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Abstract

Complex networks abound in physical, biological and social sciences. Quantifying a network’s topological structure
facilitates network exploration and analysis, and network comparison, clustering and classification. A number of Wiener type
indices have recently been incorporated as distance-based descriptors of complex networks, such as the R package QuACN.
Wiener type indices are known to depend both on the network’s number of nodes and topology. To apply these indices to
measure similarity of networks of different numbers of nodes, normalization of these indices is needed to correct the effect
of the number of nodes in a network. This paper aims to fill this gap. Moreover, we introduce an f -Wiener index of network
G, denoted by Wf (G). This notion generalizes the Wiener index to a very wide class of Wiener type indices including all
known Wiener type indices. We identify the maximum and minimum of Wf (G) over a set of networks with n nodes. We then
introduce our normalized-version of f -Wiener index. The normalized f -Wiener indices were demonstrated, in a number of
experiments, to improve significantly the hierarchical clustering over the non-normalized counterparts.
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Introduction

Recent years witness exponential growth of available biological

network data. Thanks to past decades’ breakthrough in biotech-

nology, researchers now are able to interrogate molecular

interactions at systems level. It has since been observed that

topological properties of these networks provide important insight

into the functions of proteins, and their relationship with one

another [1–8]. For examples, degree distribution, average

clustering coefficient, diameter, centrality, lethality and graphlet

distribution have been extensively studied. Hopefully, based on a

carefully chosen list of network topological properties and methods

in quantifying them, a complex network is adequately summarized

in the form of a numerical d-dimensional vector where d is the

number of topological properties in consideration. This represen-

tation enables us to take full advantage of a host of classification

and clustering techniques to compare complex networks.

A significant step towards this direction is facilitated by the

introduction of the R package QuACN by Mueller et al. [9].

QuACN computes the values of different categories of descriptors

in a network. One such category is the distance-based descriptors

which include Wiener index, Harary index, etc. The use of Wiener

index and related type of indices dates back to the seminal work of

Wiener in 1947 [10,11]. Wiener introduced his celebrated index to

predict the physical properties, such as boiling point, heats of

isomerization and differences in heats of vaporization, of isomers

of paraffin by their chemical structures. Viewing the chemical

structure of an isomer as a connected graph, the Wiener index is

defined as
P

i,j d(i,j) where i,j represent nodes in the graph, d(i,j)

the distance between nodes i and j which is defined as the length of

a shortest path between them, and the sum is over all pairs of

nodes in the graph. Wiener index has since inspired many

distance-based descriptors in Chemometrics. These include

Harary index [12], hyper Wiener index [13], q-analog of Wiener

index [14], Wiener polynomial [15], Q-index [16], Balaban J

index [17], and information indices [18–20]. These indices, or

commonly called descriptors, play significant roles in quantitative

structure-activity relationship/quantitative structure-property re-

lationship (QSAR/QSPR) models [21].

It is known that the Wiener type indices depend both on a

network’s number of nodes and its topology. When the numbers of

nodes in the networks are equal, as in the applications to isomers,

these indices provide informative measures of the branching

property of the networks and hence a fair comparison among

them. However, when they are used to measure similarities of

networks with different numbers of nodes, the intended measure of

topological structures will be masked by the sizes of the networks.

Normalization of a Wiener type index expectedly minimizes the

effect of the network’s number of nodes and hence brings forth its

topological structure better. Furthermore, it is also desirable for

the normalized index to take value in an absolute scale for better

understanding and interpretation. This paper seeks to fill this gap.

The normalization introduced in definition 2 below fulfils this

purpose. This definition will be of limited practical value if the

sharp upper and lower bounds of the index on a graph cannot be

found explicitly. The objective of this article is three-fold. First,

introduce a very general Wiener type index. We call it f -Wiener

index, and denote it by Wf (G) for a graph G. This definition

includes all known Wiener type indices as special cases. Second,

identify the maximum and minimum values of Wf (G) over a class

of connected networks G or a class of connected trees G. We are

able to derive explicit formulas for these optimal values. Third,

propose a normalized version, W �
f (G) which takes value in ½0,1�

for better interpretation and network comparison.
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This paper is organized as follows. We first introduce some

standard graph-theoretic notations and recall some special graphs.

We then introduce the functional analog of Wiener index, Wf (G),

and our proposed normalized versions of this functional Wiener

index in the method section. In the result section, we provide our

main results Theorems 1 to 4. Theorem 1 gives the maximum and

the minimum of Wf (G) over the set of connected graphs of n

nodes, and characterization of graphs achieving the maximum or

the minimum. Theorem 2 gives a parallel result when the

maximum and minimum are taken over the set of connected trees

of n nodes. Theorem 3, (respectively Theorem 4) identifies the

maximum of Wf (G) over the set of connected graphs (respectively

connected trees) of n nodes with specified maximum degree. We

also give a brief description of related works in next section. Then,

we consider special cases of f in Wf (G) to provide explicit

expressions of the maximum and the minimum of Wiener,

Harary, hyper Wiener, generalized Wiener indices. In the

experiment section, we report the performance of hierarchical

clustering based on the usual Wiener type indices and the

normalized version of these in our experiments. We end with

conclusions section of this paper.

Methods

Definitions and Terminologies
Let G~(V ,E) be a simple (that is, no self-loops nor multiple

edges) connected graph on n nodes where V~f1, . . . ,ng and

E(V|V . Denote by N(G) as the number of nodes in G. Let Gn

denote the set of all simple, connected graphs with n nodes. A

graph having no cycles is called a tree, and we let T n denote the

set of all connected trees with n nodes. The distance d(i,j) between

any pair of nodes, i and j, in G is the number of edges in a shortest

path from i to j. Let D(G)~½d(i,j)�1ƒi,jƒn be the distance matrix.

We denote the maximum degree of G by D(G).

Figure 1 shows some special graphs we frequently refer to in this

paper. A path graph, Pn, is a graph that can be drawn so that all of

its vertices and edges lie on a straight line. Figure 1(a) shows P8. A

star, Sn, is a tree with one internal node and n{1 leaves. S8 is

shown in Figure 1(b). A complete graph, Kn, is a graph with n
nodes in which every pair of distinct nodes is connected by an

edge. A caterpillar, Cn,k, is a tree with a central path with number

of nodes [½n=(kz1),(nzk)=(kz1)� where at most one end node

of the central path has less than k leaves, each of the other nodes

in the central path has k leaves. Figures 1(d) and 1(e) show

caterpillars C12,2 and C8,3 respectively. A broom Bn,k is a tree

joining a star Skz1 and a path Pn{k{1 by attaching a pendant

node (or leaf) in Pn{k{1 to a pendant node of Skz1. For examples,

brooms B8,4 and B8,5 are shown in Figures 1(f) and 1(g)

respectively. A kite Kn,‘ is a graph obtained from connecting

two end nodes one from a complete graph K‘ and one from a path

Pn{‘. Figure 1(h) shows a kite K8,4.

Throughout this paper, f denotes a monotone function

defined on nonnegative integers. We define a functional-analog

Wiener index below. Our definition contains the Wiener index,

Harary index, hyper Wiener index, compactness, average

efficiency, generalized Wiener index, Wiener polynomial, Q-

index, q-analogy of Wiener index as special cases. For detail,

see subsection Important special cases. We abbreviate it as f -

Wiener index. Thanks to an anonymous reviewer of this article,

this definition has also been independently introduced by

Schmuck et al. [22].

Definition 1.The f -Wiener index of G[Gn is defined by

Wf (G)~
X

1ƒivjƒn

f (d(i,j)):

Here d(i,j) denotes the shortest distance between nodes i and j.

The number of nodes of G has a very strong effect on Wiener

type indices (see Results section). In order to apply f -Wiener index

for comparing networks, which often differ in the numbers of

nodes, we are led to propose a normalized version for graphs and a

normalized version for trees for better interpretation of the index.

Definition 2. (a) The normalized f -Wiener index for a graph G[Gn is

defined as

W ?
f (G)~

Mf {Wf (G)

Mf {mf

:

Here Mf ~ maxH[Gn
fWf (H)g and mf ~ minH[Gn

fWf (H)g.
(b) The normalized f -Wiener index for a tree T[T n is similarly defined

where the maximum Mf and the minimum mf are taken over T n instead.

These normalized versions will be of limited practical value if

one cannot compute Mf nor mf . Our main results, stated in

Theorems 1 and 2, show that these optimal upper and lower

bounds can be easily computed. Moreover, they characterize those

graphs which attain the maximum or the minimum.

By definition, W �
f (G) takes values in ½0,1�. When f is a non-

decreasing function, Theorem 1 below shows that W �
f (G)~0 if

and only if G is a path graph, and W �
f (G)~1 if and only if G is a

complete graph. So W �
f (G)&0 (respectively, W �

f (G)&1) suggests

G looks like a path graph (respectively, a complete graph). And

hence the numerical value of W �
f (G) provides an indication how

G is like.

Effect of Number of Nodes on Wiener Type Indices
It is known that the Wiener index for a connected graph with n

nodes ranges from n(n{1)=2 to n(n{1)(nz1)=6 (see Corollary 5

below or [23–25] ). This wide range can be undesirable if it is used

for comparing similarity of graphs with different number of nodes.

For example, consider two path graphs, P4 and P5, with 4 nodes

and 5 nodes respectively, and a star graph with 5 nodes, S5. Values

of the Wiener index for P4,P5 and S5 are respectively 10, 20 and

16, giving the false impression that P5 and S5 are more similar

than that of P4 and P5. However, values of the normalized Wiener

index are 0 for P4 and P5, and 1 for S5. This example is far from

Figure 1. Some special graphs. Figure 1 (a) to (g) are trees.
doi:10.1371/journal.pone.0078448.g001
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being an isolated case, it can be shown that if the number of nodes

of a path graph is at least 26% more than the number of nodes in

another path graph, there exists a star graph whose Wiener index

is closer to that of the path graph with smaller number of nodes.

The normalized Wiener index of Sn, star with n nodes, is

1{3=n, suggesting stars of sufficiently large n, based on the

normalized Wiener index, Sn is very similar to a complete graph.

This is concordant with the fact that a Kn is the line graph of Snz1

[26].

Main Idea
A key ingredient in our proofs is a matrix majorization (see

Supporting information file Text S1 for definition) argument.

Given a connected graph G, we can transform it to another graph

G
0

such that the distance matrix of G, D(G)~½d(i,j)�1ƒi,jƒn

majorizes the corresponding distance matrix of G
0
. Since Wiener

index of G, or its generalization f -Wiener index for increasing

function f , is the sum of the upper diagonal entries in the distance

matrix, it follows that Wf (G)§Wf (G
0
). The construction of G

0
is

fairly straightforward as can be seen in the proofs. The

construction of G
00

such that D(G) is majorized by D(G
00
) requires

delicate and judicious pruning and regrafting. However, the

essential idea remains the same. Technical details of proofs are

given in supporting information file Text S1.

Results

We provide explicit expressions for the maximum and

minimum of Wf (G) over Gn, and over T n in Theorems 1 and 2

below. We also characterize those graphs or trees attaining the

extremum. Theorems 3 and 4 concern trees or graphs with a

specified maximum degree. For simplicity of presentations, we

shall only state our results for non-decreasing function f .

Analogous results for non-increasing f can be deduced easily by

replacing f by {f .

Theorem 1 Let f be a non-decreasing function on nonnegative integers,

and G[Gn, then

n(n{1)

2
f (1)ƒWf (G)ƒ

Xn{1

i~1

(n{i)f (i):

The lower bound is attained if and only if G is Kn. The upper bound is

attained if and only if G is Pn.

Theorem 2 Let f be a non-decreasing function on nonnegative integers,

and T[T n, then

(n{1)((n{2)f (2)z2f (1))

2
ƒWf (T)ƒ

Xn{1

i~1

(n{i)f (i):

The lower bound is attained if and only if T is Sn. The upper bound is

attained if and only if T is Pn.

Theorem 3 Let f be a non-decreasing function on nonnegative integers.

Then, for any T[T n with D(T)~k, we have

Wf (T)ƒWf (Bn,kz1):

The upper bound is attained if and only if T is a broom Bn,kz1.

Theorem 4 Let f be a non-decreasing function on nonnegative integers.

Then, for any G[Gn with D(G)~k, we have

Wf (G)ƒWf (Bn,kz1):

Moreover,

Wf (Bn,kz1)~
Xn{kz1

j~1

(n{j)f (j)z
(k{1)(k{2)

2
f (2):

Equality holds if and only if G is Bn,kz1.

Related Work

The proofs of Theorems 1 to 4 will be given in supporting

information file Text S1. Theorem 2 has also been independently

obtained by Wagner et al. (see Theorem 2.7 and Corollary 4.1 in

[27]). Special cases of Theorems 1 to 4 for particular Wiener type

index are known in the literature. For examples, the complete

graph (respectively, the path graph) is shown to be the minimizer

(respectively, maximizer) of the Wiener index among simple

connected graphs with the same number of nodes in [23–25].

Similar conclusions are proved to hold for the hyper Wiener index

in [25], and the Harary index in [28]. The results in Theorems 1

to 4 in its full generality as f -Wiener index are novel to the best

knowledge of the authors. Moreover, we have provided a unifying

methodology for the proofs.

Important Special Cases
Since its introduction, Wiener index has inspired many variants

and thoroughly studied in a sizeable literature [29]. By choosing

appropriate functions f , the f -Wiener index can be reduced to a

number of commonly used descriptors as follows.

If we take f (k)~k, Wf (G) written as W (G) is the well-studied

descriptor introduced by Wiener in 1947 [10,11].

Taking f (k)~1=k, the f -Wiener index is the Harary index

[12], denoted by H(G) which is shown to be more discriminating

than the Wiener index [12]. Latora and Marchiori in 2001 [30],

used a scaled version of the Harary index (more precisely,

f (k)~
2

n(n{1)k
) to measure a network’s efficiency in information

exchange.

Taking f (k)~ka, where a can be positive or negative, the f -

Wiener index is called generalized Wiener index, denoted by

Wa(G) [31].

If f (k)~(k2zk)=2, the f -Wiener index is known as the hyper

Wiener index [13], denoted by WW (G).

Taking f (k)~lk, where l is regarded as a parameter, the f -

Wiener index is called the Hosoya polynomial or Wiener

polynomial [15]. With an additional factor 2, the Hosoya

polynomial is called Q-index and denoted by Q(l) in [16].

The q-analog of the Wiener index, introduced by Zhang et al.

(2012) in [14] is simply the f -Wiener index by choosing

f (k)~(1{qk)=(1{q)~
Pk{1

t~0 qt.

Applications

By specializing f to various forms in Theorems 1 and 2, we

provide below explicit sharp upper bounds and sharp lower

bounds for the Wiener index W (G), the Harary index H(G), the

Bounds and Normalization of Wiener-Type Indices
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hyper Wiener index WW (G), and the generalized Wiener index

Wa(G) for aw0 and av0.

Corollary 5 Let G be a simple, connected graph with n nodes (that is,

G[Gn), we have

n(n{1)

2
ƒW (G)ƒ

n(n{1)(nz1)

6
,

n
Xn{1

i~2

1

i
z1ƒH(G)ƒ

n(n{1)

2
,

n(n{1)

2
ƒWW (G)ƒ

n(n{1)(nz1)(nz2)

24
,

when av0,

Figure 2. Hierarchical clustering of random networks. 30 networks with 10 each generated by the Erdos-Renyi (ER), scale-free (SF) and
geometric (GE) random network models. Panel (A) shows the hierarchical clustering based on the f -Wiener indices (see Step 1 on page 8 for functions
used). The adjusted rand index (ARI) for this clustering is 0.24. Panel (B) is the hierarchical clustering based on the normalized versions of the same f -
Wiener indices. The ARI of this clustering is 0.67. Number of nodes chosen are 500, 550, …, 950, and p is 0.05 in the Erdos-Renyi model. A scale-free
network with 500 nodes is denoted by SF500. The others are denoted in a similar way.
doi:10.1371/journal.pone.0078448.g002

Table 1. Adjusted Rand Index (ARI) for clustering (or
classification) of networks in our three experiments.

Non-normalized Normalized

Experiment 1.1 0.44 (0.02) 0.88 (0.07)

Experiment 1.2 0.41 (0.06) 1.00 (0.01)

Experiment 1.3 0.38 (0.10) 1.00 (0.00)

Experiment 1.4 0.36 (0.11) 0.97 (0.10)

Experiment 1.5 0.30 (0.12) 0.62 (0.07)

Experiment 2 0.10 1.00

Experiment 3 0.04 0.86

For experiments 1.1 to 1.5, we report the mean and the standard deviation
(number in parenthesis) of ARI. Mean and standard deviation of ARI for
experiments 1.1 to 1.5 under random clustering are 0 and 0.05 respectively.
doi:10.1371/journal.pone.0078448.t001
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n
Xn{1

i~1

ia{
Xn{1

i~1

iaz1
ƒWa(G)ƒ

n(n{1)

2
,

when a.0,

n(n{1)

2
ƒWa(G)ƒn

Xn{1

i~1

ia{
Xn{1

i~1

iaz1:

Corollary 6 Let T be a tree with n nodes (that is, T[T n), we have

(n{1)2
ƒW (T)ƒ

n(n{1)(nz1)

6
,

n
Xn{1

i~2

1

i
z1ƒH(T)ƒ

(n{1)(nz2)

4
,

(n{1)(3n{4)

2
ƒWW (T)ƒ

n(n{1)(nz1)(nz2)

24
,

when a,0,

n
Xn{1

i~1

ia{
Xn{1

i~1

iaz1
ƒWa(T)ƒ((n{2)2a{1z1)(n{1),

when a.0,

((n{2)2a{1z1)(n{1)ƒWa(T)ƒn
Xn{1

i~1

ia{
Xn{1

i~1

iaz1:

Experiments

We describe below three experiments to compare the hierar-

chical clustering using normalized f -Wiener indices with the

hierarchical clustering using non-normalized f -Wiener indices.

Each experiments consists of 3 main steps.

Step 1: A collection of networks (or graphs) or trees, C, are

chosen to be clustered. The collection is detailed in each

experiment below.

Step 2: Seven functions are chosen to form the f -Wiener

indices. In all our experiments, we choose

f1(k)~
ffiffiffi
k
p

,f2(k)~k,f3(k)~
kzk2

2
,

and

f4(k)~
4k

N(G)(N(G){1)
,

f5(k)~k{1=2, f6(k)~k{1, f7(k)~k{2:

The first four functions chosen are increasing and the f -Wiener

indices correspond to the usual W1=2 index, Wiener index, the

hyper Wiener index and the compactness index. The remaining 3

functions chosen are decreasing and correspond to the W{1=2

index, the Harary index and the W{2 index. Hopefully these

indices collectively capture some essential characters of networks

and useful for clustering. For G[C, we construct two characteristic

vectors,

vG~(Wf1
(G), . . . ,Wf7

(G)),

v?G~(W ?
f1

(G), . . . ,W ?
f7

(G)):

Step 3: We adopt a clustering algorithm to cluster C using vG

and then produce a dendrogram. We do the same using v�G .

Minimum variance method algorithm due to Ward [32] which is

made available in R base package [33], was used in all the

experiments. The computed the Adjusted Rand Index (ARI) in all

the experiments are summarized in Table 1 below.

Experiment 1: Hierarchical Clustering of Random
Networks

The collection of networks chosen for this experiment is the

networks generated by some commonly used random network

models, namely, Erdos-Renyi (ER) model [34,35], scale-free (SF)

network model [36] and 3-D geometric model (GE) [37]. Each of

these random network models is applied to generate 10 random

Figure 3. Boxplots of adjusted rand index for measuring the
extent of agreement of clustering of the random networks
using non-normalized f -Wiener indices versus normalized f -
Wiener indices.
doi:10.1371/journal.pone.0078448.g003
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networks with the number of nodes ranging from 500 to 950 with

step of increment 50. Experiment 1 consists of 5 small, but similar,

experiments. We enumerate these 5 small experiments as 1.1,…,

1.5. Subsection after experiments provides more details on how to

generate these random networks. We then apply Steps 2 and 3

above to form two dendrograms: one using f -Wiener indices

without normalization (Figure 2A) and the other dendrogram

using normalized f -Wiener indices (Figure 2B). To quantify the

classification of the two methods: with and without normalization,

we adopt the commonly used Adjusted Rand Index (ARI) [38] for

classification validation. ARI measures the accuracy of classifica-

tion, and takes values between 21 and 1. The larger the ARI is,

the better is the classification. The ARI for Figures 2A and 2B are

respectively 0.18 and 0.56 for Experiment 1.5. Using normalized

f -Wiener indices lead to a substantial improvement in the

classification. We repeat Experiments 1.1 to 1.5 1000 times each.

The boxplots of the ARI are shown in Figure 3. The means and

standard deviations for these experiments are given in Table 1.

They clearly demonstrate the superiority of classification using

normalized f -Wiener indices.

Experiment 2: Hierarchical Clustering of Trees
The collection of trees to be classified consists of 10 paths (Pn),

10 stars (Sn), 10 brooms (B
n,

n

2

), 20 caterpillars (Cn,2 which is like a

path, and C
n,

n{10

10

which is like a star), and for n ranging from 500

to 950 with step of increment 50.

Figure 4 shows the two dendrograms. The ARI for Figures 4A

and 4B are respectively 0.10 and 1.00. This demonstrates that

using normalized f -Wiener indices provides much better accuracy

for classification purposes. The result in this experiment is

consistent with that of experiment 1.

Experiment 3: Hierarchical Clustering of Random
Networks and Trees

The collection of networks consists of (i) networks generated by

three random network models, namely, ER model, SF Model and

3-D geometric model; (ii) some trees such as paths, brooms,

caterpillars, stars. Figure 5 shows the two dendrograms formed.

And the ARI for Figures 5A and 5B are respectively 0.04 and 0.86.

Figure 4. Hierarchical clustering of trees. Panel (A) shows the hierarchical clustering based on the f -Wiener indices (see Step 1 on page 6 for
functions used). The adjusted rand index (ARI) is 0.1. Panel (B) shows the hierarchical clustering based on normalized f -Wiener indices. The ARI is 1.
Trees used in the clustering consist of paths (Pn), stars (Sn), caterpillar-like trees (Cn,k), kites (Kn,k). Number of nodes n~500,550,:::,950.
doi:10.1371/journal.pone.0078448.g004

Bounds and Normalization of Wiener-Type Indices

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78448



Details on Generating Random Networks
We describe here in details on how to choose the networks

generated by the three random network models in experiments 1

and 3.

Experiment 1 consists of 5 small, but similar, experiments which

we label as Experiment 1.1, …, Experiment 1.5 which correspond

to p~0:01, . . . ,0:05 respectively. Now we describe Experiment

1.5 in details.

ER Model
There are two parameters in the ER model, namely, n, the

number of nodes, and p, the probability that an edge is formed

between a pair of nodes. All edges are formed independently of

each other. In Experiment 1.5, where p~0:05, we choose n

ranging from 500 to 950 with step of increment 50. We generate

an ER network using ‘erdos.renyi.game’ function available in the

R package igraph [39]. If the network is connected, we keep it in C
and denote it as ER500. If not, then we repeat the function

‘erdos.renyi.game’ until a connected network is obtained. Simi-

larly, ER550, . . . ,ER950 are generated.

SF Model
We also construct ten SF networks by the function ‘barabasi.-

game’ available in the R igraph package. We shall describe how to

grow a SF network with 500 nodes for a given p, say p~0:05. The

other 9 SF networks with 550, . . . ,950 nodes are constructed in a

similar manner. In ‘barabasi.game’ function, we set number of

vertices 500, number of edges to be added in each time step np=2
rounded to the nearest integer, and the option to create a directed

graph false.

Geometric Model
We generate ten 3-D geometric networks with 500,550, . . . ,950

nodes. We shall describe how to construct one with 500 nodes as

follows. The rest are constructed similarly. We first place 500

nodes in a unit cube uniformly and independently, then we

Figure 5. Hierarchical clusters of trees and graphs. Panel (A) shows the hierarchical clustering based on the f -Wiener indices (see Step 1 on
page 6 for functions used). The adjusted rand index (ARI) is 0.04. Panel (B) shows the hierarchical clustering based on normalized f -Wiener indices,
and ARI = 0.86. Trees used are paths (Pn), stars (Sn), caterpillar-like trees (Cn,k), kites (Kn,k). Graphs are generated by Erdos-Renyi (ERn), scale-free (SFn)
and geometric (GEn) random network models. The parameter, p, in the Erods-Renyi random graph equals to 0.05, number of nodes
n = 500,550,…,950.
doi:10.1371/journal.pone.0078448.g005
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compute all the
500

2

� �
pairwise distances and rank these

distances in ascending order. We choose the top 100p% of these

pairwise distances and connect their corresponding nodes. If this

network is connected, then we keep it in C and denote it by GE500.

Otherwise, we discard it, and repeat the above procedure until we

get a connected network. The other networks GE550, . . . ,GE950

are constructed similarly.

Conclusions

Wiener index and other Wiener type indices have been

commonly applied in Chemometrics to associate structures and

physicochemical properties of molecules. Recently, these indices

are incorporated in quantifying complex networks as in QuACN

[9] and NetCAD [40]. In this article, we first generalize Wiener

index to a general functional form, called f -Wiener index. This f -

Wiener index contains all well-known Wiener type indices as

special cases such as Wiener index, Harary index, hyper Wiener

index, compactness, and average efficiency. We provide a unifying

method to identify the maximum and minimum over the set of

simple connected graphs with n nodes, or the set of simple

connected trees with n nodes (Theorems 1 and 2). Explicit sharp

upper and lower bounds for Wiener index, Harary index, hyper

Wiener index and the generalized index are deduced over

networks (Corollary 5) and over trees (Corollary 6). Moreover,

the maximizer and minimizer are characterized in Theorems 1

and 2. We believe these results are general and of independent

interests.

Armed with these maximum and minimum values, we propose

a normalized version of f -Wiener index over networks, and a

similar version over trees. These normalized versions provide

better interpretation of indices over networks of varying number of

nodes than the non-normalized one. We conduct a number of

experiments to compare the clustering performance using

normalized f -Wiener indices with that of the non-normalized f -

Wiener indices. The results of these experiments consistently

demonstrate that using normalized versions improved clustering

substantially. The normalized versions capture similar topological

structures among networks with different number of nodes better.

Our method of optimizing Wf (G) can be easily extended to index

of the form W(Wf (G)) where W and f are monotone functions. For

example, taking W(x)~1=x and f (k)~
2

n(n{1)k
leads to

W(Wf (G))~
n(n{1)

2
P

ivj 1=d(i,j)
which measures small-world behvaior

of network G [8]. For other descriptors, it is of interest to study

whether normalization is needed; if so, how best to normalize them;

and to what extent normalization improve network comparison.

Observe that Wf (G)~
P?

r~1 f (r)nr(G)~
P?

r~0 ½f (rz1){

f (r)�Nr(G) where we assume f (0)~0, nr(G) denotes the number

of pairs of nodes in G with distance equals r, and Nr(G) the

number of pairs of nodes in G with distance greater than r. Since

in most biological networks the number of nodes is large, one may

normalize a scaled-version of Wf (G) in terms of the asymptotic

distribution of the Nr’s under the assumption that the observed

network G is generated by a given random network model M.

This will enable us to determine the likelihood that the observed

network is generated by M. Currently a fair amount of

information about shortest paths in some network models is

available in [41,42]. How to make use of these results seems like a

worthwhile future project.

Supporting Information

Figure S1 Illustrating the choices of u1, u2 and u3 in Lemma 2.

Here T1 has 5 nodes, T2 3 nodes. We choose u1~3,u2~5 and

u3~6. Tree T is constructed by joining u1 and u3 while T 0 by

joining u2 and u3. D(T) and D(T 0) are 8|8 matrices where the

first 5 columns correspondent to the 5 nodes in T1, and the last 3

rows correspondent to the 3 nodes in T2.

(TIF)

Figure S2 Illustration of Lemma 3. Here n~10,i~j~5,‘~3,
k~7. From the counts of the distances above, it is clear that

(d 0(u3,v))v[V (T 0)[(d(u1,v))v[V (T) and D(T 0)[D(T).

(TIF)

Figure S3 Illustration of the subtree pruning and regrafting

algorithm. Here T0 is obtained from T first by deleting the edge

(u2,u3) and then connecting u1 and u3. T0 is proved to satisfy these

properties: (i) D(T)[D(T0); (ii) D(T){1ƒD(T0)ƒD(T); and (iii)

number of pendant nodes is one less than that of T .

(TIF)
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