
A Rate-based TCP Congestion Control

Framework for Cellular Data Networks

LEONG WAI KAY
B.Comp. (Hons.), NUS

A THESIS SUBMITTED

FOR THE DEGREE OF PH.D. IN COMPUTER
SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48788139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

First and above all, I thank and praise almighty God, for providing me the
opportunity and the capability to accomplish everything. This thesis would
also not have been possible without the help and influence of people in my
life.

I want to express my thanks and gratitude to my supervisor, Prof. Ben
Leong, for his guidance and mentoring through my graduate studies and
research. His patience, belief and support in me has taught me many valuable
lessons in life’s journey.

I would like to acknowledge my friends and collaborators: Yin Xu, Wei
Wang, Qiang Wang, Zixiao Wang, Daryl Seah, Ali Razeen and Aditya Kulka-
rni. Thank you for all the long nights spent together performing experiments
and writing papers. I am glad to have been a part of your research as well
as sharing your graduate life experiences.

Special thanks also to my wife, Nicky Tay, the most beautiful woman
in the world for her 100% support in my work. She is a pillar of strength
and encouragement during trying times and gives me the assurance I need
to carry on.

Thanks also to my family, friends and carecell for all your prayers and
support.

i

Publications

• Wei Wang, Qiang Wang, Wai Kay Leong, Ben Leong, and Yi Li. “Un-
covering a Hidden Wireless Menace: Interference from 802.11x MAC
Acknowledgment Frames.” In Proceedings of the 11th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Com-
munications and Networks (SECON 2014). Jun. 2014.

• Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. “An End-
to-End Measurement Study of Modern Cellular Data Networks.” In
Proceedings of the 15th Passive and Active Measurement Conference
(PAM 2014). Mar. 2014.

• Wai Kay Leong, Aditya Kulkarni, Yin Xu and Ben Leong. “Unveil-
ing the Hidden Dangers of Public IP Addresses in 4G/LTE Cellular
Data Networks.” In Proceedings of the 15th International Workshop on
Mobile Computing Systems and Applications (HotMobile 2014). Feb.
2014.

• Wei Wang, Raj Joshi, Aditya Kulkarni, Wai Kay Leong and Ben Leong.
“Feasibility study of mobile phone WiFi detection in aerial search and
rescue operations.” In Proceedings of the 4th ACM Asia-Pacific Work-
shop on Systems (APSys 2013). Oct. 2013.

• Wai Kay Leong, Yin Xu, Ben Leong and Zixiao Wang. “Mitigating
Egregious ACK Delays in Cellular Data Networks by Eliminating TCP
ACK Clocking.” In Proceedings of the 21st IEEE International Con-
ference on Network Protocols (ICNP 2013), Oct. 2013.

• Yin Xu, Wai Kay Leong, Ben Leong, and Ali Razeen. “Dynamic Regu-
lation of Mobile 3G/HSPA Uplink Buffer with Receiver-side Flow Con-
trol.” In Proceedings of the 20th IEEE International Conference on
Network Protocols (ICNP 2012), Oct. 2012.

• Daryl Seah, Wai Kay Leong, Qingwei Yang, Ben Leong, and Ali Razeen.
“Peer NAT Proxies for Peer-to-Peer Games”. In Proceedings of the

ii

8th Annual Workshop on Network and Systems Support for Games
(NetGames 2009). Nov. 2009.

• Ioana Cutcutache, Thi Thanh Nga Dang, Wai Kay Leong, Shanshan
Liu, Kathy Dang Nguyen, Linh Thi Xuan Phan, Joon Edward Sim,
Zhenxin Sun, Teck Bok Tok, Lin Xu, Francis Eng Hock Tay and Weng-
Fai Wong. “BSN Simulator: Optimizing Application Using System
Level Simulation.” In Proceedings of the Sixth International Workshop
on Wearable and Implantable Body Sensor Networks (BSN 2009), Jun.
2009.

iii

Abstract

Modern 3G/4G cellular data networks have vastly different characteristics
from other wireless networks such as Wi-Fi networks. It is also becom-
ing more pervasive with the reducing cost of smartphones and cellular data
plans. In this thesis, we investigate the major issues of cellular data networks
and propose a radical TCP congestion control mechanism to overcome these
problems.

Firstly, cellular data networks are highly asymmetric. Downstream TCP
flows are thus affected by a concurrent uplink flow or a congested and slow
uplink due to the ACK packets being delayed. Secondly, packet losses are
very rare due to the hybrid-ARQ scheme used in the link-level protocol. Thus,
this causes the cwnd in the TCP congestion control algorithm to grow until
the buffer overflows. As ISPs typically provision huge buffers, this causes the
bufferbloat problem where the end-to-end delay becomes very large. Thirdly,
recent stochastic forecasting techniques have been used to predict the network
bandwidth to prevent excessive sending of packets to reduce the overall delay.
However, such techniques are complicated and require a long computation or
initialization time and often overly sacrifice on throughput.

To address these issues, we propose a new rate-based congestion control
technique and developed a TCP congestion control framework upon which
various algorithms can be built on. In our rate-based framework, the sending
rate is set by estimating the available bandwidth from the receive rate at the
receiver. To achieve stability and to adapt to changing network conditions,
we oscillate the sending rate above and below the receive rate which will
fill and drain the buffer respectively. By observing the buffer delay, we can
choose when to switch between the filling and draining of the buffer. By
controlling the various parameters, we can control the algorithm to optimize
for link utilization by keeping the buffer always occupied, or for latency by
keeping buffer occupancy low.

We implemented our framework into the TCP stack of the Linux kernel
and developed two rate-based algorithms, RRE and PropRate. The algo-
rithms were evaluated using the ns-2 simulator as well as using a trace-driven

iv

network emulator, and also tested on real cellular data networks. We show
that by controlling the various parameters, the algorithms can optimize and
tradeoff between throughput and delay. In addition, we also implemented
two state-of-the-art forecasting techniques Sprout and PROTEUS into our
framework and evaluated them using our network traces. We found that
while forecasting techniques can reduce the delay, a quick reacting rate-
based algorithm can perform just as well, if not better by maintaining a
higher throughput.

Finally, our work advances the current TCP congestion control technique
by introducing a new framework upon which new algorithms can be built
upon. While we have showed that our new algorithms can achieve good trade-
offs with certain parameters, how the parameters can be chosen to match
the current network conditions has room for further research. Similar to how
many cwnd-based congestion control algorithms have been developed in the
past, we believe that our framework opens new possibilities in the research
community to explore a rate-based congestion control for TCP in emerging
networks. In addition, because our framework is compatible with existing
TCP stacks, it is suitable for immediate deployment and experimentation.

v

Contents

1 Introduction 1
1.1 Measurement Study of Cellular Data Networks 2
1.2 Rate-based Congestion Control for TCP 3
1.3 Contributions . 5
1.4 Organization of Thesis . 6

2 Related Work 8
2.1 TCP Congestion Control . 8

2.1.1 Traditional cwnd-based Congestion Control Algorithms 9
2.1.2 Rate Based Congestion Control Algorithms 12

2.2 Improving TCP Performance 13
2.2.1 Asymmetry in TCP . 13
2.2.2 Improving TCP over Cellular Data Networks 16
2.2.3 TCP Over Modern 3.5G/4G Networks 17

3 Measurement Study 20
3.1 Overview of 3.5G/HSPA and 4G/LTE Networks 20

3.1.1 3.5G/HSPA Networks 20
3.1.2 4G/LTE Networks . 22

3.2 Measurement Methodology . 23
3.2.1 Loopback Configuration 24

3.3 Measurement Results . 25
3.3.1 Does Packet Size Matter? 25
3.3.2 Buffer Size . 27
3.3.3 Throughput . 28
3.3.4 Concurrent Flows . 34

3.4 Summary . 40

4 Rate Based TCP Congestion Control Framework 42
4.1 Rate-Based Congestion Control 43

4.1.1 Congestion Control Mechanism 44

vi

4.1.2 Estimating the Receive Rate 48
4.1.3 Inferring Congestion 49
4.1.4 Adapting to Changes in Underlying Network 50
4.1.5 Mechanism Parameters 52

4.2 Implementation . 55
4.2.1 update . 55
4.2.2 get_rate . 56
4.2.3 threshold . 56

4.3 Linux Kernel Module . 57
4.3.1 Sending of packets . 57
4.3.2 Receiving ACKs . 59
4.3.3 Handling packet losses 59
4.3.4 Practical Deployment 61

4.4 Summary . 61

5 Improving Link Utilization 63
5.1 Parameters . 63

5.1.1 Sending Rate σ . 64
5.1.2 Threshold T . 66
5.1.3 Receive Rate ρ . 68

5.2 Performance Evaluation . 68
5.2.1 Evaluation with ns-2 Simulation 69
5.2.2 Network Model & Parameters 70
5.2.3 Single Download with Slow Uplink 72
5.2.4 Download with Concurrent Upload 74
5.2.5 Single Download under Normal Conditions 75
5.2.6 Handling Network Fluctuations 76
5.2.7 TCP Friendliness . 78
5.2.8 Evaluation of the Linux Implementation 80

5.3 Summary . 84

6 Reducing Latency 85
6.1 Implemented Algorithms . 86

6.1.1 PropRate . 86
6.1.2 PROTEUS-Rate . 87
6.1.3 Sprout-Rate . 88

6.2 Evaluation . 89
6.2.1 Algorithm Parameters 91
6.2.2 Trace-based Emulation 95
6.2.3 Problem of Congested Uplink 100
6.2.4 Robustness to Rate Estimation Errors 102

vii

6.2.5 Performance Frontiers 103
6.2.6 TCP Friendliness . 107
6.2.7 Practical 4G Networks 109

6.3 Summary . 110

7 Conclusion and Future Work 111
7.1 Future Work . 113

7.1.1 Navigating the performance frontier 113
7.1.2 Model of rate-based congestion control 113
7.1.3 Explore new rate-base algorithms 114
7.1.4 Use in other networks 115

viii

List of Figures

3.1 Distribution of packets coalescing in a burst for downstream
UDP at 600 kb/s send rate observed with tcpdump. 26

3.2 24 hour downstream throughput of UDP and TCP for ISP A. 30
3.3 24 hour downstream throughput of UDP and TCP for ISP B. 31
3.4 24 hour downstream throughput of UDP and TCP for ISP C. 32
3.5 CDF of the ratio of UDP throughput to TCP throughput for

the various ISPs. 34
3.6 TCP throughput for three different mobile ISPs over a 24 hour

period on a typical weekday. 35
3.7 Measured throughput for ISP A over a weekend. 37
3.8 Comparison of RTT and throughput for downloads with and

without uplink saturation. 38
3.9 Ratio of one-way delay against ratio of downlink throughput. . 39
3.10 Breakdown of the RTT into the one-way uplink delay and the

one-way downlink delay under uplink saturation. 40
3.11 Distribution of the number of packets in flight for TCP down-

load both with and without a concurrent upload. 41

4.1 Model of uplink buffer saturation problem. 43
4.2 Comparison of TCP congestion control mechanisms. 46
4.3 Using TCP timestamps for estimation at the sender. 49
4.4 Comparison of API interactions between traditional cwnd-

based congestion control and rate-based congestion control
modules. 58

4.5 Illustration of proxy-based deployment. 62

5.1 Evolution of buffer during buffer fill state. 65
5.2 Network topology for ns-2 simulation. 70
5.3 Scatter plot of the upstream and downstream throughput for

different mobile ISPs. 71
5.4 Plot of downlink utilization against uplink bandwidth for CU-

BIC. 73

ix

5.5 Scatter plot comparing downstream goodput of RRE to CUBIC. 74
5.6 Cumulative distribution function of the ratio of RRE goodput

to CUBIC and TCP-Reno, in the presence of a concurrent
upload. 75

5.7 Plot of average downstream goodput against downstream band-
width for different TCP variants. 77

5.8 Sample time traces for different TCP variants. 78
5.9 Time trace comparing how RRE reacts under changing net-

work conditions to CUBIC. 79
5.10 Jain’s fairness index for contending TCP flows. 80
5.11 Cumulative distribution of measured downlink goodput in the

laboratory for ISP A on HTC Desire. 81
5.12 Cumulative distribution of measured downlink goodput in the

laboratory for ISP C with Galaxy Nexus. 82
5.13 Cumulative distribution of measured downlink goodput at a

residence for ISP C on Galaxy Nexus. 83

6.1 Performance of various algorithms for ISP A traces. 92
6.2 Performance of various algorithms for ISP B traces. 93
6.3 Performance of various algorithms for ISP C traces. 94
6.4 Results using MIT Sprout (mobile) traces [71]. 96
6.4 Results using MIT Sprout (mobile) traces [71]. 97
6.4 Results using MIT Sprout (mobile) traces [71]. 98
6.5 Downstream throughput and delay in the presence of a con-

current upstream TCP flow for ISP C. 100
6.6 Trace of the downstream sending rate for flows in Figure 6.5. . 101
6.7 Performance when errors are introduced to the rate estimation. 102
6.8 Performance frontiers achieved by different algorithms with

the ISP C mobile trace. 104
6.8 Performance frontiers achieved by different algorithms with

the ISP C mobile trace. 105
6.9 TCP friendliness of Flow X versus Flow Y. Flow Y was started

30 s after Flow X. 108
6.10 Plot of throughput vs delay on ISP A LTE network. 110

x

List of Tables

3.1 Buffer sizes of the various ISPs obtained from our related
work [76]. 28

4.1 Basic API functions for rate-based mechanism. 55

6.1 Parameters used for rate-based TCP variants. 91

xi

Chapter 1

Introduction

Cellular data networks are becoming more and more commonplace with

the higher penetration of 3G-enabled, and more recently, 4G/LTE-enabled

smart-phones. Cheap data plans and widespread coverage in Singapore has

made 3G/4G networks one of the main modes of accessing the Internet. So-

cial media and networking trends are also increasing along with mobile apps

which allow users to post feeds and uploading photos on the go.

The transport protocol of the Internet however, has largely remain un-

changed from the wired medium of the past. With new modern wireless net-

works having vastly different characteristics from traditional wired or WiFi

networks, it is timely to examine and update the transport layer protocol,

in particular the congestion control of TCP. There is also a rising trend for

users to upload media such as images and video over their mobile devices [49],

hence resulting in a shift from Internet usage being mostly downstream to a

mix of up and downstream.

In this thesis, we investigate mobile cellular data networks and found

1

that i) the downlink performance of TCP flows is severely affected by ACK

packets being delayed due to a concurrent uplink flow or congestion causing

a slow uplink; ii) TCP flows typically have high latencies as the low packet

loss rate combined with the ISPs provisioning deep buffers, allows the cwnd

to grow large, thus increasing buffer delays; and iii) stochastic forecasting of

the link throughput can reduce the overall latency but overly sacrifices on

throughput. To address these issues, we thereby propose a new rate-based

approach to TCP congestion control. We show that with our framework,

we can achieve high throughput/utilization in the presence of a saturated or

congested uplink or achieve low latencies by controlling some parameters.

1.1 Measurement Study of Cellular Data Net-

works

Although also being wireless, cellular data networks behave differently from

802.11 Wi-Fi networks because it operates in a licensed band and uses dif-

ferent access protocols such as HSPA and LTE. Thus, it is important to

first understand the characteristics of the network before we can propose

improvements to the performance.

Our measurement study investigates the UDP and TCP performance of

three different local telcos/ISPs across different periods of the day. The

experiments were obtained from a fixed position, mainly in our lab. Our

results uncovered an interesting issue with mobile network with regards to

concurrently uploading and downloading with TCP. For example, though

2

the upstream and downstream protocols in HSPA networks function inde-

pendently, a downstream TCP flow is hindered by an upstream flow because

its ACKs are delayed. In particular, simultaneous uploads and downloads

can reduce download rates from over 1,000 kb/s to less than 100 kb/s. While

a properly-sized uplink buffer that matches the available uplink bandwidth

would probably be sufficient to address this problem, the available bandwidth

on the uplink varies too widely over time for a fixed size uplink buffer to be

practical.

1.2 Rate-based Congestion Control for TCP

Following this measurement study, we investigate how a new rate-based TCP

congestion control algorithm that eliminates ACK-clocking can improve the

network performance of cellular data networks.

Previous work on improving TCP performance for 3G networks focussed

on adapting to the significant variations in delay and rate and avoiding bursty

packet losses and ACK compression [16, 17]. Our problem is quite different

in nature from these previous problems because the crux of the issue is not

that too many ACKs are received in a burst, but that ACKs are not being

received in a timely manner. To the best of our knowledge, this uplink

saturation problem in cellular data networks has not previously been cited

in the literature.

In addition, end-to-end network delay is an important performance metric

for mobile applications as it is often the dominant component of the overall

response time [57]. Because cellular data networks often experience rapidly

3

varying link conditions, they typically have large buffers to ensure high link

utilization [76]. However, if the application or transport layers send pack-

ets too aggressively, the saturation of the buffer can cause long delays [19].

Sprout [71] and PROTEUS [73] were recently proposed to address this prob-

lem by forecasting the network conditions. Their key idea is that if we can

forecast network performance accurately, then packets can be sent at an ap-

propriate rate to avoid causing long queuing delays in the buffer. However,

Sprout requires intensive computations and sacrifices a significant amount of

throughput to achieve low delays, whereas PROTEUS requires some 32 s of

training time, which at LTE speeds, would be equivalent to 90MB worth of

data.

While forecasting has been shown to be effective at improving mobile

network performance, our key insight is that it is possible to achieve similarly

low delays, while maintaining a much higher throughput, by simply using a

fast feedback mechanism to control the sending rate. In other words, there

is no compelling need to try to predict the future. Just reacting sufficiently

fast to the changing mobile network conditions is good enough.

To this end, we developed a new rate-based TCP congestion control mech-

anism that uses the buffer delay as the feedback signal to regulate the sending

rate. Our mechanism uses ACK packets to estimate the current receive rate

at the mobile receiver instead of using them as a clocking mechanism to de-

cide when to send more packets, thus solving the problem of egregious ACK

delays. Our key insight is that to achieve full link utilization, it suffices if we

can accurately estimate the effective maximum receive rate at the receiver and

match the sending rate at the sender to it. However, matching the sending

4

rate to the receive rate can not be done precisely in practice as network vari-

ations are common in cellular data networks. Thus, our sending mechanism

uses a feedback-loop based on the estimated buffer delay to oscillate the send-

ing rate. Together, these techniques combine to form a rate-based congestion

control framework which enables a new-class of tunable rate-based congestion

control algorithms to be designed, potentially allowing mobile applications

to achieve the desired tradeoff between delay and throughput.

We validated our framework by implementing two proof-of-concept algo-

rithms RRE and PropRate, as well as implementing the forecasting tech-

niques of Sprout and PROTEUS in a rate-based algorithm. The algorithms

were evaluated using the ns-2 simulator as well as using a trace-driven net-

work emulator with an actual Linux implementation. We also tested our

framework over a real cellular data network.

1.3 Contributions

The key contribution of this thesis is the development of a new rate-based

TCP congestion control mechanism as opposed to the traditional cwnd-based

mechanism. TCP congestion control has always been done using a conges-

tion window to restrict the number of outstanding unacknowledged packets.

Thus, new packets are only sent when ACK packets are received. While

this scheme has worked well over the years, this ACK-clocking mechanism is

affected by egregious ACK delays in cellular data networks.

This thesis presents not only a new rate-based technique to overcome

the problem of egregious ACK delays, but also a new framework that en-

5

ables new possibilities of TCP congestion control. As a proof-of-concept, we

present two new algorithms for the framework and show that they can be

optimized between maximizing throughput or minimizing delay. In addition,

we implemented and integrated two state-of-the-art forecasting algorithms,

Sprout and PROTEUS, into our framework, showing that our framework can

be used with current as well as future algorithms and techniques.

Finally, we show that while forecasting techniques can decrease the delay

in cellular data networks, it is not necessary as a quick reacting rate-based

algorithm can also achieve similar performance. By varying the parameters

used in our rate-based framework over the same network trace, we can obtain

all possible tradeoff between throughput and delay. The frontier of the points

show that algorithms using our rate-based framework can achieve similar, if

not better performance than existing forecasting schemes.

Our work suggests that there is scope for developing new TCP congestion

control algorithms that can perform significantly better than existing cwnd-

based algorithms for mobile cellular networks. In particular, by adjusting the

control parameters in our new rate-based TCP framework, mobile application

developers can potentially achieve the desired performance tradeoff between

delay and throughput on per application basis. Exactly how this should be

done is room for future research.

1.4 Organization of Thesis

The rest of this thesis is organised as follows: In Chapter 2 we discuss the

related works, followed by the measurement study in Chapter 3. We then

6

present our rate-based TCP congestion control algorithm and framework

in Chapter 4. Thereafter, we examine in Chapter 5, RRE, a rate-based

algorithm that achieves good link utilization when the uplink is saturated or

congested. In Chapter 6, we present another rate-based algorithm PropRate,

and compare its performance with other stochastic forecasting techniques in

achieving low delays in cellular data networks. Finally, we discuss the future

direction in Chapter 7.

7

Chapter 2

Related Work

In this section, we provide an overview of TCP congestion control protocols,

especially those closely related to our work. Next, we discuss TCP per-

formance issues and techniques to mitigate the issues in both early 2G/3G

networks and the modern 3G/4G networks.

2.1 TCP Congestion Control

TCP congestion control is a well-studied subject which was first proposed by

Jacobson [32] as a means to prevent “congestion collapse”, a condition where

too much traffic in the network causes excessive packet losses from buffer

overflow. In today’s TCP, the crux of congestion control is adjusting the

congestion window variable (cwnd), which determines how many unacknowl-

edged packets the sender can send. Different congestion control algorithms

mainly determine how the cwnd should be increased for each incoming ACK

packet and how the cwnd should decrease for every congestion event.

8

2.1.1 Traditional cwnd-based Congestion Control Algo-

rithms

TCP NewReno [29] is most widely cited as the basic congestion control al-

gorithm, which is the base algorithm implemented in the Linux TCP stack.

It uses the traditional additive-increase, multiplicative-decrease (AIMD) to

control the cwnd. Simply put, NewReno increases the cwnd linearly by one

packet for every round-trip time (RTT) and decreases it by half for every con-

gestion event. One good property of AIMD algorithm is that it allowed the

cwnd of multiple flows through a link to converge to a fair value. There are

two main approaches to detect congestion: 1) packet losses, and 2) increasing

delay.

TCP Vegas [8] was the first algorithm that proposed using packet delay or

RTT over packet loss as the main signal for congestion. It records the mini-

mum RTT value and uses it to calculate an expected rate. The expected rate

is then compared with the actual rate and the cwnd is additively increased,

kept constant, or additively decreased based on two threshold values α and β.

One advantage of delay-based algorithm is that it detects congestion before

it happens whereas algorithms based on packet loss like TCP Reno detects

congestion after it has happened. However, because of this early detection,

TCP Vegas tends to back off before other co-existing flows using packet loss

detection like TCP Reno, giving them more bandwidth. Thus TCP Vegas is

not widely used as it is not able to contend fairly with other algorithms.

Recently, newer “high-speed” congestion control algorithms have been de-

veloped for use with the modern high-bandwidth networks such as ADSL and

9

Cable which have become commonplace for domestic Internet subscribers.

The Linux kernel uses CUBIC [27] as its default congestion control module

while Microsoft has developed Compound TCP (CTCP) [65] for use in its

own operating systems.

CUBIC deviates from the traditional AIMD algorithms in that the cwnd

increases according to a cubic function of time since the last congestion event.

The point of inflexion of the cubic function is the cwnd value of the last

congestion event before it was decreased. Thus Cubic aims to quickly return

the cwnd to the previous value, plateaus around the value for some time

before aggressively increasing to probe for more bandwidth.

Microsoft’s CTCP algorithm combines the traditional TCP Reno AIMD

window algorithm with an additional delay-based window. The final cwnd

is the sum of these two windows. The delay-based window increases when

the RTT is small to quickly probe for more bandwidth. When queueing is

detected from an increasing RTT, the delay-based window is decreased to

keep the total cwnd constant. This approach combines both packet loss and

RTT to detect congestion.

H-TCP [41] works similarly to CUBIC by increasing the cwnd as a func-

tion of time. It toggles between conventional TCP and a high-speed mode

based on some threshold. In the high-speed mode, the cwnd is increased

by a quadratic function. When a congestion event is encountered, instead

of decreasing the cwnd by a fixed scale, H-TCP estimates the link capacity

using the RTT and scales the cwnd to match the throughput to that before

the congestion event.

Hi-Speed TCP (HSTCP) [22] is an IETF proposal to tweak the AIMD

10

response function of TCP for high-speed gigabit networks. The traditional

Reno AIMD functions can be generalized to a linear increase factor of 1,

and a multiplicative decrease factor of 1
2
. When the cwnd is below a cer-

tain threshold value, the traditional factors are used. When it is above the

threshold, the increase and decrease factor is set to a function proportional

to the current cwnd value.

TCP Westwood (TCPW) [47] was proposed for use over 802.11 WiFi links

to mitigate the effects of packet losses being mis-interpreted as congestion

events due to the nature of a lossy channel. Instead of halving the cwnd at

the onset of a congestion event, TCPW attempts to estimate the bandwidth

by tracking the rate of ACKs being received. A Westwood+ algorithm was

later proposed to enhance TCPW’s bandwidth estimation algorithm to better

handle ACK compression [26]. The enhanced algorithm counts more carefully

duplicate and delayed ACK segments and employs a low-pass filter because

congestion events occurs in low frequency.

These delay-based methods work by using the RTT as a parameter. Mar-

tin et al. used increases in RTT as an indicator of congestion and future

loss [46]. However, the RTT is not a stable parameter in cellular data net-

works because of significant variance in the delays [16]. TCP Hybla [10] was

developed for use in satellite connections, as they too experience large RTTs.

When the RTT is large, the cwnd grows at a slower rate than flows with

shorter RTT. To overcome this slow growth, TCP Hybla takes as reference,

the RTT of a fast wired connection and increases the cwnd more aggressively

to match the throughput to the reference connection.

All these algorithms work by adjusting the cwnd which determines the

11

maximum number of outstanding unacknowledged packets that is allowed.

Thus, the sending is clocked by incoming ACK packets when the cwnd value

of outstanding unacknowledged packets is reached.

2.1.2 Rate Based Congestion Control Algorithms

The idea of using rate information to control the sending rate of flows is

not new. Padhye et al. were first to propose an equation-based approach

for congestion control that adjusts the send-rate based on observed loss

events [54, 23]. Ke et al. suggested pacing out the sending of packets based on

the current rate instead of sending them back-to-back so as to avoid multiple

packet losses [38]. However, they require precise estimates of RTT, which are

not easily available and are not actually accurate indicators of link quality

in cellular data networks. Another proposal of performing TCP congestion

control using the rate information is RATCP [37], which is not a practical

approach in our context as it requires the network to explicitly feedback the

available rate to the TCP source. A similar rate technique is used in TCP

Rate-based Pacing (TCP-RBP) to ramp up the cwnd after a slow start from

idle [68]. However, their technique to estimate the bandwidth is analogous

to TCP Vegas, which used the RTT as a parameter and not one-way delays.

Their aim is to restart the ACK clocking mechanism as quickly as possible,

which we have shown in our circumstances to be ineffective.

12

2.2 Improving TCP Performance

2.2.1 Asymmetry in TCP

In the early days, the slow delivery of ACKs was mainly due to asymmetry

in the upstream and downstream bandwidth. The ACKs of a downstream

TCP flow collates or gets compressed at the uplink buffer when the uplink

bandwidth is low. The ACKs are then sent and received in bursts, causing the

TCP sender to send data packets in spikes, further aggravating the situation.

This ACK compression effect was reported by Zhang et al. while studying

simulations of bi-directional TCP flow in a single link [78]. Mongul confirmed

such occurrences in practice by studying real-world traces of busy segments of

the Internet [51]. Kalampoukas et al. examined the methods of prioritizing

ACKs and restricting the sending buffer [36], and suggested that a form

of QoS to be used to allocate a minimum bandwidth per flow. This will

guarantee a minimum throughput to slow flows while isolating them from

the effects of faster flows.

Balakrishnan et al. proposed several techniques to overcome the problem

of ACK compression caused by two-way traffic over asymmetric links [6].

Their techniques focus on regulating the ACKs by using an ACK congestion

control to regulate the sending of the ACKs as well as prioritizing ACK

packets at the bottleneck router of the return path. Ming-Chit et al. further

suggests that ACKs should not be sent for every other data packet, but

the number of data packets each ACK should acknowledge should be varied

according to the estimated congestion window of the sender [50]. These

techniques eventually form the RFC 3449 [5].

13

The asymmetric effect on TCP has also been studied in different networks.

Shekhar et al. developed an operational model called the “AMP model” to

understand TCP dynamics in asymmetric networks [64]. Their model is used

to guide the design of buffers and scheduling schemes to improve TCP perfor-

mance. Louati et al. proposed an Adaptive Class-based Queuing mechanism

for classifying ACK and data packets at the link entry [43]. The mechanism

adapts the weight of both classes according to the crossing traffic at the link.

For ADSL networks, Brouer and Hansen argues that in general, the uplink

capacity do not result in ACK compression unless the uplink is congested [9].

They showed that the ACK traffic on the uplink can be significant with larger

networks of approximately 200 users.

The IEEE 802.16 WiMAX protocol has a configurable upload/download

ratio in the wireless links. Chiang et al. concluded with ns-2 simulations

that the ratios for both long-lived uplink and downlink TCP flows should be

1, in order to avoid asymmetry and maximize the aggregated throughput of

simultaneous bi-directional transfers [18]. Eshete et al. further investigated

the impact other WiMAX operating parameters have on both network sym-

metry and TCP performance [21]. Wu et al. investigated how the schemes

proposed by Balakrishnan et al. [6] can be used in IEEE 802.16e WiBro [72].

Yang et al. takes this one step further by exploiting the flexibility of WiMAX

MAC layer to propose an adaptive modulation and coding scheme for the re-

turning ACK uplink to improve the spectral efficiency [77]. Their focus is to

reduce ACK losses which they claim contributes the most in degrading TCP

performance.

In a unique case where a high-speed simplex satellite distribution system

14

uses a low-speed terrestrial link as a return path, Samaraweera developed

“ACK compaction” and “ACK spacing” [58]. These are ACK filtering tech-

niques to reduce ACK packets through an IP-tunnel on the return link and

regenerate a suitable number of ACKs at the other end to maintain the

self-clocking mechanism at the sender.

While these works solve the ACK compression problem, Heusse et al.

recently showed that modern networks suffer more from the data pendulum

effect than from ACK compression [28]. In highly asymmetrical networks, the

ACK compression effect has only a minor effect on the network performance.

Instead, the data pendulum effect is the primary problem in the interactions

of two-way TCP connections. The data pendulum effect is when utilization

of the link oscillates between the upstream and downstream flows, with each

flow taking turns to fill and then drain the buffers. As cellular data networks

are highly asymmetric by nature, it is likely that they will face the same

problems. Heusse et al. analysis shows that using a very small upload buffer

will greatly reduce the harmful interference between uploads and download.

However, it is not easy to fix a small buffer size as the link bandwidth of

cellular data networks tends to vary greatly.

In light of this, Podlesny and Williamson demonstrated performance

degradation of two-way concurrent flows in asymmetric ADSL and cable

links and proposed an Asymmetric Queueing (AQ) mechanism. The idea

of AQ is to separate TCP data and ACK packets into different queues and

prioritizing them according to some mathematical model. These previous

two works however, only evaluated TCP New-Reno and not with the more

aggressive CUBIC or high-speed CTCP that are the two main algorithms

15

used today.

2.2.2 Improving TCP over Cellular Data Networks

One issue with early 2G/3G cellular networks is that the delay varies greatly

and TCP connections may spuriously timeout. Inamura et al. suggested

using large window sizes and enabling the TCP Timestamp option to improve

RTO estimates in order to avoid spurious timeouts [31]. ACK compression

remains an issue in the early 2G/3G networks. Chan and Ramjee were

amongst the first to attempt to address the poor performance of TCP over

3G networks [16]. They showed that the variable rate and delays in 3G

links result in ACK compression, where the TCP source receives ACKs in

bursts and hence, sends data packets in bursts. They proposed deploying

an ACK Regulator at the ISP to control the rate at which ACKs are sent

to the source based on the buffer usage at the ISP. In their follow-up work,

Chan and Ramjee proposed a Window Regulator technique which advertises

the wireless link conditions to the TCP source via the receiver window field

in the ACK packet [15]. Their motivation is to control the send rate of the

TCP source so that congestion losses are reduced.

Alcaraz et al. proposed combining a technique similar to the above with

active queue management (AQM) algorithms at the ISP [2]. Chakravorty

and Pratt also identified high latencies on the mobile downlink for 2G net-

works [14, 13]. They proposed the use of a mobile proxy and inflating cwnd

to overcome its slow growth due to the large BDP. Albeit being on the older

GPRS network, this shows that the problem still exists even in todays high-

16

speed HSPA networks. Previous approaches rely on ACKs and so cannot

adequately address the mismatch between TCP ACK-clocking and the link

layer design of 2G/3G protocols.

2.2.3 TCP Over Modern 3.5G/4G Networks

Xu et al. developed a receiver-side flow control (RSFC) for cellular data

networks that allows the receiver of a mobile upload to limit the amount

of outstanding data to be sent [75]. This in effect simulates a small upload

buffer and mitigates the problems encountered with concurrent two-way TCP

flows. However, this solution only works if the receiving party implements

the solution. In addition, the link channels in cellular data networks are

shared among other subscribers and thus uplink congestion can happen due

to external factors such as crowding.

Reducing Delay

End-to-end network delay is an important performance metric for mobile

applications as it is often the dominant component of the overall response

time [57]. Bufferbloat describes the problem of extremely long delays be-

ing caused by huge buffers [25] and it is common in modern cellular data

networks [34]. Jiang et al. prosed a dynamic receive window adjustment

(DRMA) scheme to tackle the bufferbloat in 3G/4G networks [35] from a

receiver side perspective. Silimar to RSFC, DRMA limits the upload flow

using the receiver advertised window and increases it only when the current

RTT is close to the observed minimum RTT and decreases it otherwise.

17

CoDel is a recent AQM scheme designed for routers that attempts to

address the bufferbloat problem [52]. Packets are timestamped when they

enter the queue and are dropped with high probability if they exceed a certain

threshold time of staying in the buffer. The purpose is to trigger congestion

in conventional TCP algorithms to prevent the buffer delay from exceeding

the threshold value.

Sprout [71] and PROTEUS [73] are recent techniques that work at the

sender side by limiting the amount of data to be sent to prevent excessive

buffer queuing. Sprout attempts to forecast the available network bandwidth

by modeling the link as a doubly-stochastic process of a Poisson process

whose mean models a Brownian motion. However, the complexity of the

forecast computation takes a significant amount of time and the forecasted

sending rate tend to tradeoff too much throughput to achieve low delays.

PROTEUS determines the sending rate by using a regression tree constructed

from a history of past samples taken across time windows of 500ms. One

drawback with PROTEUS is that the suggested parameters of 500ms and

history of 64 time windows results in a long initialization time of 32 s to

initialize the regression tree.

LEDBAT [63] is another flow control protocol targeted for background

flows to prevent them from causing delays to other competing flow. Al-

though LEDBAT is not a TCP congestion control algorithm, it uses the

same cwnd mechanism as TCP to control the sending rate. Delay is kept low

by estimating the buffer delay and using a proportional-integral-derivative

(PID) controller to adjust the cwnd value. WebRTC [44] is an application

layer framework for mobile networks to improve the performance for real-time

18

communication (RTC) applications by using Real-Time Protocol (RTP) [60],

an application level protocol that runs over TCP or UDP. These techniques

are application level techniques and require both sender and receiver to be

running the same protocol.

Delay-centric TCP algorithms such as Vegas do keep the delay low by

being very conservative in growing the cwnd. TCP Nice [66] and TCP Low

Priority (TCP-LP) [40] are both TCP congestion control algorithms that

use delay to trigger congestion. TCP Nice extends upon Vegas by increas-

ing the sensitivity to delay and being more aggressive by halving the cwnd

value when delay is detected. TCP-LP uses the one-way delay estimated

from packet timestamps to trigger congestion. While these algorithms do

prevent large delays, they tend to over tradeoff throughput and being con-

ventional TCP algorithms, are affected by egregious ACK delays in cellular

data networks.

19

Chapter 3

Measurement Study

In this chapter, we first present an overview of the High-Speed Packet Access

(HSPA) protocol that is used in 3.5G mobile networks and the LTE protocol

in the 4G networks. Next, we present the results of our measurement study

of existing 3.5G/HSPA mobile networks in Singapore.

3.1 Overview of 3.5G/HSPA and 4G/LTE Net-

works

3.1.1 3.5G/HSPA Networks

The characteristics of the physical layer for the High-Speed Packet Access

(HSPA) protocol that is common in modern 3.5G networks is quite differ-

ent from that for IEEE 802.11x (WiFi) and other wireless networks. HSPA

consists of two different sub-protocols: High-Speed Downlink Packet Access

(HSDPA) and High-Speed Uplink Packet Access (HSUPA). In both sub-

20

protocols, several radio channels are used concurrently to send and receive

coordination commands between the mobile device and base station, while

a dedicated data channel is used for transmitting the data frames. A Hy-

brid Automatic Repeat-Request (HARQ) protocol encodes Forward Error-

correction into each data frame to reduce frame corruption errors and au-

tomatically retransmits frames that cannot be recovered. This significantly

reduces the packet loss rate due to random wireless losses but potentially

introduces significant packet reordering.

When transmitting data, both HSDPA and HSUPA use Time-division

Multiple Access (TDMA) to share the access among users on the data chan-

nel. The transmit slot size is typically 2 ms. The slot scheduling is coordi-

nated by the base station based on several matrices which may include signal

quality or even data price plan of the user.

In HSDPA, Code-division Multiple Access (CDMA) is also used over the

data channel to multiplex up to 15 codes, allowing concurrent data transfer

to 15 different devices, or all to a single user. This is not possible on HSUPA

because there is insufficient power on the phone to enable higher levels of

coding, or to coordinate concurrent CDMA from different sources. This is

not an issue for HSDPA because the base station has access to a power source

and it is broadcasting from a single source.

In general, the downlink HSDPA protocol is generally able to transmit

data at a significantly higher rate than its uplink HSUPA counterpart. On

the other hand, devices wanting to upload data on HSUPA has to share

time slots with other users to transmit their payload leading to potentially

significant delays when the uplink is congested. In other words, asymmetry

21

is inherent in the design of the physical layers of the HSPA protocol because

of fundamental power constraints.

3.1.2 4G/LTE Networks

LTE was designed as a completely new standard and does not build upon

previous GSM/UMTS standards. Orthogonal frequency-division multiplex-

ing (OFDMA) or a variant orthogonal frequency-division multiple access

(OFDMA) are now used in the downlink protocol instead of CDMA [59].

This allows the signal to be split into multiple narrow-band sub-carriers of

different frequency. OFDMA further supports multiple users by using TDMA

or FDMA to divide the sub-carriers. Having several narrow-bandwidths are

easier to scale than a single wide-bandwidth, making higher bandwidths avail-

able using OFDM than with CDMA.

On the uplink protocol, a variant of OFDM known as single-carrier frequency-

division multiple access (SC-FDMA) is used. While in OFDMA, a user uses

several sub-carrier channels in parallel, each user is only assigned one sub-

carrier channel in SC-FDMA, hence the name single-carrier. Resource blocks

both in the time and frequency domain are scheduled to users by the bases-

tation, allowing concurrent uplink transmissions from multiple users. While

higher speeds can now be supported, the 3GPP standards still specifies an

asymmetric link with an instantaneous downlink peak at 100Mb/s and up-

link at 50Mb/s [62].

22

3.2 Measurement Methodology

For our experiments, we used the HTC Desire mobile phone with the Android

2.3 (Gingerbread) operating system. The HTC Desire is equipped with a

1 GHz Qualcomm Snapdragon processor and has 576 MB of RAM. The

phone supports up to 7.2 Mbps download and 2 Mbps upload speeds on

3G. We brought to phones to three different locations for the tests: in our

laboratory, in a shopping mall and a residential apartment. The servers used

for our measurement study are Intel Core2Duo or better Linux machines

with more than 4 GB RAM located in our lab connected to the university

network. We wrote a custom Android application which is installed on the

phones to run and coordinate various data transfer tests over 3G plans which

we purchased from the three local telcos. The plans used were advertised at

7.2 Mbps.

Various network measurement tools such as iPerf are available for basic

throughput measurements. However, we required more control over certain

socket parameters like selecting congestion control algorithm that existing

tools did not provide. In addition, the 3G networks are behind NATs, al-

lowing only client-to-server connections, but not vice versa. Existing tools

do not take this into account and thus can only perform a single direction

test from client to server. We also needed to coordinate the tests between

the phone app and the server application. Therefore, we were left with little

choice but to write a new testing tool to generate the traffic and capture the

packet traces using tcpdump on both the sender and receiver.

There are some practical challenges in measuring practical 3G networks.

23

For example, the switching of a mobile phone to the RRC (Radio Resource

Control) state will have an influence on the measurement results. Another

anomaly that we observed was that sometimes there would be an initial delay

at the start of a test, where packets get buffered and are received in a larger

burst than usual. We observed this behavior in both TCP and UDP flows.

Because we could not control the state of the radio directly or eliminate the

initial buffering, we ran each measurement test several times and took the

average in order to reduce the impact of these variations.

Also, it is possible for the first connection of each battery of tests to ex-

perience an additional slight delay arising from the need to initiate channel

access. This spurious delay was eliminated in our experiments by first negoti-

ating a initial connection before starting the bulk data transfer experiments.

3.2.1 Loopback Configuration

To accurately measure delays and packets in flight, we also set up an ex-

periment in a loop-back configuration. In this configuration, the Android

phone was tethered to the server machine via USB. Next, the upload and

download TCP flows were initiated on the server and these flows were routed

through the phone’s 3G link via the USB connection and back to the server

via the wired network. As the server is both the source and destination of

all the TCP packets, the timestamps are all fully synchronized and we can

measure the one-way delay of the downlink (for data packets from the server

to the phone), and the one-way delay of the uplink (for ACK packets from

the phone to the server). We can also determine the exact number of packets

24

in flight at any point in time.

3.3 Measurement Results

From our measurement study, we first look if packet size matters as the

3G/HSPA frame size is much smaller than an IP packet MSS. Next we ex-

amine buffer size as it affects TCP performance. Finally we examine the

throughput performance of both UDP and TCP together with concurrent up

and down flows.

3.3.1 Does Packet Size Matter?

Intuitively, sending large packets over a shared wireless network would de-

grade performance since this increases the probability of packet collisions.

Korhonen and Wang reported a correlation between frame sizes and trans-

port delay in 802.11b WiFi networks, although the difference in application

packet sizes does not significantly affect performance [39]. HSPA uses small

frame sizes between 120 and 360 bytes (depending on modulation), which

is significantly smaller than corresponding WiFi packets. To this end, we

investigated if packet sizes would have an impact on the performance and

loss tolerance in HSPA networks.

In this experiment, we saturated the mobile link using UDP streams with

datagrams of varying sizes for each test. We repeated this experiment with

different send rates and found that there was no significant difference in the

raw throughput or loss rates. The goodput of the UDP streams with smaller

packets was naturally lower because of the additional overhead in the packet

25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

C
D

F

Burst size (packets)

2000 Bytes
1500 Bytes

900 Bytes
300 Bytes
150 Bytes

Figure 3.1: Distribution of packets coalescing in a burst for downstream
UDP at 600 kb/s send rate observed with tcpdump.

headers.

However, we observed an interesting pattern of packets arriving in bursts,

often with no more than 1 ms separating the first and last packet in each

burst. These bursts tend to arrive at intervals that are multiples of 10 ms.

In Figure 3.1, we plot the distribution of the size of these packet bursts when

sent at a very low sending rate to prevent packet losses. We found that

larger packets have a lower tendency to arrive in bursts compared to smaller

packets. We also found that when the send rate was increased, more packets

tend to arrive in larger bursts.

We initially suspected that this “bursty” behavior is caused by the schedul-

ing algorithm at the base station. However, on closer inspection, we found

that the amount of data in each burst is larger than the amount of data

that can be transmitted in a single HSDPA time slot. However, when using

WiFi, we did not find such bursts in the flows. Hence, this suggests that

26

the behavior is more likely due some polling cycle or hardware limitation

of the cellular radio. Regardless, this observation suggests that algorithms

that rely on observing the pattern of packet arrival timings such as packet

trains [55, 12] are not likely to work well in the mobile 3G environment. This

was examined more in detail in a related thesis [74].

3.3.2 Buffer Size

Buffer sizing is an important parameter which affects TCP performance. A

rightly sized buffer will contain sufficient packets to utilize the link when the

TCP sender reduces its send window when it detects congestion. Having a

buffer that is too small will lead to link under-utilization, while having a

buffer that is too large will cause additional delays and high RTT. There

is a classic rule of thumb that the buffer should be sized to at least the

bandwidth-delay product [67] (BDP). In recent times, it was found that the

buffer size can be reduced to BDP/
√
n, where n is the number of long-lived

flows [3].

The buffer sizes of both the downstream and upstream of our local ISPs

were examined in our earlier work [76]. By flooding the channel with UDP

packets sent at a high rate. This will induce a buffer overflow. Because

the link layer automatically corrects for loss or corrupt packets, any packet

loss can be mostly attributed to buffer overflow. As the server and phone is

synchronized using USB before each experiement, we can know for certain

by examining the timestamps in the network trace how many packets were

present in the network in any point of time. By observing the number of

27

Table 3.1: Buffer sizes of the various ISPs obtained from our related
work [76].

ISP Network Buffer Size Drop Policy

ISP A
HSPA(+) 4,000 pkts Drop-tail

LTE (≤ 800 ms) AQM

ISP B
HSPA(+) 400 pkts Drop-head

LTE 600 pkts Drop-tail

ISP C
HSPA(+) 2,000 pkts Drop-tail

LTE 2,000 pkts Drop-tail

packets in flight, correlating when large packet losses start to kick in, and

accounting for the bandwidth delay product, the buffer size can hence be

deduced.

The results from our previous work is shown in Table 3.1. From this we

can see that 2 out of 3 of our local ISPs provision very large buffers of over

2,000 packets. Furthermore, we observed that one of the ISPs implemented

some form of active queue management (AQM) which dropped packets that

remained in the queue for longer than 800ms. It suggests that the ISP might

be experimenting with CoDel [52] to alleviate the bufferbloat issue.

3.3.3 Throughput

To investigate the performance of the public 3G networks in Singapore as

perceived by local consumers, we took throughput measurements at three

different locations: (i) in our lab in campus, (ii) in a residential apartment,

and (iii) in a busy shopping mall. These locations have different amounts

of human traffic at different times of the day. Our experiment consists of a

28

battery of interleaved tests that measure the performance of the uplink and

downlink for UDP and different variants of TCP variants every hour over a

period of several days. Tests were run back-to-back to minimize the impact

of possible temporal variations to allow us to compare the effects of different

parameter variations fairly.

In order to obtain accurate measurements of the one-way packet delay

in the 3G uplink and downlink, we also set up a special loop-back network

configuration. The phone was tethered to the server machine via USB cable

and packets were routed through the phone’s 3G/HSPA connection and back

through the server’s regular network interface. This allowed us to run both

the server and client application on the same machine, removing the need to

perform clock synchronization at the expense of mobility. We could replicate

this setup in both our lab and at the residential apartment (via a domestic

broadband line), but not at the shopping mall.

In Figures 3.2, 3.3 and 3.4, we plot the variation in the average TCP

throughput (for TCPs Reno and Cubic [27]) for a bulk transfer for all three

local mobile ISPs at three different locations over the course of a typical

day. For the lab and apartment, the measurements were taken at hourly

intervals over several days. For shopping mall, the duration of test is limited

to the opening hours of the mall (11 am to 9 pm). To measure the upper

bound on performance, we use a UDP stream that sends a constant stream

of packets that can fully saturate the downstream bandwidth in order to

measure the maximum available download capacity. Three measurements

are taken per configuration to minimize random errors and the figures are

sample 24-hour traces. There are minor variations between days, but the

29

 0

 500

 1000

 1500

 2000

 2500

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(a) Lab on Campus

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(b) Residential Apartment

 0

 1000

 2000

 3000

 4000

 5000

 6000

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

T
h
ro

u
g
h
p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(c) A Shopping Mall

Figure 3.2: 24 hour downstream throughput of UDP and TCP for ISP A.

30

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(a) Lab on Campus

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(b) Residential Apartment

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

T
h
ro

u
g
h
p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(c) A Shopping Mall

Figure 3.3: 24 hour downstream throughput of UDP and TCP for ISP B.

31

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(a) Lab on Campus

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(b) Residential Apartment

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

T
h
ro

u
g
h
p
u

t
(k

b
p

s
)

Time of day(24-hour)

UDP
reno

cubic

(c) A Shopping Mall

Figure 3.4: 24 hour downstream throughput of UDP and TCP for ISP C.

32

trends are consistent. There were also some points where the throughput

was close to zero, possibly due to some temporal network outages during the

time we ran the experiment.

As expected, we found that the throughput fluctuated over the course

of a day and varies between ISP and location. In general, we found that

there are little difference between Reno and Cubic, so we used TCP Cubic,

which is currently the default TCP implementation for the Android kernel,

for subsequent experiments. Also, as expected, TCP throughput is typically

lower than that for UDP. We plot the ratio of achieved download throughput

of UDP to TCP for the all the data points obtained our experiments in

Figure 3.5. We see that the performance varied quite significantly across

the various ISPs. The throughput for UDP is typically no worse than that

for TCP, except for ISP C, for which UDP performance is slightly worse

about 25% of the time, which leads us to suspect that ISP C might have

implemented some QoS-like scheme in their network that preferentially drops

UDP packets. What is of significant interest is that some 20 to 50% of the

time, TCP uses less than 50% of the available bandwidth.

We next compare the difference between the downlink and uplink for

each of the three ISPs. Figure 3.6 shows the downlink and uplink throughput

obtained from another experiment done in our lab over a 24-hour period on a

typical weekday. While large variations in the throughput is again observed,

there is a large difference between the downlink and uplink speeds for all

three ISPs.

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

Ratio of UDP throughput to TCP throughput

ISP C

ISP B
ISP A

Figure 3.5: CDF of the ratio of UDP throughput to TCP throughput for
the various ISPs.

3.3.4 Concurrent Flows

To investigate how concurrent uploads can affect downloads, we ran three

independent TCP measurements: 1) downloading 1 MB of data, 2) uploading

1 MB of data, and 3) downloading 1 MB of data while concurrently uploading

a huge data file in the background. These three tests were run at 15-min

intervals over several days in a back-to-back manner (to control for temporal

variations).

In Figure 3.7, we plot the results for ISP A over a 48-hour period during

a weekend, where there tends to be fewer people on campus and therefore

less 3G interference from other users. From the resulting traces, we see that

we can actually achieve the advertised 7.2 Mbps rates for raw UDP transfers

during the night hours. It seems that ISP A caps the upload bandwidth

and so upload bandwidth is uniformly low during the entire period. The

34

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time

ISP C Downlink
ISP B Downlink
ISP A Downlink

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Time

ISP C Uplink
ISP B Uplink
ISP A Uplink

Figure 3.6: TCP throughput for three different mobile ISPs over a 24 hour
period on a typical weekday.

35

throughput for a raw TCP download is significantly lower than that of the

raw UDP throughput, but in the presence of a concurrent background TCP

upload, it is even more significantly degraded. The performance gap between

UDP and TCP for 3G networks is well-studied and well-understood [16]. We

focus on understanding and addressing the performance degradation arising

from the concurrent upload, which to the best of our knowledge, has not

been studied extensively.

Degradation Caused by Concurrent Upload

We next examine the performance of downlink TCP flows with and without

the presence of a concurrent upload flow. For each run, we performed one

complete TCP download that has no concurrent upload back-to-back with

another TCP download having a concurrent upload. This is to reduce the

temporal effects of the network.

We plot the average RTT and throughput of each run in Figure 3.8. The

results clearly show that the RTT is increased when there is a concurrent

upload as compared to without and the effect is especially significant for

ISP A. Associated with the increase in RTT is also a significant drop in the

throughput in most instances.

In our experiment setup, we tether the mobile phone directly to the server

so that we can measure the one-way delays between the server and the mobile

phone and back accurately. In Figure 3.9, we plot the throughput against the

ratio of the uplink one-way delay to the downlink one-way delay. Our results

show that when the uplink one-way delay is comparable to the downlink

one-way delay, we get good TCP throughput. On the other hand, with a

36

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Sat-00:00

Sat-06:00

Sat-12:00

Sat-18:00

Sun-00:00

Sun-06:00

Sun-12:00

Sun-18:00

M
on-00:00

UDP downlink
TCP downlink

concurrent TCP downlink and uplink
UDP uplink
TCP uplink

Figure 3.7: Measured throughput for ISP A over a weekend.

37

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

R
T

T
 o

f
d

o
w

n
lo

a
d

 w
/
c
o

n
c
u

rr
e

n
t
u

p
lo

a
d

 (
s
)

RTT of download w/o concurrent upload (s)

ISP C
ISP B
ISP A

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

T
C

P
 d

o
w

n
lin

k
 t

h
ro

u
g

h
p

u
t

w
it
h

 c
o

n
c
u

rr
e

n
t

u
p

lo
a

d
 (

k
b

/s
)

TCP downlink throughput w/o concurrent upload (kb/s)

ISP C
ISP B
ISP A

Figure 3.8: Comparison of RTT and throughput for downloads with and
without uplink saturation.

38

 0

 500

 1000

 1500

 2000

 2500

 0.01 0.1 1 10 100

D
o

w
n

lin
k
 T

C
P

 t
h

ro
u

g
h

p
u

t
(k

b
/s

)

Ratio of uplink/downlink one-way delay

download only
with concurrent upload

Figure 3.9: Ratio of one-way delay against ratio of downlink throughput.

concurrent upload, the uplink one-way delay becomes significantly larger and

we get significantly reduced TCP throughput. In Figure 3.10, we illustrate a

typical uplink saturation scenario. The RTT is dominated by the uplink one-

way delay since the uplink one-way delay can be some ten to a hundred-fold

larger than the downlink delay (which is typically about 70 to 100 ms).

Bandwidth Under-Utilization

Because we have the full trace of all packets sent and received, we can deduce

the number of packets in flight at each instant in time. In Figure 3.11, we

plot the cumulative distributions of the number of packets in flight over time

for the two different scenarios. It is quite clear that in the presence of a con-

current upload, the downlink is significantly under-utilized. To put things

into perspective, at a bandwidth of 7.2 Mbps and an RTT of 150 ms, we ex-

39

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120

D
e

la
y
 (

s
)

Packet arrival time (s)

RTT
Uplink

Downlink

Figure 3.10: Breakdown of the RTT into the one-way uplink delay and the
one-way downlink delay under uplink saturation.

pect the bandwidth delay product to be about 90 (for 1,500 byte MSS). This

means that we expect about 45 packets to be in flight and unacknowledged

if the channel is symmetric and fully utilized.

3.4 Summary

In summary, we have shown in our measurement study that there is signifi-

cant performance degradation in the downlink of cellular data networks when

then uplink is saturated. The uplink can be saturated due to a concurrent

flow from the mobile device, or due to high user traffic at the basestation.

This causes the returning TCP ACK packets from a downstream flow to be

delayed, resulting in under-utilization of the downlink. In the next chapter,

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

Packets in flight

with concurrent upload
download only

Figure 3.11: Distribution of the number of packets in flight for TCP down-
load both with and without a concurrent upload.

we present our solution to address this problem.

41

Chapter 4

Rate Based TCP Congestion

Control Framework

In chapter 3, we showed that there is significant performance degradation in

cellular data networks when the uplink buffer is saturated, as illustrated in

Figure 4.1.

We now describe our approach of addressing the problem by eliminat-

ing ACK clocking with a new rate-based congestion control algorithm. We

observed that the mobile downlink remains the bottleneck for the system

and that as shown in Figure 3.10, the uplink one-way delay can increase to

tens of seconds while the downlink one-way delay remains small when the

uplink buffer is saturated. Our key insight is that under such circumstances,

ACK clocking will clearly result in under-utilization since the ACKs are de-

layed. To achieve good utilization, it suffices if we can accurately estimate

the effective maximum receive rate at the receiver and match the send rate

at the sender to it. Also, for our solution to be easily deployable, it should

42

Receiver

Mobile
Server

buffer

buffer

downlink data packets

uplink ACKs

+ background data flow

saturated

Figure 4.1: Model of uplink buffer saturation problem.

remain compatible with an unmodified TCP stack at the receiver. To do

so, we developed a technique to estimate the receive rate by exploiting the

TCP Timestamp option. This works because even when the uplink buffer is

saturated, the downlink one-way delay remains small and is relatively stable.

4.1 Rate-Based Congestion Control

In principle, we can achieve high link utilization in mobile cellular networks

by sending packets at a rate that matches the available bandwidth. One

way to estimate the available bandwidth is to send a burst of packets at a

rate that saturates the bottleneck link and measure the receive rate of the

receiver [71]. However, there are two key challenges. First, the receive rate

is difficult to estimate with high accuracy given the bursty nature of packets

in cellular data networks. Also, the available bandwidth can vary by over

an order of magnitude over a period of several minutes [76]. Second, simply

matching the sending rate to the receive rate is not sufficient. It is relatively

easy to detect a drop in the available bandwidth, but it is much harder to tell

if the available bandwidth has increased. Not reacting in a timely manner

when the available bandwidth increases would result in link under-utilization.

43

TCP currently uses a cwnd-based congestion control mechanism that

works reasonably well for conventional wired networks, but which falls short

for mobile cellular networks for three structural reasons: (i) the TCP cwnd-

based mechanism regulates the sending rate indirectly, and so often re-

acts too slowly to the rapid network variations observed in mobile cellular

networks [75]; (ii) ACK-clocking can result in significant downlink under-

utilization if the ACK packets are delayed at a saturated uplink buffer [42];

and (iii) the cwnd-based TCP mechanism depends on packet losses to detect

congestion, which requires that buffers be filled and naturally introduces

significant delays which are detrimental to RTC applications [73]. To ad-

dress these shortcomings, we proposed a new rate-based congestion control

mechanism where we directly control the sending rate of packets in response

to the estimated receive rate. To achieve the same stability inherent in an

ACK-clocked system, we employ an oscillating negative feedback mechanism.

4.1.1 Congestion Control Mechanism

Our key idea is to use a feedback loop to regulate the sending rate so that

the number of packets in the bottleneck buffer oscillates around a constant

value, thus preventing link under-utilization while keeping latency low. We

compare our new rate-based TCP stack to the conventional cwnd-based stack

in Figure 4.2. Note that Figure 4.2(a) illustrates a generic cwnd-based TCP

stack and not a specific TCP implementation as there are cwnd-based im-

plementations, e.g., CUBIC, that set the cwnd and ssthresh according to a

different algorithm. Likewise, the illustration for our rate-based stack is also

44

generic as the parameters are defined by the specific algorithms.

Both the conventional cwnd-based TCP stack and our rate-based stack

begin in a Slow Start state. For the cwnd-based stack, the cwnd is initially

set to 2 and is doubled every RTT, until the cwnd exceeds ssthresh. In our

rate-based stack, a burst of n packets are sent to obtain an initial estimate

of the receive rate ρ. If n packets are not sufficient to estimate the rate, then

n is doubled and another burst is sent. This is repeated until a rate estimate

is obtained.

After Slow Start, the conventional cwnd-based stack will enter a Conges-

tion Avoidance state. In this state, the cwnd is now increased by 1
cwnd

for

each ACK received. This process continues until a packet loss occurs, pre-

sumably due to buffer overflow and it goes into the Fast Recovery state. For

our rate-based stack, we have an analogous state called the Buffer Fill state.

In this state, the sending rate is set to σf > ρ which will essentially cause the

buffer to fill. Instead of using packet drops to detect congestion, we adopt

the technique used in recent works [63, 71] and instead detect congestion by

estimating the buffer delay. When the estimated buffer delay tbuff crosses a

threshold Tf , the stack switches to the Buffer Drain state.

In the Fast Recovery state of the cwnd-based stack, the cwnd is controlled

by the fast recovery algorithm to retransmit packets and prevent the pipe

from draining. Once the sender has received the ACKs for the retransmitted

packets, recovery is complete, the cwnd is set to ssthresh, and the state

returns to the Congestion Avoidance state. If fast recovery fails and the

retransmission times out, the stack will reset cwnd to 2 and return to the

Slow Start state. Similarly, our rate-based stack sends packets at a rate of

45

Slow Start

Congestion Avoidance

Fast Recovery

Start

Update ssthresh

“freeze” cwnd

increase cwnd exponentially

Congestion Detected

Done Recovery

increase cwnd linearly

cwnd = ssthresh

cwnd = 2
cwnd > ssthresh

Packet Loss

Retransmit

Timeout

Update ssthresh

cwnd = 2

(a) Conventional cwnd-based mechanism.

Buffer Drain State

Buffer Fill State

Slow Start

Monitor State

Start

Estimate ρ

send n pkts

Congestion

Eased

Congestion

send at rate σf > ρ

send at rate σd < ρ

set rate to σm

Network

Changes

send n pkts

(tbuff < Td) (tbuff > Tf)

Timeout

dropped

ρ has

Retransmit

Detected

No change in ρ

Update minimum

one-way delay

(b) Rate-based mechanism.

Figure 4.2: Comparison of TCP congestion control mechanisms.

46

σd < ρ to drain the buffer in the Buffer Drain state. Once the buffer delay

falls below Td, the stack switches back to the Buffer Fill state. Also, if there

is a retransmission timeout, the stack returns to the Slow Start state.

The key difference between our rate-based stack and the cwnd-based stack

is that we have an additional Monitor state. Because the underlying one-

way delay might change due to variations in the mobile networks and our

feedback mechanism detects congestion by estimating the buffer delay tbuff ,

it is possible for the buffer to be completely emptied, even when the buffer

delay remains above Td. To address this scenario, we switch to the Monitor

state when the algorithm remains in the Buffer Drain state for an extended

period of time. In this Monitor state, we use a burst of n packets to obtain a

new estimate of the receive rate. While the new estimate is being obtained,

the sending rate is conservatively set to σm < σd to avoid flooding the buffer.

If the new rate estimate ρ is greater or equal to the current estimate, we

conclude that the buffer is indeed empty. We update the one-way delay

measurements and switch to the Buffer Fill state. Otherwise, it means that

the buffer is still not yet empty, and we simply return to the Buffer Drain state

to continue draining the buffer. The cwnd-based stack does not need a state

that is equivalent to our Monitor state because the cwnd-based congestion

mechanism relies on packet loss to signal congestion, and thus does not need

to worry about underlying changes in the network delays.

47

4.1.2 Estimating the Receive Rate

A natural approach to obtain an estimate of the receive rate or bottleneck

bandwidth, is for the receiver to perform the estimation based on the received

packets and to send the estimate back to the sender [71, 75]. The same

approach could also be adopted to implement our rate-based mechanism.

However, to keep all modifications at the TCP sender and avoid modifications

to the TCP receiver, we decided to adopt an indirect method that allows the

rate estimation to be performed at the sender, when the TCP timestamp

option is enabled. The TCP timestamp option is enabled by default on

Android and iPhone devices, which together account for more than 90% of

the current smartphone market [1].

When the TCP timestamp option is enabled, a TCP receiver will send

ACK packets with the TSval set to its current time. This timestamp is the

same as the receiving time of the data packet. Thus, the packet arrival times

are effectively embedded in the ACK packets. From the ACK number and

the timestamp value, the sender can determine the number of bytes received

by the receiver. In the example illustrated in Figure 4.3(a), the sender can

determine that 1,000 bytes have been received in the time period between tr0

and tr1 .

Packet losses, which will cause the ACK number to stop increasing,

need to be handled. We can obtain reasonably good estimates by assum-

ing that each duplicate ACK corresponds to one maximum segment-sized

(MSS) packet received. Also, when enabled, SACK blocks in the ACKs can

be used to accurately determine the exact number of bytes received.

48

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

replacements

Sender
Receiver
Mobile

TSval= tr0
ACK= 1000

TSval= tr1
ACK= 2000

ACK= 1000

TSval= tr1
ACK= 2000

TSval= tr0

(a) Estimating the receive rate.

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

replacements

tr

Sender Mobile

Receiver

RDmin

tbuff

RD

RD = tr − ts
t̂buff = RD − RDmin

TSecr= ts

TSval= tr

ts

(b) Estimating the buffer delay

Figure 4.3: Using TCP timestamps for estimation at the sender.

4.1.3 Inferring Congestion

The level of congestion in the network is inferred by estimating the buffer

delay tbuff from the observed changes in the one-way delay of the received

packets. The one-way delay is the time difference between the point where a

packet is queued for delivery at the sender to when it is received. When the

buffer is empty, this is simply the propagation delay of the packet. When

the packet is queued in the buffer, the one-way delay will increase to include

the time it spends in buffer. Thus, we estimate tbuff by taking the difference

between the currently observed one-way delay from the minimum one-way

49

delay observed in the recent past. Because what matters is not the absolute

value but the relative increase of the one-way delay, the clocks for the sender

and receiver need not be synchronized.

Like the receive rate, tbuff can also be estimated using TCP timestamps,

as illustrated in Figure 4.3(b). The sender will timestamp the packet with

time ts when sending the packet. The packet will be queue in the buffer, and

then be transmitted and arrive at the receiver. The receiver will timestamp

the ACK with its receiving time tr, and in addition, echo the sending time

ts. Thus, the sender can easily compute the relative one-way delay as RD =

tr−ts from the returned ACK, and estimate tbuff by subtracting the minimum

observed one-way delay RDmin.

Again, packet losses need to be handled. If a packet loss occurs, TSecr is

set to the TSval of the last in-sequence data packet before the packet loss,

rather than the most recently received packet. As the sender already records

the sending time of each packet to determine retransmission time-outs, it can

obtain the sending time of any given packet.

4.1.4 Adapting to Changes in Underlying Network

Our algorithm tries to match the sending rate σ to the receiving rate ρ,

so it will naturally adapt to observed changes in the available bandwidth.

However, because it uses the estimated relative one-way delay to determine

when to switch between the buffer fill and buffer drain states, RDmin has to

be updated as the underlying one-way delay changes.

50

Decrease in one-way delay. During the buffer fill stage, this will result

in an under-estimation of the number of packets in the buffer and result in

the algorithm switching to buffer drain later. This means that the number

of packets in the buffer would oscillate about a value that is higher than the

T which we had intended. This might increase the delay slightly but would

not have much impact on the efficiency. It is plausible that during the buffer

drain stage, the buffer might drain sufficiently, so that RD falls below the

earlier observed RDmin, in which case RDmin is updated with the new value.

Increase in one-way delay. This will cause packets to spend more time

in the link as the BDP increases, which will in turn cause the buffer levels

to drop while RRE remains oblivious to the changes. This causes no harm if

the buffer never empties as the link will still be fully utilized. However, if the

buffer does empty, the receiving rate ρ will be limited by the sending rate σ

as discussed previously and ρ will eventually decrease to match σ. Naïvely

we could simply update RDmin to the current RD. However, it might not

always be the case that the buffer is empty when ρ fails to match σ. The

presence of another flow, or simply network fluctuations could also cause ρ

to reduce. We thus introduce a special Monitor state to test the current

network conditions.

Monitor State. When transiting into this state, a small burst of n

packets is sent, similar to the initial fill stage. This is to probe if the buffer

is empty, or network conditions had indeed changed. Thereafter, as a pre-

caution and to further drain the buffer, the sending rate σ is halved in our

implementations while we wait for the feedback from the initial small burst.

We feel it is better to err on the side of caution than to cause further conges-

51

tion, but like other parameters, a particular algorithm might decide on some

other value.

When the feedback is received, it gives us the new receive rate estimate ρ′.

If ρ′ is close to the previous value ρ, it indicates that the network bandwidth

did not actually change and the buffer is either empty or a competing flow

reduced the rate momentary. Either way, RDmin is updated and the state is

switched back to buffer fill state with the new ρ = ρ′.

If ρ′ is indeed much lower than ρ, this most likely indicates that the link

bandwidth had reduced and the buffer was not yet empty. We return to the

buffer drain state with the updated ρ = ρ′ without changing RDmin.

In addition, we also switch to the monitor state if the algorithm spends

too much time in the buffer-drain state. This indicates that somehow the

buffer is not appearing to drain even though we are attempting to do so.

4.1.5 Mechanism Parameters

By adjusting the parameters for our rate-based congestion control mecha-

nism, we can tune the achieved throughput-delay tradeoff. This is similar

to how different cwnd-based TCP variants can achieve different tradeoffs in

performance. There are three key components that can be replaced or ad-

justed: i) the receive rate estimation algorithm, ii) the policy for adjusting

the sending rate in each of the states, and iii) the policy for changing between

the states.

Receive rate estimation. There are many possible ways to estimate

the instantaneous receive rate. For example, a simple approach would be

52

to use buckets of fixed time intervals and compute the rate by dividing the

total bytes received in each time interval by the size of the interval. More

sophisticated approaches would be to use a sliding window of a fixed time

interval to count the bytes received, or to use a fixed number of bursts [76].

We can also use existing methods [71, 73] to forecast the receive rate instead

of simply measuring the instantaneous rate.

Sending rate. After obtaining an estimate of the receive rate ρ, our

rate-based mechanism needs to determine the sending rate according to the

current state of the algorithm. The sending rate in the Buffer Fill state σf

needs to be set to a value larger than the estimated receive rate in order to

fill the bottleneck buffer. On the other hand, the sending rate in the Buffer

Drain state σd needs to be set to a value lower than the receive rate in order

to drain the buffer. We provide the flexibility to specify a sending rate in

the Monitor state σm that is different from the Buffer Fill and Buffer Drain

rates. As the network is probed for changes during the Monitor state, σm

should be set to a relatively low rate in practice.

The design of the rate-based mechanism allows the sending rate to be

abstracted as a separate module that allows different new rate-based TCP

variants to set their sending rates according to their needs. For example, if

low latency is required, then a new rate-based TCP variant might choose to

fill the buffer more slowly and drain the buffer more quickly compared to

another variant that tries to maximize throughput.

The current Linux TCP congestion control implementation does not en-

force any specific policy on how the cwnd value be set, e.g., CUBIC does

not follow the AIMD scheme. Similarly, our rate-based TCP stack does not

53

impose any constraints on how the sending rates should be set. For example,

a new rate-based TCP variant could very well decide not to fill the buffer

even in the Buffer Fill state, if so desired.

Switching Between States. Congestion is detected when the estimated

buffer delay tbuff increases over a threshold Tf , and is said to have eased

when it drops below the threshold Td. These two thresholds are different to

allow some hysteresis to be introduced if necessary. To avoid uncontrolled

oscillations, the constraint Tf ≥ Td is imposed. Because there is delay in the

feedback due to queuing, these two parameters will also affect the latency

and throughput tradeoff. Larger threshold values would ensure the buffer

does not underflow when entering the Buffer Drain state, but at the cost of

introducing longer queuing delays in the buffer.

Other parameters. There are other optional parameters that can be

set by the congestion control algorithm, namely the initial burst of n packets

and the timeout to switch from the buffer drain state to the monitor state.

These parameters are optional to reduce the complexity of implementing

custom congestion control algorithms and the default values will be used if

they are unspecified. The default value of n is set to 10 as the typical initial

TCP receiver window is only 10 packets in size. In addition, Dukkipati et al.

from Google Inc. recently argued for the TCP initial congestion window to

be increased to 10 which they claim reduces latency without causing conges-

tion [20]. The default value for the monitor state timeout is set to 4×RTT in

our implementations as the sending rate parameters chosen would not take

longer than that to empty the buffer.

54

Table 4.1: Basic API functions for rate-based mechanism.

Functions Parameters
Returned
value

Description

update tstamp, bytes_recv ρ
Update the module
with new information
of packet reception.

get_rate curr_state, ρ σcurr_state

Obtain new sending
rate from kernel
module.

threshold curr_state Tcurr_state

Obtain threshold
value from which
congestion is
triggered.

4.2 Implementation

We implemented our rate-based TCP congestion control mechanism in the

Linux kernel (version 3.2.24) in a manner that is similar to the existing cwnd-

based TCP congestion control modules. The three components described in

Section 4.1.5 are abstracted as API functions so that new rate-based TCP

variants can be implemented as new kernel modules. The three functions are

summarized in Table 4.1.

4.2.1 update

The update(timestamp, bytes_received) function is a callback that pro-

vides the module with the timestamp together with the amount of data

received by the receiver, as estimated from the TCP timestamps in the ACK

packets. The timestamp value provided is not the current system timestamp,

but the TSval of the ACK packet, which corresponds to the time at which

55

the receiver had received the given amount of bytes. This function will return

the latest estimate of the receive rate ρ.

4.2.2 get_rate

The get_rate(curr_state, rate) function obtains the current rate at which

packets are to be sent from the module. The current state of the algorithm,

i.e., Buffer Fill, Buffer Drain or Monitor, is supplied as an argument so the

congestion module can return the corresponding sending rate. The latest

receive rate ρ returned from the update function is also supplied as an ar-

gument. This function is called at every kernel tick to allow the congestion

algorithm to adjust the sending rate even when there are no updates from

the receiver. The current time can be obtained from a global variable and

thus need not be passed in as an argument.

4.2.3 threshold

The threshold(curr_state) function returns the threshold value for the

specified state. As before, the current state is passed as an argument so the

module can return different threshold values for different state, if so desired.

Figure 4.4 compares the API interactions of the traditional cwnd-based

TCP stack in the Linux kernel to that for our rate-based stack. While both

of them allow a congestion control module to determine the sending rate,

the regulation of the sending rate is done differently. Traditional cwnd-

based congestion control modules will adjust the cwnd, which determines

the number of unacknowledged packets that the TCP stack can have in flight

56

at any time and the sending of new data packets is clocked by the received

ACK packets. In our new rate-based stack, the congestion control module

explicitly sets a rate, and packets will be sent continuously at a given rate as

long as there are available packets to be sent.

4.3 Linux Kernel Module

To implement our new mechanism for the Linux kernel, we had to modify

the kernel to add hooks to our new module. In total, we added about 200

lines of code to the kernel and the kernel module is about 1,500 lines of code.

The following is a brief description of some of the significant modifications

and the kernel functions modified.

4.3.1 Sending of packets

The kernel function tcp_write_xmit is called whenever there is a possibility

to send a new data packet. Originally, this function is called whenever there

is new data from the application or an ACK packet is received. Because our

rate-based mechanism is not ACK-clocked, a new timer is introduced to call

this function every tick to allow new packets to be sent continuously.

At every kernel tick interval, the control mechanism determines how many

packets should be sent based on the sending rate obtained from the congestion

control module. If the result is a non-integer number, we round up this

value in the Buffer Fill state and round down this value in the Buffer Drain

and Monitor states, as it is preferable to send full-size packets of 1 MSS.

A time history of the exact number of bytes sent is kept so we can make

57

Fast

Recovery

Slow Start /

Congestion

Avoidance

Function

min cwnd()

set cwnd

Packet lost

cong avoid(...)

new ACK

cwnd = 2

ssthresh = ssthresh()

Start/Restart

Recovery done

cwnd =















min cwnd(),
if defined

ssthresh,

otherwise

Timeout

ssthresh=sshthresh()

Function

ssthresh()

Return

ssthresh value

Congestion Control Module

Function

Return

cong avoid(. . .)

minimum

cwnd value

TCP cwnd-based

(a) cwnd-based Congestion Control

Buffer Fill /

Buffer Drain /

Monitor

Slow Start
Function

update(...)

Return

ρ

FunctionFunction

get rate(...)

Return

σcurr state

Function

Return

threshold(...)

Tcurr state

ρ > 0Timeout new ACK

ρ = update(...)

Packet sent

σ = get rate(...)

update tbuff

ρ = update(...)

new ACK

Compare tbuff

with threshold(. . .)

Change state if needed

tbuff updated

Start Congestion Control Module

TCP Rate-based

(b) Rate-based Congestion Control

Figure 4.4: Comparison of API interactions between traditional cwnd-based
congestion control and rate-based congestion control modules.

58

up for the rounding discrepancy over a few ticks. We modify the function

tcp_transmit_skb to also perform this logging as it constructs and sends

every TCP packet to the network driver.

4.3.2 Receiving ACKs

The function tcp_ack is called to handle every ACK packet that is received.

The original kernel function examines the acknowledgement number as well

as any SACK information and determines the number of packets that is being

acknowledged. We simply added our rate-based mechanism to this function

and use the reported timestamp values to compute the one-way delay and

call the update function of the congestion control module. When packets are

lost, SACK is used to determine the number of newly received bytes. In order

to avoid code duplication, we added hooks into the TCP SACK processing

routine, specifically by replacing the function tcp_sacktag_one to pass this

information directly to our module.

4.3.3 Handling packet losses

When there are packet losses, the Linux TCP stack enters the Fast Recovery

state, where lost packets are automatically retransmitted based on the SACK

information. It then estimates the number of current outstanding packets

in the network and sets the cwnd to activate fast retransmit and prevent

the cwnd growth from stalling. Various fast recovery schemes have been

developed [7, 48] and the current algorithm implemented in the Linux kernel

is PRR [19].

59

For our rate-based mechanism, there is no need for a special Fast Recovery

state. The packets to be retransmitted are simply given priority to be sent

at the current sending rate. This works because congestion is inferred from

the estimated buffer delay, and not from packet losses. As cellular networks

typically have rather large buffers [76], the buffer delay would have to exceed

a reasonable threshold before buffer overflow can happen. However, to be

conservative, we switch momentarily to Buffer Drain state when we encounter

a packet loss. If successive packet losses cause the algorithm to stay in the

buffer-drain state for a long time, it will eventually trigger a transition to the

monitor state. Thus, we did not have to specifically design routines to handle

packet losses, and this significantly reduces the complexity of the recovery

mechanism.

tcp_retransmit_skb is called whenever the TCP stack has a packet to

retransmit when receiving a third duplicate-ACK or information from SACK

blocks. As mentioned earlier, the packet is given priority to be retransmitted

immediately in order to prevent delays to the receiving application. This

packet is also accounted for in the send history.

tcp_retransmit_write_queue is called when there is a retransmit time-

out and it originally sends a cwnd worth of packets. We have modified it to

pace the retransmission of the packets according to the current state of the

rate-based algorithm.

60

4.3.4 Practical Deployment

Our rate-based congestion framework requires minor modifications to the

TCP stack at the TCP sender, but no modification needs to be made to an

existing mobile device, though it does require the TCP timestamp option to

be enabled. A quick survey of the available smartphones suggests that the

TCP timestamp option is enabled by default for both Android and iPhone

(which together constitute about three quarters of the global smartphone

market [24]) and disabled by default for Windows Mobile phones. In this

light, we believe that the majority of existing smartphones are compatible

with our framework.

The current architecture of existing 3G/4G mobile networks makes it

relatively straightforward to deploy our algorithm. In particular, we found

that all three local mobile ISPs implement a transparent web proxy that

intercepts all HTTP connections, and effectively converts them into split

TCP [45] connections. These proxies are used to improve performance by

caching commonly accessed web content (such as images on popular websites)

and in some cases, to perform QoS filtering on the traffic. The current

situation suggests we can deploy customized TCP congestion algorithms such

as our rate-based framework for an entire network easily by modifying the

TCP stack on these proxies as illustrated in Figure 4.5.

4.4 Summary

To evaluate our proposed rate-based congestion mechanism, we implemented

a number of rate-based TCP variants. In the next two chapters, we present

61

��������
��		��

�
��
�

���

��
��
��	
���

������
��		��

�����

�������

��
����

�����

����������������
���
���������

�� ��
�� ��
��!"�
��
#

��$���
�� ��
���� ��
��
#

Figure 4.5: Illustration of proxy-based deployment.

two of rate-based congestion control algorithms which we have developed:

Receiver Rate-Estimate (RRE) and PropRate. RRE was designed to main-

tain high throughput performance comparable to CUBIC while overcoming

egregious ACK delays in a saturated or slow return link. PropRate is a

proof-of-concept that shows how throughput can be traded for reduced la-

tency using a simple algorithm. In addition, we implemented two recently

developed congestion control algorithms for mobile networks which uses fore-

casting techniques as modules or our framework.

62

Chapter 5

Improving Link Utilization

In this chapter, we describe one of the algorithms that we developed for

the rate-based congestion control framework called Receiver-Rate Estimate

(RRE). RRE was the first TCP congestion control algorithm we developed

that uses the receiver-rate estimation technique described in our framework,

hence its name. In the following sections, we first explain the parameters

chosen for RRE and then evaluate its performance.

5.1 Parameters

RRE was designed to achieve comparable throughput to CUBIC while mit-

igating the effect of egregious ACK delays. In order to ensure optimal

throughput, the buffer of the bottleneck link must remain filled, thus al-

ways having packets to send whenever possible. Thus, the objective of RRE

during the buffer fill and drain state is to ensure that there are always packets

in the buffer as the buffer delay oscillates around the threshold value T . In

63

practice, the number of MTU-sized packets in the buffer, B, will fluctuate

between a value Bmax > T and a value Bmin < T because of a delay in the

feedback from the receiver. In RRE, we set the sending rate to maintain the

buffer between a given Bmin and Bmax value.

5.1.1 Sending Rate σ

We know that it takes tbuff time for a packet to move from the tail to the

head of a queue of length B, hence we can estimate B from tbuff as follows:

B ×MSS = ρ× tbuff (5.1)

B =
ρ× tbuff
MSS

(5.2)

where MSS is the maximum segment size, typically 1,500 bytes.

(a) Buffer Fill State (B < T). First, we set the send rate such that the

buffer starts to fill. Before the number of packets in the buffer B reaches T ,

we will set the send rate σ > ρ so that the buffer starts to fill. We will not be

able to observe B directly and so we infer B from tbuff using Equation (5.2).

In other words, we keep filling the buffer if:

tbuff <
T ×MSS

ρ
(5.3)

We determine σf by analyzing the evolution of the buffer as shown in

Figure 5.1. It is clear from the figure that once B reaches T , it takes tbuff +

RTT for the sender to receive the feedback. During this time, the buffer

64

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

rate σ
Send

RTT+
tbuff

Rate ρ
Receive

T

t1

t2

Sender
Receiver
Mobile

t0

Bmax

Figure 5.1: Evolution of buffer during buffer fill state.

would have increased in size at a rate σf − ρ, so

Bmax = T +
σf − ρ

MSS
× RTT (5.4)

σf = ρ+
Bmax − T

MSS × RTT
(5.5)

where Bmax is the expected maximum number of packets in the buffer (to be

discussed in Section 4.1.5).

(b) Buffer Drain State (B ≥ T). As we keep sending packets at a

rate that is higher than the receive rate, tbuff will exceed the threshold value

given in Equation (5.3). Once this occurs we will need to reduce the send

rate σd so that it falls below ρ, as follows:

σd = ρ−
T − Bmin

MSS × RTT
(5.6)

where Bmin is the expected minimum number of packets in the buffer (to be

65

discussed in Section 4.1.5). This is completely analogous to the buffer fill

state with the following caveat: the sending rate σ is set low at the start of

this state, and is only allowed to increase, as the estimated receiving rate ρ

fluctuates.

Under normal circumstances, the buffer will start to empty after σ is

reduced. Eventually, tbuff will fall below the threshold T×MSS
ρ

, in which

case we will switch back to the buffer fill state. However, ρ should remain

constant as long as there are packets in the buffer. Thus, if ρ were to decrease

and eventually match σ, it indicates that buffer has completely emptied. If

we were to always keep σ < ρ as ρ decreases, the lower sending rate will

directly result in a lower receiving rate. Thus, both σ and ρ will eventually

be reduced to zero when the buffer is empty. Therefore, σ is never allowed

to further decrease in this state. Note that it takes a while before the effect

of any state change is observed by the sender due to RTT and buffer delays.

We record the current sequence number upon each state change to aid in the

monitoring of network conditions.

For the monitor mode, we simply set σm = σd

2
.

5.1.2 Threshold T

Other than the size of the initial burst n, we need to determine the values

of parameters T , Bmax and Bmin. Clearly, Bmin ≥ 0 and Bmax should not be

larger than the available downlink buffer, which is determined by the mobile

ISP and is not under our control (though it is relatively easy to estimate the

size of the buffer with a simple experiment).

66

We experimented with different settings and found that a large T will

cause slower feedback due to the increased buffer delay. While this does not

affect the resulting receiving rate, it makes our algorithms slow to react to

network fluctuations. Conversely, setting too low a T might inadvertently

cause the buffer to empty, resulting in under-utilization of the downlink.

Also, the higher the bandwidth of the link, the faster the buffer will drain.

Thus, a value of T that is suitable for low bandwidths might be too low when

the bandwidth is high. One solution is to make T a function of the bandwidth

and RTT. We note that Nichols and Jacobson’s CoDel uses 1 × RTT as the

threshold to invoke early dropping of packets in the buffer [52]. Because we

know the receive rate ρ and the RTT, we can set T = ρ×RTTmin, which is

the estimated bandwidth-delay product (BDP) and it seems to work well in

practice. Also, we used the same value of T in all the different states.

Bmax and Bmin determine the responsiveness of RRE and how fast it will

converge to T on each oscillation. If the difference between them and T is

large, RRE will respond with more aggressive changes in the send rate (See

Equations (5.5) and (5.6)). Because T is set to the BDP, we set Bmax and

Bmin to T+BDP
2

and T−BDP
2

respectively. We found that in practice, because

of the imprecision in estimating the RTT and receive rate, the fluctuations in

the buffer size will tend to overshoot these maximum and minimum values.

When the bandwidth is low, T might be too low that the buffer empties.

We address this problem by simply setting a minimum value for T at 30

packets, which is much smaller than the buffer size implemented in the ISPs.

Likewise, to prevent excessive use of the buffer, a maximum value of T can

also be imposed. We did not set a maximum as we found our downstream

67

buffers were sufficiently large. Instead, we set the lower and upper limit on

Bmax and Bmin to T + 10 and T − 10 respectively.

5.1.3 Receive Rate ρ

The receive rate is estimated using an exponentially weighted moving average

(EWMA) of the throughput measured from a sliding window. In a related

study [76], we have found that a window of 50 packet bursts is adequate to

estimate the instantaneous throughput. As such, we use a sliding window

consisting of 50 consecutive and distinct timestamps with reported packet

arrivals (which would contain at least 50 packets over at least 50ms). We

found that while this approach is suitable for very fast flows, the length of

the sliding window can become as long as a few seconds when the throughput

is low. Since using a long history of timestamps to estimate the throughput

would hardly reflect the instantaneous throughput accurately, we limited the

maximum length of the sliding window to a maximum of 500 ms.

It is common for several packets to have the same arrival timestamp even

for slow throughput due to the bursty nature of cellular networks. Thus, the

last timestamp is not included in the computation of the average throughput.

In other words, the receive rate is only updated when an packet whose arrival

time advances the sliding window is received.

5.2 Performance Evaluation

In this section, we present our evaluation of the TCP Receiver-Rate Estima-

tion using both the ns-2 simulator and also an implementation in the Linux

68

kernel. First, we evaluate how well RRE performs in the presence of a con-

current upload both in simulation and in a practical 3.5G/HSPA network.

Next, we assess the TCP-friendliness of the new TCP variant by comparing

it to CUBIC [27], which is the default TCP implementation in Linux and

Android.

5.2.1 Evaluation with ns-2 Simulation

We evaluated RRE with the ns-2 simulator to understand and show the cor-

rectness of the protocol under a controlled environment. While we also have

a Linux implementation that can be run over a real 3.5G/HSPA network,

we are not able to replicate a consistent test environment over a commercial

3.5G/HSPA cellular network. Because we are aware that our ns-2 model

cannot perfectly model real 3.5G/HSPA links, we attempt to obtain good

simulation parameters by using data obtained from our previous measure-

ment study.

We evaluate RRE under three scenarios: (i) when the uplink bandwidth

is very low, (ii) when the uplink bandwidth is good, and (iii) in the presence

of a concurrent upstream flow. We compare it against TCP-Reno, the classic

congestion control algorithm, as well as CUBIC [27], which is the current

default TCP congestion control algorithm deployed in Linux and Android.

We also evaluated TCP Vegas, which is delay-based, and TCP Westwood,

which implements a form of receive rate estimation.

69

TCP Sender 1 3G Client Server TCP Sink 1

TCP Sink 2 TCP Sender 2

Figure 5.2: Network topology for ns-2 simulation.

5.2.2 Network Model & Parameters

In our simulations, we use the simple dumbbell topology shown in Figure 5.2

to model the mobile wireless link, where we expect to find the typical bot-

tleneck. While a typical connection from a mobile device to the Internet will

involve more nodes and links, this suffices for us to obtain an understanding

of RRE. What remains is to set the model parameters (link bandwidth, buffer

size, RTT and loss rate) appropriately, so that we have some confidence that

the resulting evaluations are meaningful for a practical cellular data network.

To determine the parameters for our model, we conducted a measurement

study to characterize the 3.5G/HSPA network of the three locally available

mobile ISP, which we anonymously label A, B and C. While 4G/LTE plans

have very recently become available, we did not manage to get access to them

as there were no locally available plans when we first started our experiments.

We believe that our results are likely to be applicable to 4G/LTE networks

as well. We wrote a custom Android app which we installed on the phones

of several volunteers to collect background measurements of local mobile

networks when their phones were idle.

Link Bandwidth. To determine the bandwidth of the networks, we use

UDP to send a small flood of packets of around 300 KB between a server and

a mobile device and record the received throughput. We recorded over 2,000

70

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

U
p

lo
a

d
 T

h
ro

u
g

h
p

u
t
(M

b
/s

)

Download Throughput (Mb/s)

ISP C
ISP B
ISP A

Figure 5.3: Scatter plot of the upstream and downstream throughput for
different mobile ISPs.

data points over a period of several weeks, which we plot in Figure 5.3. We see

from the results that the available bandwidth is distributed across a large

range up to 5 Mb/s downstream and 3 Mb/s upstream. All three mobile

ISPs offered mobile plans with advertised rates of 7.2 Mb/s downstream

and 2 Mb/s upstream. There were a small number of instances where the

downstream bandwidth reached 8 Mb/s. While we omitted these samples

from the graph for clarity, the bandwidth parameters in our simulations were

up to 8 Mb/s for the downlink and 3 Mb/s for the uplink.

Our measurement results seem to suggest that there is no clear correlation

between the uplink and downlink bandwidth. At the same time, there are

significant differences in the network characteristics for different mobile ISPs.

For example, ISP C seems to impose a cap on the upload bandwidth that

is significantly lower than the 2 Mb/s advertised rate. Furthermore, it is

not uncommon for the uplink bandwidth to be very low while the downlink

71

remains disproportionately high. We found that not only do certain locations

tend to exhibit such conditions, they also typically occur in crowded areas

like in a shopping mall or in the subway during peak hours. One possible

explanation is that the mobile device might not have sufficient transmission

power to overcome the interference at certain locations. Another explanation

is that there might be significant contention on the uplink due to a high

volume of subscribers.

We observed RTTs that varied between 50 ms to 200 ms, so the RTT

parameter for our simulations are also varied within this range. The observed

packet loss rate was less than 0.04% overall, which concurs with Huang et al.

measurements that packet losses over cellular networks are rare [30]. We did

simulations both with no link losses and with 0.04% link losses, and found

that there was hardly any difference in the results.

We set the downlink and uplink buffer sizes to 2,000 packets and 1 MB

(≈ 700 packets) in our simulations.

5.2.3 Single Download with Slow Uplink

To understand how a slow uplink can degrade a TCP flow downstream, we

varied the uplink and downlink bandwidths for a 1 MB data flow downlink

using CUBIC. In Figure 5.4, we plot the average downlink utilization against

uplink bandwidth. As expected, the utilization is independent of the uplink

bandwidth when the uplink bandwidth is high, but the utilization drops

once the uplink bandwidth falls below a certain threshold (See dotted line in

Figure 5.4). This threshold increases as the downlink bandwidth increases,

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140

A
v
e

ra
g

e
 U

ti
liz

a
ti
o

n

Uplink Bandwidth (kb/s)

1 Mb/s
2 Mb/s
3 Mb/s
4 Mb/s
5 Mb/s
6 Mb/s
7 Mb/s
8 Mb/s

Figure 5.4: Plot of downlink utilization against uplink bandwidth for CU-
BIC.

since we need a higher rate of returning ACKs to clock the TCP sender.

RRE is specifically designed to address scenarios where the uplink is the

limiting factor. To understand how RRE improves downlink performance, we

uniformly sampled configurations of (uplink, downlink) pairs that fall below

this threshold by varying the uplink bandwidth at 5 kb/s intervals and the

downlink bandwidth at 0.25 Mb/s intervals. We run experiments to compare

the resulting goodput of CUBIC and RRE for each of these configurations and

plot the results in the scatter-plot shown in Figure 5.5. These results clearly

demonstrate that RRE is able to achieve a higher goodput than CUBIC when

the uplink is a much slower than the downlink. The achieved improvement

depends on how close the uplink is to the threshold. It is greatest when the

uplink bandwidth is significantly smaller than the threshold. While it is not

shown in the figure, RRE is able to achieve a downlink utilization close to

80% for 90% of the scenarios.

73

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

T
C

P
-R

R
E

 G
o

o
d

p
u

t
(M

b
/s

)

TCP-CUBIC Goodput (Mb/s)

Figure 5.5: Scatter plot comparing downstream goodput of RRE to CUBIC.

5.2.4 Download with Concurrent Upload

Next, we investigate how RRE performs when the uplink is congested. To

simulate a congested uplink, we simply start a single continuous upload using

CUBIC. After a short delay to allow the uplink flow to saturate the uplink

buffer, we start a downstream TCP transfer of 1 MB using different TCP

variants. We varied the delay from 1 s to 10 s at 1 s intervals, the uplink

bandwidth from 250 kb/s to 3,000 kb/s at intervals of 250 kb/s, and the

downlink bandwidth was varied from 500 kb/s to 8,000 kb/s at intervals

of 500 kb/s. In total, we obtained 1,620 data points for each of the TCP

variants: RRE, TCP-Reno, CUBIC, TCP Vegas and TCP Westwood. The

RTT was set at 100 ms.

In Figure 5.6, we plot the cumulative distribution of the ratio of goodput

achieved by RRE against that for the other TCP variants on a pairwise

basis. We make three observations: (i) the achieved goodputs for TCP-Reno,

74

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

m

Ratio of increased goodput

vs TCP-CUBIC
vs TCP Reno

vs TCP Westwood
vs TCP Vegas

Figure 5.6: Cumulative distribution function of the ratio of RRE goodput
to CUBIC and TCP-Reno, in the presence of a concurrent upload.

CUBIC and TCP Westwood are extremely similar. There are three distinct

lines for these three algorithms in Figure 5.6, but it is hard to tell them

apart. The reason for the similarity is that all three algorithms have similar

behavior during slow start, which dominates the duration of the 1 MB data

transfer. (ii) TCP Vegas performs relatively poorly and is starved about 30%

of the time by the concurrent upload. (iii) RRE is able to achieve downlink

goodput that is between 2 to 4 times of that for the other window-based

ACK-clocked TCP variants.

5.2.5 Single Download under Normal Conditions

While we have shown that RRE performs as expected and can improve down-

stream TCP goodput under poor uplink conditions, we now examine how

RRE compares against other TCP variants under normal conditions. Here,

75

we transferred 10 MB downstream so as to allow the downstream buffer a

chance to fill. The downlink bandwidth was varied between 0.5 Mb/s to

8 Mb/s in 0.5 Mb/s increments, and the uplink bandwidth was set at a level

that is above the threshold levels described in Section 5.2.3. The RTT was

set at 100 ms.

In Figure 5.7, we plot the average downstream goodput of various TCP

variants and note that the achieved downstream goodput are all comparable.

A minor observation is that RRE performs slightly better than the other

variants when the downlink bandwidth is high because RRE does not require

several RTTs during slow start to inflate the cwnd like the other (ACK-

clocked) variants. Instead, it quickly estimates the correct rate for sending.

This can be clearly seen in Figure 5.8 where we plot the time traces of the

various single TCP flows against time. We can see that the average goodput

of RRE increases much more rapidly to the steady value than the other TCP

variants. We can observe also in the time traces that TCP-Reno and CUBIC

both experience a drop in goodput after about 2 s due to packet losses from

buffer overflow. Because SACK was used in our simulation, the sender only

had to retransmit the packets lost when the buffer overflowed. Thus, upon

reception of the lost packets, the goodput sharply returns to as per normal.

5.2.6 Handling Network Fluctuations

One important design goal of a congestion control algorithm is that it must

be able to adapt to changing network conditions promptly and gracefully. To

investigate how RRE handle changes in network conditions, we ran a long-

76

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 G

o
o

d
p

u
t
(M

b
/s

)

Downlink Bandwidth (Mb/s)

TCP-RRE
TCP-CUBIC

TCP Reno
TCP Vegas

Figure 5.7: Plot of average downstream goodput against downstream band-
width for different TCP variants.

lived RRE flow with a starting downlink bandwidth of 3 Mb/s and RTT

initially set at 100 ms. The underlying network conditions are changed at

various points: (i) at 4 s, the RTT was increased by 50 ms to 150 ms; (ii) at

8 s, the RTT was further increased to 200 ms; (iii) at 15 s, the bandwidth was

decreased to 2 Mb/s; (iv) at 20 s, the RTT was restored to the original level

of 100 ms; (v) at 24 s, the bandwidth was drastically increased to 5 Mb/s;

and finally (vi) at 30 s, the bandwidth was restored to the original value of

3 Mb/s. The resulting trace is shown in Figure 5.9. We plot also a trace for

CUBIC under the same conditions for comparison.

We see from these traces that the CUBIC has a relatively stable send

rate, but it also keeps buffer occupancy relatively high. While the sending

rate for RRE oscillates quite a bit, the achieved receive rate is comparable to

CUBIC and relatively stable. RRE reacts to the changes rather quickly and

typically converges to the correct send rate within a few seconds. The worst

77

 0

 200

 400

 600

 800

G
o

o
d

p
u

t
(k

B
/s

)

TCP-RRE
TCP Vegas
TCP Reno

TCP-CUBIC

 1000

 1200

 1400

 1600

 0

 200

0 2 4 6 8 10 12

P
k
ts

 i
n

 b
u

ff

Time (s)

Figure 5.8: Sample time traces for different TCP variants.

response was at t = 8 when the RTT increases a second time. Nevertheless,

by t = 10s, RRE has successfully detected the change in the network and

adjusted its send rate accordingly.

5.2.7 TCP Friendliness

Next, we investigate how RRE contends with other TCP flows. To do so, we

ran two downstream TCP flows concurrently, with the second flow started

with delay after the first. The experiment was repeated with the delay varied

between 1 s to 10 s at 1 s increments. The rest of the parameters were

identical to those in Section 5.2.5.

We then computed the average goodput for each pair of flows and the

associated Jain’s fairness index [33], i.e. (R1+R2)2

(2×(R1
2+R2

2))
, where R1 and R2 are

the throughput of the two flows. In Figure 5.10, we plot the cumulative

distribution of the resulting data points. We make two interesting observa-

78

 0

 2

 4

 6
R

a
te

 (
M

b
/s

)
RTT +50ms RTT +100ms

B/W -1Mb/s
B/W +2Mb/s

Cubic Snd rate
Cubic Rcv rate

 0

 500

 1000

 1500

P
k
ts

RTT +50ms RTT +100ms
B/W -1Mb/s

B/W +2Mb/s

Cubic buffer

 0

 2

 4

 6

R
a

te
 (

M
b

/s
)

RTT +50ms RTT +100ms
B/W -1Mb/s

B/W +2Mb/s

RRE Snd rate
RRE Rcv rate

 0

 500

 1000

 1500

0 5 10 15 20 25 30 35 40

P
k
ts

Time (s)

RTT +50ms RTT +100ms
B/W -1Mb/s

B/W +2Mb/s

RRE buffer

Figure 5.9: Time trace comparing how RRE reacts under changing network
conditions to CUBIC.

tions: (i) RRE and TCP Vegas are significantly more fair when contending

with the same variant (and achieves a fairness index value consistently above

0.95), compared to CUBIC and TCP-Reno; (ii) how well RRE contends with

CUBIC depends on which flow starts first, which explains why there are

two lines, one labeled “RRE vs CUBIC” and one labeled “CUBIC vs RRE.”

Surprisingly, if we start a RRE flow first, a subsequent CUBIC flow would

aggressively flood the buffer and cause RRE to back-off and significantly re-

duce its rate below the “fair” rate. On the other hand, if a CUBIC flow starts

first, a subsequent RRE flow is able to acquire a reasonably fair share of the

available bandwidth.

Our results suggest that RRE, like delay-based congestion control algo-

rithm, does not contend well against CUBIC, which means that RRE might

79

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.8 0.85 0.9 0.95 1

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

m

Jain’s Fairness Index

RRE vs Cubic
Cubic vs Cubic
Reno vs Reno
Cubic vs RRE
RRE vs RRE

Vegas vs Vegas

Figure 5.10: Jain’s fairness index for contending TCP flows.

not be suitable for deployment “in the wild.” However, because transparent

proxies are commonly deployed in existing mobile ISPs, RRE can be easily

deployed by modifying the mobile-device-facing TCP stacks at such proxies

where they would not have to contend with other TCP variants in the core

Internet. Surprisingly, we will show in the next section, that in our evaluation

of a Linux implementation on existing 3.5G/HSPA networks, we found that

even if deployed on a server not within a mobile ISP, RRE is still often able

to achieve better goodput than CUBIC under conditions where the uplink is

poor or saturated.

5.2.8 Evaluation of the Linux Implementation

RRE was implemented as a kernel module for the Linux 3.2 kernel. The

modified kernel was installed on a server in our lab and we evaluated it

over the local 3.5G/HSPA networks. We ran sets of experiments at various

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

C
u

m
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n

TCP Goodput (Mb/s)

Cubic w upload
RRE w upload

Cubic single
RRE single

Figure 5.11: Cumulative distribution of measured downlink goodput in the
laboratory for ISP A on HTC Desire.

locations, such as in our laboratory, at various residences and at shopping

malls, for several hours each. In our experiments, we downloaded 1 MB of

data from the server to a mobile phone, and we used two different models of

Android phones: HTC Desire and the newer Samsung Galaxy Nexus. One

set of experiments consists of 4 tests: (i) a single CUBIC download, (ii)

a single RRE download, (iii) a CUBIC download with a concurrent TCP

upload, and (iv) a RRE download with a concurrent TCP upload. In the

latter two tests, we started the download 10 s after we start the continuous

upload. The experiments were done in sets of 4 tests and each set was

run approximately every minute. Since we stayed for several hours at each

location, we obtained about 100 to 200 data points for each test at each

location. While we collected many sets of data, they are mainly similar, thus

we only present three representative sets of data.

In Figure 5.11, we plot the results of our experiment carried out in our

81

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
u

m
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n

TCP Goodput (Mb/s)

Cubic w upload
RRE w upload

Cubic single
RRE single

Figure 5.12: Cumulative distribution of measured downlink goodput in the
laboratory for ISP C with Galaxy Nexus.

lab using the older HTC Desire phone over ISP A. The results show that the

achieved goodput for a single TCP download for both CUBIC and RRE are

comparable. However, in the presence of a concurrent upload, the goodput

drops significantly, though the drop for CUBIC is much more significant than

that for RRE. We suspect that this large drop was caused by the combina-

tion of a small 200 kB uplink buffer and a relatively high measured uplink

throughput of 800 kb/s compared to the download. This combination likely

caused the background TCP uplink flow to flood the uplink buffer aggres-

sively causing significant ACK losses and delays for the downlink flow.

In Figure 5.12, we plot the results for experiments carried out in the

same location, but using the newer Galaxy Nexus phone over ISP C. The

downlink speeds were much higher but the uplink throughput was slower,

with a median value of 500 kb/s. Finally, in Figure 5.13, we plot the results

for experiments carried out at a residence over ISP C. The uplink at the

82

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
u

m
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n

TCP Goodput (Mb/s)

Cubic w upload

 Cubic single

RRE single

RRE w upload

Figure 5.13: Cumulative distribution of measured downlink goodput at a
residence for ISP C on Galaxy Nexus.

residence was even slower, with the median rate below 200 kb/s. While

the data presented in Figures 5.11 to 5.13 were specially chosen to illustrate

scenarios where RRE performed better than CUBIC, we do not mean to

suggest that RRE always performs better. In experiments where the uplink

bandwidth was high, the performance of RRE and CUBIC were comparable.

We note however that in none of our experiments did RRE perform noticeably

worse than CUBIC.

In summary, what our results for actual 3.5G/HSPA networks suggest

is that RRE is able to improve download throughput under two scenarios:

(i) when the uplink bandwidth is low relative to the uplink buffer and (ii)

when the uplink buffer is saturated by a concurrent upload. While RRE was

predicted to perform in our simulations some 2 to 4 times faster than CUBIC

under such scenarios, the observed improvements were somewhat smaller in

practice. We believe that a plausible explanation for the difference is that

83

the server in our experiments was not located within the ISP and so there

were likely losses arising from contention between our RRE flow and other

TCP flows in the core Internet routers.

5.3 Summary

We have developed a rate-based congestion control algorithm called RRE,

which works on our new TCP framework. RRE adjusts the sending rete

so as to keep the buffer occupancy between two given parameters Bmin and

Bmax. This ensures that the link is kept utilized and the throughput remains

at the maximum value.

In this chapter, we showed that not only RRE is able to overcome the

problem of egregious ACK delays in two-way concurrent flows, it performs

no worse than CUBIC under regular link conditions. RRE also remains

unaffected when the uplink return path is slow or congested. Our evaluation

shows that RRE is friendly towards other TCP flows and can be feasibly

deployed over real cellular data networks.

84

Chapter 6

Reducing Latency

Recently, there has been a focus on improving end-to-end network delay over

cellular networks as it is often the dominant component of the overall re-

sponse time [57]. Because cellular data networks often experience rapidly

varying link conditions, they typically have large buffers to ensure high link

utilization [76]. However, if the application or transport layers send pack-

ets too aggressively, the saturation of the buffer can cause long delays [19].

Sprout [71] and PROTEUS [73] were recently proposed to address this prob-

lem by forecasting the network conditions.

In line with this focus, we show that our rate-based congestion control

framework is able to also achieve similarly low delays, while maintaining a

much higher throughput, by adjusting the parameters of our rate-based al-

gorithms. To this end, we developed PropRate, a more simplistic version of

RRE and show that a fast feedback mechanism works just as well as current

forecasting methods. In addition, we also implemented Sprout and PRO-

TEUS as congestion control modules in our framework to show the adapt-

85

ability of our framework in incorporating new algorithms and techniques.

6.1 Implemented Algorithms

To evaluate our proposed rate-based congestion mechanism, we implemented

a number of rate-based TCP variants. As a proof-of-concept, we developed

PropRate, a simple proportional-rate congestion control algorithm to demon-

strate that our proposed rate-based approach works well. Sprout [71] and

PROTEUS [73] are recently proposed algorithms for cellular data networks,

and they are essentially different approaches for determining the data sending

rate. As such, we investigate how their rate-computation algorithms perform

under our proposed rate-based TCP stack. We implemented them as kernel

modules that can be loaded into our rate-based framework.

6.1.1 PropRate

PropRate uses the same exponentially weighted moving average (EWMA)

computation as RRE in computing the receive rate. Their difference lies in

the sending rate and the threshold value. In PropRate, the sending rate σ

is set at a fixed function kρ, which is a rate proportional to the estimated

receive rate ρ, hence the name PropRate. In the Buffer Fill state, k > 1,

and in the Buffer Drain state, k < 1. We allowed the sending rate σd in the

buffer drain state to fluctuate, instead of keeping it constant as in RRE. This

might cause the buffer to drain too quickly but it allows PropRate to also

optimize for delay in addition to throughput.

The thresholds Tf and Td were set to the same constant T . We show

86

later in Section 6.2.5 that PropRate can achieve a whole range of tradeoffs

along a performance frontier by varying the proportion parameter k and the

threshold T .

6.1.2 PROTEUS-Rate

The key idea of PROTEUS [73] is to use a regression tree to forecast the

available bandwidth from a history of past samples. PROTEUS computes

the instantaneous throughput in disjoint time windows of 500 ms. Then,

using a history of 64 time windows, it constructs a regression tree and uses it

together with the sending rate of the current window, to forecast the available

bandwidth, and thus the number of packets to send, in the next time slot.

We implemented the PROTEUS forecasting algorithm as a module called

PROTEUS-Rate.

Like PropRate, we set the sending rate for PROTEUS-Rate to a fixed

proportion of the forecasted rate. We also use a fixed value for Tf and

Td. The PROTEUS algorithm produces relatively good forecasts. Its main

drawback is that the suggested parameters of 500 ms and history of 64 time

windows [73] require a long initialization time of 32 s to initialize the regres-

sion tree. We experimented with shorter time windows and less history to

reduce this initialization time, but we found that doing so adversely affected

the achieved performance.

87

6.1.3 Sprout-Rate

We obtained the source code of Sprout from the author’s public reposi-

tory [71], and ported their stochastic forecast algorithm as a kernel mod-

ule called Sprout-Rate. The basic idea of the Sprout algorithm is to model

the link as a doubly-stochastic process, where the mean λ of a Poisson pro-

cess varies every tick according to a Brownian motion with the mean being

the previous λ and standard deviation fixed at 200 packets per second per
√

second. It uses a tick length of 20 ms and the forecast is updated at the

end of each tick after observing the number of packets received in the tick.

Although the source code from the authors was freely available, the de-

fault Sprout implementation runs in the Linux user space using math libraries

and non-blocking IO. We encountered some difficulties in porting it directly

as a loadable Linux kernel module and had to make a few modifications.

First, we had to develop our own floating point routines to perform non-

integer calculations and to compute the Poisson and Gaussian distribution

functions in the kernel. The original Sprout algorithm can take up to 90 s to

initialize on a 1.66-GHz Atom processor and at least a hundred megabytes

of memory to save the Gaussian distribution. By carefully selecting integer

values of common factors and hard-coding the standard distributions into the

source code, we reduced the start-up time significantly to a few milliseconds

and the memory usage was reduced to only a few megabytes.

Second, we found that the original Sprout implementation took between

6 to 10 ms to compute the forecast for each tick, even though it is running in

user space with full access to floating point instructions. To prevent blocking,

88

the forecasting routine runs in a separate thread from the network IO. As

we do not have the luxury of floating point instructions and non-blocking IO

in the kernel, the forecast routine would block the CPU for more than 50%

of the time. To address this, we increased the tick duration to 100 ms so

a computation time of 10 ms will only block the CPU for 10% of the time.

The 100 ms tick duration also allows the algorithm to be less sensitive to

high-frequency network variations.

Third, the original Sprout implementation uses a cwnd-like mechanism

to clock the sending of packets. In particular, it forecasts the number of

packets to send in the next 8 ticks, and sends 5 ticks worth of packets in one

burst, which are then used by the receiver to estimate the receive rate. To

use their forecast in our module, we computed the sending rate by dividing

the forecast over the number of ticks.

6.2 Evaluation

The network conditions of cellular data networks can vary greatly even over

short periods of time [75]. To ensure a consistent comparison while main-

taining the delays and variations of cellular data networks, we use a trace-

driven network emulator as opposed to the ns-2 simulator. We use the

network emulator Cellsim, which was also used by Winstein et al. in evalu-

ating Sprout [71]. The tool forwards packets across two network interfaces

according to the packet trace it is given. The Cellsim source obtained from

their public repository implements an infinite buffer. Because traditional

cwnd-based algorithms like CUBIC react to packet loss due to buffer over-

89

flow, we modified the Cellsim tool to introduce a finite drop-tail buffer for

fairer evaluation.

We obtained network traces from three local cellular ISPs using a cus-

tom Android application on a Samsung Galaxy S3 LTE smartphone, with

the network saturated by UDP packets. Similar to our measurement study,

tcpdump was used to capture the packet traces. We know from our mea-

surement study that UDP could be used to estimate the available network

bandwidth because we did not find any evidence of UDP traffic being throt-

tled by the ISPs. We collected two sets of traces from each of the three local

ISPs. One set was obtained with the phone in a stationary position and the

other set was taken on board a vehicle that was driven around campus. We

followed the evaluation methodology and used the same emulation parame-

ters as Winstein et al. [71], and we used both the uplink and downlink traces

in the network emulator. iperf was used to send and receive TCP traffic.

We also evaluated the various algorithms over a real LTE network using

the Samsung Galaxy S3 LTE phone as the receiver. However, due to the high

throughputs of our LTE networks and the limited data quota of our data

plans, we could only conduct a limited number of runs for each experiment

on the real LTE networks.

In our evaluation, we compared the traditional TCP congestion control

algorithms, namely CUBIC, Westwood and Vegas against our rate-based con-

gestion control modules PropRate, PROTEUS-Rate, Sprout-Rate and RRE.

In addition, we were also able to evaluate the original Sprout implementation

using the source code obtained from their public repository.

90

Table 6.1: Parameters used for rate-based TCP variants.

Algorithm Tf & Td σf σd

PropRate (High) 60ms 1.25ρ 0.75ρ
PropRate (Low) 20ms 1.25ρ 0.25ρ
Proteus-Rate [73] 50ms 1.00ρ 0.25ρ
Sprout-Rate [71] 50ms 2.00ρ 0.50ρ
RRE [42] 40ms (1 + 60−40

40+RTT
)ρ (1− 40−20

40+RTT
)ρ

6.2.1 Algorithm Parameters

The congestion control algorithms that we evaluated can be divided into

two categories: i) the cwnd-based algorithms, namely CUBIC, Westwood,

Vegas and Sprout; and ii) TCP variants based on our rate-based mechanism,

namely PropRate, RRE, PROTEUS-Rate and Sprout-Rate. We consider

the Sprout [71] algorithm to be a form of cwnd-based algorithm because

even though it is implemented in UDP, it adopts a cwnd-like counter to

clock the sending of packets. Sprout, Sprout-Rate and PROTEUS-Rate are

algorithms that attempt to do stochastic forecasting. Table 6.1 summarizes

the parameters for the rate-based algorithms.

We investigated two canonical variants of PropRate, which we call Pro-

pRate (high) and PropRate (low). The parameters for PropRate (high) is

intended to achieve a high throughput, and thus it uses a fixed threshold of

60ms, and has a low drain rate to prevent the buffer from emptying com-

pletely. On the other hand, PropRate (low) is optimized for low delays and

uses a fixed threshold of 20ms, which is half the minimum RTT, and a much

higher drain rate to avoid bufferbloat.

For PROTEUS-Rate, we found that with the recommended window size

91

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Cubic

Sprout

Vegas

Westwood

cwnd-based

PropRate (high)

PropRate (low)

rate-based

(a) ISP A, Stationary

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Cubic

Vegas

Westwood

Sprout

cwnd-based

PropRate (high)

PropRate (low)

rate-based

(b) ISP A, Mobile

Figure 6.1: Performance of various algorithms for ISP A traces.

92

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400 450

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Cubic

Sprout

Vegas

Westwood

cwnd-based

PropRate (high)

PropRate (low)

rate-based

(a) ISP B, Stationary

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Cubic

Sprout

Vegas

Westwood

cwnd-based

PropRate (high)

PropRate (low)

rate-based

(b) ISP B, Mobile

Figure 6.2: Performance of various algorithms for ISP B traces.

93

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Cubic

Sprout

Vegas

Westwood

cwnd-based

PropRate (high)

PropRate (low)

rate-based

(a) ISP C, Stationary

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400 450

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Cubic

Vegas

Westwood

Sprout

cwnd-based
rate-based

PropRate (high)

PropRate (low)

(b) ISP C, Mobile

Figure 6.3: Performance of various algorithms for ISP C traces.

94

of 500ms [73], the forecasted bandwidth tends to be slightly higher than the

actual bandwidth. Thus, we simply used the forecasted rate for σf . We also

found that setting σd to 0.25ρ allows us to keep the delay low.

For Sprout-Rate, we found that we had to use a rate that was double its

forecast in order to get comparable performance. This is because the original

Sprout implementation uses a burst of 5-ticks worth of packets to estimate

the receive rate while our rate-based mechanism sends packets at a steady

rate.

RRE uses a default threshold value that is the minimum RTT, thus we set

it to 40ms. Bmax and Bmin are to be set at ±1
2
RTT, so we set them to 60ms

and 20ms respectively. Note that the difference between RRE and PropRate

is that the sending rates for the former are expressed in terms of the currently

observed minimum RTT, while PropRate uses fixed constants. Finally, we

set Tf = Td and also set σm = 0.5σd for all the rate-based algorithms.

6.2.2 Trace-based Emulation

In Figure 6.1, we plot the one-way packet delay against the total average

throughput of different algorithms for stationary and mobile traces for three

ISPs. The circles in Figure 6.1 (and also subsequent figures) indicate the

mean values while the crosses indicate the 95th-percentile values. The 95th-

percentile value follows the evaluation metric adopted by Winstein et al. [71].

The dotted lines indicate the maximum throughput and minimum latencies

for each trace. The results for PROTEUS-Rate do not include the long initial

training period before forecasting begins.

95

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 1000

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Vegas

Cubic

Sprout

cwnd-based

PropRate (high)

 PropRate (low)

rate-based

(a) AT&T

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Vegas

Cubic

Sprout

cwnd-based

PropRate (low)

PropRate (high)

rate-based

(b) T-Mobile

Figure 6.4: Results using MIT Sprout (mobile) traces [71].

96

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Vegas

Cubic

Sprout

cwnd-based

PropRate (low)

PropRate (high)

rate-based

(c) Verizon-4G

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 1000 10000

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Vegas

Cubic

Sprout

cwnd-based

PropRate (high)

PropRate (low)

rate-based

(d) Verizon-3G

Figure 6.4: Results using MIT Sprout (mobile) traces [71].

97

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 1000 10000

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Vegas

Sprout

Cubic

cwnd-based

PropRate (high)

PropRate (low)

rate-based

(e) Sprint

Figure 6.4: Results using MIT Sprout (mobile) traces [71].

Our results show that among the traditional cwnd-based algorithms, CU-

BIC achieves a high throughput but also results in higher delays, while West-

wood is surprisingly good. Westwood achieves lower delays than CUBIC at

slightly lower throughputs. Another surprising observation was that Vegas

outperformed Sprout in terms of latency for all the traces. Both had rela-

tively low throughputs and neither seemed superior to the other in terms of

throughput for stationary traces. Among the rate-based algorithms, we see

that PropRate (high) is able to achieve high throughputs that are relatively

close to the optimal value. PropRate (low) is able to achieve low delays

comparable to Sprout and Vegas, but at a higher throughput.

Mobile Traces. If we compare the results between the stationary and

mobile traces, we can see the maximum available throughput is different

for the various ISP traces. The performance for the various algorithms for

98

the mobile traces is very similar to that for the stationary traces, except

that there is typically an increase in the variance of the latencies. Sprout is

exceedingly robust and is able to achieve latencies with relatively low variance

for mobile traces. We also note that for some ISPs, the mobile traces have

higher throughputs than the stationary ones.

We also repeated our experiments using the mobile traces used by Win-

stein et al. [71], which were collected by driving around Boston. We present

the results in Figure 6.4. The main difference between our local traces and

the MIT Sprout traces is that the Sprout traces have significantly lower band-

width. Even though we used the same emulator as Winstein et al., our results

for Sprout are slightly different from those presented in [71]. We checked our

experimental setup many times and communicated with the authors of [71],

and found the key difference was that their evaluations were done on an Ama-

zon EC2 cluster [70]. Our emulation experiments were performed over real

physical networks and servers, and we suspect that the difference between the

results could be due to the network effects arising from virtualization [69].

We found that PropRate (low) does not perform as well in terms of delay

as the original Sprout algorithm for some traces like Verizon-3G and Sprint

in terms of latency, so we set out to investigate why. A detailed examination

of the MIT Sprout traces reveals that periods of complete outages (i.e., zero

bandwidth) were relatively common, unlike our local mobile traces where

there was constant connectivity at significantly higher bandwidths. Thus,

we believe that much of the performance gains for the Sprout algorithm

arising from it being highly optimized to tolerate and recover from complete

outages. We believe that PropRate can be further optimized to better cope

99

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 1000

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Cubic

Vegas

Westwood

Sprout
cwnd-based

rate-based

PropRate (high)

PropRate (low)

Figure 6.5: Downstream throughput and delay in the presence of a concur-
rent upstream TCP flow for ISP C.

with periodic complete network outages.

6.2.3 Problem of Congested Uplink

It has been shown that the performance of mobile networks can degrade

significantly when there is congestion in the uplink [75]. To simulate a con-

gested uplink, we started a TCP CUBIC uplink flow simultaneously with the

downlink flow that was measured. In Figure 6.5, we present the results for

the ISP C mobile trace. The uplink bandwidth in this trace was 1.5Mb/s,

which was roughly one-tenth of the downlink bandwidth. Comparing this

with Figure 6.3(b), we can see that the background uplink flow will signifi-

cantly degrade the performance of the downlink by at least 75% for all the

algorithms. We see however that our rate-based algorithms are significantly

more resilient than the cwnd-based algorithms. Both Vegas and Sprout are

100

 0

 1000

 2000

 3000
Cubic

 0

 1000

 2000

 3000

 0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Time (s)

PropRate

Figure 6.6: Trace of the downstream sending rate for flows in Figure 6.5.

effectively starved.

Figure 6.6 shows the sending rates for CUBIC and PropRate (high) over

time for the same network trace. We can see that as expected, the ACK-

clocked CUBIC algorithm is very bursty as it sends new data packets only

when the ACKs are received. PropRate is however able to maintain a some-

what more steady sending rate. We found that the gaps that appear in

the PropRate trace are caused by the default TCP receive window, which

prevents packets from being sent once there is one receive window worth of

unacknowledged packets. Such gaps will to be reduced if the receive window

is set to a higher value.

101

 500

 550

 600

 650

 700

 750

 800

 850

 0 50 100 150 200 250

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

PropRate (high) Mean
PropRate (low) Mean

95%-tile

0%
25% 50% 75% 100%

0%
25%

50%
75%

100%

Figure 6.7: Performance when errors are introduced to the rate estimation.

6.2.4 Robustness to Rate Estimation Errors

Figure 6.7 shows the results of PropRate (high) and PropRate (low) when we

introduced errors into the estimated rate. The introduced error is expressed

as in terms of the coefficient of variance of the estimated rate, i.e., ratio of

the standard deviation (of the error) to the mean estimated rate. We found

that the errors have a marginal effect on the latency, though larger errors

will slightly reduce the throughput. Degradation was about 10% when the

standard deviation of the errors introduced was up to 100% of the mean

of the original estimates. This is not surprising since such errors merely

increase the frequency of the switching between the Buffer Fill and Buffer

Drain states.

102

6.2.5 Performance Frontiers

We next investigate how promising our rate-based mechanism is to achieve a

good tradeoff point between latency and throughput for mobile applications.

We also investigate the effectiveness of forecasting algorithms like Sprout

and PROTEUS. To this end, we ran variants of our rate-based algorithms

with a wide range of parameters on the ISP C mobile traces to obtain the

scatterplots in Figure 6.8. From these plots, we can see the corresponding

performance frontiers of the various rate-based algorithms, and that Pro-

pRate seems to be able to achieve a frontier that is close to optimal.

PropRate. The results for PropRate in Figure 6.8(a) are obtained by

varying the threshold value T and the multiplier constant k for the propor-

tional increase or decrease of the sending rate. In addition, we also plot the

points on the frontier corresponding to the threshold values T from 20ms

to 80ms. Clearly, the achieved latency is lower with a smaller threshold, at

the cost of reduced throughput. The throughput however will drop off quite

steeply when the threshold T is reduced below 20ms.

PROTEUS-Rate. PROTEUS-Rate has some extra proprietary param-

eters which can be adjusted. They are the size of each observation window

and the length of training history. We highlight the points on the performance

frontier that correspond to different window sizes. The remaining points are

obtained by varying the threshold and drain rates. We see our rate-based

approach can achieve somewhat lower latencies by using the PROTEUS fore-

casting algorithm, at the cost of slightly lower throughput compared to Pro-

pRate. The main drawback of PROTEUS-Rate is that it requires a relatively

103

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

PropRate mean
PropRate 95%
threshold (ms)

20

40
6080

(a) PropRate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Proteus-Rate mean
Proteus-Rate 95%300

400

500

600

700

window size (ms)

(b) PROTEUS-Rate

Figure 6.8: Performance frontiers achieved by different algorithms with the
ISP C mobile trace.

104

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Sprout-Rate mean
Sprout-Rate 95%

Original Sprout confidence

5%25%

50%

75%

95%

(c) Sprout & Sprout-Rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

RRE mean
RRE 95%

(d) RRE

Figure 6.8: Performance frontiers achieved by different algorithms with the
ISP C mobile trace.

105

long training time of about 30 s. Reducing this training time will significantly

reduce the accuracy of the forecast.

Sprout-Rate. As evident from Figure 6.8(c), we found that by using

the Sprout forecasting algorithm, we again can achieve lower latencies than

PropRate, but at a cost to the achieved throughput.

It turns out that the Sprout algorithm incorporates a confidence param-

eter [71] and we followed the methodology used by Winstein et al. to run

the original Sprout algorithm on the same trace while varying this parame-

ter. The varying of this confidence parameter produces a nice performance

frontier for the MIT Sprout trace (which we could reproduce and verify).

However, this was not the case for our ISP C mobile LTE trace. We found

that this is because when a lower confidence parameter was used, the forecast

would be too high and this causes more packets than required would be sent

in a burst. This significantly increases the delay. Our ISP C mobile trace had

significantly higher throughputs than the MIT Sprout trace. This meant that

too many packets were sent in a single burst, such that no packets would be

sent for several subsequent ticks. This causes the receiver to incorrectly infer

that there is a network outage. As a result, this leads to severe oscillations

in the forecasts, thereby negatively impacting latency. In other words, for

the ISP C mobile trace, reducing the confidence parameter actually makes

latency worse (higher) instead of improving it.

RRE. We varied the threshold value T and both the Bmin and Bmax

variables specified in the algorithm and plot the results in Figure 6.8(d).

Though these variables indirectly control the fill and drain rate like PropRate,

it was not possible to sufficiently drain the buffer to achieve low latencies by

106

just varying these parameters. This shows that our initial design of RRE

was indeed to maximize for throughput rather than delay.

6.2.6 TCP Friendliness

If a rate-based TCP variant, like PropRate, were to be deployed in the wild,

it would have to interact with existing cwnd-based TCP variants. So, it is

important to understand how TCP variants based on our rate-based stack

contend with existing cwnd-based TCP variants like CUBIC. In each exper-

iment, we first started one TCP flow and then another parallel flow after

30 s. Both flows were then measured for another 30 s, and we computed the

average throughput for each flow during the latter 30 s time period.

As a baseline, we first evaluated how two flows of the same algorithm

would affect each other and we plot the results in the Figure 6.9(a). A

point on the diagonal axis will represent perfect fairness and sharing by the

two flows. We see that CUBIC is in fact not very fair when contending

with another CUBIC flow and that PropRate is relatively friendly to itself.

Because like Sprout [71], we envision that PropRate will be deployed at

the mobile link, it is important that PropRate be fair when there is self-

contention.

Next, we compared PropRate (high), PropRate (low), Sprout and Ve-

gas to CUBIC for the available stationary traces for three ISPs (hence, the

distinct bands) and plot the results in Figure 6.9(b). We found that the

results depended on which flow starts first. CUBIC is rather aggressive and

if it starts first, then the throughput of the other algorithm is significantly

107

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

T
h

ro
u

g
h

p
u

t
o

f
a

lg
o

ri
th

m
 Y

 (
K

B
/s

)

Throughput of algorithm X (KB/s)

Cubic vs Cubic
PropRate(h) vs PropRate(h)

PropRate(l) vs PropRate(l)

(a) Self-contention.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

T
h

ro
u

g
h

p
u

t
o

f
fl
o

w
 Y

 (
K

B
/s

)

Throughput of flow X (KB/s)

PropRate(h) vs Cubic
PropRate(l) vs Cubic

Sprout vs Cubic
Vegas vs Cubic

Cubic vs PropRate(h)
Cubic vs PropRate(l)

Cubic vs Sprout
Cubic vs Vegas

(b) Contention against CUBIC.

Figure 6.9: TCP friendliness of Flow X versus Flow Y. Flow Y was started
30 s after Flow X.

108

reduced, though PropRate still achieves slightly higher throughputs than

Sprout and Vegas. If the CUBIC flow were to start later, then PropRate and

Sprout are able to obtain a significantly larger share of the available band-

width than that in the earlier case. As noted by Winstein et al., it is hard

to achieve low latencies if there is aggressive cross traffic at the bottleneck

link [71]. While PropRate will certainly achieve lower latencies than CUBIC

by trading off some throughput and contending less aggressively, how low

we can go ultimately depends on the size of the bottleneck buffer. However,

our results do suggest that PropRate is potentially usable even when there

is cross traffic, especially if it can adjust its “aggressiveness” dynamically.

6.2.7 Practical 4G Networks

Finally, we compared the performance of PropRate to existing algorithms

over a real cellular data network. Like the emulation experiments, we used

iperf to start a 90-second long TCP transfer from our server to a Samsung

Galaxy S3 LTE smartphone over an LTE network. We could not get Sprout

to compile for Android, so we instead tethered the phone to a laptop that

could run Sprout. As our LTE networks have very high bandwidth, we could

only run a limited number of tests before exhausting the data quota of our

plans.

Since real cellular network conditions are not always stable even at a

stationary position, we repeated each experiment several times for each al-

gorithm and plotted the trace with the highest throughput for a fairer com-

parison. We plot the results for the ISP A LTE network in Figure 6.10. The

109

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Delay (ms)

Sprout

Cubic

Vegas

Westwood

cwnd-based

RRE

PropRate (low)

PropRate (high)

rate-based

Figure 6.10: Plot of throughput vs delay on ISP A LTE network.

results are very similar to that obtained by emulation in Figure 6.1(a). This

also validates our emulation-based evaluations in Sections 6.2.2 to 6.2.6.

6.3 Summary

In this chapter, we introduced PropRate, another rate-based congestion con-

trol algorithm for our rate-based TCP framework. We showed that a simple

algorithm like PropRate can be adjusted to optimize the algorithm towards

throughput or delay. In addition, the performance of PropRate can be as

good, if not better than the current forecasting techniques Sprout and PRO-

TEUS, which optimize for delay. By varying the parameters and plotting the

throughput/delay tradeoff, we also showed that our rate-based algorithms

can achieve a good frontier in our network traces. This shows that it is pos-

sible to obtain a good performance tradeoff by simply varying the parameters

of our framework.

110

Chapter 7

Conclusion and Future Work

In this thesis, we investigated mobile cellular data networks and found that

i) the downlink performance of two-way concurrent TCP flows is severely

affected by ACK packets being delayed in the uplink; ii) TCP flows typically

have high latencies as ISPs typically provision deep buffers, and the low

packet loss rate allows the cwnd to grow large; and iii) stochastic forecasting

of the link throughput can reduce the overall latency but overly sacrifices on

throughput. To address these issues, we proposed a new rate-based approach

to TCP congestion control and implemented a working framework in the

Linux kernel.

We showed that by using this framework, we can achieve high through-

put/utilization in the presence of a saturated or congested uplink or achieve

low latencies by controlling some parameters.

A rate-based approach has several challenges which we have solved in

our congestion control framework. The first challenge of obtaining the rate

estimate of the link was solved by using the TCP timestamps of ACK packets

111

to estimate to arrival time of the corresponding data packets. The second

challenge is to handle bandwidth variations in the network. This is solved

by using a feedback mechanism to oscillate the sending rate about a fixed

value, i.e., we intentionally send faster than the estimated bandwidth to

probe for potential bandwidth increase, and throttle back when congestion

is encountered. This leads to the third challenge of how to determine the

onset of congestion. Traditionally, congestion is triggered by packet losses.

However, cellular data networks have very low packet losses due to the hybrid-

ARQ scheme at the link layer. The very deep buffers typically provisioned at

the ISPs results in bufferbloat and increases the end-to-end delay. Thus, in

our framework, we directly estimate the buffer queue by observing the relative

difference in the TCP timestamps to obtain and estimate of the buffer delay.

Together, this self-oscillating feedback mechanism helps achieve the stability

that is inherent in the ACK-clocked cwnd-based mechanism.

Our rate-based congestion control framework have parameters that can be

controlled by different algorithms, namely i) estimating the receiving rate; ii)

setting the sending rate; and iii) the congestion threshold. We demonstrated

using two control algorithms, RRE and PropRate, that we can optimize the

algorithms towards maximizing throughput or minimizing delay. As a further

proof-of-concept, we also implemented two current state-of-the-art forecast-

ing techniques, Sprout and PROTEUS, as congestion control algorithms in

our framework. We showed that while forecasting might help improve la-

tency of TCP flows in cellular networks, a simple algorithm like PropRate

can perform better given the correct parameters.

112

7.1 Future Work

The development of our rate-based congestion control algorithm opens up

new possibilities for further research. We highlight a few of those possibilities.

7.1.1 Navigating the performance frontier

In our current implementation of PropRate, we have chosen two sets of pa-

rameters: one which is optimized for good throughput and another for low

delay. We have also shown by arbitrarily adjusting the parameters that it is

possible to obtain a range of performance trade-off between throughput and

delay. However, most of the results are not on the optimal frontier. Therefore

it remains to derive an algorithm or formula to obtain a set of parameters

whose loci will lie along the optimal frontier.

One such approach would be to first filter the set of parameters whose re-

sult lies on the frontier from running PropRate over constant network traces

of different throughput, and thereafter, try to fit an equation of each pa-

rameter with respect to the delay or throughput. From this, we can obtain

an equation on which we can set the parameters based on the desired delay

or throughput. Our preliminary investigations on this method have showed

some promising result, thus we are continuing research in this approach.

7.1.2 Model of rate-based congestion control

An advantage of a framework is that an algorithm and structure can be well-

defined. The interactions between the parameters are based on a general al-

gorithms. This makes it possible to derive a set of formal equations or model

113

to perform analysis on the algorithm. In the traditional TCP congestion

control mechanism, the size of the congestion window is set by the algorithm

in response to lost packets, which are assumed to be lost due to buffer over-

flow. This not only allows TCP throughput to be modelled [53, 11], but also

analysis of general AIMD algorithms in regards to buffer sizing [4, 56, 61].

Such analysis and modelling is also possible under our new rate-based

TCP congestion control framework. Further research can be done to analyse

and compare the performance of rate-based TCP congestion control algo-

rithms.

7.1.3 Explore new rate-base algorithms

Our framework specifies a set of parameters upon which different algorithms

can adjust, thereby producing different effects. Not only are the parameters

tunable, but the computation method itself is open, e.g., estimating the rate

from raw packet timestamps. There are several methods to estimate the rate

and we have only investigated using a naive sliding-window technique. This

leaves much room for further research in how other techniques of estimation

can be done.

Another aspect for more development is the technique in determining

the sending rates. While we have investigated a few techniques like using a

fixed proportion and stochastic forecasting techniques and regression trees,

there are many other techniques that can be implemented such as using

proportional-integral-derivative (PID) control equations to control the feed-

back loop.

114

7.1.4 Use in other networks

Our work was developed specifically to overcome the bufferbloat and delayed-

ACK issues in cellular data networks. However, a rate-base congestion con-

trol could also potentially be advantageous over other networks such as Wi-Fi.

In addition, as LTE speeds continue to increase, techniques and algorithms

have to evolve with the new challenges. Continued research is needed to

investigate rate-based congestion control under such conditions.

115

Bibliography

[1] IDC worldwide mobile phone tracker, November 2013.

[2] Juan J. Alcaraz and Fernando Cerdán. Combining ACK Rate Control

and AQM to Enhance TCP Performance over 3G Links. In Proceedings

of PM2HW2N ’06, October 2006.

[3] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing Router

Buffers. In Proceedings of SIGCOMM ’04, August 2004.

[4] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router

buffers. In Proceedings of the 2004 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications,

SIGCOMM ’04, pages 281–292, New York, NY, USA, 2004. ACM.

[5] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriya-

bandara. TCP Performance Implications of Network Path Asymmetry.

RFC 3449 (Best Current Practice), December 2002.

[6] Hari Balakrishnan, Randy H. Katz, and Venkata N. Padmanbhan. The

effects of asymmetry on TCP performance. Mob. Netw. Appl., 4:219–

241, October 1999.

116

[7] E. Blanton, M Allman, K. Fall, and L Wang. A conservative SACK-

based loss recovery algorithm for TCP. RFC 3517, April 2003.

[8] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: End to End

Congestion Avoidance on a Global Internet. IEEE JSAC, October 1995.

[9] Jesper D. Brouer and Jørgen S. Hansen. Experiences with reducing TCP

performance problems on ADSL. DIKU - Technical Report 04/07, May

2004.

[10] Carlo Caini and Rosario Firrincieli. TCP Hybla: a TCP enhancement for

heterogeneous networks. INTERNATIONAL JOURNAL OF SATEL-

LITE COMMUNICATIONS AND NETWORKING, 22, 2004.

[11] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling tcp

latency. In INFOCOM 2000. Nineteenth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE,

volume 3, pages 1742–1751. IEEE, 2000.

[12] Robert L. Carter and Mark E. Crovella. Measuring bottleneck link speed

in packet-switched networks. Technical report, Performance Evaluation,

1996.

[13] Rajiv Chakravorty, Joel Cartwright, and Ian Pratt. Practical experience

with TCP over GPRS. In Proceedings of IEEE GLOBECOM ’02, 2002.

[14] Rajiv Chakravorty and Ian Pratt. WWW performance over GPRS. In

MWCN, pages 527–531. IEEE, 2002.

117

[15] Mun Choon Chan and Ram Ramjee. Improving TCP/IP performance

over third-generation wireless networks. IEEE Transactions on Mobile

Computing, 7(4):430–443, 2008.

[16] Mun Choon Chan and Ramachandran Ramjee. TCP/IP Performance

over 3G Wireless Links with Rate and Delay Variation. In Proceedings

of MobiCom ’02, September 2002.

[17] Mun Choon Chan and Ramachandran Ramjee. Improving TCP/IP Per-

formance over Third Generation Wireless Networks. In Proceedings of

INFOCOM ’04, March 2004.

[18] Chih-He Chiang, Wanjiun Liao, and Tehuang Liu. Adaptive down-

link/uplink bandwidth allocation in IEEE 802.16 (WiMAX) wireless

networks: A cross-layer approach. In Global Telecommunications Con-

ference, 2007. GLOBECOM ’07. IEEE, pages 4775–4779, Nov 2007.

[19] Nandita Dukkipati, Matt Mathis, Yuchung Cheng, and Monia Ghobadi.

Proportional rate reduction for TCP. In Proceedings of IMC ’11, Novem-

ber 2011.

[20] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom

Herbert, Amit Agarwal, Arvind Jain, and Natalia Sutin. An argument

for increasing TCP’s initial congestion window. SIGCOMM Computer

Communications Review, 40, June 2010.

[21] Addisu Eshete, Andrés Arcia, David Ros, and Yuming Jiang. Impact of

wimax network asymmetry on TCP. In Wireless Communications and

118

Networking Conference, 2009. WCNC 2009. IEEE, pages 1–6. IEEE,

2009.

[22] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3481

(Best Current Practice), December 2003.

[23] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer.

Equation-based congestion control for unicast applications. In Proceed-

ings of SIGCOMM ’00, pages 43–56, August 2000.

[24] Gartner. Worldwide Smartphone Sales Soared in Fourth Quarter of 2011

With 47 Percent Growth. http://www.gartner.com/it/page.jsp?id=

1924314.

[25] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark Buffers in the

Internet. Queue, 9(11):40–54, November 2011.

[26] Luigi A. Grieco and Saverio Mascolo. Performance evaluation and com-

parison of Westwood+, New Reno, and Vegas TCP congestion control.

SIGCOMM Comput. Commun. Rev., 34(2):25–38, April 2004.

[27] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-Friendly

High-Speed TCP Variant. SIGOPS Operating Systems Review, July

2008.

[28] Martin Heusse, Sears A. Merritt, Timothy X. Brown, and Andrzej Duda.

Two-way TCP Connections: Old Problem, New Insight. ACM Computer

Communications Review, 41(2):5–15, April 2011.

119

[29] Janey C. Hoe. Improving the start-up behavior of a congestion control

scheme for TCP. In Proceedings of SIGCOMM ’96, August 1996.

[30] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z. Morley Mao, Ming

Zhang, and Paramvir Bahl. Anatomizing application performance dif-

ferences on smartphones. In Proceedings of MobiSys ’10, June 2010.

[31] Hiroshi Inamura, Gabriel Montenegro, Reiner Ludwig, Andrei Gurtov,

and Farid Khafizov. TCP over Second (2.5G) and Third (3G) Gener-

ation Wireless Networks. RFC 3481 (Best Current Practice), February

2003.

[32] V. Jacobson. Congestion avoidance and control. SIGCOMM Computer

Communications Review, August 1988.

[33] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A quan-

titative measure of fairness and discrimination for resource allocation

in shared computer system. DEC Research Report TR-301, September

1984.

[34] Haiqing Jiang, Zeyu Liu, Yaogong Wang, Kyunghan Lee, and Injong

Rhee. Understanding bufferbloat in cellular networks. In Proceedings of

the 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations,

Challenges, and Future Design, CellNet ’12, pages 1–6, New York, NY,

USA, 2012. ACM.

[35] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. Tack-

ling bufferbloat in 3G/4G networks. In Proceedings of IMC ’12, Novem-

ber 2012.

120

[36] Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. Two-

way tcp traffic over rate controlled channels: Effects and analysis.

IEEE/ACM Trans. Netw., 6(6):729–743, December 1998.

[37] Aditya Karnik and Anurag Kumar. Performance of TCP congestion

control with explicit rate feedback: Rate adaptive TCP (RATCP). In

Proceedings of Globecom ’00, December 2000.

[38] Jun Ke and Carey Williamson. Towards a Rate-Based TCP Protocol

for the Web. In Proceedings of MASCOT ’00, September 2000.

[39] Jari Korhonen and Ye Wang. Effect of packet size on loss rate and delay

in wireless links. In Proceedings of WCNC ’05, 2005.

[40] Aleksandar Kuzmanovic and Edward W. Knightly. TCP-LP: Low-

priority service via end-point congestion control. IEEE/ACM Trans.

Netw., 14(4):739–752, August 2006.

[41] Douglas Leith and Robert Shorten. H-TCP: TCP for high-speed and

long-distance networks. 2004.

[42] Wai Kay Leong, Yin Xu, Ben Leong, and Zixiao Wang. Mitigating

egregious ACK delays in cellular data networks by eliminating TCP

ACK clocking. In Proceedings of ICNP ’13, October 2013.

[43] Fatma Louati, Chadi Barakat, and Walid Dabbous. Handling two-way

tcp traffic in asymmetric networks. In High Speed Networks and Multi-

media Communications, pages 233–243. Springer, 2004.

121

[44] H. Lundin, S. Holmer, and H. Alvestrand. A google congestion control

algorithm for real-time communication on the world wide web. IETF

Working Draft, Oct. 2012.

[45] David A. Maltz and Pravin Bhagwat. TCP splicing for application layer

proxy performance. JHSN, 1999.

[46] Jim Martin, Arne Nilsson, and Injong Rhee. Delay-based conges-

tion avoidance for TCP. IEEE/ACM Transactions on Networking,

11(3):356–369, June 2003.

[47] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren

Wang. TCP Westwood: Bandwidth Estimation for Enhanced Transport

over Wireless Links. In Proceedings of MobiCom ’01, July 2001.

[48] Matt Mathis and Jamshid Mahdavi. TCP rate-halving with bounding

parameters. December 1997.

[49] Mary Meeker. 2013 Internet Trends. Kleiner Perkins Caufield & Byers,

2013.

[50] Ivan Tam Ming-Chit, Du Jinsong, and Weiguo Wang. Improving TCP

Performance Over Asymmetric Networks. ACM Computer Communi-

cations Review, 30(3):45–54, July 2000.

[51] Jeffrey C. Mogul. Observing TCP dynamics in real networks. In Con-

ference Proceedings on Communications Architectures &Amp; Protocols,

SIGCOMM ’92, pages 305–317, New York, NY, USA, 1992. ACM.

122

[52] Kathleen Nichols and Van Jacobson. Controlling queue delay. Queue,

10(5):20–34, May 2012.

[53] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Mod-

eling TCP throughput: A simple model and its empirical validation.

In Proceedings of the ACM SIGCOMM ’98 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communica-

tion, SIGCOMM ’98, pages 303–314, New York, NY, USA, 1998. ACM.

[54] Jitendra Padhye, Jim Kurose, Don Towsley, and Rajeev Koodli. A model

based TCP-friendly rate control protocol. In Proceedings of NOSSDAV

’99, June 1999.

[55] Vern Paxson. End-to-end internet packet dynamics. In Proceedings of

SIGCOMM ’97, SIGCOMM ’97, pages 139–152. ACM, 1997.

[56] G. Raina and D. Wischik. Buffer sizes for large multiplexers: TCP

queueing theory and instability analysis. In Next Generation Internet

Networks, 2005, pages 173–180, April 2005.

[57] Lenin Ravindranath, Jitendra Padhye, Ratul Mahajan, and Hari Bal-

akrishnan. Timecard: Controlling user-perceived delays in server-based

mobile applications. In Proceedings of SOSP ’13, Nov. 2013.

[58] Nihal K. G. Samaraweera. Return link optimization for internet service

provision using DVB-S networks. SIGCOMM Comput. Commun. Rev.,

29(3):4–13, July 1999.

123

[59] Basic Transmission Scheme. LTE: the evolution of mobile broadband.

IEEE Communications Magazine, page 45, 2009.

[60] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A

transport protocol for real-time applications. RFC 3550, 2003.

[61] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. Automatic tcp

buffer tuning. In Proceedings of the ACM SIGCOMM ’98 Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’98, pages 315–323, New York, NY, USA,

1998. ACM.

[62] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE: the UMTS long

term evolution. Wiley Online Library, 2009.

[63] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay

Background Transport (LEDBAT). IETF Working Draft, October 2011.

[64] Dibyendu Shekhar, Hua Qin, Shivkumar Kalyanaraman, and Kalyan

Kidambi. Performance optimization of TCP/IP over asymmetric wired

and wireless links. Invited paper at European Wireless 2002, February

2002.

[65] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. A Com-

pound TCP Approach for High-speed and Long Distance Networks. In

Proceedings of IEEE INFOCOM ’06, April 2006.

124

[66] Arun Venkataramani, Ravi Kokku, and Mike Dahlin. TCP Nice:

A Mechanism for Background Transfers. SIGOPS Oper. Syst. Rev.,

36(SI):329–343, December 2002.

[67] Curtis Villamizar and Cheng Song. High Performance TCP in ANSNET.

SIGCOMM Computer Communications Review, 24(5):45–60, 1994.

[68] Vikram Visweswaraiah and John Heidemann. Rate based pacing

for TCP. http://www.isi.edu/lsam/publications/rate_based_

pacing/, 1997.

[69] Guohui Wang and T. S. Eugene Ng. The impact of virtualization on

network performance of Amazon EC2 data center. In Proceedings of

INFOCOM ’10, April 2010.

[70] Keith Winstein. Personal communication. E-mail, November 2013.

[71] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic

forecasts achieve high throughput and low delay over cellular networks.

In Proceedings of NSDI ’13, Apr. 2013.

[72] Jing Wu, Dongho Kim, and Jeonghoon Mo. TCP performance over

the WiBrO compatible 802.16e systems. In Advanced Communication

Technology, The 9th International Conference on, volume 3, pages 1752–

1755. IEEE, 2007.

[73] Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. PROTEUS:

Network performance forecast for real-time, interactive mobile applica-

tions. In Proceeding of MobiSys ’13, Jun. 2013.

125

[74] Yin Xu. Understanding and Mitigating Congestion in Modern Networks.

PhD thesis, National University of Singapore, 2014.

[75] Yin Xu, Wai Kay Leong, Ben Leong, and Ali Razeen. Dynamic regu-

lation of mobile 3G/HSPA uplink buffer with receiver-side flow control.

In Proceedings of ICNP ’12, October 2012.

[76] Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. An end-to-end

measurement study of modern cellular data networks. In Proceedings of

PAM ’14, Mar. 2014.

[77] Xiangying Yang, Muthaiah Venkatachalam, and Shantidev Mohanty.

Exploiting the mac layer flexibility of wimax to systematically enhance

tcp performance. In Mobile WiMAX Symposium, 2007. IEEE, pages

60–65. IEEE, 2007.

[78] Lixia Zhang, Scott Shenker, and David D. Clark. Observations on the

Dynamics of a Congestion Control Algorithm: The Effects of Two-Way

Traffic. In Proceedings of SIGCOMM ’91, September 1991.

126

