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Abstract 

 

Contact and Source/Drain Engineering for  
Advanced III-V Field-Effect Transistors 

By 

Kong Yu Jin, Eugene 

 

Doctor of Philosophy – Electrical and Computer Engineering 
 

National University of Singapore 

 

 

Silicon (Si) has long been used as the channel material in the p-channel and n-

channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs and n-

MOSFETs, respectively) that form the basis of today’s complementary metal-oxide-

semiconductor (CMOS) logic circuits.  The scaling down of transistors has been an 

integral part of technology advancement for the microelectronics industry over more 

than five decades, providing the lower cost per transistor, greater functionality, and 

improved performance that have enabled increasingly powerful and sophisticated 

computers and gadgets.  However, as technology scales beyond the 20 nm node, a 

roadblock is eventually encountered in the form of power consumption.  To continue 

transistor scaling and further increase transistor density, lowering the supply voltage 

is mandatory in order to reduce power consumption. 

A lower supply voltage, however, results in lower drive current and therefore 

slower transistors and circuits.  To avoid sacrificing performance at reduced supply 

voltage, carrier mobilities higher than even strained Si can provide are required in the 
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MOSFET channels.  High-mobility III-V compound semiconductors are a potential 

answer, offering the prospect of both high speed and low operating and standby power.  

Indium gallium arsenide (InGaAs), in particular, is a leading high-mobility III-V 

candidate for replacing Si in the channels of n-MOSFETs. 

To harness the full potential of advanced short-channel III-V MOSFETs, the 

parasitic resistances outside the channel must be low, so as not to be performance-

limiting.  These parasitic resistances include the S/D resistance RSD, S/D extension 

(SDE) resistance RSDE, contact resistance Rc between the contact metallization and the 

S/D semiconductor, and metal resistance Rmetal.  RSD, in particular, is a major 

resistance component in fin field-effect transistors (FinFETs) with narrow fin width 

and nanowire MOSFETs (NWFETs) with small wire diameter.  At present, FinFETs 

have replaced planar MOSFETs as the main device architecture beyond the 22 nm 

technology node. 

This thesis aims to find ways to meet the contact and S/D engineering 

challenges of advanced III-V MOSFETs in order to reduce parasitic resistances.  

More specifically, novel techniques for S/D contact formation and S/D doping in 

InGaAs n-MOSFETs are developed and investigated. 

Self-aligned silicide or ‘salicide’ technology has become an essential part of Si 

CMOS, significantly reducing RSD by forming S/D contact metallization that is self-

aligned to the gate of the transistor.  Ni-InGaAs, the first III-V salicide equivalent 

formed by directly reacting a metal (Ni) with InGaAs, emerged only recently (end 

2010 and early 2011).  In this thesis, the reaction of different metals with InGaAs is 

investigated to explore alternative salicide-like contact metallization technologies for 

InGaAs.  Simulations are also carried out to determine the contact resistivity required 

and the continued relevance of salicide-like S/D contact metallization in InGaAs n-
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MOSFETs at advanced technology nodes.  The simulations illustrate the importance 

of salicide-like contact metallization at highly scaled dimensions, with reductions in 

Rc provided by the larger contact area compared to non-self-aligned contact 

metallization. 

To obtain low RSD and RSDE, high doping concentration is needed in the S/D 

and SDE regions, especially for the ultra-shallow junctions demanded by short-

channel MOSFETs to suppress leakage and short-channel effects.  High S/D doping 

concentration is also essential for lowering Rc and enabling the abovementioned 

salicide-like contact metallization to meet contact resistivity targets.  Hence, in 

conjunction with salicide-like technology, two doping techniques are also developed 

for InGaAs n-MOSFETs in this thesis.  In addition to having the ability to form abrupt 

ultra-shallow junctions with high doping concentration, these techniques have to meet 

the challenges of conformally doping the S/D and SDE regions of three-dimensional 

(3D) MOSFETs such as FinFETs at highly scaled dimensions and pitches, where the 

incumbent beam-line ion implantation may start to face problems with conformality 

due to shadowing effects. 

The first doping technique involves the formation of monolayers of Si on 

InGaAs by SiH4 or Si2H6 gas treatment of the InGaAs surface, and can be described 

as a Si monolayer doping (MLD) technique.  These Si monolayers act as a source of 

donors that are driven in and activated by a subsequent laser anneal to form n-type 

InGaAs.  The second doping technique is plasma doping (PLAD), also using Si as an 

n-type dopant in InGaAs.  The use of an elevated substrate temperature during PLAD 

is examined as a means of suppressing amorphization during implantation of the ions 

from the plasma, which is shown to be important in narrow fins where the fin 

geometry and a lack of sufficient crystalline seed for recrystallization leads to residual 
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corner defects after annealing.  Both the Si MLD and PLAD techniques have the 

potential to enable 3D InGaAs MOSFETs to achieve conformal, highly doped S/D 

and SDE regions with abrupt, ultra-shallow junctions and few defects. 
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Chapter 1  
 
Introduction 
 
 
 
 

1.1   BACKGROUND 

For the past several decades, the microelectronics industry has seen aggressive 

shrinking of the transistors that form the basic building blocks of integrated circuits.  

Modern logic circuits rely on n-channel and p-channel metal-oxide-semiconductor 

field-effect transistors (n-MOSFETs and p-MOSFETs, respectively), known as 

complementary metal-oxide-semiconductor (CMOS) technology, with the cheap and 

abundant silicon (Si) being the dominant substrate material of choice.  The scaling 

trend has followed Moore’s law, which predicts a doubling of the number of 

transistors in integrated circuits roughly every two years, and is motivated by the 

increased packing density, faster switching speed, and lower switching energy that 

arise from transistor downsizing.  The end result is lower cost per transistor, greater 

functionality, and improved performance. 

A simple and well-known equation for the saturation drain current Id,sat of a 

long-channel MOSFET is given by 

     Id,sat = 1
2
μCox

W
LG

(|Vg-Vt,sat|)
2
 ,   (1.1) 

where μ is the carrier mobility in the channel, Cox is the gate dielectric capacitance per 

unit area, W is the channel width, LG is the gate length, Vg is the applied gate bias 

(source grounded), and Vt,sat is the saturation threshold voltage.  Note that this 

equation describes only the MOSFET channel and does not include parasitic 
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resistances outside the channel.  Effects such as polysilicon depletion in polysilicon 

gates and quantum confinement in the channel, which affect the overall gate-to-

channel capacitance, are also not accounted for.  Nevertheless, while this equation is 

very basic and may not hold for advanced MOSFETs at extremely scaled dimensions, 

it is useful for understanding the important role of scaling in enhancing MOSFET 

drive current performance.  From (1.1), it is easily observed that a reduction in LG 

produces an increase in Id,sat, as will an increase in Cox via a reduction of the gate 

dielectric thickness. 

However, as transistor dimensions progress to the deep sub-micrometer 

regime and beyond, transistor scaling becomes increasingly difficult.  Major scaling 

challenges include more severe short-channel effects (SCEs) at small LG and 

increased susceptibility of thin dielectrics to breakdown, leading to high OFF-state 

leakage current as well as yield and reliability issues.  Instead of relying exclusively 

on conventional scaling, various other techniques can also be used to enhance 

MOSFET performance.  Strain techniques are an effective means of significantly 

boosting μ [1]-[11], and have been adopted in industry.  For instance, Intel 

Corporation, widely regarded as the industry leader, employed a SiN liner stressor for 

n-MOSFETs and embedded SiGe source/drain (S/D) stressors for p-MOSFETs at the 

90 nm technology node.  Other than reducing the gate dielectric thickness, higher Cox 

can also be achieved by increasing the dielectric constant κ of the gate dielectric, such 

as by nitriding the SiO2 gate dielectric [12]-[15] or by using high-κ dielectrics [16]-

[30].  In fact, gate leakage concerns have imposed a limit on SiO2 thickness scaling 

and necessitated a switch to high-κ gate dielectrics.  In addition, the increasing 

influence of polysilicon depletion on gate capacitance as gate dielectric thickness 

scales down has also mandated a switch to metal gates from polysilicon gates.  The 
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first commercial chips featuring high-κ/metal-gate (HKMG) were produced by Intel at 

the 45 nm technology node in year 2007. 

Another major development is fin field-effect transistors (FinFETs) [31]-[41], 

which were recently introduced for the first time in mass production by Intel at the 22 

nm technology node in year 2011.  Fig. 1.1 shows a FinFET fabrication process flow 

and scanning electron microscopy (SEM) images of a fabricated FinFET [35].  

FinFETs are three-dimensional (3D) tri-gate MOSFETs with better gate electrostatic 

control of the channel, which helps to suppress SCEs [e.g. drain-induced barrier 

lowering (DIBL)], reduce leakage, and improve subthreshold performance (e.g. 

subthreshold swing).  In addition, their 3D structure results in a smaller footprint for a 

given W, thus giving higher current per unit area.  FinFETs are expected to replace 

planar MOSFETs as the main device architecture beyond the 22 nm node, with a 

possible progression to stacked or vertical gate-all-around nanowire MOSFETs 

(NWFETs) [42]-[53] further down the line. 

 

 

Fig. 1.1. (a)-(f) Schematics illustrating a FinFET process flow, and (g)-(h) SEM 
images of a fabricated FinFET.  The schematics and SEM images are from Ref. [35]. 
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1.2   MOTIVATION FOR III-V MATERIALS 

Despite these efforts to continue the scaling trend and prolong silicon’s status 

as the mainstay of the semiconductor industry, silicon is expected to eventually reach 

its scaling limit.  The increased ON-state and OFF-state currents per transistor and the 

exponentially growing number of transistors in an integrated circuit combine to give 

rise to rapidly increasing operating and standby power consumption, such that as 

technology scales beyond the sub-20 nm regime, power consumption becomes the 

overriding concern rather than speed.  For further increases in transistor density, it 

therefore becomes necessary to lower the supply voltage Vdd to reduce power 

consumption.  However, from (1.1), it can be deduced that a lower Vdd (and hence 

lower Vg) is detrimental to drive current and switching speed. 

High-mobility III-V semiconductor materials therefore have an important role 

to play as potential candidates to replace Si as the MOSFET channel material at 

advanced technology nodes, as their high carrier mobilities and injection velocities 

allow higher ON current Ion at the same OFF current Ioff, or lower Ioff at the same Ion, 

for a given Vdd.  This enables III-V MOSFETs to maintain high performance at 

reduced Vdd.  In other words, III-V MOSFETs hold great promise for achieving both 

high speed and low operating and standby power, which will enable the scaling trend 

to continue. 

Attention has thus been devoted to the research of III-V materials [54]-[80], 

which include arsenides and antimonides, for potential application in CMOS 

technology.  Among the possible III-V semiconductor materials to replace Si, indium 

gallium arsenide (InGaAs) is a leading contender for n-MOSFETs [80], and is the 

focus of the work in this thesis. 
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Fig. 1.2. Schematic illustrating the key challenges for the use of III-V MOSFETs in 
CMOS logic. 
 

 

1.3   CHALLENGES OF III-V CMOS LOGIC 

Many challenges have to be overcome before III-V MOSFETs can be used in 

mass production for CMOS logic circuits.  These include the deposition of a high-

quality gate stack, achieving low parasitic resistances, and cost-effective integration 

on a Si platform.  The key challenges are illustrated in Fig. 1.2, and are discussed in 

the following subsections. 

 

1.3.1   High-quality gate stack 

One of the main challenges is the gate stack, which comprises the metal gate 

and high-κ gate dielectric.  The gate modulates the electrostatic potential in the 

MOSFET channel in order to control the amount of charge in the channel and the 

barrier between the source and the channel, thereby turning the transistor on or off.  In 

order for the gate to properly perform its function, a gate dielectric that has a minimal 
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amount of defects and a high-quality interface with the channel is required.  A high 

density of interface states Dit at the interface between the gate dielectric and the 

channel causes Fermi level pinning, which inhibits the gate’s ability to modulate the 

channel surface potential [81].  A rough dielectric-channel interface, high Dit, and 

high levels of defects and trapped charges in the gate dielectric can also severely 

degrade the mobility of carriers in the channel due to phonon, coulomb, and surface 

roughness scattering, as well as the trapping and de-trapping of carriers.  This could 

negate the advantage that III-V materials have over Si in terms of carrier mobility and 

injection velocity, which defeats the purpose of using high-mobility channel materials. 

Achieving a high-quality gate stack on III-V channel materials has proven to 

be difficult.  The formation of native oxides on III-V surfaces tends to result in Fermi 

level pinning, and interface defects and states can also be formed when high-κ 

dielectrics are deposited on III-V materials [82]-[84].  Many techniques have been 

explored to improve the quality of gate stacks deposited on III-V materials [85]-[107] 

in order to reduce the amount and influence of dielectric and interface defects.  These 

techniques include (i) surface cleaning (e.g. HCl), passivation [e.g. (NH4)2Sx], and 

pre-treatment (e.g. HBr) prior to gate stack formation, (ii) insertion of an interfacial 

layer (e.g. InP) between the gate dielectric and the channel, and (iii) post-deposition 

treatment (e.g. forming gas anneal).  Fig. 1.3 shows a schematic and cross-sectional 

transmission electron microscopy (TEM) images of an In0.7Ga0.3As n-MOSFET with 

an InP capping layer between the channel and the high-κ gate dielectric [107].  

Alternatives to the commonly used Al2O3 and HfO2 high-κ dielectrics have also been 

investigated [108]-[109]. 
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Fig. 1.3. (a) Schematic and (b)-(c) cross-sectional TEM images of an In0.7Ga0.3As n-
MOSFET with an InP capping layer between the channel and the high-κ gate 
dielectric.  This figure is taken from Ref. [107]. 
 

 

 

Fig. 1.4. Schematic illustrating the parasitic resistance components of a MOSFET. 
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1.3.2   Low parasitic resistances 

The successful realization of a high-mobility channel with a high-quality gate 

stack in III-V MOSFETs is only half the battle won.  To gain maximum benefit from 

high-mobility III-V MOSFETs and fully utilize their potential, another big challenge 

in the form of low parasitic resistances needs to be met.  Fig. 1.4 illustrates the 

parasitic resistance components of a MOSFET, which include the S/D extension (SDE) 

resistance RSDE, S/D resistance RSD, contact resistance Rc between the contact 

metallization and the S/D semiconductor, and metal resistance Rmetal.  The 

employment of high-mobility channel materials and aggressively scaled LG result in 

low channel resistance Rch in III-V MOSFETs.  With low Rch, the parasitic resistances 

outside the channel need to be comparatively lower so that they do not limit drive 

current performance.  RSD also constitutes a significant portion of the total resistance 

for devices with the FinFET architecture [58]-[59], due to the very narrow fins that 

are required for good gate control [39]-[41].  Likewise, nanowire transistors [70]-[73] 

also face high RSD due to the small diameter of the nanowire. 

In Si CMOS technology, self-aligned silicide (‘salicide’) is used for the S/D 

contact metallization.  Self-alignment of the S/D contact metallization to the gate 

brings it directly adjacent to the gate (separated by a spacer), thereby minimizing the 

distance and hence RSD between the channel and the contact metallization.  The 

salicide is formed by blanket deposition of a metal, followed by rapid thermal 

annealing (RTA) to induce reaction between the metal and the silicon S/D to form a 

metallic silicide, while the metal on the gate spacer and isolation regions remains 

unreacted.  The unreacted metal is then selectively etched away, leaving S/D contact 

metallization that is self-aligned to the gate.  This salicide process is well-established 
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for silicon, with extensive studies on various silicides [110]-[116] such as TiSi2, CoSi2, 

NiSi, and PtSi. 

In III-V technology, self-aligned S/D contact metallization has been made 

before [117]-[118], but is not salicide-like.  III-V MOSFETs did not have a salicide 

equivalent until the development of NiGeSi contact metallization for GaAs MOSFETs 

in year 2010 [119]-[121], which was formed by reacting Ni with a GeSi layer 

selectively grown on the GaAs S/D regions.  A truly salicide-like S/D contact 

metallization in III-V MOSFETs would involve direct reaction between a metal and 

the III-V material.  A schematic diagram for the formation of such salicide-like 

contact metallization in InGaAs n-MOSFETs is shown in Fig. 1.5. 

Self-aligned Ni-InGaAs contact metallization formed by reacting Ni directly 

with InGaAs was subsequently developed [122]-[141].  Self-aligned Ni-InP [142] and 

NiInAs [143] S/D contact metallization, similarly formed by direct reaction between 

Ni and the III-V material (InP and InAs, respectively), were also  

 

 

 

 
Fig. 1.5. Schematic illustrating the formation of salicide-like S/D contact 
metallization in InGaAs n-MOSFETs: Deposition of metal M, followed by RTA to 
induce reaction between M and InGaAs to form M-InGaAs contact metallization, and 
finally a selective etch to remove unreacted M.  The M-InGaAs contact metallization 
needs to form a good ohmic contact to n++ InGaAs. 
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demonstrated.  However, little else has been reported on alternative salicide-like 

contact metallization for III-V MOSFETs employing metals other than Ni.  

Regardless of the choice of contact metallization scheme (self-aligned or non-self-

aligned) and the contact metal used, the contact resistivity ρc of the contact 

metallization on the S/D semiconductor must be low in order to achieve low Rc.  So 

far, in situ Mo deposition has yielded the lowest ρc of ~1×10-8 Ω·cm2 on 

In0.53Ga0.47As [144]-[145] and ~1×10-9 Ω·cm2 on In0.65Ga0.35As [146], with mid-1019 

cm-3 n-type active doping concentration.  Mo is therefore a good candidate for non-

self-aligned contact metallization in InGaAs n-MOSFETs.  The lowest ρc obtained to 

date for Ni-InGaAs contact metallization is ~1×10-6 Ω·cm2 on n-type In0.53Ga0.47As 

with low- to mid-1019 cm-3 active doping concentration [136]-[137].  More work is 

needed to reduce the ρc of Ni-InGaAs in order for it to be competitive with Mo. 

Other than contact formation, another important process module in the 

fabrication of MOSFETs is doping of the S/D and SDE regions, as it can significantly 

affect both the ON-state and subthreshold performances of the device.  Abrupt, ultra-

shallow, and high-quality junctions in the S/D and SDE regions are paramount for 

suppressing source-to-drain leakage and SCEs such as DIBL, especially in sub-10 nm 

MOSFETs.  The electrical resistivity ρ of a semiconductor is given by  

     ρ = (eneμe + enhμh)-1   ,   (1.2) 

where e is the elementary charge (1.6×10-19 C), ne is the electron concentration, μe is 

the electron mobility, nh is the hole concentration, and μh is the hole mobility.  An 

increase in doping concentration in the S/D and SDE regions therefore lowers RSD and 

RSDE through a reduction in ρ.  This is especially important for ultra-shallow junctions, 

which would otherwise have high sheet resistance due to the thinness of the doped 

layer.  The S/D doping concentration also plays an important role in reducing Rc, as 
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the ρc of a metal-semiconductor contact becomes smaller when the doping 

concentration at the semiconductor surface increases. 

High doping concentration is therefore needed to minimize parasitic 

resistances and achieve a high drive current.  The highest electron concentration that 

can be obtained for in situ Si-doped In0.53Ga0.47As grown by MBE is found to be 

~6×1019 cm-3 [147].  While this is lower than the mid-1020 cm-3 active n-type doping 

that can be achieved in silicon, the higher electron mobility of In0.53Ga0.47As helps to 

bridge the gap and enables in situ Si-doped In0.53Ga0.47As to achieve similar or better 

ρ.  However, one disadvantage of in situ doping is the process complexity, as it 

requires selective growth of the III-V material, and may also involve a recess etch. 

In addition to high doping concentration, 3D FinFETs require conformal 

doping to dope the sidewalls of the fins.  Conformal doping with high doping 

concentration ensures that the drain current spreads more uniformly over the fin 

sidewalls to achieve a high Ion. 

Beam-line ion implantation has so far been the primary doping technique 

employed in industry by virtue of its well-controlled dose and uniformity.  Very low 

ion implant energies of a few keV and below are required for abrupt ultra-shallow 

junction formation.  A pre-amorphization implant [148]-[150] may also be needed to 

suppress ion channeling.  The use of ultra-low implant energies and the scaling up of 

wafer size have previously presented challenges to beam-line implantation 

throughput.  Fortunately, the development of an advanced beam-line implanter with 

high beam current and excellent throughput has allowed beam-line implantation to 

meet the throughput needs of high-dose, ultra-low-energy implantations of large 

wafers. 
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However, as the fin pitch is scaled down, conformal doping becomes 

increasingly challenging and may not be sufficiently provided by conventional beam-

line ion implantation.  This is due to the directionality of the ion beam, which leads to 

shadowing effects (Fig. 1.6).  At present, beam-line ion implantation remains a highly 

viable technique for doping FinFETs at the 14/16 nm technology node, but as the fin 

pitch continues to shrink, the angle limitations caused by shadowing could limit the 

use of beam-line implantation at advanced technology nodes.  Furthermore, the 

crystal damage and defects caused by ion implantation become harder to repair at 

small fin dimensions due to a lack of sufficient crystalline seed for crystal regrowth, 

leading to higher leakage and series resistance.  Therefore, new doping techniques 

that can fulfill the necessary requirements – namely high doping concentration, abrupt 

and ultra-shallow junctions with few defects, and conformal doping – need to be 

developed for III-V MOSFETs. 

Fin pitch

 

 

Undoped fin 
regions due to 
shadowing

Fig. 1.6. Schematic illustrating the shadowing effect for beam-line ion implantation 
at narrow fin pitch.  Ion implantation for one side of the fins is shown, with the other 
side implanted by rotating the wafer by 180°.  The shadowing effect becomes more 
severe as fin pitch is reduced, and results in non-conformal doping as the bottom parts 
of the fins do not receive the ion implantation. 
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1.3.3   Integration on Si platform 

Last but not least, a viable and cost-effective method is needed for large-scale 

integration of III-V MOSFETs on large Si substrates in order to keep equipment and 

manufacturing costs low.  Possible methods that have been explored include buffer 

layer growth [57],[151],[152], III-V-on-insulator [153]-[155], and aspect ratio 

trapping [156]-[161].  

In buffer layer growth, a graded buffer is grown on the Si substrate before the 

III-V device layers are grown.  The III-V device layers cannot be grown directly on Si 

due to the large lattice mismatch, which will result in a low-quality film with many 

defects and dislocations.  A graded buffer (which can comprise more than one layer) 

is therefore inserted between the III-V device layers and the Si substrate.  The lattice 

constant of the graded buffer transitions gradually over the thickness of the buffer, 

starting from the lattice constant of Si at the bottom, and becoming equal or close to 

the lattice constant of the III-V device layers at the top.  This allows the growth of 

relaxed or slightly strained III-V device layers that are defect-free, as the misfit 

dislocations and defects are confined to the buffer.  Buffer layers tend to be made of 

ternary III-V compounds such as InxAl1-xAs and AlxGa1-xAs, as their composition (the 

value of x) can be varied in order to provide a gradual transition in lattice constant.  

Fig. 1.7 shows cross-sectional TEM images of a graded buffer on Si substrate, with 

the III-V device layers grown on top of the buffer [57]. 
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Fig. 1.7. (a) Cross-sectional TEM image of a graded buffer on Si substrate, with a 
III-V quantum well (QW) stack grown on top of it.  (b) High-resolution TEM image 
of the QW device layers, showing good crystalline quality with no dislocations.  The 
TEM images are from Ref. [57]. 
 

 

III-V-on-insulator is similar to silicon-on-insulator (SOI), which is well-

established in Si technology, and is essentially a layer transfer technique.  The desired 

III-V layer is first grown on a donor wafer, after which it is transferred to an oxide-

covered Si substrate by direct wafer bonding and etchback [153], or by epitaxial layer 

transfer [154]-[155].  Fig. 1.8 illustrates the epitaxial layer transfer of InAs layers to 

form InAs-on-insulator [155].  Like SOI, the III-V-on-insulator layer can be relaxed 

or strained. 
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Fig. 1.8. (a) Schematics for epitaxial layer transfer of InAs layers to a SiO2-covered 
Si substrate to form an InAs-on-insulator substrate.  (b) Cross-sectional SEM image 
of the donor wafer just before the layer transfer.  (c)-(d) Cross-sectional TEM images 
of the InAs-on-insulator substrate.  This figure is taken from Ref. [155]. 
 

 

Fig. 1.9. (a) Schematic and (b) cross-sectional SEM image of GaAs on Ge grown on 
Si by the aspect ratio trapping technique.  The dislocations, represented by thick black 
lines in (a), terminate on the SiO2 sidewalls and are confined to the bottom of the 
trenches.  This figure is taken from Ref. [156]. 
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Aspect ratio trapping involves the growth of material in high-aspect-ratio SiO2 

trenches on Si.  The Si substrate is exposed at the bottom of the SiO2 trench.  The 

dislocations induced by large lattice mismatch terminate on the SiO2 sidewalls and are 

thus confined to the bottom of the trench, leaving high-quality material at the top of 

the trench that can be used for device fabrication.  Fig. 1.9 shows the growth of Ge in 

SiO2 trenches on Si, with epitaxial lateral overgrowth above the trenches, after which 

the Ge is planarized by chemical mechanical polishing (CMP) before the growth of 

GaAs buffer and device layers [156].  III-V materials can also be grown directly in the 

SiO2 trenches [157]-[161]. 

Whichever integration method is used, top-quality III-V layers with minimal 

defects much be obtained for good device performance.  Further complications (e.g. 

different lattice constants and thermal expansion coefficients) arise from the fact that 

the materials used for n-MOSFETs and p-MOSFETs may not be the same.  Therefore, 

the integration of high-mobility materials on Si substrates is challenging. 

 

1.4   OBJECTIVES OF THESIS 

The research in this thesis focuses on contact and S/D engineering for InGaAs 

n-MOSFETs, taking a dual approach to tackling the dominance of parasitic 

resistances in high-mobility MOSFETs at highly scaled dimensions.  Solutions to the 

S/D contact and doping challenges of InGaAs n-MOSFETs are explored, and are 

divided into two parts. 

The first part of this thesis work examines S/D contact metallization 

technology for InGaAs n-MOSFETs, and comprises both experiments and simulations.  

The InGaAs equivalent of the salicide contact metallization technology used in Si is 

first studied by reacting different metals with InGaAs.  This contact metallization 
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technology can potentially give significant reductions in RSD for InGaAs n-MOSFETs, 

just as it has done for Si MOSFETs.  However, the scaling down of the gate pitch 

means that contact areas are getting smaller, bringing along with it a concomitant 

increase in Rc which could become the dominant source of parasitic resistance.  At the 

same time, contact plugs or vias that are not self-aligned to the gate can be brought 

very close to the gate by improved lithographic capabilities, reducing the benefit of 

lower RSD provided by salicide-like contact metallization.  Hence, two-dimensional 

(2D) simulations are performed not only to ascertain the ρc requirements for S/D 

contact metallization in InGaAs n-MOSFETs, but also to assess the importance of 

salicide-like contact metallization with respect to non-self-aligned contact 

metallization in InGaAs n-MOSFETs at advanced technology nodes. 

In the second part of this thesis work, new doping techniques that can address 

the shortcomings of conventional beam-line ion implantation at advanced technology 

nodes are developed for InGaAs n-MOSFETs.  These doping techniques not only aim 

to achieve the highly doped high-quality S/D or SDE regions with abrupt ultra-

shallow junctions that are required for low parasitic resistances and low leakage, but 

also seek to provide doping solutions for 3D device architectures with highly scaled 

dimensions. 

 

1.5   ORGANIZATION OF THESIS 

Chapters 2 to 5 document the research work done, the results obtained, and the 

analysis of those results. 

In Chapter 2, the reaction of various metals (Ti, Co, and Pd) with InGaAs is 

studied for the development of salicide-like contact metallization for InGaAs n-

MOSFETs.  The conditions for reaction between the metal and InGaAs are 
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determined, and the reaction products formed are characterized in terms of their 

material and electrical properties, such as thickness uniformity, work function, sheet 

resistance, and contact resistivity. 

In Chapter 3, InGaAs n-MOSFETs employing either salicide-like or non-self-

aligned S/D contact metallization are compared by means of 2D simulations, allowing 

the advantages of salicide-like contact metallization to be examined for InGaAs n-

MOSFETs at advanced technology nodes. 

In Chapter 4, a new technique capable of forming conformal, ultra-shallow, 

and abrupt junctions with high doping concentration in InGaAs n-MOSFETs is 

developed.  The promising technique, which uses Si monolayers and laser anneal to 

form high-quality junctions without implant damage, is successfully demonstrated in 

planar InGaAs n-MOSFETs for the first time. 

In Chapter 5, plasma doping (PLAD) is explored as another doping technique 

that can conformally dope the S/D or SDE regions of 3D InGaAs n-MOSFETs.  The 

use of an elevated substrate temperature is also investigated as a means for 

suppressing amorphization during the introduction of dopants into InGaAs.  This is 

potentially important for MOSFETs with the ultra-thin body (UTB), FinFET, or 

NWFET architectures, where recrystallization during the subsequent dopant 

activation anneal could prove problematic. 

Chapter 6 summarizes the contributions of this thesis and provides possible 

future directions for building on the work that has been presented. 

 

 



Chapter 2  
 
Material Study for Salicide-Like 
Source/Drain Contact Metallization in 
InGaAs Metal-Oxide-Semiconductor 
Field-Effect Transistors 
 
 
 
 

2.1   INTRODUCTION 

In this Chapter, the equivalent of the self-aligned silicide (‘salicide’) in Si 

technology is explored for III-V metal-oxide-semiconductor field-effect transistors 

(MOSFETs). 

In the selection of metals for this source/drain (S/D) contact metallization 

scheme, an important criterion that needs to be satisfied is the ability of the metal to 

react with III-V materials to form a low-resistance ohmic contact.  There should also 

be good etch selectivity of the unreacted metal over the reaction product so that the 

unreacted metal can be removed completely to prevent shorting without adversely 

affecting the S/D contact metallization. 

Salicide-like contact metallization formed by reaction of Ni with III-V 

materials such as InGaAs, InP, and InAs has been reported [122]-[143].  The reaction 

of other metals – namely Ti, Co, and Pd – with InGaAs is thus investigated for the 

formation of salicide-like contact metallization in InGaAs n-channel MOSFETs (n-

MOSFETs).  Like Ni, Ti and Co have been used to form silicides in Si 

technology [110]-[115] and therefore have known etchants for the removal of 
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unreacted Ti and Co.  The choice of Pd is motivated by PdGe contact metallization 

reported in literature, which forms good ohmic contacts to III-V materials [162]-[171]. 

 

2.2   ANALYSIS OF METAL REACTION WITH INGAAS 

It is first necessary to determine the annealing conditions required for the 

metals to react with InGaAs.  500-nm-thick (001) In0.53Ga0.47As with a p-type doping 

concentration of ~2×1016 cm-3, formed by molecular beam epitaxy (MBE) on bulk InP, 

was used as the starting substrate for all samples.  The substrates were purchased from 

a vendor.  Two kinds of samples were prepared: blanket samples and transfer length 

method (TLM) [172] samples.  The blanket samples are used to ascertain the 

temperature at which various metals react with InGaAs to form a metallic product, 

which is necessary for a salicide-like process.  The TLM samples are used for contact 

resistivity extraction.  All the sample fabrication, characterization, and analysis were 

done by the author unless otherwise mentioned. 

Blanket samples were prepared by cleaning the bare In0.53Ga0.47As surface 

with dilute hydrofluoric acid (HF:H2O = 1:100) for 60 s, followed immediately by 

deposition of metal (Ti, Co, or Pd) by electron beam evaporation.  The samples were 

then cut into pieces and each piece was annealed by a single rapid thermal anneal 

(RTA) at 200, 250, 300, 350, or 400 °C for 60 s in a N2 ambient. 

The first step in the fabrication of TLM samples was blanket implantation of 

Si at 7° tilt.  Two implants were used: the first at a dose of 1014 cm-2 and an energy of 

70 keV (projected range ≈ 66 nm), and the second at the same dose but with an energy 

of 25 keV (projected range ≈ 27 nm).  A SiO2 capping layer (~30 nm) was then 

deposited before dopant activation RTA at 600 °C for 60 s.  The active donor 

48 
 



concentration is estimated to be ~2×1018 cm-3 [173].  Optical lithography for mesa 

isolation was performed and the mesa pattern was transferred to the SiO2 layer by 

buffered oxide etch.  The photoresist was then removed.  Mesa etching was performed 

with sulfuric peroxide mixture (H2SO4:H2O2:H2O = 1:1:20) (SPM) to a depth of ~300 

nm to isolate the TLM structures.  TLM contact pads were then defined by optical 

lithography and the pattern was transferred to the SiO2 layer by etching.  A 60 s dilute 

HF clean (HF:H2O = 1:100) was carried out right before loading the samples into an 

electron beam evaporator chamber for metal (Ti, Co, or Pd) deposition.  After 

deposition, photoresist lift-off was performed using acetone.  The samples were then 

cut into pieces, with each piece undergoing a single RTA with conditions identical to 

those used for blanket samples.  100-nm-thick Ni pads were then deposited on the 

contact metal pads to ensure a metal stack with low sheet resistance, using the same 

deposition and lift-off process that was used for the metal deposition, including a 20 s 

dilute HF clean before deposition.  Figs. 2.1 and 2.2 summarize the process flow for 

TLM sample fabrication. 

 

Si dual implant to form n-well
- 1014 cm-2, 70 keV, 7° tilt
- 1014 cm-2, 25 keV, 7° tilt

Starting substrate: (001) In0.53Ga0.47As wafer with 
p-type doping concentration of ~2 × 1016 cm-3

Mesa patterning by photolithography and oxide etch

Contact hole patterning by photolithography and oxide etch

Metal deposition

SiO2 capping layer, activation anneal (600 °C 60 s)

Rapid thermal anneal (RTA) for 60 s at various temperatures

Photoresist removal, followed by mesa etch using SPM

Thick Ni pad deposition and lift-off

Lift-off using acetone

1

2

3

4

5

6

9

7

8

 

Fig. 2.1. Process flow for the fabrication of TLM structures. 
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Fig. 2.2. Schematics illustrating the TLM process flow in Fig. 2.1. 
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Fig. 2.3. TEM images of Ti (a) as-deposited, and after 60 s anneal at (b) 300 °C, (c) 
350 °C, or (d) 400 °C.  EDX analysis was done at spots 1 to 3 in (c). 
 

 

Fig. 2.3 shows the transmission electron microscopy (TEM) images obtained 

from blanket samples of Ti on In0.53Ga0.47As before and after annealing.  All the TEM 

in this Chapter was done by a colleague, Dr. Qian Zhou, unless otherwise stated.  ~30 

nm of Ti was deposited on the In0.53Ga0.47As substrate, as seen in Fig. 2.3(a), followed 

by annealing at a temperature of 300, 350, or 400 °C for 60 s. 

It can be observed from Figs. 2.3 (b) and (c) that there is hardly any increase 

in the film thickness after annealing at 300 or 350 °C, suggesting that little reaction 

has taken place. However, the film appears to be badly degraded or agglomerated 

after 400 °C anneal [Fig. 2.3(d)].  Energy dispersive X-ray spectroscopy (EDX) with a 
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spot size of ~10 nm was carried out on the Ti sample annealed at 350 °C at the three 

spots indicated in Fig. 2.3(c).  At spot 1, a mixture of Ti and O is detected, while at 

spot 2, the film is made up almost entirely of Ti, with a small amount of As.  Spot 3 

yields mostly In, Ga, and As, with a tiny amount of Ti.  This confirms that there is 

little to no reaction between Ti and the In0.53Ga0.47As substrate. 

The TLM current-voltage (I-V) characteristics for as-deposited and annealed 

Ti samples are curves rather than straight lines, indicating that the contacts are not 

ohmic.  As a result, contact resistance and contact resistivity values could not be 

extracted from the TLM data for Ti samples. 

 

 

Fig. 2.4. TEM images of Co (a) as-deposited, and after 60 s anneal at (b) 300 °C, (c) 
350 °C, or (d) 400 °C.  EDX analysis was done at spots 4 to 6 in (b) and spots 7 to 10 
in (c). 
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TEM images for ~20 nm of Co deposited on In0.53Ga0.47As and annealed at 

various temperatures for 60 s are presented in Fig. 2.4.  For the Co sample annealed at 

300 °C [Fig. 2.4(b)], a change at the interface between Co and In0.53Ga0.47As is 

observed.  Co appears to have diffused into the In0.53Ga0.47As substrate, as confirmed 

by the detection of a substantial amount (~35 atomic %) of Co by EDX at spot 5, 

while at spot 6, only In, Ga and As were detected.  However, the diffusion of Co does 

not appear to be uniform, and there is still an almost 20 nm layer of Co remaining on 

the surface, as determined by EDX at spot 4, which shows the top layer to be almost 

entirely Co with tiny amounts of In, Ga and As. 

After 350 °C anneal [Fig. 2.4(c)], the resultant film appears to be more 

uniform compared to the sample annealed at 300 °C [Fig. 2.4(b)], although the 

interface between the metal film and the substrate is very rough.  In addition, the 

thickness of the film has increased to ~60 nm.  These observations suggest a more 

uniform diffusion and reaction of the Co with the In0.53Ga0.47As substrate to form Co-

InGaAs.  EDX at spots 7, 8, and 9 [Fig. 2.4(c)] indicate ~35-40 atomic % of Co mixed 

with In, Ga and As, while spot 10 yields only In, Ga and As.  The absence of a layer 

of pure Co indicates that the Co has fully reacted with In0.53Ga0.47As.  It is interesting 

to note that much more Ga (~46 atomic %) than As (~12 atomic %) is detected at spot 

7, whereas there is much more As (~51 atomic %) than Ga (~6 atomic %) at spot 8, 

and comparable amounts of Ga and As (26-32 atomic %) at spot 9.  Small amounts of 

In (2-6 atomic %) are detected at spots 7, 8, and 9. 

For the sample annealed at 400 °C [Fig. 2.4(d)], the film has a thickness of 

~60 nm, similar to that obtained by 350 °C anneal, and has an equally rough (if not 

rougher) morphology and interface with the In0.53Ga0.47As substrate.  The lack of 
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increase in the thickness of the metal film suggests that a 350 °C anneal may be 

sufficient for complete reaction. 

The Co and Co-InGaAs TLM current-voltage (I-V) characteristics produced 

straight lines, indicating that Co and Co-InGaAs form ohmic contacts with the  

n-In0.53Ga0.47As substrate.  Contact resistivity values of the Co and Co-InGaAs contact 

metallization extracted from the TLM data were in the range of mid 10-4 Ω·cm2. 

Cross-sectional TEM images were obtained for Pd on In0.53Ga0.47As after 

annealing at 200, 250 or 350 °C (Fig. 2.5).  As-deposited Pd thickness was ~10 nm.  

After annealing, a single metallic film is seen on the In0.53Ga0.47As substrate and 

confirmed by EDX to be made up of Pd, In, Ga, and As.  This indicates that the 

deposited Pd was fully reacted to form Pd-InGaAs. 

The Pd-InGaAs films formed at 200 and 250 °C [Figs. 2.5 (a) and (b)] look 

identical and have a similar atomic ratio of Pd:In:Ga:As (~58:9:14:19) as obtained by 

EDX.  The EDX spot (~10 nm in diameter) was located approximately in the middle 

of the 20-nm-thick Pd-InGaAs film in the TEM cross-section.  The atomic ratio can 

also be obtained by X-ray photoelectron spectroscopy (XPS), as discussed later.  Both 

films are amorphous and have a thickness of ~20 nm, and they exhibit excellent 

smoothness, uniformity, and interfacial quality.  Very low root-mean-square (RMS) 

roughness of ~0.7 nm in a 10 μm × 10 μm area was measured by an atomic force 

microscopy (AFM) scan of the film formed at 200 °C.  A high-magnification TEM 

image of the sample annealed at 250 °C (Fig. 2.6) shows the good interface between 

the Pd-InGaAs film and the In0.53Ga0.47As substrate.  In contrast, the film formed at 

350 °C has a degraded morphology and interface [Fig. 2.5(c)], which is detrimental, 

especially for shallow S/D junctions.  The degraded morphology and interface could 

be due to the formation of polycrystalline film. 
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Fig. 2.5. TEM images of blanket samples of ~10 nm Pd on In0.53Ga0.47As after 60 s 
isochronal anneal at (a) 200 °C, (b) 250 °C, and (c) 350 °C. 
 

55 
 



 

Fig. 2.6. High-magnification view of the interface between the Pd-InGaAs film and 
the In0.53Ga0.47As substrate for the sample annealed at 250 °C for 60 s. 
 

 

In studies of Si/Pd and Ge/Pd contact schemes on GaAs [163]-[164], Pd can 

react with GaAs at ~100 °C to form a metastable intermediate Pd4GaAs phase.  Hence, 

while a low temperature of 200 °C is sufficient to cause reaction between Pd and 

In0.53Ga0.47As, it may not be the lowest temperature required.  This is in contrast to 

Ni-InGaAs and Co-InGaAs, which require an anneal temperature of at least about 

250 °C and 350 °C, respectively, for their formation. 

The Pd and Pd-InGaAs TLM I-V characteristics yielded straight lines, 

indicating that Pd and Pd-InGaAs form ohmic contacts with n-type In0.53Ga0.47As with 

active doping concentration of ~2×1018 cm-3.  An example of the TLM I-V 

characteristics, obtained for as-deposited Pd (10 nm), is shown in Fig. 2.7(a), along 

with the resulting plot of total resistance Rtotal versus TLM contact pad spacing dTLM in 

Fig. 2.7(b).  Despite having a relatively large work function of 5.12 eV [174], Pd can 

56 
 



form an ohmic contact on n-type In0.53Ga0.47As with such modest doping, which is 

likely due to Fermi level pinning towards the conduction band of the InGaAs.  In fact, 

the charge neutrality level of In0.53Ga0.47As is found to be ~0.2 eV below its 

conduction band [175].  The contact resistance and specific contact resistivity values 

extracted from the TLM I-V characteristics are plotted in Fig. 2.8, showing higher 

contact resistivity for Pd-InGaAs films formed at 250, 300, and 350 °C compared to 

as-deposited Pd. 

 

 

 

Fig. 2.7. (a) TLM I-V characteristics obtained for as-deposited Pd, and (b) the 
resulting plot of total resistance Rtotal versus TLM contact pad spacing dTLM, from 
which contact resistance and specific contact resistivity values can be derived.  The 
inset shows a schematic of the TLM structure, with the contact pads represented by 
gray rectangles (100-nm-thick Ni pads on top of the contact pads are not shown).  
Probing is done on two adjacent pads. 
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Fig. 2.8. (a) Contact resistance Rc and (b) specific contact resistivity ρc versus anneal 
temperature for Pd-InGaAs.  Anneal time is fixed at 60 s. 
 

 

2.3   IN-DEPTH CHARACTERIZATION OF PD-INGAAS 

From the study of the reaction between Ti, Co, and Pd with InGaAs, Pd 

appears to be a better candidate for reaction with InGaAs to form salicide-like S/D 

contact metallization in InGaAs MOSFETs.  Ti showed little or no reaction with 

InGaAs, while Co completely reacts with InGaAs at 350 °C to form a Co-InGaAs 

alloy with a rough interface with InGaAs.  Further work on Co-InGaAs was done by a 

fellow student and is reported in Ref. [176].  Co-InGaAs is also studied and reported 

by another group in Ref. [177].  Pd, on the other hand, completely reacts with InGaAs 

at temperatures as low as 200 °C and possibly below, thereby requiring a lower 

thermal budget.  The resulting Pd-InGaAs film also has superior smoothness, 

uniformity, interfacial quality, and contact resistivity than Co-InGaAs. 

Therefore, Pd-InGaAs is studied in greater detail in this Chapter.  Four-point 

probe measurements were done to extract sheet resistance, while X-ray and ultra-
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violet photoelectron spectroscopy (XPS and UPS, respectively) were carried out on 

Pd-InGaAs formed at 250 °C.  InGaAs MOSFETs featuring Pd-InGaAs S/D contacts 

formed by a salicide-like process were fabricated in collaboration with another fellow 

student, and are reported in Ref. [178].  Scanning electron microscopy (SEM) and 

TEM images of one such device are shown in Fig. 2.9 [178].  The TEM was done at 

the Institute of Materials Research and Engineering (IMRE) as a paid service. 

 

 

Fig. 2.9. (a) SEM and (b) TEM images of an InGaAs MOSFET with Pd-InGaAs S/D 
contacts formed by a salicide-like process [178].  The red box in (b) overlays a TEM 
image with the unreacted Pd removed from the gate and spacer. 
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2.3.1   Sheet resistance analysis 

Sheet resistance Rsheet was measured using micro four-point probes (μ-4PP) 

with 10 μm probe spacing, which allows accurate measurement of the film alone for 

films as thin as 10 nm.  To examine the uniformity of the Pd-InGaAs film, a fresh 

blanket sample was prepared for Pd-InGaAs (20 nm thick) formed at 250 °C.  

Measurements of Rsheet were carried out on this sample in an 11 × 11 array of points 

with 100 μm step size, covering an area of 1 mm × 1 mm.  The step size of 100 μm is 

much larger than the μ-4PP’s inter-probe spacing of 10 μm.  The box plot of Rsheet is 

shown in Fig. 2.10, with a mean of 77.3 Ω/square.  The Rsheet values have a tight 

distribution, with a very small standard deviation of 1.04 Ω/square, underlining the 

very good uniformity seen in the TEM images. 

 

 

 

Fig. 2.10. Box plot and frequency distribution of Rsheet values for a 20-nm-thick Pd-
InGaAs blanket sample formed by annealing at 250 °C for 60 s.  The Rsheet values 
were measured in an 11 × 11 array of points with 100 μm step size, covering an area 
of 1 mm × 1 mm. 
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Fig. 2.11. Sheet resistance Rsheet versus anneal temperature for ~20 nm of Pd-InGaAs 
formed from ~10 nm of Pd.  Anneal time is fixed at 60 s.  The values for ~19 nm of 
Ni-InGaAs formed from ~11 nm of Ni on In0.53Ga0.47As with the same doping 
concentration are also plotted for comparison. 
 

 

The measured Rsheet of the metal film for various annealing conditions is 

plotted in Fig. 2.11.  The mean of 77.3 Ω/square obtained in Fig. 2.10 for Pd-InGaAs 

formed at 250 °C is 10% lower than that in Fig. 2.11, due to run-to-run variation.  It is 

observed that Pd-InGaAs has higher Rsheet than as-deposited Pd despite having twice 

the thickness.  The Pd-InGaAs Rsheet decreases as its formation temperature increases, 

possibly due to the formation of different phases and/or polycrystalline film, as well 

as larger film thickness at higher temperatures. 

For comparison, Ni-InGaAs data is also plotted in Fig. 2.11.  The Ni-InGaAs 

blanket samples were fabricated the same way as the Pd-InGaAs samples, and the Ni-

InGaAs formed from ~11 nm of Ni is ~19 nm thick, which is close in thickness to the 

~20 nm of Pd-InGaAs formed from ~10 nm of Pd, allowing a fair comparison of Rsheet.  
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It can be seen that Pd-InGaAs formed by a 60 s anneal at 250 °C has an Rsheet that is 

~44% higher than that of Ni-InGaAs formed by the same anneal conditions. 

 

2.3.2   XPS analysis 

XPS was performed by our collaborators Dr. Jisheng Pan and Dr. Zheng 

Zhang at IMRE.  The XPS was done on bulk Pd-InGaAs (30 nm thick) formed by 

250 °C anneal (Fig. 2.12).  In-situ sputtering was done prior to XPS analysis to 

remove native oxide from the Pd-InGaAs surface.  No shift was observed for In 3d 

and Ga 2p peaks.  However, the Pd 3d5/2 peak in Pd-InGaAs shifted by 0.9 eV with 

respect to that in elemental Pd (335.1 eV), and a significant shift of 1.2 eV was 

observed in the As 3d peaks in Pd-InGaAs with respect to bulk In0.53Ga0.47As 

substrate.  These indicate the formation of new bonds, thus confirming the reaction 

between Pd and In0.53Ga0.47As. 

The atomic ratio of Pd:In:Ga:As was extracted from the XPS data for Pd-

InGaAs formed at 250 °C by integrating the area under the respective peaks of the 

various elements.  As the XPS spot size is 400 μm, which is much bigger than the 

EDX spot size of 10 nm, XPS provides an atomic ratio that is averaged over a larger 

area.  Pd 3d5/2, In 3d5/2, and Ga 2p3/2 peaks, together with either As 3d5/2 or As 2p3/2 

peaks, were used.  The As 3d5/2 signal provides information from a larger depth, while 

the As 2p3/2 signal is more surface-sensitive.  Using the As 3d5/2 peak gives a 

Pd:In:Ga:As atomic ratio of ~57:10:21:12, which agrees quite well with the atomic 

ratio of ~58:9:14:19 obtained from EDX.  This is to be expected, since the EDX data 

was obtained from the middle of the Pd-InGaAs film.  On the other hand, using the As 

2p3/2 peak gives a Pd:In:Ga:As atomic ratio of ~49:8:18:25.  The Pd atomic 

percentage therefore appears to be higher deeper in the film than near the surface, 
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which could indicate that Pd is the main diffusing species in the reaction between Pd 

and InGaAs.  A higher atomic percentage of As nearer the surface suggests possible 

segregation of As towards the surface, while the dissimilarity between the In:Ga ratio 

in the Pd-InGaAs film and that in the In0.53Ga0.47As substrate could be due to In 

segregation, as seen in Ni-InGaAs formation [137], or Ga out-diffusion from InGaAs. 

 

 

Fig. 2.12. XPS spectra of bulk Pd-InGaAs (30-nm-thick) formed by 250 °C 60 s 
anneal.  The Pd 3d5/2 peak in Pd-InGaAs is shifted 0.9 eV away from the Pd 3d5/2 peak 
position of 335.1 eV in elemental Pd.  As 3d peaks indicate a shift of 1.2 eV in As 
3d3/2 and 3d5/2 peaks in Pd-InGaAs from those in bulk In0.53Ga0.47As. 
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2.3.3   UPS analysis 

UPS is a technique that can be used to measure the work function of 

materials [179]-[180].  The work function of a metal is important in determining the 

Schottky barrier height, though the Schottky barrier height also depends on other 

factors such as Fermi level pinning and the presence of interfacial layers.  UPS was 

carried out by Dr. Jisheng Pan and Dr. Zheng Zhang at IMRE on 30-nm-thick Pd-

InGaAs formed at 250 °C, using He I radiation with photon energy of 21.2 eV.  As 

with XPS, in-situ sputtering was done prior to UPS analysis to remove native oxide 

from the Pd-InGaAs surface.  The sample was biased at -5 V in order for the electrons 

to have enough energy to overcome the work function of the UPS spectrometer.  

 

 

Fig. 2.13. He I UPS spectrum of 30-nm-thick Pd-InGaAs formed from 15 nm of Pd 
on In0.53Ga0.47As by RTA at 250 °C for 60 s.  The photon energy is 21.2 eV and the 
bias voltage is -5 V.  The spectrum is plotted such that the Fermi edge is at zero 
binding energy. 
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The resulting UPS spectrum after background removal is shown in Fig. 2.13, 

which has been plotted such that the Fermi edge is at zero binding energy.  For a 

metal like Pd-InGaAs, electrons can be detected starting from the Fermi edge.  This is 

in contrast to a semiconductor, where the electrons with the highest energy are from 

the valence band maximum, which is lower than the Fermi level (i.e. at higher binding 

energy) for non-degenerate doping. 

Because only filled energy states can emit photo-electrons, the Fermi edge 

shows up as a step, since the Fermi level EF is the boundary between filled and empty 

states, with states above the Fermi level being empty while states below the Fermi 

level are filled.  Therefore, the Fermi edge marks the onset of photoemission of 

electrons for metals.  On the other hand, the secondary cut-off marks the end of the 

spectrum and represents electrons that have just enough energy to escape from the 

surface and reach the vacuum level EVac.  The work function of the metal can 

therefore be derived by subtracting the horizontal axis intercept of the secondary cut-

off (with the Fermi edge at zero binding energy) from the photon energy, as illustrated 

in the inset of Fig. 2.13.  For the UPS spectrum in Fig. 2.13, the secondary cut-off 

intersects the horizontal axis at ~16.6 eV.  With a photon energy of 21.2 eV, this gives 

a work function of ~4.6 ± 0.1 eV for Pd-InGaAs formed at 250 °C, placing its Fermi 

level quite close to the conduction band minimum of In0.53Ga0.47As.  The work 

function of Pd, in contrast, is larger at 5.12 eV [174].  Pd-InGaAs formed at 250 °C is 

therefore expected to have lower contact resistivity than Pd, even in the presence of 

Fermi level pinning, but this is not the case (Fig. 2.8).  A possible reason is the 

presence of other interfacial layers (e.g. excess elemental In, Ga, or As) at the Pd-

InGaAs/InGaAs interface after the reaction between Pd and InGaAs, and requires 

further investigation. 
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2.3.4   Benchmarking with Ni-InGaAs 

The contact resistivity of Pd-InGaAs is expected to reduce for higher substrate 

doping concentrations, and could approach the value of ~1×10-6 Ω·cm2 obtained for 

Ni-InGaAs formed at 250 °C on n++ In0.53Ga0.47As with doping concentration of 

~5×1019 cm-3 [136]-[137].  Fig. 2.14 presents a benchmark of the contact resistivities 

obtained at various active donor concentrations Nd for Ni-InGaAs and Pd-InGaAs, 

which were formed by reaction of Ni or Pd, respectively, with In0.53Ga0.47As at 250 °C 

for 60 s.  Table 2.1 compares their formation temperature, work function, and sheet 

resistance.  As the contact resistivity of Pd-InGaAs on In0.53Ga0.47As (Nd ≈ 2×1018 cm-

3) is lower than that of Ni-InGaAs on In0.53Ga0.47As (Nd ≈ 1×1018 cm-3), Pd-InGaAs 

could have a Schottky barrier height that is lower than the value of 0.239 ± 0.01 eV 

reported for Ni-InGaAs [139]. 

 

 

Fig. 2.14. Benchmarking of the contact resistivities obtained for Ni-InGaAs and Pd-
InGaAs formed on In0.53Ga0.47As with different active doping concentrations.  Ni-
InGaAs and Pd-InGaAs were formed by reacting Ni and Pd, respectively, with 
In0.53Ga0.47As by RTA at 250 °C for 60 s. 
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Table 2.1. Comparison of Ni-InGaAs and Pd-InGaAs formed by 
RTA at 250 °C for 60 s. 

 

 Metal M 

 Ni Pd 

Min. temperature 
for reaction with 
In0.53Ga0.47As 

250 °C 200 °C  
(possibly lower) 

M-InGaAs*  
work function 

~5.1 eV  
(Ref. [129]) 

~4.6 eV 

M-InGaAs* Rsheet ~60 Ω/square 
(~19 nm) 

~77.3 Ω/square  
(~20 nm) 

* M-InGaAs formed by RTA at 250 °C for 60 s. 

 

 

2.4   CONCLUSIONS 

Ti, Co, and Pd were investigated as possible candidates for the formation of 

salicide-like contact metallization in In0.53Ga0.47As MOSFETs.  While Ti does not 

appear to react with In0.53Ga0.47As at temperatures up to 400 °C, Co completely reacts 

at 350 °C to form Co-InGaAs, and Pd completely reacts at 200 °C to form Pd-InGaAs.  

Co-InGaAs has a rough interface with InGaAs, while Pd-InGaAs films formed at 200 

and 250 °C show excellent smoothness, uniformity and interfacial quality.  The work 

function of the Pd-InGaAs formed at 250 °C was extracted to be ~4.6 ± 0.1 eV, and 

its sheet resistance at a thickness of 20 nm and its contact resistivity on n-type 

In0.53Ga0.47As with ~2×1018 cm-3 doping concentration were determined to be ~77.3 

Ω/square and ~8.35×10-5 Ω·cm2, respectively.  Further work on selective etching of 
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Pd over Pd-InGaAs is needed for further development and improvement of the 

salicide-like process used to form Pd-InGaAs contact metallization in InGaAs 

MOSFETs.  Contact resistivity reduction by a few orders of magnitude is also 

required for Ni-InGaAs, Pd-InGaAs, and Co-InGaAs contact metallization in order to 

be competitive with Mo non-self-aligned contacts. 

In the next Chapter, simulations are used to compare salicide-like contact 

metallization with non-self-aligned contact metallization in InGaAs MOSFETs and 

determine the level of contact resistivity required to meet performance targets at 

advanced sub-20 nm technology nodes. 

 

 



Chapter 3  
 
Self-Aligned and Non-Self-Aligned 
Contact Metallization in InGaAs Metal-
Oxide-Semiconductor Field-Effect 
Transistors: A Simulation Study 
 
 
 
 

3.1   INTRODUCTION 

Self-aligned silicide-like (salicide-like) source/drain (S/D) contact 

metallization for InGaAs n-channel metal-oxide-semiconductor field-effect transistors 

(n-MOSFETs) was explored in the previous Chapter.  The reaction of Ti, Co, and Pd 

with InGaAs was studied, with detailed characterization and analysis of Pd-InGaAs, 

adding on to reports on Ni-InGaAs salicide-like contact metallization [122]-[141].  

This Chapter continues the work in the preceding Chapter by examining the continued 

need for such self-aligned contact metallization at highly scaled dimensions, as well 

as the values of contact resistivity ρc demanded by the performance targets laid out in 

the International Technology Roadmap for Semiconductors (ITRS) [181] for 

advanced technology nodes. 

This is done by using two-dimensional (2D) simulations to compare the drive 

current performance of In0.53Ga0.47As n-channel MOSFETs (n-MOSFETs) with self-

aligned metallization (SAM) and those with non-self-aligned metallization (NSAM) 

for various gap sizes d between the via and the gate, and for various values of ρc at the 

interface between the contact metallization and the S/D region.  It should be 

emphasized that the SAM refers to the contact metallization, and should not be 

69 
 



confused with self-aligned contact plugs or vias defined as SAC [182].  III-V 

MOSFETs are projected to be used in production in year 2018 and beyond, where the 

gate length LG would be ~15 nm or smaller for III-V/Ge logic [181].  In0.53Ga0.47As n-

MOSFETs with LG of 15 nm are therefore simulated, with efforts made to ensure that 

they are representative of the actual devices as projected by the ITRS for III-V high-

performance logic technology [181]. 

 

3.2   SIMULATION DETAILS 

Fig. 3.1 shows the structures studied: In0.53Ga0.47As n-MOSFETs employing 

either SAM or NSAM.  The simulations, which are carried out using the Technology 

Computer Aided Design (TCAD) simulator Synopsys Sentaurus, self-consistently 

solve the non-linear Poisson equation and the current continuity equation for electrons. 

 

 

Fig. 3.1. Simulated n-MOSFETs with LG of 15 nm, having (a) self-aligned 
metallization (SAM) or (b) non-self-aligned metallization (NSAM).  The SAM is a 
2.5-nm-thick salicide-like metallization (which may be Ni-InGaAs), while the NSAM 
is a 2.5-nm-thick metal layer (which may be Mo) lining the tungsten via. 
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The interface between the contact metallization (SAM or NSAM) and the S/D 

region is modeled as an Ohmic metal-semiconductor interface with a specified ρc (in 

Ω·cm2).  ρc is a variable that ranges from 1×10-9 to 1×10-7 Ω·cm2.  The Philips Unified 

Mobility Model [183] is used to account for phonon, impurity, and carrier-carrier 

scattering mechanisms as well as screening of ionized impurities by charge carriers.  

Dependence of the carrier mobility on the electric field perpendicular to the gate 

oxide is also accounted for through simultaneous use of a field-dependent mobility 

model [184]. 

The SAM is a salicide-like metallization (which may be Ni-InGaAs) that is 

recessed into the S/D, while the NSAM consists of a metal layer (which may be Mo) 

lining the tungsten via.  The thickness tSAM of the SAM is 2.5 nm, which is half the 

junction depth of the S/D extension (SDE).  The electrical resistivity of the SAM 

material is chosen to be 1.8×10-4 Ω·cm, matching that of Ni-InGaAs.  Mo is an 

attractive material for the NSAM because it has very low ρc of 1.3×10-8 and 1.1×10-8 

Ω·cm2 on n-type In0.53Ga0.47As with active doping concentration of 3.6×1019 and 

6×1019 cm-3, respectively [144]-[145].  Therefore, the electrical resistivity of Mo is 

used for the metal liner in the NSAM.  The via diameter LV is fixed at 15 nm for both 

SAM and NSAM. 

The S/D doping concentration of 5×1019 cm-3 is close to the highest electron 

concentration that can be obtained for in-situ Si-doped In0.53Ga0.47As [147].  The 

maximum electron mobility μmax in the Philips Unified Mobility Model takes the 

value of the electron mobility in bulk In0.53Ga0.47As (12000 cm2/V·s), while the 

minimum electron mobility μmin is set at 1000 cm2/V·s.  Based on these values of μmax 

and μmin, the concentration-dependent electron mobility in the S/D works out to be 

~1140 cm2/V·s.  This compares well with experimentally obtained electron mobility 
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values of 1266 and 740 cm2/V·s at active doping concentrations of 3.6×1019 and 

6×1019 cm-3, respectively [144]-[145]. 

The length of the S/D regions is denoted by LSD.  Gap sizes d of 10, 15, and 20 

nm between the via and the gate are simulated.  In CMOS technology scaling, all the 

device dimensions are scaled down.  Therefore, LSD scales together with d, with the 

via kept centered in the S/D region, as illustrated in Fig. 3.2.  However, all other 

dimensions are kept constant as d and LSD are varied, as the focus of this study is the 

effect of d and ρc on III-V MOSFET performance for SAM and NSAM. 

Table 3.1 summarizes the key parameters of the simulation.  A very fine mesh 

size of 0.1-0.5 Å was used in the top 2 Å of the channel just below the gate oxide, 

while a fine mesh size of 0.5-1 nm was used for the rest of the channel, as well as the 

SDE, S/D, and contact regions.  A larger mesh size of 5-10 nm was used in the other 

parts of the structure.  Simulation results were checked for independence of mesh size. 

 

 

Fig. 3.2. (a) Schematic illustrating the scaling of S/D length LSD with spacing d 
between the via and the gate edge, with the via kept centered in the S/D region.   
(b) Values of LSD for each value of d. 
 

72 
 



Table 3.1. Key parameters used in the simulations. 

Philips Unified Mobility Model n++ In0.53Ga0.47As S/D 

Max. electron mobility, μmax (cm2/V·s) 12000 Depth (nm) 15 
Min. electron mobility, μmin (cm2/V·s) 1000 Doping conc. (cm-3) 5×1019

TaN/HfO2 Gate Stack and Tungsten Via n+ In0.53Ga0.47As SDE 

TaN work function (eV) 4.65 Depth (nm) 5 
HfO2 (κ = 22) physical thickness (nm) 3 Length (nm) 5 
Via diameter, LV (nm) 15 Doping conc. (cm-3) 5×1018

Self-Aligned Contact Metallization In0.53Ga0.47As Channel 

Thickness, tSAM (nm) 2.5 Thickness (nm) 15 
Electrical resistivity (Ω·cm) 1.8×10-4 Undoped in top 5 nm,  

p-type (5×1018 cm-3) in 
remaining 10 nm Non-Self-Aligned Contact Liner 

Thickness, tNSAM (nm) 2.5 p+ In0.52Al0.48As Barrier 

Electrical resistivity (Ω·cm) 4.9×10-6 Doping conc. (cm-3) 5×1018

 

 

3.3   RESULTS AND DISCUSSION 

Fig. 3.3 plots drain current Id versus gate voltage Vg at drain voltage Vd of 0.05 

and 0.63 V for In0.53Ga0.47As n-MOSFETs having SAM or NSAM, with d = 10 nm 

and with various values of ρc.  The source is grounded for all simulations.  MOSFETs 

with SAM and NSAM exhibit identical subthreshold and OFF-state characteristics, 

and their Id-Vg curves overlap in the subthreshold regime for various values of d (not 

shown) and ρc (Fig. 3.3).  Hence, Id can be compared at the same OFF-state current Ioff 

for SAM and NSAM with various values of d and ρc.  Subthreshold swing S is ~95 

mV/decade and drain-induced barrier lowering (DIBL) is ~0.16 V/V, as calculated by 

the equations: 
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     ,  (3.2) 

where Vt is the threshold voltage, Vt,lin and Vt,sat are the linear and saturation threshold 

voltages respectively, and Vd,sat and Vd,lin are the saturation and linear drain biases 

respectively.  Using the constant current method with a fixed current level of 10 

μA/μm gives a Vt,sat of ~0.18 V that is independent of d and ρc. 

Simulated Id (at Vg = Vd = 0.63 V) versus ρc for various values of d is plotted 

in Fig. 3.4 for both SAM and NSAM.  Curves with the same symbol shape (square, 

circle, or triangle) represent the same d.  Data points for SAM and NSAM are plotted 

using solid and open symbols, respectively.  For each value of d in Fig. 3.4, Id 

increases when ρc is reduced for both SAM and NSAM, with diminishing gains as the  

 

 

 

Fig. 3.3. Id-Vg curves of In0.53Ga0.47As MOSFETs having (a) SAM or  
(b) NSAM with d = 10 nm and with various values of ρc, showing identical 
subthreshold and OFF-state characteristics (S ≈ 95 mV/decade, DIBL ≈ 0.16 V/V, 
Vt,sat ≈ 0.18 V).  Vt,sat is determined by the constant current method with a fixed 
current level of 10 μA/μm. 
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Fig. 3.4. Drive current comparison of SAM and NSAM with various values of d and 
ρc.  Compared to NSAM with the same d, SAM gives higher Id at ρc larger than 
~5×10-9 Ω·cm2 due to larger Aeff and lower Rc,eff, but lower Id at smaller ρc due to 
higher spreading resistance induced by its recessed geometry. 
 

 
contact resistance becomes less limiting.  It is noted that at low ρc of 1×10-9 Ω·cm2, 

the MOSFETs with NSAM achieve ~2.1 mA/μm at supply voltage Vdd of 0.63 V, 

which, together with the LG of 15 nm and Vt,sat of 0.18 V, is in line with the ITRS III-

V high-performance logic technology requirements [181] that were used to calibrate 

the mobility models. 

Fig. 3.4 reveals an interesting observation for the SAM when d is varied for ρc 

larger than ~5×10-9 Ω·cm2: Id does not decrease but instead increases when d and LSD 

are increased.  This is due to the increase in effective contact area Aeff, which reduces 

the effective contact resistance Rc,eff.  At this point, it is useful to introduce a 

characteristic length LC similar to that in a transmission line model [185], which can 

be calculated by  
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      LC  = ට
ρc

Rsh,SD + Rsh,m
  ,   (3.3) 

where Rsh,SD is the sheet resistance of the InGaAs S/D below the contact and Rsh,m is 

the sheet resistance of the contact metallization.  Note that Rsh,SD is 20% higher for the 

SAM than for the NSAM, as the SAM is recessed into the S/D regions, making the 

n++ S/D regions effectively thinner.  Rsh,m is calculated by dividing the electrical 

resistivity of the contact metallization (see Table 3.1) by its thickness (2.5 nm for both 

SAM and NSAM), and does not include the W via.  Fig. 3.5 shows the calculated LC 

versus ρc for both SAM and NSAM. 

 

 

 

Fig. 3.5. Calculated LC as a function of ρc for both SAM and NSAM.   
LC increases with ρc, with the NSAM having larger LC at the same ρc because of its 
lower Rsh,SD and Rsh,m.  The dashed lines indicate the values of LSD for  
d = 10, 15, and 20 nm, which are compared with LC for the SAM.  For the NSAM, LC 
is compared against LV (= 15 nm). 
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It is observed that a comparison between LC and the physical length of the 

contact bears significance.  As the SAM spans the entire length of the S/D [Fig. 

3.1(a)], its physical length is LSD, which varies with d (Fig. 3.2).  The SAM’s Aeff and 

Id increase with LSD when its LC is larger than its physical length LSD.  As shown in 

Fig. 3.5, for ρc more than or equal to 2×10-8 Ω·cm2, the SAM has an LC that is larger 

than LSD at all three values of d, therefore an increase in LSD as d increases from 10 to 

20 nm enlarges Aeff and enhances Id.  At ρc = 1×10-8 Ω·cm2, the SAM has an LC that is 

larger than LSD at d = 10 nm but equal to LSD at d = 15 nm; hence, Id benefits slightly 

from an increase in LSD when d increases from 10 to 15 nm, but hardly increases when 

d increases from 15 to 20 nm.  For ρc less than or equal to 5×10-9 Ω·cm2, the SAM has 

an LC that is smaller than LSD at all three values of d, therefore negligible Aeff benefit is 

derived from any increase in LSD.  Based on this correlation of Aeff and Id with the 

value of LC relative to the physical length of the contact, the effective contact length 

Leff can be taken to be the smaller of LC and the physical length of the contact.  The 

effective contact resistance Rc,eff is then given by  

      Rc,eff  =  ρc
Aeff

  =  ρc
LeffW

  ,   (3.4) 

where W is the device width.  W is taken to be 1 μm for Rc,eff normalized to the device 

width in μm. 

In contrast to the SAM, the NSAM does not enjoy an increase in Aeff when LSD 

increases with d, since its physical length is determined by the fixed LV (= 15 nm), not 

LSD [Fig. 3.1(b)].  As its LC is larger than LV even at very low ρc of 1×10-9 Ω·cm2 (Fig. 

3.5), the NSAM’s Leff is equal to LV.  Therefore, Aeff and Rc,eff do not change with d for 

the NSAM.  The calculation of LC for the NSAM without including the W via in Rsh,m 

can be considered the limiting case, as including the W via would reduce Rsh,m and 

make LC even larger. 
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Fig. 3.6. Calculated values of (a) Rtotal from simulated results and (b) 2Rc,eff as a 
percentage of Rtotal as d and ρc are varied for both SAM and NSAM in the linear 
regime.  Both plots share the same legend.  To meet the ITRS requirement (indicated 
by the dashed line), the SAM should have ρc less than 1×10-8 Ω·cm2, while the NSAM 
needs ρc less than 5×10-9 Ω·cm2. 
 

 

Fig. 3.6(a) plots total resistance Rtotal in the linear regime  

(Vg = 0.63 V, Vd = 0.05 V) versus ρc for both SAM and NSAM, while Fig. 3.6(b) plots 

total effective contact resistance 2Rc,eff as a percentage of Rtotal.  Rc,eff is calculated 

using (3.4), and Rtotal is given simply by Vd/Id in the linear regime (Vg = 0.63 V,  

Vd = 0.05 V).  As the SAM has a larger Aeff than the NSAM, 2Rc,eff makes up a smaller 

proportion of Rtotal for the SAM than for the NSAM at the same ρc.  For the SAM, an 

increase in d and LSD also produces a reduction in Rc,eff for ρc above  

1×10-8 Ω·cm2.  For the NSAM, Rc,eff remains unchanged with d being varied.  By 

taking the potential difference across the channel 0.5 nm below the gate oxide, the 

channel resistance Rch is estimated to be ~100 Ω·μm (Vg = 0.63 V, Vd = 0.05 V).  

Given the ITRS requirement of 131 Ω·μm for the effective parasitic S/D series 

resistance for III-V high-performance logic [181], Rtotal should be lower than ~231 
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Ω·μm.  From Fig. 3.6(a), the SAM should have ρc less than or equal to 1×10-8 Ω·cm2, 

while the NSAM has a more stringent requirement of ρc less than or equal to 5×10-9 

Ω·cm2.  This is due to the contact area advantage that the SAM has over the NSAM. 

The SAM and NSAM curves in Fig. 3.4 intersect at ρc in the range of ~3×10-9 

to ~5×10-9 Ω·cm2.  For ρc above this range, the SAM outperforms the NSAM with the 

same ρc because its larger Aeff gives a lower Rc,eff.  Alternatively, the SAM can afford 

to have higher ρc than the NSAM for a given Id.  For ρc below 3×10-9 Ω·cm2, the SAM 

gives lower Id than the NSAM with the same ρc, despite being self-aligned.  This is 

due to higher spreading resistance caused by the recessed geometry of the SAM, as 

schematically illustrated in Fig. 3.7. 

 

 

 

Fig. 3.7. Schematic showing the series resistance bottleneck caused by the recessed 
geometry of the SAM, which leads to a more severe current crowding and therefore 
higher spreading resistance than the NSAM.  For a given SDE junction depth, a 
thicker SAM (larger tSAM) results in a more serious current crowding problem. 
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Fig. 3.8. Current density contours (Vg = Vd = 0.63 V) for SAM and NSAM with d = 
10 nm and ρc = 1×10-9 Ω·cm2.  Values indicated are in A/cm2.  Lateral profiles are 
taken along A-A’ and B-B’ in the source 0.5 nm below the SAM and NSAM, 
respectively, for various values of d and ρc and plotted in Figs. 3.9 to 3.11. 
 

Current density contours are presented in Fig. 3.8 for SAM and NSAM with d 

= 10 nm and ρc = 1×10-9 Ω·cm2, illustrating the spreading of the current in the S/D 

regions.  The SAM shows increased current density where the current flows between 

the S/D and the SDE regions.  For the NSAM, the current in the S/D regions is 

confined by the via.  Lateral profiles of the current density J in the source along a line 

0.5 nm below the contact (indicated by A-A’ and B-B’ in Fig. 3.8 for SAM and 

NSAM, respectively) are also shown in Figs. 3.9 to 3.11 for various values of d and 

ρc.  From the current density profiles with ρc = 1×10-9 Ω·cm2, it is observed that the 

current density at A’ is ~38-58% higher than at B’ despite the SAM having ~10% 

lower Id than the NSAM (Fig. 3.4).  This indicates more severe current crowding for 

the SAM at the source edge adjacent to the source extension. 
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Fig. 3.9. Current density line profiles (Vg = Vd = 0.63 V) in the source 0.5 nm below 
the (a) SAM and (b) NSAM, with d = 10 nm and with various values of ρc.  
Diminishing gains can be observed as ρc is reduced, with the diminishing effect being 
smaller for the NSAM due to its larger Rc,eff. 
 

 

Fig. 3.10. Current density line profiles (Vg = Vd = 0.63 V) along A-A’ for SAM with 
various values of d and with (a) ρc = 1×10-7 Ω·cm2 and (b) ρc = 1×10-9 Ω·cm2.  The 
profiles with ρc = 1×10-7 Ω·cm2 are well-separated, while those with ρc = 1×10-9 
Ω·cm2 overlap in a 5-nm-wide region adjacent to the source extension.  The current 
density at the source edge furthest from the source extension also exhibits much 
smaller differences for the various values of d at ρc = 1×10-7 Ω·cm2 than at ρc = 1×10-9 
Ω·cm2. 
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Fig. 3.11. Current density line profiles (Vg = Vd = 0.63 V) along B-B’ for NSAM with 
various values of d and with (a) ρc = 4×10-8 Ω·cm2 and (b) ρc = 1×10-9 Ω·cm2.  The 
profiles have similar shapes for both large and small ρc, with small current peaks at 
the edges of the via due to current crowding.  Changes in d result in roughly parallel 
shifts of the portion of the profile below the via, which defines Aeff. 
 

 

The observation of diminishing gains in Id as ρc is reduced (Fig. 3.4) is also 

reflected in Fig. 3.9 where d is fixed at 10 nm.  When ρc is reduced, J generally 

increases but the increment in J diminishes when ρc approaches 10-9 Ω·cm2.  Figs. 

3.10 and 3.11 show the effect on the current density profile as d changes for SAM and 

NSAM respectively, at both high and low ρc.  As shown in the transmission line 

model, the current density profile is influenced by LC as well as the contact 

dimensions [185].  For the SAM with ρc = 1×10-7 Ω·cm2 [Fig. 3.10(a)], there is clear 

separation between the current density profiles for the various values of d.  However, 

as ρc is reduced, the profiles get closer and eventually overlap in a 5-nm-wide region 

adjacent to the source extension at ρc of ~1×10-8 Ω·cm2 and below [Fig. 3.10(b)].  The 

current density at the source edge furthest from the source extension also exhibits 

much smaller differences for the various values of d at ρc = 1×10-7 Ω·cm2 than at  
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ρc = 1×10-9 Ω·cm2, suggesting that Aeff is limited by LSD at ρc = 1×10-7 Ω·cm2.  These 

observations support the earlier conclusion that increases in d and LSD result in larger 

Aeff and Id for ρc above 1×10-8 Ω·cm2, but do not appreciably increase Aeff and Id for 

smaller ρc.  For the NSAM (Fig. 3.11), the current density profiles have similar shapes 

for both larger (4×10-8 Ω·cm2) and smaller (1×10-9 Ω·cm2) ρc, with small current 

peaks at the edges of the via due to current crowding.  Changes in d merely result in 

roughly parallel shifts (equal to the change in d) of the portion below the via, which 

defines Aeff for the NSAM. 

The increased spreading resistance caused by the recessed geometry of the 

SAM can be alleviated by having a thinner SAM (Fig. 3.12), or by a raised S/D 

architecture as shown in Fig. 3.13.  As tSAM is reduced at low ρc of 1×10-8 Ω·cm2 and 

below (where Rc is less dominant), Id increases due to less current crowding and hence 

lower spreading resistance (Fig. 3.12). 

 

 

Fig. 3.12. Id as a function of ρc for SAM with various tSAM and with d = 10 nm.  A 
thinner SAM results in higher Id due to less current crowding and therefore lower 
spreading resistance.  The effect is bigger at low ρc, where Rc does not dominate. 
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Fig. 3.13. Simulated MOSFETs with LG of 15 nm and raised S/D regions, having (a) 
SAM or (b) NSAM.  S/D elevations of 5, 15, and 20 nm were simulated. 
 

 

 

Fig. 3.14. Id as a function of S/D elevation for SAM and NSAM with d = 10 nm and 
ρc = 1×10-9 Ω·cm2.  When the S/D regions are raised, the SAM no longer suffers from 
increased spreading resistance, allowing it to give higher Id than the NSAM. 
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Id as a function of S/D elevation for SAM and NSAM with d = 10 nm and ρc = 

1×10-9 Ω·cm2 is plotted in Fig. 3.14, showing that the SAM gives higher current than 

the NSAM once the current density bottleneck is relieved by the raised S/D. 

The simulations have thus far assumed no misalignment of the vias, which are 

centered in the S/D regions.  Fig. 3.15 plots Id at Vg = Vd = 0.63 V for misalignments 

of -5, 0, and 5 nm, with d = 10 nm and ρc = 1×10-9 Ω·cm2 to allow maximum effect 

from any change in S/D resistance RSD.  Negative and positive misalignment refer to a 

shift of the vias towards the left and right, respectively, consistent with the x-axis 

defined in Fig. 3.1.  For both raised and non-raised S/D and for both SAM and 

NSAM, the misalignments result in less than 1% change in Id.  Therefore, 

misalignment has negligible effect on drive current performance, due to the very 

small changes in RSD. 

 

 

 

Fig. 3.15. Id changes by less than 1% when the vias are misaligned by ±5 nm for both 
SAM and NSAM with d = 10 nm, ρc = 1×10-9 Ω·cm2, and S/D elevation of 0 and 20 
nm. 
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3.4   CONCLUSIONS 

In0.53Ga0.47As n-MOSFETs with self-aligned contact metallization were 

compared against those with non-self-aligned contact metallization by means of two-

dimensional simulations.  A gate length of 15 nm, gap sizes of 10-20 nm between the 

via and the gate, and ρc values ranging from 1×10-9 to 1×10-7 Ω·cm2 at the interface 

between the contact metallization and the InGaAs source/drain region were simulated.  

Due to its larger effective contact area, the self-aligned contact metallization has a 

lower effective contact resistance than the non-self-aligned contact metallization with 

the same ρc, allowing it to give better drive current performance down to ρc as low as 

3×10-9 Ω·cm2.  In addition, the advantage of the self-aligned contact metallization 

over the non-self-aligned contact metallization can be further enhanced with a raised 

S/D device structure. 



Chapter 4  
 
Towards Conformal Damage-Free 
Doping with Abrupt Ultra-Shallow 
Junction: Formation of Si Monolayers 
and Laser Anneal as a Novel Doping 
Technique for InGaAs n-MOSFETs 
 
 
 
 

4.1   INTRODUCTION 

In this Chapter, a simple and novel Si monolayer doping (MLD) technique 

involving disilane (Si2H6) or silane (SiH4) treatment followed by laser anneal (LA) is 

developed as a means for achieving conformal, ultra-shallow, and abrupt n++ junctions 

in InGaAs n-channel metal-oxide-semiconductor field-effect transistors (n-

MOSFETs). 

The inadequacies of beam-line ion implantation at advanced technology nodes 

have motivated the development of novel doping techniques such as MLD [186]-

[192].  Table 4.1 compares existing MLD works.  Of these, only one is on 

InGaAs [192].  Furthermore, the application of MLD to III-V substrates has been 

limited to the use of sulfur as the dopant.  Despite its amphoteric nature, Si is an 

attractive and preferred n-type dopant in InGaAs due to its low diffusivity and higher 

solubility compared to other n-type dopants such as S, Se, and Te [193].  In addition, 

our internal experiments show that the (NH4)2Sx solution used for sulfur MLD can 

cause etching of III-V substrates such as GaAs and InGaAs, and may therefore require 

short, well-controlled treatment durations to avoid etching away the fin in a FinFET. 
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Table 4.1. Comparison with existing MLD works. 

Ref. Substrate Monolayer Formation Dopant 
[186] Si Solution-based P, B 
[187] Si Solution-based P, B 
[188] Si Solution-based P 
[189] GaAs Solution-based S 

[190] InAs Solution-based S 
[191] InP Solution-based S 
[192] InGaAs Solution-based S 

This Work InGaAs Gas-based Si 

 

 

The principle of the doping technique developed in this Chapter is illustrated 

in Fig. 4.1.  In order to prepare the InGaAs surface for the growth of Si monolayers, a 

pre-clean is first performed to ensure a high-quality surface free of native oxide.  The 

InGaAs surface is then treated with a Si-containing gas precursor such as Si2H6 or 

SiH4, which selectively forms a few monolayers of Si on the InGaAs source/drain 

(S/D) or S/D extension (SDE) regions.  One advantage that gas-based MLD could 

have over solution-based MLD is the possibility of performing an in situ clean 

without breaking vacuum prior to monolayer formation.  The Si monolayers serve as a 

dopant source that is conformal and does not introduce implant damage.  A cap layer 

is then deposited (not shown), followed by laser anneal to drive in and activate the Si 

dopants.  Laser anneal can potentially overcome the solid solubility limit of the 

dopant due to its metastable nature, allowing a high doping concentration to be 

achieved.  In addition, its effects are highly localized to the surface, and the ultrafast 

irradiation reduces the thermal budget and minimizes dopant diffusion, enabling the 

formation of ultra-shallow and abrupt junctions. 
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Fig. 4.1. Schematic of a fin structure illustrating the principle of the doping 
technique developed in this work, which has the potential to achieve conformal ultra-
shallow doping with high doping concentration and abrupt junction without implant 
damage.  At narrow fin widths, the sidewall junctions merge, rendering junction depth 
less important as it is determined by fin width.  Nevertheless, junction abruptness and 
minimizing lateral dopant diffusion are crucial for short-channel devices. 
 

 

Preliminary investigations of the use of rapid thermal anneal (RTA) instead of 

LA indicate that the Si dopants are not driven in even at temperatures as high as 800 

°C for short annealing durations.  Raising the RTA temperature is not feasible due to 

substrate degradation.  On the other hand, LA likely induces very high temperatures at 

the InGaAs surface but in an extremely short time, enabling it to drive in and activate 

the Si dopants without surface degradation and out-diffusion of substrate elements. 

The doping concentration that can be achieved may be evaluated by assuming 

the maximum areal dose per monolayer of Si to be the atomic density of the 

semiconductor surface.  For (001) In0.53Ga0.47As, which has a surface atomic density 

of 5.8×1014 atoms/cm2, each monolayer of Si can provide a total doping concentration 

of 5.8×1020 atoms/cm3 for a junction depth of 10 nm. 

 

4.2   BLANKET SAMPLE PREPARATION 

Fig. 4.2 summarizes the process flow for fabricating blanket samples with 

either Si2H6 or SiH4 treatment.  All the sample fabrication, characterization, and 
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analysis were done by the author unless otherwise mentioned.  The blanket samples 

are used for sheet resistance Rsheet measurement, secondary ion mass spectrometry 

(SIMS) analysis, and specific contact resistivity ρc extraction using the transfer length 

method (TLM) [172].  500-nm-thick (001) In0.53Ga0.47As with p-type doping 

concentration of ~2×1016 cm-3, formed by molecular beam epitaxy (MBE) on bulk 

InP, was used as the starting substrate for all samples.  The substrates were purchased 

from a vendor.  The samples were first cleaned with a hydrochloric acid (HCl) 

solution for 3 min., followed by ammonium sulfide [(NH4)2Sx] passivation, after 

which they were immediately loaded into separate high-vacuum chambers for Si2H6 

or SiH4 treatment. 

The Si2H6 treatment was carried out at a substrate temperature of 370 °C for 

3000 s, with a Si2H6 flow rate of 50 standard cubic centimeters per minute (sccm) and 

a pressure in the order of 10-7 Torr.  Prior to the Si2H6 treatment, the samples were  

 

 

 
Fig. 4.2. Process flow for fabricating blanket (001) In0.53Ga0.47As samples with Si2H6 
or SiH4 treatment and laser anneal. 
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treated in situ with SF6 plasma at 300 °C for 50 s to remove any residual native oxide.  

The SiH4-treated samples did not go through SF6 plasma treatment.  The SiH4 

treatment was done at a substrate temperature of 500 °C for  

60 or 120 s, with a SiH4 flow rate of 60 sccm (mixed with 250 sccm of N2) and a 

pressure of 5 Torr.  The Si2H6 and SiH4 treatment conditions are similar to those 

previously reported for Si2H6 and SiH4 passivation of GaAs and InGaAs 

surfaces [87]-[97].  Due to the much lower pressure, the formation of Si monolayers is 

much slower for Si2H6 treatment than for SiH4 treatment.  However, Si2H6 is easier to 

crack and dissociate than SiH4, thereby allowing a lower substrate or processing 

temperature. 

After Si2H6 or SiH4 treatment, the samples were immediately capped with ~6 

nm of sputtered SiO2 to prevent oxidation of the Si monolayers and to serve as a cap 

layer for suppressing the out-diffusion of Si dopants and substrate elements in the 

subsequent laser anneal.  A KrF excimer laser with a wavelength of 248 nm and a 

pulse width (full-width-half-maximum) of 23 ns was used for the laser anneal, with 

the samples subjected to a single pulse at various fluences to form a highly-doped n-

type layer at the InGaAs surface.  All the laser anneals in this Chapter were done by 

an external company as a paid service. 

 

4.3   MATERIAL CHARACTERIZATION 

4.3.1   Disilane-treated samples 

After laser anneal, the SiO2 cap layer was stripped using dilute hydrofluoric 

acid (HF).  The Rsheet of the n++ InGaAs layer formed after Si2H6 treatment and laser 

anneal is plotted in Fig. 4.3 as a function of laser fluence.  Rsheet was measured using 
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micro four-point probes, which do not penetrate the thin n++ InGaAs layer.  In 

addition, the small probe spacing of 10 μm ensures that the current flows only in the 

n++ InGaAs layer, so that only the Rsheet of that layer is measured.  As the fluence 

increases, Rsheet decreases due to larger junction depth and higher dopant activation.  

Si2H6-treated samples that were laser annealed at 80 mJ/cm2 and below yielded very 

low current in the μA or sub-μA range when directly probed at a bias of 2 V and a 

probe separation of ~5-10 μm, which is one to two orders lower than the current 

obtained from probing the p-type InGaAs starting substrate at the same bias and probe 

separation.  This indicates that 80 mJ/cm2 is insufficient for driving in or activating 

the Si dopants, as some or all of the Si still remains on the surface of the InGaAs. 

Fig. 4.4 shows the SIMS profiles obtained for Si2H6-treated samples laser-

annealed at 127, 297, and 374 mJ/cm2.  All the SIMS in this Chapter was done at the  

 

 

Fig. 4.3. Rsheet versus laser anneal fluence for Si2H6-treated In0.53Ga0.47As samples.  
A single laser pulse was used.  Rsheet decreases as fluence increases due to larger 
junction depth and higher dopant activation.  Rsheet cannot be measured for laser 
fluence of 80 mJ/cm2 and below. 
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Fig. 4.4. SIMS profiles for Si2H6-treated samples annealed at 127, 297, and 374 
mJ/cm2.  The dashed lines indicate the InGaAs melt depth, which are estimated from 
the level or flat portion of the box-like profiles. 
 

Institute of Materials Research and Engineering (IMRE) as a paid service.  As the 

laser photon energy (5 eV) is much larger than the band gap of In0.53Ga0.47As (0.74 

eV), significant heating from band gap absorption is expected.  The box-like profiles 

suggest that melting occurred during the laser anneal, resulting in rapid redistribution 

of the Si dopants in the melted layer due to the much larger diffusivity in the liquid 

phase.  Some out-diffusion of Si can be observed near the surface.  The melt depth 

can be estimated from the level portion of the SIMS profile, and is observed to 

become larger as the fluence increases, confirming the increase in junction depth 

deduced from the decrease in Rsheet in Fig. 4.3.  This is due to higher temperatures 

near the InGaAs surface at higher fluences, resulting in a larger depth at which the 

temperature falls below the melting point of In0.53Ga0.47As (~1100 °C).  It should be 

pointed out that the melt depth is only a rough estimate that is used as a gauge for 

determining the fluence required to form ultra-shallow junctions in In0.53Ga0.47As by 

Si monolayer formation and laser anneal. 
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It is noted that GaAs annealed using a KrF excimer laser with the same 

wavelength, pulse width, and fluence [194] gives a larger melt depth than the InGaAs 

in this work, despite GaAs having a larger band gap (1.42 eV) and a higher melting 

point (~1240 °C).  This is at least partly attributed to the layer of Si on the InGaAs 

surface.  The presence of Si monolayers on the InGaAs and the thickness of those 

monolayers can influence the absorption of laser photons and thus affect the 

temperature profile and melt depth in the InGaAs.  Factors such as optical reflectivity, 

attenuation constant, heat capacity, and thermal conductivity can also affect the 

fluence required for a given melt depth.  For instance, the much larger thermal 

conductivity of GaAs compared to In0.53Ga0.47As [195] could result in a broader 

temperature depth profile in GaAs and therefore a thicker layer in which the 

temperature rises above the melting point of the substrate. 

The melt depth at the low fluence of 127 mJ/cm2 is ~27 nm, which is still 

rather large.  Hence, a fluence of less than 127 mJ/cm2 is desired for ultra-shallow 

junction formation.  Fig. 4.5 shows the SIMS profiles for Si2H6-treated samples 

annealed at 100 and 120 mJ/cm2.  The Si counts were converted to concentration by 

application of a relative sensitivity factor extracted from an In0.53Ga0.47As sample that 

was implanted with a known Si dose and sputtered using the same SIMS beam 

conditions.  Very high Si concentration approaching 1021 atoms/cm3 can be observed, 

and ultra-shallow melt depths of around 10 and 4 nm are obtained for fluences of 120 

and 100 mJ/cm2, respectively.  In addition, the profile for a fluence of 100 mJ/cm2 

exhibits little surface out-diffusion and good junction abruptness (~5.5 nm/decade).  

Estimated melt depth as a function of laser anneal fluence is plotted in Fig. 4.6, 

showing that the melt depth becomes more sensitive to laser anneal fluence as the 

fluence approaches 100 mJ/cm2. 
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Fig. 4.5. SIMS profiles for Si2H6-treated samples annealed at 100 and 120 mJ/cm2, 
with ultra-shallow melt depths of around 4 and 10 nm respectively, as indicated by the 
dashed lines.  Very high Si concentration approaching 1021 cm-3 can be observed.  The 
profile for a fluence of 100 mJ/cm2 exhibits little surface out-diffusion and good 
junction abruptness (~5.5 nm/decade). 
 

 

 

Fig. 4.6. Estimated melt depth as a function of laser anneal fluence.  Melt depth 
increases at higher laser anneal fluences due to higher temperatures induced near the 
InGaAs surface. 
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4.3.2   Silane-treated samples 

Based on the SIMS profiles from the Si2H6-treated samples, the laser anneal 

fluence was kept low at 100-140 mJ/cm2 for the SiH4-treated samples in order to form 

shallow junctions.  After laser anneal, the SiH4-treated blanket samples underwent 

mesa formation by wet etching and contact formation by Ni lift-off to form TLM 

structures for Rsheet and ρc extraction.  An example of the TLM current-voltage (I-V) 

characteristics, extracted from a sample that was SiH4-treated at 500 °C for 120 s and 

laser-annealed at 100 mJ/cm2, is shown in Fig. 4.7(a), along with the resulting plot of 

total resistance Rtotal versus TLM contact pad spacing dTLM in Fig. 4.7(b).  Good 

ohmic characteristics are observed for all SiH4-treated samples. 

Fig. 4.8 plots Rsheet of the n++ InGaAs and ρc of Ni on the n++ InGaAs as a 

function of laser fluence for both SiH4 treatment times.  Rsheet measurements of the 

blanket samples by micro four-point probes prior to fabrication of TLM structures 

gave values similar to those extracted from the TLM structures.  A longer SiH4 

treatment time gives lower Rsheet and ρc at each fluence due to a higher areal dose of Si 

dopants.  Hence, the Si dose can be controlled by varying the SiH4 treatment time.  

For both SiH4 treatment times, a higher laser fluence results in a deeper junction and 

higher activation and therefore lower Rsheet, similar to the trend observed for Si2H6-

treated samples in Fig. 4.3.  It is also observed that ρc decreases as the laser fluence 

increases from 100 to 120 mJ/cm2, but increases slightly when the fluence increases 

from 120 to 140 mJ/cm2.  This can be attributed to better dopant activation but also 

more surface out-diffusion at higher fluences, which respectively enhance and reduce 

the active dopant concentration at the surface.  ρc is lower when the active dopant 

concentration at the surface is higher. 
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Fig. 4.7. (a) An example of the TLM I-V characteristics obtained from a SiH4-treated 
sample, and (b) the resulting plot of total resistance Rtotal versus TLM contact pad 
spacing dTLM, from which Rsheet of the InGaAs and ρc of the contact can be derived.  
The inset shows a schematic of the TLM structure, with the Ni contact pads 
represented by gray rectangles.  Probing is done on two adjacent contact pads. 
 

 

Fig. 4.8. (a) Rsheet and (b) ρc versus laser fluence for samples treated with SiH4 at 500 
°C for 60 and 120 s.  At each fluence, Rsheet and ρc are lower for the longer SiH4 
treatment time of 120 s due to a higher areal dose of Si dopants.  Rsheet decreases as 
fluence increases due to larger junction depth and higher dopant activation.  ρc first 
decreases then increases as fluence increases from 100 to 140 mJ/cm2, due to better 
dopant activation but also more dopant out-diffusion at higher fluences. 
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From the SIMS profiles shown in Fig. 4.9 for SiH4 treatment time of 120 s, it 

is observed that the Si dopants are indeed driven in deeper at higher fluences, and that 

a fluence of 140 mJ/cm2 appears to cause more surface out-diffusion than a fluence of 

120 mJ/cm2.  It is also noted that the Si profiles for fluences of 120 and 140 mJ/cm2 

are more box-like, which could indicate melting of the InGaAs at these fluences but 

not at 100 mJ/cm2.  As with the Si2H6-treated samples, a fluence of 100 mJ/cm2 gives 

the best Si profile, with a very high Si concentration of ~5.25×1020 cm-3 at the InGaAs 

surface and a very steep slope of ~4 nm/decade. 

 

 

 

Fig. 4.9. SIMS profiles for samples treated with SiH4 at 500 °C for 120 s and laser 
annealed at 100, 120 and 140 mJ/cm2.  The profiles for fluences of 120 and 140 
mJ/cm2 are more box-like, while the profile for a fluence of 100 mJ/cm2 has a very 
high Si concentration of ~5.25×1020 cm-3 at the InGaAs surface and a very steep slope 
of ~4 nm/decade. 
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Fig. 4.10. (a) Diode current-voltage characteristics showing high forward-to-reverse 
current ratio of 5 to 7 orders of magnitude.  (b) Ideality factor of diodes versus diode 
size for various SiH4 treatment times and laser anneal fluences.  Both plots share the 
same legend.  Diodes with a fluence of 100 mJ/cm2 have very low n that is 
independent of Ldiode.  Diodes with a fluence of 120 and 140 mJ/cm2 have higher n 
that also varies much more across diodes, which is attributed to melt-induced defects 
at the liquid-solid interface. 
 

 

Diodes were also fabricated from the SiH4-treated samples, with mesa etching 

used to define the diodes and Ni lift-off used to form the top contacts.   As the contacts 

to the n-doped InGaAs are ohmic, the measured diode characteristics are those of the 

p-n junction diodes formed by the Si MLD.  Each diode has dimensions of Ldiode × 

Ldiode, with Ldiode ranging from 50 to 150 μm.  Au was used to form an ohmic contact 

to the InP on the back side of the substrate.  Fig. 4.10(a) plots the current-voltage 

characteristics of diodes with Ldiode of 50 μm, showing well-behaved diodes with a 

large difference of 5 to 7 orders of magnitude between forward and reverse currents 

across the various SiH4 treatment and laser fluence splits.  The ideality factor n 

extracted from the current-voltage characteristics of diodes with various SiH4 
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treatment times and laser anneal fluences is plotted versus Ldiode in Fig. 4.10(b).  The 

diode ideality factor is not expected to vary with diode size.  The diodes with laser 

anneal fluence of 100 mJ/cm2 exhibit very low n approaching unity, which is 

testament to the excellent junction quality due to the absence of implant damage, with 

n being relatively constant for various Ldiode.  On the other hand, the values of n for 

diodes with laser anneal fluence of 120 and 140 mJ/cm2, although reasonable, are 

significantly higher and exhibit much larger diode-to-diode variations.  This could be 

due to the occurrence of melting at fluences of 120 and 140 mJ/cm2 (but not 100 

mJ/cm2) as seen from the SIMS profiles in Fig. 4.9, which results in the creation of 

defects at the liquid-solid interface during quenching.  Lower n is also generally 

observed for the longer SiH4 treatment time of 120 s due to higher doping 

concentration. 

From the SIMS and diode data, it is clear that SiH4 treatment followed by laser 

anneal at a fluence of 100 mJ/cm2 is a promising technique for realizing very abrupt, 

ultra-shallow, and high-quality junctions with high n-type doping concentration in 

In0.53Ga0.47As n-MOSFETs.  Planar In0.53Ga0.47As n-MOSFETs are thus fabricated as 

a first demonstration of this novel doping technique. 

 

4.4   MOSFET FABRICATION AND CHARACTERIZATION 

The process flow for fabricating planar In0.53Ga0.47As n-MOSFETs with ultra-

shallow and abrupt n++ S/D using SiH4 treatment and laser anneal is illustrated in Fig. 

4.11.  The starting substrate, which was purchased from a vendor, is 500-nm-thick 

(001) In0.53Ga0.47As with p-type doping concentration of ~2×1016 cm-3, grown by 

MBE on InP.  After a pre-gate clean using HCl solution and (NH4)2Sx passivation, a 
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gate stack comprising 5 nm Al2O3 gate dielectric and 100 nm TaN gate metal was 

deposited.  Following gate patterning and etching, residual Al2O3 in the S/D regions 

was removed using dilute HF.  Next, HCl pre-clean and (NH4)2Sx passivation were 

carried out, and the samples were then loaded immediately into the high-vacuum 

chamber used for SiH4 treatment to selectively form Si monolayers in the S/D regions.  

After SiH4 treatment at a substrate temperature of 500 °C for 60 or 120 s, a 6-nm-

thick SiO2 cap layer was immediately deposited, followed by laser anneal at 100 

mJ/cm2.  The gate stack blocks the laser and shields the channel under it from 

receiving the laser anneal, thus allowing selective annealing of the S/D regions.  

MOSFET fabrication was completed by mesa etch for device isolation and Ni lift-off 

for S/D contact formation.  It is pointed out that no deep S/D regions were formed.  

Fig. 4.12 shows a scanning electron microscopy (SEM) image of a completed device. 

 

 

 
Fig. 4.11. (a) Process flow for fabricating planar InGaAs n-MOSFETs using the 
developed doping technique.  Schematics of the transistor (b) after SiH4 treatment and 
cap layer deposition and (c) after laser anneal are shown. 
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Fig. 4.12. SEM image of a completed In0.53Ga0.47As n-MOSFET fabricated using the 
process flow in Fig. 4.11. 
 

 

 

Fig. 4.13. Cross-sectional TEM image of an In0.53Ga0.47As n-MOSFET with S/D 
doped by SiH4 treatment at 500 °C for 120 s and laser anneal at 100 mJ/cm2.  The S/D 
contacts, which are 5 μm away from the gate, cannot be seen in this TEM image. 
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Fig. 4.14. High-magnification TEM images of the (a) channel and (b) S/D regions of 
the MOSFET in Fig. 4.13, with S/D regions doped by SiH4 treatment at 500 °C for 
120 s and laser anneal at 100 mJ/cm2.  Good crystalline quality is preserved in both 
regions and a good interface is maintained between the gate dielectric and the 
channel, with no laser-induced damage to the gate stack and channel.  As there is no 
ion implantation, no implant-induced defects are created. 
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Figs. 4.13 and 4.14 show transmission electron microscopy (TEM) images of a 

MOSFET with S/D regions doped by SiH4 treatment at 500 °C for 120 s and laser 

anneal at 100 mJ/cm2.  The TEM was done at IMRE as a paid service.  Good 

crystalline quality is preserved in both the channel and S/D regions, and a good 

interface is maintained between the gate dielectric and the channel.  Hence, the laser 

anneal at 100 mJ/cm2 does not damage the gate stack, and does not require a reflective 

metal on top of the gate to protect it.  The S/D regions are free from implant damage 

as no ion implantation was done.  Further confirmation of gate stack integrity after 

laser anneal at 100 mJ/cm2 is provided by the plot of gate current Ig versus gate 

voltage Vg in Fig. 4.15, which shows low gate leakage current. 

 

 

 

Fig. 4.15. Ig-Vg characteristics showing low gate leakage current after laser anneal at 
100 mJ/cm2, which confirms that gate stack integrity is not compromised. 
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Fig. 4.16 plots drain current Id versus Vg for a pair of devices with SiH4 

treatment times of 60 and 120 s, showing good transfer characteristics with reasonable 

subthreshold swing (SS) and negligible DIBL.  Plots of Id versus drain voltage Vd for 

the same pair of transistors in Fig. 4.16 are shown in Fig. 4.17, exhibiting well-

behaved output characteristics.  The low current level is due to the high series 

resistance, caused by the lack of deep S/D regions and the large 5 μm separation 

between the channel and the Ni S/D contacts.  In addition, the doping process needs to 

be optimized in order to reduce Rsheet and ρc. 

 

 

 

Fig. 4.16. Id-Vg characteristics of planar In0.53Ga0.47As n-MOSFETs with S/D doped 
by SiH4 treatment at 500 °C for (a) 60 s and (b) 120 s followed by laser anneal at a 
fluence of 100 mJ/cm2, showing reasonable SS and negligible DIBL. 
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Fig. 4.17. Id-Vd characteristics of the same pair of transistors as in Fig. 4.16, showing 
well-behaved output characteristics.  Vt is the linear threshold voltage extracted by the 
maximum transconductance method.  The low current level is due to high series 
resistance caused by the lack of deep S/D regions and the long distance between the 
S/D contacts and the channel.  Careful optimization of the doping technique is also 
required for Rsheet and ρc reduction. 
 

 

4.5   CONCLUSIONS 

A novel doping technique based on the formation of Si monolayers followed 

by laser anneal was developed for InGaAs n-MOSFETs.  The technique does not 

involve ion implantation, thereby eliminating implant damage, and is promising for 

realizing the conformal, ultra-shallow, and abrupt n++ junctions required in the 

source/drain or source/drain extension regions of highly scaled InGaAs n-MOSFETs 

with advanced three-dimensional device architectures.  The technique was 

successfully implemented in planar In0.53Ga0.47As MOSFETs as a first demonstration.  

Further optimization of the technique is needed to improve dopant activation and 

reduce sheet resistance and contact resistivity, and the performance of the doping 

technique can be studied for three-dimensional device structures such as FinFETs. 
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Chapter 5  
 
Plasma Doping of InGaAs at Elevated 
Substrate Temperature for Reduced 
Sheet Resistance and Defect Formation 
 
 
 
 

5.1   INTRODUCTION 

Plasma doping (PLAD), a high-throughput ion implantation technique capable 

of achieving ultra-shallow junctions and conformal doping of three-dimensional (3D) 

structures such as fin field-effect transistors (FinFETs), is investigated in this Chapter 

as an alternative to conventional beam-line ion implantation for InGaAs at advanced 

technology nodes.  In particular, PLAD at an elevated substrate temperature (denoted 

as “ET-PLAD”) is studied for InGaAs for the first time, and compared against PLAD 

with the substrate kept at room temperature by cooling (denoted as “RT-PLAD”). 

The shadowing-induced angle limitations of beam-line implantation at 

advanced technology nodes open the door for the use of PLAD in future generations 

of FinFETs.  PLAD, an application of plasma immersion ion implantation (PIII), is an 

implant-based doping method that has been widely studied as an alternative to beam-

line ion implantation [196]-[223].  In PLAD, the wafer is immersed in a plasma with 

high ion density, and a negative bias is applied to the wafer to accelerate the ions from 

the plasma into the wafer.  High implant currents with dose rates as high as 1016  

cm-2·s-1 are achievable, even at ultra-low implant energies of a few keV and below.  

Furthermore, the entire wafer surface receives the implants at the same time, resulting 

in an implantation time that is independent of the wafer size and eliminating the need 
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for the beam formation and transport and the wafer rotation and tilt required for beam-

line ion implantation. 

In addition, PLAD has been demonstrated to be capable of conformally and 

uniformly doping 3D trench and fin structures [214]-[221], including trenches with 

high aspect ratio and fins with narrow pitch.  This is due to the angular distribution of 

the ions that are implanted into the wafer.  Secondary electrons reflected between 

trench or fin sidewalls may also enhance the ion density there and help to improve 

sidewall doping [199]. 

However, the research on PLAD has largely focused on the formation of ultra-

shallow junctions in Si [196]-[221], with scant reports of PLAD being used on other 

materials such as Ge [222] and III-V compound semiconductors [223].  Furthermore, 

previous reports on ET-PLAD show that an elevated substrate temperature during 

PLAD helps to suppress crystal defects and maintain crystallinity due to dynamic 

annealing as the ions are implanted, but these reports are confined exclusively to Si 

substrates [208]-[210]. 

 

5.2   BLANKET SAMPLE PREPARATION 

The process flow for fabricating blanket InGaAs samples using PLAD is 

summarized in Fig. 5.1 (solid bullets).  The starting substrate is 500-nm-thick (001) 

In0.53Ga0.47As with p-type doping concentration of ~2×1016 cm-3, grown on bulk InP 

with p-type doping concentration of ~5×1018 to ~5×1019 cm-3.  4 nm of Al2O3 was 

deposited by atomic layer deposition (ALD), followed by PLAD at two different radio 

frequency (RF) biases, doses, and substrate temperatures, as indicated in Table 5.1.  

The Al2O3 prevents any deposition, etching, or sputtering processes from occurring 
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directly on the InGaAs surface during PLAD, and also serves as a capping layer for 

the subsequent dopant activation anneal. 

An Applied Materials Inc. (AMAT) VIISta PLAD System, which has unique 

biasing capability to allow greater process flexibility and conformal doping, was used 

for the PLAD, with SiH4 as the process gas for the plasma to provide the Si dopants.  

The SiH4 dissociates in the plasma into species such as SiHx
+, SiHx

-, SiH2, SiH3, SiH, 

SiH*, and Si*, some of which can further dissociate into species such as Si, SiH, H2, 

H, Hx
+, and H*.  Reactive species in the plasma can also undergo secondary reactions.  

The chemical species and secondary reactions in a SiH4 or SiH4/H2 plasma are 

illustrated in Figs. 5.2 and 5.3. 

Dopant activation was carried out by a rapid thermal anneal (RTA) at 600 °C 

for 60 s, forming a thin n++ layer at the InGaAs surface.  For comparison, blanket 

samples doped by conventional beam-line ion implantation instead of PLAD and with 

5-nm-thick Al2O3 were also prepared.  The beam-line ion implantation splits are 

detailed in Table 5.2.  All the PLAD and beam-line ion implantation in this Chapter 

were done by AMAT as part of a collaboration, while all other process steps were 

done by the author. 

Some of the PLAD blanket samples underwent further process steps (indicated 

by open bullets in Fig. 5.1) to fabricate transfer length method (TLM) structures and 

diodes.  These steps include mesa patterning and etch, contact hole patterning and 

etch, and contact metal deposition and lift-off.  The TLM structures and diodes were 

fabricated together on each of these samples, and Au was sputtered on the back side 

of the samples to form an ohmic contact to the p+ InP for diode measurements. 
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PLAD with different biases, doses, and substrate temperatures

Starting substrate: 500-nm-thick (001) p-type In0.53Ga0.47As 
(~2×1016 cm-3 doping concentration) on p+ InP

Mesa patterning and etch

Contact hole patterning by photolithography and Al2O3 etch

Contact metal deposition and lift-off

4-nm-thick Al2O3 capping layer deposited by ALD

Dopant activation by rapid thermal anneal (600 °C, 60 s)

 

Fig. 5.1. Process flow (solid bullets) for fabricating blanket samples using PLAD.  
Additional steps (open bullets) were carried out to form TLM structures and diodes on 
some of the fabricated blanket samples. 
 

 
Fig. 5.2. Schematic illustrating the dissociation of SiH4 and H2 molecules into 
various chemical species in a plasma.  Source: Fig. 26.1 in the Springer Handbook of 
Electronic and Photonic Materials, 2006. 
 

 
Fig. 5.3. Secondary reactions in a SiH4 or SiH4/H2 plasma.  Source: Fig. 26.2 in the 
Springer Handbook of Electronic and Photonic Materials, 2006. 
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Table 5.1. Split table for samples doped by PLAD. 

Split Species Substrate bias (kV) Dose (cm-2) Substrate temperature (°C) 

P1 Si 5 5×1014 25 

P2 Si 5 5×1014 100 

P3 Si 5 2×1015 25 

P4 Si 5 2×1015 100 

P5 Si 10.5 5×1014 25 

P6 Si 10.5 5×1014 100 

P7 Si 10.5 2×1015 25 

P8 Si 10.5 2×1015 100 

 

 

Table 5.2. Split table for samples doped by beam-line implant. 

Split Species Energy (keV) Dose (cm-2) Tilt (°) Substrate temperature (°C)

B1 Si 10 5×1014 45 25 

B2 Si 10 5×1014 7 25 

B3 Si 10 5×1014 7 200 

B4 Si 10 1×1015 7 25 

B5 Si 10 1×1015 7 200 

B6 
Si 10 5×1014 

7 25 
S 11.4 5×1014 

B7 
Si 10 5×1014 

7 200 
S 11.4 5×1014 

B8 
Si 10 5×1014 

7 25 
Te 45 5×1014 

B9 
Si 10 5×1014 

7 200 
Te 45 5×1014 
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5.3   MATERIAL CHARACTERIZATION 

The dielectric response of a material, obtained by ultra-violet variable angle 

spectroscopic ellipsometry (UV-VASE), can be used to assess its crystallinity [224].  

Fig. 5.4 plots the imaginary part (ε2) of the pseudo-dielectric function versus photon 

energy in the near-infrared to UV regime, obtained from blanket samples that 

underwent beam-line ion implantation.  The modeled ε2 profile for 4.3 nm Al2O3 on 

500 nm p- In0.53Ga0.47As on 500 μm p+ InP is also plotted, showing two sharp features 

that are characteristic of a pristine single-crystalline substrate.  The optical constants 

of InGaAs and InP used in the modeling were obtained by characterizing separate 

calibration samples.  All the VASE modeling (ultra-violet and infrared) in this 

Chapter was done by a colleague, Dr. Vijay Richard D’Costa, while all VASE 

measurements (ultra-violet and infrared) were done by the author. 

 

 

Fig. 5.4. Measured UV-VASE data (a) before RTA and (b) after RTA, obtained 
from samples doped by conventional beam-line implant.  Solid lines are used for RT-
BL samples, while dashed lines are used for ET-BL samples.  The modeled ε2 profile 
for 4.3 nm Al2O3 on 500 nm p- In0.53Ga0.47As on 500 μm p+ InP is also plotted (open 
squares). 
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The benefit of an elevated substrate temperature during implantation for the 

as-implanted samples is illustrated in Fig. 5.4(a).  The ε2 profiles of splits with room-

temperature substrates during beam-line implantation (denoted as “RT-BL”) exhibit a 

single broad peak with big shifts relative to the modeled profile, indicating 

amorphization of the top portion of the InGaAs substrate.  On the other hand, the 

splits with elevated substrate temperature during beam-line implantation (denoted as 

“ET-BL”) have ε2 profiles that are close to the modeled profile, indicating that 

crystallinity is preserved even before dopant activation anneal.  A small amount of 

crystal damage accounts for the small differences between the ET-BL profiles and the 

modeled profile, but amorphization has been largely suppressed. 

The as-implanted RT-BL splits show a trend of increasing amorphization as 

the implant dose or the mass of the implanted ions increases.  A larger peak shift 

towards lower energies suggests a greater degree of amorphization, which manifests 

as a larger amount of crystal damage and/or a thicker amorphous layer.  Split B1, with 

a tilt of 45°, shows the smallest shift in the ε2 profile compared to the other splits (B2, 

B4, B6, and B8) which have a tilt of 7°.  Split B4, which has the same implant energy 

as Split B2 but double the implant dose, exhibits a larger shift in the ε2 profile than 

Split B2.  Splits B6 and B8 have the same total dose as Split B4, but with half the 

dose comprising Si implants at the same energy and half the dose comprising either 

heavier S ions that cause more damage than Si (Split B6) or even heavier Te ions that 

cause even more damage than S (Split B8). 

After RTA at 600 °C for 60 s [Fig. 5.4(b)], all the beam-line implant samples 

recover almost completely towards the pristine crystalline InGaAs, as shown by the 

close matching of their ε2 profiles to the modeled one.  N-type doping near the 

InGaAs surface and small variations in Al2O3 thickness could contribute to the small 
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deviations from the modeled profile.  The strong recovery of crystallinity, even for 

samples that were amorphized by the beam-line implant, shows that the annealing 

conditions are sufficient for damage repair and recrystallization of the InGaAs.  

However, this does not make an elevated substrate temperature during implantation 

redundant, as the samples are blanket bulk substrates with a large crystalline base for 

crystal regrowth.  Such a luxury is not afforded to fins with small dimensions, where 

amorphization of the fin can lead to a lack of sufficient crystalline seed for crystal 

regrowth and make it harder to repair the crystal damage and defects, ultimately 

resulting in higher leakage and series resistance. 

All the TEM in this Chapter was done at the Data Storage Institute (DSI) as a 

paid service.  Cross-sectional transmission electron microscopy (TEM) images of an 

as-implanted blanket sample from Split P8 (ET-PLAD) are presented in Fig. 5.5, 

showing excellent crystallinity with no visible defects even without RTA.  In addition, 

the InGaAs surface remains smooth and is not roughened by the PLAD.  An 

additional cap layer (~7 nm thick) on top of the 4-nm-thick Al2O3 can be seen, and is 

determined by EDX to comprise of SiOx and/or Si.  This additional layer was 

deposited by the plasma during PLAD, and should be minimized as it can affect the 

dopant concentration and dose in the InGaAs, and can also fill the gaps between fins 

and make it difficult to conformally dope fins with tight pitches.  This can be resolved 

by tuning the PLAD conditions.  For instance, when using B2H6 for PLAD, dilution 

with He or H2 has been shown to reduce boron deposition [211]-[212]. 

Fig. 5.6 plots the ε2 profiles obtained from UV-VASE measurements on 

PLAD blanket samples before and after RTA.  The UV-VASE measurements for as-

implanted samples were done with the cap layers present [Fig. 5.6(a)], since they are  
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Fig. 5.5. (a) Low-magnification and (b) high-resolution TEM images of a blanket 
sample from Split P8 before RTA.  An additional layer (~7 nm thick), determined by 
EDX to comprise of SiOx and/or Si, was deposited on the Al2O3 by the plasma during 
PLAD.  The InGaAs surface remains smooth and is not roughened by the PLAD, and 
the InGaAs shows good crystallinity with no visible defects for the given PLAD 
conditions of Split P8, even without RTA. 
 

 

 

Fig. 5.6. Measured UV-VASE data (a) before RTA and (b) after RTA, obtained 
from samples doped by PLAD.  Solid lines are used for RT-PLAD samples, while 
dashed lines are used for ET-PLAD samples.  The modeled ε2 profiles for 4 nm Al2O3 
(cap layers present) or 1.7 nm InGaAs oxide (cap layers stripped), formed on 500 nm 
p- In0.53Ga0.47As on 500 μm p+ InP, are also plotted (open squares). 
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needed for the dopant activation anneal.  For the annealed samples, UV-VASE data 

was obtained before and after removal of the cap layers on the surface using a few 

cycles of buffered oxide etch, but only the data after removal is shown [Fig. 5.6(b)].  

While the cap layers have some influence on the ε2 profiles, as seen in the UV-VASE 

data from annealed samples prior to cap layer removal (not shown), they do not affect 

the assessment of crystallinity.  The modeled ε2 profiles for 4 nm Al2O3 (cap layers 

present) or 1.7 nm InGaAs native oxide (cap layers stripped), formed on 500 nm p- 

In0.53Ga0.47As on 500 μm p+ InP, are also plotted in Figs. 5.6(a) and 5.6(b), 

respectively. 

Without RTA [Fig. 5.6(a)], Splits P1, P3, and P4 exhibit amorphous 

characteristics, while the rest have likely maintained a fair degree of crystallinity.  In 

fact, the excellent crystallinity of the as-implanted sample from Split P8 is verified by 

the TEM images in Fig. 5.5.  Comparing Splits P1 and P2, it appears that ET-PLAD 

can help to suppress amorphization.  However, a higher dose (Splits P3 and P4) is 

more amorphizing, such that an elevated substrate temperature of 100 °C during 

PLAD is unable to maintain crystallinity.  In this case, a higher substrate temperature 

is required. 

It is noted that a higher substrate bias for PLAD appears to be less 

amorphizing (Splits P5, P6, P7, and P8).  This might seem contradictory, as one may 

expect higher energies to cause more amorphization as in the case of beam-line ion 

implantation.  However, the PLAD mechanism is more complex than beam-line ion 

implantation.  The ions that are implanted during PLAD have a distribution of angles, 

energies, and masses, due to collisions between ions and neutrals within the plasma 

sheath and the lack of mass separation.  This stands in contrast to beam-line ion 

implantation, where mass analyzer magnets provide selection of ion mass, the ions are 
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accelerated (or decelerated) to a single desired energy, and the ion beam is directional.  

In PLAD, the plasma characteristics (e.g. density and pressure) and the substrate bias 

(e.g. magnitude, waveform, and frequency) have important influences on the dopant 

profile in the substrate and the properties of the doped layer.  A larger substrate bias 

increases the maximum energy that can be attained by the implanted ions, but also 

increases the sheath thickness and results in more collisions between ions and neutrals 

in the sheath, which broadens the ion energy distribution and reduces the mean ion 

energy [202]-[204].  Increased collisions in the sheath also result in a higher 

proportion of lighter ions [204].  The broadened energy distribution, lower mean ion 

energy, and lighter ions could account for the reduced amorphization at larger 

substrate bias. 

After RTA [Fig. 5.6(b)], all the PLAD samples recover almost completely 

towards the pristine crystalline InGaAs.  The splits with a lower dose have ε2 profiles 

that match almost perfectly with the modeled profile.  The splits with a higher dose 

have residual surface layers that were not completely etched away, which alters their 

ε2 profiles. 

Secondary ion mass spectrometry (SIMS) was done on Splits P7 and P8 before 

and after RTA, and the Si concentration depth profiles in the InGaAs are plotted in 

Fig. 5.7.  The SIMS was done at the Institute of Materials Research and Engineering 

(IMRE) as a paid service.  The Si counts were converted to Si concentration by 

application of a relative sensitivity factor obtained from a calibration In0.53Ga0.47As 

sample implanted with a known Si dose and analyzed using the same SIMS 

conditions.  The surface-peaked Si profiles, which are typical of PLAD due to the ions 

possessing a distribution of energies, are beneficial for lowering contact resistivity.   
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Fig. 5.7. Si concentration depth profiles in InGaAs for Splits P7 and P8 before and 
after RTA, showing higher Si surface concentration and higher Si dose for ET-PLAD 
than for RT-PLAD.  The Si surface concentration and Si dose increase after RTA for 
both RT-PLAD and ET-PLAD, due to diffusion of Si dopants from the Al2O3 cap into 
the InGaAs. 
 

 

Fig. 5.8. Measured IR-VASE data for all PLAD splits after RTA at 600 °C for 60 s.  
The measured ε2 profile for Split P8 before RTA and the modeled ε2 profile for 5.5 
nm native SiO2 on 4 nm Al2O3 on 500 nm p- In0.53Ga0.47As on 500 μm p+ InP are also 
plotted. 
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The additional SiOx and/or Si layer that was seen in the TEM images in Fig. 

5.5 can also be seen in the SIMS raw data (not shown).  A portion of the total PLAD 

dose is lost due to deposition of this layer, and also due to some dopants stopping in 

the Al2O3.  It is observed that ET-PLAD gives higher Si surface concentration and Si 

dose in the InGaAs than RT-PLAD.  In addition, the Si surface concentration and Si 

dose increase after RTA for both RT-PLAD and ET-PLAD, due to diffusion of some 

Si dopants from the Al2O3 cap into the InGaAs.  Before RTA, the Si doses in the 

InGaAs for RT-PLAD and ET-PLAD, calculated by integrating the Si concentration 

depth profiles in Fig. 5.7, are 4.7×1014 and 7.6×1014 cm-2, respectively.  After RTA, 

the doses increase to 5.5×1014 and 9.3×1014 cm-2, respectively. 

Infrared variable angle spectroscopic ellipsometry (IR-VASE) [225] was used 

to examine the activation of the Si dopants in the InGaAs.  Fig. 5.8 plots the ε2 

profiles in the IR regime obtained from all the PLAD splits after RTA, along with the 

ε2 profile from Split P8 (ET-PLAD) before RTA and the modeled ε2 profile for 5.5 nm 

native SiO2 on 4 nm Al2O3 on 500 nm p- In0.53Ga0.47As on 500 μm p+ InP.  The ε2 

profile from Split P8 before RTA shows only a slight increase in free carrier 

absorption compared to the modeled profile.  Therefore, there is little active n-type 

doping before RTA, even for ET-PLAD with a substrate temperature of 100 °C.  After 

RTA, significant increases in free carrier absorption are observed for all splits, 

indicating the activation of Si dopants, which forms a layer of n-type InGaAs.  Further 

in-depth analysis of the IR-VASE data can also yield parameters such as electrical 

resistivity, mobility, and thickness of the charge layer.  Preliminary analysis gives a 

mobility of ~800 cm2/V·s for Split P4. 

The current-voltage characteristics obtained from the TLM structures are 

highly linear (not shown), indicating the formation of good ohmic contacts on the n-
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doped InGaAs.  The sheet resistance Rsheet extracted from the TLM structures is 

plotted in Fig. 5.9 for Splits P7 and P8.  Lower Rsheet is obtained for ET-PLAD than 

for RT-PLAD, which may be attributed to enhanced doping in the form of higher 

active doping concentration and/or a thicker n-doped layer, as seen from SIMS (Fig. 

5.7) and IR-VASE (Fig. 5.8) data.  In comparison, the sheet resistances extracted from 

TLM structures on samples doped by beam-line implant are ~250 to ~300 Ω/square.  

Fig. 5.10 shows the current-voltage characteristics of diodes with dimensions of  

Ldiode×Ldiode and the extracted ideality factor n, obtained from Splits P7 and P8.  As the 

contacts to the n-doped InGaAs are ohmic, the measured characteristics are those of 

the p-n junction diodes formed by the PLAD.  The RT-PLAD and ET-PLAD samples 

show similar diode characteristics, with a difference of ~6 orders of magnitude 

between forward and reverse currents, and an average ideality factor of 1.31 for RT-

PLAD and 1.33 for ET-PLAD.  Diodes fabricated on blanket RT-BL and ET-BL 

samples display a comparable ideality factor of ~1.3 to ~1.4. 

 

 

Fig. 5.9. Rsheet extracted from TLM structures for Splits P7 and P8 after RTA at 600 
°C for 60 s.  Lower Rsheet is obtained for ET-PLAD than for RT-PLAD, which may be 
attributed to a higher doping concentration and/or a thicker doped layer as seen from 
SIMS (Fig. 5.7) and IR-VASE (Fig. 5.8) data. 
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Fig. 5.10. Diodes formed by RT-PLAD and ET-PLAD exhibit similar diode 
characteristics, with a difference of ~6 orders of magnitude between forward and 
reverse currents, and reasonable ideality factor ranging from 1.28 to 1.35. 
 

 

5.4   PLAD ON SMALL FIN STRUCTURES 

Small fins defined by electron beam lithography (EBL), with widths ranging 

from 25 to 95 nm, were fabricated using the same process flow as in Fig. 5.1, except a 

different starting substrate was used and the mesa patterning and etch were done as 

the first step in order to form the fins prior to PLAD.  The EBL was done at DSI as a 

paid service.  The starting substrate for the fins is 50-nm-thick (001) In0.53Ga0.47As 

with p-type doping concentration of ~5×1016 cm-3 on 500-nm-thick (001) 

In0.52Al0.48As (undoped or with low p-type doping of ~1×1017 cm-3), grown on bulk 

InP with p-type doping concentration of ~5×1018 to ~5×1019 cm-3.  The fin etch was 

~100 nm deep, etching beyond the InGaAs into the InAlAs. 
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Fig. 5.11. (a) Top-view SEM image of fins that were cut for TEM.  The FIB cut is 
made along the line A-A’.  (b) Tilt-view SEM image of standalone fins. 
 

The fins were used for TEM analysis to examine the InGaAs crystallinity after 

RTA.  Fig. 5.11(a) shows a top-view scanning electron microscopy (SEM) image of 

fins that were cut for TEM, with the focused ion beam (FIB) cut line indicated by A-

A’.  All 24 fins in each sample were inspected by TEM for defects.  A tilt-view SEM 

image of standalone fins is also provided in Fig. 5.11(b).  Fins from Splits P1 and P6 

were chosen for TEM based on the UV-VASE analysis of blanket samples (Fig. 5.6), 

which shows that the as-implanted PLAD samples from Splits P1 and P6 are 

amorphous and crystalline, respectively. 

TEM images of fins from Split P1 are shown in Figs. 5.12, 5.13, and 5.14, 

while TEM images of fins from Split P6 are shown in Figs. 5.15 and 5.16.  Some 

corner rounding of the fins is observed, which is desirable for reducing the electric 

field at the corners.  However, extensive defects can be clearly seen at the corners of 

the fins from Split P1 (Figs. 5.13 and 5.14).  These corner defects are similar to the 

multiple twin boundary defects along the {111} plane observed in Si fins doped by 

beam-line ion implantation in Ref. [221], and are consistently seen for all 24 fins of 

varying width (25-95 nm) in Split P1. 
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Fig. 5.12. Cross-sectional TEM image of a set of three 25-nm-wide fins from Split P1 
after RTA.  The fins are identical to each other, with rounded corners and vertical 
sidewalls. 
 

 

 

Fig. 5.13. (a) Cross-sectional TEM image of a single 25-nm-wide fin from Split P1 
after RTA.  The dashed line indicates the interface between InGaAs and InAlAs.  (b) 
High-magnification view of the top portion of the fin, showing that corner defects 
remain after anneal for fins that are amorphized during plasma ion implantation. 
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Fig. 5.14. High-magnification TEM image of the top portion of a 48-nm-wide fin 
from Split P1 after RTA.  Like the fin in Fig. 5.13, corner defects are present after 
anneal due to amorphization during plasma ion implantation, despite the larger fin 
width. 
 

 

On the other hand, the corner defects are suppressed for all 24 fins of varying 

width (25-95 nm) in Split P6, resulting in fins that are free of visible defects (Figs. 

5.15 and 5.16).  This highlights the importance of maintaining the crystallinity of the 

fins during implantation of the ions.  By preventing amorphization in the as-implanted 

fins, the lack of crystalline seed for recrystallization and the presence of residual 

corner defects after RTA can be circumvented.  This can be achieved by careful 

optimization of the PLAD conditions, possibly with the aid of an elevated substrate 

temperature during PLAD. 
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Fig. 5.15. (a) Cross-sectional TEM image of a 25-nm-wide fin from Split P6.  The 
dashed line indicates the interface between InGaAs and InAlAs.  (b) High-
magnification view of the top portion of the fin, which shows that residual corner 
defects are absent after dopant activation anneal when the crystallinity of the fins is 
preserved during plasma ion implantation. 
 

 

 

Fig. 5.16. High-magnification TEM image of the top portion of a 47-nm-wide fin 
from Split P6 after RTA.  Like the fin in Fig. 5.15, no corner defects are present after 
anneal due to the suppression of amorphization during plasma ion implantation. 
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5.5   CONCLUSIONS 

Plasma doping of InGaAs at an elevated substrate temperature was 

investigated for the first time and compared against plasma doping with the substrate 

kept at room temperature.  An elevated substrate temperature during plasma doping 

can potentially help to maintain good crystallinity as-implanted.  Elevated-

temperature plasma doping also gave higher dose and surface concentration in blanket 

samples than room-temperature plasma doping, leading to lower sheet resistance.  

Small fins that are amorphized during plasma ion implantation are found to have 

residual corner defects after dopant activation anneal, whereas visible defects are 

absent in fins that remained crystalline during plasma ion implantation, showing the 

importance of avoiding amorphization in small fins. 

 



Chapter 6  
 
Summary and Future Directions 
 
 
 
 

6.1   CONTRIBUTIONS OF THESIS 

As explained in Chapter 1, high-mobility III-V semiconductors provide a 

compelling option for the replacement of Si as the channel material in metal-oxide-

semiconductor field-effect transistors (MOSFETs), so as to maintain high 

performance in spite of the necessary reduction in supply voltage Vdd for lower power 

consumption. 

However, the use of III-V MOSFETs in CMOS logic circuits faces challenges 

that need to be overcome before they are suitable for large-scale manufacturing, not 

least of which is the need for low parasitic resistances in MOSFETs with high-

mobility channels and highly scaled dimensions.  Crucially, the complexity and costs 

associated with the adoption of a disruptive technology such as III-V MOSFETs must 

be justified by substantial performance improvement and the ability to scale over 

multiple technology nodes.  High parasitic resistances can limit the performance of 

III-V MOSFETs, preventing them from realizing their full potential and potentially 

jeopardizing their adoption in industry. 

Therefore, this thesis has explored and developed contact and source/drain 

(S/D) engineering techniques for advanced InGaAs n-channel MOSFETs (n-

MOSFETs), with the potential to not only achieve low parasitic resistances, but also 

fulfil the important requirements of abrupt, ultra-shallow, and high-quality junctions 

for control of short-channel effects (SCEs), and doping conformality for three-

127 
 



dimensional (3D) device architectures such as fin field-effect transistors (FinFETs).  

These techniques are studied in Chapters 2 to 5, and the results and their significance 

are summarized in the following subsections.  Finally, suggestions on possible future 

directions for expanding on the research in this thesis are provided in Section 6.2. 

 

6.1.1   Salicide-like S/D contact metallization for InGaAs MOSFETs 

The direct reaction of metals with InGaAs opens the doorway to the formation 

of self-aligned S/D contact metallization in InGaAs MOSFETs using a process similar 

to the self-aligned silicide (‘salicide’) formation process in Si technology [110]-[116].  

Salicide formation has been an important technology for S/D resistance RSD reduction 

in Si MOSFETs, as it places the S/D contact metallization directly adjacent to the gate 

spacer.  Therefore, the formation of salicide-like contact metallization in InGaAs 

MOSFETs could also bring a similar benefit to InGaAs MOSFETs. 

The reaction of Ti, Co, and Pd with In0.53Ga0.47As was thus investigated by 

annealing for 60 s using different rapid thermal anneal (RTA) temperatures.  Ti did 

not appear to react with In0.53Ga0.47As up to 400 °C.  On the other hand, Co 

completely reacts at 350 °C to form Co-InGaAs, and Pd completely reacts at 200 °C 

to form Pd-InGaAs.  A low reaction temperature is important for minimizing S/D 

dopant diffusion and gate stack degradation.  Both Co-InGaAs and Pd-InGaAs form 

ohmic contacts on n-type In0.53Ga0.47As with active doping concentration of ~2×1018 

cm-3.  X-ray photoelectron spectroscopy (XPS) analysis suggests that Pd could be the 

main diffusing species in the reaction with InGaAs. 

Pd-InGaAs exhibits superior film properties compared to Co-InGaAs.  Pd-

InGaAs films formed at 200 and 250 °C are very uniform in both thickness and sheet 

resistance, and form a smooth interface with InGaAs.  In contrast, Co-InGaAs forms a 
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rough interface with InGaAs.  20-nm-thick Pd-InGaAs formed at 250 °C has a sheet 

resistance of ~77 Ω/square. 

Using ultra-violet photoelectron spectroscopy (UPS), the work function of the 

Pd-InGaAs formed at 250 °C is found to be ~4.6 ± 0.1 eV.  Therefore, the Fermi level 

of Pd-InGaAs is close to the conduction band minimum of In0.53Ga0.47As, which 

should enable it to form a good ohmic contact on n-type In0.53Ga0.47As with low 

contact resistivity ρc.  However, the ρc of Pd-InGaAs on n-type In0.53Ga0.47As with 

~2×1018 cm-3 active doping concentration is ~8.35×10-5 Ω·cm2, which is rather high.  

A higher substrate doping concentration will help to lower ρc, but the value of ρc may 

still be too high.  This issue and the potential solutions will be discussed below in 

Section 6.2. 

 

6.1.2   Comparison between self-aligned and non-self-aligned contact 

metallization in InGaAs n-MOSFETs 

Simulations of In0.53Ga0.47As n-MOSFETs with either self-aligned silicide-like 

(salicide-like) or non-self-aligned S/D contact metallization were used to ascertain the 

performance benefits derived from salicide-like contact metallization.  For 

technological relevance, the simulated devices were calibrated to projections by the 

International Technology Roadmap for Semiconductors (ITRS) [181] for III-V high-

performance logic technology.  These include a gate length LG of 15 nm, a supply 

voltage Vdd of 0.63 V, and a saturation threshold voltage Vt,sat of 0.18 V. 

The simulations show that while RSD has a much less significant impact at 

highly scaled dimensions due to the close proximity of the via to the gate, self-aligned 

metallization (SAM) still provides drive current benefits over non-self-aligned 
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metallization (NSAM) with the same ρc due to its larger contact area, which reduces 

contact resistance Rc.  The contact area advantage of SAM is especially important for 

small vias, which will continue to shrink with device scaling, leading to Rc becoming 

the dominant source of parasitic resistance. 

The ρc needed in order to meet the ITRS parasitic S/D series resistance 

requirements for III-V high-performance logic is determined to be ~1×10-8 and 

~5×10-9 Ω·cm2 for SAM and NSAM, respectively.  The lower Rc afforded by SAM 

allows it to outperform NSAM with the same ρc, down to values of ρc as low as 3×10-9 

Ω·cm2.  At lower ρc, SAM gives lower performance than NSAM as it suffers from 

current crowding and higher spreading resistance induced by its recessed geometry, 

but this is eliminated by a raised S/D architecture, which allows SAM to outperform 

NSAM with the same ρc for any given value of ρc. 

The results obtained from the simulations therefore clearly show the 

importance and usefulness of salicide-like S/D contact metallization, and provides ρc 

targets in order to meet ITRS requirements.  From the simulations, it is also possible 

to determine the value of ρc needed for SAM to match or better the performance of 

NSAM with a given ρc. 

 

6.1.3   Novel Si monolayer doping technique for InGaAs 

A new Si monolayer doping (MLD) technique was developed for doping 

InGaAs n-type, and was successfully demonstrated in planar In0.53Ga0.47As n-

MOSFETs for the first time.  This doping technique uses SiH4 or Si2H6 gas treatment 

of the InGaAs surface to form Si monolayers on the InGaAs, with Si2H6 allowing a 

lower substrate or processing temperature.  The dopant dose can be controlled by the 
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treatment time.  Laser anneal is then used to drive in and activate the Si dopants to 

form n++ InGaAs. 

At present, precious little has been reported on MLD for InGaAs, and the 

existing literature on MLD for III-V substrates has been confined to the use of sulfur 

(S) as the dopant [186]-[192].  Yet, Si remains the preferred dopant for n-type 

InGaAs [193].  The Si MLD technique developed therefore expands on MLD for 

InGaAs, and provides an alternative MLD solution for III-V materials. 

The SiH4 or Si2H6 gas treatment offers a way to conformally introduce dopants 

on the InGaAs surface, which is important for 3D device structures such as FinFETs 

and nanowire MOSFETs.  A gas-based monolayer formation technique also offers the 

possible advantage of an in situ clean without breaking vacuum prior to monolayer 

formation.  In addition, the use of laser anneal potentially allows doping 

concentrations above the solid solubility limit, and miminal dopant diffusion that 

enables abrupt ultra-shallow junction formation due to the ultrafast irradiation. 

Experimental data shows that a laser anneal fluence of 100 mJ/cm2 is able to 

produce n-type In0.53Ga0.47As with very high doping concentrations (approaching 1021 

atoms/cm3 at the surface) and ultra-shallow junctions with good abruptness (~4-5 

nm/decade) for both SiH4 and Si2H6 treatments.  Nearly ideal p-n junction diodes with 

ideality factor approaching unity were also formed on p-type In0.53Ga0.47As by SiH4 

treatment at 500 °C and laser anneal at 100 mJ/cm2.  These were made possible by the 

absence of both implant-induced damage and melt-induced defects.  In0.53Ga0.47As n-

MOSFETs with S/D regions doped by SiH4 treatment at 500 °C and laser anneal at 

100 mJ/cm2 show well-behaved transfer and output characteristics, with crystalline 

channel and S/D regions and low gate leakage current. 
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Therefore, the Si MLD technique developed for InGaAs n-MOSFETs shows 

promise as an alternative to conventional beam-line ion implantation, which may not 

be suitable for conformally doping 3D device structures with extremely narrow pitch. 

 

6.1.4   Plasma doping of InGaAs at elevated substrate temperature 

Plasma doping (PLAD) was also studied as another doping option for InGaAs 

at advanced technology nodes.  PLAD has been extensively reported for the doping of 

Si substrates [196]-[221], but has been largely neglected for other materials.  PLAD is 

capable of forming ultra-shallow junctions with surface-peaked doping profiles, due 

to the range of energies of the ions implanted.  PLAD also offers high throughput, 

thanks to high implant currents and simultaneous doping of the entire wafer surface.  

Most importantly, PLAD can conformally dope 3D structures such as trenches and 

fins [214]-[221], even those with high aspect ratio or narrow pitch.  This is attributed 

to the distribution of angles that the implanted ions possess. 

While conventional beam-line ion implantation has seen advancements that 

have enabled it to provide high throughput for high-dose, ultra-low-energy 

implantations of large wafers and is still suitable for 3D FinFET doping at the 14/16 

nm technology node, its application could be restricted by angle limitations imposed 

by shadowing as fin pitch continues to shrink.  In contrast, PLAD does not have the 

issue of a directional ion beam, and hence does not suffer from shadowing effects.  

Therefore, PLAD could have an important role to play in the doping of future 

generations of FinFETs.  While PLAD has its own challenges in terms of process 

control (e.g. dose, contamination, uniformity, and repeatability), they can be 

overcome through the use of modeling, diagnostics, and sensors, which allows good 

process control comparable to that of beam-line ion implantation [207],[213]. 
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Like beam-line ion implantation, PLAD is an implant-based doping technique.  

Therefore, it can also induce implant damage and can cause amorphization, although 

the amorphous layer may have slightly different properties due to the range of masses 

and energies of the implanted ions [202].  An elevated substrate temperature during 

PLAD provides dynamic annealing, and has been shown to suppress crystal defects 

and maintain crystallinity in Si substrates as-implanted [208]-[210].  However, this 

has not been reported for III-V substrates.  Elevated-temperature PLAD (ET-PLAD) 

was thus studied for InGaAs for the first time. 

ET-PLAD was found to provide higher Si dopant incorporation and lower 

sheet resistance in InGaAs than room-temperature PLAD (RT-PLAD). Of greater 

significance is the ability of an elevated substrate temperature to prevent 

amorphization of the InGaAs during PLAD.  Small fins doped by PLAD highlight the 

importance of maintaining crystallinity during the plasma ion implantation, as 

residual corner defects after dopant activation anneal are observed in fins that are 

amorphized during PLAD, but not in fins where crystallinity is preserved throughout 

the process. 

 

6.2   FUTURE DIRECTIONS 

While promising new contact and S/D engineering technologies were explored 

and developed for advanced InGaAs n-MOSFETs, the technologies are still in the 

early stages of development.  Much work is still needed to optimize the technologies 

and characterize their performance in advanced MOSFET architectures, creating 

opportunities for further research. 
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Salicide-like S/D contact metallization is a very recent development for III-V 

MOSFET technology.  Ni-InGaAs contact metallization was first reported at the end 

of year 2010 [122].  Thus far, the lowest ρc reported for Ni-InGaAs on In0.53Ga0.47As 

is ~1×10-6 Ω·cm2, which is still not low enough despite a low- to mid-1019 cm-3 active 

donor concentration [136]-[137].  The ρc of ~8.35×10-5 Ω·cm2 obtained for Pd-

InGaAs on In0.53Ga0.47As, although at a lower active donor concentration of ~2×1018 

cm-3, is also rather high.  Hence, the most pressing need for salicide-like contact 

metallization in III-V MOSFETs is a reduction in ρc.  From the simulations in Chapter 

3, the target ρc based on ITRS requirements is ~1×10-8 Ω·cm2 for salicide-like S/D 

contact metallization.  Therefore, the ρc of salicide-like S/D contact metallization such 

as Ni-InGaAs and Pd-InGaAs needs to be reduced by two to three orders of 

magnitude. 

The ρc of Pd-InGaAs can be reduced by increasing the InGaAs doping 

concentration to mid-1019 cm-3, possibly bringing it close to the 1×10-6 Ω·cm2 

obtained for Ni-InGaAs at the same doping concentration [136]-[137].  InGaAs with 

higher indium composition is also expected to produce lower ρc.  However, these are 

not likely to be sufficient on their own, and other techniques will be required to 

achieve the desired ρc. 

In order to reduce ρc to ~1×10-8 Ω·cm2 and below, it is first necessary to gain 

more insight into the reasons for the ρc being high despite pinning of the Fermi level 

near the InGaAs conduction band and, in the case of Pd-InGaAs, a low work function.  

In fact, the work function of Pd-InGaAs (~4.6 eV) is lower than that of Pd (5.12 eV), 

yet its ρc is higher.  The presence of interfacial layers such as excess elemental In, Ga, 

or As at the interface between Pd-InGaAs and InGaAs after reaction of Pd with 

InGaAs was cited as a possible reason in Chapter 2.  Indeed, preliminary studies 
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performed by one of our collaborators show out-diffusion of substrate elements 

during the reaction between Ni and InGaAs, which results in InGaAs non-

stoichiometry at the interface between Ni-InGaAs and InGaAs and leads to high ρc.  It 

is found that the insertion of a capping layer between Ni and InGaAs can help to 

suppress the out-diffusion of substrate elements during the subsequent reaction, 

enabling the resulting Ni-InGaAs to achieve ρc as low as ~4×10-8 Ω·cm2 on 

In0.53Ga0.47As with active donor concentration of 3×1019 cm-3.  This is a major step 

towards ρc reduction for Ni-InGaAs contact metallization in InGaAs n-MOSFETs, as 

it makes Ni-InGaAs competitive with non-self-aligned Mo contact metallization, and 

can potentially be extended to other salicide-like contact metallization such as Pd-

InGaAs. 

Other than ρc reduction, another potential issue with Pd-InGaAs is its thermal 

stability, as a reaction or formation temperature of 350 °C results in a Pd-InGaAs film 

that has a degraded morphology and interface with InGaAs.  While the formation 

temperature is not the same as the subsequent thermal budget that the Pd-InGaAs film 

can withstand without degradation, a low formation temperature tolerance could be 

indicative of poor thermal stability after formation.  More studies are therefore needed 

to determine the thermal stability of the Pd-InGaAs film after it is formed.  Ni-

InGaAs exhibits degraded morphology and sheet resistance starting at 400 °C 

formation temperature, but the use of an interfacial layer between Ni and InGaAs has 

been shown to allow Ni-InGaAs formation temperatures of up to 500 °C without 

degradation [141].  An interfacial layer could therefore also be useful in the reaction 

between Pd and InGaAs if the thermal stability of the Pd-InGaAs film is a concern. 

The selective etch of unreacted Pd, without affecting the Pd-InGaAs S/D 

contact metallization and other parts of the transistor, also requires further 
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development to improve the salicide-like process for Pd-InGaAs contact metallization 

in InGaAs MOSFETs.  Extensive studies on selective wet etching of Ni have been 

done for Ni-InGaAs on both blanket [131] and transistor [141] samples, but no such 

reports exist yet for selective etching of Pd for Pd-InGaAs contact metallization. 

The two-dimensional (2D) simulations in Chapter 3 can be extended to 3D 

simulations.  While the 2D simulations give a good representation of the actual 

devices and provide useful and relevant insights, 3D simulations could give an even 

more accurate representation of 3D MOSFET architectures such as FinFETs, albeit at 

the cost of significantly increased simulation time and complexity. 

The Si MLD technique developed in Chapter 4 is novel and thus not yet 

mature, and therefore needs to be optimized to achieve lower sheet resistance and 

contact resistivity.  This can be done by incorporating more dopants or improving the 

activation efficiency.  For instance, it has been reported that the material, 

stoichiometry, deposition method, and deposition temperature of the capping layer 

can affect the incorporation and activation of sulfur (S) dopants in InGaAs for S 

MLD, and that a bi-layer cap comprising a thin low-temperature oxide followed by a 

thicker high-temperature oxide works best in retaining S dopants on the surface 

during cap layer deposition and suppressing S outdiffusion during the activation 

anneal [192]. 

Various capping layer materials and thicknesses can therefore be studied for 

the Si MLD technique developed in Chapter 4 to get optimal doping, although the 

method used to deposit the capping layer should be conformal (e.g. atomic layer 

deposition) for 3D structures.  A two-step anneal could also be explored, involving 

laser anneal at a low fluence of 100 mJ/cm2 to achieve an abrupt ultra-shallow 
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junction with peak doping concentration at the surface, followed by a flash anneal or a 

second laser anneal for higher dopant activation without significant dopant diffusion. 

Another obvious follow-up is the integration of the Si MLD technique in 3D 

MOSFETs such as FinFETs.  While the planar In0.53Ga0.47As n-MOSFETs 

demonstrated in Chapter 4 represent the first devices to successfully implement this 

novel Si MLD technique to dope the S/D regions, the performance of the doping 

technique needs to be evaluated for 3D devices in terms of conformality and 

resistance. 

The application of the Si MLD technique to InGaAs with different indium 

compositions can also be investigated, with the different optical and thermal 

properties (e.g. band gap and thermal conductivity) potentially affecting the annealing 

conditions required for the optimal doping profile.  In addition, gas-based MLD using 

other dopants can be explored, such as germane (GeH4) treatment for the formation of 

germanium (Ge) monolayers. 

The future research options suggested for the Si MLD technique developed in 

Chapter 4 can also be applied to the plasma doping (PLAD) of InGaAs that was 

studied in Chapter 5.  These include the optimization of the capping layer and the 

dopant activation conditions for minimizing resistance, and the application of PLAD 

to InGaAs with different indium compositions, which may have different substrate 

temperature requirements for maintaining crystallinity during PLAD.  The integration 

of PLAD in InGaAs FinFETs has also not been demonstrated before, providing an 

opportunity for further study.  As part of the design and development of plasma-doped 

InGaAs FinFETs, an evaluation of sidewall doping at very narrow fin spacing, dopant 

profiling/mapping, and the extraction of top and sidewall sheet resistances from small 
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plasma-doped InGaAs fins patterned by electron beam lithography (EBL) would be 

useful. 

In addition, the effect of the substrate temperature on sheet resistance can be 

investigated for PLAD.  This has been reported for beam-line ion implantation, where 

it is proposed that increasing the amount of point defects without amorphization 

during implantation helps to improve Si activation in In0.53Ga0.47As during the 

subsequent dopant activation anneal [226].  However, it should be pointed out that 

more non-amorphizing damage can also result in more residual defects (e.g. 

dislocation loops) after annealing, leading to higher leakage.  Therefore, this warrants 

careful consideration. 

Finally, co-dopants can also be introduced during PLAD.  The doping of 

InGaAs by PLAD in Chapter 5 used only Si as an n-type dopant.  Other n-type 

dopants such as S can be introduced together with Si into the InGaAs using PLAD, 

with the co-dopants implanted simultaneously or consecutively.  Heavier elements, 

which cause more crystal damage as seen in the case of beam-line ion implantation, 

may require higher substrate temperatures during PLAD in order to maintain 

crystallinity. 

From the lengthy discussion above, it is evident that there are many 

opportunities and avenues for continuing the research in this thesis.  It is hoped that 

with further progress and optimization, at least a few of the promising contact and 

S/D engineering techniques developed in this thesis for advanced InGaAs MOSFETs 

will one day be production-worthy and ultimately help to advance technology by 

being adopted in industry. 
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