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AUTOMATIC POSITIVE
SEMIDEFINITE HAC COVARIANCE
MATRIX AND GMM ESTIMATION

RIIICCCHHHAAARRRDDD J. SMMMIIITTTHHH
cemmap, U.C.L. and I.F.S.

and
University of Warwick

This paper proposes a new class of heteroskedastic and autocorrelation consistent
~HAC! covariance matrix estimators+ The standard HAC estimation method
reweights estimators of the autocovariances+ Here we initially smooth the data
observations themselves using kernel function–based weights+ The resultant HAC
covariance matrix estimator is the normalized outer product of the smoothed ran-
dom vectors and is therefore automatically positive semidefinite+ A correspond-
ing efficient GMM criterion may also be defined as a quadratic form in the
smoothed moment indicators whose normalized minimand provides a test statis-
tic for the overidentifying moment conditions+

1. INTRODUCTION

Consider a random vector process that may be parameter dependent and may
display serial dependence and conditional heteroskedasticity+ Heteroskedastic
and autocorrelation consistent ~HAC! estimation of the long-run covariance
matrix of such processes has received considerable attention in the economet-
rics literature over the last two decades+ The standard estimation method employs
lag kernel smoothing whereby autocovariance estimators are weighted by some
suitably chosen kernel function and that also incorporates a bandwidth param-
eter+ Seminal contributions in the statistics literature to the theoretical study of
such HAC estimators include Parzen ~1957! and Priestley ~1962!+More recently,
Andrews ~1991! analyzes the properties of a number of HAC estimators and
prescribes suitable choices of the bandwidth parameter given a particular choice
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of kernel function+ In addition, the quadratic spectral kernel is shown to be
optimal according to an asymptotic truncated mean squared error criterion+ The
bibliography in Andrews ~1991! also provides some previous contributions to
the econometrics literature on HAC covariance matrix estimation+ In particular,
the method of Newey and West ~1987a! based on the Bartlett kernel function is
now commonly adopted in many econometrics packages+ A related lag kernel–
based approach is discussed in Andrews and Monahan ~1992! that initially pre-
whitens the random vector process+

This paper suggests a novel alternative class of HAC covariance matrix esti-
mators+ Rather than weight the estimated autocovariances as in the standard lag
kernel method, we initially smooth the data observations on the random vector
process itself using an appropriately chosen kernel function as weights+ The
HAC covariance matrix estimator is then defined as the normalized outer prod-
uct of the smoothed random vectors+ The resultant class of HAC covariance
estimators belongs to the general class of quadratic estimators described in
Grenander and Rosenblatt ~1984, Sect+ 4+1!+ Standard lag kernel estimators are
also quadratic estimators, but their weight matrix has Toeplitz form+ As shown
by Grenander and Rosenblatt ~1984, Sect+ 4+2!, for any linear random vector
process, a standard lag kernel estimator may be found that has asymptotic mean
squared error no larger than that of any given asymptotically unbiased qua-
dratic estimator with non-Toeplitz weight matrix+ Interestingly, however, the
weight matrices for members of the class of HAC covariance matrix estimators
proposed here asymptotically take Toeplitz form+ Therefore, each HAC estima-
tor corresponds implicitly to an asymptotically equivalent lag kernel estimator+
Although this paper does not formally address their limiting distributional and
asymptotic mean squared error properties, one might therefore suppose that
members of this class of HAC covariance matrix estimators might inherit the
properties of the corresponding lag kernel estimator+

The reweighting scheme adopted here may be viewed as a form of multi-
taper+ Recall that the long-run covariance matrix of a stationary vector process
is its ~second-order! spectrum at frequency zero+ Brillinger ~1981, Theorem 5+6+4,
p+ 150! details the large-sample properties of a lag kernel estimator for the
spectrum where the data observations have initially been smoothed using a sin-
gle taper that has bandwidth parameter equal to sample size+ Brillinger ~1981,
p+ 151! notes that lag kernel estimators with tapered data may have desirable
asymptotic bias properties relative to standard lag kernel estimators; see also
Brillinger ~1981, Sects+ 3+3 and 4+6!+1 Thomson ~1982! proposes a spectrum
estimator using multitapers that is the average of a sequence of periodogram
estimators each of which uses a different taper+ In a more recent development,
Walden ~2000! defines a general class of multitaper spectrum estimators employ-
ing orthogonal tapers that may regarded as being defined in terms of the eigen-
vectors and eigenvalues of the weight matrix of some quadratic estimator+ The
number of tapers comprising the average is allowed to increase with sample
size but generally at a slower rate; see Walden ~2000, Sect+ 4+9, p+ 785!+ Our
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approach, however, displays a number of important differences from these mul-
titaper methods+ In particular, the estimator is a standard outer product, and,
thus, the number of tapers equals the sample size+ Also a bandwidth parameter
is incorporated that is defined similarly to that used in the standard lag kernel
method+

Another recent innovation is that of Phillips ~2005!, which proposes a new
class of HAC covariance matrix estimators obtained as the explained sum of
squares from a regression of the data observations on a sequence of basis trend
functions+ Estimators in this class are members of the general quadratic class
where the weight matrix is the orthogonal projection matrix formed from the
trend function sequence+ These estimators may also be regarded as multitaper
estimators where the tapers are the eigenvectors of the trend function projec-
tion matrix+ Like the class proposed in this paper, Phillips’s estimators also cor-
respond implicitly to an asymptotically equivalent lag kernel estimator+
Interestingly, this approach has the advantage of avoiding a choice of kernel
function and bandwidth ~which equals the sample size! but does, however,
require a choice of the number and the sequence of basis trend functions to be
included in the regression+ Phillips ~2005, eqn+ ~8!! provides an automated rule,
obtained via an asymptotic mean squared error analysis, for the determination
of the number of trend function terms to include+

The class of HAC covariance estimators proposed here is automatically pos-
itive semidefinite as are the estimators proposed in Phillips ~2005!+ This prop-
erty is a particular advantage if a consistent estimator is required for the
asymptotic covariance matrix of the limiting normal distribution of some param-
eter estimator+ For example, the asymptotic covariance matrix estimator may
then be used in the computation of t- or F-type test statistics based on the param-
eter estimator+ Furthermore, the inverse of the HAC covariance estimator may
be employed as an estimator for the efficient metric in generalized method of
moments ~GMM! estimation+

The standard construction of t- and F-type statistics incorporating a HAC
covariance matrix estimator has been subject to some severe criticism in the
literature because of their poor finite-sample properties relative to the nominal
normal or chi-square asymptotic reference distributions+ In the regression con-
text, Kiefer, Vogelsang, and Bunzel ~2000! suggest an alternative approach to
inference that completely avoids the use of a HAC estimator and appears to
possess better properties in small samples than that based on standard t- and
F-type statistics+ For a more recent contribution, see Phillips, Sun, and Jin
~2003!+ A major disadvantage of these approaches, however, from which t- and
F-type statistics do not suffer, is that they seem to be restricted to just-identified
models only in the nonlinear GMM context; see Kiefer et al+ ~2000, Sect+ 4,
p+ 702!+

An efficient GMM criterion may also be formulated as a quadratic form in
the smoothed moment indicators whose normalized minimand provides a test
statistic for the overidentifying moment conditions similar in structure to that
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of Hansen ~1982!+ Being based solely on the smoothed moment indicators this
GMM criterion is similar in structure to that for observations obtained from a
random sample and thus does not require separate estimation of the efficient
metric for GMM estimation, which would normally be the case; merely evalu-
ation of the outer product of the smoothed moment indicators at an initially
consistent estimator for the parameters of interest is necessary+ A continuous
updating estimator ~Hansen, Heaton, and Yaron, 1996! may also be defined
based on the revised GMM criterion+

Section 2 introduces the time series setup and briefly discusses the standard
method of HAC covariance matrix estimation+ The class of HAC covariance
matrix estimators that is the subject of this paper is then defined+ Consistency
for this class of covariance matrix estimators is demonstrated+ An alternative
GMM criterion appropriate for serially dependent and conditionally heteroske-
dastic time series moment conditions is given in Section 3+ Consistency, asymp-
totic normality, and efficiency of the GMM estimator are shown together with
the limiting distribution of the normalized minimand+ Section 4 concludes+ Proofs
of the results are given in the Appendix+

The following abbreviations are used throughout the paper: w+p+a+1: with prob-
ability approaching one;

p
&&: converges in probability to; d

&&: converges in
distribution to; 7+7 is the matrix norm defined by 7A7 � Mlmax~A

'A! where
lmax~{! is the maximum eigenvalue of {; p+d+: positive definite; p+s+d+: positive
semidefinite+

2. HAC COVARIANCE MATRIX ESTIMATION

Let zt , ~t � 1, + + + ,T !, denote observations on a finite-dimensional stationary
and strongly mixing process $zt %t�1

` + The particular focus is the random vector
g~zt ,b!, an m-vector of known functions of the data observation zt and the
p-vector b of unknown parameters, where it is assumed that m � p+

Let gt~b! [ g~zt ,b!, ~t � 1, + + + ,T !, and [g~b! [ (t�1
T gt ~b!0T+

We further assume that there exists a true value b0 of the parameter vector b
at which the vector gt~b! has unconditional mean zero, that is, E @gt~b0!#� 0+
In the GMM estimation context ~Hansen, 1982!, gt~b! would denote a vector
of moment indicators, and b0 would be of some inferential interest+ In many
circumstances, the moment restrictions E @gt~b0!# � 0 will arise from a condi-
tional moment restriction+ For such cases, zt would also need to include lagged
endogenous and current and lagged values of exogenous variables+

The following assumption describes the basic properties of the observation
process $zt %t�1

` +

Assumption 2+1+ The observation process $zt %t�1
` is a stationary and

a-mixing sequence such that (j�1
` j 2a~ j !~n�1!0n , ` for some n � 1+

Our next assumption details some restrictions on the random process
$g~zt ,b!%t�1

` +
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Assumption 2+2+ ~a! E @g~zt ,b0!# � 0; ~b! E @supb�B7g~zt ,b!74n# � `+

These assumptions are quite standard; see Kitamura and Stutzer ~1997!, albeit
somewhat stronger than Assumption A, p+ 823, and the hypotheses in Lemma 1
of Andrews ~1991, p+ 824!+

2.1. Some Preliminaries

The particular concern of this section is HAC estimation of the long-run covari-
ance matrix of the random process $g~zt ,b0 !%t�1

` that is defined by

V [ (
s��`

`

G~s!, (2.1)

where G~s!� E @gt�s~b0!gt~b0!
'# , G~�s!� G~s!' , is the sth autocovariance of

the process $g~zt ,b0 !%t�1
` , ~s � 0,61, + + + !+

A HAC covariance matrix estimator is often required when estimating the
asymptotic covariance matrix of the limiting normal distribution of a root-T
consistent estimator for b0+ Furthermore, in a time series setting with unknown
serial dependence and conditional heteroskedasticity, the inverse of a HAC esti-
mator for V provides a consistent estimator for the metric required for the im-
plementation of efficient GMM+ In both of these examples, the particular
requirement would be a consistent estimator for the limiting variance matrix
limTr`var @T 102 [g~b0!# of the normalized sample average T 102 [g~b0!, that is,
the long-run covariance matrix V as var @T 102 [g~b0!# � (s�1�T

T�1 GT ~s!, where
GT ~s! [ (t�max@1,1�s#

min@T,T�s# E @gt�s~b0 !gt ~b0 !
' #0T, GT ~�s! � GT ~s!' , ~s � 0,61, + + + !+

See ~2+2! and ~2+3! of Andrews ~1991, pp+ 819–820!+
The standard method for estimation of V ~2+1! is based on smoothing con-

sistent sample autocovariance estimators ZCT ~s! [ T �1(t�max@1,1�s#
min@T,T�s# gt�s~ Db!�

gt ~ Db!' , ZCT ~�s! � ZCT ~s!' , ~s � 1 � T, + + + ,T � 1!, where Db is a preliminary
consistent estimator for b0+ Let k *~{! be some real-valued kernel function belong-
ing to the class of symmetric kernels K1 defined by

K1 � �k *~{! :Rr @�1,1#6k *~0!� 1, k *~�x!� k *~x!∀x � R,

�
@0,`!

Ok *~x! dx � `,

k *~{! continuous at 0 and almost everywhere� , (2.2)

where Ok *~x! � supy�x 6k *~ y!6; see, for example, Andrews ~1991! and Andrews
and Monahan ~1992!+2 The standard class of feasible HAC estimators for the
limiting covariance matrix V ~eqn+ ~2+1!! is then given by
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ZV~ Db! [
T

T � p (s�1�T

T�1

k *� s

ST
� ZCT ~s! (2.3)

~Andrews, 1991, ~2+5!, p+ 820!, where ST is a bandwidth parameter and T0~T � p!
is a finite-sample adjustment that takes into account estimation of b0+

2.2. Positive Semidefinite HAC Covariance Matrix Estimation

In contradistinction to the standard approach, we initially reweight the vectors
gt~b!, ~t � 1, + + + ,T !, themselves to yield their smoothed counterparts

gtT ~b! [ (
s�t�T

t�1

k� s

ST
�gt�s~b!, ~t � 1, + + + ,T !, (2.4)

where, as before, k~{! is some kernel and ST a bandwidth parameter, both of
whose properties are defined in Assumption 2+3, which follows+ The redefini-
tion ~2+4! of the random vectors $g~zt ,b!%t�1

` was suggested in Smith ~2001! as
a means of achieving an asymptotic first-order equivalence between general-
ized empirical likelihood and efficient GMM estimators in the moment con-
dition framework with serially dependent and conditionally heteroskedastic
moment indicators $g~zt ,b!%t�1

` + See also Smith ~1997! and Kitamura and
Stutzer ~1997!, which employ related and special cases of the class of kernels
k~{! and particular choices for the bandwidth parameter ST +

The class of HAC covariance matrix estimators for V ~eqn+ ~2+1!! proposed
in this paper is formed directly as the normalized outer product of the smoothed
random vectors gtT ~b!, ~t � 1, + + + ,T ! ~eqn+ ~2+4!!, also evaluated at a prelimi-
nary consistent estimator Db, namely,

ZVT ~ Db! [ � (
s�1�T

T�1

k� s

ST
�2��1

(
t�1

T

gtT ~ Db!gtT ~ Db!'0T, (2.5)

with the divisor (s�1�T
T�1 k~s0ST !

2 as a necessary normalisation factor+ Clearly
ZVT ~ Db! ~eqn+ ~2+5!! is p+s+d+ and is a member of the general class of quadratic

estimators ~Grenander and Rosenblatt, 1984, Sect+ 4+1!+ Restriction to consid-
eration of p+s+d+ HAC covariance estimators is particularly desirable as the esti-
mator ZVT~ Db! ~eqn+ ~2+5!! would often form a component of a consistent estimator
for the covariance matrix of the limiting normal distribution of a parameter
estimator that may then be required for the construction of t- or F-type test
statistics+ Moreover, the property that a HAC covariance matrix estimator is
p+s+d+ is important if its inverse is to be used as the metric for efficient GMM
estimation; see Section 3+

The next assumption introduces standard conditions on the kernel k~{! and
bandwidth parameter ST + Let kj [ *�`

` k~a! j da, j � 1,2, and

Ok~x! � � sup
y�x
6k~ y!6 if x � 0

sup
y�x
6k~ y!6 if x � 0+
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Assumption 2+3+ ~a! ST r ` and ST 0T 2 r 0; ~b! k~{! :R r @�kmax, kmax# ,
kmax � `, k~0! � 0, k1 � 0, and is continuous at 0 and almost everywhere;
~c! *�`

` Ok~x! dx � `+

The bandwidth parameter therefore obeys the conditions described in Andrews
~1991, Theorem 1~a!, p+ 827!+ Assumption 2+3~c! is required to ensure that cer-
tain normalized sums defined in terms of the kernel k~{! converge appropri-
ately to their integral representation counterparts; see Jansson ~2002! and note 2
in the Notes section+

To gain some intuition about the suitability of ZVT ~ Db! ~eqn+ ~2+5!! as an esti-
mator for V ~eqn+ ~2+1!!, consider the infeasible HAC covariance estimator
ZVT ~b0!+ In the generalized empirical likelihood context, Smith ~2001! dis-

cusses the asymptotic equivalence of ZVT ~b0! with the estimator VT ~b0! �

(s�1�T
T�1 kT

* ~s0ST !CT ~s!, where the infeasible sample covariances CT ~s! [
T �1(t�max@1,1�s#

min@T,T�s# gt�s~b0 !gt ~b0 !
' , CT ~�s! � CT ~s!

' , ~s � 1 � T, + + + ,T � 1!,
and the implicit kernel kT

* ~{! is given by kT
* ~s0ST ! [ (t�max@1�T,1�T�s#

min@T�1,T�1�s#

k@~t � s!0ST #k~t0ST !0(t�1�T
T�1 k~t0ST !

2 + The estimator VT ~b0! also belongs to
the general quadratic class but has Toeplitz weight matrix+ Therefore, we might
expect that the estimator ZVT ~b0! would inherit the desirable asymptotic mean
squared error properties of standard lag kernel estimators ~Grenander and Rosen-
blatt, 1984, Sect+ 4+2!+ The implicit kernel kT

* ~{! approximates the kernel k *~{!
defined by k *~a! � *�`

` k~b � a!k~b! db0k2+ Smith ~2001! establishes that if
Assumptions 2+3~b! and ~c! hold then the induced k *~{! belongs to the p+s+d+
class K2 defined in Andrews ~1991, p+ 822!, that is,

K2 � $k *~{! � K1 :K *~l!� 0 for all l � R%, (2.6)

where the class K1 is given in ~2+2! and K *~l! � ~2p!�1*k *~x!exp~�ixl! dx
is the spectral window generator of the kernel k *~{!+

Given a choice of k *~{!, the corresponding kernel k~{! may be obtained from
the relation K *~l! � 2p6K~l!62 , where K~{! is the spectral window generator
of k~{!+ Smith ~2001! provides examples of kernels k~{! that satisfy Assump-
tion 2+3 and the consequent implicit kernels k *~{!+

Initially we consider the infeasible covariance matrix estimator ZVT ~b0! and
state a preliminary result+3

LEMMA 2+1+ ~Consistency of ZVT ~b0!!+ If Assumptions 2.1–2.3 hold, then
ZVT ~b0! � V

p
&& 0.

Lemma 2+1 parallels Proposition 1~a! of Andrews ~1991, p+ 825!+
Let N denote some convex neighborhood of b0+ The next assumption states

the root-T consistency of the preliminary estimator Db for b0 and bounds the
expectation of the derivative matrix of the vector g~zt ,b! on N+
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Assumption 2+4+ ~a! MT ~ Db � b0! � Op~1!; ~b! E @supb�N7]g~zt ,b!0
]b ' 72# � `+

Assumption 2+4~a! mimics Assumption B~i! of Andrews ~1991!, and Assump-
tion 2+4~b! is Assumption B~iii! of Andrews ~1991, p+ 825! rewritten for our
context+

The consistency of the feasible HAC covariance matrix estimator ZVT ~ Db! then
follows+ Cf+ Theorem 1~a! of Andrews ~1991, p+ 827!+

THEOREM 2+1+ ~Consistency of ZVT ~ Db! for V!+ If Assumptions 2.1–2.4 are
satisfied, then ZVT ~ Db! � V

p
&& 0.

3. EFFICIENT GMM ESTIMATION

The next assumption is standard and states regularity conditions for the consis-
tency of GMM estimators+

Assumption 3+1+ ~a! b0 � B is the unique solution to E @g~zt ,b!#� 0; ~b! B
is compact; ~c! g~zt ,b! is continuous at each b � B with probability one;
~d! V is p+d+

Let [gT ~b! [ (t�1
T gtT ~b!0T+ Then, if Assumptions 2+1–2+3 and 3+1 hold,

from Smith ~2001, Lemma A+1!, [gT ~b!0~ST k1!
p
&& E @g~zt ,b!# uniformly b� B+

Therefore, given a preliminary consistent estimator Db, a HAC covariance esti-
mator ZVT ~ Db! may be defined by either ~2+5! as in Section 2 or as the centered
version ~(s�1�T

T�1 k~s0ST !
2 !�1(t�1

T @gtT ~ Db! � [gT ~ Db!# @gtT ~ Db! � [gT ~ Db!# '0T as
[gT ~ Db!

p
&& 0+ Furthermore, from Assumption 3+1~d!, by Theorem 2+1, w+p+a+1

ZVT ~ Db! is p+d+
Consider a GMM criterion based on the smoothed random vectors gtT ~b!,

~t �1, + + + ,T !, defined in ~2+4!, with ZVT ~ Db!�1 as efficient metric; that is, ZQT ~b! [
[gT ~b!

' ZVT ~ Db!�1 [gT ~b!+ The GMM estimator Zb is then defined as

Zb � arg min
b�B

ZQT ~b!+ (3.1)

The consistency of Zb for b0 follows+

THEOREM 3+1+ ~Consistency of Zb!+ If Assumptions 2.1–2.4 and 3.1 are sat-
isfied, then Zb p

&& b0.

Asymptotic normality requires additional regularity conditions+ Let G [
E @]g~zt ,b0!0]b '# +

Assumption 3+2+ ~a! b0 � int~B!; ~b! rk~G! � p+

Let S [ ~G 'V�1G!�1 +
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THEOREM 3+2+ ~Asymptotic normality of Zb+! If Assumptions 2.1–2.4, 3.1,
and 3.2 are satisfied, then

T 102~ Zb� b0 !
d
&& N~0,S!, ~T0ST

2! ZQT ~ Zb!0~k1!
2 d
&& xm�p

2 +

The GMM estimator Zb ~~3+1!! shares the standard properties of efficient GMM
estimators in the class of GMM estimators that minimize the quadratic form
GMM criterion ZQW~b!� [g~b!'Wn [g~b!, Wn � W � op~1!, W p+d+ Moreover, it
is asymptotically first-order equivalent to the efficient GMM estimator that min-
imizes ZQW~b! with Wn � ZV~ Db!�1 , where ZV~ Db! is defined in ~2+3!+ The opti-
mized criterion function statistic is likewise first-order asymptotically equivalent
to the usual Hansen ~1982! test statistic for overidentifying moment restrictions+

To estimate S consistently, consistent estimators of G and V are required+
The former matrix may be estimated consistently by ZGT ~ Zb!0~ST k1!, where
ZGT ~b! [ ] [gT ~b!0]b ' , which is an immediate by-product from the first-order

conditions defining Zb, and the latter matrix by ZVT ~ Db! ~eqn+ ~2+5!! considered
in Section 2 or as stated previously+

Although not pursued in this paper, a continuous updating GMM estimator
for b0 that will share the asymptotic properties of Zb given in Theorems 3+1
and 3+2 may be defined using the criterion [gT ~b!

' ZVT ~b!
� [gT ~b!, where

ZVT ~b!
� is a generalized inverse for ZVT ~b!+ The optimized criterion

~T0ST
2! [gT ~ ZbCUE !

' ZVT ~ ZbCUE !
� [gT ~ ZbCUE !0~k1!

2 d
&& xm�p

2 + An asymptotically
equivalent statistic may be computed as ~~k2 !0ST

2~k1!
2 ! times the ~uncentered!

explained sum of squares or ~k2T !0~ST k1!
2 times the ~uncentered! R2 from a

least squares regression of 1 on gtT ~ ZbCUE !, ~t � 1, + + + ,T !+ The factors kj may be
replaced by (t�1�T

T�1 k~t0ST !
j0ST , j � 1,2+ See Smith ~2001! for further consid-

eration of the continuous updating estimator ZbCUE for b0 that is a special case
of the generalized empirical likelihood class of estimators considered there+

Test statistics for overidentifying moment restrictions and parametric restric-
tions on b0 may be constructed in a similar fashion to those proposed in Newey
~1985! and Newey and West ~1987b!, respectively+ See also Smith ~2001! for
related test statistics+

4. SUMMARY AND CONCLUSIONS

A new class of HAC covariance matrix estimators is proposed+ The point of
departure for these estimators is that rather than smoothing estimated sample
autocovariances the random vectors themselves are smoothed using kernel func-
tion weights+ Consistency of the class is shown+ A corresponding GMM crite-
rion based on the smoothed random vectors is also defined+ The resultant GMM
estimator is first-order asymptotically equivalent to the efficient GMM estima-
tor ~Hansen, 1982! and thus shares the same large-sample properties+ The nor-
malized GMM criterion function is also asymptotically equivalent to the standard
GMM criterion function statistic for overidentifying moment restrictions+
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An analysis of the higher order properties of this class of HAC covariance
matrix estimators similar to that in Andrews ~1991! for the standard class would
seem apposite to detail the optimal choice of kernel and bandwidth and to
describe automatic bandwidth estimators+ It also remains to examine the finite-
sample properties of the various estimators and statistics suggested in this paper+

NOTES

1+ An example of the application of tapers in econometrics is the nonparametric cointegration
analysis of Bierens ~1997!+

2+ Jansson ~2002! notes that neither the square integrability condition *�`
` k *~x!2 dx � ` in

Andrews ~1991, ~2+6!, p+ 821! nor the stronger absolute integrability condition *�`
` 6k *~x!6dx � `

in Andrews and Monahan ~1992, ~2+5!, p+ 955! is sufficient for the consistency results claimed in
those papers+ The condition *@0,`! Ok *~x! dx � ` is required to rule out certain pathological cases
and to ensure that particular summations used in those papers converge appropriately; see Lemma 1
of Jansson ~2002!+

3+ A referee pointed out that the original proof of Lemma 2+1 abstracted from that of Lemma
A+3 in Smith ~2001! was incomplete+ The revision of Smith ~2001!, currently in preparation, will
address this deficiency+
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APPENDIX: PROOFS OF RESULTS

Proof of Theorem 2.1. Given Lemma 2+1, as in the proof of Theorem 1~a! in Andrews
~1991, p+ 852!, it is only necessary to prove that the difference ZVT ~ Db!� ZVT ~b0!

p
&& 0+

Without loss of generality let $g~zt ,b0 !%t�1
` be a scalar process+

Using a mean value expansion of ZVT ~ Db! about b0

ZVT ~ Db!� ZVT ~b0 ! � 2�(
t�1

T

(
r�t�T

t�1

k� r

ST
�gt�r ~ Nb! (

s�t�T

t�1

k� s

ST
�]gt�s~ Nb!0]b '0T �

� � (
t�1�T

T�1

k� t

ST
�2��1

~ Db� b0 !

� 2 (
s�1�T

T�1

(
r�max@1,1�s#

min@T,T�s#

gr�s~ Nb!]gr ~ Nb!0]b '0T (A.1)

� � (
t�1�r

T�r

k� t � s

ST
�k� t

ST
�	 (

t�1�T

T�1

k� t

ST
�2�~ Db� b0 !,

where Nb is on the line segment joining Db and b0+ Similarly to Andrews ~1991, equation
~A+10!, p+ 852!, by Cauchy–Schwartz, w+p+a+1,

sup
6s6�1



 (
r�max@1,1�s#

min@T,T�s#

gr�s~ Nb!]gr ~ Nb!0]b '0T 


� �(

r�1

T

sup
b�N

gr ~b!
20T�102�(

r�1

T

sup
b�N
7]gr ~b!0]b ' 720T�102

� Op~1!, (A.2)

using Assumptions 2+2 and 2+4~b!+ Therefore, from equations ~A+1! and ~A+2!,

MT

ST

6 ZVT ~ Db!� ZVT ~b0 !6 � Op~1!
 (
s�1�T

T�1

(
t�1�r

T�r

k� t � s

ST
�k� t

ST
�0ST

2

� MT 7 Db� b07	� (

t�1�T

T�1

k� t

ST
�2	ST�+ (A.3)
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Now

1

ST
2 
 (

s�1�T

T�1

(
t�1�r

T�r

k� t � s

ST
�k� t
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�
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1
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(
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T�1 1
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(

t�1�T

T�1 � 1
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(

s�1�T

T�1


k� t � s

ST
�
�
k� t

ST
�
+
(A.4)

Let kT ~a!� k~~s � 1!0ST !, ~s � 1!0ST � a � s0ST , if s � 0, k~s0ST !, ~s � 1!0ST � a �
s0ST , if s � 0+ Using the change of variables t � @ST b# and s � @ST a# , where @{# denotes
the integer part of {,

1

ST
(

t�1�T

T�1


k� t � s

ST
�
 � lim

Tr`

1
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�
~1�T !0ST

~T�1!0ST

Ok~b � a! db � o~1!

��
�`

`

Ok~b! db � o~1!

uniformly s+ Hence, from equation ~A+4!, by Assumption 2+3~c!,

1

ST
2 (

s�1�T
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(
t�1�T
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k� t � s

ST
�k� t
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�
 � ��

�`

`

Ok~a! da � o~1!�2

� O~1!+ (A.5)

Similarly, using the change of variable s � @ST a# , by the dominated convergence theo-
rem, using Assumption 2+3~c!,

lim
Tr`
(

s�1�T

T�1

k� s

ST
�2	ST � lim

Tr`
�
~1�T !0ST

~T�1!0ST

kT ~a!
2 da �

1

ST

k~0!2

��
�`

`

k~a!2 da � o~1! � 0+ (A.6)

Therefore, substituting equations ~A+5! and ~A+6! into equation ~A+3!, by Assump-
tion 2+4~a!,

MT

ST

6 ZVT ~ Db!� ZVT ~b0 !6 � Op~1!+ (A.7)

The result then follows from equation ~A+7! using Assumption 2+3~a!+ �
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Proof of Theorem 3.1. As V is p+d+ from Assumption 3+1~d!, ZVT ~ Db! is p+d+ and invert-
ible w+p+a+1+ Let g~b! [ E @g~zt ,b!# + Under Assumption 2+1, $g~zt ,b0 !%t�1

` is a station-
ary and a-mixing sequence ~White, 1984, Theorem 3+49, p+ 47! and, thus, ergodic ~White,
1984, Proposition 3+44, p+ 46!+ By a uniform weak law of numbers ~Smith, 2001, Lemma
A+1!, if Assumptions 2+1–2+3 and 3+1 hold, supb�B7ST

�1 [gT ~b! � k1 g~b!7 � op~1! and
g~b! is continuous by the strictly stationary and ergodic version of Lemma 2+4 in Newey
and McFadden ~1994, p+ 2129!+ Let Q~b!� g~b!'V�1g~b!+ Then, by Assumption 3+1~a!,
Q ~b! is uniquely minimized at b0 and is continuous in b � B+ Therefore, as
lmin@ ZVT ~ Db!# � 0 w+p+a+1 where lmin@ ZVT ~ Db!# is the smallest eigenvalue of ZVT ~ Db!,

6ST
�2 ZQT ~b!� ~k1!

2Q~b!6 � 7ST
�1 [gT ~b!� k1 g~b!72lmin @ ZVT ~ Db!#�1

� 27g~b!77ST
�1 [gT ~b!� k1 g~b!7lmin @ ZVT ~ Db!#�1

� 7g~b!72 7 ZVT ~ Db!�1 �V�1 7

� op~1!

uniformly b � B+ The result follows by Theorem 2+1 in Newey and McFadden ~1994,
p+ 2121!+ �

Proof of Theorem 3.2. As Zb p
&& b0 by Theorem 3+1, Zb � int~B! w+p+a+1+ Therefore

the first-order conditions ZGT ~ Zb!' ZVT ~ Db!�1 [gT ~ Zb! � 0 w+p+a+1, where ZGT ~b! [ ] [gT ~b!0
]b ' + By the mean value theorem, [gT ~ Zb! � [gT ~b0! � ZGT ~ Nb!~ Zb � b0! where Nb lies on
the line segment joining Zb and b0 and may differ from row to row+ An application of the
uniform weak law of large numbers ~Smith, 2001, Lemma A+1! to ST

�1 ZGT ~ Nb! shows
that ST

�1 ZGT ~ Nb! � k1G � op~1!+ Therefore, @~k1!
2S�1 � op~1!#T 102~ Zb � b0! �

�@k1G 'V�1 � op~1!# ~T 1020ST ! [gT ~b0!+ Now, by a central limit theorem ~Smith, 2001,
Lemma A+2!, ~T 1020ST ! [gT ~b0!

d
&& N~0, ~k1!

2V!, and the first conclusion follows+
As T 102~ Zb � b0! � �~k1!

�1SG 'V�1~T 1020ST ! [gT ~b0! � op~1!, ~T 1020ST ! [gT ~ Zb! �
@Im � GSG 'V�1# ~T 1020ST ! [gT ~b0! � op~1!+ Therefore, ~T0ST

2! ZQT ~ Zb!0~k1!
2 �

~T0~ST k1!
2! [gT ~b0!

'P [gT ~b0!� op~1!, where P[V�1 �V�1GSG 'V�1+ The second con-
clusion follows from Lemma A+2 of Smith ~2001!, PVP � P, and rk~P ! � m � p+ �
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