
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-10-2021

Detecting malware in memory with memory object relationships Detecting malware in memory with memory object relationships

DeMarcus M. Thomas Sr.
Mississippi State University, demarcus.thomas601@gmail.com

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Thomas, DeMarcus M. Sr., "Detecting malware in memory with memory object relationships" (2021).
Theses and Dissertations. 5382.
https://scholarsjunction.msstate.edu/td/5382

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/5382?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Detecting malware in memory with memory object relationships

By

DeMarcus M. Thomas Sr.

Approved by:

John A. Hamilton Jr. (Major Professor)
Shahram Rahimi
Stefano Iannucci

Stephen Torri
T. J. Jankun-Kelly (Graduate Coordinator)

Jason M. Keith (Dean, College of Engineering)

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2021

Copyright by

DeMarcus M. Thomas Sr.

2021

Name: DeMarcus M. Thomas Sr.

Date of Degree: December 10, 2021

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: John A. Hamilton Jr.

Title of Study: Detecting malware in memory with memory object relationships

Pages of Study: 145

Candidate for Degree of Doctor of Philosophy

Malware is a growing concern that not only affects large businesses but the basic consumer

as well. As a result, there is a need to develop tools that can identify the malicious activities of

malware authors. A useful technique to achieve this is memory forensics. Memory forensics is the

study of volatile data and its structures in Random Access Memory (RAM). It can be utilized to

pinpoint what actions have occurred on a computer system.

This dissertation utilizes memory forensics to extract relationships between objects and super-

vised machine learning as a novel method for identifying malicious processes in a system memory

dump. In this work, the Object Association Extractor (OAE) was created to extract objects in a

memory dump and label the relationships as a graph of nodes and edges. With OAE, we extracted

processes from 13,882 memory images that contained malware from the repository VirusShare

and 91 memory images created with benign software from the package management software

Chocolatey. The final dataset contained 267,824 processes.

Two feature sets were created from the processes dataset and used to train classifiers based on

four classification algorithms. These classifiers were evaluated against the ZeroR method using

accuracy and recall as the evaluation metrics. The experiments showed that both sets of features

used to build classifiers were able to beat the ZeroR method for the Decision Tree and Random

Forest algorithms. The Random Forest classifier achieved the highest performance by reaching a

recall score of almost 97%.

Key words: malware, memory forensics, Rekall, community detection, machine learning

DEDICATION

To my Lord and Savior Jesus Christ, I thank you for your grace in walking this journey. There

were many instances where I questioned if this process was worth it. However, over time I realized

that I was placed in this season and role for a reason, and it was my job to be faithful during this

time.

To Allie, I thank God for you each day. There is no way that I could have reached this milestone

without your love, support, and encouragement. In my final days before the defense, you allowed

me to put my full attention into the work and have my most profound adoration for your sacrifice.

Thank you, My Love, for all that you do.

To my three sons, you drive me in so much of what I do. Each day I strive to be a father that

you can be proud of. I want you to know that you can accomplish anything you desire by the grace

of God and hard work. Junior and Crew thank you so much for the questions each day of, "Daddy,

did you make some progress today?" I always wanted to give you a good report when I came home.

I appreciate the laughs, advice, and support my boy Chris Lanclos has provided. We have

known each other for over a decade and have become brothers through this process. I look forward

to you crossing this finish line also.

To my immediate family, I wouldn’t be who I am today with you. Terris, thanks for paving the

way as my big brother. It is not easy being the first to blaze a trail, and I appreciate your loving

example. TaMiah, thanks for helping me to talk through issues over the years. You have been a

ii

valuable confidant, and I thank you for that. Titus, I also wanted to work to be a positive example

for you. Thanks for pushing me to be better.

To my parents, thank you both for your selfless attitudes. You always made things about

supporting those around you and strove to provide the best for your kids. You planted the seeds

and created an environment for us all to grow.

To the people named in this section and the countless others that have shaped me over the years,

this accomplishment is for you.

DMT

iii

ACKNOWLEDGEMENTS

Many have played a role in my academic journey, and I would like to acknowledge a portion of

them now. First, to Dr. Constance Bland, you gave me an opportunity when I barely had an idea

of who I was. Thank you for taking a chance on me and pushing me where needed. You are truly

missed.

To Dr. Ray Vaughn, thanks for giving me the spark that cybersecurity was a possible career

path. To Dr. Edward Allen, thank you for recruiting an unproven kid from a small university. Dr.

David Dampier, your mentoring and advice were invaluable to my academic development. You

gave me opportunities at the FTC and DASI, and I am much better for it.

To my defacto fifth and sixth committee members, Dae and Puntitra "Tan" Glendowne, I have

no way to repay the number of hours we spent in discussion. Thank you!

Finally, to my major professor Dr. John Hamilton, I can’t thank you enough for the wisdom

you have contributed over the years and the autonomy you provided that allowed me to grow in my

various roles at CCI. I did not always know the correct path to take, but you would patiently allow

me to figure things out or provide the necessary nudge. Your leadership is greatly appreciated.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

I. INTRODUCTION . 1

1.1 Memory Forensics . 1
1.2 Malware in Memory . 3
1.3 Malicious Path Data . 5
1.4 Machine Learning . 5
1.5 Hypothesis . 6
1.6 Research Questions . 7

1.6.1 Which memory objects are related to processes in random access
memory? . 7

1.6.2 What are common memory object relationships that malware tends
to manipulate and/or establish in memory? 7

1.6.3 Do malware samples that have multiple processes have distinct path
characteristics? . 8

1.6.4 Do benign and malicious process paths have distinguishing charac-
teristics? . 8

1.6.5 Which features best support the goal of maximizing accuracy while
minimizing false-negative rate in identifying malicious graphs? . . 9

1.7 Research Benefits . 9

II. RELATED WORK . 10

III. METHODOLOGY . 18

v

3.1 System Design . 18
3.2 Memory Object Mappings . 20
3.3 OAE Development . 20
3.4 Data Generation . 21

3.4.1 Benign Memory Images Dataset 23
3.4.2 Data Extraction . 24
3.4.3 Process Data . 25
3.4.4 Malicious Path Data . 28
3.4.5 Path Normalization . 29
3.4.6 Path Analysis . 30

3.5 Feature Development . 32
3.5.1 Feature Selection . 33

3.6 Classifier Evaluation and Tuning . 34

IV. THREATS TO VALIDITY AND LIMITATIONS 36

4.1 Problem: Information loss due to sandbox evasion 36
4.1.1 Potential Outcome . 37

4.2 Guaranteed maliciousness . 37
4.2.1 Potential Outcome . 38

4.3 Missing some relationship information due to exited processes 38
4.3.1 Potential Outcome . 38

4.4 Find a method for collecting additional benign memory samples 39
4.4.1 Potential Outcome . 39

4.5 Develop a large enough dataset to support the number of features selected
for training classifiers . 39

4.5.1 Potential Outcome . 39
4.6 Create a dataset of samples that are representative of malware and benign

software that is used in the real world 40
4.6.1 Potential Outcome . 40

V. MACHINE LEARNING WORKFLOW . 41

5.1 Generate TF-IDF features . 42
5.2 Connecting Processes to Normalized Paths 42
5.3 Data Filtering and Feature Engineering 43

5.3.1 DLLs . 43
5.3.2 Handles . 44
5.3.3 Privileges . 45
5.3.4 Tokens . 47

5.4 Building Machine Learning Models . 47
5.4.1 Filtering Chocolatey Processes 47
5.4.2 Training/Validation/Test Set Creation 47

vi

5.4.3 Chocolatey Processes Oversampling 48
5.4.4 Feature Selection . 49

5.5 Test Set Predictions . 54
5.5.1 Model Interpretation . 57

VI. DISCUSSION . 65

6.1 Which memory objects are related to processes in random access memory? 65
6.2 What are common memory object relationships that malware tends to

manipulate and/or establish in memory? 65
6.3 Do malware samples that have multiple processes have distinct path char-

acteristics? . 66
6.4 Do benign and malicious process paths have distinguishing characteristics? 68
6.5 Which features best support the goal of maximizing accuracy while mini-

mizing false-negative rate in identifying malicious processes? 68

VII. CONCLUSION . 73

7.1 Summary . 73
7.2 Contributions . 75

7.2.1 Memory object mapping . 75
7.2.2 Object Association Extractor . 76
7.2.3 Feature set development . 76
7.2.4 Trained machine learning classifiers 77

7.3 Future Work . 77
7.3.1 Alternative Approaches . 77
7.3.2 Community Detection . 79
7.3.3 Kernel Objects . 79
7.3.4 Additional Operating Systems 79
7.3.5 Live Acquisition and Predictions 80

7.4 Closing and Acknowledgement of Support 80

REFERENCES . 82

APPENDIX

A. MEMORY OBJECT MAPPING DEFINITIONS AND RELATIONSHIPS 90

A.1 Object Interactions . 96

B. MALWARE FAMILY BREAKDOWN . 104

vii

C. NORMALIZED PATHS INVERSE DOCUMENT FREQUENCY (IDF) 117

viii

LIST OF TABLES

3.1 Memory Object Descriptions . 22

3.2 TF-IDF Example . 32

3.3 Feature Selection Techniques . 33

5.1 Training/Validation/Test Breakdown . 48
5.2 Chocolatey Dataset Breakdown . 49
5.3 Classifier Feature Count . 54

6.1 Model Comparison vs. ZeroR Baseline . 71
6.2 Model Comparison vs. ZeroR Baseline cont. 72
B.1 Dataset Malware Families . 105
C.1 Normalized Path IDF Scores . 118

ix

LIST OF FIGURES

1.1 Process Object Relationships . 4
3.1 Cuckoo Sandbox System Diagram . 19
3.2 Malware Family Dataset Wordcloud . 24
3.3 Path Example . 28
3.4 Path Normalization . 30
5.1 Classification Reports for DecisionTree and RandomForest Classifiers 52
5.2 Classification Reports for LogisticRegression and GradientBoosting Classifiers . . 53
5.3 Classification Report and Confusion Matrix for DecisionTree Classifiers 55
5.4 Classification Report and Confusion Matrix for RandomForest Classifiers 56
5.5 DecisionTree Feature Importance Charts . 58
5.6 RandomForest Feature Importance Charts . 59
5.7 DecisionTree Classification Report and Confusion Matrix

(Process Features) . 61
5.8 RandomForest Classification Report and Confusion Matrix

(Process Features) . 62
5.9 DecisionTree Classification Report and Confusion Matrix

(Path Features) . 63
5.10 RandomForest Classification Report and Confusion Matrix

(Path Features) . 64
6.1 DecisionTree Feature Importance for Resampled Data: (Normalized Path Features) 67

x

CHAPTER I

INTRODUCTION

Malware is a growing concern that not only affects large businesses but the basic consumer

as well. Malicious activities are incentivized, and actors develop methods to profit from design,

software, and user errors. Because of these constantly growing threats, there is always a need

for effective solutions for identifying and mitigating risks. Malware researchers and incident

responders have taken the task of joining the arms race against malicious attackers. They have

employed a number of techniques including static [1] [2] [3] and dynamic analysis [4],[5] and have

utilized automated systems to discern the intent of malware in a controlled environment [6],[7].

The struggle between malware authors and the security community is constantly changing. Each

new defensive or investigative discovery prompts attackers to find new methods to subvert systems.

Techniques are needed to make the job of concealing activities more difficult for malware authors.

Memory forensics exploits a fundamental flaw malware authors face when attempting to conceal

their behavior.

1.1 Memory Forensics

Memory forensics is the study of volatile data and its structures from a memory dump [8]. This

technique provides insight into what actions have taken place on a system using physical memory.

Walters and Petroni Jr. [9], [10], presented the first open-source framework used to collect

1

information from physical memory on Windows systems. The authors also discussed integrating

the collection of memory into the digital forensics process with minimum intrusiveness. Since its

inception from string and grep analysis, there has been extensive work performed in understanding

the components of physical memory [11],[12],[13]. In the early stages of the field, professionals

saw these techniques as a luxury when hard disk forensics did not yield results. As the field has

matured, it has become a core technique for discovering and understanding what has occurred

on a computer system. Memory forensics has become an effective technique for digital forensics

investigations that focus on cybercrime, incident response, and malware analysis [14],[10]. It gives

context for what user accounts were active on a system, offers information on the actions taken,

allows for the extraction of passwords, and can be used to extract specific files from a memory

dump [15],[16]. These capabilities have drawn much interest in the research community and

industry. This has led to a demand for training to learn and apply these techniques. [8], [17], [18].

In addition to the information described above, an analyst can also determine active and hidden

processes, open files, information on network activities, and potentially find malware that is active

on a system [19]. There are several tools available to perform investigations and research, but two

main open-source tools have gained strong support: Volatility [20], and Rekall [21]. Volatility is a

command-line tool with plugins that allow for the inspection of data structures in memory. Rekall

branched from Volatility and has much of the same functionality but focuses on using the tool as

a library. When this research was started, Volatility focused on collecting information from data

structures in memory and saving that data to output files. Rekall provides an interface to collect

data from its plugins and interact with data programmatically. In this work, Rekall is the tool

2

of choice because of the programmatic functionality. It is used to automate the data extraction

process.

1.2 Malware in Memory

Malware often aims to perform its tasks while also remaining concealed as long as possible.

For malware to achieve its desired actions, it must exist in memory, which makes it more difficult

to stay hidden. This has been called the rootkit paradox [22]. Malware can manifest itself in many

ways, from a dropper that spawns other processes and ensures persistence through registry keys to

samples that use hooking to perform keylogging to loading malicious kernel drivers with complete

access over a system. With each of these manifestations, the presence of malware in some way

affects some other components in memory. The internals of random access memory (RAM) on

a system consists of many components that rely on one another to function correctly. Malware

authors have studied how these components interact with one another and have developed methods

to exploit the intended design of systems. This research aims to find a new way of representing

the layout of objects in system memory. Specific to this work, objects in memory reference data

structures used by the Windows operating system to perform tasks. Relationships between objects

refer to the notion that a given object contains, creates, deletes, and can modify another object. With

these definitions, this work views the problem of representing the layout of a system memory image

as a graph of object relationships. Each object will be displayed as a node, and the relationships

between the nodes are shown as edges. As with any graph, whether it be the study of molecules in

chemistry, computer networks, and social networks, the more connected nodes are within a graph,

the deeper the relationships with one another. Value is seen in this approach because it is used to

3

identify relationships that were difficult to discover using manual analysis. The focus of this work

is using memory forensics to determine the relationships of objects within memory images.

Figure 1.1 Process Object Relationships

Figure 1.1 shows a process that is started from a portable executable (PE) file. Once started,

the address space for a process will contain dynamic-link libraries (DLLs) and tokens. DLLs

are portable PE files used on Windows systems to provide access to common functions. If a

DLL provides a given function, a process will import that DLL into its address space to access

it. Tokens are objects that describe the accounts, groups, and privileges that are associated with

a process. Tokens determine the types of resources that a process can access. In Figure 1.1 the

process also creates threads, network connections, etc. A thread is a basic unit of a process that

can be allocated processor time. Each process must have at least one thread that is executing.

A network connection is established to communicate with other systems via a communication

channel. Objects in memory have high connectivity to other objects and use these relationships to

4

function properly. This research aims to prove that understanding these relationships and knowing

how objects should be connected can effectively identify malicious activity.

1.3 Malicious Path Data

An assumption for malware is that if it has multiple components, it will have mechanisms that

allow for synchronization and communication. This aspect of the research focuses on leveraging

the path data of each memory object graph to determine if there are uncommon paths in a graph

that malware uses. Malware authors can utilize different methods for performing malicious actions

on an information system. In these experiments, empirical data is used to study the most common

paths between malicious processes versus the most uncommon paths. Our intuition is that paths

that are less common between objects could be informative for identifying malware in memory. To

help identify relationships of interest, the information retrieval technique term frequency-inverse

document frequency (TF-IDF) will be used. Hubballi, Biswas, and Nandi [23] used this method

in previous work to identify combinations of opcode strings and API calls to identify malicious

activity.

1.4 Machine Learning

Once the grouping of related memory objects has been collected from memory images, the

characteristics of the graphs and the objects within the graphs can be extracted. These characteristics

will then be used to train machine learning classifiers and determine if the connections of objects

in memory can be used to find malicious processes. In the machine learning workflow, we ensure

that standard techniques for building supervised machine learning models are followed: splitting

5

data into training, validation, and test sets, ensuring the datasets are balanced based on class, and

only using the test set for the final predictions.

1.5 Hypothesis

The hypothesis for this research is: Memory object graph topology attributes and object char-

acteristics from operating system memory images are a predictive factor for identifying processes

containing malicious code. To establish this hypothesis, a model will be trained and will show

how accurately malicious or benign processes can be classified. In addition, the work will aim to

maximize the metric recall. Recall measures how well a classifier can determine the positive class,

in our case, identifying malicious processes.

As a baseline for comparison, the Zero Rule classifier will be used [24]. The Zero Rule classifier

counts the number of instances of each class value, either malicious or benign, and determines the

most frequent class value. All data points are then predicted to be this majority class. A successful

classifier should be able to outperform the Zero Rule method. The research is currently structured

around the Windows 7 operating system as a proof of concept. Once evidence to support our

hypothesis is found, additional operating systems can be explored to apply our method to other

contexts. There is also an extensive amount of malware available which targets this operating

system. This availability of malware helps in creating a robust dataset for testing. In the future,

a similar study will be conducted on Windows 10. The success of this research would logically

lead to generalizing the demonstrated techniques to other operating systems. Operating systems

may have similar functionality, but the underlying structures in memory can be different. Because

of these differences, malware exhibits different behaviors based on the implementation details in

6

the target OS. Therefore, if the research methodology work is proven for Windows 7, similar work

taking account for specific OS implementation is required for other operating systems. Therefore,

while we believe this research will be widely applicable to other operating systems, we stress that

comparable work with different operating systems and operating system versions must be tested

independently of these results.

1.6 Research Questions

Based on the hypothesis above, research questions were developed to steer the direction of this

work.

1.6.1 Which memory objects are related to processes in random access memory?

This work focuses on studying the characteristics of processes, the paths between processes in

a graph, and the relationships of processes. Processes interact with different objects in memory. A

clear understanding of how these relationships are normally expressed will assist in the identification

of malicious anomalies. Using Cuckoo Sandbox [6] and diffing, malicious processes can be

identified. Diffing entails executing a malware sample and examining the changes that are detected

on that system. Any new or modified objects are considered malicious because the malware sample

was responsible for these changes to the system. These labels will be used in the classification of

processes as either malicious or benign.

1.6.2 What are common memory object relationships that malware tends to manipulate
and/or establish in memory?

To answer this question, the datasets collected will be analyzed to reveal how malware with

different types of behaviors manifests itself regarding memory object graphs. The hypothesis is that

7

the relationships of malicious processes to other memory objects will look different from normal

process relationships. These differences in relationships will be exploited to train classifiers. To

prove the difference in object relationships between malicious and benign processes, Windows 7

memory images will be studied and utilized for training machine learning classifiers.

1.6.3 Do malware samples that have multiple processes have distinct path characteristics?

As a malware sample executes, there is assumed to be orchestration between processes as they

perform their specified actions. As this question is answered, the aim is to identify the mechanisms

commonly used by malware to communicate. This will be done by looking at the paths in our

memory object graphs where the source and destination nodes are malicious processes. With this

data, relationship paths can be studied to determine if any approaches are common to malware vs.

benign software. For uncommon malicious paths, these can be used as features for our machine

learning classifiers.

1.6.4 Do benign and malicious process paths have distinguishing characteristics?

With the path data collected, it can be used to identify differences in the paths that malicious

processes use vs benign processes. To distinguish between types of paths, term frequency-inverse

document frequency (TF-IDF) [25]) will be applied to our paths dataset. This technique is geared

toward devaluing prevalent paths and highlighting (giving larger weighted values) less common

paths and could indicate malicious activity.

8

1.6.5 Which features best support the goal of maximizing accuracy while minimizing false-
negative rate in identifying malicious graphs?

In this stage, the feature selection process will be performed. Redundant and noisy features

will be removed to improve classification accuracy and reduce the false-negative rate.

1.7 Research Benefits

The results of this work will be helpful to forensic analysts that have to identify malicious

activity and often have to rely upon vast amounts of background knowledge and manual analysis.

This will be simplified by automating the types of relationships that should be investigated. In

addition, this research will support current investigations by making them more effective and lays

the groundwork for the development of new tools in the future.

9

CHAPTER II

RELATED WORK

This section will introduce related research to the proposed topic. The body of knowledge

is reviewed to understand what has been done in studying malware concerning random access

memory and machine learning.

Thomas et al. [26] describe some of the basic procedures for extracting objects from memory.

Some of the procedures included listing running processes, loaded DLLs, and extracting process

memory from running processes. There has been much work that outlines steps and procedures

for manually identifying malware in memory [27],[28][29]. These often suggest sequential steps

that an analyst will follow, such as those outlined in SANS FOR526 [17]:

1. Identify rogue processes

2. Analyze process DLLs and handles

3. Review network artifacts

4. Look for evidence of code injection

5. Check for signs of a rootkit

6. Dump suspicious processes and drivers

10

This process is effective but efficiently performing these steps and building the background

knowledge to do so correctly is difficult. Research has been conducted that aims to automate

the detection process. For example, to identify userland keyloggers Case et. al. [30] created

HookTracer and hooktracer_messagehooks to provide users other than expert investigators with

this capability. Antivirus software can also be used to scan memory images, particularly with the

advent of VirusTotal [31], which allows a file to be scanned by over 70 public malware detection

engines. This method has shown some success, but it is not scalable and cannot be depended on

alone. The difficulty with depending on antivirus companies is that they are dependent on keeping

their analysis engines up-to-date and are consistently identifying infections from a reactionary

perspective [32]. Studies have shown that, depending on the antivirus software, detection rates vary

drastically [33] [34]. Memory forensics can also provide support for analysts that are attempting

to identify ransomware. In work by Bajpai and Enbody [35] the cryptographic keys of malware

families were found in system memory images. The use of machine learning to detect malware

in memory is an area of research that has shown much promise. There are a variety of methods

that have been used in the attempt to identify malicious behavior. Mosli et al. [36] had the goal

of using features from registry keys, DLLs imported, and API calls to train machine learning

classifiers. They created a processing environment using an Ubuntu system and a target Windows

7 system. Windows 7 was run on a bare-metal system to avoid the use of anti-VM techniques by

malware samples. The Ubuntu system was responsible for resetting the target system each time a

sample was executed. Artifacts were extracted using the memory forensics framework Volatility.

The authors’ used malware samples from VirusShare [37] and VX-Heaven to train classifiers with

varying degrees of success. A Stochastic Gradient Descent model was created with registry activity

11

to yield 96% accuracy, with DLLs an accuracy of 90.5% was achieved with random forest, and

Stochastic Gradient Descent provided 93% accuracy with API function calls.

Glendowne et al. [38] used information collected from Windows 7 memory images generated

by Cuckoo Sandbox to identify characteristics for DLL injection. After executing the malware,

the authors developed heuristics for finding DLL injection from the resulting data. The following

is a list of characteristics that were considered in the research: the process that was the target for

injection, the number of injections that a particular sample performed, the times at which DLLs

were loaded into multiple processes, the average load and initialization position for malicious vs.

benign DLLs, common base addresses used when loading DLLs, imported and exported function

counts, the directory that DLLs were loaded from, and determining if a DLL was used as a

Component Object Model (COM) client or server.

Lashkari et. al. [39] created a tool based on the Volatility framework called VolMemLyzer. It

was designed to extract the most critical characterization features from its memory dumps. The

work tested a dataset of 1900 (1127 benign and 733 malicious) samples and aimed to classify

a memory image as malicious or benign. The features used were collected from the following

categories: processes, dynamic link libraries, handles, loaded modules, code injections, connec-

tions, sockets, services, drivers, and callbacks. The authors used four different machine learning

classifiers with the Decision Tree and Random Forest classifiers performing the best with a True

Positive Rate of 0.93 and a False Positive Rate of 0.066.

In work conducted by Bozkir et. al [40] the author leveraged Sysinternals utility ProcDump

[41] to create memory dumps of a targeted process. The authors used the Windows Sandbox

environment included in the 1903 Windows 10 operating system version to perform this collection.

12

The authors collected these dumps from ten classes of malware and used computer vision techniques

to train machine learning models to classify processes as malicious or benign.

Mosli et. al [42] used handles from memory images and term frequency-inverse document

frequency (TF-IDF) as a means for classifying processes as malicious or benign. The idea is that

using TF-IDF would recognize handles that were most important for identifying malware. Duan et

al. [43] developed a method of identifying malicious vs benign processes based on the DLLs that

the processes contained. The authors used a hidden Naive Bayes (HNB) classifying algorithm and

collected data from VirusTotal and memory images using Volatility for their training and evaluation

sets. The authors also used data mining and frequent pattern sets to understand the functionality

of the malware. This was done by developing clusters for a training set, tagging/labeling these

clusters, and then using these clusters to provide insight into the abilities of the unknown samples.

Aghaeikheirabady et al. [44] used features collected from _EPROCESS structures, the Virtual

Address Descriptor (VAD) tree, mapped files, and registry keys as input to classify malware. In

total, the authors used 130 features and collected the data from about 350 samples from Virussign

[45] and VX-Heaven. Benign samples were gathered from a Windows 7 operating system. The

authors did not discuss the method used to execute their samples or the type of tool used to extract

information from memory. The features collected were used in the following machine learning

algorithms:

• Sequential Minimal Optimization (SMO)

• Random Forests (RF)

• Decision Trees (DT)

13

• Naive-Bayes

• Instance-Based (IBK)

Naive-Bayes yielded the best accuracy and false positive rate at 0.989 and 0.016, respectively.

As a component of a more extensive system, the authors of [46] use characteristics of API hooks

as a feature for detecting botnets in memory. Srivastava and Jones [47] focused their research

on detecting code inject in processes. They performed this analysis by reviewing the relationship

between the Virtual Address Descriptor (VAD) tree and the processes stack. Their idea was that

inconsistencies in the data returned from both objects would be a sign of code injection. In the work,

the authors created a Volatility plugin that automated the process of checking these objects. The

authors proved their approach by performing two case studies using the methods described. This

work will continue to explore how malware represents itself in memory and develop techniques

using machine learning to automate the detection process.

Cohen and Nissim [48] aimed to use memory forensics and features extracted from memory

dumps to detect ransomware using machine learning. The detection was performed in the cloud

on systems running on VMware ESXi. The features used were collected using the Volatility

framework, and the operating system used was Windows Server 2012 R2. A subset of the original

features was collected in the paper after selecting and ranking the most important features. Cohen

and Nissim [48] ended with twenty-three features they felt provided a quality representation of a

system state. The focus of these features was on core system elements such as processes, threads,

services, etc. The authors used Cerber, TeslaCrypt, Vipasana, Chimera, and HiddenTear as the

samples in their experiments to test their work. Multiple scenarios were tested in this work,

14

represented in multiple experiments. The authors wanted to train classifiers to identify known

states on a running server in experiment one: anomalous activity detection, distinguishing between

benign and infected states and detecting specific states. In experiment two, the goal was to have

classifiers select an unknown infected state, and experiment three targeted the classification of both

unknown benign and unknown infected states. Experiment four had the goal of training classifiers

to identify remote access trojans (RATs) and experiment five looked to discover unknown states

on an email server. Experiments 1-4 were run on an Internet Information Services (IIS) server.

The RATs used in the experiments were Babylon, Comet, DarkComet, Pandora, and SpyGate. The

authors used nine commonly used machine learning classification algorithms that are listed below:

• J48

• Random Forest

• Naive Bayes

• Bayesian Networks

• Logistic Regression

• LogitBoost

• Sequential Minimal Optimization

• Bagging

• AdaBoost

15

In the first subset of experiments, where the first task detects an anomalous state, the second

task is to distinguish between benign and infected states. The third task is the detection of specific

known states the Random Forest classifier achieved perfect results in the three sub-experiments:

True Positive Rate (TPR) = 1, False Positive Rate (FPR) = 0, Area Under the Curve (AUC) = 1,

and F-measure = 1. True Positive Rate measures the number of correctly marked predictions as

the true class (Example: Malware was predicted as malware). The False Positive Rate specifies

the rate at which samples that were not positive were predicted as positive. (Example: Benign

samples labeled as malware.) Area of the Curve is a common metric to display the performance

of a binary classifier based on a comparison between the TPR and FPR. It shows how well a

model can classify a sample compared to random guessing. F-measure is a weighted average

between the metrics precision and recall. Precision measures the ability for a classifier not to label

as positive a sample that is negative. Recall measures the ability for a classifier not to label as

negative a sample that is positive. The second experiment evaluated the detection of unknown

infected states on a virtual server. The best detection results were achieved by the Random Forest

classifier: TPR = 0.9575, FPR = 0, AUC = 1, and F-measure = 0.975. In the third experiment,

they evaluated unknown infected states as well as unknown benign states. The results showed that

the best detection results were achieved by the Random Forest classifier: TPR = 0.922, FPR =

0.052, AUC = 0.966, and F-measure = 0.910. The fourth experiment detected the capability of

detecting RATs. The LogitBoost, AdaBoostM1, and J48 classifiers provided perfect results in this

experiment. Experiment five looked to examine detecting both ransomware and RATs on an email

server. From the results the Random Forest classifier achieved the best detection results: TPR =

0.925, FPR = 0.058, AUC = 0.966, F-measure = 0.935. The focus of their work was not to identify

16

a particular element on the system as malicious or benign but to take a comprehensive look at

memory and determine if the system was detected to be in an infected state. In future work, the

authors are interested in extending this work to the labeling of compromised machines as a whole.

Kumara and Jaidhar [49] use memory forensics and machine learning in their work, but they

use memory forensics to extract binaries from memory and then apply machine learning with the

information they have used from virtual machine introspection. It seems as though the authors

apply n-gram analysis techniques from static analysis as the major input into their machine learning

feature vectors.

Much work has focused on effectively finding malware in memory and employing machine

learning methods for identifying malicious activity. However, to our knowledge, no work has

focused on using memory forensics to study the object relationships within a memory dump and

view it as a graph problem for identifying malware in memory. Furthermore, no work uses the

combination of studying the characteristics of objects in a graph and the graph’s structure as

features to machine learning classifiers for identifying malicious vs. benign processes. Viewing

the problem from this perspective provides the benefits of identifying a malicious process and

leveraging the graph structure to pinpoint related abnormal objects of interest. The remainder of

this work outlines the procedures used to do this and the results collected.

17

CHAPTER III

METHODOLOGY

This section will describe the steps taken to conduct this research. This includes data generation,

Object Association Extractor (OAE) tool development, data extraction, feature development, and

classifier evaluation.

3.1 System Design

The system used to generate infected memory images is based on the dynamic malware analysis

sandbox called Cuckoo Sandbox [6] and a system developed by Miller et. al [50] here at MSU.

This system allows malware to be automatically submitted to a clean virtual machine, executes and

monitors the samples for a set time, captures the memory of the running VM, and then the VM is

reset to a clean state snapshot. This process is repeated for each sample submitted. This system

uses samples collected from the online malware repositories VirusShare [37], and VirusTotal [31].

The diagram in Figure 3.1 displays the Cuckoo architecture being used, which was designed by

Glendowne in [51]. Three blade servers were used with slightly different hardware configurations.

Two of the servers had twenty physical cores, while one server had sixteen cores. Both types

were equipped with 128 GiB of RAM. According to work from [50], a Cuckoo host is a VM on

a blade server running ESXi 5.5.0. This VM runs on Centos 7 OS and contains 20 additional

virtual machines running Windows 7 using QEMU [52]. This "VM inside of a VM" setup was

18

performed as an added layer of security to handle malware samples that attempt to escape a

virtualized environment. QEMU was selected as the second layer of virtualization due to its speed

and stability (See Miller et. al [50]) for the comparison experiment between VMware and QEMU.

Each Windows 7 VM was configured with 512 Mb of RAM, one CPU core, Adobe Reader 11,

Python2.7 installed, and had Windows firewall and User Account Control (UAC) disabled. Each of

the VMs did not have Internet access but were connected to an isolated network with INetSim [53]

running. INetSim was created to spoof various Internet services such as DNS, HTTP, and SMTP.

As samples are passed to the Windows 7 VMs, they each run for 125 seconds (This value was also

empirically tested in Miller et al. [50]). After this execution period, the VM is paused, and the

memory images for the samples are collected and saved to a NoSQL CouchDB [54] database in

JSON [55] format for later analysis.

Figure 3.1 Cuckoo Sandbox System Diagram

19

3.2 Memory Object Mappings

The memory object mapping described in this work provides insight into how objects in

memory fundamentally interact with one another. This work uses processes as the focus for

identifying malicious activity. Processes are among the most critical objects due to their high level

of connectivity to other objects in a memory object graph. To understand these interactions, the

material provided in Ligh et. al. [56] and Russinovich [57] were used. Russinovich [57] provided

context for what standard functionality looks like, and Ligh et al. [56] highlights how these object

interactions are abused. The relationships reviewed are instances where an object creates, deletes,

and can modify another object. A mapping of these relationships was created in a Microsoft Visio

file, and then this information was used to develop the extraction tool to pull this data from a

memory image in graph form.

3.3 OAE Development

A memory object graph tool called Object Association Extractor (OAE) has been created to

identify and connect objects that are related to one another. Memory images created by the data

generation system from Section 3.4 will be used to create memory object graphs. OAE is written

in Python 3 and built on top of a memory forensics framework called Rekall [21]. Rekall was used

to extract the characteristics of objects found in memory images. In addition to this, a network

analysis package called NetworkX [58] was used to take information from Rekall and store it in

graph form. When OAE processes a memory image, nodes and edges are generated as various

object extraction modules are executed. Each module was responsible for populating different

types of nodes to a graph. Related objects were then connected to others in that graph. The objects

20

included in our work are listed in Table 3.1. A full write-up that describes the interactions between

objects can be found in Appendix A. The current development is focused on userland objects of

the Windows 7 operating system. Future work will include objects that run in kernel mode and

apply similar methods to these objects.

The following section describes how OAE was used to extract data from RAM memory images.

3.4 Data Generation

For these experiments, memory images were filtered to a dataset containing at least two active

malicious processes after running each malware sample through our malware execution system.

The processes were labeled as malicious by using reports from Cuckoo Sandbox. The Cuckoo

analysis system looks for indicators that are considered malicious and tracks other processes that

are impacted by any malicious activity. To confirm that processes are active, we used the Rekall

memory forensics framework. Rekall contains a plugin called psscan that scans a memory image

for the data structure representing a process. This is called an _EPROCESS structure. This data

structure has a member called ExitTime, which denotes when a process has stopped. The Cuckoo

analysis report was used for each memory image to collect all malicious processes in the image.

From this point, the ExitTime for each process was checked to ensure it was active. Once a memory

image was confirmed to have two malicious processes, it was included in our dataset. The dataset

contains 13,822 memory images. All malware samples used came from the VirusShare malware

repository. This repository provides zip files of malware that can be downloaded for users with

a verified account. Before using any samples from each VirusShare zip, they are run through a

filtering process. First, the samples are extracted and checked to ensure they are valid portable

21

Table 3.1 Memory Object Descriptions

Object Description
Atoms Strings that can be shared between processes in the same session
Binary Portable Executable file used to start a process
Callbacks Notification routines used to signal events
Desktop An object that represents the displayable screen surface and

contains user objects such as windows, menus, and buttons
Device An object created by drivers that handle I/O request packets
Driver Represents the image of a loaded kernel-mode driver and con-

tains addresses of the driver’s input/output control handler func-
tions

Event Hook Notification used to signal UI-related events
I/O Request Packet Structures used by devices and drivers to communicate with one

another
Message Hook Object used by applications to monitor and potentially record

user activity
Module An executable file that could include DLLs and kernel modules
Mutant An object that represents mutual exclusion and is typically used

for synchronization purposes or to control access to particular
resources

Privilege The permission to perform a specific task
Process A container that allows threads to execute within a private virtual

address space and maintains open handles to other objects
Registry Key An instance of an open registry key that contains information

about the key’s values and data
Service Program that executes in the background
Session Outermost container for the GUI landscape
Network Connection Established or attempted connections via TCP or UDP
System Service Descrip-
tor Table

Table of pointers to API calls

Thread An object that represents a scheduled execution entity within a
process and its associated CPU context

Timer An object used for synchronization and notification
Token Stores security context information (such as security identifiers

for processes and threads.)
Window Station A security boundary for processes and desktops, which also

contains a clipboard and atom tables

22

executable (PE) files. This check is performed by using the ’file’ [59] UNIX command and the

pefile [60] python library. Any file that is not a PE file is deleted. The next check uses the AVclass2

[61] project to identify any potentially unwanted programs (PUPs). PUPs are samples that fall into

the category of being a nuisance, in general, and are not the target of this work. These samples are

often referred to as adware. AVclass2 uses scans from VirusTotal to identify the families associated

with a sample and if they are considered to be PUPs. Any PE file that is labeled as a PUP is deleted.

Samples that make it through this filtering process are then submitted to our Cuckoo sandbox

environment to be executed and have their memory images stored for data extraction. AVclass2

[61] is also used to provide a description of the types of malware samples included in our dataset.

A wordcloud was created to display the most common malware families included in the dataset.

This is displayed in Figure 3.2. The complete table of each malware family included in the dataset

is listed in Appendix B. These malware samples are used to create the memory images that OAE

uses.

3.4.1 Benign Memory Images Dataset

To increase the robustness of the memory images dataset, the Chocolatey [62] software man-

ager was used to create memory images containing a variety of legitimate 3rd-party processes.

Chocolatey itself is one of the leading software installation tools and integrates with many top

open-source software automation and configuration platforms. A virtual machine was set up with

a Powershell script that would download 20 binaries from Chocolatey, execute them, and then

captures memory from the Windows 7 VM. This VM was configured with 6 GiB of RAM and two

CPU cores. This method generated 91 memory images containing approximately 1,800 legitimate

23

Figure 3.2 Malware Family Dataset Wordcloud

processes. These memory images were combined with those containing malware. Samples that are

processed through Cuckoo produce an analysis report that will be used to label malicious processes

in each memory image. This provides a form of ground truth for identifying malicious processes.

All the processes from the Chocolatey processing will be labeled as benign. These labels offer the

ability to annotate our datasets as they go through the process of feature engineering and model

creation in Section 3.5.

3.4.2 Data Extraction

In this section, the data extracted from the memory images created will be discussed. This will

include providing details on the process data being used and object relationship data. For each

24

memory image created, the graph relationships are extracted. The extracted data from a memory

image is called a memory object graph and will be collected using the OAE tool referenced in

Section 3.3. Information about individual objects and relationships between objects in a memory

image is extracted as a graph and saved to a NoSQL CouchDB [54] database in JSON [55] format

for later analysis.

3.4.3 Process Data

For the process dataset, features are extracted primarily from information associated with

_EProcess structures for each process in a memory image. Other data sources include plugins

from Rekall that check for manipulation of objects by malware. From this, we separate the process

specific information into its own dataset and save it into a MongoDB database for processing. The

raw features in the dataset are provided below, with a description of each.

• priv_info_list collects a list of dictionaries that hold information about the privileges used

by the current process. These can be indicative of the types of actions that a process is

attempting to perform and if the privileges were loaded in a malicious manner.

• handle_count_dict is a dictionary of counts that keeps track of the types of handles that the

process maintained.

• handle_count_dict is a dictionary of counts that keeps track of the types of handles that the

process maintained.

• token_info_list contains a list of all of the token objects used by this process.

25

• dll_info_list contains a list of the dynamically linked libraries (DLLs) used by the current

process.

• pid and session_id are the Process Identifier (pid) for the process and the session it belonged

to.

• ppid is the parent process identifier.

• phys_offset is the physical offset in a memory image where an _EProcess structure is located.

• create_time is the time at which the process was started. The time is saved as an integer

Unix epoch time.

• exited is a boolean value that identifies if the process is still active or has exited.

• exited is a boolean value that identifies if the process is still active or has exited.

• type is the object type.This is a type provided by OAE. For example, although each process

is defined as an _EProcess structure, the type would simply be "process".

• path shows the file location to the binary that executes and starts a process.

• launched_from_temp returns a boolean value that identifies if the current process launched

from some type of Windows temp directory.

The following features all return boolean values. They are used to identify if a process could

have used Direct Kernel Object Manipulation (DKOM) to hide its presence from standard analysis

tools that check for processes in a particular way. This information is collected by a plugin from

26

Rekall called psxview (process cross view). Its purpose is to show the alternative listings of a

process within an operating system and compare them to identify any malicious discrepancies.

• is_in_Sessions - This feature checks the status of the SessionProcessLinks member of an

_EProcess structure. This value associates all processes with a particular user’s logon

session.

• is_in_CSRSS - Client/Server runtime subsystem is used to create almost every process or

thread on a system. The handle table for this process can be used to identify processes on a

system.

• is_in_PspCidTable - This is a special table in kernel memory that stores references to all

active processes and thread objects.

• is_in_PsActiveProcessHead - PsActiveProcessHead is a member of the kernel debugger data

block (_KDDEBUGGER_DATA64) and is used to point to the head of a doubly-linked list

of _EProcess structures.

• is_in_Thrdproc - Each process must have at least one active thread, so scanning for _EThread

objects in memory and mapping the owning process is a way to cross-reference all processes.

• is_in_PSScan - Scan a memory image using the psscan plugin to find tags associated with

_EProcess structures.

These features are used in the feature engineering and classifier evaluation stages to determine

if they are predictive of malicious vs. benign processes.

27

3.4.4 Malicious Path Data

An important aspect of understanding malware is identifying its components and studying how

these components potentially interact with one another in memory. Since each memory image in

our dataset has at least two malicious processes, it is assumed that the malware components have

some form of communication or synchronization. This would mean there are relationships between

these objects used to perform their activities. The OAE tool extracts and graphs these relationships

and provides information on the types of relationships that exist between objects. As an example,

there are many parent-child relationships for processes in a given memory image. OAE will make

each process a node in its generated graph and label this type of relationship with a connecting

edge. Therefore, in each memory image, all paths between malicious processes will include the

name of each object and a label that describes how the objects are connected. An example is shown

below with Figure 3.3.

Figure 3.3 Path Example

The path example also highlights the labeling method used for objects in memory object graphs.

The first segment shows the name of the object found in memory(parent.exe). Next, an identifier is

used to label an object in memory. For processes, the process identifier (PID) is used. The physical

offset is used for most other objects since this is a unique value for each object type. Finally, the

object is given a label for its type in the graph. This example uses processes for each object in our

28

path. The figure also illustrates the type of relationship by labeling the edge between the objects.

Other objects follow a similar structure to the example outlined. From this data, additional tools

were written that identify all the malicious processes in a memory image using the Cuckoo reports

discussed previously. From these processes, all combinations of malicious processes for a memory

image are found. For each pair, all paths between the two nodes are collected. This is performed

by using NetworkX [58] and the function all_simple_paths. This function takes a source and target

node from a graph and then generates all non-cyclical paths. This data will be used to create

features based on the malicious paths collected. Transforming these malicious paths to be used

with machine learning classifiers is discussed more in the next section.

3.4.5 Path Normalization

From the paths that are generated in the steps discussed previously, each path between malicious

processes would have information that is specific to a given memory image. E.g. each process node

in a malicious path would have a PID from its given memory image. The next step for collecting

insight from our data is to transform the path data to a normalized format. From this format, the

information that is specific to a memory image would be removed. This would leave only the object

type for a node in the path and the relationship of that node to its neighbor in the path. An example

of this normalization process is shown in Figure 3.4.

The paths normalized in this manner enable the review of data from all paths in the memory

images dataset. The normalized paths can be used to determine the types of patterns that occur

in the graphs generated from the memory images. We believe that normalized paths that occur

frequently are generated from regular system activity. Malware can aim to exploit details of the

29

Figure 3.4 Path Normalization

operating system to achieve its tasks. Often it is the edge cases of these details that malware authors

have discovered to use. Because of this, the focus of our analysis will be on less common paths in

our normalized path dataset.

3.4.6 Path Analysis

The normalized paths of each memory image are used to determine if there are uncommon paths

that have been generated. Malware authors can utilize different methods for performing malicious

actions on an information system. In these experiments, empirical data is used to study the most

common paths between malicious processes versus the most uncommon paths. Our intuition

is that paths that are less common between objects could inform the machine learning model

development process. We use Inverse Document Frequency (IDF) to analyze how a normalized

path is represented based on the entire normalized path dataset.

30

IDF is commonly used as an information retrieval technique to find the overall importance of

a word in an entire corpus. Its main benefit is devaluing common words or strings and giving a

higher score to less common words of strings. An example of this is shown below:

• Document 1: "The school basketball team is great."

• Document 2: "The school newspaper is showing improvement."

• Document 3: "The theater club is great."

From the documents above we will generate IDF scores for each of the words. For this task we

use the scikit-learn class TFidfVectorizer [63]. First lets start with the equation that TFidfVectorizer

employs:

𝑖𝑑𝑓 (𝑡) = 𝑙𝑛
1 + 𝑛

1 + 𝑑𝑓 (𝑡) + 1 (3.1)

n is the total number of documents in the document set, df(t) is the number of documents in the

document set that contain the term t, and ln stands for natural log which is used by TFidfVectorizer

to generate the IDF scores.

The larger the value returned, the more significant the word is in the dataset. A table of the idf

values for this example is provided below:

From Table 3.2, it can be seen that common words such as "the" and "is" are weighted lower

due to the frequency of the word occurring in the dataset. This same logic will be applied to the

normalized path dataset.

The normalized path data is saved in our MongoDB features database. The normalized paths

are collected and considered to be part of a single document for each memory image. All the

31

Table 3.2 TF-IDF Example

Word IDF Value
basketball 1.69314718

club 1.69314718
improvement 1.69314718
newspaper 1.69314718
showing 1.69314718

team 1.69314718
theater 1.69314718
great 1.28768207

school 1.28768207
the 1
is 1

normalized paths from the memory image dataset make up the normalized path corpus. IDF

looks at each path in the entire corpus and determines how frequently it occurs. Paths that are

less common across all documents in the corpus will have a higher IDF score. The IDF table in

Appendix C lists the top 150 normalized paths based on IDF score. These values were calculated

using the TFidfVectorizer from Scikit-Learn. Additional parameters of note when generating these

scores include setting a max_df of 0.85 and a min_df of 0.01. The max_df sets an upper bound on

the percentage of documents a word can be found in. min_df sets a minimum threshold percentage

for how many documents a word must be present to be included. These paths are used as features

for our classifiers.

3.5 Feature Development

In our feature development process, the data collected and current trends of malware authors

were studied for leads on creating additional features. These features were developed from two

32

main sources. The first data source was information pulled directly from process objects in memory

utilizing the attributes of a process node. The underlying data structure for a process, the _EProcess

structure, will be used to collect the characteristics of the object. The second dataset uses path

information between malicious processes discussed in the previous section.

3.5.1 Feature Selection

The feature selection techniques followed in this work go through two steps before training,

validating, and testing our final models. The steps are outlined in Table 3.3 below:

Table 3.3 Feature Selection Techniques

Method Explanation
Variation The change in feature values across samples are key in

identifying patterns for a model. Features that have no or
low variation are not useful in training a model. Features
with a variance of zero are dropped.

Stepwise Selection The next procedure uses models to remove features and test
their importance based on a metric such as recall. The
features that have the most impact on the selected metric
will be used while others are dropped. The specific type of
stepwise selection used was Recursive Feature Elimination
(RFE) [64]. The goal of RFE is to select features by recur-
sively considering smaller sets of features. The model is
trained with the initial set of features, and then the feature
importance is calculated. The least important features are
pruned, and the process continues until the best number of
features are selected.

The feature selection methods chosen are fast and straightforward techniques that are widely

accepted [64]. In Chapter V, the effectiveness of this approach is discussed.

33

3.6 Classifier Evaluation and Tuning

The objective of this work is to distinguish between malicious and benign processes in an

automated manner. Machine learning classifiers use the datasets created above for this purpose.

To perform the necessary machine learning work, Scikit-learn [65] was used. This Python library

provides consistent, simple, and efficient tools for data analysis and model development. Three

types of algorithms were selected: linear, non-linear, and an ensemble classifier. Based on these

requirements, the following classifiers will be used:

• Logistic Regression (Linear): This algorithm works well with large datasets, and it is not

computationally expensive. It was selected because models it produces can be trained quickly

and have a track record of being easy to interpret.

• Decision Tree (Non-Linear): This is a fast algorithm that can work well with datasets with

many features. It is an algorithm that does not require data normalization or scaling. A major

benefit of using Decision Trees is their performance and the intuitive nature of understanding

how a model makes its choices.

• Random Forests (Non-Linear Ensemble): Has broad versatility in the types of problems and

data it can use. This algorithm also does not require normalization or scaling, which helps to

simplify the data preparation process. Random Forest models often perform exceptionally

well because of the ensemble approach that it takes. It overcomes one of the possible

shortcomings of the Decision Tree algorithm, which is overfitting the training data, by using

several different Decision Trees to improve accuracy. Alternatively, Random Forest models

often take longer to build than Decision Trees.

34

• Gradient Boosting (Non-Linear Ensemble): This algorithm also has versatility and is com-

monly used as winning solutions for machine learning competitions such as Kaggle [66]. It

is also an ensemble method similar to Random Forest. A significant difference is how trees

are built. Random Forest builds all of its trees independently of one another. With Gradient

Boosting, each new tree built is done with respect to previous trees to correct errors made

by the previously trained trees.

Using these types of algorithms provides the capability to explore different methods of identify-

ing correlations between the features selected and the predicted class for the samples. Each model

uses the same training, validation, and test datasets, while the features for each varied depending

on the performance of each classifier. Each classifier was evaluated to determine which model best

maximized the recall of classifying processes.

35

CHAPTER IV

THREATS TO VALIDITY AND LIMITATIONS

In this section, the threats to validity are discussed. By this, we mean issues that could impact

experiments, the types of data that have been selected, the limitation of various algorithms, etc.

These caveats are being addressed to identify problems and highlight solutions.

4.1 Problem: Information loss due to sandbox evasion

Not every sample that has been processed by our system exhibits its full array of capabilities.

Some samples need to download additional components by communicating with a command and

control server and will not continue. In other samples, malware authors have begun developing

samples that are environmentally aware during their execution and evade dynamic analysis environ-

ments [67]. Freely available software, such as PAFish [68], provides simple checks to find dynamic

analysis VMs that have minimal RAM configurations, minimum processors or hard drive space

requirements, or registry keys that can identify a virtualized environment. Some other samples take

things a step further by searching for specific user interactions or evidence of system usage [69].

Our system attempts to mitigate some of these problems with the following hardening techniques:

• Added additional user files to the VM (PDF, TXT, MP3, MP4, and JPEG files were added).

• Installed additional software: Firefox, Notepad++, VLC, etc.

36

• Installed several versions of Microsoft Visual C++ and Microsoft .NET frameworks

• Ensured programs and documents were opened during the time each malware sample is

executed

Even with such precaution, there is still a diverse pool of malicious checks that a malware

sample can perform.

4.1.1 Potential Outcome

It was believed that with a large number of malware samples at our disposal, about 3.17 TBs, a

subset of samples would be found that exhibit their functionality to train and test quality classifiers.

If a problem arose with the number of malware samples available, machine learning techniques

such as k-fold cross-validation [70] would be used to fully utilize the data that is available as

efficiently as possible. K-fold cross-validation takes a dataset and divides it into slices depending

on what ’K’ is selected. A machine learning model is trained on K-1 pieces of the dataset, and

then its performance is tested on the hold-out slice. This process is repeated where each slice is

held out, and all other portions are trained on. The result of this activity is an average of how the

model will perform on the provided dataset.

4.2 Guaranteed maliciousness

Malware samples used in this work are collected from VirusShare [37], and VirusTotal [31].

These communities provide repositories of various types of malware samples that have been

detected. These resources rely on community submission, so not all samples included in the

repositories can be identified as malware. Also, many samples provided can be classified as

37

Potentially Unwanted Programs (PUPs). These types of programs are considered bloatware/adware

and are not the target of this work.

4.2.1 Potential Outcome

To minimize PUP samples being included in our datasets, we use AVClass2 [61] to filter what

samples were included. Although not all samples could be classified as malicious, VirusTotal pro-

vides the ability to scan malware against known anti-virus signatures to understand how malicious

a sample is considered to be. VirusTotal also provides an API to programmatically check the hash

of a sample if a growing concern for the legitimacy of malicious samples comes into play.

4.3 Missing some relationship information due to exited processes

As malware executes and starts processes, some samples will exist that are responsible for

spawning new processes or injecting code into other processes and then exiting themselves. This

procedure could lead to the loss of relationship information for those processes that exit. The

memory for processes that have exited is marked as available. The data from an exited process is

not immediately removed from memory but can be overwritten once new processes are created.

Currently, processes that have exited are filtered from our process datasets for machine learning.

4.3.1 Potential Outcome

Although exited processes can cause problems with being able to identify their relationships

with other objects in memory, the running processes on a system and the relationships that those

processes create are utilized.

38

4.4 Find a method for collecting additional benign memory samples

The package management software called Chocolatey [62] is used to introduce 3rd-party

processes into the benign dataset. Without these samples, the benign processes used primarily

include Windows binaries. Utilizing Chocolatey provides a more diverse pool of processes to help

make more robust machine learning classifiers. One drawback of this method is that most of the

samples are installation programs. Developing a way to include actionable benign programs would

provide additional realism to the benign process subgraph dataset.

4.4.1 Potential Outcome

In the worst case of not having enough benign software, the less desirable option of creating

benign memory images manually can be explored in the future.

4.5 Develop a large enough dataset to support the number of features selected for training
classifiers

When the number of features used to train a machine learning classifier increases, there is a

need for more samples to avoid classifiers overfitting on training data. The problem that can be

encountered is the curse of dimensionality [71] when a large number of features are used as well.

A large enough dataset size must be available or the feature space used must be reduced to create

quality classifiers.

4.5.1 Potential Outcome

To make sure the curse of dimensionality is not a problem, this work uses dimensionality

reduction techniques such as feature selection. Also, to confirm that the dataset is the appropriate

size, learning curves [72] are plotted to determine the right dataset sizes. An iterative process of
39

removing features and checking the number of data points needed for a given algorithm will be

performed.

4.6 Create a dataset of samples that are representative of malware and benign software that
is used in the real world

It is not possible to create a dataset that will represent all possible malware and benign software

available to execute on a Windows 7 system. This causes a problem trying to train a classifier that

will generalize well to samples outside of the current training set.

4.6.1 Potential Outcome

Although we cannot confirm that the malware samples from VirusShare are entirely represen-

tative of all other malware currently active, these repositories have been used by a body of work

for malware analysis research [73] and machine learning classifier creation.

40

CHAPTER V

MACHINE LEARNING WORKFLOW

In this section, the full machine learning workflow created is discussed. The pipeline includes

six steps:

1. Generate TF-IDF features

2. Connect Processes to Normalized Paths

3. Data Filtering and Feature Engineering

4. Building Machine Learning Models

5. Final evaluation

The system used to generate these results was the Orion supercomputer at MSU. Orion is a

PowerEdge C6420 Linux Cluster with 72,000 2.4GHz Intel Skylake processor cores, 345 terabytes

of RAM, and a Mellanox HDR100 InfiniBand interconnect. Orion’s peak performance is 3.66

PetaFLOPS and debuted at 62nd overall and 4th in US academia on the June 2019 TOP500 list.

On the November 2019 TOP500 list, it was upgraded to 60 overall. To execute all code in this

workflow, the web-based user interface JupyterLab from Project Jupyter [74] was used. How

Orion was utilized in each aspect of the workflow is described in the following sections. Unless

41

otherwise stated, the machine learning pipeline used an Orion development node to run our Jupyter

notebooks. The development nodes contain two 2.4GHz Intel Xeon Gold 6148 Skylake CPUs.

The CPUs contain twenty cores each, for a total of forty cores per node. It also has twelve sticks

of 16GB DDR-4 Dual Rank 2666MHz, for 192GB of memory.

Additional tools leveraged in this work were Singularity [75] containers. Singularity provides

the ability to have a consistent system environment across platforms. This enabled code snippets

to be tested quickly on a local system before being used on the Orion cluster. It also streamlined

the installation process as Orion does not have direct access to the Internet.

5.1 Generate TF-IDF features

As discussed in 3.4.6 IDF is used to determine uncommon normalized paths that malware

samples leverage. The top 150 normalized paths of length four are used. The normalized paths of

length four include those that have four edges between two processes. Longer path lengths may be

more descriptive of the types of activities performed by malware. Additionally, using longer-length

normalized paths can be explored when more computing resources are available. Each memory

image in our corpus was used to create a document of all paths within that memory image. The

document creation procedure was parallelized using threads. The generated documents were then

passed to our IDF procedure to select the 150 normalized paths mentioned above.

5.2 Connecting Processes to Normalized Paths

The processes from malicious images, benign memory images, and the normalized paths were

stored in separate collections in our MongoDB database. In this step, both types of processes are

pulled from the database and saved into a Pandas [76] dataframe. Each process in our dataset has

42

a sample_id that connects a process to the memory image it was extracted from. The normalized

paths extracted are also associated with a sample_id, which is used to connect this information.

Each process is labeled with a boolean value based on if it was found in a chocolatey memory

image (benign) or not. Each normalized path in the dataframe contains either a 0 or 1. 1 for the

processes associated with a normalized path and 0 otherwise. The dataframe object is saved to

disk and passed to the next section of the workflow.

5.3 Data Filtering and Feature Engineering

In this section, the collected data is filtered to include only relevant samples, and feature

engineering is applied to generate features used by the machine learning models. In the filtering

step, processes that are exited are removed from the dataset. These samples are missing information

needed to generate features, and so they are removed. The section below describes features that

have been developed and the process data used to create them.

5.3.1 DLLs

A list of DLLs associated with a process was pulled from memory for each process in the

dataset. It is from this information that the following features were created.

• num_dlls - This feature is a sample count of how many DLLs were associated with a given

process.

• dll_name_manipulation_count - This features checks to see if a DLL has been unlinked from

a process listing but still has a full path to a location on disk. Malware authors will attempt

to inject a DLL and write a non-suspicious pathname to avoid detection.

43

• inmemorder_listing_false_count - This feature counts the number of DLLs for a process

where the InMemoryOrderModuleList shows a value of False. The InMemoryOrderMod-

uleList is a linked list that organizes modules in the order they appear in the process’s virtual

memory layout. Malware authors can unlink from this listing to try and hide a DLL.

• inloadorder_listing_false_count - This feature counts the number of DLLs for a process

where the InLoadOrderModuleList shows a value of False. The InLoadOrderModuleList is

a linked list that organizes modules in the order they are loaded into a process. Malware

authors can unlink from this listing to try and hide a DLL.

• ininitorder_listing_false_count - This feature counts the number of DLLs for a process where

the InInitializationOrderModuleList shows a value of False. The InInitializationOrderMod-

uleList is a linked list that organizes modules in the order in which the DLLMain function

was executed. Malware authors can unlink from this listing to try and hide a DLL.

5.3.2 Handles

Processes will have several different handles present as they attempt to perform their various

activities. In this section, the handle counts for a process are transformed into features. The list of

features collected are shown below:

• total_handle_count - This feature counts all of the handles associated with a given process.

• process_handle_count - This feature counts the number of handles a process has to other

process objects.

44

• key_handle_count - This feature counts the number of registry keys to which a process has

a handle.

• file_handle_count - This feature counts the number of files that a process has handles to.

• window_station_handle_count - This feature counts the number of window stations that a

process has handles to. A window station is an object that acts as a security boundary

for processes and desktops. For example, the window station can be used to determine if

malware authors are trying to snoop on the clipboard to do such things as steal credentials.

• thread_handle_count - This feature counts the number of handles to threads that a process

has.

• desktop_handle_count - This feature counts the number of desktops handles. Malware can

use desktops for launching applications out of the view of a current user or even creating a

type of ransomware that works by locking a user inside of a desktop.

• mutant_handle_count - This features counts the number of mutexes that a process has handles

to. Malware will use a mutant/mutex for actions such as avoiding the reinfection of a system.

• token_handle_count - This feature counts the number of tokens that the current process has

handles to.

5.3.3 Privileges

Malware authors often have the goal of increasing their privileges to have more control over a

system. These features check for common targets that malware likes to use and check to see if they

45

are enabled properly. Privileges that are enabled should also be present in a process by default. If

a privilege is enabled but does not have a privilege by default, this is a sign that they have been

escalated maliciously. The features below are used to capture these potential actions:

• num_priv_present_enabled_not_default - This feature counts the total number of privileges

for a process that are enabled but not present by default.

• SeBackupPrivilege_present_enabled_not_default - SeBackupPrivilege allows access to any

file on a file system regardless of an access control list. This can be used by attackers to copy

locked files.

• SeDebugPrivilege_present_enabled_not_default - SeDebugPrivilege allows the ability to

write to or read from the memory space of another process. This is a common target for any

malware that needs to perform DLL injection.

• SeLoadDriverPrivilege_present_enabled_not_default - SeLoadDriverPrivilege allows the

ability to load and unload kernel drivers.

• SeChangeNotifyPrivilege_present_enabled_not_default - SeChangeNotifyPrivilege is de-

signed to allow a callback function to be set any time a specific file or directory has changed.

• SeShutdownPrivilege_present_enabled_not_default - SeShutdownPrivilege allows a process

to reboot or shut down a system. Some malware does not show its functionality until a reboot

and tries to speed up the process by using this privilege.

46

5.3.4 Tokens

This final section calculates a simple count of the number of tokens associated with a process.

This value is saved in the feature num_tokens.

5.4 Building Machine Learning Models

Additional consideration and actions needed to be performed on the dataset before building our

machine learning models.

5.4.1 Filtering Chocolatey Processes

In reviewing the benign processes dataset, it was found that the processes from Chocolatey

images also included the standard Windows processes from each Windows system. The purpose

of including Chocolatey was to provide variety in the dataset, so it was determined the Windows

system processes from Chocolatey needed to be excluded from the dataset.

5.4.2 Training/Validation/Test Set Creation

After filtering the Chocolatey processes, the processes dataset was split into a training, valida-

tion, and test set. The training set is used to build the initial set of machine learning models. The

trained models are then used to predict if a process is malicious using the validation set. Finally,

the training and validation sets will be combined to predict the test set to assess each model’s

performance with its best features. The training set was structured to 70% of the total dataset,

while the validation and test sets were given 15% respectively. The split was also performed

in a stratified manner across the Chocolatey samples and the is_malicious target variable. The

breakdown for the train/validation/test split is shown below in Table 5.1:

47

Table 5.1 Training/Validation/Test Breakdown

Total Processes Malicious Processes Non-Malicious Processes

Full Dataset 267,824 48,108 219,716

Training Set 187,476 33,675 15,3801

Validation Set 40,174 7,217 32,957

Test Set 40,174 7,216 32,958

Looking at Table 5.1 concerns could be raised based on the discrepancy between the number of

non-malicious to malicious processes, with the ratio being over 4:1 in favor of the non-malicious

processes. However, this dataset breakdown is representative of the real world. In practice, mali-

cious artifacts often are outnumbered by benign processes running on a system, so the imbalance

of malicious to benign processes is not a concern.

5.4.3 Chocolatey Processes Oversampling

The overall number of non-Chocolatey samples compared to Chocolatey samples still had a

large disparity with a ratio of about 339:1. To improve this, we leveraged oversampling techniques

to address this imbalance problem. The basic idea behind oversampling is to use a method

to duplicate data in the minority class of a dataset to make it more balanced. In this work, we

leveraged two techniques mentioned in work by He and Garcia [77] and Branco, Torgo, and Ribeiro

[78]. The first is random resampling. The technique is simple where you take the minority class

and randomly select a percentage of the sample to copy and add to the original dataset. A more

complex method is Synthetic Minority Oversampling Technique (SMOTE), presented in Chawla

48

et. al. [79]. This method basically generates synthetic data from a sample of the minority class

and its nearest neighbors. For each oversampling technique, the minority class was increased to

be twenty percent of the majority (non-Chocolatey) class. The oversampling was only applied

to the training dataset to improve the fit of the models. The overall performance will be still be

evaluated on the validation and test sets that do not include any oversampled data points. The

general breakdown is shown in Table 5.2.

Table 5.2 Chocolatey Dataset Breakdown

Total Processes Non-Chocolatey Processes Chocolatey Processes

Training set 187,476 186,925 551

Training Set

(SMOTE)

224,310 186,925 37,385

Training Set

(Resampled)

224,310 186,925 37,385

5.4.4 Feature Selection

During the feature selection steps, the training and validation sets are used. The training set will

train our models, and predictions were made on the validation set. To perform the feature selection

procedure, a combination of software packages were used. First, a Python library called Papermill

[80] was leverage. Papermill allows for the parameterization of a Jupyter notebook. In their normal

use-case, a user runs Jupyter notebooks actively to review and interact with results. With Papermill,

49

a base notebook is used, and different options are passed to perform the needed tasks. In our case,

Papermill was used to create a Jupyter notebook for each machine learning model trained, with the

resulting models being saved for the next step in the workflow. The scikit-learn [65] models used

allow for parallelization during the training process. To apply this capability, Apache Spark [81]

and joblib-spark [82] were used. Apache Spark enables distributed computing, and joblib-spark

provide the ability to leverage that computing power with scikit-learn. Finally, Orion uses the

Slurm workload manager to submit jobs that need to be executed. From the software mentioned

above, the following solution was created. A Python script was written to submit Slurm jobs to

Orion. In this script, Singularity containers were used to create each machine learning model by

running parameterized notebooks with Papermill. Each job was configured to use Spark and was

given twenty-five cores to execute its tasks.

Before any model training, the variance of each feature is checked. If a feature has a variance

of zero, then that feature is removed from the dataset. A feature with zero variance displays no

changes and does not provide any value in identifying patterns associated with the target variable

is_malicious. Next, Recursive Feature Elimination (RFE) is used to find the optional number of

features to maximize the recall of each model. This procedure is performed using stratified cross-

validation. RFE works starting with the full set of features provided to the model and recursively

considers smaller and smaller sets of features. After each iteration, the features with the least

importance are pruned from the current set of features. For each fold of the cross-validation, it is

taken into account as the optimal features are selected. The results generated are for four different

models with two data types (SMOTE and Resampled training data.) For each classifier the total

number of features used are provided in Table 5.3 and the performance of the classifiers on the

50

validation set are provided in Figures 5.1 and 5.2. In the classification reports, four metrics are

being displayed. First is the precision score. Precision measures the ability of the classifier not to

label as positive a sample that is negative. The equation for precision is shown in Equation 5.1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡 𝑝/(𝑡 𝑝 + 𝑓 𝑝) (5.1)

• tp = The number of positives

• fp = The number of false positives.

Next, the recall score is shown. This measures the ability of the classifier to find all the positive

samples. The equation for the recall is shown in Equation 5.2

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡 𝑝/(𝑡 𝑝 + 𝑓 𝑛) (5.2)

• tp = The number of positives

• fn = The number of false negatives.

The F1-score is a weighted average of the precision and recall scores. The best value is 1, and

the worst score is 0. This equation can be found in Equation 5.3.

𝐹1 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (5.3)

The support metric details the number of samples that are present for each class that is being

predicted. The support for the benign and malicious processes match the value shown previously

in Table 5.1.
51

(a) Decision Tree SMOTE (b) Decision Tree Resampled

(c) Random Forest SMOTE (d) Random Forest Resampled

Figure 5.1 Classification Reports for DecisionTree and RandomForest Classifiers

52

(a) Gradient Boosting SMOTE (b) Gradient Boosting Resampled

(c) Logistic Regression SMOTE (d) Logistic Regression Resampled

Figure 5.2 Classification Reports for LogisticRegression and GradientBoosting Classifiers

53

Table 5.3 Classifier Feature Count

Classifier Name Number Features Selected
DecisionTree Smote 27

DecisionTree Resampled 105
RandomForest Smote 24

RandomForest Resampled 24
GradientBoosting Smote 11

GradientBoosting Resampled 9
LogisticRegression Smote 166

LogisticRegression Resampled 167

Overall, each of the classifiers performed reasonably well. However, as the stats are reviewed

more closely, it can be seen that the Logistic Regression classifiers struggled with the metric recall.

Specifically, neither performed well relative to the other classifiers in limiting false negatives. This

is important because the worst performance for the classifier in our context would be to label a

process as benign that is actually malicious. The four highest-performing models use the Decision

Tree and Random Forest classifiers. These models will be finally be evaluated on the test set in the

next step.

5.5 Test Set Predictions

In this step of the machine learning workflow, the final trained models are used to predict the

target variable for the test dataset, and then we interpret the performance of each model. The

training and validation datasets are combined and used as the final training dataset. Each model is

trained, and then predictions are generated. The performance of the top four models are listed in

Figure 5.3 and 5.4. In addition to the classification reports for each model, a confusion matrix is

shown to get a detailed breakdown of the types of errors the models made for each class type.

54

(a) DecisionTree SMOTE Classification Report (b) DecisionTree SMOTE Confusion Matrix

(c) DecisionTree Resampled Classification Report
(d) DecisionTree Resampled Confusion Ma-

trix

Figure 5.3 Classification Report and Confusion Matrix for DecisionTree Classifiers

55

(a) RandomForest SMOTE Classification Report (b) RandomForest SMOTE Confusion Matrix

(c) RandomForest Resampled Classification Report (d) RandomForest Resampled Confusion Matrix

Figure 5.4 Classification Report and Confusion Matrix for RandomForest Classifiers

56

5.5.1 Model Interpretation

Each of the top four highest-performing models selected different subsets of features to achieve

their scores. The feature importance charts for each classifier are shown below for Figures 5.5

and 5.6. An unexpected result was found with each model using the handles features to indicate

malicious or benign processes. The top feature for each model was thread_handle_count. This

counts the number of handles that a process has to other threads. In reviewing the data from

all datasets, the mean number of thread handles is lower for malicious processes than benign

processes. The malicious processes had, on average, 26 thread handles per process compared to 29

for benign processes. Another significant feature for the models was total_handle_count. Again

comparing this feature for both classes, the malicious processes had 383 handles per process and

281 for benign processes. This matches our line of reasoning because malware will often have to

establish handles to objects they need to manipulate. Another feature shared by all the models was

num_dlls. This simply counts the number of DLLs that have been loaded by a process. The mean

value between malicious and benign processes is 69 to 49, respectively. Depending on its purpose,

malware will need to load different DLLs to achieve the tasks it was designed to perform. This

number, on average being higher than the benign processes, is also reasonable in our estimation.

The feature SeDebugPrivilege_present_enable_not_default is in the top 10 for importance with all

four models. SeDebugPrivilege is a privilege routinely used by malware authors to access other

processes and perform injection activity. The SeDebugPrivilege being present and not enabled by

default is also a major indicator of malicious activity.

57

(a) DecisionTree Feature Importance for SMOTE Data

(b) DecisionTree Feature Importance for Resampled Data

Figure 5.5 DecisionTree Feature Importance Charts

58

(a) RandomForest Feature Importance for SMOTE Data

(b) RandomForest Feature Importance for Resampled Data

Figure 5.6 RandomForest Feature Importance Charts

59

Looking at previous research such as Mosli [42] they also used features such as different types

of handles for processes to perform classification. Since this work had been done previously, it was

decided to separate the features into those extracted directly from the process versus the normalized

path features. A breakdown of the performance with process-specific features is shown in Figure

5.7 and 5.8. Again, all four models show strong performance, with the RandomForest Resampled

showing the strongest recall scores of almost 97%.

With the models trained on the process-specific features performing so well, we also explored

how our models performed with normalized path features only. The performance of these models

are shown in Figures 5.9 and 5.10. In viewing these results, it is evident that the models have a

decrease in performance for both precision and recall of the malicious samples compared against

the process-specific features. The best-performing model based on recall that only used normalized

path features was the DecisionTree Resampled model. Its recall score was about 75%. For this

case, the normalized path features serve well to supplement the process-specific features to boost

model performance when using all features, but additional work needs to be performed to use them

as stand-alone features.

60

(a) DecisionTree SMOTE

Classification Report (Process Features)

(b) DecisionTree SMOTE Confusion Matrix

(Process Features)

(c) DecisionTree Resampled

Classification Report (Process Features)

(d) DecisionTree Resampled Confusion Ma-

trix (Process Features)

Figure 5.7 DecisionTree Classification Report and Confusion Matrix

(Process Features)

61

(a) RandomForest SMOTE Classification Report

(Process Features)

(b) RandomForest SMOTE Confusion Matrix

(Process Features)

(c) RandomForest Resampled Classification Report

(Process Features)

(d) RandomForest Resampled Confusion Matrix

(Process Features)

Figure 5.8 RandomForest Classification Report and Confusion Matrix

(Process Features)

62

(a) DecisionTree SMOTE

Classification Report (Path Features)

(b) DecisionTree SMOTE Confusion Matrix

(Path Features)

(c) DecisionTree Resampled

Classification Report (Path Features)

(d) DecisionTree Resampled Confusion Ma-

trix (Path Features)

Figure 5.9 DecisionTree Classification Report and Confusion Matrix

(Path Features)

63

(a) RandomForest SMOTE Classification Report

(Path Features)

(b) RandomForest SMOTE Confusion Matrix

(Path Features)

(c) RandomForest Resampled Classification Report

(Path Features)

(d) RandomForest Resampled Confusion Matrix

(Path Features)

Figure 5.10 RandomForest Classification Report and Confusion Matrix

(Path Features)

64

CHAPTER VI

DISCUSSION

Based on the results generated, the research questions outlined in Chapter I are addressed.

6.1 Which memory objects are related to processes in random access memory?

From the object mapping created at the start of this work, it can be seen that many relationships

can be established from an _EProcess structure in Windows memory. As expected, objects such

as DLLs, network connections, mutexes, etc., are connected to processes. A complete list of how

processes interact with objects in memory is in Appendix A.

6.2 What are common memory object relationships that malware tends to manipulate
and/or establish in memory?

From the features selected by our top machine learning models, one of the object relationships

malware utilizes is centered around handles to other processes in memory. This finding coincides

with our expectations. Malicious processes often spawn additional processes and set up handles

to perform actions such as DLL injection. Also, the combination of the processes being a child

of a malicious process and then the parent having a handle to that child was prevalent. Another

relationship that frequently occurred was malicious processes containing privileges that were

present but not enabled by default which is a major red flag. From our models, the privilege

that seems to show the most significant impact on influencing a prediction was SeDebugPrivilege.

65

When a process has this privilege, it can inject code into a process. It also allows the ability to

grant administrative capabilities to the current process or any others.

6.3 Do malware samples that have multiple processes have distinct path characteristics?

To answer this question, the highest performing model that only used normalized paths was

reviewed: DecisionTree Resampled. This model used ninety-two normalized path features to make

its predictions. To gain insight to answer this question, we used the feature importance attribute of

the model to determine what was important. A feature importance chart is provided with the top

thirty normalized path features from the model in Figure 6.1. nineteen of the top thirty features

include a parent-child relationship in the paths selected. Twenty of the thirty features used a path

that referenced a handle to another process. There could be a connection between this and the

strength of the feature process_handle_count (See Figure 5.5 a) from the process-specific features

which is used to count how many handles to other processes a target process has.

66

Figure 6.1 DecisionTree Feature Importance for Resampled Data: (Normalized Path Features)

67

6.4 Do benign and malicious process paths have distinguishing characteristics?

As the normalized path models were studied, there were no immediate indicators that individual

features could provide clear delineations between benign and malicious processes. To check this,

we used the groupby function in the Pandas [76] data analysis library to group the results of the

top 10 path features based on if a process was benign or malicious. In reviewing this data, both

malicious and benign processes included the various normalized paths. Therefore, it is thought

that the combination of the normalized paths is what serves as the predictive factor classifying the

processes when only using normalized path features.

6.5 Which features best support the goal of maximizing accuracy while minimizing false-
negative rate in identifying malicious processes?

From the results, a combination of process and normalized path features performed the best

overall. When looking at the results, the process features played a significant role in producing the

highest performance by the models. Using normalized path features alone provided a moderate

performance by the best models but suffered in their ability to identify malicious samples with a

recall score of about 75%. For each of the combinations of features (combined, process-only, and

normalized_path-only), each of the highest performing models beat the ZeroR baseline specified

in Section ??. Comparisons of the best performing models versus the ZeroR baseline on the test

dataset are presented in Tables 6.1 and 6.2. Since the majority class in our dataset is benign, then

for ZeroR all samples will be predicted as benign. This explains why the precision, recall, and

F1-score for the malicious samples are zero because all predictions were incorrect for the malicious

samples.

68

In the tables, the precision, recall, f1-score, and support are provided for both the benign and

the malicious classes. The equations for these metrics are outlined in Section 5.4.4. Also, in the

table, the weighted average for each of these metrics is provided. The equation calculating the

weighted average is shown below in Equation 6.1.

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = (𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑏/𝑡𝑠) ∗ 𝑠𝑐𝑜𝑟𝑒𝑏 + (𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑚/𝑡𝑠) ∗ 𝑠𝑐𝑜𝑟𝑒𝑚 (6.1)

Where:

• b stands for benign

• m stands for malicious

• ts stands for total samples

Finally, the accuracy is defined in Equation 6.2

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑡 𝑝 + 𝑡𝑛)/(𝑡𝑠) (6.2)

Where:

• tp stands true positives

• tn stands for true negatives

• ts stands for total samples

The RandomForest Resampled models performed the strongest, with the recall score reaching

97% for malicious samples. The high recall score is significant because classifying a malicious
69

sample as benign would cause major issues in the real world. Thus, showing a high recall displays

that the model is effective at identifying malicious samples. Although the DecisionTree classifier

had a weaker performance than the other RandomForest models, it still performs stronger in every

metric than the ZeroR method.

70

Table 6.1 Model Comparison vs. ZeroR Baseline

Precision Recall F1-score Support

Benign 0.82 1.00 0.90 32958

Malicious 0.00 0.00 0.00 7216

Weighted Avg 0.67 0.82 0.74 40174

Accuracy 0.82

(a) ZeroR Baseline Metrics

Precision Recall F1-score Support

Benign 0.99 0.99 0.99 32958

Malicious 0.96 0.97 0.96 7216

Weighted Avg 0.99 0.99 0.99 40174

Accuracy 0.99

(b) Combined Features: RandomForest Resampled

71

Table 6.2 Model Comparison vs. ZeroR Baseline cont.

Precision Recall F1-score Support

Benign 0.99 0.99 0.99 32958

Malicious 0.96 0.97 0.96 7216

Weighted Avg 0.99 0.99 0.99 40174

Accuracy 0.99

(a) Process Features: RandomForest Resampled

Precision Recall F1-score Support

Benign 0.94 0.96 0.95 32958

Malicious 0.80 0.74 0.77 7216

Weighted Avg 0.92 0.92 0.92 40174

Accuracy 0.92

(b) Normalized Path Features: DecisionTree Resampled

72

CHAPTER VII

CONCLUSION

In this work, it was proven that graph topology attributes and object characteristics from

operating system memory images are predictive factors for identifying malicious processes. In this

section, we provide a full summary of the work, a description of the contributions, and a discussion

of how the research can be expanded in the future.

7.1 Summary

Our work started by identifying how objects interact with one another in memory during normal

circumstances. These object interactions have been highlighted in Appendix A. Next, research on

how malware abuses relationships was performed, and the Object Association Extractor (OAE)

was developed. OAE takes a RAM image as input and generates a memory object graph containing

objects that are nodes and edges that describe the relationship between nodes. OAE was used to

extract data from 13,822 memory images that contained at least two active malicious processes.

These memory images were generated using a dynamic malware analysis system called Cuckoo

Sandbox [6] and the infrastructure was designed here at MSU. OAE was also used to extract benign

process information from ninety-one memory images that ran software from the Chocolatey [62]

package management software. In total, this generated 267,824 processes (48,108 malicious and

219,716 benign).

73

From this data, two sources of machine learning features were created. First, we extracted in-

formation associated with each individual _EProcess structure to develop process-specific features.

The raw process data is discussed in Section 3.4.3 and the transformed features are discussed in

Section 5.3. The next type of feature created utilized Inverse Document Frequency (IDF) to study

the normalized paths between malicious processes in our memory object graphs. The normalized

paths between malicious processes were collected, and IDF was used to assign weights to uncom-

mon paths of interest. The reasoning was that paths that are not common and used by malware

would occur less frequently. The IDF algorithm is focused on ignoring common occurrences in a

dataset and highlighting the rare paths.

A training, validation, and test set was created from the data, and the processes were stratified

to ensure that all three sets received similar proportions of malicious, benign, and chocolatey

samples. To assist with the imbalance of 3rd-party benign processes, the oversampling techniques

Random Resampling and Synthetic Minority Oversampling Technique (SMOTE) were applied.

This is discussed in Section 5.4.3. From the training set, four machine learning models were

trained based on the Resampled and SMOTE training sets, and the top features for each model

were selected using Recursive Feature Elimination based on their ability to predict the validation

set. The top two types of models that performed best were the Decision Tree and Random Forest

models. This is described in Section 5.4.4. The final performance of the models was outlined in

Section 5.5. The performance of these models on the test set determined that topology attributes

and object characteristics are predictive factors for identifying malicious processes. The results

were compared to the ZeroR baseline for a combined feature set, process-specific features, and

normalized path features. Each group of features outperformed the ZeroR baseline as discussed

74

in Section 6.5. The process features turned out to be very predictive of malicious code, with the

best classifier reaching a recall of almost 97%. The normalized path features had a recall score of

about 75% for malicious processes.

The success of this work will be beneficial for malware analysts and cyber incident responders.

This research can be used to identify malicious processes and identify objects that are related

to a process of interest. This type of triage tool could be helpful for the tasks these types of

professionals would need to perform. What often amounts to "looking for a needle in a haystack"

is quite time-intensive, and anything that could speed up this process would be valuable.

7.2 Contributions

This section details the specific contributions of this work.

7.2.1 Memory object mapping

In conducting this study, the target was to first identify what normal activity between memory

objects looked like. This is important because anomalies are challenging to pinpoint without

knowing what standard behavior entails. We targeted objects of forensic interest as described in

work by Ligh et. al [56] and then created a mapping of the types of relationships that exist. From

that work, we then reviewed the manner in which malware tends to abuse these relationships and

identified signs that malicious activity was occurring. The center of this study was on process

objects that interact with almost all other objects in memory. This mapping was used to create the

logic behind OAE, which is mentioned in the next section. Having this type of resource is helpful

to analysts by providing a guide for the types of object interactions that are possible. This study can

serve as the basis for additional memory forensics research to study new ways malware abuses or

75

alters object relationships. The mapping will also help identify similar objects relationship across

different operating systems.

7.2.2 Object Association Extractor

This work also produced the Object Association Extractor (OAE). OAE is novel in that it

extracts characteristics of objects in memory and creates a graph where objects are nodes and

the relationships between objects are edges. The edges also contain information about the types

of relationships that exist between two nodes. OAE leverages Rekall, the memory forensics

framework, to extract memory object information and the NetworkX Python package to generate

the graphs. This tool was used for creating all the datasets in this work that generated the features for

predicting malicious processes. Because of OAE, we were able to determine that process-specific

and normalized path features are predictive of malicious processes.

7.2.3 Feature set development

Features were created that can be utilized by machine learning classifiers to help identify

malicious processes. These features are based on process characteristics and normalized path

information from our corpus of memory images. The process features were developed by studying

information associated with the base data structure for each process, the _EProcess structure.

The normalized path features were developed by using Inverse Document Frequency to identify

uncommon paths between malicious processes.

76

7.2.4 Trained machine learning classifiers

Trained machine learning classifiers were developed to distinguish between benign and mali-

cious processes. Other work such as Mosli et. al. [42] has used process handles as features for

machine learning classifiers, but this work is the first to use the combination of both process and

normalized path features. This capability is beneficial to analysts that need to identify areas of

interest for an investigation. Manually conducting memory forensics is time-intensive and requires

a significant amount of prior knowledge. Utilizing OAE and these trained machine learning mod-

els reduces the burden of knowing indicators of compromise, understanding how objects should

interact in memory, or knowing about specific heuristics that could indicate malicious activity.

Also, automatically pinpointing objects of interest will help direct any necessary manual analysis

in the proper direction.

7.3 Future Work

Several areas can be investigated to expand on this current work and explore other research

topics.

7.3.1 Alternative Approaches

Additional work can be conducted to include benign processes from various sources. In most

malware research, the benign samples used are constrained to using system processes on a standard

Windows operating system. Our process datasets that contain benign samples from the Chocolatey

package management platform could be strengthened by including even more 3rd-party processes.

This could be achieved by adding additional Chocolatey samples or by finding other sources

of new benign processes. One idea is to find a method to utilize the NIST National Software

77

Reference Library [83]. It is designed to be used by law enforcement, government, and industry

organizations to review files quickly to identify if files are potential evidence or standard software

files. Cryptographic hashes are provided for each of the files in their datasets, and searching for

online repositories with portable executable (PE) files with the same hash would be another source

of benign software. With different benign processes, more performance tests on the process-

specific features could be conducted. The goal for adding more benign processes to the training,

validation, and test sets would be to bolster the performance of our best models to ensure they

continue to generalize well on processes not seen before.

Recursive Feature Elimination (RFE) was used to select each model’s features in the current

machine learning workflow. Other feature selection techniques such as Forward Stepwise Feature

Selection [84] and SelectFromModel [85] could be used. With RFE we started with a full

complement of features and then removed features in each iteration. With Forward Stepwise Feature

selection, the method would be conducted in reverse, starting with no features and incrementing

the number for each iteration. With SelectFromModel, each classifier from Scikit-learn would use

an internal feature importance metric to help select the optimal features.

Once features have been selected, the hyper-parameter tuning process using RandomizedSearch

and GridSearch could be included to optimize performance. Due to time constraints and the

excellent performance achieved by combining process-specific and normalized path features, hyper-

parameter tuning was not performed in this work.

78

7.3.2 Community Detection

The study of graph theory could be used in the future, with an emphasis on community detection.

Community detection algorithms are used to find highly connected groups or communities within

a graph automatically [86]. Moving forward, we could identify malicious or benign processes

based on a community of objects and their underlying memory relationships. The subject of

community detection is mature and has a number of algorithms for determining communities [87]

[88] [89]. The focus could be using communities that contain processes and the composition of

these communities to distinguish between benign and malicious processes.

7.3.3 Kernel Objects

The focus of this work was on identifying malicious processes. In the future, this could be

expanded to identify other objects based on their relationships. Those that could be of particular

interest are kernel modules and drivers. Targeting these types of objects would help in detecting

more advanced malware such as rootkits. OAE would be updated to identify, connect, and extract

objects to support this type of classification.

7.3.4 Additional Operating Systems

This work developed a proof of concept for identifying malicious processes in RAM, and it

was executed using the Windows 7 operating system. Moving forward, the same principles will

be applied to Windows 10 to show similar results. Further work could be developed to apply the

principles identified for the Windows operating systems to Linux and possibly Android OSes in

the future.

79

7.3.5 Live Acquisition and Predictions

In its current form, OAE is designed to take memory snapshots as input and then generate graph

data for later predictions. Work could be performed to use live acquisition techniques and identify

malicious processes in real-time. The primary challenge would be finding RAM acquisition tools

that do not fall victim to page smearing as mentioned by Case and Richard III [14]. Page smearing

occurs when memory being acquired changes during the acquisition phase. A study of state of the

art in RAM acquisition tools would need to be conducted to determine how to integrate these tools

with OAE.

7.4 Closing and Acknowledgement of Support

Malware authors continue to change their methods, and tools must be leveraged to identify and

thwart their attacks. Memory forensics is a quality technique for identifying malware primarily

because malware samples have to exist in memory to perform their actions. We devised a novel way

of leveraging memory forensics and machine learning by using object characteristics in memory

and discovering patterns in their relationships for detecting malicious processes. The results of

this work are helpful to forensic analysts that have to identify malicious activity and often have to

rely upon a vast amount of background knowledge and manual analysis. This research will support

current investigations by making them more effective and lays the groundwork for the development

of new tools in the future.

This work was supported in part by the following funding sources:

• A Supervised Learning Approach for Supplemental Malware Identification in Memory

Images, DHS, Grant #: HSHQDC16CB0030

80

• NCAE-C Cyber Curriculum and Research 2020 Program, NSA, Grant #: H98230-20-1-0386

81

REFERENCES

[1] N. Idika and A. Mathur, “A Survey of Malware Detection Techniques,” Purdue University,
Tech. Rep., 2007. [Online]. Available: http://profsandhu.com/cs5323_s17/im_2007.pdf

[2] D. Uppal, V. Mehra, and V. Verma, “Basic survey on Malware Analy-
sis, Tools and Techniques,” International Journal on Computational Science
& Applications, vol. 4, no. 1, pp. 103–112, 2014. [Online]. Avail-
able: https://pdfs.semanticscholar.org/b254/79a230816e8566df0937d9ff9265754f826d.
pdfhttp://www.airccse.org/journal/ijcsa/papers/4114ijcsa10.pdf

[3] A. Walters, “FATKit: Detecting Malicious Library Injection and Up-
ping the âAntiâ,” 4TF Research Laboratories, pp. 1–12, 2006. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.2189{&}rep=
rep1{&}type=pdfhttp://www.4tphi.net/fatkit/papers/fatkit{_}dll{_}rc3.pdf

[4] D. Distler, “Malware Analysis: An Introduction Malware Analysis: An Introduction
Malware Analysis: An Introduction GSEC Gold Certification Malware Analysis: An
Introduction,” SANS Institute Infosec Reading Room, 2007. [Online]. Available: https:
//www.sans.org/reading-room/whitepapers/malicious/malware-analysis-introduction-2103

[5] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, “A
comparison of static, dynamic, and hybrid analysis for malware detection,” Journal of
Computer Virology and Hacking Techniques, vol. 13, no. 1, 2017. [Online]. Available:
https://www.researchgate.net/publication/288905288

[6] C. Foundation, “Automated Malware Analysis - Cuckoo Sandbox,” 2014. [Online].
Available: http://cuckoosandbox.org/

[7] M. Egele, T. Scholte, E. Kirda, and S. Barbara, “A survey on automated dynamic malware
analysis techniques and tools,” ACM Computing Surveys,, vol. V, no. 2, pp. 1–49, feb 2011.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2089125.2089126

[8] Mark Wade, “Memory Forensics: Where to Start,” p. 1, 2011. [Online]. Avail-
able: https://www.forensicmag.com/article/2011/06/memory-forensics-where-starthttp:
//www.forensicmag.com/article/2011/06/memory-forensics-where-start

[9] A. Walters and N. L. Petroni, “Volatools: Integrating Volatile Memory Forensics into the
Digital Investigation Process,” pp. 1–18, 2007.

82

http://profsandhu.com/cs5323_s17/im_2007.pdf
https://pdfs.semanticscholar.org/b254/79a230816e8566df0937d9ff9265754f826d.pdf http://www.airccse.org/journal/ijcsa/papers/4114ijcsa10.pdf
https://pdfs.semanticscholar.org/b254/79a230816e8566df0937d9ff9265754f826d.pdf http://www.airccse.org/journal/ijcsa/papers/4114ijcsa10.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.2189{&}rep=rep1{&}type=pdf http://www.4tphi.net/fatkit/papers/fatkit{_}dll{_}rc3.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.2189{&}rep=rep1{&}type=pdf http://www.4tphi.net/fatkit/papers/fatkit{_}dll{_}rc3.pdf
https://www.sans.org/reading-room/whitepapers/malicious/malware-analysis-introduction-2103
https://www.sans.org/reading-room/whitepapers/malicious/malware-analysis-introduction-2103
https://www.researchgate.net/publication/288905288
http://cuckoosandbox.org/
http://dl.acm.org/citation.cfm?doid=2089125.2089126
https://www.forensicmag.com/article/2011/06/memory-forensics-where-start http://www.forensicmag.com/article/2011/06/memory-forensics-where-start
https://www.forensicmag.com/article/2011/06/memory-forensics-where-start http://www.forensicmag.com/article/2011/06/memory-forensics-where-start

[10] N. L. Petroni, A. Walters, T. Fraser, and W. A. Arbaugh, “FATKit: A framework
for the extraction and analysis of digital forensic data from volatile system
memory,” Digital Investigation, vol. 3, no. 4, pp. 197–210, 2006. [Online]. Avail-
able: https://ac.els-cdn.com/S1742287606001228/1-s2.0-S1742287606001228-main.
pdf?{_}tid=7b18539b-2f30-4d25-9993-d5c35818e9cf{&}acdnat=
1523892729{_}42d53af466d37bf986ca746197e53e5c

[11] B. Dolan-Gavitt, “The VAD Tree: A Process-Eye View of Physical Memory,” Digital
Investigation, 2007. [Online]. Available: http:/dfrws.org

[12] A. Schuster, “Searching for processes and threads in Microsoft Windows memory dumps,”
Digital Investigation, vol. 3, no. SUPPL., pp. 10–16, sep 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1742287606000727

[13] S. Vömel and F. C. Freiling, “A survey of main memory acquisition and analysis
techniques for the windows operating system,” pp. 3–22, jul 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1742287611000508

[14] A. Case and G. G. Richard, “Memory forensics: The path forward,” Digital Investigation,
vol. 20, pp. 23–33, 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S1742287616301529

[15] K. Amari, K. A. Mil, and C. Cid, “Techniques and Tools for Recovering and
Analyzing Data from Volatile Memory Techniques and Tools for Recovering and
Analyzing Data from Volatile Memory GCFA Gold Certification Techniques and
Tools for Recovering and Analyzing Data from Volatile Memory 3,” SANS Institute,
p. 61, 2009. [Online]. Available: https://www.sans.org/reading-room/whitepapers/forensics/
techniques-tools-recovering-analyzing-data-volatile-memory-33049

[16] L. Cai, J. Sha, and W. Qian, “Study on forensic analysis of physical
memory,” Proc. 2nd International Symposium on, 2013. [Online]. Available:
http://www.atlantis-press.com/php/download{_}paper.php?id=10172

[17] SANS, “Memory Forensics Training Course | Computer Memory Forensics | SANS
FOR526.” [Online]. Available: https://www.sans.org/course/memory-forensics-in-depth

[18] C. L. Brooks, CHFI Computer Hacking Forensic Investigator Certification All-in-One Exam
Guide, 1st ed. McGraw-Hill Education Group, 2014.

[19] K. Hausknecht, D. Foit, and J. Burić, “RAM data significance in digital forensics,” in 2015
38th International Convention on Information and Communication Technology, Electronics
and Microelectronics, MIPRO 2015 - Proceedings. IEEE, may 2015, pp. 1372–1375.
[Online]. Available: http://ieeexplore.ieee.org/document/7160488/

[20] V. Foundation, “The Volatility Foundation - Open Source Memory Forensics.” [Online].
Available: http://www.volatilityfoundation.org/

83

https://ac.els-cdn.com/S1742287606001228/1-s2.0-S1742287606001228-main.pdf?{_}tid=7b18539b-2f30-4d25-9993-d5c35818e9cf{&}acdnat=1523892729{_}42d53af466d37bf986ca746197e53e5c
https://ac.els-cdn.com/S1742287606001228/1-s2.0-S1742287606001228-main.pdf?{_}tid=7b18539b-2f30-4d25-9993-d5c35818e9cf{&}acdnat=1523892729{_}42d53af466d37bf986ca746197e53e5c
https://ac.els-cdn.com/S1742287606001228/1-s2.0-S1742287606001228-main.pdf?{_}tid=7b18539b-2f30-4d25-9993-d5c35818e9cf{&}acdnat=1523892729{_}42d53af466d37bf986ca746197e53e5c
http:/dfrws.org
https://www.sciencedirect.com/science/article/pii/S1742287606000727
https://www.sciencedirect.com/science/article/pii/S1742287611000508
http://linkinghub.elsevier.com/retrieve/pii/S1742287616301529
http://linkinghub.elsevier.com/retrieve/pii/S1742287616301529
https://www.sans.org/reading-room/whitepapers/forensics/techniques-tools-recovering-analyzing-data-volatile-memory-33049
https://www.sans.org/reading-room/whitepapers/forensics/techniques-tools-recovering-analyzing-data-volatile-memory-33049
http://www.atlantis-press.com/php/download{_}paper.php?id=10172
https://www.sans.org/course/memory-forensics-in-depth
http://ieeexplore.ieee.org/document/7160488/
http://www.volatilityfoundation.org/

[21] Google Inc., “Rekall Memory Forensic Framework,” 2015. [Online]. Available:
http://www.rekall-forensic.com/

[22] J. Kornblum, “Exploiting the Rootkit Paradox with Windows Memory Analysis,” Interna-
tional Journal of Digital Evidence, vol. 5, no. 1, pp. 1–5, 2006. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.82.612{&}rep=rep1{&}type=pdf

[23] N. Hubballi, S. Biswas, and S. Nandi, “Sequencegram: n-gram modeling of system calls for
program based anomaly detection,” in 2011 3rd International Conference on Communication
Systems and Networks, COMSNETS 2011, 2011.

[24] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques,
Second Edition (Morgan Kaufmann Series in Data Management Systems). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[25] A. Rajaraman and J. D. Ullman, Data Mining. Cambridge University Press, 2011, p. 1â17.

[26] S. Thomas, K. Sherly, and S. Dija, “Extraction of memory forensic artifacts from
windows 7 ram image,” Information & Communication, 2013. [Online]. Available:
http://ieeexplore.ieee.org/abstract/document/6558230/

[27] J. Scott, “Hunting Malware with Memory Analysis | Solutionary Blog,”
2012. [Online]. Available: https://technical.nttsecurity.com/post/102egyy/
hunting-malware-with-memory-analysishttps://www.solutionary.com/resource-center/
blog/2012/12/hunting-malware-with-memory-analysis/

[28] A. Bridge, “Thanks for the Memories: Identifying Malware from a Memory Capture |
Context Information Security,” 2015. [Online]. Available: https://www.contextis.com/blog/
thanks-for-the-memories-identifying-malware-from-a-memory-capture

[29] M. Ka, “Finding Advanced Malware Using Volatility,” 2014. [Online]. Available:
https://eforensicsmag.com/finding-advanced-malware-using-volatility/

[30] A. Case, R. D. Maggio, M. Firoz-Ul-Amin, M. M. Jalalzai, A. Ali-Gombe, M. Sun, and
G. G. Richard, “Hooktracer: Automatic Detection and Analysis of Keystroke Loggers Using
Memory Forensics,” Computers and Security, vol. 96, p. 101872, sep 2020.

[31] VirusTotal, “VirusTotal.” [Online]. Available: https://www.virustotal.com/{#}/home/upload

[32] O. Sukwong, H. Kim, and J. Hoe, “Commercial Antivirus Software Effectiveness: An
Empirical Study,” Computer, vol. 44, no. 3, pp. 63–70, mar 2011. [Online]. Available:
http://ieeexplore.ieee.org/document/5506074/

[33] I. Rijnetu, “These Campaigns Explain Why AV Detection for New Mal-
ware Remains Low,” 2017. [Online]. Available: https://heimdalsecurity.com/blog/
campaigns-av-detection-new-malware-low/

84

http://www.rekall-forensic.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.82.612{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.82.612{&}rep=rep1{&}type=pdf
http://ieeexplore.ieee.org/abstract/document/6558230/
https://technical.nttsecurity.com/post/102egyy/hunting-malware-with-memory-analysis https://www.solutionary.com/resource-center/blog/2012/12/hunting-malware-with-memory-analysis/
https://technical.nttsecurity.com/post/102egyy/hunting-malware-with-memory-analysis https://www.solutionary.com/resource-center/blog/2012/12/hunting-malware-with-memory-analysis/
https://technical.nttsecurity.com/post/102egyy/hunting-malware-with-memory-analysis https://www.solutionary.com/resource-center/blog/2012/12/hunting-malware-with-memory-analysis/
https://www.contextis.com/blog/thanks-for-the-memories-identifying-malware-from-a-memory-capture
https://www.contextis.com/blog/thanks-for-the-memories-identifying-malware-from-a-memory-capture
https://eforensicsmag.com/finding-advanced-malware-using-volatility/
https://www.virustotal.com/{#}/home/upload
http://ieeexplore.ieee.org/document/5506074/
https://heimdalsecurity.com/blog/campaigns-av-detection-new-malware-low/
https://heimdalsecurity.com/blog/campaigns-av-detection-new-malware-low/

[34] A. Algaith, I. Gashi, B. Sobesto, M. Cukier, S. Haxhijaha, and G. Bajrami, “Comparing
Detection Capabilities of AntiVirus Products: An Empirical Study with Different Versions
of Products from the Same Vendors,” in 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop (DSN-W). IEEE, jun 2016,
pp. 48–53. [Online]. Available: http://ieeexplore.ieee.org/document/7575349/

[35] P. Bajpai and R. Enbody, “Memory Forensics against Ransomware,” International Conference
on Cyber Security and Protection of Digital Services, Cyber Security 2020, jun 2020.

[36] R. Mosli, R. Li, B. Yuan, and Y. Pan, “Automated malware detection using artifacts in forensic
memory images,” in 2016 IEEE Symposium on Technologies for Homeland Security (HST).
IEEE, may 2016, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/7568881/

[37] VirusShare, “VirusShare.com.” [Online]. Available: http://virusshare.com/

[38] D. Glendowne, C. Miller, W. McGrew, and D. Dampier, “Characteristics of malicious DLLS
in windows memory,” IFIP Advances in Information and Communication Technology, vol.
462, pp. 149–161, 2015.

[39] A. H. Lashkari, B. Li, T. L. Carrier, and G. Kaur, “VolMemLyzer: Volatile Memory Analyzer
for Malware Classification using Feature Engineering.” Institute of Electrical and Electronics
Engineers (IEEE), jun 2021, pp. 1–8.

[40] A. S. Bozkir, E. Tahillioglu, M. Aydos, and I. Kara, “Catch them alive: A malware detection
approach through memory forensics, manifold learning and computer vision,” Computers
and Security, vol. 103, p. 102166, apr 2021.

[41] “ProcDump - Windows Sysinternals | Microsoft Docs.” [Online]. Available: https:
//docs.microsoft.com/en-us/sysinternals/downloads/procdump

[42] R. Mosli, R. Li, B. Yuan, and Y. Pan, “A behavior-based approach for
malware detection,” in IFIP Advances in Information and Communication Technology,
vol. 511. Springer, Cham, jan 2017, pp. 187–201. [Online]. Available: http:
//link.springer.com/10.1007/978-3-319-67208-3{_}11

[43] Y. Duan, X. Fu, B. Luo, Z. Wang, J. Shi, and X. Du, “Detective: Automatically identify and
analyze malware processes in forensic scenarios via DLLs,” in IEEE International Conference
on Communications, vol. 2015-Septe, 2015, pp. 5691–5696.

[44] M. Aghaeikheirabady, S. M. R. Farshchi, and H. Shirazi, “A new approach to malware
detection by comparative analysis of data structures in a memory image,” in 2014
International Congress on Technology, Communication and Knowledge, ICTCK 2014.
IEEE, nov 2014, pp. 1–4. [Online]. Available: http://ieeexplore.ieee.org/document/7033519/

[45] VirusSign, “VirusSign - Malware Research and Data Center, Virus Free Downloads,” 2017.
[Online]. Available: http://www.virussign.com/http://www.virussign.com/contact.html

85

http://ieeexplore.ieee.org/document/7575349/
http://ieeexplore.ieee.org/document/7568881/
http://virusshare.com/
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
http://link.springer.com/10.1007/978-3-319-67208-3{_}11
http://link.springer.com/10.1007/978-3-319-67208-3{_}11
http://ieeexplore.ieee.org/document/7033519/
http://www.virussign.com/ http://www.virussign.com/contact.html

[46] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “BotViz: A memory
forensic-based botnet detection and visualization approach,” in 2017 International Carnahan
Conference on Security Technology (ICCST). IEEE, oct 2017, pp. 1–8. [Online]. Available:
http://ieeexplore.ieee.org/document/8167804/

[47] A. Srivastava and J. H. Jones, “Detecting code injection by cross-validating stack and
VAD information in windows physical memory,” in 2017 IEEE Conference on Open
Systems, ICOS 2017, vol. 2017-Janua. IEEE, nov 2017, pp. 83–89. [Online]. Available:
http://ieeexplore.ieee.org/document/8280279/

[48] A. Cohen and N. Nissim, “Trusted detection of ransomware in a private cloud
using machine learning methods leveraging meta-features from volatile memory,”
Expert Systems with Applications, vol. 102, pp. 158–178, jul 2018. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0957417418301283http://
linkinghub.elsevier.com/retrieve/pii/S0957417418301283

[49] M. Ajay Kumara and C. Jaidhar, “Leveraging virtual machine introspection with memory
forensics to detect and characterize unknown malware using machine learning techniques
at hypervisor,” Digital Investigation, vol. 23, pp. 99–123, dec 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1742287617303328

[50] C. Miller, D. Glendowne, H. Cook, D. Thomas, C. Lanclos, and P. Pape,
“Insights gained from constructing a large scale dynamic analysis platform,” Digital
Investigation, vol. 22, no. S, pp. S48–S56, aug 2017. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1742287617301949

[51] D. Glendowne, “Automating malware detection in Windows memory images using machine
learning,” ProQuest Dissertations and Theses, Mississippi State University, 2015, p.
144. Dissertations Theses @ Mississippi State University, 2015. [Online]. Available:
https://search.proquest.com/docview/1679463958?pq-origsite=gscholar

[52] QEMU, “QEMU.” [Online]. Available: https://www.qemu.org/

[53] T. Hungenberg and M. Eckert, “Inetsim: Internet services simulation suite.” [Online].
Available: https://www.inetsim.org/

[54] The Apache Software Foundation, “Apache CouchDB,” p. 495, 2018. [Online]. Available:
https://couchdb.apache.org/http://couchdb.apache.org/

[55] J. O. Notation, “Introducing JSON.” [Online]. Available: https://www.json.org/json-en.html

[56] M. H. Ligh, A. Case, J. Levy, and A. Walters, The Art of Memory Forensics: Detecting
Malware and Threats in Windows, Linux, and Mac Memory. John Wiley & Sons Inc., 2014,
vol. 1.

[57] M. E. Russinovich, D. A. Solomon, and A. Ionescu, Windows internals. Part 1. Microsoft
Press, 2012.

86

http://ieeexplore.ieee.org/document/8167804/
http://ieeexplore.ieee.org/document/8280279/
https://www.sciencedirect.com/science/article/pii/S0957417418301283 http://linkinghub.elsevier.com/retrieve/pii/S0957417418301283
https://www.sciencedirect.com/science/article/pii/S0957417418301283 http://linkinghub.elsevier.com/retrieve/pii/S0957417418301283
https://www.sciencedirect.com/science/article/pii/S1742287617303328
http://linkinghub.elsevier.com/retrieve/pii/S1742287617301949
https://search.proquest.com/docview/1679463958?pq-origsite=gscholar
https://www.qemu.org/
https://www.inetsim.org/
https://couchdb.apache.org/ http://couchdb.apache.org/
https://www.json.org/json-en.html

[58] N. Developers, “NetworkX â NetworkX.” [Online]. Available: https://networkx.github.io/

[59] EEE and T. O. Group, “file.” [Online]. Available: https://pubs.opengroup.org/onlinepubs/
9699919799/utilities/file.html

[60] E. Carrera, “GitHub - erocarrera/pefile: pefile is a Python module to read and work with PE
(Portable Executable) files.” [Online]. Available: https://github.com/erocarrera/pefile

[61] S. Sebastián and J. Caballero, “AVclass2: Massive Malware Tag Extraction from AV Labels,”
inACM International Conference Proceeding Series. Association for Computing Machinery,
dec 2020, pp. 42–53. [Online]. Available: https://doi.org/10.1145/3427228.3427261

[62] Chocolatey Software Inc., “Chocolatey - The package manager for Windows.” [Online].
Available: https://chocolatey.org/https://chocolatey.org

[63] Scikit-learn, “sklearn.feature_extraction.text.TfidfVectorizer â scikit-learn 0.24.2 documen-
tation,” 2021. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
feature{_}extraction.text.TfidfVectorizer.html

[64] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification
using support vector machines,” Machine Learning, vol. 46, no. 1-3, pp. 389–422, 2002.
[Online]. Available: https://link.springer.com/article/10.1023/A:1012487302797

[65] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn.
Res., vol. 12, no. null, p. 2825â2830, Nov. 2011.

[66] Kaggle, “Kaggle: Your Machine Learning and Data Science Community,” 2019. [Online].
Available: https://www.kaggle.com/

[67] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal Analysis-based Evasive
Malware Detection,” 23rd USENIX Security Symposium (USENIX Security 14), pp.
287–301, 2014. [Online]. Available: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/kirat

[68] A. Ortega, “Pafish (Paranoid Fish).” [Online]. Available: https://github.com/a0rtega/pafish

[69] D. Keragala, “Detecting Malware and Sandbox Evasion Techniques,”
2016. [Online]. Available: https://www.sans.org/reading-room/whitepapers/forensics/
detecting-malware-sandbox-evasion-techniques-36667

[70] scikit learn, “sklearn.model_selection.KFold â scikit-learn 0.24.2 documentation.” [Online].
Available: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.
html

[71] R. E. Bellman, Adaptive Control Processes. Princeton University Press., 1961.

87

https://networkx.github.io/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/file.html
https://github.com/erocarrera/pefile
https://doi.org/10.1145/3427228.3427261
https://chocolatey.org/ https://chocolatey.org
https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}extraction.text.TfidfVectorizer.html
https://link.springer.com/article/10.1023/A:1012487302797
https://www.kaggle.com/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat
https://github.com/a0rtega/pafish
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

[72] F. Provost, D. Jensen, and T. Oates, “Efficient progressive sampling,” in Proceedings of the
fifth ACM SIGKDD international conference on Knowledge discovery and data mining -
KDD ’99. New York, New York, USA: ACM Press, 1999, pp. 23–32. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=312129.312188

[73] VirusShare, “VirusShare-Research.” [Online]. Available: https://virusshare.com/research.
4n6

[74] Project Jupyter, “Project Jupyter | Home,” 2019. [Online]. Available: https:
//jupyter.org/index.htmlhttps://jupyter.org/

[75] HPCng, “Singularity.” [Online]. Available: https://singularity.hpcng.org/

[76] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3509134

[77] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 9, pp. 1263–1284, sep 2009.

[78] P. Branco, L. Torgo, and R. Ribeiro, “A survey of predictive modelling under imbalanced
distributions,” 2015.

[79] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority
over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357,
2002.

[80] “nteract/papermill.” [Online]. Available: https://github.com/nteract/papermill{#}https:
//github.com/nteract/papermill

[81] A. S. Foundation, “Apache Sparkâ¢ - Unified Analytics Engine for Big Data,” 2018.
[Online]. Available: https://spark.apache.org/

[82] “GitHub - joblib/joblib-spark: Joblib Apache Spark Backend.” [Online]. Available:
https://github.com/joblib/joblib-spark

[83] D. White, “National Software Reference Library,” pp. 1–17, 2004. [Online]. Available:
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl

[84] “sklearn.feature_selection.SequentialFeatureSelector â scikit-learn 0.24.2 docu-
mentation.” [Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.feature{_}selection.SequentialFeatureSelector.html{#}sklearn.feature{_}selection.
SequentialFeatureSelector

[85] “sklearn.feature_selection.SelectFromModel â scikit-learn 0.24.2 documentation.” [Online].
Available: https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}selection.
SelectFromModel.html{#}sklearn.feature{_}selection.SelectFromModel

88

http://portal.acm.org/citation.cfm?doid=312129.312188
https://virusshare.com/research.4n6
https://virusshare.com/research.4n6
https://jupyter.org/index.html https://jupyter.org/
https://jupyter.org/index.html https://jupyter.org/
https://singularity.hpcng.org/
https://doi.org/10.5281/zenodo.3509134
https://github.com/nteract/papermill{#} https://github.com/nteract/papermill
https://github.com/nteract/papermill{#} https://github.com/nteract/papermill
https://spark.apache.org/
https://github.com/joblib/joblib-spark
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl
https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}selection.SequentialFeatureSelector.html{#}sklearn.feature{_}selection.SequentialFeatureSelector
https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}selection.SequentialFeatureSelector.html{#}sklearn.feature{_}selection.SequentialFeatureSelector
https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}selection.SequentialFeatureSelector.html{#}sklearn.feature{_}selection.SequentialFeatureSelector
https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}selection.SelectFromModel.html{#}sklearn.feature{_}selection.SelectFromModel
https://scikit-learn.org/stable/modules/generated/sklearn.feature{_}selection.SelectFromModel.html{#}sklearn.feature{_}selection.SelectFromModel

[86] S. Fortunato and D. Hric, “Community detection in networks: A user guide,” Physics Reports,
vol. 659, pp. 1–44, jul 2016. [Online]. Available: http://arxiv.org/abs/1608.00163http:
//dx.doi.org/10.1016/j.physrep.2016.09.002

[87] J. Andrews, “Community Detection In Large Networks,” Ph.D. dissertation, Cornell
University, aug 2012. [Online]. Available: https://ecommons.cornell.edu/handle/1813/31046

[88] S. Fortunato, “Community detection in graphs,” pp. 75–174, feb 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0370157309002841

[89] F. D. Malliaros and M. Vazirgiannis, “Clustering and community detection in directed
networks: A survey,” Physics Reports, vol. 533, no. 4, pp. 95–142, dec 2013. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0370157313002822

89

http://arxiv.org/abs/1608.00163 http://dx.doi.org/10.1016/j.physrep.2016.09.002
http://arxiv.org/abs/1608.00163 http://dx.doi.org/10.1016/j.physrep.2016.09.002
https://ecommons.cornell.edu/handle/1813/31046
https://www.sciencedirect.com/science/article/pii/S0370157309002841
http://linkinghub.elsevier.com/retrieve/pii/S0370157313002822

APPENDIX A

MEMORY OBJECT MAPPING DEFINITIONS AND RELATIONSHIPS

90

(a) Process Definition - A process is an instance of a program executing in memory. Each

process starts from a binary that gives instructions for what the program should do. The

operating system takes responsibility for creating, suspending, and terminating processes

running in memory. When a process is created it is given a process id, a set of attributes,

and its own address space. The address space is a container for other objects such as

shared libraries (DLLs), dynamic data from the user, and its runtime stack. Within memory,

processes are represented as _EPROCESS structures.

(b) Binary Definition - A binary is the Portable Executable (PE) file that, when run, creates a

process. Once loaded into memory the binary is represented as an _EPROCESS structure.

(c) Thread Definition - Threads are represented as _ETHREAD structures and have the re-

sponsibility of executing tasks for a process. At least one thread must exist for a process.

Multiple threads can be executing within a single process with each performing different

tasks. Threads share all of the same code, data, address space, and operating system resources

of a process.

(d) DLL Definition - Dynamic linked libraries (DLLs) are shared libraries that are loaded into

the address space of a process. This loading can be done intentionally or forcefully. DLLs

are designed to be shared between processes and contain code and resources for the processes

to use. Since DLLs are created to run inside of a host process, they are often given access to

process resources: threads, handles, and the process memory space. DLLs are represented

by _LDR_DATA_TABLE_ENTRY structures.

91

(e) Session Definition - A session is responsible for storing information about a user logging

into a system as well as keeping track of GUI objects created and drivers loaded on a system.

Sessions have a unique ID that can be tied to a user and activities that occur within a session

can be attributed back to that user. A session is represented as a _MM_SESSION_SPACE

structure.

(f) Mutant Definition - A mutant, or mutex, is a kernel object that is represented as a _KMU-

TANT structure in memory. Their primary responsibility is for interprocess synchronization.

Malware uses these objects to mark their presence on a system and prevent other variants of

the malware sample to infect the system again.

(g) Token Definition - Tokens keep track of the security context for a specific process. These

objects identify the types of actions that a given process is allowed to perform. To-

kens are represented in memory by _TOKEN structures. Tokens also include privileges,

_SEP_TOKEN_PRIVILEGES structures, which set permissions for performing tasks. For

example, a common privilege used to write to other processâs private memory space is

SeDebugPrivilege. It must be enabled to perform this action.

(h) Window Station Definition - Window stations are containers within a session that act as

security boundaries for processes and desktops. There can be multiple window stations

within a session, but there should only be one interactive window station which is capable of

receiving user input. The interactive window station for a session will be âWinSta0â. The

main structure for a window station is tagWINDOWSTATION.

92

(i) Desktops Definition - Desktops are containers that manage application windows and user

interface objects. Malware can use these types of objects to spawn additional desktops

without a userâs knowledge or lock a user out of their current desktop, which is the case with

some ransomware. Desktops use the tagDESKTOP structure.

(j) Atoms Definition - Atoms are strings that are shared between processes within the same ses-

sion. An atom is stored inside of an atom table and uses the structure _RTL_ATOM_TABLE_ENTRY

in memory. Atoms are of interest because many Windows API calls create atoms indirectly.

Because of this some malware authors and security analysts are not aware of the information

that is available by searching through atom tables. There are some malware authors that

have begun to use these objects as a version of a mutex to avoid similar samples infecting a

machine that is already compromised.

(k) Message Hooks Definition - Message hooks are objects that can be used to intercept window

messages before they reach a specific window. Malware can use this ability to monitor and

collect all keyboard-related messages. The structure for message hooks is tagHOOK.

(l) Event Hook Definition - Event hooks provide the ability to monitor for specific UI-related

events. Example events could include when a command prompt is about to be started, a

process attempting to use an audio driver, monitoring mouse input, etc. The structure for an

event hook is tagEVENTHOOK.

(m) VAD Description - The Virtual Address Descriptor (VAD) for a process describes how

memory segments are structured. These data structures are managed by the operating

system and contain key information such as the names of memory-mapped files, the total
93

number of pages in the region, and the initial protection for the memory region. The VAD

objects are represented as _MMADDRESS_NODE structures.

(n) Kernel Module Description - These objects are created from KLDR_DATA_TABLE_ENTRY

structures. Malicious kernel modules have a number of different options for evading detec-

tion such as altering metadata structures, hooking functions, monitoring information with

callbacks, etc.

(o) Driver Description - Drivers are created from kernel modules and are based off of _DRIVER_OBJECT

structures. These objects contain information about the kernel module that created it. These

objects can be key to identifying a kernel module that is attempting to hide itself or alter

other modules. Applications in Windows also communicate with drivers via I/O Request

Packets (IRPs). The IRP structure has twenty-eight functions that allow for communication,

but can be manipulated by other drivers.

(p) Device Description - Devices are created by driver objects and use the _DEVICE_OBJECT

structure. Devices that attach to a driverâs stack have the ability to monitor and manipulate

IRPs as they are being processed. The most common devices that malware will monitor are

network, keyboard, and disk devices.

(q) IRP Function Table Description - I/O Request Packets (IRP) are the way that Windows

communicate with drivers. An IRP function table is an array of twenty-eight function

pointers for operations that a specific driver can do. Rootkits will manipulate these pointers

so that they either point to malicious kernel modules directly or hook these functions so that

a jump to malicious code is performed.
94

(r) Callbacks Description - Callbacks are routines that execute when a certain event occurs

on a system. Malware that unlinks its kernel module to be stealthy makes it easy to spot

malicious callbacks because the âModuleâ column in Rekall is displayed as UNKNOWN.

(s) Registry Key Description - The registry stores various configuration information about

applications, users, etc., within the Windows operating system. Registry keys are based on

_CMHIVE objects on disk. Most registry keys that are used frequently can be found in

memory. This is dependent on how heavily used a system is and if information has been

paged out of memory. These objects can be used to keep track of any information that

malware may store for it to function properly or to remain present on a system even after

shutdown.

(t) Service Description - Services are programs running at a higher privilege level than most

programs on a system. In most cases they are non-interactive and run consistently in the

background. Services are created from _SERVICE_RECORD structures. Malicious actors

can often use services as a means of persistence by hijacking services or can hide its existence

by altering metadata structures.

(u) Timer Description - Malware often uses kernel timer objects as a means to receive notifi-

cations when a certain amount of time has elapsed. These objects can also be automatically

reset after it expires, which allows it to perform periodic monitoring. Timers are created

from _KPCR structures.

(v) SSDT Description - The System Service Descriptor Table (SSDT) contains pointers to

kernel mode functions. This table allows user level applications to access system services.
95

Each entry in the SSDT is represented by _SERVICE_DESCRIPTOR_ENTRY structures.

Malware will attempt to replace pointers, insert hooks, or duplicate tables as methods for

starting malicious code via SSDTs.

(w) Network Connections - Identifying network connections is key in discovering the exact

intent for malware. Some attackers are looking to extract sensitive information out, while

others are seeking to send commands to cause damage on a system that has been infected.

When collecting these connections here are some of the structures used for analysis:

• _TCP_ENDPOINT

• _TCP_LISTENER

• _UDP_ENDPOINT

From these structures you can discern the IP address used and, depending on the protocol, the

port utilized for communication.

A.1 Object Interactions

Processes and Binaries - Each process running on a system will be started from an origin binary

PE file. A process is the representation of a binary executing in memory.

Processes and DLLs - Once a process is started, each will contain a number of DLLs that provide

it with the functionality needed to perform its specific actions. Each DLL used is mapped

into the virtual address space of a given process.

96

Processes and Devices - Another type of object that processes have access to are devices. A

process can gain access to this object via a handle. The primary device a process needs

access to for spawning network connections is \Device\Afd\Endpoint.

Devices and Network Connection - When a device creates a network connection, the type of

object which is created is dependent on the protocol that is being used. In addition, the device

used for network connections is \Device\Afd\Endpoint. An active handle to this device must

be present for the duration of a connection.

Processes, Tokens, and Privileges - To manage what objects a process can access, create, delete,

or modify, privileges and tokens are assigned. These components help to implement security

mechanisms to manage who has access to what in an operating system and regulate the type

of tasks that can be performed.

Tokens and Privileges - Tokens can include multiple tokens which enable a process to perform

specific actions.

Processes and Mutants - Processes will often create mutant objects to support mutual exclusion

when accessing shared resources. Malware uses mutants as a way to mark its presence on a

system to prevent a similar sample from attempting to infect the system again.

Processes and Threads - A process, in order to be running, must have at least one active thread.

Each thread will have a segment of process memory set aside for its runtime stack. Threads

can execute any part of a process’ code, even those being used by other threads.

97

Processes and VADs - Each process points to a VadRoot of a VAD tree. From here these memory

regions can be analyzed to gain additional information about what has been occurring. One

activity in particular that can be monitored is the practice of injecting DLLs into processes.

One method that can be checked is by reviewing the type of VAD structure that is assigned

for a memory region. If the memory region is created with an _MMVAD_SHORT then no

PE files should be mapped into this area. If a PE file is found, then this is evidence that DLL

injection has been performed.

Processes and Event Hooks - A process will use the SetWinEventHook to create a event hook.

The attacker has the ability to set the range of events that can be hooked when created this

object. Most attackers will set all possible events to ensure that a DLL is injected.

Processes and Messages Hooks - A process will use the SetWindowsHook function to create

message hooks. An attacker could perform keylogging to monitor a victimâs communications

by injecting a DLL into a remote process.

Processes and Sessions - Each process that is running on a system will be associated with a

specific session. Sessions act as containers for processes and objects on a system. Since

sessions can be associated with users on a system, looking at the relationships between

sessions and processes can help point to the owning user account on a system.

Processes and Desktops - Processes are assigned to specific desktops, which are containers for

user objects. One of the primary ways that malware can abuse desktops is by launching

applications in alternate desktops to avoid being noticed by the victim.

98

Processes and Services - Services can use processes in a standalone or a shared perspective to

perform their actions. Shared services will be hosted inside of a svchost.exe process. This

will contain multiple DLLs, all running at the same privilege level, with each performing

their own specific actions.

Desktops and Threads - Based on what is occurring on a system, multiple threads for a process

can be running for a given desktop object.

Desktops and Sessions - Desktops are stored inside of larger containers called Sessions. The

desktops are a place to store session specific GUI objects once they are allocated.

VADs and DLLs - VADs keep track of memory allocations for processes. Depending on the type

of information that is being saved, a DLL could be mapped into a VAD memory region.

Kernel Modules and Threads - When kernel modules create new threads, the System process

(PID 4) becomes the new owner of those objects by default. Each thread owned by System

should have offsets into kernel modules that own them. Within the _ETHREAD structure, the

SystemThread flag can be used to distinguish between user mode and kernel mode threads.

Malicious kernel modules will often create threads and then unload themselves to remain

stealthy. Performing this action leaves what are called orphan threads executing on a system.

Message Hooks and DLLs - When a message hook is triggered, the DLL that contains the

hooking procedure is mapped into the target thread monitoring for user input. From here,

the message that was generated is passed into the hook procedure inside of the DLL.

99

Event Hooks and DLLs - When event hooks are set, they provide the ability to effectively inject a

DLL into the threadâs process address space which performed the event. Using this method

provides a simple method to execute code in the context of a remote process.

Event Hooks and Sessions - Event hooks can be set for each of the sessions present on a system.

Kernel Modules and SSDTs - From a non-malicious perspective the pointers inside of the SSDT

give access to functions within kernel modules on a system. From a malicious standpoint,

kernel modules aim to alter the SSDT using techniques such as pointer replacement or inline

hooking to get malicious code executing on a system.

Kernel Modules and Callbacks - Kernel modules use callbacks as an opportunity to monitor

events that have occurred on a system. Some types of events monitored by callbacks

include: process creation, thread creation, loading an image, system shutdown, registry

modification, etc. Malware has used callbacks to continue to perform its functions even

after it has performed activities such as direct kernel object manipulation to unlink its

KLDR_DATA_TABLE_ENTRY.

Kernel Modules and Drivers - Whenever a kernel module is created a corresponding driver

object, _DRIVER_OBJECT, is also initialized. The driver has a copy of the kernel moduleâs

base address and itâs unload routine. The driver is useful when attempting to find the creator

kernel module that has potentially unloaded itself from memory.

Kernel Modules and IRP Functions - Kernel Modules have the ability to alter the IRP functions

set in driver objects. Malicious kernel modules often place hooks or overwrite data in IRP

100

functions. This allows for the kernel modules to potential filter information that is transmitted

over the network, written to disk, or other functionality.

Drivers and IRP Functions - Drivers are created with twenty-eight function pointers that can be

utilized to perform different actions. The driver object is responsible for configuring these

pointers and normally does so before being loaded into memory.

Drivers and Timers - A malicious driver will utilized timers as a method of synchronization and

notification. Timers can be set to perform a notification a single time or to send notifications

periodically on a system. When a timer expires a deferred procedure call is executed which

can point back to the driver that created the timer. This makes timers good artifacts to consult

when searching for kernel drivers that could be attempting to conceal themselves.

Kernel Drivers and Sessions - Each session object in memory contains a list of

_IMAGE_ENTRY_IN_SESSION structures. Each item in this list represents a device driver

that is mapped into the session. Multiple sessions could yield multiple drivers that should

be analyzed in each session.

Drivers and Devices - In this relationship, the driver is responsible for creating a device. Once

it is created using the API call IoGetDeviceObjectPointer, it can then attach a device to the

target device that it desires. After doing this, the new device will receive a copy of the

original IRP sent to the target and can âinspectâ it as it sees fit.

Services and Registry - A list of installed services and their configurations are stored in the

registry under the key: HKEY\LOCAL\MACHINE\SYSTEM\CurrentControlSet\services.

101

Each service running on the system has a dedicated subkey that describes how and when

each service should be active. It also describes if a service should be a process, dynamic

link library (DLL), or kernel driver.

Services and Drivers - Services can implement their actions to be performed through drivers.

One such example is the driver that is responsible for implementing the TCP/IP protocol,

tcpip.sys. Often services that are associated with drivers help to facilitate communication

between the OS and connected hardware.

Sessions and Window Stations - As stated before, sessions act as boundaries for processes and

other objects related to a user. The window station is one of the objects that are stored inside

of a session. The window station object is used as a security boundary between desktops

and processes.

Window Stations and Desktops - Window stations are security boundary objects which can

contain multiple desktops.

Window Stations and Atoms - Windows stations can contain multiple atoms which are strings

that can be used to communicate with other processes within the same session.

Sessions and Atoms - Sessions can contain multiple atoms that are used for sharing strings

between processes in the same session.

Atoms and DLLs - Atoms will often reference different DLLs present on a system. Malware

can sometimes create atoms that contain the path to DLLs that have been injected into other

processes using message or event hooks.

102

Atoms and Binaries - Atoms can contain strings that point to the path of binaries that are present

on a system.

103

APPENDIX B

MALWARE FAMILY BREAKDOWN

104

Table B.1 Dataset Malware Families

Family Count Family Count Family Count

singletons 1115 kovter 229 predator 100

agenttesla 996 emotet 190 darkkomet 98

trickbot 946 shyape 183 injuke 89

agensla 807 shiz 167 unruy 88

fareit 784 webdialer 164 remcos 85

zbot 598 bladabindi 160 zusy 83

gozi 474 noon 159 wannacry 82

hlux 387 nanobot 157 avemaria 79

ursnif 379 kelihos 149 zenpak 73

qbot 347 vebzenpak 140 scar 71

gamarue 241 cerber 132 formbook 70

nanocore 240 genkryptik 110 lokibot 69

taskun 65 deyma 35 nakoctb 22

delf 61 sality 34 bitman 22

razy 59 qzonit 33 dapato 22

yuner 58 sodinokibi 33 heye 22

chapak 58 masslogger 33 zboter 21

ceeinject 55 amonetize 32 ymacco 21

wacatac 52 sagecrypt 31 gorgon 21

105

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

econnect 50 virut 31 prepscram 21

teslacrypt 49 yakes 28 satan 20

agentb 48 netwalker 28 rebhip 20

ramnit 47 mupad 27 upatre 20

chindo 46 farfli 27 msilperseus 20

mansabo 46 bitmin 26 occamy 20

pennybee 42 techsnab 25 cridex 20

rescoms 39 firseria 24 ursu 19

winlock 38 browsefox 24 coins 19

loadmoney 36 bsymem 24 vidar 19

winwebsec 36 softpulse 23 zerber 18

autinject 36 vobfus 23 tofsee 18

trickster 17 azorult 12 glupteba 9

cryptinject 17 omaneat 11 gocloudnet 9

quasar 17 pwszbot 11 stop 9

zegost 16 barys 11 goldenspy 9

bundlore 16 neurevt 11 crysan 9

reconyc 16 dldlmn 11 woool 9

packednet 16 injects 11 bdsnanocoreclient 9

106

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

tinba 16 racealer 11 boaxxe 8

skeeyah 15 snojan 10 fraud 8

clipbanker 15 nymeria 10 slym 8

banbra 14 spyeye 10 ircbot 8

spybotnet 14 tescrypt 10 mycop 8

nitol 13 llac 10 schinject 8

cosmu 13 spygate 10 redcap 8

wowlik 13 badjoke 10 vasal 8

scarsi 13 nemty 10 maze 8

dial 13 crysis 10 rrat 8

generickdz 13 ponystealer 9 vbkryjetor 7

smartfortress 12 killproc 9 wdfload 7

zeroaccess 7 kpavtoit 7 mekotio 5

cnopa 7 bypassuac 6 flystudio 5

magania 7 mypcbackup 6 parite 5

alien 7 buzus 6 golroted 5

xtrat 7 midie 6 onlinegames 5

zard 7 ngrbot 6 noancooe 5

fsysna 7 sinowal 6 directdownloader 5

107

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

ymeta 7 kasidet 6 chisburg 5

shopperz 7 poison 6 mudrop 5

sage 7 waledac 6 scrop 5

netwiredrc 7 tiggre 6 danabot 5

bulz 7 swisyn 6 hupigon 5

strongpity 7 neshta 6 windigo 5

delikle 7 msilrandomkrypt 6 avaddon 5

autit 7 gandcrab 6 ragnarlocker 5

eclv 7 equationdrug 6 medusalocker 5

delshad 7 mailto 6 swotter 5

apost 7 dropback 6 injectnet 5

netwire 7 addrop 5 delphi 5

myxah 5 surveyer 4 packy 3

opencandy 4 lockscreen 4 miuref 3

bicololo 4 scenic 4 toga 3

archsms 4 bluteal 4 vbkeyloggerspy 3

urausy 4 disfa 4 psdownload 3

lidared 4 genericgb 4 enestedel 3

shade 4 makoob 4 senta 3

108

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

msilkrypt 4 titirez 4 ekstak 3

feasu 4 solmyr 4 soft32downloader 3

execcmd 4 autoitinject 4 zapchast 3

sysn 4 rapid 4 dofoil 3

lionsea 4 pwsx 4 runner 3

beebone 4 vbkeylog 4 mydoom 3

banload 4 recam 3 fadok 3

revengerat 4 locky 3 gimemo 3

pincav 4 betacio 3 lotok 3

siscos 4 mikey 3 revetrat 3

bandit 4 lethic 3 lockbit 3

tasker 4 hamweq 3 webdial 3

malwarex 3 miancha 2 njrat 2

pwsteal 3 dynamer 2 disabler 2

wastedlocker 3 scoreem 2 slipafext 2

korplug 3 resetter 2 hesv 2

avemariarat 3 lasdoma 2 hipgnosisbrains 2

hawkeyekeylogger 3 dorkbot 2 quasarrat 2

exorcist 3 dinwod 2 ouroboros 2

109

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

passwordstealer 3 remoteadmin 2 hosts 2

moderate 2 jimmy 2 crypren 2

usteal 2 dovs 2 wasted 2

badur 2 bankoren 2 black 2

necurs 2 tougle 2 fourthrem 2

sysvenfak 2 invader 2 sharik 2

qhost 2 woozlist 2 macri 2

bifrose 2 steam 2 nymaim 2

induc 2 pliskal 2 vawtrak 2

multiplug 2 nebuler 2 browserpassview 2

adwind 2 orcusrat 2 johnnie 2

bscope 2 variadic 2 wapomi 2

multibar 2 freemake 2 webtoos 1

carberp 2 shelma 2 pontoeb 1

shylock 2 teslaag 2 nbdd 1

blackhole 2 startun 2 vmprotbad 1

xiazai 2 meretam 2 pony 1

nisloder 2 sonbokli 2 mofin 1

orcus 2 conti 2 troldesh 1

110

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

mucc 2 ragnar 2 prek 1

nagoot 2 sodin 2 kalhine 1

zedopoo 2 manbat 2 2345explorer 1

deceptpcclean 2 mokes 2 schwarzesonne 1

asfortal 2 killmbr 2 betabot 1

carbanak 2 stelega 2 poshkod 1

jeefo 2 agentesla 2 xm4fasx6owcb 1

vbinder 2 luder 2 jacksbot 1

2144flashplayer 2 revenge 2 ukpa 1

dialers 2 batdrop 1 ulise 1

atraps 2 ovidiy 1 blmo 1

diztakun 2 tpyn 1 retefe 1

dothetuk 1 temr 1 regscript 1

philadelphia 1 fbook 1 wysotot 1

convertad 1 lightlogger 1 beaugrit 1

mediamagnet 1 broskod 1 cycbot 1

faketool 1 speedingupmypc 1 swrort 1

pckeeper 1 ransomcwall 1 rbot 1

genericrxaf 1 lynx 1 rsoftware 1

111

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

dreidel 1 mufanom 1 pandora 1

mint 1 minari 1 instally 1

scriptkd 1 drivertuner 1 panther 1

dodiw 1 karo 1 negasteal 1

installcore 1 fnba 1 autoruns 1

seven 1 pavica 1 hawkeye 1

gepys 1 sunnydigits 1 diffyndor 1

incredimail 1 ananlog 1 sekhmet 1

iiwaaql1eedab 1 fareitvb 1 tocoqi 1

quant 1 generictka 1 pasta 1

megone 1 rincux 1 ruandmel 1

pef13c 1 cutwail 1 inbox 1

xyligan 1 khalesi 1 chir 1

gemius 1 raroger 1 hawkey 1

deceptfakecorel 1 skeeeyah 1 tufik 1

expiro 1 repter 1 systemcheckup 1

sinresby 1 installmonetizer 1 jacard 1

dishigy 1 fakepav 1 fusioncore 1

chromex 1 ruco 1 rovnix 1

112

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

keybase 1 nefilim 1 dwahk 1

retadup 1 ransomexx 1 sylavriu 1

systemcare 1 masqulab 1 doina 1

pcfixer 1 virlock 1 secureage 1

lamer 1 lightstone 1 cobalt 1

presenoker 1 discord 1 zorab 1

mensa 1 lotoor 1 dropik 1

kuhaname 1 gamini 1 vigua 1

joiner 1 genericml 1 melt 1

genmaliciousa 1 sysdrop 1 revenants 1

betkrypt 1 mbot 1 chepro 1

limerat 1 tenga 1 execution 1

coimine 1 doubleagent 1 pyrgen 1

dridex 1 passup 1 malitrar 1

xmkfrhodjpnbh 1 crimsonrat 1 hebchengjiu 1

graphitefox 1 pretoria 1 indiloadz 1

crypmod 1 socelars 1 deshacop 1

easycleanpc 1 epack 1 msilzilla 1

speedyopt 1 pcrypt 1 nanocoreclient 1

113

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

foxhiex 1 buerak 1 mimikatz 1

mahato 1 gasti 1 rastarby 1

emogen 1 vigorf 1 bomka 1

pluginaccess 1 blat 1 shellcodecrypter 1

gnnfrk34jphi 1 formatc 1 torjok 1

drmsoft 1 blamon 1 antivm 1

demp 1 fakap 1 plurox 1

spacekito 1 blokrypt 1 crisisht 1

tscope 1 orsam 1 injexa 1

siluhdur 1 mogora 1 sfone 1

icedid 1 trochil 1 regger 1

reveton 1 spybot 1 samca 1

qucan 1 nssm 1 cryfile 1

erica 1 phobos 1 vtflooder 1

virtumonde 1 cryptinjector 1 regotet 1

x1hkg 1 emeka 1 slepak 1

nonoko 1 cutygirls 1 acapulco 1

popclick 1 tspy 1 renos 1

menti 1 schoolgirl 1 crylock 1

114

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

extenbro 1 dpulsarshellcode 1 regrun 1

cpuguardian 1 shadowbrokers 1 sunburst 1

xmrig 1 topantispyware 1 samas 1

navexcel 1 myplaycity 1 betload 1

armadillo 1 softninjas 1 kpot 1

cometer 1 webcompanion 1 bunitu 1

ludicrouz 1 spyagent 1 staser 1

aitinject 1 psloader 1 proxychanger 1

matrix 1 ashify 1 jobcrypter 1

dawnla 1 hmofa0pd7gfb 1 povertel 1

hydrapos 1 smser 1 cossta 1

ripter 1 maria 1 waldek 1

warezov 1 zeppelin 1 dllcheck 1

pcclient 1 asparnet 1 fakeie 1

folders 1 cnsmin 1 pynamer 1

spyagent 1 pakes 1 zurgop 1

torct 1 rackcrypt 1 sload 1

lulusoftware 1 viking 1 rozena 1

fakesupport 1 downloadadmin 1 msilheracles 1

115

Table B.1 Dataset Malware Families (continued)

Family Count Family Count Family Count

savenow 1 daws 1 ygdata 1

insqter 1 cidox 1 rnaph 1

zpevdo 1 amavaldo 1 agentoit 1

wget 1 bobik 1 liusky 1

valak 1 phorpiex 1 coinstealer 1

xred 1 genasep 1 bobik 1

totavel 1 zxshell 1 phorpiex 1

chthonic 1 valak 1 genasep 1

limeransom 1 liusky 1 zxshell 1

leivion 1 coinstealer 1 wget 1

binder 1 bobik 1 psloader 1

msilheracles 1 phorpiex 1 zurgop 1

ygdata 1 genasep 1 sload 1

rnaph 1 zxshell 1 rozena 1

agentoit 1 wget 1 psloader 1

116

APPENDIX C

NORMALIZED PATHS INVERSE DOCUMENT FREQUENCY (IDF)

117

In this section the normalized paths and their respective IDF scores are shown in the table

below. These paths were generated from the pairs of malicious processes in our dataset.

Table C.1 Normalized Path IDF Scores

Normalized Path IDF Score

process – parent_child_relationship – process – process_contains_binary –

binary – binary_being_used_by_process – process –

parent_child_relationship – process

5.558960

process – process_has_handle_to_process – process –

process_has_handle_to_process – process – process_has_handle_to_process

– process – parent_child_relationship – process

5.543212

process – process_contains_module – module –

module_associated_with_message_hook – message_hook –

message_hook_in_session – session – session_contains_process – process

5.527707

process – process_connected_to_desktop – desktop –

desktop_contains_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

parent_child_relationship – process

5.504893

118

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_process – process –

process_contains_binary – binary – binary_being_used_by_process –

process – process_has_handle_to_process – process

5.497402

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

5.467988

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_contains_binary – binary –

binary_being_used_by_process – process – process_has_handle_to_process

– process

5.453600

process – parent_child_relationship – process –

process_has_handle_to_process – process – process_connected_to_desktop

– desktop – desktop_contains_process – process

5.453600

process – process_found_in_session – session –

session_contains_message_hook – message_hook –

message_hook_associated_with_module – module –

module_used_by_process – process

5.446482

119

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – parent_child_relationship – process – parent_child_relationship –

process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process

5.439415

process – parent_child_relationship – process – parent_child_relationship –

process – parent_child_relationship – process – parent_child_relationship –

process

5.404809

process – parent_child_relationship – process –

process_has_handle_to_process – process – process_has_handle_to_event –

event – event_being_used_by_process – process

5.358289

process – process_found_in_session – session –

session_contains_message_hook – message_hook –

message_hook_created_by_process – process – parent_child_relationship –

process

5.345386

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_found_in_session – session –

session_contains_message_hook – message_hook –

message_hook_created_by_process – process

5.271278

120

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_contains_binary – binary –

binary_being_used_by_process – process – parent_child_relationship –

process

5.265343

process – process_created_message_hook – message_hook –

message_hook_in_session – session – session_contains_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

5.265343

process – process_has_handle_to_event – event –

event_being_used_by_process – process – parent_child_relationship –

process – process_has_handle_to_process – process

5.219092

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_process – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process

5.219092

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process – process_has_handle_to_process

– process

5.196745

process – process_contains_binary – binary –

binary_being_used_by_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

5.148218

121

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_process – process –

process_has_handle_to_process – process – parent_child_relationship –

process

5.096925

process – process_has_handle_to_process – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process – parent_child_relationship – process

5.096925

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process

5.057704

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process – parent_child_relationship –

process

5.052908

process – process_has_handle_to_process – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process – process_has_handle_to_process – process

5.052908

process – parent_child_relationship – process – parent_child_relationship –

process – process_has_handle_to_thread – thread –

thread_created_by_process – process

4.965896

122

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_process – process –

parent_child_relationship – process

4.939921

process – process_found_in_session – session – session_contains_process –

process – parent_child_relationship – process –

process_has_handle_to_process – process

4.873781

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_parent_child_relationship_and_handle_to_process –

process

4.850064

process – process_created_thread – thread – thread_being_used_by_process

– process – process_has_handle_to_event – event –

event_being_used_by_process – process

4.782114

process – parent_child_relationship – process –

process_has_handle_to_process – process – process_contains_module –

module – module_used_by_process – process

4.739250

process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process

4.708267

123

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

4.684815

process – parent_child_relationship – process –

process_connected_to_desktop – desktop – desktop_contains_process –

process – process_has_parent_child_relationship_and_handle_to_process –

process

4.668394

process – parent_child_relationship – process –

process_connected_to_desktop – desktop – desktop_contains_process –

process – parent_child_relationship – process

4.642669

process – parent_child_relationship – process –

process_has_handle_to_process – process – process_found_in_session –

session – session_contains_process – process

4.630051

process – process_has_handle_to_process – process –

process_has_handle_to_thread – thread – thread_created_by_process –

process

4.623801

process – process_created_message_hook – message_hook –

message_hook_in_session – session – session_contains_process – process –

parent_child_relationship – process

4.620690

124

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_process – process –

process_has_handle_to_process – process

4.578131

process – parent_child_relationship – process –

process_has_handle_to_thread – thread –

thread_relationship_with_process_and_process_using_handle_to_thread –

process – process_has_handle_to_process – process

4.523124

process – process_has_handle_to_thread – thread –

thread_relationship_with_process_and_process_using_handle_to_thread –

process – process_has_handle_to_process – process

4.520311

process – process_has_handle_to_thread – thread –

thread_being_used_by_process – process – process_has_handle_to_process

– process – process_has_handle_to_process – process

4.509138

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_process – process –

process_contains_binary – binary – binary_being_used_by_process –

process

4.492609

125

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_event – event –

event_being_used_by_process – process – process_has_handle_to_thread –

thread – thread_created_by_process – process

4.476348

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_created_message_hook – message_hook –

message_hook_in_session – session – session_contains_process – process

4.462997

process – parent_child_relationship – process –

process_has_handle_to_process – process – process_has_handle_to_token –

token – token_being_used_by_process – process

4.457706

process – process_found_in_session – session – session_contains_process –

process – process_has_thread_relationship_and_has_handle_to_thread –

thread – thread_being_used_by_process – process

4.449821

process – process_has_handle_to_token – token –

token_being_used_by_process – process –

process_has_thread_relationship_and_has_handle_to_thread – thread –

thread_being_used_by_process – process

4.449821

126

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_thread – thread –

thread_relationship_with_process_and_process_using_handle_to_thread –

process – process_has_handle_to_event – event –

event_being_used_by_process – process

4.449821

process – process_has_handle_to_thread – thread –

thread_relationship_with_process_and_process_using_handle_to_thread –

process – process_contains_module – module – module_used_by_process –

process

4.444599

process – process_has_handle_to_thread – thread –

thread_relationship_with_process_and_process_using_handle_to_thread –

process – process_found_in_session – session – session_contains_process –

process

4.444599

process – process_has_handle_to_thread – thread –

thread_relationship_with_process_and_process_using_handle_to_thread –

process – process_connected_to_desktop – desktop –

desktop_contains_process – process

4.444599

process – process_found_in_session – session – session_contains_process –

process – process_has_thread_relationship_and_has_handle_to_thread –

thread – thread_created_by_process – process

4.408790

127

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_contains_module – module – module_used_by_process –

process – process_has_thread_relationship_and_has_handle_to_thread –

thread – thread_created_by_process – process

4.406281

process – process_created_thread – thread – thread_being_used_by_process

– process – process_has_parent_child_relationship_and_handle_to_process

– process

4.406281

process – process_has_handle_to_token – token –

token_being_used_by_process – process –

process_has_thread_relationship_and_has_handle_to_thread – thread –

thread_created_by_process – process

4.398790

process – parent_child_relationship – process – parent_child_relationship –

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process

4.396305

process – parent_child_relationship – process –

process_has_handle_to_thread – thread – thread_being_used_by_process –

process – process_has_handle_to_process – process

4.340803

process – process_has_parent_child_relationship_and_handle_to_process –

process – parent_child_relationship – process
4.338458

128

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_thread – thread –

thread_being_used_by_process – process – process_contains_module –

module – module_used_by_process – process

4.333785

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

4.322197

process – process_contains_binary – binary –

binary_being_used_by_process – process – process_has_handle_to_mutant –

mutant – mutant_being_used_by_process – process

4.317600

process – process_created_thread – thread – thread_being_used_by_process

– process – process_has_handle_to_thread – thread –

thread_created_by_process – process

4.308467

process – process_found_in_session – session – session_contains_process –

process – process_has_handle_to_thread – thread –

thread_being_used_by_process – process

4.266192

process – process_has_handle_to_token – token –

token_being_used_by_process – process – process_has_handle_to_thread –

thread – thread_being_used_by_process – process

4.266192

129

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_created_thread – thread – thread_being_used_by_process

– process – process_connected_to_desktop – desktop –

desktop_contains_process – process

4.261844

process – process_has_handle_to_process – process –

parent_child_relationship – process – process_contains_binary – binary –

binary_being_used_by_process – process

4.261844

process – process_has_handle_to_process – process –

process_contains_binary – binary – binary_being_used_by_process –

process – process_has_parent_child_relationship_and_handle_to_process –

process

4.261844

process – process_connected_to_desktop – desktop –

desktop_contains_process – process – process_has_handle_to_thread –

thread – thread_created_by_process – process

4.238263

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_has_handle_to_event – event – event_being_used_by_process –

process

4.229824

130

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_connected_to_desktop – desktop –

desktop_contains_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

4.198798

process – process_has_handle_to_thread – thread –

thread_being_used_by_process – process – process_connected_to_desktop –

desktop – desktop_contains_process – process

4.196763

process – process_has_handle_to_thread – thread –

thread_being_used_by_process – process – process_found_in_session –

session – session_contains_process – process

4.192706

process – process_has_handle_to_thread – thread –

thread_being_used_by_process – process – process_has_handle_to_process

– process

4.192706

process – parent_child_relationship – process – parent_child_relationship –

process – process_contains_binary – binary –

binary_being_used_by_process – process

4.129941

131

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_event – event –

event_being_used_by_process – process – parent_child_relationship –

process

4.116721

process – parent_child_relationship – process –

process_has_handle_to_process – process
4.090793

process – process_has_handle_to_process – process –

parent_child_relationship – process – process_has_handle_to_mutant –

mutant – mutant_being_used_by_process – process

4.042613

process – process_contains_module – module – module_used_by_process –

process – parent_child_relationship – process –

process_has_handle_to_process – process

4.039134

process – process_has_handle_to_process – process –

parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process

4.032214

process – parent_child_relationship – process – parent_child_relationship –

process – process_has_parent_child_relationship_and_handle_to_process –

process

4.027055

132

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_thread – thread –

thread_created_by_process – process – process_found_in_session – session

– session_contains_process – process

4.005001

process – process_connected_to_desktop – desktop –

desktop_contains_process – process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process

3.988362

process – process_has_handle_to_event – event –

event_being_used_by_process – process – parent_child_relationship –

process – process_has_parent_child_relationship_and_handle_to_process –

process

3.988362

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_connected_to_desktop – desktop –

desktop_contains_process – process – parent_child_relationship – process

3.962302

process – process_has_handle_to_process – process –

process_has_handle_to_process – process – process_has_handle_to_process

– process – process_has_parent_child_relationship_and_handle_to_process

– process

3.962302

133

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_event – event –

event_being_used_by_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

3.941617

process – parent_child_relationship – process –

process_has_handle_to_event – event – event_being_used_by_process –

process – parent_child_relationship – process

3.935337

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_connected_to_desktop – desktop – desktop_contains_process –

process

3.935337

process – process_found_in_session – session – session_contains_process –

process – process_created_thread – thread – thread_being_used_by_process

– process

3.933774

process – process_has_handle_to_thread – thread –

thread_created_by_process – process – process_has_handle_to_token –

token – token_being_used_by_process – process

3.915197

134

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_created_thread – thread – thread_being_used_by_process

– process – process_found_in_session – session – session_contains_process

– process

3.913665

process – process_has_handle_to_process – process –

process_has_handle_to_process – process – process_has_handle_to_mutant

– mutant – mutant_being_used_by_process – process

3.910607

process – process_has_handle_to_process – process –

parent_child_relationship – process – parent_child_relationship – process
3.906037

process – process_created_thread – thread – thread_being_used_by_process

– process – process_contains_module – module – module_used_by_process

– process

3.904518

process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_has_handle_to_event – event – event_being_used_by_process –

process

3.899976

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process – process_contains_binary –

binary – binary_being_used_by_process – process

3.879049

135

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_process – process –

process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

3.858550

process – process_contains_module – module – module_used_by_process –

process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process

3.851330

process – parent_child_relationship – process – parent_child_relationship –

process – parent_child_relationship – process
3.815991

process – process_connected_to_desktop – desktop –

desktop_contains_process – process – parent_child_relationship – process –

parent_child_relationship – process

3.803568

process – process_created_message_hook – message_hook –

message_hook_in_session – session – session_contains_message_hook –

message_hook – message_hook_created_by_process – process

3.799461

process – process_created_thread – thread – thread_being_used_by_process

– process – process_has_handle_to_token – token –

token_being_used_by_process – process

3.787241

136

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_process – process –

process_connected_to_desktop – desktop – desktop_contains_process –

process – parent_child_relationship – process

3.772506

process – process_has_handle_to_process – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process – process_has_parent_child_relationship_and_handle_to_process –

process

3.769850

process – process_has_handle_to_process – process –

process_has_handle_to_process – process – process_contains_binary –

binary – binary_being_used_by_process – process

3.767201

process – process_has_handle_to_token – token –

token_being_used_by_process – process – parent_child_relationship –

process – process_has_handle_to_process – process

3.750151

process – process_has_handle_to_process – process –

process_has_handle_to_process – process – process_has_handle_to_process

– process

3.741089

137

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_connected_to_desktop – desktop – desktop_contains_process –

process

3.733387

process – process_has_handle_to_process – process –

process_found_in_session – session – session_contains_message_hook –

message_hook – message_hook_created_by_process – process

3.728285

process – parent_child_relationship – process –

process_has_handle_to_thread – thread – thread_created_by_process –

process

3.721944

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process

3.720681

process – process_has_handle_to_event – event –

event_being_used_by_process – process – parent_child_relationship –

process – parent_child_relationship – process

3.698208

process – parent_child_relationship – process – parent_child_relationship –

process – process_has_handle_to_event – event –

event_being_used_by_process – process

3.659462

138

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_token – token –

token_being_used_by_process – process – process_created_thread – thread –

thread_being_used_by_process – process

3.653541

process – parent_child_relationship – process – process_found_in_session –

session – session_contains_message_hook – message_hook –

message_hook_created_by_process – process

3.638310

process – process_has_handle_to_event – event –

event_being_used_by_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

parent_child_relationship – process

3.604020

process – process_found_in_session – session –

session_contains_message_hook – message_hook –

message_hook_created_by_process – process –

process_has_handle_to_process – process

3.510755

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process – process_has_handle_to_mutant

– mutant – mutant_being_used_by_process – process

3.500572

139

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_connected_to_desktop – desktop –

desktop_contains_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_has_handle_to_process – process

3.500572

process – process_has_handle_to_process – process –

process_contains_binary – binary – binary_being_used_by_process –

process

3.478527

process – parent_child_relationship – process – parent_child_relationship –

process – process_connected_to_desktop – desktop –

desktop_contains_process – process

3.459871

process – process_found_in_session – session – session_contains_process –

process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process

3.455019

process – process_has_handle_to_process – process –

process_has_handle_to_process – process
3.454052

process – process_has_handle_to_thread – thread –

thread_created_by_process – process
3.429218

140

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_contains_binary – binary –

binary_being_used_by_process – process – process_has_handle_to_event –

event – event_being_used_by_process – process

3.380428

process – process_contains_binary – binary –

binary_being_used_by_process – process – process_connected_to_desktop –

desktop – desktop_contains_process – process

3.380428

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_contains_module – module – module_used_by_process – process

3.373266

process – process_contains_module – module – module_used_by_process –

process – process_has_handle_to_thread – thread –

thread_created_by_process – process

3.346856

process – process_contains_module – module – module_used_by_process –

process – parent_child_relationship – process – parent_child_relationship –

process

3.341656

process – process_found_in_session – session – session_contains_process –

process – process_has_handle_to_thread – thread –

thread_created_by_process – process

3.327070

141

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_process – process –

process_created_message_hook – message_hook –

message_hook_in_session – session – session_contains_process – process

3.308504

process – process_has_handle_to_process – process –

parent_child_relationship – process
3.305999

process – process_has_handle_to_token – token –

token_being_used_by_process – process – process_has_handle_to_thread –

thread – thread_created_by_process – process

3.300178

process – process_has_handle_to_token – token –

token_being_used_by_process – process – parent_child_relationship –

process – process_has_parent_child_relationship_and_handle_to_process –

process

3.285362

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_found_in_session – session – session_contains_process – process

3.258759

process – parent_child_relationship – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process

3.255582

142

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_handle_to_process – process –

process_has_handle_to_mutant – mutant – mutant_being_used_by_process –

process

3.223585

process – parent_child_relationship – process – process_contains_binary –

binary – binary_being_used_by_process – process
3.221284

process – process_has_handle_to_process – process –

parent_child_relationship – process – process_connected_to_desktop –

desktop – desktop_contains_process – process

3.211371

process – parent_child_relationship – process –

process_has_parent_child_relationship_and_handle_to_process – process –

process_contains_module – module – module_used_by_process – process

3.200055

process – parent_child_relationship – process –

process_created_message_hook – message_hook –

message_hook_in_session – session – session_contains_process – process

3.197807

process – process_created_message_hook – message_hook –

message_hook_in_session – session – session_contains_process – process –

process_has_handle_to_process – process

3.146738

143

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_connected_to_desktop – desktop –

desktop_contains_thread – thread – thread_created_by_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

3.113856

process – process_connected_to_desktop – desktop –

desktop_contains_process – process –

process_has_parent_child_relationship_and_handle_to_process – process

3.113856

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_process – process
3.113168

process – process_has_handle_to_process – process –

process_has_parent_child_relationship_and_handle_to_process – process
3.104949

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_event – event –

event_being_used_by_process – process

3.069434

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_connected_to_desktop – desktop –

desktop_contains_process – process

3.069434

144

Table C.1 Normalized Path IDF Scores (continued)

Normalized Path IDF Score

process – process_has_parent_child_relationship_and_handle_to_process –

process – process_has_handle_to_mutant – mutant –

mutant_being_used_by_process – process – process_has_handle_to_process

– process

3.062219

145

	Detecting malware in memory with memory object relationships
	Recommended Citation

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Memory Forensics
	Malware in Memory
	Malicious Path Data
	Machine Learning
	Hypothesis
	Research Questions
	Which memory objects are related to processes in random access memory?
	What are common memory object relationships that malware tends to manipulate and/or establish in memory?
	Do malware samples that have multiple processes have distinct path characteristics?
	Do benign and malicious process paths have distinguishing characteristics?
	Which features best support the goal of maximizing accuracy while minimizing false-negative rate in identifying malicious graphs?

	Research Benefits

	Related Work
	Methodology
	System Design
	Memory Object Mappings
	OAE Development
	Data Generation
	Benign Memory Images Dataset
	Data Extraction
	Process Data
	Malicious Path Data
	Path Normalization
	Path Analysis

	Feature Development
	Feature Selection

	Classifier Evaluation and Tuning

	Threats to validity and Limitations
	Problem: Information loss due to sandbox evasion
	Potential Outcome

	Guaranteed maliciousness
	Potential Outcome

	Missing some relationship information due to exited processes
	Potential Outcome

	Find a method for collecting additional benign memory samples
	Potential Outcome

	Develop a large enough dataset to support the number of features selected for training classifiers
	Potential Outcome

	Create a dataset of samples that are representative of malware and benign software that is used in the real world
	Potential Outcome

	Machine Learning Workflow
	Generate TF-IDF features
	Connecting Processes to Normalized Paths
	Data Filtering and Feature Engineering
	DLLs
	Handles
	Privileges
	Tokens

	Building Machine Learning Models
	Filtering Chocolatey Processes
	Training/Validation/Test Set Creation
	Chocolatey Processes Oversampling
	Feature Selection

	Test Set Predictions
	Model Interpretation

	Discussion
	Which memory objects are related to processes in random access memory?
	What are common memory object relationships that malware tends to manipulate and/or establish in memory?
	Do malware samples that have multiple processes have distinct path characteristics?
	Do benign and malicious process paths have distinguishing characteristics?
	Which features best support the goal of maximizing accuracy while minimizing false-negative rate in identifying malicious processes?

	Conclusion
	Summary
	Contributions
	Memory object mapping
	Object Association Extractor
	Feature set development
	Trained machine learning classifiers

	Future Work
	Alternative Approaches
	Community Detection
	Kernel Objects
	Additional Operating Systems
	Live Acquisition and Predictions

	Closing and Acknowledgement of Support

	References
	Memory Object Mapping Definitions and Relationships
	Object Interactions

	Malware Family Breakdown
	Normalized Paths Inverse Document Frequency (IDF)

