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Abstract 

 

Effective light trapping is vital for polycrystalline silicon (poly-Si) thin-film solar 

cells on glass. This thesis aims to develop a light trapping system to enable a 

short-circuit current density (JSC) of over 30 mA/cm2 for plasma-deposited solid 

phase crystallized (SPC) poly-Si thin-film solar cells on glass.  

Highly scattering aluminium-induced texture (AIT) glass sheets are successfully 

produced on pilot line-scale (30 cm × 40 cm) with good optical uniformity (non-

uniformity < ± 2.5 %). By introducing a double diffusion barrier (silicon nitride and 

silicon dioxide) and by increasing the amorphous silicon (a-Si:H) precursor diode 

deposition temperature from 500 °C to 550 °C, an average 1-Sun open-circuit 

voltage (VOC) of 484 mV and an average pseudo fill factor (pFF) of 78.2 % for 2 

µm thick poly-Si thin-film solar cells on pilot line-scale AIT glass are achieved. 

The solid state reaction between aluminium and borosilicate glass at an 

annealing temperature of about 500 °C is studied in detail. Crystalline silicon 

(c-Si) clusters are found to form on the glass surface and the c-Si clusters are 

surrounded by aluminium oxide (Al2O3). Crater shaped nodules, mainly 

consisting of Al2O3, are embedded in the glass. By adjusting the Al deposition 

thickness and/or annealing temperature, the Al2O3 nodules’ size, depth and 

lateral separation can be controlled. As a result, the AIT glass texturing method 

can be further optimized. 

A phase model based on the scalar scattering theory is demonstrated to be able 

to accurately estimate the haze and angular intensity distribution (AID) of rough 



x 

surfaces in poly-Si thin-film solar cells on textured glass superstrates. By 

combining the scalar scattering theory with the ASA thin-film solar cell simulator, 

the parasitic glass absorption and the c-Si absorption for poly-Si thin-film solar 

cells on textured glass can be separately estimated. The one-sun current density 

is estimated to increase by 7.3 % if the glass is thinned from 3.3 to 0.3 mm, 

assuming a 3 µm thick c-Si film on AIT glass and a stack of silicon dioxide and 

aluminium as the back surface reflector. Using the optical simulation method 

proposed in this thesis, the light trapping performance of poly-Si thin-film solar 

cells on textured glass can be evaluated more accurately. 

A highly scattering rear Si surface texture is realized by plasma etching of poly-Si 

thin-film solar cells on glass. The resulting rear Si texture (RST) shows reflection 

haze values of more than 95 % at the Si-air interface. The poly-Si thickness 

consumed by plasma etching is estimated to be around 500 nm for this texture. 

The average feature size of the texture is around 200 nm. Combining this sub-

micron RST with a micrometre-scale AIT glass texture can produce a multi-scale 

rear Si surface texture. The multi-scale rear Si surface texture can enhance the 

JSC by 3 - 5 %, based on ASA optical simulation results. 

By incorporating the AIT glass texture, a plasma-etched RST, a thinner glass 

sheet (0.5 mm), and a high-quality back surface reflector (a stack of silicon 

dioxide and silver), a 2 µm thick poly-Si thin-film solar cell on glass is shown to 

have a JSC potential of 31 mA/cm2.  
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Chapter 1  Introduction 

 

1.1 Motivation for solar cells 

 
Energy from the Sun (‘solar energy’) is abundant (over 165,000 TW reach the 

Earth's upper atmosphere) and available for every country and person in the 

world for free. Photovoltaic (PV) devices, or solar cells, generate electricity 

directly from sunlight. Figure 1-1 shows that solar cell production in 2011 was 

about 184 times higher than in 1999. A recent study by the European 

Photovoltaic Industry Association (EPIA) showed that the total deployed solar 

electric capacity had reached more than 100 GW by the end of 2012. As a green 

and renewable alternative to the conventional fossil fuel based electricity 

generation, PV has a bright future. 

 

 
Figure 1-1: Yearly world solar cell production from 1999 to 2011. From Ref. [1]. 
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1.2 Thin-film solar cell technologies 

 

Among all the solar cell technologies, solar cells fabricated with crystalline silicon 

(c-Si) wafers had a market share of about 88 % in 2011 [1]. Almost a half of c-Si 

PV module fabrication cost was due to the starting material, i.e., the unprocessed 

Si wafers [2]. One possible path towards further improving the cost effectiveness 

of PV electricity is thin-film solar cells, as these use much less semiconductor 

material than wafer based technologies [3].  

There are several types of thin-film solar cells in commercial production. The first 

is based on amorphous silicon (a-Si) and was introduced by Carlson in 1974 [4]. 

Amorphous silicon is cheap and with high absorption coefficient. However, it is 

difficult for the large scale a-Si PV module to reach stabilized efficiency above 

10% due to light-induced degradation [5]. Another important Si thin-film solar 

cells technology is ‘micromorph’ tandem solar cell proposed by University of 

Neuchatel [6], which stacks one a-Si thin-film solar with a microcrystalline silicon 

(µc-Si) thin-film solar cell. Stabilized PV module efficiency above 11% was 

achieved for this technology [8, 41]. One weakness of this technology is the high 

capital cost of the deposition tool for the µc-Si [3]. 

Presently, the commercially most successful thin-film solar cell technology is 

cadmium telluride (CdTe) [7]. First Solar Inc, USA, is the largest CdTe PV 

module manufacturer in the world, with a production capacity of over 1 GW per 

year. At the pilot scale, the company has reported modules with an area of 7200 

cm2 reaching efficiencies of up to 16.1 % in 2012 [8]. The main limitations of this 



3 

technology are that Cd is a very toxic material and Te is a scarce material on 

earth [9].  

Another promising thin-film PV technology is copper indium gallium selenide 

(CIGS). CIGS solar cells with efficiencies of more than 20 % have been made by 

both the National Renewable Energy Laboratory (NREL) and the Zentrum für 

Sonnenenergie und Wasserstoff-Forschung (ZSW), which is the record to date 

for any single-junction thin-film solar cell [10, 11]. The best CIGS module was 

reported by Miasole, USA. The company demonstrated 15.7 % module efficiency 

on a 0.97-m2 glass substrate [8]. Despite the high efficiency potential and the 

relatively low manufacturing cost, CIGS PV industry expansion could be limited 

by the scarcity of indium (In) [9].  

Perovskite compound thin-film solar cells are a rapidly emerging thin-film PV 

technology. Perovskite material was first used to make solar cells in 2009, giving 

efficiency of up to 3.5 %, as reported by Kojima et al. in 2009 [12]. In two Nature 

papers published in 2013, authors from two different research groups demon-

strated perovskite thin-film solar cells with an efficiency of 15% [13, 14]. When a 

new semiconductor material is introduced to make solar cells, it usually takes 

more than a decade for researchers to improve the efficiency to 15%. Hence, the 

rate of efficiency improvement of the perovskite solar cell technology is 

impressive. Moreover, the material cost and process cost of perovskite solar cells 

are low. It is said that this technology could lead to solar panels that cost just 

US$ 0.10-0.20/W [15].  

Due to their inherent advantages, thin-film solar cells are the ‘holy grail’ of photo-

voltaics. However, a lot of R&D is still required to develop these technologies 
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further and to bring them to a level where they can compete, and possibly even 

displace, silicon wafer based PV technologies. This thesis tries to contribute to 

this international effort, by investigating polycrystalline silicon thin-film solar cells 

on glass. 

 

1.3 Polycrystalline Si thin-film solar cells 

 

The polycrystalline Si (poly-Si) thin-film solar cell technology is another important 

thin-film PV technology. Compared to the above mentioned thin-film technologies, 

poly-Si PV technology can combine the advantages of the silicon wafer-based 

technology, namely Si abundance, mature technology, environmental friendliness 

with the advantages of thin-film technology, mainly low material usage and cost 

[16-18]. Three technological methods to fabricate poly-Si thin-film solar cells on 

foreign substrates are described here: solid phase crystallization (Section 1.3.1), 

seed layer approach (Section 1.3.2), and liquid phase crystallization (Section 

1.3.3).  

1.3.1 Solid phase crystallization  

The solid phase crystallization (SPC) process converts amorphous silicon (a-Si) 

to poly-Si by thermal annealing at around 600°C. Matsuyama et al. from Sanyo 

Electric Co. produced SPC poly-Si thin-film solar cells on metal substrates based 

on the plasma-enhanced chemical vapour deposition (PECVD) approach [19-21]. 

A remarkable efficiency of 9.7 % and a record open-circuit voltage (Voc) of 553 

mV for a SPC poly-Si thin-film solar cell based on the PECVD approach was 
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demonstrated in 1996 [21]. The record SPC poly-Si thin-film solar cell based on 

the PECVD approach was developed by CSG Solar, with an efficiency of 10.4 % 

demonstrated in 2007 [22]. SPC poly-Si thin-film solar cells on glass based on 

the electron beam (e-beam) evaporation approach were developed in UNSW 

[23-25]. Compared to PECVD with a typical a-Si deposition rate of 0.1-1 nm/s 

[26], e-beam evaporation has a much higher deposition rate (5-20 nm/s). 

However, the electronic quality of SPC films is drastically reduced when the films 

are deposited on textured glass sheets [27]. Therefore, the evaporation has to be 

done onto quasi-flat substrates and non-conventional light trapping techniques 

such as plasmonic nanoparticles at the Si rear surface [28] or Si rear surface 

texture [25] need to be applied. The best SPC poly-Si thin-film solar cell based 

on e-beam evaporation was developed by UNSW, with an efficiency of 7.1% 

demonstrated in 2011 [25]. 

1.3.2 Seed layer approach 

The seed layer approach is based on first growing a very thin silicon seed layer 

with excellent crystallographic properties as a template and then transferring the 

structural information into the solar cell absorber material by epitaxial thickening. 

Aluminium induced crystallization (AIC) has attracted considerable interest in the 

PV community as a seed layer growth technique [29-32]. The highest VOC of 534 

mV [31] and the highest efficiency of 8.5% [32] for poly-Si thin-film solar cells 

relying on an AIC seed layer have been developed by IMEC, Belgium.  
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1.3.3 Liquid phase crystallization 

In the past few years, the development of the silicon liquid phase crystallization 

(LPC) process has made substantial progress. The thermal budget inside the 

substrate is reduced by focusing the energy mainly into the silicon layer. LPC 

methods generally achieve much higher VOC values than SPC methods. An 

impressive VOC of 582 mV was recently achieved with an e-beam crystallized 

poly-Si thin-film solar cell [33]. A remarkable stabilized efficiency of 10.4 % for a 

laser-crystallized poly-Si thin-film solar cell on glass was demonstrated by UNSW 

in 2013 [34]. A very recent work [35] showed that it is possible to stabilize the 

efficiency of laser-crystallized poly-Si thin-film solar cells by applying laser firing 

to the rear point contacts of the solar cells. It is likely for LPC approaches to 

surpass 11 % efficiency in the near future. 

 

1.4 The need for light trapping in poly-Si thin-film 

solar cells 

 

One challenge for poly-Si thin-film solar cell is to achieve reasonably high short-

circuit current density (JSC), because thin silicon has quite weak absorption for 

near-infrared wavelengths. Figure 1-2 shows that a large fraction of the light in 

the 500-1100 nm wavelength range will escape from a 2 µm thick c-Si layer 

assuming a single pass of the incident light. For a 2 µm thick poly-Si thin-film 

solar cell grown on a planar glass sheet and with air as the back surface reflector 

(BSR), the JSC is only 15.6 mA/cm2 [36]. Assuming a VOC of 500 mV and a fill 
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factor (FF) of 70%, this corresponds to an efficiency of 5.5 %, which is much 

lower than the efficiency limit of 19.8 % for a 1 µm thick c-Si cell [37].  

  
Figure 1-2: Photon flux absorbed by a 2 µm thick c-Si layer, assuming a single pass of the incident 

light. The AM1.5 solar spectrum is shown as the reference. 

 

1.5 Scientific-technical problems addressed in this 

thesis 

 

To enhance the optical absorptance in poly-Si thin-film solar cells on glass, light 

trapping methods have to be adopted which enhance the optical pathlength of 

weakly absorbed wavelengths inside the thin Si layer. Glass texturing [22, 38] 

and rear Si surface texturing [25] are two possible paths to achieve good light 

trapping inside the poly-Si thin-film layer. The aluminium (Al) induced glass 

texturing (AIT) process [39], which roughens the glass surface by annealing a 

thin layer of Al on glass and subsequent wet-chemical removal of the reaction 
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product, is a promising light trapping method for the poly-Si on glass thin-film PV 

technology.    

To achieve good light trapping for poly-Si thin-film solar cells on glass, the 

research problems addressed in this thesis are: 

• Scale up the AIT glass texturing process to pilot line scale glass sheets (> 30 

cm × 30 cm).   

• Develop a phenomenological model of the AIT process 

• Establish an optical simulation method to evaluate the optical performance of 

poly-Si solar cells on AIT glass 

• Investigate parasitic glass absorption for poly-Si thin-film solar cells on AIT 

glass 

• Develop a rear Si surface texturization process by plasma etching. Integrate 

this rear surface texture with poly-Si solar cells deposited on AIT glass sheets. 

 

1.6 Thesis organization 

 

The structure of this thesis is as follows:  

Chapter 1 introduces the motivation for solar cell devices. A brief review of the 

main thin-film solar cell technologies is given. Three main technological methods 

to produce poly-Si for poly-Si thin-film solar cells are introduced. The rationale for 
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implementing light trapping methods in poly-Si thin-film solar cells on glass 

sheets is given. The layout of the thesis is also described. 

In Chapter 2, fabrication process flows of poly-Si thin-film solar cells on glass 

sheets used in our research group at the Solar Energy Research Institute of 

Singapore (SERIS) are described. Glass texturing and c-Si rear surface texturing 

methods which have been used for thin-film light trapping applications are briefly 

reviewed. The main processing equipment, characterization methods and thin-

film solar cell simulator (ASA) used in this work are introduced.  

Chapter 3 describes the baseline setup for the AIT process in our group at 

SERIS, using both Borofloat glass sheets from Schott AG, Germany, and boro-

silicate glass sheets from a Chinese glass manufacturer (He Ping Glass, China 

[40]). The scalability of the AIT process to pilot-line scale for both kinds of glass 

sheets, with very good optical uniformity, is demonstrated. Optimization of the 

process conditions of poly-Si thin-film on pilot-line scale AIT glasses is described.  

Chapter 4 presents a phenomenological model of the AIT glass texturing 

process. The redox reaction between aluminium (Al) and silicon dioxide (SiO2) 

inside the glass sheet is studied in detail in this chapter. 

Chapter 5 presents a phase model based on the scalar scattering theory to 

calculate two important scattering properties - haze and angular intensity 

distribution (AID) - of textured surfaces. Parasitic glass absorption and c-Si 

absorption is estimated by combining the phase model based on the scalar 

scattering theory and ASA optical simulations. The impact of the glass thickness 

on the short-circuit current loss due to the parasitic glass absorption is evaluated. 
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Chapter 6 is devoted to rear c-Si surface texturization by plasma etching. The 

prospect of applying c-Si rear surface texturization on poly-Si thin-film solar cells 

on AIT glass sheets to further enhance the short-circuit current density is demon-

strated. 

Chapter 7 summarises the work performed in this thesis, lists the original 

contributions made, and provides suggestions for further work for PECVD SPC 

poly-Si thin-film solar cells on glass.  
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Chapter 2 Experimental 

 

 

2.1 Introduction 

 

In this chapter, the fabrication procedure used at SERIS for poly-Si thin-film solar 

cells on glass is introduced (Section 2.2). This is followed by a brief review of the 

various glass texturing methods (Section 2.3.1) and Si texturing methods 

(Section 2.3.2). Two important parameters to describe the optical scattering 

efficiency of rough surfaces - haze and angular intensity distribution (AID) - are 

introduced in Section 2.4.1. Various optical models adopted to calculate surface 

scattering properties are briefed in Section 2.4.2. This is followed by an intro-

duction to a commercial thin-film solar cell simulator ASA (Section 2.4.3) and the 

main characterization methods (Section 2.5) used in this thesis. 
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2.2 Fabrication procedure of poly-Si thin-film solar 

cells on glass at SERIS 

 

2.2.1 Poly-Si fabrication and treatment 

In our research group at SERIS, we use a similar approach as that of CSG Solar 

[1] to fabricate poly-Si thin-film solar cells on glass. Plasma-enhanced chemical 

vapour deposition (PECVD) is used to deposit an amorphous Si (a-Si:H) pre-

cursor diode and then to crystallize this diode using the solid phase crystallization 

(SPC) method [2]. Figure 2-1 is a schematic drawing of a PECVD SPC poly thin-

film solar cell on a planar glass sheet. The commercially available 3.3 mm thick 

borosilicate glass sheets (30×40 cm2, planar) are cleaned in a glass washer. The 

glass sheets are then coated with ~ 70 nm of silicon nitride (SiNx). The SiNx layer 

serves as both a diffusion barrier and an anti-reflection coating [3]. After the SiNx 

deposition, an 1-3 µm thick a-Si:H n+/p-/p+ diode is deposited by PECVD. The 

details of the a-Si:H diode PECVD deposition can be found in Ref. [4]. The a-Si:H 

diode then undergoes solid phase crystallization in a nitrogen purged oven at 

600 °C for 12 hours [5-7], followed by 1 minute of rapid thermal processing (RTP) 

at 1050 °C [4] to activate dopants and anneal defects, and finally a hydrogen 

passivation in a microwave powered plasma [8].  
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Figure 2-1: Schematic structure of a PECVD SPC poly-Si thin-film solar cell on a planar glass sheet. 
Note that the structure is presented upside down (i.e., it is illuminated from the bottom). 

 

2.2.2 Metallization 

An interdigitated metallization scheme developed in UNSW [9, 10] is used by our 

group. A schematic representation of the metallization method is shown in Figure 

2-2. The aluminium (Al) above the silicon dioxide serves as the rear (i.e., air side) 

electrode of the cell, which is in contact with the p+ back surface field. The Al 

deposited inside the grove serves as the front electrode of the cell, which is in 

contact with the n+ emitter. The details of the metallization process can be found 

in Ref. [11].  

borosilicate glass 

SiNx 

n+ emitter  

p- absorber  

p+ back surface field 
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Figure 2-2: Schematic drawing of the interdigitated metallization scheme developed in UNSW for 
poly-Si thin-film solar cells on glass [11]. 
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2.3 Glass and Si texturing techniques 

 

2.3.1 Glass texturing techniques 

For amorphous silicon thin-film solar cells [12] and the micromorph silicon thin-

film solar cell [13], the silicon is deposited onto a transparent conductive oxide 

(TCO) which is suitably textured either by the TCO growth process itself or by a 

post-TCO deposition etching process. However, the high post-SPC thermal 

annealing temperature (above 900 °C) precludes poly-Si thin-film solar cell 

technologies from using TCO as a front electrode. Furthermore, a TCO layer 

adds significantly to the cost of the solar cell. Consequently, glass texturing is 

usually adopted for SPC poly-Si thin-film cells. Several glass texturing techniques 

developed in recent years for thin-film PV technologies are discussed below. 

2.3.1.1 Abrasion-etch texture 

The abrasion-etch texture method was developed by CSG Solar [3]. The glass 

surface undergoes sand blasting with SiC grit, followed by wet etching in HF acid. 

The HF etching is used to remove the most severe glass surface damage caused 

by the sand blasting process. Figure 2-3 is a scanning electron microscope (SEM) 

cross-sectional view of a poly-Si thin-film solar cell deposited on an abrasion-etch 

textured glass sheet. A 10 % efficient poly-Si thin-film minimodule on glass with 

the highest short-circuit current density (JSC) of 29.5 mA/cm2 reported so far was 

fabricated on a glass sheet prepared by the abrasion-etch method [3]. 
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Figure 2-3: Scanning electron microscope (SEM) cross-sectional view of a poly-Si thin-film solar on 
a glass sheet prepared by the abrasion-etch method [3]. 

 

2.3.1.2 Glass beads 

Bead-based texturing is another glass texturing technique developed by CSG 

Solar [14]. A glass sheet is coated with silica beads with size range of 0.3 to 2 

µm, using a sol-gel process. However, low surface coverage of beads on glass 

(as shown in Figure 2-4) is one limiting issue of this texturing technique for light 

trapping applications.  

 

Figure 2-4: Cross-sectional transmission electron microscope (TEM) image of a poly-Si thin-film 
solar cell on a glass bead textured glass sheet [3]. 

 

poly-Si 

glass 

glass beads 
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2.3.1.3 Textured zinc oxide (ZnO) pattern transfer by ion beam 

etching 

Figure 2-5 shows the process flow to prepare textured glass by the ZnO pattern 

transfer method [15]. A ZnO film is deposited by sputtering and then wet-

chemically textured (Figure 2-5a). The textured ZnO layer is used as a three-

dimensional etching mask for a following ion beam etching process. The glass 

surface areas where the overlying ZnO was fully etched will be etched first by the 

ion beam etching process (Figure 2-5(b) & (c)). With increasing ion beam etching 

time, the texture pattern of the ZnO layer is transferred to the glass surface 

(Figure 2-5d). One disadvantage of this method is the extra cost associated with 

the sacrificial ZnO layer. 

 

Figure 2-5: Schematic drawing to illustrate the procedures of ZnO texture pattern transformation by 
ion beam etching [15]. 

 

2.3.1.4 Aluminium induced texturing (AIT) 

The aluminium induced texturing (AIT) method is an innovative glass texturing 

method developed and patented by Per Widenborg and Armin Aberle when they 
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did research on the poly-Si thin-film PV technology in The University of New 

South Wales (UNSW) during the last decade. A schematic process flow of the 

AIT method is shown in Figure 2-6. It consists of four process steps: 

 Chemical cleaning and drying of planar glass 

 Aluminium (Al) deposition on planar glass  

 Thermal annealing at > 500 ºC to stimulate a solid state reaction of the Al 

with the silicon dioxide (SiO2) in the glass, presumably following the 

reaction 4Al + 3SiO2 → 2Al2O3 + 3Si  

 A textured glass surface is created by chemically removing the reactants 

in a HF:HNO3 etch solution 

 

Absorption close to the Lambertian limit has been demonstrated for poly-Si thin-

film solar cells on AIT glass [16]. The impact of feature sizes and roughness of 

AIT glass sheets on light trapping performance has been studied in Ref. [16] and 

[47]. The highest reported JSC so far for a poly-Si thin-film solar cell on AIT glass 

is 29 mA/cm2, using a Si thickness of about 3 µm [11]. 
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Figure 2-6: Schematic process flow of the AIT method. Step 1: Chemical cleaning and drying of a 
planar glass sheet. Step 2: Al deposition on one surface of the glass sheet. Step 3: Al reacts with 
glass at high temperature and thereby roughens the glass surface, with the reactants Al2O3 and Si 
non-uniformly distributed.  Step 4: Removal of reactants and further texturing of the glass surface 

by HF:HNO3 wet etching. 

 

2.3.1.5 Nano-imprinting 

Cui et al. developed a nano-imprinting process to reproduce AIT glass texture 

patterns [17]. Figure 2-7 is the flow chart of the nano-imprinting process. The 

authors of Ref. [17] successfully completed the pattern transfer from an AIT glass 

to a sol-gel. However, drastic quantum efficiency (QE) degradation was observed 

for poly-Si thin-film solar cells on sol-gel coated glass, because sol-gel is not 

compatible with the high-temperature rapid thermal annealing process [17]. 

  

glass glass 

glass glass 

Step 1 Step 2 

Step 3 Step 4 

Al 

Al2O3+Si 
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Figure 2-7: The flow chart of the nano-imprinting process to reproduce AIT patterns [17]. 

 

2.3.2 Si texturing techniques 

2.3.2.1 Rear poly-Si thin-film surface texturing by wet etching 

Besides glass texturing methods to enhance light trapping, texturing the rear Si 

surface by KOH wet etching is another effective light trapping method for poly-Si 

solar cells on planar glass sheets [18]. The wet etching method produces micron-

size features. Using e-beam deposited a-Si, a SPC poly-Si thin-film solar cell with 

a short-circuit current density of 26.6 mA/cm2 has been reported for an absorber 

layer thickness of 3.6 µm [18]. However, for this device, 2 µm of poly-Si material 

had to be removed by wet etching, which significantly increased the material 

consumption. 
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2.3.2.2 Front multicrystalline Si wafer surface texturing by 

plasma etching 

‘Black silicon’ is a Si surface structure that has very low reflection. It can be 

produced by SF6/O2 reactive ion etching (RIE) [19]. A schematic to illustrate the 

reaction forming black silicon is shown in Figure 2-8. SF6/O2 is fed into the 

chamber and then partially ionized by the plasma. The F and O ions are then 

accelerated to the Si surface. F radicals chemically etch away Si. O radicals 

together with Si and F form the volatile polymer product SixOyFz, which masks the 

Si from etching by the F radicals. This competition between F chemical etching 

and SixOyFz by-product formation results in an uneven etch rate across the whole 

Si surface, producing a surface texture. Si surface texturing of multicrystalline Si 

wafer solar cells by dry plasma etching was studied by several research groups 

[20-24]. The authors of Refs. 20-24 demonstrated that dry plasma etching is a 

feasible method to achieve higher PV efficiency for multicrystalline Si wafer solar 

cells, by improving JSC and without deteriorating VOC and FF. 

 

Figure 2-8: Schematic of the reaction forming black silicon by regenerated and self-induced 
masking [21] 
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2.4 Scattering parameters, scattering simulation 

models, and commercial thin-film solar cell 

simulator ASA  

 

2.4.1 Scattering parameters of rough surfaces 

In this thesis, we use two types of scattering parameters to characterize the 

optical scattering process at a rough interface: (i) haze, and (ii) angular intensity 

distribution (AID) [25]. When incident light arrives at the interface of two materials, 

total transmission Ttot (and total reflection Rtot) consists of two components: 

specular transmission Tspe (specular reflection Rspe), and diffuse transmission Tdif 

(diffuse reflection Rdif), as shown in Figure 2-9. The haze parameters, in 

transmission HT and in reflection HR, are defined by HT = Tdif / Ttot and HR = Rdif / 

Rtot, respectively. The haze can be measured with a spectrophotometer with an 

integrating sphere (further details are given in Section 2.5.2.3). The AID para-

meter describes the distribution of the scattered light intensity in every scattering 

angle. It can be measured with a goniometer (further details are given in Section 

2.5.3).  
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Figure 2-9: Illustration of haze and AID of textured glass/air interface in transmission (a) and in 
reflection (b). 

 

2.4.2 Optical models to simulate scattering at rough 

surfaces 

The scattering modelling methods of textured surfaces mainly consist of three 

categories: i) rigorous solvers of the Maxwell equations, such as the finite 

difference time domain (FDTD) method [26, 27] and finite element method [28]; 

ii) scalar scattering theory utilizing diffraction integrals, such as the model based 

on the first-order Born approximation developed by Jäger and Zeman [29], the 

grating model formulated by Bittkau et al. [30], and the phase model developed 

by Dominé et al. based on the Rayleigh-Sommerfeld diffraction integral [31, 32]; 

and iii) ray-tracing method based on geometric optics [16, 33].  

2.4.3 Commercial thin-film solar cell simulator ASA 

ASA (Advanced Semiconductor Analysis) is an one-dimensional (1D) opto-

electronic solar cell simulator [34, 35] developed by Delft University of 

Technology, Netherlands. In this thesis, haze and AID of textured surfaces are 

entered into ASA to perform optical simulations of poly-Si thin-film solar cells on 
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glass. All ASA input files (ASCII files with file extension “cas”) used in this thesis 

are in the CD submitted together with the hard copy of this thesis. Details of the 

software can be found on its official website at Delft University of Technology [36].  

 

2.5 Characterization methods 

 

2.5.1 Microscopy 

2.5.1.1 Optical microscope (OM) 

Dark field optical microscopy on uncoated textured glass was found to be a 

simple and effective method to predict the absorption-enhancing potential of a 

glass texture [16]. In dark field optical microscope images, features with higher 

scattering efficiency appear brighter than features with lower scattering efficiency. 

In this thesis, an Olympus STM6 measuring microscope was used to do optical 

microscopy on AIT glass samples fabricated in SERIS. 

2.5.1.2 Atomic force microscope (AFM) 

The AFM is a scanning microscopy method originally developed to study single 

atoms and molecules. Van der Waals interaction between atoms and molecules 

is the main principle used in AFM techniques. The AFM has been adopted by the 

optics community to study fine details on small surface areas (usually < 100 µm × 

100 µm). Figure 2-10 illustrates the setup of a typical AFM measurement. The 

AFM consists of a micro-scale cantilever with a sharp tip (probe) at its end that is 

used to scan the specimen's surface. The tip is brought into proximity of the 

sample surface, where forces between the tip and the sample lead to a deflection 
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of the cantilever according to Hooke’s law. The deflection is measured using a 

laser spot reflected from the top of the cantilever into an array of photodiodes. 

The tip is driven by a feedback mechanism to adjust the tip-to-sample distance to 

maintain a constant force or a constant distance between the tip and the sample. 

The cantilever is mounted on a piezoelectric tube, which can move in the z 

direction for maintaining a constant force or distance, and the x and y directions 

for scanning the sample. The AFM can be operated in three different modes: i) 

contact mode: the tip is dragged along a sample’s surface; ii) non-contact or 

intermittent mode: the cantilever oscillates above the sample’s surface and is 

affected by surface/tip forces (Van der Waals) that change the resonant 

frequency of the cantilever; and iii) tapping mode: the AFM tip taps the sample 

surface during the closest point of approach of an oscillation cycle and detects 

variations in topography by changes in the cantilever oscillation frequency or 

amplitude. More details of the AFM technique can be found in Ref. [37]. A Veeco 

Dimension 3100 AFM was used in this thesis to characterize surface profiles of 

various textured surfaces. 
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Figure 2-10: Setup of a typical AFM measurement. 

 

2.5.1.3 Scanning electron microscope (SEM) 

The SEM technique produces images of a sample by scanning it with a focused 

beam of electrons. One of the most striking features of the SEM is that it enables 

studying topography of a sample with nanometre scale resolution, which cannot 

be achieved by optical microscopy techniques. A Zeiss AURIGA crossbeam 

workstation was used in this thesis to characterize topographies. The magnifi-

cation of the AURIGA SEM tool is in the range of 12 times to one million times.  
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2.5.2 Spectroscopy 

2.5.2.1 Raman spectroscopy 

Raman scattering was discovered by C.V. Raman in 1928. It is a spectroscopic 

technique used to observe vibrational, rotational, and other low-frequency modes 

in a system. It relies on inelastic scattering, or Raman scattering, of mono-

chromatic light, usually from a laser in the visible, near infrared, or near ultraviolet 

range, whereby the energy of the scattered photons is lower or higher than the 

energy of the incident photons. A comprehensive introduction to the Raman 

spectroscopy method is given in Ref. [38]. A Renishaw inVia Raman spectro-

meter with a laser wavelength of 514 nm and a laser spot size of 1 µm is used in 

Chapter 4 of this thesis to study the AIT glass texture process. 

2.5.2.2 Energy-dispersive X-ray spectroscopy (EDX or EDS) 

An energy-dispersive X-ray (EDX) spectrometer is attached to a SEM instrument 

to perform elemental composition analysis of all elements down to atomic 

number 5 (boron). The operating principle of the EDX method can be found in 

Ref. [39]. An AMETEK EDAX system attached to a NOVA NanoSEM 230 SEM 

station is used in Chapter 4 of this thesis to study the AIT glass texturing process. 

2.5.2.3 Ultra-violet (UV), visible (Vis), near infrared (NIR) 

spectroscopy 

The total and diffuse transmittances (Ttot & Tdif), as well as the total and diffuse 

reflectances (Rtot & Rdif) of glass and poly-Si thin-films on glass are measured in 

this work with a PerkinElmer UV/Vis/NIR Lambda 950 dual beam spectrometer 

having a 150 mm integrating sphere. Light sources used in the Lambda 950 are 

http://en.wikipedia.org/wiki/Inelastic_scattering
http://en.wikipedia.org/wiki/Raman_scattering
http://en.wikipedia.org/wiki/Monochromatic
http://en.wikipedia.org/wiki/Monochromatic
http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Ultraviolet
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a halogen lamp for operation in the Vis and NIR ranges, and a deuterium lamp 

for operation in the UV range. A monochromatic beam (the sample beam in 

Figure 2-11) produced by a grating monochromator over the wavelength range 

from 200 nm to 2500 nm is directed on the sample through the entrance port of 

the integrating sphere. Another monochromatic beam (the reference beam in 

Figure 2-11) enters the sphere through another entrance port. Two detectors (a 

Peltier cooled PbS detector and a Hamamatsu R-955 photomultiplier tube) are 

placed inside the integrating sphere to measure the intensities of the sample 

beam and the reference beam.  

Before a measurement is taken on a sample, a calibration of the system is 

performed by measuring a 100% background, whereby a 100% reflecting white 

standard (SpectralonTM) is placed in the “sample” position in Figure 2-11(b). Then, 

for the transmittance measurement, the sample is mounted at the entrance port 

of the sphere (Figure 2-11(a)). Correspondingly, for the reflectance measurement, 

it is mounted at the rear of the integrating sphere (Figure 2-11(b)). Absorptance 

(A) is calculated via A = 1 - Ttot - Rtot [40]. To measure the diffuse transmittance 

and reflectance, the port opposite the sample must be opened (see Figure 2-11(a) 

and (b)). In this thesis, both transmittance and reflectance measurements are 

done in the superstrate configuration, i.e., the incident beam enters the sample 

from the glass side. 
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Figure 2-11: Schematic drawing to show transmittance (a) and reflectance (b) measurements using 
an integrating sphere. 

 

It is important to note that, for PECVD SPC poly-Si thin-film solar cells on glass, 

the absorption calculated via A = 1 - R - T is overestimated in the NIR wave-

length region if the sample features any type of light trapping mechanism (like a 

textured glass surface or a textured rear Si surface). This is because R and T are 

both underestimated due to measurement errors [41]. In the R and T measure-

ments, a fraction of the incident light travels laterally inside the thick (3.3 mm) 

glass sheet and thus these photons never enter the integrating sphere, see for 

example ray 1 in Figure 2-12 (a) and rays 2 and 3 in Figure 2-12 (b).  
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Figure 2-12: A schematic to demonstrate rays not entering the integrating sphere in (a) 
transmittance measurements, and (b) reflectance measurements. 

 

The measurement errors for R and T can be avoided if absorptance is directly 

measured by placing the measured sample in the centre of the integrating sphere 

('centre mount measurement'). In Ref. [41], Campbell et al. measured the 

absorptance of poly-Si thin-film solar cells on AIT glass using both methods (i.e., 

the A = 1 - R -T method and the centre mount method). The measured 

absorptance results of Ref. [41] are shown in Figure 2-13. The difference in Ref. 

[41] between the measured absorptance using both methods is insignificant at 

wavelengths below 1000 nm. In the wavelength range from 1000 nm to 1100 nm, 

the difference in absorptance increases gradually to about 10%. In the wave-

length range from 1100 nm to 1500 nm, the measured absorptance by using the 
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centre mount method was about 20%, which is consistently ~ 10% lower than the 

measured absorptance via the A = 1 - R - T method. The difference of about 10% 

(absolute) in the 1100 - 1500 nm range represents the measurement error 

resulting from the A = 1 - R - T method. The measured absorptance of ~ 20% in 

the centre mount method in the 1100 - 1500 nm range indicates that there is 

~20% absorption due to materials other than silicon (glass in this case). Parasitic 

glass absorption will be discussed in detail in Chapter 5.  

 

Figure 2-13: The absorptance measured using separate R and T scans and the centre mount 
method. Inset is a cross section image of a poly-Si thin-film on textured glass [41]. 

 

Generally, the absorptance results obtained via A = 1 - R -T are treated with care 

in this thesis. The principles are: 

i) Absorptance data below a wavelength of 1000 nm are more trust-worthy; 

ii) A relative light trapping performance comparison based on absorptance data 

of devices with similar light trapping structures are trusted.  
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2.5.3 Goniophotometre 

A commercial goniophotometre (pgII) from pab advanced technologies GmbH, 

Germany [42, 43] is used in this thesis to measure the angular intensity 

distribution (AID) in transmission for AIT glass sheets. Figure 2-14 is an isometric 

view of the goniophotometre. It consists of three main components: i) a light 

source; ii) a sample holder; and iii) a detector. The light source used in this thesis 

is a halogen lamp. A quasi-monochromic light beam is generated by inserting an 

optical filter into the beam of the halogen lamp. The AIDs in transmission at three 

wavelengths (520, 620 and 780 nm) are measured for AIT glass in this thesis. 

The detector arm of the goniophotometre scans both the transmission hemi-

sphere and the reflection hemisphere, to capture the scattered light intensity 

distribution in both hemispheres.  
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Figure 2-14: An isometric view of the pgII goniophotometre [42]. 

 

2.5.4 X-ray diffraction (XRD)  

XRD is a crystallographic technique based on Bragg’s law to determine the 

atomic and molecular structure of a crystal. The operating principles of a XRD 

are illustrated in Ref. [44]. In Chapter 4 of this thesis, a Panalytical X’pert Pro 

XRD equipped with a high-temperature chamber (Anton Paar, HTK1200N) is 

used to identify silicon peaks and to obtain the activation energy of the redox 

reaction between Al and glass. 

2.5.5 Suns-VOC 

The Suns-VOC, or quasi-steady-state VOC (QSS VOC) measurement technique 

was introduced by Sinton and Cuevas in 2000 [45]. One big advantage of this 
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technique is that it can characterize solar cells without metallization, which 

provides early feedback on device performance and hence is well suited for 

process optimization purposes. A home-built Suns-VOC system at SERIS [46] is 

used in this thesis to evaluate the electrical poly-Si diode quality in Chapter 3.  
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Chapter 3 Pilot line-scale fabrication of AIT 

glass and poly-Si thin-film solar cells on AIT 

glass  

 

 

3.1 Introduction 

 

Previous work done at the University of New South Wales (UNSW) [1, 2] showed 

that the AIT glass texturing method is a very effective light trapping technique for 

PECVD SPC poly-Si thin-film solar cells on glass. Therefore, in the present work, 

the AIT technique was used as the glass texturing method for SERIS' PECVD 

SPC poly-Si thin-film solar cells on glass. In this chapter, a stable pilot line-scale 

AIT glass texturing process with reproducible high scattering efficiency and 

optical uniformity has been set up (Section 3.2). The fabricated pilot line-scale 

AIT glass sheets have a high optical scattering efficiency and good optical 

uniformity. Furthermore, the process to fabricate poly-Si thin-film solar cells on 

AIT glass has been improved, as described in Section 3.3. 
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3.2 AIT glass fabrication  

 

3.2.1 Qualification of commercial borosilicate glass from a 

Chinese supplier 

Borosilicate float glass (‘Borofloat33’) from Schott AG, Germany [3] with a thick-

ness of 3.3 mm was used in UNSW and CSG Solar as the substrate for SPC 

poly-Si thin-film growth. The cost of Borofloat33 glass sheets is high for PV appli-

cations and hence significantly increases the materials cost of PECVD SPC poly-

Si thin-film solar cells. To reduce the fabrication cost, we tried an alternative 

glass supplier from China (Heping Glass Pte. Ltd [4]) who are selling borosilicate 

glass sheets with the same glass sheet thickness and size as Borofloat33 glass, 

but at a much lower cost. The significantly lower glass cost motivated us to 

qualify this alternative glass supplier.  

Two 10 cm × 10 cm glass samples from Schott and the Chinese supplier were 

named Schott 1 and China 1, respectively. Their transmittances (T) and reflec-

tances (R) were measured with an UV-Vis-NIR spectrophotometer (PerkinElmer, 

Lambda 950), which has a 150 mm diameter integrating sphere. These two 

samples then went through a rapid thermal process (RTP) at 1050 °C for 1 

minute. A commercial infrared lamp based RTP system from CVD Equipment 

Corporation, USA, was used to do the RTP. The process was performed in a 

nitrogen-purged atmospheric pressure environment. Then, T and R of both glass 

samples were measured again with the spectrophotometer. The absorptances (A) 
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of the samples Schott 1 and China 1 before and after the RTP were calculated 

via A = 1 - R - T. 

There was no visible glass sheet deformation due to the rapid thermal process, 

for both samples. This shows that the borosilicate glass from the Chinese 

supplier is able to withstand the high temperatures of our poly-Si solar cell 

process. Figure 3-1 shows the measured absorptances (A) of samples Schott 1 

and China 1, before and after the rapid thermal process. It can be seen that the 

optical performance in the spectral range of interest (300 to 1500 nm) is almost 

identical for both samples.  

Given that the borosilicate glass from the Chinese supplier has similar thermal 

and optical properties as Schott's Borofloat33 glass, we concluded that this glass 

is well suited for making PECVD SPC poly-Si thin-film solar cells on glass. 

 
Figure 3-1: (a): Absorptance results of glass sheet samples Schott 1 and China 1 before & after 
RTP. (b) Glass absorptance data with smaller y axis scale in wavelength range 400-1500 nm. 
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3.2.2 AIT glass fabrication process in SERIS 

Table 3-1 shows the detailed fabrication sequence of AIT glass in SERIS for 

borosilicate glass, from both Schott and the Chinese supplier. First, each glass 

sheet is cleaned in a dish washer (Miele, G7883CD) to remove both organic and 

inorganic contaminations at the glass surfaces. For the borosilicate glass from 

China, an additional manual isopropyl alcohol (IPA) clean was applied before 

putting it into the Miele glass washer. Then, the glass sheet is baked at 150 ºC 

for 30 minutes in a baking chamber of a cluster tool from MVSystems (USA), to 

evaporate water residues. Next follows a cool-down step to room temperature 

(during ~30 minutes) inside a sputtering chamber of the cluster tool. One surface 

of the glass sheet is then coated with Al by DC sputtering, using an argon (Ar) 

atmosphere. The deposition parameters are as follows: RF power 215 W, 

pressure 0.003 mTorr, Ar gas flow 25 sccm, and deposition time 40 minutes. The 

estimated Al thickness is 120 nm. The Al-coated glass sheet is then annealed in 

a nitrogen-purged atmospheric-pressure box furnace at about 570 ºC for 4 hours, 

to ensure that the Al has fully reacted with the glass (mainly SiO2). The 

temperature ramp-up rate is 10 ºC/minute. After the annealing, the glass sheet is 

cooled down naturally inside the box furnace to about 100 ºC and is then taken 

out of the furnace to further cool down to room temperature. A photo of a glass 

sheet after the annealing step is shown in Figure 3-2(a). The annealed glass 

sheet is then wet-chemically etched using a HF:HNO3 solution to remove the 

reaction products, followed by a 10-minute rinse in DI water. A photo of a glass 

sheet after the wet etching and DI water rinse is shown in Figure 3-2(b). 
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Table 3-1: Fabrication sequence of AIT glass for both Borofloat33 glass and borosilicate glass from 
China. 

Process Borofloat33 glass Borosilicate glass from 
China 

Isopropyl alcohol 
(IPA) clean 

Not applicable Manually clean glass 
surfaces 

Glass wash Program E (universal) of Miele G7883CD glass washer 

Baking 150 ºC for 20 minutes 

Cool down 30 minutes in low vacuum condition at room temperature 

Al deposition by 
DC sputtering 

120 nm thick Al at a rate of 3 nm/minute 

Thermal 
annealing 

570 ºC for 4 hours 

Wet etching 49 wt% HF : 63 wt% HNO3 

5 : 5 litres 

10 seconds 

DI water rinse 10 minutes 

 

 

 

Figure 3-2: A glass sheet (a) after the AIT anneal and (b) after the AIT wet etching and DI water 
rinse. 

 

(a) (b) 
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3.2.2.1 AFM and SEM images of a typical AIT glass sheet  

Figure 3-3 shows an AFM surface plot and a SEM top view of a typical AIT glass 

sheet fabricated using SERIS' baseline process recipe. It can be seen that nearly 

the entire glass surface is textured, which is good for optical scattering [5]. The 

craters formed in the glass surface have a feature size in the 1-5 µm range. 

These feature sizes are comparable to the thickness of the poly-Si thin-film diode, 

which is good enough for light trapping [2]. 

 

 

Figure 3-3: (a) AFM surface plot and (b) SEM top view of a typical AIT glass sheet fabricated in SERIS. 

 

3.2.2.2 Reflectance of AIT glass vs. planar glass 

The total and diffuse reflectances of a Borofloat33 glass sheet textured with the 
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level inside the Borofloat33 glass [11]. Reflectance measurements were per-

formed with light incident on the textured glass surface, i.e. in substrate confi-

guration. 

 

 

Figure 3-4: Total and diffuse reflectance of an AIT textured borosilicate glass sheet and a planar 
glass sheet. 
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wet etched inside 49 wt% HF : 63 wt% HNO3 acid mixture with a volume ratio of 

1:1, 1:2, 1:3, 1:4, 1:5, and 1:6, respectively. The wet etching time was fixed at 10 

seconds for every sample. All samples were then DI water rinsed for 10 minutes 

and dried by a nitrogen purge. All rinsed & dried glass sheets were studied using 

an Olympus STM6 optical microscope (OM) in dark field (DF) reflective mode at 

a magnification of 50 times. Exposure time of an Olympus DP25 digital camera of 

the optical microscope was set at 1400 ms for every glass sheet. The camera 

measured the intensity of each pixel of the DF image and gave it a grey-level 

value. Higher grey-level value means higher brightness of the pixel and hence 

higher scattering level in the pixel. Mean of the grey level values for each 

textured glass sheet was retrieved from Olympus analySIS FIVE software of the 

optical microscope. Haze in transmission at glass/air interface of each glass 

sheet was measured by the PerkinElmer Lambda 950 spectrophotometer.  

Figure 3-5 shows the mean values of DF OM images grey level intensities for 

samples BF 1 to BF 12. It shows that samples which were wet etched in the acid 

mixture at a higher HNO3 volume ratio generally have lower grey level intensity 

means. The DF OM image is brighter, i.e., has higher grey level intensity mean 

value, when the glass texture features have a higher scattering efficiency. In 

other words, according to the data of Figure 3-5, textures generated by the acid 

mixture with a HF:HNO3 volume ratio of 1:1 have the highest grey level intensity 

means and hence the highest scattering efficiency. When the HF acid is diluted 

with more HNO3 acid, the scattering efficiencies of the resulting glass textures 

gradually decrease. Figure 3-6 shows box plots of haze in transmission from 250 

to 1500 nm wavelength for samples BF 1 to BF 12. The average haze (small 

rectangle inside each box in Figure 3-6) gradually decreases when the HNO3 
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volume is increased. Based on the data of Figure 3-5 and Figure 3-6, an 

HF:HNO3 volume ratio of 1:1 was chosen for the AIT glass fabrication in SERIS. 

 

 
Figure 3-5: Average grey level intensities of optical microscope images for samples BF 1 to BF 12. 
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Figure 3-6: Box plots of haze in transmission from 250 to 1500 nm wavelength for samples BF 1 to 
BF 12. 

 

3.2.4 Up-scaling of the AIT process to pilot line-scale 

borosilicate glass sheets 

3.2.4.1 Introduction 

Excellent light trapping approaching the Lambertian limit has recently been 

reported for SPC poly-Si films formed on AIT glass superstrates with a size of 15 

cm × 15 cm [2]. In the present work, we successfully scaled-up the AIT process 

to a glass size of 30 cm × 40 cm, using 3.3 mm thick borosilicate glass sheets 

obtained from two manufacturers (Schott, Germany, and Heping Glass Pte. Ltd., 

China) [6]. 
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3.2.4.2 Experimental details 

Four different glass sheets named A-1, A-2, B-1 and B-2 were used in the 

following experiment. Samples A-1 & A-2 were Borofloat33 glass from Schott, 

samples B-1 & B-2 were borosilicate glass from the Chinese supplier. They went 

through the AIT baseline fabrication process as described in Section 3.2.2. An 

optical microscope (OM) in the reflectance mode (dark field) was used to check 

the surface topography of the textured glass sheets. 

Fabrication of poly-Si thin-film solar cells on the textured glass sheets consisted 

of the following steps:  

• ~70 nm SiNx by PECVD 

• ~2.7 µm (except for sample B-2 which used ~2.0 µm) thick a-Si:H precursor 

diode deposition by PECVD and then solid-phase crystallization (SPC) at 

about 600ºC for 12 hours. 

• Rapid thermal processing (RTP) at a very high temperature (~1000°C) for 1 

minute to activate the dopants and remove defects. 

To obtain accurate optical measurements, the slightly warped edge regions after 

RTP were cut off, giving a sample size of about 25 cm × 25 cm. These samples 

were then divided into 12 pieces of equal size (each ~6 cm × 8 cm). Trans-

mittance (T) and reflectance (R) of each sample in superstrate configuration were 

then measured with an UV-Vis-NIR spectrophotometer (PerkinElmer, Lambda 

950) equipped with an integrating sphere. Figure 3-7 illustrates a sample in 

superstrate configuration. Absorptance (A) was then calculated via A = 1 - R - T. 

Figure 3-8 shows the locations of the spectrophotometer measurements over the 

25 cm × 25 cm area. 
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Figure 3-7: Schematic of investigated samples (layer thicknesses not to scale). In superstrate 
configuration, the incident light enters the solar cell through the glass superstrate. 

 

Figure 3-8: Locations of the spectrophotometer measurements on the 25 cm × 25 cm glass sheets. 

 

3.2.4.3 Results and discussion 

Figure 3-9 shows the dark field (DF) images of sample A-1 before the SiNx 

deposition. More than 95% of the entire glass surface is textured (weakly 

textured or non-textured areas appear black in a DF image), and thus this 

texturing process is regarded to be good. It is also seen that the feature size of 

the texture is in the 1-5 µm range. A few defects are present, whereby these are 
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mostly close to the edge of the glass sheet, as can be seen in Figure 3-9 (b). 

Theses defects are textured as well and, according to the DF images, do not 

significantly deteriorate the light scattering properties. Apart from these defects, 

the glass texture is uniform over the 30 cm × 40 cm area. 

 

 

Figure 3-9: Optical microscope dark-field images of AIT textured glass before SiNx deposition. (a) 
Centre zone of the A3 sheet. (b) Edge zone (inside 25 cm × 25 cm area). Scattering efficiency in 
both zones is high. The defects seen in edge zone are textured and do not seem to significantly 

deteriorate the light scattering performance provided by the textured glass sheet. 

 

The absorptance value at 800 nm wavelength is a good gauge to evaluate the 

light trapping enhancement resulting from the glass texture [2]. Table 3-2 

summarizes the absorptance values at 800 nm of samples A-1 and A-2. The 

investigated sample structure is shown in Figure 3-7. According to these data, 

both samples have an average absorptance of ~83% at 800 nm, which matches 

the calculated absorptance (~81% [2]) if one assumes Lambertian scattering at 

the cell surfaces. Moreover, the variation of the absorptance across the sample 

surface is within ± 2.5%, demonstrating that the optical performance of the 

textured samples is laterally uniform. 

(a) (b) 
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Table 3-2: Absorptance values of samples A-1 and A-2 at 800 nm wavelength. The average 
absorptance value (~83%) matches the Lambertian limit value (~81% [2]). The variation of the 

absorptance across the sample surface is in the acceptable range (within ± 2.5%). 

Sample A-1  Sample A-2 
Location Absorptance at 800 nm Location Absorptance at 800 nm 

1 83.7 1 84.1 
2 82.7 2 82.9 
3 81.5 3 82.6 
4 84.2 4 83.3 
5 84.2 5 83.6 
6 83.7 6 83.9 
7 84.4 7 83.0 
8 83.7 8 83.5 
9 83.8 9 84.0 
10 83.2 10 82.9 
11 81.5 11 81.0 
12 80.6 12 80.5 

Average 83.1 Average 82.9 
Range +1.3/-2.5 Range +1.1/-2.5 

Lambertian 
value 

81.1 Lambertian 
value 

81.1 

 

To further compare the experimental absorptance data with the Lambertian limit 

value for the full wavelength range, the pieces with the highest/lowest 800 nm 

absorptance values of both samples are chosen. The absorptance results for the 

wavelength range 300-1500 nm are shown in Figure 3-10. At short wavelengths 

(300-500 nm), the measured values are generally higher than the calculated 

values, which is attributed to the reduced reflection losses due to the surface 

texture (‘multi-bounce’ effect [2]). In the wavelength range 500-800 nm, the 

agreement between measured and calculated absorptance values is quite good. 

In the long-wavelength range (800-1500 nm) the measured values are much 

higher than the calculated values. This can be explained by: i) measured 

absorptance above wavelength 800 nm is overestimated due to measurement 

error, as described in Section 2.5.2.3; and ii) the calculated values likely under-

estimate the glass absorption in wavelength range 800-1500 nm. Works done in 
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this PhD study to estimate glass absorption will be presented in detail in 

Chapter 5. 

 

Figure 3-10: Measured absorptance curves of samples A-1 and A-2 (symbols). The variation 
among the measured four locations is small. Also shown (red line) is the calculated absorptance for 

a poly-Si thickness of 2.7 µm, assuming Lambertian scattering at the cell surfaces [2]. 
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the absorptance. Each point is ~3 cm away from the nearest edge. The 

measured absorptance curves of the poly-Si sample are plotted in Figure 3-11, 

together with the calculated Lambertian limit curve [2]. The average absorptance 

at a wavelength of 800 nm is ~80%. The absorptance plot shows the same trend 

as seen in Figure 3-10. At intermediate wavelengths, the measured absorptance 

also agrees well with the calculated Lambertian limit curve for a 2.7 µm thick 

poly-Si film. The variation between the three measured locations is small, which 

implies a good uniformity.  
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Figure 3-11: Measured absorptance curves of sample B-1 (symbols). The variation among the 
measured three locations is small. Also shown (red line) is the calculated absorptance for a poly-Si 

thickness of 2.7 µm, assuming Lambertian scattering at the cell surfaces [2]. 

 

For sample B-2 (area 25 cm × 25 cm, poly-Si thickness 2.0 µm), the 

absorptances were measured at five locations (1, 2, 4, 7 and 8 in Figure 3-8). 

The measured absorptance curves are again compared with the calculated 

Lambertian limit curve, as shown in Figure 3-12. At intermediate wavelengths, 

the measured absorptance curves agree reasonably well with the calculated 

curve. 

400 600 800 1000 1200 1400
0

10
20
30
40
50
60
70
80
90

100

Ab
so

rb
an

ce
 (%

)

Wavelength (nm)

 B-1 P1 
 B-1 P2 
 B-1 P3 
 Lambertian Limit (2.7um Si)



57 

 

Figure 3-12: Measured absorbances of sample B-2 (symbols). The variation among the measured 
five locations is small. Also shown (red line) is the calculated absorptance for a poly-Si thickness of 

2.0 µm, assuming Lambertian scattering at the cell surfaces [2]. 

 

3.2.4.4 Conclusions 

In this work, the AIT (aluminium-induced texture) glass texturing process was 

successfully scaled up to pilot line-scale borosilicate glass sheets measuring 30 

cm × 40 cm. The glass sheets were obtained from two different manufacturers, 

demonstrating that the AIT process can be applied to a variety of borosilicate 

glasses. Poly-Si thin-film solar cells fabricated on these AIT glasses show a good 

lateral uniformity of the optical absorption (non-uniformity below ± 2.5%). The 

optical absorption of poly-Si films made by SPC on these AIT glass sheets is 

excellent. The AIT process is thus a promising glass texturing method for PECVD 

SPC poly-Si thin-film solar cells on glass. 
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3.3 Fabrication of poly-Si films on pilot line-scale 

AIT glass 

 

In this section, some process changes introduced to improve the SPC poly-Si 

diode quality on AIT glass are described. The 1-Sun VOC and the pseudo fill 

factor (pFF) are significantly enhanced by introducing double barriers between 

the AIT glass sheet and the poly-Si thin-film and by increasing the a-Si:H 

precursor PECVD deposition temperature (Section 3.3.1). A partially masked AIT 

method is developed to help characterize poly-Si thin-films on AIT glass (Section 

3.3.2). 

3.3.1 Double barriers (SiNx + SiO2) and increased a-Si:H 

precursor PECVD deposition temperature 

After optimizing the emitter doping concentration [7], the RTP process [8], and 

the hydrogenation process [9], 2 µm thick poly-Si thin-film solar cells on A3 size 

planar glass sheets (samples PS1_500C and PS2_500C in Figure 3-13 (a)&(b)) 

with average 1-Sun VOC of 461 mV and average pFF of 75.6% were fabricated. 

However, 2 µm thick poly-Si thin-film solar cells on AIT glass fabricated using the 

same process conditions (samples AS1_500C and AS2_500C in Figure 3-13 

(a)&(b)) were found to have much lower 1-Sun VOC (with average of 430 mV) and 

pFF (with average of 71.6%). The diode quality on AIT glass was found to 

improve by depositing an additional 100 nm thick silicon dioxide (SiO2) barrier 

layer between the AIT glass surface and the silicon nitride layer. The average 

1-Sun VOC improved to 463 mV and the average pFF improved to 75.8% for 2 µm 
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thick poly-Si thin-film solar cells on AIT glass with double barriers (samples 

AD1_500C, AD2_500C and AD3_500C in Figure 3-13 (a) & (b)). The benefit of 

the additional barrier on the diode quality can be explained by i) less metal and 

nitrogen contaminations in the Si film; or ii) a more favourable stress in the Si 

during crystallization [5]. By increasing the deposition temperature of the a-Si:H 

precursor diode, the diode quality can be further improved for poly-Si thin-film 

solar cells on AIT glass with double barriers. An average 1-Sun VOC of 484 mV 

and an average pFF of 78.2% for 2 µm thick poly-Si thin-film solar cells on AIT 

glass with double barriers and with the PECVD temperature increased from 

500 °C to 550 °C were achieved (sample AD1_550C in Figure 3-13 (a)&(b)). With 

some more efforts, we believe that we can meet the voltage benchmark (500 mV) 

and the pFF benchmark (80%) [10].  
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Figure 3-13: Box plots of (a) 1-Sun VOC and (b) pFF for 2 µm thick poly-Si thin-film solar cells on 
planar/AIT glass, with single/double barriers, and with PECVD a-Si:H deposition temperature of 

500°C and 550°C. 
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3.3.2 Partially masked AIT method 

The partially masked AIT method is developed to produce a flat or un-textured 

zone on an A3 size AIT glass sheet. Therefore poly-Si thin-film solar cells on 

both flat and textured glass surfaces can be fabricated in the same process run. 

The poly-Si solar cells on the flat glass zone can serve as benchmarking devices 

of poly-Si solar cells on textured glass surfaces.  

Figure 3-14 shows how the masked AIT process works so that both planar and 

textured areas can be created on the same glass sheet. A 3-inch diameter Si 

wafer was used as a mask and attached to an A3 size glass sheet, as shown in 

Figure 3-14(a). The A3 size glass sheet was then coated with Al by sputtering, 

whereas the glass surface masked by the Si wafer remained free of Al (Figure 3-

14(b)). The Si wafer was then detached from the glass sheet, see Figure 3-14(c). 

The glass sheet was then annealed at 570°C. Since there was no Al coated at 

the previously masked glass surface, there was no redox reaction and hence no 

glass roughening after the annealing in the previously masked glass surface 

(Figure 3-14(d)). The glass sheet was then wet etched in an HF:HNO3 acid 

mixture and rinsed by DI water, resulting in the structure shown in Figure 3-14(e).  
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Figure 3-14: Schematic of the masked AIT method. (a) A mask is put on the glass sheet 
before Al deposition; (b) Al deposition; (c) Mask removal; (d) after AIT annealing; and (e) 

after HF:HNO3 wet etch. 

 

A photo of an A3 size borosilicate glass sheet after the HF:HNO3 wet etch and DI 

water rinse is shown in Figure 3-15. The circular area in the centre is flat and 

transparent, whereas the other areas are textured and hazy. 
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Figure 3-15: An A3 size glass sheet processed with the partially masked AIT method. The circle in 
the centre is planar glass whereas the remaining regions of the glass sheet are textured. 

 

3.4 Summary 

 

In this chapter, a process was developed to fabricate AIT glass in pilot line scale 

(30 cm × 40 cm). It is demonstrated that the AIT glass texturing technique is 

scalable with good optical uniformity. The quality of SPC poly-Si diodes on AIT 

glass has been significantly improved by introducing an additional SiO2 barrier 

and by increasing the deposition temperature of the a-Si:H precursor diode. Poly-

Si thin-film solar cells on AIT glass with a 1-Sun VOC of 500 mV and pFF of 80% 

are within reach. A partially masked AIT glass texturing process was developed 

for pilot line-scale glass sheets. The masked AIT technique will be beneficial in 

the future for better controlling and further optimising the fabrication process of 

SPC poly-Si solar cells on AIT glass sheets. 

30 mm 
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Chapter 4 A phenomenological model of 

the AIT process 

 

 

4.1 Introduction 

 

The solid state reaction between aluminium and silicon oxide has been investi-

gated by several authors. In the temperature range between 400 °C and the 

melting point of Al (~660 °C), Prabriputaloong and Piggott [1] observed that 

quartz (i.e., crystalline silicon oxide) has a higher activation energy (2.78 eV) 

than vitreous silica (1.34 eV) when reacting with evaporated aluminium. Black [2] 

used the white light interferometry method to measure the remaining thermally 

grown SiO2 (original oxide thickness 900 nm) after reaction with evaporated 

aluminium and obtained an activation energy of 2.56 eV in the temperature range 

400-550 °C. Godfrey and Green [3] observed that the electrical degradation of 

the Al/SiOx/p-Si contact of MIS solar cells in the temperature range 270-400 °C is 

governed by an activation energy of 2.56 eV, which they attributed to the 

reduction of the silicon oxide by the aluminium layer. Forbes and Zukotynski [4] 

measured an activation energy of 2.3 eV in the temperature range 440-500 °C, 

using 1000 nm thermally grown silicon oxide and 2000 nm evaporated aluminium. 

A very low activation energy of 0.98 eV for ultrathin SiOx (1.3 nm) in the 

temperature range 213-369°C was reported by Brendel and Hezel [5]. Using a 
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thermal pyrogenic oxide and sputtered aluminium (containing 2 % copper and 

0.5 % silicon), Dadabhai et al. [6] found that the activation energy for the reaction 

is approximately 2 eV. Although the solid state reaction between Al and SiO2 has 

been extensively studied in microelectronic technologies, there has been no 

detailed study about the key feature of the AIT method, the solid phase reaction 

between aluminium and glass. 

The scope of this chapter is to gain a deeper understanding of the physical 

mechanisms behind the AIT process to enable further improvement of the glass 

texture and, in the end, improved performance of solar cells. In particular, the 

details of the silicon growth process during the reaction between Al and glass 

(consisting mainly of SiO2) are studied. Raman, energy-dispersive X-ray 

spectroscopy (EDX) and X-ray diffraction (XRD) show that in the AIT process, Si 

is reduced out from SiO2 and forms crystalline silicon (c-Si) crystals growing 

upwards from the glass-aluminium interface while, simultaneously, Al2O3 grows 

into the glass as crater shaped nodules and also into the aluminium over-layer. 

The in-situ XRD method is used to extract the activation energy for the c-Si 

growth occurring in the AIT process. Finally, a phenomenological model of the 

AIT process is proposed. The results of this work were published in Ref. [7]. 

 

4.2 Experimental details 

 

Borosilicate glass sheets with a thickness of 3.3 mm were used in this study. The 

chemical composition of the used borosilicate glass is approximately 81 % SiO2, 
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13 % B2O3, 4 % Na2O/K2O, and 2 % Al2O3 [8]. Cleaning of the glass sheets 

(30×40 cm2, planar) occurred in a dish washer (Miele) using alkaline detergent 

(STERIS CIP100) and acid detergent (CIP200), followed by drying in the dish 

washer. Then, an Al film was deposited onto one surface by RF sputtering in 

argon atmosphere. The rectangular Al target with a dimension of 43.2 cm (L) × 

5.72 cm (W) × 0.64 cm (H) had a purity of 99.999 %. The deposition parameters 

were: power 215 W, pressure 0.003 Torr, Ar gas flow 25 sccm, deposition time 

40 minutes. During the deposition, the non-heated substrate carrier was 

oscillating over the Al target to achieve good film uniformity. The resulting Al 

thickness was about 120 nm, with a uniformity of ± 8 %. The sheet was then cut 

into 4 samples of equal size (15 cm × 20 cm) labelled A1, A2, A3, and A4. Each 

sample was then annealed at 570 °C in a nitrogen-purged atmospheric-pressure 

box furnace. The annealing time for each sample was: A1 0.5 hour, A2 1 hour, 

A3 2 hours, and A4 3 hours. The centre zones of the annealed samples were 

then checked by using an optical microscope (OM) in the bright-field (BF) 

reflective mode. Raman measurements were then performed using a Raman 

microscope (Renishaw, InVia) with a laser wavelength of 514 nm and a laser 

spot size of 1 µm. The Raman exposure time was set to 1 second. The laser 

power reaching the sample surface was about 19 mW. 

An 1 cm × 1 cm fully reacted piece labelled A4-1 was then cut from sample A4. 

The Al2O3 was selectively wet etched using a standard RCA-1 clean (1 NH4OH : 

1 H2O2 : 3 DI water at 80 ºC for about 5 minutes), and followed by a DI water 

rinse. As a result, the glass surface with the grown c-Si crystals was exposed. 

The surface morphology of sample A4-1 was then studied by scanning electron 

microscopy (SEM) (Zeiss, Auriga CrossBeam FIB/SEM workstation) and tapping-
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mode AFM (Veeco, Dimension). The cross-section profile was characterized by 

SEM (milled by FIB Ga ions and imaged by SEM). To protect the glass surface 

during FIB Ga ion milling, a 20(L) × 3(W) µm2 platinum layer was coated on the 

surface by FIB before trench milling. Energy-dispersive X-ray spectroscopy (EDX) 

analysis was then used to identify the elemental composition of the crater shaped 

nodules. The EDX analysis was performed in an AMETEK EDAX system 

attached to a NOVA NanoSEM 230 SEM station. 

To understand the kinetics of the c-Si growth in aluminium and at the glass 

interface, in-situ XRD was used (Panalytical, model X’pert Pro equipped with 

Anton Paar HTK1200N high-temperature chamber). A wavelength of 1.54 Å 

(copper target) was used and the high-temperature chamber was maintained at a 

pressure of 6×10-6 mbar. To identify the silicon peaks, sample A4-1 was scanned 

from 20 ° to 70 ° using XRD.  

Four 0.8 cm × 0.8 cm planar 3.3 mm thick borosilicate glass sheets (B1, B2, B3, 

and B4) with 120 nm sputtered Al on one surface were then annealed in the high-

temperature chamber at 4 different temperatures (500, 510, 520 and 530 °C) to 

obtain the activation energy of the reaction. 
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4.3 Results and discussion 

 

4.3.1 Investigation of Al/glass samples using optical 

microscopy 

Optical microscope bright field images on samples annealed at 570 °C for 

different times are shown in Figure 4-1. Before the anneal process, the Al film 

was uniform and showed a white appearance in the bright field image (not shown 

here). After 0.5 hour annealing we observed two objects 1 and 2, see Figure 

4-1(a). The thermal expansion coefficient difference between the borosilicate 

glass sheet and the Al film results in a large thermal stress [9]. As a result, 

hillocks were formed in some regions of the Al film, see object 1 in Figure 4-1(a), 

while in some other regions of the Al film voids were formed (object 2 in Figure 

4-1(a)), thereby exposing the glass surface. After 1 hour annealing, in Figure 

4-1(b), besides Al hillocks and Al voids, we observed another object (3). Object 3 

was green coloured under the optical microscope and had a dendritic growth 

pattern. The size of object 3 is less than 5 µm in Figure 4-1(b). The dendritic 

objects get larger with increasing annealing time. They are numerically labelled 

as 4–6 in Figure 4-1(c) after 2 hours annealing and 7 in Figure 4-1(d) after 3 

hours annealing. After 3 hours of annealing, no further changes were observed, 

indicating that the reaction had stopped.   
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Figure 4-1: Optical microscope images taken in the bright field reflective mode.  (a) centre area of 
sample A1 after 0.5 hour annealing at 570 °C, (b) centre area of sample A2 after 1 hour annealing, 

(c) centre area of sample A3 after 2 hours annealing, and (d) centre area of sample A4 after 3 
hours annealing. The scale bar is 20 µm for all images. Objects observed are numbered and 

marked with a dashed line. 

 

4.3.2 Raman spectroscopy analysis 

All objects marked in Figure 4-1 were examined by Raman spectroscopy. Figure 

4-2 shows the Raman spectrum of object 3 observed in Figure 4-1(b). The 

narrow Raman peak at 519 cm-1 indicates that object 3 is crystalline silicon (c-Si) 

[10]. Objects 4-7 had all similar peaks (not shown here) at 519 cm-1 and hence 

also consist of c-Si. Only objects 1 and 2 in Figure 4-1 did not contain any c-Si 

according to Raman measurements. 
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Figure 4-2: Raman spectrum of object 3 of Figure 4-1(b). The inset was the view under the Raman 

tool’s microscope. The green dendritic object in the centre was illuminated by the Raman laser 
beam (diameter ~1 µm). 

 

4.3.3 Morphology study by SEM, AFM, and element 

analysis by EDX 

4.3.3.1 Plan-view SEM analysis 

After receiving a RCA treatment sample A4-1 was examined by SEM, see Figure 

4-3. Some charging effects are present in the SEM image in Figure 4-3(a) 

despite the use of a low gun energy of 0.5 keV. The dendritic objects in Figure 

4-3(a) were c-Si (confirmed by Raman spectroscopy). For the fully annealed 

sample A4-1, the c-Si was not joined together to form a continuous film but 

appeared as standalone clusters. The cluster size is of the order of 100 µm. To 

minimize the charging effect and to obtain informative images under a higher 

magnification, A4-1 was sputter coated with a ~8 nm thick layer of gold. A SEM 

plan-view image of the surface area among silicon clusters was then taken under 

higher magnification, as shown in Figure 4-3(b). The surface between the Si 
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clusters of sample A4-1 consists of numerous small-area zones with rough 

surfaces, which are labelled “nodule” in Figure 4-3(b), surrounded by smooth 

surface areas. The nodules have a size of the order of 1 µm. The nodules are 

randomly distributed, with a typical spacing of a few µm.   

 

Figure 4-3: SEM plan-view image of sample A4-1. (a) Low-magnification (142X) view of silicon 
clusters; (b) higher-magnification view (11000X) of surface area in between the silicon clusters 

seen in (a). FIB locations 1 and 2 (see lines in images) represent two different FIB cross section 
locations discussed in section 4.3.3.2. Location 1 is on top of a silicon cluster. Location 2 crosses 

several nodules observed on the glass surface in between the silicon clusters. Image (a) was taken 
using electron beam energy of 0.5 keV to lower the charging effect, while image (b) was taken 
using electron beam energy of 5 keV after coating the sample with a ~8 nm thick layer of gold. 

 

4.3.3.2 Cross-sectional SEM analysis 

After milling trenches with the FIB, SEM was used to investigate the cross-

sectional profile at the two FIB locations as shown in Figure 4-3(a) and (b). 

Location 1 represents the silicon cluster covered area. Location 2 represents the 

area that is free of silicon clusters. As can be seen in Figure 4-4, nodules are 

embedded in the glass and exist both in the area free of Si clusters (as shown in 

Figure 4-4 (a) & (b)) and under Si clusters, as can be seen in Figure 4-4(c). 

Based on Figure 4-3 and Figure 4-4, it is reasonable to conclude that the nodules 

are present everywhere along the glass surface. The sizes of nodules and 

distances between them are in the order of 1 µm. The nodules are crater shaped 
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with width < 5 µm and depth < 1 µm, as can be seen in Figure 4-4 (b) and (c). 

The silicon layer of the silicon clusters is continuous, but is not of uniform 

thickness. The average thickness of the Si layer seen in Figure 4-4(c) is at an 

order of 100 nm.  

 
Figure 4-4: SEM cross-sectional view of sample A4-1. Images (a) and (b): SEM cross-section at Si 

cluster free area – corresponding to location 2 in Figure 4-3(b); and image (c): Si cluster - 
corresponding to location 1 in Figure 4-3(a). The 20(L) × 3(W) µm2 platinum layer visible in (a) and 
(b) was coated onto the surface by FIB before trench milling to protect the glass surface during FIB 

milling. All SEM images were taken using electron beam energy of 5 keV. 

 

4.3.3.3 EDX analysis 

To further investigate the nodule structures visible in Figure 4-3 and Figure 4-4, 

EDX was used. Figure 4-5 shows the EDX result of nodules observed in Figure 

4-4 (b) and (c), demonstrating that the nodule structures mainly contain the 

elements Al and O, most likely in the form of Al2O3. As mentioned previously, 

sample A4-1 had an RCA-1 treatment which would etch Al2O3. As can be seen in 

Figure 4-4(b), the nodule structure has been partially removed whereas the 

(a) (b) 

(c) 

nodules Glass surface 

Platinum 

Platinum 

Si cluster 

nodules 

Glass surface 

Si cluster 

Platinum coating by FIB 
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nodule structure in Figure 4-4(c) is fully intact, most likely due to the shielding 

effect from the overlying Si cluster during the RCA-1 treatment. 

An EDX analysis was also done on a fully annealed AIT sample after the thermal 

anneal (i.e., without RCA-1 treatment). It shows that Al2O3 exists predominately 

in c-Si cluster free areas (EDX spectra not shown here).  

 
Figure 4-5: EDX results of nodule structures seen in (a) Figure 4-4(c) and (b) Figure 4-4(b). The 
EDX analysed zone size of (a) is about 0.20 × 0.22 µm2 and that of (b) is about 0.80 × 0.14 µm2. 

(a) 

(b) 
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4.3.3.4 AFM analysis of crystalline silicon clusters 

AFM was used to study the topology of the c-Si clusters seen in Figure 4-3(a). A 

top-view image and the corresponding surface plot image are shown in Figure 

4-6. They clearly reveal that the c-Si cluster is located above the glass surface. 

The height difference between the c-Si surface and the glass surface is about 

100 nm. 

 

Figure 4-6: AFM image of one silicon cluster on sample A4-1 (after RCA-1 treatment). Scan size 
100 µm × 100 µm with 512×512 data points. (a): top view and (b): corresponding surface plot. 

 

4.3.4 XRD analysis 

4.3.4.1 Ex-situ XRD scan  

XRD scans were performed on sample A4-1, both before and after RCA-1 

treatment. The RCA-1 treatment was found to introduce negligible changes to the 

XRD result. Figure 4-7 shows the XRD result obtained from the RCA-treated 

sample. Only one clear peak (at 28.4 °) is present in the XRD spectrum, 

suggesting that the c-Si grains formed are preferentially (111) oriented [11]. 
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Figure 4-7: XRD scan (performed at room temperature) of AIT sample A4-1 after RCA-1 treatment. 

 

4.3.4.2 In-situ XRD analysis and activation energy extraction 

Crystalline Si is one of the reaction products in the solid state reaction between 

aluminium (Al) and glass. We studied the c-Si growth by in-situ XRD and used 

the results to extract the activation energy for the Al-glass reaction.  The fraction 

of c-Si material is determined by using the saturated integrated XRD (111) peak 

area for each anneal temperature as normalizing reference. The fraction of c-Si 

material determined by this method was plotted versus annealing time, see 

Figure 4-8. 
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Figure 4-8: Fraction of c-Si material vs. annealing time at temperature 500 °C (sample B1), 510 °C 
(B2), 520 °C (B3) and 530 °C (B4). 

 

The thermally activated process between Al and SiO2 exhibits an Arrhenius-type 

behaviour in the temperature range 200-850 °C [2-6, 12]. The activation energy 

can be calculated using the Arrhenius equation  

    Reaction rate = Aexp(-Ea/kT)                                (4.1) 

where A is an arbitrary constant, k the Boltzmann constant, T the absolute 

temperature, and Ea the activation energy. The slopes of the linear regions of 

Figure 4-8 are used as the reaction rates. The natural logarithm of the reaction 

rates at four different temperatures are plotted against 1/kT (with unit of eV-1) in 

Figure 4-9. The slope is the activation energy, which is 3.0 ± 0.2 eV. The 

activation energy measured in our study is generally slightly higher than the 
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previously reported values [2-6, 12] (the values were listed in Section 4.1). The 

presence of other chemical components (such as B2O3, Na2O, etc.) besides SiO2 

inside borosilicate glass could attribute to the slightly higher Ea of the reaction 

between Al and glass. The high activation energy of 3.0 ± 0.2 eV indicates that, 

to have a reasonably short process time (less than 3 hours), the AIT annealing 

process should be carried out at a temperature above 520 °C.  

 

 

Figure 4-9: Arrhenius plot of the AIT process based on the c-Si growth from four different 
temperatures (sample B1 500 °C, B2 510 °C, B3 520 °C and B4 530 °C). The activation energy (Ea) 

was calculated from the slope of the linear fit. The linear fit was obtained by weighting every data 
point in proportion to its standard error. 

 

4.3.5 Model of AIT process 

A phenomenological model of the AIT process is proposed and illustrated in 

Figure 4-10. During the annealing, the solid state reaction between aluminium 
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and glass starts at random points at the glass-aluminium interface. The reduced 

silicon is dissolved into the aluminium layer whereas aluminium oxide starts to 

grow at the nucleation points, see Figure 4-10(b).  At the second stage of the AIT 

process, the Al2O3 grows deeper into the glass in the form of crater shaped 

nodules and also grows into the aluminium over-layer; the reduced Si from the 

glass continues to dissolve into the aluminium over-layer and eventually starts to 

precipitate as crystalline silicon (c-Si) at the glass-Al interface, see Figure 4-10(c). 

Figure 4-10(d) marks the completion of the chemical reactions. All aluminium has 

been reacted with glass. Crystalline Si forms separated clusters on the glass 

surface. Al2O3 surrounds the c-Si clusters and also exists in the crater-shaped 

nodules embedded in the glass. In Figure 4-10(e), the final glass texture is 

obtained after HF:HNO3 wet etching and a DI water rinse, removing the c-Si and 

Al2O3 reaction products. We suggest that the topology of the glass texture 

strongly depends on the size, depth and lateral distance of the Al2O3 nodules 

embedded in the glass. Following the reasoning in Ref. [4], we suggest that the 

silicon removal rate from the reaction sites (i.e., the diffusion of Si atoms through 

the Al2O3 nodules) is the rate limiting step in the AIT process. 
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Figure 4-10: Proposed phenomenological model of the AIT process. (a) Al coated on clean and dry 
planar glass. (b) The solid state reaction between aluminium and glass starts at random points at 

the glass-aluminium interface. The reduced silicon is dissolved into the Al layer whereas aluminium 
oxide starts to grow at the nucleation points. (c) Si atoms inside the Al start to precipitate at the 
glass surface. Al2O3 grows deeper into the glass and crater-shaped nodules start to form. Al2O3 
also grows into the Al over-layer. (d) Reaction completed, with c-Si clusters formed at the glass 

surface. Al2O3 surrounds the c-Si clusters (SEM cross-sectional view of the AIT annealed sample 
before the SC1 etching shows that there is Al2O3 surrounding the c-Si cluster, The SEM image is 
not shown in the thesis) and also exists as crater-shaped nodules. (e) HF:HNO3 wet etch followed 

by a DI water rinse removes the c-Si and the Al2O3 and thereby textures the glass surface. The 
surface topology is highly dependent on the size, depth and lateral distance of the Al2O3 nodules. 

 

4.4 Conclusions 

 

In this chapter, we studied the solid state reaction between aluminium and 

borosilicate glass at an annealing temperature of about 500 °C. We demon-

strated that c-Si clusters are formed on the glass surface and that the c-Si 

clusters are surrounded by Al2O3. We also demonstrated that crater shaped 

nodules, consisting of Al2O3, are embedded into the glass, with a width of < 5 µm 

and depth of < 1 µm.  The activation energy of the reaction between sputtered Al 
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and borosilicate glass was found to be 3.0 ± 0.2 eV based on in-situ XRD 

analysis of the c-Si growth. We suggest that by adjusting the Al deposition thick-

ness and/or annealing temperature, the Al2O3 nodules’ size, depth and lateral 

separation can be controlled. As a result, the AIT glass texturing method can be 

further optimized for applications in thin-film solar cells. 
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Chapter 5 Optical simulations for poly-Si 

thin-film solar cells on AIT glass using ASA 

 

 

5.1 Introduction 

 

In this chapter, the haze and angular intensity distribution (AID) of AIT glass 

surfaces are calculated by a phase model based on the scalar scattering theory 

using AFM measured surface height profiles. The calculated haze and AID are 

compared with the measured ones to validate the phase model (Section 5.2). 

The haze and AID of textured surfaces calculated by the phase model are 

entered into ASA to perform optical simulations. Parasitic glass absorption and 

c-Si absorption in poly-Si thin-film solar cells on AIT glass can be estimated 

separately using the ASA optical simulations (Section 5.3). 
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5.2 Haze and AID simulations for AIT glass using a 

phase model based on the scalar scattering theory 

 

Dominé et al. developed a phase model based on the Rayleigh-Sommerfeld 

diffraction integral. They showed that the phase model can estimate the haze 

and AID of both micro- and nanotextured TCO surfaces [1]. Jäger et al. 

furthermore showed that the phase model can satisfactorily predict the scattering 

parameters of rough interfaces between TCO and arbitrary materials, for both 

transmission and reflection haze and AID measurements [2]. In this section, a 

similar phase model reproduced in SERIS [3]  is used to estimate haze and AID 

of textured surfaces of poly-Si thin-film solar cells on AIT glass. 

Three AIT Borofloat glass samples BF1, BF7, and BF11 (as described in Section 

3.2.3 of Chapter 3) were used in this work. Samples BF1, BF7, and BF11 were 

heavily, moderately, and lightly textured, respectively. Their haze values were 

measured with an UV/Vis/NIR spectrophotometre (PerkinElmer, Lambda 950), 

which has a 150 mm diameter integrating sphere. Their AID were measured with 

a goniophotometre (pab advanced technologies GmbH, pgII) at three wave-

lengths (520, 620 and 780 nm). Tapping-mode atomic force microscopy (AFM) 

(Veeco, Dimension) was used to measure the height profiles of the textured 

surfaces of the three samples. All four AFM measurements had scan sizes of 

10×10 µm2 and 512×512 data points. The haze and AID of the textured samples 

BF1, BF7, and BF11 were then calculated by the phase model using the AFM 

height data. The calculated haze values and AID were then compared with the 

measured haze and AID.  
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The simulated haze values generally fit the measured haze values well, as 

shown in Figure 5-1. The root mean square (RMS) roughnesses of samples BF1, 

BF7, and BF11 are 393 nm, 337 nm, and 198 nm, respectively. Surfaces with 

lower roughness have a smaller haze. The simulated AID fits the measured AID 

well at a wavelength of 780 nm, as shown in Figure 5-2 for sample BF1. The 

simulated AID of sample BF1 at wavelengths of 520 nm and 620 nm, and the 

simulated AID of samples BF7 and BF11 at wavelengths of 520 nm, 620 nm, and 

780 nm, also fit the measured AID well (figures are not shown here). Generally, 

the phase model satisfactorily estimates the haze and the AID of AIT glass 

surfaces.  

 

 

Figure 5-1: Calculated haze by the phase model vs. measured transmitted haze for samples BF1, 
BF7, and BF11. 
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Figure 5-2: Calculated AID, or Angular Resolved Scattering (ARS), by the phase model vs. 
measured AID at wavelength 780 nm for AIT glass sample BF1. 
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thin-film solar cell simulator ASA is presented. The optical simulation can 

separately estimate glass and c-Si absorption.  

5.3.2 Experimental details 

A commercial Borofloat glass sheet (30 cm × 40 cm) from Schott AG, Germany, 

was AIT textured and named AIT1. The detailed AIT process is described in Ref. 

[5]. Glass sample AIT1 was then cleaned in a dish washer (Miele, G7883CD). 

The transmittances (T) and reflectances (R) of the bare glass sample AIT1 were 

measured in superstrate configuration using a UV/Vis/NIR spectrophotometer 

(PerkinElmer, Lambda 1050), which has a 150 mm diameter integrating sphere. 

The absorptance (A) of the bare glass sample AIT1 was calculated via A = 1 - R - 

T. Using PECVD, the glass sheet AIT1 was then coated with ~ 70 nm of silicon 

nitride (SiNx) and a ~1600 nm thick a-Si:H n+/p-/p+ diode. The details of the a-Si:H 

diode PECVD deposition process can be found in Ref. [6]. The a-Si:H thin-film 

diode then underwent solid phase crystallization (SPC) in a nitrogen purged oven 

at 600 °C for 12 hours. The device structure of a poly-Si solar cell on AIT glass 

after the SPC process is illustrated in Figure 5-3 (a). Two 3 cm × 3 cm poly-Si 

thin-film solar cells on glass after the SPC process were cut from the centre of 

the 30 cm × 40 cm poly-Si on glass sample AIT1. The two textured glass 

substrates of the two 3 cm × 3 cm poly-Si thin-film solar cells on glass were 

named AIT1a and AIT1b. Total (glass + c-Si) absorptance of the poly-Si solar cell 

on glass sheet AIT1a was measured using the UV/Vis/NIR spectrophotometre 

via A = 1 - R - T. The height profile of the rear Si surface (as indicated in Figure 

5-3 (a)) of the poly-Si thin-film solar cell on glass sheet AIT1a was measured by 

tapping-mode atomic force microscopy (AFM) (Veeco, Dimension). The AFM 



88 

measurements had a scan size of 20×20 µm2 and 512×512 data points. The two 

3 cm × 3 cm poly-Si thin-film solar cells on glass sheets AIT1a and AIT1b were 

then plasma etched by using SF6 gas to fully remove the poly-Si layer and the 

SiNx layer, as sketched in Figure 5-3 (b). The plasma etching was done in a 

13.56 MHz parallel-plate RF powered plasma etcher (Oxford Plasma 80 RIE 

system). The absorptances of glass sheets AIT1a and AIT1b after the plasma 

etching were measured using the UV/Vis/NIR photospectrometre via A = 1 - R - T. 

The height profile of the AIT textured surface (as indicated in Figure 5-3 (b)) of 

glass sheet AIT1a was measured by the tapping-mode AFM. The AFM 

measurement had a scan size of 20×20 µm2 and 512×512 data points.  

 

 

Figure 5-3: Illustration of (a) a poly-Si thin-film solar cell on AIT textured Borofloat glass 
after the SPC process, and (b) exposed AIT textured glass with poly-Si and SiNx layers 

removed by plasma etching. 
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The real part of the refractive index (n) of Borofloat glass sheets was determined 

by fitting measured dispersion data with a three-term Sellmeier equation. The 

effective imaginary part (κ) of the refractive index of glass sheet AIT1a was 

calculated based on the measured transmittance and the scalar scattering theory. 

Haze and angular intensity distribution (AID) of the rear Si surface and the 

textured glass surface were calculated from the AFM measured heights using the 

phase model based on the scalar scattering theory proposed in Refs. [1, 2]. The 

calculated n, κ values of textured glass, calculated haze and AID of the textured 

glass surface and the rear Si surface by the phase model were then loaded into 

the ASA simulator [7, 8] for optical simulations. In the ASA optical simulations, 

absorptance in the SiNx layer is not considered. The sum of the simulated 

absorptance of c-Si and glass was then compared to the measured absorptance 

of the poly-Si thin-film solar cell on glass sheet AIT1a to check the validity of the 

optical simulation method. The impact of the glass thickness on the current 

densities of c-Si cells and the current loss due to parasitic glass absorption was 

also evaluated using the ASA optical simulations. 

 

5.3.3 Results and discussion 

5.3.3.1 Absorptance of bare AIT glass and AIT glass after the 

SPC process 

Figure 5-4 shows the measured absorptance of bare textured glass sample AIT1 

and glass samples AIT1a & b after the SPC process. To measure the absorption 

of textured glass sheets AIT1a and AIT1b, the poly-Si and SiNx layers on glass 

sheets AIT1a and AIT1b were fully removed by plasma etching. The measure-
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ments covered the wavelength range from 250 nm to 1500 nm. The absorption 

band at around 1400 nm wavelength corresponds to the first overtone of the 

stretching vibration of water molecules that are hydrogen-bonded to neighbouring 

silanol groups inside the silica type glass [9-11]. There is a shift of the absorption 

edge in the UV region and a slightly higher absorption in the near-infrared region 

above 800 nm wavelength for textured glass samples AIT1a & b, compared to 

the bare textured glass sample AIT1. The shift of the absorption edge could be 

related to the moderate temperatures [12, 13] during the PECVD and SPC 

processes.  

 

Figure 5-4: Absorptance of bare AIT textured glass sheet AIT1 and two AIT textured glass sheets 
AIT1a and AIT1b after the SPC process. 
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5.3.3.2 Calculation of real part of the refractive index (n) for AIT 

textured Borofloat glass 

In this work, it is assumed that the real parts of the refractive indices of bare 

planar Borofloat glass, bare AIT textured Borofloat glass, and AIT textured 

Borofloat glass after the SPC process are the same. Six sets of measured 

dispersion data (n versus wavelength λ) of the Borofloat glass were retrieved 

from the website of the Borofloat glass manufacturer [14]. n values for other 

wavelengths were calculated by fitting the retrieved dispersion data with a three-

term Sellmeier equation, following a similar procedure as described in Refs. [15, 

16]. The three-term Sellmeier equation [19] for the Borofloat glass is found to be 

𝑛(𝜆) = 1 + 0.001736𝜆2

𝜆2+ 0.000362
+ 0.122760𝜆2

𝜆2− 0.034671
+ 1.011537𝜆2

𝜆2− 0.005044
                          (5.1) 

where λ is the wavelength. The retrieved dispersion data and the calculated n 

values based on the three-term Sellmeier equation are shown in Figure 5-5. The 

wavelength range is from 250 nm to 1500 nm. The retrieved dispersion data are 

well fitted with the three-term Sellmeier equation. 
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Figure 5-5: Calculation of n values for Borofloat glass by fitting the measured dispersion data with a 
three-term Sellmeier equation. 

 

5.3.3.3 Calculation of effective imaginary part of refractive 

index (κ) for AIT textured Borofloat glass 
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reflectivity of the glass-air interface. It is given by [20] 

𝑟 = (𝑛−1)2
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                                                                (5.2) 

where n is the real part of the refractive index for glass, as calculated in Section 

5.3.3.2. Noted that equation 5.2 is a simplified expression of r, which is 

applicable for wavelengths where the imaginary part of the refractive index is 

several orders smaller than its real part. This simplified expression is valid for 
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silica-type glass in the wavelength range investigated in this work (250 - 1500 

nm), according to Ref. [17]. 

In Figure 5-6, I0 refers to the intensity of the incident light. d is the physical 

thickness of the AIT glass sheet, and α represents the effective absorption 

coefficient. For α, optical pathlength enhancement inside the glass due to glass 

texturing was taken into consideration. The optical thickness of the AIT glass 

sheet is termed doptical, the optical pathlength enhancement factor [21] inside the 

glass due to texturing is termed Bglass, and the physical absorption coefficient 

determined by the intrinsic glass material properties is termed as αintrinsic. α of the 

AIT glass sheet is then related to αintrinsic by 

𝛼𝑑 = 𝛼𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑑𝑜𝑝𝑡𝑖𝑐𝑎𝑙 = 𝛼𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝐵𝑔𝑙𝑎𝑠𝑠𝑑                        (5.3) 

So: 

                                    𝛼 = 𝛼𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝐵𝑔𝑙𝑎𝑠𝑠                                                      (5.4) 
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Figure 5-6: Energy flow inside a glass sheet with one textured surface. 
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simplified optical system shown in Figure 5-6, it is assumed that light with a 

reflection angle larger than θC at the bottom glass-air interface is totally internally 

reflected inside the glass for multiple times until it is fully absorbed by the glass. 

In other words, these photons do not contribute to transmission. The 

transmission was then calculated by [20] 

𝑇 = 𝐼0(1−𝑟)2𝑒−𝛼𝑑(1+𝐶𝑟2𝑒−2𝛼𝑑+𝐶2𝑟4𝑒−4𝛼𝑑+⋯ )
𝐼0

= (1−𝑟)2𝑒−𝛼𝑑

1−𝐶𝑟2𝑒−2𝛼𝑑
                (5.6) 

The transmission can be measured with a UV/Vis/NIR photospectrometre. The 

only unknown in equation (5.6) is the effective absorption efficient α. Hence, α 

can be calculated by solving the quadratic equation (5.6). Once α is calculated, 

the effective extinction coefficient (κ) can be calculated by [20]: 

𝑘 = 𝛼𝜆
4𝜋

                                                         (5.7) 

where λ is the wavelength. Figure 5-7 shows the calculated κ value for the bare 

glass sample AIT1 (kbare) and glass sample AIT1a after the SPC process (kpost-

SPC). The wavelength range is from 250 nm to 1500 nm. The extinction coefficient 

(κ) for AIT glass sample does not significantly change due to the moderate-

temperature SPC process.  
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Figure 5-7: Calculated effective extinction coefficient k of bare AIT glass sample AIT1 and glass 
sample AIT1a after the SPC process. 
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For wavelengths up to 1000 nm, the simulated total absorptance (A) in Figure 5-8, 

which is calculated by summing the simulated c-Si A and the simulated glass A, 

generally agrees quite well with the measured absorptance of the sample. Above 

1000 nm, the measured absorptance is significantly higher than the simulated 

absorptance. The difference is likely due to the errors in the R and T measure-

ments, as discussed in Section 2.5.2.3 of Chapter 2. The simulated c-Si A is 

significantly lower than the measured total absorptance (c-Si + glass). As a result, 

the current density (Jph) calculated from the measured absorptance of poly-Si on 

textured glass could significantly overestimate the current density generated by 

the c-Si absorber. To more accurately estimate the current density generated by 

the c-Si absorber, it is suggested to subtract the current loss due to glass 

absorptance from the current density calculated based on the measured 

absorptance. For example, for the sample shown in Figure 5-8, the 1-Sun current 

density calculated based on the measured absorptance is 29.53 mA/cm2 for the 

280 - 1100 nm wavelength range. The current loss due to glass absorption 

calculated based on ASA simulation in the same wavelength range is 3.55 

mA/cm2. Hence, the current density generated by the 1.6 µm thick poly-Si on AIT 

glass sample with air as the back surface reflector (BSR) is estimated to be 

25.98 mA/cm2.  
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Figure 5-8: ASA simulated absorptances versus wavelength for poly-Si thin-film sample AIT1a 
(lines). Also shown (circles) is the measured absorptance of the sample. 
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the c-Si layer from the glass side, which results in a higher current density 

generated by the c-Si layer. However, the relationship between the reduction of 

the current loss due to glass absorption by thinning the glass and the current 

density gain from the c-Si absorber is not one to one. By thinning the glass from 

3.3 mm to 0.3 mm, the current loss due to parasitic glass absorption is reduced 

from 3.74 to 0.46 mA/cm2, i.e., by 3.28 mA/cm2. However, the current density of 

the c-Si layer only improves by 1.98 mA/cm2 (i.e., by 7.3 %). In the experiments 

reported in Ref. [18], the JSC improved by 6.3 % on average for poly-Si thin-film 

solar cells on AIT glass when the glass thickness was reduced from 3.3 to 0.5 

mm. The highest JSC enhancement demonstrated in Ref. [18] was 8% when 

thinning the glass from 3.3 to 0.5 mm. The current density enhancement of 7.3 % 

estimated by the ASA optical simulations of the present work thus agrees well 

with the experimental results of Ref. 18. This shows that the optical simulation 

method presented in this thesis is able to satisfactorily estimate the light trapping 

performance of poly-Si thin-film solar cells on textured glass.  
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Figure 5-9: Calculated impact of the glass thickness on the current density of the c-Si absorber and 
the current loss due to parasitic glass absorption. The simulations assumed a fixed c-Si film 
thickness of 3 µm and a stack of silicon dioxide and aluminium as the back surface reflector. 
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if the glass is thinned from 3.3 to 0.3 mm, assuming a 3 µm thick c-Si film on AIT 

glass and a stack of silicon dioxide and aluminium as the back surface reflector. 

Using the optical simulation method proposed in this chapter, the light trapping 

performance of poly-Si thin-film solar cells on textured glass can be evaluated 

more accurately. 
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Chapter 6 Enhanced light trapping in 

polycrystalline silicon thin-film solar cells 

using plasma-etched submicron textures 

 

 

6.1 Introduction 

 

Texturing the rear Si surface by KOH wet-etching for e-beam evaporated SPC 

poly-Si solar cells on planar glass sheets (as described in Section 2.3.2.1 of 

Chapter 2) is an effective light trapping method [1]. The wet-etching method 

produces micron-size features and a cell with a short-circuit current density of 

26.6 mA/cm2 has been reported for an absorber layer thickness of 3.6 µm [1]. 

However, for this device about 2 µm of poly-Si material had to be removed by 

wet etching, which significantly increases the material consumption. Si surface 

texturing of multicrystalline Si wafer solar cells by dry plasma etching (Section 

2.3.2.2, Chapter 2) was studied by several research groups [2-6]. The authors of 

Refs. [2-6] demonstrated that dry plasma etching is a feasible method to achieve 

higher PV efficiency for multicrystalline Si wafer solar cells, by improving JSC and 

without deteriorating VOC and FF.  

In this chapter we demonstrate that dry plasma etching using a mix of sulphur 

hexafluoride (SF6) and dioxygen (O2) can also be used to produce a texture on 
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the rear Si surface of PECVD SPC poly-Si thin-film solar cells on glass. The 

resulting rear Si texture (RST) shows reflection haze values of more than 95% at 

the Si-air interface. Poly-Si consumed by plasma etching is estimated to be 

around 500 nm for the texture. The average feature size of the texture is around 

200 nm. We use a phase model based on the scalar scattering theory to 

calculate the scattering properties of the textured surface. We also use the thin-

film solar cell simulator ASA to evaluate the light trapping and current enhance-

ment induced by the texture. Combining this submicron RST with a micrometre-

scale glass texture can produce a multi-scale rear Si surface texture. Assuming a 

1900 nm thick poly-Si solar cell on glass with a high-quality back surface reflector 

(silicon dioxide/silver stack), the calculated photon density absorbed in the 

poly-Si solar cell with the multi-scale rear Si surface texture corresponds to a 

1-Sun short-circuit current density (JSC) of 28.6 mA/cm2, which is 1.4 mA/cm2 

more than the calculated JSC of a poly-Si solar cell with the same thickness on 

textured glass but without RST. The calculated current densities have taken 

parasitic glass absorption into consideration. The main results of the work 

described in this Chapter have been published in Ref. [7]. 

 

6.2 Materials and methods 

 

The commercially available borosilicate glass sheets (30 cm × 40 cm, planar) 

were cleaned in a dish washer (Miele, G7883CD). Using PECVD, the glass 

sheets were then coated with about 70 nm of silicon nitride (SiNx) and an ~2400 

nm thick a-Si:H n+/p-/p+ diode. The details of the a-Si:H diode PECVD deposition 
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process can be found in Ref. [8]. The a-Si:H thin-film diode then underwent solid 

phase crystallization in a nitrogen purged oven at 600°C for 12 hours, followed by 

1 minute of rapid thermal processing (RTP) at 1050°C [8] and then hydrogen 

passivation in a microwave powered plasma [9]. Four 2.5×2.5 cm2 samples 

(labelled RST1, RST2, RST3 and RST4) were then cut from the centre of the 

planar poly-Si sample. The device structure of the planar poly-Si sample is 

named “planar” and shown in Figure 6-1(a). The reflectances (R) of these four 

planar samples were measured with an UV/Vis/NIR spectrophotometer 

(PerkinElmer, Lambda 950), which has a 150 mm diameter integrating sphere. 

The incident beam entered the samples from the glass side (i.e., superstrate 

configuration) in all the optical measurements reported in this Chapter. These 

samples (RST1 - RST4) were then plasma etched in a 13.56 MHz parallel-plate 

RF powered plasma etcher (JLS Designs Ltd, Mini-lab MPS 2200), which was 

preconditioned with an isopropyl alcohol clean and an O2 plasma etch of the 

empty chamber (RF power 400 W, O2 flow rate 10 sccm, chamber pressure 13.3 

Pa, and etch time 5 minutes). The RF power for the four samples (RST1 - RST4) 

was 400, 450, 500 and 550 W, respectively, while keeping the other process 

parameters constant: SF6 flow rate 40 sccm, O2 flow rate 10 sccm, chamber 

pressure 26.7 Pa, and etch time 5 minutes. The device structure of these four 

samples (RST1 - RST4) after the plasma etching is named “RST” (rear Si texture) 

and is shown in Figure 6-1(c). The transmittances (T) and reflectances (R) of 

samples RST1 - RST4 after the plasma etching step were measured in super-

strate configuration using the UV/Vis/NIR spectrophotometer. The absorptances 

(A) were calculated via A = 1 - R - T. The surface morphology of sample RST4 

was then studied by scanning electron microscopy (SEM) (Zeiss, Auriga 

CrossBeam FIB/SEM workstation, whereby FIB stands for focused ion beam). 
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The thickness of the remaining poly-Si film of sample RST4 after the plasma 

etching was measured with the SEM. The required cross-section was created by 

milling a 10 µm deep trench into the poly-Si sample, using FIB gallium ions. Two 

other 10×10 cm2 poly-Si thin-film n+/p-/p+ diode samples, labelled AIT1 and 

Planar1, with about 1900 nm poly-Si thickness, were prepared on an AIT glass 

sheet and on a planar glass sheet, respectively. The details of the used AIT glass 

texturing process are described elsewhere [10, 11]. The poly-Si thin-film 

preparation steps of samples AIT1 and Planar1 were the same as for samples 

RST1 - RST4. The device structure of sample AIT1 after the hydrogenation 

process is named “AIT” and shown in Figure 6-1(b). After the hydrogenation 

process, the absorptances of samples Planar1 and AIT1 were calculated from 

the measured R and T data, using A = 1 - R - T. Sample AIT1 was then plasma 

etched using the same process parameters as for sample RST4 (RF power 550 

W, SF6 flow rate 40 sccm, O2 flow rate 10 sccm, chamber pressure 26.7 Pa, and 

etch time 5 minutes). The device structure of sample AIT1 after the plasma 

etching is named “AIT + RST” and shown in Figure 6-1(d). The reflectance and 

transmittance of sample AIT1 were measured after the plasma etching step, in 

superstrate configuration. Tapping-mode atomic force microscopy (AFM) (Veeco, 

Dimension) was used to measure height profiles of the following surfaces: the 

AIT textured glass surface of sample AIT1 before the SiNx coating, the rear Si 

surface of sample RST4 after the plasma etching step, the rear Si surfaces of 

sample AIT1 before and after the plasma etching step. All four AFM measure-

ments had scan sizes of 20×20 µm2 and 512×512 data points. Haze and angular 

intensity distribution (AID) of different interfaces in the four device structures of 

Figure 6-1 were calculated with the measured heights based on the scalar 
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scattering theory. The calculated haze and AID were then entered into the ASA 

simulator [12, 13] for optical simulations. For the AIT device (sample AIT1 before 

plasma etching) and the AIT + RST device (sample AIT1 after plasma etching), 

the haze and AID of both the front and rear Si surfaces were calculated based on 

the scalar scattering theory and then used as input in ASA to simulate multiple 

scattering. Parasitic glass absorption in AIT glass (discussed in detail in Chapter 

5) is considered in the ASA simulations. The simulated c-Si absorptance of 

device AIT is compared with the absorptance of device AIT + RST. The 

simulated current densities (Jph) of the c-Si layers of the four devices shown in 

Figure 6-1 were calculated by ASA based on the absorptances. 

 

Figure 6-1: Schematic drawings of poly-Si thin-film solar cells before metallization (a): on a planar 
glass sheet, (b): on an aluminium-induced texture (AIT) glass sheet, (c): on a planar glass sheet 
with the rear Si surface textured by plasma etching, and (d): on an AIT glass sheet with the multi-
scale rear Si surface texture produced by an additional plasma etching step. In the text, we name 
structure (a) planar, (b) AIT, (c) RST, and (d) AIT + RST. Note that the structure is presented here 

upside down (i.e., it is illuminated from the bottom). 



109 

6.3 Results and discussion 

 

6.3.1 Realization of a highly scattering rear Si surface 

texture by plasma etching 

Figure 6-2 shows the reflectances measured in superstrate configuration on 

samples RST1 to RST4, before and after the plasma etching step. Only one 

reflectance curve before the plasma etching is shown, because the reflectances 

of all four samples were almost identical at this stage. As shown in Ref. [14], the 

reflectance interference amplitude range (AMP) at ~1500 nm wavelength (as 

shown in Figure 6-2) can be used as a gauge for the degree of light trapping. The 

initial AMP of the planar samples (RST1 - RST4) before the plasma etching step 

was 32%. A decreasing AMP of 20%, 9%, 4% and 2% corresponding to an 

increasing RF power of 400 W (sample RST1), 450 W (sample RST2), 500 W 

(sample RST3) and 550 W (sample RST4), respectively, is observed in Figure 

6-2. A smaller AMP value indicates a higher scattering efficiency, which in turn 

results in better light trapping [14]. Hence, the Si rear surface of sample RST 4 

after plasma etching has the highest scattering efficiency of the four investigated 

samples (RST1 - RST4).  



110 

 

Figure 6-2: The reflectances measured in superstrate configuration of samples RST1 - RST4 
before and after the plasma etching step. AMP stands for the interference amplitude range at 

around 1500 nm wavelength. The RF power of the plasma etching process was 400, 450, 500, and 
550 W for samples RST1 - RST4, respectively. 

 

6.3.2 SEM tilt view and cross-sectional view 

Figure 6-3 shows the SEM 54° tilt view and cross-sectional view of sample RST4, 

whose plasma-etched texturization is highly randomising and has sharp tips. The 

poly-Si thickness of sample RST4 before the plasma etching was obtained by 

optical fitting, which is about 2400 nm. The poly-Si thin-film thickness of sample 

RST4 after the plasma etching based on SEM cross-sectional view (Figure 6-3(b)) 

is about 1900 nm. Thus, about 500 nm of poly-Si material was removed by the 

plasma etching process. 
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Figure 6-3: (a) SEM tilt view of sample RST4, (b) SEM cross-sectional view of RST4. 

 

6.3.3 AFM measured height profiles of rear Si surfaces 

Height profiles of the rear Si surfaces of the RST, AIT, and AIT + RST devices 

are shown in Figure 6-4. The rear Si surface of sample RST4 after the plasma 

etching step (Figures 6-4(a) and (b)) has an average feature size of 233 nm. The 

average feature size value is obtained by using the grain size analysis function of 

an AFM image processing software (Nanoscope, version 5.30). The surface 

RMS roughness is 43.7 nm. The autocorrelation length of the rear Si surface of 

sample RST4 after the plasma etching step is 1.2 µm. Figures 6-4(c) and (d) 

show the height profiles of the rear Si surface of sample AIT1 before the plasma 

etching. The lateral feature sizes are in the range of 1-3 µm. The RMS roughness 

and the autocorrelation length of the rear Si surface of sample AIT1 before the 

plasma etching was 113.5 nm and 3.0 µm, respectively. The height profile of 

sample AIT1 after the plasma etching represents the topography of the rear Si 

surface of the AIT + RST device (Figures 6-4(e) and (f)). The resulting surface 

has submicron features on top of micro-scale features. Hence, multi-scale texture 

features are produced. The RMS roughness of the multi-scale rear Si surface of 

sample AIT1 after the plasma etching step is 289.8 nm. The autocorrelation 

poly-Si poly-Si 

Glass 
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length is 2.1 µm. One more AFM measurement on the rear Si surface of sample 

AIT1 after the plasma etching was done at a different location. The measured 

surface topography (image not shown here) is similar to that of Figures 6-4(e) 

and (f). The RMS roughness of 289.8 nm is much higher than the sum of the 

RMS roughness of Figures 6-4(a) and 6-4(c). The much higher achieved RMS 

roughness results from the fact that the dry plasma etching process started on a 

rough surface. The sidewalls of the rough surfaces in Figure 6-4(d) are covered 

with the used etch masking polymer (SixOyFz) and therefore are etched more 

slowly than the valleys [3]. The higher Si removal rate in the valleys of rough 

surfaces in Figure 6-4(d) results in steeper trenches, as shown in Figure 6-4(f). 

Hence, a much higher rear Si surface RMS roughness is produced for the AIT + 

RST device structure. 
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Figure 6-4: The AFM measured height profiles of the rear Si surface of (a): sample RST4 after 

plasma etching, (c): sample AIT1 before plasma etching, and (e): sample AIT1 after plasma etching. 
The black lines in (a), (c), and (e) are indications of cross sections. (b), (d), and (f) are their 

respective height profiles in two-dimensional cross-sectional views. 

 

6.3.4 Haze and AID calculation based on the scalar 

scattering theory 

The haze and AID values were calculated with the phase model presented in 

Refs. [15, 16], using the height data presented in Section 6.3.3. Figure 6-5(a) 

shows the calculated haze inside Si at the Si-air BSR interface, for the 
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wavelength range of 280-1100 nm. Figure 6-5(b) shows the calculated AID inside 

Si at the Si-air BSR interface for a wavelength of 800 nm. The haze and AID 

values were calculated based on the rear Si surface height data shown in Figure 

6-4. Figure 6-5(a) shows excellent haze for rear Si surfaces of all three devices 

(RST, AIT, and AIT + RST). The haze of the rear Si surface of sample RST4 after 

the plasma etching step is above 95% across the wavelength range of 280-1100 

nm. Figure 6-5(b) shows that at 800 nm wavelength the rear Si surfaces of the 

AIT and RST devices have similar AID, whereas the rear Si surface of the AIT + 

RST device scatters more light into larger angles. Based on the AID data in 

Figure 6-5(b) and using the method presented in Refs. [15, 17], we find that 50% 

of the light intensity is reflected at an angle larger than 29.2°, 30.3°, and 36.3° at 

the Si-air interfaces of the AIT, RST, and AIT + RST devices, respectively. Light 

reflected into larger angles has a longer optical path length in Si. Moreover, if the 

angle of reflection at the Si-air interface (θ as shown in the inset of Figure 6-5(a)) 

is greater than the critical angle θc of the Si-glass interface, total internal 

reflection (TIR) occurs at the Si-glass interface. At 800 nm wavelength the critical 

angle for TIR at the Si-glass interface is 23.4° according to Snell’s law, using 

refractive indices of 1.47 and 3.7 for glass and Si, and assuming a planar glass 

surface. Based on the AID data in Figure 6-5(b) and using the method presented 

in Refs. [15, 17], the percentage of light intensities scattered with θ > 23.4° at the 

Si-air interface is 62%, 65%, and 72% for the AIT, RST, and AIT + RST devices, 

respectively. To summarize, the rear Si surface of the AIT + RST device has 

higher haze than its AIT and RST counterparts and that the rear Si surface of the 

AIT + RST device scatters more light more obliquely than its AIT and RST 

counterparts. Moreover, light has a higher chance of TIR at the Si-glass interface 

for the AIT + RST device than for the AIT and RST devices. Hence, we conclude 
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that the AIT + RST device with the multi-scale rear Si surface should have better 

light trapping performance than its AIT and RST counterparts.    

 
Figure 6-5: (a) Calculated haze inside Si and (b) normalized calculated angular intensity distribution 
(AID) inside Si at 800 nm wavelength. The haze and AID were calculated based on the height data 

of the Si rear surface of the RST device (Figure 6-4(a)), the AIT device (Figure 6-4(c)), and the 
AIT + RST device (Figure 6-4(e)). Light enters from the Si side and is reflected back into Si, as 
demonstrated in the inset of (a). The AID of a Lambertian light scattering surface is shown as a 

reference. 
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6.3.5 Measured absorptance and ASA simulated c-Si 

absorptance 

Figure 6-6(a) shows the measured absorptance (A) of samples Planar1, RST4 

after the plasma etching, and AIT1 before and after the plasma etching. 

Compared to sample Planar 1, absorptance is improved in NIR regions (600-

1100 nm) for sample RST4 with plasma-etched rear Si surface texturization. 

Sample AIT1 before the plasma etching has higher absorptance in all wavelength 

regions than sample RST4 after the plasma etching. It indicates that the AIT 

glass texturing technique results in higher absorptance enhancement than the 

rear Si surface plasma-etched texturing technique, assuming the same c-Si 

absorber thickness. 

Since sample AIT1 and sample RST4 went through an identical plasma etching 

process, the Si layer of sample AIT1 after the plasma etching is estimated to be 

500 nm (26% of 1900 nm) thinner than before the plasma etching step. The 

measured absorptance of sample AIT1 before and after the plasma etching step 

are almost identical. This indicates that the AIT + RST device with 26% thinner Si 

layer can achieve comparable absorptance as the AIT device.  

Figure 6-6(b) shows the ASA simulated c-Si absorptance of the AIT device with a 

1900 nm thick c-Si absorber, and the AIT + RST device with a 1900 nm thick c-Si 

absorber. In all ASA optical simulations shown in Figure 6-6(b), air was used as 

the BSR. The AIT + RST device with the multi-scale rear Si surface texture can 

harvest more photons in the near-infrared wavelength range (700 - 1100 nm) 

than its AIT counterpart with the same c-Si absorber layer thickness. Boccard et 
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al. reported that multi-scale textures can also be beneficial for micromorph thin-

film solar cells [18]. 

 
Figure 6-6: (a): The measured absorptance of samples Planar1, RST4 after plasma etching, and 

AIT1 before and after plasma etching. Also shown are the simulated c-Si absorptance of (b) the AIT 
and AIT + RST devices. In all the simulations in this figure, air was used as the back surface 

reflector. 
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Current densities (Jph) of the c-Si layers were calculated based on the simulated 

c-Si absorptances for the four devices (planar, RST, AIT, and AIT + RST) and 

two BSRs (a stack of SiO2 and Al, and a stack of SiO2 and Ag), assuming a 1900 

nm thick poly-Si absorber layer. The calculated current densities are shown in 

Table 6-1. The AIT + RST device with a stack of SiO2 and Ag as the BSR has the 

highest current density of 28.6 mA/cm2. Current loss due to parasitic glass 

absorption is considered in these ASA optical simulations.  

Table 6-1: Calculated Jph of the four devices with two different BSRs are shown. Thicknesses of 
glass sheet, SiNx, c-Si, SiO2 and metal (Al and Ag) were set in ASA to be 3.3 mm, 70 nm, 1900 nm, 

100 nm and 1000 nm. Also shows estimated solar cells efficiency for devices with SiO2+Ag BSR 
assuming Voc of 492 mV and FF of 72.1% (values of the 10.4% record cell by CSG). 

Devices Calculated Jph for 

SiO2+Al BSR 

Calculated Jph 

for SiO2+Ag 

BSR 

Estimated 

efficiency for 

SiO2+Ag BSR 

Planar 17.5 mA/cm2 17.8 mA/cm2 6.31% 

RST 23.8 mA/cm2 25.3 mA/cm2 8.97% 

AIT 26.0 mA/cm2 27.2 mA/cm2 9.65% 

AIT + RST 27.2 mA/cm2 28.6 mA/cm2 10.15% 

 

6.4 Conclusions 

 

In this chapter, submicron textures for light trapping in poly-Si thin-film solar cells 

were produced and investigated. The textures were produced by SF6/O2 plasma 

etching of the rear Si surfaces. A phase model based on the scalar scattering 

theory was used to calculate the scattering properties (haze and angular intensity 

distribution) of the textured surfaces. The textured rear Si surface with the 

highest scattering efficiency shows over 95% reflection haze at the Si-air 
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interface. Multi-scale Si surface textures were produced by combining an etched 

texture at the rear surface of the silicon thin-film diode with a texture at the 

silicon-glass interface. Aluminium-induced texturing (AIT) was used to texture the 

glass surface onto which the diode was deposited. Three different systems were 

investigated: (i) solar cells deposited on planar glass with a rear Si surface 

textured by plasma etching (RST); (ii) solar cells deposited on AIT glass (AIT); 

(iii) solar cells deposited on AIT glass with a rear Si surface textured by plasma 

etching (AIT + RST). It was found that, by comparison, the multi-scale silicon 

texture of the AIT + RST system has the highest haze and scatters light into 

larger angles with higher efficiency. These characteristics indicate that the multi-

scale texture should show very good light trapping properties. To simulate the 

performance of the poly-Si thin-film solar cells with the investigated textures, the 

implemented phase model was combined with the commercial thin-film simulator 

ASA. The method was also used to estimate the current generation that can be 

expected from the investigated textures on a 1900 nm thick poly-Si thin-film solar 

cell. Simulation results show that the multi-scale AIT + RST texture results in a 

current density of 28.6 mA/cm2 for a solar cell with a high-quality SiO2/Ag back 

surface reflector. This current density corresponds to a 5% improvement com-

pared to a single-surface texture (AIT). We believe that the multi-scale texture 

presented in this chapter has potential to significantly enhance the current 

generation of actual solar cells. A functioning poly-Si thin-film solar cell with the 

multi-scale texture investigated here is yet to be realized. It seems worthwhile to 

further investigate the impact of the multi-scale texture on the PV efficiency of 

such cells. 
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Chapter 7 Summary, original contributions, 

proposed further work 

 

 

7.1 Summary 

 

Light trapping is vital for PECVD deposited SPC poly-Si thin-film solar cells, 

mainly due to two facts: i) crystalline silicon is weakly absorbing in the NIR 

wavelength region; and ii) the absorber thickness is thin (usually 1-3 µm).  

This thesis investigated advanced light trapping concepts for plasma-deposited 

SPC poly-Si thin-film solar cells on glass. An effective light trapping system 

involving elements investigated in this thesis is presented below. It is noted that 

the potential JSC shown below was calculated for the AM1.5G spectrum in the 

wavelength range 280-1100 nm. 

Table 7-1 summarises all light trapping elements investigated in this thesis and 

shows their respective contribution to the JSC enhancement based on optical 

simulations with the ASA software. The thickness of the c-Si thin-film used in 

these simulations was 2.0 µm. The AFM measured height data of Chapter 6 were 

used in these ASA optical simulations. 
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Table 7-1: Light trapping elements investigated in this thesis and their respective contribution to the 

current enhancement. Also shown is the estimated solar cell efficiency assuming Voc of 492 mV 

and FF of 72.1% (values of the 10.4% record cell by CSG Solar). 

Light trapping 
element 

Calculated 1-sun 
JSC (mA/cm2) 

Relative JSC 

enhancement 
Estimated cell 

efficiency 

No light trapping 

(poly-Si on planar 

glass with air BSR) 

15.4 N.A. 5.46% 

AIT glass texturing 

(element 1) 
25.8 (with air BSR) 

67.5 %  

(relative to planar) 
9.15% 

Glass thinning 

from 3.3 mm to 0.5 

mm  

(element 2) 

27.5 (elements 1 + 

2 with air BSR) 

6.6 %  

(relative to element 

1) 

9.76% 

Rear Si surface 

texturing by 

plasma etching 

(element 3) 

28.4 (elements 1 + 

2 + 3 with air BSR) 

3.0 %  

(relative to elements 

1 + 2) 

10.07% 

A stack of SiO2 

and Ag as a high 

quality BSR 

(element 4) 

31.0 (elements 1 + 

2 + 3 + 4) 

9.2 %  

(relative to elements 

1 + 2 + 3) 

11.00% 

 

From the Table it can be seen that AIT glass texturing is the most important light 

trapping element, as it enhances the current by 67.5 % compared to a planar 

sample. The second-most important light trapping element is a high-quality BSR, 

which contributes a 9.2 % current enhancement. Thinning down the glass to 0.5 



124 

mm and applying a plasma-etched rear Si surface texture for poly-Si thin-film 

solar cells on AIT glass further enhances the current by 6.6 % and 3.0%, respec-

tively. A 2 µm thick poly-Si thin-film solar cell on glass with all four light trapping 

elements implemented could achieve a remarkable 1-sun JSC of 31.0 mA/cm2. 

This value demonstrates that the light trapping system investigated and devel-

oped in this thesis has the potential for further improving the record current 

density (29.5 mA/cm2) reported by CSG Solar for SPC type poly-Si thin-film solar 

cells on glass. A solar cell efficiency of 11% is achievable with the 31.0 mA/cm2 

JSC, assuming 492 mV VOC and 72.1% FF (VOC and FF of CSG Solar’s 10.4% 

record cell).  
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7.2 Original contributions 

 

 Demonstration that the AIT glass texturing process can be scaled up with 

good optical uniformity. 

 Development of a partially masked AIT process to create a planar bench-

marking device on the same glass sheet. 

 Systematic investigation of crystalline silicon growth in the AIT annealing 

process, and proposal of a phenomenological model of the AIT process. 

 Demonstration of using a phase model to satisfactorily estimate haze and 

AID of textured surfaces in poly-Si thin-film cells on textured glass. 

 Separate estimation of parasitic glass absorption and c-Si absorption by ASA 

optical simulations. 

 Development of a plasma etching process to produce highly scattering rear Si 

surface textures. 

 Demonstrate to apply the plasma-etched rear Si surface texture on poly-Si 

thin-film solar cells on AIT glass can enhance the current density by 3-5 %. 

 Demonstration that the light trapping system investigated in this thesis has 

the potential to achieve over 30 mA/cm2 current density. 
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7.3 Proposed further work 

 

Presented below are some areas where the author believes further research 

efforts are warranted:  

 The crystal quality of the silicon product of the redox reaction between 

aluminium and silicon dioxide can be further studied. It might be used as the 

seed layer for poly-Si growth. 

 The impact of the plasma-etched rear Si surface texture on VOC and FF of 

complete solar cells should be evaluated. The possible plasma damage 

resulting from the plasma etching process should be investigated. Additional 

treatments to minimize the plasma damage should be developed. 

 Poly-Si thin-film solar cells on AIT glass with double diffusion barriers (silicon 

nitride and silicon dioxide) could be investigated by secondary ion mass 

spectrometry (SIMS) to study their impurity levels. More experiments could 

be carried out to further optimise the diffusion barriers and the control of the 

impurity levels. 
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