
MOBILE APP RECOMMENDATION

JOVIAN LIN

(B.Comp. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2014

DECLARATION

I hereby declare that this thesis is my original work and it has been
written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university
previously.

JOVIAN LIN

20 JUNE 2014

i

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support, direction,
and love of a multitude of people.

First, I would like to express my deepest gratitude to my PhD advisors,
Prof. Tat-Seng Chua and A/P Min-Yen Kan, for their steadfast support
and intellectual guidance. There have been countless occasions when I have
felt hopelessly lost, disheartened and stumped about the direction of my
research. But inevitably (and thankfully), a meeting with them would rein-
vigorate my enthusiasm and lift my spirits — and most importantly, guide
me back in the right direction.

I would like to thank Dr. Kazunari Sugiyama for his meticulous proof-
reading and valuable suggestions. His thorough attention to detail has
helped me to spot the most obscure mistakes, leading to better quality
works. I would also like to thank Dr. Zhaoyan Ming for her invaluable
guidance during the start of my PhD. Her patience and encouragement has
helped me overcome the despair that I have felt during that period.

I am grateful to the members of my thesis committee, Prof. Chew-Lim
Tan, Prof. Mong-Li Lee, A/P Yi Zhang, A/P Anindya Datta, and A/P Ye
Wang, for their critical reading of the thesis and providing their valuable
advice, which have helped me further improve this thesis.

I have also been blessed to have had many supporting my endeavors
since the beginning of my PhD journey, playing multiple roles for which I
am greatly thankful for:

My advisors from NUS Enterprise, Prof. Juzar Motiwalla and Dr. Pete
Kellock, for guiding me down the entrepreneurial path and whetting my
appetite for it, as well as Masana Takashi for inspiring me with his unwa-
vering optimism and positivity;

ii

My colleagues from the Web IR/NLP Group (WING): Jun-Ping Ng,
Aobo Wang, Tao Chen, Xiangnan He, and Muthu Chandrasekaran;

My colleagues from the Lab for Media Search (LMS), both past and
present: Shiyong Neo, Yantao Zheng, Guangda Li, Xiaojian Zhao, Zhe
Chen, Liqiang Nie, Hanwang Zhang, Yiliang Zhao, Yan Chen, Jingwen
Bian, and Xue Geng;

Dr. James Wong for surgically repairing my collapsed lung (or pneu-
mothorax) — which I was diagnosed with just 10 days before I was to
attend my first Rank 1 conference overseas — and allowing me to proceed
on with SIGIR’13 with minimal health risk;

My friends Wen-Shih Wee, Madankumar Balakrishnan, Dillion Tan,
Kangli Yip, Kah-Ming Tan, Zhanwei Lim, Yawsing Tan, Gabriel Leong,
Stephan Hassold, Christine Chong, Lionel Chan, Jasper Fay, Jean Hair,
Xuhui Chan, Hannah Watson, Fiona Lim, and countless others for show-
ing love and support in both times of great happiness and deep depression;

and most importantly, my parents and two sisters, Erinna and Elisa,
for their understanding and support throughout these years.

iii

CONTENTS

1 Introduction 1

1.1 Motivation . 3

1.1.1 Nascent Signals from Microblogs 3

1.1.2 Apps Contain Various Versions 4

1.1.3 The Unifying Framework 5

1.2 Contributions of the Thesis 6

1.2.1 Research Publications 7

1.3 Outline of the Thesis . 8

2 Background 11

2.1 Collaborative Filtering . 12

2.1.1 Memory-based Collaborative Filtering 12

2.1.2 Model-based Collaborative Filtering 14

2.1.3 Graph-based Collaborative Filtering 15

2.2 Content-based Filtering . 16

2.3 Social-based Recommendation 18

2.4 Hybrid Recommender Systems 19

2.4.1 Weighted . 19

2.4.2 Mixed . 20

2.4.3 Switching . 20

2.4.4 Feature Combination 21

2.5 Recommender Systems for Mobile Apps 22

v

3 Mobile App Recommendation Using Nascent Signals from
Microblogs 25

3.1 Introduction . 25

3.2 Related Work . 28

3.3 Our Approach . 29

3.3.1 Targeting the Cold-Start Problem 30

3.3.2 Apps and their Twitter-Followers 31

3.3.3 Pseudo-Documents and Pseudo-Words 32

3.3.4 Constructing Latent Groups 35

3.3.5 Estimation of the Probability of How Likely the Tar-
get User Will Like the App 36

3.4 Evaluation Preliminaries . 39

3.4.1 Dataset . 39

3.4.2 Experimental Settings 40

3.4.3 Evaluation Metric . 41

3.5 Experiments . 42

3.5.1 Comparison of Features (RQ1) 42

3.5.2 Comparison Against Baselines (RQ2) 46

3.5.3 Analysis of Latent Groups (RQ3) 49

3.6 Conclusion . 52

4 Mobile App Recommendation Using Version Features 53

4.1 Introduction . 53

4.2 Related Work . 56

4.3 Our Approach . 57

4.3.1 Version Features . 58

4.3.2 Generating Latent Topics 60

Modeling Version-snippets with Topic Models 61

Corpus-enhancement with Pseudo-terms 63

4.3.3 Identifying Important Latent Topics 64

4.3.4 User Personalization 66

4.3.5 Calculation of the Version-snippet Score 67

4.3.6 Combining Version Features with Other Recommen-
dation Techniques . 67

vi

4.4 Evaluation . 68

4.4.1 Dataset . 68

4.4.2 Evaluation Metric . 69

4.4.3 Optimization of Parameters 70

4.4.4 Baselines . 70

4.5 Experiments . 71

4.5.1 Recommendation Accuracy Obtained by Di↵erent Num-
ber of Latent Topics 71

4.5.2 Importance of Genre Information 72

4.5.3 Comparison of Di↵erent Topic Models 73

4.5.4 Comparison Against Other Recommendation Tech-
niques . 75

4.6 Discussion . 76

4.6.1 Comparison of Previous, Current, and Future Ver-
sions of Apps . 77

4.6.2 Dissecting Specific LDA Topics 78

4.6.3 Importance of Version Categories 81

4.7 Conclusion . 83

5 A Unifying Framework for App Recommendation 85

5.1 A Hypothetical Conceptualization of the App Domain 86

5.2 Problem Analysis . 89

5.2.1 Problem Definition 89

5.2.2 Information for the Unified Model 89

5.2.3 User’s History-related Information (H) 89

5.2.4 App’s Marketing-related Metadata (M) 90

5.2.5 Recommendation Scores from Di↵erent Recommender
Systems (R) . 93

5.3 Unifying Framework . 94

5.4 Experimental Setup . 97

5.4.1 Baseline Systems . 97

5.4.2 Evaluation Metric . 98

5.5 Experimental Results and Analysis 99

5.5.1 Ablation Study . 101

vii

Ablation Study with Su�cient Twitter Information . 103

Ablation Study with Su�cient Version Information . 104

5.5.2 Feature Importance 105

5.6 Summary and Contribution 108

6 Conclusion and Future Work 111

6.1 Main Contributions . 112

6.2 Future Work . 112

6.2.1 Leverage on More Data from Social Networks 113

6.2.2 Application of Techniques to Other Domains 113

6.2.3 Treating versions as Interdependent 113

6.2.4 Exploring Tail Applications 114

6.2.5 Exploring Alternatives to Utilize Features 114

viii

ABSTRACT

Mobile apps have become commonplace in society. But with millions
of apps flooding the app stores, recommender systems have become indis-
pensable tools as they help consumers overcome the problem of information
overload. By sifting through the ocean of apps, they allow consumers to
discover new and compelling apps through personalized recommendations.
Yet, conventional recommender systems have their own set of problems —
particularly the problem of data sparsity, which is the result of insu�cient
ratings per app. Furthermore, conventional recommender systems do not
account for the singularity of the app domain that, if properly utilized,
could potentially provide significant improvements to current app recom-
mender systems.

In this thesis, we investigate the singularity of the app domain for
the purpose of improving app recommendations. By exploiting the app
domain’s unique characteristics, we come up with novel recommendation
techniques that take advantage of information from social networks, version
updates, and a slew of app metadata that is typically underused.

First, we describe an approach that accounts for nascent information
culled from Twitter to provide relevant recommendations in cold-start sit-
uations. By exploiting an app’s Twitter handle (e.g., @angrybirds), we
extract its Twitter-followers and show how these Twitter-followers can act
as an alternative source of information to overcome the cold-start problem.

Second, we observe that in the domain of mobile apps, a version update
may provide substantial changes to an app which may revive a consumer’s
interest for a previously unappealing version. We leverage version features
for the purpose of improving app recommendations, and show that in-
corporating version information into conventional techniques significantly
improves the recommendation quality.

Finally, given a diverse set of app recommendation techniques, we pro-
pose a unifying framework that marries the strengths of the various individ-
ual techniques while overcoming their respective weaknesses. We present a
hybrid app recommender system that utilizes both conventional and novel
app recommendation techniques — as well as the assimilation of user and
app metadata features — for the purpose of generating a personalized
ranked list of recommended apps.

ix

LIST OF TABLES

3.1 Recall levels in our feature ablation study at M = 100.
TGDW and individual feature (T, G, D, W) performances
in Figure 3.6 are also shown. 44

4.1 Genre-topic weighting matrix, where g and z denote a genre
and a latent topic, respectively. Every genre-topic pair has
a unique weight from weighting scheme. Also, x 2 {LDA,
inj+LDA, LLDA, and inj+LLDA}. 65

5.1 Recommendation techniques studied in the experiments. . . 99

5.2 Recall@50 scores in our ablation study. 102

5.3 Recall@50 scores in our controlled ablation study with suf-
ficient Twitter information. 104

5.4 Recall@50 scores in our controlled ablation study with suf-
ficient version information. 105

xi

LIST OF FIGURES

1.1 Timeline of the “Evernote” app. 4

1.2 An app’s changelog chronicles the details of every version
update. 5

3.1 For two months since its release on the iTunes App Store, the
“Evernote” app did not have any ratings. However, its Twit-
ter account already had active tweets and followers. This
shows that despite the cold-start, there is still information
out there about the app, particularly on social networking
services like Twitter. 27

3.2 Di↵erence between (a) in-matrix prediction and (b) out-of-
matrix prediction. 30

3.3 Instead of relying solely on the ratings of users, our approach
also makes use of the Twitter IDs that follow the apps (red
oval). 32

xiii

3.4 A pseudo-document is constructed based on information from
a user, apps, Twitter-followers, and binary (“liked” or “dis-
liked”) preference indicators. A pseudo-document contains
pseudo-words ; each pseudo-word is represented as a tuple
containing a Twitter-follower ID and a binary preference in-
dicator. 34

3.5 Given the set of pseudo-documents {u
1

, . . . , u

m

}, LDA gen-
erates a probability distribution over latent groups for each
pseudo-document, where each latent group z is represented
as a distribution over pseudo-words. A pseudo-word is rep-
resented as a tuple containing a Twitter-follower ID and a
binary preference indicator. 35

3.6 Recall obtained by di↵erent individual features (dashed lines),
as well as our method that combines all features (solid line).
The baseline vector space model (VSM), using the app de-
scription word vocabulary is also shown (dotted line). The
vertical line marks model performance at M = 100 (cf. Ta-
ble 3.1). 43

3.7 Distribution of app genres within our dataset. 45

3.8 A screenshot of an app description that illustrates why word
features may not be e↵ective as it largely boasts about en-
dorsements received. 46

3.9 Recall varying the number of recommendations on the full
dataset. “*” and “**” denote statistically significant im-
provements over the best baseline (CTR) at p < 0.05 and
p < 0.01, respectively. 48

3.10 Recall varying the number of recommendations on the sparse
dataset. “*” and “**” denote statistically significant im-
provements over the best baseline (CTR) at p < 0.05 and
p < 0.01, respectively. 48

3.11 The top 3 latent groups; each group shows the top 5 Twitter-
followers and their public profile. 50

4.1 App X has five versions (red circles, on the left). The con-
tents of each version is represented by a set of topics (green
squares) in which each version consists of at least one topic.
At the same time, based on the consumption history of users,
we model them by identifying which topics they are inter-
ested in (on the right). 54

xiv

4.2 Overview of our framework. 57

4.3 An app’s changelog chronicles the details of every version up-
date; shown here is an excerpt of the Tumblr app changelog.
Version updates typically include new features, enhance-
ments, and/or bug fixes. 58

4.4 The 40 pre-defined genre labels on Apple’s iOS app store (as
of January 2014). The bottom set are gaming sub-genres and
only appear on gaming apps. 60

4.5 Metadata such as genre-mixture (in red) and version-category
(in blue) are incorporated into documents, which appear in
the form of “pseudo-terms” with a “#” prefix. 64

4.6 For each of the 4 topic models, we experimented with various
K between K=100 and K=1200, and show a subsampled
chart of K intervals that are fixated at Recall@100. 72

4.7 Recall scores between the inj+LLDA model that uses genre
information and another that does not. 73

4.8 Recall scores of di↵erent topic modeling schemes withK=1000
as the optimal number of topics. 74

4.9 Recall scores of our version-sensitive model (VSR) against
other individual recommendation techniques. 75

4.10 Recall scores of various combinations of recommendation
techniques. 76

4.11 Comparison of normalized score among past (current �1 to
�7), current, and future (current +1 to +7) versions. 78

4.12 Three most important topics. Each topic shows the top
terms, with the inclusive of hashtags. Terms in red are in-
jected terms from genre labels; those in blue, injected terms
from version information. Not only does this identify latent
topics associated with app updates, it also gives a general
overview of the kinds of features found in various version-
categories. 80

4.13 List of standard and advanced hashtags for corpus-injection. 81

4.14 Recall scores between the use of “standard” and “advanced”
version-categories. 82

xv

5.1 Three di↵erent hypothetical phases of an app’s growth over
time: early, emerging, and mature. 87

5.2 All the components of an app’s marketing-related features. . 90

5.3 JSON data from https://graph.facebook.com/SamuraiSiege,
accessed on Mar 20, 2014. 92

5.4 Contents in the training data (xu,a, r), which contains user
features, app features, the various recommender scores, and
the user’s rating. 96

5.5 Genre distribution of the apps in the dataset. 98

5.6 Recall@50 obtained by di↵erent systems. 100

5.7 Top features in GTB with the highest relative influence. . . 106

5.8 Chart showing that 80% of the total time spent is across
gaming, social networking and entertainment categories. Source:
Flurry Analytics, accessed on Apr 10, 2014, http://goo.
gl/o297Pk. 109

5.9 Time spent on mobile devices. Source: TechCrunch, ac-
cessed on Apr 10, 2014, http://goo.gl/DLPBl. 109

xvi

https://graph.facebook.com/SamuraiSiege
http://goo.gl/o297Pk
http://goo.gl/o297Pk
http://goo.gl/DLPBl

Chapter 1

Introduction

This chapter bootstraps the thesis by explaining the

problem we are attempting to solve. We also

summarize the key contributions that we have achieved

here.

With an ever-increasing number of smartphones and tablets entering the

consumer marketplace, mobile devices have become an indispensable part

of our daily lives. Because of this growth in the mobile device market,

mobile applications (or “apps” in short) are also on the rise and ever in

demand1,2 — as the heart of mobile devices lies in the apps. Furthermore,

as important as apps are to their users, they are even more so for enter-

prises. Among other things, apps have revolutionized consumer behavior

and changed the way in which they shop, making it crucial for enterprises

to tap into the mobile app market as well.

1“Apple’s App Store Marks Historic 50 Billionth Download,” Apple Press
Info, accessed on Sep 10, 2013, http://www.apple.com/sg/pr/library/2013/05/

16Apples-App-Store-Marks-Historic-50-Billionth-Download.html.
2“Google Play Now Generates More Downloads than iOS App Store,” Forbes, ac-

cessed on Sep 10, 2013, http://www.forbes.com/sites/terokuittinen/2013/07/31/
google-play-now-generates-more-downloads-than-ios-app-store/.

1

http://www.apple.com/sg/pr/library/2013/05/16Apples-App-Store-Marks-Historic-50-Billionth-Download.html
http://www.apple.com/sg/pr/library/2013/05/16Apples-App-Store-Marks-Historic-50-Billionth-Download.html
http://www.forbes.com/sites/terokuittinen/2013/07/31/google-play-now-generates-more-downloads-than-ios-app-store/
http://www.forbes.com/sites/terokuittinen/2013/07/31/google-play-now-generates-more-downloads-than-ios-app-store/

The reasons above have led to an explosive growth of app stores3,4,5,

launching a gigantic explosion of consumer interest in the mobile field that

creates economic opportunities for app developers, companies, and mar-

keters. While this growth has provided users with a myriad of unique

and useful apps, the sheer number of choices also makes it more di�cult

for users to find apps that are relevant to their interests. In other words,

app stores face the problem of information overload whereby consumers

experience di�culty in finding relevant apps.

To alleviate the problem of information overload, recommender systems

have been deployed in app stores to provide personalized recommendations

for users. Existing recommender systems typically focus on the following

techniques: i) collaborative filtering, which works by recommending items

(i.e., apps) to target users based on what other similar users have previously

preferred; and ii) content-based filtering, which provides recommendations

by comparing representations of the content of an item against what the

target user is interested in.

Unfortunately, as collaborative filtering depends on ratings to gener-

ate recommendations, a common problem is that a new app that has no

prior ratings cannot be recommended; at least not until more users pro-

vide ratings for it. This is widely known as the cold-start problem, and

it plagues the app store because many excellent apps do not have enough

ratings, causing them to go unnoticed6. The only way for recommender

systems to provide automatic recommendation is to either wait for su�-

cient ratings to be supplied by users — which will take some time — or rely

3https://www.apple.com/itunes/
4https://play.google.com/store
5https://www.windowsphone.com/en-us/store/
6Too many good apps are victims of their own invisibility, lying buried, unused, and

unknown. Due to the lack of visibility, many apps do not have su�cient ratings, which
hinders the use of collaborative filtering techniques. Furthermore, popular apps remain
popular while other (possibly superior) apps stay buried in the app store; in fact, more
than 50% of apps have 10 or fewer ratings, and over 30% have too few ratings for any
to be reported.

2

https://www.apple.com/itunes/
https://play.google.com/store
https://www.windowsphone.com/en-us/store/

on content-based filtering. However, as content-based filtering algorithms

seek to recommend items based on similar content, an obvious drawback is

that the recommended items are similar to the user’s previously-consumed

items; in other words, there is a lack of diversity in the recommendations

generated by content-based filtering (Park and Chu, 2009). For example,

if a consumer has only downloaded weather-related apps, content-based

filtering would only recommend other weather-related apps. This lack of

diversity results in unsatisfactory recommendations.

1.1 Motivation

Conventional recommender systems do not account for the singularity of

the app domain that, if properly utilized, could provide significant im-

provements to current state-of-the-art recommendation techniques. In this

section, we present an overview of the unique characteristics of the app do-

main and explain how, by exploiting distinctive features in the app domain,

we can overcome the cold-start problem as well as improve the recommen-

dation quality.

1.1.1 Nascent Signals from Microblogs

With the rise of social networking services, people broadcast to and mes-

sage friends, colleagues, and the general public about many subjects —

including the topic of apps. An interesting possibility thus arises: Can we

merge information mined from the rich data or nascent signals in social net-

works to enhance the performance of app recommendation? Through our

case studies, we verified that the answer to this question is indeed “yes.”

Figure 1.1 illustrates a case study of our observation with the “Evernote”

app. It was released in May 2012 and had no ratings in the iTunes App

Store for two months; it was only in July 2012 that the first few ratings

3

Figure 1.1: Timeline of the “Evernote” app.

started coming in. However, by May 2012, Evernote’s Twitter account

already had more than 120,000 followers and 1,300 tweets. Given this en-

couraging observation, one of our works takes advantage of this active yet

indirect information that is present in Twitter and use it to alleviate the

cold-start problem that besets newly released apps.

1.1.2 Apps Contain Various Versions

We observe that existing recommender systems7 usually model items as

static — unchanging in attributes, description, and features. However, apps

are di↵erent, for they change and evolve with every revision (illustrated in

Figure 1.2). Hence, an app that was unpopular in the past may become

popular after a version update. For example, Version 1.0 of App X did not

interest a user at first, but a recent update to Version 2.0 — which promises

to provide the functionality of high definition (HD) video capture — may

arouse his interest in the revised app. A conventional recommender system

that regards an app as static would fail to capture this important detail.

This is why it is vital for app recommender systems to process nascent

signals in version descriptions to identify desired functionalities that users

are looking for. Furthermore, version descriptions constitute an important

recommendation evidence source as well as a basis for understanding the

general rationale for a recommendation.

7Conventional items in typical recommender systems include books, music, movies,
and points-of-interests (i.e., locations).

4

Figure 1.2: An app’s changelog chronicles the details of every version up-
date.

1.1.3 The Unifying Framework

A variety of recommendation techniques have been proposed as the basis

for recommender systems: collaborative filtering, content-based filtering, as

well as the aforementioned techniques that utilize information from Twitter

and version features. Each of these techniques has well-known shortcom-

ings, such as being a↵ected by the cold-start problem or the lack of a Twit-

ter handle. A hybrid recommender system is an approach that combines

multiple techniques together to achieve some synergy between them. For

example, collaborative filtering and content-based filtering might be com-

bined so that the content-based component can compensate for the cold-

start problem that plagues collaborative filtering. Besides, as observed

in BellKor’s winning entry of the Netflix Prize (Koren, 2009), the more

techniques we combine, the more robust will the recommender system be.

Therefore, our final work examines a unifying framework that marries the

strengths of the various individual techniques while overcoming their re-

5

spective weaknesses; not only does the unifying framework combine the

outputs of the individual recommendation techniques, it also assimilates

the user and app metadata features. Interestingly, the results of our anal-

ysis coincides with the findings from consumer analytics.

1.2 Contributions of the Thesis

This thesis makes the following contributions in the area of app recom-

mender systems. They are summarized as follows:

1. Using nascent signals in microblogs to alleviate the cold-

start problem in mobile app recommendation. We describe

a method that accounts for nascent information culled from Twit-

ter to provide relevant recommendation in cold-start situations. We

use Twitter handles to access an app’s Twitter account and extract

the IDs of their Twitter-followers. We create pseudo-documents that

contain the IDs of Twitter users interested in an app and then ap-

ply latent Dirichlet allocation (LDA) to generate latent groups. At

test time, a target user seeking recommendations is mapped to these

latent groups. By using the transitive relationship of latent groups

to apps, we estimate the probability of the user liking the app. We

show that by incorporating information from Twitter, our approach

overcomes the di�culty of cold-start app recommendation and signifi-

cantly outperforms other state-of-the-art recommendation techniques

in this situation.

2. Using version features in mobile app recommendation. We

present a novel framework that incorporates features distilled from

version descriptions into app recommendation. We utilized a semi-

supervised topic model to construct a representation of an app’s ver-

6

sion as a set of latent topics from version metadata and textual de-

scriptions. We then discriminate the topics based on genre infor-

mation and weight them on a per-user basis to generate a version-

sensitive ranked list of apps for a target user. Incorporating our ver-

sion features with state-of-the-art individual and hybrid recommen-

dation techniques significantly improves recommendation quality. An

important advantage of our method is that it targets particular ver-

sions of apps, allowing previously disfavored apps to be recommended

when user-relevant features are added.

3. A unifying framework that integrates conventional recom-

mendation techniques, state-of-the-art app recommendation

techniques, as well as user and app metadata features. Be-

cause di↵erent recommendation techniques work in di↵erent scenar-

ios, we present a framework to integrate the various sources of infor-

mation — from the output scores of various recommendation tech-

niques to the user and app metadata features — into a hybrid model

that is able to recommend a set of apps to a target user. This hy-

brid model employs gradient tree boosting (GTB) (Friedman, 2001)

to integrate the aforementioned features, and the unifying framework

combines the strengths of individual recommendation techniques to

overcome their individual shortcomings.

1.2.1 Research Publications

The work in this thesis has been published in the following conferences:

• Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua.

Addressing Cold-Start in App Recommendation: Latent User Models

Constructed from Twitter Followers. In Proceedings of the 36th An-

nual International ACM SIGIR Conference on Research and Devel-

7

opment in Information Retrieval (SIGIR’13), pages 283–292, Dublin,

Ireland, July 28–August 1, 2013.

• Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua.

New and Improved: Modeling Versions to Improve App Recommenda-

tion. In Proceedings of the 37th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval

(SIGIR’14), pages 647–656, Gold Coast, Australia, July 6–11, 2014.

1.3 Outline of the Thesis

This thesis is structured into 6 chapters.

• Chapter 2 discusses the background and related work for this thesis

in the following five areas: i) collaborative filtering, ii) content-based

filtering, iii) social-based recommendation, iv) hybrid recommender

systems, and v) recommender systems that are applied in the domain

of mobile apps.

• Chapter 3 describes how nascent signals in microblogs — particu-

larly Twitter-followers — can be used in app recommendation. This

work combines information from the domains of apps and Twitter to

alleviate the cold-start problem.

• Chapter 4 describes how version features (which are unique in the

app domain) can be used to enhance recommendation accuracy. We

show that version descriptions can be an alternative to noisy app de-

scriptions. We present a method that uses a semi-supervised variant

of latent Dirichlet allocation (LDA) to build this recommendation

technique.

8

• Chapter 5 unifies all the recommendation techniques — conven-

tional as well as novel — into a hybrid app recommender system. We

show that by including user and app metadata features with the in-

dividual recommendation scores that are generated from the various

recommendation techniques, we can achieve significant improvements

to individual and hybrid baselines.

• Finally, Chapter 6 summarizes the works in this thesis and outlines

a number of future directions.

9

Chapter 2

Background

Before detailing the work that we have done, this

chapter provides the necessary background knowledge.

In this chapter, we review key background information on recommender

systems. The major directions of recommender systems can be categorized

into four main streams: i) collaborative filtering, ii) content-based filter-

ing, iii) social-based filtering, and iv) hybrid recommender systems (see

Sections 2.1, 2.2, 2.3, and 2.4, respectively).

Collaborative filtering employs the rating history of users, whereas

content-based filtering utilizes the content features of the apps. Social-

based filtering takes advantage of a user’s social network (e.g., Facebook,

Twitter, etc.) to recommend items that the user’s friends have interacted

with. We first describe the methods relating to the three aforementioned

systems, followed by a background review of the concepts in hybrid recom-

mender systems. Finally, we discuss a number of notable recent works on

mobile app recommendation.

11

2.1 Collaborative Filtering

Collaborative filtering is a well-known recommendation technique that has

been widely adopted and studied. The fundamental assumption of collab-

orative filtering is that if two users rated n items similarly, or have similar

behaviors (e.g., buying, watching, listening, “liking”), they will in turn

rate other items similarly (Goldberg et al., 2000). Collaborative filtering

techniques use a database of preferences for items by users to predict addi-

tional items a user might like. In a typical scenario, there is a list of m users

{u
1

, u

2

, . . . , u

m

} and a list of n items {i
1

, i

2

, . . . , i

n

}, and each user, u
i

, has a

list of items, I
ui , which the user has rated, or about which their preferences

have been inferred through their behaviors (Su and Khoshgoftaar, 2009).

The ratings can either be explicit indications, such as the 5-point Likert

scale, or implicit indications, such as purchases or click-throughs (Miller

et al., 2004). Collaborative filtering represents the most popular recom-

mendation technique due to its compelling simplicity and excellent quality

of recommendations (Ziegler et al., 2005). In addition, collaborative filter-

ing algorithms can be further divided into memory-based and model-based

approaches (Cremonesi et al., 2010).

2.1.1 Memory-based Collaborative Filtering

In a memory-based approach, a recommendation is made by determining

the nearest neighbors of a user and/or an app, and then aggregating the

ratings of these neighbors. Memory-based techniques have the advantage

of being better adapted to users with unusual tastes, but they are imprac-

tical due to scalability issues since calculating the neighborhood for users

and items can be time consuming, especially in real life or commercial

datasets (Hofmann, 2003). Notable examples of memory-based collabo-

rative filtering systems include GroupLens (Resnick et al., 1994) as well

12

as Amazon1 (Linden et al., 2003). Memory-based approaches can be fur-

ther classified into two types: i) user-based (Resnick et al., 1994) and ii)

item-based (Sarwar et al., 2001).

i) User-based Approach. The intuition behind user-based collabora-

tive filtering is that a user would be interested in the items that are

also liked by other users who share the same tastes with him or her.

The basic idea is to first calculate a similarity score, w
u,v

, between

user u and user v based on their ratings of similar items. Cosine-

similarity is often used in this case. After which, based on the k most

similar users, a set of items, C, is extracted based on the frequency

of the items and the top-N most frequent items in C (that the target

user has not consumed) is recommended.

ii) Item-based Approach. The item-based approach (Linden et al.,

2003; Sarwar et al., 2001) became popular later. The intuition behind

item-based collaborative filtering is that the users would be interested

in the items that are similar to those he or she liked in the past. The

basic idea is to first calculate a similarity score, w
i,j

, between item i

and item j based on the users who have rated both of these items.

After which, the similarity score is used to predict which items should

be recommended to the target user, based on the user’s previously

consumed items.

Despite their popularity, the memory-based approaches su↵er from the

problem of data sparsity in which the number of ratings obtained is very

small compared to the number of ratings needed needed for prediction (Ado-

mavicius and Tuzhilin, 2005). To help diminish the e↵ects of data sparsity,

model-based collaborative filtering has been investigated.

1https://www.amazon.com

13

https://www.amazon.com

2.1.2 Model-based Collaborative Filtering

Model-based techniques learn to recognize complex patterns through train-

ing data, and then use the trained models to make predictions for recom-

mendation tasks. Compared to memory-based techniques, model-based

techniques are better at addressing the data sparsity problem and improv-

ing the prediction performance. Typically, model-based collaborative filter-

ing are represented by regression models, classification models, and latent

factor models.

i) Regression Models. Regression estimates how the typical value

of the dependent variable changes when any one of the independent

variables is changed. It is a simple and e↵ective method to make

predictions for numerical values of users’ preferences, such as the 5-

point Likert scale ratings or binary liked/disliked values. Vucetic

and Obradovic (2005) proposed a regression-based collaborative fil-

tering method that builds a collection of simple linear models by

searching for similarities between items, and combines them to ef-

fectively provide rating predictions for a target user; whereas Lemire

and Maclachlan (2005) proposed three Slope One schemes to estimate

the average di↵erence between the ratings of one item and another

for users who rated both.

ii) Classification Models. For recommender systems in which user

ratings are categorical (e.g., liked or disliked), recommendation can

be regarded as a classification problem. Miyahara and Pazzani (2000)

proposed a simple Bayesian collaborative filtering method that em-

ploys a strategy based on Naive Bayes to perform the collaborative

filtering task. They assumed that other users’ preferences regarding

a target item are independent from the target user’s preference on

the same item. After training the Bayesian model, the probability

14

that the target user will like the target item can be computed given

the other users’ preferences on the same item. Su and Khoshgoftaar

(2006) extended the simple Bayesian collaborative filtering method

by applying a more advanced model — the Bayesian Belief Network

— that addresses the data sparsity problem and is able to handle data

that is multi-class. Other notable classification models include Cho

et al. (2002) and Nikovski and Kulev (2006) where they combined de-

cision trees with association rules and applied standard tree-learning

algorithms to simplify the recommendation rules.

iii) Latent Factor Models. Latent factor models such as probabilistic

matrix factorization (PMF) comprise of an alternative approach to

collaborative filtering by transforming both items and users into the

same latent factor space. The more popular and successful latent

factor models are based on the concept of dimensionality reduction

that aims to provide the best lower rank approximations of the orig-

inal user-item ratings matrix. Notable techniques include probabilis-

tic semantic analysis (PLSA) (Hofmann, 2004), principal component

analysis (PCA) (Kim and Yum, 2005), restricted Boltzmann machine

(RBM) (Salakhutdinov et al., 2007), and singular vector decomposi-

tion (SVD) (Takács et al., 2008). These techniques deal better with

data sparsity and have gained immense popularity due to their accu-

racy and scalability.

2.1.3 Graph-based Collaborative Filtering

Graph-based collaborative filtering represents data as a graph in which

users and items are represented as nodes, while edges capture the interac-

tion between the users and items, such as the ratings that a user gives to

an item. Aggarwal et al. (1999) proposed a graph-theoretic algorithm in

15

which the similarity between two users is computed based on their short-

est distance in the graph. The predicted rating that a target user may

give to a target item is calculated based on the shortest direct paths be-

tween the target user and the others who have also rated the target item.

Huang et al. (2004) applied an associative retrieval framework to explore

the transitive associations among users through past transactions in order

to estimate a target user’s preference for a target item. Pucci et al. (2007)

adaopted Google’s PageRank Algorithm (Brin and Page, 1998) and pro-

posed “Item-Rank,” a random walk based scoring algorithm that can be

used to rank items according to expected user preferences in order to rec-

ommend top-rank items. Baluja et al. (2008) also employed a random walk

model on the video co-view graph to generate personalized video sugges-

tions for users; this was once applied in YouTube’s video suggestion engine.

Graph-based approaches have the advantage of discovering new items, im-

proving the novelty of recommendations, and addressing the problem of

sparse ratings. However, it also requires extensive resources for setting up

the graph representation and is computationally intensive.

2.2 Content-based Filtering

Content-based filtering is an outgrowth and continuation of information

filtering research (Belkin and Croft, 1992). It recommends items similar to

the target user’s profile. A typical content-based filtering algorithm consists

of three steps: i) content analyzer (or content representation), ii) user

profile learning, and iii) content filtering (Mooney and Roy, 2000). Step i)

models the features of items, whereas the Step ii) and Step iii) are usually

connected with each other. The major di↵erence between collaborative

filtering and content-based filtering is that the former only uses the user-

item ratings data to make predictions and recommendations, while the

16

latter relies on the features of users and items for predictions. For example,

a music content-based recommender system will extract content features

such as low-level timbre descriptors to determine item similarity, while

many other domains (such as books, scholarly papers, movies, and apps)

tend towards content features based on textual descriptions.

For textual items, the feature modeling has been widely studied for in-

formation retrieval where items are usually represented as a bag-of-words

with “term frequency-inverse document frequency” (tf-idf) scores (Salton

and McGill, 1986) or latent topic distribution (Steyvers and Gri�ths, 2007).

The latter has been proven to be more precise, notably latent Dirichlet allo-

cation (LDA) (Blei et al., 2003) and its variants (Lin et al., 2013; Moshfeghi

et al., 2011; Ramage et al., 2009; Wang and Blei, 2011).

Other notable content-based filtering works have been proposed over

time. Pazzani and Billsus (1997) conducted a comprehensive experimen-

tal study comparing the performance of di↵erent classification techniques

for content-based website recommendation. Billsus et al. (2000) developed

a news recommendation agent that employs the simple k nearest neigh-

bor classifiers (or “k-NN” for short), which is a lazy learner that finds the

k nearest points from the training records to create a model of a target

user’s short term interest. Gutta et al. (2000) implemented a television

show content-based recommendation approach using a Bayesian classifier.

Christakou and Stafylopatis (2005) built a content-based movie recom-

mender system by training three Neutral Networks for each user; each of

which corresponded to “kinds,” “stars,” and “synopsis.” Zhang and Koren

(2007) improved the standard expectation-maximization (EM) algorithm

to speed up the Bayesian learning process of content-based recommenda-

tion.

17

2.3 Social-based Recommendation

Another approach to computing similarity among items is through web-

mining techniques, or exploiting information from social networks (e.g.,

Facebook and Twitter), particularly follower/followee relationships. The

basic idea is to, instead of using ratings-based similarity, utilize the sub-

graphs of a user’s social network (i.e., the people that the target user is fol-

lowing) as “people prefer recommendations from people they know” (Bon-

hard and Sasse, 2006). Said et al. (2010) investigated a movie recommender

system that has its own underlying social network and showed that the

recommendation quality can be improved by utilizing user-to-user rela-

tionships. Another way of utilizing social networks is to view them as a

“trust-based” network. Golbeck (2006) used a probabilistic matrix factor-

ization framework that incorporates both the user-rating matrix and the

users’ trust in the social network to generate recommendations. Bedi et al.

(2007) proposed a trust-based recommender system that uses the knowl-

edge distributed over the network in the form of ontologies and employs

the “web of trust” to generate recommendations. Ma et al. (2008) devel-

oped a factor analysis method based on the probabilistic graphical model

that fuses the user-item matrix with the users’ social trust networks by

sharing a common latent low-dimensional user feature matrix. Jamali and

Ester (2010) incorporated the mechanism of trust propagation into matrix

factorization and showed that it leads to an increase in recommendation

accuracy. Wang et al. (2010) proposed the use of the random walk model to

capture the users’ social influence similarity in order to predict users’ opin-

ions. Ma (2013) explored how to improve recommender systems using im-

plicit social information, in which a general matrix factorization framework

is employed to incorporate di↵erent implicit social information. Abisheva

et al. (2014) combined user-centric data from Twitter with video-centric

18

data from YouTube to build a rich picture of who watches and shares what

on YouTube, which could be used for video recommendation.

2.4 Hybrid Recommender Systems

Hybrid recommender systems are those that combine two or more recom-

mendation techniques to minimize some of the issues that a single technique

has and achieve some synergy between them. Combining di↵erent methods

can be done using a number of ways:

1. Weighted — where the score of di↵erent recommendation compo-

nents are combined numerically;

2. Switching — where the system chooses among recommendation

components and applies the selected one;

3. Mixed — where recommendations from di↵erent recommenders are

presented together;

4. Feature Combination — where features derived from di↵erent

sources are combined and given to a single recommendation algo-

rithm.

2.4.1 Weighted

The simplest design for a hybrid system is a weighted one. Each compo-

nent of the hybrid system scores a given item and the system then com-

bines the scores using a linear formula. Candidates are then sorted by

the combined score and the top items are shown to the user. For exam-

ple, the movie recommender system by Mobasher et al. (2003) made use

of collaborative filtering and content-based filtering and combined the two

components using a linear weighting scheme. Similarly, Claypool et al.

19

(1999) linearly combined collaborative filtering and content-based filtering

in an online newspaper. This type of hybrid combines evidence from both

recommenders in a static manner, and would therefore seem to be appro-

priate when the component recommenders have consistent relative power

or accuracy across the product space. At the same time, its main limita-

tion is that each component makes a fixed contribution to the score despite

the possibility that recommenders will have di↵erent strengths in di↵erent

parts of the product space. This suggests another hybrid in which the

recommender systems switches between its components depending on the

context.

2.4.2 Mixed

A mixed hybrid presents recommendations of its di↵erent components side-

by-side in a combined list; there is no attempt to combine evidence between

recommenders. The challenge in this type of hybrid recommender system

is one of presentation: If lists are to be combined, how are rankings to be

integrated? Typical techniques include merging based on predicted ratings

or on recommender confidence. It is di�cult to evaluate a mixed recom-

mender using retrospective data. With other types of hybrids, we can use

a user’s actual ratings to decide if the right items are being ranked highly;

but with a mixed strategy, especially one that presents results side-by-side,

it is di�cult to determine how the hybrid improves over its constituent

components (Burke, 2007).

2.4.3 Switching

A switching hybrid is one that selects a single recommender from among

its constituents based on the recommendation situation. For a di↵erent

profile, a di↵erent recommender might be chosen. This approach takes into

20

account the problem that components may not have consistent performance

for all types of users. However, it assumes that some reliable criterion is

available on which to base the switching decision, in which the choice of

this switching criterion is important. Researchers have used confidence

values inherent in the recommendation components themselves as was the

case with NewsDude (Billsus and Pazzani, 2000), while others have used

external criteria (Nakagawa and Mobasher, 2003). The question of how

to determine an appropriate confidence value for a recommendation is an

area of research (Cheetham and Price, 2004). A switching recommender

requires a reliable switching criteria — either a measure of the algorithm’s

individual confidence levels (that can be compared) or some alternative

measure. The criterion must also be well-tuned to the strengths of the

individual components (Burke, 2007).

2.4.4 Feature Combination

The idea of feature combination is to inject features of one source (such as

collaborative recommendation) into an algorithm designed to process data

with a di↵erent source (such a content-based recommendation). The fea-

tures that would ordinarily be processed by an individual recommender are

instead used as part of the input to the actual recommender. This is a way

to expand the capabilities of a well-understood and well-tuned system, by

adding new kinds of features into the mix (Basu et al., 1998; Mooney and

Roy, 2000). The feature combination hybrid is not a hybrid in the sense

that we have seen before (i.e., that of combining components) because

there is only one recommendation component. What makes it a hybrid

is the knowledge sources involved; a feature combination hybrid borrows

the recommendation logic from another technique rather than employing a

separate component that implements it. For example, in the work of Basu

21

et al. (1998), the content-based recommender works in the typical way by

building a learned model for each user, but user rating data is also com-

bined with the product features. The system has only one recommendation

component and it works in a content-based way, but the content draws from

a knowledge source associated with collaborative recommendation.

The feature combination method has been used in many recent works,

particularly in the winning solution of the Netflix Prize (Koren, 2009) as

well as unified frameworks that crosses the domains of search and recom-

mendation, such as the work by Wang et al. (2012). A common technique

used by these works is Friedman (2001)’s Gradient Tree Boosting (GTB),

an accurate and e↵ective o↵-the-shelf procedure that can be used for both

regression and classification problems; it has also been used by the top

performing algorithms in the Learning To Rank Challenge2. We will use

this technique in Chapter 5 to combine the user and app features with the

recommendation scores of the app recommendation techniques to produce

a hybrid app recommender system.

2.5 Recommender Systems for Mobile Apps

Finally, we cover works on mobile app recommendation. In order to deal

with the recent rise in the number of apps, works on mobile app recommen-

dation are emerging. Some of these works focus on collecting additional

information from the mobile device to improve recommendation accuracy.

Xu et al. (2011) investigated the diverse usage behaviors of individual apps

by using anonymized network data from a tier-1 cellular carrier in the

United States. Yan and Chen (2011) and Costa-Montenegro et al. (2012)

constructed app recommender systems by analyzing the usage patterns of

users. Other works utilize external information to improve recommenda-

2http://learningtorankchallenge.yahoo.com/workshop.php

22

http://learningtorankchallenge.yahoo.com/workshop.php

tion quality. Zheng et al. (2010) as well as Davidsson and Moritz (2011)

made use of GPS sensor information to provide context-aware app recom-

mendation. Lin et al. (2013) utilized the follower/followee information on

Twitter to improve app recommendation in cold-start situations. Yin et al.

(2013) considered behavioral factors that invoke a user to replace an old

app with a new one, and introduced the notion of “actual value” (satis-

factory value of the app after the user used it) and “tempting value” (the

estimated satisfactory value that the app may have), thereby regarding app

recommendation as a result of the contest between these two values. While

the above works recommend apps that are similar to a user’s interests,

Bhandari et al. (2013) proposed a graph-based method for recommending

serendipitous apps.

In addition, other ranking and prediction works that are remotely re-

lated to the domain of mobile apps include mining and predicting app usage

behaviors (Liao et al., 2013) as well as ranking fraudulent apps in the app

store (Zhu et al., 2013).

23

Chapter 3

Mobile App Recommendation

Using Nascent Signals from

Microblogs

This chapter looks at how we can use information from

microblogs to improve on mobile app recommendation,

particularly in the cold-start scenario.

3.1 Introduction

With the rise of social networking services such as Facebook1 and Twitter2,

people broadcast and message friends, colleagues, and the general public

about many di↵erent matters in a short and informal manner (Recuero

et al., 2011). They do it often as the overhead of broadcasting such short

messages is low. For instance, Twitter experienced several record-breaking

events in 2012, such as having one million accounts created daily and having

1https://www.facebook.com
2https://www.twitter.com

25

https://www.facebook.com
https://www.twitter.com

175 million tweets sent out per day3. Additionally, social networks often

include rich information about its users (Wu et al., 2011), such as posted

user-generated content, user logs, and user-to-user connections (e.g., Alice

follows Bob). People use social networking services to talk about many

subjects — including apps. An interesting possibility thus arises: Can we

merge information mined from the rich data in social networks to enhance

the performance of app recommendation? More formally, can we address

the cold-start weaknesses of the proprietary user models of recommender

systems (e.g., the user profiles in an app store) by using nascent signals

about apps from social networks (e.g., the user profiles in Twitter)?

Through our case studies on the correlation and lag between social net-

works and formal reviews in app stores, we verified that the answer to this

question is indeed yes. How then, would one go about capturing and encod-

ing data from social networks? Through our observation of app stores, we

note that the descriptions of some apps contain references to their Twitter

accounts; by having a Twitter account, an app’s developer or its organiza-

tion can interact with its users on Twitter and market themselves, such as

announcing new apps or updates. For example, within the descriptions in

its Google Play4 and iTunes5 app stores, the “Angry Birds Star Wars” app

has a line that says “follow @angrybirds6 on Twitter.” We also observed

that app mentions in social networks can precede formal user ratings in

app stores. This is important as it asserts that an early signal for app

ranking (and thus recommendation) can be present in social networks. For

example, Figure 3.1 shows that the “Evernote” app that was released in

May 2012 had no ratings in the iTunes App Store for two months. It was

3“100 Fascinating Social Media Statistics and Figures From 2012,” Hu�ngton
Post, accessed on Jan 10, 2013, http://www.huffingtonpost.com/brian-honigman/
100-fascinating-social-me_b_2185281.html.

4https://play.google.com/store/apps/details?id=com.rovio.

angrybirdsstarwars.ads.iap
5https://itunes.apple.com/en/app/angry-birds-star-wars/id557137623
6http://twitter.com/angrybirds

26

http://www.huffingtonpost.com/brian-honigman/100-fascinating-social-me_b_2185281.html
http://www.huffingtonpost.com/brian-honigman/100-fascinating-social-me_b_2185281.html
https://play.google.com/store/apps/details?id=com.rovio.angrybirdsstarwars.ads.iap
https://play.google.com/store/apps/details?id=com.rovio.angrybirdsstarwars.ads.iap
https://itunes.apple.com/en/app/angry-birds-star-wars/id557137623
http://twitter.com/angrybirds

Figure 3.1: For two months since its release on the iTunes App Store, the
“Evernote” app did not have any ratings. However, its Twitter account
already had active tweets and followers. This shows that despite the cold-
start, there is still information out there about the app, particularly on
social networking services like Twitter.

only until July 2012 that the first few ratings started coming in. However,

even before May 2012, Evernote’s Twitter account already had more than

120,000 followers and 1,300 tweets. We take advantage of this active yet

indirect information that is present in Twitter and use it to alleviate the

cold-start problem that besets newly-released apps.

We integrate these findings into a novel approach to app recommen-

dation that leverages on information from social networks (in specific,

Twitter) to drive recommender systems in cold-start situations. By ex-

tracting follower information from an app’s Twitter account, we create a

set of pseudo-documents that contains Twitter-follower information; these

pseudo-documents are di↵erent from the standard documents written in

natural language. We then utilize latent Dirichlet allocation (LDA) (Blei

et al., 2003) to construct latent groups of “Twitter personalities” from the

pseudo-documents. By harnessing information from the linked topology of

Twitter accounts, we can infer a probability of how likely a target user will

like a newly released app — even when it has no o�cial ratings.

We conduct extensive experiments and compare the usage of Twitter-

follower information with other types of features, such as app genres, app

developers, and text from app descriptions. In order to show that our

approach excels not because of the use of Twitter information alone, we

compare our approach with a non-LDA technique that also employs the

27

same information from Twitter. Finally, we combine our Twitter-follower

feature with other features gleaned from app metadata through the use of

gradient tree boosting (Friedman, 2001) and compare our approach with

other state-of-the-art techniques. We show that our approach significantly

outperforms these techniques.

3.2 Related Work

As the lack of ratings (i.e., the cold-start) hinders the use of collaborative

filtering techniques (Schein et al., 2002), various alternatives have been

employed to overcome the problem. For example, Zhou et al. (2011) ex-

perimented with eliciting new user preferences by using decision trees with

collaborative filtering. Moshfeghi et al. (2011) proposed a method for com-

bining content features such as semantic and emotion information with

ratings information for the recommendation task. Liu et al. (2011) iden-

tified representative users whose linear combinations of tastes are able to

approximate other users. Likewise, many other works attempt to overcome

the cold-start by finding radical ways of using proprietary user models and

additional content. Another e↵ective approach to the cold-start is to use

latent factor models (Koren and Bell, 2011) that map users and items into

a dense and reduced latent space that captures their most salient features.

These models provide better recommendations than traditional neighbor-

hood methods (Herlocker et al., 1999) as they reduce the level of sparsity

and improve scalability (Koren, 2008). Notable latent factor models include

probabilistic latent semantic analysis (PLSA) (Hofmann, 2004), principal

component analysis (PCA) (Kim and Yum, 2005), artificial neural net-

works such as the restricted Boltzmann machine (RBM) (Salakhutdinov

et al., 2007), and singular vector decomposition (SVD) (Takács et al.,

2008). However, latent factor models have two major disadvantages in

28

recommendation tasks. Firstly, the learned latent space is not easy to in-

terpret. Secondly, many latent factor models rely on other user ratings,

which may be lacking if the dataset is sparse (Wang and Blei, 2011).

Our work di↵ers from the ones mentioned above in that instead of us-

ing proprietary user models and content, we use information from Twitter

(i.e., non-proprietary content from social networks) and construct latent

groups of “Twitter personalities” to predict recommendations under the

cold-start. Although textual features have generally been a popular source

of alternative data to substitute for the lack of ratings — such that even

state-of-the-art techniques are primarily dependent on — it is not a univer-

sal solution as not all domains contain reliable textual data. Additionally,

it is more realistic to rely on external social networks. Therefore, our work

is unique in that it uses the “who follows whom” information on Twitter as

its primary source of data, as textual features in the app domain are inher-

ently noisy and unreliable (in contrast to the cases of movies or scholarly

papers).

3.3 Our Approach

We first explain the kind of problem we address. Then we describe the

relation between apps and Twitter-followers, and how we use them in our

work. Next, we construct pseudo-documents and pseudo-words using data

from users, apps, users’ preferences, and Twitter-followers. Thereafter, we

generate latent groups from the pseudo-documents, whereby a latent group

represents the combined “interests” of various Twitter-followers. Finally,

the set of latent groups is used as a crucial component of our algorithm to

estimate the probability of a target user liking an app.

29

Figure 3.2: Di↵erence between (a) in-matrix prediction and (b) out-of-
matrix prediction.

3.3.1 Targeting the Cold-Start Problem

There are two types of cold-start problems in collaborative filtering: (a) in-

matrix prediction and (b) out-of-matrix prediction (Wang and Blei, 2011).

Figure 3.2(a) illustrates in-matrix prediction, which refers to the problem

of recommending items that have been rated by at least one user in the

system. This is the task that collaborative filtering researchers have often

addressed (Aggarwal et al., 1999; Bell et al., 2007; Billsus and Pazzani,

1998; Breese et al., 1998; Hofmann and Puzicha, 1999; Koren and Bell,

2011; Salakhutdinov et al., 2007; Sarwar et al., 2001; Xue et al., 2005). On

the other hand, Figure 3.2(b) illustrates out-of-matrix prediction, where

newly released items (e.g., items 4 and 5) have never been rated. Tradi-

tional collaborative filtering algorithms cannot predict ratings of items in

the out-of-matrix prediction as they rely on user ratings, which are unavail-

able in this scenario. Our work focuses on this second, more challenging

problem. Hereafter, we use “cold-start problem” to refer to “out-of-matrix

prediction,” for ease of reference.

30

3.3.2 Apps and their Twitter-Followers

Apps have textual descriptions displayed in their app store entries; some of

these descriptions further contain links to the apps’ o�cial Twitter account

(i.e., Twitter handle). For example, the “Angry Birds” franchise contains a

link to its Twitter handle (@angrybirds). From the handle, we can identify

the IDs of Twitter-followers who follow the app. We note that by following

an app’s Twitter handle, the Twitter-followers subscribe to the tweets that

are related to the particular app, which can be seen as an indicator of

interest (Cha et al., 2010). Figure 3.3 illustrates the relation between users,

apps, and Twitter-followers. By using information from the apps’ Twitter-

followers, we can construct “latent personalities” from two sources of data:

the app store and Twitter. Using these latent personalities, our algorithm

is able to recommend newly released apps in the absence of ratings7 as

shown in Figure 3.2(b).

Given that an app has a set of Twitter-followers, our approach estimates

the probability that user u — defined by his or her past ratings — likes

app a that is followed by Twitter-follower t (i.e., Twitter-follower t follows

app a’s Twitter account):

p(+|t, u), (3.1)

where “+” denotes the binary event that a user likes an app. Furthermore,

as an app is represented by a set of its Twitter-followers, it is necessary

to aggregate the probability in Equation (3.1) over the various Twitter-

followers of app a. This allows us to estimate the probability of how likely

the target user will like the app:

p(+|a, u). (3.2)

7Although other types of information can be extracted from Twitter, such as the
textual tweets and hashtags, we only focus on the Twitter-followers in this work as
early experiments have shown that other types of information are noisy and potentially
ambiguous.

31

http://www.twitter.com/angrybirds

Figure 3.3: Instead of relying solely on the ratings of users, our approach
also makes use of the Twitter IDs that follow the apps (red oval).

3.3.3 Pseudo-Documents and Pseudo-Words

In order to estimate the probability p(+|a, u) in Equation (3.2), we build

upon latent Dirichlet allocation (LDA) — a generative probabilistic model

for discovering latent semantics that has been mainly used on textual cor-

pora. Given a set of textual documents, LDA generates a probability dis-

tribution over latent “topics” for each document in the corpus, where each

topic is a distribution over words. Documents that have similar topics share

the same latent topic distribution. We adapt LDA for the purpose of collab-

orative filtering. As mentioned in Section 3.3.2, users download apps and

apps may have Twitter-followers. Hence, user u and the Twitter-followers

(of the apps that user u has downloaded) are analogous to a document and

the words in the document, respectively. For the sake of clarity, we will

call them pseudo-documents from now on as our “documents” actually do

not contain natural language words in our work8.

8The concept of pseudo-documents is similar to the idea mentioned in the original
LDA paper by Blei et al. (2003) in which the authors state that “it is important to

32

Drawing on the parallelism, we formally define the following terms:

• We first assume that user u likes app a, and app a has a set of

Twitter-followers {t
1

, . . . , t

n

} following its Twitter handle.

• A pseudo-document represents user u. Because of this, we use u to

represent both pseudo-document and user.

• A pseudo-word is a “word” in pseudo-document u that corresponds

to the ID of a Twitter-follower t. If user u has liked the apps a

1

,

a

2

, and a

3

, the pseudo-document u will then contain all the IDs of

the Twitter-followers that are following the Twitter handles of apps

a

1

, a
2

, and a

3

. Note that there may be duplicated pseudo-words as

a Twitter-follower t may be following more than one app’s Twitter

handle.

However, the problem of only considering the “liked” apps is in that

LDA will indirectly assign higher probabilities to apps that many users

liked. In other words, LDA will indirectly give high probabilities to popular

apps. For example, suppose that two apps are judged the same number

of times. The probability given by LDA will rank the two apps in order

of their probability to be “liked,” which we desire. In contrast, if the first

app has been judged by all the users and half of them liked the app, it will

have the same probability as another app that was judged by only half of

the users but liked all the time, which is undesirable.

To address this popularity problem, we incorporate the magnitude of

negative information as it indirectly allows us to account for the frequency

of the whole judging group (i.e., “liked” apps + “disliked” apps = total

apps). In addition, this solution allows user groups to not only reflect the

note, however, that the LDA model is not necessarily tied to text, and has applications
to other problems involving collections of data, including data from domains such as
collaborative filtering, content-based image retrieval and bioinformatics.”

33

Figure 3.4: A pseudo-document is constructed based on information from a
user, apps, Twitter-followers, and binary (“liked” or “disliked”) preference
indicators. A pseudo-document contains pseudo-words ; each pseudo-word
is represented as a tuple containing a Twitter-follower ID and a binary
preference indicator.

Twitter-followers that appear in the apps that they like, but also in the

apps that they dislike, thus providing richer information. We now formally

define a pseudo-word:

• A pseudo-word is a “word” in pseudo-document u that contains the

ID of a Twitter-follower t and its associated binary (“liked” or “dis-

liked”) preference indicator.

Figure 3.4 illustrates how a pseudo-document is constructed based on

pseudo-words, which in turn are constructed based on the IDs of Twitter-

followers and the binary preference indicators from users. Furthermore, in

order to obtain the binary preferences, it is mandatory to convert the user

ratings (i.e., the 5-point Likert scale) into binary like/dislike indicators (see

Section 3.4.2).

Note that the concept of pseudo-documents and pseudo-words does

not apply exclusively to Twitter-followers; it can also be applied to other

sources of information such as the app genres, app developers, and the

34

Figure 3.5: Given the set of pseudo-documents {u
1

, . . . , u

m

}, LDA gener-
ates a probability distribution over latent groups for each pseudo-document,
where each latent group z is represented as a distribution over pseudo-
words. A pseudo-word is represented as a tuple containing a Twitter-
follower ID and a binary preference indicator.

words in the app descriptions. For example, instead of using the IDs of

Twitter-followers, we can also construct pseudo-words based on the IDs

of app developers. We focus on Twitter-followers as our goal is to as-

sess the e↵ectiveness of this new source of data. In Section 3.5.1, we will

create di↵erent sets of pseudo-documents based on di↵erent features (i.e.,

Twitter-followers, app genres, app developers, and words) and identify the

most e↵ective feature in the recommendation of apps.

3.3.4 Constructing Latent Groups

Given the set of pseudo-documents {u
1

, . . . , u

m

}, LDA can generate a prob-

ability distribution over latent groups for each pseudo-document, where

each latent group is represented as a distribution over Twitter-follower IDs

and binary preference indicators. Figure 3.5 illustrates this framework.

By using the information on “which apps are followed by which Twitter-

followers,” we can estimate the probability of target user u liking app a by

taking into account the IDs of the Twitter-followers following app a, and

marginalizing over the di↵erent latent groups of pseudo-document u.

35

Given the set of tuples of pseudo-words T

u

= {(t
1

, d

1

), . . . , (t
n

, d

n

)},

where t
i

and d

i

are a Twitter-follower ID and its associated binary (“liked”

or “disliked”) preference indicator, respectively, we define LDA as a gener-

ative process that creates a series of tuples:

p(T
u

|↵, �) =
Z

p(✓|↵)

nY

i=1

KX

z=1

p(z|✓)p(t
i

, d

i

|�
z

)

!
d✓,

where K is the number of latent groups, ✓ follows the Dirichlet distribu-

tion of hyper-parameters ↵, and the latent group z follows a multinomial

distribution given by �

z

. The model is fully specified by ↵ and �

z

for each

possible latent group z. Those hyper-parameters are learned by maximizing

the likelihood of the dataset.

The LDA model is used to compute the probability that the presence

of a Twitter-follower t indicates that it is “liked” (+) (or “disliked” (�))

by user u, given user u’s past interaction T

u

and the learned parameters ↵

and �. Hence, we get the following equation:

p(±, t|u) = p(±, t|T
u

,↵, �)

=
X

z2Z

p(±, t|z)p(z|u),
(3.3)

where Z is the set of latent groups, p(±, t|z) is computed from the per-topic

word distribution of LDA, and p(z|u) is computed from the per-document

topic distribution of LDA.

3.3.5 Estimation of the Probability of How Likely the

Target User Will Like the App

Our approach is based on a simple “averaging” method where the proba-

bility of how likely the target user will like the app is the expectation of

how the Twitter-followers like the app. Given a set of Twitter-followers T ,

36

the probability that user u likes app a is defined as follows:

p(+|a, u) =
X

t2T (a)

p(+, t|a, u)

=
X

t2T (a)

p(+|t, u)P (t|a),
(3.4)

where T (a) is the set of possible Twitter-followers following app a, in which

we assume that: (i) Twitter-followers are examined one at a time to make

a decision about whether an app is liked or disliked. In this case, t and t

0

are disjoint events whenever t 6= t

0; (ii) when the Twitter-follower is known,

the judgement does not depend on the app any more, i.e., p(+|t, a, u) =

p(+|t, u); (iii) the fact that given a user and an app, there is no judgement

involved, i.e., p(u, a) = p(u)p(a); (iv) the fact that an app has a given

Twitter-follower is independent from the user, i.e., p(t|a, u) = p(t|a).

Equation (3.4) is then reduced to the estimation of two quantities:

1. the probability that user u likes app a given that app a has Twitter-

follower t, i.e., p(+|t, u), and

2. the probability of considering Twitter-follower t given app a, i.e.,

p(t|a).

p(+|t, u) is straightforward to estimate as it can be rewritten as:

p(+|t, u) = p(+, t|u)
p(+, t|u) + p(�, t|u) ,

where p(+, t|u) and p(�, t|u) are derived from LDA in Equation (3.3),

which is the probability that Twitter-follower t occurs in an app that is

liked (or disliked) by user u.

As for how to compute the probability p(t|a), we explore the following two

ways:

37

(I) Assume a uniform distribution over the various Twitter-followers

present in app a

This framework is defined as follows:

p(t|a) =

8
>><

>>:

1

#T (a)

if t is a Twitter-follower of app a

0 otherwise,

(3.5)

where T (a) and #T (a) denote the set of Twitter-followers following app a

and the set cardinality, respectively.

(II) Give more importance to influential Twitter-followers

In this alternative framework, we compute the influence of Twitter-

followers by using TwitterRank (Weng et al., 2010). Let TR(t) be the

TwitterRank score of Twitter-follower t. With that, for each Twitter-

follower t, we retrieve its TwitterRank score and normalize it with the

scores obtained by the other Twitter-followers following app a. That is:

p(t|a) =

8
>><

>>:

TR(t)P
t02T (a) TR(t

0
)

if t is a Twitter-follower of app a

0 otherwise,

(3.6)

where T (a) denotes the set of Twitter-followers following app a.

Prior tests on our dataset have shown that there is no significant dif-

ference in performance between (I) and (II) above. This is because the

Twitter-followers that we get (note that each latent group consists of Twitter-

followers) are generally not prominent, influential people. Rather, they are

the average users on Twitter. Therefore, even if we use TwitterRank, the

influence of each Twitter-follower eventually converges into the uniform

distribution. We thus adopt the uniform distribution defined by Equa-

tion (3.5) in our evaluation for its simplicity.

38

3.4 Evaluation Preliminaries

We preface our evaluation proper by detailing how we constructed our

dataset, our settings for the dataset and the LDA model, and how we

chose our evaluation metric.

3.4.1 Dataset

We constructed our dataset by crawling from Apple’s iTunes App Store

and Twitter during September to December 2012. The dataset consists of

the following three elements:

1. App Metadata. These include an app’s ID, title, description, genre,

and its developer ID. The metadata is collected by first getting all the

app IDs from the iTunes App Store, and then retrieving the metadata

for each app via the iTunes Search API. The metadata is the source

for the genre, developer, and word features mentioned at the end of

Section 3.3.3.

2. Ratings. For each app, we built a separate crawler to retrieve its

reviews from the iTunes App Store. A review contains the app’s ID,

its rating, the reviewer’s ID, the subject, and the review comments.

This is the source of the rating feature.

3. Related Twitter IDs. We used two methods to collect app-related

Twitter IDs. The first way is to get the IDs that follow an app’s Twit-

ter account. We scanned through each app’s description to identify

its Twitter handle. For each app’s Twitter handle, we used Twitter’s

API to search for every Twitter ID following its handle. The second

method uses Twitter’s Streaming API to receive tweets in real-time.

To retrieve tweets that are related to apps, we only kept tweets that

contain hyperlinks to apps in the iTunes App Store, and stored the

39

Twitter IDs (who wrote the tweet) as well as the app IDs that were

mentioned in the tweets.

Altogether, we collected 1,289,668 ratings for 7,116 apps (that have

accounts on Twitter) from 10,133 users. The user-item ratings matrix has a

sparsity of 98.2%. We also collected 5,681,197 unique Twitter IDs following

the apps in our dataset. With respect to app ratings and the number of

related Twitter-followers per app, we restrict that each user gives at least

10 ratings and each Twitter ID is related to at least 5 apps, respectively.

On average, each user has rated 26 apps — ranging from a minimum of 10

rated apps to a maximum of 271.

3.4.2 Experimental Settings

In order to train the LDA model, we require binary relevance judgements

to convert the user ratings to binary preference indicators, as well as two

sets of hyper-parameters — namely, the number of latent groups K and

the priors ↵ and �.

We performed per-user normalization of the 5-point Likert scale ratings

when converting them to the binary like/dislike values required by our LDA

application. This is because the average rating for di↵erent users can vary

significantly (Koren, 2008). Let r
avg(u)

and r

u,a

be user u’s average rating

among all apps and user u’s rating for app a, respectively. The normalized

rating is thus r

n(u,a)

= r

u,a

� r

avg(u)

, where if r

n(u,a)

� 0, the rating is

converted to a “like” (+), or “dislike” (�), otherwise.

We set the priors ↵ and � as proposed in (Misra et al., 2008). The

number of latent groups has a crucial influence on the performance of the

LDA approach. We used the likelihood over a held out set of training data

to find the relevant number of latent groups. We tried several settings forK

(i.e., the number of latent groups), namely 10, 20, 35, 50, 80, 100, 120, 150,

40

and 200. The final number of latent groups was selected by maximizing

the likelihood of observations over the development set.

In order to simulate the cold-start, we selected 10% of the apps which

were then the held out set for all users (i.e., we removed their ratings in

the training set). Therefore, each user has the same set of within-fold apps

and we can guarantee that none of these apps are in the training set of any

user. We performed 10-fold cross validation where in each fold, we used

70% of the apps to train the LDA model, 20% to identify the number of

latent groups for LDA (i.e., the development set), and the remaining 10%

as test data.

3.4.3 Evaluation Metric

Our system outputs M apps for each test user, which are sorted by their

probability of liking. We evaluate the algorithms based on which of these

apps were actually downloaded and liked (i.e., the normalized rating of

the test user). This methodology leads to two possible evaluation metrics:

precision and recall. However, a missing rating in training is ambiguous as

it may either mean that the user is not interested in the app (negative), or

that the user does not know about the app (truly missing). This makes it

di�cult to accurately compute precision (Wang and Blei, 2011). But since

the known ratings are true positives, we feel that recall is a more pertinent

measure as it only considers the positively rated apps within the top M ,

i.e., a high recall with a lower M will be a better system. We thus chose

Recall@M as our primary evaluation metric. Let n
u

and N

u

represent the

number of apps the user likes in the top M and the total number of apps

the user likes, respectively. Recall@M is then defined as their ratio: n
u

/N

u

.

We compare systems using average recall, where the average is computed

over all test users.

41

3.5 Experiments

As our approach specifically attempts to address the cold-start, we work

on the specific scenario when a new set of apps is released and users have

yet to rate them (shown in Figure 3.2(b)). The goal of our experiments is

to answer the following research questions:

RQ1 How does the performance of the Twitter-followers feature compare

with other features, such as the app genres, app developers, and

words in the app descriptions? Can we obtain better recommendation

accuracy by combining them?

RQ2 How does our proposed method compare with other state-of-the-art

techniques?

RQ3 Do the latent groups make any sense? If so, what can we learn from

them?

3.5.1 Comparison of Features (RQ1)

We benchmark how the signal from Twitter-followers a↵ects performance

in comparison to other sources of data. We compare the Twitter-followers

feature (hereafter, T) with the other features: app genres (G), app develop-

ers (D), and words in the app descriptions (W). To perform this comparison

in a fair manner, for each of these four features, we constructed a set of

pseudo-documents that contains a set of feature-related pseudo-words (see

Section 3.3.3).

Additionally, we assessed the e↵ectiveness of these features in combina-

tion; we combine multiple features (i.e., Twitter-followers, genres, develop-

ers, and words) through the use of gradient tree boosting (GTB) (Friedman,

2001). We also performed ablation testing where we removed features from

the combined feature set to determine the importance of each feature. The

42

Figure 3.6: Recall obtained by di↵erent individual features (dashed lines),
as well as our method that combines all features (solid line). The baseline
vector space model (VSM), using the app description word vocabulary is
also shown (dotted line). The vertical line marks model performance at
M = 100 (cf. Table 3.1).

features given to GTB are a set of probabilities defined by Equation (3.4).

In GTB, we set the maximum number of trees and maximum tree depth

to 2000 and 3, respectively, and used the least-squares regression as a cost

function.

Results. Figure 3.6 shows the results of the first experiment, which

compares the overall performance between features (words (W), developers

(D), genres (G), Twitter-followers (T), and all features (All) combined)

when we vary the number of returned apps M = 20, . . . , 200. Fixing M =

100, we ablated individual features from our combined method and show

the results in Table 3.1. The results are quite consistent. In the overall

comparison over all ranges of M , the individual feature of Twitter-followers

gives the best individual performance, followed by genres, developers, and

43

Table 3.1: Recall levels in our feature ablation study at M = 100. TGDW
and individual feature (T, G, D, W) performances in Figure 3.6 are also
shown.

Feature R@100

All features (TGDW) 0.513

All, excluding Twitter-followers (GDW) 0.452

All, excluding Genres (TDW) 0.491

All, excluding Developers (TGW) 0.498

All, excluding Words (TGD) 0.507

Twitter-followers (T) 0.478

Genres (G) 0.435

Developers (D) 0.395

Words (W) 0.373

words in the app descriptions. From the combination and ablation study

in Table 3.1, we see that all features are necessary for the optimal results.

Matching the results in Figure 3.6, Table 3.1 also shows that the removal

of the best (worst) individual features leads to the corresponding largest

(smallest) drop in recall.

It may be surprising that the developer (D) and genre (G) features are

more e↵ective than words in the app description (W). We observe that users

may favor developer brands; possible causes could be that the user recog-

nizes the brand, or that the apps themselves may promote sister apps that

are made by the same developer. In addition, some apps complement one

another. For example, “Google Chrome,” “Gmail,” and “Google Maps”

form a complementary set. Also, the genres of apps may correlate with

download behavior. Figure 3.7 shows the distribution of app genres, and

indeed we observe that the “Games” genre dominates the distribution.

This indicates that users often download apps that belong to the “Games”

genre.

44

https://itunes.apple.com/en/app/chrome/id535886823?mt=8
https://itunes.apple.com/en/app/gmail-email-from-google/id422689480?mt=8
https://itunes.apple.com/en/app/google-maps/id585027354?mt=8

Figure 3.7: Distribution of app genres within our dataset.

From a practical standpoint, the most straightforward way to recom-

mend apps in a cold-start would be to use the textual descriptions in a

content-based filtering system, as in our (W) system. But it performs the

worst among the four individual features. Why do words in app descrip-

tions (W) perform the least well?

Carrying out a more detailed inspection, we find that app descriptions

do not give informative hints about the app’s role; rather, they are more

focused on self-promotion as many apps boast about the reviews that they

have received in their app descriptions. Figure 3.8 is a screenshot of an app

description that demonstrates this fact. In addition, according to Ayalew

(2011), users pay more attention to screenshots instead of descriptions,

which suggests that the information from app descriptions is not as useful.

This result also further explains why text-dependent baselines such as CTR

and LDA did not perform much better (cf. the next section on RQ2).

Features aside, we also assessed whether our use of the LDA-based

pseudo-document method is an important factor in recall performance. We

compared a straightforward use of the same data with a standard vector

space model (VSM) where we used the same app description words (W)

45

Figure 3.8: A screenshot of an app description that illustrates why word
features may not be e↵ective as it largely boasts about endorsements re-
ceived.

to build a vector of standard tf-idf weighted words to represent each app.

Figure 3.6 also shows this result in the bottom two lines. We see that the

pseudo-document use of words (W) greatly outperforms the VSM-based

version (VSM). A two-tailed t-test atM = 100 shows that the improvement

is statistically significant (p < 0.01). This validates our LDA-based pseudo-

document approach.

3.5.2 Comparison Against Baselines (RQ2)

As we focus on the cold-start problem, we did not consider other well-

known recommender techniques that require user ratings, such as matrix

factorization or latent factor models. We compare our approach with four

baselines. The first two baselines are VSM-based — the first is the app

description-based VSM recapped from RQ1 (i.e., “VSM (Words)”) while

the second uses the IDs of Twitter-followers as its vocabulary (i.e., “VSM

(Twitter)”). The VSM (Twitter) baseline evaluates whether our LDA-

based approach of using the Twitter-follower data betters the simpler VSM

46

method. The third baseline is the LDA model, which is equivalent to using

our pseudo-documents model on words in app descriptions. Lastly, as a

much stronger baseline, we show the performance of a re-implementation

of Wang and Blei’s (Wang and Blei, 2011) collaborative topic regression

(CTR) model — a state-of-the-art collaborative filtering algorithm that

can also make predictions in cold-start scenarios. Furthermore, in order

to study the impact of sparsity on our models, in a separate experimental

condition, we randomly removed some ratings from the training set so that

the maximum number of rated apps per user was 15, which represents a

sparser environment.

Results. Figures 3.9 and 3.10 plot the results of this set of experi-

ments when we vary the number of returned apps M = 20, . . . , 200. We

observe that our approach that combines various pseudo-documents using

GTB consistently and significantly outperforms other models (at p < 0.01

on the full dataset), particularly the CTR model that is the best among all

baselines. This shows that we can achieve significant improvement in rec-

ommendation accuracy by integrating multiple sources of information. We

also observe that our model of using pseudo-documents with Twitter data

alone (i.e., “Pseudo-Docs (Twitter)” in Figures 3.9 and 3.10) outperforms

other models. This validates our observation that Twitter is indeed a good

source of information to address the cold-start in app recommendation. It

also indirectly points out that the textual features are less e↵ective in the

app domain, which is obvious from the performances of the CTR and LDA

models that solely rely on textual data. We also note that the performance

of CTR is fairly similar to LDA. This is due to the fact that the matrix-

factorization component of CTR cannot perform recommendation in the

cold-start. Therefore, like LDA, its recommendation is based entirely on

content.

We also observe that between the two models that only use Twitter

47

Figure 3.9: Recall varying the number of recommendations on the full
dataset. “*” and “**” denote statistically significant improvements over
the best baseline (CTR) at p < 0.05 and p < 0.01, respectively.

Figure 3.10: Recall varying the number of recommendations on the sparse
dataset. “*” and “**” denote statistically significant improvements over
the best baseline (CTR) at p < 0.05 and p < 0.01, respectively.

48

features (i.e., “VSM (Twitter)” and “Pseudo-Docs (Twitter)”), our model

significantly outperforms the VSM model. This again validates our earlier

findings that our method’s performance is not just due to the use of new

data, but also how we make use of it. Another important observation is

that under a sparser cold-start environment where we limit our training

data to 15 apps per user at maximum, there is an overall drop in recall,

which is expected. However, we note that our model (both using Twit-

ter feature alone and multi-features) still outperforms all of the baselines.

This indicates that using Twitter features is more robust than using app

descriptions under sparse conditions, as the IDs of the Twitter-followers

are independent from the apps — misleading or absent app descriptions do

not directly influence the Twitter-followers.

3.5.3 Analysis of Latent Groups (RQ3)

We use LDA and the notion of Twitter users as pseudo-words to achieve

good recall. A natural question to ask is whether the latent groups dis-

covered by LDA (from the individual features of Twitter-followers, genres,

and developers) have any meaning. We observe interesting points for the

developer (D) and Twitter-follower (T) features.

For the developer feature, in most latent groups, the developers who

have received a substantial number of ratings for all their apps are di↵erent

from the independent (“indie”) developers. This is due to the fact that

these developers usually have apps that users “liked,” whereas the indie

developers sometimes have apps that users “disliked” as well as apps that

users “liked.” This coincides with our hypothesis about brand loyalty, as

the developers with a substantial number of ratings either have created a

large number of apps (such as EA Games) or have created a small number of

well-received apps (such as the apps by Google). We also observe that the

49

F
ig
u
re

3.
11
:
T
h
e
to
p
3
la
te
nt

gr
ou

p
s;
ea
ch

gr
ou

p
sh
ow

s
th
e
to
p
5
T
w
it
te
r-
fo
ll
ow

er
s
an

d
th
ei
r
p
u
b
li
c
p
ro
fi
le
.

50

clustered developers are classified into the same genre or strong competitors

like Facebook and Twitter.

In order to understand why Twitter-followers work best, we scrutinized

the latent groups discovered by LDA at the optimal performance point

of K = 120. Each group consists of Twitter-followers; and each Twitter-

follower follows at least 5 apps in our dataset. We then manually visited

the Twitter pages of the top 5 Twitter-followers in each of the 120 la-

tent groups, and then verified their profile descriptions and their latest

tweets. We observe that more than 95% of these Twitter-followers exhibit

consistent interest in apps. This shows that our approach accurately distin-

guishes between Twitter users who have implicit/explicit interest in apps

and regular Twitter users. Our approach assigns low probabilities to Twit-

ter users who have little or no correlation to apps, e↵ectively filtering out

their influence as noise. To illustrate the quality of the latent groups, we

performed an additional level of micro-analysis. We selected the 3 most

important latent groups among the 120 groups based on the expectation of

the probability of each latent group over the set of training data (i.e., the

pseudo-documents), along with their corresponding top 5 Twitter individ-

uals’ public profile (Figure 3.11). The top-most row in Figure 3.11 shows

the top genres and examples of apps in each of the top 3 latent groups.

We see that the apps in each group coincides with the Twitter profiles

of the top 5 individuals in the same group. Latent Group 1 is composed

of family-oriented Twitter users who also download family-oriented apps.

Such a latent group would be di�cult to describe if we were to use genres

alone, as this group consists of a non-discrete mix of children-friendly apps.

In Latent Group 2, we see that this group consists of professional music-

creation apps, which also coincides with the type of Twitter users who are

either actual musicians or people interested in creating music. This is in

contrast with the “music” genre in app stores, which is in some sense too

51

diverse as it may refer to music-player apps, music-streaming apps, or triv-

ial music-making apps. Lastly, Latent Group 3 captures games that are

of a light-hearted, indie nature. We can also relate the Twitter users to

the downloaded apps, which are di�cult to describe using genres or words

alone. In short, our Twitter-follower feature is able to capture the person-

alities of Twitter-individuals. Therefore, even when an app does not have

user ratings, our system can still provide relevant recommendation based

on information about who is following the app’s Twitter account.

3.6 Conclusion

By taking advantage of the unique property of apps and their corresponding

Twitter profiles, we identify Twitter-followers of the Twitter profiles of

apps. Pseudo-documents are then created to represent users, where each

pseudo-document contains the IDs of Twitter-followers of the apps that

a user has previously downloaded. Thereafter, LDA is applied to the set

of pseudo-documents to generate latent groups which is then used in the

recommendation process. By combining the feature of Twitter-followers

with other features based on various app metadata such as genre, developer,

and the words in the app description, we can generate a much more accurate

estimation of how likely a target user will like an app. Experimental results

show that features extracted from Twitter consistently and significantly

outperform state-of-the-art baselines which rely on (potentially misleading)

textual information distilled from app descriptions. This also shows that

follower information from Twitter helps us discover valuable signals that

is e↵ective in alleviating the cold-start situation.

52

Chapter 4

Mobile App Recommendation

Using Version Features

This chapter looks at how we can use version features

in the mobile app domain as content features for the

purpose of improving recommendation.

4.1 Introduction

Another unique characteristic about the app domain is that, unlike con-

ventional items that are static, apps change and evolve with every revision.

Thus, an app that was unfavorable in the past may become favorable after

a version update. For example, Version 1.0 of App X did not interest a

user at first, but a recent update to Version 2.0 — which promises to pro-

vide the functionality of high definition (HD) video capture — may arouse

his interest in the revised app. A conventional recommender system that

regards an app as a static item would fail to capture this important detail.

This is why it is vital for app recommender systems to process nascent

53

Figure 4.1: App X has five versions (red circles, on the left). The contents
of each version is represented by a set of topics (green squares) in which
each version consists of at least one topic. At the same time, based on the
consumption history of users, we model them by identifying which topics
they are interested in (on the right).

signals in version descriptions to identify desired functionalities that users

are looking for.

We focus on the uniqueness of the app domain and propose a framework

that leverages on version features; i.e., textual descriptions of the changes

in a version, as well as version metadata. First, with the help of semi-

supervised topic models that utilize these features, we generate latent topics

from version features. Next, we discriminate the topics based on genre

information and use a customized popularity score to weight every unique

genre-topic pair. We then construct a profile of each user based on the

topics, and finally compute a personalized score of recommending the latest

version of an app to a target user. Furthermore, we show how to integrate

this framework with existing recommendation techniques that treat apps

as static items.

Figure 4.1 provides an overview of our approach. App X has five dif-

ferent versions (1.0, 1.1, 1.2, 2.0, and 3.0). Each version is characterized

by a set of latent topics that represents its contents, whereby a topic is

associated with a functionality, such as the ability to capture HD videos.

54

For instance, Version 1.0 has Topics 1, 2, and 4; whereas Version 3.0 only

has Topic 5. At the same time, based on a user’s app consumption history,

we can model which topics they are interested in. Therefore, if Bob has a

keen interest in Topic 5, the chance that he adopts App X at Version 3.0

would be higher because Topic 5 attracts Bob’s interest. Likewise, there

is a higher chance of both Alex and Clark adopting App X at Version 1.2

because Topics 1 and 3 attract their interests.

We show that the incorporation of version features complements other

standard recommendation techniques that treat apps as static items, and

this significantly outperforms state-of-the-art baselines. Our experiments

identify which topic model best utilizes the available version features to

provide the best recommendation, and examine the correlation between

various version metadata and recommendation accuracy. Furthermore, we

provide an in-depth micro-analysis that investigates: i) whether our ap-

proach recommends relevant apps at the most suitable version; ii) what

information can we gather by scrutinizing the latent topics; and iii) which

is the most influential version-category. To the best of our knowledge, this

is the first work that investigates version features in recommender systems.

Our contributions are summarized as follows:

• We show that version features are important in app recommenda-

tion, as apps change with each version update, unlike conventional

static items. This ultimately influences the needs of users and the

recommended apps.

• We show how to synergistically combine our version-sensitive method

with existing recommendation techniques.

55

4.2 Related Work

Works in information retrieval (IR) have also handled items that change

and evolve. For example, past works have also viewed Web pages as enti-

ties that evolve over time. Keyaki et al. (2012) explored XML Web docu-

ments (e.g., Wikipedia articles) that are frequently updated, and proposed

a method for fast incremental updates for e�cient querying of XML ele-

ment retrieval. This is di↵erent from our work as they dealt with items

only, whereas our method also generates personalized recommendation of

items for users, i.e., our work also considers the users. Furthermore, our

work focuses on a secondary item unit — version updates — which is a

separate entity from primary item (i.e., the app). Liang et al. (2012) pro-

posed a method to capture the temporal dynamics of relevant topics in

micro-blogs (e.g., Twitter) where a topic centers around a certain theme

such as the U.S. presidential election or Kate Middleton’s baby which, in

the micro-blogging community, may change quickly with time. Our work

di↵ers from theirs as the “items” in their system are the topics, which is

an indefinite discourse. Apps, on the other hand, are definite items that

users download and use. Wang and Zhang (2013) explored the problem of

recommending the right product at the right time, which uses a proposed

opportunity model to explicitly incorporate time in an e-commerce recom-

mender system. Their work explores the time of purchase, and does not

focus on items that change with time.

In summary, our work di↵ers from the previous works in that the nature

and requirements of app recommendation — with respect to version infor-

mation — di↵ers from the retrieval of Web articles, topic recommendation

in micro-blogs, and the time of recommendation.

56

Figure 4.2: Overview of our framework.

4.3 Our Approach

Our framework processes the version texts and metadata to decide whether

a particular version of an app entices a target user. As shown in Figure 4.2,

we first generate latent topics from version features with semi-supervised

topic models in order to characterize each version. Next, we discriminate

the topics based on genre metadata and identify important topics based

on a customized popularity score. Following that, we incorporate user

personalization, and then compute a personalized score for a target user

with respect to an app and its version. Our system then recommends the

top k target apps:

A : a 2 argmax
k

(score(d(a, v), u)), (4.1)

where an app a and its specific version v are treated as a tuple that charac-

terizes a document d, and is scored with respect to a target user u. Lastly,

we explain how to integrate this framework with existing recommendation

techniques.

57

Figure 4.3: An app’s changelog chronicles the details of every version up-
date; shown here is an excerpt of the Tumblr app changelog. Version
updates typically include new features, enhancements, and/or bug fixes.

4.3.1 Version Features

App versioning is the process of assigning unique version numbers to unique

states of the app. Within a given version number category (e.g., major,

minor), these numbers are generally assigned in increasing order and corre-

spond to new developments in the app. Figure 4.3 shows an example of an

app’s changelog that consists of four di↵erent version updates (or version-

snippets) in reverse order: Versions 2.0, 1.2.1, 1.2, and 1.1. Hereafter, we

will use the terms “version-snippet” and “document” interchangeably to

refer to the textual description of each version update.

Versions are identified using a conventional numbering structure of

“X.Y.Z” where X, Y, and Z represent major, minor, and maintenance cat-

egories, respectively:

1. Major. Major versions indicate significant changes to the app and is

incremented when new major releases are made. This usually denotes

58

that substantial architectural changes have taken place. For example,

in Figure 4.3, Version 2.0 is a major version-category.

2. Minor — The minor version category is often applied when new

functionality is introduced or important bug fixes are introduced.

The dependant maintenance number (covered next) is reset to zero.

For example, in Figure 4.3, Versions 1.1 and 1.2 are minor version-

categories.

3. Maintenance — The maintenance version category is associated

with non-breaking bug fixes. For example, in Figure 4.3, Version 1.2.1

is a maintenance version-category.

Hereafter, we will use “version-category” as shorthand for version number

category.

Besides textual descriptions and version-categories, each version-snippet

is also associated with the following information:

1. Genre Mixture — Every app is assigned to a subset of pre-defined

genres by the developer. For example, the app “Instagram1” is as-

signed to the genres “photo & video” and “social networking.” As

a version is essentially one of many unique states of an app, the

genre mixture in which an app is assigned to is also inherited by its

versions. Additionally, as the aforementioned “Instagram” example

shows, each app or version is typically assigned to multiple genres2.

Figure 4.4 shows all of the 40 pre-defined genre labels in the case of

Apple’s iOS app store (our focus in this study).

2. Ratings — It is commonly known that user ratings are directly

paired to apps, i.e., user u gives app a a numerical rating r. How-

1http://itunes.apple.com/lookup?id=389801252
2This information (of having more than one genre) is only displayed through the

API calls to the app store, and is not displayed in the regular app store that consumers
use; instead, only one (primary) genre is shown to the consumer.

59

http://itunes.apple.com/lookup?id=389801252

Figure 4.4: The 40 pre-defined genre labels on Apple’s iOS app store (as
of January 2014). The bottom set are gaming sub-genres and only appear
on gaming apps.

ever, to be strictly pedantic, the app stores of Apple and Google pair

ratings to a particular version of an app: user u gives version v of app

a a numerical rating r. Therefore, every version — even if it is the

same app — receives a di↵erent set of ratings from di↵erent users. A

version that was rated poorly in the past may receive more favorable

ratings for later versions.

4.3.2 Generating Latent Topics

In order to find an interpretable and low-dimensional representation of the

text in the version-snippets (or documents), we focus on the use of topic

modeling algorithms (topic models). A topic model takes a collection of

texts as input and discovers a set of “topics” — recurring themes that

are discussed in the collection — and the degree to which each document

exhibits those topics. We first explore the use of two di↵erent topic models:

i) latent Dirichlet allocation (LDA) (Blei et al., 2003) and ii) Labeled-LDA

(LLDA) (Ramage et al., 2009), which are unsupervised and semi-supervised

topic models, respectively. We also investigate a corpus-enhancing strategy

of incorporating version metadata directly into the corpus prior to the

60

application of topic models. This is to improve the quality of the topic

distribution discovered by the topic models.

Modeling Version-snippets with Topic Models

LDA is a well-known generative probabilistic model of a corpus; it generates

automatic summaries of latent topics in terms of: i) a discrete probability

distribution over words for each topic, and further infers ii) per-document

discrete distributions over topics, which are respectively defined as:

p(w|z), (4.2)

p(z|d), (4.3)

where z, d, and w denote the latent topic, the document, and a word,

respectively.

However, a limitation of LDA is that it cannot incorporate “observed”

information as LDA can only model the text in version descriptions, i.e.,

LDA is an unsupervised model. In the context of our work, this means

that we cannot incorporate the observed version metadata (e.g., version-

category and genre mixture) into the latent topics. This leads us to Labeled-

LDA (or LLDA), an extension to LDA that allows the modeling of a collec-

tion of documents as a mixture of some observed, “labeled” dimensions (Ra-

mage et al., 2009), representing supervision.

LLDA is a supervised model that assumes that each document is an-

notated with a set of observed labels. It is adapted to account for multi-

labeled corpora by putting “topics” in one-to-one correspondence with “la-

bels”, and then restricting the sampling of topics for each document to the

set of labels that were assigned to the document. In other words, these la-

bels — instead of topics — play a direct role in generating the document’s

words from per-label distributions over terms. However, LLDA does not

61

assume the existence of any global latent topics, only the document’s distri-

butions over the observed labels and those labels’ distributions over words

are inferred (Ramage et al., 2011). This makes LLDA a purely supervised

topic model.

Although LLDA appears to be a supervised topic model initially, de-

pending on the assignment of the set of labels to the documents, it can

actually function either as an unsupervised or semi-supervised topic model.

To achieve an unsupervised topic model like LDA, we first disregard all

the observed labels (if any) in the corpus, and then model K latent topics

as labels named “Topic 1” through “Topic K” and assign them to every

document in the collection. This makes LLDA mathematically identical

to traditional LDA with K latent topics (Ramage et al., 2010). On the

other hand, to achieve a semi-supervised topic model, we first assign every

document with labels named “Topic 1” through “Topic K” for the unsu-

pervised portion, and then use the observed labels3 (that are unique to each

document) for the supervised portion.

The semi-supervised method of implementing LLDA allows us to quan-

tify broad trends via the latent topics (as in LDA) while at the same time

uncover specific trends through labels associated with document metadata.

In our work, we treat the version categories and genre mixture as observed

labels, and rely on semi-supervised LLDA to discover the words that are

best associated with the di↵erent version-categories and genres, respec-

tively. Similar to LDA, LLDA generates the topic-word and document-

topic distributions in Equations (4.2) and (4.3), respectively, allowing us

to obtain the mixture weights of topics for every document. Hereafter,

semi-supervised LLDA will be the default LLDA model, and we will also

use the terms “topic” and “label” interchangeably.

3Note that the number of observed labels varies with every document.

62

Algorithm 1 How to create “pseudo-terms” from metadata and incorpo-
rate them into the corpus (in pseudocode).

1: For each doc ‘‘d’’ in corpus:

2: // Note that each doc is a version-snippet.

3: verText = d.getText();

4: verCategory = d.getVersionCategory();

5: // We assume verCategory already has the

6: // hash-prefix (i.e., ‘‘#’’-prefix).

7: appId = d.getAppId();

8: genres = getGenres(appId);

9: // We assume genres are comma separated values

10: // and already have the hash-prefix.

11: verText += genres + ‘‘,’’ + verCategory;

12: d.setText(verText);

Corpus-enhancement with Pseudo-terms

Aside from employing topic models, we identify another way of incorpo-

rating metadata into the latent topics. Inspired by how hashtags are used

in Twitter to add content to Twitter messages, we create “pseudo-terms”

from the metadata and incorporate them into the set of documents be-

fore performing topic modeling. These pseudo-terms can be identified by

their “#” prefix (shown in Figure 4.5). Algorithm 1 shows how metadata

in the form of pseudo-terms are automatically “injected” into the corpus

of version-snippets, as we want to associate these pseudo-terms with the

latent topics.

Because LDA and LLDA generate automatic summaries of topics in

terms of a discrete probability distribution over words for each topic (Ra-

mage et al., 2009), incorporating pseudo-terms into the corpus allows the

topic models to learn the posterior distribution of each pseudo-term (in

addition to the natural words) in a document conditioned on the docu-

ment’s set of latent topics. Incorporating these unique pseudo-terms will

help in getting topic distributions that are more consistent with the nature

of version-snippets. Note that the di↵erence between using the enhanced-

63

(a) A document before “injecting” pseudo-terms.

(b) A document after “injecting” pseudo-terms.

Figure 4.5: Metadata such as genre-mixture (in red) and version-category
(in blue) are incorporated into documents, which appear in the form of
“pseudo-terms” with a “#” prefix.

corpus and the normal corpus is that the former allows both the words and

pseudo-terms to be associated with the latent topics, while the latter only

allows (natural language) words to be associated with the latent topics. To

di↵erentiate between the normal corpus and the enhanced-corpus, we add

the prefix “inj”ection to LDA and LLDA; in shorthand, “inj+LDA” and

“inj+LLDA,” respectively, to denote these approaches.

4.3.3 Identifying Important Latent Topics

We can now model each version-snippet (or document) as a distribution

of topics. However, we do not know which topics are important for rec-

ommendation. For example, if we knew that users prefer a topic that is

related to the promise of high-definition (HD) display support, we would

rather recommend an app that includes HD display support in its latest

version update over similar apps that do not. Therefore, the importance

of each topic di↵ers from app to app, and this is a key contribution of our

work.

Furthermore, apps are classified into various genres; each genre works

di↵erently to the same type of version update. For example, a version up-

64

Table 4.1: Genre-topic weighting matrix, where g and z denote a genre and
a latent topic, respectively. Every genre-topic pair has a unique weight from
weighting scheme. Also, x 2 {LDA, inj+LDA, LLDA, and inj+LLDA}.

Genre Latent Topic

z

1

z

2

. . . z

j

. . . z

K�1

z

K

g

1

w

x1,1 w

x1,2 . . . w

x1,j . . . w

x1,K�1 w

x1,K

g

2

w

x2,1 w

x2,2 . . . w

x2,j . . . w

x2,K�1 w

x2,K

...
...

...
...

...
...

...
...

g

i

w

xi,1 w

xi,2 . . . w

xi,j . . . w

xi,K�1 w

xi,K

...
...

...
...

...
...

...
...

g

G

w

xG,1 w

xG,2 . . . w

xG,j . . . w

xG,K�1 w

xG,K

date that o↵ers HD display support would be more enticing and relevant on

a game app instead of a music app. Later, in Section 4.5.2, we will show

how the inclusion of genre information significantly improves the recom-

mendation accuracy. Because of this, our method includes genre informa-

tion by default. Table 4.1 shows how we uniquely weight every genre-topic

pair with multiplicative weight w

x

, where x 2 {LDA, inj+LDA, LLDA,

and inj+LLDA}. Note that each genre has a di↵erent distribution of im-

portance weights with respect to the set of latent topics.

To compute the weight w, we first introduce a measurement for “pop-

ularity” for a document. We use a variant of the popularity measurement

detailed in Yin et al. (2012) whereby the popularity is reflected by the votes

it receives; as intuitively, the more positive votes it receives, the more pop-

ular it is and vice versa. While one may argue that an item receiving a

large number of votes (whether they are positive or not) is popular, in this

work, we define popular items as those that are “liked” by the majority of

the service users, whereby a “like” translates to a rating of 3 and above on

the 5-point Likert scale, whereas a “dislike” is a rating of 2 and below.

We formally define the popularity score ⇡(d) that outputs a value be-

65

tween 0 and 1, which factors user ratings into account:

⇡(d) =

8
>><

>>:

pvd�nvd

pvd+nvd+1

if pv
d

� nv

d

> 0

0 otherwise,

(4.4)

where pv

d

and nv

d

denote the number of positive and negative ratings of

document d, respectively.

We use this popularity score to define the importance weight of a genre-

topic pair, w
x

:

w

x

(g, z) =

P
d2D(g)

p(z|d) · ⇡(d)
P

z

02Z
P

d2D(g)

p(z0|d) · ⇡(d) , (4.5)

where Z is the set of all K topics, D(g) is the set of all documents that

belongs to genre g, ⇡(d) is the popularity score of document d, p(z|d) is the

document-to-topic distribution in Equation (4.3), and x 2 {LDA, inj+LDA,

LLDA, and inj+LLDA}. The denominator is used solely for normalization.

In other words, w
x

is discriminated by the genre, and information from

the ratings, along with the distribution of topics, are used to identify its

weights.

4.3.4 User Personalization

To incorporate personalization, we need to know each user’s preference

with respect to the set of latent topics. We determine this importance

by analyzing the topics present in the apps that a user u has previously

consumed. To compute this factor with respect to a latent topic z, we

define the following equation:

p(z|u) =
P

d2D(u)

p(z|d)
P

z

02Z
P

d2D(u)

p(z0|d) , (4.6)

66

where p(z|d) is the document-to-topic distribution defined in Equation (4.3)

andD(u) is the set of documents consumed by user u. As in Equation (4.5),

the denominator is solely for normalization.

4.3.5 Calculation of the Version-snippet Score

Finally, we calculate the score defined by Equation (4.1). We combine

the document-to-topic distribution defined in Equation (4.3), the weighting

schemes defined by Equation (4.5), the user-personalization factor defined

by Equation (4.6), and compute the score as follows:

score

x

(d, u) =
X

z2Z

p(z|d) · w
x

(genre(d), z) · p(z|u), (4.7)

where d, u, and z are the document, target user, and latent topic, respec-

tively, w
x

(·) denotes the weighting schemes (where x 2{LDA, inj+LDA,

LLDA, and inj+LLDA}), genre(d) is the genre of document d, p(z|d) is the

document-to-topic distribution in Equation (4.3), and p(z|u) is the proba-

bility that the target user u prefers topic z. Thus, for each app, we calculate

its score based on its latest version to see if it should be recommended.

4.3.6 Combining Version Features with Other Rec-

ommendation Techniques

Our work aims at exploring how version features can improve the recom-

mendation accuracy of existing recommendation techniques such as collab-

orative filtering and content-based filtering. A simple way to integrate ver-

sion features with the other recommendation techniques is to use a weighted

combination scheme, but we also explore a more advanced approach, gra-

dient tree boosting (GTB) (Friedman, 2001), which is a machine learning

technique for regression problems that produces a prediction model in the

67

form of an ensemble of prediction models. We show the results of GTB in

our work as it is more superior.

For each of the users, we fit a GTB model to their training data (for each

app in the training data that a user has consumed). Each training sample

contains the prediction scores of the various recommendation techniques

and the actual rating value of the user for the particular app. Note that

for our version-sensitive recommendation (VSR) score, we map the score of

the version-snippet to the app. We assume a recommendation technique —

such as collaborative filtering and content-based filtering or any other —

provides a probability of the likelihood of user u consuming or downloading

app a. The features given to GTB are a set of probability scores of each of

the recommendation techniques, VSR, collaborative filtering, and content-

based filtering; the output of GTB is a predicted score between 0 and 5.

The predicted ratings are then ranked in reverse order for recommendation.

4.4 Evaluation

We preface our evaluation proper by detailing: i) how we constructed our

dataset, ii) how we chose our evaluation metric, iii) our setting for the

dataset, and iv) the baselines that we compare our approach against.

4.4.1 Dataset

We constructed our dataset by culling from the iTunes App Store4 and

AppAnnie5. The dataset consists of the following elements:

1. App Metadata. App metadata consists of an app ID, title, descrip-

tion, and genre. The metadata is collected by first getting all the app

4https://itunes.apple.com/us/genre/ios/id36?mt=8
5https://appannie.com

68

https://itunes.apple.com/us/genre/ios/id36?mt=8
https://appannie.com

IDs from the App Store, and then retrieving the metadata for each

app via the iTunes Search API6.

2. Version Information. For each app, we utilize a separate crawler

to retrieve all its version information from AppAnnie, which resem-

bles the changelog in Figure 4.3. We treat each app’s version as a

document.

3. Ratings. For each version, we utilize yet another crawler to collect

its reviews from the iTunes App Store. A review contains an app’s

ID, its version number, its rating, the reviewer’s ID, the subject, and

the review comments. This is the source of the rating feature. Note

that a rating here is associated to a particular version of an app.

We further process the dataset by selecting apps with at least 5 versions,

documents (i.e., version-snippets) with at least 10 ratings, and users who

rated at least 20 apps. With these criteria enforced, our dataset consists of

9,797 users, 6,524 apps, 109,338 versions, and 1,000,809 ratings. We then

perform a 5-fold cross validation, where in each fold, we randomly select

20% of the users as target users to receive recommendations. For each

target user, we first remove 25% of their most recent downloaded apps, by

default. Additionally, among the training data, 70% is used for training

the latent topics while the remaining 30% is used for the training of GTB.

Recommendation is evaluated by observing how many masked apps are

recovered in the recommendation list.

4.4.2 Evaluation Metric

Our system ranks the recommended apps based on the ranking score. This

methodology leads to two possible evaluation metrics: precision and recall.

6https://www.apple.com/itunes/affiliates/resources/documentation/

69

https://www.apple.com/itunes/affiliates/resources/documentation/itunes-store-web-service-search-api.html

However, a missing rating in the training set is ambiguous as it may either

mean that the user is not interested in the app, or that the user does

not know about the app (i.e., truly missing). This makes it di�cult to

accurately compute precision (Wang and Blei, 2011). But since the known

ratings are true positives, we believe that recall is a more pertinent measure

as it only considers the positively rated apps within the top M , namely,

a high recall with a lower M will be a better system. As previously done

in Wang and Blei (2011) and Chapter 3, we chose Recall@M as our primary

evaluation metric.

4.4.3 Optimization of Parameters

For the number of topicsK of LDA and LLDA, we experimented on a series

of K values between 100 to 1200 for each topic model, and selected the K

that maximizes the recall in each model. For the ↵ and � hyperparameters

of LDA and LLDA, we used a low ↵-value of 0.01 as we want to constrain a

document to contain only a mixture of a few topics; likewise, we used a low

�-value of 0.01 to constrain a topic to contain a mixture of a few words.

For the parameters of GTB, we used the default values in scikit-learn7,

whereby we employed 500 trees, a depth level of 3, and the least square for

the loss function.

4.4.4 Baselines

We considered two state-of-the-art recommendation techniques as base-

lines: i) probabilistic matrix factorization (PMF) (Salakhutdinov and Mnih,

2008) which represents collaborative filtering (CF); and ii) latent Dirichlet

allocation (LDA) (Blei and La↵erty, 2009) which represents content-based

filtering (CBF).

7https://scikit-learn.org/

70

http://scikit-learn.org/stable/

PMF has been widely used in previous works (Agarwal and Chen, 2010;

Ma et al., 2011; Salakhutdinov and Mnih, 2008) as an implementation of

CF as it is highly flexible and easy to extend. On the other hand, LDA

has been used in previous works (Blei and La↵erty, 2009; Lin et al., 2013;

Moshfeghi et al., 2011; Wang and Blei, 2011) as an implementation of CBF

as it e↵ectively provides an interpretable and low-dimensional representa-

tion of the items. Note that in the context of our experiments, LDA’s

implementation of CBF uses the apps’ descriptions as documents — not

the version features. Besides pure CF and CBF, we also show the recom-

mendation accuracy obtained by hybrid of individual techniques, namely,

i) CF+CBF, ii) CF+VSR, iii) CBF+VSR, and iv) CF+CBF+VSR, where

VSR represents our version-sensitive recommendation approach proposed

in Section 4.3.

4.5 Experiments

We first show the recommendation accuracy evaluated with recall by vary-

ing the number of latent topics K, and then show how recall is a↵ected

when we exclude an app’s genre information. After which, we show the

performance of the 4 topic models proposed in Section 4.3.2. Finally, we

compare our approach with other recommendation techniques, including

hybrid methods described in Section 4.4.4.

4.5.1 Recommendation Accuracy Obtained by Dif-

ferent Number of Latent Topics

We optimize the number of topics, K, for our VSR approach with respect

to our four new topic models. Figure 4.6 shows the recall when varying

K for LDA, inj+LDA, LLDA, and inj+LLDA, respectively. We observe

71

Figure 4.6: For each of the 4 topic models, we experimented with various K
between K=100 and K=1200, and show a subsampled chart of K intervals
that are fixated at Recall@100.

that K=1000 gives the best recall scores for all four models, and that the

recall scores generally show a steep increase towards the optimum (i.e.,

between K=600 and K=1000), and then gradually decline once K exceeds

this optimum (i.e., between K=1000 and K=1200). K=1000 may be seen

as a large number of topics, but as observed by Wei and Croft (2006), larger

datasets like ours (we have 109,338 documents) may necessitate a larger

number of topics to be modeled well. Additionally, as we had previously

constrained both hyperparameters of the topic models to be small (resulting

in low topic-mixture per document), more topics are needed to represent

the set of documents.

4.5.2 Importance of Genre Information

Our framework allows each genre to assign di↵erent weights to identical la-

tent topics. In order to determine the importance of genre information, we

compare the recommendation accuracies between models with and without

genre information. Both variants are based on the best-performing model

(inj+LLDA). Figure 4.7 shows that the variant incorporating genre out-

72

Figure 4.7: Recall scores between the inj+LLDA model that uses genre
information and another that does not.

performs the plain model with a statistical significance at p < 0.01. We

conclude that genre information is an important discriminatory factor, as

each genre weights the same type of version update di↵erently. For exam-

ple, a version update that o↵ers the support for HD displays would be more

attractive and relevant to a game app instead of a music app. Therefore, by

discriminating the genres, we assign more relevant weights, which results

in better recall. As such, we use genre information in all of the subsequent

experiments.

4.5.3 Comparison of Di↵erent Topic Models

Figure 4.8 shows the performance of the five di↵erent topic model variants:

i) supervised-LLDA (i.e., without K latent topics), ii) LDA, iii) inj+LDA,

iv) LLDA, and v) inj+LLDA. So that we can compare unsupervised, su-

pervised, and semi-supervised models, we added supervised-LLDA for the

purpose of completeness.

We see that recall is consistently improved as the basic LDA model

is incrementally enhanced through inj+LDA, LLDA, and inj+LLDA. Be-

73

Figure 4.8: Recall scores of di↵erent topic modeling schemes with K=1000
as the optimal number of topics.

tween the inj+LDA and inj+LLDA models that use the enhanced-corpus

(cf. Section 4.3.2) and the LDA and LLDA models that do not, we observe

that the enhanced-corpus generally provides better recall, with inj+LLDA

showing more significant performance against LLDA. Furthermore, both

models of LLDA (i.e., LLDA and inj+LLDA) consistently outperform the

pure LDA models, which shows that semi-supervised LLDA models are

superior to LDA, which is due to LLDA’s ability to quantify broad trends

via latent topics while at the same time uncovering specific trends through

observed metadata.

We added supervised-LLDA as a baseline for this specific evaluation,

but we see that it performs worst among all the baselines. The reason

why supervised-LLDA is the worst model despite having “supervision” is

that it does not have su�cient topics to properly capture the essence of

the corpus. As inj+LLDA is the best-performing model among the topic

models we have tested, we use it in subsequent comparisons. We see that

use of version metadata improves recall, as the three models that utilize

metadata (i.e., inj+LDA, LLDA, and inj+LLDA) consistently outperform

the LDA model that only utilizes the text from version-snippets.

74

Figure 4.9: Recall scores of our version-sensitive model (VSR) against other
individual recommendation techniques.

4.5.4 Comparison Against Other Recommendation Tech-

niques

Figure 4.9 shows the recall scores of the three individual techniques —

VSR, CF, and CBF — where the VSR approach uses inj+LLDA at the

optimal settings of K=1000. While VSR underperformed against CF, it

does outperform CBF. We believe this is because the textual features in

the app descriptions are noisy (Lin et al., 2013), resulting in poor recom-

mendation. Thus, among the content-based recommendation approaches

of the app domain, version features are promising replacements for app

descriptions.

Figure 4.10 shows the combination of individual techniques using GTB.

We observe that combining VSR with CBF or CF (i.e., CBF+VSR or

CF+VSR) improves both CF or CBF alone. This suggests that version

features are a good complement to the traditional recommendation tech-

niques that treat apps as static items. As version features focus on the

unique di↵erences between various states of an app, they play a natural

complementary role for CF or CBF alone. In addition, we have further

75

Figure 4.10: Recall scores of various combinations of recommendation tech-
niques.

confirmed that feature-wise, version features are better content descrip-

tions as CF+VSR outperforms CF+CBF. Furthermore, we note that the

best performing hybrid is CF+CBF+VSR, though it is roughly on par with

CF+VSR. Finally, the hybrid methods CF+VSR and CF+CBF+VSR out-

perform the pure CF model with a statistical significance of p < 0.01 at

Recall@50.

4.6 Discussion

We examine the experimental results obtained by the use of version fea-

tures in detail. First, we perform an in-depth study that compares a rec-

ommended version against previous and future versions of the same app.

Next, we perform a micro-analysis on individual latent topics and inves-

tigate the terms that are found in each topic. Finally, we investigate the

e↵ect of injecting more complex version-category information.

76

4.6.1 Comparison of Previous, Current, and Future

Versions of Apps

From our dataset, we only know which version of an app a target user has

downloaded. However, we do not know whether the user has or has not

seen previous versions of the app before downloading the current version.

For example, we only know that Bob downloaded AngryBirds Version 2.1

but we do not know whether:

• Bob had seen previous versions of AngryBirds (e.g., Version 1.0) but

was not interested in downloading it at that time, or

• Bob’s first encounter with the AngryBirds app was in fact at Version

2.1 and that it was the version that he downloaded.

Hence, we need to consider the situation where a user did not download

a target app earlier even though it might be available for download; and

that it was only after a version-update did the app attract him. For this

reason, based on every app that each target user in the training set down-

loaded, we input the current version (i.e., the version which the target user

downloaded) as well as the previous and future versions of the same app,

and find out whether our system can recommend the exact version that the

target user downloaded.

In order to conduct a fair study, we have to take into account the fact

that every app has di↵erent number of version updates. For example, some

apps may only have 5 di↵erent version updates while others may have as

many as 20 version updates. To solve this problem, we fit the versions of

every app into three sets of bins: The first set of bins denotes the previous

versions (i.e., bins #1 to #7), the second set of bins denotes the version

of the app that a user has downloaded (i.e., bin #8), the last set of bins

represent the future versions (i.e., bins #9 to #15). Then, for every app

77

Figure 4.11: Comparison of normalized score among past (current �1 to
�7), current, and future (current +1 to +7) versions.

that a target user has consumed, we calculate the score for each version

(explained in Section 4.3.5), and enter the score into the respective bins.

Finally, we normalize the score of every bin.

Figure 4.11 shows the normalized score of this analysis for all target

users in the training set. We observe that our approach favors the current

version (i.e., the one that was downloaded by the target users) the most,

thereby indicating that our VSR model e↵ectively targets the version of an

app that maximizes its chances of being acquired by the target user. This

also reflects that apps tend to go through a series of revisions before being

generally favorable; after which the subsequent versions show a decline in

general interest, and this suggests the peripheral nature of the subsequent

revisions.

4.6.2 Dissecting Specific LDA Topics

To further understand why injecting pseudo-terms into the corpus improves

recommendation accuracy, we perform a micro analysis by exploring the

latent topics discovered by inj+LLDA. We selected the three most impor-

78

tant latent topics based on the expectation of each latent topic over the

set of training data. Note that each latent topic contains a set of words as

well as the injected pseudo-terms.

Figure 4.12 shows the three topics. We observe that every topic coin-

cides with a certain theme. In addition, from the pseudo-terms found in the

topic, we can discern the kind of version-category and genre mixture infor-

mation the topic belongs to. For example, Topic #385 contains words like

“retina” and “resolution”, correctly suggesting that the update is display-

related. In addition, we observe what genres of apps most likely have such

updates, which are the “utilities” and “productivity” apps (in red). Fur-

thermore, we observe that updates in Topic #385 are strongly related to the

version-category minor (in blue). On the other hand, Topic #47 is associ-

ated with “navigation” and “traveling”, as the genre-related pseudo-terms

(in red) suggests. The top natural language words found in Topic #47 also

agree with the hashtags, in that the related updates include improvements

in mapping and routing, and that the updates also include alerts and noti-

fications with regards to traveling-related information, such as fuel, points

of interests (POIs), and accidents. Finally, as we recall that inj+LLDA

allows the incorporation of “observed” labels as topics, the third topic is

related to the “medical genre” label and it is closely associated with apps

in the neighboring “health & fitness” genre. This “observed” label/topic

mainly deals with providing users visual reports (such as graphs and charts)

about their personal health (such as periods and pregnancy) as well as the

provision of personal tracking and reminders. We observe that the injected

pseudo-terms act as a guide for inj+LLDA’s inferencing process, which

contributes to better latent topic generation. It also helps in understand-

ing the topics further as the metadata (i.e., version-categories and genre

mixture) that is imbued in the topics gives users a more comprehensible

understanding of the topics.

79

F
ig
u
re

4.
12
:
T
h
re
e
m
os
t
im

p
or
ta
nt

to
p
ic
s.

E
ac
h
to
p
ic

sh
ow

s
th
e
to
p
te
rm

s,
w
it
h
th
e
in
cl
u
si
ve

of
h
as
ht
ag
s.

T
er
m
s
in

re
d
ar
e
in
je
ct
ed

te
rm

s
fr
om

ge
n
re

la
b
el
s;

th
os
e
in

b
lu
e,

in
je
ct
ed

te
rm

s
fr
om

ve
rs
io
n
in
fo
rm

at
io
n
.
N
ot

on
ly

d
oe
s
th
is

id
en
ti
fy

la
te
nt

to
p
ic
s
as
so
ci
at
ed

w
it
h
ap

p
u
p
d
at
es
,
it
al
so

gi
ve
s
a
ge
n
er
al

ov
er
vi
ew

of
th
e
ki
n
d
s
of

fe
at
u
re
s
fo
u
n
d
in

va
ri
ou

s
ve
rs
io
n
-c
at
eg
or
ie
s.

80

Figure 4.13: List of standard and advanced hashtags for corpus-injection.

4.6.3 Importance of Version Categories

To verify the importance of various version-categories (i.e., major, minor,

and maintenance), we calculate their respective scores based on i) the topic-

word distribution from the topic model, and ii) the importance score of the

latent topics (see Section 4.3.3), which is essentially:

P
g2G

P
z2Z winj+LLDA(g, z) · p(w = m|z),

where m represents one of the strings: “#major”, “#minor”, or “#mainte-

nance.” Note that p(w|z) is the topic-word distribution in Equation (4.2).

Also note that the equation must be normalized, which results in the score

being between 0 and 1.

The importance of each of the three version-categories are as follows:

i) “#major”: 0.128, ii) “#minor”: 0.656, and iii) “#maintenance”: 0.216.

It is evident that the “minor” version category is the one that is generally

more favorable. This is because major updates tend to be buggy, while

minor or maintenance updates after a major update would likely fix the

bugs that occurred in the major release, leading to higher user satisfaction.

The reason why minor performs better than maintenance (i.e., 0.656 vs

0.216) is that a minor update typically introduces important bug fixes or

81

Figure 4.14: Recall scores between the use of “standard” and “advanced”
version-categories.

functionalities, which is more appreciable than a maintenance update that

resolves trivial issues of the app.

As version-categories are valuable features, we hypothesize that the rec-

ommendation accuracy can be improved if we further augment the version-

categories. More specifically, as we previously only considered three stan-

dard version-categories: #major, #minor, and #maintenance, we consider

improving the recommendation performance by injecting a more compre-

hensive list of version-categories into the corpus (as in Figure 4.13). Fig-

ure 4.14 shows the comparison between the standard and such an advanced

set of version-categories (both models using inj+LLDA). Incorporating

the advanced version-categories improves recommendation accuracy, as in-

stead of identifying only 3 standard version-categories, we can discriminate

among 6 additional scenarios. The additional details and specifications

given by advanced version-categories e↵ectively improve recommendation

accuracy. We observe that advanced version-category model outperforms

the standard model, particularly at the lower (more important) app rec-

ommendation ranks (“M”), although not statistically significantly so.

82

A more comprehensive modeling of version may be promising, and as

such, since there is evidence that the sequence of versions would help, we

plan to model the sequence of versions in future work.

4.7 Conclusion

In this chapter, we leverage the unique properties in the app domain and

explored the e↵ectiveness of using version features in app recommendation.

Our framework utilizes a semi-supervised variant of LDA that accounts for

both text and metadata to characterize version features into a set of latent

topics. We used genre information to discriminate the topic distributions

and obtained a recommendation score for an app’s version for a target user.

We also showed how to combine our method with existing recommendation

techniques. Experimental results show that genre is a key factor in discrimi-

nating the topic distribution while pseudo-terms based on version metadata

are supplementary. We observed that a hybrid recommender system that

incorporates our version-sensitive model statistically outperforms a state-

of-the-art collaborative filtering system. This shows that the use of version

features complements conventional recommendation techniques that treat

apps as static items. We also performed a micro-analysis to show how our

method targets particular versions of apps, allowing previously disfavored

apps to be recommended.

83

Chapter 5

A Unifying Framework for

App Recommendation

This chapter looks at a unifying framework that

combines the recommendation techniques from the

previous chapters.

As discussed in the previous chapters, traditional recommendation ap-

proaches either learn the preferences of users from their rating history

(i.e., collaborative filtering) or through the contents of previously consumed

items (i.e., content-based filtering). Although the collaborative filtering ap-

proach is used in many recommender domains (e.g., books, movies, music,

and apps), its e↵ectiveness is hindered by the lack of su�cient ratings,

particularly towards newly released items (i.e., the cold-start problem). In

addition, while it may be possible to circumvent the cold-start problem

with content-based filtering — since it relies on the textual descriptions

which are found in every app’s metadata — it is ine↵ective in the app

domain due to noisy and unreliable app descriptions (Lin et al., 2013).

85

We have demonstrated how to take advantage of the unique proper-

ties in the app domain to improve on the recommendation quality. For

instance, we can use nascent signals in Twitter to overcome the cold-start

problem that besets ratings-based recommendation techniques (see Chap-

ter 3) whereas for situations where there are adequate ratings, we can still

improve on collaborative filtering by incorporating the version features of

apps as an additional source of useful content (see Chapter 4). However,

a limitation of the two state-of-the-art recommendation techniques is that

not all apps have Twitter accounts and/or su�cient version information,

and this a↵ects the e↵ectiveness of these techniques in the real world.

The fact that di↵erent recommendation techniques — both traditional

and state-of-the-art — do not perform equally well and are only e↵ective

in specific scenarios leads us to pursue the optimal combination of the

techniques. That is, given the availability of certain features (e.g., having

su�cient ratings, having a Twitter handle, having su�cient version fea-

tures, etc.), can we come up with a unifying framework that marries the

strengths of the various app recommendation techniques with respect to

the availability of information at a given time?

5.1 A Hypothetical Conceptualization of the

App Domain

Inspired by the observation that apps have multiple versions and that each

new version is an improvement, we can conceptualize each new version as

the growth of an app. Therefore, we can view an app’s growth as analogous

to the developmental growth of a person where there are distinct phases

such as infancy, adolescence, and adulthood.

86

Figure 5.1: Three di↵erent hypothetical phases of an app’s growth over
time: early, emerging, and mature.

Figure 5.1 illustrates the hypothetical idea in which the growth of an

app can be categorized into three phases:

1. Early Phase. This phase marks the start of an app in which it is

introduced in the app store for the very first time. Apps in this phase

have few ratings and often face the problems of cold-start and data

sparsity. Because of this, recommendation techniques that rely on

user ratings such as collaborative filtering are ine↵ective for apps in

this phase.

2. Emerging Phase. This phase represents an app’s liberation from

the cold-start (after it has received a minimum number of ratings)

and its growth towards becoming a prominent and mature app. We

believe that a mixture of recommendation techniques can be deployed

in this phase to make full use of the information available.

87

3. Mature Phase. This phase marks an app’s full maturity as it be-

comes a finished product. Examples of such apps include Angry

Birds1, Flappy Bird2, and Instagram3. We believe that apps in this

phase can solely rely on collaborative filtering or some simple and

straightforward popularity measurement score.

Not only does each phase require a di↵erent set of recommendation tech-

niques, it also depends on the amount of information that is available. For

example, if an app has more than 1,000 ratings and has a Twitter page with

20,000 followers, it is likely to be classified as an app in the mature phase.

Note that we present our idea about growth phases only as an analogy to

motivate the need for a diverse set of strategies for recommendation; our

goal is not to identify discrete phases in which recommendation techniques

are to be applied, but rather to understand how to make sense of the di-

verse ecosystem of apps and build a hybrid, unifying framework based on

the knowledge obtained.

We now describe our e↵orts towards developing and evaluating a unify-

ing framework for app recommendation algorithms. Section 5.2 describes

the problem and analyzes the various information sources that can be

used by the unified recommender system. Section 5.3 describes the uni-

fying framework in detail. Sections 5.4 and 5.5 describe our experimental

methodology and results. Finally, Section 5.6 concludes the contributions

of this chapter.

1“Two billion downloads? We’re just getting started, says
Angry Birds creator Rovio,” Edge, accessed on Jan 30, 2014,
http://www.edge-online.com/features/two-billion-downloads-were-just.

2“What is Flappy Bird? The game taking the App Store by storm,” The Tele-
graph, accessed on Jan 30, 2014, http://www.telegraph.co.uk/technology/news/
10604366/What-is-Flappy-Bird-The-game-taking-the-App-Store-by-storm.

html.
3“At 5 Million Users, It’s Hard Not To View Instagram Through A Rose-Colored

Filter,” TechCrunch, accessed on Jan 30, 2014, http://techcrunch.com/2011/06/13/
instagram-five-million-users/.

88

http://www.edge-online.com/features/two-billion-downloads-were-just-getting-started-says-angry-birds-creator-rovio/
http://www.telegraph.co.uk/technology/news/10604366/What-is-Flappy-Bird-The-game-taking-the-App-Store-by-storm.html
http://www.telegraph.co.uk/technology/news/10604366/What-is-Flappy-Bird-The-game-taking-the-App-Store-by-storm.html
http://www.telegraph.co.uk/technology/news/10604366/What-is-Flappy-Bird-The-game-taking-the-App-Store-by-storm.html
http://techcrunch.com/2011/06/13/instagram-five-million-users/
http://techcrunch.com/2011/06/13/instagram-five-million-users/

5.2 Problem Analysis

5.2.1 Problem Definition

Guided by the hypothetical concept in the previous section, we will explore

an objective way to create a hybrid app recommender system that capital-

izes on the strengths of each of the previously mentioned recommendation

techniques based on the information or metadata that is available. Because

di↵erent recommendation techniques work in di↵erent settings, our goal is

to come up with an e�cient way to integrate various sources of information

into a hybrid model that is able to recommend a set of apps to a target

user — regardless of which phase of the app lifecycle it belongs to.

5.2.2 Information for the Unified Model

Inspired by the work of Wang et al. (2012), we classify, on a high level, all

information available for the unified system into three distinct groups:

1. the user’s history-related information (H),

2. the app’s marketing-related metadata (M), and

3. the recommendation scores of di↵erent recommender systems (R).

In the unified model, every candidate app’s feature vector xu,a is com-

posed of all three groups of information: xu,a = {xH
u,a,x

M
a ,xR

u,a} where xu,a

represents the feature vector of the app a for user u, while H, M, and R

represent the features from the users’ history, apps’ metadata, and recom-

mendation scores from various recommendation techniques, respectively.

5.2.3 User’s History-related Information (H)

User history is essential in building a successful unified system (Wang et al.,

2012). This information is primarily extracted from the rating history of

89

Figure 5.2: All the components of an app’s marketing-related features.

users, and it is a crucial component for profiling users for the purpose

of providing personalized recommendations. Each rating history can be

summarized into a 3-element tuple: “the rating r that user u gave to app a.”

The rating history of users is commonly used in personalized recommender

systems, including the previous two works in Chapters 3 and 4.

In addition, inspired by how Wang et al. (2012) generate additional user

metadata by scrutinizing the genres of items that users have consumed, we

also consider the user’s general characteristics in each app genre g. For

instance, a user might be a loyal consumer of the “games” genre, yet not

in the “food & drink” genre. We thus include the number of times (i.e.,

the count) that apps in genre g were consumed by user u.

5.2.4 App’s Marketing-related Metadata (M)

Another important group of information is the app’s marketing-related

information that is derived from its metadata. Figure 5.2 shows all the

components of an app’s marketing-related features from the iTunes App

Store. Without loss of applicability to other mobile app platforms, the

prominent features available include: i) description, ii) genres, iii) devel-

oper, iv) average user rating, and v) user rating count. More details can

90

be found in Apple’s o�cial documentation4,5. In addition, we further ex-

pand the amount of information by including more segmented data such

as version features; we also incorporate external nascent signals in social

networks such as Twitter and Facebook.

• Version features. As leveraged in Chapter 4, unlike conventional

items that are static, apps change and evolve with every revision. It

is thus important to include an app’s version features into consid-

eration. This information is primarily used in version-sensitive app

recommendation.

• Twitter information. As leveraged in Chapter 3, some apps have

their own Twitter handle. From an app’s Twitter handle, we can

extract the Twitter-followers that are following the app. This allows

us to form a bridge between the mobile app domain and the Twitter

domain, and more importantly, gather additional metadata informa-

tion about an app. A comprehensive Python library for Twitter6 can

be used to retrieve all the required information on Twitter. More in-

formation can also be found in Twitter’s Developer documentation7.

• Facebook Likes. At the end of Chapter 3, we alluded to other pos-

sible social network data sources, particularly Facebook8. However,

unlike Twitter where we are able to cull individual follower IDs from

an app’s Twitter account, Facebook does not allow us to retrieve the

individual profiles that are following an app’s Facebook page (as of

Mar 20, 2014). Figure 5.3 shows a chunk of JSON data taken from

4“Enterprise Partner Feed Relational,” Apple A�liate Resources, accessed on Mar
15, 2014, http://www.apple.com/itunes/affiliates/resources/documentation/

itunes-enterprise-partner-feed.html
5“Search API,” Apple A�liate Resources, accessed on Mar 15, 2014,

http://www.apple.com/itunes/affiliates/resources/documentation/

itunes-store-web-service-search-api.html
6https://github.com/bear/python-twitter/
7https://dev.twitter.com/
8https://developers.facebook.com/docs/graph-api/

91

http://www.apple.com/itunes/affiliates/resources/documentation/itunes-enterprise-partner-feed.html
http://www.apple.com/itunes/affiliates/resources/documentation/itunes-enterprise-partner-feed.html
http://www.apple.com/itunes/affiliates/resources/documentation/itunes-store-web-service-search-api.html
http://www.apple.com/itunes/affiliates/resources/documentation/itunes-store-web-service-search-api.html
https://github.com/bear/python-twitter/
https://dev.twitter.com/
https://developers.facebook.com/docs/graph-api/

{

"about": "Lead an army of Samurais, Ninjas, and fantastical creatures to ...",

"category": "App page",

"company_overview": "Space Ape was founded in July 2012 by a team of industry ...",

"description": "Samurai Siege is in early Beta Testing and available on ...",

"is_published": true,

"talking_about_count": 3533,

"username": "SamuraiSiege",

"website": "http://www.spaceapegames.com/ ",

"were_here_count": 0,

"id": "399237386851999",

"name": "Samurai Siege",

"link": "https://www.facebook.com/SamuraiSiege",

"likes": 72453,

"cover": {

"cover_id": 481302731978797,

"source": "https://fbcdn-sphotos-d-a.akamaihd.net/1503403_481302731978797_n.jpg",

"offset_y": 0,

"offset_x": 0

}

}

Figure 5.3: JSON data from https://graph.facebook.com/

SamuraiSiege, accessed on Mar 20, 2014.

the o�cial Facebook page of the gaming app “Samurai Siege.” Unlike

the case of Twitter-followers, we are unable to retrieve any informa-

tion pertaining to individual Facebook users from Facebook. How-

ever, Facebook does provide a popularity score which is ubiquitously

known as the “Like” button — a feature that allows users to show

their support for specific comments, pictures, wall posts, statuses,

or fan pages9. Figure 5.3 shows that “Samurai Siege” has garnered

72,453 likes (as of Mar 20, 2014). Due to the lack of individual user

data on Facebook, we cannot execute the method in Chapter 3 on

Facebook as it requires the identification data pertaining to a social

network’s users. However, based on the “Like” count on Facebook,

we can retrieve a popularity score. Although this score lacks the el-

ement of personalization, it is still a useful gauge as consumers are

more likely to support a brand or item after “liking” it (Harris and

Dennis, 2011), which applies to apps as well.

9“Facebook’s Like button has been lauded as a radically democratic tool allowing
users to finally make their opinions heard,” The New Inquiry, accessed on Mar 15, 2014,
http://thenewinquiry.com/essays/a-history-of-like/

92

https://graph.facebook.com/SamuraiSiege
https://graph.facebook.com/SamuraiSiege
http://thenewinquiry.com/essays/a-history-of-like/

5.2.5 Recommendation Scores from Di↵erent Recom-

mender Systems (R)

As a unifying framework that integrates various recommendation tech-

niques, it is essential that we include the recommendation scores from the

individual recommendation algorithms, namely:

1. Collaborative Filtering. We consider a state-of-the-art collabo-

rative filtering recommendation technique, probabilistic matrix fac-

torization (PMF) (Salakhutdinov and Mnih, 2008), to represent col-

laborative filtering. PMF models the user-item ratings matrix as a

product of two lower-rank user and item matrices, and has been used

in many previous works (Agarwal and Chen, 2010; Ma et al., 2011;

Salakhutdinov and Mnih, 2008) as it is highly flexible and extendable.

2. Content-based Filtering. We implement a content-based filtering

model using latent Dirichlet allocation (LDA). LDA has been used

in previous works (Blei and La↵erty, 2009; Lin et al., 2013; Mosh-

feghi et al., 2011; Wang and Blei, 2011) as an implementation of

content-based filtering as it e↵ectively provides an interpretable and

low-dimensional representation of the items. It estimates the score

of each item as its total similarity to the user’s previous consump-

tion. By using LDA to convert the app descriptions to a latent topic

distribution, the similarity of two apps is calculated as the cosine

similarity between the product description without stop words and

with stemming.

3. Twitter Information (TWF). We use the work mentioned in Chap-

ter 3 to represent the baseline that utilizes Twitter-followers informa-

tion of apps for the purpose of app recommendation. We abbreviate

this recommendation technique as “TWF.”

93

4. Version-sensitive Recommendation (VSR). We use the work

mentioned in Chapter 4 to represent the baseline that utilizes the

version features of apps for the purpose of providing version-sensitive

app recommendation that is aware of the desired functionalities that

users are looking for. We abbreviate this recommendation technique

as “VSR.”

5.3 Unifying Framework

While considerable breakthroughs were achieved by uncovering new fea-

tures underlying the data from mobile apps, not all apps contain the afore-

mentioned features. As noted by Koren (2009), individual recommendation

techniques, even if novel and accurate, are unlikely to make a di↵erence in a

practical dataset. A renowned solution, as observed in the Netflix Prize10,

is to combine multiple individual predictors into a single final predictor.

Inspired by BellKor’s winning solution for the Netflix Prize (Koren,

2009), we turn to Gradient Tree Boosting (GTB), a machine learning algo-

rithm that iteratively constructs an ensemble of weak decision tree learners

through boosting (Friedman, 2001). It produces an accurate and e↵ective

o↵-the-shelf procedure for data mining that can be directly applied to the

data without requiring a great deal of time-consuming data preprocessing

or careful tuning of the learning procedure (Hastie et al., 2009). It is also a

general machine learning algorithm that performs well on learning-to-rank

tasks; in particular, it is used as the blender in BellKor’s winning Net-

flix solution (Koren, 2009) as well as the top performing algorithms in the

Learning To Rank Challenge11,12 (Wang et al., 2012).

10“The Netflix Prize,” accessed on Mar 30, 2014, http://www.netflixprize.com/
/community/viewtopic.php?id=1537.

11http://learningtorankchallenge.yahoo.com/workshop.php
12http://dosen.narotama.ac.id/wp-content/uploads/2012/03/

Yahoo-learning-to-rank-challenge-overview.pdf

94

http://www.netflixprize.com//community/viewtopic.php?id=1537
http://www.netflixprize.com//community/viewtopic.php?id=1537
http://learningtorankchallenge.yahoo.com/workshop.php
http://dosen.narotama.ac.id/wp-content/uploads/2012/03/Yahoo-learning-to-rank-challenge-overview.pdf
http://dosen.narotama.ac.id/wp-content/uploads/2012/03/Yahoo-learning-to-rank-challenge-overview.pdf

GTB provides the following advantages:

• Feature normalization is not required.

• Feature selection is inherently performed during the learning process.

• It is not prone to problems with collinear and/or identical features.

• Models are relatively easy to interpret.

• It is easy to specify di↵erent loss functions.

Given the ratings history of users and the metadata of apps, we can

generate the feature vector (xu,a, r) from training data, where xu,a contains

the user and app features as well as the scores from various recommendation

techniques, while r is the rating of the user u for app a.

Figure 5.4 shows the details of an exemplar training data (xu,a, r). The

variable r represents the original rating that user u gives app a, whereas

the feature vector xu,a contains three types of features:

1. User features (H) in green. This primarily contains the number of

times (i.e., count) that an app in genre g is downloaded by the user.

2. App features (M) in blue. The features here pertain to the app’s

metadata or marketing-related information. We include the genres

that the app is assigned to, its price, whether or not it is an iPhone

or iPad app (can be both), the number of versions it has, the number

of Facebook Likes it has (zero if the app has no Facebook handle),

the number of Twitter followers it has (zero if the app has no Twitter

handle), the number of ratings and the average ratings, whether it is

“GameCenter” enabled, and the number of words in its app descrip-

tion.

95

Figure 5.4: Contents in the training data (xu,a, r), which contains user fea-
tures, app features, the various recommender scores, and the user’s rating.

3. Recommender scores (R) in red. We include the scores gener-

ated by the various individual recommendation techniques, namely

collaborative filtering, content-based filtering, TWF, and VSR.

To generate recommendations, the learned GTB predicts the rating that

a user may give to an app. After which, it ranks all recommended apps

in descending order of rating to produce a ranked list for each user. Here,

we use a popular Python machine learning package from scikit-learn13 to

implement GTB. Friedman (2001) describes more details about the mech-

anism behind GTB.
13http://scikit-learn.org/stable/modules/ensemble.html

96

http://scikit-learn.org/stable/modules/ensemble.html

5.4 Experimental Setup

We create an evaluation dataset based on the information that was collected

from Apple’s iTunes App Store (app metadata, users, and ratings), App

Annie (version information of apps), Twitter (Twitter followers of apps),

and Facebook (“Likes” information of apps). In the entire dataset, there

are 33,802 apps, 16,450 users, and 3,106,759 ratings after we retain only

unique users who have contributed to at least 30 ratings. Among all the 33K

apps, 7,124 (21.1%) have Twitter accounts, 9,288 (27.5%) have Facebook

accounts, and 10,520 (31.1%) have at least 5 versions. Note that 678 (2%)

apps have both Twitter and Facebook accounts.

We take the first 80% of the apps (chronologically) as training data for

the individual recommendation techniques, the following 10% is used as

the training data for the unified model (i.e., the probe set of GTB), and

the last 10% is used for testing. In addition, Figure 5.5 shows the genre

distribution of all the apps in the dataset.

5.4.1 Baseline Systems

We compare against several individual recommendation baselines. For ba-

sic recommender system solutions, we implemented the four individual

algorithms mentioned in Section 5.2.5, namely, i) collaborative filtering,

ii) content-based filtering, iii) TWF, and iv) VSR.

The hybrid algorithms created by gradient tree boosting (i.e., GTB(R),

GTB(H, R), GTB(M, R), and GTB(H, M, R)) are our hybrid unifying

models with di↵erent feature sets, where “H”, “M”, and “R” represent

the various information xH
u,a, xM

a , and xR
u,a that are mentioned in Sec-

tion 5.2.2, respectively. For the basic recommender systems, the feature set

contains the user’s history-related features (xH
u,a) that are generated from

the user’s previous ratings history as well as the app data. The hybrid mod-

97

Figure 5.5: Genre distribution of the apps in the dataset.

els further integrate the product’s marketing-related metadata (xM
a) and

the recommender scores generated by the individual recommender systems

(xR
u,a). Table 5.1 shows the details of the various recommendation tech-

niques and their feature set.

5.4.2 Evaluation Metric

Our system ranks the recommended apps based on the probability in which

a user is likely to download the app. This methodology leads to two pos-

sible evaluation metrics: precision and recall. However, a missing rating

in the training set is ambiguous as it may either mean that the user is

not interested in the app, or that the user does not know about the app

(i.e., truly missing). This makes it di�cult to accurately compute preci-

98

Table 5.1: Recommendation techniques studied in the experiments.

Recommendation Technique Feature Set

Probabilistic Matrix Factorization

collaborative filtering with xu,a = {xH
u,a}

Latent Dirichlet Allocation

content-based filtering with xu,a = {xH
u,a}

TWF

Twitter-follower recommender with xu,a = {xH
u,a}

VSR

version-sensitive recommendation with xu,a = {xH
u,a}

GTB(R) xu,a = {xR
u,a}

GTB(H,R) xu,a = {xH
u,a,x

R
u,a}

GTB(M,R) xu,a = {xM
a ,xR

u,a}
GTB(H,M,R) xu,a = {xH

u,a,x
M
a ,xR

u,a}

sion (Wang and Blei, 2011). But since the known ratings are true positives,

we believe that recall is a more pertinent measure as it only considers the

positively rated apps within the top M , namely, a high recall with a lower

M will be a better system. As previously done in Wang and Blei (2011) and

Chapters 3 and 4, we chose Recall@M as our primary evaluation metric.

5.5 Experimental Results and Analysis

Figure 5.6 shows the comparison of di↵erent recommender system’s perfor-

mance for Recall@50. Among the individual recommendation techniques,

content-based filtering achieves the best performance, i.e., it outperforms

collaborative filtering, TWF, and VSR. It seems, at first, surprising that

content-based filtering is the best individual technique among the other

individual algorithms, especially against state-of-the-art ones. But given

that the dataset contains some apps that: i) do not enough ratings for col-

laborative filtering, ii) do not have Twitter accounts (78.9%), and iii) do

not have su�cient version information (68.9%), it makes sense for these

techniques to underperform due to the lack of su�cient information for

every app, whereas content-based filtering works better because all apps

have app descriptions to model with. In other words, in general and prac-

tical situations where there are a variety of apps that have and do not have

99

Figure 5.6: Recall@50 obtained by di↵erent systems.

ratings, Twitter accounts, and version information, content-based filtering

is the more reliable technique.

Next, we explore on the GTB models in Figure 5.6. All of our GTB

models outperform the individual techniques. This is expected as other

works that use GTB as well (Koren, 2009; Wang et al., 2012) have also

reported improvements from individual baselines. We also observe a gen-

eral improvement in recall when more components are incorporated into

the feature set. For example, GTB(M,R) outperforms GTB(R) while

GTB(H,M,R) outperforms GTB(M,R).

We observe an interesting small anomaly in which GTB(H,R) slightly

underperforms GTB(R), whereas GTB(M,R) significantly outperforms both

GTB(R) and GTB(H,R). In other words, the recommendation scores (R)

is more useful when it is combined with app metadata (M) than when

it is combined with user features (H). This suggests that app metadata

(M) complements the feature of recommender scores (R) — which actually

makes sense as, given the assortment of app metadata (M) that coincides

100

with recommendation scores (R), a correlation pattern can be better iden-

tified. For example, the app metadata of Twitter followers would comple-

ment the recommendation score provided by TWF, while the number of

versions would complement the recommendation score generated by VSR;

likewise, the number of ratings would complement the recommendation

score given by collaborative filtering. On the contrary, as features from

user history (H) mainly consists of the count of the number of times a

genre is consumed, it has less obvious correlations.

This is not to say that user history (H) has less utility, but rather,

the recommender scores (R) benefit much more significantly when they are

combined with the app metadata features (M). On the other hand, when

user history (H) is combined with both app metadata features (M) and

recommender scores (R), we observe an improvement in recall scores, i.e.,

GTB(H,M,R) outperforms GTB(M,R), and this demonstrates the utility

of incorporating user history features (H).

5.5.1 Ablation Study

The previous experimental results show the overall e↵ectiveness of all four

combined recommendation techniques as well as user and app information.

To gain a deeper understanding of the individual recommendation tech-

niques, we further perform ablation testing by ablating one of the four

individual recommendation techniques from GTB(H,M,R), while at the

same time, using the user and app metadata, xH
u,a and xM

a .

Table 5.2 shows the ablation study in which we ablate one recommen-

dation technique out of the four. We report several observations from the

ablation study:

• Content-based filtering, being the baseline with the best recall score

among all individual baselines, also causes the largest dip in recall

101

Table 5.2: Recall@50 scores in our ablation study.

Feature

Recall@50

GTB(H, M, R)
0.403

GTB(H, M, R), excluding TWF 0.363

GTB(H, M, R), excluding VSR 0.346

GTB(H, M, R), excluding Collaborative Filtering 0.292

GTB(H, M, R), excluding Content-based Filtering 0.237

TWF 0.082

VSR 0.141

Collaborative Filtering 0.094

Content-based filtering 0.225

when we ablate it from the unifying model. That is, “GTB(H,M,R)

excluding content-based filtering” has the lowest score (0.237) among

the four ablation baselines. This is unsurprising as it is expected

when we omit the strongest individual predictor.

• Although VSR individually outperforms collaborative filtering (0.141

against 0.094), ablating it from the unifying model does not have

very much impact; in fact, ablating collaborative filtering has more

impact than ablating VSR.

• It would seem that, from this initial ablation study, traditional rec-

ommendation techniques such as collaborative filtering and content-

based filtering have more utility than VSR and TWF as the two tra-

ditional techniques bring about the two biggest dips in recall when

we ablate them.

• However, we should not let this relative ablation comparison under-

mine the improvements that VSR and TWF have brought about. In

fact, VSR has led to a 16.5% improvement while TWF has led to

102

a 11% improvement in recall. More importantly, by utilizing these

unique and less obvious signals in the app domain (compared to other

traditional domains in recommender systems), we have gained sig-

nificant improvements for general app recommendation14. In other

words, di↵erent pieces of evidences (e.g., Twitter followers and ver-

sions) that, when present, can be utilized su�ciently to create a dis-

cernible improvement in recommendation quality.

Still, this initial ablation study does not paint a full picture, especially

regarding VSR and TWF, as 68.9% of apps do not have su�cient ver-

sion information while 78.9% of apps do not have Twitter accounts (see

Section 5.4). Therefore, the lack of information does not provide a well

grounded conclusion. In order to investigate the real utility of VSR and

TWF, we scrutinize our data further by utilizing a subset of data that has

su�cient version and Twitter information in the unifying model.

Ablation Study with Su�cient Twitter Information

We perform a near similar study as in Section 5.5.1, but with a dataset

with full Twitter information. Table 5.3 shows the recall scores of this study

where GTB
TWF

(. . .) represents the model that uses full Twitter information

in our controlled ablation study. We report several observations from this

ablation study:

• Under a dataset with full Twitter information, we observe a reorder-

ing of recommendation techniques whereby TWF becomes consequen-

tial — ablating it causes the largest dip in recall scores (0.338) for

the unifying model.

14In fact, on 21 September 2009, the grand prize of US$1,000,000 was given to the
BellKor’s Pragmatic Chaos team which bested Netflix’s own algorithm for predicting
ratings by 10.06%. That is, US$1M for an improvement of 10.06%.

103

Table 5.3: Recall@50 scores in our controlled ablation study with su�cient
Twitter information.

Feature

Recall@50

GTB
TWF

(H, M, R)
0.446

GTB
TWF

(H, M, R), excluding VSR 0.412

GTB
TWF

(H, M, R), excluding Collaborative Filtering 0.390

GTB
TWF

(H, M, R), excluding Content-based Filtering 0.386

GTB
TWF

(H, M, R), excluding TWF 0.338

• Not only does this justify TWF’s utility, but more importantly, it il-

lustrates that when certain evidence is available (here, Twitter follow-

ers information), they change the signals that are used in the unify-

ing model, allowing TWF to displace the traditional, well-established

recommendation techniques.

Ablation Study with Su�cient Version Information

Likewise, we perform a near similar study as in Section 5.5.1, but with a

dataset with full version information. Table 5.4 shows the recall scores of

this study where GTB
VSR

(. . .) represents the model that uses full version

information in our controlled ablation study. We report several observa-

tions from this ablation study:

• Similar to the earlier observation with TWF, under a dataset with

full version information, we observe a reordering of recommendation

techniques.

• Even though VSR did not displace collaborative filtering in this ab-

lation study, it still resulted in the second largest dip in recall scores

(0.344) when we ablate it from the unifying model. In addition, under

this dataset, the recall improvement of VSR increased from 16.5% (in

Table 5.2) to 22%.

104

Table 5.4: Recall@50 scores in our controlled ablation study with su�cient
version information.

Feature

Recall@50

GTB
VSR

(H, M, R)
0.418

GTB
VSR

(H, M, R), excluding TWF 0.396

GTB
VSR

(H, M, R), excluding Content-based Filtering 0.361

GTB
VSR

(H, M, R), excluding VSR 0.344

GTB
VSR

(H, M, R), excluding Collaborative Filtering 0.335

• This further substantiates that when certain evidence is accessible,

they change the way signals are used in the unifying model, which

the reordering of recommendation techniques in our ablation study

suggests.

The ablation studies on the two controlled datasets (pertaining to full

Twitter and version information) clearly illustrate the importance of TWF

and VSR in app recommendation, without which we would not have been

able to capture Twitter and version signals for the purpose of boosting

recommendation quality.

5.5.2 Feature Importance

We further look into each component of the feature set (see Figure 5.4) in

the GTB(H, M, R) model based on the relative influence15. GTB allows us

to measure the importance of each component feature. Basically, the more

often a feature is used in the split points of a tree, the more important that

feature is. Feature importance is important because the input features

are seldom equally relevant. Often only a few of them have substantial

influence on the response; the vast majority are irrelevant and could just

15Friedman (2001) proposed the relative influence for boosted estimates to reflect
each feature’s contribution of reducing the loss by splitting on the feature.

105

Figure 5.7: Top features in GTB with the highest relative influence.

as well have not been included. Thus, it is often useful to learn the relative

importance or contribution of each input feature in predicting the response.

Figure 5.7 shows the relative importances of the top features. We observe

the following:

• Not surprisingly, the average rating is an important factor as, when

the average rating is high, there is a natural tendency for the app to

be downloaded because of its positive ratings. Therefore, this feature

can be used as a strong signal in the unifying framework to make a

split in the decision tree. This reasoning is also similar for the average

rating (current version).

• Price (i.e., free versus paid) is also an important factor, and this evi-

dence coincides with the trend that apps in the app store are heading

towards the freemium model16 — with the proportion of free apps

16“Freemium” is a business model by which a proprietary product or service is pro-
vided free of charge, but money is charged for advanced features.

106

taking up 90% of the app store17,18. Therefore, the price of an app

could be a strong signal for a split in the decision tree.

• The number of ratings is also a strong indicator, as the more ratings

an app has garnered, the clearer the sign that it is popular and hence,

likely to be consumed. It is also a clear sign that the collaborative

filtering technique can be employed.

• Not only is the number of Twitter followers to the app’s Twitter han-

dle an indicator of a strong social reach, the availability of additional

Twitter-followers information is also an indicator that our Twitter-

followers based recommendation technique (see Chapter 3) can be

utilized. Additionally, on a related note, the same reasoning could

be used to explain why the number of Facebook likes is also one of

the top features, as this indicator from Facebook is also a hint of the

app’s social presence on the popular social networking site.

• The number of versions feature also plays an important role as this

is a sign that our version-sensitive recommendation technique (see

Chapter 4) may be employed. Given that this feature is one of the

top features of GTB, it suggests that the version-sensitive recommen-

dation technique is of use here.

• We also notice that some app genres fall under the top features,

notably “games,” “entertainment,” and “social networking” — with

“games” having a much more significant influence score. The three

genres coincidentally coincide with the findings by Flurry Analyt-

ics in Figure 5.8 whereby they discovered that people spend most of

17“Paid Apps On The Decline: 90% Of iOS Apps Are Free, Up From 80-
84% During 2010-2012, Says Flurry,” TechCrunch, accessed on Apr 1, 2014,
http://techcrunch.com/2013/07/18/paid-apps-on-the-decline.

18“It’s Over For Paid Apps, With A Few Exceptions,” TechCrunch, accessed on Apr
1, 2014, http://techcrunch.com/2013/10/02/its-over-for-paid-apps.

107

http://techcrunch.com/2013/07/18/paid-apps-on-the-decline-90-of-ios-apps-are-free-up-from-80-84-during-2010-2012-says-flurry/
http://techcrunch.com/2013/10/02/its-over-for-paid-apps-with-a-few-exceptions/

their time in apps in the “games,” “social networking,” and “enter-

tainment” genres across iOS and Android devices.

Finally, we also observe that another set of data from Flurry Analytics,

ComScore, and NetMarketShare in Figure 5.9 coincides with our results of

the top GTB features in Figure 5.7. For instance, the significant chunks in

Figure 5.9 that relate to genres (i.e., “game,” “entertainment,” and “social

messaging”) coincide with the same genre labels shown in Figure 5.7. Ad-

ditionally, the “Facebook” and “Twitter” chunks in Figure 5.9 also coincide

with the “# of Facebook likes” and “# of Twitter followers” features in Fig-

ure 5.7, which suggests that apps that have a strong presence on these two

popular social networks have a tendency to be spotted and subsequently

consumed, making them popular candidates to be recommended.

The data from the user studies in Figures 5.8 and 5.9 demonstrate a

strong correlation with our GTB feature component analysis in Figure 5.7.

It shows how two disciplines (i.e., user studies and GTB feature component

analysis) from two di↵erent sources of opinions and quantitive angles man-

aged to arrive at the same findings. This further suggests a future direction

in mobile app recommendation whereby more focus could be placed in user

and trend analysis through social networks — a direction that deviates

from traditional research in recommender systems.

5.6 Summary and Contribution

Given that di↵erent recommendation techniques work in di↵erent settings,

we evaluate a method to integrate the various sources of information into

a hybrid model that is able to recommend a set of apps to a target user

— regardless of whichever scenario or phase. We propose to incorporate

the user’s prior history, app metadata, and the recommendation scores of

various individual recommendation techniques into a unified recommen-

108

Figure 5.8: Chart showing that 80% of the total time spent is across gam-
ing, social networking and entertainment categories. Source: Flurry Ana-
lytics, accessed on Apr 10, 2014, http://goo.gl/o297Pk.

Figure 5.9: Time spent on mobile devices. Source: TechCrunch, accessed
on Apr 10, 2014, http://goo.gl/DLPBl.

109

http://goo.gl/o297Pk
http://goo.gl/DLPBl

dation model for app recommendation. We then use gradient tree boost-

ing (GTB) as the core of the unifying framework to integrate the recom-

mendation scores by using user and app metadata as additional features

for the decision tree. Experimental results show that the unifying frame-

work achieves the best performance against individual and hybrid baselines.

We performed a series of in-depth analysis through ablation studies, and

demonstrated how di↵erent pieces of evidences (such as Twitter and ver-

sion information) that, when available, could be utilized su�ciently, and

how the unifying model dynamically alters the recommendation based on

available signals. In addition, we discovered an interesting correlation be-

tween important feature components in our unifying framework and user

analysis from third-party data analytics companies, which further suggests

a future direction in mobile app recommendation where more focus could

be placed in user and trend analysis via social networks

110

Chapter 6

Conclusion and Future Work

This concluding chapter summarizes the work that was

done for this thesis, and suggests further research

directions that are worth pursuing based on what has

been achieved.

The domain of mobile apps is inherently di↵erent from other types of dig-

ital media (e.g., books, music, and movies). This thesis examines how we

can make use of the unique properties of the app domain for the purpose

of recommendation. We propose a method that makes use of the nascent

information culled from Twitter. The Twitter handle of an app is used

to access its Twitter account and extract the IDs of its Twitter-followers.

Our method makes use of the data from Twitter-followers to provide recom-

mendations under the cold-start scenario. In addition, we describe another

method that makes use of the version features in apps. We show that

version features are a possible alternative to app descriptions, and incorpo-

rating version features into collaborative filtering helps in recommendation

performance. Finally, we provide a framework that factors in the recom-

111

mendation scores of various recommendation techniques and unifies them

into a hybrid app recommendation system.

6.1 Main Contributions

This thesis makes the following contributions to the domain of app recom-

mender systems:

1. Utilize Twitter-followers feature as an alternative source of informa-

tion to alleviate the cold-start in app recommendation.

2. Utilize version features as an alternative source of content to improve

on the quality of existing recommendation techniques.

3. Provide a unifying framework that combines the strengths of con-

ventional and state-of-the-art app recommendation techniques, and

perform in-depth analysis of features that uncover interesting con-

nections with data from third-party app analytics.

6.2 Future Work

Research on mobile app recommendation is multidisciplinary. It includes

several areas such as data mining, machine learning, personalization, search

and filtering, social networks, text processing, and user interaction, among

others. Furthermore, current research in recommender systems has strong

industry impact, resulting in many practical and potentially successful ap-

plications. Still, there are a number of open questions that could be ad-

dressed for further research.

112

6.2.1 Leverage on More Data from Social Networks

We can expand on the use of data from social networks (see Chapter 3). For

instance, second-degree relationships such as Twitter-followers following

the current set of Twitter-followers may be useful, as would using data

from n-degree relationships where n � 1. Likewise, Twitter has auxiliary

information that we have not explored, such as Twitter lists, which allows

users to create a curated group of Twitter users. These curated groups

tend to be based on definite themes, such as “Social Good1” or “Startups

NYC2” which can be treated as potential labeled data.

6.2.2 Application of Techniques to Other Domains

We can investigate the e↵ectiveness of the approach in Chapter 3 in other

domains, such as music recommendation services. There are many music-

related accounts on Twitter. For instance, @muse3 and @LanaDelRey

4. We

could follow this process to distill Twitter-followers from these musicians’

accounts for the purpose of music recommendation.

6.2.3 Treating versions as Interdependent

The work in Chapter 4 does not take into account the inter-dependency

of versions. Hence, more advanced techniques such as treating versions as

inter-dependent and using a decaying exponential approach to model how

versions are built upon one another in sequence would be interesting.

1https://twitter.com/mashable/lists/social-good
2https://twitter.com/mashable/lists/startups-nyc-24
3https://twitter.com/muse
4https://twitter.com/LanaDelRey

113

https://twitter.com/mashable/lists/social-good
https://twitter.com/mashable/lists/startups-nyc-24
https://twitter.com/muse
https://twitter.com/LanaDelRey

6.2.4 Exploring Tail Applications

Although solving the problem for tail applications (i.e., unknown or un-

popular applications) is not the focus of this thesis, it would be helpful

to analyze the distribution of application data on both app stores and so-

cial networks, and explore alternatives that target tail applications and tail

users.

6.2.5 Exploring Alternatives to Utilize Features

There are alternative methods that could be further explored. For example,

one could view recommendation for di↵erent genres as di↵erent recommen-

dation tasks, and use the multi-task learning (MTL) framework to achieve

similar recommendation goals (i.e., di↵erent topic importance for di↵erent

genres). One could also explore simpler approaches, such as converting

Twitter and version information into a bag-of-words feature for GTB or

bi-linear models. In addition, since genre is an important discriminatory

component in app recommendation, one could explore using a more gran-

ular genre classification scheme into app recommendation techniques, such

as the taxonomy scheme from the Interactive Advertising Bureau (IAB)

and/or MobileWalla5.

5https://www.mobilewalla.com/

114

https://www.mobilewalla.com/

Bibliography

Adiya Abisheva, Venkata Rama Kiran Garimella, David Garcia, and In-
gmar Weber. Who Watches (and Shares) What on Youtube? And
When? Using Twitter to Understand Youtube Viewership. In Proc. of
the 7th ACM International Conference on Web Search and Data Mining
(WSDM’14), pages 593–602, 2014.

Gediminas Adomavicius and Alexander Tuzhilin. Toward the Next Gen-
eration of Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 17(6):734–749, 2005.

Deepak Agarwal and Bee-Chung Chen. fLDA: Matrix Factorization
through Latent Dirichlet Allocation. In Proc. of the 3rd ACM Interna-
tional Conference on Web Search and Data Mining (WSDM’10), pages
91–100, 2010.

Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, and Philip S. Yu. Hort-
ing Hatches an Egg: A New Graph-theoretic Approach to Collaborative
Filtering. In Proc. of the 5th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’99), pages 201–212,
1999.

Romel Ayalew. Consumer Behaviour in Apple’s App Store. PhD thesis,
Uppsala University, 2011.

Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik,
Shankar Kumar, Deepak Ravichandran, and Mohamed Aly. Video Sug-
gestion and Discovery for Youtube: Taking Random Walks Through the
View Graph. In Proc. of the 17th International Conference on World
Wide Web (WWW’08), pages 895–904, 2008.

Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as Clas-
sification: Using Social and Content-based Information in Recommenda-
tion. In Proc. of the 15th National/10th Conference on Artificial Intel-
ligence/Innovative Applications of Artificial Intelligence, pages 714–720,
1998.

Punam Bedi, Harmeet Kaur, and Sudeep Marwaha. Trust Based Recom-
mender System for the Semantic Web. In Proc. of the 20th International
Joint Conference on Artifical Intelligence (IJCAI’07), pages 2677–2682,
2007.

115

Nicholas J. Belkin and W. Bruce Croft. Information Filtering and Infor-
mation Retrieval: Two Sides of the Same Coin? Communication of the
ACM, 35(12):29–38, 1992.

Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling Relationships at
Multiple Scales to Improve Accuracy of Large Recommender Systems. In
Proc. of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’07), pages 95–104, 2007.

Upasna Bhandari, Kazunari Sugiyama, Anindya Datta, and Rajni Jindal.
Serendipitous Recommendation for Mobile Apps Using Item-Item Sim-
ilarity Graph. In Proc. of the 9th Asia Information Retrieval Societies
Conference (AIRS’13), pages 440–451, 2013.

Daniel Billsus and Michael J. Pazzani. Learning Collaborative Informa-
tion Filters. In Proc. of the 15th International Conference on Machine
Learning (ICML’98), pages 46–54, 1998.

Daniel Billsus and Michael J. Pazzani. User Modeling for Adaptive News
Access. User Modeling and User-Adapted Interaction, 10(2-3):147–180,
2000.

Daniel Billsus, Michael J. Pazzani, and James Chen. A Learning Agent for
Wireless News Access. In Proc. of the 5th International Conference on
Intelligent User Interfaces (IUI’00), pages 33–36, 2000.

David M. Blei and John D. La↵erty. Topic Models. Text mining: Classifi-
cation, Clustering, and Applications, 10:71, 2009.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research, 3:993–1022, 2003.

Philip Bonhard and Martina Angela Sasse. ’Knowing Me, Knowing You’ –
Using Profiles and Social Networking to Improve Recommender Systems.
BT Technology Journal, 24(3):84–98, 2006.

John S. Breese, David Heckerman, and Carl Kadie. Empirical Analysis of
Predictive Algorithms for Collaborative Filtering. In Proc. of the 14th
Conference on Uncertainty in Artificial Intelligence (UAI’98), pages 43–
52, 1998.

Sergey Brin and Lawrence Page. The Anatomy of a Large-scale Hypertex-
tual Web Search Engine. In Proc. of the 7th International Conference
on World Wide Web (WWW’98), pages 107–117, 1998.

Robin Burke. Hybrid Web Recommender Systems. In The Adaptive Web,
volume 4321 of Lecture Notes in Computer Science, pages 377–408.
Springer Berlin Heidelberg, 2007.

116

Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P.
Gummadi. Measuring User Influence in Twitter: The Million Follower
Fallacy. In Proc. of the 4th International AAAI Conference on Weblogs
and Social Media (ICWSM’10), pages 10–17, 2010.

William Cheetham and Joseph Price. Measures of Solution Accuracy in
Case-based Reasoning Systems. In Advances in Case-Based Reasoning,
pages 106–118. Springer, 2004.

Yoon Ho Cho, Jae Kyeong Kim, and Soung Hie Kim. A Personalized
Recommender System based on Web Usage Mining and Decision Tree
Induction. Expert Systems with Applications, 23(3):329–342, 2002.

Christina Christakou and Andreas Stafylopatis. A Hybrid Movie Rec-
ommender System Based on Neural Networks. In Proc. of the 5th In-
ternational Conference on Intelligent Systems Design and Applications
(ISDA’05), pages 500–505, 2005.

Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry
Netes, and Matthew Sartin. Combining Content-Based and Collabora-
tive Filters in an Online Newspaper. In Procs. of ACM SIGIR Workshop
on Recommender Systems, 1999.

Enrique Costa-Montenegro, Ana Belén Barragáns-Mart́ınez, and Marta
Rey-López. Which App? A Recommender System of Applications in
Markets: Implementation of the Service for Monitoring Users’ Interac-
tion. Expert Systems with Applications: An International Journal, 39
(10):pages 9367–9375, 2012.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of
Recommender Algorithms on Top-n Recommendation Tasks. In Proc. of
the 4th ACM Conference on Recommender Systems (RecSys’10), pages
39–46, 2010.

Christo↵er Davidsson and Simon Moritz. Utilizing Implicit Feedback and
Context to Recommend Mobile Applications from First Use. In Proc. of
the 2011 Workshop on Context-awareness in Retrieval and Recommen-
dation (CaRR’11), pages 19–22, 2011.

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boost-
ing Machine. The Annals of Statistics, 29:1189–1232, 2001.

Jennifer Golbeck. Generating Predictive Movie Recommendations from
Trust in Social Networks. In Proc. of the 4th International Conference
on Trust Management (iTrust’06), pages 93–104, 2006.

Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigen-
taste: A Constant Time Collaborative Filtering Algorithm, 2000.

117

Srinivas Gutta, Kaushal Kurapati, K. P. Lee, Jacquelyn Martino, John
Milanski, J. David Scha↵er, and John Zimmerman. TV Content Recom-
mender System. In Proc. of the 17th National Conference on Artificial
Intelligence and 12th Conference on Innovative Applications of Artificial
Intelligence, pages 1121–1122, 2000.

Lisa Harris and Charles Dennis. Engaging Customers on Facebook: Chal-
lenges for e-Retailers. Journal of Consumer Behaviour, 10(6):338–346,
2011.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Predic-
tion. Springer, 2 edition, 2009. URL http://www-stat.stanford.edu/

~

tibs/ElemStatLearn/.

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl.
An Algorithmic Framework for Performing Collaborative Filtering. In
Proc. of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’99), pages
230–237, 1999.

Thomas Hofmann. Collaborative Filtering via Gaussian Probabilistic La-
tent Semantic Analysis. In Proc. of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR’03), pages 259–266, 2003.

Thomas Hofmann. Latent Semantic Models for Collaborative Filtering.
ACM Transactions on Information Systems (TOIS), 22(1):89–115, 2004.

Thomas Hofmann and Jan Puzicha. Latent Class Models for Collabora-
tive Filtering. In Proc. of the 16th International Joint Conference on
Artificial Intelligence (IJCAI’99), pages 688–693, 1999.

Zan Huang, Hsinchun Chen, and Daniel Zeng. Applying Associative Re-
trieval Techniques to Alleviate the Sparsity Problem in Collaborative
Filtering. ACM Transactions on Information Systems (TOIS), 22(1):
116–142, 2004.

Mohsen Jamali and Martin Ester. A Matrix Factorization Technique with
Trust Propagation for Recommendation in Social Networks. In Proc. of
the 4th ACM Conference on Recommender Systems (RecSys’10), pages
135–142, 2010.

Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Taka-
fumi Taketomi, and Hirokazu Kato. Fast and Incremental Indexing in
E↵ective and E�cient XML Element Retrieval Systems. In Proc. of the
14th International Conference on Information Integration and Web-based
Applications & Services (iiWAS’12), pages 157–166, 2012.

118

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Dohyun Kim and Bong-Jin Yum. Collaborative Filtering Based on Iterative
Principal Component Analysis. Expert Systems with Applications, 28(4):
823–830, 2005.

Yehuda Koren. Factorization Meets the Neighborhood: AMultifaceted Col-
laborative Filtering Model. In Proc. of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’08),
pages 426–434, 2008.

Yehuda Koren. The BellKor Solution to the Netflix Grand Prize. Netflix
Prize Documentation, 2009.

Yehuda Koren and Robert Bell. Advances in Collaborative Filtering. Rec-
ommender Systems Handbook, pages 145–186, 2011.

Daniel Lemire and Anna Maclachlan. Slope One Predictors for Online
Rating-Based Collaborative Filtering. In Proc. of SIAM Data Mining
(SDM’05), 2005.

Huizhi Liang, Yue Xu, Dian Tjondronegoro, and Peter Christen. Time-
aware Topic Recommendation based on Micro-blogs. In Proc. of the 21st
ACM International Conference on Information and Knowledge Manage-
ment (CIKM’12), pages 1657–1661, 2012.

Zhung-Xun Liao, Yi-Chin Pan, Wen-Chih Peng, and Po-Ruey Lei. On Min-
ing Mobile Apps Usage Behavior for Predicting Apps Usage in Smart-
phones. In Proc. of the 22nd ACM International Conference on Confer-
ence on Information & Knowledge Management (CIKM’13), pages
609–618, 2013.

Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua. Ad-
dressing Cold-Start in App Recommendation: Latent User Models Con-
structed from Twitter Followers. In Proc. of the 36th International ACM
SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR’13), pages 283–292, 2013.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com Recommenda-
tions: Item-to-Item Collaborative Filtering. IEEE Internet Computing,
7:76–80, 2003.

Nathan N. Liu, Xiangrui Meng, Chao Liu, and Qiang Yang. Wisdom of
the Better Few: Cold-Start Recommendation via Representative based
Rating Elicitation. In Proc. of the 5th ACM Conference on Recommender
Systems (RecSys’11), pages 37–44, 2011.

Hao Ma. An Experimental Study on Implicit Social Recommendation. In
Proc. of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’13), pages 73–82, 2013.

119

Hao Ma, Haixuan Yang, Michael R. Lyu, and Irwin King. SoRec: Social
Recommendation Using Probabilistic Matrix Factorization. In Proc. of
the 17th ACM Conference on Information and Knowledge Management
(CIKM’08), pages 931–940, 2008.

Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. Rec-
ommender Systems with Social Regularization. In Proc. of the 4th ACM
International Conference on Web Search and Data Mining (WSDM’11),
pages 287–296, 2011.

Bradley N. Miller, Joseph A. Konstan, and John Riedl. PocketLens: To-
ward a Personal Recommender System. ACM Transactions on Informa-
tion Systems (TOIS), 22(3):437–476, 2004.

Hemant Misra, Olivier Cappé, and François Yvon. Using LDA to Detect
Semantically Incoherent Documents. In Proc. of the 12th Conference on
Computational Natural Language Learning, pages 41–48, 2008.

Koji Miyahara and Michael J. Pazzani. Collaborative Filtering with the
Simple Bayesian Classifier. In Proc. of the 6th Pacific Rim International
Conference on Artificial Intelligence (PRICAI’00), pages 679–689, 2000.

Bamshad Mobasher, Xin Jin, and Yanzan Zhou. Semantically Enhanced
Collaborative Filtering on the Web. In Proc. of the First EuropeanWeb
Mining Forum (EWMF’03), pages 57–76. Springer, 2003.

Raymond J. Mooney and Loriene Roy. Content-based Book Recommend-
ing using Learning for Text Categorization. In Procs. of the 5th ACM
Conference on Digital Libraries, pages 195–204, 2000.

Yashar Moshfeghi, Benjamin Piwowarski, and Joemon M. Jose. Handling
Data Sparsity in Collaborative Filtering using Emotion and Semantic-
based Features. In Proc. of the 34th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR’11),
pages 625–634, 2011.

Miki Nakagawa and Bamshad Mobasher. A Hybrid Web Personalization
Model based on Site Connectivity. In Proc. of WebKDD Workshop at the
ACM SIGKDD International Conference on Knowledge and Discovery
and Data Mining, pages 59–70, 2003.

Daniel Nikovski and Veselin Kulev. Induction of Compact Decision Trees
for Personalized Recommendation. In Proc. of the 2006 ACM Symposium
on Applied Computing (SAC’06), pages 575–581, 2006.

Seung-Taek Park and Wei Chu. Pairwise Preference Regression for Cold-
Start Recommendation. In Proc. of the 3rd ACM Conference on Recom-
mender Systems (RecSys’09), pages 21–28, 2009.

Michael Pazzani and Daniel Billsus. Learning and Revising User Profiles:
The Identification ofInteresting Web Sites. Machine Learning, 27(3):
313–331, 1997.

120

Augusto Pucci, Marco Gori, and Marco Maggini. A Random-walk Based
Scoring Algorithm Applied to Recommender Engines. In Proc. of the 8th
Knowledge Discovery on the Web International Conference on Advances
in Web Mining and Web Usage Analysis (WebKDD’06), pages 127–146,
2007.

Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Man-
ning. Labeled LDA: A Supervised Topic Model for Credit Attribution
in Multi-labeled Corpora. In Proc. of the 2009 Conference on Empirical
Methods in Natural Language Processing (EMNLP’09), pages 248–256,
2009.

Daniel Ramage, Susan Dumais, and Dan Liebling. Characterizing Mi-
croblogs with Topic Models. In Proc. of the 14th International AAAI
Conference on Weblogs and Social Media (ICWSM’10), pages 130–137,
2010.

Daniel Ramage, Christopher D. Manning, and Susan Dumais. Partially
Labeled Topic Models for Interpretable Text Mining. In Proc. of the
17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’11), pages 457–465, 2011.

Raquel Recuero, Ricardo Araujo, and Gabriela Zago. How Does Social
Capital A↵ect Retweets. In Proc. of the 5th International AAAI Confer-
ence on Weblogs and Social Media (ICWSM’11), pages 305–312, 2011.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. GroupLens: An Open Architecture for Collaborative Fil-
tering of Netnews. In Proc. of the 1994 ACM conference on Computer
Supported Cooperative Work (CSCW’94), pages 175–186, 1994.

Alan Said, Shlomo Berkovsky, and Ernesto W. De Luca. Putting Things
in Context: Challenge on Context-Aware Movie Recommendation. In
Proc. of the Workshop on Context-Aware Movie Recommendation, pages
2–6, 2010.

Ruslan Salakhutdinov and Andriy Mnih. Bayesian Probabilistic Matrix
Factorization using Markov Chain Monte Carlo. In Proc. of the 25th
International Conference on Machine Learning (ICML’08), pages 880–
887, 2008.

Ruslan Salakhutdinov, Andriy Mnih, and Geo↵rey Hinton. Restricted
Boltzmann Machines for Collaborative Filtering. In Proc. of the 24th
International Conference on Machine Learning (ICML’07), pages 791–
798, 2007.

Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., 1986.

121

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based Collaborative Filtering Recommendation Algorithms. In Proc.
of the 10th International Conference on World Wide Web (WWW’01),
pages 285–295, 2001.

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pen-
nock. Methods and Metrics for Cold-start Recommendations. In Proc.
of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’02), pages 253–260,
2002.

Mark Steyvers and Tom Gri�ths. Probabilistic Topic Models. Handbook
of Latent Semantic Analysis, 427(7):424–440, 2007.

Xiaoyuan Su and Taghi M. Khoshgoftaar. Collaborative Filtering for Multi-
class Data Using Belief Nets Algorithms. In Proc. of the 18th IEEE In-
ternational Conference on Tools with Artificial Intelligence (ICTAI’06),
pages 497–504, 2006.

Xiaoyuan Su and Taghi M. Khoshgoftaar. A Survey of Collaborative Fil-
tering Techniques. Advance in Artificial Intelligence, 2009:Article No.4,
2009.

Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Ma-
trix Factorization and Neighbor based Algorithms for the Netflix Prize
Problem. In Proc. of the 2nd ACM Conference on Recommender Systems
(RecSys’08), pages 267–274, 2008.

Slobodan Vucetic and Zoran Obradovic. Collaborative Filtering Using a
Regression-Based Approach. Knowledge and Information Systems, 7(1):
1–22, 2005.

Chong Wang and David M. Blei. Collaborative Topic Modeling for Recom-
mending Scientific Articles. In Proc. of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’11),
pages 448–456, 2011.

Jian Wang and Yi Zhang. Opportunity Model for e-Commerce Recommen-
dation: Right Product; Right Time. In Proc. of the 36th International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’13), pages 303–312, 2013.

Jian Wang, Yi Zhang, and Tao Chen. Unified Recommendation and Search
in E-Commerce. In Information Retrieval Technology, volume 7675 of
Lecture Notes in Computer Science, pages 296–305. Springer Berlin Hei-
delberg, 2012.

Ziqi Wang, Yuwei Tan, and Ming Zhang. Graph-Based Recommendation
on Social Networks. In Proc. of the 2010 12th International Asia-Pacific
Web Conference (APWEB’10), pages 116–122, 2010.

122

Xing Wei and W. Bruce Croft. LDA-based Document Models for Ad-hoc
Retrieval. In Proc. of the 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR’06),
pages 178–185, 2006.

Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. TwitterRank: Finding
Topic-sensitive Influential Twitterers. In Proc. of the 3rd ACM Interna-
tional Conference on Web Search and Data Mining, pages 261–270, 2010.

Shaomei Wu, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts.
Who Says What to Whom on Twitter. In Proc. of the 20th International
Conference on World Wide Web (WWW’11), pages 705–714, 2011.

Qiang Xu, Je↵rey Erman, Alexandre Gerber, Zhuoqing Mao, Je↵rey Pang,
and Shobha Venkataraman. Identifying Diverse Usage Behaviors of
Smartphone Apps. In Proc. of the 2011 ACM SIGCOMM Conference
on Internet Measurement Conference (IMC’11), pages 329–344, 2011.

Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong
Yu, and Zheng Chen. Scalable Collaborative Filtering using Cluster-
based Smoothing. In Proc. of the 28th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval
(SIGIR’05), pages 114–121, 2005.

Bo Yan and Guanling Chen. AppJoy: Personalized Mobile Application Dis-
covery. In Proc. of the 9th International Conference on Mobile Systems,
Applications, and Services (MobiSys’11), pages 113–126, 2011.

Peifeng Yin, Ping Luo, Min Wang, and Wang-Chien Lee. A Straw Shows
Which Way the Wind Blows: Ranking Potentially Popular Items from
Early Votes. In Proc. of the 5th International Conference on Web Search
and Data Mining (WSDM’12), pages 623–632, 2012.

Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. App Recom-
mendation: A Contest between Satisfaction and Temptation. In Proc.
of the 6th International Conference on Web Search and Data Mining
(WSDM’13), pages 395–404, 2013.

Yi Zhang and Jonathan Koren. E�cient Bayesian Hierarchical User Mod-
eling for Recommendation System. In Proc. of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR’07), pages 47–54, 2007.

V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative
Filtering Meets Mobile Recommendation: A User-Centered Approach. In
Proc. of the 24th AAAI Conference on Artificial Intelligence (AAAI’10),
pages 236–241, 2010.

Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. Functional Matrix Fac-
torizations for Cold-Start Recommendation. In Proc. of the 34th Annual

123

International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’11), pages 315–324, 2011.

Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. Ranking Fraud
Detection for Mobile Apps: A Holistic View. In Proc. of the 22nd ACM
International Conference on Conference on Information & Knowl-
edge Management (CIKM’13), pages 619–628, 2013.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg
Lausen. Improving Recommendation Lists Through Topic Diversifica-
tion. In Proc. of the 14th International Conference on World Wide Web
(WWW’05), pages 22–32, 2005.

124

	Introduction
	Motivation
	Nascent Signals from Microblogs
	Apps Contain Various Versions
	The Unifying Framework

	Contributions of the Thesis
	Research Publications

	Outline of the Thesis

	Background
	Collaborative Filtering
	Memory-based Collaborative Filtering
	Model-based Collaborative Filtering
	Graph-based Collaborative Filtering

	Content-based Filtering
	Social-based Recommendation
	Hybrid Recommender Systems
	Weighted
	Mixed
	Switching
	Feature Combination

	Recommender Systems for Mobile Apps

	Mobile App Recommendation Using Nascent Signals from Microblogs
	Introduction
	Related Work
	Our Approach
	Targeting the Cold-Start Problem
	Apps and their Twitter-Followers
	Pseudo-Documents and Pseudo-Words
	Constructing Latent Groups
	Estimation of the Probability of How Likely the Target User Will Like the App

	Evaluation Preliminaries
	Dataset
	Experimental Settings
	Evaluation Metric

	Experiments
	Comparison of Features (RQ1)
	Comparison Against Baselines (RQ2)
	Analysis of Latent Groups (RQ3)

	Conclusion

	Mobile App Recommendation Using Version Features
	Introduction
	Related Work
	Our Approach
	Version Features
	Generating Latent Topics
	Modeling Version-snippets with Topic Models
	Corpus-enhancement with Pseudo-terms

	Identifying Important Latent Topics
	User Personalization
	Calculation of the Version-snippet Score
	Combining Version Features with Other Recommendation Techniques

	Evaluation
	Dataset
	Evaluation Metric
	Optimization of Parameters
	Baselines

	Experiments
	Recommendation Accuracy Obtained by Different Number of Latent Topics
	Importance of Genre Information
	Comparison of Different Topic Models
	Comparison Against Other Recommendation Techniques

	Discussion
	Comparison of Previous, Current, and Future Versions of Apps
	Dissecting Specific LDA Topics
	Importance of Version Categories

	Conclusion

	A Unifying Framework for App Recommendation
	A Hypothetical Conceptualization of the App Domain
	Problem Analysis
	Problem Definition
	Information for the Unified Model
	User's History-related Information (H)
	App's Marketing-related Metadata (M)
	Recommendation Scores from Different Recommender Systems (R)

	Unifying Framework
	Experimental Setup
	Baseline Systems
	Evaluation Metric

	Experimental Results and Analysis
	Ablation Study
	Ablation Study with Sufficient Twitter Information
	Ablation Study with Sufficient Version Information

	Feature Importance

	Summary and Contribution

	Conclusion and Future Work
	Main Contributions
	Future Work
	Leverage on More Data from Social Networks
	Application of Techniques to Other Domains
	Treating versions as Interdependent
	Exploring Tail Applications
	Exploring Alternatives to Utilize Features

