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ABSTRACT: We consider some diagonal quasi-Newton methods for solving large-scale unconstrained optimization 

problems. A simple and effective approach for diagonal quasi-Newton algorithms is presented by proposing new 

updates of diagonal entries of the Hessian. Moreover, we suggest employing an extra BFGS update of the diagonal 

updating matrix and use its diagonal again. Numerical experiments on a collection of standard test problems show, in 

particular, that the proposed diagonal quasi-Newton methods perform substantially better than certain available 

diagonal methods. 
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  ذات أبعاد عالية مقيدةالغيرفي الأمثليات  قطريةتقريبات هس الحسين ت

 البعلي حي الدينم و السيابي حمدأ

نفترض بعض الطرق المشابهة لطريقة نيوتن بمصفوفة قطرية لحل مسائل الأمثليات غير المقيدة وبأبعاد عالية. يتم تقديم نهج بسيط وفعال  :صلخمال

بشكل  BFGSلخوارزميات تلك الطرق من خلال اقتراح تعديلات جديدة إلى قطر مصفوفة هس التقريبية. إضافة إلى ذلك، نقترح تطبيق دستور التعديل 

كل افي على مصفوفة القطرالمعدلة واستخدام قطر المصفوفة الناتجة مرة أخرى. تظُهر التجارب العددية على مجموعة من المسائل النموذجية، بشإض

 خاص، أن طرق نيوتن المشابهة المقترحة لتعديل قطرالمصفوفة التقريبي تعمل بشكل أفضل بكثير من طرق قطرية معروفة.
 

 .BFGS تعديل، المشابهة ، طرق نيوتنذات أبعاد عالية لئاس، مةمقيدالغير  الأمثليات :مفتاحيةالكلمات ال
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1. Introduction 

This paper is concerned with quasi-Newton methods for solving the large-scale unconstrained optimization problem   

                            min𝑥∈ℜ𝑛 𝑓(𝑥),                                                                               (1.1) 

where 𝑓: ℜ𝑛 ⟶ ℜ is a twice continuously differentiable function. It is assumed that 𝑛 is large so that a matrix cannot 

be stored explicitly. The methods are defined like the Newton method with line search framework, except that the 

Hessian 𝐺(𝑥𝑘) = ∇2𝑓(𝑥𝑘) is replaced by a symmetric and positive definite matrix 𝐵𝑘. This Hessian approximation 

satisfies the so-called quasi-Newton condition for 𝑘 > 1, assuming 𝐵1 is given (usually, 𝐵1 = 𝐼, the identity matrix). 

The quasi-Newton methods are defined iteratively as follows. At the beginning of each iteration, 𝑥𝑘 is available (𝑥1 is 

given) so that the gradient 𝑔(𝑥𝑘) = ∆𝑓(𝑥𝑘) is computed. If this vector (denoted by 𝑔𝑘) is not sufficiently close to zero, 

a search direction 𝑠𝑘 is provided (𝑠1 = −𝐵1
−1𝑔1) such that the descent property 𝑠𝑘

𝑇𝑔𝑘 < 0 holds. Thus, a positive 

steplength 𝛼𝑘 which reduces 𝑓(𝑥𝑘) along 𝑠𝑘 exists. In practice, 𝛼𝑘 is usually chosen to satisfy the Wolfe-Powell 

conditions  

                          𝑓𝑘+1 ⩽ 𝑓𝑘 + 𝜎0𝛼𝑘𝑔𝑘
𝑇𝑠𝑘 ,          𝑔𝑘+1

𝑇 𝑠𝑘 ⩾ 𝜎1𝑔𝑘
𝑇𝑠𝑘,                                             (1.2) 

where 𝑓𝑘 denotes 𝑓(𝑥𝑘), 0 < 𝜎0 < 0.5 and 𝜎0 < 𝜎1 < 1. Then a new point is given by 

                           𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑠𝑘 .                                                                                             (1.3) 

For the next iteration, the Hessian approximation 𝐵𝑘 is updated to 𝐵𝑘+1 in terms of the two vectors 

                          𝛿𝑘 = 𝑥𝑘+1 − 𝑥𝑘 ,        𝛾𝑘 = 𝑔𝑘+1 − 𝑔𝑘,                                                                (1.4)    

such that the quasi-Newton condition 

                         𝐵𝑘+1𝛿𝑘 = 𝛾𝑘                                                                                   (1.5) 

holds. Hence, the next search direction 𝑠𝑘+1 is computed by solving the system of linear equations 

                      𝐵𝑘+1𝑠𝑘+1 = −𝑔𝑘+1.                                                                            (1.6) 

Although there exist many quasi-Newton updating formulae in the literature, we will focus on the popular BFGS 

update 

                      𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝛿𝑘𝛿𝑘

𝑇𝐵𝑘

𝛿𝑘
𝑇𝐵𝑘𝛿𝑘

+
𝛾𝑘𝛾𝑘

𝑇

𝛿𝑘
𝑇𝛾𝑘

,                                                                             (1.7) 

because this formula has the following useful features. It satisfies the quasi-Newton condition (1.5) and maintains the 

Hessian approximations positive definite if the curvature condition 

                       𝛿𝑘
𝑇𝛾𝑘 > 0                                                                                   (1.8) 

holds, which is guaranteed if the Wolfe-Powell conditions (1.2) are satisfied. In addition, the corresponding BFGS 

method converges superlinearly for convex objective functions. (For more details, see, for example, Fletcher [1]). 

Since the updated matrix 𝐵𝑘+1 cannot be stored explicitly, for sufficiently large values of 𝑛 it is replaced by 

another matrix that can be stored implicitly, so that the search direction in (1.6) is simply computed for all 𝑘 (see for 

example, Andrei [2], and Nocedal and Wright [3]). Here, we consider several proposals for maintaining 𝐵𝑘 diagonal, 

although the quasi-Newton feature (1.5) is not expected to be satisfied. Thus, a number of diagonal updates have been 

proposed (see the next section), some of which satisfy the weak quasi-Newton condition 

                        𝛿𝑘
𝑇𝐵𝑘+1𝛿𝑘 = 𝛿𝑘

𝑇𝛾𝑘.                                                                        (1.9) 

However, we will consider the possibility of improving the role of these matrices by trying to impose the quasi-Newton 

feature through an extra BFGS updating strategy. 
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The rest of our work is organized as follows. In the next section, we discuss a selection strategy for diagonal 

entries of quasi-Newton BFGS Hessian and inverse Hessian approximations. Section 3 defines other diagonal updates 

(some satisfy the weak quasi-Newton condition (1.9)). In Section 4 we discuss the convergence property, while in 

Section 5 some numerical results are presented. We will see that the proposed technique improves upon the 

performance of the diagonal matrix updates substantially. Finally, we conclude in Section 6. 

2. Diagonal quasi-Newton BFGS updates 

Although it is possible to define the inverse Hessian approximation by employing a number of BFGS updates in 

terms of vector pairs {𝛿𝑖 , 𝛾𝑖}, for some 𝑖 ≤ 𝑘, without storing a matrix explicitly (see, for example, Buckley and LeNir 

[4], Fletcher [5], Liu and Nocedal [6], and Shanno [7]). We do not consider them here because we focus on the simple 

diagonal Hessian approximations and diagonal inverse Hessian approximations. 

In this section, we describe the BFGS update for maintaining the Hessian approximations 𝐵𝑘 or its inverse 𝐻𝑘 

diagonal for all 𝑘. For convenience, we denote �̂� = diag [𝐵] ≡ diag [�̂�(1), … , �̂�(𝑛)] and note that for any two vectors 𝑢 

and 𝑣  we have 

diag(𝑢𝑣𝑇) = diag[𝑢(1)𝑣(1), … , 𝑢(𝑛)𝑣(𝑛)] ,

diag(�̂�𝑢) = diag[�̂�(1)𝑢(1), … , �̂�(𝑛)𝑢(𝑛)] ,

diag(�̂�𝑢𝑣𝑇) = diag[�̂�(1)𝑢(1)𝑣(1), … , �̂�(𝑛)𝑢(𝑛)𝑣(𝑛)] .

 

Thus, in particular, it follows from (1.7) that the diagonal BFGS update of a diagonal matrix �̂�𝑘 can be written as 

follows: 

 

                �̂�𝑘+1 = �̂�𝑘 −
diag(�̂�𝑘𝛿𝑘𝛿𝑘

𝑇�̂�𝑘)

𝛿𝑘
𝑇�̂�𝑘𝛿𝑘

+
diag(𝛾𝑘𝛾𝑘

𝑇)

𝛿𝑘
𝑇𝛾𝑘

                                                       (2.1)    

or equivalently, 

                         �̂�𝑘+1
(𝑖)

= �̂�𝑘
(𝑖)

−
(�̂�𝑘

(𝑖)
𝛿𝑘

(𝑖)
)

2

∑  𝑛
𝑗=1 �̂�𝑘

(𝑗)
(𝛿𝑘

(𝑗)
)

2 +
(𝛾𝑘

(𝑖)
)

2

𝛿𝑘
𝑇𝛾𝑘

,                                                            (2.2) 

for 𝑖 = 1, … , 𝑛. We note that this formula requires the storage of only three vectors. We first consider the most efficient 

quasi-Newton BFGS method that is defined by (1.3), (1.7) and (1.6). For convenience, we rewrite the BFGS update 

(1.7) as bfgs matrix function 

                       𝐵𝑘+1 = bfgs(𝐵𝑘 , 𝛿𝑘, 𝛾𝑘),                                                                       (2.3) 

where 

                      bfgs (𝐵, 𝛿, 𝛾) = 𝐵 −
𝐵𝛿𝛿𝑇𝐵

𝛿𝑇𝐵𝛿
+

𝛾𝛾𝑇

𝛿𝑇𝛾
                                                                      (2.4) 

is the BFGS formula for updating any symmetric matrix 𝐵 in terms of any two vectors 𝛿 and 𝛾. This formula has the 

useful features that it maintains the positive definiteness of 𝐵 if 𝛿𝑇𝛾 > 0 and satisfies the quasi-Newton condition 

bfgs (𝐵, 𝛿, 𝛾)𝛿 = 𝛾. Thus, the updated matrix (2.3) is maintained positive definitive if the curvature condition (1.8) 

holds. 

Since the updated matrix (2.3) cannot be stored explicitly, Gilbert and Lemaréchal [8] suggest using the diagonal 

BFGS update 

�̂�𝑘+1 = diag[bfgs(�̂�𝑘 , 𝛿𝑘, 𝛾𝑘)],                                                                               (2.5) 

which is equivalent to both (2.1) and (2.2), assuming �̂�1 is given diagonal. In this case, �̂�𝑘 remains diagonal and 

positive definite so that the search direction (1.6) is simply computed as 

                 𝑠𝑘+1 = −�̂�𝑘+1
−1 𝑔𝑘+1,                                                                              (2.6) 

without computing the inverse matrix �̂�𝑘+1
−1 (= �̂�𝑘+1, say) explicitly. In the next section, we will consider a 

modification of this method.  
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We now show that the inverse matrix of (2.3) which defines the BFGS inverse Hessian approximation yields a 

choice for defining �̂�𝑘+1 explicitly as follows. Let the BFGS inverse Hessian approximation be defined by 

                𝐻𝑘+1 = bfgs−1(𝐻𝑘 , 𝛿𝑘, 𝛾𝑘),                                                                       (2.7) 

where for any symmetric matrix 𝐻 and two vectors 𝛿 and 𝛾, 

              bfgs−1(𝐻, 𝛿, 𝛾) = 𝐻 + (1 +
𝛾𝑇𝐻𝛾

𝛿𝑇𝛾
)

𝛿𝛿𝑇

𝛿𝑇𝛾
−

𝛿𝛾𝑇𝐻+𝐻𝛾𝛿𝑇

𝛿𝑇𝛾
.                                             (2.8) 

Thus, if 𝐻 is stored implicitly (particularly, when it is diagonal) such that the product 𝐻𝑢 is available for any vector 𝑢, 

then the product bfgs−1 (𝐻, 𝛿, 𝛾)𝑣, for any vector 𝑣, can be computed without storing the updated matrix 

bfgs−1 (𝐻, 𝛿, 𝛾) explicitly. Hence, the search direction (1.6) for the next iteration can be computed directly by 

              𝑠𝑘+1 = −𝐻𝑘+1𝑔𝑘+1,                                                                       (2.9) 

although 𝐻𝑘+1 is a dense nondiagonal matrix. This technique maintains the useful quasi-Newton condition 𝐻𝑘+1𝛾𝑘 =
𝛿𝑘 and will be applied to some diagonal matrices to impose the quasi-Newton condition again (see Al-Siyabi, [9]). 

As for the BFGS update, we now apply the diagonal technique to the inverse BFGS update (2.7) to obtain 

            �̂�𝑘+1 = diag[bfgs−1(�̂�𝑘 , 𝛿𝑘, 𝛾𝑘)].                                                        (2.10) 

Although the inverse BFGS updated matrix bfgs (�̂�𝑘 , 𝛿𝑘, 𝛾𝑘)
−1

= bfgs−1 (�̂�𝑘, 𝛿𝑘, 𝛾𝑘), since �̂�𝑘 = �̂�𝑘
−1, we note that 

diag (bfgs(�̂�𝑘, 𝛿𝑘, 𝛾𝑘))
−1

≠ diag (bfgs−1(�̂�𝑘, 𝛿𝑘, 𝛾𝑘)); i.e., the inverse of the diagonal updated matrix (2.5) differs 

from (2.10). Therefore, for convenience, we rewrite the search direction (2.6) as follows: 

           𝑠𝑘+1 = −�̂�𝑘+1𝑔𝑘+1.                                                                  (2.11) 

In practice, the diagonal choice (2.5)– (2.6) is preferred to (2.10)– (2.11). In fact, the diagonal inverse BFGS update of 

(2.10) has been suggested by Gilbert and Lemaréchal [8], as follows: 

          �̂�𝑘+1 = �̂�𝑘 + (1 +
𝛾𝑘

𝑇�̂�𝑘𝛾𝑘

𝛿𝑘
𝑇𝛾𝑘

)
diag(𝛿𝑘𝛿𝑘

𝑇)

𝛿𝑘
𝑇𝛾𝑘

− 2
diag(�̂�𝑘𝛾𝑘𝛿𝑘

𝑇)

𝛿𝑘
𝑇𝛾𝑘

,                                            (2.12) 

or equivalently, 

        �̂�𝑘+1
(𝑖)

= �̂�𝑘
(𝑖)

+ (1 +
∑  𝑛

𝑗=1 �̂�𝑘
(𝑗)

(𝛾𝑘
(𝑗)

)
2

𝛿𝑘
𝑇𝛾𝑘

)
(𝛿𝑘

(𝑖)
)

2

𝛿𝑘
𝑇𝛾𝑘

− 2
𝛿𝑘

(𝑖)
𝛾𝑘

(𝑖)
�̂�𝑘

(𝑖)

𝛿𝑘
𝑇𝛾𝑘

,                                          (2.13) 

with a certain positive definite diagonal matrix �̂�1 so that the updated diagonal matrices are maintained positive 

definite if the curvature condition 𝛿𝑘
𝑇𝛾𝑘 > 0 is satisfied.  

Now, the corresponding algorithm for the above diagonal quasi-Newton updates can be outlined in the following 

way, where throughout the paper ∥⋅∥ denotes the Euclidean vector norm. 

Algorithm 2.1. 

Step 0: Given an initial point 𝑥1, a symmetric and positive definite diagonal matrix �̂�1 and 𝜖 > 0 (an acceptance 

tolerance on the gradient norm). Set 𝑘 = 1 and compute the initial search direction 𝑠1 = −�̂�1
−1𝑔1. 

Step 1: Compute a steplength 𝛼𝑘 and a new point 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑠𝑘, such that the Wolfe-Powell conditions (1.2) hold. 

Step 2:  If  ∥∥𝑔𝑘+1∥∥ ≤ 𝜖, then stop. 

Step 3: Compute the vectors 𝛿𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝛾𝑘 = 𝑔𝑘+1 − 𝑔𝑘. 

Step 4:  Define a new diagonal Hessian approximation �̂�𝑘+1 by (2.1) using �̂�𝑘 , 𝛿𝑘 and 𝛾𝑘. 

Step 5:  Compute the new search direction 𝑠𝑘+1 = −�̂�𝑘+1
−1 𝑔𝑘+1. 

Step 6: Set 𝑘 = 𝑘 + 1, and go to Step 1. 

 Note that in steps 0 and 5, the search direction is computed without forming �̂�𝑘+1
−1  explicitly; i.e., it is calculated 

as 𝑠𝑘+1
(𝑖)

= −𝑔𝑘+1
(𝑖)

/�̂�𝑘+1
(𝑖)

, for  𝑖 = 1,2, … , 𝑛. In Step 4, we define �̂�𝑘+1 in particular by the diagonal BFGS Hessian 

approximation (2.1) or equivalently (2.5), unless otherwise stated. However, if a diagonal inverse Hessian 
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approximation is considered, using for example formula (2.10) for updating �̂�𝑘 to �̂�𝑘+1, then steps 0, 4 and 5 are used 

with �̂�𝑗
−1 replaced by �̂�𝑗, for 𝑗 = 1, 𝑘 and 𝑘 + 1, respectively. 

3. Diagonal non quasi-Newton updates 

In this section, we describe some diagonal Hessian approximations �̂�𝑘 which satisfy certain useful properties. 

Although it is possible to define diagonal inverse Hessian approximations �̂�𝑘, we do not consider them here because 

they are inferior to the direct Hessian approximations (Al-Siyabi [9]). 

Nazareth [10] has proposed the following Hessian approximation update: 

 

           𝐵𝑘+1 = 𝐵𝑘 +
𝛿𝑘

𝑇𝛾𝑘−𝛿𝑘
𝑇𝐵𝑘𝛿𝑘

(𝛿𝑘
𝑇𝐵𝑘𝛿𝑘)

2 𝐵𝑘𝛿𝑘𝛿𝑘
𝑇𝐵𝑘 .                                                                 (3.1) 

This satisfies the weak quasi-Newton condition (1.9) and maintains the Hessian approximations positive definite 

whenever the curvature condition (1.8) holds. The author suggests replacing 𝐵𝑘 by a diagonal matrix �̂�𝑘 to obtain the 

new diagonal Hessian approximation 

�̂�𝑘+1 = �̂�𝑘 +
𝛿𝑘

𝑇𝛾𝑘−𝛿𝑘
𝑇�̂�𝑘𝛿𝑘

(𝛿𝑘
𝑇�̂�𝑘𝛿𝑘)

2 diag(�̂�𝑘𝛿𝑘𝛿𝑘
𝑇�̂�𝑘),                                                              (3.2) 

or equivalently, 

         �̂�𝑘+1
(𝑖)

= �̂�𝑘
(𝑖)

+
𝛿𝑘

𝑇𝛾𝑘−∑  𝑛
𝑗=1 �̂�𝑘

(𝑗)
(𝛿𝑘

(𝑗)
)

2

(∑  𝑛
𝑗=1 �̂�𝑘

(𝑗)
(𝛿𝑘

(𝑗)
)

2
)

2 (�̂�𝑘
(𝑖)

)
2

(𝛿𝑘
(𝑖)

)
2

,                                                       (3.3) 

for 𝑖 = 1, … , 𝑛. This also remains positive definite if the curvature condition (1.8) holds. Although a formula for the 

inverse update of (3.1) can be used to define diagonal inverse Hessian approximations �̂�𝑘, we do not consider it here, 

because the performance of the corresponding method is worse than that of the above one (for details, see Al-Siyabi 

[9]). 

 
Moreover, Zhu et al. [11] proposed the direct diagonal update 

      �̂�𝑘+1 = �̂�𝑘 +
𝛿𝑘

𝑇𝛾𝑘−𝛿𝑘
𝑇�̂�𝑘𝛿𝑘

tr(�̂�𝑘)2 �̂�𝑘 ,                                                                   (3.4) 

where 

                                                                �̂�𝑘 = diag [(𝛿𝑘
(1)

)
2

, (𝛿𝑘
(2)

)
2

, … , (𝛿𝑘
(𝑛)

)
2

], 

or equivalently, 

              �̂�𝑘+1
(𝑖)

= �̂�𝑘
(𝑖)

+
𝛿𝑘

𝑇𝛾𝑘−∑  𝑛
𝑗=1 �̂�𝑘

(𝑗)
(𝛿𝑘

(𝑗)
)

2

∑  𝑛
𝑗=1 (𝛿𝑘

(𝑗)
)

4 (𝛿𝑘
(𝑖)

)
2

,                                                       (3.5) 

for 𝑖 = 1, … , 𝑛, which satisfies the weak quasi-Newton condition (1.9).  

Since the positive definiteness of this update is not guaranteed, the authors introduced the following safeguarding test. 

If the inequality  �̂�𝑘+1
(𝑖)

< 𝜖1 holds for any 𝑖 and some 𝜖1 > 0 (we used 𝜖1 = 10−6), the authors suggest resetting the 

above updated matrix to the scaled identity matrix 𝜏𝑘
0𝐼, where 

               𝜏𝑘
0 =

𝛾𝑘
𝑇𝛾𝑘

𝛿𝑘
𝑇𝛾𝑘

                                                                                      (3.6) 

is suggested by Oren and Luenberger [12], which is positive if the curvature condition holds. Thus, the authors propose 

the positive definite diagonal update as follows: 

               �̂�𝑘+1 = {
�̂�𝑘+1,      if �̂�𝑘+1

(𝑖)
≥ 𝜖1, ∀𝑖,

𝜏𝑘
0𝐼,      otherwise. 

                                                               (3.7) 

 

      Recently, Sim et al. [13] proposed the following diagonal Hessian approximation: 
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                �̂�𝑘+1 = {
�̂�𝑘+1,      if �̂�𝑘

0 < 1

�̂�𝑘
0𝐼,      otherwise, 

                                                                (3.8) 

where 

               �̂�𝑘+1
(𝑖)

=
1

1+𝜔𝑘(𝛿𝑘
(𝑖)

)
2  ,      𝜔𝑘 =

𝛿𝑘
𝑇𝛿𝑘−𝛿𝑘

𝑇𝛾𝑘

∑  𝑛
𝑗=1 (𝛿𝑘

(𝑗)
)

4 ,                                                   (3.9) 

and 

                 �̂�𝑘
0 =

𝛿𝑘
𝑇𝛾𝑘

𝛿𝑘
𝑇𝛿𝑘

 .                                                                            (3.10) 

 
Since this self-scaling parameter of Oren and Luenberger [12] is positive if the curvature condition holds, the proposed 

diagonal matrix (3.8) is positive definite. The authors derived the above diagonal matrix �̂�𝑘+1 as follows.  If  �̂�𝑘
0 ≥ 1, 

then they use the other known scaled identity matrix �̂�𝑘+1 = �̂�𝑘
0𝐼. Otherwise, they define positive definite �̂�𝑘+1 as an 

approximate solution of the constrained optimization problem 

 

                  min
�̂�+

 𝜓(�̂�+) = tr (�̂�+) − ln (det(�̂�+))                                                       (3.11) 

 

                            s.t. 𝛿𝑘
𝑇�̂�+𝛿𝑘 = 𝛿𝑘

𝑇𝛾𝑘 , �̂�+diagonal,                                                            (3.12) 

 

assuming �̂�+ is positive definite and approximating the Lagrange multiplier by a reasonable value of 𝜔𝑘 . Since the 𝜓 

function is useful for deriving the BFGS formula (Byrd and Nocedal [14]), it is expected that the first case in (3.8) 

would work well. In practice, this works a little better than (3.7) and slightly worse than the diagonal BFGS update 

(2.5) (see Section 5 for details). 

Andrei [15] considers the possibility of defining a diagonal quasi-Newton Hessian approximation (say, �̂�𝑘+1)  

without updating a matrix by enforcing the quasi-Newton condition �̂�𝑘+1𝛿𝑘 = 𝛾𝑘 which he writes as follows: 

 

                  �̂�𝑘+1𝑆𝑘 = 𝑌𝑘 ,                                                                          (3.13) 

 

where 𝑆𝑘 = diag [𝛿𝑘
(1)

, … , 𝛿𝑘
(𝑛)

] and 𝑌𝑘 = diag [𝛾𝑘
(1)

, … , 𝛾𝑘
(𝑛)

]. Because, in general, equation (3.13), subject to �̂�𝑘+1 

positive definite, cannot be solved exactly, for 𝑖 = 1,2, … , 𝑛, the author suggests the choice 

 

                  �̂�𝑘+1
(𝑖)

= {

𝛾𝑘
(𝑖)

𝛿𝑘
(𝑖) ,     if 

𝛾𝑘
(𝑖)

𝛿𝑘
(𝑖) ⩾ 𝜖2

1,         otherwise, 

                                                                  (3.14) 

 

where 𝜖2 > 0. He reports that the corresponding algorithm performs better than certain diagonal quasi-Newton 

algorithms. 

We note that the second case in (3.14) has the drawback of losing the details of �̂�𝑘. Therefore, we suggest the 

following modified diagonal choice 

                  �̂�𝑘+1
(𝑖)

= {

𝛾𝑘
(𝑖)

𝛿𝑘
(𝑖) ,  if  𝜖2 ≤

𝛾𝑘
(𝑖)

𝛿𝑘
(𝑖) ⩽

1

𝜖3
,

�̂�𝑘
(𝑖)

,  otherwise,

                                                       (3.15) 

 

where 𝜖3 > 0, which maintains the positive definite property. In practice, this choice works better than (3.14) (see 

Section 5 for details). We let 𝜖3 = 10−14 be small enough so that the second inequality in (3.15) was always satisfied 

in our experiment. 

Although other useful choices for the second case in (3.15) are possible (see Al-Siyabi [9]), we do not consider 

them here because we can improve the choice (3.15) as follows. Since the above choices for the Hessian approximation  

�̂�𝑘+1 do not satisfy the quasi-Newton condition (1.5), we suggest updating this matrix by any quasi-Newton formula 

(in particular, the BFGS update). Hence, replacing the updated matrix by its diagonal, as in (2.5), we obtain the 

positive definite improved diagonal BFGS update 

 

                      �̂�𝑘+1 = diag[bfgs(�̂�𝑘+1
∗ , 𝛿𝑘, 𝛾𝑘)],                                                           (3.16) 

 

where �̂�𝑘+1
∗  denotes any of the above �̂�𝑘+1. 

 

Finally, the corresponding algorithm for the above diagonal quasi-Newton updates can be outlined along the lines 

of Algorithm 2.1, where the difference among the above updates occurs in Step 4 for defining �̂�𝑘+1 (given in particular 

by (3.15)– (3.16), unless otherwise stated). We will show that this improves the performance of choice (3.15) in 

Section 5. 
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4. Convergence analysis 

In this section, we study the convergence property of our proposed diagonal Hessian approximations. Since they 

are maintained positive definite, the descent condition 

 

                     𝑠𝑘
𝑇𝑔𝑘 < 0                                                                                    (4.1) 

 

is satisfied for all 𝑘. Before presenting the convergence property, we first state the following standard assumption. 

      Assumption 4.1. 

a) Consider the level set  Ω = {𝑥 ∈ ℜ𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥1)} and let Ω̃ be an open set containing Ω. 

b) The objective function  𝑓(𝑥) is bounded and continuously differentiable in Ω̃. 

c) The gradient 𝑔(𝑥) is Lipschitz continuous on  Ω̃, that is, there exist a constant L > 0 such that  

 

                 ∥ 𝑔(𝑥) − 𝑔(�̃�) ∥≤ 𝐿 ∥ 𝑥 − �̃� ∥, ∀𝑥, �̃� ∈ Ω̃.                                                  (4.2) 

 

Similar to the well-known result of Zoutendijk [16], we state the following result. 

Theorem 4.1. Suppose Assumption 4.1 holds. Consider the iterations of the form (1.3), with 𝑥1 being any 

starting point, the search direction 𝑠𝑘 being defined such that the descent condition (4.1) holds and the steplength 𝛼𝑘 

satisfies the 

Wolfe-Powell conditions (1.2). Then, the so-called Zoutendijk condition 

                 ∑  ∞
𝑘=1

(𝑠𝑘
𝑇𝑔𝑘)

2

∥∥𝑠𝑘∥∥
2 < ∞                                  (4.3) 

is obtained. 
Proof.  Similar to many analyses (see, for example, Nocedal and Wright [3]), we state the following proof (for 

complete illustration). Rearranging the second Wolfe-Powell condition in (1.2) and using the Lipschitz condition (4.2), 

it follows that 

𝐿∥∥𝑠𝑘∥∥∥∥𝑥𝑘+1 − 𝑥𝑘∥∥ ≥ 𝑠𝑘
𝑇(𝑔(𝑥𝑘+1) − 𝑔(𝑥𝑘)) ≥ (𝜎1 − 1)𝑠𝑘

𝑇𝑔𝑘. 

Substituting 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑠𝑘 and using (4.1), we obtain: 

𝛼𝑘 ≥
1 − 𝜎1

𝐿

|𝑠𝑘
𝑇𝑔𝑘|

∥∥𝑠𝑘∥∥2 . 

Using this result, we rewrite the first Wolfe-Powell condition in (1.2) as follows: 

𝑓𝑘 − 𝑓𝑘+1 ≥
𝜎0(1 − 𝜎1)

𝐿

(𝑠𝑘
𝑇𝑔𝑘)2

∥∥𝑠𝑘∥∥2 . 

By summing this expression over 𝑘 and using the assumed bound on the 𝑓𝑘, we obtain the Zoutendijk condition (4.3).                                                                                                            

To obtain the global convergence result for Algorithm 2.1, we assume the condition number of the positive 

definite diagonal Hessian approximate �̂�𝑘 to be uniformly bounded, that is, there is a constant 𝑀 such that 

 

𝜅(�̂�𝑘) =
𝜆1

𝜆𝑛
≤ 𝑀, ∀𝑘,                                                                      (4.4) 

where 𝜆1  and 𝜆𝑛  are the largest and smallest eigenvalues of �̂�𝑘. 

Theorem 4.2. Suppose that 𝑓 satisfies Assumption 4.1. Let 𝑥1 be a starting point and �̂�1 be a positive definite 

diagonal matrix. Consider Algorithm 2.1 with 𝜖 = 0 in Step 2, �̂�𝑘+1  in Step 4 defined such that condition (4.4) holds 

and that Step 1 defines the steplength 𝛼𝑘 such that the Wolfe-Powell conditions (1.2) hold. Then, the algorithm 

converges globally, that is, 

              lim
𝑘→∞

 ∥∥𝑔𝑘∥∥ = 0.                                                                               (4.5) 

 

 Proof.    Substituting 𝑠𝑘 = −�̂�𝑘
−1𝑔𝑘 into the Zoutendijk condition (4.3), we obtain: 

 

1

𝑀
∑𝑘=1

∞  ∥∥𝑔𝑘∥∥2 ≤ ∑𝑘=1
∞  

(𝑠𝑘
𝑇�̂�𝑘𝑠𝑘)(𝑔𝑘

𝑇�̂�𝑘
−1𝑔𝑘)

∥∥𝑠𝑘∥∥2 < ∞, 

 
where 𝑀 is given as in (4.4). Hence, the limit (4.5) is obtained.                                               

 
5. Numerical results 

In this section, we study the performance of our proposed methods on a set of standard unconstrained 

optimization test problems. All the methods are implemented as in Algorithm 2.1, differing only in Step 4 for defining 

the Hessian approximate �̂�𝑘+1 by the choices (2.5), (2.12), (3.2), (3.7) (with 𝜖1 = 10−6), (3.8), (3.14) (with 𝜖2 = 10−2 

as in Andrei [15]), and (3.15) (with 𝜖2 = 10−2 and 𝜖3 = 10−14). These choices (referred to as L1, L2, ..., and L7), 
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except for L7, have been proposed by Gilbert and Lemaréchal [8], Nazareth [10], Zhu et al. [11], Sim et al. [13] and 

Andrei [15], respectively. The choice L7 defines our proposed modification of L6. Because the L2 update defines the 

inverse Hessian approximate �̂�𝑘+1, steps 0, 4 and 5 are used with �̂�𝑗
−1 replaced by �̂�𝑗 , for 𝑗 = 1, 𝑘 and 𝑘 + 1, 

respectively. 

In all algorithms, we consider the followings. For Step 0, we choose �̂�1 = 𝐼 and 𝜖 = 10−7. For Step 1, we 

calculate a value of the steplength 𝛼𝑘 such that the strong Wolfe-Powell conditions 

 

            𝑓𝑘+1 ≤ 𝑓𝑘 + 𝜎0𝛼𝑘𝑠𝑘
𝑇𝑔𝑘 ,     |𝑠𝑘

𝑇𝑔𝑘+1| ≤ −𝜎1𝑠𝑘
𝑇𝑔𝑘                                                      (5.1) 

 

hold, using the usual values of 𝜎0 = 10−4 and 𝜎1 = 0.9, which imply the Wolfe-Powell conditions (1.2). We used the 

MATLAB line search routine ‘lswpc’ of Al-Baali, which is essentially written with slight differences in Fortran by 

Fletcher. It is based on using quadratic and cubic interpolations for estimating a value of the steplength 𝛼𝑘. It also 

guarantees finding a positive value of 𝛼𝑘 in a finite number of operations (see Al-Baali and Fletcher [17] and Fletcher 

[1]). We stopped the run when either 

 

∥∥𝑔𝑘∥∥ ≤ 10−7 max{∥∥𝑔1∥∥, 1},         𝑓𝑘 − 𝑓𝑘+1 ≤ 10−14, 

or the number of line searches reached 105. 

 

All codes were written in MATLAB R2017b and the runs were made on a CPU processor with Intel(R) Core (TM) i7- 

(2.7 GHz) and 16.0 GB RAM memory. 
The test problems were selected from the collection of Andrei [18] (which belong to the CUTEst collection 

established by Gould et al. [19], Himmelblau [20] and Moré et al. [21]). We picked 84 test problems (as given in Table 

1). For certain extended test problems (e.g., Extended Rosenbrock), increasing the number of variables does not 

increase the number of line searches, function and gradient evaluations required to solve the problems (see for example 

Al-Baali [22]). To avoid this occurrence, the author modifies the standard starting point �̅�1 to �̿�1, where 

 

                   �̿�1
(𝑖)

= �̅�1
(𝑖)

+
1

𝑖+1
,                                                                                  (5.2) 

 
for 𝑖 = 1, … , 𝑛. We used all 84 test functions with the standard starting points and their modifications (5.2) for n = 900, 

9000 and 27000 to define three sets of test problems. Each set (referred to as Set1, Set2 and Set3, respectively) consists 

of 168 test problems. We also consider all the test problems as a single 504 test problem (referred to as Set4). 

To study the behaviour of the above algorithms, we compared the numerical results required to solve the tests, 

using the performance profiles of Dolan and Moré [23] based on the numbers of line searches (#ls), function 

evaluations (#fun) and gradient evaluations (#gra) as well as the cpu time in seconds, required to solve the test 

problems. The Dolan- Moré performance profile can be briefly described as follows. It illustrates the relative solvers 

performance of the solvers on a set of test problems in terms of #ls (similarly for #fun, #gra and cpu time).  In general, 

𝑃𝑀(𝜏), the fraction of problems with performance ratio 𝜏 ≥ 0, is defined by 

 

                   𝑃𝑀(𝜏) =
 number of problems where 𝑙𝑜𝑔2(𝜏𝑝,𝑀)≤𝜏

 total number of problems 
.                                                                  (5.3) 

 

Here, 𝜏𝑝,𝑀 is the performance ratio of #ls required to solve problem 𝑝 by the M method to the lowest #ls required to 

solve problem 𝑝. The ratio 𝜏𝑝,𝑀 is set to ∞ (or some large number) if the M method fails to solve problem 𝑝. The 

values of 𝑃𝑀(𝜏) at 𝜏 = 0 gives the percentage of test problems for which the method M performs to be best and the 

value for 𝜏 large enough is the percentage of test problems that the M method can solve. Thus, a solver with high 

values of 𝑃𝑀(𝜏) or one with corresponding figure located at the top right performs better than the ones located at lower 

levels. 

Applying the above algorithms to the four sets, Set1, Set2, Set3 and Set4, of test problems, we obtained some 

numerical results. Their comparisons are given in Figures 1–4, respectively, with respect to #ls, #fun, #gra and cpu 

time for each figure. We observe that L7 appears to be the best, while showing to be a little better than L1, L2, L4 and 

L6, with L3 and L5 being a little worse than the other methods. 

To give another fair and useful comparison which shows the percentage improvement or worsening of the 

algorithms, we also considered the comparison rule of Al-Baali (see, e.g., Al-Baali [24] and essentially Al-Baali [25]). 

To compare two methods (say, M1 and M2) with respect to #ls (similarly for #fun, #gra and cpu time), the author 

proposes the average ratio measure of the form: 

 

                     𝑟 =
1

𝑡
∑  𝑡

𝑖=1 𝑟𝑖 ,                                                                                 (5.4) 

where 𝑡 is the number of test problems and 
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                    𝑟𝑖 = {

𝑝𝑖

𝑞𝑖
,  if  𝑝𝑖 ≤ 𝑞𝑖

2 −
𝑞𝑖

𝑝𝑖
,  if  𝑝𝑖 > 𝑞𝑖

                                                           (5.5)             

with  𝑝𝑖  and 𝑞𝑖 denoting #ls required to solve problem 𝑖 by the M1 and M2 methods, respectively. If only M1 or only 

M2 failed to solve the problem, we set 𝑟𝑖 = 2 and 𝑟𝑖 = 0, respectively. If both M1 and M2 methods either failed or 

converged to two different local solutions, for some test problem 𝑖 then we set 𝑟𝑖 = 1. The average ratio 𝑟 in (5.4) 

always falls in the interval [0,2]. A value of 𝑟 ≤ 1 indicates that M1 is better than M2 by 100(1 − 𝑟)%. Otherwise, 

when 𝑟 > 1, M1 is worse than M2 (or M2 is better than M1) by 100(1 − 𝑟)% (for more details on this measurement 

ratio, see Al-Baali [24], for instance). 

Using the same numerical results used to obtain the comparison Figures 1- 4 for Set 𝑖, 𝑖 = 1, … ,4, we applied the 

above average ratio measure to compare L1, L2, ..., L6 versus L7 and obtained Tables 2–5, using both the starting 

points for 𝑛 = 900, 9000, 27000 and all 3 values of 𝑛, respectively. Since we have 𝑟 > 1 in all cases, it is clear that L7 

gives the best performance, it being at least 10% better than L1, L2, L4 and L6, and more than 48% better than L3 in 

terms of #ls, #fun #gra and cpu time. Thus, these observations agree with those in Figures 1–4. We observe that the 

performance of L6 improves as n increases in comparison with L1, L2, and L4. We also observe that L1, L2 and L4 

have nearly identical performances in terms of all measurements, whereas L3 is the worst among all the algorithms. 

Since the L3, L4, L5, L6 and L7 methods do not consider imposing the quasi-Newton condition (1.5), like that of 

L1 and L2, we suggest using (3.16) with �̂�𝑘+1
∗  given by (3.2), (3.7), (3.8), (3.14) and (3.15), which define the former 

five methods, respectively. We compared the corresponding algorithms (referred to as L3a, L4a, L5a, L6a and L7a, 

respectively) and observed that each L𝑖a, for 𝑖 = 3, … ,7, performs better than L𝑖 and that the performance of L7a 

remains the best (see Al-Siyabi [9]). Thus, we present only the comparison of L7a versus L7 as shown in Figure 5 and 

Table 6 for Set4 of test problems. We notice that L7a outperforms L7 in terms of all measurements. Moreover, L7a 

performs better than L7 by at least 6% in terms of #ls, #fun, #gra and cpu time, which provides further illustration of 

the comparison shown in Figure 5. We also observe from the combination of Figures 1–4 and Figure 5 as well as 

Tables 2–5 and Table 6 that L7a performs substantially better than L6 with at least 15% improvement in terms of #ls, 

#fun and #gra and 20% in terms of cpu time. 

 

Table 1. List of test functions. 

 
No. Function’s Name No. Function’s Name 

1 Extended Freudenstein & Roth 43 ARGLINB 

2 Extended Trigonometric 44 ARWHEAD 

3 Extended Rosenbrock 45 NONDIA 

4 Generalized Rosenbrock 46 NONDQUAR 

5 Extended White & Holst 47 BQDRTIC 

6 Extended Beale 48 EG2 

7 Extended Penalty 49 DIXMAANA 

8 Perturbed Quadratic function 50 DIXMAANB 

9 Raydan 1 51 DIXMAANC 

10 Raydan 2 52 DIXMAAND 

11 Diagonal 1 53 DIXMAANE 

12 Diagonal 2 54 DIXMAANF 

13 Diagonal 3 55 DIXMAANG 

14 Hager 56 DIXMAANH 

15 Generalized Tridiagonal 1 57 DIXMAANI 

16 Extended Tridiagonal 1 58 DIXMAANJ 

17 Extended TET (Three exponential terms) 59 DIXMAANK 

18 Generalized Tridiagonal 2 60 DIXMAANL 

19 Diagonal 4 61 Broyden Tridiagonal 

20 Diagonal 5 62 Almost Perturbed Quadratic 

21 Extended Himmelblau 63 Staircase 1 
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Table 1. continued 

 
22 Generalized White & Holst 64 Staircase 2 

23 Generalized PSC1 65 LIARWHD 

24 Extended PSC1 66 ENGVAL1 

25 Extended Powell 67 EDENSCH 

26 Full Hessian FH1 68 CUBE 

27 Full Hessian FH2 69 NONSCOMP 

28 Extended BD1 (Block Diagonal) 70 QUARTC 

29 Extended Maratos 71 Diagonal 6 

30 Extended Cliff 72 SIQUAD 

31 Perturbed quadratic diagonal 73 Extended DENSHNB 

32 Extended Wood 74 Extended DENSHNF 

33 Extended Hiebert 75 COSINE 

34 Quadratic QF1 76 Generalized Quartic 

35 Extended quadratic penalty QP1 77 Diagonal 7 

36 Extended quadratic penalty QP2 78 Diagonal 8 

37 Quadratic QF2 79 Full Hessian FH3 

38 Extended quadratic exponential EP1 80 SINCOS 

39 Extended Tridiagonal 2 81 Diagonal 9 

40 FLETCHR 82 HIMMELBG 

41 BDQRTIC 83 HIMMELH 

42 TRIDIA 84 INDEF 

  

  

 

 

 

 

 

 

 

(a) Number of Line Searches. (b) Number of Function Evaluations. 

         (c)  Number of Gradient Evaluations. (d) CPU Times. 

Figure 1. Comparison among L1, L2, L3, L4, L5, L6 and L7, for Set1; 𝑛 = 900. 
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Table 2. Average ratios 𝑟 for methods versus L7, for Set1; 𝑛 = 900. 
 

Method /Measure #ls #fun #gra cpu 

L1 1.153 1.203 1.155 1.130 

L2 1.074 1.158 1.0714 1.097 

L3 1.598 1.622 1.596 1.597 

L4 1.207 1.211 1.209 1.173 

L5 1.214 1.232 1.211 1.224 

L6 1.124 1.144 1.129 1.077 

  

  

 

 

 

 

 

 

 

 

Table 3. Average ratios 𝑟 for methods versus L7, for Set2; 𝑛 = 9000. 

 

 

 

 

 

Method/ Measure #ls #fun #gra cpu 

L1 1.190 1.259 1.205 1.281 

L2 1.136 1.229 1.150 1.268 

L3 1.479 1.542 1.506 1.566 

L4 1.197 1.197 1.201 1.240 

L5 1.237 1.249 1.250 1.290 

L6 1.102 1.134 1.121 1.235 

(a) Number of Line Searches. (b) Number of Function Evaluations. 

     (c)  Number of Gradient Evaluations. (d) CPU Times. 

Figure 2.  Comparison among L1, L2, L3, L4, L5, L6 and L7, for Set2; 𝑛 = 9000. 
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Table 4. Average ratios 𝑟 for methods versus L7, for Set3; 𝑛 = 27000. 
 

Method / Measure #ls #fun #gra Cpu 

L1 1.239 1.311 1.254 1.290 

L2 1.137 1.232 1.152 1.166 

L3 1.482 1.556 1.507 1.671 

L4 1.228 1.222 1.225 1.223 

L5 1.231 1.243 1.238 1.280 

L6 1.079 1.114 1.095 1.096 

 

 

 

 

 

(a) Number of Line Searches. (b) Number of Function Evaluations. 

     (c)  Number of Gradient Evaluations. (d) CPU Times. 

Figure 3. Comparison among L1, L2, L3, L4, L5, L6 and L7, for Set3; 𝑛 = 27000. 
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Table 5. Average ratios 𝑟 for methods versus L7, for Set4; 𝑛 ∈ [900, 9000, 27000]. 

 
Method /Measure #ls #fun #gra cpu 

L1 1.211 1.285 1.229 1.267 

L2 1.126 1.222 1.141 1.191 

L3 1.487 1.556 1.512 1.585 

L4 1.203 1.200 1.204 1.217 

L5 1.223 1.235 1.233 1.262 

L6 1.087 1.118 1.101 1.145 

 

 

 

 

 

 

 

(a) Number of Line Searches. (b) Number of Function Evaluations. 

     (c)  Number of Gradient Evaluations. (d) CPU Times. 

Figure 4. Comparison among L1, L2, L3, L4, L5, L6 and L7, for Set4; 𝑛 ∈ [900, 9000, 27000]. 
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Table 6. Average ratios 𝑟 for L7a versus L7, for Set4; 𝑛 ∈ [900, 9000, 27000]. 
 

Method / Measure #ls #fun #gra cpu 

L7a 0.942 0.933 0.934 0.943 

6. Conclusion 

We first studied some diagonal Hessian approximation methods for large-scale unconstrained optimization, then 

presented new diagonal Hessian approximations and established their global convergence. Based on extensive 

numerical experiments, we observed that a number of our algorithms were more efficient and more robust than several 

similar available methods. Two of the proposed methods require storing only a few vectors while sharing certain 

desirable features of the quasi-Newton methods. 
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