
Online POMDP Planning For Vehicle Navigation
In Densely Populated Area

Cai Shaojun

B.Sc.,South China University of Technology, 2011

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2014

Acknowledgement

It would not have been possible to finish this work without the help and support

of many people, to only some of whom it is possible to give particular mention here.

It is with immense gratitude that I acknowledge the support and help of my

supervisor Professor David Hsu and co-supervisor Lee Wee Sun. Their continuous

support constantly led me in the right direction.

I would also appreciate the help from my lab colleagues in my research. I would

like to thank Ye Nan for his help in modifying the DESPOT solver for our experi-

ment, and Bai Haoyu for his collaboration in the vehicle experiment. I would also

like to thank the people in Singapore-MIT Alliance for their technical support to the

engineering work.

Finally, I am deeply grateful to my parents, for their patient encouragement and

support.

i

Contents

Declaration i

Acknowledgement i

Abstract vii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Outline of This Thesis . 4

2 Background 7

2.1 Related Work . 7

2.1.1 Autonomous Navigation Systems 7

2.1.2 Background of Motion Planning 10

2.1.3 Reactive Planning . 11

2.1.4 Planning Under Uncertainty 12

2.2 Preliminaries on POMDPs . 13

iii

2.2.1 Sequential Decision Problems and Markov Decision Process . . 14

2.2.2 Partially Observable MDP . 14

2.2.3 POMDP Solvers . 15

2.2.4 Comparison between Offline and Online POMDP 16

3 Environment Modeling 19

3.1 Environment . 19

3.1.1 Maps and Static Obstacles . 19

3.1.2 Pedestrians as Dynamic Obstacles 21

3.2 Robotic Motion . 22

3.3 Intention-Aware POMDP Modeling 23

3.3.1 Global Space to Local Space 25

3.3.2 State and Observation . 27

3.3.3 Action and Transitions . 29

3.3.4 Reward Function . 31

4 Planning Techniques 35

4.1 Online POMDP Planning . 35

4.1.1 Belief Tracking . 36

4.1.2 Online Tree Search . 41

4.2 Other Planning Techniques . 46

4.2.1 Reactive Planning . 47

4.2.2 Offline Planning and its Limitations 48

4.2.3 Other Probabilistic Methods 51

4.3 Experiments in Simulation . 52

4.3.1 Experimental Setup . 52

4.3.2 Results . 56

5 Experiments on the Autonomous Vehicle 59

5.1 System Overview . 59

5.1.1 Hardware . 59

5.1.2 Software . 60

5.2 Experiment Results . 64

5.2.1 Environment Description . 64

5.2.2 Case Analysis . 66

5.2.3 Implementation Issues . 72

6 Conclusion and Future Work 75

6.1 Conclusion . 75

6.2 Future Work . 76

Bibliography 79

Abstract

Technologies for autonomous vehicles have advanced dramatically in the last decade.

The Google car and other autonomous vehicles have driven over long distances under

difficult conditions. However, it remains a challenge for these vehicles to navigate

safely, reliably, and smoothly among pedestrians and other human-driven vehicles in

densely populated urban centers. One major difficulty is the uncertainties arising

from unknown pedestrian intentions, unexpected changes in the environment, sensor

noise, and imperfect vehicle control.

The partially observable Markov decision process (POMDP) is a principled gen-

eral framework for decision making and planning under uncertainty. In this work,

we develop a POMDP model that captures systematically the main modes of un-

certainty when an autonomous vehicle navigates among pedestrians and exploit the

model for effective autonomous driving. One limitation of the POMDP framework

is high computational complexity. By leveraging a state-of-the-art online POMDP

algorithm and constructing the model suitably to take advantage of its strengths,

we demonstrate an successful application of the POMDP framework to autonomous

vehicle navigation among pedestrians. In simulation, we analyze the performance

of our POMDP approach in comparison with alternative models and algorithms in

uncertain, dynamic environments. We further show that our autonomous golf-cart

under the POMDP controller is able to navigate safely and smoothly in a dense crowd

vii

on the U-Town Plaza at our university.

List of Figures

2.1 The MIT-Cornell collision . 8

2.2 Comparison between offline and online approaches. t0, t1, . . . , tn are

the time steps during online execution. 15

3.1 Laser scan map of a campus environment 20

3.2 Demonstration of the concept of subgoal in the campus environment . 22

3.3 (a) is the global world model, in which the vehicle is moving from

start to the end and the pedestrian is moving to its current subgoal

G2. (b) is the corresponding local world model finally processed by the

solver. The red grid cells represent the future positions of the vehicle.

And the numbers show an example of pedestrian transition probability

distribution based on its current subgoal. 24

3.4 The probabilistic network of our model. 26

4.1 Demonstration of the concept of 1-dimension virtual bumper [Schiller

et al., 1998] . 47

4.2 Comparison of the pedestrian’s transition probability with and without

obstacles. 49

4.3 The difference in pedestrian’s transition probability at the same local

position . 50

ix

4.4 Straight lane environment . 54

4.5 Straight lane environment . 55

4.6 UTown Plaza environment . 55

5.1 YAMAHA G22E golf cart . 60

5.2 System architecture . 61

5.3 (a) is the static map of the UTown Plaza environment. (b) is a runtime

map of the environment with dynamically detected obstacles. (c) and

(d) are the photos taken on spot. 65

5.4 Demonstration of the vehicle’s behavior when a pedestrian stops be-

sides its path. 68

5.5 Interacting with dense pedestrian crowd 70

List of Tables

4.1 Parameters . 54

4.2 Result for straight lane . 56

4.3 Result for roundabout . 56

4.4 Result for UTown Plaza . 57

xi

Chapter 1

Introduction

1.1 Motivation

Autonomous vehicles have gained significant attention from all over the world. The

DARPA Grand Challenge [Iagnemma and Buehler, 2006] has influenced many orga-

nizations over the past decade to design driverless cars that could win the race in

different environments. Google self-driving car [Markoff, 2010] got the permission to

drive on the road in the state of Nevada, USA in 2012. Autonomous vehicles have

many potential advantages, such as reducing potential traffic accidents, increasing

road efficiency, releasing manpower, and many more.

Equipped with high-performance sensing unit (e.g. Velodyne LIDAR) and local-

ization unit (e.g. Applanix Intertial Navigation System), autonomous vehicles can

ensure safety in most situations with short reaction time. For instance, Google cars

and the vehicles in the DARPA Challenge have all passed the safety test of long

distance driving.

There are strict traffic rules on the highway or urban roads, such as vehicles drive

on their own lanes and pedestrians walk on the sides. Even though some more diffi-

cult scenarios such as lane changing and pedestrians crossing may happen from time

1

Chapter 1. Introduction

to time, the behavior of the vehicles and the pedestrians still follow predictable pat-

terns (pedestrians usually cross at the zebra crossing, etc.). However, driving on the

highway is not enough. To successfully deliver the passengers to their destinations,

the vehicle must drive through the last mile, which often contains densely populated

areas such as campuses, parks, or narrow and crowded streets. In these places, colli-

sion avoidance becomes a significant challenge. Firstly, there are no obvious lanes to

follow and the pedestrians’ behavior become more subtle and seemingly irregular due

to the variety of their intentions. Furthermore, dynamic obstacles such as temporarily

parked cars may block pedestrians’ paths, making their movements even more unpre-

dictable. Secondly, Smoothness of vehicle motions also becomes a key criterion of a

plausible touring experiment. We not only need to make decisions about whether to

yield, overtake, turn, etc., but also have to ensure the basic comfort of the passengers

by avoiding sudden brakes, fast turns, or frequent stops.

To summarize the above, we want to provide a practical solution to the problem of

autonomous vehicle navigation among pedestrians in densely populated environment.

Below are some of the challenges:

• Uncertainties:

In reality, our autonomous vehicle runs in an imperfect world full of uncertain-

ties, for example, noise in imperfect vehicle control and localization need to be

hedged against, and the noise in the pedestrians’ motion make it difficult to

determine their true intentions and predict their next positions.

• Dynamic Environments:

The model should account for not only the static elements in the environment

but also all the possible dynamic ones. For example, pedestrians are typical

examples of dynamic elements which may affect the vehicle’s decision during

navigation. Furthermore, the pedestrians’ motion model is not so straightfor-

2

Chapter 1. Introduction

ward, as they constantly interact with the environment and occasionally change

their minds. Specifically, pedestrians’ behavior may change as a result of unex-

pected obstacles and surrounding vehicles.

• Safety and Smoothness:

Unlike indoor environment, outdoor navigation usually applies to larger-scale

vehicles and may result in serious consequences when collision happens. On the

other hand, overly-conservative policy may result in a jerky driving behavior

especially when interacting with large crowds of people. Therefore, we need an

approach to appropriately balance the two orthogonal requirements well.

With the above requirements, a general and automated approach is demanded,

since it is difficult for a human designer to construct a policy for all the possible situa-

tions encountered during the navigation. Of all the approaches, Partially Observable

Markov Decision Process (POMDP) can systematically accounts for the uncertainties

in controlling and sensing. Once a successful POMDP model has been built, it can be

easily extended to a new system by adjusting a few parameters. In addition, online

POMDP solvers can avoid the state space limitation exists in the offline POMDP

solvers by doing a local planning only for the near future.

1.2 Contributions

We develop an online POMDP approach for vehicle navigation in densely populated

outdoor environments and successfully test it on an autonomous vehicle in the cam-

pus. Specifically our work makes the following contributions:

• We have designed a rich and effective probabilistic model that not only cap-

tures the dynamics of the environment, but also matches well with a powerful

online solver. To tackle the problem of the solver’s space limitation, we restrict

3

Chapter 1. Introduction

planning to a local dynamically shifting window that supposedly only covers

the most relevant areas. Another noteworthy point is that we use the concept

“subgoal” to model the behavior of the pedestrians, which contributes greatly

to our analysis of environmental dynamic.

• We leverage the state-of-the-art online POMDP planner to efficiently solve

the model and generate the appropriate control action on-the-fly. Compared

with simple reactive method, we take pedestrians’ intentions into consideration

and generate safer and smoother behavior; compared with traditional offline

POMDP, we are greatly released from the limitation of the state space and the

reliance on a-priori static model.

• We have successfully carried out the experiment in a campus, and the results

indicate that our design has many advantages over the previous methods in

terms of smoothness, safety and efficiency. In addition, this experiment allows

us to identify the gap between computer simulation and real-world application,

and thus making adjustments accordingly.

1.3 Outline of This Thesis

The rest of this document is structured as follows:

• Chapter 2 reviews the previous work and summarizes the background of our

research.

• Chapter 3 presents the probabilistic model that we use. Firstly we describe the

environment model and the general concept of our pedestrian modeling. Then

we explain how we construct the POMDP model of the world.

4

Chapter 1. Introduction

• Chapter 4 describes the online planner we use to solve the problem of navigating

in densely populated areas. We first explain the advantages of using online

POMDP and compare with other methods. Then we validates with simulation

experiments running in three example environment.

• Chapter 5 describes the real world experiment on an autonomous golf cart. We

first describe system architecture. Then we elaborate the performance of our

approach on the vehicle and how we tackle specific difficulties encountered.

• Chapter 6 concludes our work presented above and give some directions to

future research.

5

Chapter 1. Introduction

6

Chapter 2

Background

2.1 Related Work

2.1.1 Autonomous Navigation Systems

Much work has been done on vehicle autonomous navigation. For example, the

famous DARPA Urban Challenge (DUC) is a competition in which vehicles have

to autonomously navigate in a complex urban environment populated with static and

dynamic obstacles while obeying the traffic rules such as lane keeping and intersection

precedence. Since the competition is funded by the Department of Defense, the

intention of the competition is biased towards military application and all the vehicles

involved are highly equipped. There occurred a few low-speed incidents during the

competition, and a famous one was the MIT-Cornell collision in 2007 [Fletcher et al.,

2008] (Figure 2.1). According to the video of the accident and the analysis of the

collision log, a leading cause of this collision was the failure to anticipate the true

intention of the opponent vehicle [Fletcher et al., 2008].

One of the most advanced examples in the area of autonomous navigation is

Google car [Guizzo, 2011]. Google’s autonomous navigation largely relies on their

7

Chapter 2. Background

Figure 2.1: The MIT-Cornell collision

powerful Velodyne LIDAR sensor which can provide the planner with high aware-

ness of the surrounding environment including adversarial and dynamic scenarios.

However, Google Car’s performance in a local densely populated environment is not

clear. Dense crowd and dynamic obstacles may occlude the view of the sensor and

therefore cause the sensor to lose its full awareness. Additionally, the high cost of

high-performance sensor may also limit its use.

Singapore-MIT Alliance for Research and Technology (SMART) has also done

some work on an adapted YAMAHA G22E golf cart. Instead of using high-performance

sensor, this golf cart uses relatively low-cost 2D SICK laser scanner. The cart has

done test navigation in the campus of National University of Singapore [Chong and

others, 2011]. The navigation method used is Pure-Pursuit Control (PPC) [Kuwata

et al., 2009] as a path follower and Dynamic Virtual Bumper [Schiller et al., 1998] as

a collision avoidance system.

Besides the vehicles mentioned above, many major automotive manufactures such

as General Motors, Ford and Volkswagen have also started to test their driverless car

systems in recent years. Vislab [Bertozzi et al., 2010] designed a challenging scenario

8

Chapter 2. Background

in which vehicles had to drive from Italy to China autonomously. However, Vislab’s

vehicles all require a-prior maps for all the obstacles, and require a leader vehicle as a

guide. In the past year, Induct Technology’s Navia became the first commercialized

autonomous self-driving vehicle [Maisto, 2014]. It can drive up to eight people at

a maximum 20.1 km/h speed, providing shuttle services in city centers, parks and

campuses. However, according to their website, the vehicle simply stops when it

detects pedestrians in front, which is not very desirable in terms of efficiency and

passenger experience.

On the other hand, some smaller-scale robots have managed to navigate in densely

populated environments and interact with surrounding people. Among the earlier

work, robot “RHINO” is a tour-guide robot deployed in a densely populated mu-

seum [Burgard et al., 1999]. It gave tour to more than 2000 visitors during a six-day

installation period while avoiding potential collision with surrounding tourists using

Dynamic Window Approach [Fox et al., 1997]. In Expo 2002, Robotx was installed

at the spot performing tour-guiding and photo-taking tasks [Siegwart et al., 2003].

It continuously operated for 159 days, up to 12 hours per day. More recently, an

Interactive Behavior Operated Trolley (InBOT) [Goller et al., 2010] could provide

safe and reliable navigation to customers in the supermarket. All these robots could

successfully function in a complex environment with dense pedestrian crowd. How-

ever, there are several key differences between the applications of these robots and

our application

1. These robots are small and light compared to our golf cart testbed, and they

run at a relatively low speed. Thus, safety is not a major issue. The worst

accident for these robots would be ”touching” someone while our golf cart can

actually hurt or even kill people.

2. These robots do not carry passengers, while our golf cart can load several pedes-

9

Chapter 2. Background

trians. Therefore, in addition to safety, the touring experience of passengers has

to be taken into consideration. Sudden acceleration, harsh brakes or long pauses

are obviously unsatisfactory behavior.

2.1.2 Background of Motion Planning

Robotic motion planning has been an active area of research [Latombe, 1996] over

the last few decades. Generally, the task of motion planning is to compute a sequence

of intermediate states from a given start state to a specific goal state under certain

kinds of constraints. In the earlier period, research typically focused on problems

with simple constraints such as geometric constraints imposed by the static obsta-

cles. Basically the planner need to compute a collision-free path from the initial

position to the goal position. Most algorithms at that time worked under the concept

framework of configuration space [Lozano-Perez, 1983], but the computation of the

configuration space is durable only in spaces with low dimensions. When the degree

of freedoms (DoF) increases, sampling-based approach emerged as a powerful tool to

solve high-dimensional planning problems [Kavraki et al., 1996]. To further address

the issue of limited system mechanism ability, there emerged kino-dynamic motion

planning [Donald et al., 1993] which plans in the state space instead of configuration

space.

The above work basically assumes that the model is perfect in a noiseless context.

However, the real world is imperfect and contains all kinds of noises, which makes it

hard to accurately predict the future state of the robot. Furthermore, the environment

does not remain static as it contains all kinds of moving obstacles. There are two

orthogonal ways to tackle this problem. One is to do reactive replanning once the

environment changes; the other is to model the uncertainties and account for all

possible future situations during the planning.

10

Chapter 2. Background

2.1.3 Reactive Planning

Generally, reactive planning techniques execute a policy which is computed based on

the current world state or states can be reached in the near future. Usually these

techniques make decisions based on simple criterion, such as the distance to nearby

obstacles and the goal. There are several widely used reactive planning techniques.

Trajectory rollout [Gerkey and Konolige, 2008] and Dynamic Window Approaches

(DWA) [Fox et al., 1997] are two approaches discretely sample velocities from the

control space of the robot. Based on the robot’s kinematic model, the algorithm

generates trajectories by applying sampled velocity to the robot’s current state with

forward simulation that leads to the next state. The algorithm then scores each

trajectory calculated by forward simulation, chooses the one with the highest score

and executes the corresponding controlling command to the controller. Usually the

optimization criterion contain the distance to the global path, the distance to the

obstacles and the velocity of the robot. Dynamic window approach differs from the

trajectory rollout in that dynamic window considers velocities that can be reached

within a short time period(e.g., one step of forward simulation). DWA has already

been integrated as a standard local collision avoidance module in the ROS (Robot

Operating System) [Quigley et al., 2009], which is widely used on a large variety of

robots [Quigley et al., 2009].

Virtual Bumper [Schiller et al., 1998] is a collision avoidance technique in charge

of steering, braking and accelerating to ensure safe longitude and lateral control. The

algorithm assumes a virtual spring and a damper in the personal space ahead of

the vehicle and adjust the speed and the steering according to the assigned spring

impedance when obstacles pop up in front.

Reactive planning techniques usually have fast reaction times but lack the ability

to predict the future well, so that it breaks down easily, for example, trapped in local

minima.

11

Chapter 2. Background

2.1.4 Planning Under Uncertainty

Motion planning can take into account uncertainty in sensing (the current state of

the robot and workspace is not known with certainty), predictability (the future state

of the robot and world cannot be deterministically predicted even when the current

state and future actions are known) [LaValle, 2006]. Extensive work has explored

uncertainty associated with robot sensing, including SLAM [Leonard and Durrant-

Whyte, 1991] and POMDP [Kaelbling et al., 1998] to represent uncertainty in the

current state [Thrun et al., 2005]. The predictability uncertainty can be further

divided into the predictability of the robot’s controlling and the predictability of the

environment.

A lot of recent work explored the issue of uncertainty in robot’s motion. Stochas-

tic Road Map [Alterovitz et al., 2007] builds a Markov decision process (MDP) model

based on a Probabilistic Road Map (PRM) [Kavraki et al., 1996] to handle the con-

trol uncertainty, but it does not take the observation uncertainty into consideration.

Belief Road Map [Prentice and Roy, 2011] and LQG-MP [Van Den Berg et al., 2011]

handles the uncertainties from both controlling and sensing. However, they require

the uncertainties to be Gaussian distributions which is improper for complex real

world scenarios. For example, the distribution of pedestrian’s intentions is not ob-

viously Gaussian. In addition, LQG-MP only does local optimization and does not

guarantee a solution that is globally optimal.

There are also much work studying the predictability of the dynamic environment,

especially the pedestrians as an important component. Pedestrians do not move ran-

domly in the environment, as there is certain rationale behind their motions which

can be modeled in various ways. Tetsushi [Ikeda et al., 2012] was the first to use

the concept of subgoal to predict the pedestrian’s future position. However, his work

focuses more on the construction of the subgoal network based on the collected pedes-

trian trajectories data, as opposed to the navigation in the environment. Bennewitz’s

12

Chapter 2. Background

method [Bennewitz et al., 2005] classifies pedestrians’ motion trajectories into several

representative motion patterns with EM algorithm, and a Hidden Markov Models

(HMMs) is then derived from the resulting motion patterns to track the belief of the

pedestrian positions. This method can utilize the prediction result to improve the

path planning efficiency. However, it still considers prediction and control as two

separate issues, and does not account for sensing and controlling noise.

As the recent development in the POMDP solving techniques, there are some re-

cent works using POMDP-related approaches to model the sensing uncertainty and

predicting uncertainty as a whole. Fern’s work [Fern and Tadepalli, 2010] solves the

problem of designing a computer assistant that provides helper action to a human

agent by modeling it as a hidden-goal MDP (HGMDP), where the assistant can fully

observe all the states of the system except for the human agent’s goal. However, solv-

ing HGMDP is PSPACE-hard. To hedge against the difficulty, the paper introduces

Helper Action Markov Decision Processes (HAMDP) which could solve a restricted

version of the problem. Bandyopadhyay’s work [Bandyopadhyay et al., 2013] is more

closely related to our work. It uses Mixed Observability Markov Decision Process

(MOMDP), which is a structured variant of POMDP that makes controlling deci-

sions under uncertainties. They model two kinds of uncertainties: the uncertainties

from sensing and controlling, and the uncertainties from pedestrian’s intention. How-

ever, due to the limitation of the off-line planner, only small scale problems can be

solved, and the model dynamic has to be pre-defined.

2.2 Preliminaries on POMDPs

There are various approaches towards planning under uncertainties as mentioned

in the related work, among which Partially Observable Markov Decision Process

(POMDP) [Kaelbling et al., 1998] is a systematic framework that can generate a

13

Chapter 2. Background

globally optimized solution and balance exploration and exploitation.

2.2.1 Sequential Decision Problems and Markov Decision Process

Unlike the reactive planner which solves for the best action only for the current sit-

uation, Sequential Decision Problem tries to optimize the total utility of the entire

action sequence from the beginning to the end. As uncertainties exist in the environ-

ment, the outcome of each action is a distribution over states. In a Markov Decision

Model (MDP), the transition can be written as P (s′|s, a) in which the outcome dis-

tribution only depends on the current state. Formally, a MDP consists of a tuple

(S,A, T,R, γ) , where S, A are the system’s state space and action space. T is the

transition model in the form of T (s, a, s′) = P (s′|s, a). R(s, a) is a reward function

depending on current state s and action a. At each time step, the robot chooses an

action, reaches the next state according to the transition probability, and gets the

reward according to the reward function. The optimal policy maximizes the total ex-

pected reward E(
∑∞

t=0R(st, at)). After solving the MDP, we get a policy π : S → A,

which maps every state in the state space to an optimal action that maximizes its

future expected reward.

2.2.2 Partially Observable MDP

In MDP, one action can lead to several future states. However, after the action

is actually executed, the next state is uniquely determined. Equally speaking, the

MDP assumes the sensor can perfectly sense the current state. POMDP has the

same elements as MDP, but it assumes the sensor model to be is imperfect and

thereby adding in a sensor model Z(s′, a, o) = p(o|s′, a) that models the observation

uncertainty. In every horizon of a POMDP problem , the robot is in a belief state

b(s) which is a probability distribution over the state space S. This distribution can

14

Chapter 2. Background

be represented as a |S| dimension vector. Now the optimal policy becomes a mapping

from belief space to action space π : B → A.

2.2.3 POMDP Solvers

(a)

(b)

Figure 2.2: Comparison between offline and online approaches. t0, t1, . . . , tn are the time
steps during online execution.

POMDP solvers can be classified into offline POMDP solvers and online POMDP

solvers. As in Figure 2.2a, offline solvers first compute the best action for all the possi-

ble situations (belief state), and then choose action according to the computed policy

during execution. Since the computation time could be extremely long, many ap-

proximate algorithms have emerged during recent years to improve efficiency. Point-

based algorithms [Pineau et al., 2003; Spaan and Vlassis, 2005; Shani et al., 2007]

are currently among the most successful approaches. The key idea is to represent the

continuous belief space B with a set of samples. HSVI [Smith and Simmons, 2004]

and SARSOP [Kurniawati et al., 2008] are among the state-of-the-art solvers that

bias sampling towards the most promising belief space, in order to deal with large

15

Chapter 2. Background

state space problems. MOMDP [Ong et al., 2010] reduces the planning complexity

through a factored model which separates the fully and partially observable state

components so that it can greatly improve the efficiency under suitable conditions.

On the other hand, online solvers try to circumvent the complexity by planning

for the current information state. As in Figure 2.2b, the policy computation and

execution steps are interleaved. Online algorithms consume a short time period to

compute the policy for a small set of beliefs reachable in the near future, execute

according to the policy, and then recompute the whole policy for the next belief

state. A recent survey [Ross et al., 2008] lists three main categories of online planning

algorithms: heuristic search, branch-and-bound pruning, and Monte-Carlo sampling.

Heuristic search algorithms use a heuristic to help focus the search on the most

relevant reachable beliefs. For example, AEMS2 [Ross et al., 2007] explores the search

tree by always expanding the fringe node with the highest expected error contributed

to the current belief state. RTBSS algorithm [Paquet et al., 2005] uses branch-and-

bound pruning technique to prune branches that are known to be suboptimal. Other

than the two categories, Monte Carlo sampling algorithms try to tackle the large

observation space by sampling a subset observations and considering only beliefs

reachable from the sampled observations. POMCP [Silver and Veness, 2010] and

DESPOT [Somani et al., 2013] are the state-of-the-art algorithms in this category.

Unlike the other Monte Carlo tree search algorithms [McAllester and Singh, 1999;

Asmuth and Littman, 2011], POMCP and DESPOT represent the belief in each

node with particles, and perform particle filtering for belief update.

2.2.4 Comparison between Offline and Online POMDP

Offline POMDP planners pre-compute which action to execute for every possible

belief state. By doing this, the planner can generate the optimal action without

much additional computation during the execution stage. However, although the

16

Chapter 2. Background

offline planning efficiency has been improved through point-based approximation in

recent years, it is still difficult for offline planners to handle large scale problems [Ross

et al., 2008]. Besides, offline planners have to recompute the whole policy even when

the environment makes the slightest change. Therefore it is difficult to apply offline

POMDP to a frequently changing environment. On the other hand, online POMDP

planners tackle the state space limitation of offline planners by only computing a

local policy for the current belief state. In this way, online planners can significantly

reduce the time for policy construction. And since online planners recomputes the

partial policy every time after finishing executing an action, they can automatically

handle the model change between two time steps. However, one limitation of online

planning is the real time constraint: there might not be enough time to construct a

good policy.

17

Chapter 2. Background

18

Chapter 3

Environment Modeling

This chapter consists of two parts. In the first part, we describe our modeling as-

sumptions, including the environment, pedestrians and robot motion (Section 3.1 -

3.3). In the second part, we describe how we organize the world model in a POMDP

framework (Section 3.4 and 3.5).

3.1 Environment

We consider two types of obstacles the vehicle faces during the navigation. The first

is the static obstacles, which are known a-prior before the navigation. The other is

the dynamic obstacles, which are encountered during the runtime.

3.1.1 Maps and Static Obstacles

The static obstacles are represented as an occupancy grid map. Each grid cell of

the map is a boolean variable indicating whether this cell is occupied or not. The

map can adopt different resolutions for each grid cell. In our case, 0.1m resolution

for each grid cell is enough for accurately tracking the world state. This map can be

19

Chapter 3. Environment Modeling

built either from real laser scan or through manual input. A typical laser scan map

is shown in Figure 3.1:

Figure 3.1: Laser scan map of a campus environment

Static obstacles are known before navigation. Those obstacles include walls, trees,

curbs, etc.. During the task, the static obstacles do not change their positions once

the map is built. To avoid those obstacles, we just need to calculate a shortest path in

the free space with no obstacles on it. On the contrary, dynamic obstacles are much

more difficult to deal with. Dynamic obstacles are moving objects detected when the

vehicle is actually running on the road. Those obstacles include pedestrians, other

vehicles, and so on. Generally to deal with dynamic obstacles, we may need to do

online replanning. Usually pedestrians are the most frequently encountered dynamic

obstacles, so they deserve the special attention.

20

Chapter 3. Environment Modeling

3.1.2 Pedestrians as Dynamic Obstacles

If the environment is static, the problem turns into a simple path planning problem,

and the vehicle just needs to maintain a certain speed and sticks to the pre-computed

path. However, the real world environment is complex and filled with dynamic el-

ements, most of which come from the pedestrians. Pedestrians’ behavior is diverse

and subtle yet rational and predictable. Our algorithm focuses on interaction with

pedestrians, and we believe that knowledge of the pedestrians’ behavior can greatly

improve navigation efficiency.

There are several ways to model the pedestrians’ behavior. Pattern-based ap-

proaches classify the pedestrians’ trajectories into several pattern categories [Ben-

newitz et al., 2005]. However, the walking patterns are actually quite distinctive for

each pedestrian and discrete pattern space makes it hard to represent all pedestrians’

walking habits.

From a higher level point of view, pedestrians are directed by their final destina-

tions. However, due to the existence of obstacles, their destinations are not reachable

through a straight path. According to the previous work [Ikeda et al., 2012], pedes-

trian usually divide their paths in consecutive straight segments joining their actual

positions with the goals. The joint points of those segments are the so-called “sub-

goals”. These subgoals are mostly determined by the nature of the environment

(entrance, turn, etc.) and common to all pedestrians. In Figure 3.2, there are six

subgoals in the map. A pedestrian is walking from the garage to subgoal 1, but

there is no straight collision-free path connecting directly to the final goal. There-

fore, the pedestrian consecutively passes through intermediate subgoals 5 and 6 to

reach the final subgoal 1, and the whole path is thereby divided into three segments.

To find the subgoals in the environment, one way is to apply clustering algorithm

on the collected pedestrians’ trajectory data to retrieve the most likely subgoals in

the environment [Ikeda et al., 2012]. In our work, we simplify the process by man-

21

Chapter 3. Environment Modeling

ually specifying the subgoals after analyzing the structure of the environment and

pedestrians’ habits in the environment.

Figure 3.2: Demonstration of the concept of subgoal in the campus environment

On the other hand, Pedestrian usually deviates from a straight path towards their

subgoal due to the impact from other pedestrians, vehicles and obstacles [Helbing and

Molnar, 1995]. Our model form those possible deviations as noise in the pedestrian’s

transition model.

3.2 Robotic Motion

The robot model we are considering is a vehicle whose kinematic model is an abstrac-

tion of a real world car. The configuration of this robot can be represented as (x, y, w),

in which x and y indicate the position on two axes and w shows its orientation. Under

the assumption of no slipping, this robot model is a typical non-holonomic system

which possesses two-degree control space (vel, str). vel can be controlled through

22

Chapter 3. Environment Modeling

accelerating and braking, and w can be controlled through steering. Nevertheless, it

is difficult to do POMDP planning directly in 2-dimension grid. Firstly, either action

space or observation space becomes large, making it difficult to solve. Secondly, an

accurate motion model of the vehicle is needed to provide good prediction. Thirdly,

in this case it is hard for the POMDP planner to form a smooth path, which greatly

affects both the passengers and pedestrians’ experience.

Due to the above concerns, we assume the car sticks to an a-priori path with no

static obstacles on it (see Chapter 5 for extended version). This path can be either

generated by a general path planner or through manual input.

Our motion model becomes :

vt+1 = vt + a∆t+ ε1 (3.1)

xt+1 = xt + vt∆t+ ε2 (3.2)

where v is the speed of the vehicle, x is the position index on the 1-dimension

path (assuming the points on the path are equally spaced at certain resolution), a

is the acceleration speed of the vehicle decided by the controlling action and the

system characteristics, ∆t is the control period and ε1 and ε2 are the controlling noise

decided by the respective system. For our system, we reasonably assume the noise

distributions are Gaussian.

3.3 Intention-Aware POMDP Modeling

Our work introduces Partially Observable Markov Decision Process (POMDP) as a

model for this motion planning problem. POMDP is a rich probabilistic model which

can capture the uncertainties in pedestrians’ intentions as well as the uncertainties in

controlling and sensing. In addition, POMDP model can easily adapt to the change

23

Chapter 3. Environment Modeling

(a) global space (b) local space

Figure 3.3: (a) is the global world model, in which the vehicle is moving from start to
the end and the pedestrian is moving to its current subgoal G2. (b) is the corresponding
local world model finally processed by the solver. The red grid cells represent the future
positions of the vehicle. And the numbers show an example of pedestrian transition
probability distribution based on its current subgoal.

24

Chapter 3. Environment Modeling

in the system specifications by adjusting a few parameters.

3.3.1 Global Space to Local Space

As we described in the previous section, in our model, pedestrians are walking in a

relatively large grid space. Large state space could be problematic for most POMDP

solvers. Even state-of-the-art online planners can reduce this problem by planning for

current belief state, their search could bias towards some irrelevant areas which leads

to a useless policy (See Chapter 4 for details). To improve the planning efficiency, we

confine the POMDP search within a local planning window that attempts to cover

only the most relevant area. Specifically, our local planning window is a W × H

rectangle in which we place the local path segment in the middle, and the vehicle at

the bottom-center. The heading of the rectangle is the same as the vector starting

from the position of the vehicle to the position m meters further on the path (Figure

3.3a). The window is dynamically shifting forward along with the vehicle every k

time steps. Each time step, the pedestrians’ positions inside the window will be

updated, as well as the vehicle’s position with respect to the window. For the current

implementation, we do not model the pedestrians entering or exiting the window,

therefore the planner assumes pedestrians stay static when they reach the border of

the rectangle during the search.

The local path is the part of the global path inside the local planning window.

Formally, the local path contains l points (p1, p2, . . . , pl). Each point pi is in a 2-

dimensional space specifying the position in the local planning window. The local

path is an approximation to the trace of the global path segment inside the window,

as the red cells in Figure 3.3b. We choose the l points that are approximately equally

spaced on the path.

25

Chapter 3. Environment Modeling

gt−1n gtn

qt−1n qtn

·
·
·

·
·
·

gt−10 gt0

qt−10 qt0

rt−1 rt

vt−1 vt

action

Figure 3.4: The probabilistic network of our model.

26

Chapter 3. Environment Modeling

3.3.2 State and Observation

After we compute the local window, we discretize both the grid and the path inside

the window to a desired resolution which forms the real POMDP state. As in Figure

3.3b, the actual positions are discretized into a W × H grid, each cell is a square

with a side length lm. The grid cells on the local paths are marked as red cells in

Figure 3.3b. The solver knows only the pedestrians falling within the window and

ignores those outside the window. At the start of every control loop, the planning

window will be updated according to the new position of the vehicle so that the visible

pedestrians could also be updated accordingly.

The POMDP state consists of several state variables, specified as

s = (q1, g1, . . . , qn, gn, r, v)

The dependencies between these state variables are shown in Figure 5.2. We factorize

the state into fully observable part sx = (q1, . . . , qn, r, v) which can be sensed accu-

rately, and unobservable part sy = (g1, . . . , gn) which can not be sensed directly [Ong

et al., 2010]. Fully observable variables are marked in grey and unobservable variables

are marked in white.

Let (q1, . . . , qn) be the joint positions of N pedestrians. Each qi is a 2-dimension

integer coordinate (x, y) indicating the pedestrian’s position in the planning window.

The origin of the coordinate is located at the bottom-left corner of the local window,

with the two sides of the window as the x and y axes.

Let (g1, . . . , gn) be the intentions of N pedestrians. The value of each gi can be

chosen from the set of K subgoals (S1, S2, . . . , SK), where each subgoal is represented

as one grid cell in the global space. Subgoals can be determined using the methods

mentioned in Section 3.1.2. For example, in Figure 3.3(a), there are K=4 subgoals

and the pedestrian’s current subgoal is S2. Intention gi can not be observed directly;

27

Chapter 3. Environment Modeling

it can only be inferred from other state variables.

r is an integer value denoting the vehicle’s position on the local path. pr is the

rth point on the local path (ρ1, ρ2, . . . , ρl).

v is an integer value denoting the vehicle’s speed. Each integer corresponds to a

real vehicle speed, and the maximum value is decided by the speed limitation of the

vehicle. We discretize the speed to reduce the search space of the planner, as well as

avoid over-sensitive control. For example, it is difficult to drive a real vehicle at an

accurate speed such as 3.14159m/s. Additionally, for comparison convenience, a dis-

crete model is more general since some POMDP software does not support continuous

state representation.

The POMDP observation consists of the following variables:

o = (oq1 , . . . , oqn , or, ov)

where (oq1 , . . . , oqn) is the joint observation of the positions of N pedestrians, or

is the observation of the vehicle’s position and ov is the speed of the vehicle. Since

our sensors are accurate enough for our experiment (more details in Section 5.1), we

can reasonably assume those observations are noiseless. In this case, we can simply

generate the observations with an one-on-one mapping directly from the state.

However, joint observation modeling could result in a large observation space,

which makes it difficult for the planner to find a good policy. As a rough estimation,

the number of observation branches from the current state is O(9N), where N is the

number of pedestrians, and 9 is the number of total transition directions of each

pedestrian (see Section 3.3.3 for details). To reduce the growing speed of the number

of observations, we can intentionally introduce some observation noises by grouping

similar observations together. For example, if the actual sensor resolution of the

pedestrian’s position is 0.5m × 0.5m, the planner can retrieve the observation at

28

Chapter 3. Environment Modeling

1.0m × 1.0m resolution. Consider an extreme case in which the sensor does not

observe anything at all, so that the planner make decisions purely based on its belief of

pedestrians’ positions. As the planner is not certain about the pedestrians’ positions,

we expect it to take more conservative policies. Furthermore, we can dynamically

adjust the observation resolution on-the-fly. Specifically, when there are fewer people

on spot, we can use an accurate sensing model which gives a more optimal plan; when

the number of pedestrians becomes large, we step back a bit with a noisy observation

model that delivers a relatively conservative but safe plan.

3.3.3 Action and Transitions

Equations 3.3, 3.4 and 3.5 show the transitions of robot and pedestrian’s states be-

tween two time steps. All the states are discretized at a reasonable resolution. The

Sample(x, σ) function samples an output according a Gaussian distribution N(x, σ)

and discretizes the output to form the next state.

1. Velocity transition

There are three actions: accelerate, decelerate, maintain. accelerate

increases one speed level, decelerate decreases one speed level, and maintain

keeps the current speed.

vt =


Sample(vt−1 + 1, σv) if a = ACC

Sample(vt−1 − 1, σv) if a = DEC

Sample(vt−1, σv) if a = CUR

. (3.3)

2. Robot position transition

29

Chapter 3. Environment Modeling

The next position of the robot is calculated as:

rt = Sample(rt−1 + Real(vt)∆T, σr) (3.4)

∆T is the time period of the control loop. Real(x) maps one-to-one from a

discretized speed v to a real-world speed. The mapping function has to satisfy

the acceleration constraint of the real vehicle (Real(vt)−Real(vt−1)) = v̂∆T

(v̂ is the acceleration determined by the vehicle’s controller characteristics) and

the movement constraint |prt−prt−1| = (Real(vt)−Real(vt−1))∆T (|prt−prt−1|

is the displacement on the path between two time steps).

3. Pedestrian position transition

The pedestrian’s next position is calculated as following:

θi = Sample(θ0(gi), σp)

qti,x = qt−1i,x + vp cos(θi) (3.5)

qti,y = qt−1i,y + vp sin(θi)

First, we sample the heading of the ith pedestrian from the Gaussian distribu-

tion N(θ0(gi), σp) with the mean movement direction towards the subgoal of ith

pedestrian gi, and σp represents the noise level of the pedestrian’s movement.

A small value of σp indicates a high probability that pedestrian is following the

direction towards his subgoal in the next step, vice versa. After we get the sam-

pled heading θi, we calculate the pedestrian’s next coordinate (qti,x, q
t
i,y) based

on θi and the walking speed vp of the pedestrian. For simplicity, we assume

pedestrian moves to adjacent eight grid cells or stay stationary in the next time

step, so that its real velocity has to satisfy the constraint vp ≤ C ×∆T , where

30

Chapter 3. Environment Modeling

∆T is the control period, and each grid cell is a Cm × Cm square. We need

to set proper parameters ∆T and C to match with the pedestrian’s normal

walking speed, which is around 1.0m/s - 1.5m/s.

An example is shown in Figure 3.3(b), the direction to the pedestrian’s goal is

indicated by the arrow in Figure 3.3(a). Among the eight adjacent cells, those

with closer directions to the goal get higher transition probabilities.

3.3.4 Reward Function

In POMDP, a reward function is the utility function we want to optimize for this

sequential decision problem modeled with POMDP. The output of this function is

determined by various factors, such as goal incentive Rgoal, crash penalty Rcrash,

action penalty Raction and horizon penalty H, as in equation 3.6.

R = Rcrash +Rgoal +Raction +H (3.6)

Firstly, a penalty Rcrash is imposed for crashing (equation 3.7). We set up two crash

criterion. The first one is a higher penalty for a real crash situation when there exists

pedestrian in a small window w1×h1, calculated by multiplying the penalty term −D

with the vehicle’s speed v; the second one is a penalty −D when there is pedestrian

in a larger window w2×h2 and the vehicle has a speed more than Bm/s. The reason

we add the second penalty term is that when there is pedestrian nearby, driving in a

high speed could scare the pedestrian.

31

Chapter 3. Environment Modeling

Rcrash =


−D × v if ∃i, |qi,x − pr,x| < w1 and 0 < qi,y − pr,y < h1

−D if ∃i, v > Bm/s and |qi,x − pr,x| < w2 and 0 < qi,y − pr,y < h2

0 else

.

(3.7)

Secondly, a goal incentive +C is imposed to attract the vehicle towards its destination,

and this could be done by assigning a positive value when vehicle reaches some point

rg on the local path, as in (3.8)

However, since our model assumes that pedestrians do not walk out of the local

planning window, there will be pedestrians aggregated at the end of the window after

several steps. If we place the goal at further part on the path, the attraction of the

goal would be canceled by the risk of crashing pedestrians. On the other hand, if we

place the goal at closer part on the path, the planning horizon becomes very short so

that the vehicle just accelerates all the way.

Rgoal =

 +C if r >= rg

0 else
. (3.8)

Raction =


−A1 if action=ACC

−A2 if action=DEC

−A3 if action=CUR

. (3.9)

Besides the rewards and penalty above, we can add other components to further

tune the behavior of the vehicle. We can impose a small negative value −H on

each horizon to push the vehicle to accelerate. Moreover, to take into account the

32

Chapter 3. Environment Modeling

smoothness requirement, we can impose penalties for acceleration and deceleration

as in equation 3.9 (see further details in chapter 5).

33

Chapter 3. Environment Modeling

34

Chapter 4

Planning Techniques

In the previous chapter, we described the world model and probabilistic model used

for planning. In this chapter, we first describe the technical details of the state-of-

the-art online POMDP planner we use. Then we are going to compare with several

other frequently used methods to solve this navigation problem, including reactive

planning, offline POMDP planning, and other probabilistic methods. In the last

part, we present the experiment results in simulation to show the advantage of our

approach.

4.1 Online POMDP Planning

As reviewed in chapter 2, online POMDP solver plans only for the current belief

state and considers the horizons in the near future. Firstly, the planner starts on

an initial belief, and it searches for a near-optimal action a at each time step based

on the current belief state and world model. Secondly, the agent executes action a

through actuators and receives an observation o through sensors. Afterwards, the

belief update module updates the current belief based on the observation o received.

The process then repeats.

35

Chapter 4. Planning Techniques

In the following sections, we will address the two important components of a

complete online planning process, which are belief tracking and online tree search.

In the belief tracking section, we will introduce the general concept of belief update

and present our approach to construct an appropriate particle filter for efficient belief

update. In the online tree search section, we will explain the working mechanism of

the state-of-the-art online POMDP solver DESPOT and elaborate how we apply it

to solve our navigation problem.

4.1.1 Belief Tracking

The first component of online POMDP controller is belief tracking. As stated previ-

ously, POMDP maintains a belief distribution b over the state space S. The exact

belief update process can be written as:

b′(s′) = ηZ(s′, a, o)
∑
s∈S

T (s, a, s′) (4.1)

where η is a normalizing factor over all possible observations. The majority of

POMDP solvers use exact belief update process which needs to iterate through all

the states to calculate the posterior probability on a single state. As in Section 3.2.2,

our state is defined as a combination of robot vehicle’s state and all the pedestrians’

positions. The dimension of the joint state space is 2N + 2, N being the number of

pedestrians. As N becomes large, the total number of states exponentially increases,

which makes it computationally expensive to execute exact belief update on the belief

distribution over all the states.

An alternative belief update approach is to approximate the belief by a set of K

particles:

Bt := (s1t , s
2
t , . . . , s

K
t)

36

Chapter 4. Planning Techniques

Each particle sit (with 1 ≤ i ≤ K) corresponds to a sampled POMDP state, which

can be represented by a set of variables:

sit = (q1, g1 . . . , qn, gn, r, v)

Each state can be divided into fully observable part six,t = (q1, q2, . . . , qn, r, v) which

are the physical state of the pedestrians and vehicle, and unobservable part siy,t =

(g1, g2, . . . , gn) which are the intentions of the pedestrians [Ong et al., 2010]. K is a

large number depending on the dimension of the belief space, in our case, roughly the

number of pedestrians.

Particle filtering can be used to update the belief distribution represented by these

particles. For large K, the likelihood for a state hypothesis st+1 to be included in the

particle set Bt+1 shall be a reasonable approximation to its Bayes filter posterior:

sit+1 ∼ p(st+1|st, at+1, ot+1) (4.2)

at+1 is the control action taken for the current step, which can be chosen from

acceleration, deceleration, maintain. ot = (oq1 , . . . , oqn , or, ov) is the real obser-

vation received for the current step, which can be mapped one-to-one to the fully

observable part of the state six,t+1. As a consequence of equation 4.2, the denser a

subregion of the state space is populated by samples, the more likely it is that the

true state falls into this region. According to equation 4.2, particle filter algorithm

constructs the next belief Bt+1 from Bt one time step earlier. The work of [Thrun

et al., 2005] provides a common framework of particle filter algorithm. Next we will

describe the specific particle filtering algorithm we use with modifications for our

navigation problem, as in Algorithm 1.

37

Chapter 4. Planning Techniques

Algorithm 1 Particle Filtering

BeliefUpdateParticle(Bt, at+1, ot+1)

1: B̄t+1 = Bt+1 = ∅
2: Neff = 0
3: for i = 1 to K do
4: siy,t+1 = siy,t
5: six,t+1 = ObsToState(ot+1)
6: sit+1 = (six,t+1, s

i
y,t+1)

7: wit+1 = p(ot+1|sit+1)w
i
t

8: B̄t+1 = B̄t+1 + (sit+1, w
i
t+1)

9: end for
10: Normalize (B̄t+1)
11: for i = 1 to K do
12: Neff = Neff + (wit+1)

2

13: end for
14: if 1

Neff
< 0.1K then

15: for i = 1 to K do
16: add randomly initialized new particle (sK+i

t+1 ,
1
K

)
17: end for
18: for i = 1 to K do
19: draw m with probability ∝ wmt+1

20: add particle (smt+1, 1) to Bt+1

21: end for
22: else
23: Bt+1 = B̄t+1

24: end if
25: return Bt+1

38

Chapter 4. Planning Techniques

1. Generating New Particles.

Lines 4-6 generate a new particle sit+1 from the ith particle in the current particle

set. We copy the unobservable part six,t directly to the new particle six,t+1 (line

4), since our model assumes the intention of the pedestrian does not change.

In line 5, we generate the fully observable part by mapping from the current

observation ot+1 using the function ObsToState. In line 6, we combine the

two parts to form a new particle in time step t+ 1.

2. Importance Factor.

Line 7 calculates the importance factor wit+1 for each particle sit+1. Importance

factors are used to incorporate the measurement ot+1, interpreted as the weight

of each particle wit+1 = p(ot+1|sit+1). The weighted particle set together can

approximate the Bayes filter posterior. In our problem, the importance factor

can be calculated as wit+1 = p(ot+1|sit+1) = p(oqt+1 , ort+1 , ovt+1 |qit+1, r
i
t+1, v

i
t+1).

Since we assume each pedestrian’s new position only depends on its previous

position, the formula can be rewritten as

wit+1 =
n∏
j=1

p(qij,t+1|qij,t) (4.3)

However, our model assumes each pedestrian only moves to its adjacent grid

cells. If the jth pedestrian moves to at an unexpected place, p(qij,t+1|qij,t) would

become zero for all particles 1 ≤ i ≤ K, so that the joint transition probabilities

(importance weights) become zero too. In this case, we lost all the information

previously tracked due to unexpected observation. To fix this problem, we can

assign a small transition probability instead of zero for an unexpected pedestrian

movement.

3. Adding Diversity.

39

Chapter 4. Planning Techniques

Lines 11-22 is the tricky part of our particle filter. Since we model all the

pedestrians’ intentions in a joint state, the total number of possible states is

|g|N where |g| is the total number of subgoals and N is the total number of

pedestrians. When N is large, it is difficult to accurately represent the belief

distribution well with K = 2000 particles. Furthermore, since there is no in-

tention transition in the particles, the number of particles representing each

intention is fixed after initial sampling. Consider an extreme unlucky case that

all the sampled states have subgoal 1 for all pedestrians, then there is no way for

the approximate belief of intentions to converge to the true distribution after-

wards. To deal with this problem, we add diversity to the particle set by adding

random states and resampling. Line 10 normalizes the weight distribution of

the particle set, after which the weights of all particles sum up to 1. Line 9 sums

up the square of each particle’s normalized weight as Neff =
∑K

i=1(w
i
t+1)

2. After

that, we adopt the method in [Doucet, 2001] which computes 1
Neff

as an indica-

tor of the variance of the distribution. A relative small value of 1
Neff

indicates

that most weight are concentrated on a few particles. The least value of this

term is 1.0 when only one particle has weight 1.0 while all the other particles

have zero weight. When 1
Neff

< 0.1K (lines 15-21), we add random states to the

particle set followed by a resampling procedure.

Lines 15-17 adds K new particles to B̄t+1: the observable part is constructed

according to the real observation; the unobservable intentions are randomly

initialized. The weight of each particle is equal and all weights sum up to 1.0,

equals to the total weights of old particles.

Lines 15-20 does importance sampling by drawing with replacement K particles

from the temporary particle set B̄t+1, where the probability of drawing each

particle is given by its importance weight wit+1. Resampling can reduce the

variance of the particle set by removing low-probability particles. However, it

40

Chapter 4. Planning Techniques

can cause the bias of the particle set as an estimator of the true belief increases.

To tackle this problem, firstly we control the frequency of resampling by the

measurement of effective particles (line 14). Secondly, we use low-variance sam-

pling technique [Thrun et al., 2005] which selects each sample in a sequential

stochastic process instead of independent selecting.

4.1.2 Online Tree Search

The common way of online POMDP planning is to construct a belief tree, with the

current belief b0 at the root of the tree, and performs tree search for a policy π

that maximizes the expected total discounted reward Vπ(b0). Each node of the tree

represents a belief, which has |A| action edges. Each action edge further branches

into |O| observation edges. Every node and its child satisfies b′ = τ(b, a, o) , where b′

is the updated belief of b after executing an action a ∈ A and receiving an observation

o ∈ O. At each internal node, the best action is chosen by computing the maximum

value of action branches and the average value of observation branches. The result

tree forms an approximately optimal value Vπ∗(b0) and its policy π∗.

When the number of action and observation branches becomes large, the size of

the belief tree grows exponentially making the tree search infeasible. State-of-the-art

online planners such as POMCP [Silver and Veness, 2010] and DESPOT [Somani et

al., 2013] use sampling technique to approximate the full search tree. And instead

of requiring explicit representation of a large transition and observation table, they

only require a generative model which samples a successor state, observation and

reward given the current state and action. For example, POMCP uses a Monte-

Carlo sampling approach and utilizes UCT algorithm [Kocsis and Szepesvári, 2006]

to improve the action selection in the tree. However, UCT is sometimes overly greedy

and suffers from the worst-case Ω(exp(exp(. . . exp(1) . . .)))1 bound.

1Composition of D − 1 exponential functions.

41

Chapter 4. Planning Techniques

Instead of doing Monte-Carlo simulation like POMCP, DESPOT runs a determin-

istic simulation from a small set of sampled scenarios. Each scenario contains the

combination of a sampled state and random number sequence, represented as φ =

(s, φ1, φ2, . . .). A deterministic simulative model is a function S×A×R→ S×Z, such

that if a random number φ is distributed uniformly over [0,1], then (s′, o′) = g(s, a, φ)

is distributed according to p(s′, z′|s, a). When we simulate this model for an action

sequence (a1, a2, a3, . . .) under a scenario (s0, φ1, φ2, . . .), the simulation generates a

trajectory (s0, a1, s1, z1, a2, s2, z2, . . .), where (st, zt) = g(st−1, at, φt) for t = 1, 2,

The simulation trajectory traces out a path from the root of the standard belief tree.

The structure of the DESPOT search is shown in Algorithm (2). More details can

be found in [Somani et al., 2013]. The algorithm contains the following steps.

1. Tree Initialization.

In the Search(Bt) function, the algorithm first samples K scenarios from the

current particle belief set Bt. Then the search tree is constructed with a single

node b0 at the root, containing the initial K scenarios Φb0 .

2. Action Selection.

The tree search process contains a sequence of trials and backups before reaching

time limit. The Trial(b) function traces a path from the root node b0 to a leaf

node. The algorithm chooses the successive nodes following the similar idea as

the HSVI selection heuristic [Smith and Simmons, 2004]. For every belief node

b in T , DESPOT maintains an upper bound U(b) and a lower bound L(b) on

V̂π∗(b), which bounds the value of the optimal policy π∗ for b under the set of

scenarios Φb. Similarly DESPOT maintains bounds U(b, a) and L(b, a) on the

Q-value Qπ∗(b, a) = 1
|Φb|
∑

φ∈Φb
R(sφ, a) +γ

∑
b′∈Children(b,a)

|Φb′ |
|Φb|

V̂π∗(b
′). Here we

estimate the probability of reaching one observation branch b′ after executing

action a by the number of scenarios in that particular branch b′ divided by

42

Chapter 4. Planning Techniques

Algorithm 2 Online DESPOT Tree Search

Search(Bt)

1: construct K random scenarios Φb0 for b0
2: Initial tree T with only one node b0 at the root
3: while time remaining do
4: b= Trial(b0)
5: Backup lower and upper bounds for nodes on the path from b to b0
6: end while
7: Compute a regularized policy π∗ from T

Trial(b)

1: if depth(b) > D then
2: return b
3: end if
4: if b is a leaf node then
5: Expand b one level deeper
6: Construct initial upper and lower bounds on b
7: end if
8: a∗ = arg maxa∈A U(b, a).:
9: z∗ = arg maxz∈Zb,a∗

WEU(τ(b, a∗, z)).

10: b = τ(b, a∗, z∗).
11: if WEU(b) ≥ 0 then
12: return Trial (b)
13: else
14: return b
15: end if
16:

43

Chapter 4. Planning Techniques

the total number of scenarios in node b as
|Φb′ |
|Φb|

. The same estimation is used

for calculating weighted excess uncertainty and upper and lower bound. The

algorithm chooses the action branch a∗ that maximizes U(b, a) for the current

node b and then chooses the observation branch z∗ that maximizes the weighted

excess uncertainty at the child node b′ = τ(b, a∗, z): WEU(b′) =
|Φb′ |
|Φb|

where

excess(b′) = U(b′)−L(b′)−εγ−depth(b′) [Smith and Simmons, 2004] and ε specifies

the desired gap between the upper and lower bounds at the root b0. In our

case, we set ε to be k(U(b0)− L(b0)) where k ∈ (0, 1). The trial ends when the

weighted uncertainty excess(b) < 0, therefore a larger k generally increases the

length of each trial.

3. Expand Fringe Node

When the trial reaches a leave node b in the tree, the node will be expanded

one step further. The algorithm executes every action in the action space from

each scenario in Φ(b). For a scenario φi = (si, φd, φd+1, . . .), after executing

action a, a new state s′i and observation o′ will be generated according to the

deterministic simulation model (s′i, o
′) = g(si, a, φ). Then a new branch will be

created from that observation branch, containing the new state and remaining

random numbers (s′i, φd+1, φd+2, . . .) .

4. Initialize Upper and Lower Bounds

Initial upper and lower bounds are calculated on the leave nodes. The algorithm

calculates the initial upper bound of a node by averaging the fringe upper bound

on each scenario in the node. The fringe upper bound is the maximum reward

that can be obtained on a scenario by following any policy with respect to its

random number sequence. In our vehicle navigation problem, we calculate an

estimation of the fringe upper bound value by assuming the vehicle is driving

at its highest speed with no pedestrians around, formally as:

44

Chapter 4. Planning Techniques

UBfringe(s) = Rgoalγ
(pg−pr)/vmax (4.4)

where Rgoal is the goal incentive specified in the reward function, pg − pr is the

distance from the vehicle’s current position to the local goal, vmax is robot’s

maximum speed, and γ is the discount factor.

To calculate the initial lower bound at the leave node, the algorithm simulates

a default policy for l steps under the scenarios Φb and compute the average

discounted return. default policy π0 is constructed as a mapping from the belief

which is approximated by the particles to action space : B → A. In our vehicle

navigation problem, we use a reactive default policy. The policy maintains two

safety windows. If there is pedestrian in the larger window, the vehicle will

decelerate to a low speed and then cruise with this speed. If there is pedestrian

in the smaller window, the vehicle will decelerate until it stops. In all the other

cases, the vehicle will simply accelerate. Since DESPOT keeps improving on

the lower bound policy through tree search, we can expect the resulting tree

policy to be better than a purely reactive policy.

5. Backup

Finally the algorithm traces the path backward to the root and performs backup

on both the upper and lower bounds at each node along the way. For the lower-

bound backup,

L(b) = max
a∈A

{
1

|Φb|
∑
φ∈Φb

R(sφ, a) + γ
∑
z∈Zb,a

|Φτ(b,a,z)|
|Φb|

L(τ(b, a, z))

}
. (4.5)

Basically the algorithm first calculates the lower bound reward on each action

a by averaging over Zb,a, which is the set of observations can be received on all

45

Chapter 4. Planning Techniques

scenarios in Φb. Then we choose the maximum lower bound reward between

all the actions as the lower bound value for current node b. The upper bound

backup is calculated in the same way by substituting upper bound for lower

bound in equation (4.5).

6. Regularization

After enough trials and backups, the search tree contains a near-optimal policy

for the K scenarios. However, the chosen policy computed on the K scenarios

may not perform as well on the other scenarios. The potential overfitting issue

can be reduced by regularization technique which takes the size of the policy

tree into account during the policy evaluation process: the smaller the policy

size is, the higher probability it is adopted. Regularization is implemented with

a tree pruning procedure after tree search (line 7), which computes a regularized

policy from the policy tree in linear time of the tree size.

In conclusion, the key idea of DESPOT algorithm is to approximate the regularized

optimal policy on a small set of sampled scenarios. According to the proof in [Somani

et al., 2013], it only requires a number of scenarios equal to the size of the optimal

policy tree to find a good policy, which is a significant improvement than POMCP’s

worst case convergence time.

4.2 Other Planning Techniques

Our framework provides a systematic approach of a vehicle navigating in a dynamic

environment with uncertainties. In addition, our model dynamics can be specified

on-the-fly during the navigation process without requiring a-priori planning. In the

following, we compare our approach with three other classes of planning techniques,

46

Chapter 4. Planning Techniques

which are reactive planning, offline POMDP planning and other probabilistic meth-

ods.

4.2.1 Reactive Planning

Consider the most intuitive way of driving, which is just to stop when there are

obstacles nearby and go when clear. A better way is to predict a few steps ahead

and get the best action by forward search based on the vehicle’s state and the kine-

matic model of the vehicle. Dynamic Window Approach (DWA) [Fox et al., 1997]

and Virtual Bumper [Schiller et al., 1998] are two commonly-used algorithms in this

category.

As a more technical recap of the previous review, DWA basically wants to optimize

an objective function written as:

G(v, w) = σ(α · heading(v, w) + β · dist(v, w) + γ · vel(v, w)). (4.6)

v and w are the sampled linear and angular velocities. heading(v,w), dist(v,w) and

vel(v,w) represent the distance to the goal, the distance to the obstacles and the

future vehicle speed simulated from the current state with sampled velocity v and w.

Figure 4.1: Demonstration of the concept of 1-dimension virtual bumper [Schiller et al.,
1998]

47

Chapter 4. Planning Techniques

Virtual Bumper [Schiller et al., 1998] assumes that there is a virtual spring between

the vehicle and obstacles. A virtual spring force is computed based on the distance

and relative velocity between the vehicle and obstacles. Then it calculates the result

speed from the force computed. One practical implementation is like this:

Vx = α(Px −Xoff) (4.7)

Vy = β(Py − Yoff − γ ∗ A ∗ V) (4.8)

A, V are the vehicle’s current heading angle and speed. Xoff and Yoff are the

respective buffering zones in two directions. Px and Py are the obstacles’ positions

relative to the vehicle in two directions. Vx and Vy are the result speed in two

directions, where Vx is the velocity in the same direction as the car’s heading, and Vy

is the orthogonal direction.

Reactive Planning is usually simple and easy to implement. However, this kind

of planning only works well when the agent is omniscient of the environment. In our

problem scenario, an important issue is that the intention of the pedestrian is not

fully observable to the agent. To deal with this partial observability, we need to model

it with our knowledge and infer the unobservable part through the model every step.

Thus, we move to a more powerful probabilistic modeling technique POMDP.

4.2.2 Offline Planning and its Limitations

As stated in Chapter 2, offline POMDP planners generally consume much longer time

for the policy construction than online planners as they compute the policy for every

belief state. In this section, we will explain the difficulty applying offline planning

methods to our problem. Basically the difficulty comes from the possible change in the

environment which consequently changes the POMDP transition model, so that the

48

Chapter 4. Planning Techniques

(a) no obstacle (b) obstacle ahead

Figure 4.2: Comparison of the pedestrian’s transition probability with and without obsta-
cles.

expired policy may not be optimal anymore for the new model. From an orthogonal

aspect, it would also become infeasible to solve if we extend our model to take into

account the possible changes (e.g. model the changes as uncertainties). Additionally,

offline POMDP planners also have difficulty dealing with the large state space caused

by a large pedestrian crowd, and therefore approximations are necessary.

4.2.2.1 Environment change

The environmental change can be caused by the appearance of unexpected obstacles

and the shift of the planning window.

• Unexpected obstacles. Unexpected obstacles could affect the pedestrians’ be-

havior. As shown in Figure 4.2, the pedestrian’s intention is moving straight

ahead, so the grid cell in front has the largest transition probability of 0.5.

However, after that cell is blocked by some obstacle, the pedestrian is unable

to move to that cell and the transition probability becomes 0 instead. As a re-

sult, the reduced transition probability will be evenly distributed to other grid

cells, and the change in the pedestrian’s transition model can further affects the

decision of the planner.

49

Chapter 4. Planning Techniques

(a) (b)

Figure 4.3: The difference in pedestrian’s transition probability at the same local position

• Planning window shifting. As described in the previous part, we map the

subgoals and path from the global map to the local planning window for cal-

culation of the transition model. Therefore, different positions of the planning

window result in different transition models. As in the Figure 4.3, even though

the pedestrian’s local position with respect to the window remains the same,

the transition probabilities for the pedestrian changes due to the change of his

direction to the goal. In a same way, the transition model of the vehicle can be

affected by the update of the local path segment.

For the above problems, it is also unlikely to model the changes a-priori with an

enlarged state space. As a rough estimation, there are 2WH different configurations of

unexpected obstacles, whereWH is the number of grid cells in the window. Multiplied

by this factor alone would result in a huge state space infeasible to solve. Therefore,

to still run an offline planner, we have to sacrifice model accuracy and use a pre-

50

Chapter 4. Planning Techniques

defined model. In the experiment in Section 4.4, we make the assumptions for the

offline planner that there is no obstacle in the window, goals are located at the four

corners of the window, and the local path is always a straight lane.

4.2.2.2 Multiple Pedestrians

As described in section 3.3, we model all the pedestrians in a joint state. This joint

modeling results in a state space of size (W × H × H × K)N × |v| where N is the

number of pedestrians, W,H are the two side length of the planning window, K is the

number of subgoals, and |v| is the number of speed levels. This is definitely infeasible

for any offline planner to solve when the number of pedestrians gets large. A quick

hack is to approximate by solving single pedestrian problem and initiate a controller

for each pedestrian. Then the planner combines each controller output and chooses

the action that generates the lowest speed, sorted as decelerate, maintain, and

accelerate, from slow to fast. Yet, it is worth noting that the “slowest” action is not

necessarily the safest one. When a large crowd of pedestrians approach, sometimes

the best policy is to speed up and overtake rather than move slowly and wait for

the pedestrians to approach. In addition, since the decelerate action cannot stop

the vehicle immediately, the vehicle may end up crashing as well. Besides the safety

concerns, this approximation tends to generate too many decelerate actions when

dealing with large pedestrian crowd in the real world experiment, making the ride

inefficient and unsmooth.

4.2.3 Other Probabilistic Methods

Recent state-of-the-art probabilistic models such as Belief Roadmap [Prentice and

Roy, 2011] and LQG-MP [Van Den Berg et al., 2011] also account for uncertainties

in controlling and sensing, and they model uncertainties as Gaussian distributions.

51

Chapter 4. Planning Techniques

However, in the real world some of the uncertainties such as pedestrian’s intentions

do not obviously follow Gaussian distributions. Furthermore, these models assume

that the environment is static and thus failing to account for dynamic elements such

as pedestrians and the traffic. On the contrary, our model makes no assumption of

the distribution types of the uncertainties’ and consider for the dynamicity of the

environment. Specifically, we model pedestrians’ intentions as subgoals and take into

consideration the pedestrians’ interaction with the surrounding environment.

4.3 Experiments in Simulation

In the previous sections, we have introduced our technique approach to the problem

of vehicle navigating and interacting with pedestrians in a densely populated environ-

ment, from the modeling aspect and the planning aspect. In this section, we are going

to apply our approach on three typical environments in simulation, and compare the

performance between our approach and other commonly used approaches.

4.3.1 Experimental Setup

We present three commonly encountered navigation environments, from simple to

complex, shown in Figure 4.4, Figure 4.5 and Figure 4.6. The circles on the three

maps are the subgoals of the pedestrians. During one simulation run, each pedestrian

is initialized on a random position with a random subgoal. If one pedestrian reaches

its subgoal, it will be randomly reinitialized on a new position with a new subgoal,

so that there are constantly N pedestrians on the map. The first environment is a

straight lane, where the navigation path is straight in the middle with six subgoals

placed on two sides. This environment intends to explore the change of the model

dynamics affected by the change of relative goal positions when the vehicle is moving

forward. The second environment is a roundabout, where there is a curve path from

52

Chapter 4. Planning Techniques

bottom to top with five goals placed on the borders. This experiment environment

shows the ability of the online algorithm to adapt to an arbitrarily curved path, while

offline planners have to approximate by computing different policies for different lanes.

The third environment is UTown plaza, which is a realistic environment constructed

from information gathered from the LIDAR, and the subgoals are all meaningful real

world spots such as bus stops and restaurant entrance.

The planning window is a 7m×15m grid, each grid cell being a 1m×1m square.

The size of the window is chosen to allow enough space for the vehicle to brake in time

while not consume too much computation time. The control frequency is set to 1hz,

as the vehicle is driving in a relatively low speed. The vehicle speed is discretized into

three levels: 0m/s,1m/s,2m/s. Other detailed parameters are listed in Table 4.1.

We make comparisons between two online algorithms DESPOT and POMCP and

two offline algorithms MOMDP and QMDP. QMDP [Littman et al., 1995] is an ap-

proximation of POMDP by assuming that the states become fully observable after

one step of control. In our simulation experiments, QMDP computes its MDP policy

on the same model as MOMDP. Additionally a reactive planner and a random plan-

ner are provided as baseline comparison algorithms. The random planner chooses

one action randomly each time step to provide a lower bound estimation of the per-

formance. The reactive planner is constructed consistently with the intuition behind

human driver’s behavior and similar to the method used in Singapore-MIT Alliance’s

autonomous golf cart which has been tested in the NUS campus for a long time [Chong

and others, 2011]. Basically this planner maintains two safety windows. If the pedes-

trian is inside the smaller window, the vehicle will brake. If the pedestrian is inside

the larger window, the vehicle will maintain a low speed. DESPOT and POMCP

are each given 1 second per action online computation time which is the same as the

control period 1m/s. MOMDP and QMDP are given enough time to compute their

polices offline until the policies converges.

53

Chapter 4. Planning Techniques

Table 4.1: Parameters

Pedestrian noise 0.5
Robot motion noise 0.6
Robot speed noise 0.6

Robot motion noise 0.6
Goal incentive 500
Crash penalty -1000×speed

High speed penalty -1000
Horizon penalty -1

Speed change penalty -10
Discount factor 0.95

Figure 4.4: Straight lane environment

54

Chapter 4. Planning Techniques

Figure 4.5: Straight lane environment

Figure 4.6: UTown Plaza environment

55

Chapter 4. Planning Techniques

4.3.2 Results

Table 4.2: Result for straight lane

N=3 N=7
Time Accident Time Accident

DESPOT 17.84(0.08) 0.0074 21.33(0.13) 0.030
POMCP 17.15(0.07) 0.019 22.34(0.12) 0.051
MOMDP 16.53(0.03) 0.036 20.73(0.14) 0.063
QMDP 16.99(0.077) 0.023 21.75(0.13) 0.055

Reactive 16.41(0.06) 0.030 19.87(0.09) 0.0941
Random Action 19.02(0.10) 0.046 29.03(0.21) 0.087

Table 4.3: Result for roundabout

N=7 N=15
Time Accident Time Accident

DESPOT 22.67(0.10) 0.040 28.42(0.15) 0.098
POMCP 21.96(0.10) 0.042 28.14(0.18) 0.105
MOMDP 22.12(0.13) 0.077 28.12(0.23) 0.146
QMDP 22.88(0.14) 0.069 28.93(0.22) 0.139

Reactive 22.02(0.09) 0.061 26.56(0.11) 0.133
Random Action 26.86(0.17) 0.071 42.03(0.34) 0.167

All the experiment results are averaged over 4000 simulation runs. Each experi-

ment is running with two different number of pedestrians N . As in Table 4.2, Table

4.3 and Table 4.4, Columns 2 and 4 report the average time and standard error for

the vehicle to reach the final goal, and columns 3 and 5 report the accident rate which

happens when pedestrian and vehicle are close within certain distance. For compari-

son, we tune the reward function of the first four algorithms so that the difference in

their navigation time is less than 1 second.

Firstly, let us look at the comparison between DESPOT and offline algorithms. As

the result shows in Table 4.2, Table 4.3, and Table 4.4, DESPOT produces consistently

lower accident rate than both MOMDP and QMDP at all levels of pedestrian numbers.

56

Chapter 4. Planning Techniques

Table 4.4: Result for UTown Plaza

N=20 N=50
Time Accident Time Accident

DESPOT 23.19(0.09) 0.021 29.52(0.16) 0.078
POMCP 22.45(0.08) 0.025 29.28(0.14) 0.082
MOMDP 22.9(0.1) 0.034 29.44(0.24) 0.112
QMDP 22.9(0.1) 0.033 29.55(0.22) 0.108

Reactive 21.54(0.06) 0.055 25.34(0.09) 0.145
Random Action 24.82(0.14) 0.059 37.62(0.33) 0.186

This is due to the inherent limitation of offline planning, as explained in section 4.2.

Since offline POMDP planners cannot dynamically adapt to the environmental change

and have to make approximations towards multiple pedestrians, the gap between the

model used by the offline planner and the real environment model is always large

than online planners, therefore lead to the worse performance.

Now let us move to the comparison between two online planners, DESPOT and

POMCP. In the Roundabout and UTown Plaza problem, the accident rate of DESPOT

is only slightly lower than that of POMCP (Table 4.3 and Table 4.4), while in the

Straight lane problem, DESPOT result shows a significantly lower accident rate

than POMCP (Table 4.2). The performance discrepancy here could be explained

by POMCP’s worst case exponential convergence time. Since our problem has a

large branching factor, it may be hard for POMCP to converge under the planning

time constraint. Also the standard implementation of POMCP is using unweighted

particles, which means the particle set can easily go empty during belief update as

it simply rejects all the particles inconsistent with the current observation (see more

details in section 4.3.1).

Compared with the first four POMDP algorithms, reactive algorithm has a shorter

running time but a higher accident rate in most cases as shown in Table 4.2, Table

4.3 and Table 4.4. This is because reactive planner does not decelerate until it gets

57

Chapter 4. Planning Techniques

very close to the pedestrian.

The collision rates in the simulation experiments are much higher than that in

reality. In our experiments on the robot golf cart (Chapter 5), we have never en-

countered a single collision in all our experiments. The possible reasons for a high

collision rate in simulation could be explained by the following. Firstly, since we

adopt a discrete model similar to the previous offline POMDP work for the purpose

of comparison, the discretization may cause error to collision detection. In addition,

we check collision by assuming that the vehicle is disk-shaped, which could further

increase the error rate. Secondly, currently we do not take into consideration pedes-

trians interaction with the vehicle, thus some collision may be caused by unrealistic

scenarios such as pedestrians crashing into the vehicle. Lastly, since the original

purpose of the simulation is to compare performances of vehicle navigation between

DESPOT and other algorithms, we generate simulation results in a higher collision

level for the sake of computational source and time and focus less on controlling the

absolute collision rate value.

To make a more realistic simulation, we can improve the model from the following

aspects. Firstly, we can replace the original model with a continuous one (which is al-

ready being used in recent work) that has more realistic collision checking criteria and

models the shape of the vehicle’s geometry more accurately. Secondly, we can model

the pedestrian’s interaction with the vehicle, e.g., Social Force Model [Helbing and

Molnar, 1995] takes into account the deviations in pedestrian’s path by calculating

the impact from the vehicle and surrounding obstacles.

58

Chapter 5

Experiments on the Autonomous

Vehicle

5.1 System Overview

5.1.1 Hardware

Our test vehicle is a modified YAMAHA G22E golf cart (Figure 5.1) mounted with

various sensors and actuators to achieve autonomy. The brake pedal and steering

wheel are controlled by two motors, and the throttle is controlled directly by DC

voltage. The motors for braking and steering behave as stepper motors receiving

appropriate number of pulses to reach the desired position. The throttle receives

the PWM signal from the controller in its voltage range. Computers control those

actuators through BeagleBone controller.

The sensors most relevant to our experiment are the LIDAR, wheel encoders and

Inertia Measurement Unit (IMU). The LIDAR we use is SICK LMS291 laser range

finder, which has a range of 30 meters (max range of 80 meters) with an error of about

10mm and a field-of-view (FoV) of 180◦. The wheel encoders and IMU are used to

59

Chapter 5. Experiments on the Autonomous Vehicle

Figure 5.1: YAMAHA G22E golf cart

estimate the state of the vehicle. We integrate the input from wheel encoder tick

counts and IMU gyro information with Kalman Filter to give a relatively accurate

dead-reckoning estimate of the vehicle’s pose and speed.

5.1.2 Software

Our code is written based on the Robot Operating System (ROS) [Quigley et al.,

2009], which is a popular platform providing a rich variety of frequently used naviga-

tion software packages. The framework of our software is shown in Figure 5.2, with

various software modules (shown in rectangles) working together.

Vehicle State Estimation. The vehicle state estimation module contains two

components which are localization and speed estimation. The localization module

uses Adaptive Monte-Carlo Localization Algorithm (AMCL) [Thrun et al., 2005],

taking as input the sensor data from LIDAR and IMU. Same as general particle

filtering algorithm, AMCL maintains a set of particles to represent the probability

60

Chapter 5. Experiments on the Autonomous Vehicle

Camera

LIDAR

IMU

Odometer

Perception
and Tracking

Vehicle State
Estimation

World State
Estimation

POMDP
Speed Control

PPC Path
Tracking

Actuator

Figure 5.2: System architecture

61

Chapter 5. Experiments on the Autonomous Vehicle

distribution of the pedestrians. At each time step, the algorithm first samples new

particles from the old particles combining dead-reckoning pose estimation. Then it

does importance resampling based on the perception received from LIDAR. Specifi-

cally, it adopts a likelihood field perception model [Thrun et al., 2005], which firstly

maps the scanned points into the global coordinate system, then calculates the joint

likelihood of each point in the scan. The likelihood of a point is calculated from a

zero-centered Gaussian, taking the distance from the point to the nearest obstacle as

the variable.

PPC Path Tracking. The Pure-Pursuit Controller (PPC) [Kuwata et al., 2009]

module handles path tracking task based on the output of the vehicle state estimation

module. The path tracking module reads a sequence of way points from start to end

at the beginning of navigation. During runtime, path tracking algorithm computes

the steering command heading towards the next way point based on the estimation

of the vehicle’s position and speed.

Perception and Tracking. Perception and tracking module are the key com-

ponents of our system, as they provide the information of the pedestrians’ positions

needed by the POMDP planner. We use LIDAR as the main source of perception in-

put. LIDAR returns an array of detected points, and we cluster the points into groups

according to their spatial proximity. After that, we filter out candidate clusters for

pedestrians based on their sizes and velocities [Chong et al., 2011]. In the current

implementation, we use only a simple linear velocity model for pedestrians which

may have difficulty distinguishing pedestrians from other similar static and moving

obstacles. To correct those false positive errors, we pre-specify all the static obstacles

in the map and program LIDAR to ignore these static obstacles during detection.

Furthermore, in our experiment venue, most moving obstacles are pedestrians so that

detection errors are limited, and even some other moving obstacles mistakenly de-

tected can still be avoided as generic dynamic obstacles. Besides LIDAR, there is

62

Chapter 5. Experiments on the Autonomous Vehicle

also an alternative source of input called on-board camera that is less suitable to our

model but worth mentioning, which returns a sequence of images and uses a HoG

classifier [Dalal and Triggs, 2005] to label the pedestrians in each image. On-board

cameras are good at classifying different kinds of obstacles with image processing ap-

proaches, but it has a limited field-of-view and lacks robustness in pedestrian labeling.

As a result of the innate features of the two perception sources, on-board camera is

prone to generate dangerous false negatives in pedestrian detection, while LIDAR

could only cause limited false positives which can still guarantee safety. Therefore,

LIDAR is considered more suitable for our experiment.

Once LIDAR detects the pedestrians, our tracking module associates each pedes-

trian with a unique ID. However, we observed some false associations when facing

dense pedestrian crowd. For instance, if two pedestrians stand too close, the tracker

will recognize them as one object. This is actually acceptable as nearby pedestrians

are considered to have similar future behaviors. Another more notable issue is that

if two close pedestrians switch positions, their IDs may also be swapped, resulting in

wrong belief tracking. However, after about three to five time steps, belief update

module can automatically correct the error based on their new observations.

POMDP State Estimation. After we get the vehicle’s state information from

the vehicle state estimation module and the pedestrians’ information from perception

module, a world estimation module comes in to combine them into POMDP state

and observation ready for the POMDP solver to use. Basically there are two main

tasks of this module: the first task is to filter out errors such as duplicated detection

and false detection caused by an imperfect perception module; the second task is to

maintain the local planning window and transform all the global coordinates to local

coordinates.

POMDP Speed Control. POMDP speed control module has two parts, namely

a POMDP solver and a speed publisher. POMDP solver uses a DESPOT solver

63

Chapter 5. Experiments on the Autonomous Vehicle

initialized with random belief of pedestrians’ intentions. The solver then updates the

belief when a new observation is passed in from the POMDP state estimator and

issues a control command out of accelerate, decelerate and maintain. Then we run

a ROS speed publisher routine in a separate process that sends speed to the low-level

controller at higher frequency. The speed publisher smoothly increases (decreases) to

the desired speed according to a user-specified acceleration.

5.2 Experiment Results

5.2.1 Environment Description

We choose UTown Plaza as our experiment venue. It is a popular spot on campus, and

large crowd of people pass by throughout the day, especially upon the arrival of school

buses. In Figure 5.3, we show a brief description of the environment. Figure 5.3(a) is

the a-priori laser-scan map constructed before running the vehicle. Those parts with

dark color represent obstacles or unknown areas, while the light color represent free

area. Our path starts from the golf cart garage to the CREATE tower, as denoted

by the orange curve in Figure 5.3(a). There are no obvious lanes for the vehicle and

pedestrians to follow, and the space is filled with different kinds of obstacles.

In the previous chapter, we described our intention representation as geometry

coordinates of subgoals. However, intention could be a more general concept. For

example, we can also define the intentions to be the pedestrians’ walking directions,

or their decisions to whether stop or move. Based on our observation during the

experiment, sometimes pedestrians just stay stationary talking or making phone calls

rather than moving somewhere. Therefore, we add an additional stop intention to

model this kind of scenario, and our definition of intention includes five subgoals

along the path which are the intersections of pedestrian flow, plus an additional stop

64

Chapter 5. Experiments on the Autonomous Vehicle

(a) (b)

(c) (d)

Figure 5.3: (a) is the static map of the UTown Plaza environment. (b) is a runtime map
of the environment with dynamically detected obstacles. (c) and (d) are the photos taken
on spot.

65

Chapter 5. Experiments on the Autonomous Vehicle

intention.

Figure 5.3(b) is a runtime map with dynamically detected obstacles on top. Small

red squares represent the pedestrians and the green rectangle represents the current

planning window. Inside the window there are some color bars representing the

current probability distribution of each pedestrian’s intention. Each bar corresponds

to a subgoal marked with the same color, and the length of the bar indicates the

probability of the pedestrian heading for that subgoal. During this specific run,

pedestrians are mostly going to subgoal 1 and 2 so that there are many red and green

bars on the map. Additionally, there’s a similar looking bar at the bottom-center

of the planning window indicating the current action of the vehicle. Green indicates

accelerate, red indicates decelerate and blue indicates maintain.

5.2.2 Case Analysis

In the previous chapter, we described the advantage of our new approach and com-

pared with other methods quantitatively. In this section, we will show experimental

results on the real vehicle for a better understanding of our approach, and compare

with the performance of a reactive dynamic virtual bumper method. In the following,

goal 1 - 5 correspond to the five subgoal locations marked in Figure 5.4a, and goal 6 is

the stop intention. The group of colored bars in Figure 5.4 and Figure 5.5 represent

the probability distribution of the pedestrian walking towards each subgoal. And

the colored bars above the vehicle in Figure 5.4 represent the action chosen at that

time step, where green represents acceleration, red represents deceleration, and blue

represents cruising.

We first show the vehicle dealing with a single pedestrian and see how the policy

and belief changes at different time steps. In Figure 5.4a, the orange arrow represents

the path of the vehicle, and the blue arrow represents the path of the pedestrian.

From t=0s to t=5s, a pedestrian walks from left to right (Figure 5.4b, Figure 5.4c) so

66

Chapter 5. Experiments on the Autonomous Vehicle

(a) top-down view of the goals and the paths
of the vehicle and pedestrian

(b1) (b2)

(b) t=0s, vehicle starts to move, action=accelerate

(c1) (c2)

(c) t=3s, vehicle approaches, action =maintain

67

Chapter 5. Experiments on the Autonomous Vehicle

(d1) (d2)

(d) t=6s, vehicle slows down, action=decelerate

(e1) (e2)

(e) t=9s, vehicle stops, action=decelerate

(f1) (f2)

(f) t=12s, vehicle overtakes, action=accelerate

Figure 5.4: Demonstration of the vehicle’s behavior when a pedestrian stops besides its
path.

68

Chapter 5. Experiments on the Autonomous Vehicle

(a1)

(a2)

(a3)

(a) t=3s, vehicle maintains a high speed 2m/s when no pedestrians around

(b1)

(b2)

(b3)

(b) t=10s, vehicle brakes to avoid collision

69

Chapter 5. Experiments on the Autonomous Vehicle

(c1)

(c2)

(c3)

(c) t=15s, vehicle maintains a low speed 1m/s

Figure 5.5: Interacting with dense pedestrian crowd

that the intention distribution bias towards the goals on the right side, as in Figure

5.4(b2) and Figure 5.4(c2), the blue and yellow bars are longer. The planner then

chooses decelerate action at t=6s to slow down the vehicle. However, after the

pedestrian stops moving due to a sudden phone call, his intention of stopping starts

to grow (Figure 5.4d). After about 2 seconds, his intention distribution converges

to stop intention (goal 6) and therefore the vehicle confidently overtakes him(Figure

5.4e).

The second case is the vehicle interacting with many pedestrians during peak hour.

Figure 5.5a, Figure 5.5b and Figure 5.5c show three different time steps during a single

navigation process. In Figure 5.5a, the vehicle maintains a high speed of 2.0m/s when

no nearby pedestrians. In Figure 5.5(b1), the vehicle’s current speed is 2.0m/s and

there are pedestrian with id 2, 3 and 4 on the left-hand side. In Figure 5.5(b3), we can

see the intention distributions of the three pedestrians converge to subgoal 2 which

70

Chapter 5. Experiments on the Autonomous Vehicle

indicates they tend to cross the path in the near future, so that the vehicle takes an

decelerate action (red action bar). We can also see from the camera view (Figure

5.5(b2)) that pedestrians marked with 2, 3 and 4 (close pedestrians are grouped as one

detection) are on the way of crossing so that deceleration is appropriate. In Figure

5.5c, after deceleration, the vehicle’s speed decreased to 0.8m/s. Although there are

still some pedestrians nearby, the vehicle chooses a maintain action to slowly cruise

along with the crowd. The reason for choosing this policy can be find in Figure

5.5(c1) and Figure 5.5(c3), where the pedestrians’ intention distributions on the left-

hand side are almost converged to subgoal 1, while the intention distributions on the

right-hand side are mostly converged to subgoal 2. Therefore, the planner infers that

among the nearby pedestrians, it is unlikely that someone is going to cross the path

and it’s better to cruise behind with a low speed rather than stop completely. The

corresponding camera view is shown in Figure 5.5(c2), in which we can see pedestrian

3 and 4 are on the left-hand side, and pedestrian 5 and 6 are on the right-hand side.

In contrast, a reactive controller may not handle well the above scenarios, as

it does not take pedestrians’ intentions into account and only plan for the current

observable state. The reactive controller decides to stop or go based on the distance

to each pedestrian. If there is a pedestrian with a distance smaller than k meters to

the vehicle, the controller will execute a brake action. The navigation is safe but jerky

with a large k value. For example, in the scenario of Figure 5.4, the vehicle might

just stop behind the pedestrian until he moves away. In the scenario of Figure 5.5b,

the vehicle could also stop although pedestrians have low probability to cross. On

the other hand, a small k value could lead to dangerous situations. In the scenario

of Figure 5.4, the vehicle might just pass through without stopping, which is too

aggressive since the pedestrian actually intends to cross at first.

The video including the above two scenarios and more runs is available in the

attached CD-ROM and also on Youtube (http://youtu.be/UHKULAtzaFk).

71

Chapter 5. Experiments on the Autonomous Vehicle

5.2.3 Implementation Issues

In the experiment in section 4.3, our performance measurement only includes the

accident rate. However, in the real world scenario, smoothness is another important

concern besides safety. If the vehicle generates sudden acceleration and braking fre-

quently, the passenger might feel extremely dizzy, as well as the pedestrians passing

by are scared. To avoid sudden and frequent acceleration and deceleration, one way is

to bias the action towards maintain by adding a proper penalty term to accelerate

and decelerate (see section 3.3.4). It is worth noting that if the penalty term is

larger than the discounted goal incentive, the vehicle will not move at all. The param-

eters we use is shown in Table 4.1, the accelerate and decelerate get -10 reward

while maintain gets -1 reward. Based on our observation, this reward model makes

the vehicle tend to maintain its speed rather than accelerate or decelerate frequently.

We have also tried different sets of noise parameters on the vehicle. In one set of

parameters, we assume pedestrian’s behavior is noisy in the sense that the probabil-

ity to the most probable direction is about 10 times than that of the least probable

direction. In this case the vehicle’s behavior is conservative and tends to keep large

distances from the surrounding pedestrians, hedging against the probability that the

pedestrian walks to its front. In the other set of parameters, we set the noise parame-

ter to be very small, and the two most probable directions get more than 80% chance

to be visited. In this case, the vehicle behaves more like a normal driver. However,

based on our experience during the experiment, sometimes curious pedestrians at-

tempt to play with the vehicle such as jumping to its front suddenly. In this case,

the less noisy model does not perform well and may result in dangerous outcomes.

In our model description in Chapter 3, we still adopt a discrete model. This is

mainly for the purpose of comparison, as some of the previous work used discrete

offline POMDP. We want to control for the other parts of the model and focus our

comparison on the real differences between offline and online POMDP. In our recent

72

Chapter 5. Experiments on the Autonomous Vehicle

work, we are already trying out continuous model and test it on the real vehicle.

Previously our approach only does speed control on a single pre-defined path. In

order to make our approach more flexible, later on we modified our approach to be able

to accept a dynamically generated path during runtime. Basically we decompose the

planning problem into two layers: the path-planning layer and the POMDP speed

control layer. The POMDP speed control layer does online POMDP planning on

the path generated by the path-planning layer. The path planning layer runs in

a separate thread using hybrid A* search algorithm used by the Stanford ”Junior”

autonomous vehicle in the DARPA urban challenge [Montemerlo et al., 2008]. Hybrid

A* represents the vehicle’s state as (x, y, θ), where (x, y) is the vehicle’s location, and

θ is the vehicle’s heading direction. This planner can also take the vehicle’s control

ability such as speed and steering limitations into account.

73

Chapter 5. Experiments on the Autonomous Vehicle

74

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have studied the problem of navigating in a densely populated

environment. The key challenge here is interacting with dynamic obstacles, such as

pedestrians, which the vehicle encounters during navigation. Pedestrian’s behavior is

subtle and uncertain, but mostly rational and can be predicted. Our work presents

a practical online POMDP-based approach by taking pedestrians’ intentions into

account. Our work can be summarized from the following three aspects.

1. We design an online POMDP-based probabilistic model capturing the transi-

tion of the world especially the behavior of the pedestrians. We use the idea

of local planning window to concentrate planning on the most relevant areas.

It reduces the planning space from the global map to a local area. Another

noteworthy point is we use the subgoal concept as the main motivation of the

pedestrian’s movement. In this way, we can better predict the future positions

of the pedestrians and make efficient planning.

2. We carry out several experiments to make comparisons between three categories

75

Chapter 6. Conclusion and Future Work

of planners: online POMDP planners, offline POMDP planners and reactive

planners. Based on the result, we find that the DESPOT online planner over-

comes the limitations observed in the other two categories and is most suited

for our task.

3. We successfully run the real world experiment with an autonomous golf cart

running the DESPOT planner in a crowded campus area. We analyze the real-

time captured data and images in two experiment runs, and compare with the

reactive controller. Afterwards we describe several implementation issues for

the experiment.

6.2 Future Work

1. In the model description part we present our pedestrian model which assumes

pedestrian is only attracted by the subgoal. However, our current code im-

plementation contains an alternative model which also considers impact from

vehicle and other pedestrians. The reason we did not include this part in the

thesis is we have not found appropriate experiment scenario to test this model.

In the future we can keep working on this issue and see how it affects the

navigation process.

2. Another direction for future work is to deal with large pedestrian crowd more

efficiently. Right now our model considers each pedestrian as equally important,

while in reality we care more about the pedestrians closer to the vehicle and

expect a more accurate prediction about their behaviors. Hierarchical observa-

tion can be used to address this issue by assigning more accurate observations

to the closer pedestrians and noisier observations to the far-away pedestrians.

In this way, the number of observation branch can be bounded without losing

76

Chapter 6. Conclusion and Future Work

much prediction accuracy on the most important pedestrians.

3. We can also try continuous modeling in the future in order to reduce the dis-

cretization error. Furthermore, this approach would also help with simplifying

the model construction process, which shall become crucial once we move to a

more complicated pedestrian modeling.

77

Chapter 6. Conclusion and Future Work

78

Bibliography

[Alterovitz et al., 2007] R. Alterovitz, T. Siméon, and K. Y. Goldberg. The stochas-
tic motion roadmap: A sampling framework for planning with markov motion
uncertainty. In Robotics: Science and Systems, pages 246–253. Citeseer, 2007.

[Asmuth and Littman, 2011] J. Asmuth and M. L. Littman. Approaching bayes-
optimalilty using monte-carlo tree search. In In Proceedings of the 21st Interna-
tional Conference on Automated Planning and Scheduling, 2011.

[Bandyopadhyay et al., 2013] T. Bandyopadhyay, K. S. Won, E. Frazzoli, D. Hsu,
W. S. Lee, and D. Rus. Intention-aware motion planning. In Algorithmic Founda-
tions of Robotics X, pages 475–491. Springer, 2013.

[Bennewitz et al., 2005] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun.
Learning motion patterns of people for compliant robot motion. The International
Journal of Robotics Research, 24(1):31–48, 2005.

[Bertozzi et al., 2010] M. Bertozzi, L. Bombini, A. Broggi, M. Buzzoni, E. Cardarelli,
S. Cattani, P. Cerri, S. Debattisti, R. Fedriga, M. Felisa, et al. The vislab inter-
continental autonomous challenge: 13,000 km, 3 months, no driver. In Proceedings
of the 17th World Congress on ITS, Busan, South Korea, 2010.

[Burgard et al., 1999] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive museum tour-
guide robot. Artificial intelligence, 114(1):3–55, 1999.

[Chong and others, 2011] Z. Chong et al. Autonomous personal vehicle in crowded
campus environments. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots & Systems, Workshop on Perception and Navigation for Au-
tonomous Vehicles in Human Environment, 2011.

[Chong et al., 2011] Z. Chong, B. Qin, T. Bandyopadhyay, T. Wongpiromsarn,
E. Rankin, M. Ang, E. Frazzoli, D. Rus, D. Hsu, and K. Low. Autonomous personal

79

BIBLIOGRAPHY

vehicle for the first-and last-mile transportation services. In Cybernetics and Intel-
ligent Systems (CIS), 2011 IEEE 5th International Conference on, pages 253–260.
IEEE, 2011.

[Dalal and Triggs, 2005] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[Donald et al., 1993] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic
motion planning. Journal of the ACM, 40(5):1048–1066, 1993.

[Doucet, 2001] A. Doucet. Sequential monte carlo methods. Wiley Online Library,
2001.

[Fern and Tadepalli, 2010] A. Fern and P. Tadepalli. A computational decision theory
for interactive assistants. In Interactive Decision Theory and Game Theory, 2010.

[Fletcher et al., 2008] L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How,
J. Leonard, I. Miller, M. Campbell, D. Huttenlocher, et al. The MIT–Cornell
collision and why it happened. Journal of Field Robotics, 25(10):775–807, 2008.

[Fox et al., 1997] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach
to collision avoidance. Robotics & Automation Magazine, IEEE, 4(1):23–33, 1997.

[Gerkey and Konolige, 2008] B. P. Gerkey and K. Konolige. Planning and control
in unstructured terrain. In International Conference on Robotics and Automation
Workshop on Path Planning on Costmaps, 2008.

[Goller et al., 2010] M. Goller, F. Steinhardt, T. Kerscher, J. Marius Zollner, and
R. Dillmann. Proactive avoidance of moving obstacles for a service robot utiliz-
ing a behavior-based control. In Intelligent Robots and Systems, 2010 IEEE/RSJ
International Conference on, pages 5984–5989. IEEE, 2010.

[Guizzo, 2011] E. Guizzo. How googles self-driving car works. IEEE Spectrum Online,
October, 18, 2011.

[Helbing and Molnar, 1995] D. Helbing and P. Molnar. Social force model for pedes-
trian dynamics. Physical review E, 51(5):4282, 1995.

[Iagnemma and Buehler, 2006] K. Iagnemma and M. Buehler. Editorial for Journal
of Field Roboticsspecial issue on the DARPA grand challenge. Journal of Field
Robotics, 23(9):655–656, 2006.

80

BIBLIOGRAPHY

[Ikeda et al., 2012] T. Ikeda, Y. Chigodo, D. Rea, F. Zanlungo, M. Shiomi, and
T. Kanda. Modeling and prediction of pedestrian behavior based on the sub-goal
concept. In Robotics: Science and Systems, 2012.

[Kaelbling et al., 1998] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence,
101(1):99–134, 1998.

[Kavraki et al., 1996] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars.
Probabilistic roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on, 12(4):566–580, 1996.

[Kocsis and Szepesvári, 2006] L. Kocsis and C. Szepesvári. Bandit based monte-carlo
planning. In European Machine Learning and Data Mining Conference, pages 282–
293. Springer, 2006.

[Kurniawati et al., 2008] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient
Point-Based POMDP planning by approximating optimally reachable belief spaces.
In Robotics: Science and Systems, pages 65–72, 2008.

[Kuwata et al., 2009] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and
G. Fiore. Real-time motion planning with applications to autonomous urban driv-
ing. Control Systems Technology, IEEE Transactions on, 17(5):1105–1118, 2009.

[Latombe, 1996] J.-C. Latombe. Robot Motion Planning. Springer, 1996.

[LaValle, 2006] S. M. LaValle. Planning algorithms. Cambridge university press,
2006.

[Leonard and Durrant-Whyte, 1991] J. J. Leonard and H. F. Durrant-Whyte. Simul-
taneous map building and localization for an autonomous mobile robot. In In-
telligent Robots and Systems’ 91.’Intelligence for Mechanical Systems, Proceedings
IROS’91. IEEE/RSJ International Workshop on, pages 1442–1447. Ieee, 1991.

[Littman et al., 1995] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning
policies for partially observable environments: Scaling up. In ICML, volume 95,
pages 362–370. Citeseer, 1995.

[Lozano-Perez, 1983] T. Lozano-Perez. Spatial planning: A configuration space ap-
proach. Computers, IEEE Transactions on, 100(2):108–120, 1983.

[Maisto, 2014] M. Maisto. Induct now selling Navia, first self-driving commercial
vehicle. eWeek, 2014.

81

BIBLIOGRAPHY

[Markoff, 2010] J. Markoff. Google cars drive themselves, in traffic. The New York
Times, 10:A1, 2010.

[McAllester and Singh, 1999] D. A. McAllester and S. Singh. Approximate planning
for factored POMDPs using belief state simplification. In Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence, pages 409–416. Morgan
Kaufmann Publishers Inc., 1999.

[Montemerlo et al., 2008] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dol-
gov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al. Junior:
The stanford entry in the urban challenge. Journal of field Robotics, 25(9):569–597,
2008.

[Ong et al., 2010] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee. Planning under
uncertainty for robotic tasks with mixed observability. The International Journal
of Robotics Research, 29(8):1053–1068, 2010.

[Paquet et al., 2005] S. Paquet, L. Tobin, and B. Chaib-Draa. An online POMDP
algorithm for complex multiagent environments. In Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pages
970–977. ACM, 2005.

[Pineau et al., 2003] J. Pineau, G. Gordon, S. Thrun, et al. Point-based value iter-
ation: An anytime algorithm for POMDPs. In International Joint Conference on
Artificial Intelligence, volume 3, pages 1025–1032, 2003.

[Prentice and Roy, 2011] S. Prentice and N. Roy. The belief roadmap: Efficient plan-
ning in linear POMDPs by factoring the covariance. In Robotics Research, pages
293–305. Springer, 2011.

[Quigley et al., 2009] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source Robot Operating System. In
International Conference on Robotics and Automation Workshop on Open Source
Software, volume 3, 2009.

[Ross et al., 2007] S. Ross, B. Chaib-Draa, et al. AEMS: an anytime online search
algorithm for approximate policy refinement in large POMDPs. In International
Joint Conference on Artificial Intelligence, pages 2592–2598, 2007.

[Ross et al., 2008] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online planning
algorithms for POMDPs. Journal of Artificial Intelligence Research, 32:663–704,
2008.

82

BIBLIOGRAPHY

[Schiller et al., 1998] B. Schiller, V. Morellas, and M. Donath. Collision avoidance for
highway vehicles using the virtual bumper controller. In Proceedings of the IEEE
International Symposium on Intelligent Vehicles, 1998.

[Shani et al., 2007] G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value
iteration for POMDPs. In International Joint Conference on Artificial Intelligence,
pages 2619–2624, 2007.

[Siegwart et al., 2003] R. Siegwart, K. O. Arras, S. Bouabdallah, D. Burnier,
G. Froidevaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, et al.
Robox at Expo. 02: A large-scale installation of personal robots. Robotics and
Autonomous Systems, 42(3):203–222, 2003.

[Silver and Veness, 2010] D. Silver and J. Veness. Monte-Carlo planning in large
POMDPs. In International Joint Conference on Artificial Intelligence, volume 23,
pages 2164–2172, 2010.

[Smith and Simmons, 2004] T. Smith and R. Simmons. Heuristic search value it-
eration for POMDPs. In Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, pages 520–527. AUAI Press, 2004.

[Somani et al., 2013] A. Somani, N. Ye, D. Hsu, and W. S. Lee. DESPOT: online
POMDP planning with regularization. In Advances in Neural Information Pro-
cessing Systems, pages 1772–1780, 2013.

[Spaan and Vlassis, 2005] M. T. Spaan and N. A. Vlassis. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artificial Intelligence Re-
search, 24:195–220, 2005.

[Thrun et al., 2005] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT
press, 2005.

[Van Den Berg et al., 2011] J. Van Den Berg, P. Abbeel, and K. Goldberg. LQG-MP:
Optimized path planning for robots with motion uncertainty and imperfect state
information. The International Journal of Robotics Research, 30(7):895–913, 2011.

83

	Declaration
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Outline of This Thesis

	Background
	Related Work
	Autonomous Navigation Systems
	Background of Motion Planning
	Reactive Planning
	Planning Under Uncertainty

	Preliminaries on POMDPs
	Sequential Decision Problems and Markov Decision Process
	Partially Observable MDP
	POMDP Solvers
	Comparison between Offline and Online POMDP

	Environment Modeling
	Environment
	Maps and Static Obstacles
	Pedestrians as Dynamic Obstacles

	Robotic Motion
	Intention-Aware POMDP Modeling
	Global Space to Local Space
	State and Observation
	Action and Transitions
	Reward Function

	Planning Techniques
	Online POMDP Planning
	Belief Tracking
	Online Tree Search

	Other Planning Techniques
	Reactive Planning
	Offline Planning and its Limitations
	Other Probabilistic Methods

	Experiments in Simulation
	Experimental Setup
	Results

	Experiments on the Autonomous Vehicle
	System Overview
	Hardware
	Software

	Experiment Results
	Environment Description
	Case Analysis
	Implementation Issues

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

