. The authors of [33, 81, 175, 177, 169]

focus on attacks based on this kind of background knowledge.

• graph metrics knowledge: Adversaries may achieve attacks with knowl-

edge about metrics, such as graph eccentricity, diameter, average path length,

clustering coefficient, betweenness centrality, subgraph centrality and transi-

tivity. Hay et al. [81] mentioned hub fingerprint queries utilizing information

about degree and betweenness centrality.

• auxiliary knowledge: Besides information that an adversary may obtain

within the network graph, there is “outside” information, called aggregate

auxiliary information [4]. It is defined as large-scale information from other

data sources and social networks whose memberships overlap with the target

network, as opposed to individual auxiliary information [4] which is identifi-

25

able details about a small number of individuals from the target network and

possibly relationships between them.

The background knowledge may be accurate but not complete. Hay et al. [81]

discussed the possible effects arising out of whether the background knowledge

is complete or not. They view an adversary with absent facts as a closed-world

adversary while assuming that absent facts are not true. On the contrary, if the

absent facts are just unknown, then the adversary is an open-world adversary.

Information Disclosure can be categorized into three main types: identity

disclosure, attributes disclosure, and edge(link) disclosure. We view information

disclosure and attacks as being the same.

• Identity disclosure : The identity of the individual (vertex) is disclosed.

• Attributes disclosure : The privacy of information associated with each

vertex is disclosed. It can also be called content disclosure.

• Link disclosure : Sensitive relationships between two individuals are dis-

closed.

Several authors, e.g. [14, 102, 174] describe attacks according to this classifica-

tion. Attacks have also been classified by other standards too. Cheng et al. [33]

divided attacks into two types: attacks on NodeInfo, and attacks on edge informa-

tion which they call LinkInfo. NodeInfo attack includes both identity disclosure and

attributes disclosures. LinkInfo is the information about the relationships among

the individuals, which may be sensitive or non-sensitive.

Cormode et al. [40] partitioned link disclosure into static attacks and learned

link attacks in terms of whether adversaries have prior knowledge about relation-

ships between individuals.

26

• Static attack : Adversaries analyze solely the information which is pub-

lished, and try to deduce explicit relationships.

• Learned link attack : Adversaries use the published graph and a few

relationships that are already known, to deduce other explicit relationships.

Some authors concentrate on structural attacks, particularly since structural

information specializes in social networks, compared to tabular data, and its versa-

tility makes it the most difficult part to analyze. This kind of attacks may involve

all the disclosures we mentioned early. Attacks such as the degree attack, sub-

graph attack, 1-neighbor-graph attack, and hub fingerprint attack all belong to the

category of structural attacks. Similarly, [109] proposed three structural queries:

vertex refinement query, subgraph query, and hub fingerprint query, corresponding

to degree attack, sub-graph attack, and hub-fingerprint attack separately.

2.3.2 Anonymity

Anonymity usually refers to an individual’s identity being publicly unknown. For

privacy preservation in social networks, the concept becomes more diverse. Re-

searchers have used this term to indicate anonymous sensitive attributes, anony-

mous sensitive relationships, or anonymous sensitive weights of edges. A huge

amount of work related to anonymity has been done with tabular data, e.g. k-

anonymity [142], l-diversity [106], t-closeness [98]. However, these concepts cannot

be applied to graph data directly, since each record is independent in tabular data.

But still concepts such as k-anonymity have been introduced and developed in the

domain of graph anonymization.

k-anonymity [175] Let G be a social network and G’ an anonymization of G.

If G’ is k-anonymous, then with neighborhood background knowledge, any vertex

27

in G cannot be re-identified in G’ with confidence larger than 1/k.

k-degree anonymity [102] A vector of integers v is k-anonymous if every

distinct value in v appears at least k times. A graph is k-degree anonymous if the

degree sequence of G is k-anonymous.

k-candidate anonymity [109] Let Q be a structural query. An anonymized

graph satisfies k-candidate Anonymity given Q if for any x in V, the probability,

given Q, of candidate y for x is less than 1/k. It implies that the target vertex

cannot be distinguished with other at least k − 1 vertices.

k-security [33] Let G = (V,E) be a given graph with unique vertex information

I(v) for each vertex v ∈ V . Each vertex v ∈ V is linked to a unique individual

U(v). Let Gk is k-secure, with respect to G if for any two target individuals A and

B with corresponding neighborhood attack graphs GA and GB that are known by the

adversary, the following two conditions hold: 1)(NodeInfo Security) the adversary

cannot determine from Gk and GA(GB) that A(B) is linked to I(v) for any vertex

v with a probability of more than 1/k; 2) (LinkInfo Security) the adversary cannot

determine from Gk, GA and GB that A and B are linked by a path of a certain

length with a probability of more than 1/k. In other words, the adversary cannot

disclose a certain vertex’s NodeInfo with a probability of more than 1/k with the

published graph and the query results, and cannot determine path of a certain

length with probability of more than 1/k.

τ-confidence [172] Given a vertex description type, the confidence of a graph

G is defined as confd(G) = 1−maxPG,D, where PG,D = {pij|Ci, Cj ∈ PD(G), i ≤ j}

is the set of linking probabilities calculated based on the type-D partition of G. A

graph G is τ -confidence w.r.t. D if confd(G) ≥ τ . Here,linking probability is the

probability that an edge in edge equivalence class Eij links a target individual in

vertex equivalence class Ci and another target individual in vertex equivalence class

28

Cj.

k2-degree anonymity [143] A graph G is k2-degree anonymous if, for every

vertex with an incident edge of degree pair (d1, d2) in G, there exit at least k-1

other vertices, such that each of the k-1 vertices also has an incident edge of the

same degree pair.

k-symmetry anonymity [158] Given a graph G and an integer k, if ∀4 ∈

automorphism partition of G, |4| ≥ k, then G is k-symmetric.

2.3.3 Anonymization Approaches

Hay et al [81] focused on the risk of re-identifying entities in an anonymized network

using primarily structural information. Attacks are classified and expressed through

three variants of knowledge query: vertex refinement query, subgraph query and

hub fingerprint query. They studied the re-identification risks caused by these at-

tacks on three real network data sets and found that the impacts of attacks differed

significantly across different data sets. For vertex refinement, the biggest change is

between the query for the degree of target vertex and the neighbors’ degrees of the

target vertex. Compared with the subgraph query and the hub fingerprint query,

vertex refinement is more efficient, which suggests that privacy undergoes more

risks under such queries at the same time. Conducting tests using random graphs

and power law graphs, they also integrated the attributes of vertices into adversary

knowledge and evaluated the result with regard to the number of distinct attributes

values and attribute-structure correlations. They proposed the k-candidate anony-

mity model and advised anonymizing graphs by grouping vertices into partitions

and publishing the number of vertices and the edge density in each partition, and

also the edge density across partitions. Liu and Terzi [102] specifically focused on

attacks leveraging an adversary’s background knowledge of degree and proposed

29

an anonymization framework focusing on identity disclosure. They divided attacks

which they mention as privacy breaches into three categories: identity disclosure,

link disclosure, and content disclosure. They proposed k-degree anonymity as pri-

vacy guarantee and the approach to achieve k-degree anonymity is completed in

two steps: constructing a new degree sequence according to the original degree se-

quence aimed at maximum degree similarity and constructing the graph, which is

the supergraph of the original graph in general based on the new degree sequence.

We study this work in detail in Section 3.1 and Appendix A. Stronger privacy

guarantees than those adaptions of k-degree anonymity are provided by models

such as k2-degree anonymity by Tai et al. [143]. A k2-degree anonymous graph

prevents re-identification by adversaries with background knowledge of the degrees

of two vertices connected by an edge. Even stronger privacy guarantees than k-

degree anonymity and k2-degree anonymity are provided by k-automorphism [177].

Zou et al. focused on identity disclosure and structural attacks, and proposed

to modify the graph to be k-automorphic before releasing. Any vertex in such

a graph cannot be distinguished from other at least k − 1 vertices via the graph

structure, so all kinds of structure attacks are prevented. The modifications are

achieved by the addition and deletion of edges and, occasionally, the addition of

vertices. A method for dynamic publishing of social network data was designed as

well. Similarly, Wu et al. [158] proposed the k-symmetry model to prevent identity

disclosure. In a k-symmetric graph every vertex is structurally indistinguishable

from at least k − 1 other vertices. Cheng et al. [33] considered the same prob-

lem as Zou et al. [177], as they also tried to prevent general structural attacks

on published graphs and protect against not only the disclosure of identity, but

also those involving links and attributes. They proposed a k-isomorphism model,

that forms k pairwise isomorphic subgraphs, to provide sufficient privacy guarantee

30

by resisting all kinds of structural attacks. Specifically, they proposed a k-secure

privacy preserving network publication, by publishing an anonymized graph with

intact vertices, minimal anonymization cost and vertex information, whereas the

graph satisfies k-security. They used a compound vertex ID mechanism and the

anonymization method to deal with dynamically released networks. Information

loss is qualified by anonymization cost that is measured by mainly edit distance.

To ensure minimal anonymization cost, the number of different edges is minimized

and the edit distance is minimized.

Zhang and Zhang [172] focused on the preservation of sensitive edges in social

networks, which they called it edge anonymity. From their study of edge disclo-

sure on two real world data sets, they believe that edge disclosure is more likely to

happen in dense graphs, and the k-anonymous algorithm cannot guarantee com-

plete protection against edge disclosure. They state that edge additions are more

likely to cause edge disclosure, and edge deletion can always reduce linking proba-

bilities. They proposed τ -confidence and degree-based algorithms to partition the

naive-anonymized graph by degree, according to the pre-decided threshold of graph

confidence τ , and then do edge addition or deletion to achieve better graph confi-

dence. The authors [170, 168, 169, 88, 103, 174] considered link disclosure as well.

Korolova et al. [88] studied the link disclosure by adversaries using a typical social

network interface, and the information about links provided in terms of lookahead,

and advised limiting the lookahead of social network interface to one or two. Ying

et al. [170] considered adversaries’ ability to infer sensitive edges on the anonymi-

zed graph, while in[168] the authors focused on both identity disclosure and link

disclosure, assuming that all vertices and edges are sensitive. They investigated the

relationship between the extent of randomization of the anonymization algorithm

and the risk of disclosure, and found that, as expected, the more perturbation there

31

is, the more privacy is preserved, and link protection needs far fewer perturbations

than identity protection. Ying and Wu [169] analyzed the effects brought by a

simple random edge adding or deleting algorithm and random edge switching al-

gorithm. Randomization approaches for anonymization, such as those proposed in

[109], have a significant impact on relevant topology features. They propose a ran-

domization method that can preserve the spectrum by controlling the changes of

eigenvalues of the adjacent matrix of the graph when adding or deleting or switch-

ing edges. Bonchi et al.[20] reconsidered the impact of randomization algorithms

for identity disclosure and utility preservation from an information-theoretic per-

spective, and show that randomization techniques may achieve meaningful levels

of obfuscation while still preserving characteristics of the original graph.

Several authors [175, 176, 171, 27, 40, 100, 171, 103, 46, 14] looked at graph

models other than simple graphs, such as bipartite graphs. Bhagat et al. [14] mod-

eled a social network as a rich interaction bipartite graph with entity set V and

interaction set I. The edge between vertex in V and vertex in I indicates that the

entity participates in the interaction. To preserve the privacy of interactions they

proposed Class safety. The graph was anonymized by partitioning the vertices into

classes of Class safety condition and revealing only the number of edges, or gener-

ating labels to replace the identifiers of vertices and grouping vertices into classes.

Cormode et al. [40] modeled social networks as bipartite graphs too. They consid-

ered static attack and learned link attacks. They proposed to use (k, l)−groupings.

The principle is to group vertex set V into groups of size at least k, and group ver-

tex set W into groups of size at least l. After anonymization, the published edge set

E ′ is isomorphic to the original edge set E, but the mapping information is hidden

either partially or completely. Campan et al. [28] modeled social networks as a

simple undirected graph G = (N,E). N is a set of vertices with attributes that are

32

partitioned into three categories: identifier attribute, quasi-identifier attribute and

sensitive attribute. They considered both link disclosure and attribute disclosure.

Vertices are divided into clusters according to the values of their quasi-identifier

attributes (of categorical type or numerical type) with at least k entities, and gener-

alized to one super-vertex for each cluster while edges are generalized inside clusters

and across clusters. Compared with Zheleva et al’s algorithm [174], the structural

information loss caused by vertices clustering and generalization is slightly smaller

in general. Liu et al.[103] modeled social networks as weighted graphs. To preserve

the sensitive weights of edges, edge weights were perturbed according to Gaussian

distribution. They also perturbed the edge weights of the input graphs by apply-

ing the Gaussian randomization multiplication strategy in order to achieve privacy

preservation while reserving the globe structure of the graph such as the shortest

path lengths. Zheleva et al. [174] modeled the social network as a graph with a

single vertex type and multiple edge types, among which one of the edge types

represents sensitive relationships. To prevent adversaries from predicting sensitive

edges based on the observed non-sensitive edges, methods for different quantities

of revealing edges were proposed and compared.

Zhou and Pei [175, 176] and Yuan et al. [171] were the first to consider modeling

social networks as labeled graphs. To prevent re-identification attacks by adver-

saries with immediate neighborhood structural knowledge, Zhou and Pei [175] pro-

posed a method that groups vertices and anonymizes the neighborhoods of vertices

in the same group by generalizing vertex labels and adding edges. They enforced

a k-anonymity privacy constraint on the graph, each vertex of which is guaran-

teed to have the same immediate neighborhood structure with other k − 1 vertex.

In [176], they improved the privacy guarantee provided by k-anonymity with the

idea of `-diversity, to protect labels on vertices as well. Yuan et al. [171] tried to

33

be more practical by considering users’ different privacy concerns. They divided

privacy requirements into three levels, and suggestted methods to generalize labels

and modify structure corresponding to every privacy demand. Nevertheless, neither

Zhou and Pei, nor Yuan et al. considered labels as a part of the background knowl-

edge. However, in the case which adversaries hold label information, the methods

of [175, 176, 171] cannot achieve the same privacy guarantee. Moreover, as with

the context of microdata, a graph that satisfies a k-anonymity privacy guarantee

may still leak sensitive information regarding its labels [106].

Most methods focused on a single snapshot of social networks, and authors

considered graph anonymization on dynamic network release [15, 177, 33], and Yang

et al. [45] and Narayanan et al. [4] studied the problem of graph anonymization on

multiple social networks containing common information.

Privacy protection comes with the cost of data utility. We empirically quantify

such utility and privacy trade-off for two of the anonymization algorithms, k-degree

anonymity algorithm [102] and k-automorphism algorithm [177] in Appendix A.

34

Chapter 3

Graph Anonymization

Mining social network data provides us with useful information, while privacy con-

cerns arise when data is released. User identities may be disclosed. Sensitive

connections may be disclosed. Malicious data recipients may use the data illegally

or cantankerously [7]. For instance, providing users with information about their

position among their peers in the network could help users in building their weak

social ties and bridging social capital [97], i.e., expanding their social or profes-

sional circles in a desired direction. But this could pose privacy risks, i.e. the

possible exploration of sensitive relationships by malicious users. The need arises

for methods that provide privacy protection for sensitive data and therefore safe-

guard the interpersonal trust and institutional trust that users place in the owners

and administrators of the SNS.

This chapter introduces our contribution to privacy protection for social network

data in two aspects. First, we study the shortcomings of the k-degree anonymity

algorithm, an algorithm that guarantees that after anonymization, the graph is

capable of resisting attacks by adversaries with knowledge of degrees. To improve,

we propose a new algorithm, which is not only more effective but also more efficient

35

(Section 3.1). Second, we focus on the privacy problem of revealing user data to end-

users of SNSs to help them network better (Section 3.2). This problem is related

to, but distinct from, the problem of revealing whole-network data to third parties.

We propose a user-centric utility-driven paradigm, as opposed to the privacy-driven

paradigm in previous research.

3.1 Fast Identity Anonymization on Graphs

3.1.1 Overview

Liu and Terzi [102] addressed the issue of identity disclosure of network users by

adversaries with the background knowledge of vertices degree. To prevent such

attacks they proposed the problem of k-degree anonymity. A graph is said to

be k-degree anonymous when each vertex in the graph has the same degree as

at least k − 1 other vertices. In other words, any vertex cannot be identified

with a probability higher than 1/k if the adversary has the degree information

of the graph. The degree sequence of such a graph is said to be k-anonymous.

Next, the problem is to transform a non-k -degree anonymous graph into a k -degree

anonymous graph by adding or deleting a minimum number of edges. For the sake

of simplicity, we consider only the addition of edges. Liu and Terzi [102] proposed

a two-phase algorithm. The first phase (degree anonymization) anonymizes the

degree sequence of the original graph to be k -anonymous. They proposed a dynamic

programming algorithm which reproduces the algorithm in [68]. The second phase

(graph construction) constructs a k -degree anonymous graph with an anonymized

degree sequence based on the original graph. We call this algorithm K-Degree

Anonymization (KDA).

Typically, the degree distribution of large real world networks follows a power-

36

law or exponential distribution [9, 38]. Consequently, there are few vertices with

very large degrees and many vertices with the same small degrees. Moreover, the

difference between consecutive large degrees is great.

The dynamic programming in the degree anonymization phase of KDA is de-

signed to minimize the residual degrees, namely the difference between the original

degrees and the degrees in the anonymized degree sequence. On large real world

graphs, it generates a sequence at the expense of large residual degrees for large

original degrees, as the differences between these large original degrees are great. It

also generates a sequence with a small number of changes from the original degree

sequence, as many vertices with small original degrees are already k -anonymous. It

may then be impossible to compensate the large residual degrees. The sequence is

thus unrealizable. Our experience suggests that, unlike what is claimed by Liu and

Terzi, this situation occurs frequently. For instance, as illustrated in the example

below, their dynamic programming in the degree anonymization phase does not

generate a realizable degree sequence from the given data set.

Example 1. Email-Enron is the network of Enron employees who have communi-

cated through the Enron email. It is an undirected graph with 36692 vertices and

367662 edges. Each vertex represents an email address. An edge connects a pair

of vertices if there is at least one email communication between the correspond-

ing email users. The data set is available at http://snap.stanford.edu/data/email-

Enron.html. The first 10 degrees of its degree sequence in descending order are

1383, 1367, 1261, 1245, 1244, 1143, 1099, 1068, 1026, 924. After the degree se-

quence is anonymized for k = 5, the 10 degrees become 1383, 1383, 1383, 1383,

1383, 1143, 1143, 1143, 1143, 1143. We see that the degree of the last vertex is

increased by 1143 − 924 = 219. This means that 219 vertices with residual degree

are required, in order to compensate the residual degree of 219. However, during

37

the anonymization, the number of vertices that have their degrees increased is 212.

Moreover, most of these vertices are those with small original degrees which are

already connected to that vertex. Thus, there are not enough vertices with resid-

ual degrees to be wired to the last vertex. The k-anonymous degree sequence is

unrealizable.

Moreover, even if the anonymized degree sequence is realizable, the graph con-

struction phase of the algorithm may not succeed.

Liu and Terzi catered for these two situations by proposing a Probing scheme

that enacts small random changes on the degree sequence until it is realizable and

the graph is constructed. Our experience shows that a large number of Probing

steps are, in effect, necessary to obtain a realizable sequence for practical graphs.

After each Probing is invoked, the realizability-testing is conducted. The testing

has a time complexity O(n2), where n is the number of vertices. As Probing is

invoked for a large number of repetitions, the complete algorithm is very inefficient.

Motivated by the above observations, we study fast k -degree anonymization on

graphs at the risk of marginally increasing the cost of degree anonymization, i.e.,

the edit distance between the anonymized graph and the original graph.

We propose a greedy algorithm that anonymizes the original graph by simulta-

neously adding edges to the original graph and anonymizing its degree sequence.

We thereby avoid realizability testing by effectively interleaving the anonymization

of the degree sequence with the construction of the anonymized graph in groups of

vertices.

Our algorithm results in a larger edit distance on small graphs, but a smaller

edit distance on large graphs, compared to the algorithm proposed by Liu and

Terzi. Our algorithm is much more efficient than their algorithm.

38

3.1.2 Algorithm

The algorithm that we propose simultaneously adds edges to the original graph

and anonymizes its degree sequence in groups of vertices.

The main idea of the algorithm is to cluster and anonymize the vertices of the

original graph into several anonymization groups. Each group contains at least k

vertices. The graph is transformed so that vertices in each group have the same

degree. In order to achieve a low local degree anonymization cost, the vertices

in each group should have similar degrees. For this reason, our algorithm sorts,

examines and groups the vertices in the descending order of their degrees in the

original graph. This choice is motivated by the observation that practical graphs

often follow a power or exponential law with a long tail, according to which many

vertices have and share a small degree. We therefore wire vertices with larger

degrees to vertices with smaller degrees in groups until the degree sequence is k -

anonymous, if it can be achieved.

Let v be the sorted vertex sequence. The greedy examination algorithm clus-

ters vertices into an anonymization group. An anonymization group is the smallest

subset of v that has at least k members and whose members have a degree strictly

higher than the remaining vertices. The cost of the subsequent anonymization

of such a group is necessarily the sum of residual degrees after anonymization,

namely, for an anonymization group (vi, · · · , vj) in descending order of degrees,∑j
l=i(di − dl), where dl is the degree of vertex vl.

The edge creation algorithm adds edges in order to anonymize the vertices in

a group. It wires vertices with insufficient degrees in the anonymization group to

vertices with lesser degrees in v until all vertices in the group have the same degree

di for an anonymization group (vi, · · · , vj) in descending order of degrees. However,

we constrain the algorithm never to increase the degrees of vertices in and outside

39

the group beyond that of the highest degree in the anonymization group, namely,

di, for an anonymization group (vi, · · · , vj) in descending order of degrees. After

adding edges, v is reordered according to the new degrees. At the next iteration,

vertices outside the group may be further added to the newly anonymized group

by greedy examination, if their degree is di.

The anonymization group is now k -anonymous, because it contains at least k

vertices with degree di.

The design choices in the algorithms above, in particular the wiring constraint,

have been made in order to minimize the need for reordering v and to allow the

processing of vertices and groups to be as sequential as possible .

Because of the wiring constraint, it is however possible that the above determin-

istic process does not find enough vertices to wire. Therefore, it does not construct

a graph with an anonymized degree sequence. The relaxed edge creation algo-

rithm caters for such possible failures. It relaxes the wiring constraint.

The complete algorithm, Fast K-Degree Anonymization (FKDA), combines the

above three algorithms. FKDA always constructs a k -degree anonymous graph.

3.1.2.1 The greedy examination Algorithm

At each iteration, the input to greedy examination is a sequence of vertices v of

length n, sorted in the descending order of their degrees, an index i such that the

vertex sequence (v1, v2, . . . , vi−1) has been k -anonymous and the value of k. The

output is a number na such that the vertices vi, vi+1, . . . , vi+na−1 are selected to be

clustered into an anonymization group. Then greedy examination passes v, i and

na to edge creation.

The algorithm begins with an sequential examination of v starting from vi,

until vj such that dj < di. If there is no such vj found, vi, vi+1, . . . , vn have the

40

Algorithm 3.1: The greedy examination algorithm

Input: v: a sequence of n vertices sorted in the descending order of their
degrees, i: an index, k: the value of anonymity.

Output: na: the number of consecutive vertices that are going to be
anonymized.

1 Find the first vertex vj such that dj < di;
2 if vj is not found then
3 na = n− i+ 1;
4 else
5 if di = di−1 then
6 if n− j + 1 < k then na = n− i+ 1 ;
7 else na = j − i ;

8 else
9 if n− i+ 1 < 2k or n− j + 1 < k then na = n− i+ 1 ;

10 else na =max(k, j − i) ;

11 Return na;

same degree already. Below we show that there are at least k vertices from vi

to vn. Thereby v is already k -anonymous. na is set to be n − i + 1, i.e., the

number of all the remaining vertices. If vj is found, there are two different cases

depending on the result of comparison between di and di−1
1. If di = di−1

2 which

means that vi has the same degree as the degree of the last anonymization group,

greedy examination clusters vi, vi+1, . . . , vj−1 in a group and merges them into the

last anonymization group. Then na is set to be j−i. However, there is an exception

when n− j+1 < k. This means that there are less than k vertices after the current

group. These vertices cannot be transformed to be k -anonymous in a separated

group. Thus greedy examination has to cluster vi, vi+1, . . . , vn into a group. na

is set to be n − i + 1. In the other case where di < di−1, greedy examination

forms a new anonymization group starting from vi. If j − i ≥ k, which means

there are at least k vertices having the same degree, greedy examination clusters

vi, vi+1, . . . , vj−1 into the new group. na is set to be j− i. Otherwise, there are less

1If i = 1, the comparison is between d1 with n.
2This is caused by edge creation.

41

than k vertices in the sequence (vi, vi+1, . . . , vj−1). Thereby greedy examination

clusters vi, vi+1, . . . , vi+k−1 in the new anonymization group. na is set to be k. How-

ever, there are also two exceptions when n − i + 1 < 2k or n − j + 1 < k. The

former means that vi, vi+1, . . . , vn cannot form two anonymization groups. The lat-

ter means that vj, vj+1, . . . , vn cannot be clustered into a separated group. In either

exception, greedy examination has to cluster vi, vi+1, . . . , vn into an anonymiza-

tion group. Then na is set to be n− i+ 1.

The algorithm is described in Algorithm 1.

3.1.2.2 The edge creation Algorithm

At each iteration, the input to edge creation is a sequence of vertices v of length

n sorted in the descending order of their degrees, an index i and a number na. The

goal is to anonymize the vertices vi, vi+1, . . . , vi+na−1 to degree di by adding edges to

the original graph. The output is an index, which equals i+na if the anonymization

succeeds, or equals j if vj cannot be anonymized, where i < j ≤ i+ na − 1.

For each vj in the vertex sequence (vi, vi+1, . . . , vi+na−1), edge creation wires

it to vl for j < l ≤ n, such that the edge (j, l) does not previously exist and

dl < di, until dj = di. The former condition avoids creating multiple edges. The

latter condition minimizes the need for reordering v. If in the end edge creation

successfully anonymizes these na vertices, it reorders the new vertex sequence v in

the descending order of their degrees. Otherwise, it returns the index j such that

vj cannot be anonymized with the wiring constraint. Then the repairing algorithm

relaxed edge creation is invoked.

The algorithm is described in Algorithm 2.

We consider three heuristics to examine the candidate vertices in v for the

creation of edges.

42

Algorithm 3.2: The edge creation algorithm

Input: v : a sequence of n vertices sorted in the descending order of their
degrees, i : an index, na : the number of vertices that are going to be
anonymized starting from vi.

Output: j : an index.

1 for j ∈ (i+ 1, i+ na − 1) do
2 while dj < di do
3 Create an edge (j, l) where j < l ≤ n such that (j, l) does not

previously exist and dl < di;
4 if The edge cannot be created then Return j ;

5 Sort v in the descending order of degree;
6 Return j;

The first heuristic examines v from vj+1 to vn, that is, in the decreasing order

of their degrees, and creates the edge (j, l) whenever the constraint is satisfied.

The second heuristic examines v from vn to vj+1. The last heuristic randomly

selects a candidature vl and creates the edge (j, l). Below we denote by 1, 2, and

3, respectively, the variants of the complete algorithm with these three heuristics.

Intuitively, the first heuristic incurs larger anonymization cost than the second

heuristic does. This is because the first heuristic increases the degree of vertices

with large original degree, so that the largest degrees in the some anonymization

groups might be increased. In order to anonymize these groups, more edges will

be added. The third heuristic should behavior in between. On the other hand, the

first two heuristics construct deterministic anonymized graphs whereas the third

heuristic can generate random anonymized graphs, which has consequences on the

preservation of utility.

3.1.2.3 The relaxed edge creation Algorithm

The edge creation algorithm is not guaranteed to output a k -degree anonymous

graph. The failure occurs when an edge (j, l) with the wiring constraint cannot be

43

created for some j. In this case, relaxed edge creation is invoked. It relaxes the

wiring constraint.

The algorithm examines v from vn to v1 and iteratively creates an edge (j, l) if

only the edge does not previously exist, until dj = di. Then relaxed edge creation

returns the index l. Notice that this iteration can always stop because in the worst

case vj will be wired to all the other vertices. Finally relaxed edge creation sorts

the new vertex sequence v in the descending order of degree and feeds it as the

input of greedy examination in the next iteration.

The algorithm is described in Algorithm 3.

Algorithm 3.3: The relaxed edge creation algorithm

Input: v : a sequence of n vertices sorted in the descending order of their
degrees, i, j : two indices.

Output: l : an index.

1 for l = n to 1 do
2 if vj and vl are not connected then
3 Create an edge (j, l);
4 if dj = di then
5 Sort v in the descending order of degrees ;
6 Return l;

Notice that this process may compromise the k -degree anonymity of the vertex

sequence (v1, v2, . . . , vi−1) if the returned l is less than i, i.e., vj is wired to some

vertex that has been anonymized. In this case, greedy examination needs to

examine v from the beginning in the next iteration, i.e., i is set to be 0. In the

other case where l > i, greedy examination still examines v starting from vi in

the next iteration. However, as relaxed edge creation examines v from small

degree to large degree, there is a high probability that (v1, v2, . . . , vi−1) is still k -

anonymous.

44

3.1.2.4 The Fast K -degree Anonymization Algorithm

The FKDA algorithm combines the greedy examination, edge creation and

relaxed edge creation algorithms. The input to FKDA is a graph G with n

vertices and the value of k. The output is a k -degree anonymous graph G′.

FKDA first computes the vertex sequence v of G in the descending order

of degree. Then at each iteration, it invokes greedy examination to compute

the number na and passes it with i to edge creation. If edge creation suc-

cessfully anonymizes the na vertices, FKDA updates the value of i as i + na.

Then FKDA outputs the anonymized graph G′ if i > n, or enters the next it-

eration otherwise. If edge creation fails to construct the graph, FKDA invokes

relaxed edge creation and updates the value of i according to the value of l

returned by relaxed edge creation. Notice that FKDA can always output a

valid k -degree anonymous graph, because in the worst case a complete graph is

constructed.

The complete algorithm is described in Algorithm 4.

Algorithm 3.4: The Fast K -Degree Anonymization algorithm

Input: G : a graph of n vertices, k : the value of anonymity.
Output: G′ : a k -degree anonymous graph constructed from G.

1 v=the vertex sequence of G in the descending order of degree;
2 i = 1;
3 while i ≤ n do
4 na =greedy examination(v, i, k);
5 j =edge creation(v, i, na);
6 if j = i+ na then
7 i = i+ na;
8 else
9 l =relaxed edge creation(v, i, j);

10 if l < i then i = 0;

11 Return G′;

We provide the approximate bounds of the edit distance to the original graph

45

produced by FKDA. Suppose ideally the original vertex sequence v is clustered

as follows. The sequence (v1, v2, . . . , vik) is clustered into i groups, each of which

contains k vertices, i.e., the (j + 1)th group contains the vertices vjk+1, vjk+2, . . . ,

v(j+1)k, 0 ≤ j ≤ i− 1. The sequence (vik+1, vik+2, . . . , vn) is already k -anonymous3.

In the best case (which is encountered in the second heuristic of edge creation),

the vertices in the sequence (v1, v2, . . . , vik) are only wired to the vertices in the

sequence (vik+1, vik+2, . . . , vn) by edge creation. Suppose the latter sequence is

still k -anonymous after anonymization. Then we get the lower bound which is

boundl =
∑i−1

j=0

∑k
l=1(djk+1 − djk+l). In the worst case (which is encountered in

the first heuristic of edge creation), each vertex in the sequence (v1, v2, . . . , vik) is

wired to all of its antecedent vertices. Then the largest degree of the (j+1)th group

becomes djk+1 + jk. Therefore the upper bound is boundu =
∑i−1

j=0

∑k
l=1(djk+1 +

jk − djk+l) = i×(i−1)
2

k2 × boundl.

3.1.3 Performance Evaluation

3.1.3.1 Experimental Setup

We implement KDA and three variants of FKDA, FKDA 1, FKDA 2 and FKDA

3, corresponding to the three heuristics in C++. We run all the experiments on a

cluster of 54 vertices, each of which has a 2.4GHz 16-core CPU and 24 GB memory.

3.1.3.2 Data Sets

We use three data sets, namely, Email-Urv, Wiki-Vote and Email-Enron (de-

scriptions in Appendix A.4).

We conduct experiments on these three graphs. The different sizes of the three

graphs illustrate the performance of KDA and FKDA on small (1133 vertices),

3This is the usual case for large graphs.

46

medium (7115 vertices) and relatively large (36692 vertices) graphs.

3.1.3.3 Effectiveness Evaluation

We compare the effectiveness of the algorithms by evaluating the variation of sev-

eral utility metrics: edit distance, clustering coefficient and average shortest path

length(following [102]).

We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value of

k, we run each algorithm 10 times on each data set and compute the average value

of the metrics.

Figure 3.1-3.3, 3.4-3.6 and 3.7-3.9 show the results on Email-Urv, Wiki-Vote

and Email-Enron, respectively.

Figure 3.1, 3.4 and 3.7 show the evaluation results of the normalized edit dis-

tance on the three graphs.

We see that FKDA adds more edges to Email-Urv but fewer edges to Wiki-Vote

and Email-Enron, compared to KDA. In Email-Urv, which is a small graph with

1133 vertices, the differences between large degrees are not large. By using KDA,

the residual degrees of the anonymized vertices with large original degrees can

be compensated by enough number of anonymized vertices with residual degrees,

that is, the anonymized degree sequence is realizable, with only a small number

of repetitions of probing. Thus, the minimum edit distance found by dynamic

programming is still less than the edit distance produced by FKDA. On the con-

trary, Wiki-Vote and Email-Enron are two relatively larger graphs with 7115 and

36692 vertices, respectively. The differences betweens large degrees of either graph

are considerably large. Therefore by using KDA, Probing is invoked a significant

number of times before a k -degree anonymous graph is constructed. Moreover,

by comparing our relaxed edge creation algorithm with Probing, we find that

47

 0

 0.5

 1

 1.5

 2

 2.5

5 10 15 20 25 50 100

N
or

m
al

iz
ed

 E
di

t D
is

ta
nc

e

K

KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.1: ED: Email-
Urv.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

5 10 15 20 25 50 100

Lo
ca

l C
lu

st
er

in
g

C
oe

ffi
ci

en
t

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.2: CC: Email-
Urv.

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

5 10 15 20 25 50 100

A
ve

ra
ge

 S
ho

rt
es

t P
at

h
Le

ng
th

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.3: ASPL: Email-
Urv.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 10 15 20 25 50 100

N
or

m
al

iz
ed

 E
di

t D
is

ta
nc

e

K

KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.4: ED: Wiki-
Vote.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

5 10 15 20 25 50 100

Lo
ca

l C
lu

st
er

in
g

C
oe

ffi
ci

en
t

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.5: CC: Wiki-
Vote.

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

5 10 15 20 25 50 100

A
ve

ra
ge

 S
ho

rt
es

t P
at

h
Le

ng
th

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.6: ASPL: Wiki-
Vote.

relaxed edge creation increases a small degree only if the corresponding ver-

tex can be wired to an anonymized vertex with residual degree. On the contrary,

Probing randomly increases a small degree regardless the actual structure of the

graph. The corresponding vertex may not be able to be wired to an anonymi-

zed vertex with residual degree, because an edge between the two vertices might

already exist. Consequently, more repetitions of probing are invoked. Thus we be-

lieve that eventually, Probing adds more noise than relaxed edge creation does

to the degree sequences of the two large graphs. Therefore, FKDA adds less edges

than KDA does to the two graphs.

Figure 3.2, 3.5, 3.8 and Figure 3.3, 3.6, 3.9 show the evaluation results of the

clustering coefficient and average shortest path length, respectively. The constant

line shows the value of corresponding metric in the original graph.

We see that FKDA produces less similar results with that in the original graphs

on Email-Urv and more similar results on Wiki-Vote and Email-Enron than KDA

48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

5 10 15 20 25 50 100

N
or

m
al

iz
ed

 E
di

t D
is

ta
nc

e

K

KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.7: ED: Email-
Enron.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

5 10 15 20 25 50 100

Lo
ca

l C
lu

st
er

in
g

C
oe

ffi
ci

en
t

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.8: CC: Email-
Enron.

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

5 10 15 20 25 50 100

A
ve

ra
ge

 S
ho

rt
es

t P
at

h
Le

ng
th

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.9: ASPL: Email-
Enron.

does. This is generally consistent with the evaluation results of edit distance, since

FKDA adds more edges to Email-Urv and fewer edges to Wiki-Vote and Email-

Enron than KDA does.

We further compare the performances of the three variants of FKDA.

In Section 3.1.2.2 we stated that the first heuristic incurs larger anonymization

cost, i.e. edit distance, than the second heuristic does, and the third heuristic per-

forms in between. The results in Figure 3.4 and 3.7 support this claim, although

the differences are small. However, in the small graph Email-Urv, we observe that

FKDA 2 incurs a much larger edit distance than the other two variants and FKDA

1 incurs the smallest edit distance, for k = 50 and k = 100. The reason is as

follows. When k increases, after anonymization, the residual degrees of the vertices

with large original degrees become larger. Therefore, more residual vertices with

smaller original degrees are required to compensate these large residual degrees.

As FKDA 2 creates edges by wiring the anonymized vertices to the vertices from

with a small degree to those with large degree, it makes the degrees of the ano-

nymized vertices and the degrees of the subsequent vertices closer to each other

than FKDA 1 does. Because of the wiring constraint in edge creation, at some

point there are not enough residual vertices to compensate the residual degree of

an anonymized vertex. Then relaxed edge creation is invoked. When k is too

large for the number of vertices (for example, k = 50, 100 and n = 1133 in Email-

49

Urv), relaxed edge creation is invoked several times by FKDA 2. Then the edit

distance to the original graph is enlarged. On the contrary, FKDA 1 creates edges

by wiring the anonymized vertex with a large residual degree to the vertices with

large degrees to small degrees. It maintains a sufficient gap between the degrees of

the anonymized vertices and the degrees of the subsequent vertices. The residual

degree of the anonymized vertices can be compensated under the wiring constraint

in edge creation, without invoking relaxed edge creation. Therefore the edit

distance is small. FKDA 3 creates edges by wiring the anonymized vertices to

random residual vertices, so that it incurs the edit distance to the original graph

in between.

The abilities of the three heuristics on the preservation of utility of the original

graph differ from each other, depending on the structure of the original graph.

For example, Figure 3.6 shows that FKDA 1 incurs a larger average shortest path

length in the anonymized Wiki-Vote than FKDA 2 does. This suggests that the

vertices in Wiki-Vote with similar degrees are more connected than the vertices

with very different degrees. So creating edges by wiring an anonymized vertex to

the vertices from with large degrees to those with small degrees (similar degrees to

different degrees) in the edge creation of FKDA 1 does not reduce the average

shortest path length by much. On the contrary, FKDA 2 links vertices with very

different degrees in edge creation, which results in a significant reduction in the

average shortest path length. However, Figure 3.9 shows the reverse result in the

anonymized Email-Enron, which suggests that the vertices in Email-Enron with

similar degrees are less connected than the vertices with very different degrees.

The overall results show that FKDA 1 and FKDA 2 preserve the utilities of the

original graph better than FKDA 3 does. Nevertheless, FKDA 3 has an interesting

property, which is that it can generate a random k -degree anonymous graph.

50

 0.01

 0.1

 1

 10

 100

5 10 15 20 25 50 100

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

K

KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.10: Execution
time on Email-Urv.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

5 10 15 20 25 50 100

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

K

KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.11: Execution
time on Wiki-Vote.

 1

 10

 100

 1000

 10000

 100000

 1e+06

5 10 15 20 25 50 100

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

K

KDA
FKDA 1
FKDA 2
FKDA 3

Figure 3.12: Execution
time on Email-Enron.

 100

 1000

 10000

5 10 15 20 25 50 100

S
pe

ed
up

K

FKDA 1 vs. KDA
FKDA 2 vs. KDA
FKDA 3 vs. KDA

Figure 3.13: Speedup of
FKDA vs. KDA on Email-
Urv.

 1000

 10000

 100000

 1e+06

5 10 15 20 25 50 100

S
pe

ed
up

K

FKDA 1 vs. KDA
FKDA 2 vs. KDA
FKDA 3 vs. KDA

Figure 3.14: Speedup of
FKDA vs. KDA on Wiki-
Vote.

 1000

 10000

 100000

5 10 15 20 25 50 100

S
pe

ed
up

K

FKDA 1 vs. KDA
FKDA 2 vs. KDA
FKDA 3 vs. KDA

Figure 3.15: Speedup of
FKDA vs. KDA on Email-
Enron.

3.1.3.4 Efficiency Evaluation

We compare the efficiency of the algorithms by measuring their execution time.

We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value

of k, we run each algorithm 10 times on each data set and compute the average

execution time. We also compute the speedup of FKDA versus KDA for each

parameter setting.

Figure 3.10, 3.11 and 3.12 show the execution times on Email-Urv, Wiki-Vote

and Email-Enron, respectively. Figure 3.13, 3.14 and 3.15 show the corresponding

speedups.

We see that FKDA is significantly more efficient than KDA. The speedup varies

from the hundreds to one million on different graphs. The inefficiency of KDA is

due to the decoupling of the checking of realizability of the anonymized degree

sequences from the construction of graph.

51

The efficiency of the three FKDA variants is similar. FKDA 1 and FKDA 2 are

slightly faster than FKDA 3. This is because FKDA 3 maintains an additional list

of candidate residual vertices in edge creation.

3.1.4 Summary

In this section, we propose a greedy k -degree anonymization algorithm that anonymizes

a graph by simultaneously adding edges and anonymizing its degree sequence in

groups of vertices.

The algorithm is designed to overcome the shortcomings of the KDA algorithm

proposed in [102]. The simultaneity of degree anonymization and graph construc-

tion in the new FKDA algorithm eliminates the need for realizability testing, which,

as confirmed by our experiments, is a significant factor in the poor efficiency of the

KDA algorithm.

We proposed three variants of the algorithm, corresponding to three wiring

heuristics. The comparative empirical performance evaluation on three real world

graphs shows that the three variants of FKDA are significantly more efficient than

KDA and more effective than KDA on large graphs.

We do not claim that our solution is a panacea for the anonymization of graphs

in general, that objective being anyway a chimerical target given the generality of

background knowledge potentially available to adversaries. It is, however, a very

effective and efficient solution for the protection of privacy in the presence of back-

ground knowledge about vertex degrees. More importantly, our solution shows that

it is possible to knit realizability and construction into one anonymization process

tightly, and therefore pave the way to the development of algorithms catering for

a variety of background structural knowledge.

52

3.2 Graph Anonymization with Reachability Con-

straints

3.2.1 Overview

The facility to ease the creation of social ties online is a central feature in any SNS

[21]; such facility requires that some information about users is made available to

both known others, and strangers. This tension between confidentiality and facility

is especially pertinent in sites like LinkedIn or Xing, specializing in professional

networking that eases the formation of weak ties.

Consequently, the need arises for a method that reveals network graph data in

a discretionary manner, with the deterrence of malicious users in mind, while at

the same time providing a certain utility for benevolent users; thus the problem of

achieving discretionary user-centric network data release emerges. This problem is

related to, but distinct from the problem of revealing whole-network data to third

parties. We focus on the problem of revealing user data to end-users with the aim

of helping them to network better. The end-user derives utility from such data

revelation, and may thus willingly choose to participate in such a scheme. We aim

to guarantee such utility while releasing data in a discretionary manner.

Existing research in the area follows a privacy-driven paradigm: it formulates

a certain privacy principle, and develops techniques that bring the network data

to a form that abides thereby, while keeping the associated loss of utility low [7,

81, 102, 15, 33]. The transformed data is then ready to be released. However, the

extent to which such techniques maintain the information utility of the network

and structure thereafter is vague. These studies suffice to measure ad hoc utility

metrics; unfortunately, such metrics do not capture the extent to which an object

as complex as a graph maintains its original properties. Nevertheless, in the case

53

where the information recipients are end-users of the social network site, aiming

to utilize it for networking purposes, they would like to have a guarantee precisely

on the utility of the released data, in terms of certain graph properties that may be

valuable for networking, no less than they would desire a certain privacy guarantee

about preventing their own information from being revealed to others.

A network is modeled as an undirected graph G = (V,E), where V is a set of

vertices (nodes) representing entities, and E is a set of edges representing relations

between entities. Nodes and edges may be annotated with attributes (e.g, occupa-

tion or interests for nodes, type or weight for edges), yet in this work we consider

the most basic graph model.

A naive anonymization of G would substitute all entity identifiers in G using

synthetic identifiers. However, such an anonymization does not suffice to conceal

the identities behind the published graph, as the structural information in the

network can itself serve to identify nodes [7, 177, 81, 102]. Thus, a structural ano-

nymization is called for. Besides, a privacy threat is not posed by the identification

of nodes in the network per se, but rather by the disclosure of the positions of

such identified nodes with respect to each other. We contend that, when the data

recipient is an end-user, a structural anonymization would suffice to provide the

confidentiality that users require, while other identifying information can still be

published, as it may be valuable for purposes such as professional networking.

3.2.1.1 A Practical Example

We envisage a scenario in which an SNS user requests to see the network subgraph

involving one’s connections up to a certain number of hops. Such a subgraph

would provide the user with an overview of her position in the broader network

neighborhood of her contacts and their contacts. Thus, it could provide ideas as

54

Figure 3.16: Visualization of connections in Xing

to whom she might be able to connect to next. To be truly useful, this subgraph

should correctly reveal the identities of individuals within its scope and also provide

some indication as to the relative positions of such individuals. However, for the

sake of confidentiality, the subgraph should not reveal the precise relationships of

such individuals among each other.

Currently, many SNS platforms, such as LinkedIn4 and Xing,5 provide a func-

tionality through which users can see information about a path connecting them

to other persons; in some cases, one can also see individuals along that path. This

service offers valuable information to networkers. Yet, this practice poses prob-

lems, both from a privacy and a utility point of view: From a privacy perspective,

the revelation of individuals along the path poses a risk to them, as the relation-

ships among distant connections to the querying user may be sensitive and can be

exploited by a malicious user. On the other hand, from a utility viewpoint, the

published information is limited; a user may wish to view her position relative to a

whole neighborhood, so as to identify nodes of interest; single paths do not provide

such information.

Figure 3.16 shows a screen shot of the information provided by Xing in an

example we have created using fictional names. Likewise, Figure 3.17 shows an

example of the type of information provided by LinkedIn, again with fictional

4http://www.linkedin.com/
5http://www.xing.com/

55

names. While the provided information indicates the existence of a connection, it is

limited to a single path, and does not reveal other graph neighborhood information

that may be of legitimate interest to the user.

Figure 3.17: Visualization of connections in LinkedIn

Noticeably, Xing shows all intermediate connections, and even provides names

along a single path, in contrast to LinkedIn. If taken further, i.e., to longer paths, as

it stands, this practice would arguably compromise the privacy of users involved.

Nevertheless, inspired by this practice, we envisage that a user could ask for a

presentation of a fuller view of the network’s neighborhood structure around the

presented path, or, more generally, for the presentation of any network subgraph of

interest. Such a service should be discretionary, not revealing too much informa-

tion about the network’s microstructure that would compromise individual users’

confidentiality, yet at the same time it should be informative.

3.2.1.2 The potential for structural attacks

Nevertheless, revealing a network’s structural information can render users vulner-

able to attacks. A malicious user may create a set of fake accounts and attempt to

forge direct links between those accounts and to one or more targets, so as to di-

rectly elicit private information from them, or to create a unique structure that can

be later identified in a revealed graph. This observation is the basis of the struc-

tural attack introduced in [7]. We aim to design a utility-driven data revelation

scheme that can foil such attacks.

In concrete terms, an attacker who naturally knows the identity of her targets

56

could contact those targets directly and try to gain their trust. The chances of

success at securing such targets’ trust will increase if she can present herself as

sharing a mutual friend, implying an endorsement of her request to connect to

the target. When the path to the target is published, it becomes easier for the

attacker to exploit such “friend-of-a-friend” trust. Platforms like LinkedIn and

Xing appear to be vulnerable to such exploits as they publish partial, or full, path

information. However, our approach will obstruct the attacker, as she will not know

with certainty who is connected to whom. A guess at the exact chain that leads to

her target will then be risky; if she mistakenly presents herself as a friend of a friend

to any node in the chain, the chances of gaining that node’s trust will be diminished.

On the other hand, a benevolent networker, truthful about her intentions, will be

able to solicit the assistance of users along the path to the target; as long as those

users assess that she has a legitimate reason to reach her target, they will forward

her request to the next hop.

3.2.1.3 Our proposal

Motivated by the above discussion, we suggest a methodology for revealing social

network data to relevant users following a utility-driven paradigm. Through our

scheme, network data is manipulated under certain constraints, aiming to preserve

the structural properties of the underlying graph, while otherwise distorting the

graph’s microstructure to the farthest extent allowed by those constraints. In this

manner, the trade-off between data utility and data privacy is addressed in a novel

manner, adhering to a utility guarantee. We define the structural constraints in

terms of distance properties between pairs of nodes, and demonstrate that the

resulting graphs can withstand attacks by adversaries possessing prior structural

background knowledge, as suggested in [7]. Specifically, in the experimental sec-

57

tion we measure the success rate for any attack based on the identification of an

embedded subgraph in the distorted graphs, as a function of the amount of distor-

tion incurred on it; as we discussed, such an embedded graph may consist of fake

accounts created before graph releasing, and connected among themselves and to

other victim nodes, so as to follow a unique and identifiable pattern.

In our approach, we publish a subgraph of the network graph, containing nodes

of interest with respect to the querying user (possibly along with identifying in-

formation, depending on the application at hand). This subgraph is constructed

so as to faithfully preserve the reachability information in the true subgraph: if a

node is reachable from another node by a path of length lower than a threshold

k, then it should also be similarly reachable in the released graph. However, the

subgraph is otherwise distorted, so as to conceal exact node-to-node relationships,

to the extent allowed by the reachability constraint. Thus, a querying user cannot

confidently infer the potentially sensitive relationships among distant connections.

Yet the same querying user obtains a wide view of her own and her peers’ position

in the overall network. Thereby, a benevolent user is able to obtain valid informa-

tion that is relevant in determining how to expand her network, while a malicious

user is prevented from drawing accurate inferences about the relationships among

people she is not closely related to, and is consequently deterred from attempting

to utilize such information in order to gain their trust towards malicious ends (see

also the discussion in section 3.2.4). We contend that such reachability-preserving

graph transformation maintains crucial information with regard to graph structure

that is valuable to the SNS user (as well as the a researcher or social network an-

alyst), while distorting the graph in a way that renders it proof against structural

attacks. Thus, the data release model we propose provides both higher utility and

higher security than the naive path revelation model discussed in Section 3.2.1.1.

58

3.2.2 Reachability Preservation

Real-world social networks of a certain size are usually connected; any two indi-

viduals in them are bound to be linked by a sufficiently large path. The distance

between two individuals, i.e., the length of the shortest path connecting them, is

usually rather small, not exceeding six steps. Milgram’s small world experiment

[110] suggested that the social networks of people in the United States are charac-

terized by such short distances, of approximately three friendship links, on average,

without considering global linkages; Watts [154] recreated Milgram’s experiment on

the internet and found that the average number of intermediaries via which an e-

mail message can be delivered to a target was around six; Leskovec and Horvitz

[94] found the average distance among users of an instant messaging system to be

6.6; Goel et al. [71] tested the extent to which pairs of individuals in a large social

network can actually find paths connecting them; they introduced a rigorous way

of estimating true chain (i.e., search distance) lengths in a messaging network, and

found that roughly half of all chains can be completed in 6-7 steps.

In view of this connectedness of real-world social networks, we deduce that no

previously unknown information is disclosed when the mere existence of a path

among two entities in a network is revealed. Thus, an objective of thwarting the

inference of any linkage whatsoever, as in [33], would set an unnecessarily high goal

and irretrievably alter the nature of the network. Besides, a bona fide SNS user

can reasonably expect to be able to learn whether other individuals in the same

network are reachable at up to a certain distance threshold and also gain a glimpse

of the nature of the network that stands between them. Such information is vital to

SNS users, e.g., job seekers in a professional network, newcomers in a city, or pro-

fessionals looking for new partners. On the other hand, a discretionary revelation

of such reachability information should not reveal the exact relationships among

59

people in the exposed neighborhood, as malicious users can may take advantage

thereof to launch attacks and gain access to potentially sensitive information.

As we discussed, professional networking platforms provide a function that con-

cerns us: when users search for someone, they can see the path that leads from

their node to the searched-for person, possibly under the condition that the path

is not longer than 3 hops. Thus, Alice can see that the path Alice → Lara →

Olivia→ Bob, connects her to Bob. An extension of this functionality to paths of

arbitrary length would endanger users’ confidentiality, as Alice would then acquire

intimate knowledge about the relationships of people she is not acquainted with.

Yet, Alice has a legitimate interest to find out whether she is connected to a certain

individual by a path longer than the ones she is already allowed to see, as well as to

identify individuals in her extended neighbourhood, and thereby possibly attempt

to expand her social circle.

Motivated by such needs, we propose a discretionary graph publication model

that provides useful connectivity and reachability information, along with other

rich graph information, without correctly revealing the graph’s microstructure con-

cerning individuals lying along the presented connections. The connections shown

in a graph published by our method are not necessarily true. Still, the published

graph is constructed so that it does provides fairly correct reachability information.

In effect, a bona fide user can use such information to explore the possibility of

connecting to others, and attempt such a connection by whatever means a given

SNS platform provides. Still, a malicious user would not be able to exploit the

presented network view without risking being exposed. In effect, graph reacha-

bility information is made available in a way that preserves certain properties of

the underlying graph, while confining the potential that sensitive information is

exposed.

60

Furthermore, by our proposal, users in the network can specify a distance

threshold parameter d, so that they can quantify their own comfort zone. Figure

3.18(a) depicts an example of a graph shown to user Alice, in which it is revealed

that another user, Mike, is reachable within 4 hops. This happens under the con-

dition that Mike has agreed to have the information about being reachable by 4

hops available to such other users; i.e., Mike has set his personal distance threshold

to d = 4. Alice then gets the highlighted path information if she wants to see her

position relative to Mike’s position, even though this particular path may not be

the exact path between Alice and Mike. Figure 3.18(b) shows what Alice would see

in case Mike has not opted to make his information available to users within 4 hops.

To encourage users’ participation, Alice’s ability to view Mike’s information can be

made conditional on her making her own information available to users within 4

hops, i.e. her own personal distance threshold being at least 4.

(a) (b)

Figure 3.18: Example of path revelation.

Given such a facility, we expect that users will be willing to accept the dis-

cretionary revelation of their own presence in the network, as they stand to gain

in terms of increased networking functionality. Naturally, when releasing network

data to third parties, we expect end-users to be primarily concerned with the pro-

tection of their confidentiality rather than with the utility of the released data.

61

However, when network data is released among SNS end-users themselves, as in

our primary motivating scenario, we expect that these end-users will have a stake

in data utility and be willing to opt in such a scheme, as they will be among the

beneficiaries of the information that will be provided. By setting a personalized

exposure distance threshold d, users can tailor the tradeoff to their own needs and

sensibilities. In the following discussion, it is always assumed that we are dealing

with a set of users whose distance threshold permits their inclusion in the revealed

graph.

3.2.2.1 Problem Definition

Let G = (V,E) be a simple undirected graph that represents part of a social

network; such a graph can consist of the network neighborhood of a querying

user’s node. V is a set of vertices representing entities in the network, and E is a

set of edges representing relations between entities. We start out by providing the

following definition.

Definition 1. The k-reachability graph of G, Gk, is a graph having the same

vertices V as G, such that an edge between two vertices exists in Gk if and only if

the distance between them is at most k.

For example, the 2-reachability graph of the graph G1 at the left side of Fig-

ure 3.19 is the graph in the middle of the figure. If k is set to be the longest

distance (i.e., the diameter) in G, then the k-reachability graph becomes trivially

similar to the transitive closure of G. However, for intermediate values of k, Gk is

rich in information, showing which entities in the network share connections of up

to a certain length.

Our main claim is that, given a network neighborhood G and a certain k of

interest, a graph G′, having the same vertices, equal number of edges, and the

62

G1 �
�

G2

For k=2

Figure 3.19: Graphs G1 and G2 having the same G2

same k-reachability graph Gk as G, while differing from G in as extensive a way as

possible otherwise, provides high-utility information about G in a manner discre-

tionary with respect to the confidential information of the users involved. We aim

to devise a method that generates G′ given G. We define the following problem:

Problem 1. Given a graph G(V,E) and an integer k, produce a graph G′(E ′, V),

such that |E| = |E ′| and Gk = G′k, while the difference between G and G′, measured

as the edit-distance of their edge sets, Dist(G,G′) = |E∪E′\E∩E′|
|E| , achieves a required

value θ.

In this problem, the graph G represents the network neighborhood around a

querying user’s node u. The parameter k defines the view of that neighborhood

that a user wishes to obtain. By definition, the obtained graph G′ effectively reveals

which users are within k hops of u or of each other.

Furthermore, we propose that each user u in the network may set: (i) an one-

to-one distance threshold du, which defines that any user u′ lying at most du away

from u can obtain information about their connection; and (ii) a universal distance

threshold ku, which defines that the information of u lying ku or more hops away

from any user u′ can be revealed to a third user u′′. A cautious user u would

set a low du threshold (i.e, would prefer to reveal distance information only to

close connections), and a high ku threshold (i.e., would prefer not to let one’s close

connections to be accurately known by strangers). Generous default values could

be set as du = 3 and ku = 2.

For a user’s node in the network, say u′, let d(u, u′) be the actual network

distance between u′ and the querying user u. Then, if k ≥ d(u, u′) > du, i.e., if u′

63

has not given consent for her network distance from u to be revealed to u, then u′

shall not be included in the neighborhood graph G we examine, as presented to u.

Furthermore, if ku > k, i.e., if u′ has not given consent for the information that

her network distance from any other node is at most k hops to be revealed to third

parties, then, once again, u′ is not to be included in G, as presented to such third

parties. In effect, G, as presented to a querying user u would only contain the nodes

of those users who are comfortable having their distance from u, being less than k,

revealed to u (or whose distance from u is larger than k) and are comfortable with

information about their at-most-k-hop connections to other users being revealed to

u as well. Thus, users can define their own privacy objectives [79].

The requirement that Gk = G′k in Problem 1 defines our ideal objective. A

graph G′ that satisfies this reachability requirement for a large value of θ may

not exist, and, even if it exists, may be hard to find. After all, this reachability

requirement is strict, and does not allow much flexibility. In many practical cir-

cumstances, a more flexible version of the same requirement may still satisfy our

objectives. Therefore, we suggest such a relaxed version of the reachability require-

ment that would be easier to satisfy while still maintaining much of the information

we wish to preserve.

3.2.2.2 Relaxing the Reachability Requirement

Let d(v1, v2) (d′(v1, v2)) be the distance of vertex v2 from vertex v1 in G (G′). Then

the standard reachability requirement, i.e., the requirement that Gk = G′k, can be

analytically expressed as follows:

Definition 2. Reachability Requirement (RR) A graph G′(V,E ′) is said to

satisfy the reachability requirement with respect to an original graph G(V,E) for a

given integer k, if and only if |E| = |E ′|, and, for any pair of nodes v1, v2 ∈ V , it

64

holds that d(v1, v2) ≤ k ⇔ d′(v1, v2) ≤ k.

The strictness of the standard reachability requirement emanates from the fact

that a distance that does not exceed k in G should not exceed k in G′ either, and

vice versa. A slightly less rigorous version of this requirement would impose a

lighter constraint by allowing for some laxity in the preservation of distances with

a definite threshold k. In effect, we can relax the requirement by demanding only

that a distance not exceeding k − 1 in G does not exceed k in G′, and vice versa.

This relaxation is twofold: First, we reduce the amount of distances involved, as

we now care only for distances in the range [1, k − 1] instead of the range [1, k].

Second, we introduce some laxity in the preservation of distances within this range,

by allowing that each distance in the range [1, k − 1] in G is mapped to a distance

in a wider range, namely the range [1, k] in G′, and vice versa. We express this

relaxed requirement as follows:

Definition 3. Relaxed Reachability Requirement (RRR) A graph G′(V,E ′)

satisfies the relaxed reachability requirement with respect to an original graph

G(V,E) for a given integer k, if and only if |E| = |E ′|, and, for any pair of

nodes v1, v2 ∈ V , the following implications hold:

d(v1, v2) < k ⇒ d′(v1, v2) ≤ k

d′(v1, v2) < k ⇒ d(v1, v2) ≤ k

Under this relaxation, G′ still presents representatively small distance values

(i.e., values d′ ≤ k) for short distances in G (i.e., d < k) and avoids the misrepre-

sentation of longer distance values in G (i.e., values d > k) as short in G′ (i.e., as

d < k). Thus, we contend that a graph G′ satisfying the relaxed, instead of the

standard, reachability requirement with respect to G provides slightly less precise,

65

but still rich, information about the distances between vertices of interest, yet al-

lows for much-desired higher flexibility in modifying the graph, which allows for a

higher degree of protection against structural attacks. In the following section we

present an algorithm that generates graphs satisfying either the RR or the RRR

with respect to an original graph G, and hence provides an avenue for revealing a

modified, utility-preserving and discretionary version of G.

3.2.2.3 Algorithm

The problem could be tackled by an exhaustive-search algorithm that would try

out all the combinations of edges that could make a modified graph. However, such

an exhaustive search becomes computationally prohibitive as the size of the graph

grows. Instead, our Similar Reachability Graph (SRG) algorithm (Algorithm 5)

modifies the graph step by step, by alternatively adding or deleting one edge at a

time. At each step, we opt for a modification that satisfies the standard (or relaxed)

reachability requirement. As long as modifications that satisfy the requirement are

possible, we keep updating the graph, while keeping track of the distortion inflicted

thereon (i.e., the number of edges altered). Once the inflicted distortion reaches a

desired level θ, the algorithm terminates and the modified graph is output.

Our SRG algorithm makes use of a basic operation that computes the distance

matrix D of a graph G. Having the D of the original graph G, as well as the distance

matrix D′ of a modified graph G′, we can check whether the standard or relaxed

reachability condition is satisfied, and calculate the respective k-reachability graphs

Gk and G′k as well. To that end, we employ the Warshall-Floyd algorithm [60],

with extra pruning and optimization provisions, so as to eschew the computation

of distances larger than the k threshold, which is, unnecessary for our problem.

At first, SRG constructs lists of edges that are candidates for addition (deletion).

66

All edges in G are candidates for deletion, while edges that are candidates for

addition are those that do not exist in G, but exist in Gk. In more detail, SRG starts

out with the original graph G, and proceeds to perform iterative modification steps.

At each iteration, it progressively checks all allowed combinations of λ edges to

delete and λ edges to add, starting with λ = 1 and increasing λ progressively, until it

detects an add/delete combination that produces a modified graph G′ satisfying the

(relaxed) reachability requirement, (R)RR, with respect to G. Having succeeded

in this iteration, it proceeds to modify the obtained graph G′ further in the next

iteration.

Algorithm 3.5: SRG

Input: graph G with V vertices and E edges;
reachability k; distortion threshold θ;
Result: Modified Graph G′

1 compute distance matrix D(G);
2 initialize G′ as G;
3 initialize delete-candidate edge list L1, length `1;
4 initialize add-candidate edge list L2, length `2;
5 while Dist(G,G′) < θ do
6 for λ← 1 to min{`1, `2} do

7 for each edge set C1 ←
(
`1
λ

)
do

8 for each edge set C2 ←
(
`2
λ

)
do

9 delete C1 from and add C2 to G′;
10 if G′ satisfies (R)RR wrt G then
11 update L1 and L2;
12 Break for loops;

13 else
14 add back C1 and delete C2;

15 Return G′(V,E ′);

We emphasize that the satisfaction of the (R)RR is always checked with respect

to the original graph G, not to the modified graph of the preceding step. Thus,

throughout the modification iterations, we always maintain a modified graph G′

that satisfies the (R)RR with respect to G.

These modification iterations terminate when the modified graphG′ has achieved

67

a desired difference from the original graph G, for the sake of withstanding struc-

tural attacks. We measure the difference between graphs G(V,E) and G′(V,E ′) in

terms of distortion, defined as the ratio of the number of edges they do not share

to |E|: Dist(G,G′) = |E∪E′\E∩E′|
|E| ; since |E| is not changed by the algorithm, the

distortion depends on the amount of edges altered, |E ∪ E ′ \ E ∩ E ′|. Distortion

values near 100% (i.e., half the maximum possible value of 200%) provide the high-

est obfuscation, as one cannot tell with confidence neither that an edge in G′ also

appears in G, nor that it does not. This metric has also been used as a vague way

of measuring information loss in previous research [102]; we employ it here simply

as a measure that show how much a graph is being distorted, without making any

claim that correctly captures any other quality.

Our SRG algorithm works with both the standard reachability requirement

(RR) and the relaxed one (RRR). The satisfaction of this requirement is checked

in Step 10, by comparing the distance matrix of the modified graph, (G′), to that

of the original graph. In the next section we proceed to an experimental study, in

which we opt for using the RRR; this choice allows for higher flexibility, while still

preserving, as we will show, rich structural information.

The SRG algorithm is a heuristic, and its practicability rests largely on the

expectation that a modified graph G′ satisfying the (R)RR will be arrived at early,

before the value of λ grows beyond value 2. This expectation is verified by our

experiments. For the sake of completeness, we provide a worst-case complexity

analysis. In a worst-case scenario, half of the possible edges are present in the

graph, i.e., `1 = `2 = ` = n(n−1)
4

, yielding
∑`

λ=1

(
`
λ

)
= O

(
2

n2

4

)
selections of edge

sets for addition and removal, hence O
(

2
n2

2

)
graph modifications in total. Since

the distance matrix computation by the Warshall-Floyd algorithm costs O (n3), the

overall complexity is O
(

2
n2

2 n3
)

. In practice, we expect our algorithm to terminate

68

without raising such high computational demands, as soon as a graph G′ satisfying

the (R)RR is discovered (Lines 10-12).

3.2.3 Experimental Evaluation

In this section we evaluate our algorithm using real data sets. The experiments ran

on an Intel Core, 2 Quad CPU, 2.83GHz, 4GB machine running Windows 7. The

algorithm was implemented in Standard C, while computations of matrix utility

measures were conducted in Python.

3.2.3.1 Data Description

We used two real data sets, representative of social network graphs, which are made

freely available for research purposes. The former, Flickr6[59], contains user-to-user

links in an online social network for image and video hosting. Five subgraphs used

in our experiments are uniformly sampled, with 50 vertices and around 100 edges

for each. The latter data, Gnutella7, describes a peer-to-peer file sharing network.

Nodes represent hosts in the network topology and the edges connections between

hosts. We uniformly sample 5 connected subgraphs of the 2002 Gnutella network

snapshot, containing 50 vertices and around 52 edges for each subgraph. We em-

phasize that the data sizes we test are representative of the small neighborhoods

graphs that arise in the applications we envisage. We focus on how the structure of

such graphs can be published in a discretionary and information-rich manner. We

are not making any assumptions on how, and to what extent, other information in

those graphs, e.g., node attributes, may be revealed. The problem of publishing

such attributes can be treated using techniques for microdata anonymization [31],

as in [33], and is orthogonal to the problem of publishing the graph structure.

6Available online at http://socialnetworks.mpi-sws.org/
7Available online at http://snap.stanford.edu/data/

69

3.2.3.2 Utility Assessment

We claim that, apart from, and because of, satisfying the reachability constraint,

graphs generated by our SRG algorithm preserve other structural properties of

the original graph G. To demonstrate our claim, we compare graphs obtained

by our methods to graphs of the same distortion obtained via the randomized

anonymization technique proposed by Hay et al. [109]. This technique modifies

the original graph by randomly deleting a prescribed number of edges and randomly

adding the same number of edges; thus, the resulting graph has the same number

of edges as the original graph. We refer to the algorithm of Hay et al. as “RAA”.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100

F
r
e
q
u
e
n
c
y

degree

original

SR.k=2

SR.k=3

RAA

(a) DD, Flickr, distortion 0.16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

f
r
e
q
u
e
n
c
y

shortest path length

original

SR.k=2

SR.k=3

RAA

(b) GD, Flickr, distortion 0.16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35 40

F
r
e
q
u
e
n
c
y

degree

original

SR.k=2

SR.k=3

RAA

(c) DD, Gnutella, dist 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

f
r
e
q
u
e
n
c
y

shortest path length

original

SR.k=2

SR.k=3

RAA

(d) GD, Gnutella, dist 0.5

Figure 3.20: Degree distribution (DD) and geodesic distribution (GD) results

In our first experiment, we present the degree distribution and distribution of

pairwise shortest-path (geodesic) distances, of the original Flickr graph, its SRG-

generated modification (SR), and a random perturbation of the same graph by

70

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

E
a
r
t
h

m
o
v
e
r
’
s

d
i
s
t
a
n
c
e

distortion

SR.k=2

SR.k=3

RAA

(a) EMD(DD), Flickr

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
a
r
t
h

m
o
v
e
r
’
s

d
i
s
t
a
n
c
e

distortion

SR.k=2

SR.k=3

RAA

(b) EMD(GD), Flickr

 6e-005

 8e-005

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

E
M
D

o
f

g
e
o
d
e
s
i
c

d
i
s
t
r
i
b
u
t
i
o
n

distortion

SR.k=2

SR.k=3

RAA

(c) EMD(DD), Gnutella

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
M
D

o
f

g
e
o
d
e
s
i
c

d
i
s
t
r
i
b
u
t
i
o
n

distortion

SR.k=2

SR.k=3

RAA

(d) EMD(GD), Gnutella

Figure 3.21: Earth mover’s distance of degree distribution and geodesic distribution

RAA having the same distortion. Figure 3.20 (a)(b) shows the results for graphs

in which we allow distortion 0.16 and set k = 2 and k = 3 separately. We observe

that, as expected, the distribution of those features with SRG resembles those of

the original graph more faithfully than those of RAA.

Next, we present results on the same measures with the Gnutella data. Fig-

ure 3.20 (c)(d) presents our measurements when we allow distortion to reach 0.5 and

set k = 2 and k = 3 separately. In both figures the distributions for SRG graphs

stand relatively closer to those of the original graph. This outcome further confirms

our contention that our method provides a solid way of keeping other structural

graph properties under tight control. Interestingly, we observe how, even under the

relaxed reachability requirement, the SRG graph with k = 3 does not allow any

shortest-path distance to exceed the original graph’s diameter 4 (Figure 3.20 (d)).

Next, to obtain a more precise estimation of the degree to which SRG graphs

71

resemble the original ones, we measure the metric that express their structural

divergence: the Earth-Mover’s Distance (EMD) [132] between the original and

modified degree distributions, for different distortion values. Figure 3.21 (a)(c)

shows the EMD between the degree distributions on SRG graphs with k = 2 and

k = 3, and RAA-perturbed versions of the original Flickr and Gnutella graphs,

respectively, and the original ones, as a function of their distortion, while Figure

3.21 (b)(d) shows the EMD between the geodesic distributions. We observe that,

as expected, the measured metric on the SRG graphs diverge from those of the

original graph much less than those on the RAA graph, even though all graphs are

obtained with the same distortion.

Remarkably, the SRG graph with k = 2 fares better than that for k = 3 with

Flickr data, but not with Gnutella data. This deviation is not surprising; the pa-

rameter k that allows for the best preservation of other structural graph properties

under the same distortion depends on the nature of the data at hand; in some cases,

a lower k may be advantageous, as it enforces the preservation of short-distance

links; in other cases, a higher k may be preferable, as it encompasses more vertex

pairs under its scope.

Then, we assess the divergence between original and anonymized graphs on

other graph properties: the average local clustering coefficient, the average shortest

path length, the graph diameter and radius. For each data set, the results are

averaged over 5 subgraphs, with 5 runs for each subgraph. Figure 3.22 shows the

results for the Flickr and Gnutella data. Again, we observe that the SRG graphs

produce measures that fall much closer to those of the original graphs than the RAA

graphs do. These results corroborate our claim that SRG graphs can maintain the

properties of the original despite the inflicted distortion.

Given that we employ the relaxed reachability requirement in our experiments,

72

the results to reachability queries are expected to have a slight error. We end

our utility assessment by quantifying this error in terms of precision and recall

measures on reachability queries, in which a user asks whether a target node is

reachable within a certain number of k hops. In addition, we present our measures

of false negatives and false positives under the same settings.

In particular, let Vo (Vm) be the set of vertices within k hops of the querying

node in the original (modified) graph. The precision P and recall R are measured

as follows:

P =
|Vo ∩ Vm|
|Vm|

R =
|Vo ∩ Vm|
|Vo|

(3.1)

Similarly, our false negatives and false positives metrics are measured as:

FN =
|Vo \ Vm|
|V |

FP =
|Vm ∩ Vo|
|V |

(3.2)

where V is the graph’s complete vertex set. We measure each of these metrics on

each vertex and average our results over all vertices in the graph. Figure 3.23 shows

our results with both the Flickr and Gnutella data, for graphs modified by the SRG

and RAA algorithms, for queries involving number of hops k = 2 and k = 3. For

example, each dot on the red line in Figure 3.23(a) represents the average precision

for 2-hop queries. As in our previous measurements of graph properties, all results

are averaged over 5 extracted subgraphs and 5 runs for each subgraph, so as to di-

minish the effect of randomness. In all examined cases, the SRG algorithm achieves

higher precision and recall measures, and lower false negatives and positives, than

RAA; the difference is more conspicuous with the Gnutella data. This outcome

reconfirms that the SRG algorithm preserves reachability information more accu-

rately than random distortion does, which is exactly the aim this algorithm is made

for.

73

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

D
i
f
f
e
r
e
n
c
e

o
f

A
L
C
C

Distortion

SR.k=2

SR.k=3

RAA

(a) avg local clustering coeff

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

D
i
f
f
e
r
e
n
c
e

o
f

A
S
P
L

Distortion

SR.k=2

SR.k=3

RAA

(b) avg shortest path length

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

D
i
f
f
e
r
e
n
c
e

o
f

d
i
a
m
e
t
e
r

Distortion

SR.k=2

SR.k=3

RAA

(c) diameter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

D
i
f
f
e
r
e
n
c
e

o
f

r
a
d
i
u
s

Distortion

SR.k=2

SR.k=3

RAA

(d) radius

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
i
f
f
e
r
e
n
c
e

o
f

A
L
C
C

Distortion

SR.k=2

SR.k=3

RAA

(e) avg local clustering coeff

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
i
f
f
e
r
e
n
c
e

o
f

A
S
P
L

Distortion

SR.k=2

SR.k=3

RAA

(f) avg shortest path length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
i
f
f
e
r
e
n
c
e

o
f

d
i
a
m
e
t
e
r

Distortion

SR.k=2

SR.k=3

RAA

(g) diameter

 0

 0.5

 1

 1.5

 2

 2.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
i
f
f
e
r
e
n
c
e

o
f

r
a
d
i
u
s

Distortion

SR.k=2

SR.k=3

RAA

(h) radius

Figure 3.22: Graph properties with increasing distortion, Flickr (a-d) and Gnutella
(e-h)

74

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.11 0.12 0.13 0.14 0.15 0.16

P
r
e
c
i
s
i
o
n

&

R
e
c
a
l
l

Distortion

SR.k=2 precision

SR.k=3 precision

RAA.k=2 precision

RAA.k=3 precision

SR.k=2 recall

SR.k=3 recall

RAA.k=2 recall

RAA.k=3 recall

(a) precision and recall

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.11 0.12 0.13 0.14 0.15 0.16F
a
l
s
e

n
e
g
a
t
i
v
e

&

F
a
l
s
e

p
o
s
i
t
i
v
e

Distortion

SR.k=2 false negative

SR.k=3 false negative

RAA.k=2 false negative

RAA.k=3 false negative

SR.k=2 false positive

SR.k=3 false positive

RAA.k=2 false positive

RAA.k=3 false positive

(b) false negatives/positives

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
r
e
c
i
s
i
o
n

&

R
e
c
a
l
l

Distortion

SR.k=2 precision

SR.k=3 precision

RAA.k=2 precision

RAA.k=3 precision

SR.k=2 recall

SR.k=3 recall

RAA.k=2 recall

RAA.k=3 recall

(c) precision and recall

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5F
a
l
s
e

n
e
g
a
t
i
v
e

&

F
a
l
s
e

p
o
s
i
t
i
v
e

Distortion

SR.k=2 false negative

SR.k=3 false negative

RAA.k=2 false negative

RAA.k=3 false negative

SR.k=2 false positive

SR.k=3 false positive

RAA.k=2 false positive

RAA.k=3 false positive

(d) false negatives/positives

Figure 3.23: Precision and Recall, False negatives and False positives, Flickr (a-b)
and Gnutella (c-d)

3.2.3.3 Resistance to Structural Attacks

We now turn our attention to assessing the extent to which are graphs can resist at-

tacks based on an adversary’s structural knowledge. The resistance to such attacks

ensures that the network’s structure is released in a way that does not allow the

inference of individual users’ identity, while at the same time providing the utility

that we expect, as we have witnessed in the previous section. We contend that the

graphs released by our method are capable of withstanding structural identification

attacks with a high probability, hence providing a measurable amount of protection

on that front.

To illustrate this protection, we experimentally measure the extent to which our

distorted graphs can resist structural attacks of the kind suggested in [7]. While

[7] proposed a specific attack algorithm, the walk-based attack, we go one step

75

further and measure the success rate for any attack based on the identification

of an embedded subgraph in the distorted graphs, as a function of the amount

of distortion incurred on it. Such a structural attack is assumed to succeed if

the adversary can identify an embedded graph in the released graph; as we have

discussed, such an embedded graph may consists of fake accounts created before

graph releasing and which are connected among themselves and to other, victim

nodes, so as to follow a unique and identifiable pattern.

The identification of the maliciously embedded subgraph depends on the infor-

mation of degree and internal structure. Intuitively, the more distorted a graph is,

the less likely it becomes that a structural attack will succeed, and hence higher

protection of individual users is afforded. Besides, the more distorted a graph is,

the less it can be relied upon to provide truthful information at its microstructure.

Arguably, a graph that presents high distortion at its microstructure while still

maintaining truthful overall structural properties at its macrostructure would sat-

isfy our purposes. On the other hand, in case all edges in the embedded subgraph

are preserved after the transformation process and no others are added, then the

attack can be launched successfully. We contend that this state of affairs rarely

arises and its likelihood drops with increasing distortion.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.12 0.14 0.16

su
cc

es
s r

at
e

Distortion

k=2

k=3

(a) Flickr

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

su
cc

es
s r

at
e

Distortion

k=2

k=3

(b) Gnutella

Figure 3.24: Success rate of structural attack

We measure the success rate of the described structural attack vs. the distortion

of the graph in which a malicious subgraph has been embedded. For each data set,

76

we embed 50 different subgraphs prior to the graph’s distortion. For each of the

resulting attacked graphs, we conduct 10 separate runs of SRG perturbation, where

we randomly shuffle the order in which edges are examined so as to obtain non-

deterministic results; thus we obtain 10 different distorted versions of the original

attacked graph, at the same desired distortion level. The success rate of the attack

on the original data, for the obtained distortion, is measured as the total ratio of

successful attacks over the total 10× 50 runs.

Figure 3.24 (a) and (b) shows our results, for the Flickr and Gnutella data

sets, respectively, and for two different values of the reachability parameter k. Our

results confirm our expectations: as distortion grows, it becomes harder for the

attack to succeed. Remarkably, we obtain low success rates even at distortion levels

in which, as our utility assessment experiments show, we also preserve structural

graph properties with satisfactory fidelity.

3.2.4 Discussion

Previous suggestions on discretionary social network publication follow a similar

format: they define a privacy principle the published graph should obey, and pro-

ceed to alter the given graph so as to satisfy this constraint. Still, they do not

offer a respectively comprehensible utility guarantee; as a consequence, they do

not focus on providing data that a social network user may find useful. After all,

such techniques are designed with the assumption that the whole-network data is

published to an external data recipient, e.g., a researcher; their aim is not to enable

user-centric revelation of network subgraphs to SNS users themselves.

We suggested a user-oriented alternative, aiming to provide a picture of a sub-

graph of interest that preserves certain structural properties, thereby offering a

utility guarantee. The subgraph consists of an end-user, as a central user, and a

77

neighborhood of other users that the central user is interested in. In this case,

users’ confidentiality is catered for by distorting the graph as far as possible under

a utility constraint. Unlike the common scenario in the literature, our method is

mainly designed for daily usage scenarios where SNS users want to assess their

position among their peers and their ability to expand their online network in a

desired direction. This facility would be especially useful for users that subscribe to

SNSs with the aim of expanding their social or professional circles. Users who value

such information would be able to opt in such an information revelation scheme in

a give-and-take manner, as they would also be willing to disclose some of their own

information to gain from the networking potential the scheme provides.

The graph is distorted in some respects by our approach, so as to forestall at-

tacks by adversaries with structural knowledge, yet it preserves certain topological

properties in other respects. Arguably, our methodology facilitates certain desirable

user behaviors. Eventually, we argue that we can promote networking in an SNS

by benevolent users, while protecting such users from malicious attackers aiming

to exploit the same information to undesirable ends.

Our results show that by using our proposed approach, not only is reachability

information guaranteed, but other structural properties are also preserved, which

means that users can be provided with views of their extended neighborhood that

will be representative of the real network, even if these are somewhat distorted

in order to thwart malicious users. We envision that such views could consist of

abstracted visual representations of one’s extended neighborhood, e.g. in the form

of concentric circles, or clouds that will indicate reachability and overall structure,

so that a user may assess the distance to another user of interest, as well as the

density, complexity, clustering and other structural properties of the network neigh-

borhood. Our method allows for the creation of various such network views that

78

would be beneficial to the benevolent user. For instance, one looking at the graph

formed by one’s friends can accurately infer how tightly connected those friends are

with each other; for example, a large diameter implies one’s social connections are

wide spread, while a small one implies that one is connected only to people already

well-connected with each other. Such information may be of particular utility to

a public personality (election candidate, actor, athlete) visualizing ones fan club.

Alternatively, someone using a network to promote their work (e.g., a musician)

may be interested in identifying the most influential nodes in that network, and the

number of such nodes. The preservation of properties such as degree distribution

is instrumental for that purpose.

3.2.5 Summary

This method addresses the problem of social network data sharing under con-

fidentiality concerns, from a utility-oriented standpoint, focusing on revealing a

subgraph of connections in a user’s neighborhood. We defined a utility guarantee

involving a reachability property and suggested a method to distort the graph to

a desired extent while observing this requirement. Our technique preserves crucial

properties while blurring individual linkages; thus, it offers a perturbed, albeit in-

formative, view of the network. Our experimental study confirms that (i) graphs

obtained with our scheme do preserve large-scale structural properties of the orig-

inal graphs more faithfully than graphs that have undergone the same amount of

distortion by random perturbation, while (ii) they also pose satisfactory resistance

to structural attacks.

79

Chapter 4

Community Detection

In the previous chapter we study graph structure for network data privacy prob-

lems. We propose novel algorithms for solutions. In this chapter, we study the

utility of network data, the achievements of which are expected to benefit various

applications, i.e., building of weak social ties and bridging social capital. To do

this, we focus on the analysis that explores connectedness on graphs. Specifically,

we study the graph structure for the problem of structural community detection.

One of the building blocks of community detection, be it in application domains

such as sociology [56], biology [138, 54], politics [141] or marketing [128] where the

underlying connectivity structure can be naturally thought of as a graph, is the

ability to recognize clusters of vertices. From this strict structural point of view,

communities correspond to sets of vertices that are more densely interconnected to

each other than they are to the rest of the graph. The structure of a community

help us to understand the individual behaviors and information diffusion in social

networks.

We model a network as a simple graph G(V,E). We propose three approaches

that detect communities based a wide range of graph structural properties, in-

80

cluding degree and clustering coefficient, and closeness among the vertices and the

physical forces among the vertices when simulating the whole graph as a physical

system.

4.1 Force-directed Layout Community Detection

4.1.1 Overview

The main idea that underscores the process of finding communities in this work is

to obtain a representation of the graph in a Euclidean space and then cluster the

vertices based on the Euclidean distance. This is different from common graph clus-

tering algorithms, in that most of them cluster the graph and detect communities di-

rectly or indirectly according to geodesic distance. We use Fruchterman-Reingold’s

force-directed algorithm (FR) [64].This graph layout approach transforms the con-

nections among vertices, based on attractive forces and repulsive forces pulling ver-

tices together and pushing them apart, respectively, into proximity in a Euclidean

space.

This hints that the vertices within one community are placed relatively closer

since it is denser inside the community. In other words, vertices within communi-

ties have more connections to each other than connections to the vertices in other

communities. It is thus a good opportunity to adopt the techniques in data clus-

tering to look for the communities based on the graph layout. Furthermore, we

extend FR from two dimension to one dimension and three dimensions, and even

higher dimensions as well. We evaluate the significance of the number of dimensions

on our method’s effectiveness and efficiency. For disjoint community detection, the

data clustering technique that we take advantage of is the k-means clustering (KM),

while for overlapping communities, we employ the Fuzzy C-mean clustering (FCM),

81

which can indicate the strength between each vertex and communities, and thus

does not restrict each vertex to belong only to one group. FCM is a variant of KM.

All these algorithms’ complexities are not high and neither is FR’s. Our method

building on these techniques is thus efficient for large social networks.

We evaluate effectiveness by measuring modularity. For graphs with known

community structures, we measure the precision as well, by comparing memberships

to communities that our approach discovers with those to the known communities.

4.1.2 Background

The idea of force-directed algorithms is to achieve an “aesthetically pleasing” graph

layout by simulating the whole graph as a physical system. Edges in the graph are

seen as springs binding vertices. Vertices are virtually pulled closer together or

pushed further apart according to physical forces. The positions of the vertices are

adjusted, and this procedure continues until the the system comes to an equilib-

rium. In addition, Fruchterman and Reingold’s force-directed algorithm [64] aims

to achieve even vertex distribution. The authors define the attractive force and the

repulsive force as fa(d) = d2/k and fr(d) = −k2/d, where k = C
√

area
number of vertices

,

and d is the distance between every pair of vertices. area is the area size for display

the graph.

K-means clustering [104] partitions objects to k clustering, assigns each object

the cluster with the nearest mean and adjusts their membership until an optimum

is reached. As a soft version of k-means, Fuzzy C-means clustering (FCM) [13]

assigns a fuzzy degree of membership to each cluster to each object . Instead

of belonging to only one cluster, objects classified via this algorithm can belong

to several clusters with different strengths. As a general version of k-means, the

expectation-maximization algorithm (EM) [5] models clusters using statistic distri-

82

butions. The reason we adopt k-means, rather than EM, is that k-means is effective

enough for this problem and k-means is more efficient. We experimentally show

this in Section 4.

4.1.3 Algorithm

We propose an algorithm that can systematically enumerate all possible number

of clusters and find the configuration with the highest modularity. Therefore, the

algorithm iterates by changing the value of k from 1 to |V | which is the number

of vertices in the network. We show the changes of modularity with a change in

k values. If the number of clusters is prior knowledge, we can set the number of

iterations to be 1 to this number.

Algorithm 4.1: Force-directed Layout Community Detection Algorithm

Input: graph G with n vertices, the number of trials t, t ≤ n;
Result: Clusters Ci, i ∈ (1, 2, ..., k′)

1 v = Fruchterman Reingold(G), v ∈ Rn∗2, v =[v1;v2;...;vn];
2 Sort degree(G);
3 k ← 1;
4 for each k ≤ t do
5 C ′i = K-means(v);
6 Ci = Refinement(C ′i);
7 Calculate modularity and record the maximum;

8 Return Ci,i ∈ (1, 2, ..., k′) with the maximum modularity;

Our method starts from the FR algorithm. The inputs for the algorithm are

limited to only the graph edges. The output is the coordinates of vertices in Eu-

clidean Space. Then we sort the degrees of the vertices and initialize the centers of

the clusters for the clustering using the vertices with highest degrees. The idea is

that the vertices with a high degree have a higher chance of being the community

centers. The centers may change during the clustering. We refine the clusters after

the data clustering in Euclidean space. If there is any vertex that does not have

83

any connection with other vertices in the same cluster, or it has fewer connections

inside its cluster than outside its cluster, then it is grouped to the cluster where it

has the maximum number of connections. In other words, this vertex is grouped to

the cluster that has the greatest number of immediate neighbors. The refinement

process may change the number of clusters, which is actually good for those who

only roughly know the number of clusters. They can input the maximum number

of clusters they believe exists, and let our method find out the exact number of

clusters in the network without trying all the values of k from 1 to |V |.

Algorithm 4.2: Refinement

Input: Clusters Ci, i ∈ (1, 2, ..., k);
Result: Clusters C ′i, i ∈ (1, 2, ..., k′);

1 for i from 1 to k do
2 for v ∈ Ci do
3 find the cluster Cj where v has the maximum number of immediate

neighbors;
4 if i 6= j then
5 Cluster v into Cj;

6 Return C ′i,i ∈ (1, 2, ..., k′);

We call the above algorithm FR-KM for the experiments. The other two ver-

sions of the algorithm are similar to FR-KM but depend on different clustering

methods. We name the one using the expectation-maximization algorithm FR-EM

and the one using the fuzzy c-means algorithm FR-FCM. For FR-FCM, there’s

no refinement of the memberships for the vertices, since we intend to deal with

overlapping communities.

4.1.4 Experimental Evaluation

We conduct experiments on both synthetic and real world graphs including two

benchmark graphs for the community detection algorithm. The experiments run

84

Table 4.1: Performance Comparison between FR-EM,FR-KM and GN

KarateClub AmericanFootball EmailURV
modularity running time modularity running time modularity running time

GN 0.4013 0.016 0.5976 1.014 0.5323 3193.532
Walktrap 0.3944 0.0000001 0.6015 0.015 0.5250 0.92
InfoMap 0.402038 0.015 0.599176 0.047000 0.521420 5.912000
FR-KM 0.417406 0.020000 0.601731 2.179000 0.542659 15.388000

on an Inter Core, 2 Quad CPU, 2.83GHz, 2GB machine running Windows 8 OS.

The algorithms are implemented in C.

4.1.4.1 Data Sets

We use a batch of benchmark graphs [92] to evaluate the effectiveness of our method.

The real-world benchmark graphs we use are Zachary’s Karate Club data and

American College Football data (see Section 4.2.3.1). We also test on the Email-

URV data set, Wikipedia data set, and Facebook data set (see Appendix A.4).

They represent large online social network data.

4.1.4.2 Analysis of non-overlapping community detection

We compare our method to the algorithms of Girvan and Newman(GN) [69, 114],

which is one of the state-of-the-art algorithms in community detection. We also

compare our method with Walktrap algorithm [123] and InfoMap algorithm [129],

which has been shown to perform quite well for community detection (see [62]).

Table 4.1 shows the performance of the algorithms. In this comparison, we use

the normal two dimension FR algorithm with 400 iterations for KarateClub and

AmericanFootball data and 1000 for Email-URV data. The number of trials is

set to 30. For all three graphs, our method produces partitions with the highest

modularity among the four algorithms. Although Walktrap and InfoMap are faster

than our method, and GN is faster than our method for smaller graphs, the running

85

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.01 0.1 1 10 100 1000 10000

m
od

ul
ar

ity

time(in seconds)

FR-KM.1D.KarateClub

FR-KM.2D.KarateClub

FR-KM.3D.KarateClub

FR-KM.4D.KarateClub

FR-KM.5D.KarateClub

GN.KarateClub

FR-KM.1D.Football

FR-KM.2D.Football

FR-KM.3D.Football

FR-KM.4D.Football

FR-KM.5D.Football

GN.Football

FR-KM.1D.EmailURV

FR-KM.2D.EmailURV

FR-KM.3D.EmailURV

FR-KM.4D.EmailURV

FR-KM.5D.EmailURV

GN.EmailURV

Figure 4.1: Performance Comparison between multiple dimension FR-KM and GN

time of our method is still tolerable. As the size of graph becomes larger, our

method becomes faster. If the number of clusters is known in advance, then the

number of trials is 1, instead of the 30 that we set. If so, our method takes much

less time. GN is much slower for larger graphs. For the other two real-world data

sets, Wiki-Vote and Facebook, we are unable to make the comparison due to GN ’s

scalability, but we will show the running time of clustering these two graphs by our

method.

Figure 4.1 shows the performance comparison between multiple dimension FR-

KM and GN. We extend the normal two dimension FR algorithm to one dimension

and three, four, and five dimensions. We set the number of trials as 30. For karate

club data, the number of trials is equal to its number of vertices. We run each FR-

KM with the number of iterations of FR changing from 100 to 2000 with an interval

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

m
od

ul
ar

ity

k

FR_KM
FR_EM

(a) Karate Club data

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

m
od

ul
ar

ity

k

FR_KM
FR_EM

(b) Football data

Figure 4.2: Modularity for varying number of clusters

of 100. We find that the larger the number of iterations of FR-KM, the longer time

it takes. However, the number of iterations of FR does not have a decisive influence

on the modularity. This suggests that there is no need to increase the number of

iterations to get higher modularity. In terms of dimension, we find that for small

graphs, projecting them to one dimension or three dimensions may get a higher

modularity sometimes, but for large graphs, the two dimension FR-KM performs

best. It is faster, and clusters graphs with higher modularity. That is why we shall

adopt the normal two dimensional FR in our algorithm when it comes to large

graphs. FR-KM outperforms in both effectiveness and efficiency with large graphs

compared with GN.

Figure 4.2 shows the modularity when the initial input number of clusters k

varies. The final number of clusters may be different from the values of k on the

x-axis here. Our method changes the number of clusters during cluster refinements,

which produces a local optimum number of clusters. Therefore, we can see from

the result that the trend of the line is horizontal in general. This suggests that we

can find a local optimum around initial k value even without knowing the number

of clusters beforehand. This local maximum is probably the global optimum or

close to the global optimum.

Figure 4.3 shows the running time for varying number of clusters for Email-

87

 10

 100

 1000

 10000

 0 10 20 30 40 50

tim
e(

in
 s

ec
on

ds
)

k

FR_KM on Email-URV Data
FR_EM on Email-URV Data

FR_KM on Wiki-Vote Data
FR_EM on Wiki-Vote Data
FR_KM on Facebook Data
FR_EM on Facebook Data

Figure 4.3: Running time for
varying number of clusters for
Email-URV, Wiki-Vote, and
Facebook data set

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30

pr
ec

is
io

n

average degree

FR_KM
GameTheory

CFinder
InfoMap

WalkTrap
GN

Figure 4.4: Precision for vary-
ing average degree of synthetic
graphs

URV data, Wiki-Vote data and Facebook data. For each data set, the time for

projecting the graph onto Euclidean space is the same, but the clustering time

differs. KM running time remains the same in general as the initial number of

clusters increases while EM ’s running time linearly increases as the initial number

of clusters increases. Compared with KM, EM takes much more time. The trends

are similar among the results for the three data sets.

We compare our method with GN, InfoMap and WalkTrap algorithm, and two

other community detection algorithms, CFinder ([67]) and the game-theory algo-

rithm ([32]). Figure 4.4 shows the precision achieved by the algorithms on the

generated graphs with different average degrees. Since the community structures

are known, precision is obtained by counting the number of correctly clustered

vertices. The results show that our method outperforms the CFinder, GN and

InfoMap, and produces results comparable with the game-theory algorithm and

WalkTrap. The reason for CFinder having a low precision may be that not every

vertex in the graph is clustered. The clusters consists of 3-cliques only in our exper-

iment. The reason for InfoMap having the low precision may be that the number

of community this method detects is large and most of the communities are of a

small size. Many communities are of size of two vertices only.

88

4.1.4.3 Analysis of overlapping community detection

In Figure 4.5 we show that by integrating soft clustering algorithm, FCM, in our

algorithm, we find that the two communities are overlapping on four vertices (vertex

3, 9, 10, 31) that are marked both in green and blue. This is under the assumption

that if the membership strength is larger than 0.8, then the vertex belongs to

that cluster only. Figure 9 shows the membership strength of each vertex to each

cluster. If we take 0.7 as a threshold for belonging strength, then the clusters will

have more overlapping vertices. [91] points out that vertex 3, 9, 10, 14 and 31 are

often misclassified by traditional algorithms. We believe that vertex 3, 9, 14 and

31 are shared between the two groups if overlapping is allowed.

1

2

3
4

56
7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

2829

30

31

32

33

34

Figure 4.5: Zachary’s Karate Club data
partitioned into overlapping clusters

vertexID C1 C2

1 0.996227 0.003773
2 0.940114 0.059886
3 0.598883 0.401117
4 0.882118 0.117882
5 0.929731 0.070269
6 0.823111 0.176889
7 0.863318 0.136682
8 0.809490 0.190510
9 0.473149 0.526851
10 0.344961 0.655039
11 0.865513 0.134487
12 0.914518 0.085482
13 0.877715 0.122285
14 0.771624 0.228376
15 0.045550 0.954450
16 0.045550 0.954450
17 0.751788 0.248212
18 0.931399 0.068601
19 0.223629 0.776371
20 0.797011 0.202989
21 0.045550 0.954450
22 0.974779 0.025221
23 0.045550 0.954450
24 0.023890 0.976110
25 0.061673 0.938327
26 0.045550 0.954450
27 0.045550 0.954450
28 0.157053 0.842947
29 0.293805 0.706195
30 0.045550 0.954450
31 0.427176 0.572824
32 0.151637 0.848363
33 0.022016 0.977984
34 0.029300 0.970700

Figure 4.6: Membership
strength

89

4.1.4.4 Complexity

Our method’s ability to work with large social network data contributes to low com-

plexities in the basic techniques we utilize. FR’s complexity is t(O|E|+O(|V |2)),

where |E| is the number of edges, |V | is the number of vertices and t is the number

of iteration. Time complexity of k-means clustering is O(kt|V |), where |V | is the

number of vertices and t is number of iterations. Time complexity of refinement is

O(d|V |), since we check each vertex’s immediate neighbors, the number of which

is, at most, |V | − 1. d is the max degree of the vertices. Therefore, for the whole

algorithm, time complexity is t · (O|E|+O(|V |2)) +O(kt|V |) +O(d|V |). For large

networks, |V | and |E| are the most significant elements that affect time complexity.

4.1.5 Summary

We propose a graph-layout based community detection algorithm. We use Fruchterman-

Reingold algorithm to project the graph onto a Euclidean space and we cluster the

vertices according to their Euclidean distance. Then we refer to the original graph

information to refine the communities detected. We evaluate the effectiveness and

efficiency on both real-world data and synthetic data. For disjoint community de-

tection, the results show that FR-KM is more effective on both small graphs and

large graphs than GN, and is much more efficient than GN on large networks.

FR-KM is also more effective than Walktrap and InfoMap algorithms, in terms of

modularity. Compared with GN, CFinder, InfoMap, WalkTrap and game-theory al-

gorithms on the synthetic graphs with known communities in advance, our method

is more effective than GN and CFinder and has a good performance comparable

to the WalkTrap and game-theory algorithms according to the results of precision

testing. For overlapping detection, the result for Karate Club data shows that

FR-FCM is reasonably effective.

90

4.2 Fast Disjoint and Overlapping Community

Detection

4.2.1 Overview

The idea of this method is for each vertex to seek the community to which it belongs

by visiting its neighbour vertices. Decisions are made based on the degrees, cluster-

ing coefficients of the neighbors, and the number of common neighbors. Degree and

clustering coefficient are two importance properties of graph topology. Clustering

coefficient measures the cliquishness of neighborhood, and thus indicates clustering

in the graph locally [82, 155].

This method starts from a micro perspective, which is different from that of

the previous work in the last section. Considering the size of networks in modern

applications, we try to design a scalable method in order to deal with the large

graphs within a reasonable time. Therefore, we try to minimize the number of

pair-wise computations among vertices. Instead of comparing all pairs of vertices in

a graph, we only explore each vertex’s immediate neighbourhood. Indeed, vertices

in the same community are more likely to be neighbours [70]. This significantly

reduces the complexity except in the case of dense graphs. In our method, as

vertices can independently explore their neighbourhood and join a community by

following an immediate neighbour, the algorithms are intrinsically data parallel. We

devise a parallel algorithm for disjoint community detection and implement it on a

Graphics Processing Unit (GPU). In the case of overlapping community detection,

a vertex is allowed to belong to several communities if strong connections exist

between the vertex and any of those communities.

We empirically evaluate the performance of our algorithm with both real world

networks and synthetic networks. We evaluate the quality of communities using

91

metrics from different classes [165], as well as one metric recently proposed in [125].

The metrics include modularity, conductance, internal density, cut ratio, weighted

community clustering, and Normalized Mutual Information [91]. The metrics indi-

cate the community quality from different perspectives. We measure the efficiency

by running time. We compare our algorithms with several state-of-the-art algo-

rithms.

4.2.2 Algorithm

We propose an algorithm that delegates the job of finding communities to indi-

vidual vertices. Each vertex seeks its community independently. The decisions of

which community to join are made based on the degrees and clustering coefficients

of neighbours, as well as on the number of common immediate neighbours. We hy-

pothesize that vertices tend to join groups with more connections. In other words,

the vertices try to attach themselves to dense structures, i.e. structures with more

connections among vertices in this structure.

4.2.2.1 Fast Disjoint Community Detection

The algorithm starts by calculating the degree and local clustering coefficient for

each vertex (line 1). The local clustering coefficient is defined as

cc[i] =
ejk : j, k ∈ V, ejk ∈ E

degree[i] ∗ (degree[i]− 1)

It is the ratio between the number of edges between vertices within its neighborhood

and the number of edges that could possibly exist between them. It quantifies how

closely the vertex connects with its neighbors.

Then each vertex looks around its immediate neighbours. If the degree of the

92

Algorithm 4.3: Fast Community Detection

Input: graph G(V,E) with |V | vertices, |E| edges;
Result: Clusters Ci, i ∈ (1, 2, ..., k′)

1 Compute degree[v] and cc[v], v ∈ V ;
2 for each v do
3 if degree[v]<degree[vj] then /* vj ∈vneighbour */

4 g[v] ← vi, where degree[vi] = max(degree[vj]) ;
5 else
6 g[v] = v;

7 for each v do
8 if g[v] = v and degree[v] = degree[vi] then
9 if v and vi has more than half common vertices;

10 then
11 g[v] ← vi, if vi has smaller id;

12 else
13 vg ← g[v];
14 c1← number of common neighbours between v and j;
15 c2← number of common neighbours between v and (vneighbour \ vg);
16 if c1 < c2 then
17 g[v] ← vi, where degree[vi] = max(degree[vj]), vj ∈(vneighbour \ vg)
18 for each v do
19 if g[v] 6= v then
20 i← g[v];
21 repeat
22 i← g[i];
23 until g[i] = i; find standalone vertex
24 g[v] ← i;

25 k ← different numbers in g[v];
26 for i from 1 to k do
27 for v ∈ Ci do
28 find the cluster Cj where v has the maximum number of immediate

neighbours;
29 if i 6= j then
30 Cluster v into Cj;

31 Return Ci,i ∈ (1, 2, ..., k′);

93

vertex, for example vertex v, is the largest among its immediate neighbours, vertex

v stands alone and does not follow other vertices. If the degree of vertex v is

not the largest among its immediate neighbours and itself, vertex v follows the

neighbour with the largest degree among v’s immediate neighbours (line 2-6). If

more than one vertex among the immediate neighbours have the largest degree,

then vertex v follows the one with the largest clustering coefficient, compared to

other neighbours.

In the second round, each vertex adjusts their decisions (line 7-17). If the

standing-alone vertex v has neighbours with the same degree, check the number

of common neighbours of vertex v and v′s neighbour that has the same degree. If

there are enough common neighbours, these two vertices are assumed to be in the

same community. If the vertex v does not stand alone but follows some neighbour,

we check the number of common neighbours vertex v has with the vertex that it

follows, and the number of common neighbours it has with the other neighbours.

If vertex v has more common neighbours with its other neighbours than the one

it follows, then vertex v turns to the vertex with the second largest degree in the

neighbourhood or stands alone if it itself has the second largest degree.

In the third round, each vertex finalizes the community which it desires to

join (line 18-24). If the vertex that vertex v follows is also following vertex vi, then

vertex v also turns to vertex vi. In the end, each vertex follows a vertex that stands

alone. With all the other vertices that follow this vertex, they form a community.

After each vertex chooses its community (line 25), we post-process the mem-

berships to refine the communities (line 26-30). If any vertex has more connections

outside the community than inside the community, it changes its membership. This

refinement process may change the number of communities from the last step.

The only input of the algorithm is the graph itself. No pre-defined number of

94

1

2

3

4 5

6

7

8

Figure 4.7: Example

communities is needed. In the experiments, the graph is given as an edge list. The

output is the communities.

Figure 4.7 shows a graph with 8 vertices and 14 edges. After the first round,

vertex 2, 3, 4, 5, 6 all follow vertex 1 (g[1]=1, g[2]=1, g[3]=1, g[4]=1, g[5]=1,

g[6]=1), while vertex 7 and 8 follow vertex 6 (g[7]=6, g[8]=6). In the second round

for each vertex, the status of vertex 1 is unchanged. The status of vertex 2, 3, 4, 5

is also unchanged, because they have more common neighbours with vertex 1, that

they follow, than with other vertices ({vertex 2, 3, 4, 5}\themselves), vertex 7 and

8 still follow 6, while vertex 6 changes to stand alone instead of following vertex

1 because vertex 6 has more common neighbours with 7 and 8 than with vertex

1. No more changes happen in the third round and the refinement, and thus, the

final result is that we find two communities: one community is labelled by vertex

1, and has vertex 1, 2, 3, 4, 5; the other community is labelled by vertex 6, and

has vertex 6, 7, 8.

We also devise a parallel version. Both the first and second rounds are paral-

lelized. In the first round the vertices look for the vertex with the largest degree

in the neighbourhood at the same time. In the second round, each vertex makes a

decision concurrently. The rest of the algorithm is sequential.

4.2.2.2 Fast Overlapping Community Detection

For the case of overlapping communities, we extend FCD with modifications in the

second round and post-processing, with an additional input parameter θ.

In the second round, each vertex adjusts its decision (line 7-16). If the vertex v

95

does not stand alone but follows some neighbour, and vertex v has more common

neighbours with its other neighbours than the one that it follows, then vertex v

turns to stand alone, so that vertex v leaves the opportunity of finding its commu-

nities to the post-processing part. This aims to cluster controversial vertices after

other vertices choose their communities, and therefore there are clear local pictures

for the controversial vertices to make decisions.

When post-processing the memberships to refine the communities (line 25-29),

the number of connections of each vertex v with each cluster is counted. N v
i is

the number of immediate neighbours that v has in Ci, representing the number of

connections. For any vertex v, N v
max equals max(N v

i) where 1 ≤ i ≤ k (line 27). It

is the maximum number of immediate neighbors of vertex v that it has with some

cluster. Each vertex is grouped into the cluster with the most connections, and the

clusters that have significant number of connections compared with the maximum

number, satisfying the criteria of N v
max − N v

i ≥ θ. The parameter θ, overlapping

factor, determines the degree of overlapping. If θ equals 0, vertex v is grouped to

the clusters that have N v
max connection with v. If θ equals 1, vertex v is grouped to

the clusters that have N v
max or N v

max-1 connections with v. The larger θ is, the more

clusters one vertex may be clustered into, and thus the more overlapping vertices

there are. A vertex changes its membership if the community to which it currently

belongs does not have enough connections with it. Note that overlaps may still

exist if θ equals 0.

4.2.2.3 Complexity Analysis

The time complexity for calculating the clustering coefficient is O(n · d2), where n

is the number of vertices and d is the average degree of vertices in the graph. The

complexity for the first round is O(n · d). The complexity for the second round is

96

O(n · d2). The complexity for the third round is O(n2) in the worst case which is

very unlikely to happen. The usually complexity for this part is O(α · n) where α

is smaller than the graph diameter generally and presents a value less than 2 in our

experiments. The complexity for the refinement is O(n · d2). Therefore the time

complexity for the whole algorithm is O((d2 + α) · n) in the worst case. For the

parallel version, the complexity for the first round is O(d). The complexity for the

second round is O(d2). The rest is the same as that of the sequential version. Thus

the time complexity for the whole parallel algorithm is O(d2 + α · n) in the worst

case.

The two algorithms can be applied to the networks according to the preliminary

knowledge of communities, e.g. whether they are disjoint or overlapped.

4.2.3 Experiment

We conduct experiments on both synthetic and real world graphs, including three

benchmarks for community detection. We ran the sequential algorithms on an

2.83GHz Inter Core, 2 Quad CPU machine with 2GB of main memory under Win-

dows 8 OS. The parallel algorithm ran on the same machine with a GeForce GTX

560 Ti graphics card having 2048 MB of global memory, 8 multiprocessor and 48

CUDA cores per multiprocessor. The algorithms are implemented in Visual C++

10.0. The parallel algorithm is implemented using the application programming

interface CUDA for the C language. CUDA [42], the C language Compute Unified

Device Architecture, is provided by NVIDIA and works on NVIDIA graphic cards.

The CUDA programming model consists of a sequential host code combined with

a parallel kernel code.

We compare our algorithm for disjoint community detection with three state-

of-the-art algorithms: InfoMap [129], WalkTrap [123] and Girvan and Newman

97

Algorithm 4.4: Fast Overlapping Community Detection

Input: graph G(V,E), parameter θ;
Result: Clusters Ci, i ∈ (1, 2, ..., k′)

1 Compute degree[v] and cc[v], v ∈ V ;
2 for each v do
3 if degree[v]<degree[vj] then /* vj ∈vneighbour */

4 g[v] ← vi, where degree[vi] = max(degree[vj]) ;
5 else
6 g[v] ← v;

7 for each v do
8 if g[v] = v and degree[v] = degree[vi] then
9 if v and vi has more than half common vertices;

10 then
11 g[v]← vi, if vi has smaller id;

12 else
13 vg ← g[v];
14 c1← number of common neighbours between v and j;
15 c2← number of common neighbours between v and (vneighbour \ vg);
16 if c1 < c2 then g[v] ← v;

17 for each v do
18 if g[v] 6= v then
19 i← g[v];
20 repeat
21 i← g[i] ;
22 until g[i]= i; find standalone vertex
23 g[v] ← i;

24 k ← different numbers in g[v];
25 repeat
26 for each v do
27 find clusters {Ci|N v

max −N v
i ≥ θ, 1 ≤ i ≤ k};

28 if v /∈ Ci then Cluster v into Ci;

29 until reach equilibrium;
30 Return Ci,i ∈ (1, 2, ..., k′);

98

(GN)[69][114]. InfoMap is based on information theory. Walktrap is based on ran-

dom walk. InfoMap has been empirically shown to have better performance, com-

pared to other algorithms for community detection [62]. We compare our algorithm

for overlapping community detection with two algorithms: the game-theory algo-

rithm and speaker-listener label propagation algorithm (SLPA)[161], which show

good performance [160, 161]. In the experiment, we directly use the original C++

code of the game-theory algorithm provided by author of [32] and Java executable

file of SLPA provided by author of [161].

4.2.3.1 Data sets

We generate a batch of benchmark graphs [92] with known community structure,

number of vertices, the average degree, maximum degree, minimum and maximum

size of micro and macro community due to the hierarchical structure, and fraction

of edges between vertices belonging to the same or different communities. The first

set of graphs are generated with 2,000 vertices and different average degrees while

the other parameters remain the same. They have no overlapping communities. For

overlapping communities, we generate two sets of graphs. The first set of graphs

has 10,000 vertices and different average degrees, while the other parameters are

the same. Every five graphs have a similar average degree. We run the algorithm

on all the graphs and we take and compare the average values. The second set of

graphs generated have a varying number of vertices from 10,000 to 50,000, and for

every number of vertices, five graphs are generated.

The real-world benchmark graphs used are listed as follows. Among them,

Zachary’s Karate Club data, American College Football data and Dolphin network

are widely used for evaluating community detection algorithms.

Karate Club data is a social network of karate club members studied by

99

the sociologist Wayne Zachary. The network has 34 members (vertices) and they

are separated into two different groups due to a controversy between one of the

instructors and administrator of the club.

American College Football data is a network with 115 teams (vertices)

which are separated into 12 conferences. An edge exists between two vertices if

there is a match between two teams. More games happen among teams within the

same conference than teams from different conferences.

Dolphin Network is collected by David Lusseaua [105]. The network repre-

sents frequent associations between 62 dolphins (vertices) in a community living

off Doubtful Sound, New Zealand.

Email-URV data is collected by Guimer et al. [1]. The network contains

user-to-user (address- to-address) links from the network of e-mail interchanges

among faculty and graduate students at Rovira i Virgili University of Tarragona,

Spain. It is available on Alex Arenas Website [1].

Arxiv HEP-PH , collected by Leskovec et al. [96], is a collaboration network

containing scientific collaborations between authors who submitted papers to High

Energy Physics. It is available on the SNAP website [136].

Wiki-Vote , collected by Leskove et al. [95], contains user-to-user (who-vote-

whom) links from the Wikipedia network. It is available on the SNAP website [136].

Each vertex represents a user. An edge is created from a user to a candidate if a

user votes for Wikipedia admin candidates.

Email-Enron data set contains user-to-user (address-to-address) links. It was

made public by the Federal Energy Regulatory Commission during its investiga-

tions. We obtained it from [136]. Each vertex represents an email address. An edge

exists between vertex i and vertex j if address i sends at least one email message

to address j.

100

Table 4.2: Description of data sets

Number of Vertices Number of edges
Karate Club 34 78

Dolphin 62 159
American College Football 115 610

Email-URV 1,133 5,451
Wiki-Vote 7,066 100,736

Arxiv HEP-PH 11,204 117,649
Email-Enron 33,696 180,811

Epinions 119,130 704,276

Epinions data set contains user-to-user (who-trust-whom) links from Epinions

network. It was collected by Epinions staff P. Massa. We obtained it from trustlet

website [146, 108]. Each vertex represents a user. An edge corresponds to a trust

or distrust statement from one user to another user.

We extract the largest component of the networks that have more than one

component. The number of vertices and the number of edges of each data set are

listed in Table 4.2

4.2.3.2 Metrics

We use five metrics to qualify the disjoint communities: modularity, conductance,

internal density, cut ratio and weighted community clustering (Equ. 2.1 - 2.6).

Modularity, conductance, internal density and cut ratio are selected from four

classes of metrics for community [165] so that we can eliminate the bias of having

only one kind of metric. Weighted community clustering is a recently proposed

metric [125]. We use the revised modularity (Equ. 2.2) to measure the quality of

overlapping communities. In our experiments, we take the average of the conduc-

tances of communities found for the conductance of the whole network, and it is

the same for the other metrics, except modularity.

We compute the NMI (Equ. 2.7) value of the set of communities detected,

and the known set of communities of the graphs that we generate. NMI works

101

(a) FCD (b) InfoMap (c) WalkTrap (d) GN

Figure 4.8: Communities for Karate Club data by different algorithms

(a) FCD (b) InfoMap (c) WalkTrap (d) GN

Figure 4.9: Communities for Dolphin data by different algorithms

in the same way for the comparison of disjoint community sets and overlapping

community sets.

4.2.3.3 Experimental Assessment for Disjoint Community Detection

Figure 4.8 shows the communities found in the Karate Club network by each al-

gorithm. Figure 4.9 shows the communities found in the Dolphin new network by

each algorithm. Vertices of the same color are in the same community.

Figure 4.10 shows the measurement results on the four real data sets. The x-

axis is labelled by the names of data sets. The y-axis is the value of metric. For

each data set, the metric values for the communities detected by each algorithm are

compared. Figure 4.10 (a) shows that the communities that FCD and ParallelFCD

found have a lower modularity on these four data sets. However, this does not

indicate that our algorithm is not better than the other three algorithms. Figure 4.8

shows that our algorithm identifies two communities, that coincides with the truth

that the members of the Karate Club separated into two different groups due to a

controversy, and thus the result of our algorithm is actually more reasonable than

the other three algorithms even though the modularity values are lower. Figure 4.10

102

(b) shows the conductance results. The lower the conductance, the better the

communities found. In this case, our algorithm has the lowest conductance on two

data sets and highest conductance on the other two data sets. Figure 4.10 (c)

shows the internal density results. The higher the internal density, the better the

communities found. In this case, our algorithm has the highest internal density in

three of the four data sets, and the lowest in one data set. Figure 4.10 (d) shows

the cut ratio results. The lower the cut ratio the better the communities found. In

this case, our algorithm has the lowest cut ratio in one of the four data set, and the

highest in the other three data sets. Figure 4.10 (e) shows the weighted community

clustering results. The higher the WCC, the better the communities found [125]. In

this case our algorithm has a lower WCC in three of the four data sets. Figure 4.10

(f) shows the running time. For the four data sets, FCD performs the fastest among

the algorithms. ParallelFCD performs faster than InfoMap, WalkTrap and GN on

the Email-URV data. Comparing the performances of the same algorithm on the

four data sets, we can see the big differences which are due to the different graph

structures, e.g. different number of vertices, number of edges, different densities.

To sum up the results on these four real data sets, our algorithm, FCD and its

parallel version, finds communities with better values in terms of internal density

and conductance, but not with the other metrics. However, as we can see from

the results for Karate Club, the communities detected by our algorithm stay more

truthful than those of the other algorithms. In this sense, our algorithm is effective.

From the comparison of running time, FCD is obviously more efficient than the

others.

Figure 4.11 shows the results on the first set of benchmark graphs. It shows

that the metric value changes as the graphs increase in average degree. The x-axis

is the average degree of the graphs. The y-axis is the value of metrics. Each dot

103

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(a) Modularity

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(b) Conductance

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(c) Internal Density

 0

 1000

 2000

 3000

 4000

 5000

 6000

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(d) Cut Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(e) Weighted Community Clustering

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

KarateClub Dolphin Football Email-URV

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(f) Running Time

Figure 4.10: Measurements on real world graphs

104

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30
average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN
Original

(a) Modularity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25 30
average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN
Original

(b) Conductance

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30
average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN
Original

(c) Internal Density

 0

 20000

 40000

 60000

 80000

 100000

 120000

 5 10 15 20 25 30
average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN
Original

(d) Cut Ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30
average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN
Original

(e) Weighted Community Clustering

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

average degree

ParallelFCD
FCD

InfoMap
WalkTrap

GN

(f) Running Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35
average degree

FCD
InfoMap

WalkTrap
GN

(g) NMI

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 25 30 35
average degree

FCD
InfoMap

WalkTrap
GN

Original

(h) Average Community Size

Figure 4.11: Measurements on synthetic graphs
105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000 10000f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD
InfoMap

WalkTrap
GN

Original

(a) Graph 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000 10000f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD
InfoMap

WalkTrap
GN

Original

(b) Graph 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100 1000 10000f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD
InfoMap

WalkTrap
GN

Original

(c) Graph 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100 1000 10000f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD
InfoMap

WalkTrap
GN

Original

(d) Graph 4

Figure 4.12: Community distribution

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000 8000

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

number of vertices

FCD
InfoMap

(a) Wiki Vote Network

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

number of vertices

FCD
InfoMap

(b) Arxiv HEP-PH network

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000 35000

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

number of vertices

FCD
InfoMap

(c) Email-Enron Network

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20000 40000 60000 80000 100000 120000

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

number of vertices

FCD
InfoMap

(d) Epinion Network

Figure 4.13: Running time for large graphs

106

represents one metric value for the communities detected by one algorithm. Figure

4.11 (a) shows the modularity results. It shows that WalkTrap has the highest

modularity in general, although in some cases, GN and FCD have the highest

modularity, and FCD has a higher modularity than InfoMap. Figure 4.11 (b) shows

the conductance results. It shows that InfoMap has the highest conductance and

GN has the lowest. Figure 4.11 (c) shows the internal density results. It shows that

InfoMap has the highest internal density, and GN has the lowest density. Figure

4.11 (d) shows the cut ratio results. It shows that InfoMap has the highest cut ratio,

and GN has the lowest. Figure 4.11 (e) shows the WCC results. It shows that

FCD and WalkTrap have a higher WCC, and InfoMap and GN have a lower WCC.

As FCD and ParallelFCD detect the same communities, the green line and the red

line overlap in Figure 4.11 (a)-(e). Figure 4.11 (f) shows the running time. FCD

and ParallelFCD are shown to be faster in most cases. GN is much slower than

InfoMap, WalkTrap and FCD. ParallelFCD is not obviously faster than FCD, due

to the data communication between the host CPU and device GPU. Figure 4.11 (g)

shows the measurement of NMI. It shows that both InfoMap and WalkTrap display

higher NMI values. Figure 4.11 (h) shows the average and deviation of community

size. The results reveal that the average size of communities is the closest to the

ground truth when the average degree of the graph is about 10 or less than 10. In

other words, FCD shows better performance in sparse graphs.

Comparing the metric values of the communities found by algorithms and the

ground truth, we can see that in some cases FCD finds communities closer to the

ground truth while in the other cases GN and WalkTrap find communities closer

to the ground truth.

Figure 4.12 shows the distributions of sizes of communities in four randomly

picked graphs. The x-axis is the size of the community. The y-axis is the frequency

107

of community size. The results show that FCD and WalkTrap find communities

of closer sizes to the ground truth relatively in general while in the last case, GN

finds the communities of the most similar sizes as the known ones.

To sum up the results on these synthetic graphs, FCD (ParallelFCD) is more

stable than InfoMap and GN in terms of effectiveness. InfoMap is the best in

terms of internal density but the other three algorithms are better in terms of

conductance, cut ratio and WCC. GN and WalkTrap are the best in terms of

conductance and cut ratio but the other two algorithms are better in terms of

internal density. Comparing the detected communities with the ground truth gives

a different evaluation of detected community quality, as the good metric value does

not always indicate the closeness of the detected communities to the ground truth.

The running time shows that FCD is faster than the other three in general.

Another set of experiments demonstrating the running time are carried out on

Wiki-Vote, Arxiv HEP-PH, Email-Enron, and Epinion network. We sample sub-

graphs from the networks. Every subgraph contains k percentage vertices of the

original networks, where k = 10, 20, ..., 90. We run the FCD and InfoMap algo-

rithms on these subgraphs and the original graphs. The running time is recorded.

Figure 4.13 shows the running time changing, as the number of vertices of networks

increases. Each figure shows the results for one data set. The x-axis is the number

of vertices. The y-axis is the time measured in seconds. Due to WalkTrap and GN

algorithms’ scalability on large graphs, we only compare the InfoMap and FCD al-

gorithms here. The results show that both algorithms are able to work with graphs

with more than 100,000 vertices. For graphs such as Email-Enron with 33,696 ver-

tices, the algorithms are able to finish the task in a few minutes. In most cases

FCD is faster than InfoMap.

108

4.2.3.4 Experimental Assessment for Overlapping Community Detec-

tion

We set the parameter of θ to be 0 in this set of experiments, as we do not expect a

large amount of overlaps in our synthetic graphs. We also examined higher values

of θ on some graphs randomly chosen from the data sets and comparisons indicate

a lower quality of detected communities with higher values of θ.

Figure 4.14 shows the results for the graphs with varying average degree. The

x-axis is the average degree of the graphs. The y-axis is the value of metric.

We conduct experiment on five graphs with similar average degree and then take

the average of the values to reduce bias against different graph structures. Thus,

each dot represents one metric value averaged over five values of the communities

detected by one algorithm. Figure 4.14 (a) shows the results for NMI. It shows

that our algorithm FCD-OV results in the highest NMI value compared to the

game-theory and SLPA algorithm, which indicates that the communities found by

FCD-OV are the closest to the true community structure in the input graphs.

Figure 4.14 (b)-(f) show the measurement results for community quality. As the

community structure of the generated graphs are known, we compare the quality

of the communities detected by the three algorithms and the quality of the known

communities that is labelled as original in the figures. It is obvious that FCD-OV

results in the values that are closest to the original ones, suggesting that FCD-

OV has a better capability to find true communities. Figure 4.14 (g) shows the

average size of the set of communities found as well as the original average size of

the communities in each graph. FCD-OV finds the communities with the average

sizes that are closest to the known ones.

Figure 4.15 shows the same measurements as Figure 4.14 on the graphs with

varying size. The x-axis is the number of vertices in the graphs. The y-axis is the

109

value of metric. As the graph size increases from 10,000 to 50,000, we measure the

values of each metric for communities found in each graph. We conduct experiment

on every five graphs with the same size and then take the average of the values to

reduce bias against different graph structures. Figure 4.15 (a) shows the results

of NMI. It shows that FCD-OV has the highest values. Figure 4.15 (b)-(f) show

the measurement results on community quality. Figure 4.15 (g) shows the average

size of the set of communities found as well as the original average size of the

communities in each graph.

The results in Figure 4.15 suggest that the communities found by FCD-OV are

the most truthful to the known communities. They also suggest that the change

of metric values for the communities is almost independent of the size of graphs

except the cut ratio.

Figure 4.16 shows the average size and standard deviation of each set of the

communities in graphs of different average degrees. Figure 4.17 shows the average

size and standard deviation of each set of communities in graphs with different

sizes. In Figure 4.16, the x-axis is the average degree of the graphs, and the y-

axis is the size of the community. In Figure 4.17, the x-axis is the size of the

graph, and the y-axis is the size of the community. It shows that the average size

of the communities detected by FCD-OV is closer to the average size of known

communities.

Figure 4.18 shows the plots of community distribution for six randomly selected

graphs. The x-axis is the size of the community. The y-axis is the ratio of the

number of communities of certain size and the total number of communities in the

graph, i.e., the frequency of community size. The known communities are mostly

within size 100 to 200, while many communities detected by the game-theory and

SLPA algorithms are of a size smaller than 100. In comparison, many lines for

110

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 6 7 8 9 10 11 12 13

N
M
I

average degree

FCD-OV
GAME
SLPA

(a) NMI

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 5 6 7 8 9 10 11 12 13

m
o
d
u
l
a
r
i
t
y

average degree

FCD-OV
GAME
SLPA

ORIGINAL

(b) Modularity QE
ov

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 5 6 7 8 9 10 11 12 13

c
o
n
d
u
c
t
a
n
c
e

average degree

FCD-OV
GAME
SLPA

ORIGINAL

(c) Conductance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 5 6 7 8 9 10 11 12 13

i
n
t
e
r
n
a
l

d
e
n
s
i
t
y

average degree

FCD-OV
GAME
SLPA

ORIGINAL

(d) Internal Density

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 5 6 7 8 9 10 11 12 13

c
u
t
r
a
t
i
o

average degree

FCD-OV
GAME
SLPA

ORIGINAL

(e) Cut Ratio

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5 6 7 8 9 10 11 12 13

W
C
C

average degree

FCD-OV
GAME
SLPA

ORIGINAL

(f) Weighted Community Clustering

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 6 7 8 9 10 11 12 13

a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

average degree

FCD-OV
GAME
SLPA

ORIGINAL

(g) Average Community Size

Figure 4.14: Measurements on graphs with varying average degree
111

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
M
I

number of vertices

FCD-OV
GAME
SLPA

(a) NMI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
o
d
u
l
a
r
i
t
y

number of vertices

FCD-OV
GAME
SLPA

ORIGINAL

(b) Modularity QE
ov

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 10000 15000 20000 25000 30000 35000 40000 45000 50000

c
o
n
d
u
c
t
a
n
c
e

number of vertices

FCD-OV
GAME
SLPA

ORIGINAL

(c) Conductance

 0

 0.5

 1

 1.5

 2

 10000 15000 20000 25000 30000 35000 40000 45000 50000

i
n
t
e
r
n
a
l

d
e
n
s
i
t
y

number of vertices

FCD-OV
GAME
SLPA

ORIGINAL

(d) Internal Density

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 10000 15000 20000 25000 30000 35000 40000 45000 50000

c
u
t
r
a
t
i
o

number of vertices

FCD-OV
GAME
SLPA

ORIGINAL

(e) Cut Ratio

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

W
C
C

number of vertices

FCD-OV
GAME
SLPA

ORIGINAL

(f) Weighted Community Clustering

 0

 100

 200

 300

 400

 500

 10000 15000 20000 25000 30000 35000 40000 45000 50000

a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

number of vertices

FCD-OV
GAME
SLPA

ORIGINAL

(g) Average Community Size

Figure 4.15: Measurements on graphs with varying size

112

-100

 0

 100

 200

 300

 400

 500

 5 6 7 8 9 10 11 12 13a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

average degree

FCD-OV

(a) FCD-OV

-100

 0

 100

 200

 300

 400

 500

 5 6 7 8 9 10 11 12 13a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

average degree

GAME

(b) GAME

-100

 0

 100

 200

 300

 400

 500

 5 6 7 8 9 10 11 12 13a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

average degree

SLPA

(c) SLPA

-100

 0

 100

 200

 300

 400

 500

 5 6 7 8 9 10 11 12 13a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

average degree

ORIGINAL

(d) ORIGINAL

Figure 4.16: Measurements on graphs with varying average degree

-100

 0

 100

 200

 300

 400

 500

 10000 15000 20000 25000 30000 35000 40000 45000 50000a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

number of vertices

FCD-OV

(a) FCD-OV

-100

 0

 100

 200

 300

 400

 500

 10000 15000 20000 25000 30000 35000 40000 45000 50000a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

number of vertices

GAME

(b) GAME

-100

 0

 100

 200

 300

 400

 500

 10000 15000 20000 25000 30000 35000 40000 45000 50000a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

number of vertices

SLPA

(c) SLPA

-100

 0

 100

 200

 300

 400

 500

 10000 15000 20000 25000 30000 35000 40000 45000 50000a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

number of vertices

ORIGINAL

(d) ORIGINAL

Figure 4.17: Measurements on graphs with varying size

FCD-OV overlap with the lines for the known communities, and this indicates

that most of the communities detected by FCD-OV are of the sizes of the known

communities or close to the sizes of the known communities.

Figure 4.19 shows the running time of three algorithms on the two sets of

generated graphs. In both cases, FCD-OV costs the least time compared to the

game-theory and SLPA algorithms. The running time also shows that FCD-OV

detects community in graphs with 50,000 vertices within one and a half minutes.

The high efficiency of FCD-OV is exhibited.

To sum up, we empirically evaluate FCD algorithms. For disjoint community

detection, we examine FCD on four real graphs and a set of synthetic graphs.

Knowing few ground truths about the communities in the real graphs, we mea-

sure the community quality by calculating the values of chosen metrics. For syn-

thetic graphs, we measure the extent to which the detected communities match the

ground truths. Compared to the InfoMap, WalkTrap and GN algorithms, FCD

is the fastest while it produces results of comparable quality. FCD shows better

performance on several metrics.

For overlapping community detection, we examine FCD on synthetic graphs.

113

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 100 200 300 400 500 600 700f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD-OV
GAME
SLPA

ORIGINAL

(a) Graph 1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 100 200 300 400 500 600 700f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD-OV
GAME
SLPA

ORIGINAL

(b) Graph 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD-OV
GAME
SLPA

ORIGINAL

(c) Graph 3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD-OV
GAME
SLPA

ORIGINAL

(d) Graph 4

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 100 200 300 400 500 600 700f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD-OV
GAME
SLPA

ORIGINAL

(e) Graph 5

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700f
r
e
q
u
e
n
c
y

o
f

c
o
m
m
u
n
i
t
y

s
i
z
e

community size

FCD-OV
GAME
SLPA

ORIGINAL

(f) Graph 6

Figure 4.18: Community distribution

 0

 20

 40

 60

 80

 100

 120

 140

 5 6 7 8 9 10 11 12 13

r
u
n
n
i
n
g

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

average degree

FCD-OV
GAME
SLPA

(a) Running Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10000 15000 20000 25000 30000 35000 40000 45000 50000

r
u
n
n
i
n
g

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

number of vertices

FCD-OV
GAME
SLPA

(b) Running Time

Figure 4.19: Running time comparison

114

We measure the community quality by calculating values of the metrics and com-

pare the detected communities with the ground truths. Compared to the game-

theory and SLPA, FCD identifies communities closer to the ground truths. FCD

also takes less time to find the communities.

4.2.4 Summary

In this section, we propose two fast community detection algorithms, one for disjoint

community detection and the other for overlapping community detection. They ini-

tiate each vertex to independently seek out the community in its neighbourhood.

Each vertex chooses its community and peers, based on a knowledge of degrees and

clustering coefficients of neighbours and the number of common neighbours. The

algorithms are parallelizable and thus we devise a GPU version of the algorithm for

disjoint community detection for parallel computation. In the case of disjoint com-

munity detection, we empirically evaluate the performance of FCD, and compare

it to the InfoMap, WalkTrap and GN algorithms. We find that FCD is the fastest,

while it produces results of comparable quality. We assess effectiveness based on the

values of modularity, conductance, internal density, cut ratio, weighted community

clustering, and normalized mutual information as well as community size. In the

case of overlapping community detection, we empirically compare the performance

of FCD for overlapping communities with the game-theory and SLPA. We find that

FCD for overlapping communities is more efficient, and more effective.

115

4.3 Local Closeness Community Detection

4.3.1 Overview

We propose an algorithm for the detection of structural communities in simple

graphs. The algorithm is able to detect overlapping communities. The algorithm is

based on a local notion of closeness centrality [18, 63]. Closeness centrality measures

how close a vertex is to all the other vertices, and indicates the importance [119]

of vertices in a graph. We utilize such measurement of importance for locating

densely connected members of communities. We try to propose an algorithm for

direct community detection using the metric of closeness centrality. However, we

observe a problem in efficiency. The computation of closeness centrality is costly.

Therefore, we alleviate the problem by defining a local notion of closeness centrality.

We leverage the fundamental concepts used in the local outlier factor algorithm

by Breunig et al. [24]. The local outlier factor algorithm finds outliers for clusters

with nonuniform density. We adapt the idea of a local density to the definition of a

local notion of closeness centrality. This is done by computing distance, reachability

distance and density of a vertex within its restricted neighbors, as in the local outlier

factor algorithm local reachability density and local outlier factor are computed

with the nearest neighbors. To account for the graph structure, we also define the

adjusted geodesic distance, which is the geodesic distance between a vertex and

its surrounding neighbor with adjustment regarding the number of shortest paths.

Based on this definition of distance, a local notion of closeness centrality and a

local closeness factor are defined. Vertices are paired with their neighbors based on

their respective local closeness factor to form the communities. We find that the

local notion of closeness centrality yields a more effective and efficient algorithm

for community detection than closeness centrality does.

116

We compare the performance of our algorithm with that of three state-of-the-art

community detection algorithms for overlapping communities: a label propagation

algorithm [161], a game theory algorithm [32] and a probabilistic model-based algo-

rithm [166]. We empirically evaluate the performance of our algorithm with varying

parameters. We calculate effectiveness by calculating the normalized mutual infor-

mation [91] and omega index [39] between the set of communities found and the

known set of communities.

We show that our algorithm displays competitive performance on both gen-

erated graphs and real world graphs. It is more effective and efficient than the

algorithms compared for sparse graphs on a large scale.

Our contribution is an algorithm and its evaluation for the detection of poten-

tially overlapping communities. The algorithm localizes the closeness centrality

with the notions of local reachability density that we have adapted to the case of

graphs and geodesic distance from the local outlier factor algorithm. The closeness

factor we introduce is local, in the sense that only a restricted neighborhood of

each vertex is taken into account.

4.3.2 Motivation

In this section, we introduce the concepts of closeness centrality and local outlier

factor, and how these concepts constitute the idea of our community detection

method.

4.3.2.1 Closeness Centrality

In graph theory, a natural distance metric that is defined by the length of shortest

path exists between any pair of vertices. It is called geodesic distance. The farness

of a vertex is defined as the sum of its geodesic distances to all the other vertices,

117

and its closeness is defined as the inverse of the farness [133]. Thus, the more

central a vertex is, the smaller its total geodesic distance to all other vertices. The

classic definition of Closeness Centrality (CC) [18] is shown below:

CC (v) =
∑

x 6=v,x∈V

1

d (x, v)
(4.1)

V is the set of vertices of a graph. The closeness centrality of a given vertex

v is the sum of the inverse of distance of between v and all the other vertices in

the graph. The geodesic distance between vertex x and vertex v is denoted by

d(x, v). Closeness centrality indicates the importance of a vertex [119] in terms of

its closeness to the rest vertices.

The naive algorithm that we design for community detection integrates this

indicator. The experiment demonstrates the effectiveness of closeness centrality. It

shows that this closeness centrality based community detection algorithm rivals the

three algorithms that it is compared with. However, it suffers from an efficiency

issue. The complexity for computing closeness centrality is O(n3). n is the number

of vertices in the graph. This is because the computation of closeness centrality

involves the computation of geodesic distances between all pairs of vertices. This

complexity is considered to be a computational high for large graphs.

4.3.2.2 Local Outlier Factor

We desire a notion of local closeness centrality to alleviate the above problem.

Therefore we design a such notion by adapting the idea of local density from LOF.

LOF is originally proposed to find outliers for clusters with non-uniform density,

where density is estimated by Euclidean distance among data points. Regions of

similar density are identified by comparing the local density of each data point to

those of its neighbours. Data points are considered to be outliers if they have a

118

v

x

y

p1
p2 p3

p4

Figure 4.20: Vertex V has 4 one-step neighbors and 20 two-step neighbors.

lower density than their neighbours. LOF measures the extent to which a point is

an outlier based on the relative density of its local neighbourhood. This enables

LOF to spot outliers that cannot be observed from a global view.

The complexity of LOF computation for each object mainly depends on the

parameter k, which specifies the number of nearest neighbor involved in the calcu-

lation of LOF value for each object. The complexity is reduced by restricting the

calculation to k-distance neighbors of each object. The k-distance of an object p

is denoted as k-distance (p). It is defined as the distance d (p, o) between p and an

object o ∈ D such that:

1. for at least k objects o′ ∈ D \ {p} it holds that d (p, o′) ≤ d (p, o), and

2. for at most k − 1 objects o′ ∈ D\ {p} it holds that d (p, o′) < d (p, o)

The k-distance neighborhood of p contains every object whose distance from

p is not greater than k-distance, i.e. Nk-distance(p)(p) = {q ∈ D \ {p}| d(p, q) ≤ k-

distance(p)}. The objects {q} are called the k-nearest neighbors of p.

The definition of a k-distance neighborhood defined in Euclidean space, how-

ever, is not directly suitable for measuring local density in a graph. Distance in

Euclidean space is usually a continuous value. But the geodesic distance between

two vertices in graph is usually an integer value. So it is more likely to find that

many pairs of vertices have exactly the same distance in graphs, compared to Eu-

clidean space. For example, vertex v in figure 4.20 has 4 one-step neighbors and

119

20 two-step neighbors. When k = 4, k-distance neighborhood of v is p1, p2, p3

and p4. When k = 24, k-distance neighborhood of v is the whole set of vertices

in the graph except v. When k = 15, we face the problem of choosing part of the

two-step neighbors as the k-distance neighborhood of v. This leads to a situation

in which many vertices have the same measured distances, while they are indeed

structurally distinguishable in that pairs of vertices may have a different number

of shortest paths, e.g. vertex x and y. We consider that a pair of vertices with a

greater number of shortest paths have better reachability, and are intuitively closer.

The choice of neighborhood would be important yet hard because it directly

affects the measurement of importance of vertex v. Hence, we define our restriction

of neighborhood by geodesic distance to the vertex, rather than k-distance, and

we define a distance that integrates a local graph structure. Such considerations

increase the disparity of closeness, and facilitates the comparison of closeness and

community discovery. Then, we define the local notion of closeness centrality called

local reachability density, and local closeness factor for detecting communities.

4.3.3 Local Closeness Factor

In this section we describe the definition of local closeness factor and present the

upper and lower bound of LCF. We also analytically prove that LCF value is an

effective indicator of the importance of a vertex.

4.3.3.1 Definitions

We extend the concept of local density to graphs for finding communities. We define

the local closeness factor beginning with the notion of within-k-step neighbors.

The within-k-step neighbors of vertex v are the vertices that have a geodesic

distance that is smaller, or equal to, k from vertex v. For vertices with the same

120

geodesic distance to vertex v, we consider the vertices that have a greater number

of shortest paths with vertex v nearer to v. For example, for vertices that are two

steps to v, we consider vertices that have more common neighbors with vertex v as

being the nearer to v. Therefore, we define a distance between vertex vi and vj as

follows:

Definition 4.

distance(vi, vj) = g(vi, vj)−
σ(vi, vj)

Σvt∈Nvi
σ(vi, vt)

(4.2)

where g(vi, vj) is the geodesic distance of vertex vi and vj. σ(vi, vj) is the number

of shortest paths between vi and vj. Nvi is the set of vi’s within-k-step neighbors.

To calculate distances for within-1-step neighbors or within-2-step neighbors,

the formula can be simplified and approximated by replacing Σvt∈Nvi
σ(vi, vt) as di,

the degree of vi. The subtrahend in Definition 2 should be in the range of 0 to 1

so that the following conditions are satisfied:

1. distance(vi, vj) > 0, and

2. g(vi, vj1) ≤ g(vi, vj2) if and only if distance(vi, vj1) ≤ distance(vi, vj2).

For within-1-step neighbors, σ(vi, vj) is the same for any j and so is distance(vi, vj).

For within-2-step neighbors, σ(vi, vj) measures the number of common neighbors

between vertex i and j. This definition is integrated with graph structure, and thus

facilitates comparison of local density.

Next, we define reachability distance. Reachability in graph is usually defined

as the number of steps a vertex vi needs to take to reach another vertex vj, which is

measured by shortest path length (geodesic distance). Here, we define reachability

distance as follows:

Definition 5. reachability distance of a vertex vi, rdk(vi), is the maximum of

121

the distance between vertex vi and vi’s within-k-step neighbors.

The objective of reachability distance is to reduce the fluctuations of the dis-

tances between vertex vi’s nearest vertices and vertex vi, so that vertices within

the same neighborhood will have a similar reachability distance.

Local reachability density is then defined as:

Definition 6. Local reachability density of a vertex vi is the inverse of the

average reachability distance of the within-k-step neighbors.

lrdk(vi) =
|Nvi |∑

vj∈Nvi
rdk(vj)

(4.3)

where Nvi is the within-k-step neighbors of vi, rdk(vj) is reachability distance

of vertex vj, and |Nvi | is the number of the within-k-step neighbors of vi, which

varies for different vi.

Local reachability density is defined based on the same idea as closeness cen-

trality. Local reachability density restricts the local neighborhood to approximate

closeness centrality.

Definition 7. Local Closeness Factor of a vertex vi is the average of the ratio of

the local reachability density of vertex vi and those of vi’s within-k-step neighbors.

LCF (vi) =

∑
vj∈Nvi

lrdk(vj)

lrdk(vi)

|Nvi |
(4.4)

The local closeness factor is low if local reachability density of vertex vi’s neigh-

bors are low and the local reachability density of vertex vi is high. The local close-

ness factor is high if its neighbors’ local reachability density are high and it has a

lower local reachability density.

122

Figure 4.21: Zachary’s Karate Club example

Figure 4.21 shows a simple example, a real world graph from Zachary’s Karate

Club data. It has 34 vertices and 78 edges. Each vertex represents a member

of the club, and each edge represents the friendship between the members. The

value associated with each vertex is the local closeness factor value calculated and

plotted next to the corresponding vertex. The members fell into two groups due to a

controversy between the administrator and the instructor. The two different colors

represent the two communities detected. Vertices in the centre of the communities

are, core members of the communities, and are plotted inside the darker shadow.

Vertices on the border of the communities are plotted in the lighter shadow. These

vertices have relatively higher local closeness factor values.

123

4.3.3.2 Properties of Local Closeness Factor

In this section, we conduct a detailed analysis on the properties of LCF. We aim to

show that our definition of LCF captures the spirit of local closeness for community

detection. Specifically, we a give lower and upper bound for LCF, and show what

LCF value a vertex has in different positions of a community.

4.3.3.3 Bound for LCF

Let V be the set of vertices of a graph G. Let reach-dist-min denote the minimum

reachability distance of the objects in V, i.e. reach-dist-min = {rdk(u)|u ∈ V }.

Similarly, let reach-dist-max denote the maximum reachability distance of the ob-

jects in V. Let ε be defined as:

ε =
reach-dist-max

reach-dist-min− 1
(4.5)

Then for all vertices u ∈ V , such that for:

1. all the within-k-step neighbours v of u are in V, and

2. all the within-k-step neighbours w of v are in V,

it holds that 1/(1 + ε) ≤ LCF (u) ≤ (1 + ε).

Proof: For all within-k-step neighbors v of u, rdk(u) ≥ reach-dist-min. Then

the local reachability density of u, as per definition 3, is ≤ 1/reach-dist-min. On

the other hand, rdk(u) ≤ reach-dist-max. Thus the local reachability density of u

is ≥ 1/reach-dist-max.

Let v be a within-k-step-neighbour of u. By an argument identical to the one

for u above, the local reachability density of v is also between 1/reach-dist-max and

124

1/reach-dist-min.

Thus, by definition 4, we have reach-dist-min/reach-distmax ≤ LCF (u) ≤

reach-dist-max/reach-dist-min. Hence, we establish 1/(1 + ε) ≤ LCF (u) ≤ (1 + ε).

The interpretation of bound is as follows. Let us consider the vertex u that is

in the centre of community C. All the within-k-step neighbours v of u are in C,

and all the within-k-step neighbours of v are also in C. For such a central vertex

u, the LCF value of u is bounded. If vertices in C are evenly connected to each

other, the ε value in the bound can be quite small, thus forcing the LCF of u to be

close to 1.

4.3.3.4 LCF for community detection

We originally introduce the local closeness factor to measure how close a vertex is to

its local neighbourhood. This measurement directly determines the local closeness

of a vertex in a community. The more important a vertex is to a community, the

smaller LCF value it has.

To prove this property of LCF, we first give a definition of relative importance

to a vertex from the perspective of community detection.

Definition 8. For any vertex vc and vp in the same community, we say vc is

more important than vp, if vc has smaller sum of distance to its within-k-step

neighbourhood than vp does.

Practically, vc is usually the core member of a community while vp is the pe-

ripheral member. A core member always has smaller LCF value than a peripheral

member does. This is the fundamental that ensures our community detection

method works correctly and effectively.

Proof: Suppose vc and vp are vertices in the same community, vc is important

than vp. According to definition 8, lrd(vc) > lrd(vp), Thus by definition 7, we have

125

LCF (vc) < LCF (vp). �

4.3.4 Algorithm

We first propose a closeness centrality based algorithm (Algorithm 10). To calculate

the closeness centralities, we calculate the distance matrix (line 1), using the Floyd

Warshall algorithm [60]. After obtaining a closeness centrality value for each vertex,

the algorithm binds each vertex with its immediate neighbour (neighbours) if the

neighbour(s) has(have) a closeness centrality value lower than the vertex itself and

the rest of its(their) immediate neighbours (Algorithm 11). Otherwise, the vertex

is bound with itself. v.Cset contains the bound vertices with which vertex v will

possibly be grouped together to form communities.

In the next step, the function checks through each vertex’s bound vertices. For

vertex vi, check its bound vertices (vi.Cset). If any of the bound vertices, i.e.

vj, has been bound with other vertices which are only bound with themselves, we

bind vertex vi with those vertices by updating vi.Cset correspondingly (Algorithm

11.line 6-12). By doing this, the algorithm potentially binds all the vertices that be-

longs to the same community together, because eventually the vertices that belong

to the same community will be bound to the same vertex. Therefore, communities

are detected.

Algorithm 4.5: Closeness Centrality Based Community Detection (CC)

Input: graph G(V,E);
Result: Clusters Ci, i ∈ (1, 2, ..., |C|)

1 Compute distance matrix;
2 Compute cc[v], v ∈V ;

3 Ĉi = Binding(G, cc, iter), i ∈ (1, 2, ..., |Ĉ|);
4 Ci = Refinement(Ĉ), i ∈ (1, 2, ..., |C|);
5 Return Ci,i ∈ (1, 2, ..., |C|);

126

The first two loops of the binding function aim to find the core members of

the communities (Algorithm 11.line 1-12). In this procedure, some vertices may

be misclassified, especially the vertices that are on the borders of the communities.

Therefore the last loop of the binding process conducts a vertex level adjustment. It

adjusts the communities to which a vertex belongs if necessary. The function checks

through each vertex and changes its membership if the number of connections the

vertex has with current communities to which it belongs is less than those it has

with the other communities (Algorithm 11.line 13-17). As some vertices leave their

current communities and join new communities, other vertices’ connections with the

communities may be affected. For this reason, this process can continue for several

iterations. To prevent deadlocks wherein the vertices repeatedly change member-

ships among certain communities, the number of iterations is pre-determined and

input as a parameter.

The last phase of the CC algorithm is a minor refinement, a community level

adjustment (Algorithm 10.line 4). Trivial communities, communities that have

more connections with other communities than within themselves or isolated ver-

tices, may be detected. The algorithm goes through each community and checks

whether each community has more connections inside the community than with

other communities. If not, communities are merged to eliminate the trivial com-

munities (Algorithm 12).

To improve effectiveness and efficiency, we propose the LCF algorithm, an al-

gorithm built upon the local closeness factor values (Algorithm 13). According

to the value computed for each vertex, the LCF value, we can tell how closely a

vertex is connected to its neighbours. Comparing the local closeness factor value

of each vertex with those of its neighbours, a vertex is considered to be in the same

community as its neighbour(neighbours) whose local closeness factor value is the

127

Algorithm 4.6: The Binding scheme

Input: graph G(V,E), φ, iter;
/* φ can be lcf or cc values */;

Result: Clusters Ĉi, i ∈ (1, 2, ..., |Ĉ|)
1 for each v do
2 if φ[vi] ¡ φ[v] then /* vi ∈vNeighbour, φ[vi] > φ[v] for cc, and all

min replaced by max */

3 v.Cset add vmin ,where φ[vmin] = min(φ[vi]);
4 else
5 v.Cset add v;

6 for each v do
7 for each vj ∈ v.Cset do
8 if vj /∈ vj.Cset then
9 repeat

10 vt ← each vertex ∈ vj.Cset;
11 until vt ∈ vt.Cset ;
12 update vj in v.Cset;

13 repeat
14 for each v do
15 if v has more connections to Ci than the connections within itself,

1 ≤ i ≤ |C| ;

16 then cluster v into Ci;

17 until finish iterations ;

18 Return Ĉi,i ∈ (1, 2, ..., |Ĉ|);

Algorithm 4.7: The Refinement scheme

Input: graph G(V,E), Ĉi, i ∈ (1, 2, ..., |Ĉ|);
Result: Clusters Ci, i ∈ (1, 2, ..., |C|)

1 for i from 1 to |Ĉ| do

2 if Ĉi has more connections with Ĉj, 1 ≤ j ≤ |Ĉ| and j 6= i then
/* check and merge trivial communities */

3 merge Ĉi and Ĉj
4 Return Ci,i ∈ (1, 2, ..., |C|);

128

minimum among all the neighbours. Vertices on the border of communities may

be misclassified, and thus some refinements are made to improve the effectiveness.

The algorithm starts by finding within-k-step neighbors. As geodesic distance

is different from Euclidean distance in that geodesic distance is presented as an

integer, many vertices may have the same geodesic distance with the designated

vertex while their connectedness towards the designated vertex is different. For

instance, vertex vj and vk have the same distance with vi, as both of them are

two steps away from vi. If vj has more common neighbours with vi than vk does,

vj can be viewed to be closer to vi than vk. Pairwise distances are recorded for

computation of reachability distance and local closeness factor value.

Algorithm 4.8: Local Closeness Factor Based Community Detection (LCF)

Input: graph G(V,E), k, iter;
Result: Clusters Ci, i ∈ (1, 2, ..., |C|)

1 for each v do
2 Find neighbours within k steps;
3 Compute lcf [v], v ∈V ;

4 Ĉi = Binding(G, lcf, iter), i ∈ (1, 2, ..., |Ĉ|);
5 Ci = Refinement(Ĉ), i ∈ (1, 2, ..., |C|);
6 Return Ci,i ∈ (1, 2, ..., |C|);

After finding within-k-step neighbours and calculating the reachability distance,

local reachability density and local closeness factor value for each vertex (Algorithm

13.line 1-3), the algorithm triggers the same binding (Algorithm 11) and refinement

process (Algorithm 12) as the CC algorithm (Algorithm 13.line 4-5). The binding

process (Algorithm 11) binds each vertex with its immediate neighbour (neigh-

bours) if the neighbour(s) has(have) a lower local closeness factor value than the

vertex itself and the rest of its immediate neighbours. Otherwise, the vertex is

bound with itself.

129

4.3.4.1 Choice of Parameters

In this section, we show how to choose parameters and how parameters affect the

effectiveness of our detection method.

• k

In our definition, k specifies the within-k-step neighbourhood involved in the

calculation of LCF value. In practice, k = 2 serves better than k = 1, and k = 2

does not incur much more computational complexity than k = 1 does. k = 2 is

also more efficient than k = 3. Considering both efficiency and effectiveness, we

choose k to be 2 in our experiments.

• Iteration t

In the last step of the binding function, some vertices migrate, or in other words,

change memberships, among communities during each iteration. As the iteration

continues, the community memberships gradually become stable.

Figure 4.22 shows the example curve of relations between the number of iter-

ations and the number of migrations. Red curve belongs to a data set of 10,000

vertices, while the blue curve belongs to that of 50,000 vertices. The x-axis stands

for the number of iterations, while the y-axis stands for the number of vertex mi-

gration occurred in each iteration. The two curves are almost overlapped, which

means that the relation between iteration and migration is independent of the size

of the data set. For both curves, the number of migrations drop rapidly as iteration

continues and starts oscillating after the point wherein iteration equals to 4. For

t ∈ [4, 10], we find that there is no big difference in the effectiveness.

Efficiency-wise, it takes 0.5 and 2 seconds respectively for a data set of 10,000

vertices and a data set with 50,000 vertices to finish a 10-iteration micro adjustment.

Based on the effectiveness and complexity of iteration, we choose t = 4 as an

optimized parameter.

130

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 m

ig
ra

tio
ns

number of iterations

10,000
50,000

Figure 4.22: The number of vertex migrations during each iteration.

4.3.4.2 Complexity Analysis

The complexity for the CC algorithm is O(n3) as the complexity of pair-wise

geodesic distance calculation is O(n3). n is the number of vertices of the graph.

For the LCF algorithm, we set k to 1 for small graphs or 2 for large graphs, as

explained in previous subsection, so the complexity for finding neighbours and cal-

culating LCF values is O(d · n) or O(d2 · n) where d is the average degree of the

graph. The complexity for calculation of LCF value and binding the vertices is

O(β · n) in the worst case, where β should be smaller than the graph diameter

in general. The complexity for vertex level adjustment is between O(t · e) and

O(t · n · e). t is the number of iterations and is chosen to be a small integer as

explained earlier. e is the number of edges in the graph. The complexity for the

post-processing refinement is O(e). To sum up, the complexity for LCF algorithm

in the worst case can be O(t ·n ·e). However the worst case rarely happens. In nor-

mal cases, the complexity is approximately O(t · e) for sparse graphs. We compare

the running time in the experiments to show the efficiency in practice.

4.3.5 Experiment

We conduct experiments on both synthetic graphs and real world graphs. The

experiments ran on a cluster of nodes of Intel Xeon 2.27 GHz 64 bit processors.

131

Table 4.3: Description of data sets
Data sets Vertices Edges Description Communities

DBLP 317,080 1,049,866 Co-Authors 13,477

Amazon 334,863 925,872 Co-Purchase 151,037

The nodes operate Linus 2.6 with gcc version 4.4.6. The algorithm is implemented

in C/C++.

We compare our algorithm to the speaker-listener label propagation algorithm

[161] and game theory based algorithm [32], which have been compared to some

other algorithms and show better performance [160, 161]. We also compare our

algorithm to BigClam, a probabilistic model based algorithm [166]. We directly

use the original codes provided by authors. We examine the threshold from 0.01

to 0.5, with interval 0.05, and take results with the maximum values of NMI for

the SLPA algorithm in order to obtain better communities. For the game-theory

algorithm, we run the algorithm on each graph once with 2,000,000 iterations. Note

that our closeness centrality-based algorithm is not evaluated on the set of graphs

with increasing size, duo to computational prohibitions.

4.3.5.1 Data sets

We use two real world networks from [165] and a batch of benchmark graphs [90]

to evaluate the effectiveness of our method. Table 4.3 shows the information about

the two data sets. In DBLP network, an edge exits between two authors (vertices)

if they co-authored, and authors are in the same community if they published to

the same journal or conference. In the Amazon network, an edge exists between

two products (vertices) if they are frequently co-purchased. The products are in

the same community if they are in the same product category.

The benchmark graphs are generated with a known community structure in-

cluding the number of vertices, average degree, number of overlapping vertices,

132

number of memberships of the overlapping vertices, etc. We generate three sets

of graphs. Graphs in the first set have 10,000 vertices and five different average

degrees varying from 5.8 to 12.6 while the other parameters are the same. We

generate five graphs for each average degree. We run the algorithms on all the

graphs and take the average of the metric values. Graphs in the second set have

a different number of vertices, varying from 10,000 to 50,000. For every number

of vertices, we generate five graphs. Graphs in the third set are generated with

an increasing number of memberships of the overlapping vertices while the other

parameters remain the same. Similarly, for every number of memberships of the

overlapping vertices we generate five graphs. We run algorithms on all of them and

take the average values of each metric.

4.3.5.2 Metrics

To measure the quality of detected communities, either disjoint communities or

overlapping communities, we use the Normalized Mutual Information (NMI) [91]

and Omega Index [39]. We compute the NMI and Omega Index value based on the

communities detected, and the known communities of the input graphs. Therefore

we use the benchmarks as the main data sets for the experiments, as the commu-

nities of the graphs generated are known.

We also use modularity, conductance, internal density, cut ratio and weighted

community clustering to qualify the communities. We compare the size of commu-

nities detected with the ground truth as well.

4.3.5.3 Result analysis

Figure 4.23 shows the comparison of the NMI values of the detected communities

measured on the three sets of graphs. The x-axis shows change in a certain graph

133

property of the graphs. The y-axis shows the NMI value. Each line shows the NMI

values of the communities detected by one algorithm. Figure 4.23 (a) shows the

NMI value changeing with an increasing average degree. The x-axis is the average

degree of the graphs. The y-axis is NMI values. For each average degree, we have

five graphs, so we take the average of the NMI values from each graph. The results

show that LCF detects communities with the highest NMI values on graphs with

smaller average degrees. This has been proved further. Figure 4.23 (b) shows that

the NMI value changes with increasing graph size. These graphs have different

sizes but similar average degrees of around 6. The x-axis is the number of vertices.

It shows that LCF finds communities with the highest values on the graphs of all

the sizes tested. Figure 4.23 (c) shows the NMI value changes with an increasing

number of memberships of the overlapping vertices. The x-axis is the number of

memberships of the overlapping vertices. The graphs in this set also have small

average degrees of about 7. The figure shows that LCF finds communities with the

highest NMI values.

Figure 4.24 shows a comparison of the OMEGA values on the three sets of

graphs. Figure 4.24 (a) shows the OMEGA value changes with increasing average

degrees. The x-axis is the average degree of the graphs. The y-axis is OMEGA

values. For each average degree, we have five graphs, so we take the average of the

OMEGA values. Figure 4.24 shows that LCF detects communities with the highest

OMEGA values on graphs with smaller average degrees. Figure 4.24 (b) shows that

the OMEGA value changes with increasing graph size. The x-axis is the number

of vertices. It shows that LCF finds communities with the highest values on the

graphs of all the sizes tested. Figure 4.24 (c) shows the OMEGA value changes

with increasing number of memberships of the overlapping vertices. The x-axis is

the number of memberships of the overlapping vertices. Additionally, Figure 4.24

134

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 6 7 8 9 10 11 12 13

N
M
I

average degree

LCF
SLPA
GAME
CC

BigClam

(a) NMI value changes with
different graph average de-
gree

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
M
I

number of vertices

LCF
SLPA
GAME

BigClam

(b) NMI value changes with
different graph sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

N
M
I

number of memberships of the overlapping vertices

LCF
SLPA
GAME
CC

BigClam

(c) NMI value changes with
different number of member-
ships of the overlapping ver-
tices

Figure 4.23: Comparison of NMI value on three sets of graphs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 6 7 8 9 10 11 12 13

O
m
e
g
a

average degree

LCF
SLPA
GAME
CC

BigClam

(a) Omega value changes
with different graph average
degree

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

O
m
e
g
a

number of vertices

LCF
SLPA
GAME

BigClam

(b) Omega value changes
with different graph sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

O
m
e
g
a

number of memberships of the overlapping vertices

LCF
SLPA
GAME
CC

BigClam

(c) Omega value changes
with different number of
memberships of overlapping
vertices

Figure 4.24: Omega value comparison on three sets of graphs.

(c) shows that communities found by LCF have higher OMEGA values when the

number of memberships of the overlapping vertices is larger, while communities

found by SLPA have higher OMEGA values when the number of memberships of

the overlapping vertices is smaller.

The above results show that the NMI values for LCF are higher than the other

algorithms on sparse graphs, which further indicates that the communities found

by FCL match the actual communities best. The results of OMEGA show that

the OMEGA values for LCF are highest, and hence, most truthful communities

detected, in the case of sparse graphs and the case of more memberships of the

overlapping vertices.

Figure 4.25 shows the measurements of community quality based on the selected

135

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 6 7 8 9 10 11 12 13

m
o
d
u
l
a
r
i
t
y

average degree

LCF
GAME
SLPA
CC

BigClam
ORIGINAL

(a) modularity

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 6 7 8 9 10 11 12 13
a
v
e
r
a
g
e

c
o
n
d
u
c
t
a
n
c
e

average degree

LCF
GAME
SLPA
CC

BigClam
ORIGINAL

(b) conductance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 5 6 7 8 9 10 11 12 13

i
n
t
e
r
n
a
l

d
e
n
s
i
t
y

average degree

LCF
GAME
SLPA
CC

BigClam
ORIGINAL

(c) internal density

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 5 6 7 8 9 10 11 12 13

c
u
t

r
a
t
i
o

average degree

LCF
GAME
SLPA
CC

BigClam
ORIGINAL

(d) cut ratio

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5 6 7 8 9 10 11 12 13

W
C
C

average degree

LCF
GAME
SLPA
CC

BigClam
ORIGINAL

(e) weighted community clustering

 0

 50

 100

 150

 200

 250

 300

 5 6 7 8 9 10 11 12 13

a
v
e
r
a
g
e

c
o
m
m
u
n
i
t
y

s
i
z
e

average degree

LCF
GAME
SLPA
CC

BigClam
ORIGINAL

(f) average community size

Figure 4.25: Comparison of modularity, conductance, internal density, cut ratio,
weighted community clustering, average community size on graphs with different average
degree

136

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
M
I

number of iterations

Graphs with E[d] = 5.87
Graphs with E[d] = 7.48
Graphs with E[d] = 8.25
Graphs with E[d] = 9.35
Graphs with E[d] = 10.49
Graphs with E[d] = 12.6

Graphs with E[d] = 5.87, no refinement
Graphs with E[d] = 7.48, no refinement
Graphs with E[d] = 8.25, no refinement
Graphs with E[d] = 9.35, no refinement
Graphs with E[d] = 10.49, no refinement
Graphs with E[d] = 12.60, no refinement

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

O
m
e
g
a

number of iterations

Graphs with E[d] = 5.87
Graphs with E[d] = 7.48
Graphs with E[d] = 8.25
Graphs with E[d] = 9.35
Graphs with E[d] = 10.49
Graphs with E[d] = 12.6

Graphs with E[d] = 5.87, no refinement
Graphs with E[d] = 7.48, no refinement
Graphs with E[d] = 8.25, no refinement
Graphs with E[d] = 9.35, no refinement
Graphs with E[d] = 10.49, no refinement
Graphs with E[d] = 12.60, no refinement

Figure 4.26: Effects of the number of iterations and effects of refinement

metrics. In each sub-figure, the x-axis is the average degree. The y-axis is the value

of a metric. Figure 4.25 (a) shows the comparison of modularity. Figure 4.25 (b)

shows the comparison of conductance. Figure 4.25 (c) shows the comparison of

internal density. Figure 4.25 (d) shows the comparison of cut ratio. Figure 4.25 (e)

shows the comparison of weighted community clustering. Figure 4.25 (f) shows the

comparison of average community size. We compare the values for the communities

detected by the algorithms directly, with the values of the ground truth (which

are labelled “Original” in the figures). The figures show that for all the metrics

measured, LCF produces the values that are closest to the ground truth. This

further indicates the high quality of the communities discovered by LCF algorithm

in sparse graphs.

Figure 4.26 shows how the number of iterations affects the detected commu-

nities and corresponding values of NMI and Omega on the graphs with different

average degrees, and how the refinement affects them. The x-axis is the number of

iterations, and the y-axis is the NMI or Omega value. Each line plots the average

values from five graphs with the similar average degrees. The figures show that as

the number of iterations increases, the values of NMI and Omega increase, and the

differences between the cases with refinement and without refinement decrease.

The comparison on the graphs with a different number of memberships of the

137

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 6 7 8 9 10 11 12 13

N
M
I

average degree

k = 1
k = 2

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 6 7 8 9 10 11 12 13

O
m
e
g
a

average degree

k = 1
k = 2

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

N
M
I

number of memberships of the overlapping vertices

k = 1
k = 2

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

O
m
e
g
a

number of memberships of the overlapping vertices

k = 1
k = 2

Figure 4.27: Changing values of NMI and Omega with parameter k varying.

overlapping vertices shows similar results, but the increment and decrement are

larger, and with the number of iterations increasing, the differences between the

cases with refinement and without refinement shrink by a large amount. NMI

values tend to be stable after the 3rd iteration, and thus setting iteration to 3 or

4 is a good choice, taking both efficiency and effectiveness into consideration. We

adopt 4 iterations in the experiments.

Figure 4.27 shows how the choice of parameter k affects the values of NMI

and Omega on the graphs with different average degrees and graphs with different

numbers of memberships of the overlapping vertices. The x-axis is the average

degree or the number memberships of the overlapping vertices. The y-axis is NMI

or Omega value. From these two figures, we can see that for the these graphs,

setting k to 2 generates highest OMEGA and NMI value in most cases.

Figure 4.28 shows a comparison of the running time for each algorithm to com-

138

plete each task of finding communities on the three sets of graphs. The y-axis shows

the running time recorded in seconds. Figure 4.28 (a) focuses on the efficiency com-

parison between the CC algorithm and the other algorithms. We can see that for

the same task, the CC algorithm takes a much longer time than the others, and

thus, it is not efficient. This demonstrates one of the reasons why we propose the

LCF algorithm. Figure 4.28 (b) (c) and (d) show how the LCF algorithm performs

the faster than the other algorithms in general. For graphs with 50,000 vertices,

LCF is capable of finding communities in about 60 seconds and for graphs with

10,000, it takes only a few seconds.

Figure 4.29 shows the comparisons for the real world networks. Figure 4.29

(a) and (b) show a comparison based on NMI values on the DBLP network and

Amazon network, separately. The detected communities are compared to all the

communities based on the ground truth, or the most important 5000 communities

given by [165]. NMI for the game-theory algorithm is missing on the Amazon data,

due to its scalability. Figure 4.29 (c) shows the running time. The results on these

two data sets show that the higher the NMI value, the more time it takes. In

terms of both running time and NMI values, LCF performs best in the case of top

important communities on the Amazon network. In the other cases, LCF shows a

stable performance compared to the other algorithms.

4.3.6 Summary

In this section, we try to propose an algorithm for overlapping community detec-

tion in sparse graphs, that leverages closeness centrality. However, using closeness

centrality for community detection seems to be inefficient. Therefore, we look for

a local notion of closeness centrality to lessen the the problem. We adapt the idea

of local density to graph and define the local closeness factor. It is computed by

139

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 8e+006

 9e+006

 5 6 7 8 9 10 11 12 13

r
u
n
n
i
n
g

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

average degree

LCF
SLPA
GAME

BigClam
CC

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10 11 12 13
r
u
n
n
i
n
g

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

average degree

LCF
SLPA
GAME

BigClam

 0

 50

 100

 150

 200

 250

 300

 10000 15000 20000 25000 30000 35000 40000 45000 50000

r
u
n
n
i
n
g

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

number of vertices

LCF
SLPA
GAME

BigClam

 0

 20

 40

 60

 80

 100

 2 2.5 3 3.5 4 4.5 5 5.5 6

r
u
n
n
i
n
g

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

number of memberships of the overlapping vertices

LCF
SLPA
GAME

BigClam

Figure 4.28: Comparison of running time on on three sets of graphs.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

all-community top5000-community

N
M
I

LCF
BigClam

SLPA
Game

(a) DBLP
 0

 0.05

 0.1

 0.15

 0.2

all-community top5000-community

N
M
I

LCF
BigClam

SLPA

(b) Amazon
 0

 5000

 10000

 15000

 20000

 25000

comdblp amazon

r
u
n
n
i
n
g

t
i
m
e

(
i
n

s
e
c
o
n
d
s
)

LCF
BigClam

SLPA
Game

(c) Running time

Figure 4.29: Comparison of NMI value and running time on real world networks.

140

computing distance, reachability distance and the density of each vertex within its

restricted neighbourhood. We devise our algorithm based on the local closeness

factor. We conduct experiments on real world graphs and benchmark graphs with

known communities. We show that, on the generated graphs, our solution not

only outperforms the algorithm using closeness centrality, but also outperforms

SLPA, BigClam and game-theory algorithms in sparse graphs, in terms of effec-

tiveness. LCF finds communities closer to the ground truth in large sparse graphs.

Efficiency-wise, LCF is faster than both algorithms. For a graph with 10,000 ver-

tices, it only takes a few seconds; and about 60 seconds for a graph with 50,000

vertices. Therefore, LCF is effective and efficient. On the real world graphs, LCF

shows competitive performance combining effectiveness and efficiency.

141

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, motivated by the protection of interpersonal trust [97] and institu-

tional trust and the facilitation of building weak ties and bridging social capital

[55], we model social networks as simple graphs and study social network analysis

on both privacy and utility problems from the graph perspectives. Specifically, we

studied graph anonymization problems and community detection problems. We

reviewed the concepts and the existing algorithms for each problem, and then sep-

arately studied the fundamental problems. We proposed algorithms to solve the

problems found. Through a comprehensive experimental study on both the real

world network and synthetic data sets, the proposed solutions were shown to be

efficient and effective.

In Chapter 3, we discussed the fundamental problems that we found in graph

anonymization. We proposed approaches to solve the problems. The main results

are revisited as follows.

• We proposed an FKDA algorithm to overcome the shortcomings of the KDA [102]

142

algorithm to achieve k-anonymity of the graph. FKDA anonymizes a graph by

simultaneously adding edges and anonymizing its degree sequence in groups

of vertices, and thus is significantly more efficient than KDA and more ef-

fective than KDA on large graphs. The comparative empirical performance

evaluation on three real world graphs verified these results.

• We proposed a Similar Reachability Graph algorithm (SRG) for revealing a

subgraph of connections in a user’s neighborhood. We aimed to offer an infor-

mative view of the network for users while resisting certain structural attacks.

(SRG) guarantees the graph reachability-related utility while it perturbs the

graphs to certain extent to defend against attacks.

We do not claim that our solutions are a panacea for graph anonymization

in general, given the generality of background knowledge potentially available to

adversaries. However, they are effective and efficient solutions for the protection of

privacy in the presence of certain background knowledge such as vertex degrees.

In Chapter 4, we discussed the fundamental problems that we found in commu-

nity detection. We proposed novel algorithms for the related problems. The main

results are revisited as follows.

• We proposed the FR-KM algorithm based on the Force-directed graph draw-

ing method, which was inspired by the idea of dimension reduction. The

algorithm projects the graph onto Euclidean space, and clusters the vertices

according to their Euclidean distance. Real world case studies and empirical

comparison with the state-of-the-art algorithms confirmed that our algorithm

is efficient and reasonably effective for finding communities in the networks.

• We proposed the Fast Community Detection Algorithm (FCD) and its paral-

lel version to detect communities in the networks that are modeled as simple

143

graphs. The algorithm is vertex centric. It initiates each vertex to indepen-

dently seek the community in its neighbourhood. The empirical experiment

results state that the algorithms find communities with comparable quality,

and are the fastest in general, compared to the InfoMap, WalkTrap and GN

algorithms.

• We proposed the Local Closeness Factor Algorithm (LCF) for community

detection in sparse graphs that leverages a local notion of closeness centrality

to lessen the the problem. We adapted the idea of local density to graph and

define the local closeness factor. It is computed by computing distance, reach-

ability distance and the density of each vertex within its restricted neighbour-

hood. The empirical experiment results state the effectiveness and efficiency

of the LCF algorithm on large sparse graphs.

In conclusion, by leveraging graph features and structural properties, we can

design effective and efficient methods to better understand the connectedness of

the social networks, and thereafter benefit benign users.

5.2 Future Work

Social networks are temporal and dynamic in essence. Evolving networks have a

high potential for capturing natural and social phenomena over time. Examining

the structural changes (e.g. evolving communities) over time provides insights into

structural evolution patterns, factors causing the changes, and ultimately predict

the future structure of the network.

Chakrabarti et al. [30], one of the pioneers, studied the evolutionary clustering

on attributed data, and proposed a framework incorporating the temporal smooth-

ness in the clustering process. Backstrom et al. [8] studied community evolution

144

in social networks with known communities. At a personal level, they investigate

the relationship between individuals’ decisions to join communities and network

structures. At a global level, they looked into the evolution of community mem-

bership and content. Sun et al. [140] in 2007 proposed one of the first approaches

towards community detection in dynamic graphs. Thereafter, density-based meth-

ods [86, 58, 29], modularity methods [49, 74, 116, 144] and generative-model-based

methods [167, 101] have been proposed. Some authors adapted their methods from

static scenarios to dynamic scenarios. For example, [121] [159] were extended from

Label Propagation algorithms [162, 127, 51] are extended from [47], and [34]

was extended from spectral graph clustering.

However the lack of the proper benchmarks or thorough and empirical com-

parisons of the existing methods brings difficulties to users when choosing the

appropriate methods for applications.

We would like to work on these specific problems in the future: generation of

dynamic synthetic benchmarks incorporating ground truth clusterings, dynamic

community detection that capture both the current community structure and evo-

lution patterns, evaluation of dynamic community detection algorithms as well as

future structure prediction.

On the other hand, while this thesis has presented solutions on simple graph

models, we would like to extend the work to richer models that contain more than

just structural information, for example, weighted graphs or attributed graphs.

145

Bibliography

[1] Email-urv. http://deim.urv.cat/aarenas/data/welcome.htm.

[2] R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu. Mining newsgroups using

networks arising from social behavior. In Proceedings of the 12th international

conference on World Wide Web, WWW ’03, pages 529–535. ACM, 2003.

[3] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multi-

scale complexity in networks. NATURE, 466:761, 2010.

[4] A.Narayanan and V.Shmatikov. De-anonymizing social networks. In IEEE

Symposium on Security and Privacy, 2009.

[5] A.P.Dempster, N.M.Laird, and D.B.Rubin. Maximum likelihood from in-

complete data via the em algorithm. Journal of the Royal Statistical society,

Series B, 1977.

[6] J. A. Aslam, E. Pelekhov, and D. Rus. The star clustering algorithm for static

and dynamic information organization. J. Graph Algorithms Appl., 8:95–129,

2004.

146

[7] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou R3579X?:

Anonymized social networks, hidden patterns, and structural steganography.

In WWW, pages 181–190. ACM, 2007.

[8] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation

in large social networks: Membership, growth, and evolution. In Proceedings

of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’06, pages 44–54, New York, NY, USA, 2006. ACM.

[9] A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks.

Science, 286:509–512, 1999.

[10] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:

Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 1998.

[11] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. Magdon-Ismail, and

N. Preston. Finding communities by clustering a graph into overlapping

subgraphs. In IADIS AC, pages 97–104, 2005.

[12] J. Baumes, M. K. Goldberg, and M. Magdon-Ismail. Efficient identification

of overlapping communities. In ISI, pages 27–36, 2005.

[13] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Kluwer Academic Publishers, 1981.

147

[14] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. S. and. Class-based graph

anonymization for social network data. PVLDB, 2(1), 2009.

[15] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Privacy in

dynamic social networks. In WWW, pages 1059–1060. ACM, 2010.

[16] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding

of communities in large networks. Journal of Statistical Mechanics: Theory

and Experiment, 2008.

[17] B. Boden, S. Günnemann, and T. Seidl. Tracing clusters in evolving graphs

with node attributes. In Proceedings of the 21st ACM international conference

on Information and knowledge management, CIKM ’12, pages 2331–2334.

ACM, 2012.

[18] P. Boldi and S. Vigna. Axioms for centrality. CoRR, 2013.

[19] B. Bollobas. Modern Graph Theory. Springer, 1998.

[20] F. Bonchi, A. Gionis, and T. Tassa. Identity obfuscation in graphs through

the information theoretic lens. In ICDE, 2011.

[21] D. M. Boyd and N. B. Ellison. Social network sites: Definition, history, and

scholarship. J. of Computer-Mediated Communication, 13:210–230, 2008.

[22] U. Brandes and C. Pich. Eigensolver methods for progressive multidimen-

sional scaling of large data. In Proceedings of the 14th International Con-

148

ference on Graph Drawing, GD’06, pages 42–53, Berlin, Heidelberg, 2007.

Springer-Verlag.

[23] U. Brandes and C. Pich. An experimental study on distance-based graph

drawing. In Graph Drawing, pages 218–229, 2008.

[24] M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-

based local outliers. In Proceedings of the 2000 ACM Sigmod International

Conference on Management of Data. ACM, 2000.

[25] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. In Proceedings of the seventh international conference on WWW,

1998.

[26] J. J. Brown and P. H. Reingen. Social Ties and Word-of-Mouth Referral

Behavior. The Journal of Consumer Research, 14(3):350–362, Dec. 1987.

[27] A. Campan and T. M. Truta. A clustering approach for data and structural

anonymity in social networks. In PinKDD, 2008.

[28] A. Campan and T. M. Truta. Data and structural k-anonymity in social

networks. In PinKDD, pages 33–54, 2008.

[29] R. Cazabet, F. Amblard, and C. Hanachi. Detection of overlapping commu-

nities in dynamical social networks. In Social Computing (SocialCom), 2010

IEEE Second International Conference on, pages 309–314, Aug 2010.

149

[30] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In

Proceedings of the 12th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’06, pages 554–560, New York, NY,

USA, 2006. ACM.

[31] B.-C. Chen, D. Kifer, K. LeFevre, and A. Machanavajjhala. Privacy-

preserving data publishing. Found. Trends databases, 2(1-2):1–167, January

2009.

[32] W. Chen, Z. Liu, X. Sun, and Y. Wang. A game-theoretic framework to iden-

tify overlapping communities in social networks. Data Min. Knowl. Discov.,

2010.

[33] J. Cheng, A. W.-C. Fu, and J. Liu. K-isomorphism: privacy-preserving

network publication against structural attacks. In SIGMOD, 2010.

[34] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolutionary spectral

clustering by incorporating temporal smoothness. In Proceedings of the 13th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’07, pages 153–162, New York, NY, USA, 2007. ACM.

[35] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society,

1997.

[36] A. Clauset. Finding local community structure in networks. PHYS.REV.E,

72:026132, 2005.

150

[37] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure

in very large networks. PHYS.REV.E, 70:066111, 2004.

[38] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in

empirical data. SIAM Reviews, 2007.

[39] L. M. Collins and C. W. Dent. Omega: A general formulation of the rand

index of cluster recovery suitable for non-disjoint solutions. Multivariate Be-

havioral Research, 23(2):231–242, 1988.

[40] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing bipartite

graph data using safe groupings. PVLDB, 19(1), 2010.

[41] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi. Demon: a local-first

discovery method for overlapping communities. CoRR, 2012.

[42] CUDA-Zone. http://www.nvidia.com/object/what is cuda new.html.

[43] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search of overlap-

ping communities. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’13, pages 277–288. ACM,

2013.

[44] A. Cuzzocrea and F. Folino. Community evolution detection in time-evolving

information networks. In Proceedings of the Joint EDBT/ICDT 2013 Work-

shops, EDBT ’13. ACM, 2013.

151

[45] C. C.Yang and X. Tang. Social networks integration and privacy preservation

using subgraph generalization. In KDD-WS, 2009.

[46] S. Das, Ö. Egecioglu, and A. E. Abbadi. Anonymizing weighted social net-

work graphs. In ICDE, 2010.

[47] I. Derényi, G. Palla, and T. Vicsek. Clique percolation in random networks.

Physical Review Letters, 2005.

[48] K. Dimitrios. Greek construction firms formation and topological analysis

of a collaboration network. International Research Journal of Finance and

Economics, 2010.

[49] T. Dinh, I. Shin, N. Thai, M. Thai, and T. Znati. A general approach for

modules identification in evolving networks. In Dynamics of Information

Systems, volume 40 of Springer Optimization and Its Applications. Springer

New York, 2010.

[50] N. Du, B. Wu, X. Pei, B. Wang, and L. Xu. Community detection in large-

scale social networks. In Proceedings of the 9th WebKDD and 1st SNA-KDD

2007 workshop on Web mining and social network analysis, WebKDD/SNA-

KDD ’07, pages 16–25. ACM, 2007.

[51] D. Duan, Y. Li, R. Li, and Z. Lu. Incremental k-clique clustering in dynamic

social networks. Artif. Intell. Rev., pages 129–147, 2012.

152

[52] P. A. Eades. A heuristic for graph drawing. In Congressus Numerantium,

volume 42, 1984.

[53] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory.

Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, pages 39–43, 1995.

[54] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster anal-

ysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci.

U.S.A., 1998.

[55] N. B. Ellison, C. Steinfield, and C. Lampe. The benefits of facebook ”friends”:

Social capital and college students’ use of online social network sites. J. of

Computer-Mediated Communication, 12:1143–1168, 2007.

[56] B. Etling, J. Kelly, R. Faris, and P. John. Mapping the arabic blogosphere:

Politics, culture, and dissent. Berkman Center Research Publication, 2009.

[57] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii

academiae scientiarum Petropolitanae, 8:128–140, 1741.

[58] T. Falkowski, A. Barth, and M. Spiliopoulou. Dengraph: A density-based

community detection algorithm. In Proceedings of the IEEE/WIC/ACM In-

ternational Conference on Web Intelligence, WI ’07, pages 112–115, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[59] Flickr. http://www.flickr.com/.

153

[60] R. W. Floyd. Algorithm 97: Shortest path. Comm. of the ACM, 5(6):345,

1962.

[61] S. Fortunato and C. Castellano. Community structure in graphs. Physics

Report, 2010.

[62] S. Fortunato and A. Lancichinetti. Community detection algorithms: a com-

parative analysis: invited presentation, extended abstract. In VALUETOOLS

’09. ICST, 2009.

[63] L. C. Freeman. Centrality in social networks conceptual clarification. Social

Networks, 1978.

[64] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed

placement. Softw. Pract. Exper., 21(11):1129–1164, 1991.

[65] F. Fukuyama. Trust: The Social Virtues and the Creation of Prosperity. Free

Press, New York, first edition, 1995.

[66] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for

drawing directed graphs. IEEE Trans. Softw. Eng., 19(3):214–230, 1993.

[67] I. F. Gergely Palla, Imre Derenyi and T. Vicsek. Uncovering the overlapping

community structure of complex networks in nature and society. Nature,

435:814–818, June 2005.

154

[68] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymization

with low information loss. In VLDB, pages 758–769. VLDB Endowment,

2007.

[69] M. Girvan and M. E. J. Newman. Community structure in social and biolog-

ical networks. Proceedings of the National Academy of Sciences, 2002.

[70] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts,

and good seeds for local community methods. In Proceedings of the 18th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’12, New York, NY, USA, 2012. ACM.

[71] S. Goel, R. Muhamad, and D. Watts. Social search in “small-world” experi-

ments. In WWW, pages 701–710. ACM, 2009.

[72] M. K. Goldberg, S. Kelley, M. Magdon-Ismail, K. Mertsalov, and A. Wallace.

Finding overlapping communities in social networks. In SocialCom/PASSAT,

pages 104–113, 2010.

[73] M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of

diffusion and influence. In Proceedings of the 16th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’10, pages

1019–1028, New York, NY, USA, 2010. ACM.

155

[74] R. Görke, P. Maillard, A. Schumm, C. Staudt, and D. Wagner. Dynamic

graph clustering combining modularity and smoothness. J. Exp. Algorithmics,

18, 2013.

[75] M. Granovetter. The strength of weak ties: A network theory revisited.

Sociological Theory, 1:201–233, 1983.

[76] S. Gregory. An algorithm to find overlapping community structure in net-

works. In PKDD 2007, pages 91–102. Springer-Verlag, 2007.

[77] S. Gregory. A fast algorithm to find overlapping communities in networks.

In ECML PKDD ’08, pages 408–423. Springer-Verlag, 2008.

[78] S. Günnemann, B. Boden, and T. Seidl. Db-csc: A density-based approach

for subspace clustering in graphs with feature vectors. In ECML/PKDD (1),

pages 565–580, 2011.

[79] S. Gürses and B. Berendt. The Social Web and Privacy: Practice, Reci-

procity and Conflicts in Social Networks. In F. Bonchi and E. Ferrari, editors,

Privacy-Aware Knowledge Discovery: Novel Applications and New Techiques.

Chapman and Hall/CRC, 2010.

[80] S. Hachul and M. Jinger. Drawing large graphs with a potential-field-based

multilevel algorithm. In Graph Drawing, Lecture Notes in Computer Science,

pages 285–295. Springer, 2004.

156

[81] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural

re-identification in anonymized social networks. PVLDB, 1(1):102–114, 2008.

[82] P. W. Holland and S. Leinhardt. Transitivity in Structural Models of Small

Groups. Small Group Research, 2(2):107–124, 1971.

[83] Y. F. Hu. Efficient and high quality force-directed graph drawing. The

Mathematica Journal, 10:37–71, 2005.

[84] D. Jin, B. Yang, C. Baquero, D. Liu, D. He, and J. Liu. A Markov random

walk under constraint for discovering overlapping communities in complex

networks. Journal of Statistical Mechanics: Theory and Experiment, 2011,

2011.

[85] T. Kamada and S. Kawai. An algorithm for drawing general undirected

graphs. Inf. Process. Lett., 31(1):7–15, 1989.

[86] M.-S. Kim and J. Han. A particle-and-density based evolutionary clustering

method for dynamic networks. Proc. VLDB Endow., 2(1):622–633, Aug. 2009.

[87] S. G. Kobourov. Force-directed drawing algorithms. Handbook of Graph

Drawing and Visualization, 2013.

[88] A. Korolova, R. Motwani, S. U. Nabar, and Y. Xu. Link privacy in social

networks. In CIKM, 2008.

[89] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse

graph. Data Min. Knowl. Discov., 11(3):243–271, 2005.

157

[90] A. Lancichinetti and S. Fortunato. Benchmarks for testing community detec-

tion algorithms on directed and weighted graphs with overlapping communi-

ties. Phys. Rev. E, 80(1):016118, 2009.

[91] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping

and hierarchical community structure in complex networks. New Journal of

Physics, 11, 2009.

[92] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing

community detection algorithms. Physical Review E, 78, 2008.

[93] M. Leng, Y. Yao, J. Cheng, L. Weiming, and X. Chen. Active semi-supervised

community detection algorithm with label propagation. In DASFAA, 2013.

[94] J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-

messaging network. In WWW. ACM, 2008.

[95] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and neg-

ative links in online social networks. In Proceedings of the 19th international

conference on World Wide Web. ACM, 2010.

[96] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph evolution: Densifica-

tion and shrinking diameters. TKDD, 1(1), 2007.

[97] D. Z. Levin and R. Cross. The strength of weak ties you can trust: The

mediating role of trust in effective knowledge transfer. Management Science,

50(11):1477–1490, 2004.

158

[98] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:privacy beyond k-

anonymity and l-diversity. In IEEE 23rd International Conference on Data

Engineering, 2007.

[99] X.-L. Li, A. Tan, P. S. Yu, and S.-K. Ng. Ecode: event-based commu-

nity detection from social networks. In Proceedings of the 16th international

conference on Database systems for advanced applications - Volume Part I,

DASFAA’11, pages 22–37. Springer-Verlag, 2011.

[100] Y. Li and H. Shen. Anonymizing graphs against weight-based attacks. In

ICDM Workshops, 2010.

[101] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Analyzing commu-

nities and their evolutions in dynamic social networks. ACM Trans. Knowl.

Discov. Data, 3(2):8:1–8:31, Apr. 2009.

[102] K. Liu and E. Terzi. Towards identity anonymization on graphs. In SIGMOD

Conference, pages 93–106, 2008.

[103] L. Liu, J. Wang, J. Liu, and J. Zhang. Privacy preservation in social net-

works with sensitive edge weights. In SIAM International Conference on

Data Mining, 2009.

[104] S. P. Lloyd. Least squares quantization in pcm. IEEE Transactions on

Information Theory, 28:129–137, 1982.

159

[105] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.

Dawson. The bottlenose dolphin community of doubtful sound features a

large proportion of long-lasting associations. Behavioral Ecology and Socio-

biology, 54(4):396–405, 2003.

[106] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. `-

diversity: privacy beyond k-anonymity. In ICDE, 2006.

[107] K. Macropol, T. Can, and A. K. Singh. Rrw: repeated random walks on

genome-scale protein networks for local cluster discovery. BMC Bioinformat-

ics, 2009.

[108] P. Massa and P. Avesani. Trust metrics in recommender systems. In Com-

puting with Social Trust. Springer London, 2009.

[109] M.Hay, G.Miklau, D.Jensen, P.Weis, and S.Srivastava. Anonymizing social

networks. Technical report, Computer Science Department, University of

Massachusetts Amherst, 2007.

[110] S. Milgram. The small world problem. Psychology Today, 2:60–67, 1967.

[111] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.

Measurement and analysis of online social networks. In IMC, 2007.

[112] MPI. http://socialnetworks.mpi-sws.org/.

[113] Networkx. http://networkx.lanl.gov/.

160

[114] M. Newman and M.Girvan. Finding and evaluating community structure in

networks. PHYS.REV.E, 69:026113, 2004.

[115] M. E. J. Newman. Modularity and community structure in networks. Pro-

ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[116] N. P. Nguyen, T. N. Dinh, Y. Xuan, and M. T. Thai. Adaptive algorithms for

detecting community structure in dynamic social networks. In INFOCOM,

pages 2282–2290, 2011.

[117] V. Nicosia, G. Mangioni.V.Carchiolo, and M. Malgeri. Extending the defini-

tion of modularity to directed graphs with overlapping communities. Journal

of statistical Mechanics: Theory And Experiment, 2009.

[118] A. Noack. An energy model for visual graph clustering. In Graph Drawing,

pages 425–436, 2003.

[119] K. Okamoto, W. Chen, and X. Li. Ranking of closeness centrality for large-

scale social networks. In Proceedings of the 2Nd Annual International Work-

shop on Frontiers in Algorithmics, FAW ’08, pages 186–195, Berlin, Heidel-

berg, 2008. Springer-Verlag.

[120] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: a fast and scalable

tool for data mining in massive graphs. In KDD. ACM, 2002.

161

[121] S. Pang, C. Chen, and T. Wei. A realtime community detection algorithm:

incremental label propagation. In First International Conference on Future

Information Networks ICFIN 2009, pages 313–317, Oct 2009.

[122] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos. Community

detection in social media. Data Min. Knowl. Discov., 24(3), May 2012.

[123] P. Pons and M. Latapy. Computing communities in large networks using

random walks. In ISCIS, 2005.

[124] A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and J.-L. Larriba-Pey. Shap-

ing communities out of triangles. In Proceedings of the 21st ACM interna-

tional conference on Information and knowledge management, CIKM ’12.

ACM, 2012.

[125] A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and J.-L. Larriba-Pey. Shap-

ing communities out of triangles. In Proceedings of the 21st ACM interna-

tional conference on Information and knowledge management, CIKM ’12.

ACM, 2012.

[126] G.-J. Qi, C. C. Aggarwal, and T. S. Huang. Community detection with edge

content in social media networks. In ICDE, pages 534–545, 2012.

[127] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm

to detect community structures in large-scale networks. Physical Review E,

76(3), Sept. 2007.

162

[128] P. K. Reddy, M. Kitsuregawa, P. Sreekanth, and S. S. Rao. A graph based

approach to extract a neighborhood customer community for collaborative

filtering. In DNIS, DNIS ’02, pages 188–200. Springer-Verlag, 2002.

[129] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks

reveal community structure. Proceedings of the National Academy of Sciences

of the United States of America, 105, 2008.

[130] Y. Ruan, D. Fuhry, and S. Parthasarathy. Efficient community detection in

large networks using content and links. CoRR, 2012.

[131] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with

applications to image databases. In ICCV, pages 59–66, 1998.

[132] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a

metric for image retrieval. Intl Journal of Computer Vision, 40(2):99–121,

2000.

[133] G. Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,

December 1966.

[134] I. Safro, D. Ron, and A. Brandt. Multilevel algorithms for linear ordering

problems. J. Exp. Algorithmics, 13:4:1.4–4:1.20, 2009.

[135] J. P. Scott. Social Network Analysis: A Handbook. SAGE Publications, Jan.

2000.

163

[136] SNAP. http://snap.stanford.edu/data.

[137] Y. Song, P. Karras, Q. Xiao, and S. Bressan. Sensitive label privacy protection

on social network data. Technical report, 2012.

[138] G. Su, A. Kuchinsky, J. H. Morris, D. J. States, and F. Meng. Glay: commu-

nity structure analysis of biological networks. Bioinformatics, 26(24):3135–

3137, 2010.

[139] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding

of hierarchical system structures. IEEE Transactions on Systems, Man &

Cybernetics, pages 109–125, 1981.

[140] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graphscope: Parameter-

free mining of large time-evolving graphs. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, KDD ’07, pages 687–696, New York, NY, USA, 2007. ACM.

[141] H. Sundaram, Y.-R. Lin, M. D. Choudhury, and A. Kelliher. Understanding

community dynamics in online social networks: A multidisciplinary review.

IEEE Signal Process. Mag., 29(2):33–40, 2012.

[142] L. Sweeney. K-anonymity: a model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5),

2002.

164

[143] C.-H. Tai, P. S. Yu, D.-N. Yang, and M.-S. Chen. Privacy-preserving social

network publication against friendship attacks. In SIGKDD, 2011.

[144] M. Takaffoli, R. Rabbany, and O. R. Zäıane. Incremental local community

identification in dynamic social networks. In ASONAM, pages 90–94, 2013.

[145] A. L. Traud, E. D. Kelsic, P. J. Mucha, and M. A. Porter. Comparing

community structure to characteristics in online collegiate social networks.

SIAM Review, 53(3):526–543, 2011.

[146] TrustLet. http://www.trustlet.org/.

[147] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, pages 743–767, 1963.

[148] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman. Email as spectroscopy:

automated discovery of community structure within organizations. In Com-

munities and technologies, pages 81–96. Kluwer, B.V., 2003.

[149] S. M. van Dongen. Graph clustering by flow simulation. PhD thesis, Univer-

sity of Utrecht, 2000.

[150] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution

of user interaction in facebook. In WOSN, 2009.

[151] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In

Proceedings of the 8th International Symposium on Graph Drawing, GD ’00,

pages 171–182, London, UK, UK, 2001. Springer-Verlag.

165

[152] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function. Jour-

nal of the American Statistical Association, 58(301):236–244, 1963.

[153] S. Wasserman, K. Faust, and D. Iacobucci. Social Network Analysis : Methods

and Applications . Cambridge University Press, 1994.

[154] D. J. Watts. Six Degrees: The Science of a Connected Age. Norton, 2003.

[155] D. J. Watts and S. H. Strogatz. Collective dynamics of’small-world’networks.

Nature, 393(6684):409–10, 1998.

[156] R. S. Weiss and E. Jacobson. A method for the analysis of the structure of

complex organizations. American Sociological Review, 20(6), Dec. 1955.

[157] B. Wellman. Networks In The Global Village: Life In Contemporary Com-

munities. Westview Press, 1999.

[158] W. Wu, Y. Xiao, W. Wang, Z. He, and Z. Wang. K-symmetry model for

identity anonymization in social networks. In EDBT, 2010.

[159] J. Xie, M. Chen, and B. K. Szymanski. Labelrankt: Incremental community

detection in dynamic networks via label propagation. CoRR, 2013.

[160] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection in

networks: The state-of-the-art and comparative study. ACM Comput. Surv.,

45, 2013.

166

[161] J. Xie and B. K. Szymanski. Towards linear time overlapping community

detection in social networks. In PAKDD’12. Springer-Verlag, 2012.

[162] J. Xie and B. K. Szymanski. Labelrank: A stabilized label propagation

algorithm for community detection in networks. In NSW, 2013.

[163] N. B. Yahia, N. Bellamine, and H. B. Ghesala. Combined use of commu-

nity detection and particle swarm optimization to support decision making.

Journal of computing, pages 157–163–43, 2012.

[164] B. Yan and S. Gregory. Detecting communities in networks by merging

cliques. CoRR, 2012.

[165] J. Yang and J. Leskovec. Defining and evaluating network communities based

on ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining

Data Semantics, MDS ’12. ACM, 2012.

[166] J. Yang and J. Leskovec. Overlapping community detection at scale: a non-

negative matrix factorization approach. In WSDM, 2013.

[167] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin. A bayesian approach toward

finding communities and their evolutions in dynamic social networks. In

SIAM Conference on Data Mining (SDM), 2009.

[168] X. Ying, K. Pan, X. Wu, and L. Guo. Comparisons of randomization and

k-degree anonymization schemes for privacy preserving social network pub-

lishing. In SNA-KDD, 2009.

167

[169] X. Ying and X. Wu. Randomizing social networks: a spectrum perserving

approach. In SDM, 2008.

[170] X. Ying and X. Wu. On link privacy in randomizing social networks. In

PAKDD, 2009.

[171] M. Yuan, L. Chen, and P. S. Yu. Personalized privacy protection in social

networks. PVLDB, 4(2), 2010.

[172] L. Zhang and W. Zhang. Edge anonymity in social network graphs. In CSE.

IEEE Computer Society, 2009.

[173] S. Zhang, R. S. Wang, and X. S. Zhang. Identification of overlapping commu-

nity structure in complex networks using fuzzy c-means clustering. Physica

A: Statistical Mechanics and its Applications, 374(1):483–490, 2007.

[174] E. Zheleva and L. Getoor. Preserving the privacy of sensitive relationships

in graph data. In PinKDD, 2007.

[175] B. Zhou and J. Pei. Preserving privacy in social networks against neighbor-

hood attacks. In ICDE. IEEE Computer Society, 2008.

[176] B. Zhou and J. Pei. The k-anonymity and `-diversity approaches for privacy

preservation in social networks against neighborhood attacks. Knowledge and

Information Systems, 28(1), 2010.

[177] L. Zou, L. Chen, , and M. T. Özsu. K-automorphism: a general framework

for privacy-preserving network publication. PVLDB, 2(1), 2009.

168

Appendix A

On the Privacy and Utility of

Anonymized Social Networks

We try to empirically quantify the trade-off for the k-degree anonymity algorithm

[102] and k-automorphism algorithm [177]. The k-degree anonymity algorithm

transforms the original graph into one in which, at least, k vertices have the same

degree. The transformed graph is k-degree anonymous. The k-automorphism algo-

rithm is a state-of-the-art algorithm that protects against most structural attacks.

The algorithm transforms the original graph into one in which, at least, k subgraphs

are structurally identical. The transformed graph is k-automorphic.

A.1 k-degree anonymity

The k-degree-anonymity approach [102] aims to prevent attacks involving adversary

knowledge of degrees. Before the graph is released, the original one is transformed

so that an adversary cannot identify the vertices based on her knowledge of the

degree of the published graph. It is transformed by adding edges, in such a way

that each vertex has the same degree as at least k − 1 other vertices. In other

169

2 1 3 4 7

0

5

6

9 8

(a) original graph

2 1 3 4 7

0

5

6

9 8

(b) 2-degree anony-
mous graph

2 1 3 4 7

0

5

6

9 8

(c) 3-degree anony-
mous graph

2 1 3 4 7

0

5

6

9 8

(d) 4-degree anony-
mous graph

Figure A.1: k-degree anonymous graphs, for various values of k

words, a vertex cannot be identified with a probability higher than 1/k based on

degree. The transformed graph is k-degree-anonymous.

The k-degree-anonymity algorithm is described in Section 3.1. Figure A.1a

shows a graph with degree sequence [1,2,1,2,6,2,1,1,1,1]. Figure A.1b shows its

2-degree anonymous graph with degree sequence [2,2,2,2,6,6,2,2,2,2]. Figure A.1c

shows its 3-degree anonymous graph with degree sequence [2,2,2,6,6,6,2,2,2,2], and

Figure A.1d shows its 4-degree anonymous graph with degree sequence [3,6,3,6,6,6,6,3,3,3].

A.2 k-automorphism

This approach [177] aims to prevent structural attacks, namely attacks involving

adversary knowledge such as degree, neighbors, shortest-distances from hubs and

so on [177]. Before it is published, the original graph is transformed so that an

adversary cannot identify vertices based on her knowledge of the structure of the

published graph. It is transformed by adding and removing edges (and possibly

vertices), in a way that each vertex is structurally undistinguishable from at least

k− 1 other vertices. In other words, a vertex cannot be identified with probability

higher than 1/k based on the graph structure. The algorithm transforms the orig-

inal graph into one in which every subgraph is structurally identical to k− 1 other

subgraphs. The transformed graph is k-automorphic.

The k-automorphism algorithm starts from a naive anonymized graph. It par-

titions the naive anonymized graph into blocks, and then it makes groups of at

170

least k blocks. For each group, all blocks in the group are made isomorphic by

alignment. Consequently, each vertex in one block has a symmetric vertex in, at

least, each of the k − 1 other blocks in the same group. Every vertex has, at least,

k− 1 symmetric vertices in total. Dummy vertices may be introduced in this step.

After obtaining isomorphic subgraphs in each group, the edges across blocks are

considered. If there exists an edge between v1 in block i and v2 in block j in a

group, then edges are inserted to make sure that all of v1’s the symmetric vertices

in other blocks have edges with the corresponding vertices, the symmetric vertices

of v2. Finally, the anonymized graph is the graph obtained after alignment and

edge-copy on all groups.

To preserve utility and minimize information loss, the algorithm adopts a greedy

method, together with the notion of frequent sub-graph [89] in the first stage of the

algorithm, graph partition, and block grouping. In each iteration, frequent sub-

graphs with minimum support k are extracted from the whole graph and then

expanded hop-by-hop in parallel, unless the overall grouping cost increases. Be-

cause of the expansion of blocks, there may be fewer edges crossing over blocks,

less edges are inserted in the edge-copy stage, but these larger size of blocks also

means higher costs in graph alignment. Therefore, whether an overall optimal ano-

nymization cost is achieved is part of the criterion for block expansion. The final

resulting blocks are clustered into one group.

1

90

4

8

3

7

6

2

5

(a) original graph

1

9

0

4

7

8

3

2

5
6

(b) 2-automorphism

1 1

0

1 3

1 5

4

8

1 7

1 8

1 0

1 2

1 4

1 6

2

9

56

1 9

3

7

1

(c) 5-automorphism

1 1

1 8
1 5

1 4

1 7

1 0

1 3

1 6

1

0 4

2

8

5

1 2

1 9

6

3

9

2 0

7

(d) 7-automorphism

Figure A.2: k-automorphic graphs, for various values of k

171

Figure A.2b shows a 2-automorphic graph with vertices 0, 1, 2, 5, 6 which have

been partitioned into one block, and vertices 3, 4, 7, 8, and 9 in another block.

After graph alignment, vertices 3 and 1 are symmetric, and so are vertices 6 and

4, 7 and 0, 9 and 5, and 8 and 2. No additional vertices are added in this case.

Only edges are inserted. But in the case of 5-automorphism (Figure A.2c), dummy

vertices are added. When modifying the graph to create a 5-automorphic graph,

the original vertices 0, 1, 4 have been put in one block, and vertices 3, 6, 8 one

block, and vertices 2, 5, 9 in one block. After anonymization, together with the

added vertices, vertices 1, 2, 6, 10, 11 become symmetric, vertices 0, 3, 9, 12, 13

become symmetric, vertices 4, 5, 8, 14, 15 become symmetric, and the remaining

vertices become symmetric. Throughout this work, the whole graph is one group.

A.3 Utility Metrics

We are concerned in this work with the structural properties of the social network.

We therefore consider the following utility metrics: diameter, radius, density, de-

gree centrality, closeness centrality, betweenness centrality, eigenvector centrality,

clustering coefficient, mean geodesic distance, algebraic connectivity, earth mover’s

distance and edit distance. These metrics quantify various structural aspects and

properties of the graph, such as connectivity and centrality. These features are

typically used by analysts, for instance, studying the influence, power, authority,

engagement and communication, as they quantify the size and shape of social cir-

cles.

172

A.4 Data Sets

The main motivation of this work is to quantify the trade-off between privacy and

utility for real social networks. We study snapshots of six social media: Facebook,

Epinions, Wikipedia, Orkut, Enron and URV.

The Facebook data set contains user-to-user links from Facebook New Orleans

networks. It was collected by Viswa-nath et al. [150] from December 29th, 2008 to

January 3rd, 2009. We obtained it from MPI [112]. The graph is undirected. It has

90,269 vertices and 3,646,662 edges. Each vertex represents a user. An edge exists

if two users are friends. It was crawled using a breadth-first search: visiting all

the friends of one starting single user and iteratively visiting their friends. Due to

the privacy policy, only those users who made their profiles visible to the network

could be visited and crawled. We randomly sampled ten graphs from the original

network data, with 6,339 vertices and an average of 34,539 edges in each graph.

The Epinions data set contains user-to-user (who-trust-whom) links from the

Epinions network. It was collected by Epinions staff P. Massa. We obtained it

from the trustlet website [146][108]. The whole graph is directed and edge-labeled.

It has about 132,000 vertices and 487,372 edges. Each vertex represents a user.

An edge corresponds to a trust/distrust statement from one user to another user,

since users of the Epinions website, a product review website, can comment on

products as well as other users’ comments and make statements about whether

they trust others. An edge from vertex i to vertex j labeled with value 1 means

a trust statement was made by vertex i stating his/her appreciation about the

content or the behavior of the other user. Distrust statement means the opposite

situation. While we measured the utility metrics on the samples of the whole data

set, we also divided the data set into two parts, and measured the utility metrics

on them separately: one with trust statements only and the other one with distrust

173

statements only.

The Wikipedia data set contains user-to-user (who-vote-whom) links from the

Wikipedia network. It was collected by Leskove et al. [95] in January, 2008. We

obtained it from the SNAP website [136]. The graph is directed. It has 7,115

vertices and 103,689 edges. Each vertex represents a user. An edge is created

from a user to a candidate if a user votes for Wikipedia admin candidates. As the

original data set contains several components, we use the largest one among them

which has 7,066 vertices and 100,736 edges.

The Orkut data set contains user-to-user links from Orkut network. It was

collected by Mislove et al. [111] from October 3rd to November 11th, 2006. We

obtained it from MPI [112]. The graph is undirected. It has 3,072,441 vertices and

223,534,301 edges. Each vertex represents a user. An edge is created between two

users if they list each other as friends. The data set was crawled with a breadth-

first search. The crawling was conducted using HTML screen-scraping technique.

Similarly we extract ten sample graphs with 9,217 vertices and, on average, 19,550

edges in each graph.

The remaining two data sets are networks of email exchanges: each vertex

corresponds to an email address, and edges correspond to messages between email

addresses. The Email-Enron data set contains user-to-user (address-to-address)

links. It was made public by the Federal Energy Regulatory Commission during its

investigations. We obtained it from [136]. The graph is undirected. It has 36,692

vertices and 367,662 edges. Each vertex represents an email address. An edge

exists between vertex i and vertex j, if address i sends at least one email message

to address j. We excerpt ten sample graphs with 10,108 vertices and on average

180,811 edges in each graph.

The Email-URV data set contains user-to-user (address-to-address) links from

174

Table A.1: Description of data sets

NO.of vertices NO.of edges type
Facebook 6,339 34,539 undirected
Wikipedia 7,066 100,736 directed

Orkut 9,217 19,550 undirected
Epinions 13,182 83,147 undirected

Epinions-trust 11,446 66,464 directed
Epinions-distrust 4,334 11,748 directed

Email-Enron 10,108 180,811 undirected
Email-URV 1,133 5530 undirected

the network of e-mail interchanges among faculty and graduate students at Rovira

i Virgili University of Tarragona, Spain. It was collected by Guimer et al. [1]. We

obtained it from Alex Arenas Website [1]. The graph is undirected. It has 1,133

vertices and 10,902 edges. Each vertex represents an email address. An edge exists

between two vertices if there is an email communication between them. As with

the Orkut data set, the graph is one connected component.

A.5 Experiments

The experiments are conducted on an Intel Core, 2 Quad CPU, 2.83GHz machine

with 4GB main memory running Windows 7 OS. The programs for the metrics

are implemented in two programming languages, C and Python. We calculate

betweenness centrality and algebraic connectivity in python, utilizing functions in

Networkx package [113]. All the other metrics are calculated in C, some of which,

such as eigenvector and closeness centrality, with the help of the functions provided

by the snap network analysis library [136]. For the ten sample graphs we randomly

extract from each original network (Facebook, Epinions, Orkut, Email-Enron), as

we mentioned before, we evaluate the metrics on all graphs and get the average

value so that the results are less affected by the randomness of sampling. We run

175

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20

d
e
n
s
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20

d
e
n
s
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism

Figure A.3: Denstiy

the anonymization algorithm on all the samples, then conduct the measurements

and take the average values. We treat all the graphs as undirected graphs for the

adoption of the k-automorphism algorithm.

Figure A.3 shows the density of each graph before and after anonymization for

varying values of k. The x-axis shows the value of k, and the y-axis shows the

density. When k equals 0, y-axis shows the densities of the original graphs.

In view of different data sets, the email-urv graphs show especially high densi-

ties. In view of the same data set, modified graphs have greater densities than the

original graphs, and a larger k does not always correspond to a larger density. In

view of different algorithms, the k-degree anonymity algorithm increases density

much less than the k-automorphism algorithm does.

Figure A.4 shows the diameter and radius of each graph before and after ano-

nymization for varying values of k. The x-axis shows the value of k, and the y-axis

shows the diameter and radius. Figure A.4(a)(c) show the diameter and radius of

the original graphs and the k-degree anonymous graphs. Figure A.4(b)(d) show

the diameter and radius of the original graphs and k-automorphic graphs.

We can see that modified graphs corresponding to relatively smaller values of k

have both smaller diameter and radius than the original graphs do. As k increases,

the differences among the diameters of the modified graphs decrease, similar for

176

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20

d
i
a
m
e
t
e
r

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20

d
i
a
m
e
t
e
r

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

r
a
d
i
u
s

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(c) k-degree anonymity

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

r
a
d
i
u
s

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(d) k-automorphism

Figure A.4: Graph diameter and radius

radius. In the figure, all the modified graphs have diameter around 6 when k equals

5, while large differences exist among the diameters of the original graphs.

Figure A.5 shows the mean geodesic distance of each graph before and after

anonymization for varying values of k. The x-axis shows the value of k. The y-axis

shows the mean geodesic distance. Subfigure(a) shows the values of the original

graphs and the k-degree anonymous graphs. Subfigure(b) shows the values of the

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 5 10 15 20

m
e
a
n

g
e
o
d
e
s
i
c

d
i
s
t
a
n
c
e

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 5 10 15 20

m
e
a
n

g
e
o
d
e
s
i
c

d
i
s
t
a
n
c
e

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism

Figure A.5: Mean geodesic distance

177

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20

a
l
g
b
r
a
i
c

c
o
n
n
n
e
c
t
i
v
i
t
y

k

facebook
Wiki-vote
email-urv

epinions_distrust

(a) k-degree anonymity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20

a
l
g
b
r
a
i
c

c
o
n
n
n
e
c
t
i
v
i
t
y

k

facebook
Wiki-vote
email-urv

epinions_distrust

(b) k-automorphism

Figure A.6: Algebraic connectivity

original graph and the k-automorphic graphs.

We can see that as k increases, the differences among mean geodesic distances

of the modified graphs for all the data sets decrease. This figure also shows that

the mean geodesic distance is smaller for a smaller value of k, similar to diameter

and radius.

Figure A.6 shows the algebraic connectivity of each graph before and after

anonymization for varying values of k. The x-axis shows the value of k, and the y-

axis shows the algebraic connectivity. Subfigure(a) shows the values of the original

graphs and the k-degree anonymous ones. Subfigure(b) shows the values of the

original graph and the k-automorphic ones.

Due to the limitation of machine memory size, we are unable to calculate al-

gebraic connectivity for all the data sets. Since the calculation of algebraic con-

nectivity is based on the adjacency matrix, for very large graphs, the memory is

not large enough to afford having the whole graph represented in an adjacency ma-

trix. Nevertheless, from the available result, we see that as k increases, algebraic

connectivity increases in general.

Figure A.7 shows the geodesic distributions for the Email-Urv graph, both be-

fore and after anonymization. The x-axis shows the value of geodesic distance, and

the y-axis shows the ratio of the number of certain geodesic distance to the number

178

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

n
o
r
m
a
l
i
z
e
d

p
a
t
h

d
i
s
t
r
i
b
u
t
i
o
n

shortest path length

original
k = 5
k = 10
k = 15
k = 20

(a) k-degree anonymity. Email-Urv

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12

n
o
r
m
a
l
i
z
e
d

p
a
t
h

d
i
s
t
r
i
b
u
t
i
o
n

shortest path length

original
k = 5
k = 10
k = 15
k = 20

(b) k-automorphism. Email-Urv

Figure A.7: Geodesic distribution

of all geodesic distances. Subfigure(a) shows the distributions of the original graphs

and the k-degree anonymous graphs. Subfigure(b) shows the distributions of the

original graph and the k-automorphic graphs.

From Figure A.7(b) we can see that as k increases after a certain value, the

distributions of the geodesic distance become uniform in larger ranges, while the

changes of the distribution made by the k-degree anonymity algorithm is much less,

as we can see from Figure A.7(a).

Figure A.8 shows the degree distributions for the Email-Urv and Wiki graph

both before and after anonymization. The x-axis shows the vertex degree, and the

y-axis shows the ratio of the number of vertices with a certain degree to the total

number of vertices of the graph. Subfigure(a) shows the distributions of the original

graphs and the k-degree anonymous graphs. Subfigure(b) shows the distributions

of the original graph and the k-automorphic graphs.

We can see that degree distribution of the anonymized graph significantly differs

from the degree distribution of the original graph.

Figure A.9 shows the global clustering coefficient and average local clustering

coefficient over all the vertices of each graph, before and after anonymization, for

varying values of k. The x-axis shows the value of k, and the y-axis shows the

clustering coefficient. Figure A.4(a)(c) show the metrics values of the original

179

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 10 100 1000

n
o
r
m
a
l
i
z
e
d

d
e
g
r
e
e

d
i
s
t
r
i
b
u
t
i
o
n

degree

original
k = 5
k = 10
k = 15
k = 20

(a) k-degree anonymity. Wiki-vote

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 10 100 1000

n
o
r
m
a
l
i
z
e
d

d
e
g
r
e
e

d
i
s
t
r
i
b
u
t
i
o
n

degree

original
k = 5
k = 10
k = 15
k = 20

(b) k-automorphism. Wiki-vote

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1 10 100

n
o
r
m
a
l
i
z
e
d

d
e
g
r
e
e

d
i
s
t
r
i
b
u
t
i
o
n

degree

original
k = 5
k = 10
k = 15
k = 20

(c) k-degree anonymity. Email-Urv

 0

 0.05

 0.1

 0.15

 0.2

 1 10 100

n
o
r
m
a
l
i
z
e
d

d
e
g
r
e
e

d
i
s
t
r
i
b
u
t
i
o
n

degree

original
k = 5
k = 10
k = 15
k = 20

(d) k-automorphism. Email-Urv

Figure A.8: Degree distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20

G
l
o
b
a
l

c
l
u
s
t
e
r
i
n
g

c
o
e
f
f
i
c
i
e
n
t

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity. global clustering co-
efficient

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20

G
l
o
b
a
l

c
l
u
s
t
e
r
i
n
g

c
o
e
f
f
i
c
i
e
n
t

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism. global clustering coeffi-
cient

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

a
v
e
r
a
g
e

c
l
u
s
t
e
r
i
n
g

c
o
e
f
f
i
c
i
e
n
t

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(c) k-degree anonymity. average local cluster-
ing coefficient

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

a
v
e
r
a
g
e

c
l
u
s
t
e
r
i
n
g

c
o
e
f
f
i
c
i
e
n
t

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(d) k-automorphism. average local clustering
coefficient

Figure A.9: Clustering Coefficient

180

graphs and the k-degree anonymous graphs. Figure A.4(b)(d) show the metrics

values of the original graphs and k-automorphic graphs.

We can see that the modifications caused by k-automorphism algorithm is sig-

nificant in some cases.

Figure A.10 shows the four centrality measures of each graph, before and after

anonymization, for varying values of k. The x-axis shows the value of k, and the

y-axis shows the centralities. We can see that as k increases, the degree centrality

of modified graph increases significantly (Figure A.10a). Closeness centrality (Fig-

ure A.10d) and betweenness centrality (Figure A.10f) have a similar trend as the

diameter, radius and mean geodesic distance changed during the anonymization.

For each vertex, we consider the corresponding value in the eigenvector of the

adjacency matrix of the graph for the original graph and, then, for the modified

graph. Figure A.11 shows the number of vertices that were in the top 10% with the

highest value in the original graph and that remain in the top 10% in the modified

graph. The x-axis shows the value of k, and the y-axis shows the ratio of the

number of remaining vertices to the total number of vertices of each graph.

For all the k-automorphic graphs, at least 30% of the top 10% important vertices

fall out of the range, while for some cases of the k-degree anonymous graphs, more

than 30% of the vertices also fall out of the range.

Figure A.12 shows the EMD between the degree distributions of each graph,

before and after anonymization, for varying values of k. The x-axis shows the value

of k, and the y-axis shows EMD. We can see that as k increases, EMD increases in

general. This suggests that the difference of degree distributions between graphs

before and after anonymization increases.

Figure A.13 shows the edit distance for each data set, and for varying values of

k. The x-axis shows the value of k. The y-axis shows the edit distance. We can

181

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20

d
e
g
r
e
e

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity. degree centrality

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20

d
e
g
r
e
e

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism. degree centrality

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 5 10 15 20

c
l
o
s
e
n
e
s
s

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(c) k-degree anonymity. closeness centrality

 2

 3

 4

 5

 6

 7

 0 5 10 15 20

c
l
o
s
e
n
e
s
s

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(d) k-automorphism. closeness centrality

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 5 10 15 20

b
e
t
w
e
e
n
n
e
s
s

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(e) k-degree anonymity. betweenness central-
ity

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 5 10 15 20

b
e
t
w
e
e
n
n
e
s
s

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(f) k-automorphism. betweenness centrality

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 5 10 15 20

e
i
g
e
n
v
e
c
t
o
r

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(g) k-degree anonymity. eigenvector central-
ity

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 5 10 15 20

e
i
g
e
n
v
e
c
t
o
r

c
e
n
t
r
a
l
i
t
y

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(h) k-automorphism. eigenvector centrality

Figure A.10: Centrality metrics

182

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20

P
r
o
p
o
r
t
i
o
n

o
f

r
e
m
a
i
n
i
n
g

i
n
f
l
u
e
n
t
i
a
l

v
e
r
t
i
c
e
s

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20

P
r
o
p
o
r
t
i
o
n

o
f

r
e
m
a
i
n
i
n
g

i
n
f
l
u
e
n
t
i
a
l

v
e
r
t
i
c
e
s

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism

Figure A.11: Remaining proportion of influential vertices

 0

 0.0005

 0.001

 0.0015

 0.002

 0 5 10 15 20

E
M
D

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

E
M
D

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism

Figure A.12: Earth mover’s distance

 0

 5

 10

 15

 20

 0 5 10 15 20

e
d
i
t

d
i
s
t
a
n
c
e

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(a) k-degree anonymity

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20

e
d
i
t

d
i
s
t
a
n
c
e

k

facebook
orkut

Wiki-Vote
email-urv

email-enron
epinions

epinions_trust
epinions_distrust

(b) k-automorphism

Figure A.13: Edit distance

183

 5

 10

 15

 20

 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

e
d
i
t

d
i
s
t
a
n
c
e

density

k = 5
k = 10
k = 15
k = 20

(a) Facebook edit distance. k-automorphism

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018

e
d
i
t

d
i
s
t
a
n
c
e

density

k = 5
k = 10
k = 15
k = 20

(b) Wiki-Vote edit distance. k-automorphism

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

e
d
i
t

d
i
s
t
a
n
c
e

density

k = 5
k = 10
k = 15
k = 20

(c) Facebook edit distance. k-degree anony-
mity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

e
d
i
t

d
i
s
t
a
n
c
e

density

k = 5
k = 10
k = 15
k = 20

(d) Wiki-Vote edit distance. k-degree anony-
mity

Figure A.14: Edit distance vs density

see that as k increases, the edit distance increases.

To verify the effect of graph density, we sample the graphs with different den-

sities from the Facebook and Wiki-vote data set. We anonymize each sample and

measure the edit distance. Figure A.14 shows the edit distances for graphs with

various densities. The x-axis shows the density. The y-axis shows the edit distance.

We can see that, as k increases, the edit distance increases in most cases.

This comprehensive set of experiments on graphs from real social networks

demonstrate that utility metrics are impacted by k-degree anonymity and k-automorphism

anonymization. Especially for k-automorphism anonymization, we can see signifi-

cant impact. With increasing values of k, the density of anonymized graph increases

in general, and is up to six times that of the original graph in the worst case, for

all the data sets considered. Diameter, radius, and mean geodesic distance can

be two to three times smaller or larger in the worst cases, though they remain

184

unchanged in some cases. Degree centrality continuously increases. Clustering co-

efficient, closeness and betweenness centrality remain the same in the best case,

but the clustering coefficient increases significantly in some cases. The number of

top 10% influential vertices remaining, evaluated based on eigenvector centrality,

decreases. The highest proportion is about 70%, while the lowest approaches 20%.

Privacy is guaranteed by the design of k-degree anonymity for degree attacks

and k-automorphism for most structural attacks. However, this is achieved at a

high cost. Significant modifications are induced by the graph perturbation.

A.6 Summary

We empirically quantify the trade-off between utility and privacy for the k-degree

anonymity and k-automorphism graph anonymization algorithm. We measure and

compare several utility metrics for a series of real graphs from various social media

before and after their anonymization under varying settings.

The study shows that anonymization is not anodyne. It protects privacy by

significantly modifying a graph before its publication at the expense of utility. Fur-

thermore, although the general trend of the effect on some metrics, for instance

those measuring graph density, can be foreseen, some effects seem to remain un-

predictable.

185

Appendix B

GPU-based Parallel Particle

Swarm Optimization Methods for

Graph Drawing

Effective graph drawing is needed for presentation and qualitative analysis. It is

generally agreed that an effective graph drawing should have the following aesthetic

characteristics [10]:

1. Minimal edge crossing,

2. Vertices are evenly distributed in the space,

3. Connected vertices are close to each other, and

4. Symmetry may exist in the graph.

In 1963, Tutte [147] proposed an algorithm to draw planar graphs by fixing

selected nodes on a face and placing the rest of the nodes at the barycenters of their

neighbors. In 1981, Sugiyama et al. [139] proposed a method for the hierarchical

drawing of directed graphs. Eades [52] proposed a force-directed algorithm in 1984.

186

Kamada and Kawai [85] proposed the spring embedding algorithm in 1989. In

1991, Fruchterman and Reingold improved the force-directed method [64]. These

algorithms were further improved, and some of them are applied to large graphs

[66, 22, 23, 80, 83, 151, 134] later.

Within the graph drawing literature, the name “force-directed algorithm” has

often been used to refer to spring-electrical models [52, 85, 64]. Graphs drawn by

these algorithms are aesthetically pleasing, symmetric, and tend to have minimal

cross edges. In general, force-directed methods define an objective function which

maps each graph layout into a real number representing the energy of the layout.

This function is defined in such a way that low energies correspond to layouts in

which adjacent nodes are near some pre-specified distance from each other, and

in which non-adjacent nodes are well-spaced [52]. A layout for a graph is then

calculated by finding a (often local) minimum of the objective function.

We introduce the Particle Swarm Optimization algorithm to solve the graph

drawing problem. Inspired by the paradigm of birds flocking, Kennedy and Eber-

hart proposed Particle Swarm Optimization (PSO) in [53]. It is a global optimiza-

tion method, where the system is initialized with a swarm of random particles and

the algorithm searches for optima by updating generations. the PSO algorithm

is widely used in many combinatorial optimization problems [163] for its simple

implementation and fast speed. The layout of a graph drawn by the force-directed

algorithm is obtained by finding an optimal solution of the objective function. That

is to say, the layout problem can be converted to an optimization problem.

We propose a new method called PSOGD for drawing undirected graphs using

PSO and a force-directed algorithm [85]. The graph is initialized with a swarm of

random particles which store the position information of all vertices in the graph.

All particles automatically update their position and velocity in order to find the

187

optimal layout until the algorithm terminates.

Particle Swarm Optimization is a global optimization method based on swarm,

where the system is initialized with a swarm of random particles and the algorithm

searches for optima by updating generations. Suppose that the dimension of search

space is D, and the number of the swarm size is N . The position vector and velocity

vector of particle i can be represented as follows:

Xi = (xi1, xi2, ..., xij, ..., xiD) (B.1)

Vi = (vi1, vi2, ..., vij, ..., viD) (B.2)

The memory position vector of the particle i previously visited and the global

memory position vector of the swarm found so far are denoted Pi and Pg:

Pi = (pi1, pi2, ..., piD) (B.3)

Pg = (g1, g2, ..., gD) (B.4)

The fitness f(Pi) of each particle can be evaluated by putting its position into

a designated objective function. The particle’s velocity and its new position are

updated as formula B.5 and B.6.

vt+1
ij = ω · vtij + c1 · r1 · (ptij − xtij) + c2 · r2 · (gtij − xtij) (B.5)

xt+1
ij = xtij + vt+1

ij (B.6)

Here, j ∈ {1, 2, ..., D}, i ∈ 1, 2, ..., N . The superscript t denotes the iteration

number; ω is the initial weight; r1 and r2 are two random values in the range of 0

and 1; c1 and c2 are the cognitive and social scaling parameters which are positive

188

constants. The steps of PSO algorithm is described as following.

The steps of PSO algorithm is described as following.

Step1: Initialization of PSO.

Step2: Update V and X by formula B.5 and B.6.

Step3: Calculate fitness of each particle.

Step4: Update Pi and Pg.

Step5: If terminal condition is met, end the algorithm; else go to step2.

There are two key techniques in the algorithm. One is the encoding schema of

the swarm. The other is the definition of the fitness function. In a simple graph

G = (V,E), xi denotes the current position of vertex i in d-dimension Euclidean

space. Generally the value of d is 2 or 3. The objective of graph drawing is to find

the positions of all vertices so that the drawing can give a good layout of the graph

PSO algorithm has powerful global search capability. The first step of PSO

is to determine the encoding schema of the swarm. An efficient encoding schema

enables the problem simple and intuitive. Considering of the objective of graph

drawing, each particle of the swarm corresponds to the position information of all

vertices. Each particle is encoded as a n-dimensional vector X as following.

x = (x1, x2, ..., xi, ..., xn) (B.7)

Here, n = |V | and xi denotes the position of vertex i in d-dimension Euclidean

space.

A particle with such an encoding schema corresponds to a kind of layout of

graph drawing. It is evident that finding the best particle of the swarm is to find

the optimal layout of graph drawing. Each particle of the swarm updates the

velocity and position vector in the process of evolution by formula B.5 and B.6.

189

The selection of fitness function is critical to the PSO algorithm. An effective

fitness function can make the particles of the swarm find the optimal solution. In the

PSOGD algorithm, a particle corresponds to a kind of layout of graph drawing. The

objective of graph drawing is finding a good visual representation of the connectivity

information between vertices. There are different styles of representation, suitable

to different types of graphs or different purposes of presentation. However, no

uniform criteria can be used to evaluate the performance of different representation.

Here, inspired by the spring-electrical model, we use the idea of the force-directed

algorithm in [87, 118] to define the fitness of the swarm. The attractive force is

defined as formula B.8.

fa(i, j) =
||xi − xj||3

3k
(B.8)

The repulsive force is defined as formula B.9.

fr(i, j) = k2 · ln(||xi − xj||) (B.9)

Here, k = C
√

area
number of vertices

. area is the windows size for display the graph. C

is a constant.

The objective function of the particle is defined as formula B.10.

f(X) =
∑

(i,j)∈E

fa(i, j) +
∑

(i,j)∈E

fr(i, j) (B.10)

The fitness function maps a position vector into a real number representing the

energy of the layout. It means that low energies correspond to layouts in which

adjacent nodes are near some pre-specified distance from each other, and in which

non-adjacent nodes are well-spaced. That is to say, the particle with the minimal

fitness value is the global optimal particle. The layout of a graph is obtained by

190

searching for the minimum of the fitness function. The objective of the PSOGD

algorithm is to search for the fitness that is as small as possible.

The pseudo code of the algorithm is described in Algorithm 14

Algorithm B.1: Graph Drawing by Particle Swarm Optimization

Input: G(V,E), the number of iteration T ;
Result: the layout of the graph

1 set parameter(swarm size m, initial weight ω);
2 particle by the formula B.8-B.10;
3 select Pg;
4 for t = 1 to T do
5 for i = 1 to m do
6 update V and X by formula B.5, B.6;
7 for j=1 to —V— do
8 for k=1 to —V— do
9 calculate fa(j, k) by formula B.8;

10 if (j, k) ∈ E then
11 calculate fr(j, k) by formula B.9;

12 calculate f(P t
i) by formula B.10;

13 if f(P t
i) ¡ f(Pg) then

14 Pg=P
t
i ;

15 Return optimal layout;

In the experiments, we compare PSOGD algorithm with F-R [64] algorithm.

Table B.1: Parameters of the algorithm

ω m c1 c2 t W L C
0.72 10 2.02 2.02 200 1.0 1.0 0.75

We choose 10 artificial graphs and 3 real network graphs, and divide them into

four groups. Group 1 consists of 4 general graphs: g1, g2, g3 and g4. Group 2

consists of 5 symmetric graphs: g5, g6, g7, g8 and g9. Group 3 only consists of one

graph g10. Group 4 consists of 3 real network graphs. Different groups of graphs

are intended to test the performance of the algorithms from different aspects. The

191

TABLE III
DRAWINGS OF GROUP 1 BY PSOGD AND F-R

 Graphs of group 1
g1 g2 g3 g4

PSOGD

F-R

TABLE IV

DRAWINGS OF GROUP 2 BY PSOGD AND F-R

 Graphs of Group 2
g5 g6 g7 g8 g9

PSOGD

F-R

TABLE V
DRAWINGS OF GROUP 3 BY PSOGD AND F-R

 Graphs of Group 3

PSOGD

F-R

0.5 0.55 0.6 0.65 0.7 0.75
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.55 0.6 0.65 0.7 0.75 0.8
0.9

0.95

1

1.05

1.1

1.15

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

-1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.7 0.72 0.74 0.76 0.78 0.8 0.82

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0.3 0.32 0.34 0.36 0.38 0.4 0.42
0.2

0.25

0.3

0.35

0.4

0.45

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 0.252
0.324

0.326

0.328

0.33

0.332

0.334

0.336

0.338

0.34

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
0.52

0.54

0.56

0.58

0.6

0.62

0.64

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure B.1: Drawing of group 1 by PSOGD and F-R

parameters of the algorithm are set in Table B.1. Here, m is the number of particles

in the swarm, and t is the number of iterations. The meaning of other parameters

is described in the paper. The information of group 4 is listed in Table B.2.

Table B.2: Information of Group 4

Karate Dolphin American
club (g11) network (g12) football (g13)

number of vertices 34 62 115

number of edges 78 105 613

Figure B.1 shows the results of the PSOGD and F-R algorithms on group 1.

The layouts of these graphs drawn by the two algorithms are similar. Figure B.2

is the drawings of PSOGD and F-R on group 2. It can be seen that the drawings

by two algorithms all look nice, symmetric, and have fewer crossing edges except

for graph g6. The drawing by PSOGD is better than the one by F-R, which has

a crossing edge. The results in Figure B.1 and B.2 illustrate the effectiveness of

PSOGD algorithm.

Figure B.3 shows the results of the PSOGD and F-R algorithms on group 3. Five

drawings all represent the relationship of vertices and edges in graph g10, but the

192

TABLE III
DRAWINGS OF GROUP 1 BY PSOGD AND F-R

 Graphs of group 1
g1 g2 g3 g4

PSOGD

F-R

TABLE IV

DRAWINGS OF GROUP 2 BY PSOGD AND F-R

 Graphs of Group 2
g5 g6 g7 g8 g9

PSOGD

F-R

TABLE V
DRAWINGS OF GROUP 3 BY PSOGD AND F-R

 Graphs of Group 3

PSOGD

F-R

0.5 0.55 0.6 0.65 0.7 0.75
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.55 0.6 0.65 0.7 0.75 0.8
0.9

0.95

1

1.05

1.1

1.15

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

-1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.7 0.72 0.74 0.76 0.78 0.8 0.82

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0.3 0.32 0.34 0.36 0.38 0.4 0.42
0.2

0.25

0.3

0.35

0.4

0.45

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 0.252
0.324

0.326

0.328

0.33

0.332

0.334

0.336

0.338

0.34

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
0.52

0.54

0.56

0.58

0.6

0.62

0.64

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure B.2: Drawing of group 2 by PSOGD and F-R

TABLE III
DRAWINGS OF GROUP 1 BY PSOGD AND F-R

 Graphs of group 1
g1 g2 g3 g4

PSOGD

F-R

TABLE IV

DRAWINGS OF GROUP 2 BY PSOGD AND F-R

 Graphs of Group 2
g5 g6 g7 g8 g9

PSOGD

F-R

TABLE V
DRAWINGS OF GROUP 3 BY PSOGD AND F-R

 Graphs of Group 3

PSOGD

F-R

0.5 0.55 0.6 0.65 0.7 0.75
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.55 0.6 0.65 0.7 0.75 0.8
0.9

0.95

1

1.05

1.1

1.15

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

-1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.7 0.72 0.74 0.76 0.78 0.8 0.82

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0.3 0.32 0.34 0.36 0.38 0.4 0.42
0.2

0.25

0.3

0.35

0.4

0.45

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.236 0.238 0.24 0.242 0.244 0.246 0.248 0.25 0.252
0.324

0.326

0.328

0.33

0.332

0.334

0.336

0.338

0.34

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
0.52

0.54

0.56

0.58

0.6

0.62

0.64

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure B.3: Drawing of group 3 by PSOGD and F-R

TABLE VI
DRAWINGS OF GROUP 4 BY PSOGD AND F-R

 g11 g12 g13

PSOGD

F-R

TABLE VII
EVOLUTIONARY DRAWINGS WITH VARYING NUMBER OF PARTICLE ON 4 GRAPHS BY PSOGD

 m = 1 m = 5 m = 10 m = 20

g3

g4

g8

g9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

5

6

7

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17
1

1.05

1.1

1.15

0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76
1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.4 0.45 0.5 0.55 0.6 0.65
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7 0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure B.4: Drawing of group 4 by PSOGD and F-R

193

TABLE VI
DRAWINGS OF GROUP 4 BY PSOGD AND F-R

 g11 g12 g13

PSOGD

F-R

TABLE VII
EVOLUTIONARY DRAWINGS WITH VARYING NUMBER OF PARTICLE ON 4 GRAPHS BY PSOGD

 m = 1 m = 5 m = 10 m = 20

g3

g4

g8

g9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

5

6

7

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17
1

1.05

1.1

1.15

0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76
1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.4 0.45 0.5 0.55 0.6 0.65
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7 0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure B.5: Evolutionary drawing with varying number of particles by PSOGD

PSOGD algorithm gets 5 different kinds of layouts. Such results are caused by the

randomness of the PSOGD algorithm. PSO is a stochastic optimization method,

and different initial solutions will get different results. The different drawings show

the diversity of the layouts obtained by PSOGD algorithm.

Figure B.4 is the results of of the PSOGD algorithm and F-R algorithm on group

4. To make the position of vertices clear, we only give the corresponding drawings

with vertices. The vertices in the drawings by both algorithms look distributed

evenly.

We draw the evolutionary drawings with a varying number of particles on graph

g3, g4, g8 and g9 by PSOGD algorithm. Figure B.5 shows that when m is 1, the

drawings of four graphs are not good. They show better layouts with the increasing

number of particles. When m is 10, four graphs all appear the nice layouts. When

194

Fig. 1 Fitness curve of group 1

Fig. 2 Fitness curve of group 2

Fig. 3 Fitness curve of different layouts of group 3

On the basis of the results of table VII, we also compared

the running time of PSOGD algorithm on graphs g3, g4, g8
and g9 with the varying number of particles from 1 to 20. The
result is showed in Fig.4. It is obvious that the running time
gets longer and longer with the increasing number of the
particles. Such result can be analysed from the time
complexity of PSOGD algorithms. In each iteration the time
complexity of the PSOGD algorithm is | | . That is
to say, the time complexity is proportional to the number of

particles. Therefore, we get the result in Fig.4. It can be seen
from the evolutionary drawings of graph g3 and g8 in table
VII that there are no larger improvements on the drawings
with the increasing m from 10 to 20, but the running time has
increased a lot. Therefore, simple depending on the increasing
the number of particles is not able to improve the
effectiveness of the algorithm for some graphs.

Fig.4 Comparison of running time with different number of particles

Fig.5 compares the running time of PSOGD and F-R
algorithms on 10 different graphs. The number of the
iterations is 200 and the number of particles is 20. In each
iteration the time complexity of F-R algorithm is | || | . It can be concluded that the running time of PSOGD is
higher than that of F-R algorithm from the time complexity.
The result in Fig. 5 confirms the conclusion. Although the
time complexity of PSOGD is higher than that of F-R, the
layouts of some graphs obtained by PSOGD are better than
that obtained by F-R.

Fig. 5 Comparison of running time of two algorithm on 10 graphs

V. CONCLUSIONS
We propose PSOGD, a force-directed algorithm computing

the equilibrium using particle swarm optimization (PSO). The
main idea of the force-directed algorithms is to minimize the
energy of a spring-electrical system defined corresponding to
the graph. In order to search for the minimal energy, we use
PSO which has strong global search capability. The fitness of

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g1

g2
g3

g4

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g5
g6

g7
g8

g9

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

d1

d2

d3
d4

d5

0 5 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of particles

R
un

ni
ng

 T
im

e
(s

)

g3

g4
g8

g9

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Graph Label

R
un

ni
ng

 T
im

e
(s

)

F-R

PSOGD

(a) Fitness curve of group 1

Fig. 1 Fitness curve of group 1

Fig. 2 Fitness curve of group 2

Fig. 3 Fitness curve of different layouts of group 3

On the basis of the results of table VII, we also compared

the running time of PSOGD algorithm on graphs g3, g4, g8
and g9 with the varying number of particles from 1 to 20. The
result is showed in Fig.4. It is obvious that the running time
gets longer and longer with the increasing number of the
particles. Such result can be analysed from the time
complexity of PSOGD algorithms. In each iteration the time
complexity of the PSOGD algorithm is | | . That is
to say, the time complexity is proportional to the number of

particles. Therefore, we get the result in Fig.4. It can be seen
from the evolutionary drawings of graph g3 and g8 in table
VII that there are no larger improvements on the drawings
with the increasing m from 10 to 20, but the running time has
increased a lot. Therefore, simple depending on the increasing
the number of particles is not able to improve the
effectiveness of the algorithm for some graphs.

Fig.4 Comparison of running time with different number of particles

Fig.5 compares the running time of PSOGD and F-R
algorithms on 10 different graphs. The number of the
iterations is 200 and the number of particles is 20. In each
iteration the time complexity of F-R algorithm is | || | . It can be concluded that the running time of PSOGD is
higher than that of F-R algorithm from the time complexity.
The result in Fig. 5 confirms the conclusion. Although the
time complexity of PSOGD is higher than that of F-R, the
layouts of some graphs obtained by PSOGD are better than
that obtained by F-R.

Fig. 5 Comparison of running time of two algorithm on 10 graphs

V. CONCLUSIONS
We propose PSOGD, a force-directed algorithm computing

the equilibrium using particle swarm optimization (PSO). The
main idea of the force-directed algorithms is to minimize the
energy of a spring-electrical system defined corresponding to
the graph. In order to search for the minimal energy, we use
PSO which has strong global search capability. The fitness of

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g1

g2
g3

g4

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g5
g6

g7
g8

g9

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

d1

d2

d3
d4

d5

0 5 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of particles

R
un

ni
ng

 T
im

e
(s

)

g3

g4
g8

g9

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Graph Label

R
un

ni
ng

 T
im

e
(s

)

F-R

PSOGD

(b) Fitness curve of group 2

Fig. 1 Fitness curve of group 1

Fig. 2 Fitness curve of group 2

Fig. 3 Fitness curve of different layouts of group 3

On the basis of the results of table VII, we also compared

the running time of PSOGD algorithm on graphs g3, g4, g8
and g9 with the varying number of particles from 1 to 20. The
result is showed in Fig.4. It is obvious that the running time
gets longer and longer with the increasing number of the
particles. Such result can be analysed from the time
complexity of PSOGD algorithms. In each iteration the time
complexity of the PSOGD algorithm is | | . That is
to say, the time complexity is proportional to the number of

particles. Therefore, we get the result in Fig.4. It can be seen
from the evolutionary drawings of graph g3 and g8 in table
VII that there are no larger improvements on the drawings
with the increasing m from 10 to 20, but the running time has
increased a lot. Therefore, simple depending on the increasing
the number of particles is not able to improve the
effectiveness of the algorithm for some graphs.

Fig.4 Comparison of running time with different number of particles

Fig.5 compares the running time of PSOGD and F-R
algorithms on 10 different graphs. The number of the
iterations is 200 and the number of particles is 20. In each
iteration the time complexity of F-R algorithm is | || | . It can be concluded that the running time of PSOGD is
higher than that of F-R algorithm from the time complexity.
The result in Fig. 5 confirms the conclusion. Although the
time complexity of PSOGD is higher than that of F-R, the
layouts of some graphs obtained by PSOGD are better than
that obtained by F-R.

Fig. 5 Comparison of running time of two algorithm on 10 graphs

V. CONCLUSIONS
We propose PSOGD, a force-directed algorithm computing

the equilibrium using particle swarm optimization (PSO). The
main idea of the force-directed algorithms is to minimize the
energy of a spring-electrical system defined corresponding to
the graph. In order to search for the minimal energy, we use
PSO which has strong global search capability. The fitness of

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g1

g2
g3

g4

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g5
g6

g7
g8

g9

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

d1

d2

d3
d4

d5

0 5 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of particles

R
un

ni
ng

 T
im

e
(s

)

g3

g4
g8

g9

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Graph Label

R
un

ni
ng

 T
im

e
(s

)

F-R

PSOGD(c) Fitness curve of different
layouts of group 3

Figure B.6: Fitness curve

an increases to 20, they all get the best layouts.

Figure B.6 compares the change of the fitness value during the optimization

process of the PSOGD algorithm on the 3 groups of graphs. Figure B.6(a) is the

fitness curve of group 1. Figure B.6(b) shows the fitness curve of group 2. Figure

B.6(c) shows the fitness curve of five different layouts of group 3. From these fitness

curves in Figure B.6, it can be seen that the PSOGD algorithm can converge after

a number of iterations. We do not give the number of iterations. It depends on

many elements, such as size of the graph, the swarm size, etc. The number of the

iterations in Figure B.6 is only an experimental result. In the F-R algorithm, there

is no detailed explanation on the termination conditions.

Based on the results in Figure B.7(a), we also compared the running time of the

PSOGD algorithm on graphs g3, g4, g8 and g9 with the varying number of particles

from 1 to 20. Figure B.7(b) shows the result. It is obvious that the running time

gets longer with the increasing number of particles. Such a result can be analyzed

from the time complexity of the PSOGD algorithms. In each iteration, the time

complexity of the PSOGD algorithm is O(m|V |2). That is, the time complexity is

proportional to the number of particles. Therefore, we get the result in Figure B.7.

It can be seen from the evolutionary drawings of graph g3 and g8 in Figure B.5

that there are no larger improvements on the drawings with the increasing m from

195

Fig. 1 Fitness curve of group 1

Fig. 2 Fitness curve of group 2

Fig. 3 Fitness curve of different layouts of group 3

On the basis of the results of table VII, we also compared

the running time of PSOGD algorithm on graphs g3, g4, g8
and g9 with the varying number of particles from 1 to 20. The
result is showed in Fig.4. It is obvious that the running time
gets longer and longer with the increasing number of the
particles. Such result can be analysed from the time
complexity of PSOGD algorithms. In each iteration the time
complexity of the PSOGD algorithm is | | . That is
to say, the time complexity is proportional to the number of

particles. Therefore, we get the result in Fig.4. It can be seen
from the evolutionary drawings of graph g3 and g8 in table
VII that there are no larger improvements on the drawings
with the increasing m from 10 to 20, but the running time has
increased a lot. Therefore, simple depending on the increasing
the number of particles is not able to improve the
effectiveness of the algorithm for some graphs.

Fig.4 Comparison of running time with different number of particles

Fig.5 compares the running time of PSOGD and F-R
algorithms on 10 different graphs. The number of the
iterations is 200 and the number of particles is 20. In each
iteration the time complexity of F-R algorithm is | || | . It can be concluded that the running time of PSOGD is
higher than that of F-R algorithm from the time complexity.
The result in Fig. 5 confirms the conclusion. Although the
time complexity of PSOGD is higher than that of F-R, the
layouts of some graphs obtained by PSOGD are better than
that obtained by F-R.

Fig. 5 Comparison of running time of two algorithm on 10 graphs

V. CONCLUSIONS
We propose PSOGD, a force-directed algorithm computing

the equilibrium using particle swarm optimization (PSO). The
main idea of the force-directed algorithms is to minimize the
energy of a spring-electrical system defined corresponding to
the graph. In order to search for the minimal energy, we use
PSO which has strong global search capability. The fitness of

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Fitness Curve Figure

Iteration Numbers

Fi
tn

es
s

V
al

ue

g1

g2
g3

g4

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50
Fitness Curve Figure

Iteration Numbers

Fi
tn

es
s

V
al

ue

g5
g6

g7
g8

g9

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300
Fitness Curve Figure

Iteration Numbers

Fi
tn

es
s

V
al

ue

d1

d2

d3
d4

d5

0 5 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of particles

R
un

ni
ng

 T
im

e
(s

)

g3

g4
g8

g9

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Graph Label

R
un

ni
ng

 T
im

e
(s

)

F-R

PSOGD

(a) Comparison of running time with differ-
ent number of particles

Fig. 1 Fitness curve of group 1

Fig. 2 Fitness curve of group 2

Fig. 3 Fitness curve of different layouts of group 3

On the basis of the results of table VII, we also compared

the running time of PSOGD algorithm on graphs g3, g4, g8
and g9 with the varying number of particles from 1 to 20. The
result is showed in Fig.4. It is obvious that the running time
gets longer and longer with the increasing number of the
particles. Such result can be analysed from the time
complexity of PSOGD algorithms. In each iteration the time
complexity of the PSOGD algorithm is | | . That is
to say, the time complexity is proportional to the number of

particles. Therefore, we get the result in Fig.4. It can be seen
from the evolutionary drawings of graph g3 and g8 in table
VII that there are no larger improvements on the drawings
with the increasing m from 10 to 20, but the running time has
increased a lot. Therefore, simple depending on the increasing
the number of particles is not able to improve the
effectiveness of the algorithm for some graphs.

Fig.4 Comparison of running time with different number of particles

Fig.5 compares the running time of PSOGD and F-R
algorithms on 10 different graphs. The number of the
iterations is 200 and the number of particles is 20. In each
iteration the time complexity of F-R algorithm is | || | . It can be concluded that the running time of PSOGD is
higher than that of F-R algorithm from the time complexity.
The result in Fig. 5 confirms the conclusion. Although the
time complexity of PSOGD is higher than that of F-R, the
layouts of some graphs obtained by PSOGD are better than
that obtained by F-R.

Fig. 5 Comparison of running time of two algorithm on 10 graphs

V. CONCLUSIONS
We propose PSOGD, a force-directed algorithm computing

the equilibrium using particle swarm optimization (PSO). The
main idea of the force-directed algorithms is to minimize the
energy of a spring-electrical system defined corresponding to
the graph. In order to search for the minimal energy, we use
PSO which has strong global search capability. The fitness of

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g1

g2
g3

g4

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

g5
g6

g7
g8

g9

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300
Fitness Curve Figure

Iteration Numbers

F
itn

es
s

V
al

ue

d1

d2

d3
d4

d5

0 5 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of particles

R
un

ni
ng

 T
im

e
(s

)

g3

g4
g8

g9

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Graph Label
R

un
ni

ng
 T

im
e

(s
)

F-R

PSOGD

(b) Comparison of running time of two algo-
rithm on 10 graphs

Figure B.7: Comparison of running time

10 to 20, but the running time has increased a lot. Therefore, simply increasing the

number of particles is cannot improve the effectiveness of the algorithm for some

graphs.

Figure B.7(b) compares the running time of PSOGD and F-R algorithms on 10

different graphs. The number of the iterations is 200 and the number of particles

is 20. In each iteration, the time complexity of F-R algorithm is O(|V |2 + |E|). It

can be concluded that the time complexity of PSOGD is higher than that of F-R

algorithm. The result in Figure B.7(b) confirms this conclusion. Nevertheless, the

layouts of some graphs obtained by PSOGD are better than those obtained by F-R.

To sum up, we propose PSOGD, a force-directed algorithm computing the equi-

librium using particle swarm optimization. The algorithm is simple, as well as its

implementation. We empirically and comparatively evaluated the performance of

the PSOGD algorithm. The results confirmed the symmetry and diversity of the

graph layout and showed that the graphs drawn by PSOGD algorithm are generally

aesthetic.

196

	Contents
	Summary
	List of Tables
	List of Figures
	Introduction
	Graph anonymization
	Community Detection
	Contributions
	Organization of the Thesis

	Background and Related Work
	Background
	Community Detection Related Work
	Graph Anonymization Related Work

	Graph Anonymization
	Fast Identity Anonymization on Graphs
	Graph Anonymization with Reachability Constraints

	Community Detection
	Force-directed Layout Community Detection
	Fast Disjoint and Overlapping CommunityDetection
	Local Closeness Community Detection

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix A
	Appendix B

