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Abstract
Background: Snake venom composition varies widely both among closely related species and
within the same species, based on ecological variables. In terrestrial snakes, such variation has been
proposed to be due to snakes' diet. Land snakes target various prey species including insects
(arthropods), lizards (reptiles), frogs and toads (amphibians), birds (aves), and rodents (mammals),
whereas sea snakes target a single vertebrate class (fishes) and often specialize on specific types of
fish. It is therefore interesting to examine the evolution of toxins in sea snake venoms compared
to that of land snakes.

Results: Here we describe the expression of toxin genes in the venom glands of two sea snakes,
Lapemis curtus (Spine-bellied Sea Snake) and Acalyptophis peronii (Horned Sea Snake), two members
of a large adaptive radiation which occupy very different ecological niches. We constructed cDNA
libraries from their venom glands and sequenced 214 and 192 clones, respectively. Our data show
that despite their explosive evolutionary radiation, there is very little variability in the three-finger
toxin (3FTx) as well as the phospholipase A2 (PLA2) enzymes, the two main constituents of Lapemis
curtus and Acalyptophis peronii venom. To understand the evolutionary trends among land snakes,
sea snakes and sea kraits, pairwise genetic distances (intraspecific and interspecific) of 3FTx and
PLA2 sequences were calculated. Results show that these proteins appear to be highly conserved
in sea snakes in contrast to land snakes or sea kraits, despite their extremely divergent and adaptive
ecological radiation.

Conclusion: Based on these results, we suggest that streamlining in habitat and diet in sea snakes
has possibly kept their toxin genes conserved, suggesting the idea that prey composition and diet
breadth may contribute to the diversity and evolution of venom components.
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Background
The composition of snake venoms varies widely both
within a species and among closely related species [1-4].
This variation is proposed to be due to changes in the diet
of snakes, based on the findings in the variation of
intraspecific venom composition in a pit viper, Callose-
lasma rhodostoma, a land snake [2]. Land snakes depend on
a diversity of prey including lizards (reptiles), frogs and
toads (amphibians), birds (aves), insects (arthropods),
and rodents (mammals)[5,6]. They probably require a
range of toxins that target different groups of prey species
since there is variation in venom's ability for immobiliza-
tion and killing across such a variety of prey. Toxins which
are used for systematic prey envenomation found to have
several isoforms in their venom gland as evident from glo-
bal cataloguing of snakes toxin gene expression [3,7-16]
and it has been correlated that variation in prey favors the
evolution of multiple isoforms of toxins in venoms
[9,17]. The variety of isoforms is believed to have been
achieved through frequent gene duplications accompa-
nied by an accelerated rate of evolution [18-20] similar to
the generation of adaptive response in immunoglobulins
and major histocompatibility complex genes in response
to a wide range of foreign antigens [21]. Thus, a birth-and-
death mode of evolution generates diversity in toxins
allowing snakes to feed on a variety of prey species [22].

Elapid snakes are a monophyletic clade of approximately
300 species in 61 genera [23]. True sea snakes (Hydrophi-
inae) and sea kraits (Laticauda spp.) form two elapid
clades that have evolved independently but are either
rooted within (true sea snakes) or basal to (sea kraits) the
terrestrial Australo-Papuan elapids rather than other
elapid groups [24-28]. These snakes have adapted to
marine life and undergone many changes in foraging
behavior, morphology and diet [29]. As a result, although
their feeding systems are confined to prey of a single ver-
tebrate class (fishes), they often specialize on particular
types or families of fish [30,31]. With such restrictions in
both diet and habitat, one might expect low diversity in
toxin components (relative to snakes with broader diets),
as has been shown to be the case in the hydrophiinae sub-
family [9]. We showed by analyzing the cDNA library of
Aipysurus eydouxii that its 3FTx gene is inactivated by a
dinucleotide (TT) deletion [32] and the evolution of its
PLA2 isoenzymes, unlike those from other snake venoms,
is decelerated [33]. As this unique sea snake feeds exclu-
sively fish eggs [31], we suggested that a shift in the diet of
A. eydouxii may have resulted in the relaxation of selection
pressures on its 3FTx and PLA2 genes

Here, we examined the total gene expression pattern of
two other sea snakes, Lapemis curtus and Acalyptophis pero-
nii, which have distinct and different habitats and feeding
systems. L. curtus inhabits many different areas like open

sea, estuaries, and coral reefs, whereas A. peronii inhabits
only sandy areas between coral reefs [34]. L. curtus in con-
trast to other sea snakes is a generalist feeder and its diet is
one of the most diverse of all sea snakes [30,31,34-36]. Its
prey consists of fishes (90%; 31 different families) and
very few invertebrates (10%; squid and cuttlefish)
[30,35,36]. Additionally, L. curtus cohabits with other sea
snakes, and consequently may be overlapping in diet. In
contrast, the diet of A. peronii is confined mainly to gobies
(one class of sea fish) [34] and it is a diet and habitat spe-
cialist. Because these two snakes are members of a large
adaptive radiation of the Hydrophis lineage and they might
have diverged very rapidly, differences in their venoms
might also be widely divergent if they track diet speciali-
zation. On the other hand, if diet specialization within a
constrained group of prey (e.g., only fish), drives more of
a streamlining of venom evolution, then we might expect
there to be few or no changes in venom constituents.
Therefore, it could be interesting to compare the total
toxin gene expression of these two sea snakes.

We constructed cDNA libraries of the venom glands from
A. peronii and L. curtus specimens and sequenced about
200 clones of each. Sampling of transcriptoms indicates
the presence of any new and/or rare families of toxins and
enables analyses of the molecular evolutionary trends
among toxin genes. Further, to compare the evolution of
toxin genes among land snakes, sea snakes, and sea kraits,
we calculated the evolutionary distances using all availa-
ble sequences of two principle components of the toxin
proteome, 3FTx and PLA2.

Results
cDNA libraries of Lapemis curtus and Acalyptophis 
peronii venom glands
We obtained 4 and 5 µg of mRNA from 30 mg of venom
gland tissues of Lapemis curtus and Acalyptophis peronii,
respectively. We constructed two separate cDNA libraries
using 1 µg of mRNA from each preparation. From the
clones containing inserts, we randomly selected 250 and
225 clones, respectively. From these clones we were able
to obtain sequences of 214 cDNA clones from L. curtus
and 192 cDNA clones for A. peronii. Figure 1 shows the
distribution of clones in both venom glands.

Lapemis curtus library
3FTx
To date, three long-chain isoforms of 3FTx (AAL54893,
AAL54892 and ABN54806) and four short-chain isoforms
of 3FTx (AAL54894, AAL54895, P68416 and ABN54805)
[37]have been reported from L. curtus venom. We found
cDNA clones encoding both long-chain isoforms
(AAL54893 and AAL54892) of 3FTx in the library (41%
abundance, Figure 1) and the ratio between the number of
clones of isoforms AAL54893 and AAL54892 was ~10:1.
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We also found cDNA clones encoding a short-chain 3FTx
(AAL54894; ~2% abundance, Figure 1) [37]. No variation
was observed in the coding sequence of the mature pro-
teins with AAL54893, AAL54892 and AAL54894. How-
ever, we could not detect the long chain isoform
(ABN54806) and three other short-chain isoforms of 3FTx
(AAL54895, P68416 and ABN54805) [37,38].

PLA2
So far, three isoforms of PLA2 of L. curtus (AAL55556,
AAL55555 and AAL54920) have been reported [39]. We
were only able to detect one isoform which is completely
identical at the nucleotide level with AAL55555 (~10%
abundance, Figure 1).

CRISP
Partial sequences of two isoforms (Q8UW25 and
Q8UW11) of CRISP from L. curtus venom glands have
recently been reported. Our cDNA library contained ~2%
clones coding for Q8UW25 isoform without any variation
at nucleotide level (Figure 1).

Others
The cDNA library has a singleton presence of a growth fac-
tor (AY742212) which shows significant identity to Plate-
let Derived Growth Factor (PDGF). The partial sequence
shows 70% identity to the C-terminus of the predicted
PDGF-D isoform from Gallus gallus (chicken). Although
growth factors such as NGF [40] and VEGF [41] are known
to be present in the venom, this is the first report of PDGF-
like protein sequence from the venom gland. However,

further studies are needed to confirm the presence of
PDGF protein in the venom.

L. curtus library contained ~20% housekeeping genes (Fig-
ure 1), including ribosomal RNA, ribosomal proteins and
cytochromes. In addition, ~25% of cDNA sequences did
not show significant identity to toxins or metabolic genes
(Figure 1). BlastX search of these sequences showed poor
or only partial identity to any protein sequences with
other organisms or no match at all. These unknown
sequences in most of the cases are partial, singleton
clones. However, their origin (venom gland or marginal
contamination of surrounding tissues) still needs to be
established.

Acalyptophis peronii library
3FTx
Amino acid sequences of two isoforms of short-chain
3FTx have been reported earlier [42,43]. Gln43 of the
major isoform (AY742211) has changed to Glu43 in the
minor isoform (AY742210) [43]. In Acalyptophis peronii
library, the short-chain 3FTx was most abundant (~64%)
(Figure 1) and there are two isoforms of 3FTx in equal
numbers (60 and 62 respectively). These two isoforms
(AY742210 and AY742211) have three nucleotide
changes in their signal sequences leading to substitution
of Thr7 (ACC) and Leu8 (TTG) by Ser7 (TCC) and Pro8
(CCG), respectively. However, no variation was observed
in the coding sequence of the mature protein and the
deduced protein sequence corresponds only to the major
isoform [42]. As we did not obtain clones corresponding

Distribution of transcripts in the venom glands of Lapemis curtus and Acalyptophis peroniiFigure 1
Distribution of transcripts in the venom glands of Lapemis curtus and Acalyptophis peronii.
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to the minor form, we propose that the minor form is
most likely due to deamidation of Gln43 [44] and not a
separate gene product. Generally in toxin families, it has
been observed that the signal peptide regions, 5'UTR and
3'UTR are highly conserved, whereas the mature protein
region shows a number of substitutions [19,45]. In con-
trast, the two isoforms of short-chain 3FTx differ in their
signal peptide region but not in the mature protein in this
case. It would be interesting to examine the importance of
these substitutions.

PLA2
So far no PLA2 sequences from A. peronii have been
reported. We found partial clones having 3' terminal
sequences of PLA2 in A. peronii library (~5%; Figure 1).
They show 100% identity in the 3'UTR region with L. cur-
tus PLA2 (AAL55556 and AAL54920). Further identifica-
tion and characterization of full length PLA2 is underway.

Others
The cDNA library contains ~6% clones encoding house-
keeping genes (Figure 1). These include NADH dehydro-
genase, ribosomal proteins and Ca2+ binding proteins
(calglandulin). The latter class of protein has been impli-
cated in toxin secretion [46,47]. Like the L. curtus library,
the A. peronii library also contained ~25% with no homol-
ogy to any known toxin or housekeeping genes (Figure 1).
As earlier, in most cases these sequences are partial, single-
ton clones and their origin needs to be verified.

Intra and interspecific relationship of 3FTx and PLA2 
sequences
The number of available protein sequences encoding 3FTx
and PLA2 were higher than cDNA sequences because most
of the sequences have been reported from direct protein
sequencing. Therefore, we used protein sequences to cal-
culate intra and interspecific pairwise distances for land
snakes, sea snakes and sea kraits. It should be noted that
due to paucity of the available data the number of species
and number of short-chain 3FTx used for the calculations
for land snakes, sea snakes and sea kraits were not the
same.

For short-chain 3FTx, 37% of the intraspecific distances of
both Pseudonaja textilis and Bungarus species (land snakes)
are in the range of (0.2–0.3) and (0.7–0.8) respectively,
while 63% of the intraspecific distances of sea kraits fall in
the range of (0.1–0.2), and most of the intraspecific pair-
wise distances of sea snakes are in the range of (0.02–
0.04) (Figure 2A). Interspecific pairwise distances also
appear higher (50% in the range of 0.7 for Bungarus spe-
cies) for land snakes, and lower for sea snakes (100% in
the range of 0.02). Interspecific distances of 3FTx for Pseu-
donaja species were not calculated because sequences were
only available from one species (P. textilis). The higher

genetic distances of 3FTx in land snakes indicate higher
levels of genetic diversity compared to sea snakes, where
sequences were much more conserved. The genetic diver-
sity within sea kraits is intermediate in both intra and
interspecific comparisons. For PLA2, 22% of the Austral-
ian elapids and 36% of the Bungarus species intraspecific
distances fall between (0.1–0.3) and (0.1–0.2) respec-
tively. On the other hand, 97% and 44% of the sea snakes'
and sea kraits' intraspecific distances ranged from (0.1–
0.2) and (0.2–0.3) respectively (Figure 2B). Interspecific
distances of PLA2 for Australian elapids, Bungarus species
and sea kraits and sea snakes have comparable values
(30%–60% in the range of 0.2–0.3; Figure 2B). But in sea
snakes, interspecific distances (58% fall between 0.2–0.3)
appear lower than the intraspecific distances. One of the
possibilities for this reverse trend can be due to poor phy-
logenetic resolution among species in the hydrophiinae
subfamily [48,49]

Discussion
Snake venoms are a rich and diverse source of pharmaco-
logically active proteins and peptide components [50,51].
Some of these components are enzymes, whereas others
are nonenzymatic proteins or polypeptides. Most of these
components are offensive weapons to capture the prey,
injection of venom into prey leads to immobilization,
death and can subsequently aid in digestion as well
[52,53]. Venom might also be used for defensive purposes
to keep possible predators away. Venom systems appear
to have evolved to meet some of these goals, a single time
in reptile evolution, at the base of the Toxicofera [54,55].

In this work, we show the high abundance of 3FTx in the
venoms of sea snakes (41% for Lapemis curtus and ~64%
for Acalyptophis peronii) while PLA2 is a distant second larg-
est group (~10% for L. curtus and ~5% for A. peronii) of sea
snake toxins. Overall, both the 3FTx and PLA2 do not pos-
sess an abundance of different isoforms generating signif-
icant variation in the venom composition. The fact that
we did not detect some of the isoforms of these two
groups of toxins as previously reported in L. curtus may be
either due to regional variation within the species or a
sampling artifact since the cDNA library was generated
from venom glands of a single snake. However, both
groups of toxins appears to be simple and do not have
noteworthy diversity in their isoform compositions. It
suggests that sea snake venoms genes are quite conserved,
and therefore lack the diversity in its venom composition
as observed for land snake and sea kraits. However, addi-
tional data from gene expression profile, frequency of
gene duplication and accelerated evolution profile of sea
snakes is needed to further test this hypothesis.

Comparison of intraspecific distances among 3FTx
showed that the maximum value for land snakes is 0.8
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Pairwise intraspecific (white bar) and interspecific (black bar) distances for land snakes, sea snakes and sea kraitsFigure 2
Pairwise intraspecific (white bar) and interspecific (black bar) distances for land snakes, sea snakes and sea kraits. Panel A: 3FTx 
(1a and 1b: land snakes; Pseudonaja textilis and Bungarus species respectively), 2 and 3: sea kraits and sea snakes respectively. 
Panel B: PLA2: (4a and 4b: land snakes; Australian elapids and Bungarus species respectively), 5 and 6: sea kraits and sea snakes 
respectively. RF denotes relative frequency.
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whereas sea snakes are at 0.03 and sea kraits, 0.2 (Figure
2A). The variation between land and sea snakes is about
30 fold, whereas land snake and sea krait differ only 4
fold. However, this level of variation has not been found
in PLA2 genes. In land snakes, the maximum intraspecific
distance is 0.2 for land snakes and sea kraits, whereas sea
snakes have a maximum value of 0.1, indicating a differ-
ence of only 2 fold (Figure 2B). Interspecific distances, for
both 3FTx and PLA2, on the other hand, show greater or
equal values than the intraspecific differences in land
snakes and sea kraits (Figure 2A and 2B). From the genetic
distance data, it is obvious that 3FTx is gaining more vari-
ability than PLA2. This is probably relevant because
envenomation by elapid snakes is usually characterized
by rapid neurotoxic complications due to presence of
large amounts of neurotoxins [56]. Overall, our calcula-
tion for the intra and interspecific variation in both 3FTx
and PLA2 appears distinct among land snakes, sea snakes
and sea kraits indicating the probable existence of distinct
evolutionary patterns that separate these groups.

Interestingly, the conservation of toxin diversity in sea
snakes is not confined within species, it extends across dif-
ferent genera. For example, Enhydrina schistosa, a common
sea snake, has just two neurotoxins (P25492 and P25493)
[57]. The toxin P25492 is identical in sequence to a short-
chain neurotoxin found in Lapemis curtus venom [38] and
the other toxin, P25493, is identical to the short-chain
neurotoxins found in venoms of Hydrophis cyanocinctus
[58] and Pelamis platurus [59]. In contrast, among 276
3FTxs reported to date [22], we could not find a single
3FTx common across different genera of land snakes.
Conservation of toxin sequences, even across genera of
marine snakes is possibly due to a highly constrained
niche, and the streamlined nature of their venoms is
responsible for the remarkable degree of antivenom cross-
reactivity [60].

The analysis of our cDNA libraries indicated that the
Lapemis curtus venom is marginally more diverse than that
of Acalyptophis peronii. The L. curtus library contains CRISP
and growth factor isoforms in addition to 3Ftx neurotox-
ins and PLA2 enzymes. Chen et al. (AAV98367) reported
the presence of a kallikrein toxin in Lapemis curtus venom
as well. Recruitment of additional toxin families like
CRISP, growth factor, kallikrein toxin may be due to its
broad dietary requirements. In contrast, A. peronii venom
glands contain only neurotoxins and PLA2 in high concen-
tration and ittargets only gobies as its diet [30,31,34-36].
Therefore, evolution of toxin(s) in a generalist (L. curtus)
and a restricted feeder (A. peronii) appear to be different.
This does not indicate that other toxin classes are not
expressed at low levels; more rigorous sequencing may
reveal rarer transcripts.

The toxin expression profile data from cDNA library of L.
curtus and A. peronii and a relationship between their hab-
itat and diet may suggest that ecological variables presum-
ably played a major role in determining the trajectory of
their evolutionary paths along ecological niches (special-
ist and generalist) and not completely because of a distant
phylogenetic relationship between them. There are how-
ever, a few specific cases available in the literature, where
a relationship between intraspecific variations in venom
with respect to dietary preferences has not been found
[61, 62, 63]. Do these specific exceptions prove the gen-
eral rule, or is there a threshold where the evolution of
toxins becomes decoupled from feeding ecology and/or
diet? These questions remain cogent for the future of toxin
evolution research and we propose that sea snakes will
remain major players in helping to understand how toxin
evolution and feeding ecology are linked.

Conclusion
Global cataloguing of toxin expression shows conserved
expression pattern of two main families of toxins, 3FTx
and PLA2, in two sea snakes venom giving rise to a simple
venom composition relative to land snakes and sea kraits.
Genetic distance values of 3FTx and PLA2 toxins show a
more diverse trend of evolution for land snakes and sea
kraits than to sea snakes. As the diet breadth (prey items)
expands from sea snakes to land snakes (sea kraits as inter-
mediate), we suggest that these trends in evolution of tox-
ins may be linked to their diet.

Methods
Collection of venom glands
Lapemis hardwickii has been synonymized with Lapemis
curtus  [64] so L. curtus is used in this paper. One specimen
of L. curtus and another of A. peronii were collected from
Albatross Bay in Weipa, Queensland, Australia. Venom
glands were dissected from each of these freshly caught
snakes. Two glands from each snake were used for the
construction of cDNA libraries. Although sample sizes are
small for each species, the difficulty in acquiring speci-
mens or keeping individuals in captivity make even these
small sample sizes extremely valuable and worthy of
study.

Library construction, sequencing and analysis
Total RNA was extracted from the venom glands using
RNeasy Mini Kit (Qiagen, Hilden, Germany). The integ-
rity of total RNA was checked by agarose gel electrophore-
sis. The mRNA was purified using mRNA isolation kit
(Roche Applied Science, Mannheim, Germany). The puri-
fied total mRNA was used to make the cDNA library fol-
lowing the instructions of the SMART cDNA library
construction kit (Clontech, Mountain view, California,
USA). The library was packaged using Gigapack gold pack-
aging extract (Stratagene, Cedar Creek, Texas, USA). Indi-
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vidual clones were rescued from randomly selected white
plaques and grown in (Luria broth + ampicillin) medium.
Plasmids were purified using QIAprep spin miniprep kit
(Qiagen, Hilden, Germany). Purified plasmids were
sequenced by cycle sequencing reaction using the BigDye
Terminator v3.1 kit (Applied Biosystem, Foster City, Cali-
fornia, USA) and with an automated DNA sequencer
(Model 3100A, Applied Biosystem, Foster City, Califor-
nia, USA). Sequences were compared to cDNA and pro-
tein sequences in NCBI database using BLAST program
(BlastN and BlastX) and identical (or similar) clones were
clustered. Each cluster was aligned using the program
ClustalW in European Bioinformatics Institute site.

Calculation of genetic distances
Genetic distances were compared by calculating intra and
interspecific pairwise distances for the 3FTx and the PLA2
enzymes. All available protein sequences of 3FTx (short-
chain isoforms) and PLA2 of land snakes, sea kraits and sea
snakes were retrieved [see additional file 1]. Redundant
sequences and signal peptides were removed and aligned.
Aligned sequences were analyzed in PAUP* version 4.0
program [65] using the pairwise distance algorithm
(uncorrected distances, kimura-2 parameters) for both
within and between species. The pairwise distances were
then plotted as a group for land snakes, sea snakes and sea
kraits.

Accession numbers
Nucleotide sequence data reported here have been depos-
ited in GenBank under accession numbers [GenBank:
AY742212, GenBank: AY742210, GenBank: AY742211].
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