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REGULARITY CONDITIONS AND BERNOULLI PROPERTIES
OF EQUILIBRIUM STATES AND ¢g-MEASURES

PETER WALTERS

ABSTRACT

When T': X — X is a one-sided topologically mixing subshift of finite type and ¢p: X — R is a
continuous function, one can define the Ruelle operator L, : C(X) — C(X) on the space C(X)
of real-valued continuous functions on X. The dual operator L}, always has a probability measure
v as an eigenvector corresponding to a positive eigenvalue (E;‘,u = v with A > 0). Necessary and
sufficient conditions on such an eigenmeasure v are obtained for ¢ to belong to two important
spaces of functions, W (X,T) and Bow(X,T). For example, ¢ € Bow(X,T) if and only if v is a
measure with a certain approximate product structure. This is used to apply results of Bradley to
show that the natural extension of the unique equilibrium state p, of ¢ € Bow(X,T') has the weak
Bernoulli property and hence is measure-theoretically isomorphic to a Bernoulli shift. It is also
shown that the unique equilibrium state of a two-sided Bowen function has the weak Bernoulli
property. The characterizations mentioned above are used in the case of g-measures to obtain
results on the ‘reverse’ of a g-measure.

Introduction

We consider subshifts of finite type with a finite number of symbols. Let k£ > 2, and
let I'={1,2,...,k} be the set of symbols. Let A= (a;;) be a k x k matrix with each
entry a;; € {0,1} and with no zero row and no zero column.

Let

Xa=qzx=(2n)rrp EHF|aznmn+1 =1Vn=0
0

and

Xa={az=(2,)2__ € I_II‘|(1;,UTLI”+1 =1VYneZz

—00

Both are compact sets under the product topologies on Hgo I' and Hiooo I' when I is
equipped with the discrete topology. The one-sided subshift of finite type deter-
mined by A is the continuous surjection T': X 4 — X 4 defined by T'((zg, z1,...)) =
(x1,2,...). The two-sided subshift of finite type determined by A is the homeo-
morphism S: X4 — X4 defined by

S(( . ..’L’,l.i?ko.il,‘]_ . )) = ( .. l‘,]_.’l?ox*ll‘g .. .),

where the symbol * is over the Oth position. Both shifts are called topologically
mixing if there exists M >1 with the product matrix AM >0, that is, every
entry of AM is non-zero. We use M for such a number throughout the paper.
This is equivalent to 7' being topologically mixing (that is, for all non-empty
open sets U,V, there exists M >1 with UNT "V #g for all n> M), and to
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S being topologically mixing. If p<q and b,,...,b, €T, then p[b,,..., b=
plbp, - bglg=1bp,...,bglg={r€Xa |2z, =b; for p<i<q} when 0<p, and also
ol0ps - 30 =plbps - - bglg=[bps - - - s bglg={x € X a |2;=b; for p<i<q} when p€ Z. For
n,p > 1, we have T?(o[2o, - . . , Tp+n—1]) = 0[Tp, - - -, Tptn—1] if o[T0, .. ., Tpyn_1] # 2,
and T7P(p[zo, ..., Tn-1]) =p[To,...,Tn—1]. An allowable block in X4 or X4 is a
string by, ..., b,—1 of symbols with ap,p, Gy, - - - b, o6, , =1. If bg,...,byp_1 is an
allowable block, then we call p[bo,...,b,—1] an allowable cylinder. If b,ceT" and
D,q €N, then bPc? denotes the block by, ...,bpq—1, where b;=>b for 0<i<p—1
and b;=c for p<i<p+q—1. If zg,...,x,_1 is an allowable block in X4 and
z—(zo,zl,.. )€ Xa with ag, _,., =1, then (xq,...,2,-1,2) denotes the member
= (y;) of X4 with y; =x; for 0<z<n71 and yitn =2; for i = 0.

We often write X and X for X4 and X,4. Consider a subshift of finite
type (SFT) T:X — X. We use C(X) to denote the space of all real-valued
continuous functions on X, equipped with the supremum norm. We let M (X)
denote the space of all probability measures on the Borel subsets of X, equipped
with the weak*-topology, and let M(X,T) denote the non-empty subset of T-
invariant members of M (X). We say that 7€ M(X) has support X if 7(U)>0
for every non-empty open set U. If oeC(X), we let P(T @) denote the
pressure of T' at ¢ [13], and let T,p be the function Zl o poT". Similar
notation applies to S: X — X. When T is a one-sided subshift of finite type,
the Ruelle operator of peC(X) is denoted by L,:C(X)— C(X), so that
(Lof)(z) = e*W f(y), where the sum is over all yGT’lx. The dual operator
L7, always has an eigenmeasure in M (X), that is, there exists v € M(X) and A >0
with L5v=Av. For p € C(X) and T a one-sided subshift of finite type, we define
v (), for n > 1, as v, (p) = sup{p(z) —p(2’) |z, 2’ € X and z; =z}, 0<i<n—1}.
We define the space Bow(X,T) to be {p € C(X)| sup,,51 vn(Trnp) <oco} and the
space W(X,T) to be {p € C(X)| sup,,51 vnyp(Tnp) —0 as p— oo} [14, 15]. We
have W(X,T) C Bow(X,T), because ¢ € Bow(X,T) if and only if there is some
p =0 with sup,, > vy p(Thp) <oo. If ¢ € C(X) has summable variations (that is,
Yoo 1 un(p) <o0) [11], then ¢ € W(X, T)).

In [12], the author showed that for a topologically mixing subshift of finite type
(TMSFT), if o € W(X,T), then the Ruelle operator theorem holds (that is, there
exists A>0,v € M(X), and h € C(X) with A >0 and [ hdv =1 such that L,h = Ah,
Liv=Av and for all f € C(X),

L2 f)(x

% — () J fdv,

where = denotes uniform convergence on X), ¢ has a unique equilibrium state
pe and (T, p,) has a Bernoulli natural extension. Here p,=hv, and p, is the
unique g-measure for the g-function g(x) = e?@ h(x)/A\h(Tx). In [14], the author
considered these questions for ¢ € Bow (X, T) and proved a weakened version of the
Ruelle operator theorem. Each ¢ € Bow(X,T') has a unique equilibrium state f,.
We show in this paper that (T, u,) has a Bernoulli natural extension. We obtain
necessary and sufficient conditions on an eigenmeasure v for ¢ € C(X) to ensure
that ¢ € Bow(X,T) and to ensure that ¢ € W(X,T). These give characterizations
of when ¢ € Bow(X,T) in terms of . When this is applied to the cases ¢ = log g
and g is a g-function (see Section 3), we obtain results about the ‘reverse’ of a
g-measure.
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For a two-sided topologically mixing subshift of finite type, S :X — X and
¢ eC(X), we let var, (@), for n>1, denote var, (p) = sup{p(z) — ¢(2’) |z, 2’ € X
and z;=x, for —(n — 1)<i<n—1)}. Then let Bow(Xa,S)={pecC(X)]
SUp,, > Var, (Sn$) < oo}, where S, ¢= Z;L:_Ol po St Bowen showed that each ¢ €
Bow(X4,S5) has a unique equilibrium state jis [2]. We show that (S, fi,) is
isomorphic to a Bernoulli shift.

1. Eigenmeasures of the Ruelle operator

LeEmMMA 1.1. Let T:X — X be a one-sided topologically mixing subshift of
finite type, let p € C(X), and let v € M(X) and A >0 satisty L,v=Av. Then for
allm>1,p>1 and x € X, we have

1
V(O[x07...,mn+p71]) = ﬁ J e(Tp‘P)(wo,...71p71,Z) dV(Z)

2€0([Tp evs Tngp—1]
Proof.

1
oleos s zntpa)) = 55 | el 1(2) d0(2)
X

_ 1 J T D) @0 -1,2) 4y (). O
olTpseees Tntp—1]

In part (i) of the next result, the number k is the number of symbols in the
topologically mixing subshift of finite type and M is a natural number for which
the Mth power AM of the transition matrix A has every entry non-zero.

THEOREM 1.2. Let T:X — X be a one-sided topologically mixing subshift
of finite type and let p € C(X). Let v€ M(X) and A>0 satisfy L3v=Av. Then
A=eP (T v is a supported measure, and we have the following.

(i) For allp>1 and for all x € X,

M
(e“p(pr),\MeMlel)*l < V(0[107(~T- .4:)?5)_1])” < kMo (To9) e}\}l\l/«jp\l
edp
(ii) For alln>1, p>1 and for all x € X,
e*’Un +0 (Tp®) < V(O [IO’ e 71‘”""1)_1]) AP < e’Un,+P (Tpﬂp)_

V(O[$p7 ce 7xn+p71]) ellre)(@)

(iii) The measures v and voT P are equivalent and

dvoT™P E’;l
dv A
(iv) For each symboli€{1,2,...,k},T| }; is injective, so voT' | [ is a measure

on ¢[i] and
d(I/OT‘O[,L']) — e ?
d(v )

on q[].
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(v) Foralln>1,p>1 and for allwe X,

—vn(log £51) Viplwo, .. wna]) AP < evn(log £21)
V(O['LUO, s )wn—l]) (Egl) (’U})

e

Proof. (i)
v(p[xo, ..., Tp_1]) = J'Xo[zo,...,zpfl](z) dv(z)
X
1

T wtM J£g+MX0[I07---awp—1](Z) dv(z).
X

Now

LM Xofoy 2] (2) = 3 T oty 102),
where the sum is over all by, ..., by —1 with the product ay, _,p,06b; - - - by 129 > 0.
For any z,_1,20, such (bg,...,bpm—1) exist by topological mixing, and there
are at most k™ choices. For each such admissable (by,...,by_1), we have
[Ty 9)(@os- -+ p1,b0, -+ bar—1,2) — (Typ)(@)| < vp(Typ) + Mgl 50 we get
the inequalities in (i).

The left-hand inequality in (i) shows that v is supported. To see that A= eP(Te)
we use the fact that (1/p)log(LL1)(x) = P(T),¢) [14, Theorem 1.3]. If £ >0, then
there exists N, with ePP(T:¥)—pe (LE1)(x) < ePP(T:@)4pe for all 2 € X and for all
p > N.. Integrating with respect to v gives eP(P(T:¥)=) < \P L P(P(T:0)+2) for a]l
p>= N.. Hence e T9)—e <X <eP(T¥)+¢ and since this holds for every € >0, we
have A= el (T¢),

(ii) Statement (ii) follows from Lemma 1.1 and the inequality |(Tp¢)(zo,. ..,
wp-12) = (Tp)(@)| Svnip(Tpp), when z € o[p, ..., Tnip-1].

(iii) Fix a cylinder o[wo, . .., wp—1] in X. Then

Tﬁp(O[wOa v 7wn—1D == UO[yOa ceeyYp—1,Wo, - .- awn—l]v

where the union is over all (yo,...,%p—1) With ay,y, ...ay, _,w, =1, and this
is a disjoint union. Apply Lemma 1.1 to each such admissable ¢[yo,...,yp—-1,
W, - . ., Wp—1] to get
1
V(o[yo,-~-,yp—1,w0,~~-,"wn—1]) = V J e(pr)(y07'~~)yp717Z) dl/(Z)
Z€0[wq,..., wy _1]
Now sum over all (yo,...,yp—1) to get
_ LP1) (2)
(Z/OT p)(o[’LUQ,...,’UJn_l]): %dv(z)

2€o0[wo,. -y Wn —1]

(iv) We have to show that for each cylinder ¢[i,41,...,%,—1], we have

V(T ofiyit, ..y ip_1]) = A J e @) du(x).

€0 [iyi1,emmyip_1]
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We have

oltyi1,..ip —1]

A J' e~ #®) dv(z) = A J € P Xolisiv,nsiy_1] AV
X
L

(v) By (iii),

V(plwo,...,wp_1]) = J

zeo[wg,...,wn,l]
If we X and z €pwp,...,w,—1], then
—v, (logﬂ’;l) < ('C;S;l) (Z) g eln (logﬁfJ 1)
(£51) (w)
so (v) holds. O

e

Recall that we use the symbol = to denote uniform convergence on X.

COROLLARY 1.3. Let T: X — X be a one-sided topologically mixing subshift
of finite type, and let ¢ € C(X). Let v € M(X) and let A >0 satisfy L3v = \v. For
each fixed p>1,

v(o[®o, - Tnip_1]) . eTrP)@)

= as n — 0o
violTp, - Tntp-1]) AP ’

and

vi(plwo, - wn_1]) _ (£51) (w)
u(o[wo,...,wn_l]) = AP

as n — oQ.

Proof. The first statement is by Theorem 1.2(ii), since, for p fixed,
Unp(Tpp) — 0 as n— o0, and the second statement is by Theorem 1.2(v), since,
for fixed p, v, (log LL,1) — 0 as n— oo. O

In fact, the case p=1 in the first statement of Corollary 1.3 gives

v(o[zo,...,xn))  ef®)
vio[z1, ... xn)]) A

as n — oo,

and the case of general p follows from this, as does the second conclusion of the
corollary.
Note that we can write the first conclusion of Corollary 1.3 as

v(o[To, .- Tnip-1)) _ e(Tre)(z)
v(T?o[zo, ., Tntp—1]) AP

as n — oo,
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and the second conclusion as

v(T Polwg, ..., Wn_1]) (Cgl) (w)

violwo, - .., wp-1]) AP

as n — oQ.

The following result gives a condition for a probability measure to be an eigen-
measure of a Ruelle operator.

COROLLARY 1.4. Let T: X — X be a one-sided topologically mixing subshift
of finite type and let v € M (X). Then L7,v = \v for some p € C(X) and some A > 0 if
and only if v is supported and v (o[, - - ., xs))/V(0[21, - . ., Tp]) converges uniformly
on X to a function f: X — (0, 00).

Proof. 1f L v = \v for some v € M(X) and some A >0, then

l/((] [.’E(), e 7l'n]) = e‘/’(“J)
I/(O[.Z‘l,...,xn]) A

by Corollary 1.3.

If v(o[xo,--.,2n])/v(o[z1,--.,2s]) converges uniformly on X to a positive
function, then denote the limit by e?(®). We show that Lyv=v. For any cylinder
O[bo’ ceey bt71]7

(E;V)(O[bo, ceey bt,1]>
= J’EQ‘JXU[bOgHwbt—l} dV = J e@(bom) dy(x)

x€o[b1,..-5bt 1]

bo, b1, ..., b _ n
— lim V(o[ 0,01, y0t—1, Tp—1,Tt, y Lt ])d (a:)
n—o0 v(o[br,- -5 bi—1, Ti—1,. .. Tign))
x€o[b1,...sbt 1]

= lim Z v(obo, b1y -y bt—1, T4 15+, Tign))

n—oo
Tt —1y--3Tt4n

:V<O[b0,...,bt,1]). |:|

With Corollary 1.3 in mind, we can characterize when ¢ € C(X) is a member
of W(X,T) in terms of an eigenmeasure v. If N is the set of natural numbers,
then BC(N x X) denotes the space of bounded continuous real-valued functions on
N x X, equipped with the supremum norm.

THEOREM 1.5. Let T: X — X be a one-sided topologically mixing subshift of
finite type and let o € C(X). Let A= eP(T"¢). The following statements are pairwise
equivalent.

(i) peW(X,T).
(ii) There exists T € M(X) with support X satisfying

T(o[ro, - Tprn-1]) AP
T(o[.’lip, . ,Jip+n_1]) e(TpSP)(T)

=1 asn— o0,

where the convergence is uniform in both x € X and p € N.
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(iii) There exists v € M (X) with L3,v = A\v such that in BC(N x X), the sequence
(¢n), given by

(.2} = log (V(O[xo, " ,%M_l])),

V(O[xpv s 71.17“1’7171])
is convergent.
(iv) There exists p€ M(X,T) with support X and ¢ € C(X) satisfying
10g (/J/([J?(), s 7mn+p—1])
w([@ps - Tpp-1])

where the convergence is uniform in both x € X and p > 1.

) = (Tpp)(x) + L(x) —£(TPx) — plog A asn — oo,

Proof. The implication (i) = (ii) follows immediately from Theorem 1.2(ii). To
show that (ii) = (i), suppose that 7€ M (X) satisfies (ii). Then for all € >0, there
exists N, such that n > N, implies that

T(0lr0, s Tnipal) yp e @) L T Tpinal) g Vp>1,VreX.
T(o[Tps -+ Tngp-1]) T(o[zp, - - - Tpan—1])
If z,2€ X have x;=z for 0<i<p+n-—1, then when n>N. e %<
eTr)(@)=(Ty9)(2) < ¢2¢ Hence n> N, = Sup,,>1 Vp4n(Tpp) <2e. Hence p e W (X, T).
The implication that (i) = (iii) follows from Theorem 1.2(ii). If (iii) holds, then
the limit is (T,¢)(n) —plog A by Corollary 1.3, so (ii) holds.
We now show that (i) = (iv). When ¢ € W(X,T), the unique v € M(X) with
L%y = v satisfies (ii), as we saw above. By [11], there exists h € C(X), h >0, with
L,h=Mh and [ hdy=1. The measure p=hv € M(X,T), and

o—vi(logh) < w([xo, - -y xe-1]) < vt (log h) Vi>1, ze€X.
v(olzo, ..., xi—1])h(z)

Hence
p(lzo, .y Zngp_1]) AP h(TPx)
/J/([J?p, . axn-‘rp—l]) e(Tp‘P)(ZE) h(x)
uniformly in p> 1 and z € X. Statement (iv) follows with = log h.
If (iv) holds, then, for £ > 0, there exists N. such that n > N, implies that

—e ‘U([Jj(), cee 7-Tn+p—1]) AP h(Tp.I) .

=1 asn— o0

Vp>1, VreX,
S Wlltp e Tarp)) €BP@ () ¢ TPZRTEE
where h=e. If (x0,...,Tnip-1) = (20,- - -, Znip—1), then, for n> N,
h(TPz) h(z)e_gs < eHO@)~(T,0)(2) < h(TPz) h’(z)e%
h(TPz2) h(x) MTP2) h(z)

$0
Untp(Tpp) < vp(logh) + vpgp(log h) + 2e < 20, (log h) + 2¢ Vp>1, Vn>1.
Hence o e W(X,T). O

Note that when ¢ € W(X,T), then the eigenmeasure v has the property given in
(ii). The property in (ii) can be written as

T<0[m0’ c ’mn+p—1]) —nplo as n — o0
o (T(o[irp,...,a:n+p_1])> = (Tpp)(x) — plog A 7

where the convergence is uniform in both x € X and p>1.
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We now characterize, in terms of eigenmeasure, those ¢ € C'(X) which belong to
Bow(X,T).

DEFINITION 1.6. Let X be a one-sided topologically mixing subshift of finite
type. Let 7€ M(X). We say that 7 is approximately multiplicative at coordinate
zero if it has support X and there exists C' > 1 with

Cc '« 7(0l20, -+, Znip1]) <C Vnxl px>1l zeX.
T(olzo, .-y xp—1)T(0[Zp, - - - s Trgp—-1])
If we let f(")(x) =v(o[zo,...,2n_1]), then the condition becomes
O—l f(p—i—n)(m)

S F0 @) Fo (Tra) S

THEOREM 1.7. Let T: X — X be a one-sided topologically mixing subshift of
finite type and let p € C(X). Let \=eP(T:¢), The following statements are pairwise
equivalent.

(i) p€Bow(X,T).
(ii) There exists T € M(X) with support X and there exists D > 1 with

AP
<D Vp=>1, Vx e X.

-1 S
D™ < T(O[an--'7xp—1])e(Tpgo)(w) =

(iil) There exists v € M(X) with Lv=Av, and v is approximately multiplicative
at coordinate zero.

Proof. The implication (i) = (ii) follows from Theorem 1.2(i). If (ii) holds and
(xo,-..,xp—1)=(20,...,2p—1), then
2

D2 < B @-(T0)=) < 2

S0
vp(Tpp) < 2log D and ¢ € Bow (X, T).

To show (i) = (iii), we use Theorem 1.2(i) and (ii) to get
M < v(o[To, -+ s Tnip1])
)\MeMHWHeUner (Tpp)+vp (Tp @) = y(o[xo, PN :Ep_l])l/(o[xp, e ,$n+p_1])

< /\MeM||LpHevn+p(Tp</7)+vp(Tp ‘P).

Since vp1n(Tpp) < vary(Tpp), we have (i) = (iii). To see that (iii) = (ii), if C is the
constant in the definition of v being approximately multiplicative at coordinate
zero, then from Theorem 1.2(ii) we have

AP

.y I‘pfl])m < Celrtn (Tr ) for all n 2 1.

Cle e (To2) < y(olao, ..
Let n— oo to give (ii). )

The equivalence of (i) and (ii) is well known. Other equivalent conditions for
¢ €Bow(X,T) can be found in [14].

As we shall see in Section 3, Theorem 1.7 gives a nice characterization of which
g-measures correspond to a g with log g € Bow(X,T).
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COROLLARY 1.8. Let T: X — X be a one-sided topologically mixing subshift
of finite type and let ¢ € Bow(X,T). The unique equilibrium state p, of ¢ is
approximately multiplicative at coordinate zero.

Proof.  When ¢ € Bow(X,T), there is a unique v € M (X) with L3v= v [14],
and v is approximately multiplicative at coordinate zero by Theorem 1.7. Also,
ppo=hv for some measurable h:X — [a,b] with 0<a<b, and L,h=Ah and
[ hdv=1 [14]. Hence

av(plxo, ..., Tn-1]) < pe(pl@o, ..., Tn-1]) <bV(pxo,...,Tn-1])
Vp=21l,n>1, zeX,

so that p, is approximately multiplicative at coordinate zero. Ul

Since p, is T-invariant, we can write the approximately multiplicative at
coordinate zero condition for u, as follows. There exists D >1 with
D1« /Lap[o(x07---7xn+p—1)]
to (0T, - - s Tp—1]) e (p[Tps - -+ s Trtp—1])
We use this condition in the next definition.

<D Vpz21l,nz1l zeX.

DEFINITION 1.9. Let T: X — X be a one-sided topologically mixing subshift
of finite type and let 7 € M (X). We say that 7 has approximate product structure
if it has support X and if there exists C'>1 with

cl'g (020, Tnip1]) <C  Ya>l,p>1, zeX.
T(O[.Qfo, N ,l‘p_l])T(p[Ip, N ,xn+p_1])

If re M(X,T), then clearly 7 is approximately multplicative at coordinate zero
if and only if 7 has approximate product structure. To investigate the relationship
between the two conditions when 7 is an eigenmeasure v for £,, we can use the
following deduction from Theorem 1.2(iii).

ProposiTioN 1.10. Let T: X — X be a one-sided topologically mixing sub-
shift of finite type and let € C(X). Let ve M(X) satisfy Liv=Av with
A=eP T Let D>1, and let peN. Then

D'« (Eg’jp(fc)) <D VzeX
if and only if
ptg Ml szl oy o e x
T ) -

Proof. By Theorem 1.2(iii),

viplzo, -y 2n—1]) = J ([;\%)1) (w) dv(w). (%)

wEQ (20,120 —1]

Clearly the first statement of the proposition implies the second statement. Now
suppose that the second statement holds and let

U= {meX|%(m) >D}.
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Then U is open. Suppose that U#@. For z€U, choose some n with
020, ---52n—1] CU. Then, by (), v(pz0,---,2n-1]) > Dv(o([20,- -, 2n—1]), which
contradicts the assumption. Hence U=, so (LL1)(z)/A’ <D for all z€X.
Similarly, we get D' < (£1)(x)/AP for all z € X. O

COROLLARY 1.11. LetT: X — X be a one-sided topologically mixing subshift
of finite type and let ¢ € C(X). Let v € M(X) satisfy L,v= v with A= eP(Te),

Suppose that there exists D > 1 with
LP1) (z
D‘lg%gD Vp>1, Voe X.

Then v is approximately multiplicative at coordinate zero if and only if v has
approximate product structure.

COROLLARY 1.12. Let T: X — X be a one-sided topologically mixing subshift
of finite type and let p € C(X). Let A=e"T:#). Then ¢ € Bow(X, T) if and only if
both of the following statements hold.

(i) There exists B>1 with B™' < (L1)(x) /N < B for all p>1, z€ X.

(ii) There exists v€ M(X) with Liv=Av and v has approximate product
structure.

Proof. If p€Bow(X,T), then (i) holds by [14, p. 337], and (ii) holds by
Theorem 1.7 and Corollary 1.11. If (i) and (ii) hold, then, by Corollary 1.11, v
is approximately multiplicative at coordinate zero and hence ¢ € Bow(X,T) by
Theorem 1.7. ]

The following lemma is well known.

LEMMA 1.13. Let T: X — X be a one-sided topologically mixing subshift of
finite type and let ¢ € C(X) and A=eP(T%). Suppose that v€ M(X) satisfies
Liv=M\v, and suppose that there is a measurable h: X — [a,b] with 0<a<b
and L,h = Ah. Suppose that h is normalized so that [ hdv=1. Then p=hv is an
equilibrium state for .

Proof. We have u€ M(X,T) since, for f € C(X),
Jfonu: JfoThdu:)\_l Jﬁw(foTh)dV:)\_l Jfﬁg,(h) dv= thdy: dew
To see that p is an equilibrium state, we use Theorem 1.2(i) to get

—]1) log(AMeMlely — vp(Tp2) < —]% log v(o[zo, . .., xp_1]) + %(Tpgo)(x) —log A

p
M Mllell
< log <k € )_'_UP(TP )

K=

M D

Since av(o[zo, - - -, Tp—1]) < p(o[zo, - - -, p—1]) <bv(o[z0, ..., 2p—1]) and
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we have
1 1
> log pu(o[xo, - - -y p—1]) + ];(Tpgo)(x) = log A = P(T, ).

Integrating via p gives

1 (%)
ln (\/ T"f) +[pdn— P(0),
p =0

where £ is the partition into states at coordinate zero. Since £ is a one-sided
generator, we have h,(T)+ [@dp=P(T, ). O

There is another characterization of ¢ € Bow(X,T).

THEOREM 1.14. Let T: X — X be a one-sided topologically mixing subshift
of finite type and let ¢ € C(X) and A =ePT%). Then o € Bow(X,T) if and only if
all of the following three statements hold.

(i) ¢ has a unique equilibrium state fi,.
(i) p, has approximate product structure.
(iii) There exists B>1 with B~' < (L21)(z)/AW? < B for allp>1, z€ X.

Proof. If p € Bow(X,T), (i) and (iii) hold by [14], and (ii) holds by Corollary
1.8. Now assume that the three conditions hold. Let v € M (X) satisfy L3,v = Av. By
(iii), there is a measurable h: X — [a,b] with 0<a<b, [hdv=1, and L h=Ah
[14, p. 341]. Then, by Lemma 1.13, p = hv is T-invariant and is an equilibrium state
for ¢. By (i), pp, = hv. By (ii), p, is approximately multiplicative at coordinate zero,
so v is also. Hence ¢ € Bow(X,T) by Theorem 1.7. O

2. The weak Bernoulli property

In this section, we show that if ¢ € Bow(X,T'), then the natural extension of T'
with respect to the unique equilibrium state p, of ¢ is a Bernoulli shift. We shall
also show that when S: X — X is a two-sided topologically mixing subshift of
finite type and ¢ € Bow(X, S), then (S, i) is isomorphic to a Bernoulli shift where
ftp is the unique equ1hbr1um state of @.

When ¢ € Bow(X, S), then Bowen [2] showed that there exists C'> 1 with

1 fp([zo, - ani]) o
O ey <O YeeX ¥zl

It readily follows that /i, has approximate product structure (or rather that jio a1

does, where 7: X — X is the natural projection). The definition of approximate
product structure also makes sense for a measure on the two-sided shift space X.

Whereas every ¢ €W (X,S) is cohomologous in C(X) to some gom with
@ e W (X,T) [1], there are examples of ¢ € Bow(X, S) which are not cohomologous
in C(X) to a one-sided function [10].

For every p€ M(X,T), there is a unique fi € M(X', S) with fiom =t = . We have
(p[bos -+, bn—1]) = p(g[bos - - ., bp—1]), for all pe Z, ¢>0. This gives a bijection
between M (X, T) and M (X, S).
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THEOREM 2.1. Let T: X — T be a one-sided topologically mixing subshift of
finite type with transition matrix A. Let u€ M(X,T) have approximate product
structure. If AM >0, then there exists D > 1 such that for all n>2M, all p,q>1,
and all allowable cylinders ¢[zo, . .., Tp-1], 0[Y0, - - -, Yq—1], We have

,U(o[l‘(), R ‘Tp—l} mTf(p+n)0[y0’ v 7yq—1])
w(zo, - - s xp—1]) Yo, - - -5 Yg—1])

D' <D.

Proof. Let C be the constant in the approximate product structure condition
for p. Let [zo,...,2p-1] and [yo,...,ys—1] be given. Let n>2M. Since AM >0,

there is a point w € X of the form w=(zo,...,Tp—1,Wps -+, Wptn—1,Y0,Y1,---)-
Moreover, for any allowable choice of the cylinder [wpyar—1, ..., Wptn—nm], there is
such a point. Since

ot g

nlzo, .-, Tp—1,Wp, -5 Wptn—1,Y05- > Yq—1]
wlxo, ..y zp—1]pfwp, .., Wy M -2 Wp M —1s s Wy — M I Wp M 1 s Wp4n—1l0lyo, .-, Yg—1]
<ct
we have

(olzo, -, zp—1] NT=P+) gy, . ..  Yq—1))
M(o[ﬂco, cee 7$p71])/$(0[y07 e ayq—1])

where d is the minimal py-measure of a cylinder of length M — 1.
Therefore, put D = C4d~2. O

o-ta? < B <t

If we consider the corresponding two-sided measure fi, then the conclusion of
Theorem 2.1 can be written as
D-l < ﬂ(—f[x—pa ORI .13_1] m:g_no[y(h .. 7yq—1]) g D
iz —p, -, 2 1])i[yo, - - -, yg-1])

for all n>2M and all cylinders _p[z_p, ..., 2_1], 0[yo, - - ., Yq—1] With p,g>1.
By the usual approximation arguments, one can readily get
i((BiNS™™B
pig MBOS B (1)
fi(B1)f(Bz2)
whenever n>2M, By € B~ , By B and ji(B)fi(B)>0. Here BZL is the
o-algebra generated by all cylinders _p[z_p,..., x_1]—1 with p>1, and B° is the

o-algebra generated by all cylinders o[yo, - - -, Yq—1]q—1 With ¢ > 1.
We shall use the following result.

COROLLARY 2.2. Let S: )A(A—> X be a one-sided topologically mixing subshift
of finite type and let i€ M(X,S) be of approximate product type. Then S is
strongly mixing with respect to fi.

Proof. This follows from a result of Ornstein [9] if we can show that S is ergodic
for each 7 >1 and there is a constant d with
limsup (B N S™"Bz) < diu( B)jiu(Bs) ¥V By, By €B.
n—oo
From (), we get
hm sup ﬂ(Bl N S_nBQ) < Dﬂ(Bl)ﬂ(Bg)

n— o0
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whenever B; € B __ and B; € B>, £, j >0, so an approximation argument gives the
same inequality whenever By, By € B.

Similarly,
liminf 4(By NS~ "By) = D™ ju(By)fi(Bs)
whenever Bi, Bs € B. This latter inequality gives the total ergodicity required for
Ornstein’s result, since, if $?By = By, then
0=j((X\ B2) N By) 2D~ (X \ Ba)ji(Ba),
so either fi(By) or (X \ By) is 0.

We now use results of Bradley to show that having approximate product structutd
implies the weak Bernoulli property.

THEOREM 2.3. Let S: ):( — X be a two-sided topologically mixing subshift of
finite type, and let i € M(X,S) have approximate product structure. Then for all
€ >0, there exists N so that n> N implies that

e “fi(B1)(B2) < i( B1NS™"Ba) < e*fi(B1)/i(B2)

whenever B; EB:SX) and B, € B§°. Hence the natural partition into states at
coordinate zero is a weak Bernoulli partition for S, so (S, fi) is isomorphic to a
Bernoulli shift.

Proof. From Theorem 2.1, the inequalities () hold. Since, by Corollary 2.2,
(S, 1) is strongly mixing, then, by a result of Bradley [3], if

(B "B
w;:sup{—ﬂ( 1mS 2)

By €BZL, ByeBy, i(B1)i(Bsy) >0}

fi(B1)/i(Bz) -
. (A(BinS"B _ o
d}n = mf{W Bl EB?;O, BQ GBO 5 /l(Bl)/J(BQ) > 0},

then (i) either ¢} —1 as n— oo or X = oo for all n, (ii) either ¢/, -1 as n — o0
or ¥/, =0 for all n. Since inequalities (1) hold, we have ¥ < D and D~ <1, so
¥ —1 and ¢}, — 1. This gives the condition in the statement of the theorem. The
isomorphism result is due to Friedman and Ornstein [5]. O

We state the following results.

THEOREM 2.4. Let T:X — X be a one-sided, and let S:X — X be the
corresponding two-sided topologically mixing subshift of finite type.

(i) If peBow(X,T) and p, is its unique equlibrium state, then the natural
extension of (T ji,) Is isomorphic to a Bernoulli shift.

(i) If € Bow(X,S) and fis is its unique equilibrium state, then (S,fi,) is
isomorphic to a Bernoulli shift.

Proof. (i) By Corollary 1.8, p, has approximate product structure, so /i, has
approximate product structure. Now Theorem 2.3 gives the result.
(i) Bowen [2] showed that fis has the property that there exists C' > 1 with

—1 ﬂ¢[$0,-~-,$n—1])‘ﬁ >
C S GamarEg <S¢ YnzlrzelX
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Hence i, has approximate product structure, so the result follows by Theorem 2.3.

O

3. g-measures

We interpret the results in Sections 1 and 2 for the case of g-measures. If
T:X — X is a one-sided topologically mixing subshift of finite type, let G(X,T),
or G, denote the set

{gGC(X)|g(x)>OV:c€Xand Z g(y)—lVazeX}.

yeT 1z

If g€ G, we can consider Liog4, and p€ M(X) is called a g-measure if Lf, pu=p
[7]. Such a measure always belongs to M(X,T). The condition can be formu-
lated in several ways. For example, one can show that pe M(X,T) is a g-
measure if and only if p is an equilibrium state of logg ([8], see also [11]).
Since P(T,logg)=0 for g€ g, this condition becomes h,(T)+ [loggdu=0. Let
MX,T)={peM(X,T)|uis a g-measure for some g€ G(X,T)}.

The following results are special cases of the results in Sections 1 and 2, obtained
by considering ¢ of the form logg with g€ G(X,T). Again, k is the number of
symbols used for the subshift of finite type, and M is a natural number with AM > 0.

THEOREM 3.1. Let T: X — X be a one-sided topologically mixing subshift of
finite type and let g € G. Let u be a g-measure. Then p has support X and each of
the following holds.

(i) Forallp>1,xz€ X,

. _ u[$07~-~790p—1] M v, (T}, log g)
1nfg Me vp (T log g) < <k eVrtp l089)
(infg) 9@)9(Ta) .. g(T 1)

(ii) For alln,p <1,z € X,

e_v"“’(T” logg) < :u’([x()v cee 7xp+n*1]) < eVntp (T log g).
iz ap i) g @)g(T) - (TP 17)

COROLLARY 3.2. ForT:X — X, g€G and pne M(X,T) as in Theorem 3.1,
we have for each fixed p > 1,

w([zo, - - s Tpyn—1])

x T)... P=ly)  asn — oo.
w([Tpy s Tprn_1]) =g(x)g(Tx)...g9(T )

COROLLARY 3.3. Let T: X — X be a one-sided topologically mixing subshift
of finite type and let y € M (X, T). Then p is a g-measure for some g € G if and only
if p has support X and p([xo, ..., xn—1])/p([z1,...,2n_1]) converges uniformly on
X asn— oo to a function f: X — (0, 00).

With Corollary 3.2 in mind, we can characterize those g with logg e W(X,T) as
follows.

THEOREM 3.4. Let T: X — X be a one-sided topologically mixing subshift of
finite type and let g € G. The following statements are pairwise equivalent.
(i) logge W(X,T).
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(ii) There exists p€ M (X, T), with support X, satisfying

log (,u([l‘o, ) $p+n—1D
([ -y Tprn—1])

where the convergence is uniform in both x € X and p> 1.
(iii) There exists a g-measure p such that in BC(N x X), the sequence (i),

given by
) _ u([x(),...,prrnl]))
Un(p, ) 08 (u([xp,...,xp-g-n—l]) ’

) — (T, (log 9))() asn — oo,

is convergent.

Note that the unique g-measure p, when log g € W (X, T), satisfies the condition
in (ii).

We shall use Theorem 3.4 later in an application. The following result
characterizes those g with log g € Bow(X,T).

THEOREM 3.5. Let T:X — X be a one-sided topologically mixing subshift
of finite type and let g € G(X,T). Then log g € Bow(X,T) if and only if there is a
g-measure which has approximate product structure. When log g € B(X,T), there
is a unique g-measure u and the coordinate zero partition is weak Bernoulli for
so that the natural extension of (T, ) is isomorphic to a Bernoulli shift.

Proof.  Since a g-measure is exactly an eigenmeasure for £f,, , and is T-invariant,
the first statement follows from Theorem 1.7. Let logg e Bow(X,T). By [14,
Theorem 3.2], there is a unique g-measure, and the Bernoulli properties follow
from Theorem 2.4. O

Notice that when p is g-measure, then p has approximate product structure if
and only if log g € Bow(X,T).

We now consider the question of whether the ‘reverse’ of a g-measure is
also a g-measure. Let T: X — X, where X = X4, be a one-sided topologically
mixing subshift of finite type, and let S :X — X be the corresponding two-
sided topologically mixing subshift of finite type. Let 7:X — X be the natural
projection given by m{x,}>* ={x,}5°. Then 7S =T, and there is a natural
bijection M (X, S) — M(X,T) given by i — jiom~*. We denote ion! by fi.

The other one-sided space X_ = {{x,,}° . |3z; for i>1 with {z,}>*_ec X} to-
gether with the shift T : X_ — X_ | given by T_((...,z_2,2_1,20)) = (..., T_2,
x_1), can be considered as the one-sided shift on the space X 4¢, where A® is the
transpose of the matrix A. Let m: X — X_ be given by m_{z,}*_ ={z,}°
and then 7S~'=T_7_. Since M(X,S~)=M (X, S), we have a natural bijection
M(X, S)— M(X_,T_) given by ji— fion_'=j_, so that i, — ji_ gives
a natural bijection M(X,T)— M(X_,T_), For an allowed cylinder [i1,...,i,]
in X, we have fiy(s[it,...,ir])=p_([i1,...,ir)s) for all >0, t<0. Clearly i
has support X if and only if 4_ has support X_. We can define what it
means for fi_ to have approximate product structure by considering the natural
conjugacy X_ — X a¢, given by (..., x_9,2_1,29) — (20, 2_1,Z_2,...), of T_ to
the topologically mixing subshift of finite type on X 4¢. Then i has approximate
product structure if and only if fi, has approximate product structure if and only
if 1 has approximate product structure.
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Let G4 denote G(X,T), the space of all positive g-functions for T, and let G_
denote G(X_,T_), the space of all positive g-functions for 7. Hence

g—{geC(X_)|g(z)>0Vz€X_ and Z g(w)leEX_}.

weT-" 'z

If M denotes M(X,T) and M_ denotes M(X_,T_), then the map jiy — fi—
need not map M into M_. Kalikow constructed examples to show this when X is
the full shift space on two symbols [6]. One can construct a family of such examples,
inspired by Kalikow, as follows.

Let X = [T, {0, 1} be the space of all sequences (zg, z1, . ..) with each z,, € {0, 1}.
Let {d,}22, be such that d,€]0,1) for all n>0, d,—0 as n—oo, and
S o(dn/(1 + dyp))=00. Such a sequence is given by d,=1/(n+1). Define
g: X —(0,1) as follows. For k>0, £ >0, put

g(000¥1°101...) = 3(1 — die),
9(1001°101...) = 3(1 + die),
9(000¥1°100...) = 3(1 + dke),
9(100¥1°100...) = $(1 — dke),

and g(z)= % at all other points. The value of g depends on the first occurrence of
cylinder [10] in (z2,x3,...) and on whether this occurrence of [10] is followed by
a 0 or a l. Then g€ G,. Suppose that fiy is a g-measure and let i_ correspond
to it under the natural bijection M (X,T)— M(X_,T_). Here X_ is the space
H(ioo{(), 1}. One can easily show that fi([1™00])/fi+([1™0]) does not depends on

m for m > 2 so has a constant value c € (0,1). Hence

o (1700) _ e((1700))
p-([1mo]) g ([1m0))

Suppose that fi_ is a g_-measure for some g_ € G_. Then g_(1°°00) = _[1™00]/
f—[1™0] for all m>2, so g_(1°°00)=c. However, one can use the properties
of {d,} to show that, for each fixed m>1, fi4([0"1™0])/fi+([0"1™00]) —0 as
n — oo. Hence i ([0"1™00])/ii—([0"1™0]) — 1 as n — 00, so g—(0°°1™00) =1 for all
m > 1. Therefore g_ cannot be continuous, because lim,, ., g—(0°1m00) =1#c=
gm (1°°00). O

We now show that if gy €G, and loggy € W(X,T) and fiy is the unique
g+-measure, then f_ is the unique g_-measure for some g_ € G_ with logg_ €
W(X_,T).

THEOREM 3.6. Let S:X — X be a two-sided topologically mixing subshift
of finite type and let T: X — X, T_: X_ — X _ be the corresponding one-sided
topologically mixing subshifts of finite type. Let i, — fi_ be the natural bijection
from M(X,T) to M(X_,T-) described above. Let g, € G, and let fiy be a g-
measure. If logg, €e W(X,T), then [i_ is a g_-measure for some g_ € G_ and
logg_ e W(X_,T_). We have

log( fllron, .20 )— log g ()

ﬂ_([x_m e ,1'_1])

<2liminfu,;(Tjloggy) Vn>1, xe X_.
Jj—00

The functions log g4 o and log g_ om_ are cohomologous in C(X')
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Proof. For n>1, define b, : X_ — (0,1) by

,u,([x,n, ct "EOD _ ﬂ+([1',n, c ‘TOD
ﬂ—([x—m"wx—lb ﬂ-‘,—([l'—n,---,x—l}).
We show that (logby,) is a Cauchy sequence in (C, X_). Since
bn(@) (@, wo]) fg([nj, . 21])
butj(x)  f([r—n—js-- - 20]) f([T—p,. . za])
we can use Theorem 3.1 to get

bp(z) =

e~ Vn+i+1(Tjlog g+)—vn; (T log g+) < bn () < eVn+i+1(Tjlog g )+vn 1 (T loggy)
b (@)
Therefore |log b, (z) — log b+ ;(z)| < 20,4, (T log g4+ ), and since log gy € W(X,T),
we have (logb,) is a Cauchy sequence in C'(X_). Hence log b, (z) = ¢ (x) for some
Y e C(X-). Since - cp-1(,) bn(2) =1foralln>1, we have 3° -1, e?(®) =1. Let
g_=e%. Then g_ is a g-function for T_: X_ — X_ and fi_ is a g_-measure by
Corollories 3.2 and 3.3.
We get

[log by () —log g ()] < 2liminfvy,;(T;log g+ ).

J—

To see that logg_ € W(X_,T-), we use Theorem 3.4. Since log gy € W(X,T),

we have that
(p if) _ log <ﬂ+([$0, ct ‘,Ep‘i’n*lD >

/J"'r([xpa SR xp—&-n—l])

is a Cauchy sequence in BC(N x X). This is the equivalent to

ﬂ—([z—(n-i-p—l)a cee ZOD )
Az tp1y = )
being a Cauchy sequence in BC(N x X_), and hence logg_ e W(X_,T_).

We use [15, Theorem 1.4] to see that log g4 o7 is cohomologous to logg_om_
in C(X). Since logg, € W(X,T),log g+ om is cohomologous in C(X) to ¢_om_
for some ¢_€C(X_). By of [15, Lemma 13|, ¢_ € W(X_,T_). Hence p_ is
cohomologous in C(X_) to log g, for some g-function ¢ : X_ — (0, 1) [12]. Since
p— is a g-measure for g; and g, we have g; = g_. Hence log g1 o7 is cohomologous
to logg_om_ in C(X). O

A

We do not know if the corresponding result holds when W (X, T) is replaced by
Bow(X,T), but we do have the following.

THEOREM 3.7. Let S:X — X be a two-sided topologically mixing subshift
of finite type, and let T: X — X, T: X_ — X_ be the corresponding one-sided
topologically mixing subshifts of finite type. Let i, — fi_ be the natural bijection
from M(X,T) to M(X_,T_) described above. Let fi be a g,-measure and [i_ be
a g_-measure for some g4 € G, and some g_ € G_. Then log g1 € Bow(X,T) if and
only if logg_ € Bow(X_,T_).

Proof. From Theorem 3.5, we know that log g+ € Bow(X,T) if and only if iy
has approximate product structure, and log g— € Bow(X_,T_) if and only if i_ has
approximate product structure. ]
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