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ABSTRACT

Poor quality of data can have a substantial social and economic impact. Al-

though data quality management is a well-established research area, the vast

majority of prior works focus on relational data. Increasingly, semi-structured

data, such as XML and JSON, are becoming the de facto standard for a huge

variety of data formats and applications. Their flexibility and easy-customization

contribute to the soaring popularity of semi-structured data, but also serve as

significant sources of major data quality errors. Well-formedness of structure, a

prerequisite for many research works on semi-structured data, is an assumption

often does not hold. Many XML documents suffer from erroneous structures,

such as improper nesting where open- and close-tags are unmatched. Apart

from this, tags are possibly organized in an incorrect hierarchy or sequence,

leading to unexpected number of occurrence.

To enforce the balance of open- and close- tags, we propose in this thesis

two algorithms targeting at different structural constraints. The first algorithm

focuses on tags only while the second limits the occurrence of text in the doc-

ument. Thorough proofs are presented on the completeness and approximation

ratio of these algorithms. Besides we concentrate on detecting unexpected el-

ement error, when there are missing or spurious elements. We propose novel

techniques to detect unexpected element errors and provide plausible reason-

ing for every reported error and a summarization technique based on variations

of set cover for concise reporting. We demonstrate the effectiveness of these

algorithms on real datasets through extensive experimental study.

v
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Chapter 1

INTRODUCTION

Poor data quality is a serious and costly problem that affects both traditional

database and data on the web. Low quality data may cause significant loss

for businesses (hundreds of billions of dollars per year) [36], and lead to low

quality decisions. The most common data quality problems include missing

data, incorrect values, duplications and inconsistency. These problems occur for

a variety of reasons, such as incomplete information, weak integrity constraints,

data integration from multiple sources, evolution of the schema, continuously

changed data shoehorned into outdated schema, and erroneous input.

To enhance data quality, “anomalous” data causing low quality must be

detected and repaired. The definition of “anomalous” is domain and application

dependent. One data assumed anomalous may seem normal under another

circumstance. Therefore, rules or constraints used to detect “anomalous” data

should be general enough to capture the key characteristics. A large body of

work from the database community has focused on this problem during the

past two decades. For traditional database, there are works on data repairing,

condition functional dependency inference, and for data on the web, there are

1



2 Chapter 1. Introduction

works on entity resolution [33, 34] and duplication detection [35] techniques,

etc. With the emerging of semi-structured data, there also emerge works on

cleaning these documents, such as key inference [9], duplication detection [85,

83], consistency verification [26]. Such techniques cure the data quality problem

from different aspects: normal form definition on designing schema and the

semantic consistency.

Data cleaning has been under active research and attracts lots of attentions,

from schema design, constraints discovery, to data repair, etc. Recently many

more sophisticated data cleaning frameworks have been proposed and develope-

d, such as LLUNATIC [45], NADEEF [32]. Few previous techniques, however,

focus on the repairing the structural issues in semi-structured data.

Semi-structured data provide a flexible representation where data can be

nested as a tree and thus is very widely used, from XML documents to JSON

data interchange files to annotated linguistic corpora. Such flexibility wins it

wide applications, in particular, the XML documents, since the advent of Inter-

net. XML is the default format for many office products, such as MS Office,

Open Office; is used for data storage for many datasets, such as Protein Se-

quence Database(PSD), Digital Bibliography Library Project(DBLP); is applied

in data exchange, such as Rich Site Summary(RSS) feeds; and is even recom-

mended to describe image, such as Scalable Vector Graphics(SVG). At the same

time, this flexibility makes it more prone to errors. Data in traditional database

are flat in structure but this does not hold in semi-structured data, which brings

in new challenges. Techniques for relational database cleaning do not work per-

fectly here. One simple but widely spread structural error is: mismatched open

and close tags, which is called Tag-Level error throughout the thesis. Though

some mismatches, e.g., in HTML, can be repaired by the browsers parser, not
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all the browsers repair in the same way, leading to inconsistent display. One

open tag and its matching close tag are the base of an element, and generally

an element could contain a list of other elements or some texts. By examining

elements, we observe some Element-level errors: unexpected number of occur-

rence of elements. Unexpected element errors refer to the presence of spurious

elements or absence of required elements. For example, in the DBLP dataset,

people may edit one <inproceedings> by inserting some <editor>, instead

of <author>, which is incorrect in semantic but will be accepted by the schema

of DBLP. Existing works on cleaning semi-structured data do not consider such

structural issues and assume the input free from structural errors. To improve

the quality of such documents, in this thesis, we focus on data cleaning on

semi-structured documents against these two levels of errors.

1.1 Mismatched Tags Repair

A recent study of XML documents on the Web found that 14.6% of them

(out of a 180K sample) are not well-formed, the majority of cases due to ei-

ther open- and close-tag mismatches or missing tags [49]. A Google study in

2005 on (XML-based) RSS feeds on the Web found that 7% have some errors,

the largest kind (after non-compliant UTF-8 characters) being open and close

tag mismatches 1. Such errors are due to multiple factors including manual

input [75], dynamically-generated data from faulty scripts [69], mapping and

conversion errors (e.g., XML to relational mapping, MS Powerpoint 2007 con-

verted to Powerpoint 2010), and interleaving of multiple sources (e.g., BGPmon

pub-sub system which receives XML streams from multiple routers).

1http://googlereader.blogspot.sg/2005/12/xml-errors-in-feeds.html

http://googlereader.blogspot.sg/2005/12/xml-errors-in-feeds.html
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Often there is no known grammar associated with the data to test for validi-

ty; for example, only 25% of XML documents on the Web have an accompanying

DTD or XSD [49]. Inferring one is a notoriously difficult problem [22], often

requiring a whole repository rather than a single document, and which for some

classes of documents is not even possible [47]. Therefore, most existing work

assumes that the document is well-formed and tests validity based on a supplied

grammar [72, 71, 24]; exceptions to this include HTML Tidy and NekoHTML,

both of which are specifically tailored for HTML documents.

We first consider the problem of repairing an arbitrary semi-structured doc-

ument into one that is well-formed, based on two variants of well-formedness.

We believe this problem is in itself interesting for a variety of reasons. First,

some existing documents have a very flexible grammar that basically requires

only proper nesting. Second, in the absence of a grammar, it may be “safer”

to repair based on well-formedness rather than making domain-specific assump-

tions. Third, since well-formedness is a pre-condition for validity, well-formed

repairs may serve as candidates for the user to choose from, similar to the way

word processors suggest auto-correction.

While verifying well-formedness in semi-structured data can be done in a

straight forward way, using a stack, in time linear in the size of the document,

it is a much more challenging problem to repair a malformed document. Some

existing tools, such as modern Web browsers, use simple rule-based heuristics

to rectify mismatching tags. Perhaps the most common rule, employed by some

web browsers such as Internet Explorer, is to substitute a matching close-tag

whenever the current close-tag does not match the open-tag on the stack.

However, a single extra or missing close-tag is enough to set off a cascade,

requiring many close-tags to be replaced (or deleted). Another commonly used
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<article>

<title>

A Relational Model for Large Shared Data Banks

<authors>

</title>

<author>

<name> E. F. Codd </name>

IBM <affiliation>

</author>

</article>

(a) original document

<article>

<title>

A Relational Model for Large Shared Data Banks

<authors>

</authors>

<author>

<name> E. F. Codd </name>

IBM <affiliation> </affiliation>

</author>

</title>

</article>

(b) rule-based repair

Figure 1.1: An Example and Rule-based Repair

rule is to insert a matching close-tag whenever the current close-tag does not

match, but this can trigger a similar cascade.

Example 1.1 Figure 1.1(a) shows an example XML document of a biblio-

graphic entry that is not well-formed: the <authors> open tag does not

have a matching close tag; <affiliation> occurs out of place and is miss-

ing a matching tag; the </title> close tag is out of order, occurring after

<authors>; etc. Figure 1.1(b) shows the document after the substitution rule-

based heuristic is applied, requiring 3 substitutions and 2 insertions.
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We focus on the following types of errors that we believe occur most fre-

quently in practice:

• Tags may be missing, as it is common to forget to close open tags, and

unmatched close tags may occur when new content is added and it is

assumed a previous open tag existed.

• Extraneous tags may be present, perhaps due to not fully deleting tags

associated with deleted content.

• Open and close tags, due to being similar, are sometimes mistaken for

each other; and tags of different types may appear in the wrong order or

be improperly assigned.

We use standard string edit distance with insertion, deletion and substitution

operators as a model for repair [58]. We believe that more complex distance

functions including other operations, such as block moves and swaps, as well

as non-uniform weighting, can be folded into our methods but we leave this to

future work. 2 Edit distance is used for modeling and correcting errors in many

applications from information retrieval to computational biology [79, 65].

One limitation in data repairs work is we never know what is absent from

the data, and what is the true value of a dirty data. Repairing the data towards

the most possible or reasonable direction is the thumb of rule. The most widely

accepted norm is to repair data with as little cost as possible. Therefore, we

use minimal edit distance as the target under the theme of finding minimal or

lowest cost changes to the data that make it consistent with the constraints.

2While additional operations such as swaps and block moves would certainly enhance
the model for some scenarios, considering them greatly complicates things.
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<article>

<title>

A Relational Model for Large Shared Data Banks

</title>

<author>

<name> E. F. Codd </name>

IBM

</author>

</article>

(a) considering tags only

<article>

<title>

A Relational Model for Large Shared Data Banks

</title>

<author>

<name> E. F. Codd </name>

<affiliation> IBM </affiliation>

</author>

</article>

(b) considering tags and text

Figure 1.2: Two Possible Repairs

Such theme has been widely adopted in almost all the data cleaning work for

inconsistency repair [31] and constraints repairs [52, 23] and many others.

In our illustrative example, a well-formed repair with fewest edits is giv-

en in Figure 1.2(a), which has edit distance 2: delete <authors> and delete

<affiliation>.

In our second variant of well-formedness, we take into account that the text

embedded within semi-structured documents often follows certain patterns. For

example, most XML documents only allow text to occur surrounded by match-

ing open-close tags and require the existence of text between every adjacent

matching pair. Thus we consider how to exploit embedded text to aid in finding
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a more judicious repair via a constrained edit distance function. In our illustra-

tive example, a well-formed repair based on tags and text with edit distance 3

is given in Figure 1.2(b): delete <authors>, insert <affiliation> before

IBM, and substitute <affiliation> after IBM by </affiliation>. Note

that this repair consists of more edits than for tags only.

Note that it is not always possible to exactly repair to the originally intend-

ed well-formed string. In the absence of a grammar, there is inherent ambi-

guity in what the creator intended. For example, consider the string <name>

E. F. Codd </author>. Should this be repaired to <name> E. F. Codd

</name> or <author> E. F. Codd </author>? Or even to <name> E.

F. </name> <author> Codd </author>. It is impossible to know what the

original intent was. Furthermore, such ambiguities compound in larger strings,

resulting in an explosive number of reasonable possibilities. Since the user may

have a (often ill-defined) grammar in mind, our methods can provide multi-

ple repairs in the hope that at least one of these will suffice. But presenting

the user with all repairs based on the many ways to resolve these ambigui-

ties can be overwhelming. Instead, we note that the differences between some

repairs are syntactically trivial, so we try to consolidate these into represen-

tative repairs. For example among the two alternatives <name> E. F. Codd

</name> and <author> E. F. Codd </author> to repair <name> E. F.

Codd </author>, we canonically choose the former.

Consolidating multiple repairs by such representatives helps to provide more

variety in a small set of repairs returned to the user. For the second variant(Tags

With Text case), the surrounding text can be exploited to resolve more of these

ambiguities. For example, if from a well-formed string such as <name> E. F.

Codd </name> a tag gets deleted resulting in <name> E. F. Codd or E. F.
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Codd </name>, indeed our algorithm will repair it by inserting the deleted tag.

Therefore, with a stronger grammar, there are more cues to recover the original

string.

There has been much literature on approximate matching of trees which

has been applied to finding semantically relevant XML documents [30, 50, 80,

68, 86]. Unfortunately, none of this work applies to our setting since the input

is not well-formed and, therefore, cannot be represented as a tree. However,

a good repair should result in a short tree edit distance between the repaired

string and the intended error-free string. We use this to show the efficacy of

our algorithms in “undoing” errors introduced to a well-formed string. Recall

that for the reasons of ambiguity mentioned above, it is not enough to simply

check whether or not the repaired string is the same as the intended error-

free string. In addition, our experimental evaluation on real XML data with

real errors shows that the number of string edit operations is much smaller

when using our approach compared to the rule-based heuristics.This effectively

establishes the goodness of edit distance for repair.

1.2 Unexpected Elements Detection

Documents with proper nesting are called well-formed. But well-formedness

is just the beginning, not the end of story. Using string edit distance as the

metric, it is possible that the repair is far from user’s intention, with elements

nested in an unexpected order, or missed, etc. With these anomalies (elements

with unexpected number of occurrence) detected, the quality of repairs could

be further improved. Similar observation could be made from many online XM-

L documents, mainly maintained manually. A recent study [49] reveals even
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when documents are well-formed, many of those are invalid due to unexpected

element errors. Unexpected element errors refer to the presence of spurious

elements or absence of required elements. For example, in the DBLP dataset,

we detect several articles with duplicated title elements, or missing the

journal name in which they appear. Some of them misuse editor tag to

indicate author etc. The existence of these errors leads to poor performance

on basic queries over the underlying data [77]. Even worse, it may result in in-

correct answers, and false decision making. While prior works have considered

automated repairing of malformed documents to make them well-formed [53],

and to check validity of documents based on schemas–these works are not suit-

able for our purpose. In this work, we go beyond well-formedness and validity,

and propose novel techniques to handle structural anomalies due to unexpected

elements.

The foremost question that we need to answer is what constitutes an un-

expected element. Schemas, such as DTDs or XSDs for XML documents, use

quantifier to restrict the number of occurrences of a particular element. Since

schemas are often designed manually and meant to be easily readable, they are

often over-simplified. Therefore, even when a document is valid according to a

schema, the possibility of an unexpected element error cannot be ruled out.

Example 1.2 Consider a toy XML example in Figure 1.3 describing the po-

litical divisions of countries. The semi-structured document is parsed into a

document tree, with a single root node countries. Each node in the tree

under countries corresponds to an element in the document. All attribute

values and some attribute names are omitted here for simplicity.

Upon seeing the three left-most entries of country, one may use the fol-
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lowing production to define the sub-elements under a country node:

country → name [province|city|state]∗.

According to this rule a country node should have a single name followed by

zero or more occurrences of province, city and state. However, a country

may not have both state and province. This is not captured by the proposed

schema, and as such, the fourth entry (in dashed rectangle) though erroneous,

appears valid according to the schema.

Figure 1.3: An XML Document Example

The above example also illustrates that as new data arrives over time, it

is possible for a schema to become obsolete. Discovering structural anomalies

based on an obsolete schema may lead to both high rates of false-positives

and false-negatives. For example, as more data is inserted into the document

in Figure 1.3, some of the countries may have multiple names associated with

them: United States of America, USA, the States and America all refer to the

same country. Any city directly under country may need to be renamed as

province etc. Inferring a valid schema and adjusting it timely with updates

is a hard problem. All existing works on schema inference assume data to

be clean [19, 21, 18]. Therefore these techniques do not lend themselves to

structural error detection. The inferred schema suffers from over-fitting and is
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often hard to read owing to large size. In addition, the number of documents

with available schemas are low. Among the 180,000 semi-structured documents

collected in [49], only about 24% have accompanying schemas. Hence relying

on schema definition alone is inadequate to discover structural anomalies, the

like we consider here.

An alternate approach is to use the data statistics directly, that is letting the

data to speak for itself. In some sense, we want to identify occurrences/non-

occurrences that are not observant of expected behaviors. However, it may be

tricky to mark occurrences as rare. We illustrate this using an example.

Example 1.3 Suppose we count for each country element the number of

sub-elements labeled as province to get the expected number of occurrences

of province in Figure 1.3. After visiting all country nodes, we get out of

a total of 200 countries, 150 have two provinces, 45 have 1 and 5 have 0

provinces. Therefore, we get a percentage distribution as {2.5%, 22.5%, 75%}

for having 0, 1 or 2 provinces. Suppose we set a relative threshold of 3%,

indicating the number of countries having 0 province is below the set threshold

accounting them as errors. It may turn out that all these 5 countries have

state underneath them, and having 0 province is perfectly valid under such

circumstance. On the other hand, there are another 5 countries with 1 province

each which also have a state node underneath them. In fact, these are the

true errors: both province, and state cannot coexist under country. This

method of finding relative frequency to identify rare events therefore detected

5 false-positives and missed 5 true errors (false-negatives).

In the above example, true errors can be detected if we look at the condition-

al distribution of state under country with child province. However, explor-



1.3. Contributions of the Thesis 13

ing arbitrary conditional distribution is computationally infeasible. Moreover,

a good error detection mechanism must also provide justification for reporting

an element erroneous. Considering arbitrary conditional distributions suffers

from the obvious drawback that providing any comprehensible explanation for

reported errors soon becomes prohibitive.

The country in the above example serves as the context for calculating the

relative frequencies of province. Such context specific mining of conditional

distributions is very important, and is in the heart of our techniques. For

example, it is possible for a city under country to have districts, but a

city under province cannot.

1.3 Contributions of the Thesis

In this thesis, we study the data cleaning problem in semi-structured document

by investigating different repair constraints where the structural errors could

be detected, from the aspects of tag-level and element-level. For the tag-level

errors, we show two constraints to repair against, and propose several algorithms

efficiently solve this problem. For the element-level errors, we put forward the

definition of Explanation to detect the elements with unexpected number of

occurrence under certain circumstance. In particular, our contributions are as

follows.

We study the tag-level errors, where there are some open- or close-tag

missing. There are two variants of its kind: tag-only and tag-with-text. To solve

these problems, we give a dynamic programming algorithm which computes

the optimal edit distance in O(n3) time, independent of the grammar size.

Since this algorithm is cubic in the size of the input, it does not scale to
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large documents. We also propose branch-and-bound algorithms when multiple

repairs are desired (such as for an auto-correction menu), since the dynamic

program and greedy algorithms are geared towards a single repair. We present

a variety of methods, with various trade-offs in accuracy and running time,

whose performance depends on the number of edits rather than the length

of the input. We perform thorough experimental study to investigate these

strategies on real data.

We then study the element-level errors. As far as we know, we are the first

studying the conditional number of occurrence of elements in semi-structured

documents. We formally define Explanation as a triplet to encode the condi-

tional distribution and then propose the way to organize these explanations in

a lattice for each target tag to capture as many anomalies as possible. Finally

we use a greedy algorithm to do a summarization. Extensive experiments are

done on several real datasets, and a visualization tool is developed for a better

interactive repair.

1.4 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we present

literature review on existing techniques on semi-structured documents verifica-

tion and key inference. From Chapters 3–5, we propose repairing errors and

identifying errors of different levels. Chapter 3 presents solution for documents

when only open- and close- tags should be matched and proposes algorithms

to satisfy various demands. Chapter 4 introduces a more restrict constraint,

where each text must be surrounded with a pair of tags and each matching

pair should have either text or child tags. Chapter 5 presents the problem on
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detecting anomalous elements with unexpected number of occurrence, and how

to get a concise summarization to explain these anomalies. Chapter 6 concludes

the thesis and lists some future work to improve the quality of semi-structured

documents.





Chapter 2

LITERATURE REVIEW

Tremendous work have been done on semi-structured documents during

the past decades, ranging from schema design, keywords query, to constraint

inference and duplication detection. In this chapter we first review key tech-

niques contributing to semi-structured documents repair, verification, as well

as key and schema inference and schema repair, and then introduce some

techniques on data summarization for query results.

17
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2.1 Document Repair and Verification

2.1.1 Well-formedness Repair

While we are not aware of prior work that specifically addresses the problem

of repairing malformed semi-structured document to make it syntactically well-

formed, there is some work on repairing XML documents to make them valid

with respect to a given DTD [24, 73, 74, 76], by recording possible state tran-

sition information for each node in the automaton. However, these papers all

assume the input is already well-formed and DTD can be formalized as a tree

structured where no self-recursive exists. It is not clear how the techniques used

in these papers, such as computing the tree or graph edit distance between a

document and a DTD, can be applied to the problem here where documents

are malformed.

Some existing tools such as Beautiful Soup [2], Html Tidy [3] and

NekoHTML [4] allow for malformed HTML input and exploit pre-defined do-

main knowledge to make them valid; however, they are specially tailored for

HTML documents and not work well for an arbitrary input, as they use rule

based algorithm to fix unmatched tags.

The problem of computing the edit distance from a string to a supplied

context-free grammar has been studied; since the grammars for our notions of

well-formedness can be expressed using a CFG(Context Free Grammar), these

existing solutions can be applied. Aho and Peterson [8] gave an O(|G|2n3)

algorithm which was later improved to O(|G|n3) by Myers [64],where n is the

length of the input and |G| =
∑

A→α∈G(|α| + 1) is the size of the grammar.

For context-free grammars, which includes well-formed bracketed expressions

(also known as a Dyck language), a O(|G|n3) algorithm based on CYK parsing
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exists [64]. For regular grammars, which are not powerful enough to capture

bracket languages, an O(mn) algorithm exists, where m is the size of the regular

expression.

It has been shown that a non-deterministic version of the language of well-

formed bracketed strings is, in terms of parsing, the hardest CFG [48]. It is

also known that parsing an arbitrary CFG is at least as hard as boolean matrix

multiplication [56]. Therefore, computing the edit distance to a well-formed

string in much less than cubic time would be a significant accomplishment.

2.1.2 Constraints Verification

Verifying well-formedness is a much easier problem: it is straightforward to

do this using a stack in linear time. The problem is non-trivial, however, on

streaming data where trading off accuracy (where distance to well-formedness is

measured by Hamming distance) can allow this in sub-linear space [62]. Other

papers study the problem of validity checking: using a DTD or XML Schema,

report if a given input document conforms to the given grammar. Static veri-

fication can be done by walking through the tree automata(which models the

DTD), and verifying either in a BFS or DFS way depending the underlying

parser(SAX or DOM). To support incremental validation, auxiliary structured

record the states each tag belongs to to speed up transition. So that deletion,

insertion and update can be supported by checking a handful of tags. Some of

these papers (e.g., [71]) perform strong validation,checking for well-formedness

along with validity,while others (e.g., [14, 67, 13, 63]) perform weak validation,

assuming the input is already well-formed.

Our work fits into the context of data cleaning to satisfy database integrity

constraints, including consistency under functional dependencies [16],inclusion
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dependencies [23] and record matching [40]. All these works can be gener-

ally modeled into following problem: repairing the data D to satisfy certain

constraint T where the repaired data D′ has minimal distance Dist(D,D′).

Though the exact definition of unit cost sometimes differs from applications,

most of them use edit distance as a notion of a minimal cost repair. Hence in

our well-formedness repair problems, we also take minimal edit distance as the

metric to be optimized.

2.2 XML Constraints and its Inference

2.2.1 XML Constraints

Generally there are two kinds of constraints associated with one XML documen-

t one defining the structural constraint and the other for semantic constraint,

respectively. Structured constraint, limiting the tag nesting and number of oc-

currence, is usually represented as a DTD(Document Type Definition) or an

XSD(Xml Schema Definition). Many existing works propose various languages

and models in defining the structures though, DTD and XSD are still the main-

stream.

These two constraints are rarely applied side by side. The hardness lies in

the proof of consistence between these two types of constraints. As proved

in [11, 10], the problem of proving consistent between the semantic constraints

and structural constraints is NP-hard. Hence, structural constraint and se-

mantic constraints are studied independently to reduce the complexity. Most

importantly in real life, people who consult to XML as the data storage model,

are attracted by its convenience of flexible grammar, and will not have so many

constraints to be meet at the same time.
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Semantic constraints refer to integrity constraints on XML. Constrains such

as keys, functional dependency and satisfactory have been deeply investigated.

Readers may refer to [37] and [26] for more detail for more discussion on

constraints of this kind. In the following, we specifically introduce two kinds of

semantic constraints that are proposed recently.

2.2.1.1 Cardinality Constraint

The min- and max-occurrence of elements can be declared in XSD clearly,

which restricts structural occurrence. Cardinality constraint, proposed by Link

et al. in [42, 41], focuses on data semantics. Cardinality constraints are defined

in terms of path expression, and restrict the number of elements that have

the same values on some selected sub-trees [61]. In other words cardinality

constraints capture information about the frequency with which certain data

items occur in particular contexts.

With cardinality constraints posed, it restricts the cardinality of the answer

to some query against the dataset and can help estimate the selectivity of the

query. Such estimation is useful, for instance, when users issue q query through

mobile phone and the network costs is essential to decide continue the query

or abort. In [41] Ferrarotti et al. study the implication and compatibility for

a given set of rules and prove the complexity of the problems to be co-NP

hard. Then they propose an efficient algorithm for deciding implication. A new

class of constraint, Soft Cardinality Constraint is designed, which needs to be

satisfied on average only, and thus permit violations in a controlled manner.

Considering the description complexity of the constraints, understand a

dataset and construct proper cardinality constraints are quite challenging to

user or database administrator. In most cases, such constraints are less intu-
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itive. However, all exiting works focus on how to deal with the constraints when

you have one, rather than how to discover one.

2.2.1.2 XML Functional Dependency

The concept of Functional Dependency origins from relation database, posing

on constraint on two attributes ai, aj in a relation or a table R. Attribute ai is

said functionally determines aj if each ai value is associated with precisely one

aj value.

Similar dependency is observed in semi-structured data. Lee et. al. are the

first proposing designing XML Functional Dependency(FD) in [57] and later

Libkin gives formal definition and shows normal forms of XML FD in [12, 60],

by defining the notion of tree tuple. [78] puts forward another view of normal

forms, using a path based approach, using a set of paths to identify the condition

elements.

Both methods effectively capture multi-hierarchical constraints, but are far

from satisfactory. Neither works effectively when dependent elements are a set

elements. For instance, it is more reasonable to claim ISBN of a book determines

a set of author, not a single author element. To make up the flaw, Yu improves

the definition of tree tuple [85, 83], and shows the advantages in capturing

more constraints using Generalized Tree Tuple.

The best way to define a Functional Dependency Constraint is still under

active discussion. There is still no standard in the field on defining XML Normal

Form, based on XML FDs or XML Keys.
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2.2.2 Schema Inference

Observing the crucial fact that 1) Many XML documents do not have any

schema (as high as 25%), 2) the schema may be out of data( about one third

of the documents failed to meet the satisfactory constraints), it is helpful to

infer concise schema from the given set of XML documents. With the definition

of schema differs, the algorithms changes. The detail is presented as followings.

2.2.2.1 Inference of DTD

Several approaches have been proposed for DTD inference. XTract [44, 43]

generates a set of candidate regular expressions from each element. As DTD

is unaware of context, label of an elements solely define the type of an ele-

ment. Following the Minimum Description Length principle, the most concise

one is selected as the base answer. [70] uses several approaches to generate

probabilistic string automata representing regular expressions, by application of

inductive inference theory. But the inferred result is automata, and there is no

conversion to the standard DTD, or regular expression.

In contrast, Geert et al [19] propose to infer concise DTDphDocument Type

Definition from the XML data. As DTD is context free, it can be converted

to equivalent RE(Regular Expressions). So they consider two RE types that

can cover more than 95% of the DTDs: single occurrence regular expressions,

in which every element name can occur at most once, and chain regular ex-

pressions, which is a chain of expressions, and there is no quantifiers (?, ∗,+)

within each expression. The core idea consists of three steps. First, construct

an automaton from the input positive documents. Second, convert the au-

tomaton to regular expression using a set of heuristics to induce disjunction,

concatenation, self-loop, etc., relationships between automaton nodes. Third,
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apply the heuristics until one path in the automaton. To infer the chain regular

expression, they constructed a simple directed graph which is loop-free with

single occurrence, so as to derive the RE more directly. As the DTD in real life

is supposed to be simple, their simplified algorithm resulted in good efficiency

and accuracy. User may refer to [20] for more details.

2.2.2.2 Inference of XSD

XSD (XML Schema Definition) is another widely used schema in XML, up

to 65% of the documents with schema is associated with an XSD. The

major difference between a DTD and XSD is: the latter is context aware

while the former is not. Given one XML document about NBA players and

teams, <players> <player> <name> <firstName> Kobe </firstName>

<lastName> Bryant </lastName> </name> </player> ...</players>

<teams> <team> <name> L.A. Lakers </name> </team>...</teams>,

DTD cannot tell the difference that the tag <name> under <player> and

<team> are different, while an XSD can easily distinguish the disparity by

setting constraints on path of the tag. We can simply view the difference as, in

DTD, the type of tags are defined globally, while in XSD, types can be defined

locally.

To infer the context-aware regular expression, Geert et al [22] introduced

a new parameter:k,length of xml path, as the context of each tag. Regular

expressions that are similar to each other are generalized into one to reduce the

rule space. The core algorithm here is two-step: generate the RE with varied

path with k nodes and merge rules exceeding a given similarity threshold. This

is work is heavily dependent on their previous work on inferring DTD. The

functionality of XSD inference is also embedded in many softwares. Trang [5]
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is the state-of-the-art software designed for schema translation between DTD,

XSD, etc, and for schema inference for a given set of XML documents. However,

the generated XSD is context independent, which makes the inferred XSD no

different from DTD. Microsoft .NET framework [7] and XMLBeans [6] also

provide the XSD inference tools. But the one from .NET does not work for

nested structured, and the one from XMLBean suffers from the same problem

as Trang.

Recently there are few new findings in inferring schema, which is suffer-

ing from following drawbacks: First, we can only learn what is present from

the positive documents and never know what is absent. Second, the inferred

schema, represented as regular expression, is not readable or user-friendly, espe-

cially when the tags space is large. Users can hardly harness the inferred schema

to understand the document set. Third, the schema inference works only for

clean data, which is rarely the case in reality, as more than 30% documents with

schema do not comply with the schema. Therefore, it would be of great help

to infer a set of rules, which are context aware and reflect the interestingness

of tags under different context.

2.2.2.3 Inference of Key

In there context of traditional database, a fundamental of works focus on data

inconsistencies, by inferring FD(Functional Dependency)[51], CFD(conditional

functional dependency)[27] and repairing documents[28, 17] w.r.t CFD, etc.

The number of works on XML integrity constraints is relatively much smaller.

A very recent work from Marcelo et al. infers keys [9] with the presents of

schema. Keys, in XML, like CFD, are context aware. Taking the previous N-

BA players and teams document for example, <name> tag can uniquely identify
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one NBA team, as there is no duplication here, but not the <name> tag under

<player>. They evaluate the quality of a key from four universality, bound-

edness, key implication and satisfiability and they characterize the difficulty for

each of them with thorough proof.

2.3 Data Summarization

Data summarization serves users a more concise result set with high accura-

cy, and is especially important when the original data much too complex to

understand or the data size is overwhelming. Data summarization has been

an active research area, and has covered almost various types of data, from

database query result [54, 25], data cube semantics [55], relational database

schema [81, 82], to graph data [87, 66], and XML schema summarization [84].

Though differ in detailed techniques, the essence of data summarization is

the same: concise and accurate. Concise limits the size of the data, and accurate

requires the summarization to cover as much information as needed. Generally, a

good summarization should blur those less important information and highlight

the interesting parts, which could be distribution, connection structure, etc.

Certain inaccuracy is allowed for a more concise summary, and the measure

of accuracy is highly dependent on applications. A widely standard metric

for conciseness is Minimum Description Length (MDL) principle, proposed by

Rissanen [15].

[54] and [25] are the two most relevant works to ours, considering applying

MLD to summarize a set of query result, where the result are associated with

some hierarchies. Given a set of result set, marked in different color: blue (must

cover), red (never cover), and white(do not care). In [54] Lakshmanan proposes
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a generalized MDL approach for summarization, where generalized refers to

the permission of bounded number of white cells. Two cases are studied: the

spatial case when there is no hierarchy to restrict the formation of regions, and

the hierarchical cases, which is NP-hard when there are more than one hierarchy

hitting the same set of data. [25] solves the summarization problem from

another perspective, by allowing “holes” or exceptions, called MDLH So the

total description length is the number of regions, plus the number of exception

cells. Several summarization algorithms are designed, based on greedy, dynamic

programming and quadratic programming, but none is optimal. The MDLH

approach offers a good summarization easier for users to understand, when the

number of exceptions are small. The major difference between this work and

ours is: there is no overlap among sibling nodes in the hierarchies. When nodes

are disjoint, the one-dimension case can be solved in PTIME, but such algorithm

does not work when overlap occurs.





Chapter 3

REPAIR WITH

TAG-MATCHING CONSTRAINT

With the absence of an accompanying schema, tag well-formedness is

the constraint one document must comply to. In this chapter, we focus on

computing syntactic repairs against a malformed input document, under the

constraint that tags must present either in matching pairs or nicely nested.

We propose a dynamic programming algorithm and a branch-and-bound al-

gorithm targeting for various user demands, and experimentally demonstrate

the efficiency and accuracy of these algorithms on two real datasets.

29
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3.1 Motivation

Driven by the eagerness of information exchange over the internet, semi-

structured documents have won a wide range of applications in various domains.

XML (eXtensible Markup Language), email, EDI(Electronic data interchange)

are representative models of its kind. Thanks to its flexible grammar, even or-

dinary users can create such documents with minimal training. However many

semi-structured documents are suffering from non-wellformed errors. Taking the

XML documents for instance, Grjzenhout et al. report in [49] that either open-

and close- tags mismatching is the major contributor leading to erroneous XML

documents, and mis-matchings could be caused by manual editing, conversion,

or by buggy program, etc.

While there are many works focusing on inferring schemas, removing redun-

dancies, validating checking, little attention is paid on the structural problems

of these documents. Most existing works assume the input document to be

well-formed, which is a little bit strong. As a prerequisite of many other works,

how to efficient repair these documents whit the absence of schema is by itself

an interesting problem.

3.2 Problem Definition

In this chapter we focus on how to repair the document on tags. We shall ignore

all other components in the XML document besides tags such as attributes and

text and treat each self-closed tag as two tags, e.g., <a/> becomes <a></a>.

We assume that the input document is tokenizable by some lexical analyzer and

has been preprocessed into a sequence of brackets. For example, these brackets

could correspond to the open-tags ( <...>) and close-tags (</...>) of an XML



3.2. Problem Definition 31

document; to the curly braces or square brackets (and accompanying object

name) of a JSON file; to a Latex file containing \begin{...} and \end{...};

etc.

Definition 3.1 Congruent

The congruent of a bracket x is defined as its symmetric opposite bracket,

denoted x̄. The congruent of a set of brackets X, denoted X̄, is defined as

{x̄ | x ∈ X}.

We assume a bracket namespace is not given a priori. Let R and S denote

the sets of brackets obtained from the two directions (i.e., open and close) after

tokenization, respectively. We shall use T = R ∪ S̄ to denote the set of open

brackets and T̄ = R̄ ∪ S the close brackets. (Each x ∈ T has exactly one

congruent x̄ ∈ T̄ and vice versa.)

Definition 3.2 Matching Brackets

A match between two brackets x and y, denoted x � y, occurs when x ∈ T ,

y ∈ T̄ and y = x̄. x and y form one pair of matching brackets.

Consider a string s = s1...sn of length |s| = n, over some bracket alphabet

T , that is, s ∈ (T ∪ T̄ )∗.

Definition 3.3 Well-formed String

A well-formed string s over some bracket alphabet T obeys the context-

free grammar GT with productions S → SS, S → ε and S → xSx̄ for all

x ∈ T . 1 So |GT | = 4|T |+ 3.

1 Some instances of well-formedness additionally require that the document is nested
within a single open-close pair, i.e., s ∈ T (T ∪ T̄ )∗T̄ , but we dispense with this for
simplicity.
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Example 3.1 Let T = {a, b, c}. Then abb̄cc̄ā is a well-formed string, since

it can be parsed as S → aSā → a(SS)ā → a(bSb̄)(cSc̄)ā → ab(ε)b̄c(ε)c̄ā

→ abb̄cc̄ā. However, abāb̄ is not well-formed.

Definition 3.4 Well-formed Bracketed Language

A well-formed bracketed language L(GT ) over some bracket alphabet T is the

set of strings from T ∪ T̄ ∗ accepted by the grammar GT defined above.

Definition 3.5 String Edit Distance

The edit distance, denoted as E(s, s′) between two strings s and s′ is

the minimum number of insertions, deletions and substitutions needed to

transform s into s′, where an insertion of a after position i transform-

s s1...sisi+1...sn to s1...siasi+1...sn; a deletion at position i transforms

s1...si−1sisi+1...sn to s1...si−1si+1...sn; and a substitution to a at position i

transforms s1...si−1sisi+1...sn to s1...si−1asi+1...sn.

Now the problem of repairing one non-well-formed document can be for-

malized as fixing a sequence of brackets to satisfy the Well-formed Bracketed

Language with minimum edits.

Definition 3.6 Bracketed Language Edit Distance Problem

The Bracketed Language Edit Distance Problem, given string s, is to find

arg mins′ E(s, s′) such that s′ ∈ L(GT ).

We shall henceforth use the term edit distance of a string to refer to the

edit distance from the string to a well-formed repair.

Example 3.2 The edit distance of abāb̄ to a well-formed string is 2. For ex-

ample, it can be changed to aā using 2 deletions and abb̄ā using 2 substitutions.
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3.3 An Optimal Solution using Dynamic Pro-

gramming

In this section we propose a dynamic programming algorithm to solve the prob-

lem and prove the optimality of the algorithm, followed by pruning strategy to

speed it up.

3.3.1 Dynamic Programming Algorithm

According to Definition 3.3, given some substring si...sj, where j > i, either si

and sj could be edited to matching brackets (the S → xSx̄ production) or the

string could be broken into two adjacent well-formed substrings (the S → SS

production). Let B[i, j] be the cost of editing si and sj to match, and C[i, j]

the edit distance to repair substring si...sj. Then the recurrence is

c[i, j] = min


B[i, j] + C[i+ 1, j − 1], i < j

mini≤k≤j−1C[i, k] + C[k + 1, j], i < j

1, i = j

(3.1)

,where the cost B[i, j] of editing si with sj is:

B[i, j] =


0, if match(s[i], s[j])

2, if s[i] ∈ T̄ and s[j] ∈ T

1, otherwise

(3.2)

The intuition is that when the two brackets form a match, the cost is 0; when

s[i] ∈ T̄ and s[j] ∈ T , at least two substitutions or two deletions are needed;

otherwise, the cost would be one, substitute either of the bracket to generate

a match.
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Algorithm 3.1: Dynamic Programming for Tag-Only

Input: tokenized String s = s1...sn
Output: Edit Distance mins′ E(s, s′) where s′ is well-formed

1 forall the ` from 0 to n− 1 do
2 forall the i from 1 to n− ` do
3 j ← i+ `;
4 C[i, j]← B[i, j] + C[i+ 1, j − 1];
5 forall the k from i to j − 1 do
6 C[i, j]← min(C[i, j], C[i, k] + C[k + 1, j]);

7 return C[1, n]

We adopt idea of dynamic programming(DP) to solve the problem. The

pseudocode to compute the edit distance mins′ E(s, s′) to a well-formed string

s′ is presented in Algorithm 3.1. The DP algorithm runs in O(n3) time and

requires O(n2) space, where n is the string length.

Finally, C[1, n] is returned as the edit distance. The following claim estab-

lishes the correctness of the recursion and hence, also of Algorithm 3.1.

Theorem 3.7 Given string s, the dynamic programming algorithm described

in Algorithm 3.1 correctly finds the edit distance, such that the repaired string

is accepted by GT .

Proof. Suppose l is the length of substring s, we prove Theorem 3.7 using

induction on l. l = 1: consider any substring in the form si. The minimum

edit distance is 1, which can be achieved either by deleting si(using rule

S → ε), or by inserting a matching bracket.

l = 2: consider any substring represented as sisi+1. According to our

definition, B[i, i + 1] is the cost paid to match si with si+1, so C[i, i + 1]

equals to B[i, i+ 1], which is correctly computed.

l = k + 1: We prove how the algorithm work for substrings with length
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greater than 2. By induction hypothesis, Algorithm 3.1 correctly computes

minimum edit distance for all substring of length no greater than k. Take

a substring of length k + 1, represented as s = sm, ..., sm+k+1 without loss

of generality. If the computed edit distance is global optimal, taking sm as

example, the optimal algorithm must cover following options:

• Delete sm and the edit distance is 1 + C[m+ 1,m+ k + 1].

The dynamic programming algorithm in Algorithm 3.1 covers this

option, the algorithm has the choice to set edit distance as C[m,m+

k + 1] = C[m,m] +C[m+ 1,m+ k + 1], and both terms on the right

hand side are computed correctly by the algorithm according to base

cased and induction hypothesis.

• Match sm to some other bracket sj from the string, where j > m.

In this scenario, four subcases must be covered to guarantee the opti-

mality, and we will discuss case by case in the following.

(a) j = m + k + 1 and sm � sm+k+1. In this case, minimum edit

distance is C[m,m + k + 1] = C[m + 1,m + k]. The dynamic

algorithm in this case computes C[m,m+ k+ 1] = B[m,m+ k+

1] + C[m + 1,m + k]. Since B[m,m + k + 1] = 0according to E-

quation 3.2, the algorithm correctly computes the edit distance

C[m+ 1,m+ k + 1] by induction hypothesis.

(b) j = m+K + 1, and sm(resp. sj) is substituted to match sj(resp.

sm). If both sm and sj are close(resp. open) brackets. In this case,

the minimum edit distance is C[m,m+k+1] = 1+C[m+1,m+k].

The dynamic programming algorithm in this case gives a cost of

B[m,m+k+1]+C[m+1,m+k] = 1+C[m+1,m+k], according
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to case 3 in Equation 3.2 and case 1 in Equation 3.2. By induction

hypothesis, the second term in the right hand side is computed

correctly.

(c) j = m + k + 1, sm ∈ T̄ and sj ∈ T . In this case, matching

sm with sj requires substitution or deleting both brackets, at a

cost of 2, i.e.,C[m,m + k + 1] = 2 + C[m + 1,m + k]. According

to the algorithm, it computes the cost as C[m,m + k + 1] =

B[m,m + k + 1] + C[m + 1,m + k] as one of the choice and

B[m,m + k + 1] is computed as 2, defined in Equation 3.1 case

2. By induction hypothesis, the second term in right hand side is

computed correctly.

(d) m < j < m+k+1. By matching sm with some internal bracket sj

in the substring, the minimum edit distance is C[m,m+ k+ 1] =

C[m, j]+C[m+j+1,m+k+1]. From the dynamic programming

algorithm, we can see that Equation 3.1 case 2 considers this

subcase and the terms in right hand side are correctly computed

by induction hypothesis.

The cases listed above are exhaustive, and Algorithm 3.1 covers all the

possibility, computing edit distance correctly in all these cases and returns

the minimum as the final result. Hence, Algorithm 3.1 figures out the min-

imum edit distance for any substring of length l+ 1 exactly as we expected.

Therefor we claim that by induction the proof is established.

For ease of exposition, we do not show how to construct an s′. A single

minimum cost repair can be constructed from the dynamic programming tableau



3.3. An Optimal Solution using Dynamic Programming 37

straightforwardly.However, constructing multiple repairs having minimum cost

is non-trivial. We defer this discussion until Section 3.4.2.

3.3.2 Well-formed Substring Removal

The cubic growth in running time as a function of string size becomes a problem

for large strings, especially when in real world most documents has tens of

thousands of tags but relatively small in repair cost. Such observation reveals

that even though the input s is not wellformed, it may consist of multiple

discrete well-formed substrings {swf1 , swf2 ...}. Ideally these substrings should be

left untouched and be excluded from the algorithm to save time, but will it

affect the edit cost? The answer is positive and will be proved in the following

section.

Using a stack, well-formed substring removal can be done straightforwardly

in linear time by recursively finding matching adjacent pairs and removing them.

We note that this may eliminate some candidate repairs from consideration.

For example, given the string s = aāb̄ā, the pruned string is sr = b̄ā, where

swf1 = aā. The only optimal repair on sr can be found is aāaā, since swf1

will not be disturbed. Whereas the repair abb̄ā also has an edit distance of

1. Nonetheless, there exists at least one repair of the pruned string with edit

distance equal to that optimal for the original string. That is, the removal

probably reduces the variety of repaired string, it will not affect the number of

edits.

Theorem 3.8 Well-formed substrings removal preserves the edit distance.

Proof. Denoted as Cost(s) = d the edit cost returned by Algorithm 3.1 to

repair the string s. We do an induction on the number of edits d to prove
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that Cost(s) = Cost(sr), where sr is the string after removing well-formed

substrings from s.

Cost(s) = 0: For strings with Cost(s) = 0, well-formed substring pruning

returns the empty string sr, where |sr| = 0, so its edit cost Cost(sr) = 0.

This serves as the basis.

Cost(s) = d, d > 0: Suppose the claim is true for all strings with mini-

mum edit distance less than d, we check the correctness of the claim when

Cost(s) = (d). Consider an optimal algorithm that defers doing the first

edit as much as possible without affecting the optimality. Let P and Pr

be edit scripts set for s and sr, respectively. , and let the d edit positions

be pj[1] < pj[2] < ... < pj[d] and prk[1] < prk[2] < ... < prk[d] for edit script

pj ∈ P and prk ∈ Pr respectively. Suppose the prefix in sr corresponds to

s1s2...spj [1] of edit script pj be sr1s
r
2...s

r
qj

, which must be a run of open brack-

ets, otherwise it breaks the assumption that pj[1] is the position of the first

edit. Therefore whether or not spj [1] is part of some well-formed substring,

we present that the claim hold in either case. When the answer is positive,

we prove by reducing the two strings to the same pruned string; when the

answer is negative, we show there must be an alternative edit script for s

of the same cost but leave sp[1] alone.

Case 1: If spj [1] is not part of any well-formed substring.

srqj corresponds to spj [1]. By performing the same edit operation as the

optimal algorithm at spj [1] and also at srqj . The resultant string s′ after

the edit at spj [1] in s, has edit distance d − 1. If well-formed substrings

are removed from s′, and also from sr after the edit at srqj to get s
′r, then

they both return the same processed string. By the induction hypothesis,

s′ and s
′r have the same edit distance, Cost(s′) = Costs

′r = (d− 1). Since
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Cost(sr) = Cost(s
′r)+1 = (d−1)+1 = d, we prove that Cost(sr) = Cost(s)

in this case.

Case 2: spj [1] is part of some well-formed substring w.

There are few cases to be consider based on whether spj [1] ∈ T or sp[1] ∈ T̄ .

The main idea is to show that in all these cases, there exists an alternate

edit script such that spj [1] is not part of any well-formed substring. Then

by the same argument as in Case 1, the proof is established.

Subcase 2(a): spj [1] ∈ T . By removing well-formed substrings if any,

from the prefix s1s2...spj [1], we must have sr1s
r
2...s

r
qj
smsm+1...spj [1] for some

integer m ≥ 1, where all sr1s
r
2...s

r
qj
slsl+1...spj [1] are open brackets. The edit

at spj [1] can be either deletion, or substitution to some other open bracket,

or substitution to closed bracket. For the i-th symbol s, let match[i] denote

the position of the symbol in s to which it matches.

Deletion: If edit at spj [1] is a deletion, smatch[pj [1]] has to be matched with

some sr1 , r1 < pj[1], otherwise edit costs at spj [1] and smatch[p[1]] is 2, both

of which can be saved resulting in lower edit distance and contradicting

the optimality. If sr1 is part of sr1s
r
2...s

r
qj

, we can simply match spj [1] with

smatch[pj [1]] and delete sr1 instead. This reduces the edit distance by 1 and

we can use the same argument as in Case 1. Otherwise, sr1 is part of

sm+1...spj [1]−1. Then the bracket matches sr1 is smatch[r1], which must be

matched with some sr2 . Again, if sr2 is part of sr1s
r
2...s

r
qj

, we can instead

delete sr2 and match spj [1] with smatch[pj [1]] and sr1 with smatch[r1]. Otherwise,

sr2 is part of sr1s
r
2...s

r
qj

and we continue in this fashion until we reach some srh

in sr1s
r
2...s

r
qj

. We then instead can delete sr[h] and match the corresponding

pairs in w for sm+1, ..., spj [1].

Substitution : If edit at spj [1] is a substitution to some different open
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bracket to match with, say, sr′1 and r′1 6= match[pj[1]], such substitution

breaks the well-formedness of w and at least one more edit is required. we

will prove in the following why this scenario will not happen. If sr′1 is not

part of w, we could just delete sr′1 and match all o f w to save one in edit

distance. Otherwise, if sr′1 is part of w , we could have lower the edit distance

by 2 without touching w–this contradicts the optimality. Hence, no optimal

algorithm considers substituting at spj [1] a different open bracket. Similar

argument removes the possibility of substituting a closed bracket at spj [1].

Subcase 2(b): spj [1] ∈ T̄ . If we remove well-formed substring from the

prefix s1s2...spj [1], we must have r
1s
r
2...s

r
qj
sm...sm′sp[1] where sm′ � spj [1].

Deletion: If edit at spj [1] is an deletion, sm′ must be matched with some

sr1 , r1 > pj[1]. Instead, it is possible to match sm′ and spj [1], and delete

sr1 . This defers the first edit without affecting the optimality giving a

contradiction.

Substitution : If edit at spj [1] is a substitution to a different closed brack-

et, which could never happen. Because such operation requires editing sm′

as well. If edit at spj [1] is a substitution to a new open to match some sr′1 ,

r′1 > p[1], we can delete sr′1 and match sl′ to sp[1] instead, contradicting the

fact that the considered optimal algorithm defers the first edit as much as

possible.

Efficient in most cases, however, there are still instances where well-formed

substring pruning will not be very effective; for example, consider the string

abcded̄c̄b̄ā. Here edit distance is 1, but since there is no well-formed substring,

nothing can be eliminated. As the average of an document tree should not be

too deep( less than 7 on average.), and errors are not that frequent compar-

ing with string length, well-formed substrings are not rare. We investigate its
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effectiveness on real data in Section 3.5.2 in detail.

3.4 An Incremental Approach based on BAB

The dynamic program presented in the previous section has two deficiencies.

The first is that it has the same running time regardless of how many errors

exist in the input string; that is, its best-case running time is as slow as the

worst-case. Second, it can extract a single edit script associated with the edit

distance found but does not provide a natural way of enumerating multiple

repairs. Here we describe branch-and-bound strategies, with various trade-offs

between accuracy and running time, that are affected only by the number of

errors, not the length of the string, and are capable of incrementally reporting

repairs. Our algorithms are based on various combinations of greedy heuristics.

3.4.1 Branching-and-Bounding Algorithm

Unlike the dynamic programming algorithm which computes every possible

matching between s[i] and s[j], the Branching-and-Bound(BAB) algorithm s-

martly decides where to stop to start a checking, motivated by Theorem 3.8.

0 1
close ; match ε; empty

open ; 

open ; 

ε; empty

close ; match

2

Figure 3.1: Automata for Grammar GT
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Figure 3.1 shows how a well-formed string satisfying GT is accepted by

the automata. This automata simply has three states: 0, processed an open

bracket; 1, processed one matching close bracket; and 2, the sink state. If the

string finally stops at state 2, it is accepted by the grammar. During string

processing, we use a stack to keep all unmatched open brackets, and read one

bracket at a time from the string. So each edge is associated with a state

transition condition 〈bracketType;matched〉. For example, from state 0 to 1,

the condition is 〈close ;match〉, which means if the bracket under processing is

in T̄ and it matches with the open bracket at the top of the bracket. A special

condition is 〈ε, empty〉, which means all brackets have been processed and the

stack is also empty. Any deviation from the automata is a sign of erroneous

input. Therefor, we only need to stop when we see such a sign, rather than

suspecting every pairs of brackets.

As a warm-up, we consider the case where |T | = 1. Here it turns out we can

apply recursive matching of adjacent pairs to obtain a sequence of zero or more

elements from T̄ followed by a sequence of zero or more elements from T , that

is, ā∗a∗. Then the minimum cost repair, for the close bracket and open bracket

substrings separately, is obtained by applying substitutions to make adjacent

pairs match and, if a singleton remains, delete it. So if the pruned string is

āiaj, the resulting edit distance is d i/2 e + d j/2 e. Hence, for |T | = 1 the

edit distance can be computed in Θ(n) time. Clearly the same edit distance

can be obtained via many different matchings, precisely p(i/2)× p(j/2) when

i and j are even, where p(k) is the partition function denoting the number

of ways to write k as a sum of positive integers. Rather than enumerating

all these possibilities, a single canonical form such as only the minimum- or

maximum-depth nesting shall be reported.
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When |T | ≥ 2, repairs of these two scenarios are similar to the |T | = 1

case: adjacent pairs are examined and the appropriate substitutions are made

to make these adjacent pairs match. There is an additional type of error than

can occur besides these two: empty stack with remaining close brackets and

a non-empty stack when the string has terminated. There could be an open

bracket of one type followed by a close bracket of another type.

It is this third scenario that is most challenging. Note that each possible

insertion operation has a symmetrically equivalent deletion operation, so for the

sake of reducing the enumerated repairs we shall use a canonical form involving

only deletions. As the string is parsed naturally from left to right, one bracket

at a time, for simplicity, we use “left” to denote the top open bracket on the

stack, and “right” the next bracket from the input string.

Given a mismatch of types between an adjacent open-close pair, there are

only five edit operations that need to be considered.

(a) Delete the open bracket on the left;

(b) Delete the close bracket on the right;

(c) Substitute the left or right bracket to make a matching pair;

(d) Substitute the open bracket on the left to a close bracket;

(e) Substitute the close bracket on the right to an open bracket.

For the third alternative, we shall canonically replace the right close bracket

to match the left open bracket. For the last two alternatives, the way the

replacement bracket is chosen is as follows. For an open bracket substituted to

a close bracket, we assign the bracket matching the next open bracket on the

stack. (We only consider this alternative when the stack remains non-empty

after deleting the open bracket.) For a close bracket substituted to an open



44 Chapter 3. Repair with Tag-Matching Constraint

bracket, we wait to assign the bracket until the first close bracket is encountered

that gets paired with it (until then it is a “ghost” open) and then assign it so

that the pair matches; if the string terminates before such a pairing occurs then

it gets resolved to a deletion rather than a substitution.

The following theorem establishes the correctness of our algorithm.

Theorem 3.9 By considering edit operations at only one of the following

scenarios, a sequence of choices exist that leads to the optimal edit distance:

(a) an empty stack when a close bracket occurs; (b) a non-empty stack when

the string has terminated; and (c) an open bracket of one type adjacent to a

close bracket of a different type. Furthermore, exhaustive branching to the five

edit alternatives above leads to an optimal repair.

Proof. As proved previously in Theorem 3.8, removal of well-formed sub-

strings preserves the minimum edit distance. For simplicity, given a string

s with d edit distance, we focus on its counterpart s′ with well-formed sub-

strings removed.

If s is well-formed, i.e., d = 0, it is obvious that the algorithm returns

the optimal answer 0, as the stack is empty in the end and never stops for

branching.

If s is non-well-formed, i.e., d > 0, the string s′ after well-formed sub-

string removal, also has an edit distance of d and contains no well-formed

substrings at all. Then s′ must fall into one of following three cases: a) s′

is a run of open brackets, b) s′ starts with a close bracket, i.e., s′1 ∈ T̄ . c)

s′ has a sequence of open brackets followed by some close bracket that does

not match the bracket prior to it. So, to repair the string s′, any optimal

algorithm must make some edit operations in all these scenarios. In case a),
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any canonical repair by paring up the open brackets and deleting at most

one open bracket (if there is odd number of brackets) gives the optimal so-

lution. In case b), the edit operations are either deleting the leading close

bracket or substituting it with some open bracket. In case c), the choices

are more complex and we will explain one by one. There are in total five

alternative edit operations here:

(i) delete the open bracket from the stack

(ii) delete the close bracket from the input string

(iii) substitute the left(open) or right(close) bracket to make a matching

pair

(iv) substitute the left(open) bracket to match the top-second tag from the

stack, if possible

(v) substitute the right(close) bracket to a ghost open bracket. A Ghost

open is an open bracket whose type is not fixed and can be matched

with any close bracket.

If some optimal algorithm A chooses any of the above edit operations

except (v) to repair s, and results in a string with edit distance (d − 1),

then there is a branch that considers exactly the same edit followed by well-

formed substring removal, leading to a string with edit distance (d−1). But

if the optimal algorithmA selects the operation (v) in case c) by substituting

the close bracket to some x ∈ T to repair s. In our branching algorithm, we

offer an option to replace the close bracket with a ghost open bracket. As

the ghost open can be resolved to any open bracket at that point, and hence

to x as well. There for, the resultant string has an edit distance of d−1 and
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we can apply induction. The type of ghost open is resolved if and only if at

some point removal of well-formed substrings requires it to be matched with

a given closed bracket. Since removal of well-formed substring preserves the

edit distance, this type-resolution of the ghost open bracket also does not

increase the edit distance. If, we reach a state where the stack is non-empty

with unresolved ghost opens when the string terminates, then it indicates

that the particular branch is not optimal. In order to get a valid repair, it

is enough to resolve the ghost opens to deletion.

3.4.2 Greedy Heuristics

By visiting all possible branches at each erroneous point leads to high complex

when the number of errors is large. To speed up the algorithm with certain loss

in accuracy, we consider two heuristics for choosing from these alternatives, the

first of which makes a greedy decision based on local information and the second

of which is based on non-local information but ignores interleaving between

bracket types:

• MaxBenefit: At each mismatch, consider all five alternatives and take

the one that enables the largest well-formed substring to be pruned (the

size of which is the benefit). The time to test these alternatives is amor-

tized: an alternative resulting in a larger number of matched brackets

takes longer time but also advances that much further along, requiring in

total linear space and time. When |T | = 1, MaxBenefit finds an optimal

cost repair.

• MinCost: Pre-compute the imbalance for each bracket type subsequence

(similar to the |T | = 1 case) as follows. Let σa(s), for a ∈ T , denote
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the subsequence of s containing brackets a or ā. For each a ∈ T and

each suffix of σa(s), we find the remaining subsequence after matching

pairs elimination. Suppose the result for σa(s) is āiaj and that there are

currently k open brackets a on the stack. Then the number of unbalanced

brackets in σa(s) is |k − i| + j. Taking all the subsequences σa(s), for

each a ∈ T , the minimum number of edit operations to well-formedness

(via substitutions) is d (
∑

a∈T |ka− ia|)/2 e+ d (
∑

a∈T ja)/2 e. This gives

a lower bound on the edit distance. So at each mismatch, the alternatives

are considered in turn and the one which best improves the lower bound

is chosen. This strategy can be done in linear space and time since the

imbalance counts (for each subsequence suffix) can be pre-computed and

stored globally. When |T | = 1, MinCost also finds an optimal cost repair.

Unfortunately, both of these heuristics may result in approximations of the edit

distance with a performance ratio that is linear in n. For example, the string

aaaaaabbbbāāāāāā could result in 8 edit operations with MaxBenefit if the

wrong alternative among ties is chosen at each mismatch (at mismatch of type

bā, substitute ā to a, instead of substituting b to b̄), and the string abcdeāēd̄c̄b̄

could result in 8 edit operations with MinCost if the wrong alternative among

ties is chosen at each mismatch. To mitigate this, all of the ties can be main-

tained in a queue and tried as part of a branch-and-bound algorithm; we call

these variants MaxBenefit ++ and MinCost ++, respectively.

Interestingly, MinCost performs well on the hard input for MaxBenefit and

MaxBenefit performs well on the hard input for MinCost: the first string can be

repaired in 2 operations using MaxBenefit and the second in 2 operations using

MinCost. Therefore, we consider hybrid strategies which combine MaxBenefit

and MinCost in various ways to complement each other. In particular, we
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consider the following three hybrids.

• Conservative: Try all the choices in the union that Max-Benefit or Min-

Cost gives.

• Moderate: Try all the choices in the multi-set intersection of the choices

that Max-Benefit or Min-Cost gives; if the intersection is empty, then try

all the choices from their union.

• Liberal: Select one choice at random from the multi-set intersection

of the choices that Max-Benefit or Min-Cost gives; if the intersection is

empty, then select one choice at random from their union.

We shall investigate the trade-offs between accuracy and running time of

these strategies in Section 3.5.

3.4.3 Implementation for Branching Strategies

Figure 3.2 illustrates how the branch-and-bound algorithm works on the tok-

enized string rtut̄ann̄f ār̄ from Figure 1.1(a). Two global structures, bracket

list and suffix pairs, are preprocessed in a single scan to assist the procedure.

The bracket list contains the tokenized brackets and their index positions after

well-formed substring pruning.

The first mismatch occurs at t̄ (position 5). For each of the five edit

alternatives, we list the stack state, the string position after the edit is applied

and the total number of edits incurred for the repaired prefix. In addition, we

show the MaxBenefit and MinCost values for each alternative. Taking option

Del u for instance, t and t̄ also get matched, so the total benefit value is 3.

To get the MinCost value, we consider the suffix pairs surrounded by dashed
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Figure 3.2: Illustration of Branch-and-Bound Algorithm

lines. With r and t in the stack, Del u reduces the imbalance from the suffix

pair 〈1, 0〉 at position 4 for u by 1; the pairs 〈0, 1〉 at 13 for r and 〈0, 1〉 at 5

for t get canceled out by the stack; and of the remaining pairs, 〈0, 0〉 at 6 for

a gives 0 (since brackets can potentially match) and 〈1, 0〉 at 11 for f gives 1,

resulting in a total value of 1.

We show the resulting priority queues for Moderate and Conservative at the

bottom right of Figure 3.2. The former contains the intersection of alternatives

where MinCost of 1 is the lowest and MaxBenefit of 3 is the highest; the latter

contains the union of alternatives having MinCost of 1 or MaxBenefit of 3.

Candidates are inserted into the priority queue sorted on ascending order of

(#edit+MinCost); this provides a lower bound on the eventual repair cost. By

visiting nodes in this order, it is guaranteed that any fully repaired string must
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have edit distance no larger than the existing partial repairs will have after

completion.

Following the Moderate priority queue, the next mismatch occurs at ā, for

which the alternative chosen is Del f, with MinCost value of 0 and MaxBenefit

value of 5. The final output is rtt̄ann̄ār̄ with cost of 2. Conservative returns

the same repaired string with the same edit distance but uses more space and

time for the extra candidates generated.

To speed up the algorithm, we can avoid visiting candidates with the same

stack state and string position but having larger cost. This can be done by

hashing the candidate’s stack and the (index of the) remaining string suffix;

when multiple repairs are needed, the hashing function is based on the repaired

prefix rather than the stack.

3.5 Experimental Evaluation

This section gives a thorough experimental evaluation of methods for the Brack-

et Language Edit Distance Problem, against the Dynamic Programming (DP)

and branch-and-bound algorithms. Table 3.1 lists the detailed description of

modes, used in the branch-and-bound algorithm, where Sall considers the whole

choice set, Sb is the set chosen by the MaxBenefit heuristic and Sc chosen by

the MinCost heuristic, R() is the function that selects one choice from the set

randomly.

3.5.1 Experiments Setup

All algorithms were implemented in Java and executed on a server with a Quad-

Core AMD Opteron(tm) Processor 8356@1 GHz and 128 GB RAM running
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Table 3.1: Summary of Methods

Mode Name Choice Set Multi-Repair

Exhaustive Sall Yes
Conservative Sb

⋃
Sc Yes

Moderate
If |Sb

⋂
Sc| > 0,

YesSb
⋂
Sc

Else Sb
⋃
Sc

Liberal
If |Sb

⋂
Sc| > 0,

YesR(Sb
⋂
Sc)

Else R(Sb)
⋃
R(Sc)

MinCost++ Sc Yes
MaxBenefit++ Sb Yes
MinCost R(Sc) No
MaxBenefit R(Sb) No
Hybrid R(Sc

⋃
Sb) No

Random R(Sall) No
Rule-based N/A No

Centos 5.8. We used the following two real data sets:

• BGP2 real-time routing information provided by BGPmon.We used a por-

tion of the stream output over some time interval.

• Tree Bank3 annotated linguistic text, with average depth 7.8 and max

depth 36. We extracted random subtrees with max-depth no less than 20

and merged them together.

Both data sets normally satisfy the grammar GT and only the tag subsequences

are retained.

Error Model and Parameter Setting: We choose from among six different

operations with equal probability to inject errors into a given well-formed string,

2http://bgpmon.netsec.colostate.edu/
3http://www.cis.upenn.edu/~treebank/

http://bgpmon.netsec.colostate.edu/
http://www.cis.upenn.edu/~treebank/
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as listed in Table 3.2. The detail settings of string length and error number are

given in Table 3.3.

Table 3.2: Types of Errors

Operation Description

Delete(i) delete the tag at the i-th position

Insert(i,a)
insert tag a to the i-th position,
where a is randomly chosen from (T ∪ T̄ )

Swap(i, j)
swap the tag located at the i-th position
with the one at the j-th

Flip(i)
change the i-th tag to close (resp., open)
if it is open (resp., close)

Sub(i,a)
substitute the i-th tag with a,
where a is randomly selected from (T ∪ T̄ )

DeepInsert(a,h)
insert tag a into some position i
having depth(i) > h,
where a is randomly selected from (T ∪ T̄ )

Metrics: Each experiment was repeated 100 times, and we report Average

Running Time and Average Edit Distance.

3.5.2 Single Repairs

Table 3.3: Data Set Properties

Parameter Range

String Length(TreeBank)(×103) 1, 2,4, 8
String Length(BGP)(×103) 10, 20,40, 80
Error Number(TreeBank) 2, 4,8, 16
Error Number(BGP) 6, 8,12, 20
Well-formed Substring Eliminate Yes, No
top-k threshold k 1,5, 10, 15, 20

We compared methods that are designed to return a single repair, including

DP as well as MaxBenefit, MinCost and Hybrid, where Hybrid randomly picks

one choice either given by MinCost or by MaxBenefit. As a baseline, we also
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tried three rule-based heuristics for handling open-close mismatches: one which

performs a substitution to make them match; one which deletes the open; and

one which deletes the close (the best of which on our data was the substitution

rule, so we use that in experiments). Finally, we also tried five trials of Random

which randomly chooses one from the five alternatives reporting the lowest edit

distance among these. By default, well-formed substring pruning is applied to

speed up the methods.
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Figure 3.3: Single Repair, Error Number

Figure 3.3 shows the edit distance and running time as a function of the

number of errors. For BGP , the errors ranged from 6 to F20 with initial string

length fixed at 40, 000; after well-formed substring pruning, the string length

was significantly reduced to the range [20, 160]. For Tree Bank , the error
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Figure 3.4: Single-Repair, String Length

ranged from 2 to16 with string length fixed at 4, 000; after pruning the length

was reduced to [40, 280].

While DP gave the smallest edit distance (it is optimal), it was also the

slowest in almost all cases. The running time of DP increased significantly

with the number of errors, even with well-formed substring pruning: the string

length after pruning increased from 20 to 160 on BGP and from 40 to 280

on Tree Bank . Rule-Based, in contrast, ran the fastest but gave the highest

edit distance. Interestingly, Rule-Based was even less accurate than Random

(recall that Random chooses from among five alternatives while Rule-Based

makes a single deterministic choice), which in turn also affected its running

time performance due to the additional edits. The edit cost of MaxBenefit
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was close to optimal, its inaccuracy growing with increasing errors but at a

very slow rate; at the same time, its running time was 1-2 orders of magnitude

faster than that of DP. MinCost, on the other hand, was no faster but much less

accurate than MaxBenefit. Hybrid, which integrates both heuristics, is slightly

less accurate than MaxBenefit but slightly faster.

Figure 3.4 demonstrates the scalability with respect to string length, with

the number of errors fixed at around 12 on BGP and 8 on Tree Bank . Due to

well-formed substring pruning, the average string length was reduced to around

60 on BGP and 150 on Tree Bank from all the initial string lengths. Hybrid and

MaxBenefit follow DP closely in accuracy and outperform the latter in running

time, as much as 1-2 orders of magnitude.

3.5.2.1 Retaining Well-formed Substrings
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Figure 3.5: Well-formed Substring

As shown in Section 3.3.2, well-formed substring pruning, does not affect

the edit distance of DP. However, it significantly improve the running time.

We ran a set of experiments on Tree Bank with average string length of 1, 000

and with 8 errors on average. The bars in Figure 3.5 show the difference in
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running time and edit distance with and without such pre-processing. The edit

distance for DP and Rule-Based stays the same, but there is a slight difference in

other methods, which can be explained by randomization. For DP the running

difference is quite noticeable (from 1066ms to 50510ms) while, for others, the

increase in running time is small; such increase is largely brought by the cost in

building the global suffix stack.

3.5.3 Multiple Repairs

We compared various branch-and-bound methods: Exhaustive (tries all five

choices at each branch point), Conservative, Moderate, Liberal, MinCost++

and MaxBenefit++. The key difference between these methods is the number

of alternatives tried at each branch, where there is an inherent trade-off between

accuracy and running time.

Single-Repair Performance: We begin by showing the results for single repair,

i.e.,K = 1, using DP as a baseline. When K = 1, we prune off as many

branches as possible, while K > 1, we preserve as many repairs, so the prefix-

string hashing function is adopted, to retain nodes with the same stack and

string but different repair prefixes.

Figure 3.6 shows performance versus error number ranging from 6 to 20 on

BGP and 2 to 16 on Tree Bank . As expected, Exhaustive gives optimal edit

distance while MinCost++ is the least accurate one. In Figure 3.6(a) to (d),

all methods except MinCost++ and Exhaustive are almost as accurate as DP

but much faster. MaxBenefit++ beats all other methods in running time, but

is less accurate.

Figure 3.7 shows performance versus string length ranging from 10, 000 to
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Figure 3.6: Multi-Repairs, Error Number

80, 000 (with roughly 12 errors) on BGP , and 1, 000 to 8, 000 (with roughly 8

errors) on Tree Bank . After pre-processing, the string sizes were greatly reduced

to 60 on BGP and 130 on Tree Bank . When a string is short with many errors,

DP wins; otherwise, Exhaustive is faster. In general, the branch-and-bound

methods were not greatly affected by string length and perform well when the

number of errors is small.

Multi-Repairs Performance: Figure 3.8 illustrates the performance for finding

5 repairs when the number of errors increases from 6 to 20 on BGP with string

length fixed at 40,000) and from 2 to 16 on Tree Bank (with string length fixed

at 4,000). When error number is 20 on BGP dataset, it takes Exhaustive an
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Figure 3.7: Multi-Repair, String Length

extremely large amount of time, so we do not plot the results there.

Figure 3.9 shows running time when string length grows from 10,000 to

80,000 on BGP and 1,000 to 8,000 on Tree Bank . With the well-formed

substring removed, the string length decreases significantly to 130 on Tree

Bank , and 60 on BGP dataset.

Exhaustive, Conservative and MinCost++ are 10 times slower than Moder-

ate, Liberal and MaxBenefit++ since the former methods return more repairs

than the latter do. MinCost++ is less accurate than Exhaustive and Conser-

vative, but is faster on BGP ; on Tree BankMinCost++ is less accurate and

comparable to Exhaustive in running time.
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Figure 3.8: top-5 Repairs, Error Number

K-Repairs Performance: We evaluated the performance of finding up to K

repairs, for K ∈ {1, 5, 10, 15, 20}, with string length 40,000 for BGP and 4,000

for Tree Bank . Note that not all methods were able to obtain K repairs. Mod-

erate, Liberal and MaxBenefit++ run faster by aggressively pruning; therefore,

they result in fewer total repairs. Figure 3.10 shows that these three methods

were unable to return more than 5 repairs. Only Exhaustive, Conservative and

MinCost++ obtained up to 20 repairs. With more nodes visited, Exhaustive

returned repairs lower in average edit distance but requires running time. On

Tree Bank , MinCost++ is worse in both average edit distance and running time,

which means MinCost prunes off some nodes low in edit distance, leading to a

longer edit path and larger search space. For methods where there are enough
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Figure 3.9: top-5 Repairs, String Length

repairs, the running time grows linearly in K.

3.6 Conclusions

In this chapter we investigate the problem on repairing semi-structured docu-

ment when open- and close- tags are unmatched. Two algorithms were proposed

to meet various user demands, and user can trade off accuracy for efficiency

by combing the heuristics in different ways. The Branch-and-Bound algorithm,

apart from returning multiple canonical repairs, has another advantage: it works

especially good for streaming data, such as log file, where the size is not given

ahead and user can choose to terminate the algorithm any time to get a list of
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Figure 3.10: top-k , Scalability

repairs for the documents listened so far.

Besides tags (or brackets), there are many other components, e.g., text

values, attributes, IDREF (cross-reference) in the documents. Even when the

grammar is unknown, these components are good clues and can be leveraged

for a more judicious repair.





Chapter 4

REPAIR WITH RESTRICTED

TEXT OCCURRENCE

A commonly occurring pattern for semi-structured documents, especially

those used for data interchange and storage, is that text content must occur

and only occur between a matching pair, which the norm of files like JSON, as

well as XML files encoding JSON. In this chapter, we study how to exploit this

pattern to compute a more judicious repair. We also show in the experimental

evaluation to which extent the injected errors can be undone by comparing

the repaired documents with the original documents, measured by tree edit

distance.

63
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4.1 Motivation

Tags are bricks in constructing semi-structured documents, and open- and close-

tags matching is the universal rule that every such document must obey. Even

as flexible as HTML, which allows the input to be non-wellformed, it is the

HTML parser that takes over the burden of making missing tags up. Apart

from the tag-matching rule, we observe another important constraint many

documents inherent: text value must be embedded within pairs of tags, e.g.,

text values are usually leaf nodes in an XML DOM tree, rather than appearing

arbitrary under any tags, or being sibling of some other tags. Such constraint is

rather common and can be found in many types of semi-structured documents,

especially those for data interchange and data storage, for instance JSON files,

RSS feeds, system config files. A study of DTDs on the Web revealed that

only 1% of XML data exchange documents allowed so-called mixed content

elements (allowing both text and tags) [29].

There has been many work on approximate matching of trees which has

been applied to finding semantically relevant XML documents [30, 50, 80].

Unfortunately none of these works apply to such setting since the input is not

even well-formed in the sense of tags and cannot be parsed or represented as a

tree. Hence, we study in this chapter how to exploit the text constraint to aid

in finding a repair, which would be more meaningful.

4.2 Problem Definition

Let Σ be some alphabet and W = {w | w ∈ Σ+} denote a set of words that can

be embedded in a semi-structured document. We assume that the input data

has been preprocessed into a sequence of brackets and words (which assumes
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the existence of markers that tell the lexical analyzer how to distinguish between

brackets and words).

Definition 4.1 Well-formed String

A well-formed string over some bracket alphabet T with embedded text from

W obeys the context-free grammar GT,W with productions S ′ → S | ε and

S → SS | xSx̄ | xw+x̄, for all x ∈ T and where all w ∈ W .

Definition 4.2 Well-formed Bracketed Language with Text

A well-formed bracketed language with text L(GT,W ) over some set of words

W and bracket alphabet T is the set of strings from (W ∪ T ∪ T̄ )∗ accepted

by the grammar GT,W defined above.

Example 4.1 Let W = {w}, and T = {a, b}, and T̄ = {ā, b̄}. Then abwb̄ā

is a well-bracketed string, since it can be parsed as S → aSā → abwb̄ā but

abb̄wā is not.

We define the edit distance E(s, s′) between two strings, s and s′, in

(W ∪ T ∪ T̄ )∗ as the minimum number of bracket insertions, deletions and

substitutions needed to transform s into s′; only the brackets and not the words

in the strings are considered for edit operations.

Definition 4.3 Bracketed Language with Text Edit Distance Problem

The Bracketed Language with Text Edit Distance Problem, given a string

s ∈ (W ∪ T ∪ T̄ )∗, is to find arg mins′ E(s, s′) such that s′ ∈ L(GT,W ). Here

we allow insertion, deletion and substitution operations on brackets but do not

allow any operations on words, that is, the words in a string must remain as

they are.
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Example 4.2 Given then string s = abb̄wā. When there is no constraint on

text, the word w is ignored and the string is well-formed. But when text must

exist as leaf node, it has edit distance 2, and can be repaired to abwb̄ā using

one deletion and one insertion, or awā with two deletions.

4.3 An Optimal Solution using Dynamic Pro-

gramming

As shown in the example in Chapter 1 Figure 1.2, if we consider only the bracket

subsequence of the string and apply the algorithm proposed in Theorem 3 to

find a solution, the resulting repairs may not obey GT,W . In fact, GT,W is

strictly more constrained than GT (hence, the edit distance for tags matching

lower-bounds that for this case). Therefore, we need to design a new algorithm.

Algorithm 4.1 presents the pseudocode for the dynamic programming. The

algorithm runs in O(n3) time and requires O(n2) space, where n is the number

of brackets. Given some substring si...sj, the algorithm first checks if it contains

some word (that is, sk ∈ W for some k ∈ [i, j]) and, if not, deletes si...sj,

resulting in cost C[i, j] = j−i+1. Otherwise, either si and sj could be edited to

match brackets surrounding a well-formed substring (the S → xSx̄ production);

or si and sj could be edited to matching brackets surrounding a sequence of one

or more words, after deleting all brackets in the substring si+1..sj−1, denoted by

D[i+ 1, j − 1] (the S → xw+x̄ production); or else the string could be broken

into two adjacent well-formed substrings (the S → SS production). When

j = i, if si ∈ W , C[i, j] = C[i, i] = 2, else C[i, j] = C[i, i] = 1. For all other

cases, while the substring sisi+1...sj contains a word, the recurrence is:
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Algorithm 4.1: Dynamic Programming for Tag-with-Text

Input: tokenized string s = s1...sn
Output: edit distance mins′ E(s, s′) where s′ is well-formed

1 forall the i from 0 to n− 1 do
2 forall the j from i+ 1 to n do
3 if si � sj then
4 B[i, j]← 0
5 else
6 if si ∈ T or sj ∈ T̄ then
7 B[i, j]← 1
8 else
9 B[i, j]← 2

10 forall the i from 1 to n do
11 if si ∈ W then
12 B[i, i]← 2
13 else
14 B[i, i]← 1

15 forall the ` from 1 to n− 1 do
16 forall the i from 1 to n− ` do
17 if sk /∈ W,∀k ∈ [i, j] then
18 C[i, j]← j − i+ 1
19 else
20 j ← i+ `
21 C[i, j]← B[i, j] +D[j − 1, i+ 1]
22 C[i, j]← min(C[i, j], B[i, j] + C[i+ 1, j − 1])
23 forall the k from i to j − 1 do
24 C[i, j]← min(C[i, j], C[i, k] + C[k + 1, j])

25 return C[1, n]
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C[i, j] = min


B[i, j] + C[i+ 1, j − 1], i < j

B[i, j] +D[i+ 1, j − 1], i < j

mini≤k≤j−1C[i, k] + C[k + 1, j], i < j

(4.1)

, where B[i, j] be the smallest cost of editing si and sj to match, defined as:

B[i, j] =


0, match(si, sj)

1, (si ∈ T ∧ sj ∈ W ) ∨ (si ∈ W ∧ sj ∈ T̄ )

2, (si ∈ W ∧ sj ∈ W ) ∨ (si ∈ W ∧ sj ∈ T ) ∨ (si ∈ T̄ ∧ sj ∈ W )

(4.2)

Theorem 4.4 Algorithm 4.1 correctly finds the edit distance, given a string s,

such that it is accepted by GT,W .

Proof. Consider any substring of length 1, i.e., si. If si ∈ W , two matching

open and close parenthesis need to be inserted to surround si, resulting in

edit distance 2, since words cannot be edited. If si ∈ T , the minimum edit

distance is 1, which can be achieved by deleting si (by rule S → ε), as we

do not allow brackets without any words.

For substrings of length 2, sisi+1, B[i, i+ 1] computes the edit distance

correctly. As C[i, i + 1] = B[i, i + 1] in this case, we claim the result of

C[i, i+ 1] is correct. These serve as the base cases. The detail of B[i, j] can

refer to Equation 4.2

Suppose, by induction hypothesis, Algorithm 4.1 correctly computes

minimum edit distance for all substrings of length at most l. We now

take any substring of length l + 1. Without loss of generality, let it be

smsm+1....sm+l+1. Taking m for instance as the position where first edit
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occurs by some optimal edit script P , such an optimal algorithm A has a

handle of options as following and we prove by showing that Algorithm 4.1

considers all the cases.

• Delete sm

In this case, sm ∈ T ∪ T̄ , and the minimum edit distance is 1 +C[m+

1,m + l + 1]. In Algorithm 4.1,it has the choice to set edit distance

as C[m,m + l + 1] = C[m,m] + C[m + 1,m + l + 1]. Based on the

induction hypothesis, C[m,m and C[m+1,m+l1] have been correctly

computed, so the answer of C[m,m+ l+ 1] is also correct in this case.

• Matches sm to some sj, j > m, and sm, sj ∈ T ∪ T̄ .

First we assume neither sm nor sj is a word.

(a) j = m+l+1 and sm � sj. In this case, the minimum edit distance

is C[m,m + l + 1] = min (C[m+ 1,m+ l], D[m+ 1,m+]). The

algorithm in this case computes B[m,m+ l + 1] = 0 and has the

choice to set edit distance as C[m,m + l + 1] = min(B[m,m +

l + 1] + C[m + 1,m + l], B[m,m + l + 1]+D[m + 1,m + l]); by

induction hypothesis, the second term in RHS(Right Hand Side)

is computed correctly.

(b) j = m + l + 1, sm ∈ T ∪ T̄ and sj ∈ T̄ , and sm is substi-

tuted to match sj. In this case, the minimum edit distance is

C[m,m+l+1] = min (m+ C[m+ 1,m+ l], 1 +D[m+ 1,m+ l]).

The algorithm in this case correctly computes B[m,m+ l+1] = 1

and has the choice to set edit distance as C[m,m + l + 1] =

min(B[m,m+ l + 1] + C[m+ 1,m+ l], B[m,m+ l + 1]+ D[m+
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1,m+l]); by induction hypothesis, we get C[m+1,m+1] correctly,

so the answer to C[1,m+ l + 1] is also correct.

(c) j = m + l + 1, sm ∈ T̄ and sj ∈ T . To form a valid

match, the minimum edit distance is C[m,m + l + 1] =

min (2 + C[m+ 1,m+ l], 2 +D[m+ 1,m+ l]. The algorithm in

this case correctly computes B[m,m+l+1] = 2 and has the choice

to set edit distance as C[m,m + l + 1] = min(B[m,m + l + 1] +

C[m + 1,m + l], B[m,m + l + 1]+D[m + 1,m + l]); by induction

hypothesis, the second term in RHS is computed correctly.

(d) m < j < m + l + 1. In this case, the substring is regarded

as consisting of several adjacent substrings, and the minimum

edit distance is C[m,m + l + 1] = C[m, j] + C[j + 1,m + l +

1]. This alternative is also covered by Algorithm 4.1 as show

in Equation 4.2. As both C[m, j] and C[j + 1,m + l + 1] have

correct result, C[m,m+ l+ 1] is computed correctly by induction

hypothesis.

• Matches sm with sj, and sm ∈ W or sj ∈ W

In this case, we must insert some open bracket or possibly a corre-

sponding close bracket as well, depending on which of the two is a

word, or both are. The success of the algorithm is highly relies on the

correctness of Equation 4.2.

If sm ∈ W and sj ∈ T̄ , the best edit is achieving by inserting a

matching open bracket before sm at a cost of 1.When sj ∈ W and si ∈

T , the repair is achieved by inserting a matching close bracket after sj

with one edit. These two cases are correctly covered in Equation 4.2
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case(1).

If sm ∈ W and sj ∈ T , we have to perform at least two edits: substi-

tuting sj to some close bracket and inserting a matching open bracket

in front of sm. What’s more if sj ∈ W and sm ∈ T̄ , the cost is also

2, by substituting sm to some open bracket and inserting a matching

close bracket after sj. B[m, j] is also equal to 2 according to case(3)

in Equation 4.2.

Finally if both sm and sj are both words, none of them could be

deleted or substituted, but are repaired by inserting matching open

and close brackets before and after sm and sj respectively with two

edits. Equation 4.2 covers this alternative in case (3).

These options are exhaustive, as Algorithm 4.1 considers all the option-

s, computing edit distance correctly in all these cases and returning the

minimum. Hence, Algorithm 4.1 computes minimum edit distance for any

substring of length l + 1 correctly. Therefore, by induction, the proof is

established.

4.3.1 Well-formed Substring Removal

As discussion in Chapter 3, well-formed substrings removal could significantly

speed up the dynamic programming algorithm while preserving the optimality

of edit distance. We can preprocess the string to enable faster computation by

removing well-formed substrings using a stack.

The exact value of each text is not our concern but the position where each

of them appear is. So the input string can be viewed as a list of String Blocks,

tokenized by text.
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Definition 4.5 String Block

A string block, denoted Bi, is a substring of brackets that appears between

two consecutive occurrence of texts tk and tk+1, or before the first text, or after

the last text.

For example, the string s = aaawāāawāāāā has three blocks, B0 =

aaa,B1 = āāa, B2 = āāāā. According to Definition 4.1, only brackets that

belong to different blocks can be matched.

Unfortunately, such removal does not guarantee a repair with optimal edit

distance. For example, the string aaawāāawāāāā has edit distance 1 (by re-

placing the second ā to a) but the pruned string awāāā has edit distance 2.

Luckily the result will not be arbitrary bad but stays within at least a factor

of 2 after well-formed substring pruning, which is given in Theorem 4.6, and

during the experiments we find the difference on real data is much better than

2-approximate in most cases.

Suppose we have a new edit distance function which is exactly similar to

the original edit distance, except that two consecutive open brackets (resp.

close brackets) in a block can be deleted at a cost of 1. Obviously, if this new

edit distance function has minimum distance d, the optimal edit distance for

the original problem is bounded by 2d (we pay 2 unit cost to delete two open

(resp. close) brackets in a block). The main insight is to consider this new

function, and prove if the optimality of new edit distance function is preserved

with well-formed substring elimination, and hence guarantees 2-approximation

to the original problem.

Theorem 4.6 Removing well-formed substrings obtains a 2-approximation on

the new edit distance.
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Proof. Let s be the original string and sr be the string obtained after re-

moving well-formed substrings from s. Let decompose s and write it as

concatenation of substrings r0s1r1s2r2...skrk, where sr = s1s2...sk and each

of ri, i = 0, 2, .., k are well-formed substrings, with the possibility of r0 and

rk being empty.

First within each block, consider the substrings of the form T ∗T̄ ∗( a

block is a mixture of (T ∪ T̄ )∗), though they are well-formed according to

the grammar gramparen, these substrings do not comply to grammar GT,W .

Therefor such substrings will be kept and are part of sr as well. Perform

the same set of edits done by some optimal algorithm A on both s and sr,

and let the resultant strings be t and t′ respectively. Clearly, it is enough

to show for our proof that edit distance of t and new edit distance of t′ are

the same.

Next consider the texts in t that are not surrounded by matching open

and close brackets and consider the edits done by the optimal algorithm to

make them surrounded by at least one matching open and close bracket.

Clearly, we can perform the same edits on t′ as well to make sure each text

surrounded by at least one open and close bracket. The resultant strings

after these edits are denoted as z and z′, then it is enough to show that edit

distance of z and new edit distance of z′ are identical.

Each block, except the first and the last blocks of z and z′ have the

structure of T̄+T+. The first block has the structure of T+, whereas the

last block has the structure of T̄+. Now consider only the brackets in z (z′)

and consider an optimal algorithm for the Bracket Language Edit Distance

Problem, which always prefers deletion over substitution whenever possible.

Such an algorithm will never make substitutions within the same block of z
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(z′) to match a T̄ with a T – the algorithm can simply delete both of these

tags at the same cost of 2.

Therefore, the only substitutions that the algorithm can possibly do

within a single block must happen solely within T̄+ or T+. This substitu-

tion cost is the same cost as deletion for the new edit distance where two

consecutive open or close tags can be deleted at a cost of 1. All the other

edits are either inter-block or consists of intra-block deletes. Therefore, the

new edit cost of z (z′) is at most the edit distance of z (z′) given by the

Bracket Language Edit Distance Problem, or Tag-Only Edit distance for

short. By similar arguments, the tag-only edit distance of z (z′) is at most

the new edit distance of z (z′). Hence the tag-only edit distance and new

edit distance of z (z′) are the same. Also, the well-formed substrings of

z, considering only tags and considering both text and tags are identical.

We know from Theorem 3.8, that well-formed substring removal preserves

tag-only edit distance–therefore, the new edit distance of z′ is same as z

and the proof is established.

4.4 Incremental Approach Based on BAB

The Algorithm 4.1 is intended for computing the edit distance, along with

perhaps a single repair, but does not provide a natural way of enumerating

multiple repairs. Here we identify the different scenarios in which repairs should

be handled as well as a set of possible repairs for each of these scenarios, similar

to our approach for the tags matching case. We start by giving pushdown

automata in Figure 4.1 that allows a well-formed string to be verified.

There are five states in the automata, with directed edged labeled with
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transition condition. State 0 and State 4 are the start and sink states. The

other three states represent the status during processing a string: with an open

bracket x, or open bracket with word xw, or open bracket with word with

close bracket (xwx̄)∗. We have shown in Chapter 3 that only considering these

violations, rather than eagerly repairing the string, leads to the optimal edit

distance while making the running time proportional to the number of errors

rather than the size of the string. We apply the same idea to in this problem:

only scenarios not covered by the automaton in Figure 4.1 are considered. We

show how to deal with these scenarios in Table 4.1.

0 1 
open ;  

; empty 

1 4 2 3 

open ;  

w;  
2

w;  

3

close ; match 

close ; match ; empty 

open ;  

Figure 4.1: Automata for Grammar GT,W

By contrast, there are nine scenarios based on the automaton in Figure 4.1.

Furthermore, the alternatives for open-close bracket mismatch depend on which

state the mismatch occurs in. If this occurs in State 3 then we consider the

following alternatives:

• Make the open and close brackets match via substitution.

• Pop the open bracket from the stack.

• Delete the close bracket in the string.

• Substitute the open bracket in the stack to close.
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Table 4.1: State Transition Table

State Token Action Next State

0 open push to stack and advance string 1
0 close sub close in string to ghost open 0

delete close from string 0
0 word insert ghost open before word 0
0 null 4
1 open push to stack and advance string 1
1 close sub open from stack to close and 1

pop matching pair from stack, if possible
pop open from stack, if possible 1
sub close from string to ghost open 1
delete close from string 1

1 word 2
1 null clean-up 4
2 open insert matching close to string before open 2

sub open in string to matching close 2
delete open from string 2

2 match pop from stack and advance string 3
2 close sub string to match stack 2

insert matching close in string, if possible 2
if next token is word, delete string close 2
else push matching open to stack 2

2 word 2
2 null insert matching close to string 2
3 open push to stack and advance string 1
3 match pop from stack and advance string 3
3 close sub close in string to match stack 3

delete close in string 3
pop open from stack 3
sub open in stack to close and 3

pop resulting match from stack, if possible
sub close in string to ghost open 3

3 word insert ghost open in string (before word) 3
3 null clean-up if non-empty stack 4

• Substitute the close bracket in the string to ghost-open. (Equivalently,

substitute the right to match the left.)

However, if this occurs in State 2, then there are different options since the
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word(s) must be surrounded by a pair of brackets:

• Make the open and close brackets match via substitution.

• Insert a matching close bracket, if possible.

• If the next token in the string is a word, then delete the close bracket;

otherwise, insert a matching open bracket.

Any input string can be partitioned into blocks of brackets separated by text.

There are five additional scenarios in addition to the three for tags matching

case:

(1) a close bracket occurs immediately after an open bracket;

(2) an open bracket occurs immediately after a word;

(3) a word occurs immediately after a close bracket;

(4) a word occurs as the first token; and

(5) the string terminates in a word.

For these additional scenarios, there are various edit alternatives, which are

listed in Table 4.1.

The so-called “clean-up” phase referred to in States 1 and 3 of Table 4.1 is

invoked if the stack is non-empty when the string terminates. In this case, the

goal is to take the existing stack, paying attention to the blocks that each stack

open bracket is part of, and perform the minimum number of substitutions and

deletions to obtain a well-formed string. For example, suppose there are three

blocks on the stack, the first with ab, the second with cde and the third with

fg. By deleting d and replacing c with b̄, f with ē and g with ā, the resulting

brackets are well-formed.
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Example 4.3 Let s = aāāwaaawāāā. Repair scenario (4) occurs after the

pair aā in the first block (since there is no text separating them), causing ā to

either be replaced with an open bracket or deleted (the other two alternatives

from State 1 are not possible). Scenario (4) occurs again at the next ā in

the string with the same edit alternatives. Suppose we choose the substitution

alternative both times. Then Scenario (6) occurs after the first w, which we

can repair by inserting a close, substituting the open to a close or deleting

the open. Suppose we choose to insert a close. The remaining elements will

be read without problem until the string terminates, at which point the stack

will be non-empty with two open brackets. At that point, they must both be

deleted since they both occurred in the same block. The final repair, then, is

aaawāaaawāāā with a cost of 5. Had we instead chosen the alternative to

delete the close brackets in Scenario (4), the string would have been repaired

to awāaaawāāā at a cost of 3, which is optimal.

Theorem 4.7 The automaton given in Table 4.1 with branches to all the

above edit alternatives, obtains a 2-approximation on edit distance.

Proof. The main idea is to show the states considered in our automaton are

the only scenarios where repair has to be made if well-formed substrings are

removed greedily. Consider an optimal algorithm for the new edit function

defined in Theorem 4.6, it can be shown that at each error state, repair

choices considered are exhaustive and hence there exists a branch leading

to optimal cost for the new function. Since, any optimal algorithm for the

new edit function returns a solution within twice the minimum edit distance

of our problem, the claim is established.

As before, for the MaxBenefit strategy, all alternatives are considered in turn
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and then the one resulting in the largest number of brackets that can be paired

to matches is chosen. For MinCost, we employ the same cost estimation formula

as the tags matching case, since it provides a lower bound; the alternatives are

sorted with respect to these costs.

4.5 Experimental Evaluation

This section gives a thorough experimental evaluation of methods for Bracket

Language with Text Edit Distance Problem, against the Dynamic Programming

(DP) and branch-and-bound algorithms.

4.5.1 Experiments Setup

All algorithms were implemented in Java and executed on a server with a Quad-

Core AMD Opteron(tm) Processor 8356@1 GHz and 128 GB RAM running

Centos 5.8. We used the following three real data sets:

• BGP1 real-time routing information provided by BGPmon.We used a por-

tion of the stream output over some time interval.

• Tree Bank2 annotated linguistic text, with average depth 7.8 and max

depth 36. We extracted random subtrees with max-depth no less than 20

and merged them together.

• Web Repository 3 an Web repository of XML documents containing

180, 000 files, 10% of which are reported with begin and end tag mis-

matched.

1http://bgpmon.netsec.colostate.edu/
2http://www.cis.upenn.edu/~treebank/
3http://data.politicalmashup.nl/xmlweb/

http://bgpmon.netsec.colostate.edu/
http://www.cis.upenn.edu/~treebank/
http://data.politicalmashup.nl/xmlweb/
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Both Tree Bank and BGP normally satisfy the grammar GT,W . For the XML

Collections, we pick a set of 80 RSS feeds which also satisfy the grammar GT,W .

We use the same error model as in Chapter 3 by choosing from six different

operations independently each time and inject it into the documents, and the

detail of the error injection model will not be presented.

4.5.2 Effectiveness of Edit Distance Approach

To evaluate the goodness of our edit distance based approach, we started from

a well-formed string s, injected errors randomly to obtain string s′, ran our

methods to find a repair s′′, and compared s′′ against the original well-formed

string s. Since the original string and the repair are both well-formed, we are now

able to use approximate tree matching algorithms to evaluate the goodness of

our repairs. For this, we used the recently developed RTED algorithm from [68],

which uses the standard tree edit operations [86]: delete a node and connect

its children to its parent, maintaining the order; insert a new node between an

existing node, v, and a consecutive subsequence of v’s children; and rename the

label of a node. We compared our approach against the rule-based heuristics for

dealing with open-close tag mismatches: 1) delete the open tag; 2) delete the

close tag; and 3) substitute the close tag to match. In the following experiments,

we present the best of these three heuristics.

We used a data set of 100 strings from Tree Bank consisting of 1,000 tags

and around 8 errors, with uniformly distributed errors.

Figure 4.2(a) shows the tree edit distance, where the x-axis indexes all of

the 100 data sets sorted by the tree edit distance of Exhaustive repair, which

is the branch-and-bound algorithm that tries all five choices at each branch

point. There were 20 strings for which our method obtained dTED(s, s′′) = 0,



4.5. Experimental Evaluation 81

a complete reversion of the string compared to the original, and over 60% of

the strings had dTED(s, s′′) ≤ 3. In contrast, the rule-based heuristics obtained

strings with average tree edit distance 25.

In addition, we also did the following comparison. Starting from the original

(well-formed) input string s, we injected errors to obtain string s′ and computed

the string edit distance between s and s′. Then we repaired the string to

obtain string s′′ and computed the string edit distance between s′ and s′′.

Finally we calculated dSED(s,s′′)
dSED(s,s′)+dSED(s′,s′′)

as a measure of how well the error

was “undone”, where 0 means exact reconstruction and 1 means the repair

resulted in no improvement. We compared our approach with the rule-based

heuristics using this measure on real data. Figure 4.2(b) plots this ratio for

both methods. The rule-based heuristic ranges from 50% to 100%, with an

average of 80% while Exhaustive had an average ratio of 20% with about 20

strings having ratio 0. In fact, Exhaustive beat rule-based on all the 100 strings

except one. From these experiments, we conclude that our edit distance based

approach succeeds in reverting the strings towards their original form, far more

than the rule-based heuristics.
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Figure 4.2: Goodness of Exhaustive and Rule-Based Repairs
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We also tested our approach using data from Web Repository , which con-

tains real malformed XML data. Since no gold standard of what was intended

by the creator of any of these XML documents was available to evaluate good-

ness of repair, our experiments compare the number of operations to obtain a

well-formed string using our methods with that obtained using the rule-based

heuristics. With number of tags ranging from tens to thousands, Figure 4.3

presents the results on real data. With few errors in the string, our approach

was only marginally better than the rule-based. However, there was up to an

order of magnitude difference for strings requiring at least 10 edit operations to

repair.
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4.5.3 Single Repair

We ran experiments using the dynamic program for repairing documents with

text (satisfying GT,W rather than GT ) as well as the following analogues of tags

matching(or tags-only) methods: MaxBenefit, MinCost and Hybrid. Figure 4.4

presents performance as a function of number of errors, ranging from 6 to

20 (with fixed length 40,000) on BGP and 2 to 16 (with fixed string length

4,000) on Tree Bank . DP again is the slowest while MinCost is the least
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Figure 4.4: Single-Repair, Error Number

accurate. MaxBenefit is again both more accurate and faster than MinCost

and Hybrid is slightly faster but less accurate than MaxBenefit. With the well-

formed substring removed, the average string size in Figure 4.4 decreases from

40,000 to 100 ∼ 400 on BGP , and from 4,000 to 60 ∼ 500 on Tree Bank . The

running time for DP grows quickly, due to the increase in string length, while

other methods are less affected by errors. MaxBenefit approximates DP well in

edit distance and is faster by up to two orders of magnitude.

4.5.3.1 Retaining Well-formed Substrings

As proved in Sect 4.3.1, the DP algorithm, without well-formed substring elim-

ination, is 2-approximate optimal. To study its effects on accuracy and running
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Figure 4.6: Well-formed Substring Removal

time, we pick one Tree Bank dataset with average string length 1, 000, average

error number around 8. Figure 4.6 exhibits the relative performance with and
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without well-formed substring pruning.

There is an insignificant decrease in edit distance for DP, from 8.19 to

8.14, but a significant increase in running time, from 1, 000ms to 70, 000ms.

MaxBenefit, MinCost and Hybrid exhibited a small increase in both edit distance

and running time. Recalling that these methods are randomized, they may be

partly responsible for part of the difference. With a longer string, it takes much

more time to build the suffix stacks, leading to the increase in running time.

From these evidences, we conclude that well-formed substring is a useful pruning

strategy in speeding up the algorithm with little accuracy loss.

4.5.4 Multiple Repairs

Single-Repair Performance: Figure 4.7 gives performance versus number of

errors, ranging from 6 to 20 on BGP (string length 40,000) and from 2 to 16

on Tree Bank (string length 4,000). The edit costs were close to optimal for

all methods except MinCost++, especially on BGP . MaxBenefit++ was the

fastest and DP was the slowest with one exception: when error number is 20

on BGP (where the string length is very small after pruning). On Tree Bank ,

when the error number is 16 and the string length is 500, Exhaustive still beats

DP by an order of magnitude. In general, the advantages of branch-and-bound

methods are seen with strings of large sizes and few errors.

Figure 4.8 illustrates the scalability versus string length with roughly 12

errors for BGP and 8 errors for Tree Bank . Not surprisingly, Conservative was

the second best after Exhaustive. MaxBenefit++ was superior to MinCost++

on Tree Bank but not on BGP , which shows that the heuristics they’re based

on are complementary. After pruning, the string length remains around 150 for
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Figure 4.7: Multi-Repair, Error Number

BGP and 300 for Tree Bank , which explains the stability in running time for

DP on both datasets. Nonetheless, DP is slower than Exhaustive by two orders

of magnitude on Tree Bank .

Multi-Repair Performance: Figures 4.9 and 4.10 give the performance and s-

calability of branching methods for finding 5 repairs. Again, MinCost++ consis-

tently had the worst accuracy. On Tree Bank , Conservative beats MinCost++

on both accuracy and speed, which shows the MinCost heuristic, does not work

well in some cases as few of its branches led to low-cost repairs. The constancy

in string length after pruning is the main reason why the running time for both

datasets is fairly constant with increasing string size. The average edit distance



4.5. Experimental Evaluation 87

 8

 10

 12

 14

 16

 10  20  30  40  50  60  70  80

E
di

t D
is

ta
nc

e

String Length(*103)

Dynamic
Exhaustive

Conservative
Moderate

Liberal
MinCost++

MaxBenefit++

(a) On BGP data

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1  2  3  4  5  6  7  8

E
di

t D
is

ta
nc

e

String Length(*103)

Dynamic
Exhaustive

Conservative
Moderate

Liberal
MinCost++

MaxBenefit++

(b) On Tree Bank data

 10

 100

 1000

 10  20  30  40  50  60  70  80

R
un

ni
ng

 T
im

e(
m

s)

String Length(*103)

Dynamic
Exhaustive

Conservative
Moderate

Liberal
MinCost++

MaxBenefit++

(c) On BGP data

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8

R
un

ni
ng

 T
im

e(
m

s)

String Length(*103)

Dynamic
Exhaustive

Conservative
Moderate

Liberal
MinCost++

MaxBenefit++

(d) On Tree Bank data

Figure 4.8: Multi-Repair, String Length

of Moderate, Liberal and MaxBenefit++ seem smaller than even Exhaustive

when string length equals to 8,000; however, this is partly due to them finding

no more than 3 repairs.

K-Repair Performance: We issued queries to find K repairs for K between

1 to 20; the results are shown in Figure 4.11. The methods that prune more

aggressively failed to return as many as K repairs in some instances. Only

MinCost++, Conservative and Exhaustive were capable of returning K repairs.

Exhaustive gave the smallest average edit distance but at a much higher running

time; Conservative was comparable to MinCost++ but retrieved repairs with

smaller average edit distance, especially on Tree Bank . With increasing K, the
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Figure 4.9: top-5 Repairs, Error Number

average edit distance grew slowly while the running time grew linearly, which

indicates some degree of scalability.

4.6 Conclusions

In this chapter we introduce the algorithms on repairing documents with a more

restricted constraint, where text must be embedded within a pair of matching

brackets(tags). Such constraint is the most commonly used constraint for semi-

structured documents. With minimal edit distance as the optimize goal, most of

the strings are repaired towards the right directions, proved by our experimental

results on examining the number of errors correctly undone. However, there
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Figure 4.10: top-5 Repairs, String Length

are still cases when the repair may be distant from the original string, as there

could be some hidden patterns in the documents.

With no companying schema, the two heuristics we use are based on local

benefit and reduction in edit cost, which are far from enough. Inferring, from the

document at hand, the intention of user or the whole picture of the documents,

is impossible. One possible extension to achieve a better result is by mining the

hidden patterns, such as frequent q-grams, or frequent sub-trees, which can be

extracted from the well-formed sub-strings.
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Figure 4.11: top-k , Scalability



Chapter 5

DETECTING STRUCTURAL

ANOMALIES WITH

EXPLANATIONS

Even though a document is well-formed in terms of tags, it is not a guar-

antee of error-free. Many works have been contributed to semantic validation

of semi-structured documents, but few focus on the basic syntactic study. In

this chapter, we concentrate on detecting a prevalent structural anomaly in

semi-structured data, which we refer as unexpected element error. Unex-

pected element error occurs whenever there are missing or spurious elements

in the data. We propose novel techniques to detect unexpected element er-

rors through a controlled exploration of a lattice structure. Our method also

provides plausible reasoning for every reported error and a summarization

technique based on variations of set cover for concise reporting. We conduct

extensive experiments on several real data sets to verify the usefulness of the

proposed techniques. Finally, we present an online visualization tool to assist

interactive detection of anomalies.

91
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5.1 Motivation

The emerging of semi-structured data brings in flexibility and easy customiza-

tion. A normal user could learn how to construct one with some basic training.

Enormous works have been done on detecting data inconsistency in relational

database. Functional dependency, inclusion dependency, and conditional func-

tional dependency [39, 38] are some representatives of the kind. But few efforts

from the database research community have been devoted to cleaning the struc-

tural errors. In general there are two schools of structural errors: mismatched

tags(caused by tag missing or tag interleaving), and unexpected elements(such

as elements not defined under its parent, or repeated occurrence of elements).

Mismatched tags stop the document from being parsed, and unexpected nesting

breaks the intention of the document, which is likely to be a sign of incomplete

or duplicated data.

Errors from the first school have been thoroughly studied in previous chap-

ters. Errors of the second type are prevalent in real life as well, but not exten-

sively studied. For instance, in the DBLP dataset, we get some proceedings

with multiple year, which turned out to be duplicated records; and some

inproceedings with multiple editor, which are expected to be author. Such

phenomenon exists in many other widely used datasets, like Mondial, Unipro-

t,etc [77]. While querying these noisy datasets, such structural errors may give

incorrect answers misleading the users and take extra query processing time.

Pointing out such un-expectations can help improve data quality and reveal to

user the hidden constraints in the document that s/he may not aware of.

Schema, such as DTD (Document Type Definition) and XSD (XML Schema

Definition), designed to define document’s expected structured, can be used for
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document validity verification. To some extent, schema can help alleviate the

pain. But schema only is far from satisfactory, for three reasons. First, schema

could be oversimplified and cannot express all the structural constraints exactly.

While writing the document, the user may have some rules of expertise in mind,

but not explicitly expressed in schema. E.g. in the DBLP dataset, most users are

aware of the difference between an author and an editor: an inproceedings

has multiple author and a proceedings should have some editor , though

it is not explicitly restricted by the DTD. But there are few cases, where the

author sub-element takes the place of an editor, and vice versa, due to the

inconsistent understanding over the hidden rules. Second, data and schema

are seldom updated simultaneously. As data changes quickly, imposing schema

on data would be too expensive since schema should be updated accordingly,

incurring lots of maintenance efforts. As in DBMS, schema is usually designed

ahead, when more data are inserted, there come new requirements and we

should avoid shoehorn the new data into obsolete schema. Third, only a small

portion 24% [49] of the semi-structured documents online are associated with

schema. While dealing with the remaining 76% documents, there is no rule to

verify against. Inferring one such schema seems to be an alternative at the first

glance. But non existing works on schema inference [19, 19, 18] seriously notice

the price of errors. They either assume the data is clean or simply denote those

low frequent elements as error and ignore them.

Considering the large scale of data and complexity in schema design, the

alternative of consulting a domain expert is far from practical. Hence we need a

data-driven approach to be used during the data quality management process.

In the following sections, we will show elaborate examples from real world and

later present how to capture such errors.
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5.1.1 Motivating Examples

“Not expected elements” and “Element content does not follow the DTD”

are the main reasons leading to the invalidness of documents, while checked

against XSD and DTD respectively [49]. However, we cannot guarantee that

those following the schema behave as expected. For this purpose, we conduct a

thorough study against one real dataset, Mondial . In the following section, we

illustrate some interesting findings, serving as our motivation of this work. We

take two copies of the dataset published at different time, showing their changes

over the time. The two versions for Mondial selected are those published in 2002

and 2009 1. Mondial dataset is compiled from several geographical Web data

sources, describing geographical data such as countries, mountains and seas.

From the view of structure, we only examine the occurrence of elements,

and illustrate the result in Figure 5.1. Each figure consists of two parts: the

query tree in dashed rectangle and a table at the bottom. The query tree filters

the elements we need and the table shows the difference for the two datasets,

with the row headers specifying the corresponding year of data.

(a) Intra-Element Inconsistency (b) Inter-Element Inconsistency

Figure 5.1: Suspicious Elements in Mondial

The query tree in Figure 5.1(a) is of height three. The leaf nodes are labeled

as [#name op v], denoting filtering condition on frequency of city, whether
1http://www.dbis.informatik.uni-goettingen.de/Mondial/

http://www.dbis.informatik.uni-goettingen.de/Mondial/
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it is equal(=), or larger(>) than a value v. The query selects a set S of city

elements under country, and further puts each element s ∈ S into one of the

three groups, with frequency of name equals to 0, 1 or larger than 1. From the

table, we can see that for both datasets, only a small portion of city elements

have multiple name compared with other two groups. We check the value of

these elements, and find 9 of them are either abbreviation or duplicated values

in different languages. But for the Mondial 2009, all city have exactly one

name as expected.

Figure 5.1(b) gives another example on how potential errors can be detected.

The query tree on the top searches city with different children: population,

located at, and a mixture of the two. Here the label [c::elem ] denotes a

predicate or filter condition: having some child named elem.

Counting the number of elements containing either population or located

at alone dose not reveal anything special, as shown in the first two columns.

From the third column, however, an interesting observation arises: in Mondial

2002, the two elements are very likely to present together whenever there is

a located at. So the 3 city contains located at but no population are

suspicious here. But for the Mondial 2009 dataset, the number of city containing

located at increases significantly while the number of city containing both

drops. The reason is two-fold. The first cause is the updates in the Mondial

schema from 2002 to 2009. Many cities under country have been migrated

to a province element, which is also reflected in Figure 5.1(a), the number

of city under country drops from 557 to 304. The other season is the

population information is not added any more since 2002, while the located at

information does.

The above two examples shed lights on how to detect errors: First, skewed
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distribution on number of occurrence could be a good sign of erroneous ele-

ments, where the minority or rare cases could be the errors. Second, the exis-

tence of sibling elements could affect the distribution and reveals more potential

problems.

5.2 Problem Statement

A well-formed semi-structured document, consisting of nested data, can be

naturally abstracted as a single document tree 2. Multiple document trees can

be merged into a single tree by connecting them to a virtual root. For XML

documents, each node in the tree corresponds to one element in the document.

We use label tei for element ei associated with a node in the tree.

Given a document tree D, our goal is to detect all structural anomalies, and

explain these anomalies concisely.

We use standard XPath semantics to denote elements and paths in the

document tree. For example, book[child :: editor] selects all elements book in

the tree that have at least one editor as a child, child :: book[child :: editor]

selects all elements book that are children of the current node in the tree and

have at least one editor as a child, and child :: book[child :: ∗] selects book

which are again children of the current node and have at least one child etc.

A structural anomaly must exhibit certain deviation from expectation, when

considering appropriate conditional distribution. In this paper, we capture a

large class of conditional distributions (details in Section 5.3) where we observe

the frequency distribution of a target (which is a simple element) under a con-

2Well-formedness implies data are properly nested with matching beginning and end
brackets (could be tags in XML, or square bracket in JSON or \begin(...)/end(...) com-
mands in Latex
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text (which can be complex). For example, considering Figure 1.3, we would

want to compute the frequency distribution of the target province under the

context of “country with at least one child as state”. If we observe a fre-

quency distribution that is heavily skewed, then that might be an indication

of anomalous behavior. For example, if the obtained frequency distribution for

element province is 200 vs 1 for frequency of 0 and ≥ 1 respectively then this

skew strongly suggests that the only element country having both state and

province as children is erroneous. The triplet comprising of the context path,

target tag and frequency distribution together serves as an explanation for re-

porting this error:“a country may not have both state and province underneath

it”. Refer to Figure 5.2 for a pictorial depiction.

Figure 5.2: Explanation for Structural Anomaly: the context path
selects a collection of nodes e and frequency distribution F =
{fi1 , fi2 , ...} is computed based on how many times a target element
t appears as a child of e, where fi1 represents there are fi1 elements
satisfying the context such that each has i1 children with target
tag t.

Definition 5.1 Explanation(ep)

Given a document tree D, an explanation is a triplet

φ = (c, t,F),
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where c is the context path, t is the target tag, and F represents the distribution

of occurrences of elements with tag t as children of nodes satisfying the context.

Definition 5.2 Structural Anomaly

Given an explanation φ = (c, t,F) and a skew threshold 0 < α < 1, elements

that contribute to frequency fix where fix < (
∑

x fix) ∗ α are called structural

anomalies due to φ given α.

All the structural anomalies identified due to explanation φ for a threshold

α as Aφ,α. When α is fixed, we will often omit α from the subscript and use

Aφ to denote the set of anomalies due to φ.

Example 5.1 Consider the example in Figure 1.3, and the following explana-

tion

φ1 = 〈country[child :: state], province,F1〉

Suppose, fi < α|F|, for i > 0, then we expect country elements having

state as children, to not have any child element province.

Example 5.2 Consider the following explanations to understand the distribu-

tion of district under city.

φ2 = 〈country/city, district,F2〉

φ3 = 〈country/province/city, district,F3〉

φ4 = 〈country/state/city, district,F4〉

Let α = 0.01. From the frequency distribution, we obtain Aφ2 contains all

city elements that have 0 occurrence of districts. On the other hand Aφ3 and

Aφ4 contain all city elements that have non-zero occurrence of districts.
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5.2.1 Concise Representation for Anomalies

Suppose, we obtain all structural anomalies for a fixed α by exploring each

possible explanations. Then returning every such explanation, may be over-

whelming for a user to understand. A concise representation of summarization

is essential for a better understanding of the anomalies and take appropriate

repairing alternatives.

Example 5.3 Reconsider the example in Figure 1.3 and consider the following

explanations.

φ5 = 〈country/province, name,F5〉

φ6 = 〈country/state, name,F6〉

φ7 = 〈country/city, name,F7〉

Let α = 0.01. Suppose, F5 = {f0 = 1, f1 = 150}, F6 = {f0 = 2, f1 =

150}, F7 = {f1 = 0, f1 = 100}. Clearly Aφ5 , Aφ6 , and Aφ7 report a province,

two states and a city each under country having no name respectively.

Now, consider an alternate explanation.

φ8 = 〈country/∗, name,F8〉

The above explanation has a frequency distribution F8 = {f0 = 4, f1 = 400},

and Aφ8 reports the union of elements reported by Aφ5 , Aφ6 and Aφ7 . However,

φ8 gives a much more concise explanation: “any city, state or province under

country must have a name”.

Given an α, we refer the elements contained in Aφ,α as elements covered

by Aφ,α. Let Aα = ∪φAφ,α. Our goal is to detect a minimum number of

explanations to cover all elements in Aα. If the number of such returned
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explanations are still too many, we may want to only return top- k explanations

covering the maximum number of anomalous elements. However, this approach

needs a close scrutiny.

Suppose, each province and state must have only one name, but a city may

possibly have two names. For example, Mumbai and Bombay refer to the same

city in India. Consider the following example.

Example 5.4 Set α = 0.01 as before and consider explanations φ5, φ6, φ7

and φ8. Suppose F5 = {f1 = 500, f2 = 0}, F6 = {f1 = 200, f2 = 1},

F7 = {f1 = 10, f2 = 6}. Then, F8 = {f1 = 710, f2 = 7}. If we report Aφ8

then it returns 6 false positives. Otherwise, we have to return Aφ5 and Aφ6

separately, and that needs one extra explanation to be reported. In the worst

case, if we want to avoid all false positives, the number of returned explanations

may be large.

We do not want to report too many false positives, on the other hand,

avoiding all of them may result in a large number of explanations. To overcome

this difficulty, we associate with each explanation a weight, an aggregated score

representing the number of false positives that it covers and its description

complexity. Note, that if we return an explanation, its weight then indicate how

many extra non-erroneous elements need to be examined by a user, and the

number of tags used to describe the explanation. So explanations which cover

fewer non-erroneous elements and are more concise will be preferred. Given

such a weight function and a budget k, we want to return k explanations within

total weight W such that they cover a maximum number of truly anomalous

elements.

Definition 5.3 Structural Anomaly Summarization
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Given a document tree D and a skew threshold α ∈ (0, 1), suppose all structural

anomalies are given by Aα with associated weights, w : Aα → I+, and their

explanations by Σ = {φ1, φ2, ...}, then for given parameters k and W , the

structural anomaly summarization problem finds a set of k explanations such

that their total sum of weights is at most W and they together cover the

maximum number of elements in Aα.

Figure 5.3 shows the overview of the detection procedure. The first step

works on discovering anomalies elements, by designing Explanation and a sta-

tistical based method to infer the context aware number of occurrence. The

second step works on summarizing the explanations, so as to give user a con-

cise but accurate result. Finally, a list of elements is returned to users, with the

reason why they are presumed as anomalies.

Figure 5.3: Overview

In Sect. 5.3, we discuss how to generate the search space of explanations,

and relevant pruning strategies. The structural anomaly summarization problem

will be visited in Sect. 5.4.

5.3 Structural Anomaly Detection

In this section, we discuss the process of systematically generating a search

space to contain all the necessary explanations to detect Aα, and appropriate
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pruning strategies to keep the computation cost low.

5.3.1 Generating Context Path

The very first step for generating an explanation is to generate all possible

context paths. A document tree can be viewed as a rooted labeled tree, where

two paths, p1 = 〈e1, e2, ...el〉 and p2 = 〈e′1, e′2, ..., e′l〉 are identical iff tei = te′i

for i = 1, 2, ..., l for some positive integer l. Root of the tree has level 0

and level increases by an increment of 1 as we take each step away from the

root. It is possible to augment each node in a path with condition ci where it is

additionally required that ei must have certain siblings (or must not have certain

siblings) with labels tx1 , tx2 , .. etc. We use ei[ci] to denote such an augmented

node, and call such a path, an augmented path. Then two augmented paths

p1 = 〈e1[c1], e2[c2], ...el[cl]〉 and p2 = 〈e′1[c′1], e′2[c′2], ..., e′l[c′l]〉 are identical iff

tei = te′i and ci == c′i for all i = 1, 2, .., l. Our contexts consist of distinct

augmented paths. Structural anomalies can be captured by looking at the

conditional distribution of elements under each such context.

Consider an augmented path p = 〈e1[c1], e2[c2], ...el[cl]〉, level(e1) >

level(e2) > ... > level(el). We refer children of el as children of path p.

Define an indicator random variable Xt taking values {0, 1} for each distinct

label t and a random variable Yt again for each distinct label t taking values

in I+ (the set of positive integers). Given p, we let Dp(Yt | Xt1 = v1, Xt2 =

v2, ..., Xtl = vl.) to denote the conditional distribution of Yt given an instantia-

tion of Xt1 = v1, Xt2 = v2, ..., Xtl = vl over the children of paths identical to p.

We believe the space of conditional distribution that we consider is (1) sufficient

to capture all structural anomalies, and (2) looking at more involved frequency

spectrum of several Yt1 , Yt2 , ... conditioned on Xt1 , Xt2 , ..., Xtl obfuscates the
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explanation we provide for an anomaly. We allow conditions on each element

on an augmented path, except the first one, that is an augmented path must

look like, p = 〈e1, e2[c2], ...el[cl]〉, as most of them starts from the root which

has no sibling.

We use a restricted version of XPath semantics to generate the context

paths and show that together with target it captures the class of conditional

distributions that we consider.

In standard XPath, each path consists of a list of steps s1s2 · · · sm, where

si = axisname :: nodetest[predicate].

Example 5.5 Given step s = country[child :: state], it selects all country

elements that have at least one state element as a child. Here axisname =

child, nodetest = country and predicate = [child :: state].

For generating context path we limit the axisname to child, and the predicate

is also limited to child. We call this restricted XPath.

Lemma 5.4 Restricted XPath along with a target generates all possible condi-

tional distributions of the form Dp(Yt | Xt1 = v1, Xt2 = v2, ..., Xtl = vl) where

p is an augmented path of the form 〈e1, , e2[c2], ...el[cl]〉, and vi ∈ {0, 1}, i =

1, 2, .., l.

Proof. Consider any p = e1, e2[c2]. To generate Dp(Yt | Xt1 = v1, Xt2 =

v2, ..., Xtl = vl), consider if vi = 1 then set pti as child :: ti and if vi = 0 then

set pti as not(child :: ti). Similarly, if x ∈ c2 and a sibling with tag x must be

present then set px as child :: x. If a sibling with tag x must not be present

then set px as not(child :: x). Suppose x1, x2, ..xs ∈ c2. Use the restricted

XPath expression e1[px1 and px2 and ...and pxs ]/e2[pt1 and ... and ptz ] and

use t for the target to obtain the conditional distribution of Yt given the



104 Chapter 5. Detecting Structural Anomalies with Explanations

particular instantiation of Xt1 = v1, Xt2 = v2, ..., Xtl = vl. For any arbitrary

length of distinct augmented paths, lemma then follows by induction.

Example 5.6 The mutual exclusivity of state and a province un-

der country can be represented by considering the conditional distribution

Dcountry(Ystate|Xprovince=1) and Dcountry(Yprovince|Xstate=1). The correspond-

ing restricted XPath expressions are (1) country[child :: state] as context and

province as target, and (2) country[child :: province] as context and state

as target.

In general, a country may consist of province and/or city. Each

province can have districts underneath it. Similarly, each city may also

have districts underneath it. However to distinguish between regions marked

as city and province, it is unlikely for a city to contain districts when

a country has both province and city in it. We can capture the above

phenomenon, by the context path 〈country, city[province]〉 which can be rep-

resented as a restricted XPath expression country[child :: province]/city, and

we are interested in the distribution of district.

We let the restricted XPath to contain at most one wild card (*) entry that

matches with any label in nodetest. Allowing wild card is essential to summarize

the anomalies concisely as it allows grouping of explanations, but too many wild

card entries can make the explanation vague. We also allow predicates of the

form child :: ∗, but there cannot be multiple nodetests such that each of them

have predicate of the form child :: ∗. This restriction naturally plays a role how

the collection of explanations are generated to form the ultimate search space

(Section 5.3.3).
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5.3.2 Generating Frequency Distribution

Apart from a context and a target, each explanation contains a frequency dis-

tribution F which is straightforward to compute. Adopting the categorization

widely used in DTD cardinality quantifier, we only use 0, 1,≥ 2 for generating

the frequency distribution, that is, it has only three components.

If F has only one non-zero component, then such a distribution is called

consistent. On the other hand, if there are multiple non-zero components but

fi ≥ α ∗ |F|, ∀i, then such an explanation is called α-non-skewed. In general,

given an α, an explanation is clean if it is either consistent or α-non-skewed.

5.3.3 Generating Lattices of Explanations

We now explain the generation of explanations. We generate a single search

graph G = (V,E) consisting of possible context paths (restricted XPaths) as

vertices. For each target t, we select a subgraph Gt of G to explore, and

compute frequency distribution for t given each context c ∈ Gt- this generates

the space of explanations for t. We repeat this process for every t.

We consider every distinct node in the document tree as the starting point.

Suppose we start from the root of the document tree. We start expanding

the context by either exploring vertically in the tree by adding new elements or

horizontally by adding new predicates to existing node or by specializing a wild

card entry.

We first create a node corresponding to the root of the document tree, and

label it by the label of the root. Then we create a directed graph by adding

new nodes with the following three types of edges.

• Horizontal Expansion Given a node v with label tv =
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e1, e2[c2], e3[c3], ..., el[cl], we add a directed horizontal edge from v to

v′ such that v′ is obtained from v by either (1) adding (logical and)

an additional predicate of the form child :: elemName or not(child ::

elemName) with one of the existing predicate, or (2) by adding (logical

and) a predicate of the form child :: ∗ with one of ei that has no predicate

associated with it in v only if there exists no other wild card entry in ci′ ,

i′ ∈ {1, 2, .., l}/setminus{i} or (3) by specializing a wild card entry if

there already exists one in e1, e2, ..., el.

• Horizontal Shrinkage Given a node v with label tv =

e1, e2[c2], e3[c3], ..., el[cl], we add a directed horizontal edge from

v′ to v such that v′ is obtained from v by replacing either one of ei with

∗ if none of e1, e2, ....ei−1, ei+1, .., el contains a ∗.

• Vertical Expansion Given a node v with label tv =

e1, e2[c2], e3[c3], ..., el[cl], we add a directed horizontal edge from v

to v′ such that v′ = e1, e2[c2], e3[c3], ..., el[cl], child :: ∗ if e1, e2, ...., el

does not already contain a wild card entry.

We claim that the above edge addition process is sufficient to generate all

context paths from Section 5.3.1. Further, if we consider each component of

the subgraph induced by only the horizontal edges (horizontal expansion and

horizontal shrinkage), then each component is a lattice.

Lemma 5.5 The edge addition process (horizontal expansion, horizontal

shrinkage, vertical expansion) is sufficient to generate all distinct augmented

paths with at most one wild card entry.
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Lemma 5.6 Every connected component in the subgraph induced by the hor-

izontal edges form a lattice.

5.3.4 Pruning the Search Space

The above search graph generation process terminates when all distinct aug-

mented paths have been covered. But when exploring this graph for a specific

target to generate explanations, often, we do not need to explore this entire

search graph and can terminate early. Here we propose two such rules for

pruning the search space.

Consistent node in the search graph: Recall that a distribution is said

consistent, if it has only one non-zero component. Given an explanation φ =

{v, t,F} if F is consistent then the node v in the search graph is also consistent.

If v is consistent, then we do not explore any horizontal expansion edge from

v. The reasoning is clear, since if there is a horizontal expansion edge from v

to v′ then v′ is also consistent. Hence v′ will not lead to any explanation that

covers an anomaly. Therefore, this pruning strategy does not affect the overall

result.

Insufficient support: We expect the error rate to be low–less than α fraction.

Hence given a frequency distribution F , the expected number of elements in

error is at most α ∗ |F|. If |F| is sufficiently large, then by the standard large

deviation bounds such as the Chernoff bound, the probability that the number

of errors is much higher than α fraction is vanishingly low. This motivates us

to pick all elements that contribute to frequency bucket fi where fi < α ∗ |F|

as anomalies.

This reasoning is only valid when |F| is sufficiently large, otherwise a skew
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may not necessarily indicate errors. Let us consider a simple example.

Example 5.7 Suppose, α = 0.01, |F| = 10 then probability that 1 error

occurs is 10 ∗ 0.01 ∗ (0.99)9 = 0.091. Hence, even if we see a 1 : 9 skew, the

probability that the element contributing to 1 in the frequency distribution is

erroneous is only 0.091. Whereas, if |F| = 100, the same probability becomes

100 ∗ 0.01 ∗ (0.99)99 = 0.37, and hence we have higher confidence of reporting

error if we see a 1 : 9 skew.

Therefore, we use a context-aware counter θ on |F| such that if |F| < θ for

an explanation φ = (v, t,F), then we do not explore the node v using horizontal

expansion. If (v, v′) is a horizontal expansion edge, and φ′ = (v′, t,F ′) is the

explanation at v′ then |F ′| ≤ |F| < θ. Hence the decision to prune the

horizontal expansion edges from v is correct.

5.4 Structural Anomaly Summarization

Recall that each explanation φ = (c, t,F) gives rise to a set of anomalies

Aφ,α. The number of explanations covering at least one anomaly may be large.

Also, it is possible to cover the same anomalous element by multiple different

explanations. For easier verification and repairing anomalies, it is therefore

essential to concisely summarize the structural anomalies.

Fix an α, let us denote the search graph by G = {V,E}, where V is the set

of explanations φs and E consists of both horizontal and vertical edges. Any

node in this search graph that contains either a wild card entry in nodetest or

contains a predicate of the form child :: ∗ helps to group a set of explanations

that are connected from it by horizontal edges, but do not add any new true

structural anomaly. Hence, in order to generate the universal collection of
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structural anomalies, we discard any such explanation. Let the remaining of the

explanations generate the collection of anomalies Aα (with abuse of notation).

For each target t, consider Gt, and consider each lattice of explanations in

G. They are formed by considering the connected components of Gt induced

only by the horizontal edges. The nodes in each of these lattices that have no

outgoing edge (horizontal) are called leaves. Note that, they may have a vertical

outgoing edge associated with them. First, given the way we have created the

search space, if we consider the anomalies covered only by the leaves of the

lattices, we cover all of Aα.

Lemma 5.7 The collection of anomalies covered by the leaf nodes of the

lattices induced by the horizontal edges in G for each target cover Aα.

The above lemma follows from observing that the nodes connected by di-

rected horizontal edges from a node say v also cover all the anomalies covered

by v.

As we saw in Section 5.2, while use of explanations with wild card en-

tries help in summarization, they may lead to covering elements that are not

structurally anomalous. We therefore want to return a minimum number of

explanations that cover as many anomalies as possible, but at the same time

do not cover many structurally proper (non-anomalous) elements. Each expla-

nation φ is associated with a set of true anomalies that it covers, denoted by

Aφ. The number of non-anomalies that φ covers and the description length

of φ contributes to the weight w of Aφ. Each non-anomaly associated with

an explanation indicates a wasted effort to verify that element, and a longer

description length takes extra effort to understand. Since each explanation

provides a separate reason for an element to be considered as anomaly, even
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when an element is covered by more than one explanation, the user will have to

judge the applicability of each of the explanations separately. This results in an

additive cost function, and we arrive to the problem of structural anomaly sum-

marization where given parameters k and W , we want to find k explanations

with total weight not exceeding W that cover maximum number of elements

in Σ. This is exactly the size-constrained weighted set cover problem studied

recently in [46].

We first consider a simple setting, where weights are all 0. We show that

even when we have a lattice structure, allow at most one predicate, and all Aφ

have weight 0, still the structural anomaly summarization problem is NP-Hard.

Not only that, if we want to return a minimum number of rules covering a

certain percentage of anomalies, then it is as hard to approximate as the set

cover problem. Analogously, if we want to maximize the coverage given a fixed

number of rules, the problem is as hard as the maximum-k coverage problem.

Therefore, we can employ the algorithms for the size-constrained weighted set

cover problem for general set system over our search graph to summarize the

anomalies. We use one such algorithm, namely, Concise Weighted Set Cov-

er(CWSC) for our experiments.

The main hardness results stem from the fact that explanations in our search

space may generate set of anomalies with arbitrary overlaps. In case, where

simplified search space is enough to detect the anomalies, much better results

can be guaranteed.
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Figure 5.4: An Online Visualization Tool

5.5 A Visualization Tool

In this section, we present an on-line visualization tool to assist anomalies de-

tection. The visualization tool shows a list of explanations after summarization

for each dataset, with each row representing an ep. To check out the detailed

information, user could click on each explanation to see the lattice it involves

as shown in Figure 5.4.

The detailed view contains two parts: the lattice in circular layout, and a

description of the selected ep on the left. In this layout, the inner-most circle is

the root and the outer-most circle contains leaf nodes. Users could customize

their own layouts such as DAG layout, layered layout for better understanding

as they like.

To understand the distribution of expected number of occurrence at the first

glance, each node in the lattice is colored based on its expectation: blue (0),

yellow (1), red (2+), etc. The more colorful a lattice is, the more heterogeneous
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the expected number of occurrence (or the more context-aware the target) is.

A more detail description will be given in the left panel by clicking on the

lattice node. In the panel, it lists some statistics such as its frequency, observed

distribution, inferred expected number of occurrence, and its parent and child

nodes.

While those statistics are not enough for users to make a decision, one may

prefer to take a look at some samples of the real data before he accepts or decline

the anomalies. This function is served by the Show Detail button, which queries

samples with difference number of occurrence. So users know what is expected

and why it is anomalous. In this snapshot, the selected ep node discovers 1

article with a journal, missing year. By showing the samples, we find

that the article titled “Retraction of Bridging the Gap on Facebook: Assessing

Intergroup Contact and Its Effects for Intergroup Relations”, is not a journal

paper, but a retraction decision on that paper, which should be removed.

With such tool, we believe users could gain a better understanding of the

dataset, and learn faster the right way to repair the anomalies. User may refer

to the link on our server for trial 3.

5.6 Experimental Study

In this section, we evaluate the proposed techniques with a thorough study on

real datasets. We first conduct a case study on the anomalies and later compare

our method with the baseline, and then study the robustness of the algorithms.

After that we show the efficiency of size-constrained summarization and the

pruning strategies. The code is implemented in Java and all the experiments are

3http://db128gb-b.ddns.comp.nus.edu.sg/shanshan/gephi/

http://db128gb-b.ddns.comp.nus.edu.sg/shanshan/gephi/
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executed on a server with a Quad-Core AMD Opteron(tm) Processor 8356@1

GHz, 128 GB RAM. All datasets are stored in BaseX [1].

5.6.1 Experiment Setup

Dataset : The number of publicly available XML corpora is quite limited. We

refer to the XML Repository 4 for datasets published at an earlier age. Four real

dataset are used here: two from Mondial (published in 2002 and 2009 resp.),

and two from DBLP (published in 2002 and 2013 resp.). The reason we choose

Mondial and DBLP is that both collect data from the real world and we could

find more facts to verify the correctness of the anomalies reported.

Baseline : To testify the superiority of the way an explanation is defined, in the

baseline algorithm, the context is restricted to a single step, and no predicate

is allowed. Besides, no summarization algorithm is applied. To distinguish the

two algorithms, we call the explanation in the baseline as b-ep and the one

used in our detection algorithm as ep, and our anomaly detection algorithm as

ep-based.

Metric : To evaluate the quality of anomalies detected, we mainly use two

metrics: precision, recall.

Since no ground truth is given, we conduct a user study on the anomalies to

tag them as true error or not. In generally, an anomaly is assumed to be a true

error (true positive), if it belongs to one of the cases: 1) Duplicated Elements.

Multiple sub-elements are of the same label and same text value, then one of

the duplicates should be removed. 2) Missing Element. Certain sub-elements

are missing due to incomplete data collected. 3) Invalid Data. The text value

of an element violates the intension of that element, e.g., we cannot use the

4http://www.cs.washington.edu/research/xmldatasets/

http://www.cs.washington.edu/research/xmldatasets/
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editor under inproceedings pointing to the authors of a paper.

5.6.2 A Case Study

We perform a case study on the DBLP and Mondial datasets, to show the

effectiveness of the techniques. The DBLP dataset records computer science

bibliography, including journals, proceedings of conference, books, etc. We refer

to the two versions of datasets as DBLP2002 and DBLP2013 resp., with the

suffix denoting the year published. We check the correctness of each anomaly

manually against other bibliography repositories, such as Google scholar, ACM

Digital Library, and SpringerLink.

DBLP Dataset: DBLP2002 has about 300,000 publications, and each pub-

lication has 5 to 6 sub-elements on average. We set the context-aware count

θ = 2000, and skewed threshold α = 0.1%. We get in total 25 explanations,

summarized from over 3500 eps, reporting 350 structural anomalies. Table 5.1

shows 5 explanations of interests. There are six columns in the table: context,

target, number of elements hit by the context (#elem), number of anomalies

(#ano) and expected number of occurrence (exp).

Table 5.1: Explanations from DBLP 2002

ID context target #elem #ano exp

1 /dblp/article volume 111,609 105 1
2 /dblp/inproceedings (c::pages) author 208,193 87 1+

3 /dblp/* (c::booktitle) number 215,949 54 0
4 /dblp/inproceedings crossref 328,853 29 0,1
5 /dblp/inproceedings (c::cite) crossref 6370 7 1

In DBLP, an article refers to a journal paper and it should have a volume

and a journal indicting the venue that it appears in. However 105 article
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are detected missing volume, according to the first explanation

〈/dblp/article, volume,F1〉

With the journal name and the article title, we can easily infer the exact volume.

By grouping these 105 elements by journal name, we get 7 journals and “Elec-

tronic Colloquium on Computational Complexity (ECCC)” is the main contrib-

utor to 97 out of 105 anomalies. Other six journals contribute the remaining

8, due to a more interesting reason: no such journal exists. For instance, D-

BLP records that Alonso et al. published one paper in “submitted to IEEE

Expert” in 1997, which should be “‘IEEE Expert” instead. We believe all the

105 elements are true errors to be fixed.

To represent a conference paper, inproceedings is used in DBLP. It is

a common sense that each paper should have one or more authors. But 87

inproceedings with pages are found for missing author, according to

〈/dblp/inproceedings[child :: pages], article,F2〉

These 87 anomalies can be categories into following groups: front-matter (35),

back-matter (30), conference papers(22). All the publications in front-matter

and back-matter should be re-categorized into incollection, rather than

inproceedings. For the 22 inproceedings conference papers, the main

reasons of author missing is authors of these papers are: 1) the paper pub-

lished on behalf of a group or company, rather than a single person. It could

be the design in DBLP that each author refers to a person, which does not

hold always;2) the authors are not inserted by mistake. So we take these 87

anomalies as true errors here. This example also shows the advantage of using

predicates. By removing the predicate, the portion of articles without author
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is 0.11%, right exceeding the skewness threshold. Therefore none of these

anomalies will be reported without using predicates.

The booktitle is associated with proceedings, inproceedings, and boo,

while number is attached to articles. But 54 elements have both booktitle

and number, according to

〈/dblp/ ∗ [child :: booktitle], volume,F3〉

These 54 elements come from: 1 proceeding and 53 inproceedings. But

none of the 54 number have a valid number data. In this example, the ad-

vantage of using summarization is played. Instead of listing explanations for

inproceedings and proceedings separately, a generalized one is favored for con-

ciseness while keeping the correctness.

Another interesting finding is, in DBLP, crossref bridges an

inproceedings to a proceedings it appears in.We find 29 inproceedings

being anomalous for having multiple crossref elements, indicated by

〈/dblp/inproceedings, crossref,F4〉

with expected number of occurrence being 0 or 1. Among these anomalies,

28 of them contain duplicated crossref and the other one has inconsis-

tent crossref incorrectly referring to different conferences. Such finding is

in line with Michael Lay’s claim in [59] that “the proceedings records (and

the crossref fields) are missing for a lot of legacy inproceedings”. Therefore,

inproceedings in general has zero or one proceedings.

Surprisingly by appending one predicate, the expectation differs. According

to

〈/dblp/inprocedings[child :: cite], crossref,F5〉



5.6. Experimental Study 117

we know the expected number of crossref is only 1, rather than zero or

one. 3 anomalies are detected for missing crossref and other 4 for duplicated

crossref. As cite is maintained manually, it is possible that the duplication

is introduced during manual editing.

Table 5.2: Explanations from DBLP 2013

ID context target #elem #ano exp

1 /dblp/article volume 1033836 1176 1

2
/dblp/inproceedings
(not(cite))

crossref 1311151 602 0,1

3 /dblp/article journal 1033836 228 1
4 /dblp/article booktitle 1033836 223 0

5
/dblp/*
(not(booktitle &
publisher)

editor 2357159 11 0

The DBLP2013 dataset is 10 times larger than DBLP 2002. So we set

a higher counter threshold θ = 10, 000, but with the same skew threshold

α = 0.1%. We get 60 eps summarized from over 4,000 eps covering more than

9,000 anomalies. In Table 5.2, we selectively show 5 explanations.

This table shares some explanations in common with that in Table 5.1. With

more publications inserted, the number of anomalies reported also grows. E.g.,

1,000 more articles are reported for missing or duplicated volume, increased

from 105 in Table 5.1. Such increase is contributed by 500 more articles with

no volume from the journal “ Electronic Colloquium on Computational Com-

plexity (ECCC)” published between 2001 to 2006, and by 400 more articles

with duplicated volume sub-elements. However, 1700 more articles published

on ECCC before 2001 do have one volume each. It is hard to conclude these

400 elements are true errors or not at the moment, but we believe they are still

worth reporting for revealing the changes over time.
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cite refers to a citation in an inproceedings but is abandoned later for

its high maintaining cost [59]. Among the 6,000 more inproceedings with a

cite, a large portion 15% of them have 2 crossref each, which pointing to

exactly the same proceedings. But among the 1 million more inproceedings

without a cite, 602 anomalies are detected with duplicated crossref by

〈/dblp/inproceedings(not(cite)), crossref,F2〉

Without the negative predicate (not(cite), the skewness is disturbed by inpro-

ceedings with citations and is not significant enough to be reported.

By looking at the two explanations,

〈/dblp/article, journal,F3〉

〈/dblp/article, booktitle,F4〉

We get 228 article missing journal and 223 with unexpected booktitle.

Interestingly, these two eps are highly overlapped with each other, which means

the error is caused by misuse of elements: all these booktitle should be

replaced with journal.

More anomalies are detected by

〈/dblp/ ∗ [not(booktitle&publisher)], editor,F5〉

, i.e., publication without booktitle and publisher should not have any

editor. In another word, inproceedings, article and www should not have

any editor. Instead of using three eps, the negative predicates give us the

chance to express the same meaning in one.

Compared with DBLP2002, more structural anomalies are detected in D-

BLP2013 as shown in the tables, and a few of them are fixed over the time,
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Table 5.3: Explanations from Mondial 2002

ID context target #elem #ano exp

1
/mondial/country
/province/city

name 2595 75 1

2 /mondial/country name 231 7 1
3 /mondial/country encompa-ssed 231 3 1

4
/mondial/country
[child::city]
/province/city

populat-ion 1404 2 0,1

leading to the disappearance of explanations. E.g., one proceedings contain-

ing multiple title, has been fixed by split into two independent proceedings

records in DBLP2013; 2 article having multiple pages, are fixed by retaining

the one with a more reasonable value.

Mondial Dataset: The Mondial dataset is compiled from geographical Web

data sources, mainly from CIA world factbook 5. We refer to the two versions of

Mondial published in 2002 and 2009 as Mondial2002 and Mondial2009 respec-

tively. To verify the correctness of anomalies, we use the data from GeoHive

and CIA world Factbook for comparison.

Both datasets have several thousand elements, so we set the context-aware

counter be small θ = 150 and skew threshold as α = 5%. After summarization,

we get 8 explanations from Mondial 2002, and some of them are shown in

Table 5.3.

In real life, one city or country could be referred using different names, e.g.,

Ho Chi Minh City was named Saigon; and Myanmar is also named Burma.

However, the DTD for Mondial 2002 allows only one name. And the error

is detected by the first and second eps, detecting in total 82 elements with

multiple name.

5https://www.cia.gov/library/publications

https://www.cia.gov/library/publications
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Table 5.4: Explanations from Mondial 2009

ID context target #elem #ano exp

1 /mondial/country /province area 1531 31 1
2 /mondial/country /province city 1531 18 1+

3 /mondial/country (c::gdp agri) gdp ind 165 6 1
4 /mondial/country (c::gdp agri) gdp serv 165 6 1

The eps we shown so far verify that lower frequency is a good indicator of

errors but, not it is not always the case. 3 out of 231 countries are reported

for having multiple encompassed. The three countries, Russia, Turkey, Egypt,

do span across multiple continents. So the skewness here is caused by rareness,

instead of errors.

Allowing predicate in the intermediate nodes of context could help detect

more anomalies. E.g. according to the following explanation

〈/mondial/country[child :: city]/province/city, population,F4〉

we detect 2 more anomalies. The ep says for countries have both province and

city, each city under province should contain 0 or 1 population. Recording

population data from different years leads to the multi-population error here.

For the Mondial2009 data, after summarization, 33 explanations are re-

turned describing 199 structural anomalies, some of which are shown in Ta-

ble 5.4.

31 provinces with zero area are detected by

〈/mondial/country/province, area,F1〉

These 31 province are from Finland(12) and Norway(19), indicating the poor

data quality over these two countries and extra attention should be paid.

Other 18 provinces are reported for missing city, by

〈/mondial/country/province, city,F2〉
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According to GeoHive, all the 18 elements have some cities within it, e.g., its

capital city. So user should fill up the missing elements there.

Besides geographical data, each country may have some GDP related

elements, such as gdp ind(GDP Industry), gdp agr(GDP Agriculture) and

gdp serv(GDP Service). From the eps

〈mondial/country[child :: gdp agri], gdp ind,F3〉

〈mondial/country[child :: gdp agri], gdp serv,F4〉

we get 6 anomalies as the presence of gdp agr requires the need of other two,

as the three are usually available at the same time.

From Table 5.4, we observe that the Mondial data is highly incomplete.

Almost all anomalies are detected for the observed number of occurrence is

0 and expected number of occurrence is 1 or 1+. The incompleteness is also

claimed in the Mondial web site that after restructure the “data still highly

incomplete”.

Comparing the explanations from both datasets, we notice some anomalies

are fixed, e.g. each country, province or city has one and only one name, while

others still exist, e.g. the number of country with multiple encompassed

grows from 3 to 5, which are caused by rarely occurred facts.

Except Mondial 2002 these interesting anomalies presented in this case study

are, by no means 6, detected by schema. Therefore, we believe our context aware

explanations, driven by data, are of great help towards automatic data cleaning

on semi-structured documents, and could be a good complement of schema.

6The DTD for Mondial 2002 is invalid itself, and the dataset violated the DTD in
allowing multiple name sub-element
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5.6.3 Comparison with Baseline

In this section, we compare the results from the baseline algorithm with ours.

Two datasets are used, the DBLP dataset published at 2013 and the Mondial

dataset published at 2009. We check for each dataset the anomalies detected by

both algorithms, and take the union of the true positives from two algorithms as

the ground truth. Then we compare the precision, recall of the two algorithms,

and show the difference in the explanations they have.

For the DBLP2013 dataset, we set parameters θ = 10, 000 and α = 0.1%

for both algorithms. The baseline returns 48 b-ep and finds more than 5,000

anomalies, while our algorithm returns 61 ep and covers about 9,000 anomalies.

Among these 48 b-eps, 24 are in common with our algorithm and other 24 eps

are generalized. E.g., five b-eps in the baseline for target ee are summarized

into a single ep in our algorithm. Besides, our algorithm discovers 20 more

eps, with some predicates. For instance, 602 inproceedings without cite

but duplicated crossref will be missed in the baseline. More interesting eps

with predicates have been introduced previously in Table 5.2.

Taking the union of anomalies from both algorithms, we detect in total 7230

anomalies are true errors. The baseline hits 4630 of the true positives and our

algorithm covers all. The precision and recall are shown in Figure 5.5. As more

anomalies are detected for optional elements with label like cdrom and note,

the precision in our algorithm decreases a little bit compared with baseline.

For the Mondial 2009 dataset, we set θ = 150 and α = 5%. The baseline

returns 13 b-eps with 149 anomalies and our algorithm returns 33 eps covering

199 anomalies. 10 of the 11 b-eps are in common with the result of our

algorithm, and the last one is much too generalized than ours. It reports all

city with multiple located at sub-elements to be anomalies, covering 30
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Table 5.5: Comparison with Baseline

DBLP Mondial
Baseline ep-Based Baseline ep-Based

precision 0.88 0.81 0.52 0.76
recall 0.64 1 0.51 1

#anomaly 5,255 9,006 149 199

more anomalies than our algorithm. This is because in the baseline, it does

not distinguish city of a country from that of a province. So the skewness

caused by diversified distribution in specialized context will not be checked.

Besides, we detect 16 more eps with some predicates in the context discovering

more anomalies caused by data incompleteness. Among all the anomalies from

both algorithms, we get 151 true positives. The precision and recall are shown

in Figure 5.5, which proves the superiority of our algorithm.

5.6.4 Sensitivity to Parameters

In this section, we examine the robustness of the detection algorithm against

two parameters: the context aware count θ and the skew threshold α.

The counter threshold controls whether we should stop expanding one node

in generating the search graph. The larger the counter, the more explanations

are pruned. As we take the anomalies in the leaf nodes as the universal set,

the change in θ will affect that set, with some new anomalies emerging and

some old anomalies removed. When the threshold is too small, the result may

over-fitting and many anomalies reported are not interesting enough. But when

the threshold is too larger, many interesting nodes will be pruned off.

The skew threshold α plays a different role. The change in α will not affect

number of explanations in the graph, but will change the number of anomalies

covered by each ep. With a larger α, more elements are detected as anomalies
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and the universal set will increase monotonically. So the returned number of eps

could increase ( as some non-suspicious eps become suspicious now, or some

suspicious ep detect more elements as anomalies), or decrease(many eps are

summarized into one).

Metric: Besides precision and recall, we also compare the change in ex-

planation lists. In this experiment, we take the union of true errors under all

parameter settings as ground truth. When θ increases from vi to vj, we compare

the explanation lists Σθ=vi with Σθ=vj . To show the difference in summarized

eps, we classify each ep into some group in following way. An ep in Σθ=vi could

1) remain in the new list, (same), 2) have a generalized counterpart(gen), 3)

have a specialized counterpart(spec), 4) does not exist anymore(sink), in Σ′θ=vj .

And we call those ep ∈ Σ′θ=vj −Σ′θ=vi as emerge explanations. When tuning α,

we also perform the similar comparisons on adjacent explanation lists. Table 5.6

lists the values we use for experiments, and default values are in bold.

Table 5.6: Parameter Setting

Dataset θ α(%)

DBLP (5, 10, 15 ,20, 25)*103 0.05, 0.1, 0.15, 0.2,0.25
Mondial 50, 100, 150, 200, 250 1, 3, 5, 7,9

5.6.4.1 Sensitivity to Context-aware Counter

For the DBLP dataset, we tune the counter θ from 5K to 25K, with α = 0.1%.

Figure 5.5 shows the difference in explanations. Each bar in Figure 5.5(a)

shows the differences between two explanation lists, and the label under each

bar indicates two adjacent θ for comparison. From this figure, we can see most

eps are shared by two adjacent explanation lists. A couple of eps are sinked

due to insufficient cardinality. As expected, there also emerges some new eps.
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E.g., in the second bar, we notice 3 new ep returned. With a higher counter

threshold, some internal nodes in the lattice become leaf nodes, and they form

the new universal set.

In Figure 5.5(c), we show the precision and recall against theta. When θ

grows from 5K to 15K, both precision and recall increase. But when θ grows

from 15K to 25K, both precision and recall drop, in particular the recall. This

is because a smaller threshold may cause over-fitting and detect anomalies with

a low confidence, but a larger one prunes too many interesting nodes from the

search graph.
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Figure 5.5: Changes in ep and Quality Against θ

For the Mondial dataset, the context aware counter θ is increased from

50 to 250, while the skewed threshold α is fixed at 5%. The comparison
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of explanations between adjacent parameters is shown in Figure 5.5(b). The

figure reveals the same trend as we see in DBLP 2013 dataset: most of the eps

are shared by two lists and the sinked eps are pruned due to lower cardinality.

In Figure 5.5(d) we show the precision and recall trends. As Mondial is

mainly suffering from “incomplete elements”, a smaller θ captures all most all

the errors. So the recall drops when θ grows. However the change in precision

is a little bit different. This is because when θ = 250, it prunes half of the eps,

including both false positives and true positive. So the precision grows when θ

grows from 200 to 250, but the recall drops significantly.

We can see from these results θ should be neither too small nor too large.

For the two dataset we used, when θ is about 1% of total elements, it works

best.

Figure 5.6 shows the overall running time against θ for both dataset. With

the increase of θ, the running time drops quickly, as a larger θ filters out more

explanations in the search graph and the query time is notably saved. As the

DBLP 2013 dataset is extremely large, it may cost 5 7 second per ep to query

the occurrence groups. So it may take up to 75 hours to process it. The Mondial

2009 dataset is relatively small but deep in structure, and it costs about up to

5 hours for anomalies detection.

5.6.4.2 Sensitivity to Skew Threshold

The increase in α will not affect the number of nodes in the search graph

structure, but will cause the increase in the number of anomalies.

For DBLP 2013 dataset, we fix the counter threshold θ to be 10,000, and

tune α from 0.05% to 0.25%. For Mondial 2009 dataset, the counter θ is fixed

at 150 and α is tuned from 1% to 9%. The x-axis in Figure 5.7 shows the



5.6. Experimental Study 127

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

5 10 15 20 25

R
un

ni
ng

 T
im

e(
ho

ur
)

Θ

RunningTime

(a) DBLP 2013

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

50 100 150 200 250

R
un

ni
ng

 T
im

e(
ho

ur
)

Θ

RunningTime

(b) Mondial 2009

Figure 5.6: Running Time Against θ

two adjacent α values for comparison, tokenized by comma. From these two

figures, we can see most of the eps are either the same or generalized, and a

small number of new eps emerges.

A larger α leads to more anomalies, but not necessary more explanations, as

explanations could be replaced by a more general more covering a larger portion

of anomalies. So from DBLP2013, when α grows from 0.05% to 0.25%, the

number of eps after summarization decreases slightly from 62 to 55.

With α increases, there come more true positives and more false positives

as well. So the recall keeps growing while the precision drops significantly after

0.1% in Figure 5.7(c). And the similar trend is observed in Figure 5.7(d). A

smaller α gives a high precision but a low recall while a large α gives a low

precious and a high recall. To start with, user may use a smaller α to check

the result and gradually tune the value to a larger one to see more result. From

these figures we can see that the most suitable α values for DBLp2013 and

Mondial 2009 are 0.15% and 7% respectively.

As the change in α does not affect the number of explanations in the lattice,

there is almost no difference in running time. So the change in running time
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against α is not presented.
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Figure 5.7: Change in ep and Quality Against α

5.6.5 Size-Constrained Weighted Summarization

In this section, we show the efficiency of the Concise Weighted Set Cover

(CWSC) algorithm, compared with weighted greedy set cover w-Greedy) and

un-weighted greedy set cover (uw-Greedy) algorithms. Each ep covers some sus-

picious elements (Benefit), and some non-suspicious elements, compared with

the global anomalies. In this experiment, the weight of each ep is the sum of

number of non-suspicious elements and the number of predicates and step in the

context path. The w-Greedy and uw-Greedy algorithms use the Marginal Gain
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(=Marginal Benefit/Weight) and the Marginal Benefit as heuristics respective-

ly. The summarization is conducted on Mondial2009, as it is more diversified in
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Figure 5.8: Size-Constrained Summarization

structure. We first apply w-Greedy and uw-Greedy set cover algorithms to get

the number of eps to hit enough suspicious elements, with coverage increased

from 0.7 to 1. Then under each coverage value, we turn the constrained size

threshold K from 1 to the size needed by w-Greedy algorithm, then reports the

K value and the cost when the first solution is found by CWSC. As shown in

Fiure 5.8, we find w-Greedy returns a slightly larger size but lower cost, and uw-

Greedy covers the set with fewer eps but a higher cost. The CWSC algorithm

is just in between these two algorithms, in both size and cost. Given coverage,

the size needed by w-Greedy and CWSC differs by one or two. This is because

these eps are highly overlapped and the distribution of Benefit is highly skewed.

So the advantage of size-constrained weighted set cover is not that obvious.

But still, we can see its work on trading off size with cost.
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Table 5.7: Pruning Strategies V.S. Search Graph Size

Dataset Pruning Consistent Insufficient

DBLP2013 4363 1263 123
Mondial2009 14914 5479 14271

5.6.6 Pruning Strategies

In this sections, we illustrate the effectiveness of the pruning strategies proposed

in Sect. 5.3, performed on Both DBLP2013 and Mondial2009 datasets. In

Table 5.7, the first column shows the number of eps needed after pruning, and

other two column show the number of eps pruned by different strategies.

For DBLP2013, it prunes off 23% of the eps, mainly by consistency pruning.

As the counter threshold θ = 10, 000, far smaller than the number of total

elements, the insufficiency strategy prunes slightly more than 100 eps. For the

Mondail2009 dataset, both consistency and insufficiency contribute a lot and

the two prune off over 76% eps. This is because the structure of Mondial is

more diversified and many elements have low frequency. From this table, we

can see that our pruning strategies do help reduce the search space a lot.

5.7 Conclusions

In this work we focus on detecting one prevalent type of structural errors,

the unexpected elements, referred as the structural anomaly. We propose to

model the anomalies by an explanation and propose novel techniques to detect

unexpected element errors through a controlled exploration of a lattice structure.

We conduct a thorough case study on real dataset to show the advantage of

the detection and perform sensitivity experiments on several real datasets to

verify the usefulness of the techniques proposed.
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CONCLUSION

6.1 Summary

In this thesis, we study the poor data quality problem on semi-structured doc-

uments from the aspect of structure. We investigate two levels of structural

issues: the tag-level problem, when open- and close- tags are mismatched, and

the element-level problem, when the occurrence of the elements is unexpected.

Repairing of malformed data at the tag level is based on two variants of

well-formedness: tag-only and tag-with-text. Existing work has largely ignored

this issue and focused on validating already well-formed documents according to

some supplied grammar. Our solution is not just a first step towards validity but,

in fact, interesting in its own right. Several algorithms are designed targeting

at different cases, when the error number is low or high. The efficiency of

algorithms on these two variants are verified through experimental study on

both real and synthetic dataset.

Detecting the unexpected elements is based on the conditional number of

occurrence, inferred from the dataset. Existing work on schema inference works

131
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well but ignores the existence of noise. Detecting the unexpected elements

is the very first step towards repairing them to improve the quality further.

Through extensive experimental study on real datasets, the effectiveness of the

strategy is proved, and we believe our method is a complement to schema

inference. The latter focuses on schema design, while our constraints are more

data-driven. Besides, the online visualization tool we designed would be a great

help to anomalies detection.

6.2 Future Work

We are not aware of any extensive study on semi-structured data regarding

structural issues, and we believe the repairing and detecting algorithm proposed

in this thesis would be of great help to users who deal with semi-structured

data. There are still many promising future works to be done.

In Chapter 3 and Chapter 4 we study different algorithms to repair the

documents to a well-formed one, targeting at minimum edit distance. The

one with minimum edit cost is assumed to be correct and the optimal repair.

However, as shown in the experimental study, there are cases, though very few,

the data is repaired towards a different direction, widening the distance between

the repaired data and the original one. A promising extension would be to study

the patterns from the documents. Though failed to be parsed as a document

tree, the document still have many well-formed substrings to form many small

subtrees. So we can use the set of subtrees along with the frequent q-grams

parsed from the document string to guide the repair, which should result in a

better repair in tree edit distance.

In Chapter 5 we propose to capture the unexpected elements using the con-
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ditional number of occurrence. In that work, we limit our focus on discussing

the usefulness of the strategy. More sophisticated inference methods can be

integrated to infer the expected number of occurrence accurately, such as his-

togram based and kernel function based methods. Another interesting extension

would be on repair suggestion. In this thesis, we only use a greedy algorithm

for summarization, and do not give any valuable suggestions on how to repair.

There are many hidden information to be mined. For instance, we notice there

are some inproceedings with editor as children. The two most likely re-

pairs are: substitute inproceedings with proceedings, or replace editor

with author. If the record has publisher and series, it is more likely to be

a proceedings, while the existence of crossref makes it more possible to

repair the editor element. By studying the correlation between elements and

the text value, we believe it will produce valuable suggestions on data repairing.

The next extension would be to provide a toolkit, integrating the repair

from the well-formedness repair with the unexpected elements detections. So

that users in heavy burden of repairing mal-formed semi-structured document

will be greatly relieved with few clicks and will be engaged in few places for

verification.





BIBLIOGRAPHY

[1] BaseX. http://basex.org. [cited at p. 113]

[2] Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/.
[cited at p. 18]

[3] HTML Tidy. http://tidy.sourceforge.net/. [cited at p. 18]

[4] Neko HTML. http://nekohtml.sourceforge.net/. [cited at p. 18]

[5] Trang. http://www.thaiopensource.com/relaxng/trang.html.
[cited at p. 24]

[6] XML Beans. http://xmlbeans.apache.org/. [cited at p. 25]

[7] XML Schema Definition Tool. http://msdn.microsoft.com/en-us/li
brary/x6c1kb0s(vs.71).aspx. [cited at p. 25]

[8] Alfred V. Aho and Thomas G. Peterson. A minimum distance error-
correcting parser for context-free languages. SIAM J. Comput., 1(4):305–
312, 1972. [cited at p. 18]

[9] Marcelo Arenas, Jonny Daenen, Frank Neven, Jan Van den Bussche, Mar-
tin Ugarte, and Stijn Vansummeren. Discovering xsd keys from xml data.
In SIGMOD Conference, 2013. [cited at p. 2, 25]

[10] Marcelo Arenas, Wenfei Fan, Leonid Libkin, and Leonid Libkin. On ver-
ifying consistency of xml specifications. In PODS, pages 259–270, 2002.
[cited at p. 20]

[11] Marcelo Arenas, Wenfei Fan, Leonid Libkin, and Leonid Libkin. Consisten-
cy of xml specifications. In Inconsistency Tolerance, pages 15–41, 2005.
[cited at p. 20]

[12] Marcelo Arenas and Leonid Libkin. A normal form for xml documents.
ACM Trans. Database Syst., 29:195–232, 2004. [cited at p. 22]

135

http://basex.org
http://www.crummy.com/software/BeautifulSoup/
http://tidy.sourceforge.net/
http://nekohtml.sourceforge.net/
http://www.thaiopensource.com/relaxng/trang.html
http://xmlbeans.apache.org/
http://msdn.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx
http://msdn.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx


136 Bibliography

[13] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. Incremental
validation of xml documents. pages 710–751, 2004. [cited at p. 19]

[14] Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet,
Marcelo Arenas, and Marcelo Arenas. Efficient incremental validation of
xml documents. In ICDE, pages 671–682, 2004. [cited at p. 19]

[15] Andrew R. Barron, Jorma Rissanen, and Bin Yu. The minimum description
length principle in coding and modeling. IEEE Transactions on Information
Theory, 44(6):2743–2760, 1998. [cited at p. 26]

[16] George Beskales, Ihab F. Ilyas, and Lukasz Golab. Sampling the re-
pairs of functional dependency violations under hard constraints. PVLDB,
3(1):197–207, 2010. [cited at p. 19]

[17] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. On
the relative trust between inconsistent data and inaccurate constraints. In
ICDE, pages 541–552, 2013. [cited at p. 25]

[18] Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren.
Learning deterministic regular expressions for the inference of schemas from
xml data. In WWW, pages 825–834, 2008. [cited at p. 11, 93]

[19] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Karl Tuyls. In-
ference of concise dtds from xml data. In VLDB, pages 115–126, 2006.
[cited at p. 11, 23, 93]

[20] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansum-
meren. Inference of concise regular expressions and dtds. ACM Trans.
Database Syst., 35(2), 2010. [cited at p. 24]

[21] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring xm-
l schema definitions from xml data. In VLDB, pages 998–1009, 2007.
[cited at p. 11]

[22] Geert Jan Bex, Frank Neven, Stijn Vansummeren, and Stijn Vansummeren.
Inferring xml schema definitions from xml data. In VLDB, pages 998–1009,
2007. [cited at p. 4, 24]

[23] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. A
cost-based model and effective heuristic for repairing constraints by value
modification. In SIGMOD Conference, pages 143–154, 2005. [cited at p. 7,

20]

[24] Utsav Boobna, Michel de Rougemont, and Michel de Rougemont. Correc-
tors for xml data. In XSym, pages 97–111, 2004. [cited at p. 4, 18]



Bibliography 137

[25] Shaofeng Bu, Laks V. S. Lakshmanan, and Raymond T. Ng. Mdl summa-
rization with holes. In VLDB, pages 433–444, 2005. [cited at p. 26, 27]

[26] Peter Buneman, Wenfei Fan, Jérôme Siméon, Scott Weinstein, and Scott
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