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Aestivation and hypoxia-related events share
common silent neuron trafficking processes
Giuseppina Giusi1*, Merylin Zizza1, Rosa Maria Facciolo1, Shit Fun Chew2, Yuen Kwong Ip3 and Marcello Canonaco1
Abstract

Background: The availability of oxygen is a limiting factor for neuronal survival since low levels account not only
for the impairment of physiological activities such as sleep-wake cycle, but above all for ischemic-like
neurodegenerative disorders. In an attempt to improve our knowledge concerning the type of molecular
mechanisms operating during stressful states like those of hypoxic conditions, attention was focused on eventual
transcriptional alterations of some key AMPAergic silent neuronal receptor subtypes (GluR1 and GluR2) along with
HSPs and HIF-1α during either a normoxic or a hypoxic aestivation of a typical aquatic aestivator, i.e. the lungfish
(Protopterus annectens).

Results: The identification of partial nucleotide fragments codifying for both AMPA receptor subtypes in Protopterus
annectens displayed a putative high degree of similarity to that of not only fish but also to those of amphibians,
birds and mammals. qPCR and in situ hybridization supplied a very high (p< 0.001) reduction of GluR1 mRNA
expression in diencephalic areas after 6 months of aerial normoxic aestivation (6mAE). Concomitantly, high
(p< 0.01) levels of HSP70 mRNAs in hypothalamic, mesencephalic and cerebellar areas of both 6mAE and after
6 months of mud hypoxic aestivation (6mMUD) were detected together with evident apoptotic signals. Surprisingly,
very high levels of GluR2 mRNAs were instead detected in thalamic along with mesencephalic areas after 6 days of
normoxic (6dAE) and hypoxic (6dMUD) aestivation. Moreover, even short- and long-term hypoxic states featured
high levels of HIF-1α and HSP27 transcripts in the different brain regions of the lungfish.

Conclusions: The distinct transcriptional variations of silent neurons expressing GluR1/2 and HSPs tend to
corroborate these factors as determining elements for the physiological success of normoxic and hypoxic
aestivation. A distinct switching among these AMPA receptor subtypes during aestivation highlights new potential
adaptive strategies operating in key brain regions of the lungfish in relation to oxygen availability. This functional
relationship might have therapeutic bearings for hypoxia-related dysfunctions, above all in view of recently
identified silent neuron-dependent motor activity ameliorations in mammals.
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Background
Among the different environmental factors, oxygen proves
to be a very critical element for the maintenance of cere-
bral homeostatic conditions [1]. It has been established
that some vertebrates may tolerate prolonged hypoxia and
high temperatures without damaging vital organs such as
the brain [2]. In this category, aestivating turtles and fish
are considered valuable models for clinical studies [3,4].
Aestivation is characterized by a consistent metabolic
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reduction accompanied by a decrease of temperature and
a down-regulation of gas exchange and heart rate [5]. By
surviving in cocoons for long periods, the aestivating lung-
fish Protopterus annectens unlike hibernators is protected
against ammonia toxicity during drought periods above all
for mud aestivators, which feature low oxygen levels [6].
Works have shown that the brain is a major target of
oxygen depletion, as shown by brief hypoxia conditions
reducing ATP levels and consequently membrane
depolarization leading to neuronal cell death [7].
Under these conditions, the opening of α-amino-3-

hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)
receptor channels not only mediates fast excitatory
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

https://core.ac.uk/display/48773757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jisly76@yahoo.it


Giusi et al. BMC Neuroscience 2012, 13:39 Page 2 of 13
http://www.biomedcentral.com/1471-2202/13/39
neurotransmission in many synapses [8], but also accel-
erates hypoxia-dependent death [9]. In this case, Ca2+

flowing through AMPA receptor channels tends to exert a
critical role on apoptosis during epilepsy, hypoxia-ischemia
and Alzheimer disease [10,11]. Among the four AMPAer-
gic subtypes (GluR1-4), those recognized as silent neurons
(GluR1 and GluR2) are able to modulate synaptic strength
by being inserted at post-synaptic containing NMDA
receptor sites and so these subtypes may regulate dendritic
morphology and synaptic transmission via phosphorylative
processes during development as well as in pathological
conditions [12]. Interestingly under hypoxia conditions,
AMPA synaptic activities require the functional involve-
ment of some neuroprotective factors, such as heat shock
proteins (HSPs) and hypoxia-inducible factor-1 alpha
(HIF-1α) [13,14]. HIF-1α is an important transcriptional
factor coordinating adaptive responses against hypoxia in
mammals [15] and in fish [16] and so by improving animal’s
ability to resist to low oxygen conditions, this factor may
avoid cellular damages [17] through the recruitment of
other neuroprotective factors such as p53 and HSPs [18].
HSPs are highly conserved cell proteins responding to
stressful conditions, such as heat shock, hypoxia and
metabolic abnormalities [19,20]. At the brain level, HSP-
dependent changes following oxygen deprivation are
tightly correlated to ion channel plasticity of olfactory cor-
tical cells, where these chaperones preserve glutamatergic
synaptic transmission [21]. From a functional point of
view, HIF-1α promotes the activation of small HSPs such
as HSP27 during early ischemic insults [22] while other
HSPs, and precisely HSP70, are strongly associated with
long-term plasticity events at the synaptic level [23,24].
On this basis, it was our intention to identify a temporal

relationship of the expression capacity of the silent neurons
GluR1 and/or GluR2 to that of the activation of HIF-1α
along with HSP27 and HSP70 under normoxic and hypoxic
aestivating conditions of the lungfish. The selection of this
fish as our experimental model is based on its adaptive
capacity to oxygen deprivation by entering into a quiescent
aestivating state. The identification of GluR1 and GluR2
mRNA expression patterns overlapping with the above
neuroprotective factors might have potential therapeutic
application during hypoxia–dependent neurodegenerative
disorders, such as ischemia.

Results
GluR1 and GluR2: Molecular identification and distribution
pattern
In this work, the application of specific primers designed
on rat heterologs (Figure 1a) permitted us to identify, for
the first time, a partial coding sequence of putative
GluR1 [GenBank: HQ993057] and GluR2 [GenBank:
HQ993058] of AMPA receptor complex along with β-
actin [GenBank: HQ993056] in Protopterus annectens.
These sequences showed a high nucleotide identity
(>80%) with not only the corresponding sequences of
AMPA receptor subtypes of Rattus norvegicus [GenBank:
X17184; AF164344] but also with those of fish such as
GluR1 of Oreochromis mossambicus [GenBank: L49498]
(Figure 1b) and GluR2 of Carassius auratus (AM886311)
and of Danio rerio [GenBank: AF525743] (Figure 1c). In a
first case, a distinct anterior-posterior expression gradient
of GluR1 and GluR2 mRNA levels was detected in the dif-
ferent brain regions of freshwater (FW) lungfish (Figure 2).
In particular, anterior brain regions (Figure 2a) supplied
intermediate (0.5<OD< 0.75) GluR1 and GluR2 mRNA
levels in the lateral septum (Sl) and in the dorsal pallium
(Dp), respectively, while lower expression capacities (OD<
0.5) for both subtypes characterized other brain regions
such as lateral pallium (Lp), dorsal portion of medial
pallium (Pd) and medial subpallium (Sm). In posterior
regions (Figure 2b), high (OD> 0.75) GluR1 mRNA levels
characterized the dorsal part of the hypothalamus (Hyd)
along with intermediate levels being reported for the pars
intermedia of reticular nucleus (Ri), whereas low OD sig-
nals were typical of the optic tectum (Te), dorsal thalamus
(Thd) and corpus cerebelli (Cc). Interestingly of all the pos-
terior brain areas, this last romboencephalic region was the
only site supplying high GluR2 expression levels.

GluR1 and GluR2 mRNA levels during normoxic and
hypoxic aestivation
The discrimination of GluR1/2 expression capacities
throughout the various brain regions constituted an
essential step towards the recognition of these AMPAergic
subtypes as major targets of aestivating conditions. qPCR
analysis carried out on the whole brain of the different ex-
perimental conditions exhibited a very high three-fold
(p< 0.001) reduction of GluR1 mRNA levels in lungfish
maintained under a long normoxic aestivation (6mAE)
with respect to FW, 6dAE and 6dMUD states, along with
moderate (p< 0.05) reductions with respect to 6mMUD
animals (Figure 3a). Moreover, this latter condition dis-
played a moderately (p< 0.05) significant decrease when it
was compared to FW, 6dAE and 6dMUD states (Figure 3a).
Contextually to this trend, in situ hybridization data
(Figure 3b-d) supported a preferential brain regional-
dependent down-regulation of GluR1 mRNA expression for
lungfish maintained under long normoxic aestivating condi-
tions (Figure 3bii) with respect to hypoxic 6mMUD (Figure
3biii). In particular a very high reduction of GluR1 tran-
scripts occurred in mostly diencephalic areas such as Hyd
of 6mAE animals when compared to FW (Figure 3c). At
the same time, moderate reductions were typical of the ven-
tral part of hypothalamus (Hyv) and Thd in 6mAE condi-
tions (Figure 3c). During the long hypoxic aestivating state
(6mMUD), a moderate down- and up-regulation of GluR1
levels characterized Hyd and Thd, respectively, when



Figure 1 Molecular identification of GluR1, GluR2, HSP70, HSP27 and HIF-1α in Protopterus annectens. Primers sequences used for the
amplification of AMPA receptor subtypes and protective factors were reported in the table (a). The partial sequences obtained in Protopterus
annectens have been aligned with GluR1 protein sequences (b) of Rattus norvegicus [GenBank: CAA35050] and Oreochromis mossambicus
[GenBank: AAL34309], while in the case of GluR2 (c) with those of Rattus norvegicus [GenBank: AAD51284], Carassius auratus [GenBank: CAP08035]
and Danio rerio [GenBank: AAQ08956]. Similarly, HSP70 partial protein sequence of Protopterus annectens (d) was aligned to heterologs of Rattus
norvegicus [GenBank: AAA17441], Danio rerio [GenBank: AAC17598] and Thalassoma pavo [GenBank: ABN58790], HSP27 (e) with those of Rattus
norvegicus [GenBank: AAA41353] and Salmo salar [GenBank: ACI68354] and HIF-1α (f) with sequences of Rattus norvegicus [GenBank: AAD24413],
Danio rerio [GenBank: AAI65712] and Cyprinus carpio [GenBank: ABV59209].
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compared to that of FW conditions. It is worthy to
note that when GluR1 variations were estimated for
extra-diencephalic areas, 6mAE animals still continued
to exhibit a general down-regulatory pattern, even though
of moderate entity, as reported in some telencephalic
regions such as Dp and Sm as well as in Te (Figure 3d).



Figure 2 GluR1 and GluR2 mRNA expression in FW conditions
obtained by in situ hybridization method. The mRNA levels
(OD± s.e.m.) of GluR1 (light grey) and GluR2 (dark grey) were
evaluated in anterior (a) and posterior (b) areas of lungfish
maintained under FW conditions. For abbreviations check list.
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Conversely, a moderate increase of GluR1 transcripts was
predominantly typical of ventral telencephalic brain areas,
such as Sm, when lungfish were maintained under a
6mMUD state with respect to FW conditions (Figure 3d).
As far as GluR2 expressing neurons are concerned,

they resulted to be active at a rather short aestivating
state, thus accounting for up-regulated mRNA levels as
early as 6 days for both normoxic and hypoxic condi-
tions. Indeed, qPCR analysis demonstrated a three-fold
(p< 0.001) increase of GluR2 levels in both 6dAE and
6dMUD conditions with respect to FW and 6mMUD
animals. The rising trend of GluR2 continued to be also
maintained for 6mAE animals whereas in the case of
6mMUD animals the expression capacity of this
AMPAergic subtype was strongly reduced to control
values (Figure 4a). The transcriptional levels of GluR2
(Figure 4b-d) resulted to be preferentially concentrated
in diencephalic regions of 6mAE (Figure 4bii) with re-
spect to 6mMUD animals (Figure 4biii). Indeed, evident
up-regulations were reported for Thd in 6mAE
(p< 0.001) and 6dAE (p< 0.01), while a moderate up-
regulation appeared to characterize Hyd and Hyv only
following long normoxic conditions (Figure 4c). However,
hypoxic aestivating states did not appear to promote a
clear-cut direction for diencephalic sites on the account of
a heterogeneous expression pattern being featured by all
conditions especially in the case of moderate increases in
Thd and Hyv of 6dMUD state as compared to a moderate
down-regulation for Hyd of 6mMUD conditions (Figure 4c).
Conversely, an up-regulatory type of effect characterized
above all extra-diencephalic areas, since aside the moderate
down-regulated patterns in Dp of 6mMUD group with
respect to FW state (Figure 4d), high GluR2 mRNA levels
were instead reported for Te and Cc of 6dAE, 6dMUD
and 6mAE groups along with moderate up-regulations
characterized Dp of short and long normoxic conditions
(Figure 4d). In addition, neurons expressing this
AMPAergic receptor subtype in 6mMUD animals
appeared to be also typical of mesencephalic areas as
shown by a moderate GluR2 mRNA up-regulation in Te.
mRNA expression of protective factors and TUNEL
reaction during normoxic and hypoxic conditions
In a same manner as for AMPA receptor subtypes, even
the partial coding sequences for both HSP70 [GenBank:
HQ993059] and HSP27 [GenBank: JF262201] as well as for
HIF-1α [GenBank: 1457856; work in progress] in Proto-
pterus annectens were obtained by using primers designed
on rat (HSPs) and on zebrafish (HIF-1α) heterologs
(Figure 1a). In Protopterus annectens HSP70 (Figure 1d)
partial sequence showed a high nucleotide identity (>75%)
with the heterologs of Rattus norvegicus [GenBank:
L16764] and fish Thalassoma pavo [GenBank: EF392849]
and Danio rerio [GenBank: AF006007]; HSP27 (Figure 1e)
with the heterologs of Rattus norvegicus [GenBank:
M86389] and Salmo salar [GenBank: BT048553]; HIF-1α
(Figure 1f) with heterologs of Rattus norvegicus [GenBank:
AF057308] and fish Cyprinus carpio [GenBank: EU144225]
and Danio rerio [GenBank: AF525743].
Subsequently, qPCR and in situ hybridization analyses

supplied a differentiated mRNA expression pattern of
these neuroprotective factors during both normoxic and
hypoxic conditions. Such protective elements showed a
preferential type of activity not only for short hypoxic
states (HIF-1α, HSP27) but also for long hypoxic and
normoxic states (HSP70). Indeed, HIF-1α and HSP27
supplied an overlapping expression pattern and precisely
a high two-fold (p< 0.01) increase being typical of short
(6dMUD) and long (6mMUD) conditions with respect to
both FW and 6dAE groups (Figure 5a,d). At the same
time, HIF-1α also exhibited a moderate transcriptional
increase in 6mAE animals with respect to these same
conditions. In the case of HSP70, this chaperone
appeared to characterize exclusively long aestivating con-
ditions, as demonstrated by two-fold increases in 6mAE



Figure 3 GluR1 mRNA expression during normoxic and hypoxic aestivation. mRNA levels were evaluated in whole brain of FW (white1),
6dAE (black2), 6mAE (vertical striped3), 6dMUD (diagonal striped4) and 6mMUD (grey5) animals by qPCR. (a) The results are expressed as a
proportion of the highest value after normalization with respect to β-actin expression levels and represent the means ± s.e.m. of three
independent biological replicates. GluR1 in situ hybridization pattern was handled in the different brain nuclei of diencephalic (c) and
extradiencephalic (d) areas of all aestivating conditions (expressed as % of FW). In particular, an evident reduction of mRNA levels was typical of
6mAE (ii) with respect to 6mMUD (iii) lungfish in telencephalic regions (b), of which a schematic representation was reported (i). Statistical
analysis: ANOVA followed by Student’s t test for qPCR data and by Newman Keul’s test for in situ hybridization (ap< 0.05, b p< 0.01, cp< 0.001).
Scale bar: 600 μm. For abbreviations check list.
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and 6mMUD with respect to all experimental conditions
(Figure 6a).
From in situ hybridization evaluations, it seemed that

the specific distribution pattern of neurons expressing
GluR1 and GluR2 tightly overlapped those expressing
HIF-1α and HSP27 as well as HSP70 under the above
aestivating conditions. The different neuronal fields of
diencephalic and extra-diencephalic areas turned out to
be the main expression sites of HIF-1α transcripts during
mainly short and long hypoxic conditions, as displayed
by very high mRNA transcript levels of this transcrip-
tional factor in Hyd (+125%), Dp (+120%), Te (+132%)
and Cc (+92%) along with high levels in Thv (+70%) and
Thd (+87%) of 6dMUD animals with respect to FW state
(Figure 5b,c). Some of these same brain areas, such as
Thv, continued to express very high levels of HIF-1α
mRNA (+115%) under long hypoxic aestivating condition
(Figure 5b), along with up-regulations being typical of Thd
(+62%), Dp (+60%) and Te (+58%). In the case of nor-
moxic aestivating state, 6mAE lungfish appeared to be
characterized by significant HIF-1α increases (Figure 5b,c)
in Cc (+56%; p< 0.01) and Thd (+46%, p< 0.05). At the
same time, early hypoxic conditions also accounted for
very high HSP27 mRNA levels in these same brain areas
(Figure 5e,f) and namely Thv (+125%), Te (+112%), Hyd
(+95%), Thd (+98%) and Dp (+90%) along with increases
in cerebellar areas (Cc, +75%). Under a long hypoxic state
(6mMUD), HSP27 turned out to be expressed in a still sig-
nificant fashion as reported by its high level in Thv (+80%)
and Dp (+58%), while during the long normoxic
aestivation (6mAE) an evident up-regulation characterized
Hyd (+56%) and Thv (+64%; Figure 5e) and moderate
increases were detected in Thd (+46%) and Cc (+48%;
Figure 5f).
As far as mRNA levels of HSP70, which has been

shown to be indicative of a long-term hypoxia-related
protective measure are concerned, this transcript was
expressed under prevalently long normoxic and hypoxic
aestivating states with respect to other experimental con-
ditions (Figure 6a). In situ hybridization data showed
that very high expression levels of this protective factor
were specific for diencephalic areas (Figure 6b), such as
Thd (+145%) and Thv (+128%) under long normoxic
aestivating conditions, with a similar pattern being also
obtained for long hypoxic aestivating conditions in Thd
(+120%), Thv (+155%) and Hyd (+158%). On the other



Figure 4 GluR2 mRNA expression during normoxic and hypoxic aestivation. mRNA levels were evaluated in whole brain of FW (white1),
6dAE (black2), 6mAE (vertical striped3), 6dMUD (diagonal striped4) and 6mMUD (grey5) animals by qPCR. (a) The results are expressed as a
proportion of the highest value after normalization with respect to β-actin levels and represent the means ± s.e.m. of three independent biological
replicates. GluR2 in situ hybridization pattern was handled in the different brain nuclei of diencephalic (c) and extradiencephalic (d) areas of all
aestivating conditions (expressed as % of FW). In particular, an evident increase of mRNA levels was detected in 6mAE (ii) with respect to 6mMUD
(iii) lungfish at diencephalic level (b), of which a schematic representation was reported (i). Statistical analysis: ANOVA followed by Student’s t test
for qPCR data and by Newman Keul’s test for in situ hybridization (ap< 0.05, bp< 0.01, cp< 0.001). Scale bar: 600 μm. For abbreviations check list.
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hand, a significant increase of HSP70 was registered for
Hyd (+72%) of 6dMUD animals and for Thd (+54%) of
6dAE (Figure 6b). In line with this up-regulating trend,
the mRNA expression pattern of such a protective factor
appeared to be also highly increased in Dp (+152%) and
Te (+180%) during long normoxic aestivating conditions
along with a significant increase for Cc (+70%; Figure 6c).
Similarly, long hypoxic conditions continued to induce a
very high up-regulation of HSP70 transcripts, this time
in Dp (+95%) and Cc (+108%), together with increases in
Te (+74%), while the short hypoxic state accounted for
significant up-regulation of mRNA levels in Dp (+55%)
and Te (+70%; Figure 6c). Surprisingly, the expression
pattern of this protective factor seemed to overlap apop-
totic events in extra-diencephalic brain regions under
long aestivation conditions (Figure 7g). This was particu-
larly evident for the very great number of TUNEL posi-
tive neurons for the entire TEL (+95%; Figure 7a) and Cb
(+110%; Figure 7c) under a long normoxic state (6mAE),
along with a moderate reaction being also detected in Te
(+55%; Figure 7e) for this same aestivating state with re-
spect to FW (Figure 7f). At the same time, an evident
TUNEL reaction characterized TEL (+78%; Figure 7b) and
Cb (+88%, Figure 7d) when lungfishes were exposed to
long hypoxic aestivation conditions (6mMUD).

Discussion
In this work for the first time, altered transcriptional levels
of both AMPAergic receptor subtypes mRNAs occurring
concomitantly to elevated expression levels of selective
neuroprotective factors during the different aestivating
conditions tend to underlie a distinct protection program
operating in a similar fashion to those reported for some
ischemic disorders [21,25]. This feature was basically
established through the detection of the specific silent
neurons expressing GluR1 and/or GluR2 mRNAs in well-
known motor-related brain regions such as Cb and Te of
the lungfish, so suggesting that compensatory pathways
under hypoxic conditions might be activated [26]. In such
a context it appears that the switching over between
mRNA expression of these two subtypes under either brief
or long aestivating states may turn out to be a pivotal con-
dition for the functional recovery of motor activities at
arousal, which are controlled by these areas very likely via
the action of AMPA receptors permeable to Ca2+ lacking
GluR2 [27,28]. In addition, these same brain areas featured



Figure 5 HIF-1α and HSP27 mRNA expression during normoxic and hypoxic aestivation. mRNA levels were evaluated in whole brain of FW
(white1), 6dAE (black2), 6mAE (vertical striped3), 6dMUD (diagonal striped4) and 6mMUD (grey5) animals by qPCR. (a,d) The results are expressed
as a proportion of the highest value after normalization with respect to β-actin levels and represent the means ± s.e.m. of three independent
biological replicates. HIF-1α and HSP27 in situ hybridization pattern was handled in the different brain nuclei of diencephalic (b,e) and
extradiencephalic (c,f) areas of all aestivating conditions (expressed as % of FW). Statistical analysis: ANOVA followed by Student’s t test for qPCR
data and by Newman Keul’s test for in situ hybridization (ap< 0.05, bp< 0.01, cp< 0.001). For abbreviations check list.
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enhanced expression levels of the neuroprotective factors
HIF-1α, HSP27 and HSP70, which were comparable to
those of other aestivating species such as the turtle Tra-
chemys scripta [1] and the lizard Tupinambis merianae
[29] that display a notable resistance to not only ammo-
nium toxicity [6] but also to oxidative state deficits [30,31].
In line with this condition, it is very probable that the spe-
cific molecular properties of motor brain sites seem to
constitute a key target of oxygen-dependent nitrogen me-
tabolism of aestivating species [32] and as a consequence
these tend to operate in a very similar manner to hypoxia-
related neurodegenerative disorders like Alzheimer’s
Disease in mammals [33].
Curiously, both AMPA receptor subtypes were not

expressed in the same direction especially during
reduced oxygen availability of aestivation in mud and
this seems to point to the induction of GluR1/2 as a key
step responsible for the consolidation of silent synaptic
processes, at least during sleeping states [34,35]. Such a
feature was established via the identification of partial
nucleotide fragments codifying for both AMPA receptor
subtypes in Protopterus annectens, which subsequently
enabled us to display a putative high degree of similarity
to that of not only fish but also to those of amphibians
[36], birds [37] and mammals [38]. Indeed, high GluR2
mRNA levels above all in thalamic and mesencephalic
regions may constitute ideal situations at least for the
maintenance of long sleeping-like states of lungfish, this
time not only during normoxic aestivating conditions
but above all during early aestivating states. These condi-
tions are very likely due to high GluR2 mRNA levels
being tightly related to silent neuron type of events that
consist in lysosomial degradative pathways promoting
AMPA internalization processes [27]. Hence this
phenomenon, like that of NREM in mammals, appears
to heavily rely on low GluR1 levels detected during the
long normoxic aestivating conditions, very probably
through their inactivation by protein kinase C II-related



Figure 6 HSP70 mRNA expression during normoxic and
hypoxic aestivation. mRNA levels were evaluated in whole brain of
FW (white1), 6dAE (black2), 6mAE (vertical striped3), 6dMUD (diagonal
striped4) and 6mMUD (grey5) animals by qPCR. (a) The results are
expressed as a proportion of the highest value after normalization
with respect to β-actin levels and represent the means ± s.e.m. of
three independent biological replicates. HSP70 in situ hybridization
pattern was handled in the different brain nuclei of diencephalic
(b) and extradiencephalic (c) areas of all aestivating conditions
(expressed as % of FW). Statistical analysis: ANOVA followed by
Student’s t test for qPCR data and by Newman Keul’s test for in situ
hybridization (ap< 0.05, bp< 0.01, cp< 0.001). For abbreviations
check list.
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processes [35,39]. The fact that both silent subtypes are
involved with sleeping events of our lungfish tends to in-
dicate a gradual insertion of AMPA receptor-dependent
excitatory synaptic functions being essential for numerous
neuronal activities such as the ionic channel pharmaco-
logical properties of the different vertebrates [36,40] and
above all initial contact-related motor functions that are
typical of zebrafish embryos [41].
The results of TUNEL analysis and the concomitant

increased HSP70 levels seem to suggest that a specific
homeostatic neuronal program involving neurogenesis and
apoptotic events are characterizing the different aestivating
conditions of Protopterus annectens. In particular, specific
motor controlling neuronal fields during long aestivating
conditions (6mAE and 6mMUD) exhibited dense apop-
totic reactions similar to those obtained for other verte-
brates such as amphibians [42] and mammals [43]. It is
thus tempting to propose that the lungfish brain during
aestivation executes a precise balance between cell death
and neurogenesis especially in those areas, which are
required to maintain in equilibrium an accurate number
of cells in a regenerative state [44], probably via
HSP70-dependent suppression of necrosis and caspase-
independent apoptotic pathways [45]. Interestingly,
HSP70 has been recognized as a “conformational repair
agent” and so its elevated levels during long aestivating
states like that of brain hyperthermic stress may prove
to be important for correcting stress-induced damage to
synaptic proteins and guiding the structural assembly at
postsynaptic density [46]. Moreover, the preservation of
neurosignaling activities during long aestivation requires
the activation of the pro-survival factor HSP70 in motor-
related areas similarly to protective mechanisms detected
in mammals during cerebral ischemia-dependent disorders
[47].
It is worthy to note that during hypoxic aestivating

conditions AMPA receptor transcriptional levels were
increased, as demonstrated by significant mRNA levels
of GluR1 and GluR2 during 6mMUD and 6dMUD states,
respectively. Similar receptor variations have been
reported during short-term hypoxia for rat hippocampal
AMPA receptor complex [48], while under prolonged
hypoxic conditions an increase of AMPA current is not
observed, indicating its suppression during prolonged
oxygen deprivation. Consequently, the increase of the
two silent neurons during brief hypoxia may contribute
to an early reorganization of synapses, including the pro-
motion of AMPA receptor-mediated effects at previously
silent synapses and increased synthesis of excitatory
receptor subtypes [49,50]. Subsequently the blockade of
AMPAergic currents, through the recruitment of AMPA
receptors containing GluR2, may promote long-term
neuronal survival and tolerance to seizure susceptibility
in those brain areas of the lungfish linked with the re-
covery of motor and visual functions at arousal. These
plasticity events appear to exhibit a similar trend to that
observed in the anoxic turtle brain [51], suggesting that



Figure 7 Apoptotic events during normoxic and hypoxic aestivation. TUNEL signals were evaluated in 6dAE (black), 6mAE (vertical striped),
6dMUD (diagonal striped) and 6mMUD (grey) states. At 6mAE state, an evident amount of neuronal fields containing apoptotic cells (TUNEL
method, black arrow) was detected in TEL (a), Cb (c) and Te (e) with respect to the representative TUNEL control (f). In the case of 6mMUD
condition, TEL (b) and Cb (d) continued to supply an evident TUNEL reaction. Variations in apoptotic cell content (g) were reported as % of
apoptotic cells ± s.e.m. with respect to FW and analyzed by ANOVA and Newman Keul’s test (ap< 0.05, bp< 0.01, cp<0.001). Scale bars (a-d) = 80
μm; (e,f) = 40 μm. For abbreviations check list.
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conserved protective systems may be adopted during
vertebrate evolution, in order to assure rapid and appro-
priate responses to various oxygen tensions. The early in-
crease of GluR2 mRNA levels in 6dMUD condition,
promptly replaced by a reduction of this transcript during
6mMUD state, may be considered as a pre-conditioning
factor against hypoxia-related events, which appears to
strongly require the rapid induction of HIF-1α and HSP27.
Such an activity is in line with recent evidences showing
that stress-related proteins may display a different tem-
poral activation during hypoxia, with the protective factor
(HSP27) representing an early switch against hypoxia-
related conditions in newborn mammals [52,53]. Further-
more, the harsh environmental conditions guiding the
lungfish into a hypometabolic state promotes the activa-
tion of the early protective factors that causes the arrest of
growth/developmental events as well as of apoptotic
neuronal processes [43]. Thus, neuronal death occurring
after a short hypoxic aestivation in our lungfish may
account for a rapid activation of HIF-1α, which in turn
promotes the recruitment of inducible HSP27. This small
chaperone by activating a protective pathway through the
inhibition of both caspase-dependent and -independent
mechanisms [22] prevents neuronal damages against sub-
sequent ischemic insults in a similar manner to that
reported for rat retinal ischemia [54].
Conclusions
These results underlie the crucial role of the expression of
the AMPAergic silent neurons (GluR1/R2) during
aestivation of Protopterus annectens and highlight new
adaptive strategies operating in key brain regions of this
lungfish in relation to oxygen availability. During vertebrate
evolution, the homoeostatic balance between an active or si-
lent synaptic state resulted to be a determinant factor for
the entering into a torpor condition, probably via the regu-
lation of GluR1 and GluR2 phosphorylative processes [55].
GluR2 seems to represent an early neuronal marker of cel-
lular oxidative imbalance, a condition by which this AMPA
receptor subtype concomitantly to HIF-1α/HSP27 complex
elicits long-term protection during aestivation, in a similar
fashion to that reported during mammalian ischemic events
[56]. In particular, long-term expression variations of silent
neurons that are tightly related to HSP70-dependent synap-
tic stabilization may bring us closer to elucidate the type of
neuronal mechanism(s) operating during hypoxia-related
dysfunctions [57]. We are still at the beginning, but the ap-
plication of pharmacological and molecular approaches for
the characterization of distinct AMPA receptor membrane
domains as well as their interaction with other hypoxia-
related factors, such as vascular endothelial growth factor
[58] may represent a valuable therapeutic tool for hypoxia-
related disorders such as ischemia.
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Methods
Maintenance of specimens
The study was performed on the African lungfish
Protopterus annectens (body weight 140–190 g). Specimens
(n=60) were collected from Central Africa and imported
through a local fish farm in Singapore (Qian Hu Fish Farm
Trading Co, Singapore). In this work animal sex was not
taken into consideration since its identification is not pos-
sible due to the lack of distinct external features. All lung-
fish were acclimatized to laboratory conditions for at least
1 month in order to eliminate any non-specific effects
deriving from stressful ambient states before the beginning
of experimental trials. They were maintained in plastic
aquaria filled with dechlorinated tap water (pH 7.1–7.2),
containing 0.71 mM Na+, 0.32 mM K+, 0.72 mM Ca++,
0.06 mM Mg++, 2.2 mM Cl− and 0.2 mM HCO3

−, at 25°C
under 12-h light/12-h dark photoperiod until use and water
was changed daily. During the adaptation period, animals
were fed frozen bloodworms up to a period of 96 h before
experimental session in which food was withdrawn. Experi-
mental protocols of this study were approved by the
National University of Singapore Institutional Animal Care
and Use Committee (IACUC Permits 813/05, S06/06 A and
035/09).
Aestivation
Lungfishes were exposed to two different type of
aestivation and precisely in air (normoxia) and mud
(hypoxia) conditions, according to previous studies
[6,32]. For this purpose some fish were induced to aestiv-
ate in air at 25–30°C individually in plastic tanks (29 cm
x 19 cm x 17.5 cm, length x width x height) containing a
small volume (15 mL) of dechlorinated tap water. Water
dried up in approximately 6 days and, during this time,
animals formed a mucus cocoon that enveloped the en-
tire body. At the same time, for the handling of mud
aestivation dried mud collected from the bottom of
freshwater ponds was purchased from Hua Hing Trading
Co (Singapore). The dried mud was soaked in dechlori-
nated tap water for at least 2 days, and mixed into a
thick paste (approximately 30% water content) by hand.
Artificial muddy substrata (19 kg dry mass) with a mini-
mum depth of 15 cm were made in similar plastic tanks
used for air aestivation. Fish (one per tank) were allowed
to bury at liberty into mud, which took 2–12 h. A small
amount of water (approximately 100 mL) was evenly
spread on to the surface of the mud every 4–5 days to
prevent the surface mud from drying up and cracking. In
addition, there was a small air passage, which connected
the point of entry from the mud surface to the aestivat-
ing fish. However, in all cases, the anterior end of the
fish was observed to be orientated away from the air pas-
sage. Subsequently animals (n = 12 for each condition)
were sacrificed during the different aestivating states: at
the induction phase after 6 days of aerial normoxic
(6dAE) or mud hypoxic (6dMUD) aestivation, that may
be considered as short entering states into aestivation
[6]; after 6 months of aerial normoxic (6mAE) or mud
hypoxic (6mMUD) aestivation defined as the long main-
tenance phase of such a state. Other fish (n = 12), main-
tained in freshwater (FW) conditions were identified as
controls and placed in dechlorinated tap water for the
same duration that was used for all aestivating lungfish.
Afterwards all animals were sacrificed and their dorsal
skull was opened in order to extract their brain, which
was stored at −80°C and −20°C for future analyses. For
the different experimental phases described in this study,
the number of animals for each conditions (n = 4) was
assessed according to Mead’s resource equation, which is
in line with our previous published works [4].

qPCR analysis
For this study, we directed our attention to the expression
pattern of the AMPAergic silent neurons (GluR1 and
GluR2) along with some neuroprotective factors and
namely HIF-1α, HSP70 and HSP27 during normoxic and
hypoxic aestivation of the lungfish. For this aim, brains of
Protopterus annectens belonging to 6dAE (n=4), 6dMUD
(n= 4), 6mAE (n= 4), 6mMUD (n=4) and FW (n= 4)
groups, as described above, were quickly removed from
the skull and stored at −80°C. Total RNA was extracted
from whole brain of each experimental group using TRI
reagent (Sigma, Italy) and the quality of RNA samples was
assured by measuring optical density (OD, 260/280)
absorption ratio (range 1.62 – 2.1), while their integrity
was verified by the detection of 18 S and 28 S bands after
agarose gel electrophoresis. Total RNA (2 μg) of each sam-
ple was used to synthesize cDNA according to indications
of the High Capacity cDNA Reverse Transcription Kit
(Applied Biosistem, Italy). PCR using Taq Polymerase
(Promega, Italy) was handled for both GluR1 and GluR2,
along with HIF-1α, HSP70 and HSP27 by using primers
pairs reported in Figure 1 and putative partial cds
sequences were firstly obtained for lungfish and submitted
to GenBank database. Quantitative real-time PCR (qPCR)
was performed on a Biorad Miniopticon (Biorad, Italy) sin-
gle color thermocycler and experimental procedures were
established on the basis of previously reported guidelines
[59]. Amplification reaction was prepared in a final volume
of 25 μL by adding 12.5 μL of SYBR-Green Supermix,
0.3 μM of primers for target genes, 0.1 μM of primers for
β-actin and 10 ng of each cDNA. All reactions were run in
triplicate according to the following cycling parameters:
one cycle at 94°C for 3 min, 40 cycles of denaturation at
94°C for 10 s and annealing-extension at 57°C for 30 s.
After the reaction, the existence of a unique PCR product
ranging from 150 to 200 bp was confirmed via melting
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curve analysis [60], obtained by an increase of 0.5°C every
10 s from 57°C to 95°C. After checking independent trials
of several reference genes, the β-actin reported the most
reproducible results across the various cDNAs and so it
was used as normalization gene. PCR amplification effi-
ciency for each primer pair was calculated on the basis of
the slope of the standard curve, which in most cases was
close to −3.4, indicating maximal PCR amplification effi-
ciency with a high correlation coefficient of amplification
accuracy within the range 0.990–0.998. Results of qPCR
were analyzed using Opticon Monitor qPCR detection sys-
tem (Biorad), with a program that permits the analysis of
the reaction kinetic. Cq values were obtained with Genex
software (BIORAD) and data were analyzed according to
the method of 2−ΔΔCT [61] on the basis of gene expression
levels calculated from three biological repeats. Data
obtained for all groups were reported as a proportion
of the highest value after normalization and statistical
differences were estimated by one-way ANOVA fol-
lowed by a post hoc Student’s t test when there was a
significant p-value< 0.05.

In situ hybridization analysis
The specific neuronal fields responsible for the mRNA en-
coding of GluR1 and GluR2 subtypes as well as for HIF-1α
and HSP27/70 in distinct brain nuclei was investigated by
performing in situ hybridization in the different aestivating
groups. For this purpose, antisense and sense probes were
designed on the basis of the partial sequences obtained in
Protopterus annectens for all gene targets considered in
this study and labeled by 3′-tailing using digoxigenin-11-
dUTP (Roche, Italy), as previously reported [62]. Briefly,
100 ng of antisense probe was added to brain sections
(14 μm) of the lungfish belonging to 6dAE, 6dMUD,
6mAE, 6mMUD and FW conditions (n= 4/group). After-
wards the probe was left overnight at 50°C in a humidified
chamber. Non-specific hybridization was handled on slides
incubated with sense probe. For immunological detection
anti-DIG alkaline phosphatase antibody (1:100, Roche,
Milan) was added for 2 h at room temperature, preceded
by 45 min permanence on Blocking Reagent (1%, Roche,
Milan). Neuronal hybridization signals were observed at a
bright-field Dialux EB 20 microscope (Leitz, Stuttgart,
Germany; 16X magnification; 25°C and Leica Imaging soft-
ware for image acquisition). Transcription differences for
anterior, intermediate and posterior brain areas of both
sections were evaluated by using a Macintosh computer-
assisted image analyzer system running Image software of
National Institutes of Health (Scion Image 2.0) and an in-
ternal standard for OD calibration. Before commencing
with the calibration of mean OD value for all sections an
estimation of the background level, which was processed
automatically by Scion Image program, was elaborated
and included for all final calculations.
Neuronal apoptosis assay
The determination of apoptosis was also handled on
lungfish brains that belonged to 6dAE (n = 4), 6dMUD
(n= 4), 6mAE (n = 4) and 6mMUD (n= 4) with respect to
FW (n= 4) by using a kit for immunohistochemical de-
tection and quantification of apoptosis based on TUNEL
technology (In situ Cell Death Detection Kit POD,
Roche-Italy). Briefly, fixed brain sections (16 μm) were
incubated in TUNEL reaction mix (label ± terminal
transferase solution) for 60 min at 37°C. Then a solution
of sheep anti-fluorescein antibody conjugated with
horseradish peroxidase (POD) was added to brain sec-
tions for 45 min at 37°C and the colorimetric reaction
was obtained by adding diaminobenzadine (DAB) sub-
strate (20 min at 25°C). Hematoxylin counterstained
slides were cover-slipped with Di-N-butyl-Phthalate in
Xylene (DPX) mounting medium for light microscopy
observation. Brown stained TUNEL-positive apoptotic
cells were observed in a bright-field Dialux EB 20 micro-
scope (Leitz, Stuttgart, Germany; 16-40X magnification;
25°C and Leica Imaging software for image acquisition).
Because of the same negative results, only one represen-
tative control was illustrated and compared to the brain
areas of all groups. For quantitative analysis, sections of
all brain levels were analyzed with a Leitz optic micro-
scope (Dialux 20 EB; Leica, Italy; 16X magnification; 25°C)
and captured via Leica Imaging software in order to iden-
tify neuronal cell groups according to previous works [63].
Cell counting of telencephalon (TEL), hypothalamus
(HTH), optic tectum (Te) and cerebellum (Cb) was per-
formed on five sections/area by using the following for-
mula: Ns= [Σ(N/Vsection)/n] x Vref, as previously
reported for neuronal quantification in lungfish [4], where
Ns= stained neurons per area; N= stained neurons/single
section; Vsection= section volume; n= sections per area;
Vref = volume of brain area.
Statistical analysis
The quantification of apoptotic cells (TUNEL) in aesti-
vating animals with respect to FW was performed using
a one-way ANOVA followed by a post hoc Newman-
Keul’s test when a p-value <0.05. Data deriving from
qPCR analysis were evaluated by using a one-way
ANOVA followed by Student’s t test. For in situ
hybridization method, mRNA levels (OD± s.e.m.) were
expressed as % of control (FW) for the different brain
regions and evaluated by using a one-way ANOVA fol-
lowed by a post hoc Newman-Keul’s test.
Ethical standards
Experimental protocols of this study were approved by the
National University of Singapore Institutional Animal Care
and Use Committee (IACUC Permits 813/05, S06/06 A
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